

2

motd
Second Order Effects
I really enjoy observing the world in all its aspects, both human and otherwise, in
order to try to understand why things happen the way they do – and to try to use that
information to predict the future. If I ever get good enough at it, I figure I can exploit
it in many different ways.

One of the subtleties that I truly enjoy is the notion of “second order effects.” You hear
these all the time, particularly from politicians. In one polarizing debate, you’ll hear
people say, “But if we tell our kids about [sex education, abortions, other religions,
etc.] then they will just decide that it’s OK or even go out and try [it] themselves.” The
knowledge won’t just be transferred for its own sake (e.g., to prevent disease, unwanted
pregnancy, immorality, etc.) but, a second order effect is inferred.

The biggest second order effect I’m observing right now is the aftermath of the tragedy
on September 11, 2001. This is now the largest denial of service attack I’ve ever seen. It
is natural to seek security and safety – and no culture exceeds ours in its ability to take
things to excess. Airport waiting lines, enhanced personal identification schemes, and a
general fear/paranoia about “leaving the nest” are just some of the offshoots of this
second-order attack. How many hundreds of person-years have we now wasted stand-
ing in line for security checks at airports? How much commerce has been disrupted by
the understandable reticence to travel?

On another front, I was privileged to spend a weekend visiting northern California
and co-editor Tina Darmohray. She and her husband shuttled me around in their
vehicle among various sites. On one multiple-mile excursion on a sunny afternoon,
she remarked on the lack of children playing outside. Sure enough, nine miles later I
had seen but one child outside in a yard. Where were they?

Apparently, the fear of abduction and other dangers has motivated parents in that
community to keep their children inside. This is carried to the point of escorting chil-
dren to the car, shuttling them to a friend’s house, and making sure they get inside that
house’s door before moving on to another task. This is surely a denial of service attack
– and what message do the children hear? I contemplate having been brought up that
sort of fearful environment and shudder. How can happy, well-adjusted adults who
can perform reasonable risk-assessment emerge from a such a milieu?

One of my friends has suggested that all this has to do with our culture’s inability to
assess risks. He asserts that the masses give far too much influence to isolated and
unusual events. Of course, the media does little to help this. News is interesting
because of its rarity, so rarer events (e.g., commercial airline crashes) get lots of play.

I wish that we can find a way through these denial of service attacks, a way to walk the
streets and yards of our cities without fear and with a realistic approach to threats that
really do exist within our society. I truly hope we can find a way for our children to be
able to play in their yards. A permanent loss of that freedom is a huge one.

Vol. 27, No. 3 ;login:

by Rob Kolstad

Dr. Rob Kolstad has
long served as editor
of ;login:. He is also
head coach of the
USENIX-sponsored
USA Computing
Olympiad.

kolstad@usenix.org

3June 2002 ;login:

Don’t Shoot the Messenger
If you’ve considered security at your site for very long, you’ve probably

thought about what to do in an emergency. That is, if there is a computer

security incident, what procedures are to be followed during the crisis, who

will be in charge, who will make decisions to cut off services, who will talk

to the media, etc. In fact, discussing and planning ahead for these crisis

procedures is considered to be “industry best practices” and, as such, is

becoming a pretty mundane topic, as it should be. I would have thought so,

too, until just a few months ago, when I heard of a slight twist to this type

of planning that should be considered by all organizations.

Has your organization considered what the procedure would be if the security threat is
within your own walls? That is, do you know who to tell, who makes decisions to cut
off services, etc.? Do any of the procedures differ from those designed for an attack
from the outside? What happens if what has to be said or done is “unpopular” with the
designated decision person? Has this potential conflict of interest been taken into con-
sideration?

Recently, I participated in a security review of a site that had already considered this
potential conflict of interest. In order to address it they have a security incident report-
ing structure that is different from that of the line-management of the security group.
It’s actually quite a clever design, which simultaneously incorporates varied user
groups’ computational needs and organization-wide security concerns. At this site, the
responsibility for computer security comes through the CIO and then through the
typical management chain-of-command to the computer security officer. What is
unique in this organization is, in a parallel fashion, computer security issues are con-
sidered through a committee hierarchy: the senior manager’s Committee on Comput-
ing, the Computer Coordinating Committee, and finally the Computer Security
Committee, which is made up of computer and network security specialists and repre-
sentatives of the organization’s computer users groups. The computer security officer
is a member of the Computer Security Committee. In the event of a security incident,
the computer security officer is the one calling the shots. In the event of a computer
security issue, the computer security officer has a committee, already in place, to
report it to. In this way, security of the organization will be placed above the agenda or
best interests of a single individual, or at least it will be openly discussed. Additionally,
the computer security officer is protected from being “the messenger” if the security
concern is about, or within, his or her chain of command.

So, if you haven’t taken the time to create crisis-mode procedures for your site, do so
now. If you haven’t considered how such procedures might differ, depending on the
source of the crisis, do that too.

apropos
by Tina
Darmohray

Tina Darmohray, co-
editor of ;login:, is a
computer security
and networking con-
sultant. She was a
founding member of
SAGE.

<tmd@usenix.org>

ED
IT

O
RI

A
LS

Vol. 27, No. 3 ;login:

from Barb Dijker
barb@netrack.net

To the Editors:

I read with great interest the letter from
the USENIX president in the February
issue. I hope that the newly elected
USENIX board will address first on their
agenda measures to resolve the problems
highlighted by Mr. Geer.

The first problem Mr. Geer highlights is
the nominations process. Greg Rose par-
ticipated in the process of nomination of
candidates, which is a right of all mem-
bers in the USENIX election policies.
Any member can be nominated by get-
ting the signatures of 5 other members
and run in an election opposite those
candidates nominated by the nominat-
ing committee. So if what Greg did is so
deplorable, as to require public
denouncement by the president, then
the election policy should be changed to
disallow it. Nominations should be
allowed only through the nominating
committee that is appointed by and
serves at the pleasure of the sitting
USENIX board.

The second problem is the elections
themselves. Mr. Geer urged members “in
the strongest way,” even calling upon the
Bible to support his argument, to vote
only for only those candidates nomi-
nated by the nominating committee.
Why should we leave that up to chance?
Mr. Geer notes that every year many
USENIX members are new to the organ-
ization, so they don’t know they should
be doing this. USENIX should set policy
such that members can only vote for
those nominated by the nominating
committee. Then there is no need for the
elections. USENIX should seat the new
USENIX board with those nominated by
the nominating committee. That will
require the nominating committee trim
their list a little, but that’s easier than
expanding it.

Those changes will fix the problems Mr.

Geer identified with the current process.
It will also change USENIX from a
democracy to an oligarchy. While this
change may be sub-optimal in an ideal-
istic sense, it greatly simplifies things,
saves money (elections cost about
$10,000), and ensures that the problems
associated with the 2002 election never
happen again. An oligarchy is a perfectly
valid, legitimate, and common form of
governance for a membership organiza-
tion. I’m a member of several organiza-
tions that have no member elections for
their governing body. For example, the
Front Range Unix Users’ Group (a
USENIX local group), the American
Motorcyle Association, and the Ameri-
can Civil Liberties Union. When an
organization governs member services
rather than people, a democracy is not
required and often not even desirable.

Barb Dijker
USENIX member since 1989

FREEBSD JAILS
from Poul-Henning Kamp
phk@FreeBSD.org

In the February issue Rik Farrow men-
tions the FreeBSD jail facility and states
that the instructions call for a complete
FreeBSD distribution to be installed
inside a jail.

While it is correct that the jail(8) page
shows this in an example, it is by no
means required. The only file which
must be inside a jail is the executable to
be run there.

Many users of jail use it to isolate single
processes and put no more than the
required binaries inside the jail.

In the spirit of the “You must be this tall
to attack this castle” cartoon, I will pass
on a trick which will makes a FreeBSD
jail immune to 99% of all known UNIX
exploits in circulation: Do not put a
/bin/sh in there unless you actually need
it.

letters to the editor
EDITORIAL STAFF

EDITORS:
Tina Darmohray tmd@usenix.org

Rob Kolstad kolstad@usenix.org

STANDARDS REPORT EDITOR:
David Blackwood dave@usenix.org

MANAGING EDITOR:
Alain Hénon ah@usenix.org

COPY EDITOR:
Steve Gilmartin

TYPESETTER:
Festina Lente

PROOFREADER:
Lesley Kay

MEMBERSHIP, PUBLICATIONS,

AND CONFERENCES
USENIX Association

2560 Ninth Street, Suite 215

Berkeley, CA 94710

Phone: 510 528 8649

FAX: 510 548 5738

Email: office@usenix.org

login@usenix.org

conference@usenix.org

WWW: http://www.usenix.org

4

RIK RESPONDS:

I understand that a chrooted environ-
ment doesn’t require a complete install.
That’s just what the docs for jail() sug-
gest, and most likely, what most people
do.

Examples showing people how to set up
Apache using Perl or mod_php in the
jail() would help a lot more than the cur-
rent docs do.

I like the jail() concept, but without
proper configuration information,
something that is easy for people to read
and understand, jail() by itself does not
do the job. It takes a crafty sysadmin
who understands both chroot() and jail()
to take full advantage of it.

Rik Farrow

[See page 48 for more details – Ed.]

OPENBEOS
From Stephen Schaff
webshifter@webshifter.com

Rik:

I stumbled across your article:
http://www.usenix.org/publications/login/

1998-12/musings.html and noted partic-
ularly your comments about BeOS:
“BeOS is proprietary – no source code. I
am looking for something like BeOS, but
more open.”

As a BeOS enthusiast, I’d like to bring to
your attention that which you asked for
in that comment above:
http://www.openbeos.org

Although still in development, the
momentum is astonishing, and the
progress to date is very impressive.

Just thought I’d pass it on . . .

15 YEARS AGO . . .
from Ted Dolotta

Peter [Salus],

The reason for this message is your “Fif-
teen Years Ago in USENIX” item in the
Feb. 2002 issue of ;login:. In it, you men-

5June 2002 ;login:

tion – in addition to the 1987 USENIX
meeting – the 1984 USENIX meeting in
DC, snow storm and all. That started me
reminiscing . . .

If my memory is correct, the January
1984 USENIX meeting was also marked
by another “storm”: There was a last-
minute, surprise exhibitor at that show,
namely Big Blue, which set up a dozen
PC-AT’s in a hotel suite (there was no
more “real” exhibit space available?)
running the Personal Computer Interac-
tive Executive – PC/IX, a single-user
UNIX for the PC-AT, and developed for
IBM by my team at INTERACTIVE Sys-
tems. [I just looked at the User’s Manual
for PC/IX, and it says, smack in the mid-
dle of the title page, “by INTERACTIVE
Systems Corporation,” with the IBM
logo relegated to the bottom of the
page].

IBM invited all the attendees to come up
to their hotel suite and play with the sys-
tem at will – there were no canned
demos, no presentations – just UNIX
System III, and a bunch of IBM guys,
and some of my guys – to answer ques-
tions. [Several of my guys had to buy –
on short notice – their first adult suit;
two among them actually asked me
whether they could share a suit because
their IBM-suite duty times did not over-
lap].

Suddenly UNIX was no longer a Bell
Labs/Berkeley/university/ hacker/nerdy
thing – it was in the mainstream,
endorsed by the largest computer com-
pany in the world. A heady day, indeed
(I know I’m biased).

PC/IX (which was not a commercial
success; it went nowhere – the IBM sales
force was scared of it and did not know
how to sell it) was followed by VM/IX
(UNIX as a guest on the VM/360 main-
frame system); it flopped as well, as did
IX/360 (native UNIX on a System/360
mainframe). And then came AIX –
UNIX on the PC-RT (a RISC chip),
which IBM sells to date, albeit on more

modern hardware. VM/IX and AIX were
done by my team at INTERACTIVE,
and we were also involved with IX/360.

My AIX team consisted of 18 people,
including the support staff – secretary,
hardware guy, documentation people,
administrator, etc. IBM had a team of
350+ testers in Austin testing the stuff
my guys built; it was like having a fire-
hose turned on you all the time. Each
bug was reported dozens of times.

[I believe I wrote to you in a prior mes-
sage about the AIX documentation
(YACC stopping when it encountered a
“workstation” symbol, etc.), and I also
explained a while back about the various
issues that arose in the context of creat-
ing UNIX manuals within the con-
straints of IBM’s practices. But to give
the devil his due, IBM graphic design
folks did a great job of designing the
binders for the PC/IX and VM/IX docu-
mentation (whose content was essen-
tially identical except for the name of the
system, and for some SysAdmin pages,
PC/IX being a single-user, native-mode
system for the PC-AT, while VM/IX was
a multi-user system hosted on VM/360):
The PC/IX binders were pin-striped,
very dark charcoal gray, with white type,
and a picture of a bud vase with a single

red rose – harking back to the original
IBM PC ad campaign featuring “The
Little Tramp” (Charlie Chaplin look-
alike with a red rose); the VM/IX
binders were identical, except that the
vase had a bunch of red roses. It was bril-
liant design.

Today, IBM is into UNIX in a big way,
with Linux mainframes and AIX systems
(the latter, I suspect, will be around
alongside Linux systems for a good long
time), and huge booths at Linux World.

But it was at the 1984 USENIX meeting
that IBM first publicly put its big toe
into the UNIX stream.

Best regards,
Ted

letters to the editor

LE
TT

ER
S

6

Coming Soon to an Email Box Near You
Like many people, I have a habit of noticing some things only after it’s too

late to do anything about them. The issue raised in this article may belong

to this category. It’s been on my “looming over the horizon” list for quite a

while.

As technologists, we can’t afford our signature mistake of focusing on technology and
ignoring policy. The ways in which technology is applied are almost always predeter-
mined by existing policy. This truism scales from a small business to a huge govern-
ment agency. It is the application of policy to technology in the latter that we are
concerned with here.

The war against spam continues to escalate. Many of us see current legislation as one
of the tools with which to mark spam for filtering (“ADV” in subject line) or to forbid
its generation. Unfortunately, a powerful express train is in motion to head off anti-
spam legislation and make it easier and easier for spam to reach you. The major player
in this effort might come as a surprise to you – it’s the US Postal Service.

Like Charity, Spam Begins at Home
I send in my little cards to the Direct Marketing Association annually so that our
household’s various US mail addresses and phone numbers are culled from the mar-
keting lists of DMA-abiding organizations. Unfortunately, the United States Postal
Service is not one of these organizations. I recently became aware of an annoying “fea-
ture” of US mail delivery, namely, that one cannot opt out of the neighborhood flyers,
catalogs, grocery ads, etc. that come in the mailbox almost daily. They are addressed to
“resident” at one’s address, and the companies that put them together contract directly
with the post office for delivery.

I pursued the query up to my local Postmaster here in Sunnyvale, CA, and was told
that there is no mechanism whereby one can choose not to receive this material. I
was told that it’s too much work for the mail delivery workers to keep lists of who
is and isn’t getting it. What I was also told, which is much more important, is that
there is no accounting mechanism to reflect that some customers might opt out. How
convenient!

When I vented on the topic of physical spam to a local mailing list, one person sug-
gested, “Mark it ‘return to sender’ and put it back. Make the post office deliver it twice,
once to you, once to them.” I appreciate the thought, but it seems an unwieldy solution
for several reasons. First, it merely creates an extra obligation on my part, beyond sim-
ply recycling it or throwing it away. It also amounts to trying to start a denial-of-serv-
ice attack on the USPS rather than to approach the problem constructively. This raises
some ethical issues, to say the least.

The DMA substantially agrees with groups like the Coalition Against Unsolicited
Commercial Email (CAUCE) about what constitutes spam. The USPS failure to
adhere to DMA opt-out for its local physical-mail spam is all too likely a significant
predictor of their stance on email spam. For many years, the US Postal Service and
other groups have been kicking around various plans to allow so-called universal
email delivery to US residential addresses. I find it very plausible that we could end up
with non-opt-outable post office spam in our email boxes down the road. How real is
this threat?

uncle sam as uncle
spam

CORRECTION:
In my “Consulting Reflections” article (Febru-
ary ;login:), I made a “braino,” the advanced
form of a typo, saying the US Social Security
allocation is between 7 – 8% of your 1099
income. It's 7 – 8% of your W2 income, not
your 1099. When you’re doing 1099 work, you
must provide the employer match yourself, as
well as the Social Security. The 2001/2002 figure
is 15.30%. That’s actually combined Social
Security and Medicare. The Social Security is
only applied to the first $84,900 of your income
(up from $80,400 in 2001), but the Medicare
has no income cap. For a very lucid explanation
of how to calculate these, try this “Ask Alice”
column from the CCH Small Business Toolkit:
http://www.toolkit.cch.com/advice/01-
070askalice.asp. By the way, I don’t recommend
doing your own taxes if you are consulting,
unless you’re an accountant! Thanks to Toni
Veglia for spotting the braino, and for letting
me know that I got it right in a previous article.
SRC.

Vol. 27, No. 3 ;login:

by Strata R.
Chalup

President, VirtualNet;
Starting as a Unisys
68K admin in 1983,
Strata Chalup is now
an IT project manag-
er but allegedly has
retained human qual-
ities. Her mixed
home network (Linux,
Solaris, Windows)
provides endless
opportunties to stay
current with hands-
on tech.

strata@virtual.net

http://www.toolkit.cch.com/advice/01-

Let’s take a look at the USPS policies and directions on physical spam mail, and try to
make an educated guess.

A Disturbing Precedent
The USPS tried launching an electronic delivery service called PosteCS back in 2000.
The service would deliver documents via a combination of email and hosted Web
repositories, specifically by sending messages which contained embedded document
retrieval URLs. If one goes to the PosteCS FAQ today, one sees that the service has
been cancelled. The site says that PosteCS “did not meet the Postal Service’s market
expectations.”

Pulling an older copy of the PosteCS page from Google’s handy cache, one finds an
FAQ question, “What if I want to send thousands of PosteCS packages per day and
want the packages to be sent out automatically?” The answer was that “the PosteCS
Team would be happy to speak with you regarding potential Application Programmer
Interface (API) solutions for your automated sending needs,” and included an 800
number with which to contact them.

What does the USPS itself have to say about it? This quote from the now-defunct
PosteCS FAQ is fairly eloquent on the subject:

Q. How does PosteCS fulfill the U.S. Postal Service’s primary mission?

A. PosteCS fulfills the Postal Service’s mission to ‘bind the nation together through
its communications.’ This includes providing universal service by delivering mail to
every address in the country. In keeping with this mandate, USPS is offering
PosteCS as a way to deliver electronic mail with the same security and privacy that
customers have come to expect. The Postal Service recognizes the need to respond
to new and emerging business needs and PosteCS helps to fulfill this need.

Alert readers will have immediately noticed that the focus is on business needs for
delivery. As the US Postal Service is pressed more and more strongly to stand alone
with minimal government funding, it is becoming more and more business oriented.
Individual consumers simply do not use the system in sufficient volume to pay for the
infrastructure – to survive, the USPS is going to have to continue to make business its
number one priority. The issue for those of us with United States mailing addresses is
that the USPS’ status as a quasi-governmental agency may do an end-run around all
the anti-spam efforts we can muster.

We’re from the Government and We’re Here to Help You
(to Spam!)
It’s not necessary to dig very deeply to find out how the USPS feels about spamming,
excuse me, direct email solicitation. They currently offer a wide range of services for
businesses, grouped conveniently on a page whose title is a blatant “Get More Cus-
tomers.” (http://www.usps.com/smallbiz/smcust.htm) Services include an online direc-
tory of Authorized Affiliate Merchants who sell direct mail services, including
addresses, and NetPost(TM), a way to “create mailings on your computer and send them
quickly and easily.” The USPS even sponsors “Direct Mail Made Easy” seminars in
cities all over the country, and licenses private companies to administer the National
Change of Address program. When you file your change of address forms, the USPS
bundles up all the info every two weeks and sends it to NCOA, where (for a fee, of
course) firms can check their direct marketing lists for accuracy (http://www.usps.

com/directmail/faqs/lists.htm).

7June 2002 ;login: UNCLE SAM AS UNCLE SPAM ●

●

TH

E
W

O
RK

PL
A

C
E

http://www.usps.com/smallbiz/smcust.htm
http://www.usps

Vol. 27, No. 3 ;login:

Still not convinced? How about this?

Q. How Can the Postal Service Help You with Your Direct Mail Campaign?

A. Remember, the United States Postal Service is here to assist you in any way that
we can. We believe that using Direct Mail will bring you business. And that’s one of
the things we’re in business for.” (http://www.usps.com/directmail/faqs/working-

with.htm)

And one final, telling salvo:

However, you could have the greatest product in the world, but, when the offer is
mailed to the wrong target, it quickly becomes ‘junk mail.’ For example, hair prod-
ucts to a bald man. A dog catalog to a cat lover. Information about a preschool pro-
gram to a senior citizen.

Remember, if you haven’t put your package into the right hands, you’ve wasted
money getting it there.

The truth is, ‘junk mail’ is nothing that can’t be cured with a decent list.”
(http://www.usps.com/directmail/dmguide/discoverdm/lists6.htm)

There it is: “nothing that can’t be cured with a decent list.” As we will see, this takes on
some rather interesting overtones when one considers the current planning underway
for the continued modernizing of the US mail system.

The Door Swings Both Ways
It’s not just that physical-world ideas end up implemented on the Internet. Internet-
inspired ideas can translate into the physical world, especially if there is a sufficiently
powerful and flexible interface.

Most government documents make dull reading. “Seizing Opportunity: The Report of
the 2001 Mailing Industry Task Force” is quite the exception. In addition to providing
a view into the cheerfully upbeat world of the marketing industry, it has some eye-
opening findings and recommendations to make about USPS technology and future
directions.

I noticed bar codes appearing on US mail many years ago. I kind of figured – when I
thought about it, which was rarely – that they had the address info coded onto them. I
was mostly right, but things have evolved considerably since last I looked.

The USPS now uses a system called PLANET to make sure each piece of US mail is
uniquely identified. That makes sense, given added-value delivery services such as
Return Receipt, Certified Mail, and the like. They need to track these things. Now
comes the next phase, and here’s where I get cold feet.

Speedy Delivery – Of a Cookie?
The USPS has been planning to move to using composite and two-dimensional bar
codes which “allow companies to access information about a mail item wherever and
whenever the information is needed. The mailing industry can utilize this information
prior to induction into the mailstream, and after delivery by the Postal Service, with-
out needing to access an online database, or open each mail piece.” The reason for the
more complex bar codes is to be able to attach more data to individual pieces of mail.

The report says that:

“The truth is, ‘junk mail’ is

nothing that can’t be cured

with a decent list.” (USPS

Web site).

8

http://www.usps.com/directmail/faqs/working-with.htm
http://www.usps.com/directmail/dmguide/discoverdm/lists6.htm

Intelligent mail – the use of data-rich, machine-readable bar codes to make each
mailing piece unique – will allow the mailing industry to compete by including data
that ‘lives’ with the mail piece or package. By linking mail with complementary
information channels, intelligent mail creates value for the consumer, sender, and
the processor . . . Industries . . . are extending their services by implementing the
next generation of barcoding . . . These codes allow tagging of each mail piece or
parcel with an entire data file, not just a unique number.

The way I read this is that physical mail is generating the equivalent of cookies, and
that the USPS is working directly to become another DoubleClick. This is pretty
alarming. Equally alarming is the prospect that someone with access to my physical
mail and a bar-code reader can suddenly get a lot more information about me than I
might like. What data sets would be put on an individual piece of mail, and how
widely would the data sets be shared? Who knows?

If the data is widely shared, someone scanning a random postcard coupon mailing
could conceivably tie into targeted information that includes things like financials,
family members, and the like. If the data is closely held and varies from direct mail
firm to firm, we could see the emergence of a nice little cottage industry in mail pilfer-
ing or at-mailbox scanning to create aggregate databases. Though it would be tough
for these hypothetical cottage industry players to compete with the USPS, given that
every piece of mail will be scanned through their system. Did I already mention Dou-
bleClick?

In this entire report, one lone sidebar mentioned in passing that “Other information
lodged within the bar codes of catalog labels will allow the same consumers to tell
mailers to remove them from the retailers’ lists.” That’s one mention of opt-out so far
in this entire document. Ouch! Disturbingly, on the same page as our tiny ray of light,
we find that the Task Force recommends that “consideration be given to amendments
to current privacy legislation to allow proper use of credit header and driver’s license
information for address quality – not marketing – improvement.”

Rabbit Committee Announces Lettuce Patch Initiative
So, who exactly is the “Mailing Industry Task Force”? They spent six months produc-
ing a report released in October 2001 and are continuing with Phase Two. The Deputy
Postmaster General and “other senior postal executives” are part of the Task Force. So
are “eleven chief executives and leaders of the world’s largest mail-focused corpora-
tions,” ranging from Pitney-Bowes to Wunderman. The latter, not exactly a household
word, was described in the report as “the world’s largest direct-to-customer marketing
solutions company.”

The Task Force unsurprisingly recommends the formation of an Industry Council as
the “logical and seamless extension of the work already undertaken by the Task Force.”
The number one item on the agenda of the Industry Council, right after starting a
positive publicity storm about use of US mail? Tackling privacy legislation, of course!

Current and pending information usage law and regulation will significantly
impact the mailing industry and consumers. Much of the debate surrounds infor-
mation access to interested third parties. To date, proponents of restricting infor-
mation access have carried the day [author: oh, really?], without adequately
considering economic and social consequences . . . [U]nyielding legislation that . . .

9June 2002 ;login:

●

TH

E
W

O
RK

PL
A

C
E

UNCLE SAM AS UNCLE SPAM ●

Vol. 27, No. 3 ;login:

restricts the availability of lists and information used to target mail will cause mail
volumes to decline.

Fortunately for the continued good health of the warp and woof of the social fabric, as
well as the USPS, the Task Force realizes that “A partnership between the industry and
the government is a necessity to ensure that consumers are protected and appropriate
legislation is written.”

And Then I Woke Up – Not!
Pretty scary stuff, but comfortably remote and in the future, right? Wrong! The report,
issued in October 2001, goes on to state that the USPS has “assigned sponsors to each
recommendation, is pursuing implementation options where it has the legal authority
to do so, and is coordinating the recommendations with existing programs and its
business plan.”

Status reports and additional recommendations will be issued by the time of the
National Postal Forum in late April 2002. It’s probably far too late to derail this train,
but we may be able to mitigate its effects with a little publicity. If some of the things
described in this article sound like a bad idea, let your elected representatives know
what you think. Keep an eye on the THOMAS database for specific legislation and on
some of the direct mail industry Web sites. Industry alerts and news updates can also
alert you to work against them. Another good resource is SpamLaws, which tracks
anti-spam legislation around the globe.

Speaking of legislation, what about it? Wouldn’t it stop things like USPS delivery of
email spam? Basically, no. Take a look at the text of H.R. 1017 for an example of the
limitations of current legislation. Its provisions are specifically concerned with spam
that “falsifies an Internet domain, header information, date or time stamp, originating
e-mail address, or other identifier.” It doesn’t actually prohibit spam itself, just certain
anonymous or misleading ways of delivering it.

What about S. 630? It says that if at any time within the five years prior to receiving a
spam there has been a transaction between the sender and recipient, and the recipient
has been provided with an “opportunity” to opt-out and hasn’t done so, it’s not spam.
A transaction is defined as “involving the provision, free of charge, of information,
goods, or services requested by the recipient.” This definition easily includes viewing a
Web page and having your email address harvested by a spam script. As long as you
were presented with an opt-out link somewhere on the page, it’s not actionable as
spam. How many of us scan every link on every page we surf to see if it includes an
opt-out link?

S. 630 also seems to say that an email is not actionable spam if it has clear, untampered
headers (routing, they call it), includes an opt-out link, and has a physical address for
the spammer. I am not a lawyer, but to me these two anti-spam laws have very little in
the way of teeth.

The Big Picture
I hate to say it, but to me the big picture here is looking pretty bleak. I’m interested in
what you think we can do to head this one off at the pass . . . or why you think it’s a
Good Thing and that we shouldn’t try to do so.

REFERENCES
“The Posts in an Interactive World,” The Insti-
tute for the Future:
http://www.usps.com/strategicdirection/_pdf/
postsint.pdf

“Seizing Opportunity: The Report of the 2001
Mailing Industry Task Force”:
http://www.usps.com/strategicdirection/_pdf/
seizeopp.pdf

United States Postal Service Direct Mail Web
site: http://www.usps.com/directmail/

PosteCS (Then)
http://216.239.35.100/search?q=cache:
uO6e43J0GmQC:www.usps.com/postecs/faq.
htm+USPS+universal+email+&hl=en

PosteCS (Now):
http://www.usps.com/postecs/faq.htm

Direct Marketing Association white papers on
the effect of information flow on marketing
costs:
http://www.the-dma.org/isec/whitepapers.shtml

DMA telephone solicitation opt-out:
http://www.the-dma.org/consumers/
offtelephonelist.html

DMA mailing list opt-out:
http://www.the-dma.org/consumers/
offmailinglist.html

DMA email list opt-out:
http://www.the-dma.org/consumers/
optoutform_emps.shtml

2002 National Postal Forum site:
http://www.npf.org/NPFSanDiego2002.htm

Association for Postal Commerce:
http://postcom.org/

THOMAS Legislative Database:
http://thomas.loc.gov/

Coalition Against Unsolicited Commercial
Email: http://www.cauce.org/

SpamCon: http://www.spamcon.org/

SpamLaws (international resource):
http://www.spamlaws.com/

10

http://www.usps.com/strategicdirection/_pdf/
http://www.usps.com/strategicdirection/_pdf/
http://www.usps.com/directmail/
http://216.239.35.100/search?q=cache:
http://www.usps.com/postecs/faq.htm
http://www.the-dma.org/isec/whitepapers.shtml
http://www.the-dma.org/consumers/
http://www.the-dma.org/consumers/
http://www.the-dma.org/consumers/
http://www.npf.org/NPFSanDiego2002.htm
http://postcom.org/
http://thomas.loc.gov/
http://www.cauce.org/
http://www.spamcon.org/
http://www.spamlaws.com/

11June 2002 ;login:

●

TH

E
W

O
RK

PL
A

C
E

Lowering the Barrier to Hacking
Charges
The most widely known and applied federal law enacted to prevent abuse

to computer systems is the Computer Fraud and Abuse Act (CFAA), referred

to in legal source code as 18 U.S.C. § 1030. Although branded as the

nation’s primary anti-hacking law, the CFAA is quietly drawing the bound-

aries of acceptable behavior for IT professionals engaged in business activi-

ties. That is to say, the law is being applied to punish more than the hacker

miscreants who break into machines and damage networks or steal intellec-

tual property. The CFAA’s prohibition on unauthorized access to computer

systems is being interpreted by courts to govern the actions of Jane and Joe

Employee – which hold nontrivial implications for computer security and

infosec professionals.

This article examines trends in recent judicial applications of the CFAA as they may
affect business cyber-risk exposure and remediation efforts. On a macro level, this
analysis helps illustrate how the CFAA is shaping social expectations and notions of
“reasonable” behavior in this neoteric cybersociety within which the legality of our
actions are increasingly being judged.

Recent CFAA cases are both shaping and reflecting judgments of acceptable cyber-
behavior. By ordering criminal penalties or civil relief for computer-related misbehav-
ior, courts are transitioning standards of right and wrong behavior from the physical
to the digital society. Whereas judges and juries can draw upon personal experiences
when they adjudge the reasonableness of someone’s actions – that it is unreasonably
dangerous to drive drunk, for example – the context to make value determinations in
the cyberworld is immature.

The CFAA has been applied relatively freely in recent cases, thereby expanding the
scope of what constitutes criminal behavior as well as lowering the threshold of dam-
ages needed to raise a claim. Specifically, the elements of “exceed[ing] authorization”
and “loss” have been interpreted rather broadly. Significant precedent was set by the
US Court of Appeals in EF Cultural v. Explorica (9 I.L.R. (P&F) 3040 (1st Cir., 2001)),
which agreed with the lower court that (1) the defendant’s use of a scraper program to
access information from EF’s Web site could be construed as unauthorized access; and
(2) money spent by the plaintiff-business to assess whether the software robot had
caused damage to its systems was enough to satisfy the “loss” requirement under
CFAA.

By What Standard Does Computer Access “Exceed
Authorization”?
In a nutshell, the section of the CFAA used by EF Cultural prohibits the knowing
access of a protected computer without authorization (or in excess of authorization)
with the intent to defraud, and the value of the thing obtained must exceed $5,000 in

evolving behavioral
boundaries in
cyberspace

EVOLVING BEHAVIORAL BOUNDARIES IN CYBERSPACE ●

by Erin Kenneally

Erin Kenneally is a
Forensic Analyst with
the Pacific Institute
for Computer Secu-
rity (PICS), San
Diego Supercom-
puter Center. She is a
licensed Attorney
who holds Juris Doc-
torate and Master of
Forensic Sciences
degrees.

erin@sdsc.edu

Vol. 27, No. 3 ;login:

any one-year period. Whereas this is the black-and-white law, some actions may fall
into a gray area where its illegality is questionable. Here the defense argued that its use
of the robot software to parse through the data on EF’s Web site and extract informa-
tion did not violate the CFAA because it was not unauthorized.

This court defined the contours of unauthorized access by referencing the “reasonable
expectations” standard to judge Explorica’s “gray” actions. In other words, Explorica
violated the CFAA when it used EF’s Web site in a manner outside the “reasonable
expectations” of both EF and its ordinary users. The court reasoned that because of a
confidentiality agreement between the defendant-employee and EF Cultural (one of
the defendant employees who helped design the scraper had formerly worked for EF),
the defendant exceeded authorization by abusing proprietary information needed to
create the scraper.

This carries significance to both the individual and the business enterprise in the face
of current business climate – where non-competition and non-disclosure agreements
are passed like currency, the IT workforce is increasingly job-mobile, and the web of
outsourced partners and third-party affiliates are ever important. What’s more, com-
petition is forcing businesses to find new ways to extract value from data that openly
resides throughout the Internet. Software technologies offer the capability to identify,
collect, and contextualize this data more efficiently and at a competitive advantage.

Furthermore, realizing that IT professionals need to advance their knowledge in step
with technology, it may be a challenge to sanitize the technical, business, or financial
information that they take from job to job. Even assuming Pat Sysadmin can subjec-
tively segregate this “proprietary” information, the slope is slippery, nonetheless. What
is to prevent a Web-based company from alleging CFAA violations in light of the
default rule that “conduct is without authorization if it is not in line with the reason-
able expectations of the Web site owner and its users”? This may be an instance of the
cart driving the horse, thereby enticing a competitively disadvantaged company to
“rethink” how its reasonable expectations can lead to civil compensation under the
CFAA.

This raises perhaps the most underestimated aspect of this case, which lies in the argu-
ments that the court sidestepped. The travel codes and corresponding tour price data
were all publicly accessible through normal browsing of the Web site. The court even
admitted that the tour codes could be correlated to actual tours and cost data by man-
ually searching and deciphering the URLs to extract pricing information. However, the
scraper program automated this search to allow the pricing information to be extrac-
ted quickly, and this was then utilized by the defendant (a competitor of EF Cultural)
to set competitive prices. The real question becomes: would the use of the scraper
alone render access unauthorized under the CFAA?

Although the court found the access to be unauthorized based on the confidentiality
agreement, the existence of Webreaper-like programs and Web-page monitoring
agents that contextualize data and use it for various e-commerce applications ensures
that the courts will have to face the aforementioned issue in the future.

Interestingly, the lower court in EF Cultural found that the scraper circumvented tech-
nical restraints in the Web site “by operating at a warp speed that the Web site was not
normally intended to accommodate.” So, despite the fact that this software did not use
a back door to access information or crack into a password-protected area, the district
court appeared willing to label the use of a program that captures and data mines dis-

Realizing that IT professionals

need to advance their

knowledge in step with

technology, it may be a

challenge to sanitize the

technical, business, or

financial information that

they take from job to job.

12

parate data as exceeding authorization. Indeed, this conjures serious issues for a tech-
nology-driven society where capabilities outpace intentions and automation is prolif-
erating.

Another notable case illustrating actions “without authorization” has bearing on dis-
loyal employees who access their employer’s computers to communicate proprietary
information. In Shurgard Storage Centers, Inc. v. Safeguard Self Storage, Inc. (119 F.
Supp. 2d 1121 (W.D. Wa. 2000)), an employee of Shurgard sent an email containing
trade-secret information to the defendant-competitor. Relying on principles of agency
law, the court found that the employee’s authority ended when he started acting as an
agent of the defendant. In other words, there was an implicit revocation of authority,
regardless of whether the employer had knowledge of the improper communications.
This was the hook that allowed his accessing the employer’s computers to be criminal-
ized under CFAA. In short, the employee effectively met with the same treatment as a
random hacker who may have compromised the company’s network. So, “transition-
ing” employees and their future employers should pay attention to how their access
and use of proprietary data may create CFAA exposures.

Defining “Loss” Absent Physical Damages
Recall that unauthorized access is actionable under the CFAA if damages are shown.
“Damage” is defined as “any impairment to the integrity or availability of data, a pro-
gram, a system, or information that . . . causes loss aggregating at least $5,000 in value
during any one-year period to one or more individuals” (18 U.S.C. § 1030 (g)). Pretty
cut-and-dried, right? Well, the gray area that EF Cultural addressed was the contours
of “loss,” which are not defined in the CFAA.

Whereas it would be rational to assume that EF Cultural was stymied on this element,
the court rejected the defendant’s argument that only the use of the scraper program
qualified as damage. Instead, the cost of diagnostic measures to assess the damage of
the scraper on EF’s Web site satisfied the damage threshold.

This rationale was made on the shoulders of other cases that wrestled with damage
disputes. For instance, Shurgard construed damages to result from impairment to the
“integrity” of Shurgard’s computers. This was the case when trade-secret data was
merely copied and disseminated, adding that physical modification was not necessary
for integrity to be called into question.

The other referenced case stated that Congress intended “loss” to cover remedial meas-
ures borne by victims that could not be considered direct damage by a computer
hacker (In re Doubleclick, Inc. Privacy Litig., 154 F. Supp. 2d 497, 521 (S.D.N.Y. 2001)).

Another case that is influential in ascribing the contours of “damage” is U.S. v. Middle-

ton (35 F. Supp. 2d 1189 (N.D. Ca. 1999)). It allowed damages based on salaries paid
to, and hours worked by, in-house employees who repaired the damage done by an
unauthorized intruder. “As we move into an increasingly electronic world,” the EF

court reasoned, “the instances of physical damage will likely be fewer while the value to
the victim of what has been stolen and the victim’s costs in shoring up its security fea-
tures undoubtedly will loom ever-larger.”

Although EF Cultural permits consultant fees, recovery costs, and remediation
expenses to satisfy the meaning of “loss,” other courts have concluded that lost busi-
ness or goodwill, by itself, could not constitute loss (Register.com, Inc. v. Verio, Inc., 126
F. Supp. 2d 238, 252 (S.D.N.Y. 2000)); and loss for purposes of calculating damages

13June 2002 ;login:

U.S. v. Middleton . . .

allowed damages based on

salaries paid to, and hours

worked by, in-house

employees who repaired the

damage done by an

unauthorized intruder.

●

TH

E
W

O
RK

PL
A

C
E

EVOLVING BEHAVIORAL BOUNDARIES IN CYBERSPACE ●

Vol. 27, No. 3 ;login:

means “irreparable damage” (In re Intuit Privacy Litig., 138 F. Supp. 2d 1272, 1281
(C.D. Ca. 2001)).

Although these narrow rulings bolster the conclusion that courts are unlikely to allow
claimants to throw in the kitchen sink, the threshold to satisfy damage requirements
has been lowered and liberalized. In light of this, the legal system may find CFAA
opening a floodgate of potential claims.

As with the unauthorized access arguments, the EF Cultural court also declined to
consider whether the claimed expenses related to boosting Web server security could
count toward the damage tally.

This is an issue, however, whose time is drawing near. Combining the ease with which
a company can cry foul that its data integrity has been compromised, along with the
plethora of security consultants hit by the economic downturn, the potential for abuse
is almost as strong as the likelihood of gaining relief. It is not difficult to imagine
instances where a shoddily secured e-business might invoke the CFAA for less than
earnest purposes, and seek reimbursement for adding state-of-the-art security that
puts it in a better position than before the intrusion.

In conclusion, whether IT professionals or businesses are at the giving or receiving end
of a CFAA claim, they will do well to understand how courts are interpreting cyber-
behavior under the umbrella of the CFAA. Another take-away lesson is that regardless
of how broad or narrow courts may construe the CFAA, the ultimate success of a claim
or a defense will hinge on the evidentiary proof of wrongdoing and damages. This is
where courts will undoubtedly insist on the production of reliable electronic audit
trails and logs that reconstruct cyber-behavior.

The threshold to satisfy

damage requirements has

been lowered and liberalized.

14

15June 2002 ;login:

Cleaning Up With Dispatch Tables
Editors’ Note: Please join us in welcoming Adam Turoff as our new “Practical Perl”

columnist.

In this column, we’ll be exploring tips and techniques for writing better Perl

programs. This month, we examine a very powerful and elegant technique –

using dispatch tables to simplify your code.

Recovering from Bad Code
Over time, programmers will inevitably come across a spot of bad code. Perhaps the
last rough patch of code was left behind by a former colleague. Maybe it was some-
thing that you yourself wrote a few months or years ago. In many ways, the provenance
of a piece of ugly code doesn’t matter too much – especially when it works in spite of
its ugliness. But bad code does make maintenance more difficult, and significantly
more frustrating.

This pattern appears to be especially true with Perl programs. Lots of factors con-
tribute to this perception, but the most important one is that Perl is designed to let
you, the programmer, solve a problem in the way you feel most comfortable. This
means that you are not only expected, but also encouraged to start out writing “baby
talk Perl” as a beginner, progressing at your own pace through some of the more
advanced features and idioms in the language.

The advantage here is that if you can quickly visualize a quick-and-dirty solution to a
problem, very little stands in your way. The disadvantage is that though your brute-
force solution may get the job done before the boss fires you, it may cause problems a
few months down the road when it is time to extend your program.

Here’s an example. The program fragment below needs to perform one of a set of pos-
sible operations on a database. The operation is specified through the $mode variable,
passed in through the command line, a CGI program, or some other mechanism. The
easy way to choose the proper operation is through a cascade of if / elsif / else state-
ments:

if ($mode eq "insert") {

insert a record into a database

} elsif ($mode eq "update") {

update an existing record in a database

} elsif ($mode eq "delete") {

delete a record in a database

} elsif ($mode eq "display" or $mode eq undef) {

display the contents of the database
Note: this is the default operation

} else {

Error: no valid operation specified
}

practical perl

PRACTICAL PERL ●

●

PR

O
G

RA
M

M
IN

G

by Adam Turoff

Adam is a consultant
who specializes in
using Perl to manage
big data. He is a long
time Perl Monger, a
technical editor for
The Perl Review, and
a frequent presenter
at Perl conferences.

ziggy@panix.com

Vol. 27, No. 3 ;login:

Nested Conditionals
For a small series of conditions, this kind of coding is simple, easy to write, and easy to
understand and extend. Sometimes, the number of cases to be handled runs into the
dozens, making it difficult to keep all of the possibilities in your head. And frequently,
each block within this cascade contains dozens of lines of code, making the entire con-
struct take hundreds of lines.

Suppose the requirements for the program change and we need to handle user authen-
tication. If this code were part of a Web log system, we might want a single user to be
able to insert and update messages into his own Web log but not other users’ Web logs.
Similarly, we would want to allow site maintainers to delete inappropriate messages
but disallow a regular user from deleting messages. The code might be extended to
look something like this:

if ($mode eq "insert") {
if (is_current_user($user)) {

a user is posting into his own Web log

} else {

Error: attempt to post into someone else's Web log
}

} elsif ($mode eq "delete") {
if (is_maintainer($user)) {

site maintainer is deleting an inappropriate posting

} else {

Error: not a site maintainer; cannot delete messages

}
}

As requirements mount, the simple brute-force design leaves an ever increasing pile of
ugly (and difficult to maintain) code in its wake.

Using Dispatch Tables
These types of if / elsif / else cascades tend to inspect the value of a single variable. In
the first example code above, we’re choosing one of many possible execution paths by
inspecting the $mode variable. Because we’re using a series of if / elsif statements,
only one of statements in this block will execute.

If we turn this problem on its side, then we see that we’re associating a set of opera-
tions with each possible value for the $mode variable. This behavior should sound
familiar, because it describes the behavior of one of Perl’s three fundamental
datatypes: the associative array, more commonly known as the hash. This insight is the
key to using dispatch tables: associating data with code, using references to Perl sub-
routines (similar to function pointers in C).

A simple dispatch table looks like this:

my %dispatch = (
insert => \&do_insert,
update => \&do_update,
delete => \&do_delete,
display => \&do_display,

);

16

Elsewhere in our program, we would find definitions for the do_insert, do_update,
do_delete, and do_display subroutines. The bodies of these subs are simply the state-
ments that were previously found within the if / elsif statements.

Next, we refer to the dispatch table to find the piece of code we need to execute when
we want to perform one of these operations:

my $sub = $dispatch{$mode};

if (defined($sub)) { # we've found a sub; call it
$sub->($param1, $param2, ...);

} else {

Error: no sub found; this isn't a known mode

}

And that’s it. We’ve clarified our code in a number of important ways:

■ Each chunk of code within the (possibly lengthy) if / elsif / else cascade now has
a name: do_insert, do_update, etc.

■ The dispatch table concisely associates when we want to perform an operation
(hash keys) with what operation we want to perform (hash values).

■ Extending the dispatch table is as simple as defining a new sub and adding an
entry in the dispatch table.

■ If necessary, new behaviors can be added or deleted from the dispatch table at
runtime.

More Advanced Dispatch Tables
If you look closely, you’ll see that we haven’t quite replaced our original code yet. Our
first dispatch table handles the case where the mode is explicitly specified, but does not
handle the default mode, where the value of $mode is undefined. This is actually quite
simple to fix with a few lines of setup code:

my $key = $mode;

handle the default mode
$key = "display" unless defined $key;

my $sub = $dispatch{$key};

continue as before

At this point, you may be thinking that dispatch tables are sufficient for replacing sim-
ple cascading if / elsif, but not more complex structures like those found in the second
code sample above. More complex code blocks can be handled with dispatch tables,
but they require a little more ingenuity.

Recall that two embedded conditionals need to be handled: “insert” operations being
performed by the “current user” and “delete” operations being performed by a main-
tainer. We can update our dispatch table to look like this:

my %dispatch = (
insert-user => \&do_insert,
delete-maint => \&do_delete,
display => \&do_display,

...
);

17June 2002 ;login:

●

PR

O
G

RA
M

M
IN

G

PRACTICAL PERL ●

Vol. 27, No. 3 ;login:

and can update the key for our dispatch tables with some more setup code.

my $key = $mode;

$key = "dispatch" unless defined $key;
$key .= "-user"

if (is_current_user($user) and $key eq "insert");
$key .= "-maint"

if (is_maintainer($user) and $key eq "delete");

...

Note that the dispatch table contains no generic “insert” or “delete” action. This is
because our setup code filters out inserts that are not being performed by the current
user and deletions that are not being performed by the maintainer. As a result, these
invalid errors don’t map to a valid key in the dispatch table, and raise an error.

Synthetic Keys
This technique for supplying synthetic values can be quite powerful. We started out
with simple string equality comparisons, but dispatch tables can be used with more
complicated comparisons, including regular expressions. Again, all we need to do is
add a little more setup code before evaluating the dispatch table:

$key = "music" if $input =~ m/jazz|blues|ragtime/i;
$key = "sport" if substr($game, -4) =~ m/ball/i;
$key = "pair" if @terms == 2;

Simplifying Dispatch Tables
At this point, we’ve seen how to convert simple cascading if / elsif blocks into dispatch
tables, as well as how to convert some nested conditionals into dispatch tables. But we
haven’t seen how to convert a series of equivalent values into keys in a dispatch table.
For example, take this test:

if ($input eq "baseball"
or $input eq "football"
or $input eq "basketball"
or $input eq "volleyball"
or $input eq "racquetball"
or $input eq "squash"
or $input eq "tennis"
or $input eq "golf") {
do something with sports

}

The simple and obvious solution is to put one entry in the dispatch table for each
sport we’re trying to match:

my %dispatch = (
baseball => \&do_sports,
football => \&do_sports,
basketball => \&do_sports,
volleyball => \&do_sports,
racquetball => \&do_sports,
squash => \&do_sports,
tennis => \&do_sports,
golf => \&do_sports,
....

);

18

Alternatively, we could have one entry called “sport”, and use some setup code to trans-
late each of these sports to the value “sport” just before we inspect our dispatch table.
That would have the advantage of having one definition in the dispatch table that
matches “sport”.

If all we want to do is remove seven extraneous declarations in our dispatch table, we
don’t necessarily need to jump through such hoops. We could simply declare one par-
ticular sport in the dispatch table, and declare later on that the other seven sports have
the same behavior as our first sport:

my %dispatch = (
baseball => \&do_sports,
...

);

These values are equivalent to $dispatch{baseball},
whatever it may be
my @equivalent = qw (

football squash
basketball tennis
volleyball golf
racquetball

);

foreach (@equivalent) {
$dispatch{$_} = $dispatch{baseball};

}

Using Closures
Finally, there’s one last issue to discuss: why do we need to create subroutines just to
take their references? If we have a complicated set of statements, creating a new sub-
routine and giving it a descriptive name helps clarify the intention of our code. On the
other hand, for dispatch behaviors that are just very short subroutines – one or two
statements – we can create an anonymous subroutine, also known as a closure.

As the name implies, an anonymous subroutine is a subroutine that simply has no
name:

my %dispatch = (
coffee => sub {print "Turning on the coffee maker.\n"},
tea => \&make_tea,

);

In this example, both values in the dispatch table are subroutine references. There is no
difference in the way they are invoked. As a result, our code that grabs a value from the
dispatch table doesn’t care if a value is a reference to a named subroutine or an anony-
mous subroutine. The difference here is one of describing intent – the layout of this
code tells other programmers that the process to make tea is more complicated than
the process to make coffee.

Conclusion
Dispatch tables are an excellent way to bring order to disorderly code. Their primary
benefit comes from separating when actions take place from what actions take place.
While this technique can be used to simplify and refactor poorly written code, it can
also be used as a design tool to create maintainable software simply and easily.

19June 2002 ;login:

Dispatch tables are an

excellent way to bring order

to disorderly code.

●

PR

O
G

RA
M

M
IN

G

PRACTICAL PERL ●

Vol. 27, No. 3 ;login:

[Editors’ Note: Kragen Sitaker wrote this reply to the standard question, “Which is better,

Python or Perl? And why?” He has graciously granted us permission to reprint it.]

Python has a read-eval-print loop, with history and command-line editing,

which Perl doesn’t.

Python has a bigger standard library, which tends to be better designed. For example,

■ it’s possible to write signal handlers that work reliably without a deep knowledge
of the implementation (and I’m not convinced that a deep knowledge of the
implementation is sufficient in Perl).

■ time.time() and time.sleep() speak floating-point.
■ open() raises exceptions when it fails. Every day, people post on comp.lang.perl.

misc asking why their programs are failing, and it’s because some file is missing or
unreadable, and they can’t tell what’s wrong because they’ve forgotten to check the
return code from open(). This doesn’t happen in Python.

■ os.listdir() omits “.” and “..”; they’re always there, so you can include them by writ-
ing [“.”, “..”] + os.listdir(), but you almost never want them there. Perl’s readdir
doesn’t omit them, which is a very frequent source of bugs in programs that use
readdir.

On the other hand, Perl has a much bigger nonstandard library – CPAN – and some of
its standard library is better designed: system() and popen() can take a list of argu-
ments to avoid invoking the shell, meaning all characters are safe.

Python makes it sort of a pain to build types that act like built-in lists or strings or dic-
tionaries or files, and (as of 2.0, with “x in y” now having a meaning when y is a dict)
it’s impossible to build something that acts both like a dictionary and like a list. It’s rel-
atively easy to build something that acts like a function.

But Perl makes it a pain to use types that act like those things, and it’s impossible to
build types that act like functions. But you don’t need to build types that act like func-
tions, because you have Scheme-style closures.

Python’s syntax is far, far better.

Except that it’s indentation-sensitive, which makes it slightly harder to cut-and-paste
code and offends the kind of people who unthinkingly adhere to stupid traditions for
no good reason. (It might offend other kinds of people, too, but I know it offends this
kind of people.)

Perl has a C-like plethora of ways to refer to data types, which brings with it lots of
confusion and dumb bugs. It also makes things like arrays of arrays and dicts of dicts
slightly more confusing.

Perl has lots of implicit conversions, which hide typing errors and silently give incor-
rect results. Python has almost none, which leads to slightly more verbose code (for
the explicit conversions) and occasional fatal exceptions (when you forgot to convert).
(Unfortunately, Python has some implicit conversions and is getting more.)

On the other hand, Python overloads + and * to do different, though vaguely related,
things for strings and numbers; Perl makes the distinction explicit, calling Python’s
string + and * as . and x instead. Also, there is a certain variety of implicit conversion –
namely, from fixnums to bignums – that Python doesn’t yet do, but should. (Python
2.2 does it.)

python or perl:
which is better?

by Kragen Sitaker

Kragen Sitaker is a
multilingual hacker
who's used UNIX
since 1992, presently
consulting on server-
side Web software
development in San
Francisco. See-
http://pobox.com/
~kragen/ for more.

kragen@pobox.com

20

21June 2002 ;login:

●

PR

O
G

RA
M

M
IN

GPython’s variables are local

by default; Perl’s are global

by default. Perl’s policy is

unbelievably stupid.

Python’s variables are local by default; Perl’s are global by default. Perl’s policy is
unbelievably stupid. Worse, in Perl, the normal ways to make variables local don’t
apply to filehandles and dirhandles, so you have to use special tricks for them.

Perl can be (and, for me, always is) configured to require that all variables be declared
and local. Python has no way to require variable declarations, although reading an
uninitialized variable is a runtime error, not a runtime warning.

Perl implicitly returns the value of the last expression in a routine. Python doesn’t.
This is a point in Python’s favor most of the time, although it makes very short rou-
tines verbose. (Although Python has lambda, which lets you write those very short
routines in the Perl style.

Perl has nested lexical scopes, which means that occasionally your variables disappear
when you don’t want them to, but more often, they aren’t around to cause trouble
when you don’t want them to. They also make it really easy to write functions that
return functions as Scheme-style lexical closures. In Python, writing functions that
return functions is painful; you must explicitly list all of the values you want to close
the inner function over, and if you want to keep callers from accidentally blowing your
closure data by passing too many arguments or keyword arguments with the wrong
names, you need to write a class with init and call. Also, in Python, if you want state-
ments in your closure, you can’t write it inline – you have to write def foo() and then
refer to foo later.

Also, Python 2.x has list comprehensions, which reduce the need for really simple
inline functions (for map and filter), and also are a very nice language feature in their
own right.

The Perl parser gives better error messages for syntax errors.

Perl optimizes better.

Python has an event loop in the standard library. Perl has POE, which isn’t in the stan-
dard library.

Perl has while (<>). Python doesn’t, although it has fileinput.input(), which seems to
be broken for interactive use. (It doesn’t hand the lines to the loop until it’s read 8K,
and it requires you to hit ^D twice to convince it to stop reading and once more to end
the loop.)

Strings in Python are immutable and pass-by-reference, which means that passing
large strings around is fast, but appending to them is slow, and it’s possible to intern so
that string compares are blazingly fast. Strings in Perl are mutable and pass-by-value,
which means that passing large strings around is slow, but appending to them is fast,
and comparing them is slow.

Python lists don’t auto-extend when you try to assign to indices off the end. Perl lists
do. This is generally a point in Python’s favor.

Perl autovivifies things, so you can say things like $x->{$y}->[$z]++, which will make a
hash for $x if there isn’t one already, an array for $x->{$y} if there isn’t one already, and
an element for $x->{$y}->[$z] if there isn’t one already, before incrementing it from its
default value of zero. Doing this in Python is painful. However, Python allows tuples as
hash/dict keys, which lessens the need for this; you can write:

if not x.has_key((y, z)): x[y, z] = 0
x[y, z] = x[y, z] + 1

PYTHON OR PERL: WHICH IS BETTER? ●

Vol. 27, No. 3 ;login:

Python treats strings as sequences, so most of the list and tuple methods work on
them, which makes some code much terser. You have to use substr() or split() in Perl.

Python requires you to use triple-quoted strings to have multi-line strings. Perl has
here-docs, but it also lets ordinary strings cross line endings.

Perl indicates the ends of ranges in two ways: the index one past the end of the range,
and the index of the last element in the range. The “..” notation uses the second; @foo
in scalar context uses the first; etc. Python consistently uses the index one past the end
of the range, which is confusing for new users.

Python has this icky (x,) syntax to create a tuple of one item. Perl doesn’t have this
problem.

On the other hand, Perl has cryptocontext bugs: expressions evaluate to different, and
possibly unrelated, things in scalar and list context. This rarely bites me any more, but
it used to.

Perl’s context-dependency in function evaluation leads to brittleness problems in ways
that are difficult to explain; it leads to difficulties in wrapping functions, à la Emacs
advice.

Python has reasonable exception handling; you can catch just the exceptions you
expect to have happen. Perl has “die” and if you want, you can eval {} and then regex-
match $@ to see if it was the exception you wanted, and if not, die $@. The usual
upshot is that Perl programs that catch some exceptions usually end up catching all
exceptions and continuing in the face of exceptions that should be fatal.

On the other hand, it’s still too easy to write a program that does that in Python, too,
so people do.

Python gives you backtraces when there are exceptions, from which you are more
likely to be able to find the error than from Perl die messages, because they have more
information; but Perl die messages are likely to tell you where the error is more
quickly, for the same reason. Perl has “croak” which lets you decide which level of the
call stack to accuse of causing the error, and can give you backtraces if you want them.

The Python syntax for referring to things in another module is terse enough that peo-
ple actually use it. Perl’s syntax for the same thing is uglier ($math::pi instead of
math.pi), and Perl module names are longer, so people tend to import things from the
other modules into their own namespace. This makes Perl programs harder to under-
stand.

However, in both Perl and Python you can specify which names can be imported from
your module into someone else’s namespace, but you can’t specify which names can be
referred to from another module (e.g., as math.pi, $math::pi). The consequence is that
in Perl programs you can usually tell which names are internal to the module and
which ones are used from other modules, and in Python programs you usually can’t.
(Without looking at the other modules, that is.)

Perl lets you trivially build dicts out of lists, which is good, because lists are easy to
compute. Python doesn’t, although you can write imperative loops to do the same
thing.

Perl lets you easily splice lists into other lists (functionally, in list literals).

22

Python has this icky (x,)

syntax to create a tuple of

one item. Perl doesn’t have

this problem.

You can’t slice dicts in Python, although you can use 2.x listcomps to get almost the
same effect; Perl’s @thing{qw(foo bar baz)} becomes [thing[k] for k in 'foo bar baz'.split()].
I’m not sure whether this is better or worse; I think they’re both pretty unreadable.

Perl has “last LABEL” and “next LABEL”; Python doesn’t. This is stupid of Python,
although I don’t need multi-level break often. I can get two-level break by moving the
nested loops into a new function and using “return” and two-level continue by one-
level break.

When Perl converts aggregate data types into strings (e.g., for printing), it turns any
references into ugly strings. When Python does, it recursively prints what is pointed to
(which fails if the structure is cyclic).

In both Perl and Python, the rules for what counts as true and what counts as false in
conditional expressions are needlessly complicated.

In Python, loop conditions that have side effects end up needing to be hidden in func-
tions, or you have to write an N-and-a-half-times loop — which there’s no syntactic
construct for, so you have to kludge it with “while 1:” and “break”.

In Python, you can iterate over multiple sets of items at once:

for number, name in [(0, 'zero'), (1, 'one'), (2, 'two')]: pass

You can’t do that in Perl, although you can do the equivalent if you have an iterator
function which returns the tuples one at a time:

while (($number, $name) = next_num_name) { }

Python also has the zip/map(None,...) function to make this easier, and map() can take
multiple sequences, which it iterates over in parallel.

Python has built-in arbitrary precision arithmetic. Perl has it in a nonstandard library.

Python has built-in named, default, and variadic parameters; Perl lets you do all those
things yourself, which means that every Perl library that uses named parameters does
it differently, and none of them has syntax as nice as Python’s f(x=3, y=5) syntax.

Perl has class methods; Python doesn’t, although, unfortunately, it is adding them in
2.2.

Perl unifies classes with modules; Python doesn’t. So in Python, you can’t import a
class directly, the way you can in Perl; you can import it from the module it lives in, or
you can import its module and get it from there. In Perl, the module is the class. On
the other hand, in Python, modules are unified with files, and in Perl they aren’t; this
usually results in more verbosity in Perl.

Python lets you create classes at runtime with the same ease, or lack thereof, that you
can create functions. Perl doesn’t allow you to create classes at runtime as easily. This is
arguably excessive flexibility that leads to excessive cleverness and unmaintainable
code.

Perl will destruct any objects left around at program exit, possibly resulting in destruc-
ting objects that hold pointers to already destructed objects; Python doesn’t destruct
them at all. Both of these approaches suck.

23June 2002 ;login:

In both Perl and Python, the

rules for what counts as true

and what counts as false in

conditional expressions are

needlessly complicated.

●

PR

O
G

RA
M

M
IN

G

PYTHON OR PERL: WHICH IS BETTER? ●

Vol. 27, No. 3 ;login:

Python’s sort() and reverse() are in-place only, which means they don’t work on
immutable sequences, and often makes your code more complicated; this is moronic.
Perl did the right thing here.

Perl’s split uses a regex; Python’s standard split doesn’t. Perl is better here. However,
Python’s standard split defaults to the right separator (whitespace) when you just
specify a string, and Perl’s split, by default, discards trailing empty fields, which
Python’s doesn’t.

Python’s built-in comparison routines do recursive lexical comparison of similar data
structures, so you can sort a list of lists or tuples straightforwardly; and you can sort
records by some computed key by forming tuples of the key and the record, then
sorting the tuples. If you try to sort complex data types in Perl, it will sort them by
memory address.

Python’s regular expression library is easier to understand than Perl’s and uses mostly
compatible syntax (although Perl keeps adding features). Perl’s regular expressions
return subexpressions by mutating global variables $1, $2, etc., which have their state
saved and restored in hard-to-understand ways, and they don’t mutate those variables
if they don’t match. Python’s regular expression match operator returns a “match
object,” which, if the regex failed to match, is None; or, if the match succeeded, has a
method to fetch numbered subexpressions of the matched text.

See also http://mail.python.org/pipermail/python-list/1999-August/009693.html and
http://www.amk.ca/python/writing/warts.html.

24

http://mail.python.org/pipermail/python-list/1999-August/009693.html
http://www.amk.ca/python/writing/warts.html

25June 2002 ;login:

●

PR

O
G

RA
M

M
IN

GThere seems to be a universal rule that no matter how large a container is,

what you need to put in it is larger.

This applies to screens and graphic displays just as much as it applies to my book-
shelves. No matter how large the display, there will be an application that needs to dis-
play more information than you can fit on it.

The GUI solution to this problem is the scrollbar, which lets us create an image that’s
larger than the viewing area, and then move the viewable window to the subset of the
image we’re interested in. (If someone develops a scrollbar to put on bookcases they’ll
make a fortune.)

Syntax: scrollbar scrollbarName ?options?

scrollbar Create a scrollbar widget.
scrollbarName The name for this scrollbar.
options This widget supports several options. The -command option is

required.
-command “procName ?args?” This defines the command to

change the state of the scrollbar.
Arguments that define the changed
state will be appended to the argu-
ments defined in this option

-orient direction Defines the orientation for the
scrollbar. The direction may be hori-
zontal or vertical. Defaults to verti-
cal.

troughcolor color Defines the color for the trough
below the slider. Defaults to the
default background color of the
frames.

A scrollbar interacts with a Tk widget via callback procedures registered with the
scrollbar and the associated widget. When the widget changes configuration (for
example, more text is added to a text widget), it evaluates a script to update the scroll-
bar. When the scrollbar is modified (a user moves a slider), it evaluates a script that
will update the appropriate widget.

Several Tk widgets (listbox, entry, text, and canvas) have built in support for a scroll-
bar. Each of these widgets supports a yview and/or xview widget command that moves
the viewable window, and can be invoked by a scrollbar.

The scrollbar supports a set widget command that changes the size and location of the
slider and can be invoked by the widget associated with the scrollbar.

To make a canvas and scrollbar combination you’d use the -xscrollcommand option
to register the appropriate scrollbar’s set command to the canvas, and the scrollbar
-command option to register the canvas’s xview command to the scrollbar.

This code will create a small (50x50) window into a larger (200x50) canvas with a hor-
izontal scrollbar to reposition the displayed window, looking a lot like figure 1:

canvas .c -height 50 -width 50 -scrollregion {0 0 200 50} \
-xscrollcommand {.xsb set}

scrollbar .xsb -orient horizontal -command {.c xview}

the tclsh spot
by Clif Flynt

Clif Flynt is president
of Noumena Corp.,
which offers training
and consulting serv-
ices for Tcl/Tk and
Internet applications.
He is the author of
Tcl/Tk for Real Pro-
grammers and the
TclTutor instruction
package. He has
been programming
computers since
1970 and a Tcl advo-
cate since 1994.

clif@cflynt.com

Figure 1

THE TCLSH SPOT ●

Vol. 27, No. 3 ;login:

grid .c -row 0 -column 0
grid .xsb -row 1 -column 0 -sticky ew

.c create rectangle 100 20 120 40

This is OK, but the viewable window in this example is a fixed size. It would be nice to
enable the user to resize the window. The previous Tclsh Spot article described tech-
niques for making resizable windows. This example uses the grid columnconfigure
command to allow a widget to be resized.

canvas .c -height 50 -width 50 -scrollregion {0 0 200 50} \
-xscrollcommand {.xsb set}

scrollbar .xsb -orient horizontal -command {.c xview}
grid .c -row 0 -column 0 -sticky nsew
grid .xsb -row 1 -column 0 -sticky ew

grid columnconfigure . 0 -weight 1

.c create rectangle 100 20 120 40

This makes a window that we can expand to
look like figure 2, or even stretch to display the
entire viewable area of the canvas (figure 3).

Of course, when we can see the entire canvas
we don’t need the scrollbar. It would be nice to
remove the scrollbar when it’s not needed.

The most common way to use a
scrollbar/widget combination is to invoke a
scrollbar directly from the widget and vice

versa using the xview and set methods, as we’ve done here. However, Tcl does not
require this style. You can easily write your own scripts to be invoked by the scrollbar
and widgets.

When a widget evaluates the script to modify a scrollbar it appends two values for the
start and end position of the slider. Both of these are numeric fractions between 0 and
1. If the start position is 0, and the end position is 1, that indicates that the entire view-
able area of the widget is displayed, and we don’t need a scrollbar.

We can use those values in a procedure that would check to see if the scrollbar were
still needed, and remove it when the associated widget is scaled to be fully viewable.
This procedure is derived from one of the Tk Tips on the Tcler’s Wiki
(http://mini.net/tcl/). The idea is credited to Brent Welch.

Define a grid command to be sent to the modifyScrollbar proc.
set cmd [list grid .xsb -row 1 -column 0 -sticky ew]

Create and grid a canvas using the modifyScrollbar procedure to
control the scrollbar.
canvas .c -height 50 -width 50 -scrollregion {0 0 200 50} \

-xscrollcommand [list modifyScrollbar .xsb $cmd]

grid .c -row 0 -column 0 -sticky nsew

Create the scrollbar. Do not grid. That will be done in
modifyScrollbar when necessary.

scrollbar .xsb -orient horizontal -command {.c xview}

26

Figure 2

Figure 3

http://mini.net/tcl/

Configure the column to expand when possible.
grid columnconfigure . 0 -weight 1

Put something in the canvas. Just to add interest.
.c create rectangle 100 20 120 40

###
proc modifyScrollbar {scrollbar cmd startFract endFract}—
Control the scrollbar appearance.
Arguments
scrollbar : The name of the scrollbar widget.
cmd : The command to display the scrollbar (grid, pack, place).
startFract: Fraction for the start edge of the slider. PROVIDED BY TCL.
endFract: Fraction for the end edge of the slider. PROVIDED BY TCL.

Results
If necessary, the scrollbar is displayed in (or removed from) the
parent frame.
The slider is modified to reflect new values.

proc modifyScrollbar {scrollbar cmd startFract endFract} {
if {($endFract < 1.0) || ($startFract > 0)} {

eval $cmd
$scrollbar set $startFract $endFract

} else {
eval [lindex $cmd 0] forget $scrollbar

}
}

You could hardcode a grid command in the modifyScrollbar procedure, but since the
place, pack, and grid window managers all support a forget subcommand, this trick of
passing the command to eval allows the modifyScrollbar procedure to be used with any
geometry manager.

This technique is fine for a single canvas, text, or listbox widget, but the more common
problem is just plain having too many widgets to fit on the screen. Having a scrollable
frame would make constructing a scrollable display easy, but frame widget doesn’t
support the necessary xview and yview widget commands.

However, what we can do is place a frame inside a canvas, and then scale and scroll the
canvas as necessary.

Mark Harris and Michael McClennan describe making a scrollable canvas and frame
in Effective Tcl/Tk. The big trick is that the frame should be a child window of the can-
vas you are going to place it into.

Define the grid commands for X and Y scrollbars.

set xCmd [list grid .xsb -row 1 -column 0 -sticky ew]
set yCmd [list grid .ysb -row 0 -column 1 -sticky ns]

Create a canvas and grid it.
canvas .c -height 50 -width 50 -scrollregion {0 0 200 50} \

-xscrollcommand [list modifyScrollbar .xsb $xCmd] \
-yscrollcommand [list modifyScrollbar .ysb $yCmd]

27June 2002 ;login:

●

PR

O
G

RA
M

M
IN

G

Figure 4

THE TCLSH SPOT ●

Vol. 27, No. 3 ;login:28

grid .c -row 0 -column 0 -sticky nsew

Create the scrollbars; they’ll be gridded when needed.
scrollbar .xsb -orient horizontal -command {.c xview}
scrollbar .ysb -orient vertical -command {.c yview}

Allow the canvas to resize when the parent resizes.
grid columnconfigure . 0 -weight 1
grid rowconfigure . 0 -weight 1

Create a frame as a child of the canvas, place it in the
canvas, and bind resizing the canvas to frame size changes.
frame .c.f
.c create window 0 0 -window .c.f -anchor nw
bind .c.f <Configure> {.c configure -scrollregion [.c bbox all]}

Build some label widgets in the frame for a demo.

for {set i 0} {$i < 3} {incr i} {
for {set j 0} {$j < 6} {incr j} {

label .c.f.l_$i,$j -text "Row: $j Col: $i" \
-relief raised -borderwidth 3

grid .c.f.l_$i,$j -row $j -column $i
}
}

This set of code will create a window that looks like figure 5.

If the main window is expanded, the scrollbars go away, as in
figure 6.

There are a couple of lines to take note of in this code:

.c create window 0 0 -window .c.f -anchor nw

This places the frame inside the canvas, with the upper left
corner of the frame at the top left corner of the canvas.

bind .c.f <Configure> {.c configure -scrollregion
[.c bbox all]}

This line causes the canvas scrollregion to be updated when-
ever the size of the frame is modified. The frame size will be
modified when a user resizes the window or a new widget is
added to the frame.

The bind command binds an event/window pair to a script.

Syntax: bind window event script

Causes script to be evaluated if event occurs while window has focus.
window The name of the window to which this script will be bound.
event The event to use as a trigger for this script.
script The script to evaluate when the event occurs.

The .c bbox all command is a canvas command that returns the bounding rectangle
for a set of canvas objects. The all option tells the canvas to select all objects it is dis-
playing.

The bounding rectangle for all the objects in the canvas (in this case, just the one
frame) is the total displayable area of the canvas. We can then configure the
-scrollregion to that area, to allow all the objects in the canvas to be scrolled to.

Figure 5

Figure 6

29June 2002 ;login:

●

PR

O
G

RA
M

M
IN

GWhen the canvas is resized by the configure command, it automatically invokes its
-xscrollcommand and -yscrollcommand scripts.

This is a useful set of code, but it would be more useful to be able to create scrollable
frames when needed.

This code pulls together these ideas into a pair of procedures to create scrollable
frames with scrollbars that appear and vanish as needed.

package provide scrollFrame 1.1

###
proc scrollingFrame {name args}—
scrollingFrame - Returns the name of a frame within a canvas
attached to vanishing scrollbars.
Arguments
name The name of the parent frame.
NOTE :: NON-CONVENTIONAL RETURN – RETURNS THE INTERNAL
NAME, NOT THE NAME OF THE PARENT WINDOW!!!
args Arguments to be passed to frame and canvas

Results
Creates 2 frames, a canvas and a two scrollbars.
|-------------| <- Outer holding frame
| cccccccccc ^| Canvas within outer frame
| cffffffffc || Frame within canvas
| cf fc ||
| cffffffffc || <— Vertical Scrollbar within outer frame
| cccccccccc v |
| <--------> | Horizontal Scrollbar within outer frame
|-------------|

proc scrollingFrame {outerFrame args} {

if {[string first "." $outerFrame] != 0} {
error "$outerFrame is not a legitimate window name -

must start with '.'"
}

Create the outer frame (or not if it already exists).
catch {frame $outerFrame}

Build the scrollbar commands for the X and Y scrollbar.

set cmdy [list modifyScrollBar $outerFrame.sby \
[list grid $outerFrame.sby -row 0 -column 1 -sticky ns]]

set cmdx [list modifyScrollBar $outerFrame.sbx \
[list grid $outerFrame.sbx -row 1 -column 0 -sticky ew]]

Create and grid the canvas.
set cvs [canvas $outerFrame.c -yscrollcommand $cmdy

-xscrollcommand $cmdx]
grid $outerFrame.c -row 0 -column 0 -sticky news

Create the scrollbars. Do not grid. They’ll be gridded when
needed.

scrollbar $outerFrame.sby -orient vertical -command "$cvs yview"
scrollbar $outerFrame.sbx -orient horizontal -command "$cvs xview"

THE TCLSH SPOT ●

Vol. 27, No. 3 ;login:

Configure the canvas to expand with its holding frame.
grid rowconfigure $outerFrame 0 -weight 1
grid columnconfigure $outerFrame 0 -weight 1

Create a frame to go within the canvas. The various frame
options are applied here.
eval frame $cvs.f $args

Place the new frame within the canvas.
$cvs create window 0 0 -window $cvs.f -anchor nw

Bind frame changes to modify the canvas scrollregion.
bind $cvs.f <Configure> "$cvs configure -scrollregion \[$cvs bbox all\]"

return $cvs.f
}

###
#
proc modifyScrollbar {scrollbar cmd startFract endFract}—
Control the scrollbar appearance.
Arguments
scrollbar : The name of the scrollbar widget.
cmd : The command to display the scrollbar (grid, pack, place).
startFract : Fraction for the start edge of the slider. PROVIDED BY TCL.
endFract : Fraction for the end edge of the slider. PROVIDED BY TCL.

Results
If necessary, the scrollbar is displayed in (or removed from) the
parent frame.
The slider is modified to reflect new values.

proc modifyScrollBar {scrollbar cmd startFract endFract} {
if {($startFract > 0) || ($endFract < 1.0)} {

eval $cmd
$scrollbar set $startFract $endFract

} else {
eval [lindex $cmd 0] forget $scrollbar

}
}

The frame returned by the scrollingFrame procedure can be used just like any other
frame; you can place new widgets into it using pack, place, or grid; set the relief or
background color; and so on. However, if the frame is too small to display all the widg-
ets, it will suddenly acquire a set of scrollbars.

Here’s a short example that uses the scrollingFrame procedure to create a frame and
then populates that frame with a bunch of labels.

set ff [scrollingFrame .f2 -background yellow -height 30 -width 30]
grid .f2 -row 0 -column 0 -sticky news

for {set i 0} {$i < 200} {incr i} {
label $ff.l_$i -text $i
grid $ff.l_$i -row [expr $i / 10] -column [expr $i % 10]

}
grid rowconfigure . 0 -weight 1
grid columnconfigure . 0 -weight 1

As usual, this code is available at http://www.noucorp.com.

30

http://www.noucorp.com

31June 2002 ;login:

●

PR

O
G

RA
M

M
IN

GWe’ve been presenting some of the new features in C9X, the standards

update to C. In this column we’ll discuss I/O features added to the library.

We’ll start by looking at printf specifiers, and then go on to consider several

new I/O functions.

Printf and New Types
C9X adds four types to C: _Bool, wchar_t, long long, and _Complex. How do you
print values of these types? _Bool has no printf specifier, and so to print a value of the
type, you need to say:

#include <stdio.h>
#include <stdbool.h>

int main()
{

_Bool b = true;

printf("%s\n", b == true ? "true" : "false");
}

Alternatively, you can treat a _Bool as an integer, with values 0/1.

The wide character type, wchar_t, is output using the printf %lc specifier or functions
like fputwc. Here’s an example:

#include <stdio.h>
#include <wchar.h>

int main()
{

wchar_t c1 = L'\u1234';

FILE* fp = fopen("test", "wb");
fprintf(fp, "%lc", c1);
fclose(fp);

fp = fopen("test", "rb");
wchar_t c2 = fgetwc(fp);
fclose(fp);

if (c1 != c2)
printf("c1 != c2\n");

fp = fopen("test", "rb");
int c;
while ((c = getc(fp)) != EOF)

printf("%x ", c);
printf("\n");
fclose(fp);

}

Wide characters have an encoding, used to convert them to or from a sequence of
bytes. For example, the wide character L'\u1234' is encoded as the three bytes:

e1 88 b4

The long long type is formatted using the %lld specifier, like this:

#include <stdio.h>
#include <limits.h>

new I/O features
in C9X

NEW I/O FEATURES IN C9X ●

by Glen
McCluskey

Glen McCluskey is a
consultant with 20
years of experience
and has focused on
programming lan-
guages since 1988.
He specializes in Java
and C++ perfor-
mance, testing, and
technical documen-
tation areas.

glenm@glenmccl.com

32 Vol. 27, No. 3 ;login:

int main()
{

long long x = LLONG_MIN;

printf("%lld\n", x);
}

The _Complex type has no specifier. Instead, you use the creall and cimagl functions to
extract the real and imaginary parts of the complex number. An example:

#include <stdio.h>
#include <complex.h>

int main()
{

_Complex long double c = 37.0L + 47.0L * I;

printf("%Lg + %Lg*I\n", creall(c), cimagl(c));
}

The output is:

37 + 47*I

and the %Lg specifier is used to format long doubles.

Other Printf Specifiers
Another group of printf specifiers is used to handle situations where an integral type is
expressed as a typedef, and the underlying type could be signed or unsigned int, long,
or long long; size_t is an example. The %u notation specifies an unsigned type, and the
z modifier (i.e., %zu) indicates that the type has size_t width, based on local system
settings. Here’s how you print a size_t value:

#include <stdio.h>
#include <stddef.h>

int main()
{

size_t x = ~0u;
printf("%zu\n", x);

}

A similar approach is used for the intmax_t types defined in <stdint.h> with the j mod-
ifier for %d:

#include <stdio.h>
#include <stdint.h>

int main()
{

intmax_t x = INTMAX_MAX;
printf("%jd\n", x);

}

The output on my Linux system is:

9223372036854775807

A third example is the t modifier for the ptrdiff_t type:

#include <stdio.h>
#include <stddef.h>

int main()
{

char a;
char b;
char c;
char d;
ptrdiff_t x = &d - &a;

printf("%td\n", x);
}

Here are a couple of other examples of new specifiers. %hh converts the correspon-
ding printf argument to character width, and then formats the value as an integer. For
example, the output of this program:

#include <stdio.h>

typedef unsigned char UINT8;

int main()
{

UINT8 a = 100;
UINT8 b = 200;

printf("%u\n", a + b);
printf("%hhu\n", a + b);

}

is:

300

44

In both cases, a + b has a value of 300, passed to printf as an argument. But in the sec-
ond case, the argument is converted to an unsigned character, and thus has the value
44 (300 mod 256). The %hh specifier is useful for working with short integers, for
example types like int8_t defined in <stdint.h>:

typedef signed char int8_t;

A final example uses the %a specifier to format hexadecimal floating constants:

#include <stdio.h>

int main()
{

float f = 16320;

printf("%a\n", f);
}

The output of this program is:

0xf.fp+10

In other words:

(15 + 15/16) * 2^10 = 16320

33

●

PR

O
G

RA
M

M
IN

G

June 2002 ;login: NEW I/O FEATURES IN C9X ●

Scanf Specifiers
Many of the same specifiers used in printf are available in scanf. For example, this pro-
gram is the inverse of the one just above:

#include <stdio.h>

int main()
{

double d;

sscanf("0xf.fp+10", "%la", &d);

printf("%g\n", d);
}

The output of the program is:

16320

The Snprintf Function
Snprintf is a function much like sprintf, but with the ability to specify a maximum
buffer width. Here’s an example of snprintf:

#include <stdio.h>

void f()
{

char buf[8];

//sprintf(buf, "testing %d", 1234);
//printf("%s\n", buf);

snprintf(buf, sizeof buf, "testing %d", 1234);
printf("%s\n", buf);

}
int main()
{

f();
}

When I run this program with the sprintf call uncommented, the result is a segmenta-
tion violation, due to buffer overflow. snprintf avoids this problem by allowing you to
specify the buffer width.

This particular problem is a major source of security holes: for example, manipulating
the amount of buffer overflow such that a stack frame gets overwritten.

Vfprintf
vfprintf, and the related functions vfscanf, vsnprintf, vsprintf, and vsscanf, allow you to
pass a variable argument list to the function. Here’s an example that defines an error-
reporting mechanism:

#include <stdio.h>
#include <stdarg.h>

void report_error(const char* file, int line, char* format, ...)
{

va_list args;

34 Vol. 27, No. 3 ;login:

va_start(args, format);

fprintf(stderr, "Error at file %s, line %d: ", file, line);

vfprintf(stderr, format, args);

va_end(args);
}
int main()
{

int x = 37;
int y = 47;

if (x < y) {
report_error(__FILE__, __LINE__,

"x < y (x=%d y=%d)\n", x, y);
}

}

In this example, I have a report_error function, and I want to pass it a file and line, and
also a printf format and a variable number of arguments to be used with the format.
Inside report_error, I can set up a variable argument list, and further pass it to the
vfprintf function.

The result of running this program is:

Error at file vf1.c, line 23: x < y (x=37 y=47)

The features we’ve described above are all useful in writing more portable and secure
programs, and in working with new C9X types.

35

●

PR

O
G

RA
M

M
IN

G

June 2002 ;login: NEW I/O FEATURES IN C9X ●

36 Vol. 27, No. 3 ;login:

protowrap
by Gunnar Wolf

Gunnar Wolf is the
systems administra-
tor for a campus of
UNAM, Mexico's
largest University. He
has been a strong
promotor of both
Computer Security
awareness and the
Free Software move-
ment in his commu-
nity, and likes doing
small, useful tools in
Perl.

gwolf@campus.iztacala.unam.mx

A Generic and Protocol-Specific
Wrapper
As system administrators, all of us should be very concerned, even para-

noid, about security. There are simply too many threats out there waiting

for us to become distracted in order to exploit a vulnerability in our sys-

tems. New vulnerabilities are found day to day, and exploits are very

quickly crafted for each of them. We want to trust the programs we run at

our server, but we know that a secure server is utopian. There are many

ways to harden our servers against unknown attacks, but these often

require heavy tinkering with the system. In this article, I will propose

another alternative, much less invasive and more flexible than what I have

found up to now: generic and protocol-specific wrappers, implemented

through a couple of Perl modules called ProtoWrap.

A word of warning to the faint of heart: although ProtoWrap does work, it is a work-
in-progress, and some important aspects (such as the interface to the operator) have
been relegated to focus development on correct and full operation, not on ease of use.
I am the first to recognize that I am by no means an excellent programmer, and I know
that a better implementation can be made. If you think you can help make ProtoWrap
work better, please do. In fact, if you want to develop a similar project sharing the ideas
provided here, I would be delighted to hear about it.

General Philosophy
As you know by now (unless you like skipping introductions), ProtoWrap is a series of
wrappers. Assuming we are in a hostile environment, we cannot trust a network client
to be a good citizen. All incoming connections are, thus, potentially hostile and must
pass through a defensive layer before reaching our real server.

I decided to focus my work on a very specific kind of protocol: line-oriented TCP pro-
tocols. By “line-oriented” I mean that all commands sent from the client to the server
are one or more lines of text, delimited by a new-line character. Such protocols include
HTTP, FTP, SMTP, IMAP, POP3, finger, ident, and many others. They do not, however,
include Telnet (character-oriented; lines may be assembled by the server, but they sim-
ply are not relevant at the protocol level), DNS and NFS (UDP-based), SSH (traffic is
encrypted, we can not guess where new lines are), and many others.

Wrapping a program should happen as transparently as possible. Many network serv-
ices do not involve – on regular operation – a human at either end, and we should alter
regular operation as little as possible in order not to trigger a denial of service.

ProtoWrap was designed to be useful even without knowing which protocol it would
be wrapping (hence I describe it as a generic wrapper). We will see later how it can be
invoked to protect almost every line-oriented protocol. It was very important for me,
however, to make it easy to teach it how to intelligently wrap a specific protocol.

Another very important point is that ProtoWrap should be easy to deploy. It should
not depend on a particular system configuration, and it should be able to scale. This
will also be further explained later on.

Finally, ProtoWrap was designed to be able to protect heterogeneous networks. If Pro-
toWrap is unable to run on a particular system setup, it should be able to protect it
from the outside, running on a different computer or even a different network.

In the Beginning
ProtoWrap began as my answer to stopping spam with different mail transport agents,
on different architectures, with a minimum of work. I soon realized the solution I pro-
posed could very easily be generalized, and become much more useful, to many differ-
ent protocols.

I presented ProtoWrap as my final paper for graduation in computer science at
Kennedy Western University. If you want to get full details on how and why ProtoWrap
exists and works, I invite you to visit http://www.gwolf.cx/seguridad/wrap/.

I chose to develop ProtoWrap using Perl because of Perl’s rich pattern-matching capa-
bilities and because of the availability of just about any needed function in the CPAN
(Comprehensive Perl Archive Network, http://www.cpan.org). Perl also provided me
with a clean and easy-to-understand way of dealing with network sockets, an absolute
requirement for the wrappers to exist.

A number of problems arose while developing ProtoWrap, as happens in any software
project. Among the most challenging was the dual-input problem: data can come, at
any moment, from either the client or the server. How can you make a Perl program
listen to two different data sources at the same time, and react to the one that provides
the whole line first? I owe the answer to Salvador Ortiz, with whom I spent several
hours hacking and testing possible alternatives, until we decided to go to a lower level,
using Perl’s IO::Handle and IO::Select modules. Once again, for more details on the
possibilities we studied and why this one was chosen, please visit http://www.gwolf.cx/

seguridad/wrap/node62.html.

ProtoWrap is able to listen for clients and talk to its server in different ways. Some
users might require that a daemon always be running, directly listening to its port, to
save resources on multiple invocations and reduce startup time. Others will prefer
running the wrapper from inetd, handing it the connection in the form of a
STDIN/STDOUT file descriptor pair. As for the server, in some cases it will be started
from ProtoWrap, also via a mechanism similar to inetd’s, and in others it will always
be running – maybe even on a different machine – and the connection will be done by
TCP/IP sockets.

The Generic Wrapper Behavior
Using ProtoWrap in the most basic way is very straightforward. Of
course, the protection it offers will not be as complete as if we were
using a protocol-specific module. The protection that ProtoWrap
will give to an unknown protocol is, nevertheless, very important:
buffer overflows can be easily prevented altogether. Calling Pro-
toWrap as shown in Listing 1 results in having the IMAP server in
the same system (as 127.0.0.1 is the localhost address) protected by
ProtoWrap. The real server is running on port 10143, and should be
protected by packet filtering or TCPWrapper rules so that it only
accepts connections from the same machine. The result of this setup
is shown in Figure 1.

This wrapper will limit every line coming from the client to 25 char-
acters, more than enough to send IMAP commands, and will effec-

37June 2002 ;login:

●
SE

C
U

RI
TY

PROTOWRAP ●

#!/usr/bin/perl -w
use ProtoWrap;
use strict;

my $wrapper = ProtoWrap->new('standalone' => 1,
'listenPort' => 143,
'destType' => 'ip',
'destAddr' => '127.0.0.1',
'destPort' => 10143,
'maxLineLength' => 25,
'logLevel' => 0
);

$wrapper->startServer() or die 'Can\'t start wrapper!';
sleep;

Listing 1

http://www.gwolf.cx/seguridad/wrap/
http://www.cpan.org
http://www.gwolf.cx/

Vol. 27, No. 3 ;login:

tively avoid any buffer overflow attack. Further, ProtoWrap will alert the sys-
tem administrator via a syslog entry that an illegal line was sent to the server,
reporting what the line’s contents were.

Protocol-Specific Extensions
Of course, ProtoWrap can be easily extended well beyond this simple behav-
ior. All protocols implement a specific set of instructions, and deviations
from it can be easily marked as misuse and discarded with no remorse. In
most protocols, it is also easy to define stages of operation – different subsets
of commands will be valid or invalid at different times during the session. By
making each line’s validation by using the wrapper’s testLine method, it is

very easy to call a protocol-specific validation function. In order
to demonstrate this, I wrote two protocol-specific wrappers: for
POP3 and SMTP services.

A wrapper for POP3 can be called with Listing 2; maxLine-
Length was now omitted, as we will validate each line separately.
Here, instead of running in stand-alone mode, the wrapper will
now be invoked from inetd or a similar daemon, which will
determine which port it will listen on. Conceptually, this setup
still resembles Figure 1. We also have a new entry: maxLoginAt-
tempts. If someone tries to log on with an incorrect password
more than the specified number of attempts, the connection
will be dropped.

The wrapper for SMTP is much more elaborate and able to do
more. A typical startup configuration for SMTP can be seen in

Listing 3. Here, instead of running SMTP at a different port and connecting
to it via regular sockets, we do not run the SMTP server until a connection is
received. The server will then be spawned, and when the connection is closed,
only the wrapper will continue running (see Figure 2). Though it looks very
similar to Figure 1, not having the server listening on a different port can
make a huge difference, both from security and performance standpoints.

We see many new parameters here. Most of them were introduced to help
stop spam. They are:

■ blockAddrList – Addresses we do not wish to receive mail from (anchored
to end of string). They can be specific mailboxes (as hahaha@sexyfun.net,
a well know worm) or whole domains (everything coming from spam-
mer.org).

■ blockBodyList – Every line of the incoming message will be tested against
the lines provided here, and if a line matches, the message will be dis-
carded. In this example, most attachment viruses will be avoided, as the
most common executable attachment types for Windows systems are dis-
allowed.

■ maxMsgSize – The maximum message size (in bytes). In the example,
messages over a megabyte will not be allowed.

■ maxRcpt – The maximum number of recipients for a message in a single SMTP
session. Spammers usually send hundreds of messages at a time using open relays.
If a spammer is able to use our machine as a relay, this will drastically cut its effec-
tiveness as a spam relay. In the example, this number is set to zero, allowing for
any number of recipients. This machine may be a mailing list server.

38

Figure 2

Figure 1

#!/usr/bin/perl -w
use ProtoWrap::POP3;
use strict;

my $wrapper = ProtoWrap::POP3->new('standalone' => 0,
'destType' => 'ip',
'destAddr' => '127.0.0.1',
'destPort' => 10143,
'logLevel' => 0,
'maxLoginAttempts' => 3
);

$wrapper->startServer() or die 'Can\'t start wrapper!';
sleep;

Listing 2

■ relayDomainList – Domains for which we allow relay, when they appear either as
senders or as recipients of a message (anchored to end of string).

■ relayIpList – IP ranges or specific addresses for which we allow relay (anchored to
the beginning of the string).

Some of these functions are already handled by most SMTP servers – why am I reim-
plementing them with ProtoWrap? First, most SMTP servers allow only for specific
text matching. With ProtoWrap, we have access to the whole Perl regular expression
engine, which gives us much more flexibility and ease of use. Second, if we have our
wrappers at a central site such as a firewall, with a setup similar to Figure 3, configura-
tion will be much easier to mantain than if we have them spread on each of
our servers.

Wrapping Up
ProtoWrap has changed a lot as I have found and incorporated new ideas
into it. I am sure it can be a very useful security tool to system administrators
with almost every kind of setup. I am also sure that the ideas I have shown
here are just the beginning of what can be achieved by such a wrapper.

I have been using ProtoWrap for almost a year on my production servers,
since I first labeled it as usable. There are still many features pending, and I
sincerely hope to have some of them done by the time this article reaches
you. The actions I wish to take before labeling ProtoWrap as stable, and will
be done before this goes to print, are:

■ Correct Perl module packing – ProtoWrap should be installed as Perl
modules. Right now, installation must be done by hand. Soon, I hope to
have ProtoWrap ready to be set up as most Perl modules are.

■ .rpm, .deb, .tgz packages – Most operating systems are provided with
package management systems. Linux distributions handle usually either
.rpm or .deb format packages; most other UNIX systems use the simpler .tgz for-
mat. These packages allow installation, deinstallation, version management and
dependencies. ProtoWrap should then also be available in packaged format.

For more details on other various interesting points that ProtoWrap can be extended
to cover, please visit http://www.gwolf.cx/seguridad/wrap/node72.html.

To sum up, ProtoWrap is just a proposal, a proof of concept, and I am more than sure
it is not the ultimate security solution. It is, however, a valuable addition to most sites’
overall security strategy.

39

Figure 3

PROTOWRAP ●

●
SE

C
U

RI
TY

#!/usr/bin/perl -w
use ProtoWrap::SMTP;
use strict;
my $wrapper = ProtoWrap::SMTP->new('standalone' => 0,

'destType' => 'pipe',
'pipeCmd' => '/usr/sbin/sendmail -bs',
'logLevel' => 3,
'maxMsgSize' => 1048576,
'blockAddrList' => ['hahaha@sexyfun.net','@spammer.org'],
'blockBodyList' => ['^Content-Type: application.+\.(PIF|EXE|VBS|COM|BAT|LNK|SCR)\"'],
'relayIpList' => ['192.168.150.','192.168.160.'],
'relayDomainList' => ['mydomain.org','gwolf.cx'],
'maxRcpt' => 0
);

$wrapper->startServer() or die 'Can\'t start wrapper!';
sleep;

Listing 3

June 2002 ;login:

http://www.gwolf.cx/seguridad/wrap/node72.html

40 Vol. 27, No. 3 ;login:

Like every other USENIX member, I am always learning. The resources

appear endless: new books, classes, online Web pages, mailing lists, maga-

zine articles, and questions that people send me.

Just the other day somebody emailed me hoping I could tell her how to change the
admin password on the used notebook running XP she had just acquired. I checked
out my old favorite, a Linux boot floppy that enables you to change any password on a
Windows NT system, and discovered that it won’t work for Win2K. At least the site
with the bootdisk is still around (http://home.eunet.no/~pnordahl/ntpasswd/bootdisk.

html).

The buzz for a while now has been attacks on Cisco routers. Now, you probably all
remember that Cisco has had its share of security woes (not an unreasonable burden,
but still there). What has changed has more to do with rumors than reality – at least so
far.

One rumor is that the source code for IOS, Cisco’s Internetworking Operating System,
has been stolen. That rumor dovetails nicely with a second rumor, that a rootkit for
Cisco routers is in the wild. Rootkits for UNIX systems have been around since at least
1994. The “original” rootkit ran on SunOS, included trojaned commands that hid the
existence of a sniffer and its logfile, and made it easy for the installer to return and
upload the logfile. Some people really appreciated rootkits, as they were busy installing
them on every open system they could find – particularly at ISPs.

ISPs made dandy places to install rootkits, especially in the mid-’90s. Small ISPs would
install a UNIX mail/Web server, and the attacker would load the rootkit on it. The
UNIX server also would sit on a broadcast network, so any transit traffic would be
sniffed as well. Of course, the accepted practice today is to put servers on their own
subnets and to use switches instead of hubs. Not that hubs are a proven way to prevent
sniffing. Check out angst (http://angst.sourceforge.net/) if you don’t believe me.

The notion of a Cisco rootkit disturbed me at first. I guess I just didn’t like to think of
a router as something running a vulnerable OS with vulnerable services. But, of
course, routers run operating systems. Cisco has written their own. Juniper Networks
uses a modified version of BSD.

O’Reilly keeps publishing books, and occasionally sends me a copy, which I much
appreciate. Hardening Cisco Routers, by Thomas Akin, seems very appropriate for these
days. And, Akin’s tome secretly pleased me as well, because it covers much of the same
turf that I once did in a router security class – but in more detail. For example, I didn’t
realize that the difference between logging into a Cisco router and what you can do
after entering the enable password is based on privilege levels. You can actually set up
user accounts (if you are using TACACS or RADIUS) with different privilege levels,
then configure the router to provide access to sets of commands at any of the 16 differ-
ent privilege levels. I had heard that IOS runs at a single hardware privilege level, and
the notion of software configurable access to commands agrees with this. IOS is its
own “secure” OS, although without the usual aid of hardware support. Like running a
shell within the kernel.

Akin takes you through the hardening process succinctly, starting with a description of
the issues, going into access control, passwords, remote authentication servers, logging,
disabling dangerous protocols/services, controlling routing protocols, and even physi-
cal security. I had hoped there would be more on BGP4 filtering, but the focus was

musings
by Rik Farrow

Rik Farrow provides
UNIX and Internet
security consulting
and training. He is
the author of UNIX
System Security and
System Administra-
tor’s Guide to System
V.

rik@spirit.com

http://home.eunet.no/~pnordahl/ntpasswd/bootdisk
http://angst.sourceforge.net/

more on not accepting or distributing routes via Interior Gateway Protocols (IGPs),
and setting up connection authentication with BGP4. I have always wanted to have all
of the security documentation for Cisco routers in one place. While Hardening does
not include the firewall features of Cisco routers (other than rate limiting for DDoS
attacks and which ICMP packets you can consider dropping), it admirably covers its
topic area. And at 172 pages, it’s a quick read, too.

The other oft-rumored “big attack” on routers involves BGP4. BGP, Border Gateway
Protocol, is the glue that holds the Internet together. Unlike IGPs, BGP uses Autono-
mous System (AS) numbers to describe routes. An autonomous system is a collection
of networks under the technical control of a single agency. The way I think about how
BGP works is this. Each AS has routes to many networks that belong within that AS,
their netblocks (see arin.net, ripe.net, apnic.net for the various AS and netblock reg-
istries). An AS advertises routes to their many networks via their AS number, rather
than as specific routes through a list of routers. That makes routing within an AS
transparent to sites outside of the AS. You just get the packets to the border of the AS,
and the AS handles routing the packets to their destinations.

Of course, this setup implies that each AS must be using an IGP internally, so that its
own routers know the actual routes to each supported network. What BGP4 does is
takes the information from the IGP routing advertisements, converts it to BGP4 adver-
tisements, and shares this with the BGP-speaking neighbors. Only updates are distrib-
uted, as every update must be exchanged with every BGP4 speaker. Unstable networks
result in frequent changes, or route flapping, wasting not so much network bandwidth
as router CPU cycles.

Okay, so BGP4 is the glue and seems to be working just fine. What’s the problem? A
nice answer to that is AS7001, in April 1997. AS7001 was the AS number for a small
ISP in Florida, a Sprint customer. This ISP made a mistake in configuring BGP adver-
tisements so that all the routes that were being advertised internally were forwarded to
Sprint using BGP4. As I understand it, this little ISP began advertising itself as the best
route for many Class C networks, and as soon as this route spread, the link between
Sprint and this little ISP became flooded. Imagine, if you will, the US airline system of
spokes and hubs, and now Santa Rosa, California, has announced it has taken the place
of San Francisco International, Atlanta Hart, Washington Dulles, Chicago O’Hare, etc.,
and all the traffic heads there. It was not a pretty picture.

Cooler heads prevailed. By examining the BGP routing updates, someone noticed that
AS7001 was declaring itself the best route for networks having nothing to do with it,
and filtered all updates coming from AS7001. The problem stopped once people
started filtering (blocking) updates from AS7001, and gave Sprint a chance to help the
little ISP fix their problem.

The AS7001 incident helped make NSPs aware of how crucial BGP filtering is. Config-
uring BGP4 routing and filtering is an art form, and not practiced by many (compared
to the number of network admins there are). We haven’t had a similar problem in
years. Also, it is standard practice today to either use dedicated links between BGP4
neighbors, or include an MD5 digital signature with each packet, to prevent spoofing,
resetting, or hijacking of the connection between BGP4 neighbors, which stays up as
long as the link and routers are up.

This brings me back to where I started: potential, wide-scale attacks on routers. If
many routers can be penetrated and rootkits installed, then these routers become simi-

41June 2002 ;login:

Configuring BGP4 routing

and filtering is an art form,

and not practiced by many.

●
SE

C
U

RI
TY

MUSINGS ●

Vol. 27, No. 3 ;login:

lar to the agents used in DDoS attacks. If these routers begin sending incorrect BGP4
updates on command (from authenticated routers, mind you), then considerable dis-
ruption of the Internet will occur. With no one suspecting that their router has been
corrupted, and general Internet connectivity being disturbed, well, things could get
messy for a day or so. Just remember the original Internet Worm. If you want to read
more on this, check out “Origins of Internet Routing Instability,” by Craig Labovitz et
al. (Arbor Networks): http://www.comsoc.org/confs/ieee-infocom/1999/papers/. BBN and
others have suggested using digital signatures on every update, but if the routers are
subverted, the digital signatures will authenticate the phony advertisements as well.
You can learn more about the BBN solution, secure BGP, by visiting their Web page:
http://www.ir.bbn.com/projects/s-bgp.

Note that this is not just a problem for router vendors. You can run BGP4 on Linux
and BSD systems as well (MRTD, http://www.mrtd.net, and Zebra, http://www.zebra.

org). And we know that these systems are always totally secure.

Of course, all this is fantasy and rumors right now. As a rumor-monger, I am strongly
suggesting that you see to the security of any routers under your control. The little
whispers I have been hearing remind me a lot of what was being said before the DDoS
attacks of February 2000 occurred, and I really thought I should mention this.

As a rumor-monger, I am

strongly suggesting that you

see to the security of any

routers under your control.

42

USENIX Needs You
People often ask how they can contribute to the USENIX organization. Here is a list of needs for which USENIX hopes to find vol-
unteers (some contributions reap not only the rewards of fame and the good feeling of having helped the community, but authors
also receive a small honorarium). Each issue we hope to have a list of openings and opportunities.

■ The ;login: staff seeks good writers (and readers!) who would like to write reviews of books on topics of interest to our
membership. Write to peter@matrix.net.

■ The ;login: editors seek interesting individuals for interviews. Please submit your ideas to login@usenix.org.
■ ;login: is seeking attendees of non-USENIX conferences who can write lucid conference summaries. Contact Tina Darmohray,

<tmd@usenix.org> for eligibility and remuneration info. Conferences of interest include (but are not limited to): Interop, Inter-
net World, Comdex, CES, SOSP, Ottawa Linux Symposium, O’Reilly Open Source Conference, Blackhat (multiple venues),
SANS, and IEEE networking conferences. Contact login@usenix.org.

■ ;login: always needs conference summarizers for USENIX conferences too! Contact Alain Hénon ah@usenix.org if you’d like to
help.

■ The ;login: staff seeks columnists for:
■ Large site issues (Giga-LISA),
■ Hardware technology (e.g., the future of rotating storage)
■ General technology (e.g., the new triple-wide plasma screens, quantum computing, printing, portable computing)
■ Paradigms that work for you (PDAs, RCS vs. CVS, using laptops during commutes, how you store voluminous mail, file organ-

ization, policies of all sorts)
Contact login@usenix.org.

http://www.comsoc.org/confs/ieee-infocom/1999/papers/
http://www.ir.bbn.com/projects/s-bgp
http://www.mrtd.net
http://www.zebra

43June 2002 ;login:

ISPadmin

ISPADMIN ●

●

SY

SA
D

M
INPublic Internet Access

Introduction
In this edition of ISPadmin, methods of providing public Internet access are

covered. The first area examined is the wired access one might see at

hotels, Internet cafes and similar venues. Next, 802.11b fixed public access

wireless points are covered. Finally, miscellaneous topics such as access

point manufacturers, community networks, and software will be consid-

ered.

What exactly is public Internet access? As the name implies, it is allowing Internet
access in public or quasi-public locations. Some examples of this would be building
lobbies (hotels, airports), hotel rooms, Internet cafes, libraries, and similar locations. It
can take the form of wired access (usually indoor locations, such as Internet cafes and
hotel rooms) or wireless access (any indoor or outdoor area). The most common form
of this type of wireless access is based upon the IEEE 802.11b specification, though
other methods/protocols exist.

Public Access (Wired)
Figure 1 illustrates how a provider could deploy a wired public access net in a
hotel, for example. The boxes to the left represent subscriber client machines,
which could be located in hotel rooms or Internet cafe workstations. These
machines would connect to switches (or other aggregation equipment)
marked “Switch” via 10Mb or 100Mb Ethernet links. These switches would in
turn be connected via Ethernet to a firewall. This firewall would house the
appropriate authentication and billing interface to enable access to the Inter-
net, after the subscriber has provided the “go ahead” and/or entered credit card
billing information.

802.11x Background
802.11b is a wireless access standard adopted by the IEEE in 1999. It utilizes the
2.4GHz spread spectrum (unlicensed) to offer 11 megabits per second (Mbps) of
bandwidth between two end points. The wireless access point (WAP) will have at least
one upstream “wired” port (usually 100Mbps Ethernet) so data not destined for a
machine on the WAP network can be delivered. As usual for any evolving technology,
WAPs are being integrated into similar products (as well as seeing their price drop).
For example, one can purchase a WAP with integrated firewall and
4-port switch for around $150 from Linksys, among other vendors.

There seems to be a lot of confusion between 802.11b and another
wireless LAN standard called Bluetooth. Figure 2 illustrates the dif-
ferences between the two similar technologies: 802.11b is designed
for high-speed Internet access with higher radio power and wider
range. Bluetooth, on the other hand, is designed for communica-
tion between small devices (e.g., cell phones) with low radio power
and more limited range.

802.11b wireless access can be used anywhere, indoors or out-
doors. However, public access points have been largely deployed
up to now in high population density areas (i.e., cities). It is costly

by Robert Haskins

Robert Haskins is
currently employed
by WorldNET Inter-
net Services, an ISP
based in Norwood,
MA. After many
years of saying he
wouldn't work for a
telephone company,
he is now affiliated
with one.

rhaskins@usenix.org

Switch 1

Subscribers

Switch 2

Firewall

Internet

Network
Access
Switches

Billing
System

Figure 1

802.11b Bluetooth

POWER CONSUMPTION HIGH* LOW

EFFECTIVE RANGE HIGH LOW

COST HIGH LOW

HIGHEST ISO LAYER** 2 5

*New power-saving mode reduces this to “medium” with appropriate hard-

ware

**ISO layer 2 means protocol requires higher-level software (for example,

TCP/IP stack); ISO layer 5 means most functions implemented in protocol.

Figure 2: 802.11b vs. Bluetooth

Vol. 27, No. 3 ;login:

to deploy a wireless technology such as 802.11b in remote areas with limited demand.
As deployment costs decline, it will become more cost effective for providers to enable
more thorough coverage.

Wireless access is used for point-to-point as well as point-to-multipoint networks. (In
this article, WAP will always refer to point-to-multipoint.) The big advantage (and,
alternatively, problem) with deploying 802.11b vs. other licensed spectrum products is
the fact that 802.11b uses unlicensed spectrum. Of course, the use of unlicensed spec-
trum may also cause interference problems (from microwave ovens, Bluetooth devices,
and wireless phones among others) that have to be corrected. Multipoint to multipoint
(or peer to peer) wireless networks exist, though they are not in wide use. Check the
References for pointers to additional information on this topic.

There are other wireless standards and products arriving. One is 802.11a, which sup-
ports data rates up to 54Mbps in the 5GHz range. The 5GHz spectrum has much less
interference than the 2.4GHz band, since it doesn’t have nearly the number of uses the
2.4GHz band does. Equipment for 802.11a started hitting the market about January
2002.

Another standard is 802.11g, currently a draft standard that has been the subject of
much heated debate. It is 54Mbps (like 802.11a) but is backwards compatible with
802.11b (utilizes the 2.4GHz spectrum) while having 30% greater range than 802.11a.
Time will tell which standard “wins,” but for now, 802.11b is way ahead of the others
simply because it has been around longer and therefore has a much larger installed
base. 802.11g chipsets are in the process of being developed, with large-scale ship-
ments scheduled for the third quarter of 2002 (according to a 80211 Planet announce-
ment) by Intersil, a wireless chipset manufacturer.

802.11b Technical Details
The range of 802.11b WAP varies greatly depending upon such factors as transmitter
power, antenna type, and the topography between the WAP and client station. The
greatest range at full power and clear line of sight with omnidirectional (point-to-
multipoint) links is in the neighborhood of 300 meters. The directional antennas
(point-to-point links) at full power can exceed 32 km (20 miles).

There are several parameters that can be changed on most WAP models. These include
service set identifier (SSID), which associates a WAP with a client. If it is set incor-
rectly, the WAP will ignore the client packets. Setting this parameter on most client
adapters is a manual process, although several aggregators are designing client soft-
ware to make this transparent to the wireless roamer. Also, the channel (frequency) as
well as transmit power and encryption (among other settings) can be adjusted to suit
the needs of the WAP owner. Usually these needs are determined by coverage require-
ments and interference under “Part 15” of the FCC regulations.

Types of 802.11b Networks
The lines between 802.11b network operators are rapidly blurring. For the purposes of
this article, wireless networks can be broken down into three types of operators: pub-
lic, private, and cooperative/community.

Public networks are those installed by service providers for the express intent of
reselling/providing access to the public (or quasi-public) user. Private networks are
those operators whose primary intent is to run networks for a private entity rather

44

than provide public access. Finally, the cooperative networks are those operators
who build networks in a nonprofit mode (e.g., Seattle Wireless and NYC Wireless).

PUBLIC ACCESS WIRELESS NETWORK

A public access network could be designed as illustrated in Figure 3. Attributes of
public wireless 802.11b networks usually take the form of the following:

■ Firewall
■ RADIUS (Remote Authentication Dial-In User Services) back-end authentica-

tion
■ No encryption

As one might notice, this diagram is very similar to Figure 1 (wired public access
network). The only two differences are the wired aggregation points (switches) are
replaced with wireless access points, and the billing system is replaced with a RADIUS
server. Other than that, the functions remain the same.

PRIVATE WIRELESS NETWORKS

It is difficult to generalize private 802.11b networks. These networks reflect the needs
of their owner/operators. They may or may not use firewalls and access control meth-
ods. They may or may not participate in a cooperative (Sputnik and Joltage are exam-
ples of two such commercial wireless cooperatives). They may or may not utilize
encryption, back-end authentication (for example MySQL and/or RADIUS), and
MAC address restrictions.

Discovering open wireless networks seems to be a hobby of choice lately (check out
Netstumbler and bitshift.org to name two starting points for this activity). To this day,
many “private” wireless network owners protect their networks with authentication of
some sort (for example, allowing access from certain MAC addresses or authenticating
via a database) or with encryption. Also, many opportunities exist for the casual
802.11b network owner to barter/resell access. Participating in such cooperatives may
violate the terms of service for the upstream access provider (DSL, cable modem, etc.).

COOPERATIVE WIRELESS NETWORKS

As with private networks, cooperative (co-op) or community wireless networks are
very difficult to simplify. There are many co-op wireless networks in operation. Two of
the larger and better known ones are Seattle Wireless and NYC Wireless. They focus
primarily on point-to-point, but have some point-to-multipoint (public) access as
well.

In fact, the NoCatNet co-op group based in Sonoma County, CA, has written one of
the few (if only) open source wireless authentication packages available. This code has
been modified by Sputnik for use in their hybrid service. (For more on the topic of
software, see “802.11b Authentication/Authorization Methods and Software,” below.)

802.11b Wireless Access Point Vendors
There are currently a number of 802.11b wireless access point manufacturers. The
Network Computing Buyers Guide of November 12, 2001, lists no fewer than 32 WAP
models! They range in price from the mid $100s for a Linksys to several thousand dol-
lars for models with integrated management and firewall, among other features. An
ISP will likely purchase a less expensive model and attempt to add firewall and man-

45June 2002 ;login:

●

SY

SA
D

M
IN

WAP 1

Subscribers

WAP 2

Firewall

Internet

Wireless
Access
Points

RADIUS

Figure 3

ISPADMIN ●

Vol. 27, No. 3 ;login:

agement features in a separate firewall box rather than pay for such functionality in a
multi-function access point.

One option is to build your own access point. NoCat has a package called WRP (Wire-
less Router Project, based upon the Linux Router Project). According to the NoCat
page, it is “a linux distribution-on-a-floppy that provides wireless support.” It appears
to be an easy way to reuse old, slow, Pentium-based hardware as a combined wireless
access point and chokepoint firewall.

Firewalls
Almost any configurable firewall can be utilized as a public access chokepoint for
providers. Most firewalls do not ship with authentication software built in, so this
must be developed or perhaps modified if something like NoCatAuth is used. If the
site requires multiple WAPs or hardwired networks, all traffic is brought back to a sin-
gle chokepoint firewall to reduce cost and operational headache. A relatively small box
(Pentium 133-class machine) can easily handle the traffic from several active access
points. Of course, for very large deployments the traffic would need to be partitioned,
but this would not normally be required for a typical rollout involving up to about 250
subscribers.

There are too many firewall vendors to list here, both open source and commercial. An
open source firewall can also be utilized and is what most service providers would use
to reduce cost and give the ability to customize functionality.

802.11b Authentication/Authorization Methods and Software
As mentioned previously, NoCatAuth is a software package that allows wireless opera-
tors to control who accesses their network(s). It is meant for community/cooperative
type networks but can be adapted for use in a service provider environment. Its back-
end authentication mechanism (as written) can be either text file or a MySQL data-
base. Most service providers require RADIUS authentication for the back end, as that
is how existing retail customers usually authenticate. In order for a provider to use
NoCatAuth with their existing RADIUS server(s), it must be modified to allow
RADIUS authentication. Leveraging existing infrastructure is extremely important
these days, with service providers going out of business every week it seems!

NoCatAuth works in conjunction with a firewall to block outside access (by
allowing/disallowing MAC addresses through) until the user authenticates. Prior to
authentication, “walled garden” access may be granted, which would give the wireless
user access to a certain limited set of services. For example, a hotel might allow access
to their Web site prior to authentication, but all other access is disallowed.

A version of the NoCatAuth software has been deployed by Sputnik for access to their
wireless hot spots (network). See the Sputnik site for more information.

This author is not aware of any commercial off-the-shelf software for deploying WAP
authentication mechanisms. However, some WAP manufacturers include authentica-
tion/firewall functionality in firmware as an integral part of their access point. This
does increase the cost and complexity of the access points in addition to potentially
causing interoperability problems with a provider’s infrastructure.

Billing
For wired public access, the customer will usually pay up front or be redirected to a
Web page that authorizes charges to a hotel room, credit card, or other similar entity.

REFERENCES
802.11b Networking News:
http://80211b.weblogger.com/

802.11b vs. Bluetooth:
http://www.imparttech.com/802.11-bluetooth.
htm

bitshift.org:
http://www.bitshift.org/wardriving.shtml

Bluetooth Special Interest Group:
http://www.bluetooth.com/

Bluetooth Web log:
http://bluetooth.weblogs.com/

Boingo: http://www.boingo.com/

Building Wireless Community Networks, by Rob
Flickenger, O’Reilly, 2001, ISBN 0-596-00204-1

Earthlink: http://www.earthlink.net/

Exploiting and Protecting 802.11b Wireless
Networks:
http://www.extremetech.com/article/0,3396,s%
253D1024%2526a%253D13880,00.asp

Extreme Tech article on deploying 802.11b
access: http://www.extremetech.com/
article/0,3396,apn=5&s=1034&a=13521&app=
3&ap=4,00.asp

Gast, Matthew : 802.11 Wireless Networks: The
Definitive Guide O’Reilly, 2002,
ISBN 0-596-00183-5

GRiC: http://www.gric.com/

hereUare: http://www.hereuare.com/

IEEE 802.11b standard:
http://standards.ieee.org/reading/ieee/std/
lanman/802.11b-1999.pdf

Internet.com’s 802.11 Planet:
http://www.80211-planet.com/

Intersil 802.11g chipset announcement:
http://www.80211-planet.com/news/article/
0,,1481_963341,00.html

Intersil: http://www.intersil.com/cda/home/

IPASS: http://www.ipass.com/

Joltage:
http://www.joltage.com/jsp/home/home.jsp

Linksys multi-function WAP:
http://www.linksys.com/Products/product.
asp?grid=23&prid=173

Linus Router Project:
http://www.linuxrouter.org/

Mesh Networks: http://www.meshnetworks.com/

46

http://80211b.weblogger.com/
http://www.imparttech.com/802.11-bluetooth
http://www.bitshift.org/wardriving.shtml
http://www.bluetooth.com/
http://bluetooth.weblogs.com/
http://www.boingo.com/
http://www.earthlink.net/
http://www.extremetech.com/article/0,3396,s%
http://www.extremetech.com/
http://www.gric.com/
http://www.hereuare.com/
http://standards.ieee.org/reading/ieee/std/
http://www.80211-planet.com/
http://www.80211-planet.com/news/article/
http://www.intersil.com/cda/home/
http://www.ipass.com/
http://www.joltage.com/jsp/home/home.jsp
http://www.linksys.com/Products/product
http://www.linuxrouter.org/
http://www.meshnetworks.com/

This functionality can be implemented with most firewalls and an interface (albeit,
expensive) to a hotel or credit card billing system.

For 802.11b public access, if RADIUS is utilized as the back-end authentication mech-
anism, all of the data required for billing should be contained in the RADIUS account-
ing data. The providers’ existing billing system should easily be able to handle these
records, once appropriate record filters and billing plans are created. If RADIUS is not
utilized, then the process is more difficult and a customized process may be required.

802.11b Aggregators
The state of 802.11b wireless access is very similar to wholesale dial-up at the start of
its large-scale deployment a few years ago. Wireless-only aggregators (such as Boingo
and hereUare) are joining existing dial aggregators (such as GRiC and IPASS) in this
arena. (In fact, the founder of Earthlink, one of the first aggregators of dial-up, is also a
founder of Boingo.) Two other aggregators, Sputnik and Joltage, don’t seem to fit eas-
ily into either category.

Traditional ISP aggregators utilize a settlement process where ISP-A tallies up the
amount of usage on its network by ISP-B, and ISP-B adds up usage on its network by
ISP-A. The appropriate rate(s) are applied to usage, and whoever ends up owing the
other money sends a check. GRiC and IPASS are essentially commercial, third-party
implementations of that process. Wireless settlement works in the same manner.

Many of the commercial aggregators develop their own client wireless access software.
(In fact, GRiC’s software can manage wireless as well as wired and dial connections!)
This software manages many of the attributes of the card transparently (SSID being
the most relevant) so the subscriber doesn’t have to deal with changing them. As addi-
tional features are standardized and added to wireless provider networks, this software
can be easily upgraded by the subscriber.

Security Considerations
For the end subscriber, security should be of the utmost concern. The fact that critical
information (such as credit card data) is traversing open, public access networks
and/or radio waves should make one stop and think. If a hardwired public access
provider is utilizing hubs (and certain [misconfigured] switches as well), then all ports
receive all data destined for one port. Needless to say, this could be hazardous to one’s
financial well being.

In a similar way, 802.11b access can be “sniffed” out of the air by rogue wireless clients.
The encryption standard associated with 802.11b has been proven to be insecure (see
the Exploiting and Protecting 802.11b Wireless Networks reference from
extremetech.com for a full discussion of security problems and possible solutions).
Also, if appropriate access controls aren’t in place on each subscriber’s machine, one
subscriber can hack any other subscriber’s machine on the wireless network. This is
identical to a subscriber connected to a hardwired hub accessing other subscribers’
machines on the same hub, without ever going through the firewall.

Hopefully, future versions of wireless standards and implementations will contain bet-
ter security. Until then, tread carefully!

Next time, anti-spam mechanisms from a server perspective will be examined in detail.
In the meantime, please send me your questions and comments!

47June 2002 ;login:

Mitre’s MobilMesh (Multipoint) project:
http://www.mitre.org/tech_transfer/mobilemesh/

Multipoint to Multipoint Wiki Wiki Wan in
Santa Cruz:
http://wiki.haven.sh/index.php/WikiWikiWan

MySQL: http://www.mysql.org/

Netstumbler: http://www.netstumbler.com/

Network Computing article on 802.11a:
http://www.networkcomputing.com/1201/
1201ws1.html

Network Computing WAP Buyers Guide chart:
http://www.networkcomputing.com/ibg/
Chart?guide_id=3484

Network Computing WAP Buyers Guide:
http://www.networkcomputing.com/1223/
1223buyers2.html

NoCat WRP: http://nocat.net/ezwrp.html

NoCatAuth: http://nocat.net/

NYC Wireless: http://www.nycwireless.net/

O’Reilly’s wireless starting point:
http://www.oreillynet.com/wireless/

OpenAP project:
http://opensource.instant802.com/

Personal Telco, a co-op based in Portland, OR:
http://www.personaltelco.net/

RADIUS accounting standard: RFC2866

RADIUS authentication/authorization stan-
dard: RFC2865

Seattle Wireless: http://www.seattlewireless.net

Sputnik: http://www.sputnik.com/

Webopedia page for 802.11: http://www.
webopedia.com/TERM/8/802_11.html

Wireless Anarchy: http://wirelessanarchy.com/

Wireless Ethernet Compatibility Alliance:
http://www.wirelessethernet.org/

●

SY

SA
D

M
IN

ISPADMIN ●

http://www.mitre.org/tech_transfer/mobilemesh/
http://wiki.haven.sh/index.php/WikiWikiWan
http://www.mysql.org/
http://www.netstumbler.com/
http://www.networkcomputing.com/1201/
http://www.networkcomputing.com/ibg/
http://www.networkcomputing.com/1223/
http://nocat.net/ezwrp.html
http://nocat.net/
http://www.nycwireless.net/
http://www.oreillynet.com/wireless/
http://opensource.instant802.com/
http://www.personaltelco.net/
http://www.seattlewireless.net
http://www.sputnik.com/
http://www
http://wirelessanarchy.com/
http://www.wirelessethernet.org/

48

Wouldn’t it be great if you could create a little sandbox for a bunch of users

where they could play to their hearts’ content, even have root privileges,

but they couldn’t actually take the box down? What about isolating that

buggy or vulnerable piece of legacy software that you just can’t phase out,

putting it in its own little world where even if it is hacked it creates a mini-

mal liability on your network? How would you like to install one box in

your collocation facility that takes up only two units of rack space but cre-

ates the feeling of 100 virtual servers inside?

“Jails” are a relatively recent development1 in OS technology available in FreeBSD, and

they offer the potential applications outlined above. They are similar to the genie’s

description of his magical servitude in Disney’s Aladdin: “Phenomenal, cosmic power!

. . . Itty bitty living space.”

Over the years, various techniques have been created to try to isolate processes, parti-
tion resources, or otherwise control the interactions between processes and system
resources. These techniques have been motivated by desires to conserve on hardware,
consolidate management activities, or isolate risks of harmful interactions between
applications. They are most interesting to apply to software that serves some public
function, like FTP or DNS.

Near one end of the isolation spectrum are operating system calls, like “chroot,” that
cause the OS to restrict a regular process to see only a subset of the actual file system.
Toward the other end of the spectrum are virtual machine environments. In these
environments multiple instances of operating systems run on virtualized hardware. In
between these two points is the “jail” system call. This article will describe the existing
solutions and their limitations and then explain in some detail what jails can do. That
foundation of capabilities will provide the basis for several example applications. A few
limitations of jails will be discussed, and then some practical commands for how to
actually set up and use jails will be provided.

chroot(2)
A chroot environment is one in which a process’s view of the file system is restricted to
a specific part of the hierarchy. The process’s file system has a virtual root. Probably
the most readily available example of a commonly chrooted process is the FTP dae-
mon. Most ftpd programs use a small, partial copy of the file system rooted at the vir-
tual root of the FTP hierarchy. The directory /var/ftp is actually the root for the FTP
daemon. That is why /bin and /etc and /lib directories are often found on public FTP
sites. There is actually a /bin/ls program, which corresponds to the real file
/var/ftp/bin/ls, and it is executed when an FTP daemon services a client’s ls request. FTP
is not the only process commonly chrooted these days. IMAP software and DNS soft-
ware are both commonly chrooted as well.

The chroot solution is attractive for protecting certain kinds of vulnerable processes. It
is usually used to guard against software that can be coerced to read or write files that
it should not touch in normal operations. Such vulnerabilities are limited in scope to
just the chroot area of the file system. Thus the files available to such a vulnerable
process are dramatically reduced.

using jails in freeBSD
for fun and profit

Vol. 27, No. 3 ;login:

by Paco Hope

Paco Hope has a
M.C.S. from the Uni-
versity of Virginia,
where he worked as
the head system
administrator in the
Department of Com-
puter Science. Hope
is a UNIX and infor-
mation security con-
sultant currently
consulting with Hal-
yard Systems.

paco@paco.to

There are significant limitations to chroot’s applicability. Though a process may be
chrooted, it is not restricted from opening network sockets, creating special device
files, or seeing other processes. A process running as “root” in a virtual file system is
still a process with full administrative privileges and the ability to interfere with other
running processes on the system. Furthermore, exploits for chroot exist (see
http://openbsd.org.br/ouah/chroot-break.html) that enable programs to break out of
their chrooted directory. Chroot is rarely used as a technique by itself but, instead, is
combined with other best practices to create a safer environment.

Virtual Operating Systems
Virtual operating systems present a virtualized view of the entire system hardware to
allow multiple instances of operating systems to run simultaneously on the same hard-
ware. When that emulation is done well, the operating systems cannot distinguish sim-
ulated hardware from actual hardware. A single server can function as many distinct
servers, and each instance of an operating system can be fully partitioned from all
other instances. All the running operating systems must be managed like separate
servers, though, because they essentially are.

Virtual operating systems are attractive in some contexts because they tend to offer
very flexible configurations. Each and every instance can be completely controlled sep-
arately and independently. In fact, different operating systems can peacefully run
simultaneously on the same hardware. There are management advantages to having a
single physical system running different operating systems. There can be cost savings
to operating a single physical system instead of multiple systems.

The primary disadvantage is that simulating the hardware can be expensive in terms of
system resources. Each instance of the OS must have its own disk resources for its file
system. The hardware virtualization and mediation is not free; it takes CPU cycles
away from the applications themselves. In some contexts a completely separate
instance of the operating system is overkill for the level of isolation that is needed.

There are good reasons to use virtual operating systems for certain classes of applica-
tions, just like there are good reasons to use chroot environments. Jails, by compari-
son, fit neatly in between. Jails offer a very compelling cost-benefits ratio for certain
classes of problems where a fully virtualized system is too much cost or trouble but
chroot is not robust enough.

What Jails Do
Jails combine the virtual file system approach with a limited amount of resource medi-
ation to achieve a middle ground. For instance, creating and managing a jail feels very
much like creating and managing a chroot environment. However, the operating sys-
tem restrictions on jails far exceed a chroot environment and feel more like a virtual
machine. The kernel mediates access to global system information and network
resources, controls the creation and use of special devices, and logically isolates jailed
processes from the main system and from each other. This makes jails safer from a
security point of view, and gives jails a more complete feeling of isolation.

What follows is a general explanation of what jails do, why they are interesting, and
what they can do for a system administrator.2 For purposes of this discussion, we will
call the regular, unrestricted operating system the “host environment” and the
restricted jail environment the “jail environment.”

49June 2002 ;login:

Virtual operating systems are

attractive in some contexts

because they tend to offer

very flexible configurations.

USING JAILS ●

●

SY

SA
D

M
IN

http://openbsd.org.br/ouah/chroot-break.html

Vol. 27, No. 3 ;login:

Jails Limit TCP/IP Access
Processes in a jail are limited to a specific set of TCP/IP socket operations and a single
IP address. Typically the host environment is “multi-homed,” meaning that the single
physical system uses multiple IP addresses.3 One of these IP addresses is assigned to
the jail when the jail is first started. The kernel ensures that every packet leaving the jail
environment has this assigned address as its source address. Raw sockets are disabled
inside a jail environment. Even ping does not function from within a jail. This means
that no spoofed packets originate from a jail; all packets will have the correct source IP
address.

Jailed processes are also restricted in the kinds of packets they can receive. In a normal
UNIX environment, software that binds a socket on INADDR_ANY (i.e., 0.0.0.0) will
receive packets for all legitimate IP addresses on the system. A jailed process, however,
only receives packets that are destined for its IP address, no matter how the socket is
bound. Furthermore, promiscuous mode for network devices is prohibited to jailed
processes, meaning that packet sniffing is not possible within a jail. All of these restric-
tions add up to a significant improvement in network security. If a hacker should infil-
trate a jail, they will find many of their tools inoperative or severely limited.

Similar to TCP/IP are the inter-process communication (IPC) functions, which are
also limited by jails. If jailed processes are allowed IPC functions like msgsnd and
semctl, they can conceivably affect other processes running on the system. In FreeBSD
4.5-RELEASE, there is a system-wide control for allowing all jails to either do all IPC
functions or none. Robert Watson’s jail NG work breaks these controls into a per-jail
setting,4 but IPC access is still a binary, all-or-nothing proposition. By default IPC is
not permitted to jailed processes, which makes them safer from each other.

Most of these limitations do not interfere with normal operations of normal processes.
Mail servers, Web servers, DNS servers, and almost everything else that uses TCP/IP
can operate normally in a jail with little or no reconfiguration. They do, however, pro-
vide a barricade that is a significant and useful part of an overall security regime.

Jails Limit File System and Device Access
The kernel also prevents the creation of special-device files by jailed processes, and it
moderates the use of the special-device files that are available (e.g., /dev/kmem). The
administrator should be careful what /dev entries exist in a jail, since those that do
exist can be used. Devices that do not exist in /dev, however, cannot be created by
jailed processes. The kernel prevents jailed processes from executing the mknod() sys-
tem call. To simplify things, however, the MAKEDEV script has a “jail”5 option that
makes only those devices which are appropriate and/or necessary in a jail. Because a
process in a jail has no access to the direct disk devices, it cannot grope around on the
raw disk for data outside its prescribed perimeter. This, too, improves the security of a
jail and helps complete the barricade between it and its host environment.

Jails Mask Processes and ID Spaces
Jails are isolated from each other and from the host environment itself. The user IDs
(UIDs) and group IDs (GIDs) used inside a jail are the same as those used in the host
environment. However, the operating system considers the jail identity (JID) as well,
for purposes of determining access and privileges. The superuser in a jail can start and
stop processes, send signals, and do many things, but the superuser’s effects are limited

. . . packet sniffing is not

possible within a jail.

50

to processes with the same JID. Likewise, any processes running as root within a jail
can affect other processes, but only those with the same JID.

The quasi-isolation property of jails is the key distinguishing feature between jails and
the two other approaches. A process running as root in a chroot environment is only
limited in its view of the file system. It can still send signals to processes, reboot the
system, open network sockets, etc. In a virtual operating system where an entire
instance of the OS is running on simulated or arbitrated hardware, no instance of the
OS is limited by the virtual environment. A compromised virtual OS is the same as any
normal compromised system. Within a jail, however, a process running with “root”
privileges actually has very limited abilities with respect to the rest of the host system.
Jails offer just enough functionality to do a lot of legitimate work while isolating and
limiting processes’ access to unrelated resources.

Using Jails to Your Advantage
Jails can make sense on several different levels. They can save money, isolate risk, and
offer an attractive virtualization technique. This section presents some of the benefits
and some examples of how jails can be applied to specific problems.

JAILS CAN SAVE MONEY

Every IT department wants to save money, and jails might actually help. Jails can allow
a few physical machines to serve as many virtual servers. Since most collocation facili-
ties factor the physical dimensions of servers into their overall charges, fewer physical
boxes will lower collocation fees. Even an organization that has no collocation charges
to consider will appreciate the simplicity and cost-effectiveness of creating a new jail
on an existing server, rather than purchasing new hardware when a new service must
be provided.

Since jails are really a subset of the operating system, they can be upgraded en masse
differently than real hosts. With some prior planning and automation, jail creation can
be automated easily. This also means that jail upgrades can be rolled out easily, since
taking down and restarting a jail is a very limited operation. This can translate into
time and money savings by reducing management labor.

JAILS CAN BE A SECURITY TOOL

Implementing jails can offer another barricade in the network security battle. Every
company must have some number of systems connected to the Internet. By isolating
individual services in jails, the impact of a compromise or denial of service can be
carefully managed. For instance, a machine with five jails might run a database, mail
server, Web server, FTP server, and DNS server each in its own jail. A compromise in
one jail would not necessarily lead to a compromise of the host environment or any
other jails. The TCP/IP and socket restrictions limit what tools an attacker could use
even if they got the foothold of “root” inside of a jail.

JAILS HELP LOGICALLY COMPARTMENTALIZE SYSTEMS

ISPs or IT departments that have very independent user bases may find the virtualiza-
tion of jails to be an attractive way to partition administrative access. If the Web staff
demands full and unfettered access to the Web server, they can have it – in a jail dedi-
cated to the purpose. Now they do not need privileged access to a key server in order
to operate just one of its many services. If there are junior administrators who need to
manage a few services (for example, DNS and DHCP), those services can be put inside

51June 2002 ;login:

Jails can allow a few physical

machines to serve as many

virtual servers.

●

SY

SA
D

M
IN

USING JAILS ●

Vol. 27, No. 3 ;login:

a jail where the junior administrators can have what access they need. Interestingly, all
the existing techniques for compartmentalization and security still function within
jails. So commands like sudo(8) or techniques like chroot can still be used inside a jail
to further restrict access, or to impose finer-grained security. An ISP that wants to
offer virtual hosting to advanced users can use jails to great effect. The user can appear
to have “root” access inside their jail despite the fact that they actually have only lim-
ited access to the machine itself.

AN EXAMPLE USE OF JAILS: VIRTUAL HOSTING

Consider a system where an ISP wants to offer virtual hosting to its customers, but
without allocating a full system and rack space to each customer. After establishing a
baseline standard jail to serve as the per-customer virtual host, the ISP can add such
customers quickly and easily.

The ISP allocates an IP address to one of its customer servers, and establishes its stan-
dard jail on one of its servers using that IP address. The jail runs sshd for secure login
access, some kind of Web server, mail server, FTP server, and perhaps even a DNS
server. The customer can login and have access to the real, live configuration files for
all the important servers. If they pay the appropriate premiums and are sufficiently
motivated (and competent), they can install new Web server modules, mail server con-
figurations, FTP login IDs, or whatever especially suits their needs.

This approach to virtual hosting is interesting because giving a customer free rein in
their jail does not interfere with any other customers at all. If the customer misconfig-
ures their Web server such that it won’t even start, all the other Web servers (in other
jails) run unimpeded. If they have specific needs or specialized requirements, it is easy
to provide for them in the context of their own jail.

As a variation on this theme, the ISP could install Webmin6 in the jail and give selec-
tive access to selective subsystems in a controlled way. The user has the illusion of full
control of the system, so they are happy. The IT staff have absolute control of the
actual system, so they are happy.

Tips and Tricks with Jails
JAILS AND FLAGS

Jails can combine with another BSD file system feature, flags, to make them adminis-
tratively safer, cleaner, and more easily managed.7 The files which make up the operat-
ing system (e.g., /bin, /usr/lib, /sbin, etc.) can be made “immutable” using the chflags(1)
command. Even an inept administrator or a joyriding hacker vandal will have a hard
time completely ruining the jail. Immutable files can be made such that root (even
root in the host environment, if desired!) cannot modify them. To make the operating
system honor immutable flags, the kernel’s security level must be set higher than the
default.8

HARD LINKS ARE YOUR FRIENDS

Every jail requires a copy of the operating system – or at least enough to run the neces-
sary software properly. This requirement can make jails disk intensive. A minimal
FreeBSD installation with a few interesting services is likely to use between 50 and
100MB. The naïve approach to building jails would create one copy of this hierarchy
per jail. However, the vast majority of these files need not be unique to the jail. In an
application where many jails are likely, hard links can save a lot of disk space.

52

To make a hard-linked copy, one must first copy the directory hierarchy, and then
recurse the source hierarchy and use the link(2) system call (or the ln command, which
is equivalent) to create hard links between all the files in the source and the correspon-
ding destinations.

In a system that has many jails, the hard-linked hierarchy allows the inode and data
cache in the kernel to work at optimum efficiency. Consider a system with 10 httpd
processes in 10 jails. The naïve approach would cause 10 copies of the httpd binary
and copies of the corresponding shared libraries to be loaded into separate process
address spaces in RAM. However, if 10 httpd processes and all their shared libraries are
all hard links to the same inodes, the operating system can be much more efficient.
Only the data blocks for the one httpd binary are loaded in the kernel’s disk cache. A
single text segment can be shared in RAM by all the running httpds, since they are all
loaded from the same inode. There are several other subtle ways in which this scheme
allows for shortcuts and efficiency in the kernel. Most of these efficiencies, however,
are only realized on an active system with many, many jails. A two-jail system, for
instance, would benefit less noticeably.

Hard links create a security concern because they create resources that are shared
between jails. Shared files cross the otherwise rigid boundaries and potentially allow
one jailed process to write to a file that many other jailed processes might read. Using
hard links for disk space efficiency almost demands using the BSD flags above for
additional protection.

Some Limitations of Jails
METERING, MONITORING, MANAGING

Most operations in jails are not especially mediated by the operating system. It is not
possible, for instance, to dedicate a CPU to a jail, or regulate CPU usage by particular
jails. That lack of control cuts both ways. It means low management overhead so that
more CPU cycles and RAM are available to the regular processes. It does make it hard,
however, to account for resource usage on a per-jail basis on a server that has hundreds
or thousands of jailed processes.

Starting and stopping individual jails can be scripted, but there are no extant manage-
ment tools yet that make it easy. Starting a jail by running /etc/rc in it works fine, but it
is not possible to stop a jail in the same way a system is normally shutdown (i.e.,
/etc/rc.shutdown). The ability to inject a new process into an already running jail is
critical to most management functions, but is lacking in the current jail implementa-
tion. JailNG fixes many of these limitations and makes jails easier to manage.

JAILS SOAK UP IP ADDRESSES

Each jail needs its own unique IP address. So the example above of a server with five
jails would use six IP addresses: one for each jail and one for the host environment.
Inside a firewall where private IP addresses are plentiful, this does not pose a signifi-
cant problem. It may be significant to some organizations, depending on how they
arrange their IP address space. One way around this limitation is to use a NAT map-
ping at a firewall entry point. Jails can then be assigned private IP addresses. The NAT
mapping can direct port 25 connections (email) to one jail’s private IP, while directing
port 80 connections (HTTP) to a different jail’s private IP, and so on.

53June 2002 ;login:

●

SY

SA
D

M
IN

USING JAILS ●

Vol. 27, No. 3 ;login:

NO DISK QUOTAS

Limiting the disk resources used by a given jail is difficult, because the operating sys-
tem’s quota facilities cannot be brought to bear on the problem. It is sometimes desir-
able to impose disk quotas on given jails, or to be able to impose quotas on users
inside jails. There are no easy cookie-cutter solutions to this problem. A search on the
FreeBSD mailing lists will reveal some attempts at launching jails in virtual (vnode)
file systems. A discussion of such file systems is beyond the scope of this article, but
they involve creating a large file (e.g., 100MB) and treating that file as if it were a disk
device. By formatting the contents of the file as if it were a disk, and using a special
mount command, the file’s contents can be mounted as a file system. Since the file’s
size is fixed (100MB in our example), that imposes a hard quota on the entire jail. It
does not, however, impose quotas on individual users inside the jail. It’s a very coarse
measure. This method is also complex and awkward. Increasing the quota is possible,
but tricky. Backing up and restoring such file systems is very difficult as well.

Making Jails: Two Techniques
TECHNIQUE ONE: BUILD WORLD

This is what the man page recommends. It works, albeit a bit slowly. To summarize
from the man page:

D=/here/is/the/jail
cd /usr/src
make world DESTDIR=$D
cd etc
make distribution DESTDIR=$D NO_MAKEDEV=yes

There are a few other options that will make the build proceed faster and will limit
how many programs get built and installed in the jail. Several options can be enabled
in /etc/defaults/make.conf such as NO_SENDMAIL, NO_LPR, and NO_BIND. They pre-
vent large subsystems from being built, which will speed the build time and produce a
smaller jail, assuming none of those subsystems is desired in the jail.

The disadvantage to this approach is the build time and disk space required to make
“world” from sources. The advantage is the fine grain of control that’s possible. To
avoid installing compiler tools in the jail, for instance, (a prudent security measure),
the directories that correspond to them can be removed from the /usr/src/gnu/usr.bin
directory before building “world.”

TECHNIQUE TWO: UNPACK DISTRIBUTIONS OFF THE CD

This method is simpler and faster by far, but has less fine-grained control. With the
distribution CD mounted or copied into some file system location, each component of
the operating system can be installed using its install.sh script. By setting the DESTDIR
environment variable, each install.sh script will install its software in DESTDIR instead
of overwriting the existing OS installation. A minimum jail should probably consist of
the bin distribution and crypto distribution:

export DESTDIR=/here/is/the/jail
cd /cdrom # or wherever your FreeBSD distribution lives
cd bin
sh install.sh
cd ../crypto
sh install.sh

54

The reason this technique has less control is that the entire bin distribution is installed,
with compiler tools, sendmail, BIND, and many other programs. If for no other reason
than space efficiency, a typical jail probably does not need most of what is installed in
the bin distribution. From a security standpoint it is always best to only install exactly
what is needed and nothing more. Installing from distributions will require some
manual cleaning afterwards to remove unwanted software.

SETTING UP AFTERWARDS

After building a directory hierarchy using either technique above, there are routine
chores to do in order to make the jail usable. The devices in /dev must be created, the
root password should be set and a few other things must be set specially for a jail. Each
command can be launched in the jail until the jail is able to run by itself:

cd $DESTDIR/dev
sh MAKEDEV jail
cd $DESTDIR
ln -sf dev/null kernel
touch etc/fstab

/usr/sbin/jail $DESTDIR jail-hostname 10.2.3.4 /usr/bin/passwd root
/usr/sbin/jail $DESTDIR jail-hostname 10.2.3.4 /usr/sbin/adduser
/usr/sbin/jail $DESTDIR jail-hostname 10.2.3.4 /bin/sh /etc/rc

The last command boots the jail. Assuming the jail’s IP address is 10.2.3.4 and the host
environment’s networking is correct, it should now be possible to connect to it via
SSH. Once logged in, it feels very much like a normal system. The man page for jail(8)
discusses various modifications to /etc/rc.conf in the jail environment. It is also impor-
tant to remove some programs from the jail that can leak information. There is no use
for mount(8) or any of its related modules in a jail, and it’s arguable whether any com-
piler tools belong in a jail. Once a good jail baseline is established, though, it’s very
easy to copy it to make more safe jails.

Conclusion
Jails enable system administrators to build relatively safe sandboxes that feel like vir-
tual environments but have very low computational overhead. They are handy tools
for system administrators to have in their toolboxes for certain classes of problems.
While not a panacea, jails allow a number of configurations that have not been previ-
ously possible in the free UNIX operating systems and commercial desktop operating
systems.

Adrian Filipi-Martin (adrian@ubergeeks.com) contributed to this article.

55June 2002 ;login:

REFERENCES
1. P. Kamp and R. Watson, “Jails: Confining the
Omnipotent Root,” Proceedings of the Second
International System Administration and Net-
working Conference (SANE), May 2000.
http://www.docs.freebsd.org/44doc/papers/jail/
jail.html

2. For a detailed discussion of how the operat-
ing system actually implements jails, see Kamp
and Watson, “Jails”; E. Sarmiento, “Inside Jail,”
Daemon News, September 2001.
http://www.daemonnews.org/200109/jailint.html

3. Multi-homing is accomplished through a
technique commonly called IP aliasing. See the
ifconfig command for more information on IP
aliases.

4. R. Watson. “JailNG: From-Scratch Reimple-
mentation of the Jail(2) Code on FreeBSD.”
http://www.watson.org/~robert/freebsd/jailng/

5. See Kamp and Watson, “Jails”; Sarmiento,
“Inside Jail.”

6. Webmin is a Web-based UNIX administra-
tion tool. http://www.Webmin.com/

7. See the man page for security(7) for more
information on kernel security levels.

8. See http://www.Webmin.com/

●

SY

SA
D

M
IN

USING JAILS ●

http://www.docs.freebsd.org/44doc/papers/jail/
http://www.daemonnews.org/200109/jailint.html
http://www.watson.org/~robert/freebsd/jailng/
http://www.Webmin.com/
http://www.Webmin.com/

56

the bookworm

Vol. 27, No. 3 ;login:

by Peter H. Salus

Peter H. Salus is a
member of the ACM,
the Early English Text
Society, and the Trol-
lope Society, and is a
life member of the
American Oriental
Society. He is Chief
Knowledge Officer at
Matrix.net. He owns
neither a dog nor a
cat.

peter@matrix.net

BOOKS REVIEWED IN THIS COLUMN

have to confess that I read and com-
mented on an early manuscript and
wrote the Foreword to McCarthy’s book.
I have no financial interest in it.)

Cups of Java
J2ME is the Java 2 Micro-Edition: it is
designed for resource-limited devices
like cell phones or pagers. It is really
cleverly designed. Topley has done the
excellent job that I’ve come to expect
from the Nutshell handbooks and refer-
ences.

J2EE is the Java 2 Enterprise Edition.
This tutorial is full of real examples and
thoroughly useful pointers on just how
J2EE can be used in your enterprise. The
CD contains three (!) J2EE tutorials,
J2SE and J2EE software development
kits, a sample Java BluePrints, and the
Forte for Java plug-in. Whew!

For over five years, Flanagan has occu-
pied a prominent place on my bookcase.
The 4th edition of his “Desktop Quick
Reference” has gained a lot of weight:
just over doubling the 438 pages of the
1996 version. Hardly any flab, though.

A Pair of Penguins
It’s no secret that I’m a Linux user and a
Linux enthusiast. Over the past two
years or so, more developers have turned
to Linux to provide solutions for
embedded systems. Hollabaugh’s pres-
entation is more than merely adequate,
but I have to admit that I still prefer
John Lombardo’s presentation (pub-
lished by New Riders last year).

And here’s the book for every penguin-
user! Nemeth’s UNIX handbook has
spun through several editions since
1989. Each one more impressive than
the previous. Now here’s the Linux ver-
sion, written by Nemeth and her col-
leagues, Garth Snyder and Trent Hein. It
covers Red Hat, SuSE and Debian. It is
well-written. If you use Linux or if
someone on your site uses Linux, this
book is indispensible. Thanks, Evi.
Thanks, Garth. Thanks, Trent.

I’ve got a heap of books I want to talk
about this month. And a poster, too, for
those of you with space on a wall
between “User Friendly” and “Dilbert”
clippings.

Getting Around
There are currently over 175 million
host machines on the Internet (up from
213 in August 1981). Getting mail, VoIP,
streaming video, http[s] packets, ftp and
scp packets, AUDIO, and other stuff
from box to box is not trivial. I have
relied on folks like Huitema and Perl-
man to elucidate the complexities of
routing in the past. Malhotra’s small
(barely 200 pages) book will now live
next to my desk. Though ostensibly
about Cisco routing, Malhotra’s exposi-
tions of RIP, IGRP, EIGRP, RIP-2, OSPF,
and BGP-4 are good enough for those
working with Juniper, Nortel, etc., hard-
ware. Definitely a must have!

Incidentally, if you’re interested at all
in Internet history, Peacock (www.

peacockmaps.com) has a really fine “First
Maps of the Internet” poster for $29.95.
Just right for covering the hole in the
plaster you tossed that CPU through . . .

/dev/null
I get a lot of email. Much of it offers me
$$$ or XXX or and opportunity to buy
Viagra or enlarge my breast size. For sev-
eral years, procmail has been my friend:
I’m now down to about 100 messages a
day; some of them actually meaningful.
Marty McCarthy has written a fine book
on setting up and using procmail. (I

IP ROUTING

RAVI MALHOTRA

Sebastopol, CA: O'Reilly &Associates, 2002.

Pp. 219. ISBN 0-596-00275-0.

THE PROCMAIL COMPANION

MARTIN MCCARTHY

Edinburgh, Scotland: Addison-Wesley, 2002.

Pp. 235. ISBN 0-201-73790-6.

J2ME IN A NUTSHELL

KIM TOPLEY

Sebastopol, CA:O'Reilly & Associates, 2002.

Pp. 450. ISBN 0-596-00253-X.

THE J2EE TUTORIAL

STEPHANIE BODOFF, ET AL.
Boston, MA: Addison-Wesley, 2002.

Pp. 491 + CD-ROM. ISBN 0-201-79168-4.

JAVA IN A NUTSHELL, 4TH ED.

DAVID FLANAGAN

Sebastopol, CA: O'Reilly & Associates, 2002.

Pp. 969. ISBN 0-596-00283-1.

EMBEDDED LINUX

CRAIG HOLLABAUGH

Boston, MA: Addison-Wesley, 2002. Pp. 419.

ISBN 0-672-32226-9.

LINUX ADMINISTRATION HANDBOOK

EVI NEMETH, ET AL.
Upper Saddle River, NJ: Prentice Hall, 2002.

Pp. 889. ISBN 0-13-008466-2.

VMWARE

BRIAN WARD

San Francisco, CA: No Starch Press, 2002.

Pp. 249. ISBN 1-886411-72-7.

INTRODUCTION TO PROGRAMMING
IN EMACS LISP, 2ND ED

ROBERT J. CHASSELL

Boston, MA: FSF, 2001. Pp. 292.

ISBN 1882114-43-4

57June 2002 ;login:

●

BO

O
K

RE
V

IE
W

S

SOFTWARE FOR YOUR HEAD ●

book reviews
Virtual Machines
A virtual machine enables the operator
to pretend to use one OS while running
on top of another. VMWare does this for
a variety of Windows platforms, Linux
and FreeBSD. Ward’s presentation is
good, though I have a minor problem:
my notion of how to “get the most out
of Windows” is to just run something
else.

Lisping
It has been over a decade between edi-
tions of Bob Chassell’s Emacs Lisp book.
The new edition contains a really fine
tutorial as well as the new features
included in GNU Emacs v21. It’s defi-
nitely worthwhile. Bob, another fine
piece of work.

IP SANS: A GUIDE TO ISCSI, IFCP,

AND FCIP PROTOCOLS FOR STOR-

AGE AREA NETWORKS

TOM CLARK

Boston: Addison-Wesley, 2002

ISBN: 0-201-75277-8

Reviewed by Steve Reames
reames@diskdrive.com

Storage Area Networks (SANs), and
storage networking in general, are
becoming increasingly important com-
ponents in corporate data centers. Tradi-
tionally dominated by Fibre Channel, a
recent plethora of IP-based standards
are competing to either augment or
replace the entrenched standard. Clark
has done an excellent job of putting
together the important aspects of these
new protocols, and comparing and con-
trasting them in a fair and even-handed
way. If you have anything to do with
storage networks, you need to read this
book.

IP SANs is just over 280 pages long and
packed with illustrations. It would be
easy to jump into the technical details of
the standards, but instead Clark takes his
time and covers the background mate-
rial that will be needed later. The first
few chapters cover shared storage, Fibre

the things that need to happen for IP
SANs to succeed.

No book is perfect. In the explanation of
RAID (Figure 3-1 in the book), a “0 + 1”
RAID is shown as a mirror of two
striped arrays (RAID 0, then 1). Almost
no one implements it this way; instead,
they stripe together a set of mirrored
drives (RAID 1, then 0). On page 174 the
lower drawing should read “Tunnel
Mode Security Association” as opposed
to “Transport Mode.” To spend more
than a couple of sentences on the book’s
flaws would be an injustice to the
tremendous collection of knowledge
contained within. This book is destined
to stand for many years as the reference
on IP SANs.

SOFTWARE FOR YOUR HEAD: CORE

PROTOCOLS FOR CREATING AND

MAINTAINING SHARED VISION

JIM AND MICHELE MCCARTHY

Boston: Addison-Wesley, 2001. Pp. 464.

ISBN: 0-201-60456-6

Reviewed by Steve Johnson
yacc@yaccman.com

This is one of the more unusual books
on software engineering available today.
Some of the ideas it proposes are bril-
liant, some are weird, and some are
both.

In an earlier book (Dynamics of Software

Development), Jim McCarthy states that
“Software is the process of turning ideas
into bits.” He goes on to make a convinc-
ing case that the big problem in software
engineering is not the individual pro-
grammers’ abilities to turn their individ-
ual ideas into bits but, rather, “aligning
all the ideas in the various programmers’
heads.” If the ideas are aligned, any
problems one person may have realizing
these ideas are quickly caught and reme-
died. If the ideas are not aligned, prob-
lems will be frequent, contentious, and
difficult to find and eliminate.

Software for Your Head is an attempt to
provide some algorithms or patterns a

Channel, SCSI, and TCP/IP. The level of
coverage is introductory, and the knowl-
edgeable reader can skim through these
chapters. But network experts learning
about storage or storage gurus who need
to learn about networking will find one
or more of these chapters worth careful
reading.

Chapter 8 is the heart of the book, where
iSCSI (Internet SCSI), iFCP (Internet
Fibre Channel Protocol), and FCIP
(Fibre Channel over Internet Protocol)
are discussed and contrasted. Clark’s
extensive Fibre Channel background
really shines here as he is able to exam-
ine how these new protocols interact
with existing Fibre Channel systems. You
can spend weeks combing the standards
(I’ve done it!) trying to learn what Clark
clearly explains in a few simple pages.

It turns out that these protocols do not
really stand on their own, and the next
three chapters are devoted to iSNS
(Internet Storage Name Server), secu-
rity, and QoS (Quality of Service). The
iSNS protocol provides naming and dis-
covery services that are inherent to Fibre
Channel, but require an additional
server for IP-based storage protocols.
The chapter on security discusses the
issue from two perspectives. First, secu-
rity in Fibre Channel SANs is discussed.
This gives the reader the needed per-
spective for the second section, which
covers the same issues for IP-based
SANs.

A short chapter on Infiniband gives
some insights about how this interface
may or may not become part of SANs in
the future. The chapter on SAN applica-
tions is thorough and detailed, and
probably provides the most extensive
collection of real-world scenarios yet
compiled. Even if you have a Fibre
Channel SAN and intend to stay with it,
you need to read this chapter to under-
stand how the industry is developing. A
final chapter of conclusions examines
the potential of IP SANs, and outlines

Vol. 27, No. 3 ;login:

less obvious example can be found by
going to an opera (turning ideas into
notes), where hundreds of people exe-
cute virtuoso feats with split-second
accuracy over a span of several hours,
with rarely any major errors. Most soft-
ware teams would literally think this is
impossible.

If, as I believe, cooperation is built into
our nervous systems (like language and
the ability to reason), creating an effec-
tive group should be as easy as creating a
safe place for our “cooperation genes” to
express themselves. And, sometimes, it is
this easy.

Of course, musicians are trained from
early on to communicate with other
musicians, the conductor, and the audi-
ence. Athletes in team sports get similar
training. Programmers, on the other
hand, are still taught as if success
depends solely on one’s ability to under-
stand multiple inheritance, data struc-
tures, and complexity theory. Not only
do students not learn to cooperate, but
their professors – role models – function
in universities that often prize individual
achievement over cooperation as well,
reinforcing this isolationism.

Is it surprising, then, that many software
people find working in a group boring,
difficult, and frustrating? And their
managers, promoted because they were
the best coders, are not typically trained
to break this cycle. In fact, the good pro-
grammers with integrity often turn
down or resign from management jobs,
recognizing that they are contributing to
the problem rather than the solution.
With this background, perhaps some
draconian techniques are necessary, and
may well be effective.

I invite you to read the book and make
up your own mind. It will make you
think and may challenge your assump-
tions; even the ideas that you might not
accept are interesting and strangely
compelling. And they grow on you.

group can follow that will lead to this
alignment of ideas. The underlying
premise is that most groups are working
at a fraction of their possible potential,
and by improving the group functioning
you can get large productivity gains and
increase everyone’s job satisfaction. Peo-
ple who have worked in both high- and
low-functioning groups will have no
trouble with this concept. The key to the
“software problem” is not reading
another book on multiple inheritance,
or even using the latest requirements
language, but getting the group aligned
and functioning at a high level.

By this time, many readers are probably
stifling yawns. There are lots of “team-
work” workshops that teach people their
Meyers-Briggs scores and purport to
teach “trust” by hanging on ropes. The
authors are scornful of such remedies,
which typically do not hold individuals
accountable for their actions in the
group and do not articulate the desired
group behavior clearly.

One concept in particular struck me.
The authors believe that every group
functions at the level of the least enga-
ged person. In many meetings, some
people want to be there and so have a
vested interest in seeing the issues
resolved; others are just warming chairs.
These disengaged people may see things
that they could contribute but have the
attitude, “Why should I speak up? It will
just prolong the meeting . . .”

The authors see this attitude as a loss of
integrity. If people do not function at
the highest level, they are weakening
themselves and the group. And, more to
the point, they hold the group (and
themselves) back. The authors believe in
making high-quality group participation
a conscious goal. It is not necessary to be
fully engaged all the time. But it is
required to be honest with yourself and
your coworkers about whether you are
“in” or “out” at any time.

58

The authors also believe that when
someone is “out,” it is often because they
are feeling some emotion (work-related
or not) that is interfering with their full
engagement. So one way to allow more
people to be “in” more of the time is to
allow emotions, even negative ones, to
be acknowledged within the group. They
are not suggesting that software teams
become encounter groups or therapy
groups – far from it. Just that it should
be OK for someone whose daughter is in
the hospital to acknowledge it in the
group, and through this honesty help
the group to become stronger.

Another idea put forth in the book is
that the “product” of management is, in
fact, the group behavior. So if manage-
ment is unhappy with the group, it
needs to look at its own actions and atti-
tudes for the root cause of the problem.
This is the kind of obvious statement
that never seems to be obvious to the
managers themselves.

The description of group maladaptive
patterns, and how to break out of them,
accounts for some of the most brilliant
and insightful writing. The authors are
frequently quite vivid in their language.
For example, they discuss the phrase “He
gets an A for effort.” In other words, they
point out, he failed, and he wasted a
great deal of time and energy failing.
They prefer the motto “Fail Cheap.”

I found the authors to be very effective
in describing the problems that hold
groups back and articulating how an
effective group would function. I have
more difficulty with the remedies they
suggest. These are overly structured,
even draconian, for my taste. They may
well be effective, but I believe other tech-
niques can also be effective and ulti-
mately less invasive.

There are many examples in our society
of cooperation at a much higher level
than most software teams achieve.
Sports teams are an obvious example. A

book reviews

62

news

Vol. 27, No. 3 ;login:

roles over the years. Rob brings to SAGE
his experience and enthusiasm, and we
are looking forward to working with
him. A short biographical statement fol-
lows.You can reach Rob at kolstad@sage.org.

The other big step forward has already
been reported, but deserves mention
again. This spring we launched the first
SAGE Certification –“cSAGE” – aimed
at junior-level system administrators.
Information on SAGE Certification –
including study guides and information
for sysadmins, employers, teachers and
others – is online at www.sagecert.org.
Certification is one of the key building
blocks for system administration to
progress to the level of professional
recognition we think it deserves, and
serves the needs of employers in helping
to assure that they have a well-trained
and knowledgable professional system
administration staff. If you are a junior
system administrator check out the
study guide and sample questions, and
become cSAGE certified. If you aren’t
sure you are ready – or are a more senior
system administrator – check it out any-
way. It will give you a roadmap for new
things to learn, or you can help some
junior sysadmins to get their certifica-
tion (and the Certification Board is cur-
rently laying the groundwork for the

next level of certification – for more sen-
ior sysadmins).

Two big steps in only a few months?
These steps are the result of several years
work by many dedicated volunteers. I
encourage you to get involved in our
next big steps. Check out the web site,
and you will find many projects in need
of volunteers.

All About Rob
Rob’s history with USENIX and system
administration is a long one. Besides
editing the ;login: magazine for ten
years, he has chaired three USENIX
technical conferences, served six years
on the USENIX Board of Directors,
chaired workshops, and was co-founder
of the LISA conference. SAGE awarded
him its inaugural Outstanding Achieve-
ment award in 1993.

Previously, Rob was program director
for the SANS Institute, an educational
foundation that specialized in system
administration, networking, and secu-
rity, though it concentrates mostly on
security these days.

Rob was with Berkeley Software Design,
Inc. from 1992 to 1998, serving as its
president for several years. Before that
he was lead engineer on Sun’s Backup
CoPilot project and a VP at Prisma

Two Big Steps
Forward for SAGE

This month I am pleased to announce
two big steps forward for SAGE: the hir-
ing of our first full-time Executive
Director and the launching of SAGE
Certification.

Late last year, the USENIX Board of
Directors allocated two additional staff
positions for SAGE, as part of our tran-
sition from a mostly-volunteer organiza-
tion to one with more staff support so
that we can offer stronger programs and
reach a wider community with more
consistancy. The two positions are Exec-
utive Director and Web Editor.

Rob Kolstad has been selected as the
SAGE Executive Director. Rob is well-
known in SAGE, having served in many

by David Parter

President, SAGE STG
Executive Committee

parter@sage.org

SAGE, the System Administrators Guild, is a

Special Technical Group within USENIX. It is

organized to advance the status of computer

system administration as a profession, establish

standards of professional excellence and recog-

nize those who attain them, develop guidelines

for improving the technical and managerial

capabilities of members of the profession, and

promote activities that advance the state of the

art or the community.

All system administrators benefit from the

advancement and growing credibility of the

profession. Joining SAGE allows individuals and

organizations to contribute to the community

of system administrators and the profession as

a whole.

SAGE membership includes USENIX member-

ship. SAGE members receive all USENIX mem-

ber benefits plus others exclusive to SAGE.

SAGE members save when registering for

USENIX conferences and conferences co-spon-

sored by SAGE.

SAGE publishes a series of practical booklets.

SAGE members receive a free copy of each

booklet published during their membership

term.

SAGE sponsors an annual survey of sysadmin

salaries collated with job responsibilities.

Results are available to members online.

The SAGE Web site offers a members-only

Jobs-Offered and Positions-Sought Job Center.

SAGE EXECUTIVE DIRECTOR
Rob Kolstad: kolstad@sage.org

SAGE MEMBERSHIP
office@sage.org

SAGE ONLINE SERVICES
list server: majordomo@sage.org

Web: http://www.sage.org/

Technica, a gallium-arsenide SPARC-
compatible supercomputer startup. Rob
was a member of the original engineer-
ing team of Convex Computers and is
co-holder of the patent on the Convex
C-1 minisupercomputer.

Rob is the head coach of the USA Com-
puting Olympiad, the organization that
chooses the set of four pre-college com-
puter programmers to represent the
USA in international competitions. He is
also the head judge at the Pikes Peak
Regional Science Fair.

Rob earned his Ph.D. in high level lan-
guage constructs for distributed com-
puting from the University of Illinois at
Urbana-Champaign after completing an
M.S.E.E. at Notre Dame. His undergrad-
uate B.A.Sc. degree from Southern
Methodist University was among the
first computer science bachelor’s degrees
offered in the United States.

63June 2002 ;login:

the mailing lists so that they are current.
Please feel free to contact me personally
if you are in a jam and really, really need
to make a mentor connection! And, as
always, the sage-members@usenix.org list
is a terrific resource.

SAGE MENTORING PROGRAM UPDATE ●

SAGE Mentoring
Program Update

The SAGE Mentoring program is ramp-
ing up from a long period of inactivity,
in which many applications for mentors
and apprentices were received. We have
had a great deal of feedback regarding
folks’ interest in senior-to-senior men-
toring as well, and are currently consid-
ering the best way to implement
“mentor matching” so that SAGE mem-
bers can get in touch with each other
directly via the soon-to-be-revamped
Mentoring area on the SAGE Web.

If you have submitted an application,
and have not heard from us, please
accept my personal apologies. I have
quite a backlog of applications, includ-
ing a large tarball of applications from
2000 and 2001, prior to my involvement
with the program. I am reviewing those
applications, trying to establish good
email addresses for people who con-
tacted us in prior years, and refreshing

●

SA

G
E

N
EW

S

by Strata R. Chalup

Program Chair

strata@virtual.net

SAGE STG Executive Committee
PRESIDENT:

David Parter parter@sage.org

VICE-PRESIDENT:

Geoff Halprin geoff@sage.org

SECRETARY:

Trey Harris trey@sage.org

EXECUTIVES:

Bryan C. Andregg andregg@sage.org

Tim Gassaway gassaway@sage.org

Gabriel Krabbe gabe@sage.org

Josh Simon jss@sage.org

SAGE SUPPORTING MEMBERS

Certainty Solutions

Collective Technologies

ESM Services

Freshwater Software

Lessing & Partner

Microsoft Research

Motorola Australia Software Centre

New Riders Press

O’Reilly & Associates Inc.

RIPE NCC

SAMS Publishing

Taos: The Sys Admin Company

Unix Guru Universe

64 Vol. 27, No. 3 ;login:

USENIX MEMBER BENEFITS
As a member of the USENIX Association,
you receive the following benefits:

FREE SUBSCRIPTION TO ;login:, the Association’s

magazine, published seven times a year,

featuring technical articles, system adminis-

tration articles, tips and techniques, practical

columns on security, Tcl, Perl, Java, and

operating systems, book and software

reviews, summaries of sessions at USENIX

conferences, and reports on various stan-

dards activities.

ACCESS TO ;login: online from October 1997

to last month www.usenix.org/

publications/login/login.html.

ACCESS TO PAPERS from the USENIX Confer-

ences online starting with 1993

www.usenix.org/publications/library/

index.html.

THE RIGHT TO VOTE on matters affecting the

Association, its bylaws, election of its direc-

tors and officers.

OPTIONAL MEMBERSHIP in SAGE, the System

Administrators Guild.

DISCOUNTS on registration fees for all

USENIX conferences.

DISCOUNTS on the purchase of proceedings

and CD-ROMS from USENIX conferences.

SPECIAL DISCOUNTS on a variety of products,

books, software, and periodicals. See

http://www.usenix.org/membership/

specialdisc.html for details.

FOR MORE INFORMATION

REGARDING MEMBERSHIP OR

BENEFITS, PLEASE SEE

http://www.usenix.org/

membership/membership.html

OR CONTACT

office@usenix.org

Phone: 510 528 8649

And So It Goes

A little like writing your own obituary,
this is my last column as President of
USENIX. We have term limits here and,
all in all, that is a good thing. I may still
find something to do around here, but I
welcome the new Board and President
Kirk McKusick and wish them well.

Over the time I’ve been associated with
USENIX an awful lot of changes have
transpired. In that regard, USENIX mir-
rors changes going on in society in gen-
eral due in large part to technical change
– our communications are overwhelm-
ingly electronic when they are not face
to face, distance is measured in either
network latency or the dollar cost of air-
line tickets, security is no longer a geek-
only issue (which is arguably a fearsome
development), it is much cheaper to
retain electronic data in full than to
selectively cull it, and it is the capital
markets rather than tenure committees
that ultimately sort technologies into
winners and losers.

Running an organization like the
USENIX Association is getting harder at
least insofar as our core mission is con-
cerned. We exist to accelerate the
advance of knowledge in our field, what
Mike O’Dell famously called “moving
information from where it is to where it
is not.” The reason running USENIX
well is getting harder is that our success
to date does nothing so much as raise

the standard to which we now have to
perform.

In the meantime, the latency between
invention and exploitation is shrinking –
which fundamentally is a good thing in
the bigger scheme of things. The human
dynamics of scheduling new workshops
around emerging topics and disciplines
(which is exactly where we can do the
most good) are such that USENIX pretty
much cannot get anything effective done
in under 9-12 months despite the fact
that, just as in business, there is a really
substantial and growing first mover
advantage to that professional society
that best calls trends right, that has the
first meeting on a new topic at exactly
the right time in exactly the right venue.

Knowing when to strike, what to strike,
and who needs to be involved are at the
critical core of the risk-reward tradeoff
that USENIX as a business lives within.
But let me be clear about something: For
those of you who have something to say
and who want to create vehicles for
knowledge transfer, USENIX is
absolutely remarkable. No other profes-
sional society relieves you of as much
logistical detail. No other professional
society comes close to the price-per-
formance value that USENIX delivers.
No other professional society has meet-
ings where the signal-to-noise ratio is
more favorable.

Sure, I am a true believer, but I invite
you to try to get something together
under the umbrella of any other group
and compare it to what you can get done
here. Measure your experiment in how
much time you have to put in versus
how much intellectual value you get out.
Measure it by looking at the quality of
our Proceedings and don’t take my word
for it, use CiteSeer (http://www.citeseer.

org) to confirm that when measured by
citation frequency USENIX meetings are
tops. Yeah, USENIX is cliquish but at no
other society can you expect to talk to

by Daniel Geer

President, USENIX
Board of Directors

geer@usenix.org

news

http://www.citeseer

the actual authors of the tools you can’t
live without.

Want to call the USENIX regulars elitist?
No problem as far as I am concerned
since every bit of elitism in these here
parts is earned. USENIX is about getting
things built and recognizing those who
get it done. Just as the IETF is the domi-
nant standards organization because of
its simple creed, “Rough consensus and
working code,” so, too, our simple idea is
that USENIX is where you go for that
working code; it’s where you go if you
want to know what actually works rather
than what might be theoretically inter-
esting.

Were it not such a low bar, I’d point out
that we have an awful lot better taste in
what is “novel, non-obvious and
reducible to practice” than the US Patent
& Trademark Office does, not to men-
tion that we are becoming more selective
in our selection process in the face of a
rising volume of submissions.

As I have said here several times before,
I’d like to urge those of you with ambi-
tion to remember that it is never too
early to choose whether you are going to
lead, follow or get out of the way. I’d ask
all USENIX members to recognize that if
you want something to happen the
surest way to get it to happen is to real-
ize that you have more leverage here
than you are going to get anywhere else.
Samuel Johnson observed that knowl-
edge is of two sorts, where you know a
thing yourself and where you know
where to find out about it.

Let me tell you a secret of career success:
That secret is simple – You can either
(on your own) go out and scour the
countryside for knowledge, or you can
(by serving on USENIX program com-
mittees) get the countryside to bring its
best work to you. I recommend the pro-
gram committee approach; you will find
that it concentrates the interesting traffic
like nothing else, and all you have to pay

65June 2002 ;login:

Newly elected directors will take office
at the conclusion of the next regularly
scheduled board meeting which will
be held June 14, 2002 in Monterey,
California.

Ballots Received: 1295
Invalid Ballots: 17
Participating Ballots: 1278

PRESIDENT:

Marshall Kirk McKusick 1100
Abstain 159
No Selection 19
TOTAL 1278

VICE PRESIDENT:

Michael B. Jones 679
Trey Harris 543
No Selection 56
TOTAL 1278

SECRETARY:

Peter Honeyman 758
Steve Simmons 479
No Selection 41
TOTAL 1278

TREASURER:

Lois Bennett 1117
Abstain 126
No Selection 56
TOTAL 1278

DIRECTORS:

Jon “maddog” Hall 829
Tina Darmohray 688
John Gilmore 662
Avi Rubin 656

Ted Ts’o 530
Æleen Frisch 401
Peg Schafer 357
Darrell Long 282
Adam Moskowitz 206
Clem Cole 192
James Yaple 117

2002 BOD ELECTION RESULTS ●

is your time while all you have to risk is
your reputation. Expensive and scary?
Sure, but consider the alternative.

I’ve asked each of the current USENIX
officers to do something that has not
been part of the USENIX managerial
tradition heretofore and that is to write
a report on their term of office, what got
done and what didn’t. This is not an easy
thing to do – USENIX is a lot more
complex than it seems or, to put it dif-
ferently, that it looks simple from the
outside is a triumph rather than just
something that you can buy at the store
like milk.

As such, it is actually hard to write in
one document something that is read-
able by the mildly curious, meaningful
for the serious student, reassuring for
the well-wisher, and a counterweight to
the heckler. That it is hard to be at once
universal and concrete is precisely why it
is a good thing to try, even when the real
role of an individual Board member is
much more like an adverb than a noun,
i.e., we modify more than we pre-empt.
I’ll finish my report when my term is
actually over, which will be about when
you read this. Read it if you care but
don’t if you don’t.

In the meantime, I want to thank you all
for the opportunity to lead over the past
decade and a half, and just as it is the
duty of a teacher to be surpassed by his
students, it is now your job to prove that
you’re better than I was.

Godspeed.

2002 USENIX
Board of Directors
Elections Results
The results of the elections for Board of
Directors of the USENIX Association for
the 2002-2004 term are as follows.
Names in bold are the elected officials.

●

U

SE
N

IX
 N

EW
S

Vol. 27, No. 3 ;login:

News from NUUG

NUUG is the Norwegian UNIX User
Group, established in 1984 as the Nor-
wegian arm of the EUUG (later to
become Europen). In the last several
years Europen has existed only as a
loosely joined group of European
“UNIX” groups.

The NUUG mem-
bership of about
300 has been receiv-
ing ;login: on a sub-
scription basis for a
number of years,
and in the annual
meeting of June
2001, NUUG
decided to join the
USENIX Associa-
tion as affiliate
members. As of Jan-

uary 2002, our members joined
USENIX, and a few also signed up for
SAGE.

NUUG organizes a monthly technical
evening, each on a different subject of
interest. We have also held full-day tuto-
rials and national conferences, often
with invited speakers from the USENIX
side of the Atlantic. We are participating
in the yearly NordU conferences as well.

Apart from NUUG, Norway has several
special interest computer groups, many
of which focus on Linux and open
source developments. Some of these
groups share space on the NUUG Web
server, and events are announced in a
common calendar. We are also looking
for other ways to cooperate with and
support local or special interest groups.

Summary of the
USENIX Board of
Directors Actions

The following is a summary of some of
the actions taken by the USENIX Board
of Directors between mid-November
2001 and April, 2002.

Conferences
BSDCon: It was decided to sponsor
another BSDCon in approx. 18 months
(Fall of 2003), with a goal to improve
the quality and attendance, while keep-
ing costs low. Gregory Neil Shapiro will
serve as program chair.

FAST: After a successful inaugural con-
ference in January, it was decided that
another conference will be held in 2003
with Jeff Chase as program chair.

Linux Kernel Summit II: It was agreed
that USENIX will co-sponsor another
summit with OSDN in June 2002.

Mobisys: An agreement between ACM
SIGMOBILE and USENIX to co-spon-
sor a conference on mobile systems,
applications and services was signed.

Good Works
Open AFS Project: It was agreed that
USENIX will commit $35,000 to this
effort contingent upon the receipt of
matching funds from at least two other
donors. USENIX will oversee the distri-
bution of funds to the Open AFS council
of elders (currently CMU, U/Michigan
and MIT), and also publicize the donors’
support of the OpenAFS development.

It was agreed to fund once again the Sta-
tus of Women in Computing’s mentor-
ing program of the Computing Research

66

Association’s Committee on Women
(http://www.cra.org/craw/) for $10,000.
USENIX will also be a sponsor for the
CRA’s Snowbird Conference in July
2002.

It was agreed to fund $10,000 for stu-
dent stipends for the Internet Measure
Workshop 2002 which is being co-spon-
sored by ACM SIGCOMM, SIGMET-
RICS, and USENIX.

SAGE
The following statement was approved
and posted on the USENIX and SAGE
web sites for a 2 weeks period in Decem-
ber ’01: “The USENIX board wishes to
apologize to Barb Dijker and Peg Schafer
for dismissing them from the SAGE
Executive Committee without appropri-
ate due process.”

A hiring committee to hire a SAGE
Executive Director was formed (Dan
Geer, David Parter, and Ellie Young.) A
SAGE/USENIX relationship oversight
committee composed of respective
liaisons (Parter and Hume), Young, and
others to be announced was formed.

Finances
Sponsorship and exhibit packages rec-
ommended for 2002 were approved.

The recommendation that an outside
accounting firm (Burr, Pilger and
Mayer) conduct the audit of the Associa-
tion’s 2001 finances was approved.

The 2002 budget was discussed and
approved.

by Ellie Young

Executive Director

ellie@usenix.org

by Jon Petter Bjerke

Jon Petter Bjerke is a NUUG board
member and NUUG’s primary con-
tact with USENIX.

jonp@nuug.no

http://www.cra.org/craw/

As a result of taking part in the EUnet
initiative of EUUG since the mid-1980s
and establishing it as a commercial com-
pany in the early 1990s, NUUG received
considerable money when EUnet was
sold in 1998. NUUG decided to put
these assets into a separate entity, and
the NUUG Foundation was established
in 2000. The foundation is actively look-
ing for projects to support, both nation-
ally and internationally. We recently
selected the first such project: the
“Skolelinux” (Linux for Schools) project,
an effort to provide schools with a reli-
able and easy-to-handle Linux distribu-
tion, with all relevant programs
supported in the two variants of the
Norwegian language (Bokmål and
Nynorsk) as well as the northern Sami
language. Participation from the other
Nordic countries may lead to Danish
and Swedish versions of the project.

References and further reading (mostly
in Norwegian):

NUUG: http://www.nuug.no/

The NUUG Foundation:
http://foundation.nuug.no/

Linux for Schools:
http://www.linuxiskolen.no/

Twenty-Five Years
Ago in USENIX

The June 1977 meeting of the UNIX
User’s Group (not yet USENIX), was
held at the University of Illinois at
Urbana-Champaign. Knowing that Mike
O’Brien (the amanuensis of Mr. Proto-
col) had been there, I asked him for his
recollections. Here they are. (My
addenda are in [].)

At the time of the 1977 UNIX User’s
Group combined East-West meeting in

67June 2002 ;login:

ing. I decided to commemorate the
occasion. I don’t remember much at all
about the technical content of the meet-
ings, but I remember this.

I lived in Chicago at the time, and so did
a man named Phil Foglio. Phil was a
comic artist, later to become rather
famous. [Foglio is very active as an
artist. Among his credits is Girl Genius.]
He was in school at the time. I knew him
slightly, through Chicago science fiction
fandom, in which I was active. One day
Phil called me up. His apartment was
apparently equipped with a wall safe.
His roommate, the only one of the two
of them who knew the combination, had
locked a prop Star Trek phaser in the
safe and blown town. Phil knew that I
was, at that time, a bonded locksmith,
and wanted me to open the safe.

I knew how to open garden-variety pin-
tumbler locks, but I’d never tackled a
safe before. I knew that there was an ele-
mentary manipulation algorithm that
worked on the cheaper sort of combina-
tion padlocks, but I figured a safe would
be proof against that. Still, I was willing
to give it a try. So expectant of failure
was I that I brought along another lock-
smith, a friend of mine, for moral sup-
port.

I am amazed to this day that it worked. I
opened the safe in under fifteen min-
utes. I should have written down the
name of the manufacturer, to make cer-
tain that I never purchased a safe from
them.

I had agreed with Phil to take payment
in trade. In return for my success in
returning his phaser to him, he prepared
full-color artwork to my specifications, a
now rather famous picture of a PDP-11
cabinet in a maze of pipes, complete
with pitchfork-carrying demons run-
ning along the pipes. There was a rain
barrel with “/dev/null” written on it, but
no front panel, due to contradictory
specs on my part as to exactly which
panel held all the buttons and lights.

25 YEARS AGO IN USENIX ●

Shampoo-Banana, I was an eager UNIX
booster. UNIX Version 5 (and, later, Ver-
sion 6) was at the same time so interest-
ing and so hard that I couldn’t imagine
anyone in computing not being as
enthralled as I was . . .unless, of course,
they worked for IBM, the then-current
Evil Empire.

The conference was organized by Steve
Holmgren and Greg Chesson, who knew
Ken Thompson from Berkeley days or
some such. Steve and Greg were respon-
sible for having imported UNIX to the
U of I campus downstate, where it
replaced the home-grown software on
ANTS, the ARPANET Terminal System,
which ran on a PDP-11. ANTS’ sole win-
ning feature was that it had ants sten-
ciled all along the top panels of the
cabinet. It ran like it was full of ants, too.
UNIX was a big step up. On the Chicago
campus, I had just hired on as a research
assistant to a gigantic project ($3 mil-
lion) to build a medical information sys-
tem, based on what is probably the worst
grant proposal I have ever read. It was
funded out of desperation by govern-
ment officials who had a record amount
of money to spend in a hurry due to the
Supreme Court decision that told Dick
Nixon what part of the purse-strings he
did not control.

I was the lone man on the Chicago cam-
pus running UNIX, and I dimly remem-
ber pestering the daylights out of both
Steve and Greg as I came up to speed. I
seem to remember that I had founded
and was running the UNIX User’s
Group Software Distribution Center by
the time of this conference, so, hope-
fully, I was less of a pest by the time it
rolled around.

Ken and Dennis Ritchie were both
scheduled to be in attendance. I think I’d
met them before, either at one of Mel
[Ferentz]’s get-togethers in New York or
one of Lew Law’s get-togethers at Har-
vard. I seem to recall both of those
occurring before the big national meet-

●

U

SE
N

IX
 N

EW
S

by Peter H. Salus

USENIX Historian

peter@matrix.net

http://www.nuug.no/
http://foundation.nuug.no/
http://www.linuxiskolen.no/

Vol. 27, No. 3 ;login:

Of course, it was also at that meeting
that I was recruited to come work for
The Rand Corporation, which turned
out to be the making of my career. Yes,
in that respect I have mighty fond mem-
ories of the Urbana meeting.

[I’m afraid that it would be absurd for
me to add to this. Mike, many thanks.]

At that time, T-shirt “art-to-order”
printing houses were few and far
between. I found a ma-and-pa operation
in suburban Chicago, quite a drive from
my place as I recall, who used a 3M color
copier to make T-shirts. They were very
helpful in turning Phil’s artwork into the
first UNIX T-shirts ever produced.
Because the printing process reversed
the artwork, they whited out Phil’s
trademark signature and carefully
forged it in reverse, so that he would get
proper credit.

The first four shirts produced were
intended for Ken, Dennis, me, and my
wife. Only these four shirts were pro-
duced with red piping on the sleeves and
collars – all shirts made after this had
white collars and sleeves. I still have
mine and my wife’s. As I recall, only Ken
made this meeting. I gave him his shirt,
and one for him to take back to Dennis.
I recently asked Dennis about that, and
he could not recall ever having received
his shirt. I suspect that the embarrass-
ment at being caught out in this after all
these years is responsible for Ken’s recent
retirement.

The ma-and-pa operation produced sev-
eral hundred shirts with this artwork in
the years that followed. They retained
the artwork in their files to fulfill future
orders. They told me that their largest
single order came from Bell Labs, where
about 40 shirts were ordered for a pic-
nic.

Years later, Armando Stettner of DEC
asked me about that artwork. He wanted
to obtain the rights to it, in order to use
it in a marketing campaign for Ultrix. I
dug out the phone number of Ma and
Pa in suburban Chicago (I lived in Los
Angeles by this time) and found out that
they had ceased operation years before
and were on the point of throwing
everything out. They returned the art-
work to me, and I sent it on to Armando
stating that as far as I knew, I owned the
rights, and he (and DEC) could have
‘em. The artwork was used in an Ultrix

68

poster showing how much better Ultrix
was than that stovepipe clattery amateur
UNIX stuff, and the original artwork
passed into oblivion, along with the
entire Digital Equipment Corporation.

At some point the USENIX board of
directors gave Phil Foglio some money
to compensate him for the unexpected
success of his artwork. [It was in 1986,
when I was Executive Director of
USENIX. — PHS] He never complained
to me personally, but had been heard to
gripe that he never saw a dime from the
art. I’m glad they did this. I’d never
expected the art to go beyond the first
four shirts, frankly.

It remains an open question as to the
degree of influence that all this had on
the BSD Daemon. Kirk McKusick says
that John Lassiter created the original
BSD Daemon artwork without reference
to Phil’s work, and I believe him. It’s an
obvious visual pun. However, I still
regard the BSD Daemon as a cultural
child of the first four shirts I produced
at the Urbana meeting, even if there is
no direct connection.

Henry Spencer wore a shirt produced
with that artwork for many years, and
was by many years the last survivor to do
so, until the shirt reached the stage
where he was in danger of being picked
up for vagrancy. My own are in better
shape, partly because I long ago ceased
to fit into either mine or my wife’s.

The only other clear memory I have of
the Urbana meeting is of standing
around Steve Holmgren’s driveway, at
one of the few keggers of any sort I’ve
ever attended. Considering who all was
there, it has to rank right up there in
terms of “semi-famous people con-
nected with UNIX all in one place doing
something non-technical.” I recall being
as nerdy as possible and also trying des-
perately to think of something semi-
intelligent to talk to Ken about. It was
many more years before I became social-
ized, I’m afraid.

	motd
	apropos
	letters
	chalup
	kenneally
	turoff
	sitaker
	flynt
	mccluskey
	wolf
	farrow
	haskins
	hope
	book
	sagenews
	usenixnews

