

4

1. “The Regulation of Investigational Powers
Act (RIPA),” http://www.homeoffice.gov.uk/
crimpol /crimreduc/regulation/index.html (July
28, 2000). See also “U.K. e-mail snooping bill
passed,” http://www.cnn.com/2000/TECH/
computing/07/28/uk.surveillance.idg/ (July 28,
2000).

Vol. 29, No. 3 ;login:

by Adam Butler
Adam Butler is a
board member and
marketing/PR direc-
tor for CAcert, Inc.
This past April, as
part of his "PKI
Roadshow," he trav-
eled throughout the
European Union to
meet with CAcert
users and other PKI
enthusiasts. Look for
Adam and the rest of
the CAcert crew at
this year's USENIX
conference in Boston
or email him direct at

adam@donkeyrequiem.com

certs for the masses
A Community-Oriented Certificate
Authority
“Secure authentication and encryption methodologies want to be free.”
Okay, I admit it. Compared with all the other OSS anthropomorphisms
floating around, that one’s a bit of a mouthful. Nevertheless, the need for
strong and reliable data security is as old as data itself.

While the Internet community has championed the “information wants to be free”
cause for as long as I can remember, this concept has always been tempered with a
profound respect for personal privacy. Consistently, the heroes of the open source
movement trumpet the emancipation of innumerable ones and zeroes across the
globe while contemporaneously applauding the individual’s right to keep his or her
ones and zeroes private and secure.

Savvy computer users recognized this need from the very beginning, not because they
had anything in particular to hide; rather, they merely realized that private data wasn’t
safe from prying eyes unless specific steps were taken to ensure that safety.

Long before buggy WEP-encrypted WLAN access points dotted the landscape – hell,
even before the 1990s Internet retailing explosion – countless individuals sent count-
less petabytes of God-knows-what to God-knows-who without realizing that every bit
of their communications could be (and often were) intercepted by others.

Over time, folks wised up. For the sysadmins among us, ask yourself: When was the
last time you accessed one of your boxes in an open, untrusted environment, using
Telnet rather than SSH?

And even Joe User caught on, eventually learning to check his browser for that nifty
lock/key icon before submitting his online purchase. Sure, he probably still has little or
no idea what is meant by terms like “Secure Sockets Layer” or “128-bit encryption,”
but at least he knows to check first before spiriting his credit card information off into
the ether as cleartext.

I doubt anyone would seriously dismiss the role of PKI, SSL, et al. in strengthening
consumer confidence in secure Web transactions and thereby laying the groundwork
that allowed companies like Amazon and eBay to succeed, but the Public Key Infra-
structure allows for so much more than mere virtual mercantilism.

For the most part, the Internet community exploits only a tiny fraction of what this
valuable technology has to offer, and with gross privacy violations occurring at dis-
turbingly increasing frequencies,1 it would seem that now, more than ever, the impor-
tance of publicly available cryptography tools and techniques cannot be overstated.

It’s time to take the next steps in securing our personal data and that of our users. For
that, we’re going to need a certificate authority.

Enter CAcert
Until recently, the thought of approaching a certificate authority (CA) for not one but
numerous X.509 certificates might have tied your stomach in knots, caused you to
break out in hives, and even prompted you to murder your entire family. Because
unless Daddy’s trust fund left you so much dough that you’re routinely torching $100

bills just to light your Havanas, you’re probably turned off a bit by the realization that
the best price any CA offers is still going to require that you take out a second mort-
gage on the house.

Dylan quotes so often lend themselves to the OSS movement, and now is no exception:
Times are indeed a-changin’.

Late last year, CAcert, a nonprofit, OSS-based certificate authority quietly stepped for-
ward with a proposal that was as simple as it was groundbreaking: the Australian-born
organization would offer signed, 128-bit X.509 certificates for personal and server-side
use . . . for free.

Like so many open source mavericks before them, a small group of committed indi-
viduals simply took a long, hard look at a particular industry – in this case, the buying
and selling of X.509 certificates – and realized they could do a better job.

In almost no time at all, CAcert was providing gratis what industry leaders Thawte and
VeriSign were routinely hawking for hundreds or even thousands of dollars apiece.2

Today, CAcert offers signed, 128-bit X.509(v3) certificates for SSL, Wireless Auth,
S/MIME, VPN, and other authentication/encryption schemes. And whether you’re in
the market for a personal or a server-side solution, you can leave your cache of Spanish
doubloons at home – CAcert’s expenses are still covered by donations and advertising,
not exorbitant (and unnecessary) annual fees.

And that’s not all. The venerable CA already offers a highly thought out “Web of Trust”
assurance scheme,3 gently lifted from the highly thought out WOT scheme offered
by Thawte,4 which was in turn borrowed from the highly thought out WOT scheme
developed by Phil Zimmerman and the folks at PGP.5 The WOT program allows
CAcert’s more than 5,000 members to notarize/sign/assure (depending on whose ter-
minology you prefer) one another in pursuit of “Trust Points.”

As a user increases his or her number of trust points with CAcert, advanced features
are unlocked and become available for use. One such feature allows users to submit
their PGP/GPG key to be signed by the CAcert master key, a novel integration of mul-
tiple PKI technologies.

Another feature, expected to be in place by the time you read this, will be the availabil-
ity of so-called “code signing” certificates, similar in concept to those used in Micro-
soft’s Authenticode initiative,6 but minus the evil. CAcert sees this as a chance to give
back to its fellow open source compatriots, empowering developers on various OSS
projects with the means to digitally sign their work without having to rely on certs
from expensive, corporate CAs who could not care less about the OSS community.

Supporting the OSS Infrastructure
Undoubtedly, the most important role of a community-oriented CA is to provide an
affordable alternative to commercial certificate authorities. This enables thousands of
smaller Web presences to abandon their current hackneyed PKI implementations and
fall under the umbrella of a true CA, rather than relying on self-generated certificates
in which users are (rightfully) leery of placing their trust.

As the situation currently stands, webmasters who wish to employ some type of Public
Key Infrastructure – SSL, for example – usually feel that they must choose between
(1) paying hundreds of dollars each year for a “trusted” certificate signed by some big

5June 2004 ;login:

2. As of March 15, 2004, Thawte offered two
128-bit SSL server solutions, priced at $199 and
$449 per year. On that same date, VeriSign
offered a host of 128-bit SSL certificate pack-
ages ranging from $895 to $1495 per year. (all
figures in US$ unless otherwise noted).

3. CAcert, “Assurance Programme,”
http://www.cacert.org/index.php?id=8 (March
18, 2004).

4. Thawte, “Freemail Web of Trust System,”
https://www.thawte.com/cgi/personal/wot/
contents.exe (April 15, 2004). See also Thawte,
“Thawte: Web of Trust,” https://www.thawte.
com/wot/index.html (April 18, 2004).

5. William Stallings, “The PGP Web of Trust,”
Byte (February 1995).

6. Roger Grimes, “Authenticode,” Microsoft
TechNet, http://www.microsoft.com/technet/
security/topics/secapps/authcode.mspx (March
18, 2004).

l

O

P
IN

IO
N

CERTS FOR THE MASSES l

Vol. 29, No. 3 ;login:

name CA or (2) grabbing a current copy of the SSL libraries and generating their own
self-signed, “untrusted” cert for $0. Unsurprisingly, many of these webmasters opt for
the second choice, necessitating that each of their (apparently quite trusting) users
download and install their sites’ home-brewed root certificates, always assuming/trust-
ing that webmaster X really is webmaster X, even if no one has ever confirmed this in
any form or fashion.

With CAcert, a new option unfolds. Rather than fool around with generating a home-
brew SSL cert, a webmaster unwilling to pony up for one of VeriSign’s products can
instead obtain one signed by CAcert. And unlike the self-signed certificate, CAcert
“vouches for” its certificate and reveals to site visitors (via trust points) how well-
known/trusted the webmaster is by the CA, giving visitors to the site straightforward,
independent verification that Bob’s Porn Palace is indeed operated by Bob.

Additionally, as more webmasters abandon self-signed certificates for flexible, widely
available CAcert products, they free themselves from having to publish site-specific
root certificates, revocation lists, and the like. Users simply install CAcert’s root certifi-
cate – which isn’t that much to ask considering that CAcert (as an independent CA)
employs the same methods of member verification as its for-profit competitors – and,
voilà, they’ll be able to work with not just that one site, but all other sites that fall
under CAcert’s umbrella.

Thus a CAcert solution requires less work on the part of the webmaster, and it’s safer
for the users. The latter point has the added advantage of potentially driving more
traffic to certain sites, as users who didn’t trust the homebrew PKI solution might be
more inclined to accept the CAcert trust model instead.

So CAcert is rocking and rolling along, expanding on traditional PKI and offering gobs
of cool new options for encryption, authentication, digital signing, and the like, and all
without robbing its users blind. What’s the catch?

Well, there’s no catch – just head over to http://www.cacert.org and check it out for
yourself. But there are a few small flies in the ointment.

Fortunately, hackers are well known for jumping into the thick of things and coming
to the aid of worthwhile projects . . . the perfect audience for a subtle call to action.

Root Cert Inclusion in Browsers
Obviously, a major goal for CAcert is to have its root certificate included with all of the
popular Web browsers, so visitors to secure sites are neither required to download and
install the cert themselves nor subjected to whatever awkward error messages their
browser of choice decides to toss at them.

With something like 300 billion people using Windows in southern Georgia alone, it’s
no shock that Internet Explorer is by far the leader when it comes to browser market
share. Anecdotal evidence (and common sense) seems to suggest that back during the
Browser Wars, commercial certificate authorities probably greased the wheels with a
healthy chunk of change to ensure that their root certificates would be included in
both Navigator/Communicator and IE – ah, the hidden costs of “strategic partner-
ships”!

These days, the various browsers have dramatically different requirements in terms of
root certificate inclusion.

A CAcert solution requires
less work on the part of the
webmaster, and it’s safer for
the users.

6

In true Microsoft style, Redmond adopted a new metric for determining whether a
CA’s root certificate is to be included with its browser/OS/kitchen-sink product: In
order for a CA’s root certificate to be accepted – I swear I’m not making this up – Red-
mond said CA must pay a WebTrust-licensed member of the American Institute of
Certified Public Accountants up to $250,000 for an initial evaluation/inspection, plus
additional tens of thousands of dollars in fees on a periodic “follow-up” basis .7

The makers of the Opera Web browser did not respond to email queries regarding
their inclusion policies/requirements; however, a Bermuda-based CA representative
stated in the netscape.public.mozilla.crypto newsgroup that “as of [his] last contact in
2003, Opera wanted cash to add a CA [root certificate]. They did not appear to have a
standards policy.”8 Nice to see somebody’s got their priorities straight, eh?9

Rather than getting into all the other browsers under the sun, e.g., Safari, Konqueror,
Lynx, and whatever crappy little program came with my Palm Pilot, let’s jump ahead a
bit and discuss open source’s favorite son: Mozilla/Firefox.

Getting in Good with the Lizard
The open source advocates among us look forward to a time when software is finally
wrenched free from the clutches of its faceless captors – massively proprietary organi-
zations whose interests in innovation seldom reach beyond their own shortsighted
marketing strategies, leaving less profitable technologies to stagnate.

And while collaborative software initiatives flourish across the globe, services designed
to support and expand the underlying OSS infrastructure continue to face significant
challenges. These barriers sometimes arise from corporations leveraging their de facto
monopolies against newcomers, but often there’s no evil empire to blame. Frequently,
bumps in the road are merely the result of various open source advocates and develop-
ers disagreeing about one thing or another.

Earlier, I mentioned the Mozilla Foundation and its (apparently) nonexistent root cer-
tificate inclusion policy.

After Netscape disappeared, leaving no one to make “executive decisions” about boring
stuff like root certificates and the like, the Mozilla Foundation apparently embraced
a policy of maintaining the status quo, keeping all the old faves (like VeriSign and
S-Trust) installed without really considering what would happen when/if any new CAs
came knocking.10

This installed base remained the same even after VeriSign erroneously issued multiple
Authenticode certificates labeled “Microsoft Corporation” to a couple of crafty social
engineers,11 arguably demonstrating once and for all that money can’t buy you love or
security.

Trying to go through all the proper channels, developers submitted a “feature enhance-
ment” request to Bugzilla, asking that the CAcert root certificate be included with
Mozilla.12 (This inventive maneuver would later pop up again in Konqueror’s feature
request system.)13

Six months after the Bugzilla feature enhancement request was submitted, an
announcement was made indicating that the CAcert root certificate would be included
as part of Mozilla 1.6.14

And then the whole world started crying.

7June 2004 ;login:

7. Microsoft TechNet, “Microsoft Root Certifi-
cate Program Requirements,” http://www.
microsoft.com/technet/security/news/rootcert.
mspx (March 18, 2004). See also American
Institute of Certified Public Accountants, “Web-
Trust Program for Certification Authorities:
Version 1.0,” http://ftp.webtrust.org/
webtrust_public/tpafile7-8-03fortheweb.doc
(August 25, 2000).

8. Emphasis added.

9. Name withheld, “RE: Proposed CA Certifi-
cate Metapolicy,” news://netscape.public.
mozilla.crypto (March 3, 2004). See also “Re:
Why and How VeriSign, Thawte Became a
Trusted CA?” news://comp.security.misc (March
15, 2004).

10. For a list of all the CA root certificates
shipped with Mozilla browsers by default,
open your copy of Mozilla or Firefox and select
Edit Ô Preferences Ô Privacy & Security Ô Cer-
tificates Ô Manage Certificates Ô Authorities.

11. Microsoft Knowledge Base, “How to Recog-
nize Erroneously Issued VeriSign Code-Signing
Certificates,” http://support.microsoft.com/
default.aspx?scid=kb;enus;293817&sd=tech
(March 18, 2004). See also Microsoft Technet,
“Erroneous VeriSign-Issued Digital Certificates
Pose Spoofing Hazard,” http://www.microsoft.
com/technet/security/bulletin/MS01-017.mspx
(March 18, 2004).

12. You too can vote for CAcert root certificate
inclusion in the next version of Mozilla. The
party’s right here: http://bugzilla.mozilla.org/
show_bug.cgi?id=215243.

13. Encourage the KDE Group to include
CAcert’s root certificate in the next version of
Konqueror. Vote at:
http://bugs.kde.org/show_bug.
cgi?id=74290.

14. Frank Hecker, “Additional Comment #20,”
http://bugzilla.mozilla.org/show_bug.cgi?id=
215243 (Feb. 4, 2004).

l

O

P
IN

IO
N

CERTS FOR THE MASSES l

Vol. 29, No. 3 ;login:

All of a sudden, everyone and their brothers, best friends, and pets were posting mes-
sages to the site and arguing back and forth, debating the wisdom of what had just
happened. The discussion eventually spilled out of Bugzilla and was shepherded over
to the netscape.public.mozilla.crypto newsgroup.

Despite its nonprofit status, CAcert was criticized for its failure to retain the services of
prohibitively expensive third-party auditing firms. As a volunteer-led community cer-
tificate authority providing free services to thousands of users, CAcert was in no posi-
tion to start handing over big wads of cash to consulting firms.

CAcert is just another two-bit, fly-by-night operation, claimed some of its detractors.

There’s no oversight, they charged.

The whole operation probably just consists of a cable modem, an old Packard Bell lap-
top, a pirated copy of PC-DOS 3.0, and four lines of Perl code. Their certificates are all
encrypted with ROT13 and their private key is stored on a purple Hello Kitty diskette
that sits atop Dad’s Van de Graaff generator. They spend their free time issuing certifi-
cates to serial killers, zombies, and men who bite the heads off kittens.

That’s right. Kittens.15

The original Bugzilla feature enhancement request was subsequently blocked/super-
seded by a directive that the Mozilla Foundation develop a formal certificate authority
acceptance policy (presumably from scratch) before accepting any new root CAs.16

Wildly disparate proposals for the new acceptance policy flew in from everywhere –
people suggested everything from AICPA/WebTrust certification (insanely expensive)
to an “open door policy” that would give everybody and anybody who applied access
to the root store (insanely reckless) . . . and every imaginable gradient in between.

I have tremendous respect for all of the individuals who volunteer their time for the
Mozilla Project, and I can completely understand the fears voiced by those who pre-
ferred the status quo. Furthermore, I am certain everyone who participated in all the
various debates had nothing but the best intentions, even though the discussion
seemed a bit more like a filibuster with each passing day.

In some arguments, it was as if two or three people were simply yelling “NO” at the top
of their lungs, arguing against everything, often not even taking the time to explain the
basis underlying their concerns; nevertheless, these passionate appeals were frustrat-
ingly successful in their ability to steer the debate off-course, even when the over-
whelming majority seemed on the verge of reaching some kind of compromise.

Though I may disagree with their views on the issue, I certainly can’t fault the individ-
uals involved for trying. After all, the minority opinion must be loud, lest it not being
heard. For whatever reason, certain people apparently felt that the Mozilla Project was
in imminent danger, and so they defended it to the best of their abilities. I have little
doubt that I would have done the same, had the roles been reversed.

Fortunately, there is a happy end to this story. After much debate and gnashing of
teeth, the CAcert root certificate once again seems on-track for inclusion in the next
Mozilla release (fingers crossed).

Looking Ahead
Though the development of a community-oriented certificate authority doesn’t quite
reach Kuhn’s definition of a true “paradigm shift,” it’s a revolution nonetheless. Just as

15. Actually, CAcert is a fully recognized, legally
incorporated nonprofit organization with a
board of directors, an organizational charter,
and a strict set of bylaws that explicitly forbids
strategic alliances with zombies or other mem-
bers of the undead. The CA servers are stored at
a secure co-location facility, complete with bio-
metric palm scanners and other cool stuff like
that. And nothing is stored or signed in ROT13
format — CAcert has always relied on the far
superior Triple-ROT26 algorithm for all cryp-
tography.

16. “Mozilla.org Needs a Public Policy on Root
CA Certs,” http://bugzilla.mozilla.org/
show_bug.cgi?id=233453 (March 14, 2004).

8

when Network Solutions lost its monopoly on domain registration, things have
changed significantly for the better. And there’s no going back.

None of us today would consider paying $35 a year to register a top-level domain, and
very soon VeriSign’s $1200+ pricing for SSL certificates will strike us as equally ridicu-
lous. Because as you read this article, even if its root certificate still somehow remains
excluded from the basic Mozilla install, CAcert will still be growing and gathering
momentum. At this point, there’s no sense asking if the group will accomplish one
thing or another – anything’s possible, and it’s all just a matter of time.

Says CAcert founder Duane Groth: “[T]he established players in the certificate indus-
try lobby hard to exclude any further competition from entering the market, which
means they are able to keep charging exorbitant rates for certificates. . . . This is all set
to change.”

“Currently there are hundreds of thousands of Web browsers out there with our root
certificate installed; companies are deploying intranets with certificates issued from
CAcert and installing the root certificate on each client machine on the network
[M]omentum is building at a grass roots level.”

Until CAcert’s root certificate is preinstalled in your browser of choice, remember that
you can always install it manually by visiting http://www.cacert.org and clicking the
appropriate link. And if you’re wondering what you can do to help with the effort, join
the CAcert mailing list and make suggestions and donations – contribute how you
can, if you can. And see the notes in this article for the URLs where you can vote for
CAcert’s inclusion in Mozilla and Konqueror.

But most importantly: Visit the site, sign up, grab a certificate or two, and start secur-
ing your data. Because regardless of what politics may be going on behind the scenes
and what seemingly unattainable goals the organization may set for itself, whether you
can spare some time to help with the project is beside the point. CAcert’s mission
remains the same: to provide you with alternatives to commercial CAs like VeriSign
and Thawte, to help you secure your data, and to do the same for the rest of our Inter-
net community.

And there's no time like the present. CAcert board members and developers were at
CeBIT in Sydney earlier this year, it’s only been a few weeks since the “PKI Roadshow”
took your humble author halfway around Europe, and now (like many of you) we have
our sights set on Boston in July. Along with several of our indefatigable developers, the
entire CAcert Board of Directors will be at this year’s USENIX conference. (Ironically,
this will be the first time most of us will have ever set eyes upon one another!)

So, what does this mean for you? Well, if you hated this article, then just hold on to
that anger – and soon you’ll have a chance to actually smack me in person. For other,
less violent attendees, we’ll be available to answer questions about CAcert, demon-
strate some of the less-appreciated uses for X.509, and help you sign up for your own
free certificates.

Quick, get them before it's too late! I read that those things cost thousands of dollars
apiece!

9June 2004 ;login:

l

O

P
IN

IO
N

CERTS FOR THE MASSES l

10

A new California law took effect on July 1, 2003 which requires businesses
to disclose to California residents any breach in the security of their com-
puterized data when that breach results in the acquisition of personal infor-
mation about those California residents by unauthorized users. California
Civil Code Section 1798.82 also requires businesses maintaining computer-
ized data for others to notify the owners of that data should it be acquired
by an unauthorized user.

Approved by former Governor Gray Davis in 2002, the law has sweeping implications
for a wide range of businesses located both inside and outside of California. Experts
estimate that nearly 100,000 security breaches occur every year.1 Many of these
breaches affect California residents. Companies that encrypt all personal data in their
databases are exempt from the new law’s disclosure requirements. Those that do not
must fully comply with the new law, as the penalties for its violation include both
monetary damages and injunctive relief.

The New Law
California Civil Code Section 1798.82 provides: “Any person or business that conducts
business in California, and that owns or licenses computerized data that includes per-
sonal information, shall disclose any breach of the security of the system following
discovery or notification of the breach in the security of the data to any resident of
California whose unencrypted personal information was, or is reasonably believed to
have been, acquired by an unauthorized person.”

The law also provides: “Any person or business that maintains computerized data that
includes personal information that the person or business does not own shall notify
the owner or licensee of the information of any breach of the security of the data
immediately following discovery, if the personal information was, or is reasonably
believed to have been, acquired by an unauthorized person.”

The notification requirements apply to any disclosure of “personal information.” In
order to be considered “personal information” under the new law, the information
stored must include information from each of two categories. The first, or “name” cat-
egory, is the California resident’s first name or initial and last name. The second, or
“information” portion, is either a social security number, a driver’s license number, a
California identification card number, or a credit or debit card account number plus
any related information necessary to utilize the account.2

Businesses are required to notify California residents of any breach in “the most expe-
dient time possible and without unreasonable delay.” Businesses may meet this
requirement with a written notice, or they may send an electronic notice,3 provided
that they receive an individual’s valid consent to electronic notification.4

california requires
disclosure of
database security
breaches

1. “California Sleeper” Daily Deal, April 7, 2003.

2. Information made public by local, state, or
federal governments does not constitute per-
sonal information for purposes of the new law.

3. The new law provides that disclosure by elec-
tronic notice is permissible if it complies with
the provisions regarding electronic records and
signatures set forth in the federal law known as
the Electronic Signatures in Global and
National Commerce Act (15 USC § 7001 et
seq.).

4. If a law enforcement agency believes that the
notification would hinder an investigation, it
can waive the notice requirement for a period
of time.

Vol. 29, No. 3 ;login:

by Dan Appelman
Dan Appelman is a
partner in the inter-
national law firm of
Heller Ehrman, White
& McAuliffe, LLP. He
practices intellectual
property and com-
mercial law, primarily
with technology
clients, and is the
current chair of the
California Bar Associ-
ation’s Standing
Committee on
Cyberspace Law.

dan@hewm.com

A business whose notification is targeted at more than half a million people or would
cost in excess of $250,000 is eligible to make a different type of notification. In that
case, the law requires the use of email notification,5 conspicuous posting on the com-
pany’s Web site, and notification of the statewide media.

What Type of Breach Requires Notification
Requiring public notification of security breaches will be a sensitive matter for most
companies. It is therefore important to understand the law, how it is implemented and
enforced, and how to comply with it.

The legislature made clear that this is an act targeted primarily at reducing exposure to
identity theft. According to its proponents, the notification required by the new law
will provide the victims of identity theft with more time to mitigate the damages that
can result from an unauthorized acquisition of their personal information.

However, the statute only vaguely defines what type of security breach triggers the
notification requirement. The statute defines a “breach of the security of the system” as
an “unauthorized acquisition of computerized data that compromises the security,
confidentiality, or integrity of personal information maintained by the person or busi-
ness.” The business’s duty to notify California residents is triggered upon the discovery
of the breach.

Note that the statute requires notification based not only on the event of compromised
“confidentiality,” but also when “security” or “integrity” is compromised. Courts may
give independent meaning to the terms “security” and “integrity,” or they may view the
whole phrase as a term of art.6

Importantly, the law does not require notification when either the name portion or the
information portion of the personal information has been encrypted. But businesses
seeking to take advantage of this may be surprised to find that the statute does not
define what standard of encryption is sufficient to exempt them from the notification
requirement.

Also, the statute does not require notification if the unauthorized person who acquires
a California resident’s personal information is an agent or employee of the informa-
tion-owning business, the acquisition was in good faith, and the information is not
further disclosed.

Extra-Territorial Application of Section 1798.82
The new law applies to a company if it conducts business in California. The law leaves
to the courts the determination, on a case-by-case basis, of whether a given company
located outside of California is conducting sufficient business in California that the
notification and disclosure requirements will apply. The lack of guidance in the statute
makes it impossible for a company to know in advance whether it must comply with
the California law.

The jurisdiction of the California courts extends as far as allowed under the Due
Process clause of the federal Constitution. It is clear that California courts have juris-
diction over all companies whose principal place of business or headquarters is located
in California. Likewise, California courts have jurisdiction over companies located
outside of California whose contacts within California are “systematic” and “continu-
ous” enough that the defendant might anticipate litigating any claim in the state.

11June 2004 ;login:

5. The new law intentionally uses the term
“electronic notice” in one section and “e-mail
notice” in another. To be effective and compli-
ant, “electronic notices” must comply with the
Electronic Signatures in Global and National
Commerce Act, whereas “e-mail notices” (as
part of the substitute notice provisions) appar-
ently need not.

6. Furthermore, in its original form, Section
1798.82 stated that mere unauthorized access
would constitute a breach that would trigger
the notice and disclosure requirements.
Amended before passage, the statute now pro-
vides that unauthorized acquisition, not access,
triggers the requirements. It will be up to courts
to decide whether there is a significant differ-
ence between these two terms.

l
TH

E
LA

W

CALIFORNIA REQUIRES DISCLOSURE OF DATABASE SECURITY BREACHES l

Vol. 29, No. 3 ;login:

However, jurisdiction generally does not apply to businesses that have no property in
California, that have not sought to enter the California marketplace, and that have no
telephone listings in California or any other contacts with California.

Companies headquartered and maintaining their principal places of business outside
of California, but having business relations with California, may or may not be subject
to California’s jurisdiction for purposes of enforcing their compliance with the new
law. The inquiry is a fact-intensive one. Courts look to whether the company “pur-
posefully availed” itself by directing its actions at the state, so that it enjoys the benefits
and protections of the state’s laws. The claim must arise out of the company’s actions
that are directed at the state, and the jurisdiction must comport with the interests of
“fair play and substantial justice.”

Typically, the requirement that a company purposefully avail itself is met by demon-
strating that it conducts continuing business relationships with citizens of the state.
Even a single contact may be enough, depending on the nature and consequences of
the contacts. Moreover, courts generally view a company’s contacts as cumulative, so
minimal contacts over a period of time may bring the company within the jurisdiction
of California law and the California courts.

Internet Contacts
It is difficult to predict how a company’s contacts will be viewed when those contacts
with California are solely via the Internet. Internet Web pages are viewable anywhere,
and while the Internet allows buyers to choose among more sellers, it is difficult for a
seller to define where its customers come from. Courts tend to look at the nature of
the contact and how the Internet Web page functions. The more interactive an Inter-
net Web page, the more compelling the basis for asserting jurisdiction over those
responsible for it. Other important factors include whether the initial contact is
directed to the buyer (as in directed email) or is merely a passive advertisement.

Conclusion
It is likely that the new law will have a material impact on all companies that maintain
data about California residents in their computerized databases. Companies that have
offices, assets, or employees in California certainly have to comply with the new notifi-
cation and disclosure requirements. But the new law also applies to companies located
elsewhere that engage in even minimum marketing or sales transactions with Califor-
nia residents.

Despite the many uncertainties surrounding the new law, businesses should plan con-
servatively in order to comply with the fair meaning of the statute. This means that
businesses should consider either immediately encrypting computerized personal
information or develop strategies in order to meet their statutory notification require-
ments in the event of a security breach. Businesses may also want to take steps to
decrease their potential costs of complying with the new law’s notification require-
ments by adjusting their current intake forms to include a provision where the cus-
tomer can consent to electronic notification in the event of a security breach.

The new law also applies
to companies located
elsewhere that engage in
even minimum marketing or
sales transactions with Cali-
fornia residents.

12

13June 2004 ;login:

talking to the walls

TALKING TO THE WALLS l

l

C

O
M

P
U

TI
N

GA Meeting with Medusa

Throughout the passage of time we have talked to walls, in special rooms,
and in private spaces, communing with deities and seeking guidance from
spiritual powers. Today something else is happening: Our need for solace
and comfort is more readily at hand in technological form. Our need for
connection has become more rooted in the physical but has also expanded
to become an addiction that veils a paradox. Are we all becoming pos-
sessed by distant voices – and thereby remote from our surroundings?

Imagine a chilly autumn day in downtown Oslo around 1999. The trams roll through
the center of town; there are small flakes of snow in the air, and I am heading toward
the Ibsen car park together with a visiting colleague at Oslo University College. (In
Norway, we are careful to honor our important writers by naming parking lots after
them.) The car park lies in the center of town, on the edge of the edge. It’s a part of
town called Grensen, literally “the edge,” and it is populated by some of Oslo’s more
fantastic mythological beasts. In Oslo, as in most capital cities, a league of solvent
abusers populates the city center, staggering around collecting coins and muttering to
themselves in their own private reality. In this environment, it becomes natural to
associate anyone muttering to themselves with some form of chemical escapism.

As we enter the high-tech lobby to the car park, I hear a voice talking frantically to
someone, as if face to face. It is a figure in a black Armani, with expensive attaché case,
standing next to the pay machines, stepping back and forth, staring into thin air, and
facing the wall. A little wire hangs from his ear, but at the time I don’t understand the
significance of it. As he sees us, he seems shocked as though we have invaded his per-
sonal bubble. Right here in the most public place imaginable. I realize that there is
something going on here that is of the greatest importance to society.

Today we don’t think twice about hands-free mobile telephones. As we walk about,
people are talking to themselves all the time, usually with a hand glued to their head.
But all this has a deeper meaning – not just for us, but for system administration. Let’s
backtrack a little.

Getting Rid of the Keyboard . . .
Soon computers will be everywhere: in the walls, in our domestic appliances, and even
in our clothing. Mark Weiser, former chief of technology at Xerox PARC, said, “The
most profound technologies are those that disappear. They weave themselves into the
fabric of everyday life until they are indistinguishable from it.”

The keyboard is a potent symbol that this has not happened with computers yet.
Computers are both conspicuous and unreliable, but there are several projects around
the world to change this: the smart home of Hewlett Packard, Microsoft’s tablet PCs,
embedded Linux and Windows, etc. Still, given the advances in technology, it is rea-
sonable to ask when this dream of disappearance might happen. The promise of a
technological future has not yet caught up with science fiction. Technology for com-
putation, multimedia, and communications has not yet disappeared from view: we
cannot yet talk to our walls in a technological sense. A recent article in the IEEE com-
puter magazine presented what it called the good news and the bad news about voice
recognition. The bad news is that Star Trek has raised our expectations about voice

by Mark Burgess
Mark is an associate
professor at Oslo
College.

Mark.Burgess@iu.hio.no

recognition so high that it will be very hard to live up to them. The good news, on the
other hand, is that we have until the 23rd century to sort it out.

We have had the promise of smart devices for many years, though they have been sur-
prisingly slow in coming. The smart room that can detect your presence or switch on
the lights and turn up the heating before you arrive by learning your patterns of
behavior has not yet found widespread acceptance. The smart toilet that analyzes the
colonies of bacteria that we donate to nature each day and finds out if we are sick or
need dietary modifications has not yet materialized.

Kitchen computers were supposed to keep running inventories of supplies, be able to
watch out for new recipes on the Net, order food when stocks got low, and so on. The
kitchen cooker is supposed to be connected to your personal manager so that it starts
warming up your dinner while you are on the way home (after all, everyone will be
single in the future, so no one will have a partner to do this for them) – more on this
later.

At the larger scale, smart cities will be able to route traffic automatically to avoid con-
gestion and regulate resources such as lighting and heating. Buildings will control and
reprocess their waste and be more resource efficient with regard to regulation of tem-
perature and humidity. The location of individuals is unlikely to remain a real secret
for much longer – the devices we carry will position us and cameras and sensors will
recognize us. Cities will be able to share resources with other neighboring cities and
organize common sharable resource pools – an automated city council, extra buses
ordered when the demand increases. Local and global government will be replaced,
slowly but surely, with automated cooperation and resource scheduling.

Embedded devices will eventually be found everywhere – and not just those left by the
FBI! In restaurants we will have smart menus, with adaptive pricing and Amazon-style
recommendations for your order based on what you ordered recently. Outside, atten-
tive billboards will look back at you and gather information about sex, age, race, the
clothes you wear, height, and weight. Walls will even monitor criminal activity for the
police. Humans will be wearing the devices as they move around within this circus.
The increase in surveillance devices has already been prolific in the last 10 years, espe-
cially in countries like the UK.

What Might It Mean?
What do these developments mean for those of us involved in the deployment and
running of the technologies? We might expect to see tens of devices per room – a fairly
complex network of devices linked probably by a Bluetooth type of wireless broadcast
network.

There are management and security implications to living in such a density of infor-
mation driven devices. The future of system management will not be a simple task like
installing a package for Windows or GNU/Linux with some simple defaults, it will be a
question of determining an increasingly complex policy that deals with how to
exchange information with others, gives others access to our data, and protects our-
selves from theirs. As we move from room to room in the house, the policy require-
ments will change. We will not want violent or explicit material transmitted to the
children’s den; we will not want telephone calls routed to the children after bedtime.
Will we be able to cope with all of these constraints?

14

The location of individuals is
unlikely to remain a real
secret for much longer – the
devices we carry will position
us and cameras and sensors
will recognize us.

Vol. 29, No. 3 ;login:

Today we use the term “trusted environment” quite often to describe a little island that
we have made comfortable. But when computing becomes ubiquitous, the boundaries
of our island have to break down, because we cannot sustain the illusion that we are all
alone there. We cannot keep track of the pathways, the possibilities, or the interactions.
There are people ballooning onto our island and digging tunnels to it. Others want to
use it as a stepping-stone to get to somewhere else.

If computers are going to be running so-called intelligent software, then they cannot
be isolated. How will they receive updates and instructions? We don’t know exactly
what operating systems embedded devices will use in the future, but they are bound to
be complex adaptable operating systems (probably either Linux or Windows). If they
are networked, it makes sense for them to receive updates and policy changes via the
Net. But even after 10 years of developing management protocols for distributed
devices, like SNMP, we are not much closer to finding a way to achieve this that is both
efficient and non-intensive for humans.

Another problem is consistency and standardization. All of the pervasive devices listed
above will eventually emerge, but not in any coordinated way. I am convinced that it is
completely unrealistic to expect to be able to “manage” the resulting level of complex-
ity using control protocols, as we shall see below.

The key to understanding pervasive computing lies very much in understanding peo-
ple! We are the ones who will select or reject the technologies – by market forces. All
we have to do today is to look around us. According to the dreams after the Second
World War, everyone was going to be the proud owner of their own robot and per-
sonal spaceship by the year 2000. But, in reality, we were more interested in the imme-
diate freedoms of cars and refrigerators.

Domestic Embedded Networks (DENs) will grow product by product, each with a dif-
ferent manufacturer using different standards. First it will be a Japanese or Korean
microwave oven with an Internet connection. Then Microsoft will release the new X
box that heats up a pizza while you’re playing your favorite game so that you never
have to remove the goggles and visit the real world. Then Sun will introduce a Java-
enabled Open Sandwich toaster that produces more healthy food, and finally there will
be a fight for standardization post-factum, and we will end up with the usual evolu-
tionary gene pool of technologies that cannot be ignored. It won’t be a neatly stan-
dardized set of controllable devices: After all, commerce is just warfare without
politics.

If you are an evolutionist, then a broad technological gene pool is good for develop-
ment. But if you are a system administrator control freak, or even the owner of one of
these devices, then it is usually a nightmare. If technology is going to disappear, then it
has to really disappear and not merely lurk in the shadows moaning for attention. All
of this makes the problem of trust much harder – and therefore the problem of secu-
rity a radically different one than before.

Eventually, simplicity tends to return as mass extinctions delete most of the competi-
tion and we learn to shift the boundaries of trust, and our little Cold War conspiracies
dissolve toward more openness – if for no other reason than that it is really hard work
distrusting people all the time. But before simplicity converges over this, we shall have
to deal with the complexity of it. And here is a good reason why. Maybe smart rooms,
smart walls, smart toilets are not what we want. What about smart people?

15June 2004 ;login:

Maybe smart rooms, smart
walls, smart toilets are not
what we want. What about
smart people?

l

C

O
M

P
U

TI
N

G

TALKING TO THE WALLS l

Vol. 29, No. 3 ;login:

Mobility and Social Behavior
Steve Mann calls the smart room a “retrograde concept that empowers structure over
the individual, imbuing our houses and public spaces with the right to constantly
observe and monitor us.” Mann wants us to be mobile devices – cyborgs. Others have
argued that we already are! Take a look in the mirror.

The one aspect of ubiquitous computing that was never really envisioned (but which
has flourished first) is mobile computing. Like the Internet, mobile services took off
because they were at the root of a social phenomenon. In Japan, the under-25s call
themselves the Thumb Generation, or the Thumb Tribe, because they live by their
mobile phones, texting away with their thumbs – like touch typing.

Companies have tried several times to define Mobile Services for us, to sell us services
that they dream up – like the 3G effort, with streaming video that would be used for
business-like applications. But these have not taken off. Instead, cheap SMS messages
have flourished and now camera still-pictures are taking off better than streaming
video, because these are more “fun.” They are not very useful for important communi-
cation, but they give pleasure to their users – perhaps because they retain a level of
non-realism that still makes it seem like a game.

Technology has never developed in the way we thought. In the future visions that fol-
lowed the Second World War (a time of aircraft and missiles), we imagined that every
household would have its own spacecraft and that we would be traveling around the
galaxy in a rich utopian marshaling of the galaxy. But when it came down to it, more
domestic pursuits that empowered the individual over its civilization took precedence.
The Italians bought motor scooters to be like the Americans and their cars, and the
refrigerator allowed people to eat better. Society was formed from individual wishes,
rather than having families fall into line with a greater vision.

Mobile technology is a freedom-giving device that has changed the way a society
works where it has taken off. Particularly in Japan and here in Scandinavia, we see a
generation of teenagers in constant contact with friends, no matter where they are.
People no longer worry about being late for a meeting, because they can just send a
text message to excuse themselves and reschedule. Time is now fluid; life is constantly
being re-planned and rescheduled. With one foot in the future, people live by the
moment and plans change in real time.

Social Changes
Social attitudes to one another have changed considerably. I was brought up to believe
that a newspaper at the dinner table is the height of bad manners. Today, mobile
phones are placed firmly between the starter and the fish knife, and conversations to
the wall have equal if not higher priority than the face-to-face social graces. People will
interrupt face-to-face contact for the immediately demanding mobile message.

This leads to cognitive confusion and social fragmentation. In Oslo, women get out
their phones and talk loudly about nothing for the duration of their bus or tram jour-
ney – quite incapable of being “alone” in public. Perhaps they are so afraid of missing
out on something in their remote social network that they have to exclude the possibil-
ity of enjoying their immediate environment. Humans are wired to relate in social
ways, but if one loses respect for those in one’s immediate environment, conflict rather
than tolerance tends to arise.

Technology has never
developed in the way we
thought.

16

Only a few years previously, the idea of revealing anything of oneself in public would
have been a matter of considerable embarrassment in many countries. Today, people
broadcast information and demand that others ignore it, as if emulating the very wire-
less protocols that are invading the electromagnetic airwaves with sound. Mobile users
are constantly trading privacy for convenience – and struggling to renegotiate the
bounds of privacy for increasingly selfish purposes. There are good users and bad
users – those who respect each other’s social spaces and those who do not. But they
also use mobile communications as a shield to push others away.

Smoke Screen
Some would say that we are becoming more selfish, that our own microcosm is all that
matters. It is our right to a kind of technological telepathy, or to spurn casual listeners
for their impudence if we intrude into their space. In Scandinavia, the mobile phone
has increasingly replaced the cigarette as a way of blowing smoke in faces at crowded
places, or in an awkward situation like an elevator where normally one would be
forced to communicate. Checking for messages is so much easier than making eye con-
tact with someone. As soon as a situation becomes awkward (in an elevator, for
instance), out with the phone. Many are literally dependent on their mobile phones
now to run their lives and to keep others at arm’s length. Clearly we shall all be single
in the future.

Scandinavia has always had the stigma of having a difficult time with interpersonal
relations. Now we have a way of avoiding them altogether. But this has various conse-
quences. By placing virtual relationships above real ones, we distance ourselves even
further from actual interaction. This affects our attitudes in social encounters (we are
“cozy” on the phone, but hostile in public) and thus our formulations of acceptable
policy in such cases. Whether we retreat or fight, adapt or conquer depends very much
on our tolerance of others in society. Mobile, remote communication eliminates vul-
nerability and commitment. We risk nothing and gain little. Of course this is exactly
the reason why we explore Mars with a remote probe – to avoid the possible risks asso-
ciated with the reality of actual presence. With safe mobile communication, we never
again have to reveal when we are having a bad hair day.

In Isaac Asimov’s novel The Naked Sun, he describes a world called Solaria in which
people never meet physically. They have retreated into a virtual world where they are
safe from their neighbors and their attendant germs and smells. Today, we see people
putting fences around their property, staking out their territory in terms of material
wealth, and retreating from direct contact. It is perhaps no accident that these cultures
are emerging most rapidly in Japan and Scandinavia, where – for opposite reasons –
the population is insistent on distancing itself from its neighbors.

Why am I talking about sociology? I want to paint a picture of how humans behave,
because it is humans who deploy technology and make the management decisions.
Eventually, this will be a new battleground for conflict between opposing interests.

Modern Perseus?
Perseus was the warrior who slew the Gorgon Medusa, thanks mainly to some gadgets
that he got from Hermes the Telecom provider and Athena his security advisor.

Modern society is increasingly based on toys for communication. By giving everyone
these tools, our modern warrior is supposed to slay the ugly face of loneliness and
rejection in society, bringing us all together. But how does it do it? By giving us so

17June 2004 ;login:

Mobile users are constantly
trading privacy for
convenience. l

C

O
M

P
U

TI
N

G

TALKING TO THE WALLS l

Vol. 29, No. 3 ;login:

much body armor that we are never comfortable without it again? By giving us the
ability to avoid each other in reality, while clinging to one another’s reflections?

Ad hoc encounters are what make life interesting, but how much do we want to reveal?
History reveals an interesting dichotomy – we are getting less formal as time goes on
(more ad hoc), but we are putting up more barriers in order to protect ourselves from
risk. The barriers are getting closer to the core – personal firewalls, rather than build-
ing trust. There is an increasing spiral of distrust – which, for now, might excite the
security industry, but which is not sustainable in the end.

Techno-Challenges of Pervasion
What does this have to do with us as system administrators? The answer is compli-
cated, I believe, but it has to do with several things:

n Technology changes our behavior and our expectations. We torture-test it in ways
that have more to do with sociology than technology.

n The boundaries of trust are the key to our deployment and expectations of tech-
nology. These boundaries are determined by human behavior.

n It is the interaction between humans and technology that is problematical for sys-
tem administrators.

n The type of infrastructure that we will be expected to support in the future will be
different and will be governed by personal freedom, selfish desire, habit, and pop
culture rather than by the dictates of an IETF.

What are the main challenges of this pervasive computing for system administration,
and how can we address them? First of all, we do not fully know the extent of the chal-
lenges yet – but, for the most part, I believe that they will not be radically different
from what we see today, except that the arrival of smart devices will be nothing like
what we imagine. However, the increased diversity will increase the magnitude of the
problem and the rate at which the details of policy evolve.

n Diversity – we shall have an even more market-driven economy, fueled by whim
rather than a desire for well-designed technology. This will lead to lots of conflict-
ing coexisting technology. (This is normal and we have always experienced this in
a smaller way.)

n We shall have to seek stability in the face of the much greater environmental noise
from neighboring devices.

n Sociology of interaction will play a much greater role, because we cannot cordon
off areas and isolate them any more. One organization flows into the next, and
users roam around like cyber-tourists in foreign policy zones.

Most people want devices and technologies to be predictable. If they are not, then they
cannot perform a useful function. In fact, since I have often spoken about the need to
relax our strict ideas about frozen device configurations in order to allow some noise, I
often hear from system administrators that they believe that every device has a correct
configuration that should never change.

The kind of absolute stability that can be approached for immobile workstations is not
really commensurate with the level of interaction that mobile or pervasive devices
undergo. The idea of accepting any kind of uncertainty is more than many system
administrators are willing to swallow. Yet this is precisely what we are going to have to
accept if we employ increasing numbers of smart devices. The boundaries of trust will
have to shift.

18

One area where things will change is in the level of exposure to environment. Environ-
ment means changing conditions and policy about right and wrong. Security consult-
ants often posit that encryption is the solution to all security issues, but encryption is
unlikely to help us here. The problem is not one of privacy, when individuals are being
empowered with devices that allow them to expose themselves entirely and eagerly to a
public audience.

Local regions are likely to demand their own rules, like micro-cultures. Both humans
and devices will have to be aware of a much wider range of policies, rules, and stan-
dards of behavior that change as they move around. Some uniformity will no doubt
emerge, but there will always be local features. Our ability to interact at a distance is
leading us increasingly to draw boundaries around our property and shield our inter-
ests.

We might want to build our private island, but when we are in such a highly connected
environment, the number of points of contact is too great to view isolation as a realis-
tic possibility.

Where Lies the Authority?
In a world with fluid boundaries and increasing connectivity and blind trust in tech-
nology, we must work ever harder to define our own acceptable limits – our policy. To
put it another way: If humans are constantly retreating from face-to-face confronta-
tion with one another, then the rules of engagement must be ever clearer. In a human-
computer collaboration, both humans and machine are supposed to obey policy. Who
gets to decide on what policy says?

Smart devices are intrinsically bound to their environments. They must receive input
and generate some output. If the exposure to environment increases, then a device will
necessarily be more exposed to errors of configuration and random errors caused by
misunderstandings and meddling.

I have claimed that we are becoming more mobile and connected, but also more suspi-
cious of those who are not in our wired social networks. If we are roaming, do we have
to adapt to the environment, or do we adapt the environment to us? Clearly the latter
approach is a recipe for potential conflict. The likelihood for humans to cooperate is
usually tied to the likelihood that they will see each other again. If we expect a long-
term relationship in which reprisals for bad behavior are likely, then we are nice. All
evidence shows that when humans believe that they will be long gone before anyone
can catch them, they break rules and laws with alarming readiness.

Some imagine that mobile devices will always be rooted in a Virtual Private Network
to home. How natural is it for a roaming device to maintain its ties to a home base?
IPv6 allows and even encourages this, but I don’t think that IETF has thought about an
environment like Africa or Siberia, where connectivity will not be guaranteeable.

A more probable model will be for computing environments to supply cyber-tourists
with services nearby. When the motor car was invented, it enabled freedom of move-
ment because petrol/gas stations were available for refill wherever the individual
decided to go. It was not necessary to stretch a cable from one’s current location back
to home base in order to fill up! This is why electric cars have had less success. Perhaps
customers will be willing to pay the environment for a certain service (like a hotel) and
guarantees on Quality of Environment will be the song of the day. Eventually, we will
begin to accept local service provisions, because this is efficient. What this implies is

19June 2004 ;login:

The likelihood for humans to
cooperate is usually tied to
the likelihood that they will
see each other again.

l

C

O
M

P
U

TI
N

G

TALKING TO THE WALLS l

Vol. 29, No. 3 ;login:

that our environment is increasingly ad hoc. This has security as well as availability
implications.

Trust in Clans and Societies
Who will make these decisions about what is acceptable? Will they occur top down or
bottom up? By definition, administrators want to be on top, looking down. But down
is not where users want to be. Clever users might resent this power structure and seek
the freedom of their mobile phone or scooter to whisk them away from fascism.

We are increasingly empowering users toward autonomy. By giving them their own
private communications bubble, we are also giving them the responsibility to find
their own rules of engagement. Peer-to-peer networking shows this increasingly. It is
an anti-authoritarian configuration. The only rule has to be mutual respect, or con-
flict. Human instincts will prevail here.

Perhaps a security policy based on mutual respect is more sustainable in the long term
than one that is authoritarian. We shall have to discover the rules of society all over
again. Mutual help and etiquette? Increased connectivity and mobility bring different
cultures (social, racial, religious, or business), that is, different policies, closer together.
Tolerance of others will be required.

In a ubiquitous computing environment everyone has roaming access to everything
they need. That also means that the computers are exposed to a roaming environment
— it usually works both ways: A greater contact area makes us more accessible and,
therefore, more vulnerable. Even if we can apply access controls, there is a risk of con-
figuration errors and possibly even the risk that persuasion might trick us into lower-
ing defenses. Security does not depend only on technology.

The dynamics of cooperation and conflict are complex. Game theory is one way to
analyze these issues. There are some basic results that characterize the interactions:

n The zero-sum game, where winner decides all.
n The prisoner’s dilemma, bargaining for mutual gain, with tit-for-tat reprisals.
n Conditional consensus: I’ll agree if everyone else agrees.

The results of games indicate that if we act in a purely selfish way, then a tit-for-tat
strategy is best for protecting oneself from harm and for maximizing cooperation; that
is, if one person is non-cooperative, non-cooperation is returned. If cooperation is
offered, cooperation should be returned.

What about altruism and friendship (predictable agreement on policy)? What is it
people get from investing in social relationships – even those with people they cannot
see? We can call it social capital. Intimacy. A surrogate feeling of social acceptance that
satisfies our genetic programming, like tofu for meat.

Game theory predicts that, if there is a reward from cooperation, then a reciprocal
strategy is best. This forms a dynamical trust relationship, not merely a static one.
Small groups are more likely to cooperate than large ones.

Cooperation takes us beyond zero-sum games, but when we have decided to cooperate
conditionally, by voting, how do we arrive at consensus? In many cases, uncertainty
leads to an overcautious strategy: we will vote if most other people do; we will flock
with the others, if everyone is agreed. There is safety in numbers. These are the
dynamics of consensus.

20

So, will there be discipline or anarchy in the world of pervasive computing? New
alliances and allegiances are formed when roaming, but no stable consensus has to
emerge. Humans make this even more difficult. In mathematics, if X=Y and X=Z, then
Y=Z, but this is not true in human psychology. It is not impossible for X’s policy to
agree with Y’s, but X and Y cannot agree, for other reasons. Humans are thus not easily
predictable.

Swarm Intelligence: The Outcome of Weak Interaction
The new forms of pervasive computing and mobile communications lead to new
social rules of engagement. If we do not understand those rules, some of us will dis-
agree and the result will be conflict. Swarming or flocking is a way of capturing the
equilibrium points of social conflicts and negotiations. On the one hand, isolationism
creates little autonomous devices (insects), but mobile communications lead to invol-
untary clustering and flocking.

Swarms of insects and flocks of animals, for example, are assemblies of “devices” or
“things” that communicate loosely but which spontaneously form quasi-stable struc-
tures that persist over long periods of time. Perhaps this is just what we are after for
our devices (though perhaps not for our society).

The non-intelligent pieces have surprising properties when allowed to interact weakly.
Do the pieces in a jigsaw puzzle know anything about the picture they form? Do any of
the cells in our body have any idea about what they contribute to? These are emergent
phenomena.

Swarm phenomena are already happening in humans as a result of mobile phone
communication. Kids flock around like schools of fish with their mobile phones. They
do not need to meet to be together, and final rendezvous can change even as they
approach the moment! They are ad hoc social swarms – they change their behavior
according to text messages and telephone conversations.

But can we harness swarming to secure a stable environment of pervasive devices?
Conversely, once we release these devices, will be we able to prevent swarming phe-
nomena from occurring? How do we guarantee that a swarm of ubiquitous computing
devices will be a colony of helpful bacteria rather than a plague of harmful locusts?

One clue about the role of swarms is that socially developed swarms have many of the
properties of social networks – quasi-hierarchies. Communication in swarms is by
peer-to-peer transaction. This gives a robustness of form, combining trust in local
neighbors with long-reaching connections (“strange connections”) which occur in all
social clusters. This is why no one on the planet is (on average) more than six degrees
of separation from anyone else. Sometime, a central command might emerge sponta-
neously through centrality, but we should not be worried if it doesn’t. Stability and
security are not contingent on centralization or authoritarian control.

Conclusions
Do we want swarm behavior to emerge or not? In devices, in humans, or both? Can we
stop it with judicious policies (i.e., “police” it away)? Sociology has a tendency to get its
way; society has its own consciousness which usually trumps individuals. Does that
mean that we are not safe? Security is about acceptable risk in relation to operating
requirements. This should not be perceived as a problem, but we might need a change
of philosophy in many system administrators.

21June 2004 ;login:

l

C

O
M

P
U

TI
N

G

TALKING TO THE WALLS l

Vol. 29, No. 3 ;login:

Society will not be threatened by its tendency to self-organize, but there are deeper
ethical implications for society’s use of technologies. We are constantly dumbing down
human technology, taking responsibility away from the individual while simultane-
ously arming individuals with devices that allow them to be increasingly selfish. Soon
we will have no burden of responsibility to learn about technology and we shall end up
slaves to it – unable to understand, repair, or master it. As Arthur C. Clarke said, “Any
sufficiently advanced technology is indistinguishable from magic.” When it starts to
seem like magic to us or when it truly disappears into the walls – out of sight and out
of mind – we have a genuine cause for concern.

Can we expect an ignorant tribe of technologically dependent, self-interested individ-
uals to cooperate? What kind of policy would they write? Is this a circuitous route back
to nomadic anti-social behavior, in which individuals do battle rather than cooperate
in meaningful society? Cold War isolationism is a slippery slope that leads to a down-
ward spiral of trust.

To have our private boundaries penetrated is bad enough for our feeling of safety and
well-being. To have our homes completely permeable to the outside world would be,
for most of us, the ultimate breach of trust. Yet this is the potential vision we are con-
cocting – will we fight it, or will we learn to embrace it? Not only in our homes, but in
our clothes and in every aspect of our being. Pervasive computing is not only about
making true cyborgs of us, but about weaving society together into a super swarm.
How shall we behave then?

Society will always have a face that it cannot bear to look at. Our Medusa, the terrible
face of loneliness, will probably always remain unbeheaded, but we must not be
seduced into isolation-confrontation mode. Better to talk to smart neighbors than to
end up talking only to our smart walls. Communication and cooperation are too com-
plex to be entrusted to blunt electronic instruments. The way to solve our manage-
ment and security problems is not by fueling an arms race, but by diplomatic
conversation. That means that we must deploy technology along with education about
the workings of both humans and machines, and we must preserve genuine close
encounters between friends.

Can we expect an ignorant
tribe of technologically
dependent, self-interested
individuals to cooperate?

22

23June 2004 ;login:

password protection
for modern
operating systems

l

SE
C

U
R

IT
Y

The purpose of this paper is to help readers understand the security of the
password encryption methods used in various operating systems and to
establish some best practices for password management without requiring a
background in cryptography. The article covers most pertinent background
material in the first three sections.

Introduction
Early computer systems offered little in the way of password protection. The earliest
designs stored a user’s actual password along with his or her identifying information
(username and/or user ID) in a central password file. Such schemes suffer from the
obvious problem that any user who either legitimately has or surreptitiously gains
access to the password file knows the password to every account on the system. Later
designs avoided this problem by storing only an encrypted or hashed value in the pass-
word database.

Such systems are still vulnerable. Any attacker with access to a list of encrypted pass-
words can guess passwords by encrypting words from the dictionary or at random and
comparing the encrypted results of his or her guesses against the encrypted passwords
in the database. The designers of the UNIX operating system improved on this
method by using a random value called a “salt.” A salt value ensures that the same
password will encrypt differently when used by different users. This method offers the
advantage that an attacker must encrypt the same word multiple times (once for each
salt or user) in order to mount a successful password-guessing attack.

Cryptography: The Basics
Encryption preserves the confidentiality of data. A user encrypts a message using a
secret key so that others who do not know the secret key cannot recover the message.
The message is called plaintext before encryption and ciphertext after encryption.
Password protection schemes also use encryption, typically as a secure hash function.

Many modern encryption algorithms are iterated block ciphers that break data into
blocks of a specified size and encrypt them by iterating an encryption function several
times; each of these iterations is a round. One such cipher, Blowfish, is discussed later.

Rather than use the whole key to perform encryption in each round, most iterated
block ciphers derive a subkey for each round using a “key schedule.” A simple key
schedule may select certain bits of the key for use in each round, whereas a more com-
plicated key schedule, such as in RC5, may use mathematical means to generate the
subkeys from the key.1

A hash function takes an input and applies a set of operations to reduce the input to a
numeric value of a fixed size (usually 128, 192, or 256 bits). Outside of cryptography,
programmers use non-secure hash functions to sort and search data. Secure hash
functions need to have the special properties that it is computationally infeasible to
determine a message from its hash value and that it is difficult to find another message
with the same hash value.

by Steven
Alexander
Steven is a program-
mer at Merced Col-
lege. He programs
for the Student Sys-
tem and manages
the college’s intru-
sion detection.

alexander.s@mccd.edu

1. Alfred Menezes et al., Handbook of Applied
Cryptography. CRC Press, 1997.

PASSWORD PROTECTION l

Vol. 29, No.3 ;login:24

Because it is difficult to find two messages with the same hash value, hash values are
used to verify the integrity of messages. Users can independently compute the hash
value of a message and compare it to a known source to verify that the message has
not changed. Operating systems often apply a hash function to a password and store
the encrypted result instead of the plaintext password. Because of the properties
described, it is hard to determine the original password from the hash value and it is
difficult to determine another password that has the same hash value (though one or
more might exist). A user who needs to authenticate to the operating system tells the
system his or her password, and the system hashes it and then compares the resulting
value with the value stored in the password hash database.

Some operating systems use a dedicated hash function such as MD4 or MD5 to pro-
tect passwords; others use an encryption algorithm such as DES or Blowfish. When an
encryption algorithm is used, the system uses each password as the secret key to encrypt
a known message. In this case, the message is not secret, the systems designers only
wish to prevent an attacker from guessing the key used to encrypt a message. The reader
of this article should be aware that what is often referred to as password encryption is
really password hashing. To add to the confusion, encryption algorithms are some-
times used as hash functions (albeit with some modification in use or design).

Early UNIX
The standard password hashing algorithm in UNIX, crypt, is a modification of the
DES encryption algorithm;2 it is often referred to by its man page entry, crypt(3). The
system hashes each password after combining it with a 12-bit (4096 possible combina-
tions) salt value. UNIX uses the salt value to modify one of the properties of the DES
algorithm; this means that the same password will hash to a different result after merg-
ing each with a different salt value.

The salt value is not secret; it is stored with the hashed password. When a user presents
a password to UNIX for authentication, the operating system looks up his or her salt
value and hashed password. UNIX uses the user’s stored salt value to modify the DES
algorithm when it hashes the presented password; the system then compares the result
with the value stored in the password database. Changing the DES algorithm with a
salt value has the added benefit that an attacker cannot use off-the-shelf DES encryp-
tion hardware to brute force passwords.

Whenever a user chooses a new password, the system generates a new salt at random.
Historically, UNIX generates the salt from the time of day or some other weak source
of entropy (randomness). Because of this, it is common for two users at a site to have
the same salt value. Still, the complexity of an offline password-cracking attack greatly
increases because each word must be re-hashed for each salt value.

The designers of UNIX also introduced another important idea in the design of the
UNIX crypt algorithm: They increased the time necessary to create or verify a pass-
word in order to further thwart offline password-cracking attacks while still keeping
system response to an acceptable level. UNIX iterates the DES algorithm 25 times to
create the crypt algorithm. Provos and Mazières estimated that a Digital Equipment
Corporation VAX-11/780 contemporary to the design of crypt would be able to try
only 3.6 possible passwords per second per salt.3 If a system had 36 users, each with a
different salt, it would take 10 seconds to try each possible password. Of course, mod-
ern equipment is able to fare much better; improved algorithms have replaced crypt in
several modern UNIX variants.

2. Menezes et al., Handbook; Robert Morris and
Ken Thompson, “Password Security: A Case
History,” Communications of the ACM, vol. 22,
no. 11 (November 1979), pp. 594–97.

3. Niels Provos and David Mazières, “A Future-
Adaptable Password Scheme,” Proceedings of the
1999 USENIX Annual Technical Conference
(June 1999), http://www.usenix.org/events/
usenix99/provos.html.

25June 2004 ;login: PASSWORD PROTECTION l

Recently, researchers at the San Diego Supercomputer Center instituted a project to
store the hashes of over 50 million common passwords computed once with each of
the 4096 possible hashes used by the DES crypt mechanism.4 Their results would be
less worrisome if they had not shown that the requirements for such an attack are also
within reach of a group of attackers using distributed storage.

Windows NT/2000/XP
The Windows NT line of Microsoft operating systems stores two password hashes: the
LanMan hash and the NT hash.5

LANMAN
The LanMan hash is used for backwards compatibility with Windows 95/98 and is the
less secure of the two Windows hashes. Windows limits passwords to 14 characters for
the LanMan hash. The system computes the LanMan hash by splitting the password
into two seven-character halves and converting all characters to uppercase; if the pass-
word is less than 14 characters, the system pads it with null bytes. The system uses each
half as a secret DES key to encrypt a fixed string of plaintext. The resulting hashes are
concatenated.

Programs such as L0phtCrack have exploited the weaknesses in the LanMan hash.
LanMan passwords are not case-sensitive. In addition, the system treats a 14-character
password as two seven-character passwords. To illustrate the problem, let us consider
the possible number of combinations for passwords of a given length and character
set.

If x is the size of the character set used for a group of passwords (for instance, 26 if the
passwords are alphabetic and not case-sensitive), then there are xy possible passwords
of length y with that character set. So a seven-character password that contains only
numbers and uppercase letters has 367 = 78,364,164,096 possible values.

An alphanumeric 14-character password should have 3614 = 78,364,164,096 x
78,364,164,096 possible values. Because Windows treats all passwords as two separate
seven-character passwords for the purpose of computing the LanMan hash, an
attacker only has to try 2 x 367 = 2 x 78,364,164,096 possible values. If we assume case
insensitivity, it is approximately 39 billion times easier to break two alphanumeric
seven-character passwords than it is to break an alphanumeric 14-character password.
If you had a computer that was capable of breaking any alphanumeric seven-character
password in one second (quite a feat!), you would have to wait up to 1200 years to
break an alphanumeric 14-character password.

Case sensitivity is a problem. A seven-character alphanumeric LanMan password has
367 = 78,364,164,096 possible values, since Windows converts all letters to uppercase
before it computes the hash. However, if the algorithm were case-sensitive, there would
be 627 possible values, a total of 3,521,614,606,208. There are 45 times more seven-
character case-sensitive alphanumeric passwords than seven-character case-insensitive
alphanumeric passwords.

NT HASH
Windows computes NT hashes by applying the MD4 hash algorithm, invented by Ron
Rivest, to the entire password; there is a 14-character maximum on Windows NT but
not on Windows 2000 or XP. The NT hash does not suffer from the same problems as
the LanMan hash. The NT dialect hash is case-sensitive and computed against the

4. Tom Perrine, “The End of crypt() Passwords
Please?” ;login:, vol. 28, no. 6 (December 2003),
pp. 6-12.

5. Bruce Schneier and Mudge, “Cryptanalysis of
Microsoft’s Point-to-Point Tunneling Protocol
(PPTP),” Proceedings of the 5th ACM Conference
on Communications and Computer Security
(November 1998), http://www.schneier.com/
paper-pptp.html.

l

SE
C

U
R

IT
Y

Vol. 29, No.3 ;login:26

entire password. Administrators who do not need to support Windows 95, 98, or Mil-
lennium Edition users are encouraged to disable the storage of the weaker LanMan
password.6

The MD4 algorithm consists of 48 steps which turn a 512-bit input into a 128-bit out-
put. MD4 pads all inputs to a multiple of 512 bits, though it can iterate over several
512-bit blocks if necessary. When passwords are 13 characters long or less, the inputs
to the last three steps are null. An attacker can use this information to reverse the last
three steps of any password hash he or she is trying to crack. Subsequently, the attacker
only needs to compute the first 45 steps for each password tried. This results in a
speedup of about 6%.

Further improvements to this optimization are possible. The 128-bit output of MD4 is
really four separate 32-bit values. Only one of these values changes in each step. The
fourth of these 32-bit values changes last in steps 41 and 45. Since step 45 is reversed
by the previous optimization, an attacker can compare the fourth part of the hash
value after step 41 to the calculated value and stop computing if the values do not
match. An attacker will only have to compute beyond step 41 once in every 4 billion
tries. This improves the speedup by about 15%.

COMMON PROBLEMS
The Windows password schemes suffer from some common problems. First, there
is no salt value applied to the passwords. Because of this, attackers can hash a large
dictionary of possible passwords in advance to speed up their attacks. Using efficient
sorting and searching methods, it is a trivial matter to determine whether a user’s pass-
word hash corresponds to one of the hashes in the attacker’s dictionary. An attacker
who is actively guessing passwords against a large list of users can save an enormous
amount of computation time by only having to encrypt each possible password once,
unlike the case with UNIX passwords.

Sort-and-search algorithms make an attacker’s job even easier. The naive method for
finding a Windows password is to hash a possible password, then compare the result
against the password hash of every user whose password you wish to recover. This is
akin to reading every entry in the phone book until you find the person you’re looking
for. By sorting the password hashes, an attacker only needs to compare the hash of

each possible password against a small num-
ber of password hashes.

Another drawback to the password hashing
schemes used in Windows is, unfortunately,
efficiency. Faster password hashing algorithms
allow an attacker to guess passwords more
quickly. Table 1 offers a comparison of the
speed of different password hashing algo-

rithms as implemented in the popular pass-
word cracker “John the Ripper.” The benchmarks in Table 1 are from the program’s
own benchmarking feature as it performed on a 2.4GHz Pentium 4 with 512MB RAM.
I have noticed that John performs about 40–50% faster in practice (on my reference
machine) than the benchmarks show; this is possibly a cache issue. L0phtcrack 4 per-
forms significantly better than John and is able to compute about 5.3 million LanMan
hashes per second; it computes about 126,000 NT hashes per second. The difference is
very likely rooted in machine-specific optimizations, so your mileage may vary.

6. SANS, “SANS Top 20 Vulnerabilities,”
http://www.sans.org/top20/.

Table 1

27June 2004 ;login: PASSWORD PROTECTION l

Obviously, it would do no good to slow down a password hashing routine to the point
that it bottlenecks a system; however, other modern operating systems have slowed the
process of password hashing in order to hinder would-be attackers. The key here is to
balance security and efficiency.

NEW AND IMPROVED PROBLEMS
Recently, Philippe Oechslin, improving on a technique developed by Martin Hellman
in 1980, developed a cryptanalytic attack that has consequences for Windows pass-
words.7 Readers interested in the details of the attack should read Oechslin’s paper.
This article will only cover the attack in a basic Windows-specific manner.

The attack is a time-memory tradeoff that requires an attacker to store up to several
gigabytes of data. If storage were of no consequence, an attacker could pre-compute
the hashes of every imaginable password up to some reasonable length and store them
along with the accompanying password. Attackers would then only need to look up a
given hash in their database to discover the password. Oechslin’s attack is able to
achieve nearly the same convenience with thousands of times less storage.

The attack uses large tables of “rainbow chains.” They are computed as follows:

1. A random word is generated and stored in the first column of the current row in
the table.

2. The word is encrypted and the resulting ciphertext is “reduced” so that it repre-
sents another possible password (each character is converted into a printable
ASCII character).

3. Step 2 is repeated many times over (usually a few thousand). The length of the
chain dictates the number of times that step 2 is repeated. A part of Oechslin’s
improvement on Hellman’s method is to slightly change how the reduction is
computed after each repetition in the chain. The details and consequences
require a paper of their own.8

4. The result of the final reduced value is stored in the second column of the cur-
rent row.

Once an attacker generates sufficiently large tables, he or she will be able to recover a
significant number of passwords in a small amount of time. An attacker first tries to
determine if the password used to compute a given hash is the same as one used to
compute one of the chains in his or her tables. This is determined by reducing and
hashing the password hash in a manner similar to the method listed above for creating
the tables. Each time the password hash is reduced, it is compared to the entries in col-
umn two of the table. If a match is found, the chain is recomputed (beginning with the
value in column 1). The attacker will have to weed through some false-positives to find
the target password. If one of the passwords hashed during the creation of the chain
produces the password currently under attack, the attacker is successful. It takes several
seconds to find a password using typical current workstations. The search takes longer
(and fails) if the password is not a part of any of the stored chains.

This attack is statistical in nature. For alphanumeric LanMan passwords, a 2.8 gigabyte
table will include about 99.9% of the possible passwords. An attacker actually has to
perform about 10 times as much computation to generate such a table of rainbow
chains as would be needed to compute and store every possible password and hash.
This is not as bad for the attacker as it seems. Using a 2.4GHz Pentium IV with 512
megabytes of RAM, I was able to generate five rainbow tables, each with 35 million

7. Philippe Oechslin, “Making a Faster Cryptan-
alytic Time-Memory Trade-Off,” Crypto 2003
(forthcoming). Douglas Stinson, Cryptography:
Theory and Practice. CRC Press, 1995.

8. Oechslin, “Making a Faster Cryptanalytic.”

l

SE
C

U
R

IT
Y

Vol. 29, No.3 ;login:28

chains of length 4666, in about 215 hours (nine days). These five tables are equivalent
to the single 2.8 gigabyte table mentioned above.

Oechslin applied his technique to the Windows LanMan password hash; the attack is
applicable to the Windows NT Hash with more effort. The attack is more difficult to
use against the NT Hash because it is case-sensitive and the passwords are not limited
to seven characters in length. Attackers could, of course, simplify their attacks by only
considering passwords of seven characters or fewer. Still, an attacker would have to
consider that there are a far greater number of possible case-sensitive passwords than
case-insensitive ones. The attacker would probably consider a lesser set of passwords,
such as those where all characters happen to be lowercase or where only the first letter
is in uppercase.

FreeBSD
By default, the FreeBSD operating system uses a crypt mechanism based on the MD5
hash algorithm. MD5 is the successor to the MD4 algorithm used for password hash-
ing in the Windows NT line of operating systems.

Poul-Henning Kamp developed the MD5 crypt routine based on Rivest’s MD5 hash
algorithm. MD5 crypt uses a salt of up to 48 bits and effectively has no limitation on
password length. It is also far slower than either DES crypt or the Windows password
hashing methods. To achieve this, MD5 crypt uses an inner loop with 1,000 iterations
to continuously remix data into the hash calculation. FreeBSD also supports the tradi-
tional DES-based crypt and a Blowfish-based crypt mechanism. FreeBSD distinguishes
MD5 and Blowfish hashes from DES crypt hashes by adding a prefix to the hash
entries.

Provos and Mazières raised questions about the design of MD5 crypt;9 however, the
algorithm currently looks to be far more secure than the DES crypt mechanism or
either of the Windows password hashing schemes. There is a better alternative to all of
these.

OpenBSD
Niels Provos and David Mazières have designed a crypt mechanism based on the
Blowfish encryption algorithm.10 Blowfish is a block cipher encryption algorithm
designed by Bruce Schneier.11 Provos and Mazières actually designed two algorithms,
eksblowfish and bcrypt. Eksblowfish is derived from Blowfish and has a purposefully
slow key schedule. Bcrypt is a hash algorithm based on eksblowfish. Bcrypt is the most
secure password hashing algorithm in common use at the time of this writing.

Bcrypt allows passwords to be up to 55 characters in length. Note that while MD5
allows longer passwords than bcrypt, this does not increase its security, because its
128-bit output is the limiting factor. It would be easier to find an alternate password
with the same hash as a given password than to find a specific password in excess of 55
characters. A random password consisting of only printable ASCII characters only
needs to be 20 characters long before a hash function output of 128 bits is the limiting
factor. A hash function with a 192-bit output limits the security of passwords of 30
characters or more. Passwords that are not completely random would need to be
longer to provide the same security; however, the limit of current supercomputing
technology is close to 70 bits and will not approach 128 or 192 bits anytime soon.

Bcrypt requires a random salt value of 128 bits, which is large enough that no two
accounts on the same system are ever likely to have the same salt. In fact, an attacker

9. Provos and Mazières, “A Future-Adaptable
Password Scheme.”

10. Provos and Mazières, “A Future-Adaptable
Password Scheme.”

11. Bruce Schneier, “Description of a New Vari-
able Length Key, 64-Bit Block Cipher (Blow-
fish),” Fast Software Encryption, Cambridge
Security Workshop Proceedings. Springer Verlag,
December 1993, pp. 191–204.

29June 2004 ;login: PASSWORD PROTECTION l

would need to have the hashes of about 16 quadrillion users before it is more likely
than not that two hashes are alike.

Bcrypt also uses a cost variable; an increase in the cost variable causes a likewise
increase in the time required to perform a bcrypt hash. The cost assigned to new pass-
words is configurable using a systemwide configuration file. In OpenBSD, administra-
tors can assign different cost values for normal users and the superuser.

Protecting Password Hashes
STORAGE
Password hashes need protection regardless of the security of the hashing mechanism.
An attacker lacking the password hashes for a system cannot attempt any offline
attacks.

Most UNIX systems offer password shadowing. When password shadowing is used,
user information is stored in the /etc/passwd file but the password hashes are stored in
another file, usually /etc/shadow or /etc/master.passwd. Many UNIX systems auto-
matically use password shadowing; others (HP-UX for instance) require an adminis-
trator to configure password shadowing. All system administrators are encouraged to
familiarize themselves with the pertinent areas of their system documentation.

When possible, UNIX administrators should use MD5 crypt or Blowfish instead of the
traditional DES crypt. Both of these alternatives are available on Linux, Solaris, and
the BSD systems. For information about Blowfish on Linux, please visit OpenWall
(http://www.openwall.com/crypt/). Sun Microsystems recently introduced their own
crypt mechanism based on MD5. The new mechanism is meant as a more secure
replacement for the MD5 crypt mechanism introduced for FreeBSD. Sun’s new algo-
rithm uses a configurable number of iterations for its inner loop. The default value is
currently 4096. I do not currently know if the inner loop is the same as FreeBSD’s but,
with the high number of iterations, it looks to be much slower (which is good!). To my
knowledge, these alternative crypt routines are not currently available on AIX, IRIX, or
HP-UX. Replacing DES crypt may break some upper-level applications, particularly
those run from UNIX operating systems that do not support the new methods; con-
sider yourself warned.

Microsoft introduced SysKey, with the release of Windows NT Service Pack 3, to
encrypt password hashes stored in the Windows registry. Attackers can bypass SysKey
protection using pwdump2. For more information on SysKey use, Windows adminis-
trators should refer to Microsoft’s “knowledge base” articles.12

TRANSMISSION
Sending unencrypted passwords across a network is an activity best reserved for those
who like to live dangerously. Many administrators erroneously think that switched
networks will prevent an attacker from sniffing passwords as they travel across a net-
work; this is not true.13 Switches enter a “learning” mode after they start up. While in
this learning mode, a switch will broadcast traffic in the same manner as a hub. The
MAC tables on a switch can also be selectively poisoned, which allows traffic intercep-
tion, as is done by programs like Dsniff and Ettercap, or they can be overloaded so that
legitimate entries are flushed from the table, which will force the switch to broadcast
traffic destined for those addresses.

12. Microsoft, “Windows NT System Key Per-
mits Strong Encryption of the SAM,” Microsoft
Knowledge Base Article 143475; Microsoft,
“How to Use the SysKey Utility to Secure the
Windows 2000 Security Accounts Manager
Database,” Microsoft Knowledge Base Article
310105, http://support.microsoft.com/.

13. Abe Singer, “No Plaintext Passwords,” ;login:,
vol. 26, no. 7 (November 2001), pp. 83–91.

l

SE
C

U
R

IT
Y

Vol. 29, No.3 ;login:30

The security personnel at the San Diego Supercomputer Center have eliminated the
transmission of unencrypted passwords on their protected network using solutions
such as SSH and SSL.14 System administrators are encouraged to read Abe Singer’s
paper and consider what they can do for their own networks.

Some protocols that enable the elimination of plaintext password transmission have
other drawbacks. For instance, the Windows NTLM protocols use a challenge response
mechanism.15 In the NTLM protocols, a server sends a random challenge to a client
that has requested authentication. The client encrypts the challenge using a user’s
password hash and sends it back to the server. The server attempts to decrypt the
client’s response using the copy of the user’s password hash stored on the server.

This scheme suffers from the obvious problem that a user only needs the password
hash to authenticate; an attacker able to recover the hashes from the server can operate
just as well as if he or she had the actual passwords. This version of the protocol has
numerous other problems as well. Version 2 of the NTLM protocol has better security
properties than its predecessor; administrators are encouraged to upgrade.16 The Ker-
beros protocol also suffers from the problem that all of the information needed to
authenticate is stored on the server.17

Password Policy
PASSWORD HANDLING
Often, the users of a system will bypass all of the carefully designed and maintained
security mechanisms of that system to convenience themselves. It doesn’t matter how
securely passwords are chosen or stored in a system if users have those passwords stuck
to their monitor or keyboard on a sticky note. There are two things to consider here:
policy needs to strictly forbid such activity, and users need to have passwords that they
can remember. Unfortunately, effectively enforcing policy requires the involvement of
management. Getting all of the management in an organization to enforce rules
against post-it notes may require divine intervention. However, other approaches may
have better success.

One approach is for system policy to specifically authorize IT staff to confiscate post-it
notes with password information and disable the related account. This should elimi-
nate visible notes but probably won’t prevent users from sticking notes under their
keyboard or in the top drawer of their desk. User education can help increase adher-
ence to policy.

Writing a password down is not always bad. It is quite reasonable to have system
administrative passwords written down in a secure location. Of course, proper proce-
dures must be maintained for handling the passwords. Sometimes, an administrator
may need to keep a written copy of passwords temporarily. Consider, for instance, the
case that a successful intrusion has happened and the administrator must change sev-
eral different passwords at once. Some administrators solve this problem by choosing
multiple passwords that are variations of each other. This method suffers from the
problem that password cracking software might generate those same variations if one
of the passwords is cracked successfully and added to an attacker’s dictionary. If
administrators (or users) must write down password(s), I recommend that they are
stored in a semi-secure location, such as a locked cabinet or drawer (in a non-public
area) or a wallet (if kept on the administrator’s person). Change the passwords imme-
diately if the written copy is lost.

14. Singer, “No Plaintext Passwords.”

15. Hobbit, “CIFS: Common Insecurities Fail
Scrutiny” (January 1997), http://www.
insecure.org/stf/cifs.txt; Schneier and Mudge,
“Cryptanalysis of Microsoft’s PPTP”; Bruce
Schneier et al., “Cryptanalysis of Microsoft’s
PPTP Authentication Extensions (MS-
CHAPv2),” CQRE ’99 (Springer Verlag, 1999),
pp. 192–203, http://www.schneier.com/
paper-pptpv2.html.

16. Schneier et al., “Cryptanalysis of Microsoft’s
PPTP Authentication Extensions”; Microsoft,
“How to Enable NTLM 2 Authentication,”
Microsoft Knowledge Base Article 239869
(2004), http://support.microsoft.com/.

17. Rik Farrow, “Network Defense: Kerberos for
Net Authentication,” http://www.spirit.com/
Network/net0902.html; Simson Garfinkel and
Gene Spafford, Practical UNIX and Internet
Security. O’Reilly, 1996.

31June 2004 ;login: PASSWORD PROTECTION l

Many organizations have periodic staff development activities; if management can be
convinced to sponsor a workshop that includes basic security information and the rea-
soning behind policy, users may adhere to it more closely. It may also be effective for
IT staff to periodically share information about attacks on the network. I am not sug-
gesting that anybody should try to convince their system’s users of an impending elec-
tronic doomsday, only that some awareness is helpful.

Another problem in most organizations is password sharing. Eliminating this problem
involves both technical and policy measures. Restricting users to a single logon session
can help to alleviate the problem. If possible, policy should authorize the IT depart-
ment to disable accounts that it knows a user has shared. It is also important that it be
as simple as possible for users to gain access to objects to which a user should legiti-
mately have access. If it takes days for a user to get access to the resources that they
need, they are much more likely to try to share another’s account. In addition, in such
an environment, users are more likely to be sympathetic to other users and share their
password when asked.

PASSWORD SELECTION
The weakest passwords are short or are words, names, or derivations of words or
names. Simply changing an “A” to a “4” or an “s” to a “$” does not significantly increase
the security of a password. The password cracker John the Ripper has a customizable
set of rules that it uses to try various permutations on supplied dictionary words and
user information as possible passwords.

The three properties that define the security of a password are: length, character set,
and randomization. Strength in one of these properties can make up for weaknesses in
the others (to a point).

When passwords are not limited to seven or eight characters, as in Windows NT or
some UNIX systems, length is the easiest way to increase the security of a password. It
is easier to choose a very long password than a very random password. A 40-character
password that uses only lowercase letters and spaces will be extremely difficult to
break. Using current computing technology, such a password would be impossible to
break without good language analysis or luck. Still, it is not wise to pick passwords
from a popular text such as one of Shakespeare’s plays or sonnets.

The characters used in a password have a major effect on the security of the password,
especially when the length of a password is limited. An eight-character password with
lowercase letters and punctuation is over 800 times harder to break than a password of
the same length with just lowercase letters. When considering the characters used in a
password it is useful to break the character set into groups: uppercase and lowercase
letters each account for 26 characters, numbers account for only 10, and special char-
acters account for 34. Strong passwords should have at least one character from each of
three different groups.

Truly random passwords are hard to remember. It usually suffices to generate a pass-
word from a pattern that is meaningful only to you. “TfcIdwaT” is meaningful only if
you know that it stands for “The first car I drove was a Toyota.” Adding or prepending
a number to this password would make it even better (if it wasn’t in print).

On Microsoft Windows 2000 and later, there is an option in the Local Security Policy,
accessed through Administrative Tools in the Control Panel, that “Password must meet
complexity requirements,” which can be enabled to force users to use strong pass-

l

SE
C

U
R

IT
Y

Vol. 29, No.3 ;login:32

words. It requires that users not base passwords on their username (in whole or in
part), that passwords be at least six characters long, and that the password contain
characters from at least three of the four character groups mentioned above. I think
that this forms the basis for a good password selection policy on any system. My only
complaint is that the length requirement is too low. Thankfully, Windows also allows a
minimum password length to be set; I recommend 14 characters if storage of the Lan-
Man password has not been disabled; otherwise, depending on the security require-
ments of the system, the value can be set as low as 10.

Various methods exist in other operating systems for enforcing password policy.
OpenWall has made a PAM module available that allows flexible policy configuration
(http://www.openwall.com/passwdqc/). Among other things, the module can modify
password length requirements based on the character groups present in a given pass-
word. Many systems allow an administrator to configure a minimum password length
even if PAM is not available. Recall that only the first eight characters matter if the tra-
ditional DES crypt is used.

PASSWORD AGING
Password aging is configurable on most systems and is important for a good security
policy. I don’t recommend expiring passwords more often than every 30 days; users are
more liable to forget their passwords, reuse passwords, or write them down. Passwords
for accounts with administrative privileges should expire every 30 to 90 days, whereas
it may be acceptable to force the expiration of user passwords as infrequently as every
120 to 180 days. If possible, use password history to prevent users from reusing old
passwords. My recommendation, if the option is configurable, is to remember one to
two years’ worth of passwords.

Administrators must consider several factors when deciding how often to change pass-
words. If the security requirements of the network are high, passwords should expire
more frequently. If the password hashing mechanism is weak, DES crypt, or a Win-
dows method, the passwords should again expire more frequently. If an attacker gains
administrative access, expire all passwords immediately (aside from other measures). If
passwords are not transmitted across the network in the clear, passwords can be
changed less frequently. Systems that force users to choose strong passwords of 10
characters or more, except systems using LanMan or DES crypt, can afford to allow
passwords to expire a little less often.

It is important to remember that, regardless of their cryptographic strength, passwords
can be captured by sniffing, keystroke logging, or other methods. A major point to
consider is the willingness of your user population to comply with the requirements
and not break security by other means (such as sticky notes).

PASSWORDS ON MULTIPLE SYSTEMS
To whatever extent possible, administrators and users should use different passwords
for different systems. The passwords used for personal accounts should never be the
same as those used in the workplace. I would also recommend that passwords be dif-
ferent for different classes of systems in the workplace.

To clarify this statement the passwords used for Windows accounts should not match
those used for UNIX accounts. One can consider network devices such as routers and
switches a single class, but they should be separate from security-critical devices such
as intrusion detection systems and firewalls.

The passwords used for
Windows accounts should
not match those used for
UNIX accounts.

33June 2004 ;login: PASSWORD PROTECTION l

The key is that there should be some separation. If passwords are the same or similar
across multiple systems, an attacker is more likely to leverage access on one machine to
gain access to the rest of the network. This is especially true of passwords used to
access third-party server software; several years back I discovered that the password
encryption used in a popular email server for Windows was just a simple substitution
cipher. Six months later, a security company discovered that the company had replaced
the password encryption algorithm with another equally simple cipher. Be careful and
use your own judgment when reusing passwords.

Acknowledgments
I extend my thanks to Keith Simonsen for his suggestions and Casper Dik for answer-
ing my last-minute questions.

l

SE
C

U
R

IT
Y

Save the Date!
OSDI ’04

Sixth Symposium on
Operating Systems Design

and Implementation
December 6–8, 2004 u San Francisco, CA

Co-located with WORLDS ’04

http://www.usenix.org/osdi04/

34

Analyzing the Attacker
On March 20, 2004, an attacker released a single-packet UDP worm, Witty
into the wild. Although only infecting roughly 12,000 machines, and less
than 700 bytes long, this worm represents a dangerous trend in malicious
code. The attack is well understood: There have been several analyses1 of
the worm itself, and an excellent analysis by Shannon and Moore on the
network propagation,2 including the presence of seeding or hitlisting (start-
ing the worm on a group of systems to speed the initial propagation). But
what can we learn about the attacker?

Examining the timeline of events, the worm itself, its malicious payload, and the skills
required all point to an author who was motivated, sophisticated, skilled, and mali-
cious. Although there have been previous well-engineered worms (notably the Morris
worm and Nimda), Witty represents a dangerous new trend, combining both skill and
malice.

It’s actually unfortunate that Witty hasn’t gotten the amount of attention lavished on
previous worms, as it was a very significant attack. This worm contained a payload
malicious to the host computer and was released with almost no time to patch sys-
tems. The worm contained no significant bugs and was written by a malicious author
deeply familiar with the theoretical and practical state of the art in worm construction
and computer security.

The Timeline and the Witty Worm
On March 8, eEye security discovered a stack overflow in the BlackICE/RealSecure
products of ISS (Internet Security Systems). These end-host IDS products don’t just
restrict access based on port numbers and sender addresses like a conventional per-
sonal firewall, but include analyzers that evaluate traffic for particular applications,
looking for anomalies or known vulnerabilities. One such module, the analyzer for
ICQ instant messages, contained a series of stack overflows.

These vulnerabilities were relatively easy to exploit. The ICQ analyzer is triggered
whenever the host computer receives a UDP packet whose source port is 4000, regard-
less of the destination port or the presence of a listener. Since there was no use of
StackGuard,3 /GS,4 nonexecutable stacks, or other protections, a single-packet UDP-
based overflow simply overwrites the return address, pointing to the injected code
contained within the packet.

Stack overflows that can be exploited with a single UDP packet are among the most
dangerous vulnerabilities, as they naturally support worms like Slammer.5 Turning a
normal single-packet stack overflow exploit into a Slammer-class worm requires a
small amount of additional logic. Instead of shellcode, the attack initializes a random-
number generator, gets a pointer to the start of the overflowed buffer, and goes into an
infinite loop to send the packet to random addresses.

eEye quickly notified ISS, which released a patched version of the RealSecure and
BlackICE products on March 9. eEye then published their advisory on March 18,6

giving a high-level description of the vulnerability. On the evening of March 19, the
Witty worm was released into the wild, less than 48 hours after eEye’s public disclo-
sure.

reflections on witty

Vol. 29, No. 3 ;login:

by Nicholas
Weaver
Nicholas Weaver is a
postdoctoral
researcher at the
International Com-
puter Science Insti-
tute in Berkeley. His
research focuses on
modeling existing
and future Internet-
scale attacks, and
automatic defense
systems.

nweaver@icsi.berkeley.edu

and Dan Ellis
Dan Ellis is a Ph.D. student at George
Mason University and a researcher at
MITRE. His interests are information
security and intrusion detection, and
malicious code in particular.

ellisd@mitre.org

1. LURHQ Threat Intelligence Group, “Witty
Worm Analysis,” http://www.lurhq.com/
witty.html; Kostya Kortchinsky, “Witty Worm
Disassembly,” http://www.caida.org/analysis/
security/witty/BlackIceWorm.html.

2. Colleen Shannon and David Moore, “The
Spread of the Witty Worm,” http://www.caida.
org/analysis/security/witty/.

3. Crispin Cowan et al., “StackGuard: Auto-
matic Adaptive Detection and Prevention of
Buffer-Overflow Attacks,” Proceedings of the 7th
USENIX Security Conference, http://www.usenix.
org/publications/library/proceedings/sec98/
cowan.html, January 1998, pp. 63–78.

4. Brandon Bray, “Compiler Security Checks in
Depth,” http://msdn.microsoft.com/library/
default.asp?url=/library/en-us/dv_vstechart/
html/vctchcompilersecuritychecksindepth.asp.

5. David Moore et al., “Inside the Slammer
Worm,” IEEE Magazine of Security and Privacy,
July/August 2003, pp. 33–39.

6. eEye, “Internet Security Systems PAM ICQ
Server Response Processing Vulnerability,”
http://www.eeye.com/html/Research/Advisories/
AD20040318.html.

Copyright 2004 The MITRE Corporation and
the International Computer Science Institute.
Used with permission.

35June 2004 ;login: WITTY l

Witty (named for the portion in the stack overflow stating “Insert witty comment
here’’) was an architecturally simple worm. It began by cleaning up from the buffer
overflow, including obtaining API pointers from the overflowed DLL. Because of this
reliance on magic numbers, Witty could only infect systems running version 3.6.16 of
iss-pam1.dll, although it might crash older versions.

After cleaning up the stack overflow, the worm’s code executed the main-body rou-
tines. The worm first seeded the pRNG (pseudo-random number generator) with
gettickcount(), a recording of the number of milliseconds since the machine reset. It
then sent out 20,000 copies of itself to random addresses with random destination
ports. As an additional obfuscation, it also randomly padded the packet size. After
completing this loop, it attempted to open a random physical disk and, if successful, to
overwrite a random 64KB block of data. Finally, it jumped back to the seeding of the
pRNG, repeating the process until the host machine finally crashed.

Although simple, the execution was superb. There were no significant bugs, especially
in the pRNG (a common error in previous worms). Reseeding the pRNG each time
through the main loop may have been accidental, but it was a useful flourish, papering
over many possible flaws in the pRNG. The author also avoided common mistakes by
using the system-provided pRNG instead of coding his own pseudo-random genera-
tor. The malicious payload, slowly corrupting the drive, causes immediate damage but
does not significantly slow the worm’s spread, while randomizing the destination port
makes the worm more likely to penetrate firewalls.

Finally, the author seeded the worm. Rather than just starting at a single location, the
worm started out on over 110 different victims.7 Although previously a theoretical
technique,8 this represents the first occurrence of significant seeding in an
autonomous worm. However, this was almost superfluous. Because Witty’s single-
packet nature is naturally fast, an unseeded Witty would have still spread worldwide in
under two hours.

Analyzing the Attacker
Although it may not seem like much information, we can actually develop several
insights into the worm author or authors. Not only was the author a skilled program-
mer, he (she, or they) was familiar with the lore, motivated, and malicious. He avoided
the common mistakes and had access to a small, geographically distributed network of
compromised systems.

The attack demonstrated considerable skill and knowledge. The attacker understood
how to program in x86 assembly language and access Windows API functions. He was
able to implement a stack-overflow attack. As importantly, the attacker understood
worm-lore: Not only did the attacker seed the worm, he constructed a payload that
was malicious to the host yet did not slow the worm’s spread. Due to the short time
frame, the attacker most likely knew all this information in advance rather than learn-
ing on the fly.

The attacker wrote compact code. Witty’s body consists of just 177 x86 instructions in
474 bytes (the rest of the worm is the buffer overflow and padding).9 In this small
space, the author constructed routines to clean up from the overflow attack, seed the
random-number generator, propagate the worm, and execute the malicious payload,
demonstrating the attacker’s skill at writing x86 assembly.

7. Shannon and Moore, “The Spread of the
Witty Worm.”

8. Stuart Staniford, Vern Paxson, and Nicholas
Weaver, “How to 0wn the Internet in Your Spare
Time,” Proceedings of the 11th USENIX Security
Symposium, USENIX, August 2002, http://www.
usenix.org/publications/library/proceedings/
sec02/staniford.html.

9. Kortchinsky, “Witty Worm Disassembly.”

l

SE
C

U
R

IT
Y

Vol. 29, No.3 ;login:36

The lack of major bugs suggests that the attacker tested the worm before release.
Although it would be possible for someone to write a worm without errors, it seems
more likely that the worm was tested. The testing would only require a couple of sys-
tems, if the attacker monitored the network traffic on the test systems and knew the
common errors made by worm authors.

But the most substantial implications arise from the short time between disclosure and
the worm’s release. Either the attacker discovered the vulnerability independently,
reverse-engineered the patch, obtained an advance copy of the disclosure, developed
the bulk of the worm in advance, or simply worked quickly.

The first option is that the attacker had developed his exploit independently of eEye’s
disclosure. In that case, why did he wait to release the worm? Why not release the
worm after the disclosure, rather than just after a patch was released to block his
exploit? Although this is still a possibility, the timing of the worm’s release argues
against the attacker independently discovering the ISS security flaw.

The second possibility, reverse engineering the patch before the vulnerability was dis-
closed, also seems unlikely. The version release notes for BlackICE (http://blackice.iss.
net/update_center/readme_pcp.txt, version 3.6.ccg) did not mention a vulnerability fix
among the changes. If the attacker was using or developed an automatic analysis tool,
he might have noticed the changes and used them as a guide to creating an exploit, but
he had no public indication of a vulnerability.

The third option has the attacker knowing the vulnerability before public disclosure,
giving him more time to work. Thus, rather than 48 hours, the attacker would have
had over a week to develop and test his code. In this case, the number of possible sus-
pects is considerably smaller, as such information requires that the author be an
insider or someone who has compromised ISS’s or eEye’s communication systems.

The attacker could have constructed the framework in advance, waiting for single-
packet vulnerabilities to insert into his worm. If the attacker developed a generic
framework, this implies that he was both malicious and premeditated, but wasn’t tar-
geting ISS or ISS users. But if the attacker was opportunistic, why use a payload that
damages the host? Given the bulk of a worm, created in advance, there are many more
attractive payloads (such as deploying a control network) which a generic attacker
might employ. Such payloads would grant the attacker control of all the victims
instead of simply corrupting them.

The final possibility is that the attacker simply worked fast. For an attacker with the
required skills, it is definitely plausible that he constructed, tested, and released Witty
in under two days, although the time window is relatively short.

The attacker apparently used a network of compromised machines obtained using a
different mechanism, rather than a hit list of probable victims, to seed his worm. This
vulnerability resists scanning (unless actually exploited, all systems react the same
way), making the creation of a list of probable victims difficult. The very short time-
line between disclosure and release, with no reported scanning before the worm’s
release, further suggests that a list of targets wasn’t created in advance. Finally, the ini-
tial machines did not stop scanning in the same manner as later infections, suggesting
that they were running a program to propagate the worm rather than the worm itself.

The use of previously compromised machines requires that the attacker either
obtained access to 110 machines using a different tool, already had access to 110

37June 2004 ;login:

machines, or took control of these machines from a third party. Thus Witty’s author
probably possessed some ties to the attacker underground, to gain access to these
machines in the short time frame.

The use of a directly malicious payload also suggests the attacker had a motive. One
possibility is that he was experimenting with malicious payloads. Yet since the attacker
probably tested the worm, he could have verified that the payload wouldn’t restrict
propagation. Thus, although Witty’s author could have been conducting an experi-
ment, it seems unlikely.

Another possibility is that the attacker was targeting a particular ISS customer or
group of customers without caring for collateral damage, or that the attack was an
attempt to blind ISS sensors from a different, targeted attack.

The final possibility was that Witty was a direct attack against ISS by deliberately dam-
aging ISS’s customer base, or an opportunistic attack on ISS simply because ISS is one
of many security companies. How many users will have second thoughts about pur-
chasing ISS’s systems? How many customers will change to a competitor? Especially
when the vulnerability exploited was a stack overflow, the simplest and most easily
prevented C programming error.

Conclusion
Witty represents a new generation of malcode: written by a motivated, skilled, and
malicious individual. Witty’s author is the first to combine both skill and substantial
malice. Witty’s author had some motive that led him (or her or them) to desire a
destructive effect. And Witty was written by an expert who, unless caught, could do it
again.

ACKNOWLEDGMENTS
This paper was a product of group effort. Thanks to Stuart Staniford, Vern Paxson,
Colleen Shannon, David Moore, Stefan Savage, Scott Tenaglia, and Jack Aiken for
fruitful and interesting discussions. Nicholas Weaver receives support from NSF/DHS
grant NRT-0335290. Dan Ellis receives support from the Active Worm Detection &
Response MITRE Sponsored Research Project.

Witty represents a new
generation of malcode:
written by a motivated,
skilled, and malicious
individual.

l

SE
C

U
R

IT
Y

WITTY l

38

The more I learn about security, the more paranoid I get. This won’t surprise
too many of you, because you very likely feel the same. When you know
that kernel-level rootkits can hide anything the attacker desires from you
(short of rebooting your system from a CD and running a thorough check),
then I believe you have reason to be paranoid.

And are attackers out to get you? Really, in most cases, it’s nothing personal. You just
happened to be running some vulnerable bit of code, and the latest automated attack
rooted your system, installed itself, installed the rootkit, and modified your system so
that the tools will restart after any reboots. In a way, you are lucky if your system does
start misbehaving right away, scanning Class B-sized blocks of IP addresses, as such
activity should make you notice that something bad has happened. And if you have
configured your firewall to block unusual outgoing traffic, no one else will even notice
before you have time to boot from a CD and see what has happened to your system.

It would be nice if things like this just didn’t happen. But even if you secured your sys-
tem, installed the latest releases or patch levels, your system may still be exploited.
There are zero-day exploits, ones that have received no publicity and for which no
patches yet exist. Software is complex, and complexity guarantees there will be mis-
takes in coding or in implementation. Even the famed Wietze Venema expects that his
Postfix code has at least one bug per thousand lines of code. Thirty bugs in Postfix,
and we can expect that as Postfix continues to improve, the odds of more bugs being
discovered will increase.

Paranoia
I could try the minimalist approach. Run a pared-down BSD system, with no X win-
dows, no servers of any kind. Get my email from some other server, use only ed to read
that mail on a VT100 terminal. By reducing my attack surface to the bare minimum, I
can considerably reduce the chance of a successful attack.

But suppose I want to browse the Internet? I could use Lynx, but how will I display the
latest satellite weather photos? Before you know it, I have millions of lines of code run-
ning X Windows, and millions more to provide a Web browser. Even if I avoid Win-
dows and its considerably more complex IE browser, I still have increased my attack
surface considerably.

Sandboxing
What I want to do, but have not yet done, is to sandbox my browser. Actually, I want to
sandbox my several servers as well, but the browser is certainly important. “Sandbox-
ing” means to isolate one application from the rest of the system; there are several ways
to go about doing that.

One way would be to run a virtual machine that contains the browser. User-mode
Linux (UML) makes it possible to run a virtual machine that is distinct from the
actual system. If the virtual machine gets owned, I only lose what was on that system,
which is essentially a large file that contains enough of a Linux install to run a browser
(or mail server). Careful firewalling would prevent the virtual machine from doing
anything that the browser or mail server would not have been doing. You might imme-
diately figure out that this is not a perfect solution: A mail server exploit could still
infect the virtual machine, and turn it into an attack engine that probed the same port,
25/TCP, that the firewall allowed the mail server to visit.

musings

Vol. 29, No. 3 ;login:

by Rik Farrow
Rik Farrow provides
UNIX and Internet
security consulting
and training. He is
the author of UNIX
System Security and
System Administra-
tor’s Guide to System
V.

rik@spirit.com

39June 2004 ;login: MUSINGS l

BSD offers its jail approach, but that may fall prey to the same problem, that is, an
exploit which installs an attack tool that could, in turn, begin attacking from a BSD
jail. Chroot by itself provides part of what the BSD jail does: It limits a process to a
subtree of the file system. Jail does more by controlling access to network system calls
as well.

There has been some research into yet another approach, one that I believe will even-
tually come into widespread use. That approach involves using the operating system
itself to sandbox applications. Modifications have been made to both the Linux and
BSD kernels to make this possible.

The Linux kernel modifications came about because several organizations, including
the NSA, wanted to be able to enforce Mandatory Access Controls (MAC). Mandatory
means just that. Even if you are root, you can’t override these controls. You can gain
authorization to configure these controls, but, theoretically at least, no exploit should
be able to change these controls. Rather than modify the kernel for a single approach,
2.6.0-test2 and later kernels include hooks that support different approaches to MAC,
including using the NSA SELinux approach (http://www.nsa.gov/selinux). Lsm.immu-
nix.org has kernel patches for adding these hooks into older (2.4.20) Linux kernels.

MAC has been around for a while, with systems using MAC, including UNIX systems,
having been built all through the ’80s. The big problem with any system that included
MAC was that ease-of-use went flying out the window. You had pain-of-use instead.
But this is where the notion of sandboxing comes in. Instead of chaining down the
entire system, you focus on sandboxing particular applications. You sandbox your
most dangerous apps, such as any network server, your Web browser, email client, and
anything like chat or IM. You can also get rid of set-user-ID programs and use MAC to
control access to privileged operations, such as access to a raw network socket or writ-
ing the password file.

And how do you configure your sandbox? Fortunately, there has been research into
how to do that as well. One group that has worked on configuring sandboxing called it
a computer immune system. You can read some of their papers at http://www.
cs.unm.edu/~immsec/begin.html. The basic notion is simple enough. You run your
application with your sandbox in learning mode. You will need to exercise the applica-
tion so that all of the important execution paths have been taken in order to create an
accurate profile of normal system-call activity. Systrace, Niels Provos’s approach to this
in OpenBSD (http://niels.xtdnet.nl/systrace/) has been ported to FreeBSD and Linux,
although work on the Linux port has apparently ceased.

Systrace uses execution profiling to handle the configuration. And you can run a front
end to systrace (with or without X) so that it will report exceptions, allowing you to
update the profile interactively.

There are a couple of approaches to doing this in Linuxland. Immunix has been
around for a while, having started with buffer overflow busting approaches (Stack-
Guard), and now sells a Linux distribution with MAC features (http://www.
immunix.org). Grsecurity resembles the better known systrace in some ways. It, too,
has a learning mode, but the latest version comes with a default least-privilege config-
uration.

The University of New Mexico papers (referenced above at www.cs.unm.edu) do sug-
gest one feature that both systrace and grsecurity appear to lack. Sanasecurity, the

The big problem with any
system that included MAC
was that ease-of-use went
flying out the window.

l

SE

C
U

R
IT

Y

Vol. 29, No.3 ;login:40

company where one of the authors of the UNM papers now works, is building a prod-
uct that takes a step beyond security policies that specify permitted system calls and
arguments by adding in the notion of grouping system calls temporally. In other words,
a policy that sandboxes an application should include not just system calls, but some
context. The context chosen includes the order of recently used system calls. This
appears to nail down the definition of policy a bit more than either systrace or grsecu-
rity.

The only way that MAC versions of operating systems will succeed is if they can over-
come the ease-of-use problems found in older MAC operating systems. AT&T MLS
(Multi-Level Security) added over a hundred new command-line tools for routine
administration back in the late ’80s, which made it difficult to use. Well, impossible for
most people would be a better description. While this might be great for security, it is
not going to help encourage people, even paranoid ones like myself, to move to a
MAC-based system.

Still, I am worried. I just might go there . . .

KNOPPIX
Earlier in this column, I mentioned using a CD to check out a system where a kernel
rootkit might be installed. One approach is to use the install CD that is available for
just about any version of UNIX (hard to imagine that such a CD wouldn’t exist). You
boot the install CD, then escape to a shell. Often, the menu system that comes with
most install CDs will make this easy to do. Then you mount your hard drive partitions
and start looking for evidence of a rootkit.

If you are working with Intel or PowerPC-based systems, there is something even bet-
ter to work with. KNOPPIX (knoppix.org) is a single-boot CD that contains a huge col-
lection of GNU software, running on top of a Linux kernel. You might be tempted to
ignore KNOPPIX, because you already have bootable Linux install CDs. But what
makes KNOPPIX special is the care taken by its author, Klaus Knopper, in writing
setup scripts. I found that KNOPPIX worked better than many Linux distros (most!)
at finding key devices, like your monitor and graphics card, and setting up a useful
environment. I plan on using KNOPPIX in my Boston USENIX class.

KNOPPIX also probes hard drive partitions and sets up an /etc/fstab for read-only
mounting of the partitions it finds. You can even examine Windows NTFS partitions.
I had my only Win2K box bluescreen, all by itself, for no good reason – but with an
unbacked-up copy of my 2003 tax data. The Win2K install disk couldn't mount this
partition, but KNOPPIX could, allowing me to recover key files.

I highly recommend that you make certain you have bootable CDs handy for any
Linux or UNIX system you manage. In times of crises, you don’t want to waste time
searching for one – you want to have what you need at hand, and know how to use it.

41June 2004 ;login:

ISPadmin

ISPADMIN l

l

SY

SA
D

M
INIn this edition of ISPadmin, I look at how ISPs monitor the systems and net-

works that provide services to their customers. Let me start off by stating
that I am employed by Renesys Corporation, which has a product described
in this article.

Why Monitor?
There are many reasons for an ISP to monitor systems and networks:

n Troubleshooting: Monitoring systems is very helpful in troubleshooting
problems quickly.

n Capacity planning: Historical graphs make capacity planning easier.
n Product differentiation: More information helps customers, making them more

likely to use your services.
n Security: Monitoring helps spot potential security problems sooner rather than

later.
n Documentation: In order to monitor, you must know what systems and networks

are in place.

Background
Even for the smallest service providers, monitoring tends to be a highly customized
activity. By that I mean each service provider’s situation is unique, and each monitor-
ing system must meet a diverse set of circumstances. Some of these parameters
include:

n Number and type of services offered
n Number and type of customers
n Service level agreements in effect
n Complexity of back-end systems and networks
n Internal processes and procedures
n Reporting requirements

Each one of these parameters is covered in the following sections.

SERVICES OFFERED
The more types of services that are offered, the more complex the monitoring system
needs to be. Each service will require some level of monitoring, though the level can
vary widely depending upon the complexity.

CUSTOMERS
If a service provider sells mostly to commercial entities, it is possible their customers
might directly monitor (a subset of) the provider’s services. If the customer base is
largely residential/individuals, then monitoring will be more focused on providing
tools to an NOC or customer/technical support call center.

SERVICE LEVEL AGREEMENTS
If a service level agreement (SLA) is in effect, it might specify exactly how the provider
is to monitor their network. Often SLAs specify what level of quality of service (QoS) a
provider must achieve. The only way to measure the QoS is to have some sort of moni-
toring. SLAs also might stipulate that a customer may directly monitor a provider’s
services. Examples of such monitoring would be SNMP-based monitoring of equip-
ment/systems.

by Robert Haskins
Robert D. Haskins is
currently employed
by Renesys Corpora-
tion in Hanover, NH.

rhaskins@usenix.org

COMPLEXITY
This is probably the biggest variable that dictates how a monitoring system is
deployed. The more intricate the system/network is, the more complex the monitoring
system will be.

INTERNAL PROCESSES
Internal processes will to some degree dictate the monitoring required. For example, if
management wants to be made aware when a certain event or problem occurs, then
monitoring systems must be in place to handle these occurrences.

REPORTING REQUIREMENTS
Reporting requirements will also necessitate that certain monitoring occurs. For exam-
ple, if a dial-up provider wants to determine the need to add lines at each point of
presence (POP), then the number of calls at each POP must be tracked over time. Sim-
ilarly, the utilization of all high-speed lines on a provider’s network should be tracked,
so that additional capacity can be added when needed. In some cases, the information
used for monitoring can also drive the service provider’s billing systems. For example,
Cisco’s Netflow application built into their IOS device software can be used for both
monitoring and billing.

Wes Cottrell of the Stanford Linear Accelerator Center (SLAC) has an outstanding
page listing a wide array of network-monitoring tools. The URL is in the Resources
section at the end of this article.

Protocols
With monitoring, the services being monitored must send their results across the net-
work. There are a number of ways to accomplish this transfer. Some of the more com-
mon mechanisms/protocols used in monitoring are Simple Network Management
Protocol (SNMP), finger, ICMP (ping and traceroute), Remote Monitoring (RMON, a
subset of SNMP), and Cisco Netflow.

Of course, many tools have their own customary way of reporting results. For exam-
ple, Nagios uses the Nagios Remote Plugin Executor to perform certain system checks
and to allow administrators to write their own custom plugins.

Software
Both commercial software and good open source software are available for monitoring
networks. For the purposes of this article, the available monitoring software is broken
down into two categories: network-monitoring platforms and stand-alone products.

Network-monitoring platforms are frameworks that enable management of many dif-
ferent types of devices. Often, they are described as the “manager of managers.” Per-
haps the most well known of these types of applications is HP Openview. These
systems, all by themselves, have little functionality. Applications like Openview are very
useful in managing agents specifically designed to run with them or with agents based
on open protocols such as SNMP.

Unless it is a service provider with very deep pockets, most will not be able to afford a
commercial network-monitoring platform. These systems cost thousands to millions
of dollars to acquire and deploy. If a provider does need functionality like Openview
but doesn’t have a ton of money, they might use the open source product OpenNMS,

42 Vol. 29, No. 3 ;login:

which is a freely available network-monitoring platform. It is written in Java, and can
be quite daunting to set up and run successfully.

Some of the better-known commercial products in the network-monitoring platform
category include SNMPc by Castle Rock, IBM’s Tivoli Netview, HP Openview, and
Micromuse NetCool.

A common lower-end commercial tool used by ISPs is Ipswitch’s WhatsUp Gold. This
does an acceptable job of monitoring smaller- and medium-sized networks, up to
about 1000 devices, though there is no set maximum. One downside is that WhatsUp
Gold runs only under Microsoft Windows.

In the stand-alone area, many tools are available. These range from the likes of ICMP
ping and traceroute, all the way up to products like Gradus from Renesys, which is
useful in managing exterior border gateway protocol (BGP)-based networks.

Open Source Software
The vast majority of providers utilize free monitoring tools, which might include
monitoring, graphing, and traffic-analysis packages.

Monitoring
Of the large number of open source monitoring packages, the most widely deployed is
Nagios, but some other packages that could be used include SNIPS (formerly
NOCOL), MON, Big Brother, and MIDAS NMS.

These systems all do basic ICMP ping monitoring and save some sort of history. Some
also do graphing and SNMP monitoring, which might save an ISP from having to
deploy a separate graphing system such as Cricket.

Nagios
Since Nagios is one of the most commonly used monitoring packages out there, it is
useful to look at it in detail. I use Nagios 1.1 for the purposes of this article, but 1.2 is
now available. Besides being Web-based, Nagios’s features include:

n Ability to monitor both network attributes and system services
n User-definable system and service checks
n Escalation
n Acknowledgment of problems via Web interface
n Redundant configuration
n History of events
n Reporting

It would be useful to define the following terms in Nagios’s nomenclature before cov-
ering the details of what Nagios can do.

n Hosts – any device Nagios monitors (router, switch, server, etc.)
n Hostgroups – collections of hosts that are related in some way
n Contacts – people who get notified when an event happens
n Contactgroups – sets of people who are collectively responsible for services
n Services – individual applications monitored on hosts (Web, DNS, FTP, etc.)

Nagios will monitor the services you define, and keep a history to enable reporting ser-
vice level agreements and other benchmarking. It has the ability to call programs on
remote machines via the Nagios Remote Plugin Executor. This functionality is very

43June 2004 ;login:

l

SY

SA
D

M
IN

ISPADMIN l

Vol. 29, No. 3 ;login:

useful, as Nagios can easily be customized to monitor things that are not built into it
by default.

NAGIOS OPTIONS
The left-hand side of all Nagios screens always displays the options available. This sec-
tion goes over some of the more useful Nagios options available.

The “Tactical Overview” screen shows the overall status of Nagios itself, as well as the
hosts and services it is monitoring. It is a nice summary of everything within Nagios. I
personally find myself viewing the “Service Detail” screen the most. This screen is one
big table with the hosts in alphabetic order, with each host listing services, one per line.
If you want to see the status of every service you are monitoring, use this.

“Host Detail” lists every host’s ping status. The “Status Overview” shows the various
host groups defined. Each host’s set of service-status details can be displayed by click-
ing on the individual hostname. “Status Map” can be used to graphically show the
dependencies between various hosts and is probably most useful for displaying large
networks of routers and similar devices. “Service Problems,”“Host Problems,” and
“Network Outages” show the various classifications of items that are currently in
alarm.

Nagios allows users to enter comments regarding services. These are used to commu-
nicate information about services. “Comments” displays the comments that have been
entered for a given service. Nagios also allows users to put services into downtime.
“Downtime” lists the services that have been put into downtime and which are not
being currently monitored.

REPORTS
Nagios keeps a history of all services it has monitored. This history can be used to gen-
erate reports and statistics for things like mean time between failures and service level
agreements. Nagios can graph data over time as well: for example, ping times and
alerts via the “Trends,”“Availability,” and “Alert Histogram” functions. The configura-
tion can also be viewed by clicking on the “View Config” option. Note that the config-
uration options must be adjusted by editing files (located by default in /etc/nagios)
and cannot be managed through the Web GUI.

Next time, I will look at an rrdtool-based graphing package, as well as a couple of net-
work-specific monitoring tools.

RESOURCES
SLAC’s Network Monitoring Tools by Les
Cottrell
http://www.slac.stanford.edu/xorg/nmtf/
nmtf-tools.html

SNMP starting point
http://www.snmplink.org/

Another good SNMP reference
http://www.simpleweb.org/

Cisco Netflow
http://www.cisco.com/warp/public/732/Tech/
nmp/netflow/netflow_nms_apps_part.shtml

HP Openview
http://www.openview.hp.com/

Sun Solstice Domain Manager (formerly Sun
Net Manager)
http://wwws.sun.com/software/solstice/dm/

IBM Tivoli Netview
http://www-306.ibm.com/software/tivoli/
products/netview/

WhatsUp Gold
http://www.ipswitch.com/products/whatsup/
index.html

SNMPc from Castle Rock
http://www.castlerock.com/

NetCool from Micromuse
http://www.micromuse.com/products_sols/index.
html

OpenNMS
http://www.opennms.org/

Nagios
http://www.nagios.org/

CAIDA’s cflowd
http://www.caida.org/tools/measurement/cflowd/

SNIPS
http://www.navya.com/snips/

MON
http://www.kernel.org/software/mon/

MIDAS NMS
http://midas-nms.sourceforge.net/

44

45June 2004 ;login:

l

SY

SA
D

M
IN

Tactical Overview screen

Service Details screen (partial)

Host Details screen (partial)

Status Map screen (partial)

Service Overview screen (partial)

ISPADMIN l

46 Vol. 29, No. 3 ;login:

Service Problems screen (partial)

Hosts Problems screen (partial)

Network Outages screen (partial)

47June 2004 ;login:

C# overloaded operators

l

P

R
O

G
R

A
M

M
IN

G

In our examination of the C# programming language thus far,
we’ve seen that classes are a basic design and structuring tool.
For example, you might have an application that uses a lot of
X,Y points, and you could implement a Point class using C#
language features. Instances (objects) of this class would repre-
sent specific points like 123,456.

Classes bring together both data (such as a pair of integers to
represent points) and operations on that data (e.g., comparing
one point to another). The operations are called methods, and
in this column we’ll look at how methods can be specified using
operator names.

The idea is that a method’s name can be something like ==
instead of Equals, or + instead of add, and using such names
leads to a natural way of expressing operations on objects.

An Example
Let’s look at an example, using a Point class to illustrate the idea
of overloading:

using System;

public class Point {
public readonly int x;
public readonly int y;

public Point(int x, int y) {
this.x = x;
this.y = y;

}

public static bool operator==(Point p1, Point p2) {
return p1.x == p2.x && p1.y == p2.y;

}

public static bool operator!=(Point p1, Point p2) {
return !(p1 == p2);

}
}

public class Driver {
public static void Main(string[] args) {

Point point1 = new Point(10, 20);
Point point2 = new Point(20, 30);
Point point3 = new Point(10, 20);

if (point1 == point2)
Console.WriteLine("point1 == point2");

if (point1 == point3)
Console.WriteLine("point1 == point3");

if (point1 != point2)
Console.WriteLine("point1 != point2");

}
}

This class defines a couple of public readonly fields, used to rep-
resent particular X,Y values. Readonly means that the fields are
initialized in the constructor, and can then be read but not writ-
ten by users of the class’s objects. C# properties can also be used
to achieve a similar end; they are a hybrid of data fields and
methods.

The class also defines two operator methods, operator== and
operator!=. These methods take two objects of Point type, and
thus it is possible to say things like:

if (point1 == point2)
...

if (point3 != point4)
...

and provide a customized definition of what == and != mean
for a given class. In the Point example, two points are equal if
their X,Y values are the same, and inequality is defined simply
as not being equal.

Defining == in this way might seem pretty obvious. But in real-
world situations, equality can be defined in many ways. For
example, if the X,Y points are represented as double values
instead of integers, it might make sense to consider two points
equal if the values are close to each other, say within 0.001%,
rather than exactly the same.

We can define operator== with any semantics we like. For
example, we can swap the bodies of the operator== and opera-
tor!= methods, and thereby invert the semantics. But doing so
violates a fundamental rule of operator overloading – using
such operators in a confusing way can make programs impossi-
ble to read and comprehend. It’s possible to create your own
reality using overloaded operators, a reality incomprehensible
to others.

C# requires that the == and != operators be overloaded as a
unit. If one is overloaded, the other must be as well.

by Glen
McCluskey
Glen McCluskey is a
consultant with 20
years of experience
and has focused on
programming lan-
guages since 1988.
He specializes in Java
and C++ perfor-
mance, testing, and
technical documen-
tation areas.
glenm@glenmccl.com

C# OVERLOADED OPERATORS l

Vol. 29, No.3 ;login:48

A C# compiler may give a warning for the code above, saying
that operator== is overloaded, but there is no Equals method
specified. What does this mean? Equals is a method in the root
class (System.Object), and typically you want to override it to
provide class-specific behavior. Since C# is designed to interop-
erate with other languages, and those languages may not have
operator overloading but may wish to call a C# Equals method,
it’s a good idea also to define Equals if operator== is defined.

This can be done by adding some additional lines of code:

public override bool Equals(object obj) {
if (!(obj is Point))

return false;
return this == (Point)obj;

}

public override int GetHashCode() {
return x ^ y;

}

public override string ToString() {
return String.Format("({0},{1})", x, y);

}

We have defined Equals in terms of the == operator already
specified above. GetHashCode and ToString are two other Sys-
tem.Object methods that are typically overridden as well, and
we have also provided implementations of them.

Conversion Operators
You can also specify conversion operators in the C# classes you
design. Such operators are used when converting from one data
type to another.

For example, suppose that we define another Point class, one
that represents X,Y values using unsigned 32-bit integers. An
alternate representation of such points might be a single
unsigned 64-bit integer, with the two 32-bit values stored in the
two halves of the larger integer. Here’s some code that shows
how this idea can be implemented:

using System;

public class Point {
public readonly uint x;
public readonly uint y;

public Point(uint x, uint y) {
this.x = x;
this.y = y;

}

public Point(ulong val) {
x = (uint)(val >> 32);
y = (uint)(val & 0xffffffffUL);

}

public static implicit operator ulong(Point p) {
return ((ulong)p.x << 32) | p.y;

}
}

public class Driver {
public static void Main(string[] args) {

Point p1 = new Point(123456, 234567);

ulong pt = p1;

Point p2 = new Point(pt);

Console.WriteLine(p2.x + " " + p2.y);
}

}

This class defines the usual constructor that takes an X,Y pair of
values, along with a constructor that takes a single 64-bit value.
The class also defines a method:

implicit operator ulong(Point p)

Such a method supports operations such as:

Point point1 = new Point(123, 456);

ulong p = point1;

that is, automatic conversion from a Point object to an unsigned
long value.

The implicit specifier is used in declaring the method. If we’d
used the explicit specifier instead, we would then need to say:

ulong p = (ulong)point1;

This situation is analogous to converting a long primitive value
to a short value; some languages require an explicit cast,
because the conversion may not be possible without data loss.

Indexers
A final example of C# operator overloading illustrates what is
called an indexer. The idea is that you might have a class whose
objects represent databases or tables or something, and it would
be natural to overload the [] operator to represent lookup in the
database or table.

Here’s an example of how indexers are used:

using System;
using System.Collections;

public class Index {
private string[,] list = new string[,] {

{"jane jones", "123-4567"},
{"tom garcia", "234-5678"},
{"mildred smither", "345-6789"}

};

49June 2004 ;login:

l

P

R
O

G
R

A
M

M
IN

Gpublic string this[string index] {
get {

int listlen = list.GetUpperBound(0);

for (int i = 0; i <= listlen; i++) {
if (list[i,0] == index)

return list[i,1];
}

return null;
}

}
}

public class Driver {
public static void Main(string[] args) {

Index phonelist = new Index();

string num = phonelist["tom garcia"];

Console.WriteLine(num);
}

}

This demo implements a simple phone list lookup scheme.

The key line of code in this example is:

public string this[string index] { ... }

This says that when [] is applied to objects of the Index class, the
get and set code should be executed to actually do the indexing.
In this example, we specify a string argument to [] that is used as
the key for lookup, but any type of argument is allowed, and
you can even use multiple arguments – for example, to imple-
ment virtual two-dimensional arrays.

The syntax is very similar to what is used for C# properties. The
get code is invoked when obj[index] is used in an rvalue context,
and the set logic (which we do not define) is executed when
obj[index] is used as an lvalue.

Operator overloading is a powerful technique that you might
want to use in your C# programs.

C# OVERLOADED OPERATORS l

Save the Date!
WORLDS ’04

First Workshop on
Real, Large Distributed Systems
December 5, 2004 u San Francisco, CA
Paper submissions due: August 1, 2004

Co-located with OSDI ’04

http://www.usenix.org/worlds04/

NEW!

50 Vol. 29, No. 3 ;login:

Web Automation

Introduction
Web service protocols like XML-RPC and SOAP are
great for automating common tasks on the Web. But
these protocols aren’t always available. Sometimes
interacting with HTML-based interfaces is still neces-
sary. Thankfully, Perl has the tools to help you get your
job done.

In my last column, I introduced Web services using XML-RPC.
Web services are commonly used as a high-level RPC (remote
procedure call) mechanism to allow two programs to share
data. They enable programs to exchange information with each
other by sending XML documents over HTTP.

There are many advantages to using Web service tools like
XML-RPC and its cousin, SOAP. First, all of the low-level details
of writing a client and server programs are handled by reusable
libraries. No longer is it necessary to master the arcana of socket
programming and protocol design to implement or use a new
service or daemon. Because information is exchanged as text,
Web services are programming-language agnostic. You could
write a service in Perl to deliver weather information, and access
it with clients written in Python, Tcl, Java, or C#. Or vice versa.

Yet for all of the benefits Web services bring, they are hardly a
panacea. Protocols like SOAP and XML-RPC focus on how pro-
grams interact with each other, not on how people interact with
programs. For example, I cannot scribble down the address of
an XML-RPC service on a napkin and expect someone to use
that service easily. Nor can I send a link to an XML-RPC service
in the body of an email message.

Generally speaking, in order to use a Web service, I need to
write some code, and have an understanding of how to use that
particular service. This is why after about five years, Web ser-
vices are still a niche technology. They work great if you want to

offer programmatic access to a service like, say, eBay, Google, or
Amazon.com. But if you want to publish information or offer a
service to the widest possible audience, you still need to build a
Web site.

The HTML Problem
Before Web services, automatic processing of data from the Web
usually involved fetching HTML documents and scanning them
to find new or interesting bits of data. Web services offer a more
robust alternative, but do not eliminate the need to sift through
HTML documents and “screen scrape” data off a Web page.

Processing HTML is the worst possible solution, but it is often
the only solution available. HTML is a difficult format to parse.
Many documents contain invalid or otherwise broken format-
ting. Using regular expressions to extract information from
HTML documents is a common coping strategy, but it is quite
error-prone and notoriously brittle.

Nevertheless, HTML is the universal format for data on the
Web. Programmers who are building systems may consider
alternatives like XML-RPC or SOAP Web services. But publish-
ers and service providers are still focused on HTML, because it
is the one format that everyone with a Web browser can always
use.

Automating the Web
Since the early days of the Web, people have used programs that
automatically scan, monitor, mirror, and fetch information
from the Web. These programs are generally called robots or
spiders. Today, other kinds of programs traverse the Web, too.
Spammers use email harvesters to scour Web pages for email
addresses they can spam. In the semantics of the Web commu-
nity, “scutters” follow links to metadata files to build up data-
bases of information about who’s who and what’s what on the
Web.

There are many other mundane uses for Web automation pro-
grams. Link checkers rigorously fetch all the resources on a Web
site to find and report broken links. With software development
moving to the Web, testers use scripts to simulate a user session
to make sure Web applications behave properly.

Fortunately, there are a great many Perl modules on CPAN to
help with all of these tasks.

Most Web automation programs in Perl start with libwww-
perl, more commonly known as LWP. This library of modules is
Gisle Aas’s Swiss Army knife for interacting with the Web. The
easiest way to get started with LWP is with the LWP::Simple
module, which provides a simple interface to fetch Web
resources:

by Adam Turoff
Adam is a consultant
who specializes in
using Perl to manage
big data. He is a
long-time Perl Mon-
ger, a technical editor
for The Perl Review,
and a frequent pre-
senter at Perl confer-
ences.
ziggy@panix.com

practical perl

51June 2004 ;login:

l

P

R
O

G
R

A
M

M
IN

G#!/usr/bin/perl -w

use strict;
use LWP::Simple;

Grab a Web page, and throw the content in a Perl variable.
my $content = get("http://www.usenix.org/publications/login/");

Grab a Web page, and write the content to disk.
getstore("http://www.usenix.org/publications/login/", "login.html");

Grab a Web page, and write the content to disk if it has changed.
mirror("http://www.usenix.org/publications/login/”, "login.html");

LWP has other interfaces that enable you to customize exactly how your program will interact with the Web sites it visits. For more
details about LWP’s capabilities, check out the documentation that comes with the module, including the lwpcook and lwptut man
pages. Sean Burke’s book Perl & LWP also provides an introduction to and overview of LWP.

Screen Scraping
Retrieving Web resources is the easy part of automating Web access. Once HTML files have been fetched, they need to be examined.
Simple Web tools like link checkers only care about the URLs for the clickable links, images, and other files embedded in a Web page.
One easy way to find these pieces of data is to use the HTML::LinkExtor module to parse an HTML document and extract only these
links. HTML::LinkExtor is another of one of Gisle’s modules that can be found in his HTML::Parser distribution.

#!/usr/bin/perl -w

use strict;
use LWP::Simple;
use HTML::LinkExtor;

my $content = get("http://www.usenix.org/publications/login/");

my $extractor = new HTML::LinkExtor;

$extractor->parse($content);

my @links = $extractor->links();

foreach my $link (@links) {
$link is a 3-element array reference containing
element name, attribute name, and URL:

0 1 2

print "$link->[2]\n";
}

Most modern Web sites have common user interface elements that appear on every page. These are elements like page headers, page
footers, and navigation columns. The actual content of a page is embedded inside these repeating interface elements that appear on
every page of a Web site. Sometimes, a screen scraper will want to ignore all of the repeatable elements and focus instead on the
page-specific content for each HTML page it examines.

For example, the O’Reilly book catalog (http://www.oreilly.com/catalog/) has each of these three common interface elements. The
header, footer, and navigation column on this page all contain links to ads and to other parts of the O’Reilly Web site. A program
that monitors the book links on this page is only concerned with a small portion of this Web page, the actual list of book titles.

One way to focus on the meaningful content is to examine the structure of the URLs on this page, and create a regular expression
that matches only the URLs on the list of titles. But when the URLs change, your program breaks. Another way to solve this problem
is to write a regular expression that matches the HTML content of the entire book list, and throw out the extraneous parts of this

PRACTICAL PERL l

Vol. 29, No.3 ;login:52

Web page. Both of these approaches can work, but they are error-prone. Both will fail if the page design changes in a subtle or a sig-
nificant manner.

Of course, this is Perl, so there’s more than one way to do it. Many Web page designs are built using a series of HTML tables. A better
way to find the relevant content on this Web page is to parse the HTML and focus on the portion of the page that contains what we
want to examine. This approach isn’t foolproof, but it is more robust than using a regular expression to match portions of a Web
page and fixing your program each time the Web page you are analyzing changes.

There are a few modules on CPAN that handle parsing HTML content. While HTML::Parser can provide a good general-purpose
solution, I prefer Simon Drabble’s HTML::TableContentParser, which focuses on extracting the HTML tables found in a Web page.
This technique will break if the HTML layout changes drastically, but at least it is less likely to break when insignificant changes to
the HTML structure appear.

#!/usr/bin/perl -w

use strict;
use LWP::Simple;
use HTML::TableContentParser;

my $content = get("http://www.oreilly.com/catalog/");
my $parser = new HTML::TableContentParser;
my $tables = $parser->parse($content);

$tables is an array reference. Select to the specific table
content and process it directly.

Interacting with the Web
Most Web automation techniques, like the ones described above, focus on fetching a page and processing the result. This kind of
shallow interaction is sufficient for simple automation tasks, like link checking or mirroring. For more complicated automation,
scripts need to be able to do all the things a person could do with a Web browser. This means entering data into forms, clicking on
specific links in a specific order, and using the back and reload buttons.

This is where Andy Lester’s WWW::Mechanize comes in. Mechanize provides a simple programmatic interface to script a virtual
user navigating through a Web site or using a Web application.

Consider a shopping cart application. A user starts by browsing or searching for products, and periodically clicks on “Add to Shop-
ping Cart.” On the shopping cart page, the user can click on the “Continue shopping” button, click on the back button, browse else-
where on the Web site, or search for products.

If you were developing this application, how would you test it? Would you write down detailed instructions for the people on your
test team to repeat by rote? Or would you write a program to simulate a user, checking each and every intermediate result along the
way? Mechanize is the tool you need to write your simulated user scripts. That user script might look something like this:

#!/usr/bin/perl -w

use strict;
use WWW::Mechanize;

my $mech = new WWW::Mechanize;

Start with the homepage.
$mech->get("http://localhost/myshop.cgi");

Browse for a book.
$mech->follow_link(text => "Books");
$mech->follow_link(text_regex => qr/Computers/);
$mech->follow_link(text_regex => qr/Perl/);

Put "Programming Perl" in the shopping cart.

53June 2004 ;login:

l

P

R
O

G
R

A
M

M
IN

G$mech->follow_link(text_regex => qr/Programming Perl/);

Add this to the shopping cart.
$mech->click_button(name => "AddToCart");

Click the "back button."
$mech->back();

Check out.
$mech->click_button(name => "Checkout");

Fill in the shipping and billing information.
....

Mechanize is also an excellent module for scripting common actions. Every other week, I need to use a Web-based time-tracking
application to tally up how much time I’ve worked in the current pay period. I could fire up a browser and type in the same thing I
typed in two weeks ago. Or I could use Mechanize:

#!/usr/bin/perl -w

use strict;
use WWW::Mechanize;

my $mech = new WWW::Mechanize;

$mech->get('...');

Log in.
$mech->set_fields(

user => "my_username",
pass => "my_password",

);
$mech->submit();

Put in a standard work week.
Log in manually later if this needs to be adjusted.
(Timesheet is the 2nd form. Skip the calendar.)

$mech->submit_form (
form_number => 1,
fields => {

0 => 7.5,
1 => 7.5,
...
9 => 7.5,

},
button => "Save",

);

That's it. Run this again in two weeks.

Mechanize is also a great module for writing simple Web automation. Scripts that rely on HTML layout or specific textual artifacts
in HTML documents are prone to breaking whenever a page layout changes. For example, whenever I am reading a multi-page arti-
cle on the Web, I invariably click on the “Print” link to read the article all at once.

I could use regular expressions, or modules like HTML::LinkExtor or HTML::TableContentParser, to examine the content of a Web
page to find the printable version of an article. But these techniques are both site-specific and prone to breakage. With Mechanize, I
can analyze the text of a link — the stuff that appears underlined in blue in my Web browser. Using Mechanize, I can look for the
“Print” link and just follow it:

PRACTICAL PERL l

Vol. 29, No.3 ;login:54

#!/usr/bin/perl -w

use strict;
use WWW::Mechanize;

my $mech = new WWW::Mechanize;

my $url = shift(@ARGV)
$mech->get();

if ($mech->find_link(text_regex => qr/^2|Next$/i)) {
This is a multipage document.
Open the "print" version instead.
$url = $mech->find_link(text_regex => qr/Print/);

}

Open the file in a browser (on MacOS X).
system(“open '$url'");

Conclusion
Perl is well known for automating the drudgery out of system administration. But Perl is also very capable of automating Web-based
interactions. Whether you are using Web service interfaces like XML-RPC and SOAP or interacting with standard HTML-based
interfaces, Perl has the tools to help you automate frequent, repetitive tasks.

Perl programmers have a host of tools available to help them automate the Web. Simple automation can be accomplished quickly
and easily with LWP::Simple and a couple of regular expressions. More intensive HTML analysis can be done using modules like
HTML::LinkExtor, HTML::Parser, HTML::TableContentParser, or WWW::Mechanize, to name a few. Whatever you need to automate
on the Web, there’s probably a Perl module ready to help you quickly write a robust tool to solve your problem.

55June 2004 ;login:

l

P

R
O

G
R

A
M

M
IN

GBy the mid ‘80s, it was generally recognized that FORTRAN was a dead
language, and all that was left was to rework a few calculation libraries in C
and bury the corpse.

This turns out to not quite be the case. FORTRAN has evolved and is still being used. Or,
to quote an anonymous source: “We don’t know what language engineers will be coding
in in the year 2100. However, we do know that it will be called FORTRAN.”

In the last month, I’ve seen three different projects add new functionality (GUI or net-
work support) to a FORTRAN program.

Thanks to Arjen Markus, of WL Delft Hydraulics (a big engineering and FORTRAN
shop), it’s easy to embed the Tcl/Tk interpreter into the FORTRAN main code, providing
yet another face-lift to an old compiler.

So, a brief digression from the articles about firewall validation to discuss embedding the
Tcl interpreter into FORTRAN applications.

The first question is probably, “Why?” After all, most scripting applications are written using the pattern of extending the interpreter
so you can write your application in the scripting language and call into a compiled library to do the heavy lifting, not embedding an
interpreter into a compiled application.

The big reason is that the old code works. It may not do everything we’d like it to do, it may be cranky about input format, and it
may have no GUI, but any conceptual flaws were revealed and fixed decades ago. Unfortunately, the act of making the old code work
usually means that any pretense of architectural purity has long since been lost, and refactoring it into a library won’t be fast or easy.

By adding the Tcl interpreter to a functional FORTRAN program, we can easily extend the program in ways that FORTRAN doesn’t
normally support. Tcl’s clean socket support makes it easy to add client-server support to the program, and Tk makes it simple to
add a GUI.

The first FORTRAN program I ever used was the Lunar Lander program, run from cards on the printing console of an IBM 1130.
So, when I needed a project for relearning FORTRAN and playing with Markus’s package, I decided to reimplement that program
with a nice interactive GUI.

Markus has developed a FORTRAN->Tcl interface library that exposes the minimal subset of the Tcl “C” API to FORTRAN and
allows the Tcl interpreter to be embedded in a FORTRAN program. It provides entry points to start the Tcl interpreter, evaluate a set
of Tcl code, and exchange data between the compiled FORTRAN and interpreted Tcl sections of an application.

The body of the Lunar Lander code loops until the rocket hits the surface. Within that loop, it queries the user for the amount of fuel
to burn and calculates the current height and speed. It looks like this:

DO WHILE (fheight .GT. 0)
IF (fuel .GT. 0) THEN

WRITE(*,*) 'Enter burn: '
READ(*,*) burn

ELSE
fuel = 0
burn = 0

ENDIF
CALL calcspeed (speed, fuel, gross, burn, impulse, speed)
i = i + 1
fuel = fuel - burn
fheight = fheight - speed
WRITE(*,100) i, speed, fuel, fheight

100 FORMAT('TIME: ', I3, ' SPEED: ', F8.2, ' FUEL: ', F8.2, ' HEIGHT: ', F8.2)
ENDDO

by Clif Flynt
Clif Flynt is president
of Noumena Corp.,
which offers training
and consulting ser-
vices for Tcl/Tk and
Internet applications.
He is the author of
Tcl/Tk: A Developer’s
Guide and the
TclTutor instruction
package. He has
been programming
computers since
1970 and a Tcl advo-
cate since 1994.

clif@cflynt.com

the tclsh spot

THE TCLSH SPOT l

Vol. 29, No.3 ;login:56

A few runs looks something like this:

Enter burn: 0.0
TIME: 1 SPEED: 101.70 FUEL: 1000.00 HEIGHT: 9898.30

Enter burn: 0.0
TIME: 2 SPEED: 103.40 FUEL: 1000.00 HEIGHT: 9794.90

Enter burn: 10.0
TIME: 3 SPEED: 103.31 FUEL: 990.00 HEIGHT: 9691.59

Enter burn: 10.0
TIME: 4 SPEED: 103.20 FUEL: 980.00 HEIGHT: 9588.39

The first step in merging the Tcl interpreter into this code is to compile the FORTRAN-Tcl source files and create a library. This
requires editing the makefile to reflect your environment, and then make ftcl.a. There are configuration options in ftcl_mod.c to sup-
port the C interface of different FORTRAN compilers.

Now that we’ve got a compiled library, we can start modifying the FORTRAN code.

The ftcl_start subroutine initializes the Tcl interpreter. This merges the Tcl C library Tcl_CreateInterp, Tcl_Init, and Tcl_EvalFile com-
mands into a single subroutine.

The ftcl_start subroutine expects to be able to find the Tcl (and possibly Tk) libraries installed at runtime. The program will run if
the libraries aren’t installed, but only the core Tcl commands will be available, not the Tk graphics or other extensions.

Syntax: ftcl_start scriptname

scriptname The name of a Tcl script to load into the interpreter.
This line will initialize the Tcl interpreter.

CALL ftcl_start('config.tcl')

At runtime the config.tcl file is loaded and evaluated. This config.tcl script loads Tk and the GUI code and then builds the GUI to
start the application.

package require Tk

source GUI-1.tcl

buildGUI 10000

The buildGUI procedure can generate any Tk GUI we’d like.

A GUI to duplicate the original Lunar Lander might have an entry widget to accept the amount of fuel to burn, a button to let the
program know when we’re ready to proceed, and a few labels to display the current height, speed, and remaining fuel.

It would look like this:

The entry and label widgets are contained within labelframe widgets. The
labelframe widget is a container widget that can draw an outline around its
edge and place a label on that outline. A labelframe can be used to group a
related set of widgets, or identify a single widget. The labelframe creates a
cleaner-looking GUI than the older technique of putting a label widget next
to an associated data widget.

Syntax: labelframe .widgetName ?-option value?

widgetName The name for this labelframe.

-option value An option/value pair to configure the labelframe. Common options include:

57June 2004 ;login:

l

P

R
O

G
R

A
M

M
IN

G-text label text
The text to display as a label for this frame.

-labelanchor anchor
Defines how to place the label. May be one or two of the letters n, s, e, w.

A single letter describes which side to put the label on, with the top being n, the right being e, etc.

If the anchor is two letters, the first defines the side of the labelframe for the text, while the second letter defines which side
to anchor the label to, with the default being to center the text.

The default value for this is nw.

The first labelwidget contains a Tk entry widget. The entry widget is used to allow a user to enter any sort of textual information,
such as login ID, password, or the amount of fuel to burn.

Syntax: entry .entryName ?-option value?

entryName The name for this entry.

-option value An option/value pair to configure the entry. Common options include:

-textvariable variableName
The contents of the entry widget will be automatically placed in the variable variableName.

-width number
Set the entry widget to be number characters wide. The default value is 20.

The -textvariable option simplifies creating a GUI. You don’t need to write code to query the widgets; just use the variable name.

Like all Tk widgets, the labelframe command returns the name of the widget that was created. Using this name with commands
related to this widget (grid, or creating child widgets) makes your code more robust if the GUI needs to be modified. For instance, in
the code below, the frame and entry widget can be moved to another frame or top-level window by changing only the labelframe
command.

The code to create the label frame and entry widget looks like this:

set w [labelframe .lfb -text "Fuel per second to burn"]
grid $w -row 1 -column 1 -sticky ew -columnspan 2
entry $w.burn -textvariable burn
grid $w.burn

The modern GUI could not exist without the button. The Tk button command creates a button that can contain an image, text, or
both, and will invoke a command when the button is clicked.

Syntax: button .buttonName ?arguments?

A couple of commonly used arguments are:

-text string The text to display on the button.

-command body The body of a command to evaluate when the button is activated.

The code that defines this button is:

button .b -text "Go" -command "set ready 1"
grid .b -row 1 -column 3

Finally, there are the three labels showing the current height, speed, and remaining fuel.

The Tk label widget displays a string. Similar to the entry widget, a Tk label can be linked to a variable and will automatically update
itself to display the contents of that variable when the variable is modified.

THE TCLSH SPOT l

Vol. 29, No.3 ;login:58

Syntax: label .labelName ?-option value?

-textvariable variableName This label will display the contents of the named variable.

-text string This label will display a particular string.

These widgets can be created and displayed in a foreach loop:

set col 0

foreach txt {Speed Fuel Height} var {speed fuel ht} {
set w [labelframe .lf$var -text $txt]
grid $w -row 2 -column [incr col]
set w [label $w.l-$var -textvariable $var -width 8]
grid $w

}

Now, we need to move data to and from this GUI from the FORTRAN code.

The ftcl package supports a family of subroutines to copy data between the Tcl interpreter and the FORTRAN variables. These
include:

ftcl_get_int(TclVariableName, FortranVariableName)
Copy an integer value from a Tcl variable to a FORTRAN variable.

ftcl_get_real(TclVariableName, FortranVariableName)
Copy a real value from a Tcl variable to a FORTRAN variable.

ftcl_get_double(TclVariableName, FortranVariableName)
Copy a double value from a Tcl variable to a FORTRAN variable.

ftcl_get_string(TclVariableName, FortranVariableName)
Copy a string value from a Tcl variable to a FORTRAN variable.

ftcl_put_int(TclVariableName, FortranVariableName)
Copy an integer value from a FORTRAN variable to a Tcl variable.

ftcl_put_real(TclVariableName, FortranVariableName)
Copy a real value from a FORTRAN variable to a Tcl variable.

ftcl_put_double(TclVariableName, FortranVariableName)
Copy a double value from a FORTRAN variable to a Tcl variable.

ftcl_put_string(TclVariableName, FortranVariableName)
Copy a string value from a FORTRAN variable to a Tcl variable.

In each case, the TclVariableName is passed as a string, while the FortranVariableName is just the name of the FORTRAN variable.

The command associated with the Go button sets the variable ready to 1 when the user clicks it. We can set and read that variable
into a FORTRAN variable named irdy with these lines:

irdy = 0
CALL ftcl_put_int('ready', irdy)
! Pass control to the Tcl event loop
CALL ftcl_get_int('ready', irdy)

Like other interactive systems, Tcl has an event loop that collects inputs from the outside world (timer events, mouse movements,
keyboard events, etc.) and processes them. While the FORTRAN code is being executed, the event loop isn’t being processed, and the
Tk GUI is inactive. The next trick is to transfer control to the Tcl interpreter to run the event loop and make the GUI active.

59June 2004 ;login:

l

P

R
O

G
R

A
M

M
IN

GThe ftcl_script subroutine passes a string to be evaluated to the
Tcl interpreter. This string can be a single command or a longer
script. We can process the event loop with the update com-
mand, which causes the Tcl interpreter to run a single pass
through the event loop, and process a single event. This code is
a round-robin polling loop that waits for the user to press the
Go button:

irdy = 0
CALL ftcl_put_int('ready', irdy)
DO WHILE (irdy == 0)

CALL ftcl_script('update')
CALL ftcl_get_int('ready', irdy)

ENDDO

Polling loops are simple, but they eat up all available CPU
cycles.

The vwait command described a few “Tclsh Spot” articles ago
will cause a script to pause until a variable changes value. The
interpreter stops at the vwait command and enters the event
loop, processing events until the variable is assigned a new
value. After this, the interpreter continues evaluating the com-
mands in the script.

Internally, Tcl uses the select system library call to wait for
events, rather than polling. Using the vwait command reduced
the CPU usage of the Lander program from 50–80% to under
1%.

Syntax: vwait varName

varName The variable name to watch. The script following the
vwait command will be evaluated after the variable’s
value is modified.

A simple procedure to wait for the button to be pressed looks
like this:

proc wait4click {} {
global ready
vwait ready

}

And the FORTRAN main loop code looks like this:

DO WHILE (fheight .GT. 0)
irdy = 0
CALL ftcl_put_int('ready', irdy)
CALL ftcl_script('wait4click')

! The Tcl burn variable now contains the amount of
! fuel to burn.

CALL ftcl_get_real('burn', burn)

! If we’re out of fuel, no burn.
IF (fuel .LE. 0) THEN

fuel = 0
burn = 0
CALL ftcl_put_real('burn', burn)

ENDIF

! Calculate the speed.
CALL CALCSPEED (speed, fuel, gross, burn,

impulse, speed)

! Update the FORTRAN variables.
i = i + 1
fuel = fuel - burn
fheight = fheight - speed

! Update the Tcl variables.
CALL ftcl_put_int('time', i)
CALL ftcl_put_real(‘speed’, speed)
CALL ftcl_put_real(‘fuel’, fuel)
CALL ftcl_put_real(‘ht’, fheight)

ENDDO

The last step is to compile the new FORTRAN code and link
with the ftcl and Tcl libraries. Using the GNU FORTRAN com-
piler, it looks like this:

g95 -o lander lander.f90 ftcl.a -L/usr/local/lib -ltcl8.4
-ltk8.4 -lm

At this point, we’ve used 21st-century technology to duplicate
the behavior of a 1960s program. It feels like it should have
exposed rivets and be the size of a walk-in freezer.

The next “Tclsh Spot” article will look at using a Tk GUI to dis-
play the information graphically and run in realtime.

As usual, this code (including a version of Arjen Marcus’s ftcl
library) is available at http://www.noucorp.com.

THE TCLSH SPOT l

60 Vol. 29, No.3 ;login:

the bookworm
BOOKS REVIEWED IN THIS COLUMN

Biometrics ends up with a very useful
glossary and an extensive bibliography.

Essential Check Point FireWall-1 NG is
by “PhoneBoy,” who knows more about
installing and maintaining FireWall-1
than anyone else. My problem is that
FireWall-1 is proprietary. But if you’re
going to use it, PhoneBoy has produced
the ultimate installation and configura-
tion guide.

Hoglund and McGraw have devoted
themselves to informing the good guys
about what the black hats already know
about how to take advantage (exploit)
cracks and weak spots in the software we
use. I see their Exploiting Software as a
follow-up to Viega and McGraw’s Build-
ing Secure Software of a few years ago.
It’s a worthwhile addition to the security
bookcase (one shelf will no longer do).

Looking at Code
About 20 years ago, Marc Donner
pointed out to me the importance of
reading code carefully. He later taught a
course at NYU on code reading. Spinel-
lis has turned out a fine book on Code
Reading, accompanied by a CD full of
source and examples. He makes the
same point that Donner did: You will
write better code if you make it a habit
to read good code.

Two Stray Penguins
Linux Programming by Example is a very
fine book. I happen to be an admirer of
Robbins’ Effective AWK Programming
(which lives next to my desk) and his
book on vi (which I recommend fre-
quently). But Linux Programming is
exemplary. Interestingly, Robbins begins
with, “One of the best ways to learn
about programming is to read well-writ-
ten programs.” Donner and Spinellis
would agree.

Robbins supplies the reader with a vast
number of programs and a lot of eluci-
dation. This is a primer in Linux pro-

Rik Farrow wrote a review of Security
Warrior in the February ;login:. I was
going to review it at length, but decided
that just a few words will suffice. (I’ve
written a longer review for http://www.
UnixReview.com.) I just wanted to say
that I liked Peikari and Chuvakin’s book
more than Rik seems to.

Peikari and Chuvakin have written a
valuable book which will soon find its
way onto the shelf of everyone involved
in network and machine security. I think
of it as a supplement to Cheswick,
Bellovin, and Rubin on firewalls and
Schneier on cryptography, and a num-
ber of other works.

There are parts of Peikari and Chu-
vakin’s book that are quite frightening.
But war is frightening and computer/
information war is no exception to this.

Further on this topic . . .

There are over a thousand books on
computer security listed at Amazon.
About a dozen of them are really worth-
while. That short list has just grown to
include Peikari and Chuvakin’s volume.
Also quite informative is Reid’s Biomet-
rics for Network Security.

Fingerprints, footprints, hand geometry,
iris and retina scans, voice, face, hand-
writing – they’re all used. Reid’s book is
a first-rate summary of methods as well
as a guide for system and network engi-
neers.

SECURITY WARRIOR
CYRUS PEIKARI AND ANTON CHUVAKIN

Sebastopol, CA: O’Reilly, 2004. Pp. 531.
ISBN 0-596-00545-8.

BIOMETRICS FOR NETWORK
SECURITY
PAUL REID

Upper Saddle River, NJ: Prentice Hall, 2004.
Pp. 252.ISBN 0-13-101549-4.

ESSENTIAL CHECK POINT
FIREWALL-1 NG
DAMEON D. WELCH-ABERNATHY [AKA

PHONEBOY]
Boston: Addison-Wesley, 2004. Pp. 612.
ISBN 0-321-18061-5.

EXPLOITING SOFTWARE
GREG HOGLUND AND GARY MCGRAW

Boston: Addison-Wesley, 2004. Pp. 471.
ISBN 0-201-78695-8.

CODE READING
DIOMIDIS SPINELLIS

Boston: Addison-Wesley, 2003. Pp. 495
+ CD-ROM. ISBN 0-201-79940-5.

LINUX PROGRAMMING BY EXAMPLE
ARNOLD ROBBINS

Upper Saddle River, NJ: Prentice Hall, 2004.
Pp. 492. ISBN 0-13-142964-7.

LINUX POCKET GUIDE
DANIEL J. BARRETT

Sebastopol, CA: O’Reilly, 2004. Pp. 191.
ISBN 0-596-00628-4.

HARDWARE HACKING PROJECTS FOR
GEEKS
SCOTT FULLHAM

Sebastopol, CA: O’Reilly, 2004. Pp. 331.
ISBN 0-596-00314-5.

BEOWULF CLUSTER COMPUTING
WITH LINUX, 2ND ED.
WILLIAM GROPP, EWING LUSK, AND

THOMAS STERLING
Cambridge, MA: MIT Press, 2004. Pp. 617.
ISBN 0-262-69292-9.

by Peter H. Salus
Peter H. Salus is a
member of the ACM,
the Early English Text
Society, and the Trol-
lope Society, and is a
life member of the
American Oriental
Society. He owns nei-
ther a dog nor a cat.

peter@netpedant.com

gramming, but also serves as a tract on
UNIX programming. Most of the illus-
trations are from actual GNU and UNIX
V7 code. With ever more companies
converting to Linux, this will be an
invaluable resource for those converting
from another [which one?] system.

I keep Essential System Administration
and Essential CVS nearby for emergen-
cies. Another valuable addition to
O’Reilly’s pocket guides is Linux. Barrett
includes all the commands and flags I
looked for and is so up-to-date that
Fedora is covered.

Tinkering
If you believe that taking apart alarm
clocks and building tuners or receivers is
the right way to gain a technical educa-
tion, Hardware Hacking Projects for
Geeks is for you! “How to Hack 802.11b
Antennas” and “How to Build an Inter-
net Toaster” may be my favorite chap-
ters, but “How to Hack a Furby” is
useful, too. All of us who used to read
Popular Electronics or Popular Mechanics
or who still have a copy of an AARL
handbook (my hand’s up) will really
love this book.

Beowulf Redux
The second edition of Gropp, Lusk, and
Sterling’s Beowulf Cluster Computing
with Linux is over double the size of
Sterling’s volume on Beowulf of five
years ago. But if you’re into building a
Linux cluster, you need it.

61

l

B

O
O

K
R

EV
IE

W
S

April 2004 ;login: BOOK REVIEWS l

61

l

B

O
O

K
R

EV
IE

W
S

April 2004 ;login:

book reviews
SOFTWARE ARCHITECT BOOTCAMP,
2ND ED.
RAPHAEL C. MALVEAU AND

THOMAS J. MOWBRAY
Upper Saddle River, NJ: Prentice Hall, 2003.
Pp. 400. ISBN 0-13-027407-0.

Reviewed by Harry DeLano
hdelano@adelphia.net

OVERALL IMPRESSIONS
Reviewing books isn’t as much fun as
writing software, but it can be pretty sat-
isfying. I was a bit skeptical when I
began reading this book, mostly because
of a personal aversion to things military
and bureaucratic. The bootcamp anal-
ogy kind of bothered me because, as I
see it, the primary purpose of military
training is to turn a human being into a
mindless, obedient drone. My attitude
softened as I realized that there is a lot of
common sense here that would help one
to understand the culture if one happens
to get involved in a large software proj-
ect. Actually, this book is more like Offi-
cer Candidate School than bootcamp
and seems designed to help someone’s
career develop from “just” programming
into leading a team of developers to suc-
cessfully deliver a system.

If that’s what you’re interested in, this
book might be for you. It reviews the
techniques and tools used to help design
a system at very high levels of abstrac-
tion, taking into account a wide range of
points of view. It also covers many of the
software development environments
currently available. The reader is also
offered tips on how to mold oneself pro-
fessionally, including advice on how to
improve communication skills and a
discussion of various aspects of the psy-
chology of software development.

In spite of my background in engineer-
ing application development, system
administration, and systems program-
ming on various platforms, as well as
participation as a systems analyst on
large software development projects, I

found the perspective taken in this book
was pretty much new territory. The
overview to the use of components here
is enlightening.

OVERVIEW OF BOOK
Bootcamp is about the need for software
architects and the role they should play
in large commercial software develop-
ment projects. “The era of limitless
demand for IT talent is over.” This is
partly due to the methods described
here to build these systems. Techniques
and technology in this field have evolved
to allow more regimented and con-
trolled development. (This, by the way,
has made outsourcing easier.) What are
these techniques and technologies? A set
of formal models has evolved for speci-
fying (1) what the problem is, (2) who
cares, and (3) how that system will be
built. The new technologies include the
use of components (as opposed to just
objects) in building large, distributed
software systems.

The book is organized by chapters corre-
sponding to some aspect of military
training (e.g., “Jump School,”“Military
Intelligence”), with a final chapter con-
taining advice on how to design your
career. Again, the military analogy used
to explain how one might be a software
architect fits well with the authors’ rigid
and hierarchical view of how teams
might best work.

THE DETAILS
What follows is a collection of what
seemed to be the salient points from
each of the first five chapters of the
book.

CHAPTER ONE: INTRODUCTION

This chapter includes some interesting
(unverified) facts worth mentioning:
“Corporate America spends more than
$275 billion each year on approximately
200,000 application software develop-
ment projects”; application development

BOOK REVIEWS l

Vol. 29, No. 3 ;login:62

book reviews
success rates were only 16% in 1994 vs.
26% by 1998; the cost of failed projects
went from $80 billion in 1995 to $75 bil-
lion in 1998; cost overruns dropped
from “$59 billion in 1005 [sic, probably
1995] to . . . $22 billion in 1998.”

CHAPTER TWO: MILITARY HISTORY

This is an overview of the field of soft-
ware architecture. It seemed a little inco-
herent to me in that it introduces five
“schools of thought” on the subject and
then goes on to describe only a couple of
them thoroughly, interspersed with gar-
bled references to others. For example,
they throw in a mention of “Enterprise
Architecture” without providing previ-
ous noticeable context to help under-
stand how it fits into the discussion.

An attempt is made to justify the need
for architects and to describe how one
operates, including what tools they use
to build system specifications. In design-
ing a system, the architect needs to con-
sider multiple viewpoints to achieve
simplicity, maintain strict consistency in
terminology to achieve system under-
standing, and use the notion of “com-
plete models,” describing multiple
phases of development while taking care
not to get too detailed. There are tech-
niques available to allow the considera-
tion of several points of view of the
project. One of the approaches to defin-
ing a model (the Zachman Framework)
provides for 30(!) viewpoints.

Information systems have evolved from
static and local to dynamic and global,
so that we now have distributed multi-
organizational systems with heteroge-
neous hardware and software configura-
tions. The architect needs to be able to
separate concerns about business appli-
cation functionality from concerns
about distributed-system complexity.
Requirements change frequently and
account for the majority of system soft-
ware costs of the life cycle, so there’s a
need to “future proof” the architecture.

The authors make the point that 70% of
the code in a typical application is infra-
structure. Component technology sup-
posedly means that reinventing the
wheel is no longer necessary. That was
the promise of OO programming, but
now the “idioms” we see over and over
again that are used to have objects play
together are defined as abstract elements
of models and have been made part of
the infrastructures that are now available
for component-based development.

The authors review various approaches
to this need and seem to settle on the
OSI’s X.900 Reference Model for Open
Distributed Processing as about the best
currently available. There are other
choices (e.g., IBM’s 4+1 View Model),
but most are variations on the theme of
RM ODP.

These tools force one to take several
points of view in describing a solution
to the problem: enterprise (what the sys-
tem’s purchaser needs it to do); informa-
tion (what data will flow and how);
engineering (familiarity with the guts of
the infrastructure, similar to an OS engi-
neer); computation (partition of the sys-
tem into components that can inter-
operate in a distributed fashion and def-
inition of the boundaries between com-
ponents, and use of CORBA IDL [see
below]); technology (component inter-
operability concerns).

RM ODP is described over the course of
about 200 pages in a set of four docu-
ments that are concise but “relatively
inscrutable.” This includes conformance
assessment criteria that can be used to
decide whether or not the project is
going well.

The notion of “design patterns” is intro-
duced, which has been used to codify
and document a lot of software knowl-
edge. The authors state that patterns
represent a rejection of originality as a
technical goal (so leave your imagina-
tion at home). A very formal mechanism
exists for documenting patterns, and

Once careful consideration has been
given to what problem the system will
solve, there needs to be a way of describ-
ing the solution in fairly general terms.
We used to write systems in which the
code was all in one place and data was
in another, but both were in the same
neighborhood. Then the object-oriented
approach came along and software is
now written so that the code and the
data it is associated with are encapsu-
lated into elements (objects). These
objects work together through message-
passing mechanisms (fairly local and
fairly primitive (sockets, RMI, etc.).
Lately, it has been found that these
object-oriented elements need to work
with each other in very heterogeneous,
widely distributed environments. There
are many common approaches used in
the various communication environ-
ments (“idioms”) that could be
abstracted and used in specifying how
the software project might solve a prob-
lem.

The drift of this chapter seems to be that
there is a need for a good set of architec-
tural tools to describe how to have a suc-
cessful software development project.
One reason is that there is a need for a
system to be resistant to requirements
and context changes. In the past, writing
specifications and using object-oriented
development techniques were sufficient.
However, that was before the need for
globally distributed enterprise require-
ments. Now the problem needs to be
described from various stakeholders’
points of view. These techniques allow
one to propose solutions that are
abstract enough that the underlying
technology can be ignored above a cer-
tain level in the hierarchy of system
stakeholders (investor, architect, devel-
opment manager, developer). Develop-
ment can then proceed by taking
advantage of component-based tools to
bring the higher-level vision to fruition.
Development and implementation tech-
nologies can be left as details.

these are collected in catalogs you can
buy and which architects should study
to be pattern literate. Design patterns are
derived as follows: a single design occur-
rence is an event; two occurrences are a
coincidence; three constitute a pattern.

The formality referred to as “anti-pat-
terns” are patterns, enhanced with anno-
tations, known to have failed in their
attempt to solve a problem. Included is a
description of how a new version might
be derived from that original ill-used
pattern to better solve the original prob-
lem (a sort of tale of woe with a happy
ending). There is a class of patterns
called idioms; these are programming-
language specific (think cookbooks).

CHAPTER THREE: BASIC TRAINING

Here the authors go over the tools avail-
able to a software architect for doing the
actual development. It reviews a history
of software environments, starting with
procedural technology, in which pro-
gram code exists separate from the data
it deals with. This is OK, but if data rep-
resentation is modified, there can be a
large impact on the program. OO tech-
nology (pieces of data and program ele-
ments to access and manipulate that
data all together – OK but weak for dis-
tributed processing since language-spe-
cific encapsulation is insufficient to
support software reuse and distributed
systems); objects communicating with
each other via messages, devoid of soft-
ware-architecture approach; specifica-
tion objects representing modules; rapid
iterative prototyping, with ruthless dis-
regard for architectural principles (bad).

They describe the evolution of distrib-
uted technology, from file servers
through database servers and transac-
tion processing monitors through dis-
tributed objects to N-tier component-
ware. Object-oriented middleware is an
outgrowth of procedural predecessors,
including RPC, socket-based Open Net-
work Computing, and Distributed Com-

63June 2004 ;login:

l

B

O
O

K
R

EV
IE

W
S

book reviews
more robust and might be preferred by
experienced developers, since it allows
greater programmer flexibility (hey, I
thought that was bad!).

CHAPTER FOUR: SOFTWARE ARCHITECTURE:
GOING TO WAR

Here the authors go over some ways
that large software projects happen and
then lay out steps for an architectural
approach. Most large software is very
fragile (sucks) except for “telecommuni-
cation systems, video games, mainframe
operating systems, or rigorously inspected
systems (e.g., CMM Level 5).” (Hmm,
how about the Linux kernel?) They
point out that traditional system
assumptions are local and assume that
the system will be stable, but in a distrib-
uted system one needs to assume that
things will be global and unstable. This
is like comparing Newtonian mechanics
to quantum mechanics. Also, distributed
systems typically involve more than one
organization to deal with. They recom-
mend the following approach: proactive
thinking (actively anticipate problems);
use design patterns and anti-patterns to
avoid redesigning the wheel; use the
Universal Modeling Language to lay out
and describe the design.

Traditionally, large systems are pulled off
by “heroic programmers” coming in to
rescue a flagging project. They make it
work under extreme time pressure but
typically leave a fragile and undocu-
mented system. Architects must avoid
this by initially laying out the project
very carefully (using the latest tools like
CORBA IDL and UML), making sure
that appropriate development tools are
used (componentware), and staying on
top of the development process to make
sure that no heroes are needed.

The architecture-centered development
process should include the following
steps: system envisioning, requirements
analysis, mock-up prototype, architec-
ture planning, architecture prototype,

puting Environment. Later, Microsoft’s
Distributed Common Object Model
attempted to add another layer of
abstraction, but, according to the
authors, it still exposed too much of its
underlying distribution mechanism.

CORBA (Common Object Request Bro-
ker Architecture) attempts to provide a
standard interface to services used by
applications, no matter what platform
they run on. Using CORBA Interface
Definition Language is a way to stan-
dardize on APIs throughout a system.
Vendors usually provide hundreds of
APIs, and developers pick and choose
from that list as they see fit, causing
there to be many more used in the proj-
ect than really need be. Providing a layer
between the application and the OS ser-
vices needed by the application that is
tailored to the needs of the organization
simplifies the use of those OS services,
making them more manageable and
maintainable.

In component technology, specification
objects represent constraints rather than
programming objects. It emphasizes
larger-grained software interfaces and
modules. Component infrastructures
include MS .Net and Sun Java Enterprise
Java Beans, including CORBA. Software
architecture for componentware allows
parallel, independent development of
the system or its parts (good for out-
sourcing). It tries to standardize means
of component interaction so that cus-
tom interfaces between individual com-
ponents are minimized. Distributed
components can communicate using
standard interfaces by way of CORBA
and its IDL, which is centered around
the Object Request Broker; CORBA Ser-
vices provide a way to implement
CORBA on particular OS platforms,
including Netscape Communicator(!);
XML allows for universal data inter-
change.

A comparison of J2EE and .Net shows
that .Net is easier to use but J2EE is

BOOK REVIEWS l

Vol. 29, No. 3 ;login:

project planning, parallel development
(of components), system transition
(quality assurance), operations and
maintenance (rolling it out), and system
migration (moving the organization
over to the new system). What’s new
about all of this? The process has been
very much more formalized as the com-
ponentware approach has evolved. For
example, the architecture-planning step
involves documenting these architec-
tures using OSI’s ODP: enterprise (how
the business works), logical information
architecture (what objects are needed to
represent the business), computational
interface (what will flow between these
objects and how), distributed engineer-
ing (allocation of responsibilities), and
technical selection (component mecha-
nisms).

CHAPTER FIVE: SOFTWARE ARCHITECTURE:
DRILL SCHOOL

Here we are introduced to the idea of
using “design levels” to lay out a model.
Design levels have been applied to hard-
ware design for decades and are used to
simplify by separating concerns. Soft-
ware may be looked at as having various
levels of granularity (objects and classes
[the finest, defined by programming
language], configurations of objects [the
next level up], micro-architecture,
frameworks, applications, systems [the
coarsest]).

The last five chapters of the book cover
how best to provide leadership in a soft-
ware development project. Topics
include how to be a good leader, project
management basics, the architect’s role
vis-à-vis the project manager, various
roles in the software design process,
teamwork communication skills, using
UML, architectural mining, and the psy-
chology of software development. Some
highlights follow.

The architect acts as an assistant to the
project manager.

64

book reviews
wherein this cycle is done repeatedly
over the life of the project for a particu-
lar piece of the system. This provides for
more feedback opportunities.

Psychological techniques include being
able to propagandize without seeming to
do so. Taking advice is difficult by
nature. Architects need to avoid situa-
tions where positive feedback causes
developers to get carried away in the
next phase by trying to top themselves.
This usually leads to a system that’s too
complex.

Signs of egomania in software architects
(sampling): Forgetting that the job is
about communicating, not winning
arguments; use of the royal “we”; refer-
ring to developers as “grunts”; believing
these signs are about someone else.

“A typical adult gets angry about ten
times every day.” Not me.

Career advice is offered, including how
architecture isn’t taught much in schools
yet; so, for now, you’ll have to develop
your own curriculum.

CONCLUSION
As I said earlier, I was skeptical when I
first got this book, but I’m now glad I
had a chance to spend time with it. It
covers a fast-developing field and pro-
vides lots of detail that might be handy
to delve into if ever one finds oneself
working on a large enterprise software
project. In fact, it might convince you
that you want to be a software architect.
Further information can be found at the
Worldwide Institute of Software Archi-
tects (http://www.wwisa.org).

Many experienced programmers will not
be able make the shift from the proce-
dural to the object paradigm.

Component architectures can be looked
at as having four layers: foundation
(classes to manage basic object services),
domain (business entities), application
(specialized domain classes for particu-
lar views), and user interface (tailored
application classes for various types of
user).

There’s a “process for creating processes”
(sub-projects?). The software architect
must be an expert in teamwork and
make sure that the team works well
together. Also, he or she has responsibil-
ity for explaining incremental develop-
ment to upper management, justifying
required shifts in architecture.

It’s often necessary to force the “lone
wolf” developer into constructive inter-
action.

There are lot of issues with regard to
communications, including running
good brainstorming sessions (and being
able to decide when they’re needed),
keeping good records of meetings, mak-
ing sure consistent terminology and
modeling notation is used, and listening
well.

Use Universal Modeling Language to
document the meta-model of applica-
tions and systems. “Design a thing con-
sidering its next larger context – a chair
in a room.”

Architectural mining is extracting from
preexisting designs information on how
those designs could be applied to the
problem at hand.

Polya’s paradox: It’s often easier to solve
a general problem than a specific one
(which may have an overwhelming
amount of detail).

The traditional approach of “analyze
requirements, design, code, test” is being
replaced by a more iterative approach

65June 2004 ;login:

notes
Election Results
The results of the elections for Board of
Directors of the USENIX Association for
the 2004–2006 term are as follows :

PRESIDENT
Mike Jones, Microsoft Research

VICE-PRESIDENT
Clem Cole, Ammasso

SECRETARY:
Alva Couch,Tufts University

TREASURER:
Theodore Ts'o, IBM

AT LARGE
Matt Blaze, University of Pennsylvania
Jon “maddog” Hall, Linux International
Geoff Halprin, The SysAdmin Group
Marshall Kirk McKusick, Author and

Consultant

NOT ELECTED
John Nicholson, Shaw Pittman LLP
Brian Noble, University of Michigan

Newly elected directors will take office at
the conclusion of the next regularly
scheduled board meeting, which will be
held June 27, 2004, in Boston, MA.

Summary of the
USENIX Board of
Directors Meetings

The following is a summary of the
actions taken by the USENIX Board of
Directors from December 4, 2003,
through March 2, 2004.

FINANCES
The final budget for fiscal year 2004 was
approved.

CONFERENCES
The Board approved a proposal from
David Culler to sponsor the First Inter-
national Workshop on Real Large Dis-
tributed Systems (WORLDS), which will
precede OSDI in 2004.

Registration fees for the 2004 USENIX
Annual Technical Conference were
approved as shown in the table on page
66.

ADVOCACY
In February 2004, the USENIX Board
drafted a response letter to claims by the
SCO Group, Inc. (who have initiated
legal action against technology researchers

USENIX MEMBER BENEFITS
As a member of the USENIX Association,
you receive the following benefits

FREE SUBSCRIPTION TO ;login:, the Association’s
magazine, published six times a year, featur-
ing technical articles, system administration
articles, tips and techniques, practical
columns on such topics as security, Tcl, Perl,
Java, the law, and operating systems, book
reviews, and summaries of sessions at
USENIX conferences.

ACCESS TO ;login: online from October 1997
to last month: www.usenix.org/
publications/login/.

ACCESS TO PAPERS from the USENIX Confer-
ences online starting with 1993:
www.usenix.org/publications/library/proceedings/

THE RIGHT TO VOTE on matters affecting the
Association, its bylaws, election of its direc-
tors and officers.

DISCOUNTS on registration fees for all
USENIX conferences.

DISCOUNTS on the purchase of proceedings
and CD-ROMS from USENIX conferences.

SPECIAL DISCOUNTS on a variety of products,
books, software, and periodicals. See
<http://www.usenix.org/membership/
specialdisc.html> for details.

FOR MORE INFORMATION
REGARDING MEMBERSHIP OR

BENEFITS, PLEASE SEE
http://www.usenix.org/

membership/

OR CONTACT
office@usenix.org

Phone: 510 528 8649

USENIX BOARD OF DIRECTORS
Communicate directly with the USENIX Board
of Directors by writing to board@usenix.org.

PRESIDENT
Marshall Kirk McKusick, kirk@usenix.org

VICE PRESIDENT
Michael B. Jones, mike@usenix.org

SECRETARY
Peter Honeyman, honey@usenix.org

TREASURER
Lois Bennett, lois@usenix.org

DIRECTORS
Tina Darmohray, tina@usenix.org
John Gilmore, john@usenix.org
Jon “maddog” Hall, maddog@usenix.org
Avi Rubin, avi@usenix.org

EXECUTIVE DIRECTOR
Ellie Young, ellie@usenix.org

by Tara Mulligan
tara@usenix.org

BOARD OF DIRECTORS MEETINGS l

Vol. 29, No. 3 ;login:66

and developers using open source code)
that challenge the legality of General
Public Licenses. In early 2004, SCO sent
a position letter to members of the U.S.
Congress to promote their case, which is
currently in federal courts. The USENIX
response letter refuting SCO’s claims
was sent to USENIX members, members
of Congress, and the media. The text of
the letter was included in the April 2004
issue of ;login: and on the USENIX Web
site.

FUTURE BOARD MEETINGS
The next scheduled Board meeting will
be Sunday, June 27, 2004, at the Annual
Technical Conference in Boston, MA.
The newly elected Board members will
be invited to attend, and they will take
office at the conclusion of the meeting.

USENIX STRATEGY MEETING
On March 1, 2004, the Board of Direc-
tors met with several long-time mem-
bers, staff, and past Board members to

discuss future direction for USENIX.
The discussion focused on who the
USENIX constituency is, what the
organization has done successfully in the
past, and areas that may be worth inves-
tigating. The following actions were
decided upon:

n USENIX will research co-hosting
conferences with groups from other
disciplines, such as bioinformatics,
law, and physics.

n USENIX will investigate holding
regional training events.

n The USENIX Awards Committee
will look into offering a “Most
Influential Presentation” award to
honor those who’ve introduced
groundbreaking technology at
USENIX conferences.

n USENIX will look into how best to
approach advocacy on issues of rel-
evance to the membership.

Event Type Member Nonmember
Student
member

Student
nonmember

Annual Technical
Conference

1 day: $250

2 days: $450

3 days: $600

4 days: $700

5 days: $775

1 day: $350

2 days: $550

3 days: $700

4 days: $800

5 days: $875

1 day: $75

2 days: $145

3 days: $210

4 days: $270

5 days: $325

1 day: $105

2 days: $175

3 days: $240

4 days: $300

5 days: $355

Annual Technical
Conference Training

1 day: $ 600

2 days: $1100

3 days: $1550

4 days: $1950

5 days: $2300

6 days: $2600

1 day: $600

2 days: $1100

3 days: $1550

4 days: $1950

5 days: $2300

6 days: $2600

1 day: $150

2 days: $300

3 days: $450

4 days: $600

5 days: $750

6 days: $900

1 day: $150

2 days: $300

3 days: $450

4 days: $600

5 days: $750

6 days: $900

Influencing the
Field

Remember that class or book or paper
that changed the way you looked at
things?

The USENIX Board has asked me to
organize a new award. This would be
for the Most Influential Paper of Ten
Years Ago.

Not the “best” paper, necessarily. But
the one you feel has had the widest and
most profound influence.

This first time, all papers offered in 1993
or 1994 are eligible. (Most of them are
on the USENIX Web site.)

If it was delivered at a workshop, a sym-
posium, a LISA, or an annual Technical
Meeting, it's eligible.

Send me your nominations by 1 August.
I'll put the short list in the October
;login:.

The winner will be announced at a
USENIX conference later in 2004.

Write to: best10@usenix.org

by Peter Salus

USENIX Historian

peter@pedant.com

67June 2004 ;login:

conference reports
straints, energy concerns, flexibility for
application to choose policies, and the
noninteractive nature of applications,
which makes it different from tradi-
tional mobile systems.

Q: The first generation of sensor systems
are not powerful, but with powerful
future sensor systems will the abstrac-
tions change?
A: Some of the constraints and issues
with sensor systems are fundamental,
like energy concerns, which will hold in
future, and these abstractions hold good
for them as well.

TRICKLE: A SELF-REGULATING ALGORITHM
FOR CODE PROPAGATION AND MAINTENANCE
IN WIRELESS SENSOR NETWORKS

Philip Levis and David Culler, University
of California, Berkeley, and Intel
Research Berkeley; Neil Patel, Univer-
sity of California, Berkeley; Scott
Shenker, University of California,
Berkeley and ICSI
This won the Best Paper award at the
conference. Re-tasking nodes in the sen-
sor systems requires efficient dissemina-
tion of data. Maintenance of the system
could be costly since it calls for trans-

mitting 20–400 bytes of data for each
update. Philip Levis presented a gossip-
based algorithm called Trickle for propa-
gating and maintaining code in sensor
systems. The algorithm assumes the
presence of a broadcast medium and
that nodes can verify metadata. This

This issue reports on the First Sympo-
sium on Networked Systems Design
and Implementation (NSDI ‘04) and on
the 3rd USENIX Conference on File and
Storage Technologies (FAST ’04).

For NSDI ‘04: Our thanks to Amin
Vadhat, who shepherded the following
summarizers:

Magdalena Balazinska
Laura Grit

Vinay M. Igure
Suchita Kaundin

Chip Killian
Ramakrishna Kotla

Xun Luo
Vinay Mallikarjun

Piyush Shivam
Chunqiang Tang

Praveen Yalagandula
Aydan Yumerefendi

For FAST ‘04: Thanks to Ismail Ari and
his summarizers:

Michael Abd-el-Malek
Nitin Agrawal

Akshat Aranya
Dean Hildebrand

Andrew Klosterman
Xun Luo

Kiran-Kumar Muniswamy-Reddy
Steve Schlosser

Shafeeq Sinnamohideen
Deepa Tuteja

Wenguang Wang
Lan Xue

Aydan Yumerefendi

Note: The reports on BSDCon ‘03, held
in San Mateo, California, September
8–12, 2003, can be found at
http://www.usenix.org/events/
bsdcon03/confrpts.pdf

First Symposium on
Networked Systems Design
and Implementation
(NSDI ’04)
SAN FRANCISCO, CALIFORNIA
MARCH 29-31, 2004

TECHNICAL SESSIONS

SENSOR SYSTEMS SESSION
Summarized by Ramakrishna Kotla,
Xun Luo, and Vinay Mallikarjun

THE EMERGENCE OF NETWORKING ABSTRAC-
TIONS AND TECHNIQUES IN TINYOS
Philip Levis, Joseph Polastre, Robert
Szewczyk, Alec Woo, Eric Brewer, and
David Culler, University of California,
Berkeley; Sam Madden, MIT Computer
Science and Artificial Intelligence Labo-
ratory, and Intel Research Berkeley;
David Gay, Intel Research Berkeley
Is sensor system design any different
from conventional mobile system
design? Sam Madden explained that
these two kinds of systems differ in that
sensor systems are limited by resources
like memory (512–4K bytes), battery
power, etc. “Bluetooth is totally wrong
for sensor systems, as power manage-
ment is totally integrated into the proto-
col and does not expose it to the
application.” He explained the design of
the TinyOS operating system, used in
sensor systems that they built at Intel
Labs, and how it was different from tra-
ditional OSes. TinyOS uses component-
based design with no “kernel” and a
single application running at a time,
which chooses its own set of OS services.
He then explained the software abstrac-
tions of the resources (energy, memory,
etc.), the various applications built on
top of TinyOS (localization, habitat
monitoring, etc.), the services provided
in TinyOS (network stack, radio stack,
mica stack), and the issues involved in
building these services. He concluded
the talk by making the observation that
software abstractions in sensor systems
are dictated by limited memory con-

NSDI ‘04 l

Philip Levis

algorithm uses a “polite gossip” policy in
which the nodes periodically broadcast a
code summary to neighbors but stay
quiet if they hear a summary identical to
theirs. It uses a sender-side rate-control-
ling mechanism to avoid flooding the
network: nodes hear a small trickle of
packets that can keep them up-to-date.
Philip went on to explain how they eval-
uated the system using a TOSSIM simu-
lator and the real system. He concluded
the talk by presenting results, which
show that Trickle scales logarithmically
with respect to the density of the nodes
and can achieve rapid propagation with
low maintenance.

Q: How does it scale with a large
amount of data propagation?
A: For large data, a hierarchy of meta-
data suppression is used to scale, where
the only differences in data are sent.
Q: Lossy links create heavy tail distribu-
tion in the results. Can we increase the
load probabilistically so that there are no
bottlenecked links?
A: We can identify critical links and
retransmit more often on those links.

PROGRAMMING SENSOR NETWORKS USING
ABSTRACT REGIONS

Matt Welsh and Geoff Mainland, Har-
vard University
Programming sensor networks is diffi-
cult in that data needs to be pushed into
the network, as opposed to pulling out
the data and processing it at a central-
ized node. Matt addressed the question,
“How do we develop a programming
model for sensor networks as a whole?”
He raised issues that the programming
model has to take care of, like allowing
accuracy/overhead tradeoff, flexible
communication primitives, exposing
certain resource parameters to the appli-
cation while hiding others, etc. He
defined “abstract regions” as a group of
nodes with some geographic or topolog-
ical relationship that capture common
idioms in sensor networks. Various
operations can be performed on abstract

68 Vol. 29, No. 3 ;login:

regions, like neighbor discovery, access-
ing shared variables, and reductions to
support aggregation of shared variables.
He then explained the applications he
built using these primitives: contour
finding, directed diffusion, and object
tracking. Region operations are inher-
ently statistical, and programming
abstractions allow tuning these variables
in order to trade resource usage for
accuracy. He concluded the talk by mak-
ing a case for a spatial programming
language using abstract regions to pro-
gram sensor networks that are inher-
ently resource constrained, volatile, and
distributed. For further details on this
work, please visit http://www.eecs.
harvard.edu/~mdw/proj/mp.

Q: Why can’t we use a distributed pro-
gramming paradigm for sensor net-
works?
A: Nodes in sensor networks are
resource constrained, which requires a
different programming methodology.
Q: Ensemble programming is a good
thing irrespective of resource con-
straints.
A: I agree.
Q: Why is exposing certain parameters
necessary in sensor systems, unlike tra-
ditional systems?
A: Programmers think at a high level;
however, they need knobs to adapt to
application requirements like the trade-
off between accuracy and lifetime.

NETWORKING SESSION
Summarized by Laura Grit and Xun Luo

DESIGN, IMPLEMENTATION, AND EVALUATION
OF DUPLICATE TRANSFER DETECTION IN
HTTP
Jeffrey C. Mogul, Terence Kelly, HP
Labs; Yee Man Chan, Stanford Human
Genome Center
Terence Kelly presented this paper
addressing the problem of duplicate
transfers in HTTP. Redundancy can be
foiled due to aliasing, rotation, and
faulty metadata. To demonstrate that

this problem exists, the authors ran two
large traces on Compaq and WebTV and
found that one in five transfers is redun-
dant. The authors’ solution is to create a
digest of payloads (the entire message
body of the HTTP response) and to
cache the payload in a digest in a
method they call Duplicate Transfer
Detection (DTD). Their algorithm
involves the client asking the digest for a
requested URL. If a match is in the
cache, the server delivers the cached pay-
load; if it is not in the cache, the client
needs the full response from the URL.
They argue that DTD eliminates all
redundant transfers.

Their talk focused on the analytic and
benchmark results of their work. The
authors found their method reduces
latency when response length is suffi-
ciently long. The overheads of their
implementation were under 2%. When
asked if they used different benchmarks,
Terence referred the audience to the
paper to see results with different Web
service payload models. With regard to
benchmarking, their response time and
time to first byte were best with small
payloads, like that of cell phones. The
cost of a DTD miss is constant except for
large body sizes, and they pay an extra
round trip for misses. However, the ben-
efits of DTD increase with body size.

Code is available for their DTD imple-
mentation over Squid at http://devel.
squid-cache.org/dtd, but they warn that
the code is currently too buggy for pro-
duction use.

OSPF MONITORING: ARCHITECTURE,
DESIGN, AND DEPLOYMENT EXPERIENCE

Aman Shaikh and Albert Greenberg,
AT&T Labs–Research
Aman Shaikh presented their experi-
ences with OSPF (Open Shortest Path
First) monitoring. Their objective was to
perform both real-time and offline
analysis of OSPF behavior. They created
a monitor that collects OSPF Link State

Advertisements (LSAs) passively from
the network. There are three ways their
monitor can attach itself to the network:
multicast group, full adjacency mode, or
partial adjacency mode. In particular,
they are looking for topology changes,
node flops, LSA storms, and anomalous
behavior. They have deployed their
monitor in both an ISP and an enter-
prise network.

In implementation, the monitor consists
of three components: LSA Reflector, to
capture LSAs from the network; LSA
aGregator, to perform real-time analysis;
and OSPF Scan, for offline analysis. The
monitor infers what the network looks
like from the messages being sent. If it
detects anomalies, it sends alarms to a
higher-level network manager. By doing
this, they can detect things that other
management systems cannot find. For
example, they have caught equipment
problems, configuration problems, and
even an OSPF implementation bug.
Since they keep all information, their
offline performance evaluator can make
their offline simulator think there is an
actual large topology and can accurately
determine what is happening on the net-
work.

When asked about the difference
between partial and full adjacency
modes, they said that, in their full mode,
LSA Reflector is more unstable. Aman
was also asked to explain what OSPF
monitoring does not do. He said that
OSPF monitoring does not do every-
thing, but it can tell people if the prob-
lem is in OSPF and whether it may need
other monitoring when OSPF is not
running.

69June 2004 ;login:

l

 C
O

N
FE

R
EN

C
E

R
EP

O
RT

SOVERQOS: AN OVERLAY-BASED ARCHITEC-
TURE FOR ENHANCING INTERNET QOS
Lakshminarayanan Subramanian, Ion
Stoica, and Randy Katz, University of
California, Berkeley; Hari Balakrishnan,
MIT
Lakshminarayanan argued that the cur-
rent best effort is not sufficient for QoS
applications. Deployment of techniques
is difficult because the IP layer is hard to
change – you need everyone to agree on
an implementation – and requires end-
to-end deployment. They believe that
overlay networks can do the same thing
for QoS as they did for Multicast.

In this overlay environment, there is no
control on the cross traffic or on node
placement. Their implementation must
be fair to cross traffic and keep network
stability when there are multiple QoS
overlays. Their technique is to trade
resources between overlay flows to
manipulate QoS parameters. For exam-
ple, they would sacrifice throughput for
better loss characteristics. Their design
ensures that network overlay traffic
looks like TCP traffic and follows TCP
guarantees. To do this they add con-
trolled-loss virtual links to characterize
the service for the overlay and to bind
observed loss rate. They keep normal
flows the same across the link, but use
the rest of the space on the link for ser-
vice. These overlays can be used with
multi-player games, streaming media, or
leasing overlay networks. In their experi-
mentation, they found OverQoS can
provide statistical loss and bandwidth
guarantees, it is fair and stable to coexist
with TCP, and cost overheads are only
between 0.5 and 6%. With 99% proba-
bility, available bandwidths were at least
the QoS value.

When asked what is the additional over-
head of OverQoS, they said it is the
bandwidth added to the stream to
reduce loss rates. The follow-up ques-
tion was, What if everyone starts send-
ing multiple packets? In OverQoS, the

net aggregate rate looks like TCP. If they
were just looking at the flow and
appending 30% more packets, there
would be a problem; however, they are
concerned with the aggregate rate.

DISTRIBUTED HASH TABLES SESSION
Summarized by Magdalena Balazinska,
Chip Killian, and Praveen Yalagandula

DESIGNING A DHT FOR LOW LATENCY AND
HIGH THROUGHPUT

Frank Dabek, Jinyang Li, Emil Sit, James
Robertson, M. Frans Kaashoek, and
Robert Morris, MIT Computer Science
and Artificial Intelligence Laboratory
Frank Dabek presented the need for a
DHT with low latency and high
throughput by citing the infeasibility of
realizing a backup system on a Planet-
Lab type environment, where bulk reads
and writes experience a low throughput
of 10Kbps and any operation suffers
from a high latency of about 450ms.

This work has two main contributions.
The first is a series of modifications
made to the original Chord design that
reduce the lookup latency. The second is
a new transport protocol called STP,
which makes use of per-hop ACKs and a
sliding window for RPCs to achieve
good throughput as well as good latency.

The first set of performance changes is
the switch from iterative to recursive
routing, using proximity neighbor selec-
tion, striping blocks across nodes, and
using replication and neighbor selection
to choose the closest nodes that also
contain the interesting data. Low latency,
however, is not sufficient, which is why
they also consider high throughput.

To achieve high throughput, there is a
need to efficiently manage the many
connections needed by the parallel
downloads. Opening many TCP connec-
tions is not efficient, because each one
imposes a start-up latency (slow start),
takes time to acquire a good congestion
window estimate, and uses resources. In

NSDI ‘04 l

contrast, using a few persistent connec-
tions constrains communication to the
overlay links only. The fundamental
problem is that there is a need to limit
the number of parallel connections cur-
rently maintained (and for those con-
nections to not use TCP). For this
purpose, STP keeps a sliding window of
RPC connections to control the number
of outstanding calls. Combined, these
two techniques can both decrease
latency and increase throughput.

More information is available at
http://pdos.lcs.mit.edu/chord.

Q: Amin Vahdat, UC San Diego. Regard-
ing performance results of STP vs. TCP.
Is it inherent that blocks have to be sent
through overlay links when using TCP
connections?
A: Yes, because you don’t want to open
connections to all nodes.
Q: Terence Kelly, HP. Are any methods
from the Microsoft USITS paper on
Skipnet applicable?
A: In Skipnets, nodes with the same geo-
graphic location have the same name, so
lookups stay local when possible. No
such change in namespace is needed in
the Chord approach.
Q: Nick Murphy, Microsoft. What about
insert and update traffic?
A: Coding is a good example of the
tradeoff between read and write perfor-
mance. All lookup optimizations would
be the same.
Q: Nick Murphy, Microsoft. Are you
storing to stable storage or in memory?
A: We use a database, so we do store to
stable storage.
Q: Achim, UC Berkeley. Can we use
DHTs as a backup store? How much
data did you store in the system and per
node? What about reliability?
A: The cost of keeping nodes in sync is
future work.

70 Vol. 29, No. 3 ;login:

BEEHIVE: O(1) LOOKUP PERFORMANCE FOR
POWER-LAW QUERY DISTRIBUTIONS IN
PEER-TO-PEER OVERLAYS

Venugopalan Ramasubramanian, Emin
Gun Sirer, Cornell University
Passive caching as done by current DHT
algorithms suffers from two drawbacks:
(1) The heavy tail of the zipf type access
distributions implies that the caching
cannot reap many benefits and (2)
mutable objects give rise to coherency
problems, and the caching can only pro-
vide a weak consistency model. Rama
described Beehive, a general proactive
replication framework for DHTs that
automatically replicates and places the
objects on several nodes in the DHT, sat-
isfying the application-specified latency
requirements while optimizing the
maintenance bandwidth. Beehive
achieves this through an analytical
model based on a closed-form optimal
solution that fulfills the application’s
requirements with the minimum num-
ber of replicas and that approximates
that closed-form solution with nodes
deciding locally how much to replicate
objects based on estimated popularity.

Rama also presented CoDoNS, a cooper-
ative domain name service, built on Bee-
hive, to replace the traditional DNS.
Through experiments on PlanetLab with
MIT DNS traces as workload, the
authors observed that Beehive (1) has
very low latency (7ms vs. 39ms in legacy
DNS), (2) is resilient against denial-of-
service attacks, and (3) propagates
updates quickly.

More information is at http://www.cs.
cornell.edu/people/egs/beehive.

Q: Matt Welsh, Harvard: The goal of
replication is failure protection, but you
did not evaluate failures.
A: Yes, we did evaluate for some churn
rate. The key point of the talk, however,
is to decrease latency in lookup.
Q: Rob Szewczyk, UC Berkeley. Caching
the Web would require too much space.

Is this approach useful for large work-
loads?
A: Better than passive caching, but we
didn’t try large workloads.
Q: Mike Walfish, MIT. What happens
when alpha is greater than 1?
A: Optimality factor is not valid for
alpha greater than 1.

EFFICIENT ROUTING FOR PEER-TO-PEER
OVERLAYS

Anjali Gupta, Barbara Liskov, and
Rodrigo Rodrigues, MIT Computer Sci-
ence and Artificial Intelligence Labora-
tory
An important challenge in structured
peer-to-peer systems such as Chord is to
achieve efficient routing in spite of fre-
quent changes in membership. Cur-
rently, most peer-to-peer systems
perform lookups in time logarithmic to
the size of the system, because nodes
know only about log N other nodes.
This large number of hops causes high
latency.

The main thesis of the work that Anjali
presented is that it is “possible to keep
full routing state on every node and
route in one overlay hop.” Two
approaches are proposed. The first scales
up to order 100K nodes and routes in
one hop. The second routes in two hops,
but it scales to significantly larger net-
works (>1M).

To achieve one-hop routing, every node
keeps a complete routing table. To keep
these routing tables up-to-date, nodes
organize themselves into a hierarchy
over which all membership-change
events propagate. The hierarchy is as fol-
lows. The ring is divided into a config-
urable number of slices. The node with
an identifier closest to the middle of the
slice is the slice leader. Each slice is sub-
divided into units. The node in the mid-
dle of the unit is the unit leader. All
membership changes propagate up from
nodes that detect the event to slice lead-
ers. Periodically, slice leaders exchange
information about changes in their

respective slices and push these changes
down to nodes within their slice.

Slice leaders are the most loaded nodes
because they send all membership
updates to all other slice leaders. The
load is low for systems less than a mil-
lion nodes in size, but at greater sizes we
have to either reduce the load or switch
to a super-node scheme. One solution to
alleviate the load is for slice leaders to
send only membership updates about
selected representative nodes within
their slices. This approach improves
scalability but increases lookup time by
one hop since lookups now go through
representative nodes before getting to
the final destination. The first hop, how-
ever, can take advantage of proximity
routing.

Q: Sean Rhea, UC Berkeley. Is the gain
of the one-hop routing significant, since
Frank Dabek argues that using proxim-
ity routing reduces latency to only two
hops across the network?
A: This scheme has a latency of 1.5 hops
across the network, and the first hop can
benefit from proximity routing.
Q: Franklin, Northwestern. In the exper-
iments, you assume that lifetime is expo-
nentially distributed, but in real networks

71June 2004 ;login:

l

 C
O

N
FE

R
EN

C
E

R
EP

O
RT

Sit appears that time is Pareto distributed
instead.
A: Exponential distribution is more
extreme, so the results would be even
better if we assumed a Pareto distribu-
tion.
Q: Chunqiang Tang, University of
Rochester. There are two types of traffic
in the system: maintenance traffic and
lookup traffic. Your scheme reduces
lookup traffic but increases maintenance
traffic. Shouldn’t you be optimizing for
the sum of the two instead?
A: Our goal is to reduce lookup latency,
not traffic. Also, we expect lookup traffic
to be significantly higher than mainte-
nance traffic.
Q: Jonathan, University of Utah. What if
slice leader crashes?
A: If a lookup fails, a node generates an
event, and all routing tables will get
updated so a new node will become the
slice leader.

SECURITY AND BUGS SESSION
Summarized by Vinay M. Igure and
Chunqiang Tang

LISTEN AND WHISPER: SECURITY MECHA-
NISMS FOR BGP
Lakshminarayanan Subramanian, Ion
Stoica, Randy H. Katz, University of

California, Berkeley;
Scott Shenker, Uni-
versity of California,
Berkeley and ICSI;
Volker Roth, Fraun-
hofer Institute, Ger-
many
This was awarded Best
Student Paper. BGP is
a path vector protocol
that has policy-based
routing. It has a con-
trol plane and a data
plane, and invalid
routes in either of
these planes could
cause widespread
damage across the
Internet. In the con-

trol plane, a router can propagate spuri-
ous routes, and in the data plane, routers
may inconsistently forward packets.
Some of the possible attacks could be
black hole attacks, impersonation, and
eavesdropping. Lakshmi also provided
some real-world examples of attacks that
targeted the BGP. In order to deal with
these threats, this paper presented a
combination of two mechanisms called
Listen and Whisper. The approach uses
Whisper to deal with the attack at the
control plane and Listen to deal with it
at the data plane.

Lakshmi compared this new approach
with other previously proposed mecha-
nisms, such as a key-based mechanism,
centralized databases, configuration-
checking tools, and data-plane route-
probing tools. Verification using PKI can
pinpoint the source of the problem, but
this is not possible with Listen and
Whisper. Whisper is based on the Chi-
nese whisper game, which has two ver-
sions: split-whisper and loop-whisper. A
demo of the game was given to easily
explain the Whisper route consistency
checking mechanism. Due to time limi-
tations, only a brief summary of Listen
was presented. The basic idea behind
Listen is that if TCP data contains a SYN
and DATA packet, it implies that an ACK
has been previously received and a valid
route exists. The biggest challenge with
this approach was to deal with the false
positives and false negatives. Listen
reduces both of these to less than 1%.

Although these two techniques can be
used individually, they offer best perfor-
mance when used jointly and the results
of the two mechanisms are correlated.
Lakshmi presented the results of testing
the effects of colluding adversaries on
the current Internet and compared it
with the effects on Whisper implemen-
tations. It shows that Whisper policies
reduce the percentage of affected ASes.

NSDI ‘04 l

Stefan Savage, Co-Chair, presenting the best student paper
award

MEASUREMENT AND ANALYSIS OF SPYWARE
IN A UNIVERSITY ENVIRONMENT

Stefan Saroiu, Steven D. Gribble, and
Henry M. Levy, University of Washing-
ton
Steven Gribble presented the results of
the study done at the University of
Washington to investigate the problem
of spyware. The popular media coverage
of spyware generally scares people.
Politicians have also stepped into the
field and are trying to create laws to deal
with this problem. Given the privacy
and security risks, it is essential to con-
duct rigorous research into this prob-
lem. The biggest problem is defining
spyware. For the purpose of this study,
spyware was defined as any software that
collects personal information and relays
it to a third party.

The work focused on studying the
prevalence of four major spyware prod-
ucts: Gator, Cydoor, eZula, and SaveNow.
The authors created network signatures
for each of these by monitoring the
HTTP traffic. The university network
traffic was sniffed for seven days and
then analyzed to find these signatures. It
was found that 5.1% of machines were
infected with spyware. There were many
interesting correlations, but not neces-
sarily causations, between the presence
of spyware and the number of Web
servers contacted, Web objects down-
loaded, executables downloaded, and
presence of P2P file sharing software.
Most P2P software comes with spyware.
The study also found that of those PCs
infected with spyware, many contained
more than one spyware program and
most spyware lingered in the machines
for extended periods. The work also
found security flaws in the “auto-
update” feature of eZula and Gator that
could be exploited to launch attacks.
Given the widespread deployment of
spyware, an attack exploiting these bugs
could cause enormous damage.

72 Vol. 29, No. 3 ;login:

Steven also noted that it is difficult to
implement technical solutions to deal
with spyware, primarily because most
users choose to install these programs
and because it is very hard to distinguish
between spyware and non-spyware pro-
grams. Legal solutions are also difficult
for these reasons. However, detecting the
presence of spyware is easy and hence
the focus should be on containment and
removal.

MODEL CHECKING LARGE NETWORK PROTO-
COL IMPLEMENTATIONS

Madanlal Musuvathi, Dawson R.
Engler, Stanford University
Madan introduced the general problems
associated with checking network proto-
cols. Conventional testing of protocols is
usually inadequate. The approach taken
in this paper is to model check the entire
protocol implementation. Model check-
ing explores all possible states of the
protocol and checks for vulnerabilities at
each state. Since the state space is usually
large, the checking is done until all the
resources are exhausted. Madan used
CMC, a C Model Checker, that checks
code directly, to test protocols. CMC is
similar to a network simulator but pro-
vides the ability to checkpoint imple-
mentation states. CMC also computes
the signature of each state, which can
then be compared to determine if they
are similar.

The first test of CMC was done on
AODV, a routing protocol for mobile ad
hoc networks, and they were successful
at finding bugs in the implementation
code. The next step was to scale CMC to
test a large protocol such as the TCP
protocol in a Linux implementation.
TCP was chosen because it is a hard pro-
tocol and widely tested. Madan high-
lighted the contributions of the work,
which included demonstrating that
CMC is applicable for TCP and that the
techniques used to check TCP can be
used to scale CMC to test other large

systems. The work also provides a gen-
eral infrastructure that can be used for
testing large systems. The biggest prob-
lem in testing TCP was in isolating the
TCP code from the Linux kernel. Since
that was not possible, the entire kernel
was ported into CMC with well-defined
interfaces to run TCP code.

The techniques that were used to deal
with exploring large state spaces – han-
dling large states and incremental state
transitions – were discussed. The boot-
up state was the initial state, with single-
step transitions between states. Since the
states were large and transitions slow, a
“copy-on-write” mechanism was used.
In order to deal with the large states and
their increments, states were split into
objects and made to share unmodified
objects. To handle heap canonicaliza-
tion, Madan presented an incremental
heap canonicalization algorithm, dis-
cussing the performance improvements
achieved. The CMC checked for generic
correctness properties such as memory
leaks and for protocol conformance. The
TCP RFC was translated to C. They
found four bugs in the code. Some of
the future work includes using this
approach to test the entire Linux kernel.

RESOURCE MANAGEMENT SESSION
Summarized by Laura Grit and Piyush
Shivam

CONSTRUCTING SERVICES WITH INTERPOSABLE
VIRTUAL HARDWARE

Andrew Whitaker, Richard S. Cox, Mar-
ianne Shaw, and Steven D. Gribble,
University of Washington
Andrew Whitaker presented mu-Denali,
an extensible design for constructing
virtual machine (VM) services. The
authors argue that although VMs are
powerful platforms for allowing services,
developing services is poor since VMs
are closed systems and are difficult to
tinker with. They believe that the correct
VM service development platform is one
with extensible design and a clean pro-

73June 2004 ;login:

l

 C
O

N
FE

R
EN

C
E

R
EP

O
RT

Sgramming API. Virtual machine moni-
tors have a “whole-system perspective,”
which makes possible a variety of inter-
esting services like migration, intrusion
detection, and replay logging. The key
ideas in their mu-Denali architecture are
the interposition of events generated in
one VM’s virtual hardware device by
another, the extension of the virtual
architecture of the VM, and, finally, a
clean programmable API that lets one
build the VM services.

The experimental evaluation of the sys-
tem addressed the overhead of interposi-
tion and mu-Denali’s ability to support
the development of VM services. It was
observed that system call and packet-
intensive operations suffer degradation
in performance because of extra trap-
ping, copying, and so on. However, the
overall application throughput numbers
were acceptable and the development
effort minimal.

There were questions related to Apache
migration, its network connections, and
the benefits of restarting VMs instead of
application. Andrew acknowledged the
limitation of the LAN-based implemen-
tation (no IP routing) and mentioned
that restarting VMs was a part of com-
pleteness argument. Jay from Sun Micro-
systems pointed to some related work in
this area, to which Andrew acknowl-
edged that a lot of interposition work is
existing in the same space with some dif-
ferences. The mu-Denali approach gains a
lot by using a generic OS. Someone
asked if anyone outside of the authors’
group had tried to build the services
using the primitives, to which Andrew
replied no.

SWAP: A SCHEDULER WITH AUTOMATIC
PROCESS DEPENDENCY DETECTION

Haoqiang Zheng and Jason Nieh,
Columbia University
Haoqiang stated the motivation for his
work by emphasizing the large number
of dependencies that exist between the

many components in creating tasks.
Existing solutions have limitations since
they do not address the dependencies
not caused by mutexes such as signals,
dynamic priorities, or priority inheri-
tance.

Their solution, SWAP, is a simple model
that detects dependencies based on
resource access history and uses a feed-
back loop to improve accuracy. In their
model, which is transparent to users,
everything is treated as a resource (e.g.,
sockets, file locks, and semaphores) and
all requests use system calls, which they
use to see what resources have been
requested. Past resource providers are
predicted as potential current resource
providers. Each provider is assigned a
confidence level based on system feed-
back of how they have performed as a
resource provider in the past.

The SWAP system uses existing sched-
ulers as black boxes. After the existing
scheduler runs, they use the SWAP
scheduler with dependency detection to
determine what was scheduled. Their
system was implemented with a minimal
kernel-level change and by adding
dependency detection to the system call
layer.

In their experiments, they showed how
high-priority tasks would benefit from
SWAP. When system load was low,
SWAP had no effect and did not impose
any system overheads. However, when
system load was high, SWAP performed
much better and increased throughput
compared to that in naive Linux.

In response to Steve Gribble’s question
whether they can catch all dependencies,
Haoqiang said that they found all system
calls on Linux. For more information,
see http://www.ncl.cs.columbia.edu.

CONTRACT-BASED LOAD MANAGEMENT IN
FEDERATED DISTRIBUTED SYSTEMS

Magdalena Balazinska, Hari Balakrish-
nan, and Mike Stonebraker, MIT Com-
puter Science and Artificial Intelligence
Laboratory
Magdalena presented her load manage-
ment system to provide mechanisms for
handling peak system load without over-
provisioning and with wide area distri-
bution of load in such federated systems.
The system tries to achieve the chal-
lenges of having sufficient incentives to
participate, efficiency of mechanisms,
and customization options for partici-
pants. In this system, pair-wise contracts
are negotiated between participants
offline to specify a fixed price per unit of
load. The system goal is an acceptable
(not optimal) allocation of resources:
Participants compute marginal costs for
current loads and compare this to con-
tract prices to determine if it is better to
transfer or keep load. The fixed prices
are chosen around the gradient of the
cost function. Magdalena pointed out
that fixed price constraints can cause
unacceptable allocations, and this can be
rectified by using a small price range,
which allows load to propagate through
a chain of identical contracts. Moreover,
since the price contracts are done
offline, they can be greatly customized,
which enables service discrimination.
The implementation of these mecha-
nisms was presented in Medusa to show
that this approach is simple, feasible,
efficient, and customizable.

When asked how this approach can gain
widespread use, she responded that the
system is user-friendly and that by hav-
ing contracts offline, payments can be
specifically customized to fit the partici-
pant’s needs. Simulations included a
thousand participants, each with only a
few contracts, and they found acceptable
allocations, so Magdalena felt it was a
scalable approach. She also felt that
although oscillations of load were rare,

NSDI ‘04 l

74 Vol. 29, No. 3 ;login:

this technique was designed to deal with
occasional load spikes. For more infor-
mation, see http://nms.csail.mit.edu/
projects/medusa.

DHT APPLICATIONS
Summarized by Magdalena Balazinska,
Chip Killian, and Praveen Yalagandula

HYBRID GLOBAL-LOCAL INDEXING FOR
EFFICIENT PEER-TO-PEER INFORMATION
RETRIEVAL

Chunqiang Tang and Sandhya
Dwarkadas, University of Rochester
This paper works to solve the problem
of full-text search in peer-to-peer net-
works, in contrast to the traditional key-
word search. The approach is to leverage
DHTs to help deal with the information
explosion problem. This is done by cre-
ating inverted lists by keyword and stor-
ing both the inverted lists and the
complete word lists on each node that
the keyword maps to.

By storing the index in this fashion, you
can locate any document by keyword by
searching a single node in the DHT. And
if you are performing a query that deals
with more than a single-word search,
you can still perform the query with just
one computer, because you can use the
word list to complete the query.

To improve upon these results, however,
and to reduce the storage cost, they fur-
ther focused on weighted keywords. In
this fashion, they extracted the top X
keywords from each document, where
added weight is given to keywords that
appear frequently in this document, but
seldom in other documents. Two other
optimizations include rebalancing the
load in the system by mapping a key-
word to a range of hash addresses
instead of a single address, and using
automatic query expansion, which maps
terms to other likely interesting candi-
dates to return additional relevant pages.

Q: David Oppenheimer, UC Berkeley.
New nodes join a system at appropriate
places in the ID space. Why did you

make this assumption? How often do
you assume that nodes are joining?
A: We only assume a computer joins
once.
Q: Matt Welsh, Harvard. Why does your
approach require so much space per
node compared to Google?
A: We replicate word lists, too. Com-
pared to Google, we don’t have to search
every computer.
Q: L., UC Berkeley. What about ranking
query results?
A: We only search for computers respon-
sible for keywords.

UNTANGLING THE WEB FROM DNS
Michael Walfish, Hari Balakrishnan, MIT
Computer Science and Artificial Intelli-
gence Laboratory; Scott Shenker, ICSI
This paper had two fundamental tenets.
First, that we should restructure the Web
such that Web links contain no identi-
fiers as to whom they can be associated
with or where they might be located.
This would then make links stable, and
when they change physical location or
ownership, their URL would not change.
The second tenet for the talk was the
design of an appropriate lookup service
based on the non-identifying IDs.

The first part of the talk argued that
Web links as currently implemented suf-
fer from problems when changing loca-
tions or owners, from the point of view
of technical challenges as well as the idea
of vanity domains. The main conclusion
is that, no matter what the design of
user-friendly-identifiers is, humans will
always fight over them, making these
systems unsuitable for stable URLs.
Instead, by using a flat-space identifier
with an update scheme, these two iden-
tifiers can be completely decoupled. By
doing so, we get: (1) stability, where ref-
erences remain invariant when objects
change; (2) support for object replica-
tion, where one identifier can map to a
list of replicas; and (3) automatic man-
agement of namespace.

The design in the second part of the talk
was rather straightforward. The authors
used a DHT. To allow updates and man-
age changes safely, the authors used self-
certifying records.

Q: Doug, University of Wisconsin. If I
establish a DNS server, it is my responsi-
bility to serve the names. With your
scheme, everyone is responsible to serve
names.
A: We envision a management model for
the infrastructure, but it could be at the
level of the individual doing puts and
gets.
Q: Jonathan, University of Utah. One
way DNS is used is to locally resolve suf-
fixes, and no one knows about these in
the outside world.
A: Details about write locality are in the
paper.

DEMOCRATIZING CONTENT PUBLICATION
WITH CORAL

Michael Freedman, Eric Freudenthal,
and David Mazières, New York Univer-
sity
It is well known that flash crowds bring
down small Web sites. Existing approaches
that deal with flash crowds are too
expensive for these small Web sites (con-
tent distribution networks, load bal-
anced servers, etc.), while client-side
proxying does not provide 100% cover-
age. Instead, CoralCDN proposes to use
volunteers to pool resources and dissi-
pate flash crowds.

CoralCDN is a decentralized, self-organ-
izing, peer-to-peer Web-content distri-
bution network. To use CoralCDN, a
content provider must rewrite its URLs
into “Coralized” URLs (e.g., www.x.com
becomes www.x.com.nyud.net:8090).
This directs unmodified browsers to
Coral, which absorbs load.

To provide such service, CoralCDN has
two key components. First, Coral DNS
servers map clients to nearby Web prox-
ies, by probing clients to determine any
nearby nodes, based on either network

topology hints or proximity measure-
ments. Second, Coral Web proxies
enable clients to retrieve a locally cached
copy of the data or find a nearby neigh-
bor that has the data, without needing to
contact the origin Web server.

To enable the above functionality, Coral
provides the abstraction of a distributed
index built on a key-based routing layer.
Coral nodes organize themselves into a
hierarchy of clusters based on RTT dis-
tances between nodes, so that requests
remain local when possible in order to
minimize latency. Values are stored once
in each level cluster. To always store a
value at the closest node in the identifier
space, however, would cause hotspots.
Instead, Coral introduces a rate-limiting
mechanism, by halting the publishing
(“put”) operation as soon as it finds a
full and loaded node.

More information is available at
http://www.scs.cs.nyu.edu/coral.

Q: Student from UC San Diego. What
would be the motivation for people to
install Coral?
A There are already volunteers that mir-
ror Slashdot. Organizations can benefit
by improving local client latency, reduc-
ing downstream bandwidth usage, and
offering locally trusted proxies to pro-
vide security benefits to their clients.
Q: Steve, University of Washington.
What are possible abuses of Coral?
A: There are several challenges. One is
that nodes could overwhelm each other
with requests. We could employ rate-
limiting mechanisms at the application
layer. Additionally, a node could donate
only upstream bandwidth to prevent
distant clients from replacing their local
cache. Lastly, there are integrity con-
cerns, but we could leverage content-
hashes in URLs that can be verified by
the client’s proxy, which is the incentive
for running local proxies.
Q: Rama, Cornell. What is the latency
you get when a flash crowd occurs?

75June 2004 ;login:

l

 C
O

N
FE

R
EN

C
E

R
EP

O
RT

SA: Please refer to the graph in the paper.
Median latency is approximately 100ms
for a hierarchical system on PlanetLab.

OVERLAY NETWORKS SESSION
Summarized by Suchita Kaundin and
Aydan Yumerefendi

OPERATING SYSTEM SUPPORT FOR PLANE-
TARY SCALE NETWORK SERVICES

Andy Bavier, Scott Karlin, Steve Muir,
Larry Peterson, Tammo Spalink, and
Mike Wawrzoniak, Princeton Univer-
sity; Mic Bowman, Brent Chun, and
Timothy Roscoe, Intel Research; David
Culler, University of California,
Berkeley
Timothy Roscoe described the main
design principles and organization of
PlanetLab – an open, globally distrib-
uted platform for developing, deploying,
and accessing planetary-scale network
services. The challenge behind Planet-
Lab is to build a new distributed system
with the existing technologies, which
should be able to evolve under the
simultaneous development of a large
research community. The main design
goal is to implement a minimal set of
abstractions and interfaces to enable ser-
vice builders to construct powerful
applications, yet protect and isolate
competing and co-existing services.
PlanetLab also supports unbundled
management – independent evolution of
its abstractions from the operating sys-
tem running on each node.

PlanetLab consists of a collection of geo-
graphically distributed physical nodes.
Each node can host a number of virtual
machines (VM) that interface with the
underlying hardware using a common
VM monitor. A set of distributed VMs
forms a slice, which is the basic unit of
resource allocation and isolation; each
service in PlanetLab runs within a slice.
Within each system node, two impor-
tant VMs provide a minimal set of
administrative privileges, the node man-
ager manages and monitors the VMs
running on the node, and the local man-

ager is a privileged VM that allocates
local resources to a VM.

PlanetLab is a work in progress, and
only time will tell which infrastructure
will evolve to give it fuller definition.
The design allows network services to
run in a slice of PlanetLab global resources
with the PlanetLab OS, providing only
local abstractions and as much global
functionality as possible. In the future,
its designers expect to limit the func-
tionality implemented in privileged ser-
vices and allow service builders to
implement as much low-level function-
ality as possible.

MACEDON: METHODOLOGY FOR AUTO-
MATICALLY CREATING, EVALUATING, AND
DESIGNING OVERLAY NETWORKS

Adolfo Rodriguez, Charles Killian,
Sooraj Bhat, and Dejan Kostic, Duke
University; Amin Vahdat, University of
California, San Diego
MACEDON is an infrastructure for
building, deploying, and evaluating
large-scale distributed systems. It auto-
mates a large number of commonly per-
formed routine tasks in the process of
developing and evaluating large-scale
systems. MACEDON is general, and
shows high performance, and its build-
ing blocks can be easily replaced. For
novices, the infrastructure is easy to use,
yet it does not limit experts from cus-
tomizing the system to their specific
needs.

The main idea of MACEDON is to sepa-
rate specification from implementation.
To develop a system using MACEDON,
system developers use a C++-like
domain-specific language to define the
specific algorithm used in their system
and make use of the API exported by
MACEDON to automatically perform
tasks related to failure detection, timers,
transports, bloom filters, etc. MACE-
DON parses the specification and trans-
lates it into executable code that uses
library functions and the MACEDON

NSDI ‘04 l

code engine. The engine and code
libraries are common to all systems and
thereby increase evaluation consistency
and code reuse. The final code can be
either emulated or run live on the Inter-
net.

MACEDON uses a finite state machine
approach to represent the state of each
node in a distributed system. In this
model, events such as message reception,
scheduled completion of timers, and
application commands trigger actions.
Actions include setting local node state,
transmitting new messages, scheduling
timers, and delivering data. In addition,
events may cause the protocol to move
from one system state to another.

MACEDON’s approach has been vali-
dated by implementing a large number
of overlay protocols and comparing
their performance to the official pub-
lished results. Each implementation is
smaller than 600 lines of MACEDON
code and shows performance compara-
ble to its original custom implementa-
tion containing thousands of lines. One
question left unanswered by the current
implementation is about abstraction
fairness, i.e., whether some algorithms
get better treatment than others.

STRUCTURE MANAGEMENT FOR SCALABLE
OVERLAY SERVICE CONSTRUCTION

Kai Shen, University of Rochester
Kai Shen described Saxons, a service-
independent distributed software layer
that dynamically maintains a selected set
of overlay links for a group of nodes.
Saxons is designed to provide efficient
overlay connectivity support that can
assist the construction of large-scale
Internet overlay services. This new soft-
ware layer maintains high-quality over-
lay structures with three performance
objectives: low path latency, low hop-
count distance, and high path band-
width. At the same time, it is scalable,
introduces low overhead, and demon-
strates stable behavior.

76 Vol. 29, No. 3 ;login:

Saxons achieves its design goals by con-
trolling the management overhead
introduced by probing and maintaining
the structure. In this system the per-
node management cost depends only on
the number of attached links, not on the
overlay size. Saxons uses a randomized
membership protocol to avoid main-
taining and exchanging complete mem-
bership information. Randomization is
used to maintain and exchange mem-
bership information as well as to dis-
cover nearby hosts. Each node in the
overlay has a limit on the number of
overlay links it can establish and accept.

To maintain the quality of the structure,
Saxons can make use of three algorithms
that either minimize latency, minimize
latency on half of the links or choose the
remaining half at random, and mini-
mize latency to half and choose the
remaining half at random from nodes
with high bandwidth. To avoid struc-
tural oscillation, Saxons performs link
adjustment only if the new topology
persists for a period longer than a given
threshold.

Saxons was evaluated using simulation
and live PlanetLab deployment. The
simulations and experiments on 55
PlanetLab sites demonstrate Saxons’
structural quality and the performance
of Saxons-based service construction. It
is believed that it is more feasible for
sharing low-level activities such as link
property measurements. Further investi-
gation on this issue is needed.

RELIABILITY SESSION
Summarized by Aydan Yumerefendi
and Suchita Kaundin

SESSION STATE: BEYOND SOFT STATE

Benjamin C. Ling, Emre Kiciman, and
Armando Fox, Stanford University
Session state is an essential part of any
dynamic Web application: It stores
important per client information for the
duration of a client’s session. Benjamin
presented SSM, a system that decouples
the management of session state into a
separate dynamic layer. As a result of its
design, it decreases management over-
head and provides efficient recovery and
load balancing.

SSM makes use of a secondary storage
hashtable. The table consists of a num-
ber of bricks, which store per-client ses-
sion data. Web servers use a client-side
library to communicate with the storage
bricks. Writes in SSM avoid two-phase
commit by selecting a random subset of
bricks to write to and waiting until only
a fraction of them acknowledge the
write. SSM does not make use of an
index to locate data. Instead, the Web
server prepares an HTTP cookie with
information about the location of the
client’s session state and sends it back to
the client. When reading data, the Web
server makes use of this cookie to
request information from the specified
bricks.

SSM tolerates failures gracefully: it pre-
serves the availability of data during fail-
ure and recovery. Brick recovery is
achieved for free by restarting the brick.
Client usage patterns cause data to be
rewritten and ensure sufficient availabil-
ity even in the presence of failures. SSM
makes use of admission control to bal-
ance the load. Failure detection in SSM
is based on Pinpoint, a framework for
detecting likely failures. Pinpoint moni-
tors a set of brick parameters and con-
siders as failed any brick with parameters
that deviate from the statistical averages.

The evaluation of SSM shows that it pre-
serves throughput, improves latency, and
enforces high availability. Benjamin also
mentioned that there has been interest
in SSM from the industry.

PATH-BASED FAILURE AND EVOLUTION
MANAGEMENT

Mike Y. Chen, Dave Patterson, and Eric
Brewer, University of California, Berke-
ley; Anthony Accardi, Tellme; Emre
Kiciman, Armando Fox, Stanford
University
Chen started by emphasizing the impor-
tance of fast recovery and rapid online
evolution. Fast recovery is important in
preserving availability, and rapid online
evolution is necessary for the continu-
ous software updates of large-scale
systems. To facilitate both tasks, Mike
presented an approach that monitors the
path of each request in a system, aggre-
gates information, analyzes the behavior
of individual components, and quickly
detects faulty nodes and recovers them
to a stable state.

The key idea of this approach is to sepa-
rate observation from analysis and use
statistical techniques to achieve its goals.
Each request in the system carries a
unique identifier and a timestamp. The
system records the components that the
request visits, aggregates the different
observations, and tries to draw statistical
conclusions using machine learning
techniques. The C4.5 decision tree learn-
ing algorithm used in the project can
tolerate noisy data and helps reliably
identify problematic components and
system states. It also supports applica-
tion evolution management by tracking
component dependencies.

There are three path-based macro-
analysis implementations of the above
ideas: Pinpoint, ObsLogs (used by
Tellme Networks), and SuperCAL (used
by eBay). They all show good perfor-
mance and help achieve fast recovery
and rapid evolution management. The

77June 2004 ;login:

l

 C
O

N
FE

R
EN

C
E

R
EP

O
RT

Stotal overhead of monitoring and analy-
sis is within 1 to 3% on tests performed
on eBay. The future plans for the project
involve extending its approach to wide
area systems and multiple administrative
domains.

CONSISTENT AND AUTOMATIC REPLICA
REGENERATION

Haifeng Yu, Intel Research Pittsburgh
and Carnegie Mellon University; Amin
Vahdat, University of California, San
Diego
Replication improves availability of
large-scale systems but also presents sig-
nificant management overhead due to
the time and effort spent to preserve the
consistency of a replicated system.
Haifeng Yu presented Om, the first peer-
to-peer wide-area read/write storage sys-
tem that improves the manageability of
large-scale distributed systems through
online automated replica regeneration
while preserving system consistency.
These properties are achieved through
three novel techniques: (1) single-replica
regeneration helps achieve high avail-
ability with a small number of replicas;
(2) failure-free reconfigurations allow
fast reconfiguration within a single
round; and (3) a lease graph and two-
phase write protocol serve to avoid
expensive consensus.

Om uses Pastry, a distributed hashtable,
to construct an overlay network and
route messages. Om stores each data
object on a number of replica nodes.
Reads for an object go to any of the
replicas, while writes involve the whole
replica group. When failures occur, it is
important that all nodes have the same
system configuration. Instead of using
distributed majority quorum to achieve
this goal, Om uses the witness model.
The witness model allows quorums as
small as a single node, by choosing ran-
dom system nodes and using their view
of the system and the intuitive fact that
the different views do not diverge signif-
icantly. Om organizes witnesses into a

matrix, and each replica tries to coordi-
nate with one witness from each row.
The witness model requires at least one
common witness for a replica group to
achieve unique configuration. Multiple
rounds can help address the problem of
non-intersection; the expected number
of such rounds is 3.1.

The evaluation of Om involved LAN
emulation and live PlanetLab deploy-
ment. In all experiments the system
showed high performance and availabil-
ity. Regeneration completes in approxi-
mately 20 seconds, availability can be as
high as 99.9999% with only four repli-
cas, and the probability of incorrect con-
figuration is 0.000001 and is independent
of system size.

STORAGE SYSTEMS SESSION
Summarized by Piyush Shivam and
Ramakrishna Kotla

TOTAL RECALL: SYSTEM SUPPORT FOR
AUTOMATED AVAILABILITY MANAGEMENT

Ranjita Bhagwan, Kiran Tati, Yu-Chung
Cheng, Stefan Savage, and Geoffrey M.
Voelker, University of California, San
Diego
Ranjita began by presenting the defini-
tion of availability and indicating that
redundancy provides availability. She
then outlined two fundamental ques-
tions: (1) How can one quantify the
availability of systems? (2) What is the
exact relationship between redundancy
and availability? Total Recall tries to
address these questions by providing
redundancy management knobs for
automatic maintenance of availability
metrics. This is done using mechanisms
such as availability prediction, redun-
dancy management, and dynamic repair
to meet required availability goals.

Ranjita went on to describe in more
detail what these mechanisms are and
how they interact with each other. Given
the target levels of availability and cur-
rent system availability, a policy module

NSDI ‘04 l

decides whether to use replication or
erasure coding for redundancy and
whether to use eager or lazy repair for
dynamic repair. This information is then
fed to the redundancy management
module, which predicts the degree of
redundancy as a function of the avail-
ability, coding, and repair scheme.
Ranjita then gave an experimental evalu-
ation of the system for which she used a
prototype implementation incorporat-
ing the ideas outlined earlier.

During the discussion, someone asked if
the availability of the master node is
higher than other nodes. Ranjita replied
that availability of all nodes is the same
and if the master fails, another node
takes over as master. Concerns over the
impact of extra redundancy over consis-
tency were raised, and she acknowledged
that as an important issue and men-
tioned it as something for future work.
She was asked why the bandwidth num-
bers in the graph were so high and
replied that it is because of the way the
simulation was done: they are just the
upper bounds; the actual bandwidth is
much less. Finally, she was asked if it
really makes sense to store data on unre-
liable components. She answered yes, it
does make sense by using the mecha-
nisms outlined in the talk. For further
information, please refer to
http://ramp.ucsd.edu/projects/recall/.

TIMELINE: A HIGH PERFORMANCE ARCHIVE
FOR A DISTRIBUTED OBJECT STORE

Chuang-Hue Moh and Barbara Liskov,
MIT Computer Science and Artificial
Intelligence Laboratory
Barbara began by introducing the idea
of a timeline service and what it does.
The key idea is to take on-demand snap-
shots of data at a user-specified time and
run computations on data sometime in
past. This enables time travel for com-
putation. However, their systems allow
read-only computations on the snap-
shots and do not allow modifications to
the state stored in the snapshot.

78 Vol. 29, No. 3 ;login:

This system is built in a client-server
setup using the Thor environment,
which provides support for persistent
object store. The users run computa-
tions at the client machines, and the per-
sistent state resides at the servers.

She described several approaches for
building such a system, with their prob-
lems, and then described the TimeLine
approach, in which each snapshot has a
time which tells what modifications have
been made up to that point. The associa-
tion of time with the modification is
done using the idea of sender time,
receiver time and Lamport’s logical
clocks. Finally, she presented the imple-
mentation of this system, which met the
goals of not disrupting the rest of system
while taking snapshots and of avoiding
penalty for taking snapshots.

In the question-answer session, someone
asked if it is possible to provide read and
write computations on the snapshots.
Barbara replied that it is possible but
one will get many versions of system
state at a given time and the overall sys-
tem will become very complex. The sec-
ond question was whether clients have
to participate in the snapshots, to which
Barbara replied yes, and mentioned that
in general things need to move through
the client. Another question was what
happens to writes in the system when
Thor gets replaced by a general file
server? Barbara replied that the kind of
optimization with respect to writes (e.g.,
delayed writes or write gathering)
depends on the semantics of storage sys-
tem and file system. The current imple-
mentation takes advantages of semantics
provided by Thor.

EXPLICIT CONTROL IN THE BATCH-AWARE
DISTRIBUTED FILE SYSTEM

John Bent, Douglas Thain, Andrea C.
Arpaci-Dusseau, Remzi H. Arpaci-
Dusseau, and Miron Livny, University
of Wisconsin, Madison
John Bent began by motivating the cen-
tral question behind this work – har-
nessing remote storage for batch
workloads. The key questions addressed
in this work are: (1) Do the batch com-
puting workloads offer new challenges
to the distributed computing infrastruc-
ture? (2) Is the current infrastructure
okay for such a need, and, if not, what is
the appropriate architecture? Having
motivated the work, he went on to
describe the batch computing environ-
ment, batch workloads, and the I/O
characteristics of the same. In such envi-
ronments the key challenge is to manage
the flow of data into, within, and out of
the system. The current distributed file
systems are not practical for such appli-
cations, because they make uninformed
decisions about caching, consistency,
and replication. On the other hand, the
Batch-Aware Distributed File System
(BAD-FS) exposes this knowledge and
removes the guesswork. In addition, it is
practical and deployable, because it is
packaged as a generic batch system.

BAD-FS makes intelligent scheduling
decisions by using the remote cluster
knowledge of storage availability and
failure rates, and workload knowledge
regarding data type, data quality, and job
dependencies. John went on to explain
the performance enhancement tech-
niques used by BAD-FS, like I/O scoping
(eliminating unnecessary I/O) and
capacity-aware scheduling, which makes
the system appealing for batch work-
loads. He went on to describe a simpli-
fied implementation of this system and
the scientific workloads that were ana-
lyzed/run under BAD-FS.

In the discussion, someone asked if
BAD-FS is burdening the user to find

out the extra knowledge which the
BAD-FS scheduler uses to make intelli-
gent decisions. John replied that the ulti-
mate goal is to automate this process,
and in fact the BAD-FS architecture
reduces user burden for organizing scat-
tered data. Another question was
whether the intermediate data between
different stages of a job needs to be
maintained, since it is uncommonly an
input to the next stage. John answered
that they have not looked at that, but
there are certain applications that over-
write the output data, and hence it
becomes important to maintain it. For
more information on this work, please
refer to http://www.cs.wisc.edu/adsl.

79June 2004 ;login:

l

 C
O

N
FE

R
EN

C
E

R
EP

O
RT

S

FAST ‘04 l

79

l

 C
O

N
FE

R
EN

C
E

R
EP

O
RT

S3rd USENIX Conference on
File and Storage
Technologies (FAST ‘04)
MARCH 31–APRIL 3, 2004
SAN FRANCISCO, CALIFORNIA

TECHNICAL SESSIONS

RELIABILITY & AVAILABILITY
Summarized by Kiran-Kumar
Muniswamy-Reddy
Best Paper award
ROW-DIAGONAL PARITY FOR DOUBLE DISK

FAILURE CORRECTION

Peter Corbett, Bob English, Atul Goel,
Tomislav Grcanac, Steven Kleiman,
James Leong, and Sunitha Sankar, Net-
work Appliance, Inc.
Peter Corbett described a new algo-
rithm, Row-Diagonal Parity (RDP), for
protection against double failures and
described its application to RAID.

The RDP algorithm uses a simple parity
scheme based on EX-OR operations.
Each data block belongs to one row-par-
ity set and one diagonal parity set. In a
simple RDP array, there are p + 1 disks.
The stripes across the array consist of
one block from each disk. In each stripe,
one block holds diagonal parity, one
block holds row parity, and p – 1 blocks
hold data. Every row parity block has an
even parity of the data blocks in the row,
excluding the diagonal parity block.
Every diagonal parity block has an even
parity of the data and row parity blocks
in the same diagonal. In case of double
disk failure, each diagonal misses one
disk, and there are two diagonal parity
sets that miss only one block. Once we
recover one block, we can recover a
complete row. Using this, we recover
another diagonal, and so on.

In the Q&A session, someone asked why
weren’t triple (or more) failures consid-
ered. The speaker said that double fail-
ures are the more common case and that
this could be extended for triple failures.

Another asked whether the algorithm
could really be added to an existing
RAID, as the paper claims. The speaker
replied that it could be added to an
existing RAID.

IMPROVING STORAGE SYSTEM AVAILABILITY
WITH D-GRAID
Muthian Sivathanu, Vijayan Prab-
hakaran, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau,
University of Wisconsin, Madison
This paper won one of the two Best Stu-
dent Paper award.

The talk was given by the primary
author, Muthian Sivathanu. Normal
RAID works on a simple failure model.
The basic premise of this work is that if
D or fewer disks fail, RAID or D-GRAID
continues to operate with some de-
graded performance. The disk array
becomes completely unavailable once
more than D disks fail. D-GRAID de-
grades gracefully and also recovers
quickly in the event of a disk failure.

For graceful degradation, D-GRAID
uses two techniques: selective metadata
replication and fault-isolated data place-
ment. In selective metadata replication,
the naming and system metadata struc-
tures of the file system are highly repli-
cated. Thus, failures of a few disks do
not render the entire array unavailable.
In fault-isolated data placement, seman-
tically related blocks are placed within
the array’s unit of fault-containment.
For example, all the blocks of a file are
placed within a disk. This way, semanti-
cally meaningful data units are available
under failure. Since fault-isolated data
placement reduces the parallelism inher-
ent in RAID, they make copies of blocks
of “hot” files across the drives of the sys-
tem.

FAST ‘04 l

This issue reports on the First Sympo-
sium on Networked Systems Design
and Implementation (NSDI ‘04) and on
the 3rd USENIX Conference on File and
Storage Technologies (FAST ’04).

For NSDI ‘04: Our thanks to Amin
Vadhat, who shepherded the following
summarizers:

Magdalena Balazinska
Laura Grit

Vinay M. Igure
Suchita Kaundin

Chip Killian
Ramakrishna Kotla

Xun Luo
Vinay Mallikarjun

Piyush Shivam
Chunqiang Tang

Praveen Yalagandula
Aydan Yumerefendi

For FAST ‘04: Thanks to Ismail Ari and
his summarizers:

Michael Abd-el-Malek
Nitin Agrawal

Akshat Aranya
Dean Hildebrand

Andrew Klosterman
Xun Luo

Kiran-Kumar Muniswamy-Reddy
Steve Schlosser

Shafeeq Sinnamohideen
Deepa Tuteja

Wenguang Wang
Lan Xue

Aydan Yumerefendi

Note: The reports on BSDCon ‘03, held
in San Mateo, California, September
8–12, 2003, can be found at
http://www.usenix.org/events/
bsdcon03/confrpts.pdf

MEASUREMENT, MODELING,
AND MANAGEMENT
POLUS: GROWING STORAGE QOS MANAGE-
MENT BEYOND A “FOUR-YEAR-OLD KID”
Sandeep Uttamchandani, Kaladhar
Voruganti, John Palmer, and David
Pease, IBM Almaden Research Center;
Sudarshan Srinivasan, University of
Illinios at Urbana-Champaign
Summarized by Nitin Agrawal
Sandeep Uttamchandani described the
Polus framework, which addresses the
QoS goal transformation problem in the
context of policy-based storage manage-
ment.

In spite of prior research and standardi-
zation, the problem of mapping high-
level QoS goals to low-level storage
device actions still yields complex and
error-prone processes. Polus generates
this mapping by using a combination of
rule-of-thumb specifications, a reason-
ing engine, and a learning engine. Cur-
rently, policies are specified as a col-
lection of rules in <event, condition,
action> format, and the management
module simply invokes the appropriate
rule. The problems with this approach
are complexity (the level of detail
required in generating the rules) and
brittleness with respect to changing sys-
tem configurations and workloads.

Polus performs the balancing act by
requiring only high-level specifications
from the administrator and using
machine learning and pre-packaged pro-
cedures for the rest. The paradigm
essentially consists of three parts: taking
input from toolkit user, quantifying the
relations using learning functions, and
base strategies.

The work illustrates how Polus can pro-
vide storage management guidance to a
simulated Storage Area Network file sys-
tem. A quantitative comparison of Polus
with rule-based systems is done for dif-
ferent system states. A future direction

80 Vol. 29, No. 3 ;login:

of work is to handle incomplete and
even incorrect specifications.

During the Q&A, someone pointed out
that the decision of when to perform
prefetching, which was described as a
candidate for a Polus-based learning
framework, would be good only if it is
taken quickly. Sandeep’s response was
that they used the prefetching example
only as an illustration. Managing a real
system using the Polus paradigm is cur-
rently under implementation. In sum-
mary, the paper proposes Polus as a
conceptual stepping stone in the direc-
tion of “non-rule”-based approaches for
automated system management.

In normal RAID, recovery is slow, as all
the blocks in a disk must be recovered.
D-GRAID makes recovery fast by recov-
ering only the “live” file system data, i.e.,
data that is currently in use by processes.

BUTTRESS: A TOOLKIT FOR FLEXIBLE AND
HIGH FIDELITY I/O BENCHMARKING

Eric Anderson, Mahesh Kallahalla,
Mustafa Uysal, and Ram Swaminathan,
Hewlett-Packard Laboratories
Summarized by Steve Schlosser
Mustafa Uysal presented Buttress, a flex-
ible, highly accurate I/O generation tool.
Buttress can be configured both as a
synthetic workload generator and as a
trace replayer. Reproducing very heavy
I/O workloads with high fidelity
requires a great deal of care, especially to
correctly handle bursts of traffic, which
exist in many workloads. The authors
contend that getting this right requires
I/Os to be issued within 100 microsec-
onds of their intended arrival time.
Another goal of Buttress is to be as
portable as possible and not to require
modifications to the host operating sys-
tem. With this goal in mind, Buttress is
implemented as a user-level program,
working with standard pthreads on both
Linux and HP-UX. It requires a multi-
processor machine to produce the

desired I/O loads of up to 100,000 I/Os
per second.

In order to generate a workload with
very high fidelity, Buttress has to deal
with many issues. First, Buttress has to
minimize latency to shared data struc-
tures by reducing contention at high
load. It does this by minimizing the
number of lock operations, minimizing
critical section time, and using bypass
locking. Second, Buttress must minimize
the impact of unpredictable OS behavior
owing to unpredictable system-call
latencies and preemption due to inter-
rupts. It must deal with multiprocessor
clock skew by recalibrating the clock
when a thread switches CPUs. To handle
timing variations on thread wakeup,
threads are allowed to pre-spin before
they are to issue events. Lastly, it uses a
single low-priority spinning thread to
keep track of time.

To evaluate Buttress, they compared its
performance to two simple trace replay
methods. The first uses existing OS
syscalls like Select and Sleep to handle
timing, and the second uses a dedicated
thread to spin and keep track of time.
Using a range of workload traces, they
showed that Buttress issues the majority
of requests within 100 microseconds of
their intended issue time and handles
bursts better than the simple schemes.

One questioner in the Q&A session
wondered if Buttress verified data that
was written to the disks using check-
sums. Mustafa answered that in this
methodology the data that is actually
stored is not important, just the I/O
requests themselves, and that Buttress
does not write any real data to the disks.
Another asked whether there is value in
extending Buttress to operate at the file
system level rather than the block level.
Another asked if using realtime exten-
sions to Linux or HP-UX would help the
simple replay methods that just use sys-
tem calls. Mustafa said they tried that

with realtime HP-UX but that the results
still weren’t as good as with Buttress.
Another asked about the intuition
behind why such accuracy is necessary.
Mustafa said there were two factors:
naive approaches end up issuing I/Os
out of order, and handling bursts cor-
rectly requires higher accuracy than one
would think.

DESIGNING FOR DISASTERS

Kimberley Keeton, Cipriano Santos,
Dirk Beyer, Jeffery Chase, and John
Wilkes, Hewlett-Packard Laboratories
Summarized by Steve Schlosser
Keeton presented a solver to automati-
cally design basic dependability solu-
tions for large storage systems based on
a customer’s workload, recovery require-
ments, and the penalties of outages in
terms of dollars lost. Using these param-
eters, and a few assumptions about the
types of recovery mechanisms that are
available, the system formulates a mixed
integer program and uses an existing
solver, CPLEX, to find a solution.

The system uses simple models of the
available hardware (i.e., hosts, storage
area networks, and disk arrays) and of
the available data protection mecha-
nisms (i.e., remote mirroring, tape
backup). Remote mirrors can use syn-
chronous or asynchronous updates, with
or without batching. Tape backup solu-
tions can be kept locally or off-site. A
system can use the secondary copy either
for failover or to reconstruct the pri-
mary copy. Lastly, the secondary copy
can be kept hot or unconfigured, and
can be dedicated or shared.

Given all of these alternative configura-
tions and the customer’s requirements,
the goal of the system is to find the best
configuration to meet the customer’s
needs.

The key is to express the user’s depend-
ability requirements in terms of mone-
tary penalties (dollars per hour). First is

81June 2004 ;login:

l

 C
O

N
FE

R
EN

C
E

R
EP

O
RT

Sthe data-outage penalty rate, which is
the penalty until the system comes back
up. Second is the data-loss penalty rate,
which is how much recently written data
is lost when the system goes down.
Given these penalties and the customer’s
workload requirements, the system can
find the optimal solution.

They evaluated the system using the
Cello 2002 file system trace from HP
Labs, looking at the average bandwidth
multiplier for bursts of activity and at
the batch update rate. They used a num-
ber of different scenarios ranging from a
university IT department backing up
student directories to a large financial
institution with regulatory requirements
for backup and availability. These sce-
narios ranged from cases in which data
loss was not so important to those for
which data loss would be a business
catastrophe. The examples illustrated the
choices of dependability solutions that
were appropriate for those scenarios.

During Q&A, a questioner wanted to
know if the models took into account
the solution’s performance requirements
as well as dependability requirements.
Keeton said that they only consider
update rates as an element of the solver,
but that other issues of performance are
an area of future work. She also men-
tioned that outlay costs are annualized
and depreciated over three years with
one failure per year. Another questioner
mentioned that financial penalty is not
linear and should be asymptotic. Keeton
agreed that this is an important exten-
sion to this work. The last questioner
asked if this method can be used to
extend existing systems. Keeton said, yes,
the system can do this.

KEYNOTE ADDRESS
SCALING FILE SERVICE UP AND OUT

Garth Gibson, Panasas, Inc., and
Carnegie Mellon University
Summarized by Dean Hildebrand
Garth Gibson discussed the need for
improvements in file access and several
current methods for doing so. He
believes that quality expectation drives
technology, with the highest level of
quality being demanded by the Tri-labs
and the oil and gas industry, requiring
throughput of 1GB/s and 1.2GB/s,
respectively. For technology to improve
and breach the chasm, the need for such
performance must be demanded by the
masses. This includes the need for both
file and file aggregate bandwidth
improvements.

Current improvements started with the
evolution from monolithic supercom-
puters to Linux clusters, giving a cost
improvement from $100 million/Tflop
to $1 million/Tflop. Garth then dis-
cussed several phases of file access
improvements that have occurred since
this development:

n Scaling up the NAS File Server
To eliminate the single file-server
bottleneck, the file system is parti-
tioned among several file servers.
Limitations: Cannot increase the
aggregate throughput of a single
file/directory.

n Partitioning is a manual process
and quickly becomes non-optimal.
Backup consistency issues.

n Scaling out phase 1: client data
cache. Exploits client data cache,
i.e., NFSv4 delegations. Limitations:
Workloads can exceed client cache
size.

n Scaling out phase 2: forwarding
servers. Binds many file servers into
a single system image. Forwards
requests from accessed file server to
the data’s home file server. File sys-
tem still partitioned, with each file

FAST ‘04 l

server providing global data access.
Limitations: Data not directly con-
nected to accessed file server must
travel through two file servers.

n Scaling out phase 3: any server will
do. All file servers have access to all
storage (not indirectly through
another file server). Limitations:
Throughput for a single file is not
increased.

n Scaling out pPhase 4a: asymmetric
out-of-band. Clients obtain file lay-
out map from a metadata server
and access storage devices directly.
Limited by network instead of CPU.
Examples: SanFS, EMC High Road,
SGI CXFS, Panasas, etc.

n Scaling out phase 4b: symmetric
out-of-band. Client cluster is file
server. Examples: RedHat GFS, IBM
GPFS, Sun QFS, etc.

The description of file service scaling
improvements concluded with a state-
ment that Phase 4 is the most advanced
architecture currently available. Panasas
has combined the architecture of Phase
4a with object-based storage, an evolu-
tionary improvement to standard SCSI.
Each object is a container of related
data, offloading most data path work
from server to an intelligent device.
Garth explained that the features of
object storage he likes the most are
metadata encapsulation, extensible
attributes, security at device through
digital signatures, and a smaller file lay-
out map allowing more caching while
providing performance and scalability
for a variety of workloads.

Garth concluded with a statement that
the most important aspect in improving
throughput is utilizing out-of-band file
access. Therefore, a pNFS (Parallel NFS)
initiative has started to provide a single
standard framework for data access,
whether it is based upon blocks, objects,
or files. This effort will continue to
reduce file access cost by sharing client
support among all vendors, enabling the

82 Vol. 29, No. 3 ;login:

file service to scale up and out for use by
the general population.

GRABBAG
DIAMOND: A STORAGE ARCHITECTURE FOR
EARLY DISCARD IN INTERACTIVE SEARCH

Larry Huston, Rajiv Wickremesinghe,
Intel Research Pittsburgh; Rahul Suk-
thankar, M. Satyanarayanan, Gregory
R. Ganger, and Anastassia Ailamaki,
Carnegie Mellon University; Erik Riedel,
Seagate Research
Summarized by Aydan Yumerefendi
Larry Huston presented Diamond, an
attempt to provide efficient searches
over large volumes of data. The key
insight behind the system is to move
some of the search functionality to the
storage servers and to discard irrelevant
data as soon as possible. By distributing
the search over a number of servers,
Diamond speeds up query execution. It
also limits the network traffic by sending
only relevant data.

Diamond uses Active Storage to execute
client-specified queries wrapped in
“searchlets.” Each searchlet consists of
configuration code and a number of
predicate filters, which are applied in
sequence and determine the useful data.
The system also dynamically manages
the load among the storage servers and
the client machine by using two differ-
ent algorithms: CPU partitioning dele-
gates work based on the CPU power of
each machine, and queue backpressure
considers each system stage as a queue
and maintains a certain load on each
stage.

The implementation of Diamond runs
on RedHat Linux 9. Tests of the system
use SnapFind, a custom application for
performing searches in digital images.
The evaluation results show that Dia-
mond performs well and correctly bal-
ances the load among all participants.
An audience member pointed out that
searchlets do not maintain state and, as a
result, they limit the system expressive-

ness. Larry answered the question by
saying that lack of state allows for better
load distribution, yet gives the system
enough expressive power.

More information about this project can
be found at http://info.pittsburgh.
intel-research.net/project/diamond/.

MEMS-BASED STORAGE DEVICES AND
STANDARD DISK INTERFACES: A SQUARE PEG
IN A ROUND HOLE?
Steven W. Schlosser and Gregory R.
Ganger, Carnegie Mellon University
Summarized by Andrew Klosterman
Steven Schlosser introduced a novel
storage device, the MEMStore, a mag-
netic storage device that uses X- and Y-
axis motion to access desired data. He
explained how the settling time of the
seeks is dependent on the maximum of
settle time in both the X- and Y-axis,
and that the X-axis settling time domi-
nates.

In evaluating this new storage technol-
ogy, Mr. Schlosser compared the inter-
face of current storage technologies
(logical block addressing) with various
alternatives for the MEMStore that
might exploit its unique characteristics.
He examined roles (uses of MEMStores
in systems) and policies (ways to change
systems to specifically use MEMStores).
Two tests were used to evaluate the fit-
ness of MEMStores for a given role or
policy: a specificity test and a merit test.
The specificity test evaluated the fitness
of a MEMStore for a particular role or
policy. The merit test evaluated whether
a change in the abstraction for use of the
storage device was warranted.

After presenting some results of tests
from his paper, Mr. Schlosser concluded
by mentioning that MEMStores can be
used as fast disks in systems with pro-
grammers using the familiar LBN
addressing scheme.

During the Q&A session, Dan Ellard of
Harvard asked whether or not the

“busiest disk” from the EMC trace saw
the most I/Os or had the worst seeks,
because (Dan claimed) sometimes lots
of small I/Os tend to be sequential. Mr.
Schlosser did not have an answer to the
question, but posited that by replacing
that disk with a MEMStore, the trace
replay improved, thus validating the use
of MEMStores in that role. Another
question was raised as to the actual
performance of the MEMStore research
prototypes, but Mr. Schlosser had to
inform the audience that no instances of
the device he modeled yet exist as fully
implemented storage systems.

Additional information may be obtained
from http://www.pdl.cmu.edu/MEMS.

A PERFORMANCE COMPARISON OF NFS AND
ISCSI FOR IP-NETWORKED STORAGE

Peter Radkov, Prashant Shenoy, Univer-
sity of Massachusetts; Li Yin, University
of California, Berkeley; Pawan Goyal
and Prasenjit Sarkar, IBM Almaden
Research Center
Summarized by Wenguang Wang and
Lan Xue
This paper turned out to be the most
controversial paper of the conference.
Prasenjit Sarkar presented a perfor-
mance comparison of two IP-networked
storage protocols that allow remote data
access. The basic idea is to measure how
performance differs when clients access
remote data via file system versus IP-
based storage area networking (SAN).
NFS and iSCSI were used as specific
instantiations of file- and block-level
access protocols in this experiment.

Using combinations of micro- and
macro-benchmarks, this paper provides
a thorough comparison between NFS
versions 2, 3, and 4 and iSCSI. Individ-
ual file and directory operations and
overall application performance are
measured, with both data-intensive
workloads and metadata-intensive
workloads, under various scenarios.
Also, a decent amount of work has been

83June 2004 ;login:

l

 C
O

N
FE

R
EN

C
E

R
EP

O
RT

Sdone to identify the bottleneck of NFS
protocol by capturing and analyzing the
network message overhead.

The experiment results show that for a
single-client environment, NFS and
iSCSI have under comparable perfor-
mance data-intensive workloads, while
iSCSI outperforms NFS by a factor of
two for metadata-intensive workloads.
This work also identifies lack of meta-
data caching and update aggregation as
the two major reasons for NFS degrada-
tion.

However, the fairness of the perfor-
mance comparison between NFS and
iSCSI was questioned. The major con-
cerns and comments raised by the audi-
ence can be summarized as follows: It’s
not an apple-to-apple comparison
because block-level protocol accesses
data directly from storage, which is
straightforward and bypasses file system
layers overhead, while NFS provides
more complex functionality which
incurs extra overhead as a consequence.
In addition, NFS is being improved and
optimized, and the performance of the
NFS prototype can differ greatly from an
optimized implementation of NFS.
Thus, it’s still a question whether the
results and conclusions of this experi-
ment can be generalized to every NFS
implementation.

OPTIMIZING BLOCK ACCESS
A VERSATILE AND USER-ORIENTED
VERSIONING FILE SYSTEM

Kiran-Kumar Muniswamy-Reddy,
Charles P. Wright, Andrew Himmer, and
Erez Zadok, Stony Brook University
Summarized by Michael Abd-el-Malek
Kiran-Kumar Muniswamy-Reddy
described Versionfs, a versioning file sys-
tem that differs from earlier versioning
file systems such as Elephant and CVFS
in that existing applications do not have
to be modified in order to access previ-
ous versions. Additionally, multiple ver-

sioning policies provide flexibility, and
current-version access is optimized.

Whole-file versioning is used, as
opposed to block-level versioning, as
that is viewed as more user-friendly. Ver-
sions are created on close, mmap, or
metadata operations (e.g., chmod). Two
types of per-file versioning policies are
provided: retention (how many versions
to keep – number, total space) and stor-
age (how to store versions – full, com-
press, or sparse). Copy-on-change is
used, which is different from copy-on-
write because the new data is compared
to the old data and a version is created
only if they are different. Existing
(unmodified) applications can work
with versioned files using a preloaded
library that overrides the various file sys-
tem syscalls.

Using the Am-utils benchmarks, the
authors show little (1–4%) time over-
head when using their versioning file
system. Approximately 20% more stor-
age is required for the old versions.
However, the Postmark benchmark runs
two times slower.

Q: Wenguang Wang. Each directory has
more files than before. What’s the
performance penalty?
A: In a directory with many small files
(such as Postmark), we found a differ-
ence in chopping down the directory in
system time. It depends on the lower-
level file system, but, yes, we did find a
difference.
Q: Ed Gould. Hard links were not ver-
sioned, why? If I have two symbolic links
to a file, will operations on each of these
symbolic links create a different version?
A: Yes.
Q: Daniel Ellard. You used open/close to
create new versions. What about NFSv3
that does not have open/close? Alterna-
tively, if you have more than one thread,
how do you create different files?
A: Haven’t done this yet; it’s a direction
for future work.

FAST ‘04 l

Q: When two processes with different
files are open at the same time, how
many versions are created?
A: One on every close; we keep a counter
every time a file is opened.
Q: Brent Calaghan. Insertion/deletion of
data into the middle of files, how does
that work with sparse data mode, where
all following blocks are “pushed down”
and sparse mode won’t be as useful?
A: Yes, that is an issue. There is no way
for us to tell if data is pushed down.

Q: Val Henson. Did you have LD_PRE-
LOAD set to anything else before you
started this project? Because this is not
transparent to the user, since they have
to set LD_PRELOAD.
A: Yes that’s true, the user has to do this.

TRACEFS: A FILE SYSTEM TO TRACE THEM
ALL

Akshat Aranya, Charles P. Wright, and
Erez Zadok, Stony Brook University
Summarized by Deepa Tuteja
Akshat Aranya described the details of
Tracefs, a stackable and portable file sys-
tem developed for capturing file system
traces. The motivation of this work is to
evaluate file system performance and
help in its development. Security appli-
cations, such as monitoring activities,
can also be built based on this work.
The background study or related work
quoted is in the BSD, Sprite, and
Roselli’s FS tracing studies. The work is
based on the design goals of flexibility,
performance, convenience, security, pri-
vacy, and portability.

Architecture of the system is such that
the Tracefs (consisting of a number of
tracers) sits in between the VFS layer
and the file system to be traced. The
main components of the tracer are input
filters, assembly drivers, output filters,
and output drivers. The input filters
determine what to trace based on the
user input. The job of the assembly driv-
ers is to convert the traced operations
and its parameters into a traced stream

84 Vol. 29, No. 3 ;login:

format. The output filters perform a
series of transformations like encryp-
tion/compression. The output is written
to a stable storage by the output drivers.
The stable storage can be a file or a
socket and can be specified by the user.
The traces generated are in binary for-
mat, which helps in saving space and in
parsing.

Anonymization is required to deal with
the concerns of security and privacy. But
at the same time, some correlation is
required for the traces. Here symmetric
key encryption methodology is used for
anonymization.

Evaluation of the system was done on
different sets of input and output filters.
The configuration of input filters used
were:

n full – to trace all file system opera-
tions

n medium – tracing only 40–50% of
the operations

n light – tracing approx. 10% of the
operations

The various output filters used were
none, compression, checksum, encryp-
tion, and all.

The Am-utils and the Postmark bench-
marks, respectively CPU-intensive and
I/O-intensive, were used to test the sys-
tem. The system did not show much
variation for the elapsed time when
using different output filters on the Am-
utils benchmark. For the Postmark
benchmark, there is an overhead over
ext3 for elapsed time and the system
time.

Using compression filters reduces the
size of the traces. The compression ratio
achieved is in the range of 8–21. Post-
mark generates traces 2.5 times faster
than Am-utils, which explains the differ-
ence in overheads. Also, the file size
increases because of the encryption
padding required for anonymization.

To conclude, Tracefs gives a systematic
approach to tracing and is a general
solution that can be applied to various
situations. It can be configured and is
extensible in the sense that any output
or assembly filters can be used with it. It
is mainly helpful in file system develop-
ment and security applications.

Additional information is available at
http://www.fsl.cs.sunysb.edu.

HYLOG: A HIGH-PERFORMANCE APPROACH
TO MANAGING DISK LAYOUT

Wenguang Wang, Yanping Zhao, and
Rick Bunt, University of Saskatchewan
Summarized by Shafeeq
Sinnamohideen
The objective of this work is to improve
disk I/O performance for servers with
multiple concurrent users. Most reads
are absorbed by in-memory buffer
caches, so writes dominate the disk
workload. Write performance is deter-
mined by disk performance (seek time
and bandwidth), strategy (overwrite or
log-structuring), and scheduling. Over-
write overwrites a block’s previous con-
tents with its new contents, possibly
requiring a seek from the last write. LFS
(Log-structured File System) aggregates
small writes together and writes them in
one log segment, making use of the
disk’s sequential write bandwidth. LFS,
however, was generally believed to per-
form poorly for random update work-
loads because of the overhead of
cleaning partially used segments (those
with data that has been superseded by
more recent writes). The authors
observe that advances in disk technol-
ogy, particularly the increasing ratio of
sequential bandwidth to positioning
time, lead LFS to outperform Overwrite
on modern disks, except when disk
space utilization is high.

To overcome this, the authors propose
HyLog, a hybrid scheme that offers the
benefits of both LFS and Overwrite.
They observe that most writes go to a

small number of hot pages, while most
of the overhead in LFS comes from
cleaning cold pages. Thus, HyLog sepa-
rates the disk into an LFS portion for
hot data and an overwrite portion for
cold data and directs writes to the
appropriate section based on the
observed write frequency. On standard
benchmarks, such as TPC-C, HyLog
picks nearly the optimal hot page per-
centage, and thus performs similarly to
the best of both LFS (at low utilization)
and Overwrite (at high utilization)

Bill Morris from Sun asked why a ran-
dom write, sequential read workload
was not evaluated. The response was
that it is not common, but represents a
worst case.

OPTIMIZING BLOCK ACCESS
ATROPOS: A DISK ARRAY VOLUME
MANAGER FOR ORCHESTRATED USE OF DISKS

Jiri Schindler, Steven W. Schlosser, Min-
glong Shao, Anastassia Ailamaki, and
Gregory R. Ganger, Carnegie Mellon
University
Summarized by Andrew Klosterman
Jiri Schindler presented a means for
extending the logical volume abstraction
of disk arrays to accommodate efficient
access to two-dimensional data struc-
tures. Through an example, he showed
how traditional data layouts lead to effi-
cient (streaming sequential) access in
only one dimension. With a modifica-
tion to the data layout, using what he
called “quadrangles,” more efficient
access can be obtained. With quadran-
gles, column-major access can be per-
formed on entire disk tracks at one time
and row-major access is semi-sequential
by exploiting disk head, or track, switch
times as the disk spins (eliminating rota-
tional latency).

Graphical examples of the quadrangle
data layout scheme were presented,
along with a graph showing the
increased efficiency for accessing two-

85June 2004 ;login:

l

 C
O

N
FE

R
EN

C
E

R
EP

O
RT

Sdimensional data with quadrangles.
Experiments showed the performance
gains resulting from the more efficient
data layout on TPC trace replays. Mr.
Schindler concluded by pointing out
that by exploiting the physical character-
istics of disks and maintaining the LBN
programming model, efficient access to
two-dimensional data structures was
possible.

During the Q&A session, Wenguang
Wang of the University of Saskatchewan
asked whether switching disk heads
instead of disk tracks would improve
accesses with quadrangles. Mr.
Schindler’s response was that the use of
head switches or track switches
depended on the manner in which the
disk sequenced its logical block num-
bers. Val Henson of Sun Microsystems,
asked how the disk and array parameters
could be extracted such that quadrangles
could be exploited. Mr. Schindler indi-
cated that experimental extraction (e.g.,
at format time) suffices to obtain the
necessary information.

Additional information may be obtained
from http://www.pdl.cmu.edu, the Paral-
lel Data Laboratory at Carnegie Mellon
University.

C-MINER: MINING BLOCK CORRELATIONS IN

STORAGE SYSTEMS

Zhenmin Li, Zhifeng Chen, Sudarshan
M. Srinivasan, and Yuanyuan Zhou,
University of Illinois at Urbana-
Champaign
Summarized by Deepa Tuteja
Zhenmin Li described the use of block
correlations for improving the effective-
ness of storage systems. There have been
previous approaches for exploiting file
correlations, but these did not scale well
enough to be used for block correla-
tions.
There are three possible approaches to
obtaining block correlations: the white
box approach, used by NASD, the gray
box approach, used by SDS, and the

black box approach, used by probability
graphs and C-Miner. The probability-
graph approach works well for finding
file correlations, but cannot be effec-
tively used for block correlations due to
a scalability problem and multi-block
correlation problem. C-Miner gives a
practical black box approach that uses
data mining techniques. It is based on
the “frequent sequence mining” algo-
rithm called CloSpan. The main obser-
vation is that the correlated blocks are
accessed together in a short period of
time. The frequency sub-sequences are a
good indication of block correlations.

For an evaluation of the system, a com-
parison was done among the following
approaches: no prefetching, sequence
prefetching, correlation-directed
prefetching (CDP), and CDP with disk
layout. CDP decreases the miss ratio by
24% and reduces average response time
by 25%. Another test done to determine
the stability of block correlations shows
that they are very stable and effective for
a long time. There are, however, reason-
able time and space overheads associated
with it due to data mining.

C-Miner can improve the performance
of a storage system and involves reason-
able overheads. It can also be used to
solve other problems such as network
traffic monitoring and intrusion detec-
tion.

Additional information is available at
http://carmen.cs.uiuc.edu.

WORK-IN-PROGRESS REPORTS
Summarized by Andrew Klosterman

SELF-*
Andrew Klosterman, Carnegie Mellon
University
The Self-* project is building a brick-
based distributed-object store from the
ground up with management in mind.
Current figures place storage adminis-
trative load at about one administrator
per 5–10 TB. This figure makes manage-

FAST ‘04 l

ment a large part of storage total cost of
ownership.

The system is built around a human
organizational analogy, with individual
storage bricks being self-optimizing
“workers,” while a hierarchy of “supervi-
sors” decide how to spread data and
work across the worker nodes. In the
process of building the system, the team
plans to get real management experience
in order to more effectively target the
problem. More information:
http://www.pdl.cmu.edu/SelfStar.

SPENSA: AN ADAPTIVE DISTRIBUTED FILE
SYSTEM

Douglas Santry, University of Cam-
bridge
The Spensa system is a brick-based clus-
ter system in which all bricks are peers.
Each brick in the system will run the
Xen hyper-visor, to allow bricks to both
store data and do processing. The cluster
will thus be able to run databases, genetic
searches, Web servers, etc., in virtual
machines inside the cluster.

The Xen hyper-visor allows live migra-
tion of virtual machines, which permits
a variety of optimization decisions. For
example, migration can be used to load-
balance or to bring data close to the cor-
responding computation. In addition,
they envision that the system will be able
to snapshot virtual machines, allowing
the system to restart a previous snapshot
if a virtual machine crashes.

MRAMFS: A FILE SYSTEM FOR NON-
VOLATILE RAM USING INODE COMPRESSION

Nate Edel, University of California,
Santa Cruz
Magnetic RAM (or MRAM) is a new
type of non-volatile RAM. The project
studies ways to include MRAM in file
systems. Because MRAM is very expen-
sive compared to disk space, they use
compression to conserve space usage.
The system puts small files in MRAM in
order to improve performance. They

86 Vol. 29, No. 3 ;login:

compress inode data using Gamma
compression and file data on a block-by-
block basis. Gamma compression takes a
128-byte inode down to around 15–20
bytes.

They have a prototype implementation
that only compresses inode data, but will
eventually implement data compression
as well. Evaluation shows that the cur-
rent prototype performs comparably to
ext2 running in a RAM disk. This work
is the starting research for another proj-
ect called the Linking File System.

AVFS: AN ON-ACCESS ANTI-VIRUS FILE
SYSTEM

Charles Wright, Stony Brook University
AVFS is a virus-scanning file system,
which uses a stackable file system
approach to layer virus checking onto an
existing file system. Most current virus
scanners operate on points such as close
or exec. AVFS scans for virus signatures
on every read and write.

The system operates in two modes. In
immediate mode, when a virus is writ-
ten the block is discarded; when it is
read the file is quarantined. However,
this allows a virus to evade detection by
writing itself in several different ses-
sions. To address this problem the sys-
tem also has a forensic mode, in which it
versions files on the first writes, and
does not return an error until a virus
signature is detected in the file. The sys-
tem uses a variant of the ClamAV OSS
scanner, which uses automation for pat-
tern finding. However, ClamAV is slow
in the number of patterns that are searched.
Thus, the AVFS team modified ClamAV
into Oyster, which is faster than the
original scanner.

LIMITING LIABILITY IN A FEDERALLY
COMPLIANT FILE SYSTEM

Zachary Peterson, Johns Hopkins
University
Congress has enacted a variety of data
maintenance acts and regulations to

enhance corporate accountability. Most
of these acts require that storage keep an
audit trail by keeping versions of data.
However, companies want to limit their
liability within compliance to these acts.

This work focuses on how to securely
delete data in a file system that keeps
such an audit trail. Current secure dele-
tion technology either requires multiple
overwrites to remove magnetic signa-
tures, or keeping data encrypted and
securely deleting the key. Both of these
techniques are difficult to perform in a
versioning file system.

This work proposes keeping data
encrypted using a small (128-bit) key
kept in the file inode. This allows the
user to securely delete the file by
securely deleting this key. The current
progress in the project is a modified ext3
file system that performs versioning (but
does not implement this secure deletion
technology). The versioning ext3 file
system can be found at http://www.
ext3cow.com.

MODELING STATEFUL NETWORK FILE SYSTEM
PROTOCOLS USING HIDDEN MARKOV
MODELS

R.J. Honicky, UC Berkeley and Network
Appliance
One difficulty in building synthetic file
system workloads is that operation
orders is very important. For example,
read and write operations to a file must
be performed after an open to that file.

This work proposes the use of hidden
Markov models (HMMs) to model file
system workloads. HMMs have been
used extensively in fields such as speech
recognition. The group uses a vanilla
HMM learning algorithm to generate an
HMM for a trace, along with some
methods to try to avoid local minima.

They have performed some initial work
at validating the results. The operation
counts, and the operation pairing
counts, are similar to the original trace,

and hand inspection seems to show the
traces to be similar.

FILEBENCH

Patrick McDougall, Sun Microsystems
The team asserts that file system bench-
marks are used mainly in two ways.
They are used by vendors to classify and
characterize products, and they are used
by designers to set design goals. For both
of these tasks the benchmarks must rep-
resent applications and not simply I/O.

For example, in cases the group has
encountered, a database ran much more
slowly than corresponding benchmarks
would have suggested. They determined
that it was due to slow performance in a
logging thread, which gated the perfor-
mance of the whole system. None of the
existing benchmarks revealed this criti-
cal dependency.

They are working on a new file system
benchmark that incorporates a variety of
improvements. For example, they hope
to make it modular, to include file sys-
tem aging, to make it scalable by
throughput, users, data set, and clients.

There are a variety of techniques for
benchmarks, each with a set of draw-
backs. Micro-benchmarks have limited
coverage, trace replay can lose depend-
encies, and model-based approaches can
lose important details. They plan to
make a model of I/O generation and
dependencies for individual threads, to
attempt to avoid these problems.

FILE ATTRIBUTE-BASED PREDICTIONS AND
OPTIMIZATIONS

Daniel Ellard, Harvard
This group’s studies have found that
there is a strong association between cre-
ate time attributes of a file and the oper-
ations performed on the file during its
lifetime. They have implemented a sys-
tem that builds a model of these associa-
tions. It is small and can be put into the
kernel.

87June 2004 ;login:

l

 C
O

N
FE

R
EN

C
E

R
EP

O
RT

SThey are currently exploring ways in
which these associations can be used to
improve file layout, caching, and replica-
tion policies. They also speculate that
this information could be used to make
global tuning decisions and identify
common idioms (such as lock files).

More information on the work can be
found at http://www.eecs.harvard.edu/sos
or http://www.pdl.cmu.edu.

TBBT: A TRACE-BASED FILE SYSTEM
BENCHMARKING TOOL

Ningning Zhu, Stony Brook University
This work focuses on building an NFS
trace playback tool. It is very hard to
capture the important attributes of a
real workload in a model, which makes
trace replay important in a variety of sit-
uations. A variety of traces are available
to the research community, and the
number will continue to increase. This
makes a replayer an important tool.

The playback tool involves a variety of
challenges. For example, creating the ini-
tial file system image is difficult, as is file
system aging, concurrency, error han-
dling, and disk and CPU perturbation
by the tool itself.

The replayer should be available to the
community in two to three months.

RELIABLE PARALLEL FILE TRANSFER

Lu Zhao, Bowling Green State
University
A variety of methods exist to do file
transfer, such as FTP, HTTP, bitTorrrent,
grid FTP, and parallel FTP. This group
hopes to build a protocol that captures
both reliability and parallelism.

In the proposed protocol, clients request
file info from a main server. This main
server knows the location of other stor-
age nodes containing pieces of the data.
This node tells these other nodes to send
data to the client. The data is protected
with checksums; if a checksum fails, the

client can re-request data from another
server.

CAN REPLICAS CONVERGE ACROSS NETWORK
PARTITIONS

Brent Byuonghoon Kang, University of
California, Berkeley
Many systems use optimistic replication,
where updates go to a single replica and
are lazily propagated to other replicas.
Previous work uses a version vector with
an entry for each node; when combined,
the vector takes the highest values of the
previous vectors, plus an update for the
combining itself.

However, with a network partition, the
vectors can diverge. Instead of using a
version vector, this work uses an
approach called a summary hash history,
which they claim allows for convergence
on network partition.

COLLABORATIVE BUFFER CACHES IN DATA
CENTERS

Zhifeng Chen, University of Illinois at
Urbana-Champaign
Many data centers contain heteroge-
neous systems with low latency connec-
tions and a large amount of cache in a
variety of locations. This creates a prob-
lem in that caches often will contain the
same data. This group proposes content-
aware caching, where each cache has
some knowledge of the other caches in
the system and can use this knowledge
to improve its caching policies. This
knowledge can be obtained through
message passing or by prediction of
cache behavior.

DEEP STORE

Lawrence You, University of California,
Santa Cruz
One cost problem in storage systems is
the maintenance of the growing volumes
of archival data. This group proposes a
new archival storage system to ease the
cost and difficulty of maintaining
archival information. For example, they
propose the removal of redundancy

FAST ‘04 l

Erez Zadok from Stony Brook University
questioned how clients that perform
multiple fetches or partial fetches from
mirrors affect Circus. Mirroring reduces
sharing, and thus the benefit, but paral-
lel fetches do not. Erik Reidel from Sea-
gate Research wanted to know how more
sophisticated sharing models such as
90/10 or zipf would affect results. The
response is that the results are applicable
to the shared portion of the workload.
Yitzhak Birk from Technion questioned
whether the use of digital fountain tech-
niques wouldn’t be a better solution to
the problem. While fundamentally dif-
ferent, it shifts the cost into client CPU
usage and disk capacity, which may be
cheaper than improving disk seek time.

A FRAMEWORK FOR BUILDING UNOBTRUSIVE
DISK MAINTENANCE APPLICATIONS

Eno Thereska, Jiri Schindler, John Bucy,
Brandon Salmon, Christopher R. Lumb,
and Gregory R. Ganger, Carnegie Mel-
lon University
Summarized by Michael Abd-el-Malek
This was one of the two Best Student
Paper awards. The talk described a
mechanism for running low-priority
applications that perform disk mainte-
nance (e.g., backup, cleaning, cache
writeback, etc.). Storage systems can use
idle time or “wasted” disk head rotation
time in order to handle disk requests for
the background applications, without
impacting foreground applications.

Idle-time detection is conceptually sim-
ple, and so the presenter concentrated
more on how to make use of “wasted”
disk head rotation time. For example, if
you have two foreground disk requests
that are spaced apart in their disk layout,
then you can process a disk request that
occurs in the middle of the rotation for
free. This constitutes the freeblock
scheduling subsystem.

An API is provided that lets an applica-
tion register its intent to read/write
blocks in the system in the background.

although they may have started at differ-
ent times.

The traditional approach is to serve each
transfer individually and let each client
progress at its own rate. If the requested
file is too large for the server’s cache,
however, the multiple request streams
will thrash in the cache. In the worst
case, the access pattern to the disk
degenerates toward random.

The proposed solution is to use the
client’s memory as a reorder buffer and
transfer each block read from the disk to
each client that needs it in the order it is
read from the disk. Since scheduling the
optimal sequence of transfers is NP-
hard, the following heuristic is used:
First, blocks are read to satisfy the most
demanding (fastest, furthest ahead)
client. Other clients are sequentially
served blocks from the cache as fast as
they can be transferred. If a client falls
far behind, it is moved ahead to the
most recent block, leaving a gap of miss-
ing blocks. When a client reaches the
end of the file, it sequentially reads any
missing blocks.

The system was evaluated with a syn-
thetic workload of requests arriving in a
Poission distribution, uniformly distrib-
uted across files with an average size of
512MB. The server and network were
configured so that the bottleneck to
sequential transfers would be the server’s
disk. Both identical and varied client
network links rates were considered.
With identical links, the network becomes
the bottleneck, and with varied links, the
disk is the bottleneck, but at much
higher performance than with sequen-
tial transfers. Circus is insensitive to
changes in file size, unlike sequential,
but degenerates to sequential if file shar-
ing is low. The conclusion is that content
servers don’t benefit from sharing if the
files they are serving are large, and block
reordering helps if there is sharing, up to
a 10x speedup at the sweet spot.

Vol. 29, No. 3 ;login:88

using inter- and intra-file compression.
They also hope to manage content; data
lives and dies with applications and sys-
tems. Performance is also a challenge,
since many users require near-line access
to archival data.

CACHING & SCHEDULING
CAR: CLOCK WITH ADAPTIVE REPLACEMENT

Sorav Bansal, Stanford University;
Dharmendra S. Modha, IBM Almaden
Research Center
Summarized by Xun Luo
Dharmendra presented CAR, an
enhanced CLOCK-caching algorithm,
which keeps conformation with CLOCK
on the primitives and outperforms
CLOCK across a wide range of cache
sizes and workloads.

The idea of CAR is to maintain two
clocks; one of them contains pages of
“recency” while the other contains pages
of “frequency.” New pages are first
inserted in the former and graduate to
the latter upon passing a certain test of
long-term utility. The researchers did
extensive trace-driven tests on the CAR
algorithm and observed that CAR is
comparable to ARC and substantially
outperformed LRU and CLOCK.

CIRCUS: OPPORTUNISTIC BLOCK REORDER-
ING FOR SCALABLE CONTENT SERVERS

Stergios V. Anastasiadis, Rajiv G.
Wickremesinghe, and Jeffrey S. Chase,
Duke University
Summarized by Shafeeq
Sinnamohideen
The goal of this work is to improve the
scalability of Internet content servers
that perform whole-file transfers, such
as those serving images or non-stream-
ing video and music. In these cases, the
client needs to receive the entire file
before it can make progress. In common
with other Internet services, the major-
ity of accesses are to a small number of
common files. Many clients may simul-
taneously be fetching the same file

An asynchronous calling model is used –
an application callback is called when
the freeblock subsystem is about to han-
dle a disk request. This model is useful
because it gives freedom to the applica-
tion to lazily allocate memory.

Evaluation using TCP-C, Postmark, and
a synthetic benchmark demonstrates
that free disk bandwidth is available,
even if no idle time is detected (e.g., in
the case of Postmark). Foreground
performance is not impacted.

More information is available at
http://www.pdl.cmu.edu/.

MOBILE STORAGE
INTEGRATING PORTABLE AND DISTRIBUTED
STORAGE

Niraj Tolia, Jan Harkes, and M.
Satyanarayanan, Carnegie Mellon Uni-
versity; Michael Kozuch, Intel Research
Summarized by Akshat Aranya
Niraj Tolia presented “lookaside caching,”
a technique that harnesses the conven-
ience and speed of portable storage
devices, such as USB memory keychains,
to enhance performance and availability
of distributed file systems.

Niraj started his talk by asking whether
portable storage devices can be used in
more meaningful ways or if they are just
glorified floppy disks. He showed that
portable devices and distributed file sys-
tems have certain complementary prop-
erties. For instance, portable devices
provide high performance and availabil-
ity, whereas distributed file systems pro-
vide robustness, consistency, and high
capacity.

The basic idea behind lookaside caching
is to use a portable device as a fast cache;
a file server is still the authoritative source
for a file. Whenever a file is opened, its
20-byte SHA-1 hash on the portable
device is compared with that stored on
the server. If the hashes match, then the
file is provided from the portable store;

89June 2004 ;login:

l

 C
O

N
FE

R
EN

C
E

R
EP

O
RT

Sotherwise it is fetched from the server.
The benchmark results show significant
performance improvement for slow
links even when a small number of files
are served by the cache.

The work was questioned for contrived
benchmarks: Why would anyone carry
around the Linux kernel source code on
a portable device for compilation? Also,
a member of the audience suggested
work on policies to decide what to put
in the lookaside cache.

SEGANK: A DISTRIBUTED MOBILE STORAGE
SYSTEM
Sumeet Sobti, Nitin Garg, Fengzhou
Zheng, Junwen Lai, Yilei Shao, Chi Zhang,
Elisha Ziskind, and Randolph Y. Wang,
Princeton University; Arvind Krishna-
murthy, Yale University
Summarized by Akshat Aranya
Sumeet described a system to manage
data and mobile devices in a heteroge-
neous environment. The Segank system
provides a uniform namespace and loca-
tion independence of data without com-
plete replication. The major emphasis of
Segank is on awareness of network char-
acteristics so as to minimize use of weak
links.

Segank guarantees consistency by main-
taining an invalidation log that main-
tains the timestamp for each update.
The most recent invalidation log is
maintained in a portable device that the
writer carries. The log is propagated
lazily to invalidate stale copies of the
data. This approach decouples data
propagation from log propagation.

Segank uses a multicast protocol, called
Segankast, for location and access of
replicated data. This provides network-
aware reading by heuristically building a
multicast tree. Data is shared using
snapshots. This provides a trade-off
between freshness and performance.

The presentation generated plenty of
interest from the audience, who raised

questions about concurrency and
compared the system with alternative
approaches like VNC. There were also
some concerns about background prop-
agation of data in insecure mobile envi-
ronments, which, the speaker pointed
out, were orthogonal to the problems
addressed by the system.

FAST ‘04 l

	motd
	butler
	appelman
	burgess
	alexander
	weaver
	musings
	haskins
	mccluskey
	turoff
	flynt
	bookworm
	reviews
	USENIX
	nsdi04reports
	fast04reports

