

2

motd

SAGE: Approaching the
Crossroads
I’ve now been in the SAGE directorship position for a year. Here
are a few words on some of the interesting challenges I’ve
encountered.

A summary of the job is in order, of course. SAGE’s goal is “To
advance the profession of system administration.” To that end,
the professionalization of system administration is often cited as
a corollary. Paul Evans started the professionalization movement
many years ago when he pointed out that professions have com-
mon properties:

� A book of knowledge
� A university degree program
� A certification program of some sort
� Conferences/gatherings
� A code of ethics
� Professional journals/publications
� Recognition programs for outstanding contributors

SAGE is moving down the road to creating all these various
properties, which is good. Best of all, public recognition for the
career of system administration is high and growing. It appears
that high school students all know of such things.

I think there are about 750,000 syadmins in the USA (and an
additional substantial fraction of that many throughout the rest
of the world). This means that the odds of having one as a
neighbor are fairly high. The profession’s recognition is making
progress.

Some barriers to organizational success, though, have come as a
surprise to me.

One of the most jarring recent events was the realization that
many of our prospective members have very committed ideas
about what a “system administrator” is (and thus what the audi-
ence for SAGE is) – and SAGE isn’t on their radar.

Often, these people are network administrators, security admin-

istrators, or some other sort of administrator who looks upon
“system administrators” as “someone else.” Sometimes, they view
sysadmins as a sort of inferior species, which is also surprising to
me. Apparently, specialization has some sort of value that I don’t
understand very well (and, since I don’t work in a large com-
pany, I’m going to have to work extra hard to learn more about
this particular phenomenon).

At any rate, none of SAGE’s messages gets through to these other
administrators since they’re not tuned to “system administra-
tion” information. One email conversation I had was very illu-
minating in that my correspondent simply could not hear
“generic administrator” when filling out a form. If a question
did not specifically address “network administrator,” then he/she
simply could not answer it. This puzzled me greatly.

I subsequently urged many in our community to create an
umbrella term that could be used to refer to the collective of all
sorts of system administrators. Many great suggestions have
emerged, but none of them seems perfect, yet. Often, the prob-
lem I’m talking about is misunderstood or denied. This is very
strange to me.

Another of the other biggest challenges I’m now facing is that
joining SAGE isn’t very simple. To that end, I’ll be lobbying
strongly at the USENIX Board of Directors meeting in San
Antonio to create a simple and extremely affordable fee struc-
ture for joining SAGE. Wish me luck. My goal: a click on a web-
site and a small amount of money gets you a shiny membership
card and all the rights and privileges of SAGE membership.

Our industry’s economic slowdown has resulted in reduced
SAGE staffing so my personal response time for many issues
continues to worsen. I have never been so far behind on email or
on my to-do list as I am today.

To that end, I am soliciting volunteers to assist with some spe-
cific SAGE projects. Here’s the first three:

� Completing the paradigm for creating and maintaining
SAGE-affiliated organizations both in the USA and around
the world.

� Submitting white papers for the SAGE Web site
� Repairing and implementing various functions on the

SAGE site.

These positions are neither “advisory” nor “personnel manage-
ment”. They are roll-your-sleeves-up and make results happen
positions. I’ll endeavor to insure that obstacles are removed –
but the organization really needs a bit more manpower right
now. If you’re interested, please email me and let me know of
your interest.

I think that the field of system administration (and all the sub-

Vol. 28, No. 3 ;login:

by Rob Kolstad

Rob Kolstad is cur-
rently Executive
Director of SAGE, the
System Administra-
tors Guild. Rob has
edited ;login: for
over ten years.

kolstad@sage.org

3June 2003 ;login:

fields that, in my mind, it contains: network admin, security admin, database admin,
LAN admin, etc.) is not only technically fascinating but one of the highest-leverage
fields of endeavor. I’d really like our organization to be the premier technical associa-
tion for the hundreds of thousands of administrators (of all sorts of systems – SAGE is
not parochial about this). If you have suggestions or ideas, please do forward them to
me. Finances and timing combine to make 2003 the year that we must all succeed on
this task. Any assistance is appreciated!

✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐

First Haiku Contest
Let’s write some Haiku. You’ve probably seen Haiku, little three line poems with five
syllables in the first line, seven in the second line, and five more in the last line. Syllabic
stresses (accents) are not important. Here’s a quick one:

Surfing excitement
No response to any site
Sadness rules the night

The brief Haiku captures a thought, a moment, a scene, or a vision. The best Haiku
amplify insight or even cause an “Aha!” or epiphany.

Many Haiku traditionally describe the seasons of the year. Being a technical society,
this doesn’t seem quite so germane to our mutual interests.

This first Haiku contest solicits your entries describing some state of the Internet.
Many entries will be posted on the web-site and potentially printed in these pages. The
winning entry will be highlighted and rewarded: its author will be win a handsome
polo shirt commemorating his/her vision and creative writing ability.

Details: Please submit entries to haiku@usenix.org with the subject line
“Haiku — internet”.
Entry deadline: July 1, 2003. No limit on entries (other than pragmatism). Anonymous
entries win no physical prizes. Void where prohibited by law.

✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐

EDITORIAL STAFF

EDITOR:
Rob Kolstad kolstad@usenix.org

CONTRIBUTING EDITOR:
Tina Darmohray tmd@usenix.org

MANAGING EDITOR:
Alain Hénon ah@usenix.org

COPY EDITOR:
Steve Gilmartin

TYPESETTER:
Festina Lente

MEMBERSHIP, PUBLICATIONS,

AND CONFERENCES
USENIX Association

2560 Ninth Street, Suite 215

Berkeley, CA 94710

Phone: 510 528 8649

FAX: 510 548 5738

Email: office@usenix.org

login@usenix.org

conference@usenix.org

WWW: http://www.usenix.org

http://www.sage.org

4 Vol. 28, No. 3 ;login:

by Kragen Sitaker

Kragen Sitaker is a
multilingual hacker
who's used UNIX
since 1992, presently
consulting on server-
side Web software
development in San
Francisco. See
http://pobox.com/
~kragen/ for more.

kragen@pobox.com

Microsoft just won their years-long antitrust lawsuit: they flouted the law,

they perjured themselves with impunity, and they got off with a slap on the

wrist.

The time has come for those of us in the free-software community to think about
what this means, because now Microsoft considers us Microsoft Enemy #1. What
should we expect in the next few years?

I don’t think my writing this will help Microsoft much – they’ve probably already
thought this stuff through quite thoroughly – but perhaps it will help the rest of the
world.

Well, we can probably kiss Microsoft Office on Linux goodbye. It works now – at least,
up to Office 97 – but Microsoft will do everything in their power to ensure that future
versions of Office don’t run on Linux, or, for that matter, on old versions of Microsoft
Windows. In the past, they’ve licensed some products only for Microsoft operating
systems. Antitrust law forbids this, but they might not care – they just laughed in the
face of an antitrust case from the world’s most powerful government and won.

In any case, they can certainly legally use technical means to make them difficult to
run.

For example, they can integrate big chunks of application code into the operating sys-
tem; running the applications on another operating system would then require that
the other operating system include re-implementations of all of this application func-
tionality. Taken to the logical extreme, this would mean including all Microsoft appli-
cations with every copy of the OS, only encrypted or disabled in some other way; the
application CDs would merely contain activation keys. This would make it harder to
upgrade the applications independently of the operating system, but it seems likely
that Microsoft can use their “critical update notification tool” to distribute the neces-
sary updates ahead of the application releases.

Strategic GPL applications on Microsoft Windows could become technically very diffi-
cult to run, especially when Microsoft can upgrade everybody’s operating system to
break them on a daily basis. Microsoft, of course, has no legal obligation to verify that
their software updates don’t break third-party applications.

Along similar lines, Microsoft Windows licensing might forbid linking GPL applica-
tions to system libraries, on the grounds that it might imperil Microsoft’s intellectual
property.

The Windows XP license forbids providing remote access to your desktop and, if I
recall correctly, uses various technical means to make this difficult. These technical
means won’t work when the Microsoft Windows OS runs inside a virtual machine like
VMware. So Microsoft could “legitimately” break VMware compatibility, and probably
will. (Microsoft can break VMware compatibility easily, especially when they can
update their software on a monthly basis.)

Microsoft has filed for a number of strategic patents on the .NET virtual machine. If
they get them – which they probably will – they will legally control all .NET deploy-
ments, including those built on free software. Microsoft couldn’t control GPL imple-
mentations of .NET this way – a patent holder can prevent them from being
distributed, but cannot impose conditions on such distribution.

Microsoft:
what’s next?

5June 2003 ;login:

�

O

PI
N

IO
NMicrosoft Internet Explorer

has essentially a complete

monopoly on the Web

browser market.

Ximian has built a free .NET virtual machine clone called Mono, which they originally
licensed under the GPL; they relicensed it under a license that allows patent control
and proprietary derivatives. Most likely, Microsoft offered them some quid pro quo for
so doing, perhaps licenses to use the patents. If this comes to pass, Ximian and
Microsoft will sell licenses for Mono and solutions built on it, but anybody else who
does this will have to comply with arbitrary restrictions imposed by Microsoft. For
example, Microsoft could require specific virtual machine features to change in a way
incompatible with existing GPL application code, or require a per-seat license.

Microsoft Internet Explorer has essentially a complete monopoly on the Web browser
market. Microsoft can use this monopoly to encourage use of Microsoft products on
the server side in two straightforward ways. First, they can break existing functionality
when interoperating with non-Microsoft server software – perhaps an occasional
header misparsing, some extra processing delays, or some inefficient code that only
runs when talking to non-Microsoft servers. Second, they can add new functionality
that only works with Microsoft server software.

Palladium offers Microsoft a doomsday weapon against competition. Palladium-
enabled software applications can store their files in formats that other software can-
not decode and that software running on another operating system also cannot
decode, and they can reliably refuse to run on other operating systems themselves.

In the past, Microsoft has exerted great pressure on hardware vendors not to support
Microsoft’s competition and not to differentiate their products. In the near future, this
practice could work to great advantage against competing operating systems. For
example, Microsoft can continue to forbid hardware vendors from offering machines
configured with multiple boot options; they can give better financial terms to vendors
who offer no competing operating systems; they can encourage hardware vendors to
use hardware without good Linux support; and they can forbid hardware vendors to
offer Linux drivers or give help to developers of Linux drivers.

Finally, many people perceive Linux as more secure than Microsoft Windows; if
Microsoft can destroy that perception, they can prevent these people from leaving
Microsoft Windows for Linux. For example, they could hire programmers to write bet-
ter viruses and worms for Linux, and they could talk up Linux worm incidents.

MICROSOFT: WHAT’S NEXT �

6 Vol. 28, No. 3 ;login:

All of us who even occasionally get to be engineers have at one time or

another discovered that we were solving the wrong problem. Make that

solved the wrong problem. To put it a little brusquely, it’s about then we ask

ourselves, “What good is the right answer to the wrong question?”

In science, sometimes the right answer to the wrong question means opportune dis-
covery. In commercial engineering, the right answer to the wrong question just means
inopportune overtime, opportunity cost, and/or negative rates of return. Science may
be about invention or discovery, but the rest of the world is about execution.

Of course, there are a lot of situations where the problem statement is dictated by
someone with a vantage point that bears no resemblance to the vantage point of those
of us who have to execute. In my own line of work (security), “We need a firewall”
almost always means something else, even if you can’t discuss what the real problem
statement ought to be until after the damned firewall goes live. Surely there are a raft
of parallel examples.

Let’s take a look at some problem statements that are not so obvious.

Among the techno-geek community, one sees pervasive antipathy to digital rights
management (DRM) technology, while one sees just as pervasive affection for privacy
enhancing technologies (PET). Emotionally, DRM equals the record industry equals
profit enhancement equals badness, while PET equals cryptoanarchy equals self-actu-
alization equals goodness. Yet the problem statement for both DRM and PET is one
and the same, viz.: controlled release of information you own at a distance in space and
time.

One can perhaps argue endlessly over whether you “own” a tune or whether you “own”
your bank account number – “endless” is probably what any genuine argument is and
ought to be – but if you accept the problem statement, then you have to conclude, at
least with respect to the technology itself, that DRM = PET or, in outcome terms, with
respect to privacy and digital rights we get both or we get neither. Arguing in favor of
one and against the other is to argue for a solution space that is the null set. If you find
this distasteful to your worldview, then dispute the problem statement or at least apply
yourself to adaptive re-use of the available means to the ends you favor.

Let’s try another one.

The intrusion detection paradigm says that you want to know when an attempt is
made to cross a network perimeter from the outside of the company to the inside. Is
that what you care about? An intrusion is definitionally the illegitimate acquisition of
legitimate authority. Is that where the risk is? No, the risk is the illegitimate use of
legitimate authority, which is precisely why just about everyone knowledgeable in
security acknowledges that the biggest threats are on the inside. The problem state-
ment for intrusion detection is: keep dishonest people honest.

In implementation terms, an intrusion system is about manning a guard station at the
network perimeter of the firm. So, by analogy, which do you think is bigger: (A) the
sum of US border protection manpower or (B) the sum of all the police departments
in-country? Obviously, the correct answer is B, so the real problem statement is: keep
honest people honest.

That is a high enough goal, trust me. Interdiction of the illegitimate acquisition of
legitimate authority, i.e., the effort already put into intrusion systems, ought to grow

getting the problem
statement right

by Dan Geer

Dan Geer is a
USENIX Past Presi-
dent and is Chief
Technology Officer
at @Stake, Inc.

geer@world.std.com

7June 2003 ;login: GETTING THE PROBLEM STATEMENT RIGHT �

�

O

PI
N

IO
Nno more than it already has. Intrusion detection’s sunk costs are just that, sunk costs,

but that doesn’t mean you have to keep sinking more. It is time to put more effort
toward the behavioral analysis of surveillance data collected when operation is normal
rather than signature analysis of intercepted data when operation is exceptional. Sur-
veillance is consistent with keeping honest people honest even if the surveillance logs
are only used forensically.

On the other hand, if you have all those intrusion systems creating masses of logs (that
you never read), what can you do with them? The usual intrusion detection problem
statement has an explicit subtext: Never let anyone know that attackers tried to get in,
did get in, how it was that they did get in, or what they did while they were in.

This is just another variant on the most venerably stupid problem statement in all of
security: security through obscurity.

The correct problem statement is: threat identification and mitigation.

It is not: threat identification and hiding.

In other words, share your logs with other firms like yours. If you fear debate in the
boardroom over sharing this sort of data with selected peers, then here’s how to win
that debate in a single sentence: Unless you share your intrusion logs with like firms
you will not and you cannot ever know whether you are a target of choice or a target
of chance, and you will therefore waste needless cash or incur needless risk.

Let’s try yet another one.

This one is harder and it doesn’t have a solution until you stir in your own situation
data. Many of the readers of ;login: have run systems at one time or another. Some do
nothing but run systems. Let’s take just the client side: Nothing is so easy to manage as
systems that are, by design, identical and dataless. “Identical and dataless” is the right
answer if you can get away with a problem statement (goal) like: low cost to manage
with minimum time to repair (local) failure.

Of course, identicality means that a local failure can escalate to cascade failure rather
easily; think Slammer with its 8.5-second doubling time. Unless you must simulate
dumb customers or something like that, a better problem statement would be: maxi-
mize net cumulative productivity.

That’s a problem statement which would naturally lead to operational strategies like:
All applications must be platform independent; and No OS can control a majority of plat-
forms.

You get the idea.

If all this sounds obvious, then great! It is obvious – just as obvious as the Emperor’s
absence of clothing. It is harder to do day-to-day. It is way too easy to say, “I have a
hammer” and to conclude, “Let’s find some nails to pound.” What’s hard is to think big
enough to find a problem statement that is at once doable, elegantly simple, and which
can be communicated to others who could care less what the hell you are talking
about, but who “know” that they want a firewall, who “know” that they want to copy
music but don’t want you to copy their documents, who “know” that all the bad guys
are outside and that that’s a secret, and who “know” that if everything were exactly the
same on every desktop the company would be better off because that’s precisely how
you get the best upfront purchase price. A little thought is a dangerous thing . . . espe-
cially in problem statements.

Unless you share your

intrusion logs with like firms

you will not and you cannot

ever know whether you are a

target of choice or a target of

chance, and you will there-

fore waste needless cash or

incur needless risk.

8 Vol. 28, No. 3 ;login:

Of all the dot files, .profile presents the greatest oppor-

tunity for customization. This file is read by sh deriva-

tives as part of the login process, and usually sets

environment variables that influence the behavior of

many programs invoked as part of that login session.

This article describes how to customize .profile, but first

we should examine how .profile is used and what is

appropriate to place in it.

Specifically, sh derivatives consider a shell a login shell when
argv[0] begins with a dash (“-”; ASCII value 45). Note that this
is a violation of the convention that the first element of argv[]
contain the last component of the executed program’s path (for
more information see execve(2)). This is the only way to flag sh
as a login shell. However, ksh accepts -l and bash accepts -login as
alternate ways of flagging a shell as a login shell.

All sh derivative login shells first process the systemwide
/etc/profile if it exists. The next file processed depends on the
shell; sh and ksh process $HOME/.profile, while bash processes
the first it finds of $HOME/.bash_profile, $HOME/.bash_login,
or $HOME/.profile. Note that bash has a flag -noprofile, which
inhibits processing any of these files.

You may wonder where sh derivative login shells get their
notion of $HOME. The HOME environment variable is set by
login(1), as are SHELL, PATH, TERM, LOGNAME, USER (if
BSD), MAIL (if not BSD), and TZ (if Solaris). For portability’s
sake, we should rely only on the common subset of environ-
ment variables set by login(1) (if we rely on any of them at all).

Note that login(1) will print a variety of messages, unless
$HOME/.nologin exists. By the same rationale, we should feel
free to output information from .profile under the same condi-
tions. The nologin support is primarily for UUCP and other
automated logins, so we need not heed this rule too carefully,
unless you intend to use your .profile for your automated users
as well.

Since we have the full power of the shell at our disposal when
processing .profile, we may easily use its branching constructs to
process different parts of this file under different conditions.

This allows us to potentially use the same .profile in many loca-
tions – unlike some other dot-files – simplifying the customiza-
tion of multiple environments into a single file distribution
problem.

Furthermore, we will wish to do some similar and repetitive
tasks in our .profile, so it will be advisable to use its native func-
tion definitions as a macro facility. If we were generating differ-
ent .profile files using some kind of macro language such as m4
or cpp, we could avoid depending on the availability of func-
tions in our shell. However, the environments I am interested in
all support functions within /bin/sh, so that is an implicit
assumption in my .profile. This also allows runtime recursion,
which preprocessors could not provide (not that we will need
it).

It’s extremely difficult to come up with guiding principles and
structure for a .profile. For one thing, several dependencies must
be taken into account when creating a linear order for your
statements. There are site-specific, OS-specific, release-specific,
and architecture-specific components, and components that are
specific to two or more of these categories.

Often it is not clear which category certain statements fall into.
For example, BSD UNIX uses BLOCKSIZE to affect the report-
ing units in df, du, and some other programs. It is not clear
whether this is a variable which should be set globally, or per-
haps in a BSD-specific portion of the .profile.

There are design tradeoffs, such as the desire for an uncluttered
environment and the desire to keep the .profile simple. Another
tradeoff occurs when two OSes have similarities. For example,
SunOS and BSD both have /sbin directories for the superuser.
Do you add /sbin to the path in both cases, causing code dupli-
cation, or do you make a case statement that puts them
together, and add /sbin to the path there? Thus, this .profile is
most definitely a compromise among several competing desires.

Since .profile is only processed once per login session, it’s tempt-
ing to do a little more work in order to make the .profile sim-
pler. For example, you might want to invoke Perl and have it tell
you where its man pages are located, rather than guessing and
testing several possibilities. Similarly, rather than putting /sbin
handling into all BSD-like OS-specific sections, it might be
cleaner to test for the presence of /sbin and handle, adding it to
the PATH no matter which OS you are running. Also note that I
usually don’t bother to preserve environment variables that are
already set via /etc/profile, although you may wish to do so.

$Id: .profile,v 1.108 2002/11/12 08:12:47 username Exp $
Hey Emacs this is -*- sh -*-

This is sourced at login-time by sh, ash, ksh, and bash.

.profile
by Travis Howard

Travis Howard is the founder of Asymp-
totic Systems, a security consulting
organization. He has 17 years of experi-
ence in computer security and special-
izes in applying research advances to
harden systems.

auto92089@hushmail.com

9June 2003 ;login: .PROFILE �

�

BE

ST
PR

A
C

TI
C

ES# Assumptions: login(1) sets HOME SHELL PATH TERM LOGNAME
XDM(1) sets DISPLAY PATH SHELL XAUTHORITY

Login script order:
sh, ash, ksh /etc/profile ~/.profile
bash /etc/profile (~/.bash_profile ~/.bash_login ~/.profile)

I keep my .profile under CVS, so I have an $Id:$ keyword in the first line. I also tell Emacs that this is a shell script in the following
line (I believe that more recent versions of Emacs allow mode:sh). This is followed by documentation of assumptions and a little
reminder of when this file was evaluated.

Next I give the user some indication that the .profile is being run (and send it to the console, not to an output file):

Show login stuff:
Echo to fd 2 (stderr).
e2 () { echo "$@" >&2; }
e2 'Running .profile'

The first thing the .profile should do is give an indication that it has been invoked. This will definitely help debug login problems as
well as give a visual indicator of how heavy the system load is (if it takes a long time to show this, the load is extremely heavy). This
code snippet defines a function (e2), which echoes all of its arguments to the standard error file descriptor (read that operator as
“standard output gets tied to fd 2”). There are occasions where standard output is buffered, but standard error is usually line-
buffered at most, so that is why I use it. Note the use of double-quoted $@; this incantation preserves whitespace and argument
boundaries, even if the arguments include whitespace. It is a good idea to get into the habit of using this instead of the boundary-
destroying $*. The code snippet then invokes e2 to display a simple message. Should you wish, you could easily test for the presence
of a ~/.nologin file to suppress printing any output.

Next I inform the OS that I wish to make all my file ownerships private:

Set a paranoid umask.
umask 077

I want to make sure that this .profile can find the programs I want to invoke, so I then must attend to setting the PATH environment
variable, which controls the search path for said programs. Clearly, I will want some functions to help me manipulate the colon-sep-
arated list of directories:

Set colon-separated search path elements:

Test a directory (sanity check).
Returns true (0) only if it is a directory and searchable.
test_directory () {

test "$#" -eq 0 && e2 "Usage: test_directory dirname" && return 2
test -d "$1" && test -x "$1"

}

Check to see if a directory is already in a search path.
in_search_path () {

test "$#" -lt 2 && e2 "Usage: in_search_path path dirname" && return 2
local n="$1"
local d="$2"
Save input field separators.
local OLDIFS="$IFS"
Break up on colon boundaries
IFS=":$IFS"
Now set the positional args to elements of the named variable.
eval set -- $n
Restore input field separator.
IFS="$OLDIFS"

Vol. 28, No. 3 ;login:10

Loop through each colon-separated element.
while test "$#" -gt 0; do

Compare to dirname.
TODO: how portable is relying on -ef?
test "$1" -ef "$d" && return 0
shift

done
return 1

}

Sanity-check then append a directory to a search path.
dirapp () {

test "$#" -lt 2 && e2 "Usage: dirapp varname dirname" && return 2
local n="$1"
local d="$2"
test_directory "$d" || return 1
eval in_search_path \"\$$n\" $d && return 1
if eval test -n \"\$$n\"; then

eval $n=\"\$$n:$d\"
else

eval $n=\"$d\"
fi

}

Sanity-check then prepend a directory to a search path.
TODO: Allow caller to "move" directory to front with this funcall.
dirpre () {

test "$#" -lt 2 && e2 "Usage: dirpre varname dirname" && return 2
local n="$1"
local d="$2"
test_directory "$d" || return 2
eval in_search_path \"\$$n\" $d && return 1
if eval test -n \"\$$n\"; then

eval $n=\"$d:\$$n\"
else

eval $n=\"$d\"
fi

}

Call dirapp for a list of directories.
dirapplist () {

test "$#" -lt 2 && e2 "Usage: dirapplist varname d1 d2 ..." && return 2
local n="$1"
shift
while test "$#" -gt 0; do

dirapp "$n" "$1"
shift

done
}

Call dirpre for a list of directories.
NOTE: Directories will appear in reverse order in varname.
dirprelist () {

11June 2003 ;login: .PROFILE �

test "$#" -lt 2 && e2 "Usage: dirapplist varname d1 d2 ..." && return 2
local n="$1"
shift
while test "$#" -gt 0; do

dirpre "$n" "$1"
shift

done
}

Note that I will try to use the term path to refer to a list of directories, starting with the root and ending with a file or directory,
whereas I use the term search path to refer to a colon-separated list of paths.

I return 2 to distinguish from the exit code of the last command, which could be 0 or 1.

Next I set up PATH elements which should always be present. I think all reasonable operating systems start PATH with these elements,
but it doesn’t hurt to be sure:

These should be present on any target system.
In fact, they should already be in the search path.
dirapplist PATH /bin /usr/bin
I like to be able to run e.g., ifconfig, sendmail.
dirapplist PATH /sbin /usr/sbin /usr/games /usr/libexec /usr/ccs/bin
dirpre PATH /usr/ucb
export PATH

Set the search path for manual pages.
dirapplist MANPATH /usr/share/man /usr/share/man/old /usr/contrib/man
export MANPATH

Note that I mark these variables as exportable. In general, my policy is to do so the first time I manipulate the variable.

Do shell-specific handling:

This code distinguishes between various shell versions.
if test "$(echo ~)" != "$HOME"
then

This is the standard Bourne shell.
:

else
This is not the Bourne shell, so it supports aliases.
test -r "$HOME/.kshrc" && test -z "$ENV" && export ENV="$HOME/.kshrc"
TODO: Figure out a deterministic way to distinguish shells.
Should I just check $SHELL instead?
if test "${RANDOM:-0}" -eq "${RANDOM:-0}"
then

This is ash, which does not have a type built-in.
TODO: Recent versions of ash do indeed have type, so I should test for its presence somehow.
test -r "$HOME/.ashtype" && . "$HOME/.ashtype"
Tell ash where to find our shell functions.
test_directory "$HOME/functions" && dirapp PATH "$HOME/functions%func"

fi
fi

This code tries to figure out which sh variant we are using. It then takes care of the shell-dependent initialization commands. Note
that since it uses dirapp, it has to occur after dirapp has been defined, else I would have placed it earlier in the file.

Run this stuff on logout.
if test -r "$HOME/.shlogout"

�

BE

ST
PR

A
C

TI
C

ES

Vol. 28, No. 3 ;login:12

then
trap '. $HOME/.shlogout' 0

else
Make a reasonable attempt to clear the screen.
trap 'clear' 0

fi

This code takes care of cleaning up when we log out. If $HOME/.shlogout exists and is readable, we evaluate that and exit with the
last command’s exit code; otherwise we just clear the screen. That is, this code runs when a login shell exits. If this varied from site to
site, it might be more appropriate to put it in the site-specific section.

Clearly, the universal .profile will need facilities for examining its environment to determine which parts should be processed in a
particular situation. Now that we’ve set a reasonable PATH (enough to reach the system binaries, anyway), we can try executing some
commands to ascertain facts about the platform:

Set the environment variables:

Try to set the envar called by name in arg1 to the output of the commands that follow, one argument per command.
setvarcmd () {

test "$#" -lt 2 \
&& e2 "Usage: setvarcmd varname \"cmd1 args\" \"cmd2 args\" ..." \
&& return 2

local n="$1"
shift
while test "$#" -ge 1 && eval test -z \"\$$n\"; do

eval "$n=\"$($1 2>/dev/null)\" "
shift

done
TODO: what if no commands generate output?
export $n

}

We realize that we will be calling a lot of commands in sequence until we find one that gives us the information we need, which we
will then export. Therefore, we enshrine this process in a shell function, setvarcmd. Note that I use the newer $() syntax rather than ";
this allows levels of command expansion to be nested (although we do not do that here). Errors, such as invalid options or nonexist-
ent commands, are directed to /dev/null when executing the commands, because we will be trying several commands in order and
don’t care if some of them fail.

Next we use setvarcmd to try yo set four critical variables:

setvarcmd OS_NAME "uname -s" "uname"
e2 "Operating system: $OS_NAME"

setvarcmd OS_RELEASE "uname -r"
e2 "Release: $OS_RELEASE"

setvarcmd HW_NAME "arch" "uname -m"
e2 "Hardware/Architecture name: $HW_NAME"

TODO: This frequently does not include the domain name.
setvarcmd HOST_NAME "hostname -f" "uname -n" "hostname"
e2 "Host Name: $HOST_NAME"

These variables will be used to decide which portions of the .profile to evaluate. There is no error checking here, because if these
commands fail to ascertain the desired information, it is not clear what else we could do. However, the user logging in would see that
some of the variables were not set, so we can hand-wave here and say the user should investigate and remedy. It may well be that a
system which does not readily yield its details may be an unsuitable platform for a universal .profile.

13June 2003 ;login: .PROFILE �

Now that OS_NAME is set, I can run some OS-dependent commands to manipulate the environment:

Find some other binary directories, but only for the right architecture.
Set MAIL to point to mailbox so shell can tell us when we have mail.
TODO: fix for mailbox in $HOME/mbox.
case "$OS_NAME" in

AIX)
dirapp PATH /public/ibm/bin
;;

SunOS*)
dirapp PATH /public/sun4/bin
Find my mailbox and have this shell check it periodically.
NOTE: Do not export or subshells will check mail.
test_directory /usr/spool/mail && MAIL=/usr/spool/mail/$LOGNAME
;;

*BSD)
test_directory /var/mail && MAIL=/var/mail/$LOGNAME
;;

esac

The additions to PATH are from one of the sites that I used to work at and are nonstandard. Therefore, should they exist, it’s fairly
certain it’s because this .profile is being invoked at that site. Should these directories exist at some other site, just by chance, then
maybe I’ll want them in my path there, too. If not, I’ll have to change my .profile accordingly.

The MAIL environment variable tells the shell to alert me between commands if new mail has arrived. If I exported it, subshells, such
as the ones created by system(3), or those created by xterms under X, would also alert me, and I don’t want to be told more than
once.

Next I want to try to set an environment variable to point to the first directory in a list of potential directories:

Set a specified variable to equal the first valid directory in a list.
TODO: Should I check to see if it is set already?
setvardir() {

test "$#" -lt 2 && e2 "Usage: setvardir varname dir1 dir2 ..." && return 2
local n="$1"
shift
while test "$#" -gt 0; do

test_directory "$1" && eval "$n=\"$1\" " && export $n && return 0
shift

done
return 1

}
First I use setvardir to find Openwin:

I had to use Openwin on some SunOS machines.
if setvardir OPENWINHOME /usr/openwin; then

dirapp PATH "$OPENWINHOME/bin"
dirapp MANPATH "$OPENWINHOME/share/man"
dirapp LD_LIBRARY_PATH "$OPENWINHOME/lib"

fi

Next I try to locate the X Windowing System binaries:

XWINHOME is used by some startx(1), XF86Setup(1), and apparently xman(1), XF86_S3(1), etc.
Technically, I should only accept /usr/X386 if we are on an x86,
but what would it be doing there on another architecture anyway?
if setvardir XWINHOME /usr/X11R6 /usr/X386; then

�

BE

ST
PR

A
C

TI
C

ES

Vol. 28, No. 3 ;login:14

put X executables in search path
dirapp PATH "$XWINHOME/bin"
put X man pages in search path
dirapp MANPATH "$XWINHOME/man"

fi

I then define a short function that I use to find the Perl man pages, given a “root” like /usr/local:

TODO: There has got to be a good way to find the Perl manual pages by querying Perl.
findperlmanpages() {

local r="$1"
dirapplist MANPATH "$r/lib/perl5/man" \

"$r/lib/perl/man" \
"$r/share/perl5/man" \
"$r/share/perl/man"

}

I then want to set a variable LOCALIZED to point to where the locally installed programs reside:

Find locally installed programs.
if setvardir LOCALIZED /usr/local /local /lusr /opt; then

Prepend locally installed program dir so it can override system binaries.
dirpre PATH "$LOCALIZED/bin"
Search here for manual pages.
dirpre MANPATH "$LOCALIZED/share/man"
BSD systems might have this, others probably will not.
dirapp PATH "$LOCALIZED/sbin"
Some sites insist on per-package bin directories, sigh.
NOTE: This could go later in this file, as a site-dependent section,
but these directories probably will not exist on most systems.
for i in tex gnu tk tcl elm expect ghostscript lotus netmake newsprint tk mh; do

dirapp PATH "$LOCALIZED/$i/bin"
dirapp MANPATH "$LOCALIZED/$i/man"

done
findperlmanpages $LOCALIZED
dirapp MANPATH "$LOCALIZED/teTeX/man"
This is the info path for GNU info hypertext command, and Emacs
dirapplist INFOPATH "$LOCALIZED/info" \

"$LOCALIZED/share/info" \
"$LOCALIZED/teTeX/info"

This was required to run Lotus Notes at one site.
dirapp LD_LIBRARY_PATH "$LOCALIZED/lotus/common/lel/r100/sunspa53"
Set the cool Concurrent Version System repository directory.
setvardir CVSROOT "$LOCALIZED/share/cvsroot"

fi

Next I want to set up any user-specific binaries so that I can compile my own copy of a program and have that program be called in
place of the system-installed binary of the same name. In other words, this gives the user of this .profile the ability to mask system
binaries with his/her own copies. We’re implicitly creating search paths that start with the user’s binaries, followed by the system’s
(local) binaries and, finally, the OS binaries. One disadvantage of this is that sometimes upgrading the OS will cause the OS binaries
to be more up-to-date than the ones closer to the front of the search path. Note that this is done only if the HOME directory is not
the root, since /bin is already in the search path. Note also that we allow a user to have binaries that are OS-specific or even release-
specific. This is useful in a heterogeneous environment with shared user home directories.

Find my installed programs.
NOTE: If we boot up in single-user mode, home directory is root.

15June 2003 ;login: .PROFILE �

if test "$HOME" != "/"; then
I have even more control over these so they get prepended.
dirprelist PATH "$HOME/bin" "$HOME/bin/$OS_NAME" "$HOME/bin/$OS_NAME/$OS_RELEASE"
dirpre LD_LIBRARY_PATH "$HOME/lib"
dirapp MANPATH "$HOME/share/man"
findperlmanpages $HOME
dirapp INFOPATH "$HOME/share/info"
Set the Pretty Good Privacy filepath (where it finds its files).
setvardir PGPPATH "$HOME/pgp"
Set the cool Concurrent Version System repository directory.
setvardir CVSROOT "$HOME/share/cvsroot"

fi

Note that CVSROOT is being set here again and can thus override the earlier value based on the LOCALIZED dir.

Next I do some variable exporting which wouldn’t fit in easily to the above clauses:

There is no convenient place to do this above so do it here.
export INFOPATH
export LD_LIBRARY_PATH

Now that we have a complete PATH (among other things), I would like to set certain environment variables that want complete path
information. To this end, I create a shell function to find executables:

Echo the full file name of the executable in the path to stdout.
NOTE: All args are call-by-value.
findinpath () {

test "$#" -lt 2 && e2 "Usage: findinpath exe_basename path" && return 2
local f="$1"
local IFS=":$IFS"
set -- $2
while test "$#" -gt 0
do

test -x "$1/$f" && echo "$1/$f" && return 0
shift

done
return 1

}

This function searches a given path in much the same way that the shell and execlp(3) and execvp(3) do. It echoes the full pathname
to standard out. Now that we’ve got that ability, we set some variables with the pathnames of desired binaries (and a group of stan-
dard variables, too).

This is my preferred editor.
EDITOR=$(findinpath vi $PATH)
export EDITOR

This is the visual, or full-screen editor of choice.
VISUAL="$EDITOR"
export VISUAL

This is the editor for the fc built-in (for ksh).
FCEDIT="$EDITOR"
export FCEDIT

EX init file or commands (used in vi(1))
EXINIT="set tabstop=4 showmode"
export EXINIT

�

BE

ST
PR

A
C

TI
C

ES

Vol. 28, No. 3 ;login:16

TODO: is this test sufficient and correct?
test "$OS_NAME" = "NetBSD" && EXINIT="$EXINIT verbose"

This is my personal CVS working area.
setvardir CVSHOME "$HOME/dev/cvs"

TEMP is a temporary directory for many programs: cc gcc mailq merge newaliases sendmail rcs (and friends)
ghostscript i386-mach3-gcc perlbug perldoc
setvardir TEMP /var/tmp

TMPDIR is a temporary directory for these programs:
sort
NOTE: gcc tries TMPDIR, then TMP, then TEMP
setvardir TMPDIR /tmp

Use the large tmp dir for metamail.
setvardir METAMAIL_TMPDIR /var/tmp

BLOCKSIZE is the size of the block units used by several commands: df, du, ls
For more information see NetBSD environ(7).
BLOCKSIZE="1k"
export BLOCKSIZE

CVS_RSH lets us use ssh instead of rsh for client/server
CVS_RSH=$(findinpath ssh $PATH)
export CVS_RSH

The next step is to set the environment variable PAGER to either less or, failing that, more:

Set the pagination program for man, mailers, etc.
if PAGER=$(findinpath less $PATH); then

We found less, so set less options:
-M = more verbose than "more"
-f = force special files to be opened
LESS="-Mf"
export LESS

latin1 selects the ISO 8859/1 character set. latin-1 is the same as ASCII, except characters between 161
and 255 are treated as normal characters.
LESSCHARSET="latin1"
export LESSCHARSET

else
Every system should have this.
PAGER=$(findinpath more $PATH)

fi
export PAGER

Note that the conditional part of the if statement is true if and only if findinpath returns a true value.

Next comes the site-dependent clauses:

This is the site-dependent section.
case "$HOST_NAME" in

hostname*|*company.com)
NNTPSERVER=”news.company.com”
http_proxy=http://proxy.company.com:8000/
export http_proxy
;;

otherhostname*|*othercompany.com)
NNTPSERVER="nntp-server.othercompany.com"

http://proxy.company.com:8000/

17June 2003 ;login: .PROFILE �

;;
esac
export NNTPSERVER

I then print a fortune:

Show fortune for fun:
type fortune > /dev/null 2>&1 && fortune -a

Then I do some last-minute fixes for certain OSes:

OS-dependent fixes:

case "$OS_NAME" in
NetBSD*)

case "$OS_RELEASE" in
0*|1.0*|1.1)

MANPATH does not work in early releases of NetBSD
unset MANPATH
;;

esac
;;

esac

Next I have the terminal-handling routines:

Set up terminal and start X if appropriate.

Determine if we started under XDM.
if test -z "$DISPLAY"; then

If tset exists, use it to set up the terminal.
if type tset > /dev/null 2>&1
then

Set TERM and TERMCAP variables
if test "$TERM" = "pcvt25h" && test "$OS_NAME" = "NetBSD" && test "$OS_RELEASE" = "1.1A"
then

e2 "Skipping tset due to $OS_NAME termcap buffer overflow bug"
else

eval $(tset -s -m 'network>9600:?xter' -m 'unknown:?vt100' -m 'dialup:?vt100')
fi

fi

export LINES
export COLUMNS

This is OS-dependent terminal setup.
case "$OS_NAME" in
BSD)

if ispcvt 2> /dev/null
then
28 lines on screen, HP function keys, 80 columns
NOTE: due to bug in scon, it only sets the row/col
of ttys if it is done in two commands like so:
scon -s 28 && scon -H && scon -8
LINES=25
COLUMNS=80
else
TODO: Set up wscons.

�

BE

ST
PR

A
C

TI
C

ES

Vol. 28, No. 3 ;login:18

:
fi

Start X if we are on PCVT or WSCONS
case $(tty) in

/dev/ttyv*|/dev/ttyE*)
sx
;;

esac
;;

*)
Be conservative about screen if not known.
LINES=24
COLUMNS=80
;;

esac
fi

This rather large block has several functions. First, note that it is
only processed if we are not starting under XDM (which would
set DISPLAY to something). Next, it tests for the presence of
tset using the type built-in. If tset exists, it first makes sure it is
okay to use tset on this OS. Assuming it is, it tries to figure out
what kind of terminal we’re on. Note that tset -s actually pro-
duces shell commands that must be evaluated. For more infor-
mation see the tset man page.

After we have set up the terminal, it marks LINES and
COLUMNS as exported to child processes. Then we do some
OS-specific checks to see what kind of terminal we’re on, and if
we are on the console, we start X using a shell function sx. Note
that we put all the commands related to starting X in a shell
function, so we can invoke it from the command line as easily as
from .profile.

Finally, I end with a true value:

Exit with true value for "make test".
:

19June 2003 ;login:

�

PR

O
G

RA
M

M
IN

G

In our examination thus far of the C# language, we’ve

looked at the overall architecture and also discussed

some basics of compiling and executing programs. In

this column we’ll start to consider the various types that

C# offers.

C# is an object-oriented language, and its type system thus cen-
ters around system-provided and user-defined classes, classes
that represent an abstraction of some sort (such as a calendar
date or a geometric X,Y point). All the details of how classes
work cannot be covered in a single column, and we’ll touch on
them only briefly in this initial presentation.

Built-in Types
C# offers a standard set of built-in data types, such as short,
long, and double. These are similar to the corresponding types
in C/C++. They have a standard size; for example, long is 64
bits. Values of the char type hold a single Unicode character (16
bits); an 8-bit unsigned byte type exists as well.

One substantial difference from C is the provision of a decimal
type, in addition to the usual floating-point types float and
double. Floating-point arithmetic does poorly at handling deci-
mal calculations (e.g., payroll deductions), and the decimal type
offers an alternative. Here’s an example of where it matters:

using System;

public class Dec {
public static void Main() {

// add 0.1 to itself twice and compare to 0.3,
// using the double type

double dbl = 0.1;
if (dbl + dbl + dbl == 0.3)

Console.WriteLine("double is equal");
else

Console.WriteLine("double is unequal");

// the same, but using the decimal type

decimal dec = 0.1m;
if (dec + dec + dec == 0.3m)

Console.WriteLine("decimal is equal");
else

Console.WriteLine("decimal is unequal");
}

}

Using a double type, 0.1 added to itself three times does not
result in 0.3, due to floating-point representation problems: 0.1
is the sum of an infinite series of negative powers of two
(0.00110011001...) and therefore is not exactly representable in
floating-point format. The decimal type solves this problem
and is useful in areas such as financial calculations. Of course,
it’s a bit slower in execution.

Another difference from C is the string type. Here’s an example:

using System;

public class String {
public static void Main() {

string s = "testing";
Console.WriteLine(s);

}
}

A rich set of functions for manipulating strings is also available.

Type-Checking and Conversions
C# applies tighter type-checking rules to the use of built-in
types than C and C++. For example, in this code:

using System;

public class Conv {
public static void Main() {

ulong a = 0xffffffff;
uint b;

//b = a;
b = (uint)a;

}
}

an explicit cast is required to convert the unsigned long value to
unsigned int. Such conversion often represents a programming
mistake, and the programmer is required to specify explicitly
that the conversion is desired (and, presumably, to consider its
implications).

A related example is the use of Boolean expressions:

using System;

public class Bool {
public static void Main() {

int x = 100;

C# types
by Glen
McCluskey

Glen McCluskey is a
consultant with 20
years of experience
and has focused on
programming lan-
guages since 1988.
He specializes in Java
and C++ perfor-
mance, testing, and
technical documen-
tation areas.

glenm@glenmccl.com

LOOKING AT C# TYPES �

Vol. 28, No. 3 ;login:20

//if (x) {}
if (x != 0) {}

}
}

C# requires that the controlling expression in an if statement be
of Boolean type, not simply a numeric or pointer type that can
be checked against zero.

Boxing and Unboxing
What is the relation of built-in types like int to class types? In
some languages, there is no connection – the two kinds of types
have nothing in common.

C# approaches things a little differently. An automatic conver-
sion called “boxing” is supplied by the compiler in order to con-
vert a value of a built-in type to a class type. Let’s look at an
example:

using System;
using System.Collections;

public class Box {
public static void Main() {

// box an integer value

int n = 100;
object obj = n;

// unbox it

//n = obj;
n = (int)obj;

// add some integer values to a collection

ArrayList list = new ArrayList();
list.Add(1);
list.Add(2);
list.Add(3);
for (int i = 0; i < list.Count; i++)

Console.WriteLine(list[i]);
}

}

In the first part of the code, an object of the root class Sys-
tem.Object is initialized with an integer value (100). The con-
version involves creating a wrapper object of class type
System.Int32 for the integer value. In other words, an object of
the class System.Int32 is created and initialized with the value
100. Because this data type is part of the class hierarchy with
System.Object as its root, the assignment is valid.

Here’s some intermediate language output that illustrates what
is going on in the first part of the example:

IL_0000: ldc.i4.s 100

IL_0002: stloc.0
IL_0003: ldloc.0
IL_0004: box [mscorlib]System.Int32
IL_0009: stloc.1
IL_000a: ret

The boxing conversion is not without cost, but at the same time
eases programming. In the second part of the example, some
values of a built-in type are added to an ArrayList collection.
The collection requires values of “object” type, so the integers
are boxed automatically before being added to the collection.

The automatic boxing conversion, along with the existence of
wrapper classes such as System.Int32, implies that the distinc-
tion between built-in and class types is blurred to some extent.

Enumerated Types
C# also supports enumerated types, similar to those offered by
C. Here’s some code that defines an enum to represent the col-
ors red, green, and blue:

using System;

enum Color : byte {RED = 1, GREEN = 2, BLUE = 3}

public class Enum {
public static void Main() {

Color c = Color.GREEN;

//int i = c;
int i = (int)c;

Console.WriteLine(i);
}

}

The enum base type is byte, an unsigned value 0–255. Enum
types are not interchangeable with integral types; conversion
requires an explicit cast.

Class and Struct Types
The C# concept of a class is similar to that found in the C++
and Java languages. A class defines some data (which objects of
the class will contain) and operations on that data, expressed
through functions (“methods”) of the class. If you’re a C pro-
grammer, a class is a grouping of some data defined in a struct
coupled with some functions that operate on instances of the
struct. Data in objects is generally hidden or private, and acces-
sible only via the methods of the object’s class.

Let’s look at an example, one that uses a class to represent X,Y
points:

21June 2003 ;login:

�

PR

O
G

RA
M

M
IN

Gusing System;

public class PointClass {
private int x, y;

public PointClass(int x, int y) {
this.x = x;
this.y = y;

}
public int getX() {return x;}
public int getY() {return y;}

}

public struct PointStruct {
private int x, y;

public PointStruct(int x, int y) {
this.x = x;
this.y = y;

}

public int getX() {return x;}
public int getY() {return y;}

}

public class Struct {
public static void Main() {

PointClass pc = new PointClass(10, 20);
PointStruct ps = new PointStruct(30, 40);

}
}

The PointClass class defines private data members x and y,
along with a constructor to create new objects (a constructor is
denoted as a method with the same name as the class). There
are also getX and getY accessor methods, to access the x and y
values from a PointClass object.

In the Main method, an object of PointClass is created using the
new operator, and the constructor is called after space is allo-
cated from the heap. C# uses garbage collection, so you don’t
need to worry about explicitly freeing object space when you’re
done with it; garbage collection takes care of this for you auto-
matically.

PointStruct is a class that seems identical to PointClass, except
that it’s defined with a struct keyword instead of a class. What’s
the difference? A struct is a lighter-weight type than a class, with
some restrictions. For example, a struct cannot inherit from
another class or struct.

A really key difference is that a struct is a value type, whereas a
class is a reference type. In the example above, when an object
of PointStruct is allocated via the new operator, it’s allocated
from the stack, not the heap. Here’s some intermediate language
output that shows the difference between the two new calls:

IL_0000: ldc.i4.s 10
IL_0002: ldc.i4.s 20
IL_0004: newobj instance void PointClass::.ctor
IL_0009: stloc.0
IL_000a: ldloca.s V_1
IL_000c: ldc.i4.s 30
IL_000e: ldc.i4.s 40
IL_0010: call instance void PointStruct::.ctor
IL_0015: ret

When struct objects are passed to methods, they are passed by
value, with a copy made of the object. For example, in this code:

using System;

public class A { // class
public int x;

}

public struct B { // struct
public int x;

}

public class Struct2 {
public static void f(A aref, B bref) {

aref.x = 30;
bref.x = 40;

}

public static void Main() {
A aref = new A();
aref.x = 10;

B bref = new B();
bref.x = 20;

f(aref, bref);

Console.WriteLine("{0} {1}", aref.x, bref.x);
}

}

the values “30 20” are printed. The object of class A is passed by
reference, whereas the B object is passed by value. Method f can
modify the value of the A object in a way that’s visible outside
of f, because it has a pointer to the object. But f has only a copy
of the B object.

A struct is most useful for types that are very simple. If you’re
defining an X,Y point type, for example, it might be worth
using a struct instead of a class.

In future discussions, we’ll get into more detail of how classes
and structs work and look at related concepts such as interfaces
and abstract classes.

LOOKING AT C# TYPES �

22

Flash, or SWF, is an open-file format developed by Macrome-
dia. Flash files can contain executable code, raster and vector
images, and sounds in a variety of formats. Many people use
Flash for animated banner ads, online games, and more
advanced applications. Macromedia frequently refers to Flash
files as “movies,” but they can do much more than, say, AVI files.

Because Macromedia distributes a browser plug-in, running
(“playing”) a Flash file is as simple (for most people) as viewing
a Web page.

I think the executable code represents a tokenized and possibly
compiled version of an ugly scripting language Macromedia
calls “Lingo.” (Recent versions of Flash support scripting in
JavaScript, known as “ActionScript,” as well.) Supposedly the
code is confined so that it can’t communicate with arbitrary
network addresses from the executing machine, or with arbi-
trary code running on your machine, although it can commu-
nicate with JavaScript in a Web page that embeds it.

On my laptop, I can’t run Flash files, because although Macro-
media has released details on the file format, its “playing” soft-
ware is proprietary, although available gratis, and I don’t install
proprietary software on my laptop.

I also write a lot of cute little hacks and post them to kragen-
hacks, but few people run them, because it typically takes sev-
eral steps to install them. Many of them could be converted to
Flash without much loss, and then people could run them very
easily. But since Macromedia’s Flash-authoring tools are also
proprietary, I don’t install them.

So I took an inventory of the world’s Flash reading and writing
software (except for the proprietary stuff). The results follow.

Free SWF Tools for Producing and Viewing
Flash (2003-03-15)
DrawSWF, http://drawswf.sf.net – Java 1.4 drawing program
that draws in SVG and exports to SWF. The SWF library is
licensed under a BSD license. Not sure if it’s useful for arbitrary
animation creation, and it surely isn’t useful for editing existing
Flash files.

Tubesock, http://tubesock.sf.net – GTK/GNOME shockwave file
player. Looks dead as of mid-2002. Probably in C. They planned
a Mozilla plug-in eventually.

SWF Tools, GPL, http://www.quiss.org/swftools/ – a merging
tool (swfcombine); an extracting tool (swfextract); conversion
from PDF, JPEG, PNG, AVI, and WAV to SWF; a text parsing
tool called swfstrings; an SWF parser called swfdump; and
rfxswflib, a library for reading and writing SWFs. Some pretty
cool Flash files here, made with the SWF Tools, including a CGI
script that generates Flash files dynamically!

swfdec, http://swfdec.sf.net – a library for rendering Flash ani-
mations, including a GTK+ player (swf_play) and a Mozilla
plug-in. Might be why Tubesock died. Looks quite active.
Swfdec 0.2.0 is out. LGPL.

gplflash, http://www.swift-tools.com/Flash/ – a GPL library for
rendering Flash animations, also including a stand-alone player,
a plug-in, and a KDE screensaver. I have a feeling it’s out-of-
date. Don’t know if it really is.

svg2swf, http://www.eskimo.com/~robla/svg2swf/ – a Python
script that parses an SVG file using SAX and writes an SWF file
with the Ming library.

Ming, LGPL (according to Freshmeat), http://ming.sourceforge.
net (formerly http://www.opaque.net/ming/) – an SWF output
library in C with bindings for C++, PHP, Perl, Python, and
Ruby; as though development is active again.

Ming-Sharp, http://ming-sharp.sourceforge.net – an LGPL .NET
binding for Ming? Works with Mono. Says it supports “almost
all of Flash 4’s features, including shapes, gradients, bitmaps
(PNGs and JPEGs), morphs (‘shape tweens’), text, buttons,
actions, sprites (‘movie clips’), streaming MP3, and color trans-
forms – the only thing that’s missing is sound events.” Presum-
ably that means Ming supports all these too.

gAnim8, W3C free software license, http://ganim8.sf.net – a
“suite of tools” for viewing and editing movies, including SWF.
GTK. Looks actively developed. Apparently it uses ffmpeg to
write SWF files and can’t read them. In Python?

non-proprietary
flash solutions

Vol. 28, No. 3 ;login:

by Kragen Sitaker

Kragen Sitaker is a
multilingual hacker
who's used UNIX
since 1992, presently
consulting on server-
side Web software
development in San
Francisco. See
http://pobox.com/
~kragen/ for more.

kragen@pobox.com

http://drawswf.sf.net
http://tubesock.sf.net
http://www.quiss.org/swftools/
http://swfdec.sf.net
http://www.swift-tools.com/Flash/
http://www.eskimo.com/~robla/svg2swf/
http://ming.sourceforge
http://www.opaque.net/ming/
http://ming-sharp.sourceforge.net
http://ganim8.sf.net

23June 2003 ;login: THE TCLSH SPOT �

�

PR

O
G

RA
M

M
IN

G

Capturing and Analyzing IP
Packets on the AX-4000
Using AxTcl
Previous Tclsh Spot articles described building a pro-

gram for generating Ethernet packets and doing simple

validation tests on them.

This article explains how to use the Spirent/AdTech AX-4000 to
capture and analyze packets, report good/bad packet statistics,
and generate human-readable descriptions of the packets.

The AX-4000 (http://www.adtech-inc.com/) is a configurable
piece of hardware that can generate and analyze data packets on
four different transmission technologies (IP, ATM, Ethernet,
and Frame Relay) simultaneously at speeds up to 10 Gbps.

The AX-4000 can be configured with either a GUI or the
AdTech Tcl extension. The GUI is suitable for many purposes,
but the Tcl interface is ideal for situations where you want to
run the same test multiple times while modifying the test envi-
ronment.

The basic activity flow for an AdTech Tcl script is:

1. Load the AxTcl extension.
2. Initialize the connection to the AX-4000 controller.
3. Reserve an interface card set.
4. Create a generic interface object attached to the card set.
5. Create an analyzer or generator attached to the interface.
6. Configure the analyzer or generator.
7. Run the test.
8. Analyze the results.

As described in a previous Tclsh Spot article (;login:, Vol. 28 #1,
February 2003), this script will initialize the AX-4000 by load-

ing the extension, describe the location of the hardware defini-
tion (BIOS) files, lock an interface card set, and initialize it:

Define the base directory for the Spirent software.
set base "[file join [file dirname [info script]] ../..]"

Add directories to search for packages.
lappend auto_path . $base/bios/tcllib/xml $base/tclclib

Load the extension.
if {[catch {package require ax4kpkg}]} {

if {[catch {load $base/tclwin/libax4k.dll ax4kpkg}]} {
catch {load $base/tclclib/libax4k.so ax4kpkg}

}
}

Define the hardware bios directory.
ax hwdir $base/bios

Initialize the AX-4000.
ax init -remote $ipAddress -user clif -conout 1

Lock a device.
enet lock $deviceID $ipAddress $logicalID

Create and configure the interface to this card set.
interface create int1 $logicalID -ifmode IPoETHER

int1 set -mode normal -dataRate MBS10
int1 run

This code implements steps 1–4 of the basic activity flow and
can be copied into each application with little modification.

The AX-4000 can be used as either a packet generator or a
packet analyzer, or it can both analyze and generate.

The goal of this software is to validate the previously described
packet generator, so we must create an analyzer, but do not need
a generator object.

Syntax: analyzer create Name Device

analyzer create Create a new analyzer object.

Name The name to assign to the new analyzer.

Device The device to attach this analyzer name to.
This is the logical device that was locked in a
previous enet lock command.

The analyzer create command follows the paradigm used by Tk
to create image objects. It initializes a new analyzer data object,
and creates a new command to use to interact with that object.

The analyzer command supports many subcommands, includ-
ing:

analyzerName set option value
Sets one or more configuration options for this analyzer. Con-
figuration options vary for different analyzer cards.

by Clif Flynt

Clif Flynt is president
of Noumena Corp.,
which offers training
and consulting ser-
vices for Tcl/Tk and
Internet applications.
He is the author of
Tcl/Tk for Real Pro-
grammers and the
TclTutor instruction
package. He has
been programming
computers since
1970 and a Tcl advo-
cate since 1994.

clif@cflynt.com

the tclsh spot

http://www.adtech-inc.com/

Vol. 28, No. 3 ;login:24

analyzerName display
Returns a list of the current settings.

analyzerName run
Starts the analyzer running.

analyzerName reset
Stops the analyzer and clears all the statistics the analyzer can
gather.

analyzerName stop
Stops the analyzer but does not clear any values.

analyzerName destroy
Destroys the analyzer, freeing it for other use.

analyzerName stats
Returns a set of keyword/value pairs as a list. The exact return
depends on the analyzer being used.

analyzerName capture?subcommand
Configures the analyzer to capture packets.

The analyzerName stats command will return statistics about
the packets that have been seen (how many good, how many
with certain failures, average size, etc.). By collecting the starting
and ending statistics, we can show the statistics of line traffic
over a period of time.

The test application must control both the AX-4000 and the
script that generates packets. The packet-generating code could
be merged into the AX-4000 control script for testing, but it
makes more sense to keep the generating code as a separate pro-
gram, as it will be used in the final application.

There are two ways to execute another program from within a
Tcl script. You can open a pipe to the second program with the
open command, or, if your script just needs the program to run
and is not monitoring the output from the program, you can
use the exec command.

The exec command will execute an external program, and
whatever output that program would send to stdin or stdout
will be returned to the script as the exec return.

Syntax: exec ?-options? arg1 ?arg2...argn?

exec Execute arguments in a subprocess.

-options The exec command supports two options:

-keepnewline Normally a trailing new-
line character is deleted
from the program output
returned by the exec com-
mand. If this argument is
set, the trailing newline is
retained.

- - Denotes the last option. All subse-
quent arguments will be treated as
subprocess program names or argu-
ments.

arg These arguments can be either a program
name, a program argument, or a pipeline
descriptor.

This line of code will run the testGen.tcl application at the
proper time.

exec tclsh /home/clif/IP/PacketMaker/testGen.tcl

The packet generator should be started as soon as the AX-4000
has been configured. The AxTcl commands that configure the
AX-4000 might take several milliseconds to complete, as the
new configuration details are copied from the host machine to
the AX-4000.

Since the AxTcl configuration commands return immediately,
instead of waiting for all processing to be complete, the Tcl
script needs to pause after sending the setup commands before
continuing processing.

The Tcl after command provides access to a timer with millisec-
ond resolution. Like other Tcl event-driven programming sup-
port, this command allows the script to pause or to schedule a
future script.

Syntax: after milliseconds ?script?

after Pause processing of the current script, or
schedule a script to be processed in the
future.

milliseconds The number of milliseconds to pause the cur-
rent processing, or the number of seconds in
the future to evaluate another script.

script If this argument is defined, this script will be
evaluated after milliseconds have elapsed.

To ensure that the AX-4000 is ready, we must schedule a delay
between configuring the AX-4000 and generating packets and
between starting and stopping packet collection.

This can be done by simply pausing the application with a com-
mand like after 1000, but while the application is paused, it
does absolutely nothing: it doesn’t check for events, won’t
respond to keyboard input (except control-c), etc.

For code that might be embedded in an interactive application
(I actually put this code inside a GUI test harness), a better par-
adigm is to schedule events to happen in the future, and use the
vwait command to synchronize events.

25June 2003 ;login:

�

PR

O
G

RA
M

M
IN

GThe vwait command causes the interpreter to stop linear processing of a script until a variable is assigned a new value. While the
interpreter is waiting for the variable to change, it continues processing events.

Syntax: vwait varName

varName The variable name to watch. The script following the vwait command will be evaluated after the variable’s value is
modified.

The next example initializes an analyzer, starts the packet generator running, and collects five seconds’ worth of statistics.

Get the starting stats.
set anaStats1 [ana1 stats]

Start the analyzer.
ana1 run

Schedule the packet generator to start in 1 second.
Schedule a break to happen after 5 seconds of operation.

after 1000 {exec tclsh /home/clif/IP/PacketMaker/testGen.tcl}
after 6000 {set stop 1}

set stop 0
vwait stop

Stop the analyzer, get stats, and destroy it.
set anaStats2 [$analyzer stats]
$analyzer stop
$analyzer destroy

And unlock the device for the next user.
enet unlock $logicalID

genReport $anaStats1 $anaStats2

The analyzerName stats command will return the statistics as a list of key/value pairs. The foreach command can be used to step
through multiple lists, to collate results. The genReport procedure steps through the list of statistics saved before the application was
run, compares it to the results after, and only displays the values that changed.

proc genReport {stats1 stats2} {
foreach {key1 val1} $stats1 {key2 val2} $stats2 {

if {$val1 != $val2} {
append report [format “%-30s %12s %12s\n” $key1 $val1 $val2]

}
}

puts $report
}

The output from the code above resembles this:

ANALYZER STATS
-elapsedTime 3 5603
-totalPackets 0 800
-totalPacketBytes 0 67400
-goodPackets 0 500
-goodPacketBytes 0 38600
-goodDatagramBytes 0 26800
-totalPacketRate 0 212
-goodPacketRate 0 133
-goodPacketBitRate 0 82

THE TCLSH SPOT �

Vol. 28, No. 3 ;login:26

-goodDatagramBitRate 0.0 56.8
-lineRatePerc 0.00 1.93
-tcpPackets 0 300
-tcpRatio 0.00 0.38
-tcpChecksumErrors 0 200
-udpPackets 0 300
-udpRatio 0.00 0.38
-udpChecksumErrors 0 100
-icmpPackets 0 200
-icmpRatio 0.00 0.25
-ipPackets 0.00 800.00
-avgDatagramLength 0 54
-minDatagramLength 0 32
-maxDatagramLength 0 88
-avgPacketLength 0 77
-minPacketLength 0 64
-maxPacketLength 0 106
-substreamCount 0 4
-substreamErrorCount 0 2
-filterCount 1 5

These results show that 800 packets were generated, of which 300 were UDP packets, 200 were ICMP packets, and 300 were TCP
packets; 100 of the UDP packets and 200 of the TCP packets had checksum errors.

The generator program was configured to generate the packets described, so this result was expected. While good statistics are a good
start, to validate the generator, we should confirm that the checksum errors are all of the expected errors.

To analyze individual packets, we must first capture them. The analyzer is configured to capture packets with the analyzerName cap-
ture setup command.

Syntax: analyzerName capture setup -option value

capture setup Configure the capture rules.

-option value Option value pairs to configure the capture. Options include:

-segmentsize Num
Specifies the size in blocks of the captured segment. For OC-12c, a block is 2 kilobytes. For OC-48x, a
block is 4 kilobytes.

-qualifyEquation equation
Specifies the equation used to qualify the capture. The default is 1 (always true).

-triggerEquation equation
Specifies the equation used to trigger (start) the capture. Default is 1 (start capture immediately).

-triggerPosition Position
Defines when the capture will commence in relation to the trigger event. This will control whether the
packet that triggers capturing to start is also captured. May be one of: AFTER_START, BEFORE_CENTER,
AFTER_CENTER, or BEFORE_END.

There are many more options that can be used to define the conditions under which you want the AX-4000 to start capturing pack-
ets. These are enough for this fairly simple test.

The trigger and qualifying equations support logical operations, with multiple levels of parentheses allowing a script to define arbi-
trarily complex rules for packet capture. For example, you can define how many bad packets must be seen before capture starts, and
which types of packets will be captured after the capturing is triggered.

27June 2003 ;login:

�

PR

O
G

RA
M

M
IN

GTo test the packet generator, we want to capture all packets for as long as the test is running. Thus, the trigger and qualify equations
are trivial, just a TRUE value (1).

After the analyzer is running, the capture can be armed with the analyzerName capture arm command. This will cause the capture
subsystem to look at (but not necessarily capture) packets. Once the trigger condition is met, packets that match the qualifying rules
will be captured.

Syntax: analyzerName capture arm boolean

capture arm Turn on (or off) the capture subsystem.

boolean A boolean value. A True (1) will start the capture subsystem examining packets, and a False (0) will make the sub-
system stop examining packets.

This code will initialize the capture subsystem and start capturing packets:

Set up the capture buffer size.
The qualify and capture equations are both true.
Stat capturing as soon as the "arm" is set to 1.

ana1 capture setup -segmentSize 1024 \
-qualifyequation 1 \
-triggerPosition AFTER_START -triggerequation 1

Start capturing packets.
ana1 capture arm 1

Once a set of packets have been captured, the capture can be turned off by disarming the capture circuit with an analyzerName cap-
ture arm 0 command.

The next step is to analyze the captured data.

The analyzerName capture getdata command retrieves the captured packets from the AX-4000.

Syntax: analyzerName capture getdata ?option?

capture getdata Returns the captured data, or a requested subset of data, either as a list or in an array.

?-array arrayName Stores captured data in an array, instead of returning as a list. Elements are indexed numerically in the
order they were received.

start#-end# The start and end values are integers representing the first and last packet in the sequence to return.

The data is stored in the array as a keyword/value list, with keywords that include:

-timestamp
The absolute time in nanoseconds that the packet was received.

-indexNum
Numeric location of this packet in the packet stream (after trigger).

-eventFlags
A list of errors in the packet.

-payload
The packet data (as hex bytes).

With this return, we can check whether or not packets had errors and whether the data conforms to the expected values.

Retrieving the hex values of the packets allows us to do a bit-by-bit comparison between the packets we intended to generate and the
data that hit the wire. Doing this by hand is tedious and error-prone. The axdecode command will decode a data packet into
human-readable output.

THE TCLSH SPOT �

Vol. 28, No. 3 ;login:28

Syntax: axdecode protocol ?-option value?

-payload {<Tcl_list>} | -message “<message_string>”} | -dgram <datagram_object> | -hexstring “<hex_string>” | -file <filename>

protocol The protocol of the message to be decoded. May be one of: PPP, ARP, IP, IS-IS, NHRP, RARP, RTCP, BISUP, B-ICI,
or Q.2763.

-option value Options include:

-payload
The packet is a numeric list.

-message
The packet is a string of ASCII characters.

-datagram
The packet is a datagram object.

-hexstring
The packet is a string of hexadecimal digits.

-file
The packet is contained in the specified file.

In order to use the axdecode command, your script must know the type of packet being decoded and convert that value to an appro-
priate string.

The 12th and 13th bytes of an Ethernet II packet, or 20th and 21st bytes of an 802.3 packet, contain the 16-bit packet type. Convert-
ing these bytes to an ASCII string is a simple lookup operation, easily performed with an associative array.

The raw data consists of two hex bytes separated by a space. We normally use a single word for an associative array index. The two
hexadecimal bytes could be merged into a single 16-bit value with regsub or the newer string map commands. However, while it is
common practice to use a single word for an associative array index, this is not required. Any characters between the parentheses are
accepted as an index, so we can easily use two strings as an associative array index.

These two lines of code will define a lookup table and will set the variable type to the appropriate string for an Ethernet II data
packet and then display a decoded version of the packet.

Define a lookup table.
array set etherTypes { {08 00} IP {08 06} ARP {80 35} RARP }

Download captured data to associative array "array1".
ana1 capture getdata -array array1

Extract first packet from array of captured packets.
array set packet $array1(0)

Convert bytes 12 and 13 to a string.
set type $etherTypes ([lrange $packet(-payload) 12 13])

Extract the IP packet from the Ethernet II packet.
set payload [lrange $packet(-payload) 14 end]

Display the decoded output.
puts [axdecode $type -hexstring $payload]

This code would generate output like this for an ICMP Address Mask Request packet with a bad checksum field:

29June 2003 ;login:

�

PR

O
G

RA
M

M
IN

G-summary {IPv4-<ICMP-<address mask request}
-decode {
<0000, 0032, 01> | ---- packet: IP ----
<0000, 0020, 02> | ---- packet: IP PDU ----
<0000, 0014, 03> | ---- packet: IP header ----
<0000, 0001, 03> | {0100}= 04h [004d] version: IP Internet Protocol
<0000, 0001, 03> | {.... 0101}= 05h [005d] header length: in 32 bit units, must be 5 or more
<0001, 0001, 04> | ---- packet: flags ----
<0001, 0001, 04> | {000.}= 00h [000d] precedence field: Routine
<0001, 0001, 04> | {...0}= 00h [000d] minimize delay: normal delay
<0001, 0001, 04> | {.... 0...}= 00h [000d] maximize throughput: normal throughput
<0001, 0001, 04> | {.... .0..}= 00h [000d] maximize reliability: normal reliability
<0001, 0001, 04> | {.... ..0.}= 00h [000d] minimize monetary cost: normal monetary cost
<0001, 0001, 04> | {.... ...0}= 00h [000d] unused: must be 0
<0001, 0001, 04> | ---- end of packet: flags ----
<0002, 0002, 03> | 00-20 = 20h [032d] total length: in octets include header length, must not

be less than 20
<0004, 0002, 03> | 00-02 = 02h [002d] identification
<0006, 0001, 03> | {0...}= 00h [000d] reserved: valid
<0006, 0001, 03> | {.0..}= 00h [000d] Don’t Fragment: May Fragment
<0006, 0001, 03> | {..0.}= 00h [000d] More Fragments: Last Fragment
<0006, 0002, 03> | fragment offset:
<0006, 0001, 03> | {...0 0000}= 00h [000d] bits 12-8
<0007, 0001, 03> | {0000 0000}= 00h [000d] bits 7-0
<0006, 0002, 03> | fragment offset = 00h [000d]: in 64 bits units
<0008, 0001, 03> | {0010 0000}= 20h [032d] time to live: seconds
<0009, 0001, 03> | {0000 0001}= 01h [001d] protocol: ICMP (Internet Control Message)
<000A, 0002, 03> | 07-78 = 778h [1912d] header checksum: checksum is correct
<000C, 0004, 03> | 192.168.9.2 source ip address
<0010, 0004, 03> | 192.168.9.17 destination ip address
<0000, 0014, 03> | ---- end of packet: IP header ----
<0014, 000C, 03> | ---- packet: IP datagram ----
<0014, 000C, 04> | ---- packet: ICMP ----
<0014, 0001, 04> | {0001 0001}= 11h [017d] type: address mask request
<0015, 000B, 05> | ---- packet: address mask request ----
<0015, 0001, 05> | {0000 0000}= 00h [000d] code:
<0016, 0002, 05> | EE-99 = EE99h [61081d] checksum: checksum is incorrect, expected

EEFCh [61180d]
<0018, 0002, 05> | 00-01 = 01h [001d] identifier
<001A, 0002, 05> | 00-02 = 02h [002d] sequence number
<001C, 0004, 05> | 0.0.0.0 mask
<0015, 000B, 05> | ---- end of packet: address mask request ----
<0014, 000C, 04> | ---- end of packet: ICMP ----
<0014, 000C, 03> | ---- end of packet: IP datagram ----
<0000, 0020, 02> | ---- end of packet: IP PDU ----
<0020, 0012, 01> | packet pad:
<0020, 0010, 01> | 0000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 28 79 |(y
<0030, 0002, 01> | 0010: E3 C2 | ..
<0000, 0032, 01> | ---- end of packet: IP ----
}

Note that the decoded packet shows an ICMP packet with a checksum error in the payload, but the stats command reported no
ICMP errors.

The output from tcpdump also shows an error:

THE TCLSH SPOT �

Vol. 28, No. 3 ;login:30

01:08:11.848609 192.168.9.2 < 192.168.9.17: icmp: address mask request
(wrong icmp csum) (ttl 32, id 2, len 32)

4500 0020 0002 0000 2001 0778 c0a8 0902
c0a8 0911 1100 ee99 0001 0002 0000 0000

The code that generated this packet is shown below. It will generate a packet with a checksum error in the payload and a correct
checksum in the IP header. The packet-generating code was described in the previous Tclsh Spot article. Initializing the checksum to
a non-zero value will generate an invalid checksum.

Generate a bad checksum icmp Address Mask Request
set icmp2 [packet::make ICMP type ICMP_ADDRESS code 0 checksum 99 identifier 1 \

sequence 2 subnet 00]

set ip2 [packet::make IP version 4 hdrlen 5 tos 0 length 32 id 2 flag 0 \
offset 0 ttl 32 protocol ICMP checksum 0 source \
192.168.9.2 dest 192.168.9.17 options {} payload [$icmp2 getField packet]]

set ep2 [packet::make ETHER dest 00:E0:4C:00:14:4D src 00:A0:CC:D1:B6:00 \
type IP payload [$ip2 getField packet]]

The AX-4000 packet scans don’t examine payloads. The analyzerName stats command returns no IP errors because there are no
packets with bad IP checksums. The axdecode and tcpdump -s 15000 -l -x -n -v -i eth1 commands examine the payload and report
the internal errors. (A simpler tcpdump -li eth1 command misses the error condition.)

While validating and debugging the packet generator, it’s useful to get not only the error report (which tcpdump provides) but also
the expected value (as reported by axdecode).

The ability to get a human-readable output becomes more important when we get to confirming more complex packets like the
ICMP Destination Unreachable message, which includes the IP header and part of the payload of the packet that failed to reach a
destination.

This code will generate a TIMESTAMP request, package it into an IP packet, and then use that IP packet as the body for an ICMP
ICMP_DEST_UNREACH message.

Generate a good icmp TIMESTAMP request
set icmp1 [packet::make ICMP type ICMP_TIMESTAMP code 0 \

checksum 0 identifier 1 sequence 2 \
originate 0x98765430 receive 0x98765431 transmit 0x98765432]

set ip1 [packet::make IP version 4 hdrlen 5 tos 0 length 32 id 2 flag 0 \
offset 0 ttl 32 protocol ICMP checksum 0 source \
192.168.9.2 dest 192.168.9.17 options {} \
payload [$icmp1 getField packet]]

set pld1 [$ip1 getField packet]

Make a good DESTINATION UNREACHABLE icmp message, using the
previous IP Packet for the body.

set icmp2 [packet::make ICMP type ICMP_DEST_UNREACH \
code ICMP_DEST_UNREACH.ICMP_NET_UNREACH \
checksum 0 zero 0 ipHeader [lrange $pld1 0 19] \
payloadHeader [lrange $pld1 20 27]]

set ip2 [packet::make IP version 4 hdrlen 5 tos 0 \
length [expr 20 + [llength $pld]] id 2 flag 0 \
offset 0 ttl 32 protocol ICMP checksum 0 source \
192.168.9.2 dest 192.168.9.17 options {} \
payload [$icmp2 getField packet]]

31June 2003 ;login:

�

PR

O
G

RA
M

M
IN

GThis generates a lengthy description of the packet, which is much more readable than the tcpdump hex display of the packet con-
tents.

<0000, 003C, 01> | ---- packet: IP ----
<0000, 0038, 02< | ---- packet: IP PDU ----
<0000, 0014, 03> | ---- packet: IP header ----
<0000, 0001, 03> | {0100}= 04h [004d] version: IP Internet Protocol
<0000, 0001, 03> | {.... 0101}= 05h [005d] header length: in 32-bit units, must be 5 or more
<0001, 0001, 04> | ---- packet: flags ----
<0001, 0001, 04> } {000.}= 00h [000d] precedence field: Routine
<0001, 0001, 04> | {...0}= 00h [000d] minimize delay: normal delay
<0001, 0001, 04> | {.... 0...}= 00h [000d] maximize throughput: normal throughput
<0001, 0001, 04> | {.... .0..}= 00h [000d] maximize reliability: normal reliability
<0001, 0001, 04> | {.... ..0.}= 00h [000d] minimize monetary cost: normal monetary cost
<0001, 0001, 04> | {.... ...0}= 00h [000d] unused: must be 0
<0001, 0001, 04> | ---- end of packet: flags ----
<0002, 0002, 03< | 00-38 = 38h [056d] total length: in octets include header length, must not

be less than 20
<0004, 0002, 03< | 00-02 = 02h [002d] identification
<0006, 0001, 03< | {0...}= 00h [000d] reserved: valid
<0006, 0001, 03< | {.0..}= 00h [000d] Don’t Fragment: May Fragment
<0006, 0001, 03< | {..0.}= 00h [000d] More Fragments: Last Fragment
<0006, 0002, 03< | fragment offset:
<0006, 0001, 03< | {...0 0000}= 00h [000d] bits 12-8
<0007, 0001, 03< | {0000 0000}= 00h [000d] bits 7-0
<0006, 0002, 03< | fragment offset = 00h [000d]: in 64-bit units
<0008, 0001, 03< | {0010 0000}= 20h [032d] time to live: seconds
<0009, 0001, 03< | {0000 0001}= 01h [001d] protocol: ICMP (Internet Control Message)
<000A, 0002, 03< | 07-60 = 760h [1888d] header checksum: checksum is correct
<000C, 0004, 03> | 192.168.9.2 source IP address
<0010, 0004, 03> | 192.168.9.17 destination IP address
<0000, 0014, 03> | ---- end of packet: IP header ----
<0014, 0024, 03> | ---- packet: IP datagram ----
<0014, 0024, 04> | ---- packet: ICMP ----
<0014, 0001, 04> | {0000 0011}= 03h [003d] type: destination unreachable
<0015, 0023, 05> | ---- packet: destination unreachable ----
<0015, 0001, 05> | {0000 0000}= 00h [000d] code: network unreachable
<0016, 0002, 05> | C2-F7 = C2F7h [49911d] checksum: checksum is correct
<0018, 0004, 05> | 00-00-00-00 = 00h [000d] unused
<001C, 001C, 06> | ---- packet: IP packet caused error ----
<001C, 001C, 07> | ---- packet: IPv4 ----
<001C, 001C, 08> | ---- packet: IP PDU ----
<001C, 0014, 09> | ---- packet: IP header ----
<001C, 0001, 09> | {0100}= 04h [004d] version: IP Internet Protocol
<001C, 0001, 09> | {.... 0101}= 05h [005d] header length: in 32-bit units, must

be 5 or more
<001D, 0001, 0A> | ---- packet: flags ----
<001D, 0001, 0A> | {000.}= 00h [000d] precedence field: Routine
<001D, 0001, 0A> | {...0}= 00h [000d] minimize delay: normal delay
<001D, 0001, 0A> | {.... 0...}= 00h [000d] maximize throughput: normal

throughput
<001D, 0001, 0A> | {.... .0..}= 00h [000d] |maximize reliability: normal

reliability
<001D, 0001, 0A> | {.... ..0.}= 00h [000d] minimize monetary cost: normal

monetary cost

THE TCLSH SPOT �

Vol. 28, No. 3 ;login:32

<001D, 0001, 0A> | {.... ...0}= 00h [000d] unused: must be 0
<001D, 0001, 0A> | ---- end of packet: flags ----
<001E, 0002, 09> | 00-20 = 20h[032d] total length: in octets include header

length, must not be less than 20
<0020, 0002, 09> | 00-02 = 02h [002d] identification
<0022, 0001, 09> | {0...}= 00h [000d] reserved: valid
<0022, 0001, 09> | {.0..}= 00h [000d] Don't Fragment: May Fragment
<0022, 0001, 09> | {..0.}= 00h [000d] More Fragments: Last Fragment
<0022, 0002, 09> | fragment offset:
<0022, 0001, 09> | {...0 0000}= 00h [000d] bits 12-8
<0023, 0001, 09> | {0000 0000}= 00h [000d] bits 7-0
<0022, 0002, 09> | fragment offset = 00h [000d]: in 64 bits units
<0024, 0001, 09> | {0010 0000}= 20h [032d] time to live: seconds
<0025, 0001, 09> | {0000 0001}= 01h [001d] protocol: ICMP (Internet Control

Message)
<0026, 0002, 09> | 07-78 = 778h [1912d] header checksum: checksum is correct
<0028, 0004, 09> | 192.168.9.2 source IP address
<002C, 0004, 09> | 192.168.9.17 destination IP address
<001C, 0014, 09> | ---- end of packet: IP header ----
<0030, 0008, 09> | ---- packet: IP datagram ----
<0030, 0008, 0A> | ---- packet: ICMP ----
<0030, 0001, 0A> | {0000 1101}= 0Dh [013d] type: timestamp request
<0031, 0007, 0B> | ---- packet: timestamp request ----
<0031, 0001, 0B> | {0000 0000}= 00h [000d] code:
<0032, 0002, 0B> | 2D-05 = 2D05h [11525d] checksum: checksum is incorrect,

expected 5284h [21124d]
<0034, 0004, 0B> | 00-01-00-02 = 10002h [65538d] Originate Timestamp
<0031, 0007, 0B> | ---- end of packet: timestamp request ----
<0030, 0008, 0A> | ---- end of packet: ICMP ----
<0030, 0008, 09> | ---- end of packet: IP datagram ----
<001C, 001C, 08> | ---- end of packet: IP PDU ----
<001C, 001C, 07> | ---- end of packet: IPv4 ----
<001C, 001C, 06> | ---- end of packet: IP packet caused error ----
<0015, 0023, 05> | ---- end of packet: destination unreachable ----
<0014, 0024, 04> | ---- end of packet: ICMP ----
<0014, 0024, 03> | ---- end of packet: IP datagram ----
<0000, 0038, 02> | ---- end of packet: IP PDU ----
<0038, 0004, 01> | 0007: 00 BE 9F BA | = BE9FBAh [12492730d] packet pad
<0000, 003C, 01> | ---- end of packet: IP ----

Note that the innermost ICMP checksum is reported as being incorrect. This is because the packet analysis program is recalculating
the checksum on the incomplete ICMP message.

In terms of using an AX-4000, this is a trivial application. The equipment is capable of monitoring and collecting data on a much
more complex set of rules. However, it’s a useful tool for testing and validating this application, which is the point of this exercise.

As usual, the code described in this article is available at http://www.noucorp.com.

http://www.noucorp.com.

33June 2003 ;login:

practical perl:
keeping it simple

PRACTICAL PERL �

�

PR

O
G

RA
M

M
IN

G

CPAN modules are a great way to construct a program

by reusing existing components. However, gluing CPAN

modules together is certainly not the only way to write

a Perl program. In some cases, it is both simpler and

easier to write a program without using CPAN modules.

After all, with or without CPAN, Perl is still a great lan-

guage for text hacking, automation, and application

glue.

Building a program using CPAN modules is a great way to start
writing a new program, and a great way to reduce development
time. However, using CPAN modules adds dependencies that
can complicate deployment. Remember that a program will not
run unless all of its required modules are installed. In some
extreme cases your program may run, but it will exhibit buggy
behavior because it uses an older version of a module depen-
dency. Although these issues are not insurmountable, they are
worthy of consideration, especially in situations where a pro-
gram will be installed both widely and often.

Dave Cross’ NMS project (http://nms-cgi.sourceforge.net) is a
perfect example. Dave wanted to write replacement programs
for the ancient, buggy, insecure yet popular scripts found on
Matt’s Script Archive. Dave’s replacement programs are targeted
at unsophisticated users who want to add a stock feature on a
Web site. Many of these users are not Perl programmers, nor do
they wish to learn Perl just to install a silly guest-book script.
The NMS programs use standard Perl features and core mod-
ules that are distributed with Perl, and have no dependencies on
any modules found on CPAN. This makes it easy for users to
just drop a file in their cgi-bin directory and get something that
“just works.”

I came across a similar situation recently. I maintain an online
journal (Web log) called “use Perl,” a community Web site for
Perl programmers (my journal can be found at http://use.perl.
org/~ziggy/journal/). I also receive email notifications when my
friends post entries in their journals. I don’t always have time to
read these journals when they are posted, and often a few dozen
will accumulate while I am busy working on a project. So I

wrote a quick little program to download the email notifica-
tions so that I can catch up on my backlog as quickly as possi-
ble.

I use procmail at my ISP to store all email notifications of “use
Perl” journal postings in a separate mailbox. The easiest way for
me to automate viewing a few dozen journal entries at a time is
to download the mailbox file, extract the entry URL in each
message, and load it in a Web browser. This certainly isn’t the
most important program I have ever written, but it does exhibit
two virtues of being a programmer: laziness and impatience.
After all, I do not want to spend hours at a time scanning
through old journal entries. I’d rather read these messages as
quickly as possible and move on to more interesting tasks.

First Attempt: Use CPAN Modules
I wrote my first view-useperl script about two years ago. I think
it took all of 10 minutes to write. The process it automates is
quite simple: Download a mailbox from my ISP, get the first
URL in the body of each message in the mailbox, and display
each URL in turn. I started by looking around CPAN, and I
found Mark Overmeer’s Mail-Box distribution. This distribu-
tion contains the Mail::Box and Mail::Box::Manager modules,
which handle the key task of parsing a mailbox into a series of
messages. I’ve used it before, and it suited my needs for this
quick hack.
The first version of my view-useperl script looked something
like this:

#!/usr/bin/perl -w

use strict;
use Mail::Box::Manager;

(1) Download the mailbox from the ISP.
my $mbox = "/tmp/useperl.$$";
system("scp $ENV{USEPERL_MAILBOX} $mbox")

and die "Error downloading mailbox.\n";

(2) Open the temporary mailbox.
my $manager = new Mail::Box::Manager;
my $folder = $manager->open(folder => $mbox);

(3) Convert the mailbox from a list of messages
to a list of URLs. (Find the first URL in each message
body.)
my $i = 0;
my @urls;

while(1) {
my $msg = $folder->message($i++);
last unless $msg;

$msg->body() =~ m/(http:.*?)$/sm;
push(@urls, $1);

}

by Adam Turoff

Adam is a consultant
who specializes in
using Perl to manage
big data. He is a
long-time Perl Mon-
ger, a technical editor
for The Perl Review,
and a frequent pre-
senter at Perl confer-
ences.

ziggy@panix.com

http://nms-cgi.sourceforge.net
http://use.perl

Vol. 28, No. 3 ;login:34

(4) Close and delete the temporary mailbox.
$folder->close();
unlink($mbox);

(5) Show the URLs, one at a time.
foreach my $url (@urls) {

print $url;
system “open '$url'";
<>;

}

The main body of this script starts in part (1) by copying the
mailbox from my ISP to a local file. The remote location of the
mailbox containing my use.perl.org notifications is stored in an
environment variable, USEPERL_MAILBOX. I use this tech-
nique to avoid hard-coding sensitive information in my source
code. Because the location is stored in an environment variable,
I can publish the source code without requiring other users to
edit the program text in order to customize it.

The system call may seem counterintuitive at first. That’s
because system is unlike normal Perl primitives, like open, that
return true on success and false on failure. Instead, system
returns a nonzero failure code (true), and a zero value (false) to
indicate success. This is consistent with the behavior of the sys-
tem call in the standard C library. Although it made sense for
Perl to adopt the C-style behavior many years ago when most
Perl programmers had some background in C, the situation is
quite the opposite today. Perl6 will reverse this legacy behavior
so that the standard “open or die” idiom can be used with sys-
tem as well, and do away with the current, counterintuitive
“system and die” usage.

The code in part (2) creates a Mail::Box object to scan through
the messages in the mailbox I just downloaded. The Mail::Box
interface requires that I first create a manager object, and use a
factory method on that object to create a folder object, $folder.

The while loop grabs each email message in the folder, one at a
time, and terminates when there are no more messages to
retrieve. It then locates the first URL in each message body, and
appends that to a list of URLs.

Part (4) is some basic housekeeping code to close the folder
object and delete the local copy of the mail folder.

The real value of this program is found in part (5). Finally, I
have a list of URLs I want to load in my browser. Because
MacOS X is my platform of choice, I use the standard open
command to open each URL. This command will intelligently
open a filename using the appropriate application. In this case,
when I pass a URL to the open command, it will load that Web
page in my preferred Web browser. On another system, I could
write a small program called open that is just smart enough to

take a URL and load it in a Web browser. Alternatively, I could
replace open with a mozilla -remote or similar command.

I usually run this program when a few dozen emails have accu-
mulated in my mailbox. Opening a few dozen browser windows
all at once is a great way to consume a lot of memory, saturate
my network connection, and generally make my computer quite
sluggish. Instead, I ask for a line of input after each Web page is
loaded. This allows me to load URLs quickly, yet only open a
few at a time. The input is irrelevant, so a simple return will
allow the program to continue and load the next URL.

Problems with Dependencies
As I mentioned before, I wrote this script about two years ago.
Since then, my main computer died, I purchased a replacement,
reinstalled an OS on my laptop a few times, and have at least
two Perl installations on each machine I regularly use (both ver-
sion 5.6.x and 5.8.0). From a systems management perspective,
it’s been an eventful few months.

My view-useperl script is always one of the first things I install
in my home directory on a new machine. With all of the shuf-
fling, I’ve come to regret using Mail::Box for this little script.
After all, if it only took 10 minutes to write, why should I need
to spend another few minutes on each new machine to install a
dependency when I use my program on a new machine?
Mail::Box certainly is not a bad module, but this is the only pro-
gram I use that requires it. Eliminating the dependency will
make it easier to copy my script around as I switch machines
(and Perl installations).

Once I came to this realization, I saw it was time to rewrite my
program to not use Mail::Box anymore, and just process the
mailbox files directly.

Second Attempt: No CPAN Modules
Mail messages in a mailbox file start with a line that contains
the word From, a space, an email address, and a date. (This is
why a line in the body of an email message that begins with
“From” usually has a “>” character preceding it.) Mail messages
are also separated by a blank line preceding the From line.

With this information at hand, I decided to rewrite view-
useperl. I can view a mailbox file as a series of email records,
and then use standard Perl operators to convert a mailbox file
into a sequence of relevant URLs.

The email messages I am processing are consistently formatted.
The first URL in each message is the location of the journal
entry I want to view. Also, there are no URLs found in the mes-
sage headers, so I don’t even need to bother splitting the mes-
sage header from the message body. The first URL I encounter

35June 2003 ;login:

�

PR

O
G

RA
M

M
IN

Gin each message will be the URL I want to view. Subsequent
URLs will appear in each message, and they should be ignored.

Here is the updated view-useperl script that takes advantage of
these observations:

#!/usr/bin/perl -w

use strict;

sub read_mailbox {
my $mbox = shift;

Read a sequence of messages,
delimited by a blank line and 'From'.
local $/ = "\n\nFrom ";

open(my $fh, $mbox);
my @urls = map {m/(http:.*?)$/sm; $1} <$fh>;
close($fh);
unlink $mbox;

return @urls;
}

(1) Download the mailbox from the ISP.
my $mbox = "/tmp/useperl.$$";
system("scp $ENV{USEPERL_MAILBOX} $mbox")
and die "Error downloading mailbox.\n";

(2) Read the URLs found in the mailbox.
my @urls = read_mailbox($mbox);

(3) View each URL in turn.
foreach my $url (@urls) {

print $url;
system "open '$url'";
<>;

}

Not only does this program avoid CPAN modules, but it is
slightly shorter and a little easier to read. Because it does not
have any external dependencies, I can expect it to work wher-
ever I copy it (so long as I define my USEPERL_MAILBOX envi-
ronment variable).

The overall structure of this is unchanged. First, fetch the mail-
box. Next, convert a set of email messages to a list of URLs.
Finally, display the URLs, one at a time. And this sequence of
steps is clearly stated in the main program text. The more com-
plicated process of converting a mailbox into a list of URLs is
now handled by an appropriately named sub, read_mailbox.
This sub eliminates the need to create Mail::Box objects, yet it
performs the same task: converting a mailbox into a set of email
messages, extracting the first URL from each message, and
returning a list of URLs.

The first thing read_mailbox does is modify the input record
separator, stored in the $/ special variable. This variable con-

tains a new-line character by default, and that is why file input
operations generally occur one line at a time. Because a mailbox
is nothing more than a concatenation of email messages, I can
specify a sequence of characters found between email messages
as a record separator. When I read the mailbox file in list con-
text, I receive a meaningful list of email messages, not a mean-
ingless list of lines in a file.

The $/ variable is used globally within a Perl program. Chang-
ing its value is bad style, unless changes are localized to a spe-
cific scope. Here, the statement local $/ = "\n\nFrom " modifies
the value of the input record separator within the read_mailbox
sub and any subs that it calls. When read_mailbox exits, the pre-
vious value of $/ is restored. This is important, because the con-
sole input operation at the end of the program expects the
record separator to be a new line, not "\n\nFrom ".

Now that $/ has been modified appropriately, reading messages
is a breeze. First, I open the local copy of the mailbox. Next, I
read the mailbox in as a list of messages (my @urls =
<$fh>;). But the messages themselves aren’t very mean-
ingful in this particular program. In fact, each message is just a
stream of meaningless text, followed by a URL, followed by
more meaningless text. The map operation transforms the list
of email messages read in from <$fh>; and replaces each
chunk of text with the first URL in that chunk. These URLs are
then gathered together into the list @urls.

In effect, a few lines of module initialization and method calls
in the original program are replaced with one line to reset the
value of $/ and one line to read and convert a mailbox into a list
of URLs. This is the power of Perl.

Observations
CPAN is certainly the best thing that has ever happened to Perl.
However, Perl without CPAN is not too shabby. Sometimes, the
easiest or the best solution to a problem is to avoid CPAN. In
the example of my view-useperl program, the before and after
versions are equally good. However, the modified version has a
very attractive property – it does not require me to install
Mail::Box on each new computer I use.

The reason why I chose to avoid Mail::Box has nothing to do
with the quality of that module, but just reflects the desire to
remove an external dependency for view-useperl. If my little
program were doing something more complicated, like deleting
some messages in a mailbox file, or selecting messages based on
header characteristics, then I certainly would have kept using it.
Instead, I chose to rewrite this program as a common needle-
in-a-haystack type of solution. The fact that the data file was a
mailbox is largely irrelevant here.

PRACTICAL PERL �

Vol. 28, No. 3 ;login:36

There are other circumstances where avoiding CPAN modules
is simply unwise. When using a relational database, there’s no
good reason to avoid the DBI family of modules. Similarly,
there’s no reason to start with raw socket programming to fetch
Web pages when the LWP library has been doing a great job for
many years. And the list goes on and on.

Conclusion
Whether you are writing a quick hack or a program of signifi-
cant size, there are many very good reasons to start with CPAN
modules to make your job easier. However, there are also some
circumstances where there are benefits to avoiding CPAN mod-
ules. Remember that both options are available to you. Choose
wisely.

USENIX and SAGE Need You
People often ask how they can contribute. Here is a list of tasks for which we hope to find
volunteers.

The SAGEwire and SAGEweb staff are seeking:

� Interview candidates
� Short article contributors (see http://sagewire.sage.org)
� White paper contributors for topics like these:

Back-ups Emerging technology Privacy
Career development User education/training Product round-ups
Certification Ethics SAGEwire
Consulting Great new products Scaling
Culture Group tools Scripting
Databases Networking Security implementation
Displays New challenges Standards
Email Performance analysis Storage
Education Politics and the sysadmin Tools, system

� Local user groups: If you have a local user group affiliated (or wishing to affiliate) with SAGE, please email the particulars to
kolstad@sage.org so they can be posted on the Web site.

;login: always needs conference summarizers for USENIX conferences. Contact Alain Hénon, ah@usenix.org, if you’d like to help.

http://sagewire.sage.org

37June 2003 ;login:

�
SE

C
U

RI
TYSummertime, but is the living easy? As I write, the world is in turmoil, reel-

ing from the effects of the past two US national elections. A very un-

Republican interest in world affairs, coupled with increased repression in the

“homeland” the neo-conservatives claim to be defending. Even the term

“homeland” conjures up connections with another country which used the

term "motherland."

For an example of repression, consider the Pennsylvania law that permits the attorney
general to force worldwide Internet service providers to block access to a list of IP
addresses. The intent of this law is lofty – to deny access to sites containing child
pornography. But the side-effects include blocking access to any site co-hosted at the
blocked IP address. The attorney general of Pennsylvania has refused to release this list
of addresses, claiming this would be tantamount to providing access to child pornog-
raphy. I wonder how this can be true if those addresses have been blocked?

Other non-American news sites have been blocked, whether from vigilante activity or
perhaps some unannounced official interference. Democracy relies on freedom of
speech, and blocking access to news sites that contain information that does not agree
with a particular perspective is un-American.

And the economy? Let’s not go there.

Instead, I’d like to write about Sendmail. Twice in March 2003, buffer overflows were
revealed in Sendmail. It is hard to imagine that anyone reading this column wouldn’t
be aware of this, as most sysadmins (and those running their own UNIX/Linux sys-
tems) scrambled to get patches installed on all systems running Sendmail. With Send-
mail running as root, and accessible through firewalls (or via internal relays, which
would work just as well), there were lots of vulnerable systems around.

Connecting to Sendmail from the network can provide useful information:

220 spirit.com ESMTP Sendmail 8.12.8p1/8.12.10; [date removed]

Installing the patches provided by the Sendmail Consortium does update the version
number and patch level received when you connect to port 25/tcp. The second part of
the version information comes from whatever you have entered in the sendmail.cf file
(or the macros that are used to construct it) to define the Z macro. I decided that my
version of Sendmail would be a bit more advanced than most...

The first buffer overflow appeared in the crackaddr() function, which Sendmail uses to
canonicalize addresses. The non-patched version was quite complex, and that was
where the trouble lay. Each time a left angle-bracket was seen, a flag was set, and the
number of bytes should have been decremented by one – but wasn’t. When the right
angle-bracket was encountered, the counter got incremented by one, making the over-
flow possible.

The Polish hacking group Last Stage of Delirium came up with an example exploit
that would only work on Slackware 8. To be honest, a lot of us spent time trying to
crash our versions of Sendmail just to see if they were vulnerable. Upgrading to Send-
mail 8.12.8 meant (for many sites) upgrading to a new version of the config file as
well, version 10. So the easiest path, replacing the Sendmail binary with the newest ver-
sion, was not easy.

The LSD exploit hadn’t been posted to their Web site (http://lsd-pl.net) but was posted
to Bugtraq and archived there when I wrote this: (http://archives.neohapsis.com/
archives/bugtraq/2003-03/0054.html). The exploit involves sending 138 pairs of <>s,

musings
by Rik Farrow

Rik Farrow provides
UNIX and Internet
security consulting
and training. He is
the author of UNIX
System Security and
System Administra-
tor’s Guide to System
V.

rik@spirit.com

MUSINGS �

http://lsd-pl.net
http://archives.neohapsis.com/

Vol. 28, No. 3 ;login:38

followed by a set of 0xf8s surrounded by parentheses (a pathological comment), and
followed by the address to be overwritten. The exploit is not a simple one, as crack-
addr() uses a statically defined buffer that gets stored on the heap instead of the stack.
The consequences of this are twofold: first, that mechanisms that defend against stack-
based exploits fail; and second, that any exploit writers have a much more difficult
time.

The LSD programmers had an additional “concern” in that most Sendmail servers will
be protected by firewalls that will only permit incoming connections to the server on
port 25/tcp. Though this is a thoughtful idea, I doubt it is true. At any rate, their
exploit could not be written to include a standard backdoor shell, by listening at a port
and exec’ing a shell. Instead, their exploit connects back to the exploit program and
executes uname -a. Most firewalls allow outgoing connections, and the LSD exploit
actually assumes that a Sendmail server can reach port 25/tcp at arbitrary IP addresses
(very reasonable).

The example exploit, or Proof of Concept (PoC) as such exploits are now euphemisti-
cally called, failed even to crash a RedHat 7.3 version of Sendmail that reportedly was
vulnerable. Part of the problem is that heap exploits rely on the layout of memory allo-
cated on the heap and finding the right set of bytes so that freeing a block of memory
passes control of the program counter to the shell code. The LSD exploit passed their
shell code as a very long line (about 2k) that gets sent right after the “Subject:” line, but
with no intervening blank line (part of the normal message format defined in RFC
822).

The second buffer overflow, found by Michael Zalewski, involved a similar problem
but in a different function, prescan(). Prescan() tokenizes addresses by looking for
delimiters, and during this process a special value, 0xff, gets skipped, decrementing a
counter. By providing specially formatted addresses, one could overflow the buffer
used, pvpbuf[], which gets allocated on the stack. This buffer has a default size of MAX-
NAME plus MAXATOM, or 1256.

What these two exploits have in common is that they violate limits suggested in RFC
821 (http://www.faqs.org/rfcs/rfc821.html). If you read section 4.5.3, the suggested max-
imum size of an address is 256 characters, and of any line, 1000 characters. The LSD
exploit sends an address that is about 300 characters long, along with a very long line
containing the shell code. The vulnerability found by Zalewski appears to require an
address in excess of 1256 characters, again outside the suggested limits. Note that the
RFC does state that these limits are suggestions only, and that MTAs could be written
that handle larger addresses and lines.

Still, sites employing application gateway (AG)-based firewalls, with the SMTP AG
actually enabled, would have blocked both of these attacks without modification or
updating. I actually contacted several firewall vendors (SecureComputing, Symantec,
and Watchguard) and asked if their firewalls could block the LSD exploit. All three
claimed that their AG firewalls (each vendor has multiple products) could block this
attack if the AG were used. That’s some good news, at least. One vendor, Symantec,
also blocked by default access to WebDAV, another vulnerability (in IIS 5) announced
in March, with the potential to be the next base for Code Red version 8.

I wonder how the patching wars have gone between the time I wrote this column and
the time you will be reading it. Patching is never easy, but it is definitely easier if you
have built an infrastructure for safely and reliably distributing and installing patches. I
certainly wish all of you good luck, whatever the fortunes of war may bring.

http://www.faqs.org/rfcs/rfc821.html

39June 2003 ;login:

�

SY

SA
D

M
INIn a number of backup scenarios, backup files simply accrue in a directory

that should be periodically cleaned up. Typical examples include backup

data from databases, PDAs, network clients, and routers. The data contents

of the above are often not directly backed up onto tapes, but are copied to

disk-based files by an appropriately scheduled cron(8) job.

The continuous increase in disk capacities enables us, in many cases, to keep multiple
sets of these backup files in a given directory as a substitute for a regular tape backup.
These files are typically kept in a manageable size by periodically purging all old files.
Well-organized tape-based backups, however, offer an additional advantage: Through
a carefully staged tape retention schedule, users can often retrieve files much older
than the number of retained tapes would suggest.

A tape backup schedule might, for example, involve daily incremental backups, weekly
full backups retained for two months, and monthly tapes retained for two years. If I
discover today that sometime in the previous six months I deleted a file I had created a
year ago, I can go to the retained monthly backups that followed the file’s creation and
retrieve it from there.

Backups to files are not often organized in this manner. Two approaches I have seen
for managing their size involve either naming each file with a periodically repeated
date element, such as the day of the week or month, so that newer files will overwrite
older ones, or tagging each file with a unique identifier, such as the complete date, and
having a separate script remove files older than a given date. Both approaches, how-
ever, lack the property of selectively retaining a subset of older files. More elaborate
schemes can, of course, be constructed by carefully synchronizing and staging separate
cron(8) jobs, but I have never seen them applied in practice. The problem of selectively
retaining old files gets especially difficult when the backups are created at irregular
intervals – for example, each time I synchronize my PDA or remember to back up my
cellular phone directory.

On the other hand, a file-based backup scheme offers the additional possibility of
automatically examining all the retained files and selectively pruning those we decide
are not worth keeping. The key concept for deciding which files to keep is a retention
schedule. In tape-based schemes, this simply revolves around weeks, months, and years.
If we have a tool for managing the file pruning, we can be more creative in selecting a
retention schedule and, hopefully, use one that will, violating Murphy’s Law, offer us
an increased probability of recovering that old file we discovered missing.

Retention Schedules
When I first decided to work on the file pruning problem, I considered using an expo-
nential retention schedule. I would like to keep yesterday’s backup, a backup from two
days ago, then backups aged 4, 8, 16, 32, and 64 days. With 10 files I could cover a
period lasting more than a year. This schedule uses two as the schedule’s base; one
could select any smaller number to increase the number of retained files or a larger
number to decrease them. The idea behind this schedule is that recent backups are
more valuable than older ones.

Creeping featurism made me think of different possible schedules. One other possibil-
ity is a Fibonacci schedule. Here the retention sequence starts with 1, 1, and each sub-
sequent term is the sum of the two previous ones: 2, 3, 5, 8, 13, 21 34, 55. At that point,
I had to wonder which of the two schedules was better for securing my valuable data.

organized pruning
of file sets

by Diomidis D.
Spinellis

Diomidis Spinellis is an
Assistant Professor in
the Department of
Management Science
and Technology at the
Athens University of
Economics and Busi-
ness; he is the author
of Code Reading: The
Open Source Perspec-
tive (Addison Wesley,
2003).

dds@aueb.gr

ORGANIZED PRUNING OF FILE SETS �

Vol. 28, No. 3 ;login:

It turns out that neither is. If we were to
sample data recovery requests in a large
data center, we would probably find that
the age of the requested files would fol-
low the ubiquitous bell-shaped normal,
or Gaussian, distribution. The exact
shape of the bell is determined by the
standard deviation of the requested file
ages; this expresses the variation (in the
same unit as we measure the file ages)
between the ages of different requested
files. Since recovery requests from all
users (apart from pointy-haired man-
agers) always refer to the past, the shape
is actually one-half of a bell curve. You
can see the normal curve for a standard
deviation of 200 in Figure 1.

The formula defining the normal curve is
actually quite complex:

but once it is coded in a program, its application can be a breeze. The curve represents
the probability that a file of a given age will be requested.

You can see that, following intuitive expectation, as files age they are less likely to be
needed. In order to distribute our archive files in a way that reflects this diminishing
probability distribution, we need to define our retention interval schedule so that the
interval’s length is proportional to the probability of requiring a file within that inter-
val. This is represented by the area under the curve for the given interval; for the math-
ematically inclined, the area for an interval from a to b is given by the integral

We therefore need to divide the whole area under the curve into a number of equally
sized parts, as many as the files we can afford to retain, and then calculate the respec-
tive intervals.

Unfortunately, there is no mathematical formula with a finite number of terms that
can give us the numbers we are looking for. Initially, I wrote code to numerically inte-
grate the normal function, adjusting the interval while moving back into time. A few
days later, my colleague Stavros Grigorakakis, reading a draft of these notes, pointed
me to an excellent analysis of the Gaussian function available online at http://math-
world.wolfram.com/GaussianDistribution.html. There I found that the cumulative dis-
tribution function (the integral I was painstakingly calculating) can be determined by
means of the so-called error function, which – surprise, surprise – is part of the UNIX
C math library. You can see in Figure 2 how we would spread 30 files in a period of
around 2000 days using an exponential distribution with a base of 1.3 and a normal

40

0 100 200 300 400 500 600 700

Days

Normal distribution

Figure 1 f(x)=
1

√ 2π σ
e

−x2

2σ 2

b

a
∫ f(x)dx

http://math-world.wolfram.com/GaussianDistribution.html

41June 2003 ;login:

�

SY

SA
D

M
INdistribution with a standard deviation of

1000. For comparison purposes, I have
also included how a Fibonacci distribu-
tion and an exponential distribution
with a base of 2 would appear in the
above scheme; only 18 files would fit in
the Fibonacci distribution and 12 in the
base-2 exponential.

The Prune Tool
Putting code where my mouth is, I wrote
a C program to implement the file-prun-
ing strategies described above. It is avail-
able for download in source form
through a BSD-style license from
http://www.spinellis.gr/sw/unix/prune.
Prune will delete files from the specified
set, targeting a given distribution of the
files within a certain time, while also
supporting size, number, and age con-
straints. Its main purpose is to keep a set
of daily-created backup files in manage-
able size while still providing reasonable
access to older versions. Specifying a size, file number, or age constraint will simply
remove files starting from the oldest, until the constraint is met. The distribution spec-
ification (exponential, Gaussian, or Fibonacci) provides finer control of the files to
delete, allowing the retention of recent copies and the increasingly aggressive pruning
of the older files. The retention schedule specifies the age intervals for which files will
be retained. As an example, an exponential retention schedule for 10 files with a base
of 2 will be:

1 2 4 8 16 32 64 128 256 512 1024

This schedule specifies that for the interval of 65 to 128 days there should be (at least)
one retained file (unless constraints or other options override this setting). Retention
schedules are always calculated and evaluated in integer days. By default prune will
keep the oldest file within each day interval, allowing files to gradually migrate from
one interval to the next as time goes by. It may also keep additional files, if the com-
plete file set satisfies the specified constraint. The algorithm used for pruning does not
assume that the files are uniformly distributed; prune will successfully prune files
stored at irregular intervals.

Prune is invoked through the following syntax:

prune [-n|-N|-p] [-c count|-s size[k|m|g|t]|-a age[w|m|y]]
[-e base|-g standard deviation|-f] [-t a|m|c] [-FK] file ...

The numerous options reflect the tool’s flexibility. You can specify the distribution to
use (exponential, Gaussian, or Fibonacci) using the -e, -g, and -f options as well as the
constraints for the number (count), size, or age of the files to retain using the -c, -s, and
-a options. By default the constraints are used to specify the upper limit of the size or
number of files that will be retained. If more files can be accommodated (because, e.g.,

0 500 1000 1500 2000 2500 3000

Days

Fibonacci
Exponential 1.3

Normal 1000
Exponential 2

Figure 2

ORGANIZED PRUNING OF FILE SETS �

http://www.spinellis.gr/sw/unix/prune

Vol. 28, No. 3 ;login:

some intervals are empty), or the specified size limit has not been reached, prune will
retain additional files, deleting old files until the constraint is satisfied. The -F flag can
be used to override this behavior. On the other hand, if a constraint is violated, prune
may not retain any files in a given interval; the -K flag can be used to always keep at
least one file in each interval. Finally, the -t flag allows you to specify whether prune
will use the creation, access, or modification time of the specified files for determining
their age.

The following examples illustrate some possible uses for prune:

ssh remotehost tar cf - /datafiles \ >backup/`date +'%Y%m%d'`
prune -e 2 backup/*

backs up remotehost, storing the result in a file named with today’s timestamp (e.g.,
20021219). Subsequently, prunes the files in the backup directory so that each retained
file’s age will be double that of its immediately younger neighbor.

prune -g 365 -c 30 *

keeps at most 30 files. The ages of these files will follow a Gaussian (normal) distribu-
tion, with a standard deviation of one year.

prune -e 2 -s 5G *

prunes the specified files following an exponential schedule so that no more than 5GB
are occupied. More than one file may be left in an interval if the size constraint is met.
Alternatively, some old intervals may be emptied in order to satisfy the size constraint.

prune -F -e 2 -s 5G *

acts as above, but leaves no more than one file in each scheduled interval.

prune -K -e 2 -s 5G *

acts as in the first example of the 5GB-constrained series, but leaves exactly one file in
each interval, even if this will violate the size constraint.

prune -a 1m -f

deletes all files older than one month; it uses a Fibonacci distribution for pruning the
remaining ones.

Conclusion
Increasing disk capacities and network bandwidth allow us to implement disk-based
backup mechanisms. An important aspect of a disk-based backup system is the
employed retention schedule. The prune tool allows you to rationally specify and auto-
matically manage the retention schedule to suit your needs. An exponential schedule
with an integer base or a Fibonacci-based schedule can be easily understood by unso-
phisticated users, while a schedule with a normal distribution and an appropriately set
standard deviation is more likely to reflect your true file-retention requirements.

42

An important aspect of a

disk-based backup system is

the employed retention

schedule.

43June 2003 ;login:

�

SY

SA
D

M
INBayesian Spam-Filtering Techniques

Introduction
In this installment, Rob Kolstad and I look at the arrival of what has become

known as the “Bayesian” spam-filtering technique. The reason Bayesian fil-

tering is so intriguing is its high accuracy rate (for Haskins, 97.6% as

tracked by POPFile; for Kolstad, approaching 99.8%) and low false-positive

rate (estimated by Haskins at 1% or less, again with POPFile; Kolstad is

getting 0.1%), making it one of the most useful anti-spam tools available

to date. Before getting into how specific Bayesian implementations work, it

is useful to have a good understanding of how Bayesian theory (which has

been around since the 18th century) works.

While the vast majority of the discussion revolves around spam, the Bayesian tech-
nique can easily be used to augment (or replace) the “usual” filters found in mail client
programs. Also, it is likely this sort of filtering functionality will be integrated into the
email client program, eliminating the need for proxying except under nonstandard cir-
cumstances.

Bayesian Theory
Regrettably, “Bayesian theory” is not precisely the heart of the statistical spam-filtering
methodology under discussion, but the name is used universally for this technology.
Briefly, let’s enter the world of probability theory for a quick refresher. If you are not a
math or statistics aficionado, please skip to the next section.

Recall that probabilities assign a numerical value to the belief (or observation) that an
event might or might not happen. The probability of a coin flip ending up “heads” is
0.50 – half the time one flips a coin, one should get “heads.” (Certain coins are
weighted so that this doesn’t happen, but they are less interesting to use for this exam-
ple.) The notation for simple probability is also simple:

P('heads') = 0.5

This is read “The probability of ‘heads’ is 0.5.”

Probabilities are interesting when they help one deduce facts or understand informa-
tion better. Knowing that using pharmaceutical P1 cures disease D1 99% of the time is
a good piece of data to have when one has disease D1. Knowing that pharmaceutical
P2 cures D1 only 1% of the time might very well influence a decision to use P1 instead
of P2.

Conditional probability is just a little more complex. Conditional probability addresses
the probability of an event’s occurrence given that some other event has occurred.
Consider the probability that one has cancer given that one is a regular smoker of ciga-
rettes. This is written:

P (cancer | smoker) = [some number]

This is read “The probability of ‘cancer’ given ‘smoker’ is”

Some interesting math about conditional probabilities. Consider the two probabilities:

P (cancer | smoker)

ISPadmin

and Rob Kolstad

Rob Kolstad is cur-
rently Executive
Director of SAGE, the
System Administra-
tors Guild. Rob has
edited ;login: for
over ten years.

kolstad@sage.org

by Robert Haskins

Robert D. Haskins is
an independent con-
sultant specializing
in the Internet Ser-
vice Provider (ISP)
industry.

rhaskins@usenix.org

ISPADMIN �

44 Vol. 28, No. 3 ;login:

P (cancer | nonsmoker)

For this discussion, these are all the possibilities that were “observed” or “measured.”
Summing these with the probabilities of smoking tells us the total probability of can-
cer:

P(cancer) = P (cancer | smoker) x P(smoker) + P (cancer | nonsmoker) x P(nonsmoker)

Rev. Thomas Bayes published an article in 1763 with a more advanced formula. It con-
cerns computing probabilities for a hypothesis given a potentially new set of observa-
tions. Consider a new observation “O” and its impact on a hypothesis “H”.

P(H) x P(O | H)P(H | O) =
[P(H) x P(O | H) + P(not-H) x P(O | not-H)]

Which is read: “The probability of our hypothesis ‘H’ given the new observation ‘O’ is
. . .” and then the formula. The various components:

� P(H) is the probability we had assessed before the new observation showed up.
� P(O | H) is the probability of the observation given that the hypothesis H is true.
� P(not-H) is just 1 - P(H), the probability that H is not true.
� P(O | not-H) is the probability of the observation in the world where the hypoth-

esis is false.

Let’s use an example to demonstrate the formula. Suppose a disease appears in 1% of
the population:

P(disease) = 0.01
P(not-disease) = 0.99

and let’s presume that a test for the disease is positive 80% of the time when the dis-
ease is present and 10% of the time when the disease is not present:

P(positive test | disease) = 0.80
P(positive test | NOT disease) = 0.10

Then we can answer the question, What is the probability of the disease if the test on
someone is positive?

Here’s the formula:

P(H) x P(O | H) P(H | O) =
[P(H) x P(O | H) + P(not-H) x P(O | not-H)]

Filling in the values from above (H is “has the disease”; O is “positive test”):

0.01 x 0.80P(disease | positive test) =
[0.01 x 0.80 + 0.99 x 0.10]

= 0.074766...
= ~0.075

Thus, we can conclude using Bayes’ theorem that a positive test for the disease gives
one only a 7.5% chance of actually having the disease – surprisingly less than one
might expect!

Why is it so low? Because 99 out of 100 people don’t have the disease, yet 20% of those
99 people will test positive. This huge number dwarfs the small percentage who actu-
ally have the disease.

Bayesian Spam Filtering
Spam prevention methods use Bayes’ theorem in its chain form, with ever more obser-
vations entering into the formula until a final probability is assessed. Of course, in the
spam-prevention case, the hypothesis is “This note is spam.” It is the observations that
make the result interesting.

The key paradigm in Bayesian spam prevention is the observation of sets of words or
combinations of words. Consider observations of the form:

� A single word (e.g., “Viagra” or “enlargement”)
� Pairs of words (e.g., “money fast” or “bank account”)
� Triples, quads, or longer sequences of words (e.g., “make money fast,” friend@

public.com)
� Header information tokenized in a clever way. Here’s a header:

Message-ID: <20010214170157.C323@ubiqx.mn.org>

One of Paul Graham’s experiments tokenizes pairs like this:

Message-ID 20010214170157
Message-ID C323
Message-ID ubiqx
Message-ID mn
Message-ID org

The imagination is the limit on these!

Bayesian methods read (usually after de-MIMEing) email (in whole or in part) and try
to deduce if the mail is spam or not. They tokenize the mail (often removing punctua-
tion; sometimes – but, these days, more often not – removing capitalization), create a
zillion observations (e.g., every possible run of 1, 2, 3, 4, or 5 words and every properly
ordered subset of that list), and then look up these observations in a huge database.
The probabilities are all combined (when they exist), and a final result is determined.
This is compared to a threshold to determine whether the program believes the mes-
sage to be spam.

Note that while this sounds simple, the numbers involved theoretically range from 1.0
down to unbelievably small numbers for combinations that only show up once. The
software must be careful that probabilities smaller than 1.0e-350 or so don’t end up
rounding to 0.

Initial probabilities are calculated by running a set of training mail (both spam and
non-spam) through a program that tokenizes and calculates probabilities for the vari-
ous phrases that appear. This is interesting because some industries use the term
“offer” a lot, a word commonly used in spam. By training with longer phrases, a data-
base of probabilities can be built with relatively small amounts of very representative
good and bad email.

By way of example, Kolstad’s training base now has these statistics:

Spam email: 317 messages, 130,770 lines of text (3.3MB)
Non-spam email: 63 messages, 55,133 lines of text (0.75MB)

These training bases have been augmented over time by adding to them each time the
filter makes a mistake.

45June 2003 ;login:

�

SY

SA
D

M
INThe key paradigm in Bayesian

spam prevention is the

observation of sets of words

or combinations of words.

ISPADMIN �

History of Bayesian Theory as It Relates to Spam
Interestingly, Microsoft was granted a patent for a method of filtering spam using the
Bayesian methodology (USPTO patent # 6161130). However, this work was preceded
by at least two other published works. One is “ifile,” a filter for a number of command-
line-based mail programs including MH, Pine, and procmail-compatible clients. It is
unclear what, if anything, Microsoft did with this work and associated patent.

The problem in the past with the Bayesian method was that the accuracy of various
software implementations wasn’t nearly close enough to 100%. Users complained
about both false negatives (spam delivered as legitimate mail) and false positives (real
email that was incorrectly identified as spam). Few users will tolerate more than a
minuscule false positive rate (0.5% may actually be too high). Of course, the more
spam there is, the more such tolerance might go up. Now that everyone is inundated,
those sending important mail know that it can get lost in the flotsam and jetsam.

What makes newer algorithms (implementations, anyway) different? According to
Paul Graham’s follow-up paper, “Better Bayesian Filtering,” things are improving
because of:

� The size of the body of training mail
� Using mail headers as tokens or not
� The message tokenization methodology
� Improved probability calculations
� More intelligent bias against false positives

The beauty of a statistical approach to identifying spam is that it “learns” the methods
spammers use to get past more static filters. As a result, spammers are forced to make
their messages look just like your regular email, thereby reducing the effectiveness of
spam. This could cause spammers to stop spamming!

Likewise, as Paul Graham points out, eliminating 99% of delivered spam would pre-
sumably eliminate 99% of the responses a spammer seeks (i.e., to sell a product or ser-
vice). Few businesses can continue with a 100 times decrease in revenue. Maybe that
would cause them to stop spamming. We can only hope.

PC Email Proxy Client (POPFile)
POPFile is a Perl-based POP3 proxy that runs on your PC, between your email client
program (such as MS Outlook, Eudora, etc.) and the POP3 server (or anti-virus soft-
ware). It takes a little bit to set up and train, but once it has a “corpus” of spam, it
works very well.

The concept of POPFile is this. First, you set up your email client to work with the
program. Consult the POPFile Web site for detailed instructions on how to configure
POPFile for various email clients, including MS Outlook, Outlook Express, and
Eudora. Also, consult the HOWTO discussion group for other setup notes, including
working with virus scanners, setting up Netscape Mail, etc.

Once your email client has been configured, you begin categorizing email per the
“buckets” (classifications) you set up. Haskins created two buckets, one called “spam”
and one called “notspam.” There is no reason why you cannot create other buckets for
other classifications of email to enhance your email client’s filtering capability.

When your mail client checks mail, POPFile receives the message, runs it through its
filters, and either tags the subject line with the bucket name or adds a header to the

46

The beauty of a statistical

approach to identifying spam

is that it “learns” the

methods spammers use to get

past more static filters.

Vol. 28, No. 3 ;login:

message “X-Text-Classification: <bucket name>” if your email client can filter based on
arbitrary mail headers.

Unlike some other filtering programs, it specifically does not come with a preloaded
corpus of spam. Instead, the program builds a very specific corpus for your incoming
email, making it very accurate.

POPFile’s weaknesses include:

� No support for IMAP
� Issues with clients who leave their mail on the server
� No mechanism for inputting a preexisting corpus of spam and non-spam to

“jump start” the filtering

POPFile is certainly an excellent implementation. If you have a POP3 mailbox, and
don’t store your mail on the server, we heartily recommend it!

It is very likely that Bayesian-style filtering will be implemented in other email client
software. The Mozilla folks are hard at work implementing Bayesian filtering in their
Mail application. Check out Mozilla version 1.3 alpha if you are interested. While ini-
tial reports indicate the functionality doesn’t work perfectly, it is a step in the right
direction. The SpamAssassin folks have also started using Bayesian filtering.

Command-Line Email Client Support
Bayesian solutions exist for the server and command-line email clients such as Pine.
Most of these are hooked in via procmail, so if you host your mail on your own server,
then you are set. If not, ask your provider if it can activate procmail for you.

Some Bayesian command-line email client filters include ifile, SpamProbe and bogofil-
ter. More information on these filters is available on their respective Web sites.

Server Side
There are several server implementations of Bayesian filtering. Most are easiest to
implement via SpamAssassin or procmail.

Probably the best known is CRM114, which, incidentally, did not start out as a
Bayesian filter but as a rather large regular expression matcher. However, Bayesian fil-
tering was added to the mix as of November 2002.

Your best bet is probably to implement the native SpamAssassin Bayesian filters avail-
able in 2.50, or to attempt the CRM114 hooks to provide Bayesian filtering for an
entire server. Be aware that this is bleeding-edge software, and plan accordingly.

Experience with CRM114
Kolstad’s mail shows up the old-fashioned way: It is delivered to a mailbox on his
desktop. He configured his .forward file like this:

"| /home/kolstad/bin/nospam"

and then created a simple Perl program to run the mail against CRM114:

� Read in the message.
� Run the message through CRM114 with the spamfilter configuration file.
� Examine the exit code to deduce if the message is spam.
� Non-spam messages are appended to the mailbox, with locking; biff is called with

a seven-line networking sequence.

47June 2003 ;login:

�

SY

SA
D

M
IN

ISPADMIN �

� Spam messages are either tagged (for testing!) or diverted to another file for later
review.

He has been running this system unmodified for about two months. Two additional
scripts augment the two training databases (“this is spam”; “this is not spam”) with
mail that was misclassified.

He gets 250 emails per day, unless something special is happening (e.g., broken salary
survey, some other SAGE member interaction, etc.). Right now, the spam filter is miss-
ing about one spam per day (false negative) and tagging one or two emails per week as
spam. Happily, those emails really do resemble spam and would not have been missed.

The nospam program itself requires an average of 55 ms per message; CRM114 aver-
ages 270 ms. Incoming mail suffers only the smallest of delays.

Note well that the CRM114 distribution out-of-the-box did not perform as hoped
(though it compiled with no problems). Some of the scripts have been rewritten (one
had a huge regular expression converted to a Perl program that ran 100–1000 times
faster) and converted for spam handling. Likewise, the new scripts dramatically ease
the user interface.

The absolute best part of CRM114 (and Bayesian spam detection in general) is that it
does not require the relatively frequent updating that SpamAssassin really needs. Half-
a-dozen “retrainings” (a single keystroke on clever mail readers) per week keep it in
good shape.

If you’re interested in packaging this solution for simple and more widespread distri-
bution, please contact Kolstad.

Conclusion
The Naive Bayesian method as outlined by Paul Graham is a very effective way to filter
spam. The algorithm has a very high accuracy rate and a decreasingly small false posi-
tive rate, making it the best currently available method to identify spam. There are
PC client implementations (including POPFile) as well as UNIX-based packages
(CRM114, bogofilter, SpamAssassin plug-in) available.

48 Vol. 28, No. 3 ;login:

REFERENCES
POPFile home page:
http://popfile.sourceforge.net/

Paul Graham’s “A Plan for Spam”:
http://www.paulgraham.com/spam.html

International Society for Bayesian Analysis
(ISBA): http://www.bayesian.org/

Microsoft Bayesian spam-filtering patent:
http://patft.uspto.gov/netacgi/nph-
Parser?patentnumber=6161130

Old ifile README:
http://www.ai.mit.edu/~jrennie/ifile/old/
README-0.1A

New ifile site: http://www.nongnu.org/ifile/

The RAND MH Message Handling System:
http://www.ics.uci.edu/~mh/

Pine: http://www.washington.edu/pine/

Procmail: http://www.procmail.org/

Learning to Filter Spam E-Mail: A Comparison
of a Naive Bayesian and a Memory-Based
Approach: http://citeseer.nj.nec.com/
androutsopoulos00learning.html

POPFile HOWTO forum on SourceForge:
http://sourceforge.net/forum/forum.php?forum_
id=234504

SpamProbe: http://spamprobe.sourceforge.net

Bogofilter: http://bogofilter.sourceforge.net/

Mozilla page regarding anti-spam features in
1.3a:
http://www.mozilla.org/mailnews/spam.html

SpamAssassin: http://spamassassin.org/

CRM114: http://crm114.sourceforge.net

Better Bayesian Filtering:
http://www.paulgraham.com/better.html

http://popfile.sourceforge.net/
http://www.paulgraham.com/spam.html
http://www.bayesian.org/
http://patft.uspto.gov/netacgi/nph-Parser?patentnumber=6161130
http://www.ai.mit.edu/~jrennie/ifile/old/
http://www.nongnu.org/ifile/
http://www.ics.uci.edu/~mh/
http://www.washington.edu/pine/
http://www.procmail.org/
http://citeseer.nj.nec.com/
http://sourceforge.net/forum/forum.php?forum_
http://spamprobe.sourceforge.net
http://bogofilter.sourceforge.net/
http://www.mozilla.org/mailnews/spam.html
http://spamassassin.org/
http://crm114.sourceforge.net
http://www.paulgraham.com/better.html

49June 2003 ;login:

�

SY

SA
D

M
INWhich Model Works for You?

If the system administration field is like the medical field, are your users

stuck with a group HMO plan when they want a personal physician? This

article continues an earlier comparison of the fields of computer and net-

work care and that of medical care by looking at the insurance vs. support

model. Consider the similarities to computer care in this review of the state

of health care over the past couple of decades:

� In the old days, a premium was paid for an insurance policy that basically said,
When you use medical services, present this information and the insurance com-
pany will pay for those services on your behalf.

� As the cost and quantity of medical care grew, the health insurance industry
decided to tack on an extra service fee (a “co-pay”), in order to have those who use
the services bear a larger portion of the cost.

� The HMO, or Health Maintenance Organization, came into existence with the
feature that in order to cut costs all around, services would be restricted more
than in the past, and only certain service providers could be used to obtain those
services.

� Group care went one step further: Instead of maintaining a one-to-one relation-
ship between doctor and patient, a “group” of doctors would be substituted, eas-
ing scheduling concerns and maintaining profitability by increasing throughput
(theoretically).

A significant detraction of the increasing restrictions on the end user (the patient) was
the loss of personal contact with a highly skilled professional. And so, not only were
patients paying more for the service (increased premiums, co-pays, deductibles), they
were left with a feeling that they didn’t really matter anymore.

Centralized vs. Decentralized Care
IT organizations have gone through periods of tremendous growth where support
methodologies have been tried, modified, and discarded in favor of “new” approaches.

� The dedicated system administration function has provided the most personal
and detailed attention to a functional group’s computers and networks. The high-
est level of costs accompanies this methodology.

� When management wants to equalize the cost of the above solution, they adopt a
cost-allocation strategy that may or may not appropriately penalize/reward the
desired behaviors. Service will not necessarily change, but it will get talked about a
lot more.

� Approved lists of acceptable/unacceptable support expenses provide the next step
to control costs. Requests within the bounds of the cost-savings measures are
honored, while requests outside of those bounds subject the requestor to an end-
less stream of approvals (most often requiring the requestor to pay the full freight
for the requested activities).

� The last step in the internal process, centralizing services, cuts any remaining per-
sonal contact between the requesting organization and the service organization.
While the official count of support costs will go down, the indirect costs of self-
administration and end-user “workarounds” is usually not accounted for.

private, HMO, and
group support

Stylock@gvsage.com

Steve Tylock has been
managing infrastruc-
tures for the past 15
years in the Western
New York area, and
helped organize
GVSAGE as a local
SAGE for the Genesee
Valley region.

by Steven M. Tylock

PRIVATE, HMO, AND GROUP SUPPORT �

50 Vol. 28, No. 3 ;login:

� “Outsourcing” remains the one available option for senior management. This
measure ensures that end users realize that they didn’t know how good they had it
when they had their own sysadmin. In order to get what they want done, they may
task one technical resource within their department as the local sysadmin, at least
part time.

Yes, this author acknowledges that the above cycle is not cast in stone and that cer-
tainly at least one company has made centralized or outsourced system administration
work. Unfortunately, it appears that, more times than not, the system breaks down and
fuels the growth of an underground system administration function that hides person-
nel with not-so-accurate titles.

Why?
It makes sense if you examine the money trail; who is the customer? When you or I
visit the doctor, who is the customer? We are, or so we think. If you have signed up for
an employer-sponsored health plan, often the employer pays something like 75% of
the cost of that plan. But no matter what share of the cost is assumed by the employer,
guess who is negotiating that plan with the health insurance company – the employer.

And so it follows: Which of time, quality, or cost is the employer most interested in
optimizing? Certainly time and quality are not left out of the equation, but they are
not the driving factor that cost is. On the positive side, many employers know that
some percentage of their workforce considers factors other than cost and is willing to
pay more for a plan that enhances health care “time and quality.” These companies
offer additional selections (for additional cost).

The cost of system support runs the same way. You might think decentralized system
administration provides good end-user support, but even then, the functional depart-
ment or unit, not the users, is picking up the support costs. The first attempt to saddle
“users” with the cost of their own support does not reduce the need for that support,
but makes the cost very visible. Restrictions on support work as well as restrictions on
health care – the large majority of situations can be taken care of by a small part of the
process, but the unique situations cannot be ignored (even if the business unit decides
ahead of time that it is acceptable to have a two-day recovery period for all end-user
system crashes). In order to get a network specialist to look at your problem, you must
first get a referral from the group of primary sysadmins.

Complete centralization of system administration work is successful at wringing out
the last dollar of savings on direct administration costs because the “company” is pay-
ing the bill for the support. The company is telling the support organization what the
acceptable level of service is – that which can be achieved with x dollars of support.
The end user may be receiving the products and services but is not the customer.

Where To?
I’m a firm believer in moderation in all things. The goal of infrastructure support is to
provide a high level of service to a dynamic population in the most cost-effective way.
If end-user needs are paramount, then the system needs to absorb extra costs to man-
age those needs. If cost constraints are paramount, end-user expectations must be
managed to absorb the decrease in service. The middle ground provides an opportu-
nity to manage the environment to the peak of service and cost.

Having spent several years as the system administrator slave, I can attest that the “one
dedicated system administrator to N systems” approach fails. This decentralized sysad-

The end user may be

receiving the products and

services but is not the

customer.

min is given the most local control of systems, but is placed in the most critical role;
when the sysadmin is absent for any reason, work will wait until he or she returns.
While management is unhappy at the exposure to these events, it is quite happy to be
able to direct the activities of the sysadmin to local projects and requests.

Having spent several years subject to the “help desk,” I can say that the approach
known as “global services” also fails. The first person to answer the phone at the cen-
tral help desk is usually trained in answering the phone and filling in the help ticket.
Sysadmins lose the local connection and history of the environments, while end users
lose their sanity and find ways around the system.

Why can’t we centralize to a properly sized team environment? Consider a team com-
posed of seven to nine members with a mix of senior, journeyman, novice, system,
network, and PC administrators. This team could be tasked with optimizing the man-
agement of a set geographical or logistical environment. While a trouble ticket system
is required, the distribution of those tickets can be managed at the team level.

Proposed Model
The Systems Squad Model of system administration optimization is based on:

� Continuity of superior service
� Economies of scale
� Appropriate cost sharing
� Team-based sharing of skills, talents, and training
� Team empowerment and flow

CONTINUITY OF SUPERIOR SERVICE
The goal is to provide superior service with the “right level” of customer contact, skills,
history, and sharing of responsibilities.

ECONOMIES OF SCALE
It is more cost-effective to centralize than not to, but over-centralization brings about
monetary gains through loss of quality, flexibility, and speed.

APPROPRIATE COST SHARING
Finance has often tried to justify a system of cost allocation merely because it is the
system currently in place. The Systems Squad Model for cost allocation would:

� Place costs at the lowest level at which they can be divided – individual, project,
department, organization, or the company as a whole.

� Individual costs provide some idea of the cost structure at that level.
� Group costs justify “bigger ticket” items.
� Provide a fixed cost each month, with variable costs based on events and requests.
� Provide an element of cost control through approvals.
� Include flexibility for special situations.

TEAM-BASED SHARING OF SKILLS, TALENTS, AND TRAINING
The Systems Squad Model provides an environment where all experience levels both
train and teach. More experienced members have explicit obligations to the junior
members, but they will also learn through teaching and through working with the
more experienced members of peer teams.

51June 2003 ;login:

�

SY

SA
D

M
INIt is more cost-effective to

centralize than not to, but

over-centralization brings

about monetary gains

through loss of quality,

flexibility, and speed.

PRIVATE, HMO, AND GROUP SUPPORT �

TEAM EMPOWERMENT AND FLOW
With a nod to politics (corporate, educational, governmental, or otherwise), the squad
reports to the highest organization that it supports. All of the squads report to a cen-
tral organization, providing consistency between groups and setting support rates
through a corporate liaison.

Team members flow in and out, with hiring and transfer decisions based heavily on
team decision-making. Though teams maintain integrity, members flow between
teams throughout the company, building the entire organization.

Barriers
This model faces objections from many fronts. Some of the most likely come from:

� The decentralized environment: Sysadmins in this environment like the local con-
trol over systems, would love to have help in a shared fashion, and hate the con-
cept of centralization. Managers of local sysadmins like the control (over the
sysadmin), are tempted by the potential for better service through consolidation,
and are scared by the thought of centralization.

� The centralized environment: Sysadmins and managers in this environment are
probably not so keen about it, but accept it as the way things are. The political
structure above the sysadmins, however, would likely be threatened by it, and the
financial controllers might be worried about a system with less visible controls.

� They’ve all become comfortable with the way things are, and change is something
to be feared (or so the common belief is).

Conclusion
The Systems Squad Model looks to optimize value, beyond just an optimization of the
money spent on infrastructure. It hopes to optimize the cost, quality, and speed of the
organization to deliver more to the end user, project, department, organization, and
company than any centralized or decentralized model has done in the past.

And I think that’s what we want in health care, too.

52 Vol. 28, No. 3 ;login:

53June 2003 ;login:

�

TH

E
LA

WIn my last column,1 I talked about some of the common reasons why out-

sourcing deals go badly and ways to avoid those problems. The purpose of

this column is to discuss some of the current, macro-level trends in out-

sourcing with regard to (1) the vendors providing the services, (2) the ser-

vices themselves, and (3) the customers receiving the services.

The Vendors
TREND 1 – VENDORS BECOMING PUBLIC COMPANIES
The market for global outsourcing services is a somewhat unsettled area. Based on size
and resources, the “Tier 1” providers are IBM, CSC, EDS and, according to some, ACS.
Behind them are the “Tier 2” providers: Perot Systems, CGI, Accenture, Unisys, Lock-
heed Martin, and Siemens. In addition, hardware manufacturers like Hewlett-Packard
and Dell are trying to move into the more lucrative IT services business.2 Also, some
new, offshore players like Tata Consulting Services (“TCS”) are trying to expand into
the US market.

Right now, IBM is the dominant player in the global outsourcing market. This is not
because IBM has distinguished itself in terms of capability, service quality, or price (no
global services vendor has). It is simply a reflection of some challenging leadership and
financial circumstances faced by the other Tier 1 players3 (a point happily emphasized
by the IBM salespeople) and the old hardware adage that “No one ever got fired for
buying IBM.” IBM recognizes and exploits these advantages whenever possible.

What used to be the consulting arms of the “Big Five” have all morphed in some way
and, with the exception of Braxton, are all now publicly held companies:

The public nature of these companies has two important consequences. First, public
companies are subject to the vagaries of the market. Hardware and software compa-
nies are already driven by quarterly and annual results, and these now-public service
providers will be subject to the same forces. Securities industry analysts are beginning
to have concerns about continued growth in the IT services and outsourcing industry
because of reduced backlogs, longer lead times to conclude transactions, and a general
downturn in the industry. This could be due to general issues with the economy, mat-
uration in the industry or some customer dissatisfaction with the outsourcing model,
performance, price, or something else entirely, but, regardless of the cause, it affects
the stability of public outsourcing vendors. Second, these companies use their stock as
compensation, and as the value of their stock decreases, their ability to attract and
retain talent decreases as well.

Yesterday Today

Andersen Consulting (created as part of
Arthur Andersen, then “separated” into an

arm of Andersen Worldwide)
Accenture

PricewaterhouseCoopers IBM

KPMG Bearing Point

Deloitte Consulting Braxton

Ernst & Young Cap Gemini Ernst & Young

trends in the
outsourcing industry

by John
Nicholson

John Nicholson is an
attorney in the Technol-
ogy Group of the firm
of Shaw Pittman in
Washington, D.C. He
focuses on technology
outsourcing, application
development and sys-
tem implementation,
and other technology
issues.

John.Nicholson@ShawPittman.com

TRENDS IN THE OUTSOURCING INDUSTRY �

Vol. 28, No. 3 ;login:

The Services
There are two major types of outsourcing deals being structured in the market today:
IT outsourcings (“ITO”) and business process outsourcings (“BPO”). The market for
ITO deals is much more mature, and the deals are fairly well understood.

TREND 2 – OFFSHORE OUTSOURCING
The hot area in the US for ITOs is offshore outsourcing, either on its own or as part of
a larger transaction.4 Offshore outsourcing is attractive because of its price (currently
a factor of 5 to 10 times less expensive than using domestic providers) and the quality
of the services provided.(Most Indian vendors have been certified by the Software
Enterprise Institute as achieving “Level 5” of the Capability Maturity Model.)5

Currently, the main location for offshore ITOs is India, but the demand for technology
workers in India is beginning to outstrip the supply, which is driving up the cost of
services in India. While services in India are still substantially less expensive than those
available in the US or Europe, services provided in China, Eastern Europe, Malaysia,
the Philippines, and Russia are becoming more attractive.6 The major players in off-
shore outsourcing are divided between the larger firms listed in the previous section,
each of which either has its own offshore operations or a close tie to an offshore
provider, and the native, “pure-play” offshore companies such as TCS, HCL Technolo-
gies, Infosys, Wipro, and Cognizant.

In addition to increasing competition from other countries, the challenges for offshore
providers are:

1. The ability to scale their operations while maintaining quality – The fundamental
premise of outsourcing is that an outsourcing provider whose core business is pro-
viding technology services can provide those services to multiple customers at a
lower cost. As more companies move IT operations offshore, the Indian vendors
may not be able to maintain the level of quality for which they have become known.

2. Business continuity – The distance between the US and India, combined with the
level of infrastructure in India, also raises some questions regarding disaster recov-
ery and business continuity. On one hand, having facilities on the other side of the
globe provides some redundancy, but, the very real issue is that your outsourced
operations in India are being performed in a country with nuclear weapons that is
on unfriendly terms with its next-door neighbor, which also has nuclear weapons.
For offshore ITOs that go through one of the larger global providers that has opera-
tions or a close alliance with an offshore provider, this can be mitigated by the global
provider.

3. Customer concerns related to confidentiality and non-disclosure – You’re shipping
your company’s crown jewels halfway around the world, where they are subject to all
kinds of possible threats. What if something gets disclosed? What if an employee
takes a copy of your data to a competitor? How will you be able to protect yourself?
What remedies will you have against the outsourcing vendor? These are probably
the areas that concern potential offshore outsourcing customers the most. In the
case of India, the local outsourcing vendors understand the concerns of US compa-
nies and are generally willing to agree to contractual terms that are satisfactory to
the customer – including robust audit and inspection rights. (Note, however, that
you must actually exercise those rights by performing the audits and inspections.)

The Indian companies understand the economic value of providing outsourcing ser-
vices, and they recognize the risk to their economy if foreign firms do not feel safe

54

You’re shipping your

company’s crown jewels

halfway around the world,

where they are subject to all

kinds of possible threats.

with regard to confidential information. This is also an issue that can be addressed by
contracting with one of the larger global providers. However, this may become more of
a real issue as outsourcing moves to countries like China, where there has been a his-
tory of intellectual property concerns.

TREND 3 – BUSINESS PROCESS OUTSOURCING (“BPO”)
While the ITO market, including the offshore services market, is relatively mature,
with large, multi-disciplinary deals a relatively regular occurrence, the BPO market is
far from mature (contrary to what most vendors will try to tell you). The earliest form
of limited BPO has been going on for decades – payroll processing. Other limited-
scope BPOs include HR, finance/accounting services, call centers, and claims process-
ing, but until a large, multi-disciplinary, “shared services” outsourcing agreement is
successfully completed and implemented, the BPO market cannot be considered
mature. This isn’t likely to happen until one of the Tier 1 providers purchases some
large company’s shared services functionality and resells those services to other cus-
tomers.

Some people believe that because a BPO provides a “higher” level of functionality (i.e.,
an ITO provides the services that enable business processes to be performed, a BPO
provides the services that touch the end user/customer), it should be easier to identify,
structure, and complete a BPO transaction. The opposite is true. Because fewer models
for BPOs exist, and because vendors have less experience in structuring BPOs, it is
important for both customers and vendors to focus on the correct statement of work
with appropriate service levels and pricing. Although the functions included in a BPO
are supported by IT services, they are significantly more complicated and involve more
unique activities performed by personnel. Because of this, BPO services may be less
fungible among the customers of a given vendor, making the outsourcing economic
model less viable.

Because of this uncertainty and immaturity in the BPO marketplace, it is important
for BPO customers to spend the necessary time and energy to get these deals struc-
tured correctly. One of the most important things for an outsourcing customer to do
is to understand in detail exactly how the vendor proposes to provide the services. Ven-
dors will resist providing this information. They know that once they are in the door
and performing the services, you are unlikely to kick them out, due to the pain of
bringing in a new vendor. However, acquiring a detailed understanding and documen-
tation of exactly what the vendor will do and what the vendor will charge for it is the
only way for a customer to evaluate whether the savings promised by the vendor are
actually achievable and whether the pricing structure makes sense.

The Customers
TREND 4 – RENEGOTIATION OF EXISTING AGREEMENTS
Another issue that outsourcing vendors are facing is that their customers have also
been hit by the economic downturn. These customers, who initially signed outsourc-
ing deals on the promise of significant savings, are now demanding further conces-
sions and renegotiating deals to reflect lower volumes. Frequently, the pricing
structures designed when the agreements were originally signed are not appropriate to
address the new situation, and in the new negotiations customers are even more
focused on price.

55June 2003 ;login:

�

TH

E
LA

WThe ability of a customer to

renegotiate is strengthened

by strong, clear, termination-

for-convenience provisions in

your agreements.

TRENDS IN THE OUTSOURCING INDUSTRY �

Vol. 28, No. 3 ;login:

The ability of a customer to renegotiate is strengthened by strong, clear, termination-
for-convenience provisions in your agreements. When negotiating with vendors at the
beginning of a transaction, make sure that you have the ability to terminate for con-
venience. Frequently, vendors will agree to allow you to terminate a contract early pro-
vided that you give them notice and pay a termination-for-convenience fee.7 If you
terminate the contract early, it isn’t unreasonable for a vendor to recover costs that the
vendor expected to recover during the term. The vendor shouldn’t suffer harm because
you elected to terminate a contract early. However, once you terminate the contract,
the vendor won’t be providing services or incurring costs, so there is no reason for the
vendor to receive the total revenues that the vendor would have received for providing
the services during the remainder of the term.

Nor is there much ground for the vendor to argue that it should receive the profits that
it would have received during the remainder of the term. Vendors will try to use the
argument that they have a right to lost profits because they shouldn’t suffer harm
because you decided to terminate the contract early. If the contract had never hap-
pened, the vendor would not have received the profits that they are trying to claim, so
allowing the vendor to include lost profits in a termination-for-convenience charge
puts the vendor in a better position than if the deal had never happened. The vendor
should be allowed to recover costs, but not lost profits.

By understanding the economic forces driving outsourcing vendors, you can renegoti-
ate with them for a better deal. Just as you can negotiate with hardware and software
vendors who need to make their end-of-quarter or end-of-year numbers, you may be
able to negotiate with outsourcing vendors in the same way.

TREND 5 – PIECEMEAL DEALS
Given the fact that negotiating outsourcing deals is a lengthy process, companies are
trying to expedite their deals by breaking up the scope of services and negotiating
multiple deals rather than one large deal. This is the wrong approach for several rea-
sons: first, the larger the scope of the deal, the more negotiating leverage you have with
the vendor; second, negotiating outsourcing deals is a very resource-intensive process
for the customer, and doing more, smaller transactions is much less efficient; third,
outsourcing can lead to morale problems until the deal is finished, and doing multiple
deals just extends the uncertainty for the customer’s workforce and creates the poten-
tial for extended morale issues; fourth, vendors will use the multiple negotiations as
opportunities to re-negotiate provisions that came out in the customer’s favor in ear-
lier deals. For BPOs, in particular, the preceding sentence is still true, but the customer
needs to recognize that BPO services are less mature, and, therefore, the customer will
need to pay much more attention to the scope, service levels, and pricing of the trans-
action.

Piecemeal deals significantly increase the cost and risk to the customer.

Conclusion
Economics and the maturing nature of the industry are driving many behaviors in the
outsourcing industry, and by understanding them you can help your company deal
with vendors. Because vendors and customers will increasingly be focused on the
short-term bottom line, it is increasingly important that each party spend the time and
energy to first get a deal right and then keep it on track. The relationships between the
vendor account team and the customer’s program management will determine
whether outsourcing relationships succeed.

56

NOTES
1. “Common Problems with Outsourcing Deals

and How to Avoid Them,” ;login:, vol. 28, no.
1, February 2003, pp. 6–10.

2. See Kennedy, Siobhan, “HP Eyes IBM with
Multibillion-Dollar Deals,” Reuters, April 11,
2003, as posted at http://biz.yahoo.com/rb/
030411/tech_hewlettpackard_5.html.

3. See, for example, Bonasia, J., “EDS Investors
Watch New CEO,” Investor’s Business Daily,
April 14, 2003, as posted at http://biz.yahoo.
com/ibd/030414/tech01_1.html; and
“Accounting Fears Hit Computer Sciences,”
Reuters, April 2, 2003, as posted at
http://biz.yahoo.com/rb/030402/tech_
computersciences_stocks_1.html.

4. The potential for offshore outsourcing is lim-
ited in Europe by EU data privacy regula-
tions. Since these rules regulate the transfer of
data outside the EU, using an offshore vendor
may not be possible for many European com-
panies.

5. For more information, see
http://www.sei.cmu.edu/cmm/cmm.html.

6. See Chai, Winston, “Outsourcing haven India
running out of techies,” http://www.silicon.
com, February 18, 2003. See, also, “Gaining
Ground,” Information Week, March 31, 2003,
http://www.informationweek.com/story/
IWK20030328S0003.

7. Note that there is a difference between “ter-
mination for convenience” and “termination
for cause.” Termination for cause is when the
vendor has breached the contract in some
way and you are firing the vendor. Termina-
tion for convenience means that you have
simply decided that you don’t want the ser-
vices anymore.

http://biz.yahoo.com/rb/
http://biz.yahoo
http://biz.yahoo.com/rb/030402/tech_
http://www.sei.cmu.edu/cmm/cmm.html
http://www.silicon
http://www.informationweek.com/story/

57June 2003 ;login:

�

TH

E
LA

WPublic-Private Partnership Begins with
Reporting Cybercrimes
Society has developed a love-hate relationship with the concept of “shar-

ing” security data. On the one hand, sharing has been a rallying cry for

combating cyberterrorism, but it is also bemoaned by corporate financiers

to justify a protectionist mentality that sees “sharing” as Big Brother

wrapped in sheep’s clothing. This article illustrates the ideas of “sharing

security data” and “public-private partnership” in hopes of motivating oth-

ers to move beyond the current holding pattern of cyber-infrastructure

needs assessment and into a strategy for securely grounding our structures

in response to the dangers of cyberspace.

The San Diego Chapter of the High Technology Crime Investigation Association
(HTCIA), a grassroots organization founded to share information relating to investi-
gations and security, has developed “Working with Law Enforcement to Abate Cyber-
crime.” These guidelines are a proactive attempt by law enforcement to communicate
elements of policies, incident response plans, and evidence handling procedures that
are vital to the effective identification, prosecution, and prevention of cybercrime, as
well as infrastructure protection.

Motivation for Sharing Data Between
the Public and Private Sector
The HTCIA Guidelines resulted from a desire to enable the private sector cybercrime
victims to communicate clearly with law enforcement. All too often, law enforcement
is called onto a cybercrime scene – whether it be a hacker intruding on a company’s
network, denial of service attack, theft of intellectual property, discovery of child
pornography, or insider abuse of privileges – only to find inadequate or nonexistent
policies and procedures for handling cybercrime incidents, which prevents investiga-
tors from tracking and punishing the digital perpetrator. Corporate victims often
wanted to know how to ready the cybercrime scene for optimal law enforcement.

National Strategy to Secure Cyberspace
The recently released “National Strategy to Secure Cyberspace” has been the most pop-
ularly recognized call for a public-private partnership and sharing of threat data. How-
ever, it has been criticized as not doing enough to hold responsible parties’ “feet to the
fire” in attempting to secure cyberspace. The Strategy is a framework of suggestions
rather than a regulation, so it has few real teeth.

Computer Crime Laws
The need to share data is underscored further by the fact that there are laws in exis-
tence that criminalize both unauthorized access to computer systems and exceeding
access privileges. There is a misperception that just because most laws targeting the
security of computer data congregate around specific business practices within select
industries (i.e., HIPPA for the health-care industry and GLBA for banking and finance
institutions), there is a dearth of criminal remedies that the private sector can utilize to
address cybercrime. On the contrary, the federal Computer Fraud and Abuse Act, as
well as its state counterparts, can be a remedy for industry, with one caveat: In order to

put your data where
your mouth is

by Erin Kenneally

Erin Kenneally is a
Forensic Analyst with
the Pacific Institute
for Computer Secu-
rity (PICS), San
Diego Supercom-
puter Center. She is a
licensed attorney
who holds Juris Doc-
torate and Master of
Forensic Sciences
degrees.

erin@sdsc.edu

THE HTCIA GUIDELINES ARE IN PRINT AND

AVAILABLE FROM THE AUTHOR AT

erin@sdsc.edu. THEY CAN ALSO BE DOWN-

LOADED FROM http://www.catchteam.org

OR http://security.sdsc.edu

PUT YOUR DATA WHERE YOUR MOUTH IS �

58

The possibility of bad

publicity has been used to

justify sweeping cybercrime

incidents under the rug.

Vol. 28, No. 3 ;login:

invoke it, victims of cybercrime must first report the incident to law enforcement. We
have been conditioned not to think twice about hailing the cops when someone breaks
into our safes or assaults one of our employees at the work site, yet the same knee-jerk
reaction to an insider breach of access control or external trespassing on our networks
does not occur frequently enough.

Countering Myths About Sharing Cybercrime Data
CORPORATE REPUTATION
The possibility of bad publicity has been used to justify sweeping cybercrime incidents
under the rug. Companies can, however, communicate concerns about confidentiality
and the desire to minimize publicizing the incident. This will not ensure that this
information will never become public if prosecution occurs, but it can lengthen the
amount of time until this information is subject to public accessibility and give your
organization time to craft a strategy that minimizes potential negative publicity. Addi-
tionally, the government recently announced FOIA exemptions for companies wishing
to share related cybercrime data.

If public embarrassment and the assumed detrimental effects on business profitability
are concerns, consider the bad public relations ramifications of failing to report inci-
dents in the current culture of increasing litigation and the call for disclosure spurred
by Enron and security broker scandals. Often, the hint of impropriety or cover-up is
enough to send stock plummeting or scare away potential clients and partners.

Some states may choose to follow California’s lead in enacting laws that require the
disclosure of security breaches that expose customers’ personal data. So, whether it is
through market or regulatory mechanisms, the costs of not reporting may ultimately
be more ominous than what appears on the surface. Furthermore, publicity can some-
times work to your advantage, as companies can distinguish themselves as taking a
leadership role by reporting and setting a standard for others to follow.

Notification of cybercrimes to authorities does not obligate victims to participate in
the investigation. However, lack of participation may affect successful legal remedies.

COST OF NOT REPORTING CYBERCRIME
Another excuse is the notion that reporting cybercrime and pursuing prosecution is
cost prohibitive. In other words, it is cheaper to eat the loss and not disrupt the busi-
ness process. It is prudent to assess the cost of not reporting, too. The mechanisms
advocated here should be consistent with the mechanisms that should already be part
of your organization’s strategy to deal with cybercrime in-house. The Guidelines
address the relevant security risks and obligations that you must know to effectively
meet your responsibility to your investors, partners, clients, and customers.

Additional costs for evidence-handling and the like should be minimal, since most
procedures are similar to what companies should have implemented already. The costs
associated with the potential liability (negligence, shareholder suits, regulatory non-
compliance) make sharing less ominous. Furthermore, the costs of complying with
potential future regulation created by the corporation’s lack of reporting will likely
equal or exceed the costs of implementing the current recommendations.

HIGH-TECH CRIME FIGHTERS
Another misperception used to justify failure to report is that law enforcement is tech-
nically ill-equipped to effectively resolve cybercrime. State and federal agencies have
teamed up all across the country to establish high-technology task forces whose sole

59

�

TH

E
LA

WWithout reporting, we cannot

quantify the incidence of

cybercrime.

June 2003 ;login:

mission is to investigate and prosecute cybercrime. California is a leading example,
where the state has six regional teams made up of investigators from local, state, and
federal agencies that are specifically trained to handle everything from kiddie porn
traders to identity thieves to high-level hackers and corporate espionage. Unless vic-
tims call upon their services, funding to support and expand this cadre of skilled
investigators will dry up. With a more concerted effort to report cybercrime, we
increase the likelihood of laws that place fewer restrictions on cybercrime investiga-
tions under the rubric of national security. So, sharing cybercrime incidents may actu-
ally facilitate the protection of civil liberties and privacy.

Cyberinsurance and Risk Management
Actuarial data is another motivation for sharing cybercrime incidents. Without report-
ing, we cannot quantify the incidence of cybercrime. Obtaining actuarial data related
to the incidence of cybercrime is relevant to your organization if you are at all con-
cerned with risk management. From a systemic level, the more accurate the data on
cybercrime, the more accurate the assessment of risk. Cyberinsurance will almost cer-
tainly become as ubiquitous as automobile insurance and is another tool for manage-
ment of information security.

Damages and risk factors are difficult to measure and are often exaggerated [CSIS
2000 – Center for Strategic and International Studies, Cyber Threats and Information
Security: Meeting the 21st Century Challenge]. Actuarial data grounded in reported
incidents of cybercrime will enhance the accuracy of probability-of-loss estimates and
premium pricing.

HTCIA Public-Private Guidelines
Below is an abbreviated outline of the HTCIA Guidelines:

I. INFORMATION SECURITY POLICIES

A. DEFINITION PHASE

1. Roles and Responsibilities, Personnel Who Deal with Law Enforcement
(LE)

a. Establish two points of contact (POC) – one security/technical
and one legal/senior administrative.

b. Educate and integrate designated POCs into LE and prosecutor-
ial agencies and high-technology associations to establish trust
relationships (i.e., HTCIA, Infragard).

c. Designate chain-of-command regarding authority to control
investigation and report to LE.

d. Define who a “user” is for application of the Acceptable Use
Policies.

2. Privacy Expectations

a. Define scope and coverage in order to inform users of the when,
where, why, and what regarding expectations of privacy, enabling
companies to deal with violations properly.

b. Establish organization ownership of computer facilities
(hardware, software, data, communication devices).

c. Establish that use of computer facilities should be work-related
and the scope of use should be duty-related.

PUT YOUR DATA WHERE YOUR MOUTH IS �

3. Define Acceptable Use Policies

4. Define What Constitutes an “Incident” for Application of Policies

5. Define and Document Incident Response Plan

a. Examples of reportable computer crimes
i. Actual intrusion into system circumventing access

controls
ii. Exploiting vulnerable programs
iii. Denial-of-service attacks
iv. Theft of bandwidth
v. Exceeding authorized access
vi. Child pornography storage or transmission
vii. Theft of intellectual property or trade secrets

b. Examples of incidents better resolved internally or under civil
law rather than by LE

6. Define Consequences of Non-Compliance (reserving the right to institute
penalties, including criminal prosecution)

B. DOCUMENTATION PHASE

1. Document Policies

a. Obtain acknowledgment via click-thru forms on the Web that
evidence acknowledgment of policies.

b. Obtain signature evidencing user understanding and pledge to
abide.

c. Include policy language stating that the company reserves the
right to change the policy, and the user is obligated to regularly
visit a clearly demarcated location where policies are accessible.

2. Document Audit Policy and Audit Logging

3. Document Incident Cost Model

a. Document policies and procedures for collecting measurable
loss data in response to computer security incidents

i. Replacement of hardware, software, or other property
that was damaged or stolen.

ii. Lost productivity by users who were unable to use sys-
tems during relevant time period.

iii. Time spent by all staff to clean up the damage to sys-
tems under your control (e.g., analyzing what has
occurred, re-installing the operating system, restoring
installed programs and data files, etc.).

iv. Who worked on responding to or investigating the
incident.

v. Indirect costs: any revenue lost, cost incurred, or other
consequential damages incurred because of interruption
of service (must have methodology and reasonable justi-
fication for calculation).

C. DISSEMINATION PHASE

60 Vol. 28, No. 3 ;login:

61

�

TH

E
LA

W

June 2003 ;login:

II. IMPLEMENTING AND ENFORCING POLICIES

A. INCIDENT RESPONSE CHECKLIST

1. Pre-Incident Planning

2. During Suspected Incident

3. Post-Incident: What Law Enforcement Needs to Investigate (reactive mode)

a. Preserve all relevant logs on all systems (i.e., Web logs; Intrusion
Detection System (IDS); firewall; mail logs).

b. Obtain name list of all users, new hires, and terminated users
within past six months.

c. Identify all network access points (trusts granted to other net-
works): Internet gateways, VPNs, LAN/WAN connections.

d. If dealing with an intrusion from outside the company, and if
you have trained in-house security response capabilities, exhaust
all methods of intraoffice security investigations in tracing back
prior to contacting law enforcement.

e. Collect copies of complaints sent to organization during time-
frame of incident.

f. Calculate time offset (including time zone) of all affected com-
puters.

g. Collect copies of badge/entry logs, security cameras, etc. for
internal incident.

h. Identify all correspondence with external organizations/
individuals, especially foreign to the United States.

i. Preserve forensic image(s) or actual drives from compromised
system (law enforcement can supply media and manpower for
image). (See D, below, Evidence Recovery and Handling).

4. Notify Law Enforcement

a. Notification should generally be made immediate on the discov-
ery of a suspected violation. However, you may choose to have
skilled and trained staff conduct a forensically sound internal
investigation prior to calling in LE. The advantage here is that
you may be able to obtain certain evidence more efficiently, yet
still within the bounds of the law, than when LE is involved.

NOTE: Notification does not obligate you to participate in the investigation.
However, lack of participation may affect successful legal remedies.

5. Questions that LE Will Likely Ask When You Make the Complaint

a. What evidence do you have that you were victimized?
b. What is the chronology of the event?
c. What is the impact to your network?
d. Are your systems still running?
e. When did the incident first occur?
f. When was the incident discovered?
g. Who discovered the incident?
h. Is the activity ongoing?
i. Who do you think is responsible for the incident and why

do you suspect them?

PUT YOUR DATA WHERE YOUR MOUTH IS �

62 Vol. 28, No. 3 ;login:

j. What is the internal or external IP address for the attacker?
k. Can you provide a complete topology of your network?
l. Who in the organization has been notified?
m.Who outside the organization has been notified?
n. From this point forward, who does law enforcement contact

and who can they speak to if they are contacted?
o. What are your estimated damages?

B. EVIDENCE RECOVERY AND HANDLING GUIDE

Once the nature of the incident has been defined, the next step is to identify
where data relevant to the incident may reside. The steps taken to identify the
incident, which may have a forensic impact, need to be completely docu-
mented.

Additionally, the decision whether to secure and maintain evidence should be
factored into your organization’s risk analysis. This is a cost-benefit analysis
that should consider the short- and long-term economic consequences of
keeping log data, including the effect on potential civil and criminal legal
actions. Even if no legal action is taken, organizations may want to consider
maintaining logs for a limited amount of time in accordance with document
retention policies.

1. Essential Elements to Evidence Recovery and Handling

a. Identification of relevant data
b. Isolation of evidentiary data

i. Considerations – once data is identified, relevant sys-
tems should be secured to avoid possible contamination
of digital evidence.

ii. Partial or complete system analysis (copy of relevant
logs, logical image of media, physical image of media).

iii. Real-time backup of data to remote location in accor-
dance with data retention model and policies.

c. Preservation of evidentiary data
d. Resources that should be considered

Proper evidence recovery and handling requires specialized forensic tools and training.
The resources available may be internal (IT, Security), external (private consultants),
and law enforcement.

Conclusion
Our increasing dependence on technology has enhanced business functionality and
productivity while simultaneously exposing our organizations to more frequent and
severe threats. Securing organizations demands better cooperation with law enforce-
ment, which provides critical and unique information services beyond the capabilities
of any one organization.

The HTCIA Guidelines are intended to help victims of cybercrime more effectively
interact with law enforcement so that the goals of both entities are better served and to
advance public-private cooperation by identifying essential elements of an organiza-
tion’s policies, incident response plans, and electronic evidence-handling procedures
that will meet the goals of both your organization and law enforcement. Without more
victims working with law enforcement to track down cybercriminals, we cannot expect
to abate the frequency and severity of cyber threats.

63June 2003 ;login:

the bookworm
BOOKS REVIEWED IN THIS COLUMN

by Peter H. Salus

Peter H. Salus is a
member of the ACM,
the Early English Text
Society, and the Trol-
lope Society, and is a
life member of the
American Oriental
Society. He is Editorial
Director at Matrix.net.
He owns neither a dog
nor a cat.

peter@netpedant.com

or make or sort or . . .); one that
includes GNU and BSD and Linux;
Gnome; Opera; even the Open Software
Foundation’s Motif. News – Usenet –
isn’t “commercial,” I guess. But Usenet
and UUNET were really important, as
were rn, ANews, BNews, and CNews.

This is a book about the software indus-
try – economics and business. It’s not a
history of software. Campbell-Kelly
limns a portion of the story and does it
very, very well. I wish someone would
try the whole thing.

Hardware
The first edition of Ceruzzi appeared
five years ago. The new, second edition is
emended and enlarged. The enlargement
consists of an additional chapter cover-
ing the period 1995–2001. Even though
Ceruzzi’s emphasis is on hardware, he
does a fine job where the Microsoft
antitrust suit and Linux are concerned.
There is a very clear (though brief) dis-
cussion of open source software (though
Stallman and GNU are never men-
tioned).

One gets the impression that Ceruzzi, in
the National Air and Space Museum in
Washington, DC, is more urbane than
Campbell-Kelly at the University of
Warwick. Ceruzzi mentions the Ferranti
Atlas and the Cromemco. He recognizes
Zuse and work at the ETH in Zurich. He
recognizes the importance of Wilkes and
of Dijkstra (neither of whom appears in
Campbell-Kelly).

There are things one might want
described differently, but on the whole
Ceruzzi’s book is one anyone interested
in computing can read with profit.

Buy them both. They’re really worth-
while.

TCP/IP, Once More
Mansfield has produced a very handy,
very useful book which is applicable to
“Linux and Windows.” I know nothing

Readers of this column probably know
that I’m a devotee of history, which is
great since the main items this month
are two history books. Each has some
shortcomings, but they are both excel-
lent and help us understand just how we
got here, with respect to both hardware
and software.

Software
Martin Campbell-Kelly has been writing
interesting historical work for quite a
while. I recall his book on ICL occupied
me while I was at a UKUUG about 15
years ago. His collaboration with Aspray,
Computer, is an excellent survey. This
new book on the software industry is
really splendid. I can only fault it for
what’s not there.

Describing the history and development
of software can make one feel like one of
the blind men examining the elephant.
Campbell-Kelly has chosen to look at
the industry from the 1950s to 1995.
What he chooses to represent in those 40
years is quite selective, too: FORTRAN
and COBOL, but no ALGOL; C, but no
C++; SHARE, but not DECUS or
ADUS; SCO but not mtXinu. There is
one line on Linux; nothing on any of the
BSDs. Burroughs is there, but not Fer-
ranti. The general “feel” is Anglocentric:
SAP but no Chorus.

But that’s the sort of thing I complain
about. What I’d really like to see is a gen-
uine history of software: one that
includes languages and tools (like grep

FROM AIRLINE RESERVATIONS TO
SONIC THE HEDGEHOG: A HISTORY
OF THE SOFTWARE INDUSTRY

MARTIN CAMPBELL-KELLY

Cambridge, MA: MIT Press, 2003. Pp. 372.

ISBN 0-262-03303-8.

A HISTORY OF MODERN
COMPUTING, 2D ED.

PAUL E. CERUZZI

Cambridge, MA: MIT Press, 2003. Pp. 445.

ISBN 0-262-53203-4.

PRACTICAL TCP/IP

NIALL MANSFIELD

London, UK: Addison-Wesley Professional,

2003. Pp. 851. ISBN 0-201-75078-3.

PRACTICAL UNIX AND INTERNET
SECURITY, 3D ED.

SIMSON GARFINKEL ET AL.
Sebastopol, CA: O’Reilly, 2003. Pp. 954.

ISBN 0-596-00323-4.

UNDERSTANDING AND DEPLOYING
LDAP DIRECTORY SERVICES, 2D ED.

TIMOTHY A. HOWES ET AL.
Boston: Addison-Wesley, 2003. Pp. 936.

ISBN 0-672-32316-8.

64

about running TCP/IP on a Windows
network, and a provident deity may ren-
der it unnecessary for me to acquire
such knowledge. But I can reveal that the
information concerning Linux is well-
presented, and – as far as I can tell – cor-
rect. (This last is not as silly as it may
seem; I try not to write about the books
that just get it wrong.) This is not
intended to replace the Comer or the
Stevens sets, but I think it’s more
detailed than Craig Hunt’s O’Reilly vol-
ume. The inside front covers contain a
useful list of TCP and UDP port num-
bers; the rear covers have a table of deci-
mal, binary, and hex numbers. As I’ll be
1000001 by the time you read this, you
may need it to keep score.

Third At-Bat
Garfinkel and Spafford hit a homer over
a decade ago with Practical Unix
Security. They hit another five years later
with Practical Unix and Internet Security
(1996). The cast now includes Alan
Schwartz, and the third edition, actually
marginally shorter than its predecessor,
is another base-clearer. The book really
covers Solaris, MacOS X, Linux, and
FreeBSD, and it should sit on your shelf
together with Bishop and Cheswick,
Bellovin and Rubin. Fine job!

Another Return
Understanding and Deploying LDAP
Directory Services was really useful when
it appeared five years ago. The new edi-
tion has put on nearly a hundred pages,
but it’s still the LDAP book to have.
These guys know their stuff; just look at
RFCs 1558, 1778, 1823, 1959, 1960,
2251, 2254, 2255, 2559, 2587, 2596,
2696, 2798, and 2849.

but he refused to say how many binary
licenses there were. (Note: the PC had
appeared; IBM had introduced the PC-
AT. The XT would be released in 1984.)

A Few Other Papers
There were a few other papers: Holt,
Mendel, & Perlgut of the CSRG talked
about TUNIS, which was a UNIX-com-
patible kernel written in Euclid; Michel
Gien talked about the Sol Operating Sys-
tem, which was implemented in Pascal
and ended up as Chorus.

Thursday, July 14
Bob Kridle and Kirk McKusick delivered
a paper on “Performance Effects of Disk
Subsystem Choices for VAX Systems
Running 4.2BSD UNIX.” John Cham-
bers and John Quarterman spoke on
“UNIX System V and 4.1C BSD,” fol-
lowed by Mike O’Dell on “Berkeley
UNIX after 4.2BSD.”

Rob Pike delivered “UNIX Style, or cat -
v Considered Harmful,” and Dave Korn
introduced “KSH – A Shell Program-
ming Language.”

It’s really amazing to look back 20 years
and reflect on the importance of much
of this. But there was yet more.

Friday, July 15
Mike O’Dell chaired a session on UNIX
mail. He gave a brief talk, too. But the
other participant was Jim McKie, on
“Where Is Europe?” – he hadn’t moved
from Amsterdam to New Jersey, yet.

Laura Breeden and Mike O’Brien talked
about the (brand new) CSNET; Joe Yao
spoke on “Dynamic Configuration” and
Dan Klein gave a paper on “MIRAGE –
An Assembler Generator and Relocat-
able Linker.”

A really fine conference.

Twenty Years Ago
in USENIX
by Peter H. Salus

Toronto. A beautiful city; over 1200
attendees; an interesting meeting.

Tuesday evening, July 12,
1983
Neil Groundwater convened a meeting
of the Software Tools User Group. The
first speaker was Brian Kernighan, who
delivered a personal view of the develop-
ment of the tool concept and the tools
from 1969 to the formation of STUG.

Wednesday, July 13
Mike Tilson thanked everyone for every-
thing. Lou Katz announced that the next
meeting would be in Washington, D.C.
(to be dubbed “snowstorm #1”) and the
subsequent one in Salt Lake City (mem-
orable for Stu Feldman’s architecture
keynote).

Mike Lesk then delivered the keynote:
“Technology-Driven Software vs. Psy-
chology of Users.’’ Among the points
made were:

� Less documentation is better.
� Terseness does not mean documen-

tation need be cryptic.
� The UNIX manual used to be small;

now manuals issue a master’s degree
in stty.

Once upon a time (before the 7th edi-
tion), you could carry the UNIX docs in
your briefcase; today you can do it only
because the docs are on CD.

Mike was followed by Larry Iseley of
Western Electric (remember them?). It
was divulged that UNIX licensing had
been assigned to Western Electric; that
the Technology Licensing Group had
moved in toto to North Carolina; and
that it was now headed by Otis Wilson.
He gave the number of source licenses,

Vol. 28, No. 3 ;login:

65June 2003 ;login: MIT SPAM CONFERENCE �

conference reports
HTML-capable mail client would render
the message properly, but it would be
absolute gibberish to most mail filters.
The ultimate lesson was that any good
filter has to focus not on “ASCII space”
(the literal bytes as transmitted) but the
“eye space” (the rendered text as seen by
the user), which, by extension, may
mean that any full-scale spam parser/fil-
ter could also have to include a full-scale
HTML and JavaScript engine.

As for Graham-Cumming’s software, it’s
a Perl application, available for all plat-
forms (Windows, Mac, and, of course,
Linux) that enables users to filter POP3
mail. Interesting stuff if you’re a POP
user: http://popfile.sourceforge.net.

SHOPIP

John T. Draper

Most of Draper’s work seemed to be
focused on profiling spammers, as
opposed to profiling spam itself, by
throwing out a series of honeypot
addresses and using data collected to
hunt down spammers.
http://spambayes.sourceforge.net

SPAM RESEARCH: ESTABLISHING A

FOUNDATION AND MOVING FORWARD

Paul Judge, CipherTrust

Judge’s big argument, which no one
really disagrees with, is that spam has
become not just a nuisance but an actual
information security issue. To that end,
he is advocating much more collabora-
tive effort to address the problem than
we have seen to date: conferences like
this, mailing list discussions, better tools,
and public data repositories of known
spam (and ham). To that last point, one
of his observations (which others made
as well) was that there are no universally
agreed-on standards for what qualifies
as spam, so repositories for spam will
not be accurate for all users (e.g., spam
for your programmers will be the bread-
and-butter of your marketing depart-
ment). Plus, there are obvious privacy
issues in publishing your spam and ham

2003 MIT Spam Conference
CAMBRIDGE, MA
JANUARY 17, 2003
http://spamconference.org/

Summarized by Chris Devers

[Editor’s Note: The summaries by Chris
Devers were condensed for publication in
;login:.]

SPARSE BINARY POLYNOMIAL HASHING

AND THE CRM114 DISCRIMINATOR

William S. Yerazunis, Mitsubishi Electric
Research Laboratories

Yerazunis wrote the CRM114 filtering
mini-language and then wrote MailFilter
in CRM114 as an implementation that
can be used with other spam-fighting
programs. The basic idea is to decom-
pose a message into a set of “features”
composed of various runs of single
words, consecutive words, words
appearing within a certain distance of
one another, etc.

He claimed that with this software he
could get better than 99.9% accuracy in
nailing spam, and a similar percentage
in avoiding “ham” (the term everyone
was using for false positives – legit mail
that was falsely identified as spam). One
of Yerazunis’ observations is that the
best way to defeat the spam problem is
to disrupt the economics: if a 99.9% or
better filter rate were to become the
norm, then the cost of delivering spam
could be pushed higher than the cost of
traditional mail and the problem would
naturally go away without requiring leg-
islation.

THE SPAMMER’S COMPENDIUM

John Graham-Cumming, POPFile

Most of this very entertaining talk was
about the ingenious tricks that spam-
mers resort to to obfuscate spam against
filters, including, most diabolically, one
example that placed each column of
monospace text in the message into an
HTML column, so that the average

�

 C
O

N
FE

RE
N

C
E

RE
PO

RT
S

This issue’s reports focus on the 2003

Spam Conference, USITS ‘03, and FAST

‘03

OUR THANKS TO THE SUMMARIZERS:

FOR SPAM ’03:
Chris Devers

FOR USITS ’03:
Ajay Gulati

Xuxian Jiang

FOR FAST ’03:
Scott Banachowski

Nate Edel

Preethy Vaidyanathan

http://popfile.sourceforge.net
http://spambayes.sourceforge.net
http://spamconference.org/

66 Vol. 28, No. 3 ;login:

for public scrutiny. And to add another
wrinkle, one danger of public spam/ham
databases is that spammers can poison
them with false data, screwing things up
for everyone. That said, he encouraged
users to help out with building
http://spamarchive.org.

BETTER BAYESIAN FILTERING

Paul Graham, Arc Project

Graham is the man who organized the
conference and kicked off everything
this week with his landmark paper from
last fall, “A Plan for Spam.” Graham’s
spam-filtering technique famously
makes use of Bayesian statistics, a tech-
nique popular with nearly all of the
speakers. The nice thing about a statisti-
cal approach, as opposed to heuristics,
simple phrase matching, RBLs, etc., is
that Bayesian statistics can be very
robust and accurate; the down sides are
that they have to be trained against a
sufficiently large “corpus” of spam (most
techniques have this property, though)
and they have to be continually re-
trained over time (again, this is com-
mon). Graham was too modest to
produce numbers, but subjectively his
results seemed to be even better than
what Yerazunis gets with MailFilter by
an order of magnitude or more.

Like other speakers, he predicted that
spammers are going to make their mes-
sages appear more and more like “nor-
mal” mail, so we’re always going to have
to be persistent about this; as one exam-
ple, he showed us an email he received
IN ALL CAPS from a non-English-
speaker asking for programming help,
and although it was legit, the filters
insisted otherwise. “That message is the
one that keeps me up at night.”

Everyone interested in the spam issue
should go read Graham’s paper immedi-
ately.

INTERNET LEVEL SPAM DETECTION AND

SPAMASSASSIN 2.50

Matt Sergeant, MessageLabs

SpamAssassin is a well-known Perl
application for heuristically profiling
messages as spam, adding headers to the
message, saying, for example, “I am 72%
sure this is spam because it has X Y Z,”
and passing off the message to procmail,
or whatever, to be handled accordingly.
SA can handle a message throughput
great enough that it can be deployed at
the network level (whereas some of the
other applications, which might have
somewhat better hit rates, are still too
inefficient at this point). Deployed this
way, the differences in effectiveness for
single vs. multiple users becomes very
apparent, as 99% effective rates fall
down into the 95–80% range. This hap-
pens because, again, different users
define different things as spam, so map-
ping one fingerprint to all users can
never work quite right.

For an example of a tool that your com-
pany can deploy right now and get fast,
decent results, SA looks like a good
choice; but for the long run it looks like
a Bayesian technique is going to get bet-
ter performance, and SA is adding a sta-
tistical component to its toolkit. Good
talk.

ANTI-SPAM TECHNIQUES AT PYTHON.ORG

Barry Warsaw, Pythonlabs at Zope
Corporation

This was another example of the “mono-
cultures are dangerous” philosophy, as
Warsaw explained how he is helping to
use a variety of anti-spam techniques –
from clever Exim MTA configuration to
good use of SpamAssassin and procmail
to fine-tuning of the Mailman mailing
list engine – to work together to manage
the spam problem for all things Python
(Python.org, Zope, many mailing lists, a
few employees, etc.).

He pointed out that some very simple
filters can be surprisingly effective: run a
sanity check on the message’s date, look
for obviously forged headers, make sure

the recipients are legit, scan for missing
Message-ID headers, etc. In response to
the person who originally posted the
article, yes, he did mention blocking
outgoing SMTP as an effective element
of a many-tiered spam management
approach.

Among other tricks for getting the dif-
ferent filtering tiers to play nice together,
they make heavy use of the X-Warning
header so that if an alarm goes off in one
tier of their mail architecture, other
components can respond appropriately.
Cited projects included ElSpy and
SpamBayes.

SPAM: THREAT OR MENACE? AN ISP'S VIEW

Barry Shein, The World

His core argument is that spam is “the
rise of organized crime on the Internet,”
that filters are nice but that the mail
architecture itself is fundamentally
flawed, and that ISPs like his – in 1989,
The World was the world’s first dialup
ISP – are being killed by the problem.

Shein was very annoyed that all these
talented people are having to clean up a
mess like this when they should be out
working on more interesting stuff. His
big hope seemed to be that legislation
will someday come to the rescue, but he
sounded very pessimistic. (Others in the
room seemed to feel that this was a very
interesting machine-learning problem
and weren’t really fazed by his pes-
simism – but, then, most of the people
in the room don’t run ISPs.)

He also suggested that we need to find a
way to make spammers pay for the
bandwidth they are consuming (rather
than having users and ISPs shoulder the
burden) but didn’t seem to know how
we might go about implementing this.
At all.

SMARTLOOK: AN E-MAIL CLASSIFIER

ASSISTANT FOR OUTLOOK

Jean-David Ruvini, e-lab Bouygues SA

This was an interesting product. Ruvini’s
company is developing an extension to

http://spamarchive.org

67June 2003 ;login:

�

 C
O

N
FE

RE
N

C
E

RE
PO

RT
SOutlook 2000 and XP that will watch the

way users categorize messages into fold-
ers, come up with a profile for what
kinds of messages end up in which fold-
ers, and then try to offer similar catego-
rization on an automatic basis. Think of
it as procmail for Outlook, without hav-
ing to mess with (or even be aware of!)
all the nasty recipes.

Obviously, if you have a spam folder,
then spam will be one of the categories
it looks for, but, more broadly, it will try
to categorize all your mail as you would
ordinarily categorize it. This makes
SmartLook a broader tool than “just” a
spam manager.

SmartLook is another statistical filter,
though it uses non-Bayesian algorithms
to get results. e-labs’ tests suggest that
the product is able to properly catego-
rize messages about 96% of the time,
with no false positives, and (for their
tests, mind you) that it performed better
than Bayesian filters over three months
of usage.

One nice property of this tool was that it
works well with different (human) lan-
guages – some strategies fall apart
and/or need retraining when you switch
from English to some other language.
For certain markets (e-lab is in France)
this is a crucial feature, and having a tool
that works with one of the biggest mail
clients out there (most people don’t use
Mutt or Pine, sadly enough) can be very
valuable. Very clever – watch for the
inevitable embrace and extend three
years from now.

LESSONS FROM BOGOFILTER

Eric Raymond, Open Source Initiative

He didn’t say anything about guns, but
he did try to correct one of the other
speakers for misusing the term “hacker.”

Like Graham, ESR is a Lisp fan, but he
knows that the vast majority of people
aren’t, and he also knows that the vast
majority of people need to be using
something like Graham’s spam software.
So on a lark, he came up with a clean

version in C, named it bogofilter, and
put it on SourceForge, where a commu-
nity sprang up to, well, embrace and
extend it.

As good as Graham’s Bayesian algorithm
is, ESR felt – as did many of the other
speakers – that the nature of your
spam/ham corpus is much more signifi-
cant than the relative difference among
any handful of reasonably good algo-
rithms. (Back to the often-repeated
point about how corpus effectiveness
falls apart when used for a group of
users, as opposed to individuals.)

To that end, he strongly felt that the best
way to deal with the spam problem is to
get good tools into the hands of as many
people as possible, and to make them as
easy to use as possible.

As an example, one of the first things he
did was to patch the Mutt mail agent so
that it had two delete keys: one for gen-
eral deletion and one to “get rid of this
because it’s spam.” That second key, and
interface touches like it, seem like the
way to get average people to start using
filters on a regular basis.

SPAM FILTERING: FROM THE LAB TO THE

REAL WORLD

Joshua Goodman, Microsoft Research

Unlike ESR, Goodman felt that algo-
rithm selection does make a big differ-
ence, but, this being Microsoft, he
refused to disclose what algorithms his
team is working with – except to say
that, when delivered, they will be more
accessible for average users than
SpamAssassin, procmail recipes, or
Mutt.

Microsoft has been working on the spam
problem since 1997, but because of how
big they are, they’ve had unique prob-
lems in bringing solutions to market. As
a case in point, they tried to introduce
spam filters in a 1999 Outlook Express
release, but were immediately sued by
email greeting card company Blue
Mountain because their messages were
being inaccurately categorized as spam.

With that in mind, they have been very
reluctant to bring new anti-spam soft-
ware out since then, because they would
like to see legislation protecting “good
faith spam prevention efforts.”

As a very large player, Microsoft faced
certain difficulties in developing useful
filters: It may make sense for you as an
individual to filter all mail from Korea,
but this doesn’t work so well if you are
trying to attract customers from Korea.
This has forced them to put a lot of
work into thoroughly testing different
strategies before offering them to the
public.

In spite of what millions of Webmail
users might have expected, Hotmail and
MSN are currently being filtered by
Brightmail’s service, and plans are
underway to re-introduce spam-man-
agement features to client-side software
again. (Just imagine how bad it would
be if they weren’t paying someone to fil-
ter for them!)

An interesting barrier his group has had
to grapple with was what he called the
“Chinese menu” or “madlibs” spam gen-
eration strategy: that it’s easy to come up
with a template for spam – “[a very spe-
cial offer] [to make your penis bigger]
[and please your special lady friend all
night!” vs. “[an exclusive deal] [for geni-
tal enlargement] [that will boost your
sex life!]” etc. – and have a small handful
of options for each “bucket” multiplying
into a huge variety of individual mes-
sages that are easy for a human to group
together but almost impossible for soft-
ware to identify.

INTEGRATING HEURISTICS WITH N-GRAMS

USING BAYES AND LMMSE

Michael Salib, extremely funny MIT
student

Unlike nearly all other filter writers of
the day, Salib’s approach was heuristic:
find a handful of reasonable spam dis-
criminators, throw them all against his
mail, and see how much he can identify
that way. “It’s sketchy, but this is a class

MIT SPAM CONFERENCE �

68 Vol. 28, No. 3 ;login:

project. I don’t have to be realistic. These
results may be completely wrong.”

Much to his surprise, he’s trapping a lot
of spam. He pulls in a little bit of RBL
data (“the first two or three links from
Google, whatever”), looks for some pat-
terns, and then churns it through
LMMSE, an electrical engineering tech-
nique that, as far as he can tell, doesn’t
seem to be known in other fields. Basi-
cally, this involves running the messages
through a series of scary-but-fast-to-cal-
culate linear equations. It turns out that
he can process this much faster than a
Bayesian filter, to the point that cus-
tomizing his approach for each user in a
network would actually be feasible.

For a small spam corpus, he got results
better than SpamAssassin did, though
for a large corpus his results were worse;
he couldn’t really account for why this
would be the case, or predict how things
would scale as the corpus continued to
grow.

FORTY YEARS OF MACHINE LEARNING FOR

TEXT CLASSIFICATION

David D. Lewis, Independent
Consultant

The core of Lewis’s argument, as ESR
said earlier in the day, is that for any
machine-learning technique, the quality
of the learning corpus is much more
important than the algorithm used.
Bayes is one such algorithm, but there
are many other good ones in the litera-
ture. Lewis pointed out that all of this
has been publicly discussed since the
first machine-learning paper was pub-
lished in 1961.

Observations: “Lots of task[-non-spe-
cific] stuff works badly, but task-specific
stuff helps a lot.” It is important to use
different bodies of text for training and
for general use, so that you don’t train
your machine to focus too much on cer-
tain types of input (this is a point that
Microsoft’s Goodman made as well).

As Graham did, Davis emphasized that
spam is going to slowly start looking

more like natural text, and we’re going
to have to deal with this as time goes on.
http://www.daviddlewis.com/events/

HOW LAWSUITS AGAINST SPAMMERS CAN

AID SPAM-FILTERING TECHNOLOGY: A SPAM

LITIGATOR'S VIEW FROM THE FRONT LINES

Jon Praed, Internet Law Group

To a burst of tremendous applause, this
talk began with the sentence, “My name
is Jon Praed, and I sue spammers.”

He brought a legal take on the “not
everything is spam to everybody” angle,
emphasizing that we need a precise defi-
nition of what qualifies as Unsolicited
Commercial Email (UCE). In particular,
it has been difficult trying to pin down
whether the mail was really unsolicited,
as this is where the spammers have the
most wiggle room. However, if you can
track down the spammer, they have, to
date, rarely been able to verify that the
user asked for mail, and so Praed has
been able to successfully prosecute sev-
eral spammers using this angle. But he
doesn’t expect this to work forever.

According to Praed, “Laws against spam
exist in every state, and more are pend-
ing,” but he doubts that a legal solution
will ever be completely effective as long
as spam is lucrative. By analogy, he
pointed out that people still rob banks,
and that has never been legal.

Praed informed the audience that there
are several ways to get back at spam-
mers, including injunctions, bankruptcy,
and contempt, and all of these can be
very effective. He pointed out that, to be
blunt, a lot of these people are desperate
low-lifes, and spam has been their
biggest success in life. After these legal
responses, their lives all get much worse.

It hadn’t occurred to me to see spam-
mers as pitiful before, but I can now.
Most importantly, Praed stressed that
these legal remedies can be very effec-
tive, and he strongly warned against tak-
ing vigilante action. This is almost
always worse than the spam itself, and it

only serves to get you in even deeper
trouble than the spammer.

Most spam comes from offshore spam
houses, abuse of free mail accounts
(Hotmail and Yahoo, free signups at
ISPs, etc.) and bulk software (which may
apparently soon become illegal in cer-
tain areas, provided that a law can be
found to ban spam software while allow-
ing tools like Mailman and Major-
domo). Interestingly, he questioned the
idea that IP spoofing is a big problem
and claimed that in every case he has
dealt with he has been able to track
down the messages to a legit source
sooner or later.

Suggestion: If you get a spam citing a
trademarked product (e.g., Viagra), for-
ward it to the trademark holder and they
will almost always follow up on it. Sug-
gestion: Be fast in trying to track down
spammers, as some of them have gotten
in the habit of leaving sites up long
enough for mail recipients to visit, but
taking them down before investigators
get a chance to take a look. Legal obser-
vation: Spam is almost always fraud, and
can be prosecuted accordingly.

Praed wrapped up his talk by citing the
encouraging precedent that the famous
Verizon Online v. Ralsky case set:
(1) that the court is interested in where
the harm occurs, not where the person
doing harm was when causing it, and
(2) it is assumed that you have to be
familiar with a remote ISP’s acceptable
usage policies, and ignorance is no
defense. (Just as you can’t say, “I didn’t
know it was illegal to shoot someone,”
Ralsky couldn’t say that he didn’t know
Verizon prohibits spam. He had to have
known that the AUP wouldn’t allow
what he was doing, so he deliberately
didn’t read it.)

That precedent makes the idea of future
prosecution of spammers much more
encouraging. While, again, legal solu-
tions may never eliminate the spam
problem, a precedent like this can be an

http://www.daviddlewis.com/events/

69June 2003 ;login:

�

 C
O

N
FE

RE
N

C
E

RE
PO

RT
Simportant supplement to filtering

efforts.

DESPERATELY SEEKING: AN ANTI-SPAM

CONSORTIUM

David Berlind, ZDNet executive editor

His talk was primarily about how he
receives a huge quantity of email from
ZDNet readers, and he can’t afford to
use any spam-filtering solution strategy
that would allow any false positives. As
one of the speakers said, getting a 0%
false positive rate is easy: just classify
nothing as spam. Getting a 100% hit rate
is also easy: just classify everything as
spam. Any solution besides those two is
always going to have some degree of
error either way, and determining how
much of what kind of error you want to
accept is up to you.

Most users will tolerate a moderate false
negative rate (some spam gets through)
if it means that the false positive rate
(legit mail is deleted) is very low. In
Berlind’s case, the false positive rate has
to be vanishingly small, because reading
all customer mail is, to him, a critical
sign of respect for his readers.

Further, his business is also a legitimate
mass emailer, sending out millions of
free newsletters to users every day, and if
Shein’s proposal to bill bulk mailers were
to catch on, even a very low rate would
quickly put a company like Berlind’s in
the red. One obvious solution, which
wasn’t mentioned: start charging a sub-
scription for these mailings, and make
them profitable. I don’t want to see this
happen but if it did, then the economics
would tilt back toward making things
feasible again.

Though Berlind is appreciative of the
anti-spam work that is being done, he is
skeptical of how pragmatic most of what
is being proposed can really be. He feels
we need a massive effort to rework the
way mail is handled and, to that end,
hopes ZDNet can help promote a coop-
erative effort between the parties work-
ing on this. They don’t want to be

involved – they are journalists and pub-
lishers, not standards developers – but
they are eager to get things going and
want to cover the story as it progresses.

As Shein said, he feels it’s a waste for all
these talented people to be working on
combating penis enlargement offers, and
he hopes that we can find a way to get
past this and work on real problems
“like world peace.”

FIGHTING SPAM IN REAL TIME

Ken Schneider, Brightmail

As mentioned earlier, Brightmail pro-
vides an ASP service for real-time filter-
ing of both incoming and outgoing
mail. As would perhaps be expected, big-
ger ISPs and networks attract larger
amounts of spam: 50% of mail coming
into big ISPs and 40% coming into big
companies is now spam. Brightmail
offers the Probe Network, a patented
system of decoy honeypot addresses that
gathers data for analysis at their logistics
center, and then distributes spam-filter-
ing rules to their clients where a plug-in
for $MTA (using the open source or
proprietary MTA of the client’s choice)
can act on the database.

An interesting property of their system
is that they have a mechanism for aging
out dormant rules as well as for reacti-
vating retired ones, so that the currently
active rule set can be kept as lean and
efficient as possible. A big source of dif-
ficulty for them is legitimate commercial
opt-in lists, because things have gotten
more shady and blurry over time and it’s
now hard to distinguish this mail from
much of the spam out there. Whitelists
help here, but the problem remains diffi-
cult.

USITS ‘03 �

4th USENIX Symposium on
Internet Technologies and
Systems (USITS ‘03)
SEATTLE, WASHINGTON

MARCH 26-28, 2003

[Only a few reports were received on this
conference – Ed.]

SESSION: ROBUSTNESS

Summarized by Ajay Gulati

WHY DO INTERNET SERVICES FAIL, AND

WHAT CAN BE DONE ABOUT IT?

David Oppenheimer, Archana
Ganapathi, and David A. Patterson,
University of California, Berkeley

David Oppenheimer and his group
studied various causes of failures for
Internet services and the effectiveness of
various techniques used to mask service
failures, as part of their recovery-ori-
ented computing project currently going
on at University of California, Berkeley,
and Stanford. Today, Internet services
have 24/7 expectancy from users, and in
spite of a lot of techniques used by the
designers for higher availability, they still
fail, although such failures are not
always directly visible to users. He talked
about the difficulties users face in con-
vincing service providers to allow access
to their problem-tracking databases, say-
ing “Nobody wants their failure infor-
mation to be public.”

They studied three large-scale services,
which he classified as “Online” (a
mature service/Internet portal), “Con-
tent” (content-hosting service), and
“ReadMostly” (mature readmostly Inter-
net service). They got access to problem-
tracking databases on the first two and a
log of user-visible failures on the third.
Oppenheimer made a clear distinction
between component failures and service
failures: a service failure is one which is
visible to end users; component failures
are sometimes masked by redundancy
and do not cause service failure.

70 Vol. 28, No. 3 ;login:

According to Oppenheimer, operator
errors were found to be the leading
cause of failure in two of the three ser-
vices. Most of these errors were due to
misconfiguration and post-installation
changes made by the operators. He
showed that operator errors are the
largest contributors both in terms of
numbers and time to repair (TTR), con-
tributing approximately 75% of all TTR
on both online and content services.
Oppenheimer also observed that the
highest proportion of operator error
eventually became visible to users as
compared to any other type. In read-
mostly services, network errors domi-
nated operator errors and caused 76% of
all the service failures. Oppenheimer
attributed that to simple and more
robust application software and less
need for day-to-day maintenance on the
part of operators.

Oppenheimer went on to explain vari-
ous techniques commonly used to miti-
gate failures, such as online correctness
testing, exposing/monitoring failures,
redundancy, config checking, and online
fault injection. He presented three tech-
niques, namely, component isolation,
proactive restart, and pre-deployment
correctness testing, which are not cur-
rently in use but which could have pre-
vented some failures from occurring. He
stressed that most of the techniques
work well to mask hardware, software,
and network failures, but that we lack
efficient techniques to mask/detect oper-
ator failures. Also, operator errors are
difficult to diagnose and detect before
they convert into failures.

Finally, Oppenheimer stated some of the
difficulties in extracting data from prob-
lem-tracking databases, since data
entered into them is sometimes incor-
rect and cannot be analyzed by writing
just a few database queries. David said
that a global repository of common
errors, and what was done to handle
them, might be of great help in such
research.

USING FAULT INJECTION AND MODELING TO

EVALUATE PERFORMABILITY OF CLUSTER-
BASED SERVICES

Kiran Nagaraja, Xiaoyan Li, Ricardo
Bianchini, Richard P. Martin, and Thu D.
Nguyen, Rutgers University

Thu Nguyen started off by saying that
today unavailability costs are really high
and even 99.9% of availability is not suf-
ficient for Internet services in some
cases. Most of the large Internet services
use large clusters of commodity com-
puters as their infrastructure. These ser-
vices are often quite complex and have
large design space. Measurement of
availability is mostly based on a practi-
tioner’s experience and intuition rather
than a quantitative methodology.
Nguyen proposed a metric combining
performance and availability. Before
going to the two phases of the metric, he
explained a seven-stage piecewise linear
model showing various stages that a
server goes through, from fault occur-
rence to recovery: (1) component fault
occurs, (2) fault detected, (3) server sta-
bilizes (with performance degradation),
(4) component recovers, (5) server stabi-
lizes (still not performing at peak),
(6) operator resets, (7) normal opera-
tion.

In the first phase, they tried to measure
the system’s response to individual
faults. For the second phase, evaluators
need to use an analytical model to com-
bine expected fault load for the server
with the measurements taken in the first
phase. This gives them a sort of dot
product of faults and behavior vectors.
To demonstrate the effectiveness of the
methodology, the authors studied per-
formability of four versions of PRESS (a
highly optimized yet portable cluster-
based locality-conscious Web server)
against five classes of faults associated
with network, disk, node, and applica-
tion. In phase two of the case study, they
compared performability of various ver-
sions of PRESS and showed how the
model can be used to evaluate various
design tradeoffs, such as adding RAID or

increasing operator support. Finally,
Nguyen discussed some of the lessons
learned after applying their methodol-
ogy to PRESS.

MAYDAY: DISTRIBUTED FILTERING FOR

INTERNET SERVICES

David G. Anderson, MIT

Denial-of-service attacks are quite com-
mon these days; it doesn’t require a high
degree of sophistication to implement
them. Many measures have been sug-
gested to prevent and avoid DoS attacks,
but for various reasons none of them
has been globally deployed. Either they
require lots of changes in routers, affect
normal operation of the server, don’t
provide any guarantees about immediate
relief to the deployer, or take too much
time to recover once the attack is
detected. Anderson proposed Mayday,
an architecture that provides pro-active
protection against DDoS attacks, impos-
ing overhead on all transactions to
actively prevent attacks from reaching
the server.

He made it clear in the beginning that
Mayday works only for flooding attacks
and not for other smart attacks that
could potentially crash a server with
incorrect data. He also pointed out that
an attacker who can watch all traffic in
the network is too powerful to resist;
one who targets a particular node or can
watch only a part of network traffic,
however, can be eliminated, basically
because the server has time to detect
and prevent the attack before the
attacker gets hold of all the nodes. May-
day combines overlay networks with
lightweight packet filtering that is effi-
ciently deployed in routers around the
server. This filter ring of routers actually
provides Internet connectivity and a set
of overlay nodes that can talk to the
server via the filter ring. Clients commu-
nicate with overlay nodes using some
application-defined client authenticator.
Overlay nodes authenticate the client,
perform protocol verification, and then
send it to the server through the filter

71June 2003 ;login:

�

 C
O

N
FE

RE
N

C
E

RE
PO

RT
Sring using a lightweight authenticator.

According to Anderson, this leaves the
designer with a lot of choices to trade off
among security, performance, and ease
of deployment. The performance and
robustness of the resulting system
depend heavily on overlay routing tech-
niques and the authentication mecha-
nism.

Anderson went on to discuss the pros
and cons of various lightweight authen-
tication techniques such as the use of the
server’s destination port/address, overlay
node source address, or any other field
in the header for authentication. Simi-
larly, in the case of overlay routing, one
can give access privileges to all overlay
nodes or only to some of them. In the
latter case, access can be by: (1) indirect
routing – overlay nodes pass the message
to a particular node which has access to
the server; (2) random routing – the
message is propagated randomly in the
overlay until it reaches a node having
access to the server; (3) mix routing –
each node knows the next hop but not
the final destination. Fake traffic can be
generated between overlay nodes to con-
fuse the eavesdropper. Once such a pro-
tection mechanism is in place, the server
can switch between normal mode of
operation and secure mode when an
attack is detected.

The paper then covered some of the
practical attacks that can be used against
such filtering-based schemes. Probing or
timing attacks, for example, can quickly
determine a valid lightweight authenti-
cator and use that to pass through the
filter ring. Finally, some of the more
sophisticated attacks that might get con-
trol over an overlay node and launch
internal attacks in the overlay were dis-
cussed.

Q: What can Mayday do about attacks
that are not well known?

A: It’s always possible to come up with
some attacks that are not taken care of.
But my work mostly concentrated on

flooding and DDoS attacks, and it is
quite sufficient to handle them.

Q: How long does it take to change the
configuration and other things in a
router so as to avoid attacks?

A: It depends on how much of a window
you want to allow for attackers to detect
and cut through the security system. But
automated tools these days take minutes,
and sysadmins can do this in a matter of
hours.

SESSION: RESOURCE MANAGEMENT

AND SCHEDULING

Summarized by Ajay Gulati

ADAPTIVE OVERLOAD CONTROL FOR BUSY

INTERNET SERVERS

Matt Welsh and David Culler, Univer-
sity of California, Berkeley, and Intel
Research

Matt Welsh started off by saying that
9/11 has reminded us of the inability of
most Internet services to scale and han-
dle spikes in demand dynamically. Peak
workload may be orders of magnitude
higher than the average, and managing
the performance of a server under such
conditions becomes really difficult. Most
of the common approaches apply strict
limits on resources, such as bounding
the number of open sockets or threads
or limiting the maximum CPU utiliza-
tion. He stressed the point that these
limits should in some sense be represen-
tative of user response time and not just
the characteristics of the servers.

Overload management techniques are
based on SEDA (staged event-driven
architecture), which is a model for scala-
ble and robust Internet services. SEDA
decomposes a service into a graph of
stages, where each stage is an event-
driven service component. Each stage
uses a small, dynamically sized thread
pool to handle some aspect of request
processing. These stages are connected
via explicit queues that act as a mecha-
nism for control flow between the stages
and a boundary between them. Each
stage’s incoming event queue is guarded

USITS ‘03 �

by an admission controller that accepts
or rejects new requests for the stage.
Each stage can do dynamic resource
control, to keep itself in its normal oper-
ating mode by tuning parameters for its
operation, such as changing the number
of threads based on the workload and
performance of the stage. Welsh showed
a code snippet to demonstrate that over-
load management is built into the appli-
cation itself, as any stage can reject a
queue request if it feels that accepting it
might lead to performance loss. He dis-
cussed some of the alternatives to reject-
ing requests for load shedding. One
might start working at degraded perfor-
mance and tell the user, “This will take
time, please wait,” as most airlines do.
Another way would be to send explicit
rejections, such as “We are busy now, try
again later.” Some Web sites also do
some social engineering by sending
error messages, saying, for example,
“Zipcode is wrong,” just to confuse users
and gain more time to handle the
request. This scheme allows overload
control to be performed in response to
measured bottlenecks, which is better
than having an external control based on
general service capacity. Also, handling
rejected requests can be done on a stage
basis, since the application knows which
stage was bottlenecked for a given
request. Welsh presented three mecha-
nisms of overload control in SEDA:

1. Performance metric: A 90th percentile
response time is used, which is a realistic
and intuitive measurement of client-
perceived system performance. The
response time value may be set by the
system administrator and might depend
on request type – for example, not kick-
ing out a user with lots of stuff in a
shopping cart.

2. Response-time controller design: The
controller associated with each stage
observes a history of response times and
throughput of the stage, and adjusts the
rate of acceptance for new requests to
meet the goals of performance.

72 Vol. 28, No. 3 ;login:

3. Class-based differentiation: This
scheme can prioritize requests from cer-
tain users over others and handle service
level agreements based on what different
clients are paying for the service. The
authors developed a Web-based email
service, which was a clone of Yahoo
mail, allowing users to access and man-
age their emails. During large load
spikes, SEDA compared favorably to
servers with fixed connection limits in
meeting 90th percentile targets. Also,
SEDA’s rejection rates were lower than
other approaches. Finally, multi-class
service differentiation led to different
rejection rates for various classes, with
requests from one class meeting the 90th
percentile response time more fre-
quently than the other, less-preferred
class.

Q: Is this architecture designed for a sin-
gle machine or a cluster?

A: It will work very well on a cluster as
well. In that case, different stages might
be implemented on different machines.

MODEL-BASED RESOURCE PROVISIONING IN

A WEB SERVER UTILITY

Ronald P. Doyle, IBM; Jeffrey S. Chase,
Omer M. Asad, Wei Jin, and Amin M.
Vahdat, Duke University

Summarized by Ajay Gulati

Jeff Chase started off by saying that pro-
visioning of shared resources at large-
scale network services is one of the
biggest challenges for system research
today. The authors focused on automa-
tion of on-demand resource provision-
ing for multiple services hosted by a
shared server infrastructure competing
for resources such as memory, CPU
time, and throughput from storage
units. A slice of the these resources
is allocated to each service to meet ser-
vice quality targets decided in SLAs.
Chase presented a novel model-based
approach, in which internal models of
service behavior are used to predict ini-
tial resource allotment and are changed
dynamically using a monitoring and
feedback system. He introduced the

notion of a “utility operating system”
that handles resource management
across the utility as a whole. The authors
observed that network service loads have
been studied extensively, have common
properties, and can be represented by
models fairly accurately. Chase went on
to discuss some of the models derived
from basic queuing theory and showed
that behaviors predicted from these
models were quite similar to actual
observed behaviors. Resources such as
memory, storage I/O rate, and response
time were closely modeled by parame-
ters like requests/s, average object size,
average CPU demand/req., memory size
for object cache, and peak storage
throughput in IOPS.

Once the models were obtained, a
resource provisioning algorithm was
used to plan least-cost resource slices
and get an “allotment vector” for each
service, representing CPU, memory, and
storage allotments. This algorithm con-
sists of three main primitives:

1. Candidate – plans initial allotment
vectors that are guaranteed to meet SLA
response time targets for each service. It
does not consider resource constraints,
which is done by the other two primi-
tives.

2. LocalAdjust – takes a candidate allot-
ment vector and request arrival rate as
input and outputs an adjusted vector
adapted to local resource constraint or
surplus exposed during initial assign-
ment. It basically constructs an alterna-
tive vector that meets target within the
resource constraints.

3. GroupAdjust – works on a set of can-
didate vectors to adapt to a resource or a
surplus exposed during assignment to
meet system-wide goals. For example, it
can reprovision available memory to
maximize the hit ratio across a group of
hosted services.

Chase presented various graphs showing
how these primitives allocated surplus
memory to optimize global response
time and flexibility of the model-based

approach in adapting to changes in load
or system behavior. Finally, he presented
the evaluation methodology for the
technique, for which they used a cluster
of load-generating clients, a reconfig-
urable switch, DASH Web server, and
network storage servers accessed using
DAFS (direct access file system). The
results showed that the predicted and
observed resource utilizations were fairly
close and that model-based provisioning
is quite effective for resource manage-
ment on cluster utilities.

CONFLICT-AWARE SCHEDULING FOR

DYNAMIC CONTENT APPLICATIONS

Cristiana Amza, Alan L. Cox, Rice
University; Willy Zwaenepoel, EPFL

This work focused on scaling a dynamic
content site (e.g., Amazon.com) through
a new technique called conflict-aware
scheduling. Dynamic content sites con-
sist of three tiers: Web server, application
server, and database. The need for scal-
ing the main site arises because there
may be many clients accessing such sites.
Replicating the front tiers is easy because
they do not contain the dynamic con-
tent; the data that changes is stored in
the database. Currently, state-of-the-art
dynamic-content Web servers rely on a
single very expensive database super-
computer to satisfy the volume of
requests. The solution introduced was to
scale the database tier by using replica-
tion on clusters. This allows a low-cost
solution and, most importantly, incre-
mental scaling and strong consistency at
the same time. Amza justified the choice
of replication based on characteristics of
dynamic-content applications such as
locality (hot-spots in the workload) and
higher read-query complexity as com-
pared to the write-query complexity. On
the other hand, traditional replication
has a known down side. It is well known
that one cannot get both scaling and
strong data scheme (for consistency),
asynchronous writes (for scaling), and
conflict avoidance (for improved scal-
ing).

73June 2003 ;login:

�

 C
O

N
FE

RE
N

C
E

RE
PO

RT
SThe TPC-W e-commerce benchmark

with its three workload mixes – brows-
ing, shopping, and ordering – was used
to evaluate conflict-aware scheduling.
The group used commodity hardware
and software components in the evalua-
tion: the Apache Web server and PHP
module for the Web and app servers and
the MySQL database engine. The only
correct protocol that could previously be
used to satisfy TPC-W’s requirement for
strong consistency was the eager proto-
col with synchronous writes. The scaling
of the eager protocol is poor and gets
worse with increasing writes in the mix
and larger clusters. Amza’s results
showed that conflict-awareness com-
pared favorably to both eager and con-
flict-oblivious lazy replication over a
large range of cluster sizes and conflict
rates. Scaling was close to ideal in the
conflict-aware protocol for the browsing
and shopping mixes of TPC-W up to
large cluster sizes. The ordering mix was
a pathological case for the protocol. It
had a very high fraction of writes (50%)
and consisted mostly of ordering trans-
actions, which were very long and held
locks on all useful tables. The scaling for
this mix flattened at 16 databases,
although conflict awareness still brought
significant improvement over eager,
which did not scale at all in this mix.

INVITED TALK

FAST, RELIABLE DATA TRANSPORT

Michael Luby, Digital Fountain, Inc.

Summarized by Xuxian Jiang

An interesting talk on the data transport
issue.

Luby first examined the weakness exist-
ing in traditional data transport (UDP,
TCP etc), especially the interconnection
between rate control and reliability
mechanism in TCP data transport. In
traditional data transport, the rate con-
trol is highly constrained by the quantity
of unacknowledged data allowed, and
loss estimation is mainly based on
acknowledgments received.

Secondly, he talked about the digital
fountain data transport approach, which
decouples the relationship between reli-
ability and flow/congestion control. The
reliability is provided without using
feedback. Such feedbackless-based reli-
able data transport has many desirable
features in data transport: (1) speed over
large distances and loss networks; (2)
predictable speedy control of data trans-
port; (3) global transport with local per-
formance; (4) massive scalability; (5)
flexibility in choosing a flow/congestion
control mechanism.

Such an approach can be widely adopted
in many situations: (1) wireless and
satellite communication; (2) enable
receiving when receivers have intermit-
tent connectivity; (3) enable data trans-
port even in highly unreliable commu-
nication, which may experience unknown
or variable loss.

The digital fountain approach is analo-
gous to a water fountain: it doesn’t mat-
ter what is received or lost, it only
matters that enough is received. The
sender sends encoded data at the rate
decided by the selected flow control
mechanism and the receiver receives
some of the encoded data and is able to
reconstruct the original data. It is not
necessary for the receiver to provide
feedback for the transport, what really
matters is that enough information is
received. The encoding and decoding
technology does the essential core of the
magic.

There are serveral erasure codes which
can succeed in the encoding for this pur-
pose, including Reed-Solomon codes
(1960, Reed and Solomon), Tornado
codes (1997, Luby et al.) , LT codes
(1998, Luby), and Raptor codes (2001,
Shokrollahi). The common properties of
these digital fountain codes include: (1)
encoding only as long as data flows; (2)
recoverability of data from required
encoding, (3) low complexity for encod-
ing and decoding; (4) ability to encode

very large data; (5) ability to produce an
unlimited flow of encoding.

The pros and cons of example digital
fountain codes were examined in terms
of data length, encoding length, flexibil-
ity to receive from multiple sources,
memory requirement, computational
work, reception overhead, failure proba-
bility, etc. Interested readers are referred
to the corresponding encoding papers,
especially LT codes (1998, Luby) and
Rapter codes (2001, Shokrollahi).

The talk concluded with some typical
and interesting application scenarios
and on-going projects, such as CINC
deployment, broadcasting data to auto-
mobiles, and robust communication in
challenged environments.

74 Vol. 28, No. 3 ;login:

2nd USENIX Conference
on File and Storage
Technologies (FAST ‘03)
SAN FRANCISCO, CALIFORNIA

MARCH 31–APRIL 2, 2003
KEYNOTE ADDRESS

DATA SERVICES – FROM DATA TO

CONTAINERS

John Wilkes, Hewlett-Packard Labs

Summarized by Scott Banachowski

After a few opening remarks from con-
ference chair Jeff Chase, John Wilkes of
HP Labs kicked off the conference with
the keynote address. As he introduced
the talk, Wilkes clued any bored listeners
to look for themes in the photographs
scattered throughout the presentation
slides. Wilkes’s keynote foreshadowed
many of the themes that would appear
in the following conference sessions:
how to deal with the rising complexity
and ability of storage systems and meet
our expectations for new capabilities.

The solution to storage problems lies in
using Quality of Service (QoS), because
it encompasses everything we’d like to
say about our storage problems. There-
fore the path to a solution includes
defining data QoS needs, using storage
QoS abilities, and automating storage
and data management.

The enterprise IT plan is a complex,
large-scale system; Wilkes demonstrated
this assertion with a convoluted enter-
prise IT architecture schematic. Some of
the requirements of these systems
resemble those of existing large-scale
scientific applications, so we can look to
these applications as predictors of future
trends: they access huge quantities of
data using specialized access patterns. As
examples, Wilkes reviewed the storage
systems required by the human genome
sequencing engine and the CERN elec-
tron collider.

It is important for storage researchers to
distinguish between data and storage,
because we often confuse the data’s

75June 2003 ;login:

�

 C
O

N
FE

RE
N

C
E

RE
PO

RT
Sattributes with those of the containers.

Wilkes outlined many data metrics,
pointing out that it is easy to measure
amounts, rates of growth, or access pat-
terns, but difficult to get a handle on
resilience or security. It is important to
consider that not all data are created
equal (some have little value, some never
change, and some can be regenerated)
and that data have differing lifetime and
security requirements. All of these
attributes can be captured by QoS,
which provides storage systems with
both a set of objectives and a contract
for service. In a brief overview of storage
containers, Wilkes covered new tech-
nologies such as MEMS, MRAM, and
smart disks (bricks). He proposes using
the SNIA shared storage model to get a
handle on how to set up large storage
systems.

Recognizing that storage systems are just
a part of larger computing systems, it is
important to grapple with the manage-
ment challenges. The main challenge is
keeping administration costs low by
automating tasks. We have already gen-
erated many techniques for managing
systems, so Wilkes recommends that we
learn to use existing techniques before
creating new ones.

The key to develop future storage sys-
tems is to embrace complexity. In this
era, we must use a data-centric view-
point for putting everything together,
and this must be driven by QoS. Wilkes
summarized the problem as moving
from “some of the parts to sum of the
parts” as the required step to accessing
data anywhere and anytime. During the
Q&A, someone noted the agricultural
theme running through Wilkes’s slides,
and asked what the equivalent to fertiliz-
ing and weeding is in the storage field.
Wilkes chuckled but supplied no answer.

SESSION: INTERNET SCALE STORAGE

Summarized by Preethy Vaidyanathan

POND: THE OCEANSTORE PROTOTYPE

Sean Rhea, Patrick Eaton, Dennis Geels,
Hakim Weatherspoon, Ben Zhao, and
John Kubiatowicz, University of
California, Berkeley

Peter Honeyman from the University
of Michigan chaired this first session
of the conference. Sean Rhea presented
OceanStore, a global-scale storage sys-
tem, and the prototype Pond, a self-
organizing, self-maintaining, secure
Internet-scale file system among
untrustworthy hosts. (This paper
received the Best Student Paper award.)

The main challenges in a global-scale
storage system are availability and man-
ageability. All the resources in the system
are virtual, and replication is used to
provides fault tolerance and reliability.
Tapestry, a decentralized scalable object
location and routing system, is used in
this prototype to identify the resources.

The prototype uses erasure codes and a
modified Byzantine agreement protocol
to provide fault tolerance and consis-
tency among the replicas. Erasure codes
are more durable than data mirroring
for the same space. The Byzantine pro-
tocol was modified to decrease the num-
ber of messages passed to make replica
copies consistent. Each object is assigned
a primary replica by an inner ring server.
The updates are in-place among the
inner-ring servers.

The Pond prototype was tested using
two experimental testbeds at Berkeley
and PlanetLab (http://www.planet-
lab.org). Andrew benchmark test results
compared to NFS show improvements
in read access and performance degrada-
tion on writes. Rhea explained the write
cost and limitations as due to erasure
code. This cost would be alleviated when
servicing large writes. Pond has good
performance in other benchmark exper-
iments.

FAST ‘03 �

http://www.planet-lab.org

Pond source code is available at
http://oceanstore.cs.berkeley.edu.

DATA STAGING ON UNTRUSTED SURROGATES

Jason Flinn, Intel Research Pittsburgh
and University of Michigan; Shafeeq
Sinnamohideen, Niraj Tolia, and M.
Satyanaryanan, Intel Research Pitts-
burgh and Carnegie Mellon University

Mobile computers are increasing in pop-
ularity, and Jason Flinn presented a
mechanism by which surrogates close to
the mobile device can be used as data
staging stations, reducing transfer
latency. This architecture provides less
latency for the client when accessing
data, as the data is now retrieved from
the surrogate and not the file server.

The data staging architecture consists of
a client proxy that observes file system
traffic and initiates a surrogates help if
need be. A data pump near the file
server acts as an intermediate point
between the client and the server. When
a client accesses data, the pump authen-
ticates the message, reads from the file
system, encrypts it, and sends the cryp-
tographic hash to the client and the data
to the surrogate. All this is done through
a secure channel. The client reads the
data from the surrogate, decrypts it and
checks validity using the hash.

The architecture design is independent
of the underlying file system. For experi-
mentation, this design is implemented
on the Coda file system. The data stag-
ing design assumes client, file server, and
data dump file system to be trustworthy
and entrusts the surrogate and the net-
work.

Flinn presented two experiments to test
the data staging architecture. The first
tested the performance of aggressive
perfecting in this architecture. The
results shows that surrogate data miss
affects the performance more than the
surrogate having data that are never
accessed. The second set of experiments
tested what factors affect the perfor-
mance of the system. The results showed
that latency hurt the performance more

76 Vol. 28, No. 3 ;login:

than bandwidth, which iterates the
assumption for this work.

The source code of this project can be
obtained at http://info.pittsburgh.
intel-research.net.

PLUTUS: SCALABLE SECURE FILE SHARING ON

UNTRUSTED STORAGE

Mahesh Kallahalla, Hewlett-Packard
Labs; Erik Riedel, Seagate Research;
Ram Swaminathan, Hewlett-Packard
Labs; Qian Wang, Pennsylvania State
University; and Kevin Fu, Massachu-
setts Institute of Technology

Mahesh Kallahalla presented a crypto-
graphic storage system for secure file
sharing. Data security is different from
network security, and Kallahalla
described Plutus, a decentralized key
management system where all keys are
handled by the client with minimum
trust on the server. Plutus architecture is
scalable and secure, as there is no single
point of failure, because the client does
the encryption and decryption work and
the server acts as a data store.

Blocks of the file are encrypted with
symmetric key called file-block key.
There is a file-lockbox key for the file. To
minimize the number of keys generated,
files with similar attributes are grouped
into file groups. All the files in the file
group share the same file-lockbox key.
The architecture differentiates between
readers and writers by using file-verify
and file-sign public-private key pairs.

File updates might result in file group
fragmentation. This is handled in the
Plutus architecture by key rotation. Each
update results in the creation of a key
version, not a new key. The owner of the
data can only generate the next version.
The readers keep track of the newest
version of the key, and previous versions
can be rolled back from the current ver-
sion. A prototype has been designed
using OpenAFS. The Plutus system is
tested using UNIX traces and synthetic
benchmarks. Kallahalla concluded that
in spite of the overhead of encryption
and decryption, Plutus performance is

favorable with key points such as file
grouping, key rotation, and lazy re-
encryption.

SESSION: FILE STORAGE

Summarized by Scott Banachowski

METADATA EFFICIENCY IN VERSIONING FILE

SYSTEMS

Craig A. N. Soules, Garth R. Goodson,
John D. Strunk, and Gregory R. Ganger,
Carnegie Mellon University

The first talk of the Storage Session,
chaired by Margo Seltzer of Harvard,
came from Craig Soules of CMU. Soules
presented the Comprehensive Version-
ing File System (CVFS), a log-based file
system that keeps old versions of data
using structures that reduce the storage
overhead of metadata, essentially trad-
ing back-in-time performance for space.

A versioning file system keeps multiple
versions of data for backing out mis-
takes, failure recovery, and history analy-
sis. Current versioning systems write a
new copy of the metadata for each ver-
sion of a file, leading to high metadata
overhead. The goal of CVFS is reduction
of storage overhead, which is accom-
plished by combining journaling and b-
trees.

The system maintains the most current
metadata version and differences
between previous versions, stored in a
journal. The journal approach saves
space because it only records incremen-
tal changes, but retrieving previous ver-
sions is not efficient because all previous
versions must be unrolled in sequence to
recreate the desired version. To reduce
the roll-back time, CVFS occasionally
store an entire version, i.e., a checkpoint.
Multiversion b-trees provide an efficient
structure for storing multiple versions of
data using keys comprised of a name/
time pair. B-trees are more efficient for
single-lookup operations than journals,
so CVFS uses b-trees to maintain direc-
tories, where lookup is the most com-
mon operation and modifications are
infrequent.

http://oceanstore.cs.berkeley.edu
http://info.pittsburgh

The performance of CVFS was evaluated
by playing back 1 month of NFS traces
that contained 164 GB of data traffic
from 30 users. Compared to conven-
tional versioning system, CVFS saved
53% in file metadata and directory
space. The performance relative to other
systems diminishes when keeping less
comprehensive data, for example storing
only on-close versions or periodic snap-
shots. During the Q&A, someone ques-
tioned Soules about the usefulness of
such comprehensive versioning, consid-
ering that many writes may never be
seen by the file system due to caching, to
which Soules replied that it depends on
the application.

YFS: A JOURNALING FILE SYSTEM DESIGN

FOR HANDLING LARGE DATA SETS WITH

REDUCED SEEKING

Zhihui Zhang and Kanad Ghose, State
University of New York, Binghamton

Recognizing that most file system
designs are based on file-size assump-
tions from years ago, Zhihui Zhang pre-
sented yFS, with the goal of handling
large and small files with equal ease. yFS
was implemented in FreeBSD.

The features of yFS include extent-based
allocations, multiple inode formats, b*-
tree structures for managing inode data,
support for large directories, and light-
weight logging. The file system divides
the disk into allocation groups, each
containing its own metadata. Space is
allocated to files in both fragments and
blocks, although, unlike other segment-
based systems, there is no restriction
concerning which segment a file begins,
and fragments may have variable size.
For large files, there are competing goals
of contiguity and locality; yFS scatters
large files across allocation groups.

yFS was compared with FFS enhanced
with Soft Updates using four bench-
marks: a kernel build, the extraction of
an archive file, the PostMark bench-
mark, and a file system aging test. With-
out Soft Updates, the synchronous
metadata updates of FFS lead to perfor-

77June 2003 ;login:

�

 C
O

N
FE

RE
N

C
E

RE
PO

RT
Smance that is not comparable to yFS.

However, even with Soft Updates, yFS
outperformed FFS in all measurements
except for one phase of the compilation
benchmark.

SEMANTICALLY-SMART DISK SYSTEMS

Muthian Sivathanu, Vijayan
Prabhakaran, Florentina I. Popovici,
Timothy E. Denehy, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau, University of Wisconsin,
Madison

Remzi Arpaci-Dusseau explained the
concept of “semantically-smart disk sys-
tems.” Storage systems are currently lay-
ered into the file system and the disk or
RAID system; the origin of this separa-
tion is the hardware/software boundary,
but now each layer is becoming increas-
ingly complex. Because layers are sepa-
rated by a bus or protocol, the semantics
of file system operations are lost in the
disk layer, so semantically-smart disks
aim to reacquire this information in the
disk layer using both offline and online
techniques. The approach allows RAID
systems to exploit their processing and
memory capability without changing
their interface.

Semantically-smart disks understand file
system operations, and discover the lay-
out of on-disk structures and operations
by reverse engineering the block stream.
Static knowledge of file system layout is
determined with the aid of a gray-box
tool called Extraction of Filesystems
(EOF). EOF creates a disk traffic pattern
that, when observed by the disk, pro-
vides hints that allow the smart disk to
determine the types of blocks and their
layout. With this information, the smart
disk may then take steps to improve per-
formance, for example by automatically
caching inodes and directory blocks in
NVRAM.

The paper includes several case studies
for using semantically-smart disks
(SDS), but during the talk Arpaci-
Dusseau focused on adding its secure
deletion feature. By detecting when files

are deleted, the disk can automatically
remove its dead-blocks so that they can-
not be reread using magnetic micro-
scopy techniques. The file system cannot
reliably do this, because it may absorb
writes in cache or may leave stray blocks
on the disk. Using SDS it is possible to
detect deletes, which traditional RAID
systems cannot do, and overwrite the
file’s data blocks with patterns multiple
times, so they cannot be reread. In the
Q&A session, someone asked if it is pos-
sible to also learn semantics through the
interfaces of object-based storage. The
approach may be similar in philosophy
but it is still an open issue.

INVITED SESSION: PETABYTES AND

BEYOND

Reagan Moore, San Diego Supercom-
puter Center; Thomas M. Ruwart, Uni-
versity of Minnesota Digital Technology
Center, Intelligent Storage Consortium;
and Clod Barrera, Director of System
Strategy, IBM Systems Group

Summarized by Preethy Vaidyanathan

The “Petabytes and Beyond” panel was
hosted by Jeff Chase of Duke University.

Reagan Moore started out by listing the
challenges that will be important in the
future for applications dealing with large
amounts of data. He pointed out that,
based on the current data growth trend,
handling large amounts of data would
require organizing data into collections.
Some major challenges would be to tag
these large amounts of data to generate
information, organizing information
into collections, querying collections for
relationships (data mining) and organiz-
ing relationships in concept spaces.

Moore presented some of the projects
dealing with petabytes of data: NASA
Earth Observing Satellite, Large Hadron
Collider, and NSF Teragrid. Teragrid is a
project that handles large volumes of
data in a distributed environment. It
aims to provide a collective set of
resources greater than any one site can
provide. The participating groups in this
project are the San Diego SuperCom-

FAST ‘03 �

puter Center (SDSC), the National Cen-
ter for Supercomputing Applications
(NCSA), the Argonne National Labora-
tory (ANL), and CalTech. Some of the
challenges include managing the
resources over WAN, discovery of data,
and naming conventions.

Other works include Digital Library,
data grids like Grid Bricks that build
cheap storage systems (bricks) using
common disks, and IDE drives and tape
archives. A data grid accesses distributed
resources and should manage name-
space, user authentication, and user
access control across bricks.

Moore concluded by presenting specific
directions for some of the challenges.
Discovery of data in this environment is
essential. This can be provided by an
infrastructure-independent naming
convention. Data discovery is imple-
mented by cataloging a database that
manages the logical name and abstracts
the physical location. Because of WAN
latency management is another chal-
lenge. The SDSC Storage Resource Bro-
ker focuses on this problem. One
solution is to enable the application at
the destinations to pull data from
remote resources by sending an aggre-
gate message that eliminates the large
overhead of a number of individual
messages.

Thomas Ruwart presented “Storage on
the Lunatic Fringe.” He introduced the
DoE Accelerated Strategic Computing
Initiative (ASCI), High Energy Physics
(HEP), NASA Earth Observing System
Data Information Systems (EOSDIS),
DoD NSA and DoD Army High Perfor-
mance Computing Centers, and the
Naval Research Center as the “lunatics”
who are dealing with petabytes of data.
The problem that these projects are
looking at is what the industry will face
in 5–10 years, so a lunatic in this sce-
nario corresponds to a visionary.

Ruwart gave a brief historic outline of
large-scale computing resources, starting
with supercomputer centers in the ’90s

78 Vol. 28, No. 3 ;login:

to the current ASCI Q and the ASCI Red
Storm, Purple, and NASA RDS.

He then went on to present some spe-
cific problems. In HEP, thousands of sci-
entists look at large datasets with
different access pattern considerations.
The Data Grid project is a distributed
architecture and the main issue is man-
aging data for long periods of time. How
to handle a trillion files is the challenge
for the NSA project. He said that consid-
ering 256 bytes of metadata per file, for a
trillion files this itself would result in
256 TB. If this number was not enough
to overwhelm, Ruwart raised the ques-
tion of backups in this scenario. Other
problems raised included searches for
content in these datasets, security, and
availability.

With data on such a scale, legacy block-
based file systems will not work. A vision
for the future is more intelligent storage
devices whose functionality would
migrate from the operating system to
the storage device. The storage device
apart from storing data, should handle
managing and administering data.

Some of the technologies addressed by
the Lunatic Fringe include object based
storage devices, intelligent storage, and
data grids.

Clod Barrera presented “Size and Shape
of Things to Come.” He stated that the
main concern in the future apart from
performance and scalability, would be
data management. He stressed that the
ease and cost of management should be
taken seriously.

He presented life science research as an
audience who will need to deal with
petabytes of storage requirements. At
this requirement level, data access con-
sistency, error recovery, high perfor-
mance, and a scalable file system would
be essential. One such project dealing
with a scalable file system is the Storage
Tank project. A storage network of
petabyte scale might start with a fiber
channel but could be other technology

such as IP over SCSI. Holographic stor-
age is an emerging technology that sim-
plifies content searching. Barrera
concluded by pointing out that an intel-
ligent system with knowledge of the dif-
ferent storage technologies can map the
application to the right storage technol-
ogy for optimal performance.

SESSION: STORAGE SYSTEMS

Summarized by Preethy Vaidyanathan

USING MEMS-BASED STORAGE IN DISK

ARRAYS

Mustafa Uysal and Arif Merchant,
Hewlett-Packard Labs; Guillermo A.
Alvarez, IBM Almaden Research Center

Mustafa Uysal presented the first talk
(given Best Paper award). Two widely
used storage technologies are NVRAMs
and disks. NVRAMs are faster, more
expensive, and less reliable, whereas
disks are slower and cheaper devices.
Current I/O performance is still
bounded by disk access.

MEMS is a new technology being devel-
oped with access characteristics between
NVRAM and disk. They provide persist-
ent and nonvolatile storage like disks but
have different characteristics. They have
no rotational delay, with slow moving
parts making acceleration easy and high
density storage providing a short seek
distance. Uysal expanded upon the vari-
ous architecture alternatives for this new
device, assuming it was cost-effective
and useful.

Uysal presented five array architectures.
MEMS replacing disk (MEMSdisk),
MEMS replacing NVRAM (MEMScache),
and three hybrid architectures: MEMSmir-
ror, Logdisk, and DualStripe. In the
hybrid architectures, MEMS does not
totally replace any device. MEMSmirror
has a MEMS device as mirror for the
disk. No access or layout change is
needed here: reads of data not in cache
are handled by MEMS and writes are
propagated from NVRAM.

Logdisk and DualStripe have data from
MEMS mirrored in disk for redundancy.

79June 2003 ;login:

�

 C
O

N
FE

RE
N

C
E

RE
PO

RT
SIn the Logdisk architecture, updates to

MEMS are propagated to disk in a log-
structured manner. Reads are handled
by MEMS and sequential reads can be
effectively handled by disk. DualStripe is
a dynamic architecture. Reads if cache
miss are handled by MEMS for a short
queue length and handled by disk for
queues greater than a threshold or if it’s
a large sequential read. Sequential access
detection is implemented in firmware.

The different array architectures were
tested for synthetic and trace workloads.
The overall conclusion: having a MEMS
device in your storage array architecture
will be cost-effective and efficient. The
hybrid architecture provide a good
cost/performance benefit and Logdisk
provides the most cost-effective archi-
tecture.

In the question period, Uysal clarified
that this work studied the placement of
MEMS in disk arrays so the scheduling
policy was the same as disk. Another
question led to the conclusion that a
possible 3-level hierarchy of NVRAM,
MEMS, and disk would be an extension
to this work when the exact characteris-
tics of the MEMS device is known.

OPTIMIZING PROBE-BASED STORAGE

Ivan Dramaliev and Tara Madhyastha,
University of California, Santa Cruz

Probe-based storage or MEMS is a new
technology with characteristics such as
low power consumption, high density,
high parallel tip movement producing
high throughput, and no rotational
movement. These devices can be mod-
eled to different design points each
resulting in different performance meas-
ures. This would answer the question of
which workload would best suit probe-
based architecture. Madhyastha outlined
a parameterized analytical model to
compute average request latency for
MEMS devices.

The Probe-based storage is characterized
by X and Y movements, with no rota-
tional movement such as disks use. The

data layout goal is to minimize move-
ment for consecutive requests, similar to
traditional disks. There is a mobile part
which moves when servicing a read or
write request. The repositioning time
comprises seek time and time taken
while moving with a constant velocity in
Y direction to access data (transfer
time).

Madhyastha illustrated how these two
times can be calculated for this device.
In the model, the seek time depends on
bit per tip, distance moved in the X and
Y directions, bit width, acceleration, and
settle time. The transfer time is propor-
tional to the data per tip. The service
time model gives a formula into which
values can be plugged to compute the
service time of the request.

This model was tested by comparing it
with simulation results for a wide range
of parameters. Block level traces were
used to test the performance of the
model. The error computed was small
(up to 15%) when compared to simula-
tion.

In the Q/A section, Madhyastha agreed
with the observation that the reliability
of these devices should be considered in
future research.

ARC: A SELF-TUNING, LOW OVERHEAD

REPLACEMENT CACHE

Nimrod Megiddo and Dharmendra S.
Modha, IBM Almaden Research Center

Dharmendra S. Modha discussed how to
manage cache or what page to replace to
maximize hit-ratio. The cache replace-
ment strategy presented was with
respect to demand paging.

Two popular techniques, Least Recently
Used (LRU), and Least Frequently
Used(LFU), are algorithms that have
long been used for cache replacements.
LRU captures locality of reference; LFU,
the frequency of reference. Modha pre-
sented a new scheme, ARC, that captures
both these characteristics by maintain-
ing two self-consistent lists. The first lists

the pages seen only once and the second
lists pages seen at least twice.

In ARC a sliding window of the size of
the cache is used to determine what page
to replace. The sliding window overlaps
the two lists and the percentage of over-
lap dynamically varies depending on the
workload. This implementation has low
computational overhead and is tested
with a wide range of trace data. ARC
consistently outperforms LRU and has
similar performance to an offline
replacement algorithm that is optimally
tuned for the workload.

In the Q&A Modha clarified that the
sliding window starts initially with the
midpoints in the two lists and the sliding
movement is sensitive to the request.

The source code is available at
http://almaden.ibm.com/cs/people/dmodha.

SESSION: SHARING BLOCK STORAGE

Summarized by Nate Edel

FAÇADE: VIRTUAL STORAGE DEVICES WITH

PERFORMANCE GUARANTEES

Christopher R. Lumb, Carnegie Mellon
University; Arif Merchant, Hewlett-
Packard Labs; and Guillermo A.
Alvarez, IBM Almaden Research Center

Christopher Lumb described work at
HP Labs on the Façade system, a storage
system that provides service level guar-
antees. Unlike existing solutions, which
don’t differentiate between workloads,
the Façade system is able to adapt to
changing workloads to attempt to meet
each separate workload’s service level
objective (SLO).

Façade works by intercepting storage
requests and prioritizing them based on
their SLOs. SLOs are latency bounds at a
given rate of I/O operations; a workload
may have separate SLOs for read and
write operations, and multiple work-
loads/SLOs may share one RAID.

The system has three components: the
I/O scheduler, the controller and moni-
tor, and a target queue. The I/O sched-
uler receives all requests and then

FAST ‘03 �

http://almaden.ibm.com/cs/people/dmodha

timestamps and queues them. The
scheduler then watches the wait times
and dispatches the IO requests based on
earliest deadline to the target queues.
The adaptive controller and monitor
monitors the response times and work-
loads; if requests aren’t meeting dead-
lines, it will makes changes to the target
queue behavior.

The target queue maintains latency
requirements by shrinking in depth
when latency targets are not met to
decrease throughput, and growing in
depth when latency targets are met to
increase throughput. The target queue
growth rate is conservative, because
shrinking queue depth is harder, as I/O
operations have to first drain the queue
to the desired depths, and further I/Os
have to finish to allow new operations to
enter the queue.

Lumb presented benchmark numbers
for a sample set of workloads with three
different SLOs, and showed that without
Façade, the different workloads would
have roughly equal latency and would
not meet their targets. With Façade, by
reducing the I/O rate for a continuous
process, the other two burst workloads
met their latency targets almost all the
time. There were spikes during transi-
tion from high throughput to SLO com-
pliance; he noted that these were opti-
mizable but that the best way to do so
was not clear.

Finally, Lumb compared two workloads
on separate arrays against Façade on a
higher resource single array; with
Façade, the combined array had essen-
tially the same latency for both processes
and the same throughput for the burst
workload. However, with Façade, the
continuous workload could take advan-
tage of bandwidth unused by the bursty
workload when it was not active, allow-
ing some degree of overprovisioning to
be avoided.

In the question-and-answer period,
someone asked if Façade works well
when all workloads compete equally, or

80 Vol. 28, No. 3 ;login:

what happens when workloads compete
for different resources? This was noted
as not clear, but it would be an interest-
ing experiment, which may be able to
account for some aspects, and they
could increase the complexity of the
model by taking into account other
aspects, but Lumb was not sure if it
would make a difference. Someone else
asked if the project had tested other
metrics, such as bandwidth? The project
did not, but it would be simple to use
bandwidth rather than request rate if
that was preferred. Another question
was how Façade prevented starvation? It
doesn’t handle admission control; they
assume the system could eventually ser-
vice all requests.

DESIGN AND IMPLEMENTATION OF

SEMI-PREEMPTIBLE IO

Zoran Dimitrijevic, Raju Rangaswami,
and Edward Chang, University of Cali-
fornia, Santa Barbara

Zoran Dmitrijevic described work done
on developing a system for preemptible
disk-access. The key benefit of pre-
emptibility is decreasing the initial
latency of high priority IO requests. The
size of other, lower priority I/O requests
will not have as great an impact on these
requests; and premptibility may be able
to improve other scheduling.

Overall, the time to execute a read
request depends on several factors – wait
for seek, rotational delay, and the maxi-
mum IO size and maximum disk IO
size. These are typically selected to bal-
ance throughput and latency with all
tasks being equal; without normal, non-
preemptible IO, the total response time
is the waiting time plus the service time.
For an average command, the expected
wait time is one-half of the service time
for an average IO. Preemption allows
elimination of waiting time, and its key
metric is the reduction of expected wait-
ing time.

Without preemption implemented on
the disk itself, the proposed implemen-
tion of semi-premptible IO splits lower

priority IO into several commands. This
allows the controller or OS to interpose
higher priority IO requests into the
stream of smaller requests, a technique
called chunking; because of disk read
prefetching and buffering, the overhead
of IO bus traffic and kernel CPU activity
remains close to constant.

Along with chunking, Dmitrijevic dis-
cussed two other techniques. The first,
just-in-time-seek, attempts to calculate
pre-seek slack using the rotational delay
to make that time preemptible – pre-
seek slack can be used for “free” perfect-
ing and seek-splitting. The second, seek-
splitting, takes long seeks and splits
them into multiple shorter seeks. This
allows preemption of seeks and takes
advantage of rotational slack. The down
side is that multiple short seeks take
slightly longer than a single direct seek.

There were several implementation
issues addressed: disk block mappings
needed to be implemented, the optimi-
nal chunk size had to be determined,
and rotational factors and seek curves
were analyzed. For the optimal chunk
size, Dmitrijevic noted there were both
lower and upper bounds: a minimum
size, below which throughput suffered,
and a maximum size above which it
seemed that prefetching might not con-
tinue to be a factor. SCSI and IDE drives
showed similar curves, although SCSI
was more efficient for a range of smaller
transactions.

The experimental implementation was a
user-mode driver running on the SCSI
generic driver on Linux, and tested using
traces from a specially instrumented
Linux kernel. It was tested with a simu-
lated workload of random IO using
FIFO and elevator scheduling, as well as
with TPC and multimedia streaming
traces. Expected waiting time is much
lower with some workloads, and only
very slightly worse throughput with ran-
dom accesses.

The talk closed by noting that the con-
tributions were measuring the pre-

emptibility of disk accesses and showing
that preemptibility can cut down wait-
ing time. Noted future directions were
the use of semi-preemptible IO in
scheduling algorithms, and a QOS disk
scheduler for Linux.

John Wilkes asked if it would be possible
to implement this on the on-disk con-
troller. The response was that while it
may be possible, existing drives would
need more onboard computing power
on the drive; while Dmitrijevic'was
unsure how much more would be
needed, he indicated that it should be
possible.

BLOCK-LEVEL SECURITY FOR NETWORK-
ATTACHED DISKS

Marcos K. Aguilera, Minwen Ji, Mark
Lillibridge, John MacCormick, and
Erwin Oertli, Hewlett-Packard Labs;
Dave Andersen, Massachusetts Institute
of Technology; Mike Burrows,
Microsoft Research; Timothy Mann,
VMware; and Chandramohan A.
Thekkath, Microsoft Research

Marcos Aguilera described the Snap-
dragon file system prototype, which was
created to test a security model for net-
work attached disks (NAD) storage. This
was contrasted with standard distributed
file systems, with disks on a server and
all accesses via that server; in that case,
the server is the main performance and
reliability bottleneck.

NAD is like a storage area network
(SAN), but is simpler because there is no
separate network for storage; in either
case, a server is used only for metadata,
and file access is direct to disks over the
(shared or separate) network. Because
the server is out of the data access path,
this offers better scalability and better
reliability on server failover. The prob-
lem is that the server no longer guaran-
tees security; a bad client can overwrite
data for other clients, or hackers or mali-
cious/viral code can access whole disks.

Eliminating the security problem is non-
trivial: Ddisks are dumb, low-level
devices with no idea of permissions or

81June 2003 ;login:

�

 C
O

N
FE

RE
N

C
E

RE
PO

RT
Seven files. The solution is to make disks

smarter. One proposed way of doing so
is to use higher-level objects rather than
block I/O, but block I/O has important
advantages. It is simple and well under-
stood, so people would like to keep it.

Achieving security with block I/O is pos-
sible. The naïve way is to store with each
block the owner, group, and mode.
However, that list can grow quite large
and is tied to particular OSes. Capabil-
ity-based security is the better alterna-
tive: the server provides a capability, and
then the client passes the capability to
the disk with a write request. The Snap-
dragon system uses capabilities that con-
tain a block range, permissions (r or
r/w), and a cryptographic signature.
These are checkable by relatively simple
disk hardware.

The cryptographic system used is Mes-
sage authentication codes (MAC); these
are like digital signatures but are short
and easy to compute, and use a shared
key rather than a public key. The
detailed protocol was originally pro-
posed for the NASD system in 1997. In
order to allow capability revocation, a
revocation list is kept on the disk, sent
directly from the server. This will
increase in size over time, and is
bounded by garbage collection; in part,
this is achieved by the expiration time of
capabilities, but large numbers of revo-
cations within a short time can fill it. It
is further limited by capability groups –
the server can invalidate whole groups –
while new capabilities can be issued by
the server if a valid client gets rejected.

The system is able to avoid replay
attacks; because timestamps/counters
have drawbacks, the combination of
bloom filters and epoch numbers are
used. Bloom filters check for duplicate
messages; the epoch number is a per-
drive counter. The down side is a single
rejected request per client per epoch
change; to avoid this, the drive keeps a
window of one old epoch’s filter. As long

as clients stay in regular contact, no
messages should be rejected.

The resulting system provides a low-
level block device, secure NAD devices,
and a very high degree of flexibility and
portability. The Snapdragon prototype is
a client and server kernel-space imple-
mentation on Linux. Each disk is imple-
mented using a simple program. The
system was benchmarked using low-end
hardware (400Mhz Intel Celeron-based
machines for the client, server, and
disks) over gigabit Ethernet; the result-
ing system is approximately 16% slower
in throughput and 5% slower in latency
than the system without security.

The actual protocol overhead is small;
capabilities are a 116-byte block, and
only 128Kb are required on the disk.
Similarly, the software complexity on the
disk is small – it only has to be able to
compute the MAC, verify the capability,
and check the bloom filters for a dupli-
cate; as a result, it is suspected, but not
verified, that it will be implementable in
firmware for existing disk hardware.

In the Q&A section, the system drew
praise from Garth Gibson, who went on
to ask what the effect of a difference
between block model and object model
would be. The response was that mini-
mizing change on disk was the motiva-
tion, as it was for the bloom filter.

Someone noted that the bloom filters
offered only a probabilistic guarantee,
and would have some false positives, and
asked how this was handled. The system
adds a nonce to each request and has a
false positive rate of about 0.1%; while
this may allow a denial of service attack,
this could also be accomplished by
bombarding the drive with any sort of
invalid request.

WORK-IN-PROGRESS REPORTS

Summarized by Nate Edel

PARALLEL EXTENSIONS TO THE DAFS
PROTOCOL

Peter Corbett, Netapp

FAST ‘03 �

Peter Corbett discussed extending the
DAFS (Direct Access File System) proto-
col to be used by a parallel file server.
This provides excellent support for high
performance computing with clustered
and parallel clients, with support for
fencing, shared key reservations, and
locking, and for parallel IO semantics
such as asynchronous I/O and comple-
tion groups. This extension to DAFS was
implemented as a single tier file server
with a clever client; the fastest imple-
mentation was in user space and opens
doors for a DAFS client that understands
parallel files.

WORLD-WIDE REPOSITORY FOR I/O TRACE

COLLECTION AND ANALYSIS TOOLS

Arnold Jones, Storage Networking
Industry Association

Arnold Jones discussed the creation by
SNIA of a repository of IO traces, work-
loads, collection, analysis tools and
snapshots, for use by industry and aca-
demia, as well as a forum for the discus-
sion of tool and trace problem solving,
data collection, and similar issues. Par-
ticipants will also be able to request
traces on physical media. The design of
the repository is in place, and they hope
to be online by 7/1/2003.

http://www.snia.org/apps/IOTTA_
Survey/register.php

82 Vol. 28, No. 3 ;login:

THE ZETTABYTE FILE SYSTEM

Jeff Bonwick, Sun Microsystems

The Zettabyte file system (ZFS), devel-
oped at Sun, is to be released later this
year. Bonwick noted that existing file
systems have problems: no defense
against data corruption, and lot of lim-
its, such as on the number of files, maxi-
mum file sizes, and so forth. As a result,
existing file systems are “excruciating to
manage,” between tools like fsck, many
configuration files, and managing parti-
tions, volumes, and the like. ZFS hopes
to “end the suffering” by offering end to
end data integrity, immense (128-bit)
capacity, and very simple administra-
tion. All operations are copy-on-write
transactions, with the on-disk state
always valid. All data is checksummed to
prevent silent data corruption, with sup-
port for self-healing in mirrored or
RAID configurations. It also supports
pooled storage models to eliminate par-
tition management.

RUNNING NFS OVER RDMA

Brent Callaghan, Sun Microsystems

Callaghan described NFS as imple-
mented over Remote Direct Memory
Access (RDMA). This is useful at
1gb/sec, and will probably be a critical
requirement at 10gb/sec. It allows direct
data placement (DDP), and has been
implemented as a new transport on
NFS, in parallel to UDP and TCP. He
showed a method of doing DDP with
RPC/NFS packets and benchmark num-
bers: 60Mb-sec peak with NFS/TCP, and
102MB-sec peak with NFS/RDMA. Fur-
ther, CPU utilization is much lower with
RDMA. There is a prototype running on
Solaris, over gigabit Ethernet support for
Infiniband is in progress.

USING SATF SCHEDULING IN REAL-TIME

SYSTEMS

Lars Reuther, Dresden University

Reuter began by pointing out that disk
request scheduling is best handled at
disk; on the other hand, the OS loses
some control, which is undesirable for
real-time systems, and onboard queue

sizes on disk are small. His work exam-
ines request scheduling at driver level,
especially using SATF, and asks whether
it can be used for QoS guarantees. In
doing so, this work measured the time
between two requests – including the
command overhead, seek and rotational
delays, and the time to actually read a
sector – with instrumentation on a SCSI
device driver to determine the match
between the model and measured val-
ues.

Benchmarks indicate that the external
scheduler can match the performance of
the disk internal scheduler on a slower
disk – catch up with the internal sched-
uler; on a faster disk, total effective
bandwidth is 12% lower but the faster
queue benefits real-time guarantees.
This shows that a system can do sched-
uling in software with QoS guarantees –
allowing the tradeoff between queue size
for throughput and QoS guarantees.

USING A VECTOR-BASED APPROACH TO

PREDICT PERFORMANCE OF DISTRIBUTED

STORAGE SYSTEMS

Alexandra Federova, Harvard

Federova discussed using a vector-based
approach to analyzing the performance
of n-tier distributed systems. The prob-
lem domain is as follows: in an n-tier
system – for example, Web servers to
application servers to db servers – the
impact of adding servers at a tier to
improve a perceived bottleneck at that
tier is difficult to test. At the same time,
determining the impact in advance
through simulation is tough to get right,
and either approach takes time. Model-
ling this is difficult because of the com-
plexity of the problem. Vector based
modeling has been used for stand-alone
systems, and Federova and her col-
leagues are looking into whether it can
be used on distributed systems. The pre-
sentation briefly touched on how vector
modeling is used for simpler systems,
and some proposed rules for the compo-
sition of models for distributed systems.

http://www.snia.org/apps/IOTTA_

DUMB STORAGE DEVICES SEEK SMART

CLUSTER STORAGE SYSTEM SOFTWARE

Christian Saether, Clustor.com

Saether discussed a mechanism for
improving access to shared metadata in
a cluster, based on earlier work on VAX
clusters. The motivation for this work
was the availability of cheap and dense
multi-system hardware. It uses WAN
protocols for data “right next door,” with
a new access layer for transactional
updating of shared storage. Data objects
are mapped for fault tolerance and per-
formance, and write-ahead logging is
used when there is no contention for
data. The system is implemented at the
kernel level, above the disk driver, “like
an LVM,” below the buffer cache. Modi-
fications are made via transactions with
nested redo and undo operations, and
using a distributed lock manager to
maintain data coherency.

THE STORAGE TRANSPORT PROTOCOL

Pat Shuff, Texas A&M University

Shuff discussed a proposed solution to
the problem of how to use excess disk on
campus, without central administration,
on a variety of OS platforms. Their
group estimated that the campus had
approximately 200 terabytes of excess
storage “lying around” – as compared to
2 terabytes of online storage for students
and faculty. Existing mechanisms do
not offer the ability to take advantage of
excess space on unrelated systems or to
find existing redundancy to use as back-
ups.

Existing partial solutions include net-
work backup and rsync, file-system level
sharing, and block level sharing, but
these all have some combination of cost,
management, portability, or scalability
issues. As an alternative, Shuff ’s group is
working on a new storage protocol, to be
implemented under the vnode layer or
under the Windows virtual disk inter-
face, which will act as an intelligent
manager to handle variable locations for
data. They are working on a protocol for
network access accounting for security

83June 2003 ;login:

�

 C
O

N
FE

RE
N

C
E

RE
PO

RT
Sand automation which should work

with existing file systems automatically.
http://people.tamu.edu/~pshuff/

TESTING FOR DISTRIBUTED FILESYSTEMS

Richard Hedges, Lawrence Livermore
National Labs

Hedges started by discussing briefly the
need for and scope of very high perfor-
mance computer clusters at LLNL; one
large cluster supports up to approxi-
mately 100 TFLOPS, with 100 gigabytes
per second IO throughput to a single
parallel app. The team at LLNL works
with other projects, including the Lustre
filesystem – a collaboration between the
three big DOE labs and industry (see
http://www.lustre.org/).

There were several testing methods,
including both traditional serial testing
with readily available tools such as fsx,
iozone, bonnie++, and the posix verifi-
cation suite, and cluster validation test-
ing.

One set of this testing is done using the
IOR code, which was recently rewritten,
designed as peak-performance through-
put test for supercomputing data pat-
terns. It is used as heavy IO load testing
for parallel file systems, and is good for
modeling data patterns, acceptance test-
ing, and development activities.

Another tool used is Simul, which is an
MPI-coordinated suite of system calls
and library function calls, accessing a
single file up to thousands of times or
thousands of different files. It tests only
minimal data transfer but high instanta-
neous load, and is used as a race-condi-
tion finder and for testing massive
serialization.

For for information, see
http://www.llnl.gov/icc/lc/siop/

CLUSTERFILE: A PARALLEL FILE SYSTEM

Florin Isaila, University of Karlsruhe,
Germany

Isaila discussed technical issues with dif-
ferent types of parallelism: logical paral-
lelism consists of multiple compute
nodes accessing a file system, and physi-

cal parallelism consists of striping of
data across multiple disks. The main
problem this leads to is a poor match
between the two types of parallelism.
The proposed solution is a shared data
representation.

A model was found in the PARADIGM
compiler, which has been extended to
their system for data representation.
This is implemented using the physical
partition of files into subfiles, and logi-
cal partitioning into views. Directions
include implementing collective IO, disk
directed IO inside the file system. The
system can detect matching physical and
logical distributions.

A second area is cooperative caching,
with the cooperation of IO nodes and
compute nodes’ buffer caches as a
remote disk driver for Linux. Using this,
a node can fetch remote blocks into the
local buffer cache. The policy to do so is
downloadable and highly flexible. Two
possible policies have been implemented
so far.

DECENTRALIZED RECOVERY FOR SURVIVABLE

STORAGE SYSTEMS

Ted Wong, CMU

Ted Wong discussed research into the
problem of putting data objects on a
storage server, intending them to be
retrievable 5, 10, or 20 years hence with
confidence and privacy. The goals of this
work are longterm availability and con-
fidentiality; the method is to distribute
data with (m,n) threshold sequence
sharing techniques. These work by split-
ting the data into n devices, and the
threshold sequence techniques mean
that only m pieces must be available to
recover the data: up to n–m failures are
OK, and to compromise the overall data
object, at least m parts must be compro-
mised. Over time servers will fail, and
there is a need to be able to recover from
failures or compromised servers. The
proposed technique is verifiable secret
redistribution for threshold shared data;
the system would use a witness value to
prove possible reconstruction. To do
this, the original shares split into sub-

FAST ‘03 �

http://people.tamu.edu/~pshuff/
http://www.lustre.org/
http://www.llnl.gov/icc/lc/siop/

shares, and there is a broadcast protocol
for share and subshare witnesses. For
more information see
http://www.cs.cmu.edu/~tmwong/research/

FEDERATION OF LOCAL FILE SYSTEM DATA

INTO A SHARED-DISK CLUSTER FILE SYSTEM

Anjali Prakash, Johns Hopkins
University

Prakash discussed a system for “hassle-
free data management” in a cluster file
system (IBM Storage Tank). The goal is
that it be easy to set up seamlessly inte-
grate existing data, and allow for incre-
mental migration of existing data into
the cluster. The specific requirement was
to add online access to local file system
data to the cluster file system. Whether
to migrate that data or not is a manage-
ment decision.

FEDERATED DAFS: SCALABLE CLUSTER-BASED

DIRECT ACCESS FILE SERVERS

Murali Rangarajan, Rutgers

Rangarajan described the design and
implementation of a portable user-level
DAFS implementation, for use in a fed-
eration of DAFS servers using memory-
to-memory communication. The DAFS
client and server in user space share a
virtual interface architecture for com-
munications; DAFS calls are translated
to RPC on the server, using Berkeley
SEDA. The system is implemented on
Linux, FreeBSD, and Solaris. Compared
to Harvard kernel-based DAFS, overall
performance is close, with slightly more
slowdown at with higher file sizes.

SYNTHETIC IO WORKLOAD GENERATION

BASED ON RS PLOTS

Junkil Ryu, POSTECH Korea

Ryu discussed Synthetic IO workload
generation based on RS plots, a mecha-
nism intended to generate a synthetic
workload statistically equal to real
traces.

84 Vol. 28, No. 3 ;login:

TRANSPARENT PAGE CACHE COHERENCE

SUPPORT FOR LINUX-BASED STACKABLE FILE

SYSTEMS

Manish Prasad, Stony Brook University

Prasad discussed issues with VFS stack-
ing, giving the example of a user process
accessing an encryption file system built
over ext2. Because, in Linux, file read
and write is purely through page cache,
there is a high risk of inconsistency in a
stacked VFS environment: for example,
reads may occur from an upper level,
writes to a lower one. The existing stack-
able layer was modified to be central-
ized-cache-manager aware, trying to
support native filesystems non-intru-
sively. This was set up to figure out stack
order, detect and intercept calls such as
write() and sync(), and then resolve
them by invalidating (rather than updat-
ing) stale caches. Some future directions
include performance evaluation, exten-
sion to work with the dentry and inode
caches, and integration with network file
systems.

SSM: A SELF-TUNING, SELF-PROTECTING,
SELF-HEALING SESSION STATE MANAGEMENT

LAYER

Benjamin Ling

Ling defined a session as a period of
interaction between user and applica-
tion, and state is the temporary data
which has to persist during the course of
the session. He gave the example of a
customer signup for a brokerage
account. In a typical installation, this
would be a database application stored
on a standard file system, such as Netapp
filer or similar. To improve performance,
in-memory replication could be used,
but that adds state to the middle tier,
and performance is then coupled with
uneven distribution of load after a fail-
ure. The SSM exploits properties of ses-
sion state to separate it from the
application servers (stubs) and state
servers (bricks, which store state in par-
allel in memory) using a “write to many,
wait for few” technique. There is a win-
dowing mechanism (similar to TCP) for
stubs to track bricks, and self-healing to

recover from errors. There is a proto-
type, written in Java, running on the UC
Berkeley Millennium cluster.

DECOUPLED STORAGE: FREE THE REPLICAS!

Andy Huang, Stanford

Huang discussed ongoing work at Stan-
ford intended to reduce the cost of per-
sistent state in Internet services with the
goal of making managing state very sim-
ple, much like stateless front ends and
app servers. This is done using a separate
state store for non-transactional data. It
uses a hash table API, and uses quorums
to simplify recovery and keep data avail-
able throughout. Updates are handled by
broadcasting a message to the replicas
and then waiting for majority reply. On
a read, the system accepts the reply with
the most recent timestamp, and then
writes back the new data to all out-of-
date replicates. An initial prototype has
been implemented.

STORM: STORAGE RESOURCE MANAGEMENT

Sandeep Gopisetty, IBM Almaden

Gopisetty noted that the cost of storage
management often exceeds the cost of
physical hardware, and that a typical
heterogenous environment will have
various administrative tools that may or
may not be interoperable. His group at
IBM is developing an enterprise systems
management product, distinct from the
existing Tivoli products (SAN viewer
and data viewer).

The product is intended to manage the
complete storage life cycle in several
phases: identifying data storage assets,
evaluating data in terms of priorities
and storage problems, controlling policy
and automation, and predicting usage
and growth trends. This uses what they
call an “autonomic architecture” which
supports self-configuration, optimiza-
tion, correction, and healing. They are
engaged in research on automated pro-
visioning for optimal use of resources,
modeling for dependability, reliability,
and performance, and have stated a goal

http://www.cs.cmu.edu/~tmwong/research/

of developing a policy-based architec-
ture

SCALABILITY OF NFSV4 NEXT STEPS

Dean Hildebrandt, CITI at the Univer-
sity of Michigan

Hildebrandt discussed the scalability of
the upcoming NFSv4 protocol, in work
funded by ASCI. He noted that NFSv4 is
stateful on the file server for open, lock,
and delegation operations. Questions
related to scalability include how to
share an object among multiple NFSv4
servers, or, more generally, how to share
state. Their proposal was to implement a
division between a state server and
a data server, and then to extend the
NFSv4 redirection mechanism to handle
relocating individual files. The process
flow would be for a client to mount onto
the state server; open requests would go
there, and then read or write is relocated
to the data server via load balancing,
with state copied to data servers as
needed.

IS PARITY-PROTECTED RAID OBSOLETE?

Eran Gabber, AT&T

Gabber noted that disk capacity
increases at 80% per year, while access
time improves much more slowly, at
about 12% per year. With the bottleneck
of IO rate, not capacity, parity protected
RAID has undesirable performance
characteristics – 4 I/Os for every write, 2
if everything is in cache, while mirroring
always only uses 2 I/Os. With disks that
are so large, why bother with RAID?

This doesn’t apply in all cases: for read-
mostly data, where there are few writes,
there is little write penalty. And for cases
where the absolute lowest latency is nec-
essary, the need for high-end disk
devices may mean that customers can-
not afford to replicate; similarly, where
the absolute lowest cost is an issue, cus-
tomers may also not be able to afford to
replicate. Another interesting question
is, how does MEMS fit? “But for the
common case, watch the trend.”

85June 2003 ;login:

�

 C
O

N
FE

RE
N

C
E

RE
PO

RT
SINVITED SESSION: ENTERPRISE

STORAGE: THE NEXT DECADE

David Black, EMC; Garth Gibson,
Panasas; and Steve Kleiman, Network
Appliance

Summarized by Scott Banachowski

David Black started the panel discussion
by noting that in the future, people will
be the scarce resource in storage systems,
because any headway in management
scaling is instantly consumed by
increased capacity. We must address the
problem by changing what must be
managed. Black mentioned approaches
such as content-addressed storage and
fixed-content data. These approaches
not only solve some of the performance
problems, but also change management
problems, by requiring no directories or
hierarchical namespaces.

Black outlined the “mystery meat” anal-
ogy: identifying data that was stored “in
the freezer” for a long time. Grid
researchers have started working on the
problem of tracking and locating data
sets, focusing their attention onto the
content of the data rather than where it’s
stored.

Black reviewed some emerging tech-
nologies such as iSCSI and storage
bricks, noting that how they will be used
is unpredictable, as the innovation of
early adopter markets dictates their
future use. He concluded his segment by
noting that the interesting problem in
enterprise storage is no longer perfor-
mance, but robustness.

Garth Gibson noted that most of the
great ideas generated in the ’90s still
show no value to customers. Now that
we live in leaner times, cost-effectiveness
is high priority. For the rest of his talk,
Gibson described the ideas that he pre-
dicts will survive in the following
decade.

A trend toward simpler administration
will survive, as it leads to cost-effective-
ness. The most cost-effective mainframe
computer is a cluster, and Gibson

believes this is true of storage systems as
well, as storage clusters leverage com-
modity storage and connectivity prod-
ucts. Other notable survivors are NAS
and SAN, which are converging as new
systems mix and match these storage
network infrastructures to improve per-
formance and manageability. Separating
the control paths from data and asym-
metrically accessing data by exposing
parallelism will lead to better perfor-
mance due to increased data bandwidth,
offloaded metadata services, and fewer
bottlenecks. Gibson explained that he
liked object devices because the device
encapsulates metadata, and clients don’t
need to be trusted when servers do
authentication.

Gibson described a direction for enter-
prise storage that includes changing pol-
icy and namespace management. Rule-
based policy is the rage, but making it
work requires a body of well-understood
expertise on using policies correctly,
otherwise administrators will be clean-
ing up the mess left by misbehaving AI
algorithms. The direction for namespace
is toward search-engine-like interfaces
for data access. Gibson concluded that in
this decade, enterprise storage must
deliver the research of the previous
decade in order to cope with increasing
scale and bandwidth demands.

Steve Kleiman focused on the problems
of the next few years: supporting access
to petabytes of data in geographically
dispersed locations with thousands of
users and nodes, and running diverse
applications. Further complicating the
systems, data will have different avail-
ability and recovery requirements, as
well as different access patterns.

Kleiman provided a review of the evolu-
tion of enterprise architectures from
their beginning as proprietary networks
to wide-area large-scale enterprise data
infrastructures. Driving this evolution is
reduced cost of fast storage links and
high volume, reliable disk systems. The
problem isn’t the technology but the

FAST ‘03 �

management, especially considering the
amount of geographic dispersion
between data centers.

In order to increase manageability,
Kleiman suggests virtualization of
devices, elimination or drastic simplifi-
cation of existing paradigms, and unifi-
cation of existing enterprise storage
solutions. Only by changing the para-
digms and allowing the new technolo-
gies to enable new strategies will we
solve our main problem of data manage-
ment.

Jeff Chase offered a quick viewpoint
before opening the floor for discussion.
He noted that because interfaces for
storage systems exist at different levels,
people have different views of the mean-
ing of convergence. Chase warned that
this is leading us down a road that
repeats problems facing cluster comput-
ing research in the ’90s. During the dis-
cussion period, the speakers mostly
reiterated points made in their talks. The
liveliest part came when someone
asserted that policy-based management
is “evil” and “foolish.” The systems are
much too complex, with many contra-
dicting rules for different scenarios, so
that automated management will lead to
fiasco. The panel agreed that policies are
difficult to define and will never replace
administrators.

SESSION: MEASURING THE

TECHNOLOGY

Summary by Nate Edel

MODELING HARD-DISK POWER

CONSUMPTION

John Zedlewski, Sumeet Sobti, Nitin
Garg, and Fengzhou Zheng, Princeton
University; Arvind Krishnamurthy, Yale
University; and Randolph Wang,
Princeton University

Sumeet Sobti discussed a disk simulator
developed at Princeton which gives an
estimate of how much energy the disk is
likely to consume, given a disk IO trace
and a description of the disk. The moti-
vating application is to determine the

86 Vol. 28, No. 3 ;login:

impact of file system attributes on
energy consumption. Locality, bursti-
ness, and the type and number of
requests are all key factors; as such,
power consumption will be based on
user workload and the file system
parameters.

Data layout policies, asynchrony, data
layout, and background reorganization
are all possible parameters, and in total
are a huge design space to explore. The
original goal was comprehensiveness,
which proved very time consuming –
simulator speed was key.

A flaw in many existing models is that
disks don’t consume power at a constant
rate. For example, the IBM microdrive
varies by 20–25% during active periods,
and by a factor of 10 from idle to active.
As such, a coarse-grained simulator is
not adequate.

The team developed a fast and fine-
grained disk power simulator, which
worked well for the two disks it was
tested with – and evaluated it against
coarse-grained power models. The
architecture of the simulator was in two
parts. The simulator itself is based on
DiskSim with an added Energy Simula-
tor model. The second part is an auto-
matic parameter extractor, which builds
on the existing performance parameters
extraction.

The energy simulator calculated total
energy, which is in turn composed of of
active energy states – seek/rotating/read-
ing/writing – and idle states – low power
modes and transitions. These are esti-
mated via DiskSim to gather statistics
about disk stages, with seek energy for
example, determined by seek distance;
rotate/read/write determined by con-
stant use differing per activity. A table is
used to approximate the behavior of
available low-power modes and the
transitions between them. Power values
are extracted by the combination of
hardware and software, tested on a 30ms
basis. This is too coarse-grained to get
individual operations, so they are

instead spread across longer traces and
then statistically determined.

STORAGE OVER IP: WHEN DOES HARDWARE

SUPPORT HELP?

Prasenjit Sarkar, Sandeep Uttamchan-
dani, and Kaladhar Voruganti, IBM
Almaden Research Center

Prasenjit Sarkar began by distinguishing
Storage over IP from conventional SAN
systems: although in both cases, storage
is a service over the IP network, in con-
ventional SANs servers are attached to
storage over a specialized SAN network,
while with IP SAN, a combined gigabit
IP network is used by both servers and
storage systems.

IP SAN implementations are flexible,
with three common approaches: a soft-
ware-only implementation with a
generic network adapter (HBA), an
adapter which implements a TCP
Offload Engine (TOE) which supports
the TCP/IP network stack on the net-
work adapter, and an intelligent-HBA
approach where both the IP storage pro-
tocol and TCP are implemented on the
adapter.

The down sides to a software-only
approach are the TCP copy overhead,
multiple interrupts per data transfer,
and high communications overhead;
variants such as jumbo-frames and zero-
copy TCP can ameliorate these some-
what.

A TOE adapter uses DMA to stream
data to the network adapter, which
implements TCP/IP; this reduces the
overhead on the host and results in one
interrupt per data transfer, reducing
communications overhead, although the
TCP copy overhead remains.

An intelligent HBA approach uses a sin-
gle DMA to the HBA and removes both
the storage protocol (iSCSI) and TCP
overheads from the host, with one irq
per data transfer, and has the lowest
communications overhead.

MORE THAN AN INTERFACE – SCSI VS. ATA

Dave Anderson, Jim Dykes, and Erik
Riedel, Seagate Research

Eric Riedel aimed to dispel myths and
confusion about hard drives. He noted
that while many consumers and busi-
nesses divided up the market by inter-
face between SCSI and ATA, the market
segmentation as it was seen by the disk
drive industry was quite different. The
two main segments he went on to dis-
cuss are drives for personal storage (PS),
used in desktop systems and low-end
servers, and drives for enterprise storage
(ES), used in servers, high-end worksta-
tions, and drive arrays. He also noted
that there are separate market segments
for mobile drives, such as those used in
notebook computers, and for drives for
consumer devices/appliances, but that
these would be a topic for future discus-
sion. He also noted the persistent myth
that drives are built along one assembly
line, tested at the end, and the “bad
ones” get ATA controller boards and the
better ones get SCSI.

He compared two Seagate drives, a 10k
RPM Cheetah vs. a 7200 RPM Bar-
racuda, to show the differences between
an enterprise drive and a lower-end
model. The Cheetah had a smaller plat-
ter (84mm vs. 95mm), a much larger
actuator assembly to reduce seek times,
and a more rigid case structure for dura-
bility and vibration-proofing, which he
noted were only three major factors, out
of many. He also briefly noted differ-
ences from a 15k RPM Cheetah, which
has a 65mm platter for still lower mass
and shorter seeks, but at the expense of
lower capacity.

Seek times are much more aggressive on
enterprise drives, with the level of sepa-
ration increasing; the rate of improve-
ment is low on personal drives, and
somewhat quicker on enterprise. Seek
time is very sensitive to both the
mechanics and signal processing, and
thus costly. Sensitivity to external vibra-
tion is also a factor; the rotation of one
drive can affect neighbors, and while

87June 2003 ;login:

�

 C
O

N
FE

RE
N

C
E

RE
PO

RT
Senterprise drives are designed to block

those vibrations, personal drives are not.
This can have a negative effect on per-
formance.

The talk closed with a comparison of the
direct performance impact of certain
design choices, comparing two IBM
drives; area density and platter size were
large on the personal drive. RPM was
higher on the enterprise drive, overall
resulting in a slight bandwidth advan-
tage to the personal drive. However, an
enterprise drive of comparable genera-
tion has a higher bandwidth (53MB/s vs
37MB/s), while the changes (more plat-
ters, higher RPM) result in a higher cost.

	motd
	sitaker
	geer
	howard
	mccluskey
	sitaker2
	flynt
	turoff
	farrow
	spinellis
	haskins
	tylock
	nicholson
	kenneally
	salus
	spam
	USITSconf
	FASTconf

