

Excellence
On Debbie Scherrer’s recommendation from several years ago, I took my parents to
view the “World Famous” Lippazzaner Stallions last night at their Pueblo, Colorado
tour stop. I had no expectations, having ridden horses a few times and even enjoyed
seeing well-made photographs of them. Most people’s favorite part is the “airs”: the
jumping and rearing up (as in “Hi ho Silver, away!” from the Lone Ranger intro). Those
horses were definitely coordinated, ever moreso considering they weigh in four digits.
As horses go, they were excellent.

We hear a lot about excellence in our industry. You can hardly turn through a trade
magazine without someone extolling the excellence of their product, their service, their
record, or their management style. Entire books discuss excellence. I think it’s a desir-
able quality.

Of course, excellence is decidedly not perfection. Perfection is yet another step and is
seen only rarely in our world. There are those who felt Michael Jordan’s basketball skills
bordered on perfection; others admire Tiger Woods’s golfing performances. Let’s stick
to excellence for this discussion – perfection is just really challenging in general.

Personally, I like excellence. I thought Dan Klein’s talk from several years ago about the
parallels between Blazon (a language for describing coats-of-arms) and Postscript was
excellent. I think some of Mark Burgess’s thoughts on system administration are excel-
lent, even though I think I disagree with a few of the others. We occasionally see an
excellent article in ;login: or an excellent talk at a conference. It’s really great.

Making excellent software or creating a site that is administered excellently is really
challenging. The more skilled one becomes at creating either programs or environ-
ments, the more flaws one sees on the way to excellence. This is the worst sort of
reward for improving skills! “I’m better now and I can see that I’ve got to spend much
more time on the tasks I’m solving.” How awful.

On the other hand, it also raises the bar in our world. Many of the technology-oriented
parts of our lives truly have improved. Satellite-delivered home entertainment has a
technical quality (i.e., lines per inch and lack of interference) that was simply never
reached with old-style broadcasting through the ether. You can find technological suc-
cess stories throughout the world from hybrid rice that feeds India to better ceramics
for creating lighter engine parts. The Science News weekly newsmagazine has examples
of these sorts of things every issue.

How does one achieve excellence in any one thing? I don’t know exactly. I do know,
however, that really excellent results seem to take a lot of time, maybe even an incredi-
ble amount of time.

Have you ever deleted a program and had to re-create it from memory? Remember
how it took only a fraction as long to create and the new program ran better, cleaner,
faster, and was easier to maintain? This seems to offer a clue: excellence rarely seems to
appear quickly or “the first time.” Excellence appears to require not only inspiration but
sharpening, tuning, and all sorts of refinements often not visible at the onset of cre-
ation.

I’ve tried to do excellent things for several years (e.g., excellent programming contests
for the USACO students). It’s hard – but I think I’m getting better at it. I wish I could
say the same for several of my other endeavors.

I think it’s fun to think about excellence. Maybe there’s something you do that is or
could be excellent. Sometimes, I think creating or doing something excellent (a pro-
gram, great peanut brittle, playing duo-piano, a super clear man page) has a bit of its
own reward just in its birth. I hope you’ll consider doing anything excellent – I think
the world will be a better place.

motd

2

by Rob Kolstad

Dr. Rob Kolstad has long

served as editor of

;login:. He is also head

coach of the USENIX-

sponsored USA Com-

puting Olympiad.

<kolstad@usenix.org>

Vol. 26, No. 3 ;login:

3June 2001 ;login:

Radio Buttons and Resumes
A while back I had Dave Clark, owner of a system administration recruiting

and placement company, write a series of articles about preparing for a job

search. One of his articles focused on how to prepare a good resume. While

there are variations on the theme, for the most part, resume format has

been a fairly static entity. At least that’s what I thought until I came across

an interesting twist during some Web surfing the other day.

Stanford has a Web site full of information about how to apply for positions with the
University. There’s a searchable database of open positions and information on how to
apply. As expected, there’s specific information regarding resumes. The Web site covers
all the essentials: where to send your resume, how to send it, and even provides a tool
to assist you in constructing an online resume if you don’t already have one. The part I
didn’t anticipate was the detailed information on how to prepare your resume in order
to maximize a computer’s ability to scan it.

It’s not surprising that a large organization is using a computer to scan resumes. What I
found amazing, however, were the “tips” for writing a resume for just such a scan. First
off, there is consideration for the mechanical end of scannability. These are things that
will allow the scanner to read the information on the page accurately, like color of
paper, acceptable fonts, spacing, expected headings, placement of key information, lack
of “fancy treatments,” and overall layout apparently all make a difference. So far so
good. Here’s the twist: you don’t just maximize for optical scannability, you can also
create the resume to “maximize hits.” For me, it’s these optimizations that make a good
machine-readable resume different from a good human-readable resume. Apparently,
in order to increase your “hits” you should “use key words” to describe your skills, be
concise, and use “jargon and acronyms.” In fact, it looks like “increasing your list of key
words” is a feature. Suddenly it was clear to me why a litany of operating systems (you
know, every version listed separately), programming and scripting languages, hardware
platforms, application packages, protocol names, and anything else just short of the
kitchen sink now appears under the “Skills” heading on so many resumes!

Stanford, apparently, is pretty focused on this scannability and optimization. I got the
feeling that any resume intended for a human really didn’t have much of a chance in
their screening process. In fact, the last little tidbit on their resume Web page actually
came out and said what I suspected. It suggests that you may want to have two versions
of your resume: “One for the computer to read” and “One for people to read. Carry this
one to the interview with you.” I had to wonder if the ultimate machine-scannable
resume might just have a name, address, and telephone number, followed by a Skills
heading, with as many buzzwords and acronyms as possible, and just skip the prose
that attempts to explain what it is that one has actually done for a living. Makes me
wanna try it, just to test my theory.

When I described what I’d learned about the “modern” resume to a friend later that
day, he suggested that going this far overboard stopped just shy of radio buttons and
checkoff boxes on a Web page. Now that he mentions it, it might save us all a lot of
trouble

ED
IT

O
RI

A
LS

apropos
by Tina
Darmohray

Tina Darmohray, co-

editor of ;login:, is a

computer security and

networking consultant.

She was a founding

member of SAGE.

<tmd@usenix.org>

letters to the editor
BEWARE OF WHAT YOU WISH FOR

from Frederick M Avolio
<fred@avolio.com>

Tina:

I am not sure if you were writing with
“tongue-in-cheek,” but assuming not,
I’m happy to suggest why no one will
share security policies and acceptable use
guides. No one believes theirs is any
good.

There is no wizardry involved, yet there
is still what borders on shame. When
really, most IT professionals can put
together a good and useful set of docu-
ments, far better than nothing at all.

LIABILITY RISK OF BEING USED AS A

JUMPING OFF POINT FOR AN ATTACK

From Toby Kohlenberg
<toby@seaport.net>

To John Nicholson:

I just read your article in Vol. 26, No. 2 of
;login: and wanted to compliment you on
it and ask a follow-up question or two.
You describe quite well the liability of an
organization when they have failed to
sufficiently protect data they have about
a customer/user/employee/whomever,
but what about the liability of an organi-
zation if their systems are cracked and
then used as a jumping off point for fur-
ther attacks – either destructive attacks
such as DDoS or compromising attacks
where data or resources may be stolen? I
seem to recall this coming up a couple of
times during the Yahoo/eBay/others
debacle last year, but I don’t remember
what the outcomes were. Can you pro-
vide any further information?

John Nicholson replies:

Thanks for the positive feedback. I really
appreciate it. If you ever read one of my
articles and you think I’ve gotten some-
thing wrong, please also let me know.
Also, if you ever have any ideas for a
topic for an article, I’d love to hear them.

As far as your question is concerned, the
prospect of using someone's computer as
a platform for launching attacks is an
interesting one (and one that I probably
should have addressed).

If you fail to use “reasonable efforts” to
keep your server secure, then it’s very
possible that you could be found liable
for damage done to other computers. It
goes back to the issue of proximate
cause. The logic is similar to bars/bar-
tenders being held liable for the damage
caused by a drunk driver. The bartender
failed to use “reasonable” caution in
serving drinks to someone who was “rea-
sonably obviously” intoxicated. There-
fore, the logic goes, the bar/bartender
should be at least partly responsible for
the damage done by the drunk driver.
Another example might be if a gun shop
owner fails to “reasonably” properly
secure his shop and someone breaks in
and takes a gun and ammunition. Since
society wants to encourage the gun shop
owner to realize that there could be con-
sequences to failing to secure such a
potentially dangerous product, a court
could find the gun shop owner liable for
damage done or crimes committed by
the criminal.

As far as I know, no one has ever actually
taken legal action against a company
because a cracked box on that company’s
network was used as an attack platform.

So, there’s the warning about potential
consequences. The other half of the arti-
cle was intended to propose developing
policies that would protect a company if
the issue ever went to court.

From a policy point of view, as far as
preventing a cracker from using a
cracked server as a platform for attacking
others, you might include in the defini-
tion of what is a “reasonable” security
policy having some kind of restrictions
and sniffing on outgoing traffic. If your
firewall restricts outgoing traffic (assum-
ing that the cracker hasn’t gotten into
your firewall, too), then that still might

Vol. 26, No. 3 ;login:4

prevent a cracked box from being used as
an attack platform. Alternatively, if you
have some kind of auditing function that
sniffs outgoing traffic and fires off an
alert if outgoing traffic fits a certain pro-
file, then that might also be sufficient.

Hope this answers your questions. If you
have any other questions, feel free to
drop me a note any time.

●

C

O
N

FE
RE

N
C

E
RE

PO
RT

S4th Symposium on Operating
Systems Design and
Implementation (OSDI 2000)
OCTOBER 23–25, 2000
SAN DIEGO, CALIFORNIA, USA
KEYNOTE ADDRESS

SYSTEMS ISSUES IN GLOBAL INTERNET

CONTENT DELIVERY

Daniel Lewin, Akamai Technologies, Inc.

Summarized by Darrell Anderson

Daniel Lewin started his talk with a brief
introduction to the development of the
Internet, emphasizing how it is really
built, and how that influences what his
company does. In the beginning, the Web
was very simple: content providers on
one side of the “Internet,” users on the
other. In between, network providers
made sure there was a path from every
user to every content provider, and vice
versa. This scheme has four bottlenecks:
the first mile, peering points, the network
backbone, and the last mile.

The first mile includes the content
provider’s databases, application servers,
Web servers, load balancers, switches,
routers, and bandwidth. This centralized
traffic creates an inherent bottleneck.

Around 7,000 networks account for up to
95% of the access traffic, and the number
of those networks is growing. The edge of
the Internet is becoming more diverse,
with many small ISPs.

Peering is critical to how the Internet
works. Peering is a bottleneck because
there’s no incentive to peer well — net-
works compete. Also, the technology for
peering is inadequate: pipe size is limited,
and it is difficult to peer two networks at
more than five to 10 places simultane-
ously.

The third bottleneck is the backbone.
Backbones are difficult to build and are
very expensive. The business model of a
backbone requires high utilization to
drive down costs. Though capacity is

11June 2001 ;login: OSDI 2000 ●

increasing, it cannot keep up with
demand. Peak utilization of the backbone
is around 200Gbps (usage data from for-
ward proxy logs), close to the “useful”
capacity of the network. Demand can
increase faster than capacity.

The last mile presents the final bottle-
neck. Once the last mile gets fast, one
would expect that the whole Internet will
get faster. However, if you gave everybody
a cable modem, the current infrastruc-
ture of the Internet would collapse. The
bottom line is, centralized delivery is
slow and unreliable.

At a very high level, Akamai does “edge
distribution,” deploying servers inside
many networks. The goal is to infuse all
7,000 networks that matter, distributing
data from the content provider to these
servers, serving content from as close to
the end users as possible. Edge distribu-
tion bypasses most bottlenecks (first
mile, peering, and backbone), improving
performance, reliability, and capacity.
Akamai provides network monitoring
tools, and its servers are free.

Akamai estimates speeds on average are
between two and 46 times faster, with an
86% reduction in download times. In
addition, edge distribution improves
consistency and availability.

Lewin then posed the following ques-
tions: How should a content distribution
network organize servers? Storage? What
data do we need to predict performance?
How can we gather this data reliably and
in real time?

This data enables resource management/
server selection. Data gathering and
server selection must be distributed and
fault tolerant, and must work with
imperfect information and in an unreli-
able setting. Also, system monitoring and
management need to represent data visu-
ally to alert and allow humans to interact
with the system. Object distribution and
invalidation introduce problems in
maintaining consistency in a massively

distributed system. A content distribu-
tion system must provide access informa-
tion the same way a centralized server
would.

Later, Lewin described the “common
point” metric, estimating the latency
between end users and servers. Rather
than measure actual latency between
users and servers, measure latency of seg-
ments of routes, ending in a common
point and enabling correlation. As a set
coverage problem, common points
reduce the set size from 200K to 6K,
enabling feasible measurement. Pulling it
together, the system computes the com-
mon point sets, gathers network data,
distributes data, and performs server
selection.

Akamai uses the DNS hierarchy to break
up resource management and server
selection into usable chunks.

Lewin concluded that the Internet is an
evil place, subject to the Heisenberg
uncertainty principle. It is difficult to
predict popularity, distributions, and
capacity. Server selection wants informa-
tion quickly and accurately, and even in
the face of inaccuracies, should not over-
load available resources. This is a hard
problem.

Akamai’s solution makes a few simple
(and sometimes wrong) assumptions:
that utilizations converge, popularities
are poison, and the number of active
users behind any particular DNS server is
never too large. When these assumptions
fail, servers or links may be overcommit-
ted. The problem is easily parallelized
because groups of users may be split.

For more information, see
<http://www.akamai.com>.

http://www.akamai.com>.

12 Vol. 26, No. 3 ;login:

SESSION: APPLYING LANGUAGE TECH-

NOLOGY TO SYSTEMS

CHECKING SYSTEM RULES USING

SYSTEM-SPECIFIC, PROGRAMMER-WRITTEN

COMPILER EXTENSIONS

Dawson Engler, Benjamin Chelf, Andy

Chou, and Seth Hallem, Computer Sys-

tems Laboratory, Stanford University

Summarized by David Oppenheimer

Dawson Engler described a compiler
extension system that allows compile-
time checking of application-specific
rules. The extensions are written in a
state-machine language called metal,
which somewhat resembles the yacc
specification language, and are dynami-
cally linked into a modified version of
g++ called xg++. The metal specification
describes patterns in the source language
that, at compile time, cause state transi-
tions in the state machine described by
the metal specification. At the time xg++
translates a function into the compiler’s
internal representation, it applies the
metal extensions down every code path
in the function. States corresponding to
rule violations signal a potential rule vio-
lation in the source program. This system
is one instantiation of a general concept
Engler calls Meta-Level Compilation
(MC), which raises compilation from the
level of the programming language to the
“meta level” of the code itself (e.g., inter-
faces, components, and system-level
properties), allowing the checking, opti-
mization, and transformation of systems
at a high level much as is done for low-
level code by compilers for code written
in traditional programming languages.

Engler argued that MC offers benefits
over traditional techniques for detecting
violations of system rules. Specifically, he
suggested that MC rules are significantly
easier to write than formal specifications
(verification), scale much better with
code size (testing), and don’t require dif-
ficult reasoning about the code (manual
inspection). By informing the compiler
of system-specific rules about the code,

MC allows automated checking of many
system-level properties at compile time.

Engler applied an MC system consisting
of metal specifications that extend the
xg++ compiler, to Linux, OpenBSD, the
Stanford FLASH machine’s protocol
code, and the Xok exokernel. By checking
rules, Engler’s system found over 600
bugs in these systems. Most extensions
were written in fewer than 100 lines of
code and by individuals unfamiliar with
the MC system itself.

During Q&A, several conference partici-
pants asked about opportunities to
improve the system in areas such as
reducing the number of false-positive
errors reported, handling function point-
ers, and automatically deriving rules
from code by looking at what the code
“usually” does (from a static code path
perspective). In response to a question
about the feasibility of using the tool
throughout the software development
process, Engler indicated that this
sounded like a potentially good idea, and
he pointed out that the system’s useful-
ness is improved when programmers
structure their code to be as simple as
possible, so that it is more amenable to
compiler analysis.

For more information, see
<http://www.stanford.edu/~engler/>.

DEVIL: AN IDL FOR HARDWARE

PROGRAMMING

Fabrice Mérillon, Laurent Réveillère,

Charles Consel, Renaud Marlet and

Gilles Muller, Compose Group,

IRISA/INRIA

Summarized by David Oppenheimer

Gilles Muller described Devil, an Inter-
face Definition Language (IDL) for hard-
ware programming. Devil attempts to
ease the driver development process by
defining an IDL in which a driver writer
composes a strongly typed, high-level,
easy-to-write description of a hardware
device’s software interface.

The Devil IDL is based on a few key
abstractions: ports, which serve as a com-
munication point and correspond to an
address range; registers, which serve as a
repository of data and are the grain of
data exchange between a device and the
CPU; and variables, which serve as the
programmer interface and correspond to
collections of register fragments that are
given semantic values, such as bounded
integers or enumerated types.

The IDL compiler checks the consistency
of a Devil specification with respect to
properties such as conformance to type
rules, use of all declared entities, absence
of multiple definition of entities, and
absence of overlap of port and register
descriptions. It then generates the neces-
sary low-level driver code, which includes
code to check for the proper use of the
generated interface.

Muller described the Devil description of
a device driver for the Logitech Bus-
mouse and several other devices, includ-
ing an IDE disk controller. Muller has
found that device drivers generated using
Devil are five times less prone to errors
than is C code, and that Devil offers neg-
ligible performance overhead while
improving programmer productivity.
Muller’s vision is that hardware vendors
will supply device specifications as a
Devil description, which can then be
used to generate documentation and the
device driver itself.

During Q&A, one conference attendee
pointed out that embedding the hard-
ware specification inside the compiler
limits the possibility of simultaneously
generating drivers for multiple platforms.

For more information, see
<http://www.irisa.fr/compose/devil/>.

http://www.stanford.edu/~engler/
http://www.irisa.fr/compose/devil/>.

●

C

O
N

FE
RE

N
C

E
RE

PO
RT

STAMING THE MEMORY HOGS: USING

COMPILER-INSERTED RELEASES TO MANAGE

PHYSICAL MEMORY INTELLIGENTLY

Angela Demke Brown and Todd C.

Mowry, Carnegie Mellon University

Summarized by Tep Narula

Angela Demke Brown began her talk by
pointing out the rapid memory con-
sumption behavior of computational
problems with large data sets, termed
“out-of-core” applications. Such applica-
tions often suffer from high page-fault
rates caused by the operating system’s
default virtual memory management
policy. An earlier work by the same team
had shown that, by using the compiler to
analyze and insert page prefetches into
the code, out-of-core applications could
achieve good performance improvement
on a dedicated machine. However, out-
of-core tasks with aggressive prefetching
tend to have a severe negative impact on
other applications in a multipro-
grammed environment. Brown then
described the extensions they made in
order to turn an out-of-core task into a
“good neighbor” without placing any
additional burden on the programmer.

The system consists of three parts: OS
support, compiler analysis, and runtime
layer. The OS support includes primitives
for page prefetch and releases, as well as
information on page location, usage, and
availability. This was implemented as a
memory management policy module and
a kernel daemon called releaser on SGI
IRIX 6.5. The compiler algorithm per-
forms reuse analysis, locality analysis,
loop splitting, and software pipelining in
order to decide where to insert prefetch
and release hints. The implementation is
a pass in the Stanford University Inter-
mediate Format (SUIF) compiler. The
runtime layer dynamically analyzes both
the static, compiler-supplied hints and
the dynamic, OS-supplied system status
and decides when to issue a request for
either prefetch or release of a page to the
OS. The runtime layer is implemented as
a library that spawns a pool of pthreads

13June 2001 ;login: OSDI 2000 ●

to handle the prefetch and release
requests within the application space.
There are two release policies imple-
mented in the library: aggressive release
and priority-based buffered release.
Experiments were performed using the
out-of-core version of five applications
taken from the NAS Parallel benchmark
suite plus the MATVEC kernel. An SGI
Origin 200 with four processors was used
for the experiments. Overall, the results
showed significant performance
improvements both in dedicated and
multiprogrammed scenarios.

SESSION: SCHEDULING

SURPLUS FAIR SCHEDULING:
A PROPORTIONAL-SHARE CPU SCHEDULING

ALGORITHM FOR SYMMETRIC

MULTIPROCESSORS

Abhishek Chandra, Prashant Shenoy,

and Micah Adler, University of Massa-

chusetts, Amherst; Pawan Goyal, Ensim

Corporation

Summarized by Darrell Anderson

Scheduling is important for diverse Web
and multimedia applications, such as
HTTP, streaming, e-commerce, and
games. Applications are often hosted on
large, multiprocessor servers. A key chal-
lenge is to design OS mechanisms to pro-
vide fair and proportional resource
allocation. Other requirements include
isolating misbehaving or overloaded
applications and achieving low overheads
for efficient implementation in real sys-
tems.

Proportional-share scheduling is one
class of scheduling algorithms that
addresses these requirements. It associ-
ates a weight with each application and
allocates CPU bandwidth proportional to
weight. There are a number of algorithms
in use, but do they work well on multi-
processor systems?

Abhishek Chandra illustrated how one
such algorithm, Start-Time Fair Queuing
(SFQ), can lead to starvation when
scheduling three threads on two CPUs.

This starvation is a result of “infeasible
weight assignment,” where the account-
ing is different from actual allocation. A
simple correction, or “weight readjust-
ment,” can be made limiting any one
thread’s weight to a single CPU’s band-
width, preserving overall weight ratios.
Weight readjustment is efficient, running
in time proportional to the number of
CPUs in the system, and can be incorpo-
rated easily into existing scheduling algo-
rithms.

A second problem arises under frequent
arrivals and departures of short jobs,
which Chandra calls the “short jobs
problem.” Again, SFQ performs correctly
on uniprocessor systems but breaks
down when scheduling across multiple
processors.

Surplus Fair Scheduling (SFS) addresses
this problem. With this algorithm, the
scheduler measures observed processor
bandwidth share, which it compares with
the ideal share, computing the scheduling
surplus for each thread. By scheduling
threads in order of increasing surplus,
the short jobs problem sees fair schedul-
ing on single and multiprocessor systems.

Chandra presented proportional alloca-
tion tests where SFS yields near optimal
allocation. Second, SFS was compared
with time sharing for isolation and
scheduling overhead. SFS provides supe-
rior isolation at modest additional sched-
uling overhead.

Q: Don’t many scheduling algorithms,
such as lottery scheduling, have nearly
trivial extensions for multiprocessor sys-
tems?

A: Lottery scheduling has problems with
proportional share when applied directly
on a multiprocessor. On a multiproces-
sor, tickets do not translate to scheduling
weight.

Q: You claim a proportional-share sched-
uling algorithm will not work well on
multiprocessors. Does your algorithm

scale? What happens to the overhead
with a very large number of processors?

A: We have developed some algorithms
independent of the number of proces-
sors.

Q: How important is the virtual time in
your algorithm?

A: The idea is basically heuristic.

Q: It doesn’t seem that the problem is
inherent in SFQ. It seems you need to
have a notion of a global virtual time,
rather than weight readjustment.

A: We looked at a few algorithms we
could apply, but did not come up with a
simple answer.

For more information, see
<http://lass.cs.umass.edu/software/gms>.

PERFORMANCE-DRIVEN PROCESSOR

ALLOCATION

Julita Corbalán, Xavier Martorell, and

Jesús Labarta, Universitat Politècnica de

Catalunya

Summarized by Darrell Anderson

Performance-driven processor allocation
uses runtime information to make sure
that processors are always in use. The
scheduling problem is how to allocate
processors to applications, both for space
sharing and time sharing. Things work
best when the number of processes is
equal to the number of processors.

Processor allocation should be propor-
tional to application performance. A
drawback of this metric is that applica-
tion performance is not known before
execution. One solution involves a priori
calculation by measuring multiple execu-
tions, using previous results to predict
later performance. Julita Corbalán pro-
posed an alternative approach where
processors are allocated to those applica-
tions that can take advantage of them.
This runtime dynamic performance
analysis approach, called Performance-
Driven Processor Allocation (PDPA)

14 Vol. 26, No. 3 ;login:

requires coordination between medium-
and long-term schedulers.

Corbalán used the NANOS execution
environment on a shared memory multi-
processor. NANOS uses a queuing system
and CPU Manager to schedule OpenMP
parallel applications. The dynamic
performance analysis is done by the Self-
Analyzer, a tool that estimates execution
time for processes.

The SelfAnalyzer remembers baseline
performance results for two and four
processors, which are then used to pre-
dict performance. Performance-driven
processor allocation is space sharing,
allocating for acceptable efficiency.
Processes run to completion with mini-
mum allocation of one processor.
Dynamic partitioning and reallocation is
driven by the runtime system.

Corbalán compared PDPA against three
other multiprocessor schedulers, using
the OpenMP application suite on an SGI
Origin 2000 with 64 processors running
IRIX 6.5.8 and multiprogramming level
set to 4, PDPA performs as well as, and
frequently better than, the competing
schedulers. Corbalán showed different
applications that perform well for one
scheduler, with matching PDPA perfor-
mance. In some cases, PDPA performs
significantly better than all three alterna-
tives. Corbalán observed that it is very
important to provide accurate perfor-
mance information to the scheduler.

For more information, see
<http://www.ac.upc.es/NANOS>.

POLICIES FOR DYNAMIC CLOCK SCHEDULING

Dirk Grunwald and Philip Levis, Univer-

sity of Colorado; Keith Farkas, Compaq

Western Research Laboratory; Charles

Morrey III and Michael Neufeld, Univer-

sity of Colorado

Summarized by Darrell Anderson

“Saving energy or power is important,
both for battery life and at the micro-
architecture level for clock speeds,” said
Michael Neufeld, as he indicated that this

work is a study of proposed algorithms
and is a negative result.

Instantaneous power consumption of
CMOS components is proportional to
the square of voltage, times frequency.
Batteries will perform better if drained at
a lower rate. Secondly, frequency depends
on voltage. Greater voltage permits
higher frequency, to a point. Lower fre-
quencies provide more than linear reduc-
tion in power needs. It is better to run a
system slowly and steadily than to run it
as fast as possible and then shut the
processor off. Clock scaling algorithms
require load prediction and speed adjust-
ment.

Adding to prior work, Neufeld’s contri-
bution includes a real implementation
instead of simulation, focusing on practi-
cal aspects. The authors use an exponen-
tial weighting algorithm proposed in
earlier work, predicting utilization from
earlier intervals. Their implementation
uses a 10 millisecond interval time, look-
ing back three intervals with 50% and
70% busy as thresholds.

They modified the Compaq Itsy to meas-
ure current draw and power consump-
tion with 5,000 samples per second. They
ran the Compaq-modified Linux kernel
v2.0.30, adjusted to perform clock/volt-
age scaling. They also used the Kaffe Java
VM, instrumenting it to record and
replay applications. They ran four appli-
cations, measuring energy and smooth-
ness. Smoothness implies infrequent
changes in clock speed and voltage. They
ran an MPEG player, hoping that its
characteristics would translate well to
clock scaling. In practice, the algorithm
performed only marginally better.

The negative result: weighted averaging
methods do not appear to work well.
What went wrong? Averaging attenuates
oscillations, but does not remove them.
Larger interval history might help, but
would reduce responsiveness. Even if
tuning were possible, it would be fragile.
Also, a linear change in frequency doesn’t

http://lass.cs.umass.edu/software/gms
http://www.ac.upc.es/NANOS

●

C

O
N

FE
RE

N
C

E
RE

PO
RT

S

15June 2001 ;login: OSDI 2000 ●

always mean a linear change in idle time.
The authors don’t have a conclusive
explanation.

Neufeld points out that existing hardware
has only limited voltage-scaling capabili-
ties. A wider range of hardware would be
very useful for experimentation.

SESSION: STORAGE MANAGEMENT

TOWARDS HIGHER DISK-HEAD UTILIZATION:
EXTRACTING “FREE” BANDWIDTH FROM BUSY

DISK DRIVES

Christopher R. Lumb, Jiri Schindler,

Gregory R. Ganger, David F. Nagle,

Carnegie Mellon University; Erik Riedel,

Hewlett-Packard Labs

Summarized by Mac Newbold

“Disk drives increasingly limit perfor-
mance in many computer systems,” Greg
Ganger pointed out as he explained the
need for better utilization of disk band-
width. His presentation outlined a
method of scheduling disk accesses that
can extract an additional 20–50% of a
disk’s potential bandwidth without
affecting the service times of the original
requests. Their method describes two
pools of requests: foreground requests,
which include the normal and high-pri-
ority workload of the disk, and back-
ground requests, low-priority tasks that
must get done but whose time of com-
pletion is less important. This “free”
bandwidth is extracted by scheduling the
low-priority requests between high-pri-
ority ones so that time normally spent on
rotational latencies gets used for back-
ground reads and writes.

Typical disk use generally requires the
disk heads to spend a relatively large
amount of time seeking the desired track
and waiting for the desired sectors to
rotate to the disk head. These are the seek
time and the rotational latency, respec-
tively. The seek time is inevitable. How-
ever, the rotational latency can be used
for other reads without affecting the
time the original request would take. The
authors call this process freeblock schedul-
ing.

The effectiveness of freeblock scheduling
relies on the ability to find background
requests that fit well between the fore-
ground requests. Tasks that are most
appropriate for this are processes that are
low priority, have large sets of desired
blocks, require no particular order of
access, and have small working memory
footprints. Applications that fit these
requirements include those that perform
scanning, internal storage optimization,
or prefetching and prewriting.

The actual results published in the paper
are very promising. They demonstrate
that for a process that wants to read the
entire disk in the background, the full
potential free bandwidth (35–40% of
total potential) can be utilized until over
90% of the disk has already been
scanned, and even until the entire disk
has been scanned, over half of the poten-
tial free bandwidth can actually be uti-
lized. They also show increases of disk
bandwidth utilization on the order of 10
times that of the original utilization.

It remains to be seen how much of this
scheduling can be done outside of mod-
ern disk drives, given the complexity of
their internal algorithms and the lack of
low-level interfaces. If freeblock schedul-
ing indeed proves to be compatible with
modern disk-drive technology, it could
be very beneficial and could significantly
increase disk bandwidth.

LATENCY MANAGEMENT IN STORAGE SYSTEMS

Rodney Van Meter, Quantum Corpora-

tion; Minxi Gao, University of Califor-

nia, Berkeley

Summarized by Vijay Gupta

Rodney Van Meter indicated that the pri-
mary motivation for this work was the
11-orders-of-magnitude difference
between latency of access to a tape and
that of access to RAM.

To address the above problem, the
authors proposed the concept of Storage
Latency Estimation Descriptors (SLEDs).
An API, SLEDs allow applications to

understand and take advantage of the
dynamic state of the storage system.
SLEDs are complementary to the notion
of hints (which are used in transparent
informed prefetching). Whereas hints are
given by applications to the OS, SLEDs
are given by the OS to the applications.

Van Meter motivated the use of SLEDs by
giving the example of an application
which makes two sequential passes over a
file. Suppose there are three pages in the
buffer, and the file size is five pages. If the
page replacement strategy is LRU, then
the second pass will have five hard faults.
On the other hand, SLED reorders reads
in the second pass so that there are only
two hard faults. Thus reordering I/Os
yields large gains.

The SLEDs were added to v2.2.12 of the
Linux kernel. The authors added new
ioctl options which return SLEDs data. In
addition, they modified several UNIX
utilities such as find, wc, grep and GMC
(which is a GUI file manager) to assess
the benefit of SLEDs. wc reorders I/O;
grep reorders and prunes directory
search trees; find uses their -latency pred-
icate. The feature of the -latency predi-
cate is that if the latency to access some
portion of the file system is going to be
beyond the specified latency, then that
portion of the file system would be
skipped.

Then Van Meter presented a large, com-
plex example of an astronomy applica-
tion (LHEASOFT) which is made up of
840,000 lines of C and Fortran. It has a
100,000-line I/O library. The application
was modified to reorder the I/O opera-
tions. This reordering achieved 11–25%
reduction in execution time in spite of
the fact that the program was already
optimized with the I/O library.

Overall, the paper raised some very
important issues for heterogeneous sys-
tems, which are becoming increasingly
common.

A LOW-OVERHEAD, HIGH-PERFORMANCE

UNIFIED BUFFER MANAGEMENT SCHEME THAT

EXPLOITS SEQUENTIAL AND LOOPING

REFERENCES

Jong Min Kim, Jongmoo Choi, Jesung

Kim, Sang Lyul Min, Yookun Cho, and

Chong Sang Kim, Seoul National Uni-

versity; Sam H. Noh, Hong-Ik Univer-

sity;

Summarized by Tamara Balac

This talk focused on a new solution to an
old problem. The problem is determining
which pages the OS should cache in the
main memory. The motivation for their
solution approach was that LRU has
problems for sequential and looping ref-
erences. If the access is purely sequential,
then caching recently used pages is
wasteful. If the access is looping, then
LRU cannot figure it out. To overcome
this difficulty, they proposed a new con-
cept called Inter-Reference Gap (IRG).
IRG for a block is the difference between
the points when the block is successively
accessed.

The types of references which the authors
considered are: sequential, looping, and
other. They developed a new scheme,
called unified buffer management (UBM),
which includes automatic detection,
replacement, and allocation, to exploit
these references.

In automatic detection, they take into
account “fileID, start, end, period” for
references. Initially, the period is infinity.
As more references are encountered, the
period is adjusted. For sequential access,
the period always stays at infinity. But in
the case of looping references, there is a
definite period. For replacement, they
adopt different schemes depending on
the type of reference. For sequential
access, they use MRU; for looping refer-
ences, they use a period-based replace-
ment scheme; and for other references,
they use LRU. The allocation scheme is a
bit too mathematical to explain here,
although the intuition involves using
marginal gains and IRG.

16 Vol. 26, No. 3 ;login:

To wrap up, Noh showed the results for
trace-driven simulations and showed
graphs for how UBM takes into account
the looping references.

SESSION: SECURITY

HOW TO BUILD A TRUSTED DATABASE ON

UNTRUSTED STORAGE

Umesh Maheshwari, Radek Vingralek,

and William Shapiro, STAR Lab,

InterTrust Technologies Corporation

Summarized by Tamara Balac

Digital rights management protects
rights of the provider (i.e., database bal-
ances, contracts). Existing systems are
missing trusted storage in bulk. Umesh
Maheshwari presented a Trusted Data-
Base system (TDB) that resists accidental
and malicious corruption by using
Crypto Basis, which leverages persistent
storage in a trusted environment.

The TDB architecture consists of three
layers: a Collection Store, an Object
Store, and a Chunk Store. The Chunk
Store provides trusted storage for vari-
able-sized sequences of bytes which are
the unit of encryption and validations
(100B–10KB). The Object Store manages
a set of named objects. The Collection
Store manages a set of named collections
of objects.

Performance evaluation demonstrated
that Crypto overhead is small compared
to I/O and that TDB performs well com-
pared to commercial packages (e.g.,
XDB).

END-TO-END AUTHORIZATION

Jon Howell, Consystant Design

Technologies; David Kotz, Dartmouth

College

Summarized by Mac Newbold

In a very entertaining presentation, Jon
Howell explained the need for an end-to-
end authorization scheme. Currently,
when a local user needs to grant access to
a resource to a non-local user, it creates
an authentication problem, because the
server doesn’t know about the non-local

user. Typically this is solved by creating
an account locally for the non-local user
by sharing passwords, or by installing a
gateway that is implicitly trusted by the
server, all of which we know have many
weaknesses. The solution proposed by
Howell is a system for delegating author-
ity in a way that the server has a complete
proof of correctness and an audit trail for
the access the remote user was given.

The system is based on delegations. For
instance, local user Alice wants to give
remote user Bob access to some of her
files. So she delegates her authority over
those files to Bob. Then when Bob asks
for file X in that set of files, the server is
presented with a collection of statements:
first the request, “Bob wants to access file
X,” then the delegation, “Bob speaks for
Alice concerning file X,” and finally the
basis for delegation, “Alice owns file X.”
The server then can make a decision
about allowing Bob to access X, instead
of relying on one or more gateways to
decide. In this scheme, gateways are
required only for translation and relay of
requests and proofs. Of course, at this
point, the client trusts the gateway not to
abuse its authority. To deal with this, a
gateway authentication scheme can be
used.

One advantage of a system like this is
that the gateway is very simple. It only
needs to carefully quote each request and
only use Alice’s authority for Alice’s
requests. It need not make access deci-
sions. This also allows for multiple gate-
ways to bridge the gap between client and
server, and ultimately the server is the
one who grants or denies access.

The implementation of the authorization
scheme uses Simple Public Key Infra-
structure (SPKI) and is part of the
Snowflake project. The paper includes
performance evaluations that reflect
some additional overhead for the end-to-
end authorization but points out that a
large part of the added overhead is
directly attributed to slow and inefficient

●

C

O
N

FE
RE

N
C

E
RE

PO
RT

SSPKI libraries. It is estimated that opti-
mized SPKI libraries would perform
almost as well as a Java and Java SSL
implementation of HTTP authorization.
Because Snowflake performs steps that
very closely correspond to those per-
formed by SSL, most of which are com-
putationally expensive cryptographic
operations, it is expected that an opti-
mized Snowflake would perform as well
as SSL plus a small overhead for the
proving steps that are not performed by
SSL. These results show that their tech-
nique is potentially a very valuable
resource for end-to-end authentication.

SELF-SECURING STORAGE: PROTECTING DATA

IN COMPROMISED SYSTEMS

John D. Strunk, Garth R. Goodson,

Michael L. Scheinholtz, Craig A. N.

Soules, Gregory R. Ganger, Carnegie

Mellon University

Summarized by Tamara Balac

Intrusions are a fact of modern comput-
ing. What are system administrators to
do? Diagnosis and recovery. Nevertheless,
the major problem with diagnosis and
recovery is that intruders can manipulate
ALL stored information.

John Strunk presented an implementa-
tion of a Self-Securing Storage System,
named S4, that prevents undetectable
modifications by providing a complete
history of all modifications. S4 is a sepa-
rate piece of hardware that runs a sepa-
rate operating system. The next step is to
add internal reasoning and auditing, by
creating a new version (called collec-
tions) on every write, and to store these
for a guaranteed amount of time (called
detection window).

The benefits of S4 include providing an
opportunity to analyze security compro-
mises, enabling speedy recovery, and
allowing recovery from accidents (like
accidental file modifications).

Diagnostic comparison of S4 and con-
ventional systems showed that conven-
tional systems use guessing, while S4’s

17June 2001 ;login: OSDI 2000 ●

audit log shows the sequence of storage
events. Additionally, an S4 administrator
can recreate the state of the storage at any
point of time.

Feasibility evaluation showed that large
detection windows, even multi-week
detection windows, are possible. More
importantly, the performance overhead
was less than 15%.

FAST AND SECURE DISTRIBUTED READ-ONLY

FILE SYSTEM

Kevin Fu, M. Frans Kaashoek, and David

Mazières, MIT Laboratory for Computer

Science

Summarized by Vijay Gupta

The motivation for this talk was that
Internet users increasingly rely on pub-
licly available data for everything from
software installation to investment deci-
sions. Unfortunately, the vast majority of
public content on the Internet comes
with no integrity or authenticity guaran-
tees. This work uses a secure file system
(SFS) that was built by the authors and
presented at SOSP 1999.

David Mazières started off by providing
an example of installing an OS over the
network. He also gave reasons why peo-
ple avoid security: performance, scalabil-
ity, reliability, and convenience. Another
issue in a distributed system is that the
more replicas you have, the greater the
chance of a break-in. To mitigate this
problem, people resort to ad hoc solu-
tions. As an example, lots of software
packages contain PGP signatures. The
problem with PGP is that it is not general
purpose; most users ignore signatures,
and it requires the continued attention of
the user.

So, they propose a self-certifying read-
only file system , which has been designed
to be widely replicated on untrusted
servers. This acts as a content distribu-
tion system providing secure, scalable
access to public, read-only data. With
this, one can publish any data. It is con-
venient because you can access it from

any application. It is scalable because
publishing has been separated from the
distribution infrastructure.

In their approach, an administrator cre-
ates a database of a file system’s contents
and digitally signs it offline using the file
system’s private key. The administrator
then widely replicates the database on
untrusted machines. Client machines
pick their data from these machines and
before data is returned to the applica-
tions, SFS checks the authenticity of data.
The good thing about their approach is
that no cryptographic operations are
performed on servers, and the overhead
of cryptography on the clients is low.
This is accomplished using collision-
resistant cryptographic hashes. For
details about the scheme, the interested
reader is referred to the paper.

The read-only file system is implemented
as two daemons (sfsrocd and sfsrosd in
the SFS system). A performance evalua-
tion shows that sfsrosd can support
1,012 short-lived connections per second
on a PC, which is 92 times better than a
secure Web server. Finally, Mazières also
mentioned the necessity of periodically
re-signing data and putting them on to
the server to prevent break-ins.

For more information, see
<http://www.fs.net>.

SESSION: NETWORKING

OVERCAST: RELIABLE MULTICASTING WITH AN

OVERLAY NETWORK

John Jannotti, David K. Gifford, Kirk L.

Johnson, M. Frans Kaashoek, James W.

O’Toole Jr., Cisco Systems

Summarized by Mac Newbold

Overcast addresses many of the problems
with current multicasting solutions in
the Internet. One option is IP multicast,
but it has several weaknesses. It can only
be used for live transmission, has no
delivery guarantees, requires support in
routers, servers, and clients, and makes
accurate billing and good security nearly
impossible. Another alternative is a con-

http://www.fs.net

tent distribution system, which provides
on-demand content. But it doesn’t per-
form so well with live content, often is
not scalable, and doesn’t allow for nodes
to be added or deleted on the fly.

John Jannotti indicated that Overcast
provides a unified reliable multicast solu-
tion. It is self-organized, handles live,
time-delayed, and on-demand content,
and any HTTP client can join without
modification. As an overlay network, it is
also incrementally deployable and
requires no special support from the
underlying network or its routers. It uses
HTTP over TCP port 80 and has other
features that make it compatible with
NATs, firewalls, and HTTP proxies.

One key to the Overcast design is the
process of building an efficient multicast
distribution tree. The source of the mul-
ticast is designated as the root of the tree,
and any nodes that want to join contact
that root node and attach to the tree as
its child. Periodically, each node consid-
ers its “sibling” nodes and “grandparent”
nodes as possible new parents. If it finds
that its connection to a sibling node is
better than its connection to its current
parent (for instance, in terms of latency,
bandwidth, or hop counts), it makes that
sibling node its new parent. It could also
find that a connection directly to its
grandparent would be a better connec-
tion than through its current parent, and
it would, in effect, become a sibling to its
parent node. This protocol makes the
topology flexible when faced with chang-
ing network conditions.

Overcast uses only “upstream” connec-
tions when contacting other nodes; that
is, the child always must establish a con-
nection with the parent. This ensures
that HTTP proxies and NATs do not
interfere with Overcast functionality. For
this reason, an up/down protocol was
created for maintaining information
about node status. It requires each node
to check in with its parent periodically,
and if it misses a check-in, it is consid-

18 Vol. 26, No. 3 ;login:

ered dead. Through the use of “death cer-
tificates” and “birth certificates,” it noti-
fies the hierarchy of changes in topology.
A key to scalability here is a system for
quenching messages that aren’t necessary
for nodes further up the hierarchy. Over-
cast network usage for these messages
scales sublinearly, and space usage on the
root node is linear, but even in a group of
millions of nodes, total RAM cost for the
root would be under $1,000.

Jannotti referred to the paper which also
outlines a system for replicating the root
node to increase reliability of the root
server itself. The system uses techniques
used by normal redundant server setups,
such as DNS redirection or round-robin
load balancing and, in the case of a failed
server, IP address takeover. The Overcast-
specific solution is to replicate root state
by setting up the servers linearly, with
each replicated root being the only child
of the root node above it, so that the rest
of the hierarchy is descended from each
of the root nodes. This way when one
fails, another can immediately take over
without any interruption of service or
loss of state.

Jannotti concluded that the reliable mul-
ticast solution proposed in Overcast is a
very feasible solution in terms of deploy-
ability, scalability, efficiency, flexibility,
and usability in real-world situations.

SYSTEM SUPPORT FOR BANDWIDTH

MANAGEMENT AND CONTENT ADAPTATION

IN INTERNET APPLICATIONS

David Andersen, Deepak Bansal,

Dorothy Curtis, and Hari Balakrishnan,

MIT Laboratory for Computer Science;

Srinivasan Seshan, Carnegie Mellon Uni-

versity

Summarized by Vijay Gupta

David Andersen opened his talk by say-
ing that the primary motivation of the
work was to facilitate end-to-end conges-
tion control. TCP uses an additive
increase, multiplicative decrease (AIMD)
scheme for congestion control. That’s
wonderful for FTP and email, which use

just one TCP connection. But HTTP uses
four connections in parallel between the
same two endpoints in the Internet. Fur-
thermore, not all applications necessarily
need the reliability of TCP, so such appli-
cations use UDP. To make them TCP-
friendly, they end up using some
home-grown congestion control. The
goal of this work is to have some kernel-
level mechanisms to facilitate TCP
friendliness.

Andersen showed where the congestion
controller occurs in the Linux kernel,
where they implemented their scheme.
They use callbacks for orchestrating
transmissions and application notifica-
tion. The clients for these callbacks are
in-kernel TCP clients.

The implementation handles flow con-
trol and congestion control. It also has a
user-level rate callback API, called libcm,
which tells if bandwidth goes up by some
factor (e.g., a factor of 2).

Andersen addressed evaluation issues
such as the impact on the network and
on the connections. Their approach has a
positive effect on the TCP friendliness of
host-to-host flows, although the
throughput of the connections may be
slightly worse.

For testing the flow integration, they
used a series of Web-like requests on the
Utah testbed (see
<http://www.cs.utah.edu/flux/testbed/>).
Andersen also presented graphs to show
that congestion manager (CM) is effi-
cient, and he then showed some results
for layered MPEG-4 (which is not in the
paper). He also said that implementing
an adaptive visual audio toolkit (vat) was
very trivial using the CM toolkit.

For more information, see
<http://nms.lcs.mit.edu/projects/cm/>.

http://www.cs.utah.edu/flux/testbed/>
http://nms.lcs.mit.edu/projects/cm/>.

●

C

O
N

FE
RE

N
C

E
RE

PO
RT

SSESSION: STORAGE DEVICES

OPERATING SYSTEM MANAGEMENT OF

MEMS-BASED STORAGE DEVICES

John Linwood Griffin, Steven W.

Schlosser, Gregory R. Ganger, and David

F. Nagle, Carnegie Mellon University

Summarized by Vijay Gupta

John Griffin began the talk with an
overview of microelectromechanicals
(MEMS) and MEMS-based storage
devices. MEMS is a new storage technol-
ogy currently under development in
industry and academia. Real-life systems
such as car airbags already use them. The
results in this paper are based on collabo-
ration with the MEMS lab at CMU.

The real advantage of MEMS-based stor-
age devices is that the seek time is an
order of magnitude less than with disks.
The purpose of the talk was to show that
work on disk-scheduling algorithms is
also applicable to MEMS-based storage
devices. This was shown through a vari-
ety of graphs which had the same shape
for disk-scheduling and MEMS-based
storage.

An interesting aspect of MEMS-based
storage is that the access is faster for data
in the center, and slower for data at the
borders. So the authors suggest that the
center be used for metadata and small
objects, and that the border be used for
large-streaming media objects.

During Q&A, one person asked about
price/GB, and Griffin said that it might
be cheaper than hard disk. Someone else
asked when we could see them in real
systems, and he replied that it could be
expected in a few years. For power
requirements, he referred to their
upcoming ASPLOS paper, while for
MTTF, Griffin responded that he did not
have an answer.

For more information, see
<http://lcs.Web.cmu.edu/research/MEMS
>.

19June 2001 ;login: OSDI 2000 ●

TRADING CAPACITY FOR PERFORMANCE

IN A DISK ARRAY

Xiang Yu, Benjamin Gum, Yuqun Chen,

Randolph Y. Wang, Kai Li, Princeton

University; Arvind Krishnamurthy, Yale

University, Thomas E. Anderson, Univer-

sity of Washington

Summarized by Vijay Gupta

Large disks are now available for a frac-
tion of what they used to cost, and hence,
one can be more creative about how to
use them. In this paper, Randolph Wang
proposes a way to reduce the usage level
of disks.

Since the access times between memory
and disks keeps on increasing, RAID sys-
tems were made to improve the read/
write throughput of the systems and to
improve reliability. However, this work
goes beyond RAID by contributing an
SR-array, which flexibly combines strip-
ing with rotational replication to reduce
both seek and rotational delay. The aver-
age seek distance becomes less than one-
third of the ratio of the maximum to
average rotational delay, and the rota-
tional delay for reads is reduced to half.

Wang went on to show some of the equa-
tions which they derived as part of their
theoretical model. They have a prototype
MimdRAID implementation (which is a
simulator) that puts the theory to test.
The bottom line was that the MimdRAID
prototype can deliver latency and
throughput results unmatched by con-
ventional approaches.

For more information, see

<http://www.cs.princeton.edu/~rywang/mimdraid>.

INTERPOSED REQUEST ROUTING FOR SCALABLE

NETWORK STORAGE

Darrell C. Anderson, Jeffrey S. Chase,

Amin M. Vahdat, Duke University

Summarized by Mac Newbold

Jeff Chase described a new storage system
architecture called Slice. It takes advan-
tage of high-speed networks to interpose
a request switching filter, a microproxy or

µproxy, and presents an NFS interface to
clients that has a back end which scales
well in both bandwidth and capacity.

Because of recent advances in LAN
performance, a specialized Storage Area
Network (SAN) with faster network con-
nections (like Fibre Channel) is no
longer required, and similar approaches
can be used in a LAN environment to
provide scalable network storage. The
Slice file service is a group of servers that
cooperate to provide an arbitrarily large
“virtual volume” to a client, who sees it as
a single file server. Client requests are
separated into three classes: high-volume
I/O to large files, I/O on small files, and
operations on namespace or file attrib-
utes. This diverts high-volume data flow
around manager nodes and allows spe-
cialization of the servers for each type of
data.

The µproxy handles all bulk I/O requests
and was designed to be small, simple, and
fast. It has been implemented as a load-
able packet filter module for FreeBSD. It
may rewrite source or destination
addresses or other fields in request and
response packets. It maintains a bounded
amount of soft state that is not shared
across clients, so it can easily be placed
on the client itself, in a network interface,
or in a network element close to the stor-
age servers. All of its functions can be
replicated freely to provide scalability,
with the constraint that requests for a
given client all pass through the same
µproxy. The µproxy routes requests
directly to the storage array without any
further intervention by management
nodes.

The storage nodes themselves use an
object-based method as opposed to sec-
tor-based. This feature lets the µproxy be
located outside of the server’s trust
boundary and use encryption to protect
object identifiers, limiting damage from a
compromised µproxy to those files and
directories that its clients have permis-
sion to access. Slice is also compatible

http://lcs.Web.cmu.edu/research/MEMS
http://www.cs.princeton.edu/~rywang/mimdraid

with sector-based storage if every µproxy
is trusted. Redundancy can also be pro-
vided at two levels, either internally to
each storage node or across nodes
through mirroring and striping. It can be
configured on a per-file basis, and a Slice
configuration could even use redundancy
at both levels for stronger protection.

The two types of management nodes, the
directory servers and the small file
servers, take load off of the storage nodes
and allow for further specialization for
these types of operations. These man-
agers are data-less, and all their state
comes from the storage arrays, so they
provide only memory and CPU resources
to cache and manipulate the structures.
The directory server handles all lookups,
creation, renaming, and deletion of
directories and files and their attributes.
The small file servers provide more effi-
cient space allocation and file growth, as
well as batching of multiple small
requests into larger ones for efficient disk
writes. The managers also help provide
atomicity and recovery features through
a write-ahead log and two-phase com-
mits.

Performance data indicates that Slice
does indeed scale very well. Name-inten-
sive benchmarks showed directory serv-
ice can be improved simply by adding
more directory server sites, and for any
given configuration, the performance
scales linearly with the number of clients.
Performance was evaluated with the
industry-standard SPECsfs97 bench-
mark, and Slice kept up perfectly with the
offered load up to its saturation point,
which can be easily raised by adding
more storage nodes.

Slice definitely provides a network stor-
age solution that is scalable, reliable,
practical, easy to upgrade, and compara-
ble to similar commercial solutions in
terms of performance. With benefits like
these, we are sure to hear more about
Slice in the near future.

20 Vol. 26, No. 3 ;login:

For more information, see
<http://www.cs.duke.edu/ari/slice/>.

SESSION: RELIABILITY

PROACTIVE RECOVERY IN A

BYZANTINE-FAULT-TOLERANT SYSTEM

Miguel Castro and Barbara Liskov, MIT

Laboratory for Computer Science

Summarized by Tamara Balac

Today’s computer systems provide crucial
information and services which make
them more vulnerable to malicious
attacks and make the consequences of
these attacks, as well as software bugs,
more serious. As an alternative to the
usual technique of rebooting the system,
this paper proposes a new means of sys-
tem recovery that does not use public key
cryptography.

Miguel Castro presented an asynchro-
nous state-machine replication system
that offers both integrity and high avail-
ability and is able to tolerate Byzantine
faults which can be caused by malicious
attacks or software errors. The paper
presents a number of new techniques,
like proactive recovery of replicas, fresh
messages, and efficient state transfer,
needed to provide good recovery service.

The task of recovery from Byzantine
faults is made harder by the fact that the
recovery protocol itself needs to tolerate
other Byzantine-faulty replicas. Attackers
must be prevented from impersonating
recovered replicas. The advantage of this
system over previous state-machine
replication algorithms is the use of sym-
metric cryptography for authentication
of all protocol messages, which bypasses
the major public key cryptography bot-
tleneck.

This algorithm has been implemented as
a simple interface, generic program
library that can be used to provide
Byzantine-fault-tolerant versions of dif-
ferent services.

For more information, see
<http://www.pmg.lcs.mit.edu>.

http://www.cs.duke.edu/ari/slice/
http://www.pmg.lcs.mit.edu>.

●

C

O
N

FE
RE

N
C

E
RE

PO
RT

SEXPLORING FAILURE TRANSPARENCY AND THE

LIMITS OF GENERIC RECOVERY

David E. Lowell, Western Research Lab-

oratory, Compaq Computer Corpora-

tion; Subhachandra Chandra and Peter

M. Chen, University of Michigan

Summarized by David Oppenheimer

David Lowell described the abstraction of
“failure transparency,” in which an oper-
ating system provides the illusion of fail-
ure-free operation by automatically
recovering applications after hardware,
operating system, or application failures
without explicit programmer assistance.
His work proposes two invariants that
must be upheld to achieve failure trans-
parency. The “save-work invariant” speci-
fies what application state must be
preserved to mask the failures. The “lose-
work invariant” specifies what applica-
tion state must be discarded to allow
recovery from failures that affect the
application state.

Lowell’s theory defines a space of recov-
ery protocols. Each point in the space
represents a different technique for
upholding save-work. One axis of this
space is the effort made to commit only
visible events, while the other is the effort
made to identify and convert non-deter-
ministic events. Lowell mapped a num-
ber of protocols onto this space and
discussed how performance, simplicity,
reliability, recovery time, and other
design variables vary over the space.

Lowell presented performance results,
using “save-work invariant,” for four
applications: nvi, magic, xpilot, and Tread-
Marks. He ran each application on a
number of protocols from the protocol
space. For these applications he found an
overhead of 0–12% when his recovery
system used reliable memory as stable
storage. He found overhead of 13–40%
for the interactive workloads when using
disk as stable storage.

In addition to nvi, Lowell used postgres
for measuring performance with “lose-
work invariant.” By injecting faults into

21June 2001 ;login: OSDI 2000 ●

nvi and postgres, Lowell also measured
the fraction of application faults that vio-
late lose-work by committing after the
fault is activated. He found that uphold-
ing save-work for these applications
caused them to violate lose-work in at
least 35% of application crashes from
non-deterministic faults. Merging this
result with published fault distributions,
he estimated that perhaps greater than
90% of application crashes in the field
violate lose-work, making application
generic recovery impossible in those
cases.

Because operating system faults often do
not manifest as propagation failures, OS
faults cause violation of lose-work less
frequently than application faults. Lowell
presented fault-injection study results in
which nvi and postgres violated lose-
work in 15% and 3% of OS crashes,
respectively.

Lowell concluded that for stop failures,
which do not require upholding lose-
work since by definition they crash the
application before corrupting any appli-
cation state, low-overhead failure trans-
parency is possible for many real
applications. Recovering from propaga-
tion failures is much more difficult
because upholding save-work often
forces violation of lose-work. From this
study, Lowell concluded that providing
failure transparency for stop failures is
feasible, but that recovery from propaga-
tion failures cannot be accomplished
transparently and must involve help from
the application.

During Q&A, conference attendees asked
about the feasibility of rebooting applica-
tions as a mechanism for stopping a pro-
gram before an error has propagated, and
the difference in the chance of violating
lose-work for hardware failures as
opposed to software failures.

For more information, see
<http://www.eecs.umich.edu/Rio>.

DESIGN AND EVALUATION OF A CONTINUOUS

CONSISTENCY MODEL FOR REPLICATED

SERVICES

Haifeng Yu and Amin Vahdat, Duke

University

Summarized by David Oppenheimer

Amin Vahdat described the design and
evaluation of TACT, a continuous consis-
tency model for replicated services. This
model proposes a continuous range of
consistency options for distributed appli-
cations, rather than simply the tradi-
tional strong and optimistic concurrency
policies. By proposing a set of metrics to
quantify the consistency spectrum —
numerical error, order error, and stale-
ness — TACT allows the investigation of
tradeoffs among consistency, availability,
and performance as consistency policies
are varied in the space between strong
and optimistic concurrency.

Applications that use TACT specify their
desired consistency semantics using
conits. A conit is a three-dimensional
vector associated with each application-
specific physical or logical unit of consis-
tency (e.g., a block of seats on a flight in a
distributed airline reservation system).
The three elements of a conit are numer-
ical error, which bounds the discrepancy
between the local value of a piece of data
and the value in the “final image” of the
data; order error, which bounds the dif-
ference in the order in which updates are
applied to a local replica and the ordering
of those updates in the “final image”; and
staleness, which specifies a maximum
amount of time before a non-local write
is accepted to be applied locally. Bayou-
style anti-entropy is used as the mecha-
nism for maintaining consistency among
replicas.

TACT is implemented as a middleware
layer that enforces the consistency
bounds specified by the application’s
conits. It allows applications to dynami-
cally trade consistency for performance
based on service, network, and request
characteristics. Three systems have been

http://www.eecs.umich.edu/Rio

built using the TACT platform: a bulletin
board, an airline reservation system, and
a system for enforcing quality of service
(QoS) guarantees among distributed
Web servers. For these systems Vahdat
evaluated such issues as latency for post-
ing a bulletin board message as a func-
tion of the numerical error bound;
reservation conflict rate, throughput, and
reservation latency as a function of
inconsistency in the airline reservation
system; and number of consistency mes-
sages as a function of relative error for
the distributed Web server QoS system.

During Q&A, Vahdat indicated that his
group is currently investigating issues
such as how responsive the system is to
rapid variation in desired consistency
levels and how much effort is required by
a programmer to incorporate conits into
an application.

For more information, see <http://www.
cs.duke.edu/ari/issg/TACT/>.

SESSION: SYSTEM ARCHITECTURE

SCALABLE DISTRIBUTED DATA STRUCTURES

FOR INTERNET SERVICE CONSTRUCTION

Steven D. Gribble, Eric A. Brewer,

Joseph M. Hellerstein, and David Culler,

University of California, Berkeley

Summarized by Mac Newbold

Building and running a cluster-based
Internet service is hard. Steven Gribble
explained the implementation of a Dis-
tributed Data Structure (DDS) that is
designed to be a reusable storage layer for
Internet services. The goals of the DDS
are to be scalable, highly available and
reliable in the face of failures, to maintain
strict consistency of distributed data, and
to provide operational manageability. In
particular, they have designed and imple-
mented a distributed hash table that
meets these goals.

The basic design starts with a cluster.
This provides low latency, redundancy,
and makes a two-phase or multiple
round-trip system feasible. All instances
of the service see the same data structure,

22 Vol. 26, No. 3 ;login:

so any client can work with any server for
any transaction, which simplifies load
balancing and request routing.

This design provides incremental scala-
bility as nodes are added to the cluster
and was tested up to terabytes of storage
space. Because individual nodes and
disks might fail, each partition of data is
replicated on multiple nodes, forming a
replica group, which are all kept strictly
coherent. Any replica can service a data
lookup, but any state changes must hap-
pen in all replicas.

A simple algorithm is also in place to
provide fault tolerance. If a replica
crashes, it is simply removed from the
replica group and operation continues.
When a node joins or rejoins a replica
group, the partitions that it will duplicate
are copied from existing replicas, and the
node is added to the replica group. Indi-
vidual partitions are kept small (approxi-
mately 100MB), so that an entire data
partition can be copied in 1 to 10 seconds
(given a 100Mbps to 1Gbps network).
The partition to be copied is locked by
the joining node, copied, and the replica
group maps are updated, and the locks
are released. Any write operations on that
partition will have failed during that
time, but after the lock is released, retries
will succeed.

Performance data shows that the maxi-
mum throughput of the DDS scales lin-
early with the number of bricks. Read
operations also scale linearly up to the
saturation point, where read throughput
plateaus, but again, by adding bricks, the
throughput is increased. Write operations
run into problems, however, because
garbage collection ends up causing an
imbalance between the nodes in a replica
group, and because the writes have to
happen on all replicas, the slow one
becomes the bottleneck. Even perfor-
mance in recovery was very promising;
an N-brick DDS during a single failure
and recovery appeared to yield perfor-
mance near to that of an (N-1)-brick

DDS, except that the partitions on the
failed brick were available only for read-
ing.

An example of the usefulness of DDS for
rapid construction of Internet Services is
Sanctio, an instant messaging gateway. It
translates between ICQ, AOL’s AIM pro-
tocol, email, and voice messaging over
cellular phones. It also uses AltaVista’s
BabelFish to do language translation.
During his presentation, Gribble told of
using Sanctio to translate his English
ICQ connection to an Italian AIM con-
nection to communicate with a friend’s
grandmother in Italy. Using DDS for its
storage, Sanctio was completed in less
than one person month, and the code
that interacts with the DDS took less
than a day to develop.

This work shows that a Distributed Data
Structure can provide a scalable, highly
available, reliable, consistent, and easy-
to-use interface to network storage, and
shows its usefulness for constructing
Internet services.

PROCESSES IN KAFFEOS: ISOLATION,
RESOURCE MANAGEMENT, AND SHARING IN

JAVA

Godmar Back, Wilson H. Hsieh, and Jay

Lepreau, University of Utah

Summarized by Tamara Balac

Godmar Back described the design and
implementation of KaffeOS, a Java vir-
tual machine that supports the operating
system abstraction of a process and pro-
vides the ability to isolate applications
from each other or to limit their resource
consumption and still share objects
directly. Processes enable several impor-
tant features. First, the resource demands
for Java processes can be accounted for
separately, including memory consump-
tion and GC time. Second, Java processes
can be terminated, if their resource
demands are too high, without damaging
the system. Third, termination reclaims
the resources of the terminated Java
process.

http://www

24 Vol. 26, No. 2 ;login:

needles in the
craystack: when
machines get sick

DEDICATED TO THE MEMORY OF

CLAUDE SHANNON (1916-2001)

Part 4: Entropy: The Good, the Bad, and
the Aged
You and I, and everyone on the planet, are doomed to die because of a

memory leak in the human genome. For better or for worse, whether bug or

a feature, DNA contains a sequence of repeated molecular material called

telomeres which is used in the unzipping and replication of the DNA strand.

Each time DNA is replicated, one of these telomeres is used up and does not

get transferred to the copy. Finally, after 50 or so forks, all the telomeres

have been used up, and the cell replication program crashes. It is a classic

case of unlimited use of limited resources.

Enzyme telomerase is a garbage collection agent which returns this resource to the
resource pool. In the growing fetus, it is hard at work, rejuvenating the stem cells which
provide the clay for the developing body. But in time it ceases to be produced and the
telometer starts clocking up our fare.

Runaway resource usage is nothing to write home about. It is happening all around us.
Until the recent trend toward recycling made a small dent in a huge problem, most of
the Earth’s resources were harvested and disposed of in such a way that they were unre-
coverable. We think little about waste. We consume and we abandon. What we abandon
is even toxic to the system: fuel emissions, for example, produce poisonous gases, upset
the greenhouse balance and even the protective ozone layer. Klondike Pete with his
trusty mule searched the hills for years to dig up a few grams of gold, only for future
generations to spread it thinly over electronic devices, which are now being buried
under piles of dirt, when we are bored with them so that the gold can never be recov-
ered. Burying nuclear waste might frighten some, but burying precious resources is a
more certain threat to our future.

With computers we see the same phenomenon not only in the disposal of hardware, the
circuitry, and the cases, but also with the resources of the software: disk space is used
wastefully (lack of tidying, growing log files), memory leaks in buggy software (never
frees RAM or disk), creeping featurism in software (placing ever greater demands on
resources). DOS attacks and spam take advantage of the limitation of finite resources
and show us the folly of presumption. The idea that we should reduce our consumption
of precious resources is not a popular paradigm in contemporary Western society, but it
will be a necessary one.

Environmentally conscious observers have long pointed out the negative effects of
resource abuse on the environment, but it is less common to point out the steady
decline of our resource pool. It is not just fossil fuels, but metals, forests, and biodiver-
sity itself which are at risk. This familiar problem has always existed and will always
exist, because resources are inevitably finite.

Availability of resources has been discussed in many contexts, but all examples of
resource depletion are essentially symptomatic of a fundamental phenomenon: the
build-up of useless information, of waste. In the safe abstract world of physics, this phe-
nomenon acquired the name of entropy. The concept was originally used in the study of

by Mark Burgess

Mark is an associate
professor at Oslo
College and is the
program chair for
LISA 2001.

<Mark.Burgess@iu.hio.no>

June 2001 ;login:

●

C

O
M

PU
TI

N
Gideal gases, but it was later extended to many other phenomena, as general principles

were understood. It was many years before the full meaning of entropy was revealed.
Many of us have acquired a mythological understanding of entropy, through accounts
of popular physics, as being the expression of what we all know in our guts: that every-
thing eventually goes to hell. Disorder increases. Things break down. We grow old and
fall apart.

Entropy: Information’s Lost+Found
Although there is nothing wrong with the essence of this mythological entropy, it is
imprecise and doesn’t help us to understand why resource consumption has inevitable
consequences, nor what it might have to do with computers. Entropy is a useful meas-
ure, and its increase is an important principle, so understanding it is key to all science.
What makes entropy a poorly understood concept is its subtlety. The exuberant mathe-
matician John Von Neumann is reputed to have told Claude Shannon, the founder of
information theory, that he should call his quantity H informational entropy, because it
would give him a great advantage at conferences where no one really understood what
entropy was anyway.

Before statistical methods were introduced by Boltzmann and others, entropy was
defined to be the amount of energy in a system which is unavailable for conversion into
useful work, i.e., the amount of resources which are already reduced to waste. This had a
clear meaning to the designers of steam engines and cooling towers but did not seem to
have much meaning to mathematicians. Physicists like Boltzmann and Brillouin, and
later Shannon, made the idea of entropy gradually more precise so that, today, entropy
has a precise definition, based on the idea of digitization – discussed in the last part of
this series. The definition turns out to encompass the old physical idea of entropy as
unusable resources while providing a microscopic picture of its meaning.

Think of a digitized signal over time. At each time interval, the signal is sampled, and
the value measured is one of a number of classes or digits C, so that a changing signal is
classified into a sequence of digits. Over time, we can count the occurrences of each
digit. If the number of each type i is ni, and the total number is N, we can speak of the
probability of measuring each type of digit since measurement started. It is just the frac-
tion of all the digits in each class pi=ni/N. Shannon then showed that the entropy could
be defined by

H = - p1 log2 p1 - p2 log2 p2 ...- pC log2 pC

where the base 2 logarithm is used so that the measurement turns out to be measured in
“bits.” This quantity has many deep and useful properties that we don’t have to go into
here. Shannon showed that the quantity H was a measure of the amount of information
in the original signal, in the sense that it measured the amount of its variation. He also
showed that it is a lower limit on the length of an equivalent message (in bits) to which
a signal can be compressed.

The scale of entropy tells us about the distribution of numbers of digits. It has a mini-
mum value of zero if all of the pi are zero except for one, i.e., if all of the signal lies in the
same class, or is composed of the same single digit for all time, e.g., “AAAAAAAAA....”
This corresponds to a minimum amount of information or a maximum amount of
order in the signal. Entropy has a maximum value if all of the pi are the same. This
means that the digitized signal wanders over all possible classes evenly and thus contains
the maximum amount of variation, or information, i.e., it is a very disordered signal
such as “QWERTYUIOPASD....”

25NEEDLES IN THE CRAYSTACK ●

Entropy is a useful measure,

and its increase is an

important principle, so

understanding it is key to all

science.

The entropy is just a number: it does not “remember” the sequence of events which led
to the value describing state of the system, because it involves an implicit averaging over
time (we cannot recover a sequence of changes from a single number). But it does
record how much average information was present in the sequence since measurements
began.

As a metaphor, entropy is discussed with three distinct interpretations: gradual degrada-
tion (the ugly), total information content (the good), and loss of certainty (the bad).
Let’s consider these in turn.

Ugly: this interpretation is based on the assumption that there are many random
changes in a system (due to unexpected external factors, like users, for instance), which
cause the measured signal (or state of the system) to gradually wander randomly over all
possible states. Entropy will tend to increase due to random influence from the environ-
ment (noise). This corresponds to a gradual degradation from its state of order at the
initial time. This interpretation comes from physics and is perhaps more appropriate in
physics than in computer science, because nature has more hidden complexity than do
computers; still, it carries some truth because users introduce a lot of randomness into
computer systems. Thus, entropy is decay or disorder.

Good: information can only be coded into a signal by variation, so the greater the varia-
tion, the greater the amount of information which it could contain. Information is a
good thing, some would say, but this view does not have any prejudice about what kind
of information is being coded. Thus entropy is information.

Bad: if there is a lot of information, distributed evenly over every possibility, then it is
hard to find any meaning in the data. Thus entropy is uncertainty, because uncertainty
is conflicting information.

It is not hard to see that these viewpoints all amount to the same thing. It is simply a
matter of interpretation: whether we consider information to be good or bad, wanted or
unwanted; change is information, and information can only be represented by a pattern
of change. Our prejudicial values might tend to favor an interpretation where a noisy
radio transmission contains less information than a clear signal, but that is not objec-
tively true.

Noise is indeed information: in fact, it is very rich information. It contains information
about all the unrelated things which are happening in the environment. It is not desired
information, but it is information. Much of the confusion about entropy comes from
confusing information with meaning. We cannot derive meaning from noise, because it
contains too much information without a context to decipher it. Meaning is found by
restricting and isolating information strings and attaching significance to them, with
context. It is about looking for order in chaos, i.e., a subset of the total information.

In fact, at the deepest level, the meaning of entropy or information is simple: when you
put the same labels on a whole bunch of objects, you can’t tell the difference between
them anymore. That means you can shuffle them however you like, and you won’t be
able to reverse the process.

Entropy grows when distinctions lose their meaning and the system spreads into every
possible configuration. Entropy is reduced when only one of many possibilities is preva-
lent. What does this have to do with forgetfulness and wastefulness? There are two prin-
ciples at work.

26 Vol. 26, No. 3 ;login:

Noise is indeed information:

in fact, it is very rich

information.

The first, grouping by digitization (ignoring detail), involves reducing the number of
classes or distinctions into fewer, larger groups called digits. By assimilating individual
classes into collective groups, the number of types of digits is fewer, but the numbers of
each type increase and thus the entropy is smaller. This, of course, is the reason for our
current obsession with the digital: digital signals are more stable than continuous sig-
nals, because the difference between 1 and 0 is coarse and robust, whereas continuous
(analog) signals are sensitive to every little variation. The second principle is about
repeated occurrences of the same type of digit. One digit in the same class is as good as
the next, and this means that repeated occurrences yield no more information than can
be gleaned from counting. Similarity and distinction can be judged by many criteria and
this is where the subtlety arises. When we measure basic resources in terms of abstract
definitions (car, computer, sector, variable, etc.) there are often a number of overlapping
alternative interpretations, which means the entropy of one abstract classification differs
from that of a different abstract classification.

Consider an example: fragmentation of memory resources can be discussed in terms of
entropy. In memory management, one region of memory is as good as the next and thus
it can be used and reused freely. The random way in which allocation and de-allocation
of memory occurs leads to a fragmented array of usage. As memory is freed, holes
appear amidst blocks of used memory; these are available for reuse, provided there are
enough of them for the task at hand. What tends to happen, however, is that memory is
allocated and de-allocated in random amounts, which leaves patches of random sizes,
some of which are too small to be reused. Eventually, there is so much randomization of
gap size and usage that the memory is of little use. This is an increase of entropy.

Several small patches are not the same as one large patch. There is fragmentation of
memory, or wasted resources. One solution is to defragment, or shunt all of the allo-
cated memory together, to close the gaps, leaving one large contiguous pool of
resources. This is expensive to do all the time. Another solution is quantization of the
resources into fixed-size containers. By making memory blocks of a fixed size (e.g.,
pages or sectors), recycling old resources is made easier. If every unit of information is
allocated in fixed amounts of the same size, then any new unit will slot nicely into an
old hole, and nothing will go to waste.

This is essentially the principle of car parks (aka, parking lots in the US). Imagine a
makeshift car park in a yard. As new cars come and park, they park at random, leaving
random gaps with a distribution of sizes (non-zero entropy). New cars may or may not
fit into these gaps. There is disorder and this ends up in wastefulness. The lack of disci-
pline soon means that the random gaps are all mixed up in a form which means that
they cannot be put to useful work. The solution to this problem is to buy a can of paint
and mark out digital parking spaces. This means that the use of space is now standard-
ized: all the spaces are placed into one size/space category (zero entropy). If one car
leaves, another will fit into its space.

The reason for dividing memory up into pages and disks into sectors is precisely to
lower the entropy; by placing all the spaces into the same class, one has zero entropy and
less wastage. C’s union construction seems like an oddball data type, until one under-
stands fragmentation; then, it is clear that it was intended for the purpose of making
standard containers.

Standardization of resource transactions is a feature which allows for an efficient use of
memory, but the downside of this is that it results in increased difficulty of location.
Since the containers all look the same, we have to go and open every one to see what is

27June 2001 ;login:

Memory fragmentation of

resources can be discussed in

terms of entropy. ●

C

O
M

PU
TI

N
G

NEEDLES IN THE CRAYSTACK ●

inside. In order to keep track of the data stored, different labels have to be coded into
them which distinguish them from one another. If these labels are ordered in a simple
structure, this is easy. But if they are spread at random, the search time required to
recover those resources begins to increase. This is also entropy at work, but now entropy
of the physical distribution of data, rather than the size distribution. These problems
haunt everyone who designs computer storage.

The accumulated entropy of a change is a measure of the amount of work which would
be needed to remember how the change was made. It is therefore also that amount of
information which is required to undo a change. In the car parking example, it was a
measure of the amount of resources which were lost because of disorder. In sector frag-
mentation it is related to the average seek time. Entropy of the universe is a measure of
the amount of energy which is evenly spread and therefore cannot be used to do work.
We begin to see a pattern of principle: inefficient resource usage due to the variability of
change with respect to our own classification scheme. Entropy reflects these qualities
and is often used as a compact way of describing them. It is not essential, but it is precise
and lends a unifying idea to the notion of order and disorder.

Rendezvous with Ram
In classifying data we coarse grain, or reduce resolution. This means actively forgetting,
or discarding the details. Is this forgetfulness deadly or life-giving?

If we recycle the old, we use less resources but are prevented from undoing changes and
going back. The earlier state of order is lost forever to change, by erasure. We could
choose to remember every change, accumulate every bit of data, keep the packaging
from everything we buy, keep all of the garbage, in which case we drown in our own
waste. This is not a sustainable option, but it is the price of posterity.

Forgetting the past is an important principle. In a state of equilibrium, the past is unim-
portant. As long as things are chugging along the same with no prospect of change, it
doesn’t matter how that condition arose. Even in periods of change, the distant past is
less important than the recent past. Imagine how insane we would be if we were unable
to forget. One theory of dreaming is based on the idea that dreams are used for short-
term memory erasure, collating and integrating with long-term experience.

In Star Trek: The Next Generation it was suggested that the android Data never forgets.
That being the case, one might ask how come he hasn’t exploded already? Where do all
those memories go? If elephants never forget, no wonder they are so big! Taxation has
long been a way of opposing the accumulation of material wealth or potential resources
(money). Throughout the centuries, all manners of scheme have been introduced in
order to measure that wealth: hearth (fireplace) tax, window tax, poll tax, income tax,
road toll, and entrance fees. Since income tax was introduced, records in the UK have
been kept on all citizens’ activities for years at a time, although there is an uncanny feel-
ing that tax inspectors might pursue them to the grave for lost revenue, replacing the
accumulation of wealth with an accumulation of records. In fact, after 12 years, tax
records are destroyed in the UK. A sliding-window sampling model, rather than a
cumulative model is the essence of recycling.

Queuing and Entropy
Memory is about recording patterns in space, but entropy of spatial classification is not
the only way that resources get used up. Another way is through entropy of time
resources. Everyone is familiar with the problem of scheduling time to different tasks.
Interruption is the system administrator’s lot. As one reader commented to me, his

28 Vol. 26, No. 3 ;login:

The accumulated entropy of a

change is a measure of the

amount of work which would

be needed to remember how

the change was made.

company often insists: drop what you are doing and do this instead! It results in frag-
mentation of process: only a small piece of each task gets done. In computer systems it is
algorithmic complexity which is responsible for sharing time amongst different tasks.
Context switching is the algorithm multi-tasking computers use for sharing time strictly
between different tasks. This sharing of time implies some kind of queuing with all its
attendant problems: starvation and priorities. Context switching places tasks in a
round-robin queue, in which the system goes through each task and spends a little time
on it, by assigning it to a CPU. This is an efficient way of getting jobs done, because the
number of objects or classes is approximately constant, and thus the parking lot princi-
ple applies to the time fragments. It does not work if the number of jobs grows out of
control. But if one simply piles new jobs on top of one another, then none of the jobs
will get finished. Anyone who has played strategy games like Risk knows that it does not
pay to spread one’s army of resources too thinly.

This is much the same problem that is considered in traffic analysis (cars and network
packets). At a junction, cars or packets are arriving at a certain rate. The junction allows
a certain number to flow through from each adjoining route, but if the junction capac-
ity is too slow, then the entropy of the total resources grows to infinity because the num-
ber of different digits (cars or packets) is growing. No algorithm can solve this problem,
because it has to focus on smaller and smaller parts of the whole. This is the essence of
the expression a watched kettle never boils taken to extremes. Spamming or denial of ser-
vice attacks succeed because resources are used up without replacement. This leads to
“starvation” of time resources and/or memory resources.

It was once suggested to me that cars should not have to drive more slowly on the
motorway when lanes are closed for repair: according to hydrodynamics, everyone
should drive much faster when they pass through the constricted channel, to keep up
the flow. Unfortunately, unlike ideal fluids, cars do not have purely elastic collisions.
Queues build up because there is a limit to how fast transactions can be expedited by a
communications channel.

Reversible Health and Its Escape Velocity
The message I have been underlining above is that there is a fundamental problem
where limited resources are involved. The problem is that reversibility (the ability to
undo) depends on information stored, but that information stored is information lost
in terms of resources. There is an exception to this idea, however. Some corrections
occur in spite of no log being made.

What goes up must come down. Common colds and other mild diseases are not fatal to
otherwise healthy individuals. The pinball will end up in its firing slot. A compass
always points to magnetic North. Moths fly toward a flame. Adults prefer to look
younger. Follow the light at the end of the tunnel. Ideals.

If you drop a ball to the ground, it does not usually land at your feet and remain there:
the ground is seldom flat, so it begins to roll downhill until it finds a suitable local mini-
mum. It tries to minimize its potential energy under the incentive of gravitation. Now
energy is just a fictitious book-keeping parameter which keeps track of how much it
cost to lift the ball up earlier and how much will be repaid by letting it roll down again.
Like entropy, energy is a summary of information about how resources are distributed
in the face of an unevenness. In thermodynamics, energy U and entropy S appear in
relationships with the opposite sign: dF = dU - TdS

29June 2001 ;login:

Queues build up because

there is a limit to how fast

transactions can be expedited

by a communications channel.

●

C

O
M

PU
TI

N
G

NEEDLES IN THE CRAYSTACK ●

F is the free energy, or the amount of energy available for conversion into useful work,
while U is the total energy and S is the entropy (the amount of energy which is spread
about in a useless form). T is the temperature, which acts as an essentially irrelevant
integrating factor for the entropy in this formulation.

A potential is an anti-entropy device. It makes a difference by weighting the possibilities.
It tips the balance from pure randomness, to favor one or few possibilities or ideals.
Think of it as a subsidy, according to some accounting principle, which makes certain
configurations cheaper and therefore more likely. A potential can guide us into right or
wrong, healthy or unhealthy states if it is chosen appropriately. While entropy is simply
a result of statistical likelihood (deviation from ideal due to random change), a potential
actually makes a choice.

Potentials are all around us. Indeed, they are the only thing that make the world an
interesting place. Without these constraints on behavior, the Earth would not go around
the sun; in fact it would never have formed. The universe would just be a bad tasting
soup. Emotions are potentials which guide animal behavior and help us to survive. I
have often wondered why the writers of Star Trek made such an issue about why the
android Data supposedly has no emotions. For an android without emotions, he
exhibits constantly emotional behavior. He is motivated, makes decisions, shows com-
plex “state” behavior, worries about friends and has “ethical subroutines.” The fact that
he does not have much of a sense of humor could just as well mean that he originated
from somewhere in Scandinavia (this would perhaps explain the pale skin, too).

Probably, complex animals could not develop adaptive behavior (intelligence) without
emotions. Whatever we call complex-state information, it amounts to an emotional
condition. Emotions may have a regulatory function or a motivational function. They
provide a potential landscape which drives us in particular directions at different times.
They alter the path of least resistance by enticing us to roll into their local minima. It’s
pinball with our heads. There is probably no other way of building complex adaptive
behavior than through this kind of internal condition. We think of our emotions as
being fairly coarse: happy, sad, depressed, aroused, but in fact, they have complex
shades. We just don’t have names for them, because as was noted in the last issue, we
digitize.

Reversal of state can be accomplished without memory of the details, if there is an inde-
pendent notion of what ideal state is: a potential well, like an emotional context, driving
the system towards some tempting goal. That is because a potential curves the pathways
and effectively makes them distinguishable from one another, labeling them with the
value of the potential function at every point. Health is such a state: a complex multifac-
eted state whose potential is implemented in terms of a dynamical immune system
rather than a static force. Ecologies and societies also have emergent goals and prefer-
ences. These represent a highly compressed form of information, which perhaps sum-
marizes a great deal of complexity, just as a curve through a set of points approximates
possibly more complex behavior.

If one could make a computer’s ideal condition, its path of least resistance, how simple
it would be to maintain its stability. Usually, it’s not that simple, however. The playing
field is rather flat, and armies battle for their position. It is as though hordes of barbaric
changes are trying to escape into the system, while administrators representing the
forces of law and order try to annex them. Neither one has any particular advantage
other than surprise, unless the enemy can be placed in a pit.

30 Vol. 26, No. 3 ;login:

A potential is an anti-entropy

device. It makes a difference

by weighting the possibilities.

Computer systems remain healthy and alive when they recycle their resources and do
not drift from their ideal state. This was the idea behind cfengine when I started writing
it eight years ago. The ideal computer state is decided by system policy, and this weights
the probabilities pn so that randomness favors a part of the good, rather than the bad or
the ugly. Although a potential can only guide the behavior on average (there will always
be some escape velocity which will allow a system to break its bounds), the likelihood of
its long-term survival, in a world of limited resources, can only be increased by com-
pressing complex information into simple potentials. This was the message of cfengine
and the message of my papers at LISA 1998 and 2000. Now all we need is to design the
pinball table.

So pn – you feelin’ lucky?

31June 2001 ;login:

●

C

O
M

PU
TI

N
G

NEEDLES IN THE CRAYSTACK ●

Last time, we started looking at some of the new language features in C9X,

the recent update to C. In this column we’ll look at C9X declarations and

how they have changed from what you are familiar with.

Function Declarations
If you’ve used C for a long time, you might remember that the language was once much
looser about function declarations. You didn’t have to declare functions before use; for
example, you could say:

void f()
{

g(37);
}

without complaint. If you didn’t specify a return type for a function:

f()
{
}

it would be assumed to be int, like this:

int f()
{
}

And you didn’t have to use a return statement, or maybe the return statement didn’t
match the return type:

int f()
{

return;
}

These examples are invalid in C9X; you must declare functions before use, you cannot
default the return type of a function, the return type must match return statements, and
a return statement is required for a function with a non-void return type.

You are still allowed to declare functions without a prototype:

void f();

void g()
{

f(37, 47);
}

but in the C9X standard this usage is marked as obsolescent. Note also that:

void f();

is not the same as:

void f(void);

or:

void f() {}

The first of these is a non-prototype function declaration, with parameter information
unspecified, while the latter two declarations specify that the function has no parame-
ters.

32 Vol. 26, No. 3 ;login:

Declarations in c9x
by Glen
McCluskey

Glen McCluskey is a
consultant with 20
years of experience
and has focused on
programming lan-
guages since 1988.
He specializes in Java
and C++ perfor-
mance, testing, and
technical documenta-
tion areas.

<glenm@glenmccl.com>

These tighter rules are not arbitrary; they lead to better code. Consider, for example, this
program:

#include <stdio.h>

void f();

int main()
{

f(37);

return 0;
}

void f(int a, int b)
{

printf(“%d %d\n”, a, b);
}

We use an old-style declaration of f(), then call the function with a single argument. The
function actually requires two arguments, so when the printf() is encountered, one of the
parameters has a garbage value.

The same consideration applies to return statements, if, for example, you fail to return a
value from a function declared to return an int.

Inline Functions
With C9X you can define a function using the inline keyword, like this:

inline void f() {...}

inline is a hint to the compiler that it should optimize calls to the function, perhaps by
expanding them in the context of the caller. There is no requirement that a compiler
actually observe this hint.

Inline functions are quite subtle in a couple of areas, illustrated by the following exam-
ple, composed of two translation units:

// file #1

void f()
{
}

void g(void);

int main()
{

f();
g();

return 0;
}

// file #2

inline void f()
{
}

void g()
{

33June 2001 ;login: DECLARATIONS IN C9X ●

●

PR

O
G

RA
M

M
IN

G
| C

O
M

PU
TI

N
G

f();
}

The inline definition of f() has external linkage. To give the function internal linkage, we
would use static inline void f().

This definition is not an external definition, and because f() is actually called, an external
definition is required somewhere within the program. This definition is found in the
first translation unit.

A program can contain both an inline and an external definition of a function. The pro-
gram cannot rely on the inline definition being used, even if it is clearly visible, as in the
case above where g() calls f().

The inline and external definitions are considered distinct, and a program’s behavior
should not depend on which is actually called. As another example of this idea, con-
sider:

// file #1

const int* f()
{

static const int x = 0;
return &x;

}

// file #2

inline const int* f()
{

static const int x = 0;
return &x;

}

int main()
{

return f() == f();
}

Given these definitions of f(), it is not necessarily the case that main() always returns 1.
Different f()s may be called, containing different static objects. An example of where this
might happen would be with a compiler that applies some heuristic about how big
inline expansions are allowed to get, with the external definition of the function used in
cases where the inline expansion would be too large.

The C inline model is similar to that of C++, but differs in that (1) if a function is
declared inline in one translation unit, it need not be declared so in all translation units,
and (2) all definitions of an inline function need not be the same, but the program’s
behavior should not depend on whether an external definition or an inline version of a
function is called.

Mixed Declarations and Code
In C9X you can intersperse declarations and code, a feature also found in C++. It’s no
longer necessary to place all declarations at the beginning of a block. Here’s an example
that counts the number of “A” characters in a file, using this coding style:

#include <stdio.h>

int main(int argc, char* argv[])

34 Vol. 26, No. 3 ;login:

{
if (argv[1] == NULL) {

fprintf(stderr, “Missing input file\n”);
return 1;

}

FILE* fp = fopen(argv[1], “r”);
if (fp == NULL) {

fprintf(stderr, “Cannot open input file\n”);
return 1;

}

int cnt = 0;
int c;

while ((c = getc(fp)) != EOF) {
if (c == ‘A’)

cnt++;
}

fclose(fp);

printf(“count = %d\n”, cnt);

return 0;
}

This style is in many ways more natural than the older approach of grouping all declara-
tions at the top of a block. Each declaration is introduced as needed, in a meaningful
context, and there’s less temptation to recycle declarations, by using a variable in multi-
ple ways within a function.

The scope of each identifier declared in this way is from its point of declaration to the
end of the block.

Declarations in fo r Statements
You can also use declarations within for statements, like this:

#include <stdio.h>

int main()
{

for (int i = 1, j = 100; i <= 10; i++, j—)
printf(“%d %d\n”, i, j);

return 0;
}

This is obviously a convenient way to specify loop indices. If you use this approach, a
common coding style is no longer valid:

int main()
{

int max = 10;

for (int i = 1; i <= max; i++) {
if (i == 5)

break;
}
if (i > max)

; // loop completed normally

35June 2001 ;login: DECLARATIONS IN C9X ●

●

PR

O
G

RA
M

M
IN

G
| C

O
M

PU
TI

N
G

return 0;
}

The scope of the loop index goes to the end of the for statement, so the index name is
unknown outside. If you want to code this way, you need to continue declaring the loop
variable before the loop.

Here’s another (legal) example of for statements, one that demonstrates the subtleties of
scoping:

void f()
{

int i = 37;

for (int i = 47; i <= 100; i++) {
int i = 57;

}
}

The for statement introduces a new block, and the statement body is also a distinct
block. To make the blocks more visible, we could write the code like this:

void f()
{

int i = 37;

{
for (int i = 47; i <= 100; i++) {

int i = 57;
}

}
}

The three declarations of i are all valid, because each occurs in a new scope. Each decla-
ration hides variables of the same name in outer scopes.

The new declaration features promote better programming and more natural documen-
tation. They are natural to use and reduce programming errors.

36 Vol. 26, No. 3 ;login:

37June 2001 ;login: USING CORBA WITH JAVA ●

using CORBA
with java
A Mini Napster, Part II
Introduction
In Part I of this two-part series, I presented the development of a Java

client/server application using CORBA. Specifically, I embarked on the devel-

opment of a “mini Napster” example.

The development effort began with the writing of a Napster IDL (Interface Definition
Language) and ended with the description of the functionality of the files that were gen-
erated as a result of compiling Napster.idl using the idltojava compiler.

In this article I wish to present the client and server code to complete this example. I
hope to demonstrate that writing a CORBA application is neither overwhelming nor
limited to those practitioners with advanced knowledge of software engineering and a
general software development background.

Indeed, I successfully teach this topic to many students at Carnegie Mellon University
who have not had a significant amount of experience in writing software or distributed
client-server applications.

The Napster Server
In this section I present the implementation of the Napster Server (NapsterServer.java).

Import the CORBA packages for naming and locating CORBA objects:

import org.omg.CosNaming.*;
import org.omg.CosNaming.NamingContextPackage.*;
import org.omg.CORBA.*;
import java.util.*;

Import the package that contains the server skeletons:

import Napster.*;

Implement the interface generated by the idltojava compiler:

public class NapsterServer extends _NapsterServerIImplBase {
private Vector records_database;

Build the constructor for the NapsterServer class:

public NapsterServer()
{
records_database = new Vector(10, 5);
}

Write the findItemInServer method:

public Record findItemInServer(String albumName)
{

// Get the record with the highest version number
Enumeration record_iter = records_database.elements();
int highest_version_number = -1;

int index = -1;

while(record_iter.hasMoreElements())
{
Record record = (Record) record_iter.nextElement();

●

PR

O
G

RA
M

M
IN

G
| C

O
M

PU
TI

N
G

by Prithvi Rao

Prithvi Rao is the co-
founder of KiwiLabs,
which specializes in
software engineering
methodology and
Java/CORBA training.
He has also worked on
the development of
the MACH OS and a
real-time version of
MACH. He is an
adjunct faculty at
Carnegie Mellon and teaches in the Heinz
School of Public Policy and Management.

<prithvi+@ux4.sp.cs.cmu.edu>

if(record.album_name.equals(albumName))
{

if(record.version > highest_version_number)
{

highest_version_number = record.version;
index = records_database.indexOf(record);

}
}

}

// Check if a record with album_name = albumName was found
if(highest_version_number == -1)
{

// The record does not exist in the database so return a dummy record
// with an empty album name. Also you need to set the other fields to
// some dummy values even though you don’t need them logically,
// because otherwise CORBA will throw an Exception

Record dummy_record = new Record();
dummy_record.album_name = " ";
dummy_record.artist_name = " ";
dummy_record.owner_name = " ";
dummy_record.version = -1;
return dummy_record;

}

// If we are here then we must have found the record in the database,
// so return the found record
return (Record) records_database.elementAt(index);

}

Write the addRecordInServer method:

public String addRecordInServer(Record desiredRecord)
{

// Get the record with the highest version number
Enumeration record_iter = records_database.elements();

while(record_iter.hasMoreElements())
{
Record record = (Record)record_iter.nextElement();

if((record.album_name.equals(desiredRecord.album_name)) &&
(record.artist_name.equals(desiredRecord.artist_name)))
if(record.version >= desiredRecord.version)
return "Duplicate Record, Record Not Added to the Server";

} // while

// We can now safely add the record to the database
records_database.addElement(desiredRecord);
return "Record Successfully Added";

}

Write the deleteItemInServer method:

public boolean deleteItemInServer(Record desiredRecord)
{

int num_of_records = records_database.size();
boolean record_deleted = false;
for(int i = 0; i < num_of_records; i++)
{

38 Vol. 26, No. 3 ;login:

Record record = (Record) records_database.elementAt(i);
if((record.album_name.equals(desiredRecord.album_name)) &&

(record.artist_name.equals(desiredRecord.artist_name)))
{

records_database.removeElementAt(i);
record_deleted = true;

}
}

return record_deleted;
}

Write the updateRecordInServer method

public boolean updateRecordInServer(Record desiredRecord, String
newOwner)

{
// Get the record with the highest version number

Enumeration record_iter = records_database.elements();
int highest_version_number = 0;
int index = 0;

while(record_iter.hasMoreElements())
{

Record record = (Record)record_iter.nextElement();
if((record.album_name.equals(desiredRecord.album_name)) &&

(record.artist_name.equals(desiredRecord.artist_name)))
{

if(record.version > highest_version_number)
{

highest_version_number = record.version;
index = records_database.indexOf(record);

}
}

}

// If the record was not found then return false
if(index == 0)

return false;

// Otherwise update the record
Record record = (Record) records_database.elementAt(index);
record.owner_name = newOwner;
record.version + = 1;

records_database.addElement(record);

return true;
}

}

The Napster Main Class
The following is the Napster main class (Napster.java) in which all the CORBA work
happens. First import all the CORBA packages:

import Napster.*;
import org.omg.CosNaming.*;
import org.omg.CosNaming.NamingContextPackage.*;

39June 2001 ;login: USING CORBA WITH JAVA ●

●

PR

O
G

RA
M

M
IN

G
| C

O
M

PU
TI

N
G

import org.omg.CORBA.*;

public class Napster
{

public static void main(String args[])
{

try
{

Create the ORB and initialize it. This is where the ORB knows how to find the location
of the NameServer with which to register the name of the server objects.

ORB orb = ORB.init(args, null);

Create a Server Object here:

NapsterServer napster_server = new NapsterServer();

Connect the Server Object to the ORB:

orb.connect(napster_server);

Get a reference to the nameserver:

org.omg.CORBA.Object objRef =
orb.resolve_initial_references("NameService");

Get an object reference that is a “Java” object and not a CORBA object:

NamingContext ncRef = NamingContextHelper.narrow(objRef);

Make sure that the server object can be located using “NapsterServer”:

NameComponent nc = new NameComponent("NapsterServer", "");

Save this in a component array:

NameComponent path[] = {nc};

Bind this component name with the ORB so that the client can get a reference to the
server object:

ncRef.rebind(path, napster_server);

Make sure that you can have multiple clients connect to the server:

java.lang.Object sync = new java.lang.Object();
synchronized(sync)
{

sync.wait();
} // try

catch(Exception e) {
System.err.println("ERROR: " + e);
e.printStackTrace(System.out);

}
}

}

The Napster Client
In this section I present the Napster Client (NapsterClient.java). First import the
CORBA packages and other Java packages:

40 Vol. 26, No. 3 ;login:

import Napster.*;
import java.util.*;
import java.lang.*;
import java.io.*;
import org.omg.CosNaming.*;
import org.omg.CORBA.*;

public class NapsterClient
{
private NapsterServerI napster_server;
private BufferedReader stdin;

Write the constructor for the NapsterClient:

public NapsterClient(NapsterServerI p_napster_server, BufferedReader p_stdin)
{
napster_server = p_napster_server;
stdin = p_stdin;
}

Write the method to get a record:

public void getRecord()
{
try {

System.out.print("Please Enter the Album Name: ");
String album_name = stdin.readLine();

System.out.print("Please Enter Your Name: ");
String user_name = stdin.readLine() ;

Record found_record = new Record();

found_record = napster_server.findItemInServer(album_name) ;

// If we don’t find the record then give an appropriate message to the user
if(!found_record.album_name.equals(album_name))

System.out.print("The Album Name That You Entered Does Not Exist");
else
{
// We found the record. So create a new record with the current user
// as owner and an increased version number to make it the latest record

System.out.println("Information Regarding the Album:");
System.out.println("Album Name : " + found_record.album_name);
System.out.println("Artist Name : " + found_record.artist_name);
System.out.println("Owner : " + found_record.owner_name);
System.out.println("Version : " + found_record.version);

Record new_record = new Record();
new_record.album_name = album_name;
new_record.artist_name = found_record.artist_name;
new_record.owner_name = user_name;
new_record.version = ++found_record.version;

String server_response = napster_server.addRecordInServer(new_record);

System.out.println("New Record with the Following Info Added to the
Server:");

System.out.println("Album Name : " + new_record.album_name);
System.out.println("Artist Name : " + new_record.artist_name);
System.out.println("Owne : " + new_record.owner_name);

41June 2001 ;login: USING CORBA WITH JAVA ●

●

PR

O
G

RA
M

M
IN

G
| C

O
M

PU
TI

N
G

System.out.println("Version: " + new_record.version);

System.out.print(server_response);
} // else
} // try

catch(Exception e)
{
System.out.println("Error: " + e);
e.printStackTrace(System.out);

} // catch
}

Write the method to add a record:

public void addRecord()
{

try
{
// Get the fields of the new record to create

System.out.print("Please Enter Your Name: ");
String user_name = stdin.readLine();

System.out.print("Please Enter the Album Name: ");
String album_name = stdin.readLine();

System.out.print("Please Enter the Artist Name: ");
String artist_name = stdin.readLine() ;

// Create a new record and initialize its fields

Record new_record = new Record();
new_record.album_name = album_name;
new_record.owner_name = user_name;
new_record.artist_name = artist_name;
new_record.version = 1;

String server_response = napster_server.addRecordInServer(new_record);
system.out.print(server_response);

} //try
catch(Exception e)
{
System.out.println("Error: " + e);
e.printStackTrace(System.out);
} // catch

}

Write a method to delete a method:

public void deleteRecord()
{

try
{
System.out.print("Please Enter the Album Name: ");
String album_name = stdin.readLine()j;

System.out.print("Please Enter the Artist Name: ");
String artist_name = stdin.readLine();

42 Vol. 26, No. 3 ;login:

// Create a record that you would like to be deleted from the server
// database

Record new_record = new Record();
new_record.album_name = album_name;
new_record.owner_name = new String(“Aravind”);
new_record.artist_name = artist_name;
new_record.version = 1;

System.out.println("Before Calling Server Delete");
boolean record_deleted = napster_server.deleteItemInServer(new_record);

System.out.println("After Calling Server Delete");

if(record_deleted)
System.out.print("The Record Was Successfully Deleted on the

Server");
else

System.out.print("The Record Could Not Be Deleted on the Server");
} // try

catch(Exception e)
{
System.out.println("Error: " + e);
e.printStackTrace(System.out);
} // catch

}

Write a method to update a record:

public void updateRecord()
{

try
{
System.out.print("Please Enter the Album Name: ");
String album_name = stdin.readLine();

System.out.print("Please Enter the Artist Name: ");
String artist_name = stdin.readLine() ;

// Create a record that you would like to be updated from the server
// database
Record update_record = new Record();
update_record.album_name = album_name;
update_record.artist_name = artist_name;

// Got to give dummy values for the other values in the record otherwise
// CORBA will complain
update_record.owner_name = new String(" ");
update_record.version = 1;

System.out.print("Please Enter the New Owner Name: ");
String new_owner = stdin.readLine() ;

// Call the update function on the server
boolean record_updated =

napster_server.updateRecordInServer(update_record, new_owner);

if(record_updated)
{

System.out.print("The Record Was Successfully Updated on the
Server");

43June 2001 ;login: USING CORBA WITH JAVA ●

●

PR

O
G

RA
M

M
IN

G
| C

O
M

PU
TI

N
G

System.out.println("Album Name : " + album_name);
System.out.println("Artist Name : " + artist_name);
System.out.println("Owne : " + new_owner);
}
else
System.out.print("The Record Could Not Be Updated on the Server");

}
// try
catch(Exception e)
{
System.out.println("Error: " + e);
e.printStackTrace(System.out);

} // catch
}

Write a method to display menu options:

public void displayMenu()
{
// Display the Menu
System.out.println("\n ");
System.out.println("Enter One of the Following Options");
System.out.println("1. To Get an Album on the Server");
System.out.println("2. To Add an Album to the Server");
System.out.println("3. To Delete an Album on the Server");
System.out.println("4. To Update an Album on the Server");
System.out.println("5. To Exit");
}

Write the client main method:

public static void main(String args[])
{
try
{

Initialize the ORB. The args array tells the ORB on the client machine where the name-
server is running (machine name and port to use to connect to the nameserver):

ORB orb = ORB.init(args, null);

Get a reference to the NameServer:

org.omg.CORBA.Object objRef = orb.resolve_initial_references
("NameService");

Create a Java object from a CORBA object:

NamingContext ncRef = NamingContextHelper.narrow(objRef);

Find the path on the NameServer where the server object is located:

NameComponent nc = new NameComponent("NapsterServer", " ");

Set the path:

NameComponent path[]= {nc};

Get a server object and narrow the reference from a CORBA object to a java object (all
in one call):

44 Vol. 26, No. 3 ;login:

NapsterServerI napster_server =
NapsterServerIHelper.narrow(ncRef.resolve(path));
BufferedReader stdin =
new BufferedReader(new InputStreamReader(System.in));

Start the client:

NapsterClient napster_client = new NapsterClient(napster_server, stdin);

String choice_str;
int choice_int = 1;

// Keep looping till the user tells us to quit while(choice_int != 5)
{

napster_client.displayMenu() ;
choice_str = stdin.readLine() ;
choice_int = Integer.parseInt(choice_str) ;

switch(choice_int)
{

case 1:
napster_client.getRecord();

break;
case 2:
napster_client.addRecord() ;

break;
case 3:
napster_client.deleteRecord();

break;
case 4:
napster_client.updateRecord() ;

break;
case 5:
choice_int = 5;

break;
default:
System.out.println("Invalid Option. Please Try Again");

break;
} // switch

} // while
}
catch(Exception e)

{
System.out.println("Error: " + e);
e.printStackTrace(System.out);
} // catch

} // main
} // class

Running Napster
1. Install the idltojava compiler.

2. Install JDK1.2.1.

3. Compile the Napster.idl file: idltojava Napster.idl.

4. Compile the remaining files: Napster.java, NapsterServer.java, NapsterClient.java.

javac *.java Napster/*.java

45June 2001 ;login: USING CORBA WITH JAVA ●

●

PR

O
G

RA
M

M
IN

G
| C

O
M

PU
TI

N
G

5. Run the nameserver.

tnameserv -ORBInitialHost <IP address of machine running nameserver>

-ORBInitialPort <port used: default is 900>

6. Run the NapsterServer.

java Napster -ORBInitialHost <IP address of machine running nameserver>
-ORBInitialPort <port used: default is 900>

7. Run the NapsterClient.

java NapsterClient -ORBInitialHost <IP address of machine running
nameserver>

-ORBInitialPort <port used: deafault is 900>

Discussion
It is evident that the server and clients both perform similar steps for initialization.
Specifically, the server has to register its server object implementations in the name-
server so that the client knows where to find them in the nameserver. It is also evident
that conversions from CORBA to Java objects must be performed because the Java
interpreter cannot manipulate CORBA objects.

Conclusion
In this two-part series I have presented the development of a mini Napster example.
This example is not particularly sophisticated, but it demonstrates how to write a Java
client-server application using CORBA.

We can make the observation that once the CORBA initialization is complete then the
rest of the development effort is a matter of pure Java. Indeed, this is mostly true in
larger Java/CORBA applications. The main considerations when using advanced fea-
tures of CORBA relate to the various CORBA services such as security, event, transac-
tion, timing, and many others. Even so, the programming task is to gain access to a
server object implementation providing the service.

The Napster example hopefully accomplishes at least the following:

■ Demonstrates that CORBA is no more difficult to understand than Java
■ Demonstrates that the CORBA and Java object model are very similar (modules

match to packages and interfaces in CORBA and to interfaces in Java)

The true power of CORBA can best be understood by doing, and hopefully this article
has provided readers with the incentive to perform further investigation into this pow-
erful technology.

46 Vol. 26, No. 3 ;login:

47June 2001 ;login: INTRUSION DETECTION ●

intrusion detection
The philosophy that drove the design of most of the UNIX system data files is

that it’s best to sacrifice a little speed in favor of ease of maintenance. Thus,

most data files (/etc/password, /etc/hosts, etc.) contain printable ASCII data. If

you need to examine them you can do it with more, and if you need to repair

them, you can do it with vi.

There are some files that contain binary data: the utmp file, for example. The utmp file
contains data about all the users on a system (assuming everything is working cor-
rectly), including their login id, the time they logged in, the IP address they logged in
from, etc.

It might be nice to watch this file and report when it changes. For example, if there is
suddenly someone running as root on our firewall, it might be something we are inter-
ested in knowing about.

Early versions of Tcl supported only ASCII strings, and could not handle binary data.
With version 8.0, Tcl moved to a more versatile internal data representation and added
the binary command. The binary command allows easy conversion from binary repre-
sentations to printable ASCII representations of data. Tcl is still oriented around print-
able ASCII strings, but the binary command makes it possible to handle binary data as
well.

The binary command has two subcommands, binary scan and binary format.

The syntax for these is:

Syntax: binary format formatString arg1 ?arg2? ... ?argn?

binary format Returns a binary string created by converting one or more printable
ASCII strings to a binary format.

formatString A string that describes the format of the ASCII data.

arg* The printable ASCII to convert.

Syntax: binary scan binaryString formatString arg1 ?varName1? ... ?varNamen?

binary scan Converts a binary string to one or more printable ASCII strings

binaryString The binary data.

formatString A string that describes the format of the ASCII data.

varName* Names of variables to accept the printable representation of the
binary data.

The formatString for the binary commands allows binary data to be collected from or
distributed to a number of variables in a variety of formats. It resembles a regular
expression string, but has a slightly different flavor.

Like the regular expression string, a binary command format string is composed of sets
of two fields – a descriptor for the type of data, followed by an optional count modifier.

The binary command supports several identifiers for converting strings, decimal data,
hex data, or floating point values by 8-bit, 16-bit, or 32-bit data widths. Here are a few
of the commonly used descriptors:

h Converts from binary to/from hexadecimal digits in little-endian order.
binary format h2 34 – returns “C” (0x43).
binary scan "4" h2 x – stores 0x43 in the variable x

by Clif Flynt

Clif Flynt is president
of Noumena Corp.,
which offers training
and consulting serv-
ices for Tcl/Tk and
Internet applications.
He is the author of
Tcl/Tk for Real Pro-
grammers and the
TclTutor instruction
package. He has
been programming
computers since
1970 and a Tcl advo-
cate since 1994.

<clif@cflynt.com>

●

PR

O
G

RA
M

M
IN

G
| C

O
M

PU
TI

N
G

48 Vol. 26, No. 3 ;login:

H Converts from binary to/from Hexadecimal digits in big-endian order.
binary format H2 34 – returns “4” (0x34).
binary scan "4" H2 x – stores 0x34 in the variable x

c Converts an 8-bit value to/from ASCII.
binary format c 0x34 – returns “4” (0x34).
binary scan "4" c x – stores 0x34 in the variable x

s Converts a 16-bit value to/from ASCII in little-endian order.
binary format s 0x3435 – returns “54” (0x350x34).
binary scan "45" s x – stores 13620 (0x3534) in the variable x

S Converts a 16-bit value to/from ASCII in big-endian order.
binary format S 0x3435 – returns “45” (0x350x34).
binary scan "45" S x – stores 13365 (0x3435) in the variable x

i Converts a 32-bit value to/from ASCII in little-endian order.
binary format i 0x34353637 – returns “7654” (0x350x34).
binary scan "45" s x – stores 13620 (0x3534) in the variable x

I Converts a 32-bit value to/from ASCII in big-endian order.
binary format I 0x34353637 – returns “4567” (0x350x34).
binary scan "45" S x – stores 13365 (0x3435) in the variable x

f Converts 32-bit floating point values to/from ASCII.
binary format f 1.0 – returns the binary string “0x0000803f”.
binary scan "\x00\x00\s80\83f" fx – stores 1.0 in the variable x

The optional count can be an integer, to list the exact number of conversions to per-
form, or a *, to use all remaining data.

The format string can be arbitrarily complex, with multiple descriptor/count pairs sepa-
rated by spaces.

Here’s an example of some C code to write a structure to a disk file, and the Tcl code to
read and translate the data:

C Code to Generate a Structure Tcl Code to Read the Structure

#include <stdio.h> # Open the input file, and read data
#include <fcntl.h> set if [open tstStruct r]
main () { set d [read $if]

struct a { close $if
int i;
float f[2]; # scan the binary data into variables.
char s[20];

} aa; binary scan $d “i f2 a*” i f s
FILE *of; # The string data includes any

binary garbage after the NULL byte.
aa.i = 100; # Strip off that junk.
aa.f[0] = 2.5;
aa.f[1] = 3.8; set 0pos [string first [binary format c 0x00] $s]
strcpy(aa.s, "This is a test"); incr 0pos -1

set s [string range $s 0 $0pos]
of = fopen("tstStruct", "w");
fwrite(&aa, sizeof(aa), 1, of); # Display the results
fclose(of); puts $i

} puts $f
puts $s

49June 2001 ;login:

The output from the Tcl code is:

100
2.5 3.79999995232
This is a test

The flip side to this is to write a structure in Tcl, and read it with a C program. This pair
of programs will perform that operation.

Tcl Code to Generate a Structure C Code to Read the Structure

#include <stdio.h>
#include <fcntl.h>
main () {

struct a {
int i;
float f[2];

set str [binary format "i f2 a20" 100
{23.4 56.78} "the other test"] char s[20];

} aa;
set if [open tstStruct2 w]
puts -nonewline $if $st FILE *of;
close $if

of = fopen("tstStruct2", "r");
fread(&aa, sizeof(aa), 1, of);
fclose(of);

printf("I: %d\n", aa.i);
printf("f[0]: %f ", aa.f[0]);
printf("f[1]: %f\n", aa.f[1]);
printf("nstr: %s\n", aa.s);

}

The C program generates this output:

I: 100
f[0]: 23.400000 f[1]: 56.779999
str: the other test

The binary command makes it (relatively) easy to parse the utmp file. All we need to do
is look up the utmp.h include file on our system, examine the structure definition, and
create a format string that the binary command can use to parse each structure in the
utmp file.

On a Linux system, the utmp structure looks like this:

/* The structure describing an entry in the user accounting database. */
struct utmp
{

short int ut_type; /* Type of login. */
pid_t ut_pid; /* Process ID of login process. */
char ut_line[UT_LINESIZE]; /* Devicename. */
char ut_id[4]; /* Inittab ID. */
char ut_user[UT_NAMESIZE]; /* Username. */
char ut_host[UT_HOSTSIZE]; /* Hostname for remote login. */
struct exit_status ut_exit; /* Exit status of a process marked

as DEAD_PROCESS. */
long int ut_session; /* Session ID, used for windowing. */
struct timeval ut_tv; /* Time entry was made. */
int32_t ut_addr_v6[4]; /* Internet address of remote host. */
char __unused[20]; /* Reserved for future use. */

INTRUSION DETECTION ●

●

PR

O
G

RA
M

M
IN

G
| C

O
M

PU
TI

N
G

};

This would lead you to believe that a format string like this should do the trick for
extracting the members of the structure:

type pid line id user host exit session time addr
set f "s i a32 a4 a32 a256 s2 i i2 i4"

In a perfect world, this would work fine.

In this world, certain processors require that an integer start on an integer boundary,
and if a structure declares a single short followed by a long integer, then there will be
two bytes of padding added so that the integer can start on a long-word boundary.

The binary command includes a type descriptor that is not a data type: the @ character.
Where the other type descriptors accept a count modifier, the @ descriptor will accept
an absolute location in the data as a modifier.

This can be used to set the imaginary cursor in the binary data to a long-word bound-
ary, skipping the padding. The @ can also be used to set the cursor location to the start
of each structure in the dataset.

The next trick is that while the utmp structure is allowing for an IPV6 address, only the
first 4 bytes are actually being used today. So, rather than using i4 for the IP address, we
can use c4 (to read 4 bytes of address).

This format string works for Linux:

set st to the start of the structure
start type padding pid line id user host exit session time addr
set f "@$st s @[expr $st+4] i a32 a4 a32 a256 s2 i i2 c4"

This would let us generate a report with all the numbers converted to a printable for-
mat. This is better than nothing (but not a lot better).

The first field is the type of process described in this record. The utmp.h file describes
the meanings of these types. It’s a relatively easy task to cut and paste from that file, edit
a little, and convert the #define lines to a Tcl associative array that we can use as a
lookup table to convert the numeric types to a more human-friendly value:

foreach {name num} {
EMPTY 0 RUN_LVL 1
BOOT_TIME 2 NEW_TIME 3
OLD_TIME 4 INIT_PROCESS 5
LOGIN_PROCESS 6 USER_PROCESS 7
DEAD_PROCESS 8 ACCOUNTING 9} {

set types($num) $name
}

The time stamp can be converted to a more human-friendly form with the Tcl clock
command.

The Tcl clock command has several subcommands that will obtain the current time (in
seconds since the epoch), convert a time in seconds to human-readable format, or con-
vert a human-style time/date into seconds.

This Tcl command will convert the system format time in the first field of the timeval
structure into a date and time in the format MM/DD/YY HH:MM:SS:

clock format [lindex $time 0] -format "%D %r"

50 Vol. 26, No. 3 ;login:

Finally, we don’t want to report on the contents of the utmp file every 10 seconds, or
even every minute. We just want to know what’s happened if it changes.

The Tcl file command also has many subcommands. A useful one for this application is
the file mtime that reports the last modification time for a file.

We can’t set a trigger to go off when a file is modified, but we can loop on the file mtime
value and only report the contents of the utmp file when the modification time changes.

set mtime 0
...

while {[file mtime /var/run/utmp] == $mtime} {
after 10000

}
set mtime [file mtime /var/run/utmp]

The code shown below will generate output resembling this when someone logs in:

In the code below, I’ve assigned the output channel to be stdout for my testing. Since the
first thing a hacker is likely to do after they’ve broken into your system is rewrite utmp
to hide their presence, this monitor might be a good one to combine with the
client/server-based monitors discussed in the previous articles to push the information
off the possibly compromised system and onto a (hopefully) more secure (or at least less
obvious) machine inside your network.

As usual, this code is available online at <http://noucorp.com>.

Grab the type definitions from /usr/include/bits/utmp.h

foreach {name num} {
EMPTY 0 RUN_LVL 1
BOOT_TIME 2 NEW_TIME 3
OLD_TIME 4 INIT_PROCESS 5
LOGIN_PROCESS 6 USER_PROCESS 7
DEAD_PROCESS 8 ACCOUNTING 9 } {

set types($num) $name
}

51June 2001 ;login:

Type Pid Line ID User Host Exit Session Time Addr
DEAD_PROCESS 7 si 0 0 0 04/03/01 07:23:27 PM 0.0.0.0
BOOT_TIME 0 ~ ~~ reboot 0 0 0 04/03/01 07:23:27 PM 0.0.0.0
RUN_LVL 20019 ~ ~~ runlevel 0 0 0 04/03/01 07:23:27 PM 0.0.0.0
DEAD_PROCESS 157 l3 0 0 0 04/03/01 07:24:05 PM 0.0.0.0
DEAD_PROCESS 01 ud 0 0 0 04/03/01 07:24:05 PM 0.0.0.0
USER_PROCESS 702 tty1 1 lclif 0 0 0 04/03/01 07:24:34 PM 0.0.0.0
LOGIN_PROCESS 703 tty2 2 LOGIN 0 0 0 04/03/01 07:24:05 PM 0.0.0.0
LOGIN_PROCESS 704 tty3 3 LOGIN 0 0 0 04/03/01 07:24:05 PM 0.0.0.0
LOGIN_PROCESS 705 tty4 4 LOGIN 0 0 0 04/03/01 07:24:05 PM 0.0.0.0
LOGIN_PROCESS 706 tty5 5 LOGIN 0 0 0 04/03/01 07:24:05 PM 0.0.0.0
LOGIN_PROCESS 707 tty6 6 LOGIN 0 0 0 04/03/01 07:24:05 PM 0.0.0.0
USER_PROCESS 746 pts/2 /2 lclif 0 0 0 04/03/01 07:24:44 PM 0.0.0.0
USER_PROCESS 743 pts/1 /1 lclif 0 0 0 04/03/01 07:24:44 PM 0.0.0.0
USER_PROCESS 744 pts/0 /0 lclif 0 0 0 04/03/01 07:24:44 PM 0.0.0.0
USER_PROCESS 745 pts/3 /3 lclif 0 0 0 04/03/01 07:24:44 PM 0.0.0.0
DEAD_PROCESS 999 pts/5 /5 0 0 0 04/03/01 08:47:04 PM 127. 0.0.1
USER_PROCESS 1163 pts/4 /4 clif vlad 0 0 0 04/03/01 09:17:44 PM 127. 0.0.1

INTRUSION DETECTION ●

●

PR

O
G

RA
M

M
IN

G
| C

O
M

PU
TI

N
G

http://noucorp.com

We'll use $zero to trim trailing zeros from the data.
set zero [binary format c 0x00]

$reportFmt defines the widths of the columns in the report
set reportFmt {%-16s %6s %12s %20s %-12s %6s %5s %7s %21s %16s}

set output stdout

set mtime 0
while {1} {

while {[file mtime /var/run/utmp] == $mtime} {
after 10000

}
set mtime [file mtime /var/run/utmp]

Display a header
puts [format $reportFmt Type Pid Line ID User Host Exit Session Time Addr]

Open read and close the utmp file
set if [open /var/run/utmp r]
set d [read $if]
close $if

Save the length of the data buffer for future use.
set utmpLen [string length $d]

This is the start of the utmp structure being examined
set start 0

As long as there is data to parse, parse it and step to the
next structure.

while {$start < $utmpLen} {
start of struct type padding pid line id user host exit\
session time addr
set fmt "@$start s @[expr $start +4] i a32 a4 a32 a256 s2 \

i i2 c4"
binary scan $d $fmt type pid line id user host exit session time addr

Trim trailing zeros
foreach v {line id user host} {

set $v [string trim [set $v] $zero]
}

puts $output [format $reportFmt \
$types($type) $pid $line $id $user $host $exit $session \
[clock format [lindex $time 0] -format "%D %r"] [join $addr ".']]

incr start 384
}

}

52 Vol. 26, No. 3 ;login:

53June 2001 ;login: MUSINGS ●

It is truly amazing how busy one can get.

By the time you get this issue of ;login:, it will be the beginning of summer. Summer
often means that the pace of work slows down, as students go home or coworkers take
vacations. And the slowdown in the economy is already helping some people. Although
most of the layoffs (firings, in a less gilded age) are in factories, some are in the tech sec-
tor. And others who have survived the dot-com craze are now working at a much more
reasonable pace.

I was fortunate enough to meet some of the movers and shakers for a two-day meeting
that finished two days before I wrote this. You might not consider the Linux Developers
conference a relaxing event, and you would be right, but it was certainly stimulating. I
had often wondered about the people who write and guide the creation of the Linux
kernel. You can find out more about this event, and something about the personalities
involved, by reading my summaries in this issue.

I also discovered just the thing to while away the idle hours I don’t have, and perhaps
you have already heard of it. The Honeynet Project (<http://project.honeynet.org/challenge/>) is a
collection of security guys who have decided to focus on attack signatures and forensics.
They had posted a forensics challenge, and one of their number, Dave Dittrich of the
University of Washington, let me know about it in January. I was too buried to even
think about it then, but by the middle of February things had calmed down enough for
me to take a peek at the challenge, and when I did, I started to get really excited. Well,
you really have to be interested in security like I am to get turned on by something like
this.

As one of their projects, members of the group monitor networks looking for attack sig-
natures, using the free ID software snort. On the night of November 7, snort detected a
scan and then an attack against a Linux system. The victim, a RedHat 6.2 server install,
had only been up 2 1/2 days before the successful attack. One of the project members
monitored the system, and once things had settled down, took it offline and made a full-
image copy (using dd) of the entire hard disk. Good thing it was only a three gigabyte
drive.

Conversion
The challenge was to determine how the system had been attacked, which tool was used,
who did it, as well as what the attacker did after the attack. As a hint, snort logs from the
initial attack were provided, as were the hard disk images. The hard disk had been care-
fully partitioned, each partition saved and gzipped, along with information about how
to mount the partitions using the Linux loopback mount interface. The fact that the vic-
tim system was partitioned made the analysis much easier.

I started by mounting the partitions and looking around much like a system adminis-
trator might – especially one who had the benefit of an ID system. Well, this was a pretty
good waste of time, although not totally fruitless. I started by looking for a service that
listened to port 871/udp. I will tell you right away that RFC1700 does not list any service
at that port. But, I knew that the attack followed a scan of rpcinfo at port 111. So I
started scanning system startup files, looking to see what would have been started. Only
the NFS lock services, statd and lockd, would have been started, and statd has a long his-
tory of exploits.

I also noticed that the startup script for syslogd had been deleted. The only ordinary
user account was named drosen, and in that directory, I found a .bash_history file with a
list of commands in it. That sent me off to /usr/man/.Ci, a “hidden” directory just chock

by Rik Farrow

Rik Farrow provides
UNIX and Internet
security consulting
and training. He is
the author of UNIX
System Security and
System Administrator’s
Guide to System V.

<rik@spirit.com>

musings

●

SE

C
U

RI
TY

|P
RO

G
RA

M
M

IN
G

| C
O

M
PU

TI
N

G

http://project.honeynet.org/challenge/

54 Vol. 26, No. 3 ;login:

full of stuff. There were scripts here, “hidden” files, as well as directories with scanning
and exploit tools.

It was at this point that I decided to download and install The Coroner’s Toolkit (TCT)
(<http://www.porcupine.org/forensics/>) and take advantage of the tools written by
Dan Farmer and Wietse Venema. During the challenge, Brian Carrier of Purdue wrote
some additional tools to supplement TCT (<http://www.cerias.purdue.edu/homes/carrier/forensics.html>),
and it would have been handy to have some of these: for example, one that listed the
contents of a directory inode (even if it had been deleted) and showed any filenames
corresponding to deleted files. I was accustomed to using od -cx on the directory itself,
but the Linux kernel balked at letting me read directories as files.

Before I make things look absurdly difficult, the top-rated investigator in the challenge
started off with a much different approach. Thomas Roessler mounted the partitions
and then used RedHat’s rpm tool to determine, in conjunction with MD5 checksums
and the still-installed package file, which files had been modified after the install.
Another investigator used Tripwire checksums for a database created on an intact sys-
tem. Both turned up a list of Trojans that had been installed: ls, ps, top, netstat, tcpd,
ifconfig, and in.identd. Most of these are part of standard rootkits (that is, similar to one
I was given back in 1994). The fake identd provides a root shell to anyone connecting
from one of two “magic” source ports.

Autopsy
The standard RedHat 6.2 server install includes 30,000 files and directories, and we
know that the attacker has at least attempted to hide things. Also, it is likely that some of
the evidence of the attack was deleted. This is where the TCT comes into play. By run-
ning graverobber, you create the body file which is grist for the mactime script, which
I’ll discuss in a moment. What some of the other investigators did (and I wish I had too)
was to use the unrm tool to search for deleted inodes, and then to convert the output of
ils (inode ls) into a format suitable for inclusion in the body file. Then, when they run
mactime, they can see not only the existing files and directories, but ones that have been
deleted (and not yet reused) as well.

mactime is my favorite tool of the bunch. It presents a list sorted by access, modify,
and/or inode change time. For example, when a program is executed, you see that its
access time is modified, as well as the access times of any libraries loaded at that time.
Or, when a file is modified, you can see when that happened. Of course, you can only
see the last time a program was executed or a file modified. But, you can see things like a
script named clean being executed by the attacker, which in turn called the snap script,
which then strips lines that match certain patterns from logfiles.

Roughly speaking, here is what the attacker did. I will use the datestamps taken from the
victim system, whose clock was set incorrectly (just to make things more interesting, no
doubt).

The initial attack followed a couple of probes. First port 111/tcp was checked to see if it
was open and reachable, then an RPC request was made, most likely checking for statd
and the port it was listening to (871/udp). Forty-five seconds later, the attack used statd
to write a new entry in /etc/inetd.conf that would run a root-owned shell at port
4545/tcp for anyone who connected to it. This part of the attack appeared to be auto-
matic, which was very likely, considering some of the other stuff found on the victim.
This happened shortly after 11 p.m.

http://www.porcupine.org/forensics/
http://www.cerias.purdue.edu/homes/carrier/forensics.html>

At about 7:25 the next morning, the attacker connected to the magic port, and cleared
/etc/host.deny, a control file for TCP wrappers. It was probably at this point that the
attacker deleted the init script that starts syslogd, leaving many orphaned symlinks
pointing nowhere. The attacker then used FTP to download some tools and scripts. One
of these tools was used to add two new user accounts, own and adm1, and the attacker
then disconnected and logged back in as adm1. The own account had a UID of zero and
no password, so the attacker could immediately become root. Soon, the attacker cleaned
up the inetd.conf file so no one else could take advantage of the original backdoor at
port 4545.

Although the attacker deleted or cleaned up many logfiles, lastlog was forgotten. Linux
has no tools that will display the content of any lastlogfile except one in the default loca-
tion, so I wrote one (something that Roessler did as well) and discovered that the
attacker had logged in at 7:31 as adm1 from c871553-b.jffsn1.mo.home.com (the initial
attack came from an address within home.net).

The very next activity was to install tpack, an IRC bot used to keep control over IRC
channels. The attacker later installed a recent version of BitchX (bx), an IRC client. This
indicates a possible motive for the attack – to gain another platform for the IRC wars.

The attacker next started running scripts that backup programs, then install and config-
ure the various Trojans mentioned earlier. Most of these Trojans are part of the lurker
four (lrk4) package that you can find at sites like <ftp://ftp.technotronic.com>, although a
couple are apparently from a later version, lrk5. The scripts are not perfect: for example,
they use the wrong pathnames for a replacement telnetd and a Trojanned syslogd (that
ignore log messages that match certain patterns).

The attacker’s script also launches snif, a version of LinSniffer (also part of lrk4), leaving
behind snif.pid and an empty logfile (no passwords were sniffed).

Good Sysadmin
I found what the attacker did next remarkable, although I have heard that this has
become increasingly common. The attacker downloaded a set of rpms and patched the
most commonly used security holes on Linux systems: amd, lpr, nfs-utils, wu-ftpd, and
BIND. Another script ruthlessly stripped away set-user-id permissions on many pro-
grams, apparently to prevent anyone else from using an exploit to gain root access.

The reason for this paranoia became more apparent when I looked through the
/usr/man/.Ci directory. I found scanning and exploit tools for exploiting each of the
patched server programs, as well as z0ne and strobe for scanning. In general, each direc-
tory contained a program that generated IP addresses when given a 16-bit prefix (e.g.,
206.1 to create 206.1.1.1, 206.1.1.2, up to 206.1.254.254), that got passed to a tool that
probed for a particular port, BIND version, or RPC service, and finally to an automatic
exploit. In other words, the system now became yet another automatic attack platform
that, in turn, discovers more vulnerable systems. No wonder it took only 2 1/2 days
before this system was exploited.

Like any security-conscious individual, the attacker installed a version of SSH. Unlike
most versions, this one not only logs passwords, but it also has a magic password. The
attacker logged out of the adm1 account, and logged back in using SSH and the magic
password. The Trojan sshd dutifully logged the magic password, tw1Lightz0ne, in the
logfile (/usr/tmp/nap).

55June 2001 ;login: MUSINGS ●

●

SE

C
U

RI
TY

|P
RO

G
RA

M
M

IN
G

| C
O

M
PU

TI
N

G

ftp://ftp.technotronic.com

By the time the attacker logged out, he had spent about 36 minutes downloading files,
installing rpms, and running scripts. The adm1 and own accounts were deleted, and
Trojans hid most (but not everything) that had been done. The attacker had two back-
doors, sshd and identd, to use for future visits.

What the attacker took about a half hour to accomplish takes the average investigator
about 34 hours to uncover. I spent close to 30 hours myself (I did not enter the chal-
lenge), simply because I did feel the challenge posed by this thoroughly hacked system.

In the usual case, this system would simply have been taken offline, and the OS re-
installed. If security patches had not also been installed, it is very likely that the system
would have been hacked again in very short order. At the time I write this, the port
being scanned most frequently is 53/tcp, the port used by BIND. If you have systems,
even non-Linux ones, that use versions of BIND prior to 8.3 or 9.1, I suggest that you
upgrade them soon.

The attack used by the Honeynet Project was not particularly subtle. Swift, a little messy,
obviously not someone who was totally clueless, but (by the same token) someone who
obviously was into taking over as many systems as possible. Not what I consider a seri-
ous attacker, who would have been considerably more subtle and left much less in the
way of traces. If all the attacker had wanted was a copy of a certain file, the initial attack
could have used a script that would have done everything, including cleaning up after-
wards.

All in all, trying The Challenge was a very worthwhile learning experience. I suggest it as
a fine way to pass the copious free time that you might have. On a more serious note, if
you do take the time to read a couple of the analyses, you will learn a lot about how one
would investigate a hacked system. You might also consider scanning your own net-
works (you can use the tools found in The Challenge) and see how many of your own
systems are vulnerable.

And if you don’t find any at all, that could be good or it could be bad. If you installed
the patches, it is good. If the attacker installed the patches, well, you have a lot of work
ahead of you.

56 Vol. 26, No. 3 ;login:

Why use freeware and open source for security management?

Some time ago, I was invited, as a representative of an Italian governmental office, to
give a speech on new issues in security management in a forum organized by an impor-
tant American ISV (commercial, obviously). The only condition I put on it was to be
able to speak of the positive aspects of the freeware and open source movement with
respect to the ISV-oriented one, with particular reference to security.

My attention was focused particularly on the fundamental principle that there are full-
spectrum security tools that are truly valid, and the nice thing about them, apart from
the availability of the source code, is the complete lack of licensing costs.

Every system administrator has a favorite toolkit. He or she runs it from a central con-
sole (where possible) and, especially in small-to-medium networks, tries to keep an ori-
entation towards public domain tools. Personally, I use a Linux-based environment
made up of the tools I am going to describe below.

In the December 2000 issue of ;login:, I wrote about Trinux, a light distribution of
Linux, which shares a broader realm with other mini-UNIXes such as tomsrtbt, LEM,
PicoBSD, and others.

Trinux is booted from a single floppy, loads the rest of its modules from a FAT/Ext2 par-
tition, from other floppy disks, or from an HTTP/FTP server, and runs completely in
RAM. One of the most important features is that Trinux contains a series of precom-
piled versions of security tools such as nmap, tcpdump, iptraf, and ntop. Furthermore,
this distribution works by default with DHCP.

Tcpdump and Its Companions
Trinux includes a precompiled version of tcpdump, which was created as a network
diagnostics tool for UNIX but has gone on to be used in a great variety of ways. The
transactions that this tool intercepts are, practically speaking, all the IP, TCP, UDP, and
ICMP packets. Without getting too deeply into this topic (check out <http://www.
tcpdump.org>), we could say that it is a continuously evolving tool that has its sniffer
aimed at an increasingly large number of protocols. For this very reason, the amount of
packets intercepted is very often so high that only external tools can sift out data and
information that are truly interesting from the security point of view.

SANITIZE
Sanitize is one of these data sifting tools. It is a collection of five Bourne shell scripts for
reducing tcpdump traces in order to address security and privacy concerns by renum-
bering hosts and stripping out packet contents. Each script takes as input a tcpdump
trace file and generates a reduced, ASCII file in fixed-column format to stdout. Here is a
list of the scripts:

■ sanitize-tcp – has the task of reducing all TCP packets
■ sanitize-syn-fin – does the same reducing on TCP SYN/FIN/RST packets
■ sanitize-udp – reduces UDP packets
■ sanitize-encap – reduces encapsulated IP packets (usually MBone)
■ sanitize-other – reduces any other type of packet

57June 2001 ;login: USING TCPDUMP AND SANITIZE ●

using tcpdump and
sanitize for system
security by Dario Forte

Dario Forte has been
a security analyst
since 1992. He is a
frequent speaker and
writer on forensic
investigation and
information war-
fare/management,
and has worked with
several Italian gov-
ernmental agencies.
He is a member of
CSI, USENIX, and
SAGE.

<dario.forte@inwind.it>

●

SE

C
U

RI
TY

|P
RO

G
RA

M
M

IN
G

| C
O

M
PU

TI
N

G

http://www

What is important to emphasize is that the performance of Sanitize
(<http://ita.ee.lbl.gov/html/contrib/sanitize.html>) depends on the type of traffic it is
handling. For example, reduced TCP traffic retains the packet size (amount of user
data), while other reduced traffic does not. In addition to Bourne shell, the scripts were
written using tcpdump, and the common UNIX utilities sed and awk. Regarding the lat-
ter, it is a good idea to use the most recent versions.

Unfortunately, Sanitize also has its limits, albeit fewer than its brethren. For example,
the contents of the sniffed packets are stripped out, while their size is revealed only for
TCP traffic. For encapsulated IP traffic (usually MBone), and for non-TCP, non-UDP,
non-encapsulated-IP traffic, only timestamps are generated. The script for reducing
TCP SYN/FIN/RST packets is separate from the one for reducing all TCP packets, so the
host renumbering performed by each will be independent.

SANITIZE IN DETAIL
The five scripts carry out a renumbering of hosts and the extrapolation of the packet
contents.

The sanitize-tcp script works on TCP traffic and generates output in six columns:

timestamp of packet arrival

For the first packet in the trace, this is the raw tcpdump timestamp. For the remain-
ing packets, this is the offset from the integer part of that first timestamp.
There is a difference between what this script does and what sanitize-syn-fin does.
The latter uses as its base time the arrival of the first TCP packet in the file, not the
first TCP SYN/FIN/RST packet (this helps when comparing sanitize-syn-fin times
with those produced by sanitize-tcp).

(renumbered) source host
(renumbered) destination host

When you use this product you will realize that this renumbering process causes the
loss of all the other network information.

source TCP port
destination TCP port

These are the number of data bytes in the packet, or 0 if none (this can happen for
packets that only lack data sent by the other side).

The sanitize-syn-fin script reduces TCP SYN/FIN/RST traffic for analysis. Its output is
eight columns.

The first five correspond to the same columns as for sanitize-tcp, using the same host
renumbering. The remaining three columns are:

TCP flags (e.g., "FP" for a packet with FIN and PSH set)
sequence number
acknowledgement sequence number

For the initial SYN sent to set up a connection, this will be zero. Experience has
shown that you should not trust the sequence numbers used in RST packets.

The sanitize-udp script reduces UDP traffic. Output comprises five columns, correspon-
ding to the first five columns for sanitize-tcp (i.e., packet size is not reported).

58 Vol. 26, No. 3 ;login:

http://ita.ee.lbl.gov/html/contrib/sanitize.html

The sanitize-encap script reduces encapsulated IP packets (these usually are MBone
packets). Output is a single column, giving the arrival timestamps.

Finally, sanitize-other analyzes all non-TCP, non-UDP, non-encapsulated traffic. Only a
timestamp is reported.

As you can see, there aren’t a lot of scripts but they are good ones. Thanks to its extreme
granularity, tcpdump contains a great deal of information, which is not always easy to
organize. Sanitize may thus be an excellent aid.

A Series of Questions
Can Trinux contain all the tools we’ve talked about? This is one of the most recurrent
questions, partially driven by the fact that the community of Trinux users is rapidly
growing. In an email exchange with the maintainer of the project (Matthew Franz), it
was concluded that there shouldn’t be problems here, especially in light of the heft
(5Kb) of the Sanitize package. Nevertheless, whether the sed/grep in BusyBox supports
everything in the scripts and whether it will be necessary to add egrep and awk still
needs to be seen.

Another question concerns the compatibility of Sanitize with the various versions of
tcpdump. According to Vern Paxon (Sanitize’s creator), it should be compatible, except
perhaps for very old versions of tcpdump (or unofficial releases that have altered its out-
put format).

Conclusions
One hope would be the creation of a management console (obviously freeware/
open source) capable of handling a number of installations of the tools discussed here.
In the case of Sanitize, this requires script execution with maximum granularity. This
might be an interesting idea for a new project. In the meantime, I will be content to use
this toolkit in a test environment made up of a small LAN with 30 stations, four hosts,
all *nix, hooked up to the public network via an auxiliary internal gateway.

59June 2001 ;login:

MORE TOOLS

The following are other tools that could
be used with tcpdump. Obviously, such
tools have their limits, which is why I
suggest using them together.

■ Tracelook is a Tcl/Tk program for graph-
ically viewing the contents of trace files
created using the -w argument to tcp-
dump. Its latest release is from 1995.

■ TCP-Reduce is a collection of Bourne
shell scripts for reducing tcpdump traces
to one-line summaries of each TCP con-
nection present in the trace. This tool
was also written by Vern, but it is less
powerful than Sanitize (as I see it, of
course).

■ Tcpdpriv is a program for eliminating
confidential information from packets
collected on a network interface (or
from trace files created using the -w
argument to tcpdump).

USING TCPDUMP AND SANITIZE ●

●

SE

C
U

RI
TY

|P
RO

G
RA

M
M

IN
G

| C
O

M
PU

TI
N

G

60 Vol. 26, No. 3 ;login:

Billing and Provisioning
Introduction
In this installment of ISPadmin, I examine aspects of billing and provisioning

in an ISP environment. ISP billing is the process by which the customer pays

for his/her service, not unlike billing in other service industries such as electri-

cal or cable TV service. As such, the challenges in the ISP environment with

respect to billing are:

■ Defining bill plans
■ Accumulating usage
■ Generating bills
■ Posting payments
■ Interfacing into the provisioning process

ISP provisioning, while a separate process from billing, is closely related to it. Provision-
ing is the process by which services are enabled on the back-end systems which provide
the actual services to the end customer. For example, when a customer orders a generic
ISP dialup account with a POP box and home page, the following actions must be
taken:

■ An email account is created on the POP mail server, and other related systems are
updated as necessary (e.g., mail relay(s)).

■ The dial-up RADIUS (PPP) account is created.
■ A Web home page account is created (usually of the form

<http://www.isp.net/~username>).
■ Access to the Web home page account is enabled, and optionally, an anonymous

FTP area is created.
■ Disk quotas are created on every system with customer data.
■ A record is created in the billing system which indicates the master account owner,

billing information for the master account, associated services billed to the master
account, and bill plans for those services.

As you can see, this is not a straightforward process! Provisioning and billing are quite
tailored to the ISP business, but billing is less specific to the ISP industry. While people
can and do utilize generic billing systems for ISPs, the best results are achieved with a
billing system that has been designed expressly for service providers, and especially
those written specifically for ISPs.

One challenge faced when considering an ISP billing/provisioning system is the fact that
such systems touch on most if not all areas of an ISP’s operations, including finance,
customer service, technical support, back-end business support systems, etc. In this
installment, I will focus on only the billing and provisioning aspects.

Small Provider Goals
A small provider is primarily concerned about cost when it comes to designing and
implementing a billing/provisioning system. This means a typical small ISP:

■ Utilizes a home-grown or low-cost billing system, without high-end features like
realtime billing data or realtime provisioning capability;

■ Performs account adds/changes by hand on each back-end system or has written
their own limited function non-realtime provisioning system in-house (which may
or may not be integrated with the in-house billing system).

ISPadmin
by Robert Haskins

Robert Haskins is

currently employed

by WorldNET, an ISP

based in Norwood,

MA. After many

years of saying he

wouldn't work for a

telephone company,

he is now affiliated

with one.

<rhaskins@usenix.org>

http://www.isp.net/~username>

A small provider doesn’t have the volume of account data that a large provider has, so it
is feasible to do many processes via MS Excel spreadsheets (or pencil and paper for that
matter) and manual input. The same also goes for billing, where there might be no need
for the billing system to input RADIUS usage data in order to produce bills. (Whether
or not to utilize RADIUS data is determined largely by what business model the ISP fol-
lows.) Not utilizing RADIUS accounting records makes things much easier for the
smaller provider who doesn’t bill for usage.

Of course, accuracy is very important! No one is going to stay in business if they bill
customers incorrectly or aren’t billing their customers at all. Another consideration is
what happens when an attacker adds an account to a system under automated provi-
sioning control. The account will get deleted the next time the provisioning process
runs. Of course, if the hacker breaks into the provisioning system, and there is no way of
comparing the accounts which are being billed against the accounts that have been
enabled for services, a company won’t be in business long. For any system administrator,
but especially at ISPs, audit trails and mechanisms are a great asset operationally as well
as from a financial control standpoint.

Large Provider Goals
A larger provider who services retail customers has different goals than a smaller
provider when it comes to billing and provisioning:

■ Functionality (e.g., virtual ISP [VISP] and realtime billing support)
■ Flexibility (how easy and expensive is it to maintain and change over time)
■ Reporting
■ Low cost (but much less sensitive than a smaller provider)

Bigger ISPs are much more likely to purchase one of the many commercial billing and
provisioning solutions. The only exception to this could be a large wholesale dialup ISP,
which might be able to get away with a simple billing/provisioning system with the fol-
lowing limitations:

■ No VISP offering, therefore no need to provide end-user services (such as email,
RADIUS authentication, and Web hosting) and/or bill end users

■ RADIUS authentication via proxy to downstream customers

Of course, not having a fully functional billing system may cause limitations on the
growth of your ISP business (as someone once called it, “revenue limiting”). But it can
be (and is currently) done this way at some ISPs.

Small Provider Design
Figure 1 contains a diagram that outlines the major pieces
in a small dialup ISP’s billing and provisioning process,
and systems that provide services to end customers. This
diagram is illustrative of a small provider, with an auto-
mated provisioning/billing system. However, the basis of
the design is valid for larger systems, with appropriate scal-
ing mechanisms.

Of course, the center of the system is the billing/provision-
ing system, marked “billing process” in Figure 1. For a sim-
ple system, this would be a single machine. In the case of a
commercial application like Portal, this usually takes the
shape of a series of machines. In either case, they both

61June 2001 ;login: ISP ADMIN ●

●

SY

SA
D

M
IN

|S
EC

U
RI

TY
|P

RO
G

RA
M

M
IN

G
| C

O
M

PU
TI

N
G

front end

web

mail

RADIUS

billing
process

database

Figure 1

would communicate with an external Oracle, MS SQL, or similar database for a back-
end data store. The flow of data would be two-way between the database and billing sys-
tem.

The box labeled “front end” could be a script local to the billing machine or Web site
that inputs data into the provisioning/billing system. It might be on a separate stand-
alone system or integrated on the billing platform itself. This front end may also include
a Web registration system, bulk-account registration system, specific customer-support
screens, and/or other functionality.

The boxes to the right — labeled “web,”“mail,” and “RADIUS” (flow heading towards
the box) — indicate the provisioning output aspect of the system. This is the billing sys-
tem creating accounts on the back-end systems so customers can access their Web sites
and email, and dial into the Internet. The “RADIUS” box with flow heading out of the
box shows RADIUS accounting data flowing into the billing system in order to calculate
end-subscriber usage.

Large Provider Design
Figure 2 contains an illustration of a possible design of a com-
mercial billing system such as Portal Software’s Infranet. Please
note that there are many, many ways to implement commercial
billing systems, and this discussion is meant as a high-level
overview of what is possible. If you are really interested in this
topic, I would suggest contacting a major ISP billing company
and talking to one of their sales engineers.

The essential difference between a small provider and large com-
mercial implementation is the ability to scale the database and
billing/provisioning server machines. In Figure 2, the boxes
marked “DB1” and “DBn” indicate multiple machines housing
the data store. Of course, large database implementations such as
Oracle scale relatively easily. Boxes marked “B/P1” and “B/Pn”
indicate the multiple billing/provisioning machines that can be
utilized for performance and scaling under heavy-load and high
user counts.

Lightweight Directory Access Protocol (LDAP)
No discussion pertaining to provisioning would be complete

without at least a mention of LDAP. For those of you who have read previous install-
ments of ISPadmin, you know that LDAP eliminates much of the work when it comes
to provisioning. LDAP is a central repository for authentication and account configura-
tion (e.g., what host a customer’s POP mail is on, the spool directory location, etc.). The
issue with LDAP has been the lack of support at the application level. However, this is
slowly changing over time. Full application support of LDAP remains the “holy grail”
for many people, both in the ISP business and, to some degree, within the entire IT
arena.

Open Source Solutions
A search of Freshmeat and/or SourceForge with the phrase “ISP billing” shows numer-
ous hits. However, many of the listed programs are vaporware, little more than con-
cepts. Some are specific to Web hosting or not related to ISP billing at all. Here is a list of
a few open source dialup ISP billing and/or provisioning systems with available source
code:

62 Vol. 26, No. 3 ;login:

B/P1

web

front end

mail

B/Pn
RADIUS

DB1

DBn

Figure 2

■ Freeside from Silicon Interactive Software Design, Inc.
■ ISPman from Atif Ghaffar
■ gcdb
■ ISFree from Brian Wolfe
■ ISP daemon

While I don’t have space to discuss them all, I will briefly cover Freeside and ISPman.

FREESIDE
Of the open source billing/provisioning applications, Freeside has been around the
longest and is probably the most feature-rich and stable. It is a complete billing and pro-
visioning program written in Perl. Freeside has the following features (from the Freeside
Web site):

■ Utilizes Perl’s DBI module; recommended database back ends are PostgreSQL and
MySQL

■ Web-based interface
■ Reseller/agent support, including controlling what agents can sell
■ Tax rates by state and locale
■ Exports to a multitude of UNIX file formats, including:

■ passwd and shadow (or master.passwd) files
■ ERPCD acp_passwd and acp_dialup files
■ RADIUS users files

■ Works with ICRADIUS and Radiator RADIUS servers for native SQL
authentication

■ Virtual domain support:
■ Exports Sendmail virtusertable and sendmail.cw files
■ Exports Qmail virtualdomains, rcpthosts, and recipientmap files

■ Signup server support with MS IE auto-configuration support
■ Realtime credit card support

Freeside would be a good choice for an ISP on a limited budget. One major limitation is
the lack of LDAP support. Also, scalability might be an issue, unless Oracle or another
easily scalable back-end database is utilized.

ISPMAN
ISPman is a relative newcomer to the open source scene and does not have a billing
component. It is strictly for provisioning accounts, with LDAP as a back end. It is still
under active development and therefore may not be suitable for your needs. However, it
is worth investigating, at least as a starting point for your own development. In fact, I
firmly believe that the future for ISP provisioning lies with an end-to-end LDAP solu-
tion, and Atif Ghaffar (the author of ISPman) is off to a great start. ISPman features
include:

■ Full LDAP support; all back-end apps are LDAP aware
■ Creates DNS configuration files to input into a BIND 8 server
■ Web interface for all input
■ End-subscriber management

Required back-end software to run ISPman includes:

■ OpenLDAP
■ Postfix
■ Cyrus imapd and SASL

63June 2001 ;login: ISP ADMIN ●

●

SY

SA
D

M
IN

|S
EC

U
RI

TY
|P

RO
G

RA
M

M
IN

G
| C

O
M

PU
TI

N
G

■ Apache
■ Proftpd (GNU’s FTP server)
■ BIND
■ pam_ldap
■ IMP 2.2 (PHP Webmail application)

Commercial Billing/Provisioning Applications
There are a number of commercial billing/provisioning applications on the market. A
complete discussion of all of the options is out of the scope of this article, but a brief
discussion is worthwhile.

At the lower price range, there are NT-based solutions which focus exclusively on ISPs
and don’t have features like realtime accounting or complete support for wireless, DSL,
or other such enhanced services. A few of the better known players in this space are:

■ Rodopi
■ Boardtown Platypus

At the more expensive end of the spectrum there are a number of players; here are a few
examples:

■ Portal Infranet
■ Amdocs/Solect
■ Lucent/Kenan

The trend at the higher end of the billing/provisioning market is towards convergence.
This is where telcos and service providers can utilize one platform for billing and provi-
sioning all of the services they offer, including wireless, wireline, ISP/ASP, and others.
Historically, telcos and larger service providers have implemented provisioning/billing
platforms for each line of their business, which leads to high maintenance costs. (If you
investigate this area, you will find that Lucent and other players who came out of the
telco market call billing “Business Support Systems,” or BSS, and provisioning “Opera-
tional Support Systems,” or OSS.)

There is an effort to open the (historically closed) interface between providing end-sub-
scriber services and billing for those services by defining an open protocol. IPDR.org, a
consortium of leading billing/provisioning software vendors, is developing this stan-
dard. CLEC-Planet also has a short article which talks about the current status of
billing/provisioning convergence.

Outsourcing
No discussion of ISP billing would be complete without touching on outsourcing. There
are several companies who will, for a monthly fee, do your billing, customer care, provi-
sioning, etc. for you. This may be an option for a larger ISP, as a smaller provider usually
wouldn’t have enough subscribers to make this a viable option.

Typically, these billing companies have implemented Portal, Kenan, or other such com-
mercial billing system in a “virtual” manner. Then, the outsourcing company will cus-
tomize their system to accommodate you. They typically sell “a la carte” and will provide
just the parts you need (only billing, billing plus provisioning, etc.). GlarNet is a com-
pany that provides an outsourced ISP billing and provisioning solution, among other
services.

Conclusion
Billing and provisioning is a very important aspect of an ISP’s operation. For a smaller
ISP, billing and provisioning by hand is acceptable. But for a medium or large ISP,

64 Vol. 26, No. 3 ;login:

The trend at the higher end

of the billing/provisioning

market is towards

convergence.

billing and provisioning systems usually are automated, either by building a system in-
house, deploying an open source solution like Freeside, or implementing a commercial
billing system like Rodopi or Portal. A third option is to utilize an ISP billing outsourc-
ing company and pay a monthly service fee.

Next time, I will look at ways ISPs design and manage their Usenet news infrastructure.
In the meantime, please send your feedback on ISP topics and system administration to
me!

References
Oracle: <http://www.oracle.com>
Portal Software: <http://www.portal.com>
LDAP starting point: <http://www.ldapman.org>
Freshmeat: <http://freshmeat.net/>
Sourceforge: <http://sourceforge.net/>
Freeside: <http://www.sisd.com/freeside/>
ISPman: <http://ispman.sourceforge.net/ispman.php3>
ISPman article by Atif Ghaffar (ISPman author):

<http://www.linuxfocus.org/English/September2000/article173.shtml>
gcdb: <http://sourceforge.net/projects/gcdb/>
ISFree: <http://advogato.org/proj/ISFree/>
ISP daemon: <http://ispd.eburg.com/>
Perl DBI: <http://dbi.symbolstone.org/index.html>
PostgreSQL: <http://www.postgresql.org/index.html>
MySQL: <http://www.mysql.com/>
ICRADIUS: <ftp://ftp.cheapnet.net/pub/icradius/>
Radiator: <http://www.open.com.au/radiator/>
Sendmail: <http://www.sendmail.org/>
Qmail: <http://www.qmail.org/>
MS Internet Explorer Administration Kit (IEAK):

<http://www.microsoft.com/windows/ieak/en/default.asp>
OpenLDAP: <http://www.openldap.org/>
Postfix: <http://www.postfix.org/>
CMU’s Cyrus IMAP server: <http://asg.Web.cmu.edu/cyrus/imapd/>
CMU’s SASL library: <http://asg2.Web.cmu.edu/sasl/>
Apache: <http://httpd.apache.org/>
ProFTPD: <http://proftpd.org/>
ISC’s BIND: <http://www.isc.org/products/BIND/>
pam_ldap: <http://www.padl.com/pam_ldap.html>
IMP: <http://www.horde.org/imp/>
Rodopi: <http://www.rodopi.com/>
Boardtown’s Platypus: <http://www.boardtown.com/>
Solect from Amdocs: <http://www.solect.com/>
Amdocs: <http://www.amdocs.com/>
Lucent: <http://www.lucent.com/software/>
IPDR.Org: <http://www.ipdr.org/index.htm>
CLEC billing convergence article: <http://www.clec-planet.com/tech/0004phifer.htm>
GlarNet: <http://www.glarnet.com>

65June 2001 ;login: ISP ADMIN ●

●

SY

SA
D

M
IN

|S
EC

U
RI

TY
|P

RO
G

RA
M

M
IN

G
| C

O
M

PU
TI

N
G

http://www.oracle.com
http://www.portal.com
http://www.ldapman.org
http://freshmeat.net/
http://sourceforge.net/
http://www.sisd.com/freeside/
http://ispman.sourceforge.net/ispman.php3
http://www.linuxfocus.org/English/September2000/article173.shtml
http://sourceforge.net/projects/gcdb/
http://advogato.org/proj/ISFree/
http://ispd.eburg.com/
http://dbi.symbolstone.org/index.html
http://www.postgresql.org/index.html
http://www.mysql.com/
ftp://ftp.cheapnet.net/pub/icradius/
http://www.open.com.au/radiator/
http://www.sendmail.org/
http://www.qmail.org/
http://www.microsoft.com/windows/ieak/en/default.asp
http://www.openldap.org/
http://www.postfix.org/
http://asg.Web.cmu.edu/cyrus/imapd/
http://asg2.Web.cmu.edu/sasl/
http://httpd.apache.org/
http://proftpd.org/
http://www.isc.org/products/BIND/
http://www.padl.com/pam_ldap.html
http://www.horde.org/imp/
http://www.rodopi.com/
http://www.boardtown.com/
http://www.solect.com/
http://www.amdocs.com/
http://www.lucent.com/software/
http://www.ipdr.org/index.htm
http://www.clec-planet.com/tech/0004phifer.htm
http://www.glarnet.com

66 Vol. 26, No. 3 ;login:

This article discusses some of the things that you should consider when you

are designing the systems infrastructure for an “external site.”

What do I mean by an “external site”? An external site is a computing installation that is
intended primarily to provide services for people outside your organization, or which is
located at a physically remote location. The most common example of an external site
is, of course, a Web server (or servers) located at a co-location facility, but there are
other kinds of sites that are “external,” such as the point of sale and store-management
systems used in a retail store chain, the systems used to transfer purchase orders to sup-
pliers, or an incoming fax server. Most of this discussion is going to be phrased in the
context of a Web-serving infrastructure, but much of the discussion will be applicable to
other kinds of external sites.

Introduction
Before I start talking about specifics, let’s spend some time on a slightly more abstract
discussion.

CHARACTERIZATION
External sites usually have some or all of the following attributes:

■ Remote location – typically located in a co-location facility of some form
■ External users – usually primarily used by customers (or potential customers) or

business partners
■ 7x24 operation – expected to be “always” available
■ Flexibility – needs to be able to cope with changing demands or traffic levels

Internal sites, by contrast, often have fewer demands placed on them. The service loads
tend to be more predictable, off-hours downtime is easier to schedule, users are often
easier to notify, and the equipment is more likely to be just down the hall, rather than
across town or across the country.

BASIC CONCEPTS
In this discussion, I’ll make use of the following concepts:

Redundancy: The use of multiple instances of particular components to reduce the
impact of hardware failure. The most common example is using a pair of disks in a mir-
rored configuration to guard against disk failures.

Replication: Similar to redundancy, but refers more to the duplication of services than
to the server hardware components themselves. The use of multiple SMTP or DNS
servers is a common example of replication.

Separation of Functions: The use of separate servers for different services. This is also
the “don’t put all your eggs in one basket” concept.

Reliability: The ability of a system to cope effectively with failures or unusual condi-
tions.

Accessibility: The ability to gain the appropriate access to your systems, even in times of
service, system, or component failure. For example, a modem and a telephone line can
be very useful when your regular network connection is dead.

Recovery: The process of restoring an impaired or failed service or system to its normal
state.

designing
an external
infrastructure

by John Sellens

John Sellens is the
general manager for
Certainty Solutions
(formerly GNAC) in
Canada, based in
Toronto, and is proud
to be husband to one
and father to two.

<jsellens@certaintysolutions.com>

Security: The appropriate access and other controls that protect your systems and serv-
ices from attacks (intentional or unintentional). Security in this context is more like a
topic than a concept.

I will cover how these concepts can be applied to design an appropriate external infra-
structure in order to reduce the risk of site failure, and to shorten the expected time to
repair a failure should one occur.

It’s worthwhile to note that all of these concepts (and more) can also be applied in the
design of internal sites and will result in a better infrastructure. But the nature of exter-
nal sites, most notably their external visibility and often remote location, makes these
concepts especially relevant for external sites.

DEFINITIONS
I’ve already defined what I mean by an “external site.” Here are a few more definitions:

Service: The actual facility or process provided by your site. We most often think of
services like Web content, mail, or FTP, but other common services include such things
as calendaring, product catalogs, file storage, and so on.

Server: Most often a computer, used to provide a service, or a part of a service.

Component: A device (typically) that provides some function or ability. This includes
such things as disks, network equipment, power bars, and yes, servers.

System: The collection of components that work in concert to provide a service.

Some of the definitions attempted here make some subtle or slight (or even somewhat
obtuse and obscure) distinctions, but I thought it would be useful to attempt to distin-
guish between the four different terms.

BALANCE
Effective system and infrastructure design often involves a number of tradeoffs – the
time-honored “cheap, fast, good – choose two” has a certain ring of truth. In external
infrastructure design, we’re often faced with conflicts between the three following goals:

Simplicity – Cost effectiveness – Reliability

In other words, adding reliability to a site usually adds additional complexity and cost.

In most cases, we design site infrastructures to provide an appropriate level of reliability,
while keeping an appropriate balance between cost and the risks and consequences of
site failure. What is “appropriate” will depend on your specific situation – your budget,
peace of mind, and level of aversion to public relations problems all enter into the
appropriateness equation.

INFRASTRUCTURE ELEMENTS
Most external sites are designed for a particular purpose, making use of particular com-
ponents, software applications, and size and design criteria. But no matter what the final
overall design, a site usually contains some (or all) of the following types of compo-
nents:

Computing Systems: They come in different sizes and different complexities, and they
run different operating systems. But they’re all intended to run some form of software
that performs a function or provides a service.

Storage Disks: Disks, tape, optical, etc.

67June 2001 ;login: DESIGNING AN EXTERNAL INFRASTRUCTURE ●

Adding reliability to a site

usually adds additional

complexity and cost.

●

SY

SA
D

M
IN

|S
EC

U
RI

TY
|P

RO
G

RA
M

M
IN

G
| C

O
M

PU
TI

N
G

Networking: Usually some form of hub or switch, host network interfaces, and an
uplink to the Internet or a wide area network.

Firewall or Filtering Gateway Router: A barrier of some kind to limit what forms of
access to the site are allowed.

Load Balancing: Larger Web sites almost always utilize some form of load balancing to
share the service load across multiple servers. Load balancing can be provided through
software, DNS-based mechanisms, or by load-balancing hardware.

Support Elements: The power bars, uninterruptible power supplies, console servers,
modems, monitoring and environmental devices, etc.

Applying the Concepts
REDUNDANCY
Redundancy is the primary tool for guarding against server hardware failure. The idea is
simple – if you’ve got two (or more) parts performing a single function, things will
(probably) keep working if one of the parts breaks.

It wasn’t very long ago when redundant parts were relatively expensive, and redundancy
was used only in high-end sites. Nowadays, with commodity components, redundant
components should be included in just about every server.

The most common application of redundancy is with disk drives, where two or more
drives are configured for mirroring (RAID 1) or parity striping (RAID 5). RAID config-
urations allow systems to keep functioning with no data loss even if a disk fails. With
disks as cheap as they are these days, and with RAID software included with just about
every operating system, you should almost always configure your servers to use some
form of RAID configuration.

Other components that are often configured for redundancy are: power supplies, CPUs
– you didn’t think dual processor systems were just for added speed, did you? – memory
boards, and network interfaces. Most servers these days can be easily configured with
redundant components for most of the critical parts.

Redundancy is a great technique and can be cost-effectively applied in just about every
situation, regardless of your application or environment.

REPLICATION
Replication is used for two purposes: resilience of the service/system in the face of server
failure and scalability of the service. In external sites, the most common example of
replication is in the use of multiple “identical” Web servers, with the load shared across
an entire “server farm.”

If your application or service can be built (or configured) to work across multiple serv-
ices, you’ll end up with a much more reliable and scalable system; a server farm of 10 (or
100) Web servers can cope much more effectively with a server failure (due to OS bugs,
catastrophic hardware failures, etc.) than a single monolithic server, and provides an
obvious method for upgrading overall system capacity.

However, replication can’t be achieved simply by plugging in another server (obviously);
your application and system need to have been designed and/or configured to be able to
make use of replicated servers. For example, multiple Web servers won’t do much good
if your Web site’s address is assigned to just one of the boxes.

68 Vol. 26, No. 3 ;login:

Redundancy is the primary

tool for guarding against

server hardware failure.

Server replication can usually only be useful in concert with some external help. Repli-
cation is sometimes available in services through the application or its interfaces. For
example, some “middleware” software programs provide Web server plug-ins or other
interfaces that select one server in a replicated pool from a list of currently available
servers (e.g., Apple’s WebObjects software).

In most cases, however, some form of external load balancing is used. The most com-
mon examples of external load balancing are “round-robin” DNS configurations or
load-balancing hardware devices.

Round robin DNS is the simplest (and cheapest) method of load balancing, but it has a
number of drawbacks. It is implemented by defining a service name with a number of
IP addresses, one for each server in your server farm. DNS servers will provide the list of
IP addresses in response to lookups, but will rotate through the list of addresses, putting
each different address at the head of the list in turn. (At the time of writing, nslookup
www.microsoft.com provides an example of the use of round-robin DNS.) The primary
drawback of round-robin DNS is in times of server failure, when some percentage of
users will be given the IP address of the failed server as the first one to try, and will
either fail to connect or get a delayed response while the initial connection to the failed
server times out. It also performs poorly when the server maintains some form of “ses-
sion state” between connections; if you connect to a different server next time, it may
not have the correct context to continue your service.

These problems can be addressed by using intelligent load-balancing appliances, such as
those made by Alteon, F5 Labs, and others. These are devices that (typically) look like an
Ethernet switch, but which “re-write” IP addresses in packets passing through them to
load-balance traffic across a group of servers. They do this by performing periodic
“health checks” on the servers in their pool for availability, response time, etc., and by
maintaining some form of state table that matches the two ends of a load-balanced con-
nection. A real discussion of load balancing is beyond the scope of this article, but suf-
fice it to say that these devices can be quite sophisticated, powerful, and very effective in
keeping services running and available.

One final aspect of replication that needs to be considered is that of data or content dis-
tribution, i.e., keeping everything consistent across an entire server farm. This can be a
complicated problem, with lots of revision control and timing issues, but can usually be
handled effectively in software for services that use relatively static data, using tools such
as rdist, rsync, CVS, or various commercial software packages. Replicating database
servers is usually a much more complicated exercise, especially when database updates
are driven by external sources (such as Web site customers submitting orders). Up to a
certain size, database server replication can be handled by clustering or database replica-
tion by the database software itself, both of which can be quite intricate. But beyond
that, things can get very complex, with large amounts of custom software keeping things
consistent.

The underlying and as yet unspoken message is this: plan ahead for replicability and
understand how the components of your application will interact when there’s more
than one of each.

SEPARATION OF FUNCTIONS
As mentioned above, this is the “don’t put all your eggs in one basket” concept. By this, I
mean use separate servers for each service or function – don’t make your Web server,
application server, and database server all the same box. There are several reasons why

69June 2001 ;login:

Don’t make your Web server,

application server, and

database server all the same

box.

●

SY

SA
D

M
IN

|S
EC

U
RI

TY
|P

RO
G

RA
M

M
IN

G
| C

O
M

PU
TI

N
G

DESIGNING AN EXTERNAL INFRASTRUCTURE ●

this is a good idea. The most obvious reason is that when a server fails, you only have
one service impacted, rather than two (or more!). It also makes troubleshooting much
easier if you don’t have to worry about the possible interactions of two competing appli-
cations on the same server. Finally, separating functions makes capacity planning and
upgrades much simpler (in most cases). Given the wide range of server capacities (and
prices) these days, it’s almost always possible to cost-effectively separate your services
onto separate servers.

RELIABILITY
Reliability in this context is a grab bag of things to consider in the context of the overall
system design, implementation, and ongoing operation.

A reliable system is one that is designed to be effectively maintainable, resilient in the
face of change or failure, and quickly recoverable should something go wrong. Reliabil-
ity encompasses a wide range of “best practices”: proper planning, considered design,
effective documentation, and consistent execution.

I won’t say more than that about reliability here; I will instead refer you to my (upcom-
ing) SAGE booklet, System and Network Administration for Higher Reliability.

ACCESSIBILITY
For external sites, often located where you aren’t, accessibility is a much more important
issue than it is for a server that’s just down the hall (or under your desk).

By “accessibility” I mean the ability to get appropriate access to the components of your
site both during normal operation and during times of failure. The most obvious exam-
ple of “access” is some form of network login (e.g., telnet, SSH), but access also includes
“out of band” access for when your firewall or router is confused, or when your network
connectivity is absent; console access when a system is at the “boot” prompt or has
crashed; access to the “big red” (power) switch when necessary; and access to the hard-
ware when it’s necessary to replace a failed component. Let’s look at each in turn.

Network Login: This is most commonly “just software.” Most UNIX folks are familiar
with SSH these days (and if you aren’t, you absolutely should be), which provides secure
remote logins, file copies, and command execution (among other interesting things).
Other approaches to network login include plain old telnet, and “remote control” appli-
cations such as VNC or PCAnywhere. These applications allow access for normal every-
day maintenance activities, as well as emergency repair in situations where most
components are still functioning.

Out of Band: When your network access is broken, having an alternate path into the
internal network of your external site can be a blessing. Anyone who has ever changed
the configuration of a remote router or firewall has likely (or perhaps, hopefully) under-
stood the possible complications of a “slip of the finger.”

Out-of-band access is most commonly implemented with some sort of dialup connec-
tion, usually a modem on a serial port of a computer or router, but it can also be imple-
mented in other, more complicated ways. Make sure that when you’re planning your
site, you consider what will happen when your primary connectivity fails.

Console Access Network: login works just fine as long as a system is running normally.
When it crashes and is sitting in single-user mode, or it’s at the boot prompt, or the
BIOS is waiting with the message “keyboard missing, press F1 to continue,” you’ll need
some form of console access. Some servers and devices have serial console ports, which

70 Vol. 26, No. 3 ;login:

A reliable system is one that is

designed to be effectively

maintainable, resilient in the

face of change or failure, and

quickly recoverable should

something go wrong.

can be connected to a modem, terminal server, or the serial port of another device.
Other servers require a keyboard and display in order to deal with some problems. The
latter typically require a remotely accessible KVM (keyboard, video, mouse) switch, or
someone onsite to deal with the problem.

Power Control: A number of companies make remotely controllable power bars that
you can connect to via serial connection, telnet, SNMP, or Web browser, and that allow
you to turn devices on and off remotely when they get completely wedged. Some of
these devices even have environmental monitoring built in, so you’ll be able to tell when
your air-conditioning has failed (or your server is on fire). Great tools, very useful, and
usually well worth the investment.

Remote Hands: Depending on the problem, and where your system is located, having
the (pre-arranged) ability to call someone at the remote site and tell them which button
to push or cable to swap can save a lot of aggravation. Many co-location facilities offer
this service, as do a number of third-party service companies. The key here is “pre-
arranged” — you’ve got to make sure that everything is in place before you need it. And
that’s not just having someone’s name in your phone list; it’s having an agreement,
effective contact information, and proper documentation of both the procedures and
the configuration of your site.

RECOVERY
When things are broken, it’s no time to start wondering how your site was built and
configured, and what options were chosen when.

There are two primary considerations to recovery: having a well-defined (and well-
rehearsed) process for restoring the system to a fully operational state and the ability to
do just that on a timely basis. Consider the following: using standard mechanisms for
configuring servers, such as Sun’s “jumpstart” mechanism, to ensure a fast and consis-
tent recovery process; having effective vendor support contracts in place, so that repairs
can be completed within an appropriate time frame; keeping your documentation com-
plete and up-to-date, with rack elevations, network diagrams, copies of configuration
files, disk partition information, equipment model and serial numbers, and anything
else you can think of; and having an effective backup (and restore) process.

SECURITY
Security is a topic that is far too involved to be covered effectively here, so I will say only
this: make sure that you have both an effective security policy and an effective security
implementation that together provide the appropriate balance between the risk of a
security exposure and the overall effectiveness of your system.

Closing
Designing an effective external site infrastructure can be a very complex process of try-
ing to balance conflicting needs and priorities while delivering a working and cost-effec-
tive system. The discussion here has not covered every possible alternative or every
possible problem area, but I hope that it has given you some things to think about and
will help you implement systems that don’t keep you up at night.

71June 2001 ;login:

When things are broken, it’s

no time to start wondering

how your site was built and

configured, and what options

were chosen when.

●

SY

SA
D

M
IN

|S
EC

U
RI

TY
|P

RO
G

RA
M

M
IN

G
| C

O
M

PU
TI

N
G

DESIGNING AN EXTERNAL INFRASTRUCTURE ●

72 Vol. 26, No. 3 ;login:

I’m a sysadmin. This, as I’m sure many people reading this will be pleased to

hear, is a cool job. Sure, it’s a job that drives you nuts at times, but there are

still the perks: no management interference, the ability to delete user files

and kill user processes with impunity, all the training you can eat, a social life

that anyone else can only dream of having

Uh, one moment. That was the dream I had last night. Sorry.

I’m going to hold on to that assertion about system administration being a cool job,
though, because compared to a hell of a lot of other jobs, it is. But I’m also going to talk
about a couple of other things that, if paid attention to, would help make it even cooler.

A few months ago, a sysadmin friend by the name of Dónal Cunningham made an
astonishing announcement – he was going to LISA. We all thought that was very cool,
and I promise that I won’t use the word “cool” again after this because it’s getting a bit
tired now. At this point, I bet a few people are thinking “Huh? Why is going to LISA
astonishing?”

The reason for this is simple. I live and work in Dublin, Ireland. It’s a nice place to live,
but there’s one drawback as far as professional development for the system administra-
tor is concerned – distance. Getting almost anywhere from here involves a flight to
somewhere, or a ferry trip to the UK followed by a trip across the UK, followed by
another ferry trip to . . . well, you get my drift. Going anywhere outside the country, in
short, starts getting really expensive really fast. The comparatively small size of the
sysadmin population here means that people often don’t know that there are other
sysadmins out there. There are a few OS-specific user groups, or informal gatherings of
people that have sprung up in various places. But there’s nothing for, say, the new sysad-
min, or even as in my case a couple of years ago, the new-to-the-area sysadmin, to point
to and say, “That’s where the sysadmins hang out.”

The result of this is that wheels end up getting reinvented quite regularly. One person
has a problem, and they never get to sit down with other people in the pub or at a meet-
ing and say, “I’ve had this problem. Anyone know anything about it?” So they have to
work it out for themselves from scratch, even when it’s quite possible that someone
working just down the road from them has had the same problem and would have been
able to answer in about five seconds what will otherwise take a couple of days of tedious
slogging to work out. In summary, what’s lacking is information exchange.

But why am I moaning here about an issue that’s specific to me? The simple answer is
that it’s not. I’m willing to bet that all over the world there are thousands and thousands
of sysadmins who aren’t SAGE members, who may never get to hear about SAGE, and
who will never attend LISA or any other formal system administration conference. It’s
even quite unlikely that many sysadmins will get to talk informally with other sysadmins
from outside their own place of work. There are a few reasons for this – limited travel
and training budgets, limited publicity for those groups that actually are out there, and

the loneliness of
the long-distance
sysadmin, or where
geeks gather

<username@vanitydomain.org>

by Mike Knell

Mike Knell is a sys-
tem administrator in
the Department of
Computer Science at
Trinity College,
Dublin. He likes loud
music, long walks,
and UNIX.

73June 2001 ;login:

For a profession that spends

much of its time dealing with

the exchange of information

in one form or another,

sysadmins in many parts of

the world are remarkably poor

at exchanging information

among themselves.

possibly even lack of motivation to go out and find out who else is doing a similar job,
but the most pervasive problem is a shortage of local communication.

For a profession that spends much of its time dealing with the exchange of information
in one form or another, sysadmins in many parts of the world are remarkably poor at
exchanging information among themselves. For every problem or obstacle that’s
encountered while trying to get something done at work, there’s almost certainly a solu-
tion out there already.1 The problem is getting hold of that solution.

Vendor-specific certifications are one way of finding out how to solve problems. How-
ever, as soon as the problem is something remotely out of the ordinary, that expensive
MCSE or CCNA suddenly becomes less useful. Such certifications don’t really con-
tribute much to professional development unless you equate “professional develop-
ment” with “maximum obtainable salary.” I’d prefer professional development to be
more about gaining a reputation as a Damn Good Sysadmin than as an Expensive
Sysadmin. Don’t get me wrong – certifications have their value, but what’s most impor-
tant to me in the process of becoming a better sysadmin is good old-fashioned peer-to-
peer networking.

To my mind, the best and usually the cheapest way to become a better sysadmin is to
talk to other sysadmins. Face-to-face conversation is by far the most valuable, as it’s pos-
sible to learn a lot just by listening to things that you never even knew you needed to
know (and you often get to drink beer while you’re doing it). But there are plenty of
other ways in which people could be communicating that are currently either under-
used or well used but unpublicized.

Most sysadmins these days are fortunate enough to have an Internet connection, and
there are numerous services available out in the electronic world that could be used for
connecting sysadmins. There’s IRC for those questions that need to be answered right
now but not necessarily reliably, Usenet if you can wait a little longer and still not have
the right answer, the Web if you can find what you’re looking for in the search engines,
and mailing lists if you know which one to look for.

However, when it comes to the crunch there’s little to beat local knowledge and contacts
even when all the resources of the Global Village are available at your fingertips. The idle
“Hey, has anyone encountered . . .” question asked at a meeting or in the pub often
draws a quicker and more accurate answer than posting on Usenet or asking on some
anonymous IRC channel. If you know the person answering the question, you’re more
likely to be confident that they’ve given you the right answer (or not) than if the answer
has come from a total stranger out on the Net.

Anyway, Dónal went to LISA last December and came back laden with enthusiasm, new
knowledge, and some really nifty freebies. As often happens, he’s passed on some of this
new knowledge to me, some of the enthusiasm, and even a couple of the freebies.

As a result of this new-found enthusiasm, we’re looking to improve the lack of commu-
nication here a little by finally getting around to starting a SAGE-IE, as an offshoot of
the recently formed UK-based SAGE-WISE. We’re hoping to have a press launch within
the next few months, followed by a technical event of some kind to kick things off. This
isn’t just because we want more freebies (although I might have to actually buy some
t-shirts soon otherwise) but because somewhere out there are bound to be sysadmins

THE LONG-DISTANCE SYSADMIN ●

1. Usually something along the lines of “Add ‘host zing arf ’ to /etc/foo!” or “Use a crossover cable!” or
“Shoot the user concerned!” I didn’t say that it was always the right solution, but any solution is a start.

●

TH

E
W

O
RK

PL
A

C
E

|S
YS

A
D

M
IN

|S
EC

U
RI

TY
|P

RO
G

RA
M

M
IN

G
| C

O
M

PU
TI

N
G

74 Vol. 26, No. 3 ;login:

who are interested in becoming better sysadmins but who don’t know how to go about
it.

If every city had a local SAGE group or even just an informal gathering, and every coun-
try had a national SAGE, system administration as a profession would benefit in ways
we can only begin to think of. It would be, uh, cool.

[The SAGE-IE mailing list is hosted by SAGE-WISE – to subscribe, send mail to
<ireland-subscribe@sage-wise.org>. The SAGE-IE website can be found at
<http://www.sage-ie.org/>].

http://www.sage-ie.org/>].

customers organization employees or people accessing company systems via the Inter-
net? If the answer is “both,” you’re not quite listening – who are the PRIMARY cus-
tomers? Who gets priority? If the answer is still “both,” and you are not a company of
under 50 people, you are probably trying to staff an entire department with one posi-
tion. Rethink your position.

Indicate up front if the position requires cell phone or pager access outside normal
hours. If there isn’t a formal on-call rotation, you might want to say that “while the
position does not involve shift work, applicants should be aware that the company has a
dynamic, fast-paced environment and will at times require support outside normal
business hours.” Of course, this is often shorthand for “we haven’t codified our require-
ments into something firm enough to stand behind.” Danger, Will Robinson!

DUTIES AND REQUIRED EXPERTISE
Don’t describe the job duties with vague phrases like “manage infrastructure” or “ensure
smooth operation of production environment.” If you include such phrases, they should
be followed immediately by clarifying statements describing the specific technologies
and duties. For instance, “manage infrastructure of EMC, NetApp, and HP storage
arrays.” Even better, “monitor, design, and upgrade network of EMC, NetApp, and HP
storage arrays to support critical financial modeling effort.”

Giving an explicit SAGE Level in the job description will help set expectations appropri-
ately. Since not everyone is familiar with the SAGE Levels, don’t elide the job description
to just that. Refer to the SAGE Level as part of a conventional description of required
experience, stressing those parts which are most important to the position. Clearly dis-
tinguish what is required for the position from what would merely be nice to have. Your
most qualified candidates are often those who are the most realistic about their skills;
don’t scare away good candidates by appearing to require The Perfect Candidate.

The Constraints
CONTACT DETAILS
Do give a specific role or job-description email address to respond to and keep it “live”
later, but don’t make it a person’s address. These things take on a life of their own; they
are harvested on the Web, are saved by people to refer folks to later, are passed around
between agencies as favors, etc. You’d like the address to be a good long-term one, so you
can check periodically for folks contacting you, but you don’t want it to be anybody’s
personal mailbox because you will get junk in it.

Do not rule out a candidate based on the format of their resume, but do suggest one or
two preferred formats. If you make no specific requests, do not be surprised if you
receive resumes in LaTex, nroff, PostScript, or other formats which your HR department
may be ill-equipped to deal with. Rather than deep-sixing a candidate whose resume
HR does not understand, make certain that the resume is sent to someone technical for
parsing or that HR requests a plain-text resume from the candidate.

MONEY MATTERS
Do not say “salary commensurate with experience” if you have a specific salary cap that
is not informed by current salary survey data from your geographical area and industry.
Give a range instead, and indicate that salary will be keyed into that range based on
experience.

75June 2001 ;login:

Giving an explicit SAGE Level

in the job description will

help set expectations

appropriately. Since not

everyone is familiar with the

SAGE Levels, don’t elide the

job description to just that.

WRITING A GOOD “SYSADMIN WANTED” AD ●

●

TH

E
W

O
RK

PL
A

C
E

|S
YS

A
D

M
IN

|S
EC

U
RI

TY
|P

RO
G

RA
M

M
IN

G
| C

O
M

PU
TI

N
G

Do include mention of any non-salary compensation accompanying the position, such
as medical and vision benefits, day care, stock-option plans, and so on. If your organiza-
tion provides domestic partner benefits, a special dental plan, and other benefits which
are not customary, those can also be important enticements to mention to candidates.

THE FINE PRINT
Do say “principals only” if you don’t want agencies contacting you, i.e., would rather not
pay 10% to 30% of salary as a finder’s fee. If you are happy to work with agencies, get
explicit documentation of their fees before they send you a single candidate. If you have
your own HR staff, find out in advance the interaction of financial responsibility for
outside agencies presenting candidates.

Do say “This is a full-time, salaried position only. Contract, hourly, or part-time appli-
cations will not be considered” if that is the case – or vice versa. If your intent is to do a
contract-to-permanent position, do not advertise it solely as a contract position. Con-
versely, if you are seeking a contractor but are open to a possible retainment, use a stan-
dard phrase such as “Contract position only, but employee possibilities for the right
person.”

If you are publishing this directly, rather than handing it off to your HR department,
remember to include whatever standard legal disclaimers are required or advisable. If
you have specific requirements which are not specific to job duties, such as eligibility for
a security clearance, or cannot accommodate certain situations, such as assistance with a
visa or work permit, indicate those requirements clearly. I sincerely advise you to have
your legal or HR department (or both) sign off on any requirements of this type before
publishing them in any venue.

Summing Up
As you can see, the basic guidelines are simple. If you address each of the points above
with a line or two of text, it will take a relatively small amount of editing to turn the
results into an advertisement suitable for publication. Think of things that you would
want to know about a position, and let that be your guide. Then run it past the lawyers
just to make sure.

76 Vol. 26, No. 3 ;login:

Giving Good Report, or I Keep Doing
Work, Why Do They Keep Yelling at Me?
Lots of techies give really lousy progress reports and are really hard on their

managers for no good reason. This is particularly a problem for sysadmin

types, systems programmers, and other people who love math too much. I

spent several hours with a coworker last week discussing “how not to be an

employee of doom,” and these are my notes from that conversation.

First, an aside: these notes offer advice both for techies in general, who often have a poor
model for the pressures on, and motivations of, their management, and for systems and
math people in particular. Math people have two classes of problems: trivial problems,
which merely require identifying an existing solution; and unsolved problems, which
require thinking, hypothesis, and, potentially, experimentation. This often leads them to
front-load their work, going through the list of their tasks and performing the “hard”
tasks first because the others are “just work.”

Systems people have a strong tendency to suffer from “searchlight focus” as well, because
it’s a really useful trait in a high-interrupt environment where you need to context-
switch pretty completely. Unfortunately, it leads to some work habits which make your
behavior (our behavior) really unpredictable. Management can tell how often they’re
getting complained to about things you haven’t gotten done, and how often you’re
reporting finishing tasks which they cared a lot about personally, but that’s about all
they know.

This unpredictability makes writing job-requirement justifications basically impossible.
And that’s bad because it means you get fewer raises and spend all of your time being
overworked. It also means that development managers basically can’t deal with you in
any constructive way, because your behavior is inexplicable and unpredictable.

Finally, this article is most intended for people who have a soft handle on how much
time they spend on tasks, because they think about tasks from the perspective of diffi-
culty rather than from the perspective of expected time-to-accomplish.

So, some rules for being easier to manage.

First and foremost, NEVER go radio silent. This is your manager’s worst nightmare:
they don’t know what you’re doing, they can’t defend spending their resources on it, and
they don’t know when you’ll finish. So, if you are about to embark upon a task which
might cause you to go quiet for a while, discuss it with your manager first. Be prepared
for them to direct you to attack a different problem first, so that they (and you) can
build some capital to defend you while you’re silent. Think of this as giving your man-
ager a good answer to the question “What has that employee done for you lately?” when
they get asked by their peers and their management. This makes their life easier.

Give status early and often. This makes your manager’s life easier. Most of the rest of this
document will talk about how you can order your work and reporting to make your
work more predictable and thereby more visibly valuable.

Attempt to show consistent levels of output. This creates a perception of predictability
and changes the conversation your boss has with management from “Has Dave gone
silent again? Do we know what he’s working on this time?” to “How’s the really huge

77June 2001 ;login: EASY MANAGEMENT ●

●

TH

E
W

O
RK

PL
A

C
E

|S
YS

A
D

M
IN

|S
EC

U
RI

TY
|P

RO
G

RA
M

M
IN

G
| C

O
M

PU
TI

N
G

easy management
by Richard Threadgill

Richard Threadgill is the cofounder of
Ponte Communications. He is also a
decade-long sysadmin and project
manager.

<richardt@ponte.com>

project we asked Dave to deal with coming? Are we interrupting him with too many
other little tasks?”

Learn to report when you’re overloaded. It’s much, much better for your manager to
know that you are not going to be able to accomplish something at request time than to
discover it at the expected time-of-completion.

Order your tasks so that you generate usable, partial, visible results often, thus enabling
other people to get leverage from your work quickly, and making your manager’s life
easier. This hurtles headlong into the typical math-geek work ordering model, which
tends to start with “Do the hard bits, because we don’t know if those are possible, and
that’s the most important thing to learn before we get into this too deeply.” Unfortu-
nately, this behavior gets interpreted by a lot of managers as “Dave just wants to do the
fun bits and never the actual work.” So while it will make your teeth itch, gang, when
you do your task breakdown, plan to do a bunch of the simple ones in parallel with the
hard, thinking-about bits. I know this will sometimes mean you run down a rat hole,
building trivial bits of an intractable task. But you’ll be showing progress while you lose,
which is vastly better than not-showing progress while you lose more quickly. Your
manager will almost never get points for you finding out that a solution is intractable
faster than you might have. Check – if that’s actually your job, much of this document is
not for you.

When beginning a project, make a list of tasks. Then make a list of questions which
must be answered to perform those tasks, including who needs to answer those ques-
tions. Note which ones you have already answered. I know it sounds crazy, but work
with me on this one. Now, in another document, note what those answers are that you
already have. Do not spend time trying to determine new answers at this stage – either
you have already got the answer or it should be listed as a “collect somehow” question.
Send a copy to your manager, this makes their life easier, and forward selected portions
of the list to each answerer. This gets answering your questions into their task queue.
Each one of those “collect answer” questions should be treated as a task. Now begin per-
forming tasks.

Make daily logs. Most of you get parts of many more tasks done every day than anyone
actually realizes (including you). Don’t expect to remember what you’ve been doing;
write down completed subtasks as you work on things so that you can forward it at reg-
ular intervals. It’s easier for your manager to throw away data (if you’ve organized it well
for them) than it is for them to extract it from you if you can’t remember things. BTW,
this is one of the skills which makes admins really love a manager – the near-psychic
ability to figure out what their staff are actually working on, even though their staff
aren’t very communicative. As former admins themselves, they might be good at inter-
preting those reticent grunts you give out when you’re slogging through a lame name-
service problem for the fourth day in a row, but you’re still making progress and so
aren’t at the “just firebomb the vendor and get it over with” stage. But being able to per-
ceive that requires a lot of domain experience on the part of your manager. And that
much insight is really expensive to maintain, so try not to bet your career on your man-
ager always being able to bring it to bear on your behalf.

If you are hit with inspiration, work on that task until you run out of steam. Take good
notes while you’re doing so. Then complete a trivial task.

Do not work on more than one complex task per day, unless you (1) have finished a
complex task or (2) are inspired. Don’t let a unit-of-time go by without finishing at least
one task.

78 Vol. 26, No. 3 ;login:

When beginning a project,

make a list of tasks. Then

make a list of questions which

must be answered to perform

those tasks, including who

needs to answer those

questions.

Try to make your list of tasks contain tasks of comparable amounts of temporal effort.
Perform those tasks by strictly alternating trivial tasks and complex tasks within a unit-
of-time (day/week/whatever).

Once per mega-unit-of-time, ask people who you need information from (see the task-
listing task, above) to answer the questions you need them to answer. Getting informa-
tion from someone is itself a (not always trivial) task. Do not attempt to complete
getting information from more than one person per day; keep trying to get info from
different people until someone gives you at least one answer, but stop when you’ve suc-
ceeded with one of them. If other people send you answers, that’s gravy, but you don’t
want to go radio silent because you’re spending days on end appearing to block while
you’re trying to extract information from other people. If someone tells you to go find
the information in a named location, that should be construed as an answer for the pur-
poses of this discussion, although it creates a “collect information from a known docu-
ment” task. “I don’t know” is not an answer, but changes your list of people to ask. If you
get an answer or an “I don’t know,” write down the answer in your answers list.

Finally, let me reiterate the cardinal rule: Silence is bad. Management cannot differenti-
ate between someone who’s in over their head, someone who is malingering, someone
who’s trying to solve an intractable problem, and someone who is making progress on a
hard design issue. You’ll note that many of those options are bad. If you don’t tell your
manager what you’re doing in a way that management can easily communicate to their
peers, you’re creating a lot of new work for your manager in two ways: first, by creating
a need for them to defend you to their peers, and second, by making it actually difficult
for them to do so. Good managers will review and evaluate their own focus and
resource allocation continually. Making it easy for them to do so is good for both of you.

79June 2001 ;login:

Silence is bad.

EASY MANAGEMENT ●

●

TH

E
W

O
RK

PL
A

C
E

|S
YS

A
D

M
IN

|S
EC

U
RI

TY
|P

RO
G

RA
M

M
IN

G
| C

O
M

PU
TI

N
G

80 Vol. 26, No. 3 ;login:

Last issue we discussed OR. We continue our tour of short words by today

discussing BUT.

“I liked the movie. But the ending was awful.”

“You’re doing a good job. But I wish you would show more leadership.”

So, did I really like the movie? As soon as the word BUT comes through the door, YES
and NO go out the window. If someone later asks you whether I liked the movie, it’s
hard for you to say YES (even though I said I did), because the effect of the BUT was to
pretty much negate anything that came before it.

“Wait a minute,” you may say, “what’s wrong with trying to be precise by talking in
detail about my reaction, rather than just saying YES or NO?” Are you really being pre-
cise by saying two things that contradict each other? We would argue that you aren’t.
You are simply making statements that are very much open to confusion and misinter-
pretation. Depending on your biases, you may hear and quote me that I liked the movie,
or that I thought the ending was awful.

More precision looks like this:

“I liked the first three quarters of the movie. The ending was awful.”

This gets rid of the direct logical contradiction, but is still emotionally ambiguous – it
doesn’t tell how you felt about the movie as a whole. Even more precise would be:

“The first three quarters of the movie were great. The ending was awful. On the whole,
I was disappointed with the movie.”

Not too many people may care whether I liked a particular movie or not. However, peo-
ple tend to be very interested when the sentences involve their performance doing their
job. In our experience, the word BUT appears in many performance reviews, and almost
always should be eliminated. The same problems of logical contradiction and emotional
ambiguity that were irritations when discussing the movies can be profoundly upsetting
when people are getting their job reviews.

How can you get rid of BUTs? One rule is to replace most BUTs by AND. This makes it
clear that you stand behind both sentences, and aren’t using the second sentence to take
away the first. This is typically linguistically correct. It may feel awkward, especially if
the two sentences have different emotional tone.

A good way to get rid of the emotional contradictions implicit in BUT statements is to
displace the communication in time. Typically, in a performance review you are more
interested in improving future performance than in punishing someone for past mis-
takes. So you can phrase suggestions for improvement as “if . . . then” statements about
their future performance and point out the advantages that would come to everyone if
the person changed their behavior:

“If you could show more leadership this coming year, it would make my life easier and
position you well for a future promotion.”

or

“By showing more leadership next year, you’ll find that newer employees will be able
to benefit more from your experience...”

kick those BUTs
by Steve Johnson

Steve Johnson has
been a technical
manager on and off
for nearly two de-
cades. At AT&T, he’s
best known for
writing Yacc, Lint,
and the Portable
Compiler.

<scj@transmeta.com>

and Dusty White

Dusty White works
as a management
consultant in Silicon
Valley, where she acts
as a trainer, coach,
and troubleshooter
for technical compa-
nies.

<dustywhite@earthlink.net>

Let’s face it – as a manager, if we think someone should have been doing something and
we didn’t tell them to do it, we don’t have any moral right to spring it on them in the
performance review. We should have been talking about it all year.

Another way of defusing the emotional ambiguity of BUT, especially when there are
serious problems that need correction, is to use the “feedback sandwich.” Talk about the
positive, then talk about the negative, then overall talk about what is positive. Assuming
you aren’t actually firing the person, keeping the emphasis on more positive results in
the future is a good strategy. So you might write something like:

“You have come up to speed quickly and accomplished more than we expected in the
first year. Unfortunately, you made a couple of key mistakes that cost us the Fletcher
account, leading to an overall negative assessment of your performance this year. We
expect that you can put these mistakes behind you and be more successful next year.

This conveys four messages. There were some good things about the year. There were
some problems. Overall, the problems predominated. And in the future we expect you
will grow past this difficult year. By contrast, the typical BUT sentence:

“You had a good year, but your mistakes cost us the Fletcher account.”

is much more ambiguous, and the overall tone more negative.

So when writing reviews, or in general when expressing your opinion, use your word
processor to look for BUTs, and get rid of them. There is always a better way to be more
precise.

81June 2001 ;login: KICK THOSE BUTS ●

●
TH

E
W

O
RK

PL
A

C
E

| S
YS

A
D

M
IN

| P
RO

G
RA

M
M

IN
G

| C
O

M
PU

TI
N

G

82 Vol. 26, No. 3 ;login:

Vrije Universiteit and the University of
California, San Diego, Cooperative
Association for Internet Data Analysis
USENIX and NLnet offered me the possibility to work for the Cooperative Association
for Internet Data Analysis (CAIDA) in San Diego, CA, for a period of six months via the
Research Exchange (ReX) program. At the time, I had just graduated and was going to
work for the Vrije Universiteit (VU) in Amsterdam. VU didn’t have a job opening, so it
was great to participate in the exchange in the meantime. The purpose of the exchange
was to enhance and develop tools for measuring Internet traffic in order to obtain better
insight into the physical organization of the network through the Skitter project at
CAIDA. First, I will tell a bit more about VU and CAIDA.

VU <http://www.vu.nl> is where I graduated with a degree in computer science. As a
student, I worked on the GLOBE <http://www.cs.vu.nl/~steen/globe> project, which is a
novel scalable infrastructure for a massive worldwide distributed system. I wrote an
application that uses GLOBE to locate and contact users over the Internet, called Loc8
<http://www.cs.vu.nl/~baggio/loc8.html>.

CAIDA <http://www.caida.org> is an organization that uses its skitter tool to actively
probe the Internet in order to analyze topology and performance. Skitter measures for-
ward IP paths by recording each hop to many destinations. Using ICMP echo requests,
skitter also collects Round-Trip Time (RTT) to those destinations. The data collected
provides indications of low-frequency, persistent routing changes, and correlations
between RTT and time of day may reveal a change in either forward- or reverse-path
routing. The skitter data can also be used by their Otter tool to visualize the directed
graph from a source to much of the Internet. Otter can handle visualization tasks for a
wide variety of Internet data, including datasets on topology, workload, performance,
and routing. CAIDA has written many more tools to collect, analyze, and visualize data:
for example, CoralReef and Walrus. Now on to the projects I worked on for CAIDA.

The first project I worked on was to map reverse-traceroute and looking-glass servers
onto a world map. Using Internet search engines and emails sent by people maintaining
reverse-traceroute and looking-glass servers, I collected as many reverse-traceroute and
looking-glass pages as I could. Using IP addresses and NetGeo, I could find their latitude
and longitude as well as city, state, and country. With this information I then used Geo-
Plot to display the servers on a world map.

The servers appear as little dots on the map; clicking on them brings up a page contain-
ing the URLs for the traceroute and looking-glass servers for that node or will zoom in
to that particular region. The nodes are colored to indicate what services are available
for that location.

The information collected was also used to obtain the AS numbers for all the traceroute
and looking-glass pages (again using NetGeo) and to build a Web page that allows users
to search our database for traceroute and/or looking-glass servers by AS number. This
page also allows users to search by AS name, latitude, longitude, city, state, or country.

Research Exchange
Program Update
from the Field

A report on the ReX exchange program jointly
supported by USENIX and NLnet. See
<http://www.usenix.org/about/rex.html> and
<http://www.nlnet.nl/projects/rex/> for informa-
tion about this valuable program.

by Wilfred Dittmer

Scientific Programmer, Vrije
Universiteit, Amsterdam,
Netherlands

<wdittmer@cs.vu.nl>

http://www.vu.nl
http://www.cs.vu.nl/~steen/globe
http://www.cs.vu.nl/~baggio/loc8.html
http://www.caida.org
http://www.usenix.org/about/rex.html
http://www.nlnet.nl/projects/rex/

The purpose of these pages is to give users with network problems the ability to find the
nearest traceroute/looking-glass service, in a convenient way based on the location they
desire to trace from. The traceroute/looking-glass services can then be used to view their
own network and can provide hints to what causes their networking problem. The page
can be found at: <http://www.caida.org/analysis/routing/reversetrace>.

The second project was to enhance the Web pages that provide users with daily sum-
maries of data collected by the skitter boxes around the world. I first had to familiarize
myself with the way the scripts currently processed the data for Web usage before I was
able to expand their Web pages. In particular, I added pie charts to display the percent-
age of paths going through a particular country or AS. Because a user can select multi-
ple skitter boxes and dates to generate this pie chart, I had to merge the data of the
skitter boxes and dates before I could generate the pie charts.

I also added AS connectivity graph images to the Web pages. An AS graph image shows
AS nodes arranged in a circle with polar coordinates, with their angle based on the loca-
tion of their AS headquarters and their distance from the center reflecting the richness
of their observed connectivity to other ASes. Those nodes closest to the center are the
most connected ASes as observed for those particular days and skitter boxes. The graph
is drawn by Otter. Users can download a data file for Otter that allows the user to view
the graph on their own machine with more detail. The page can be found at:
<http://www.caida.org/cgi-bin/skitter_summary/main.pl>.

The third project was to enhance the Otter network mapping/visualization tool so that
it has arrows at the end of the links between nodes to indicate the direction of the link.
We would want to print the arrows too, which required a better understanding of how
PostScript works, since Otter saves images in PostScript format. After this, I imple-
mented the arrangement of the links entering or leaving the node. Instead of all links
merging in the center of the node, the lines are now spread out over the four sides (a
node is displayed as a square) depending on the location of the node it is connected to.
Links are also sorted by up/down or left/right to the same node.

The final project, which I was unable to finish because of lack of time, was generating
animations of AS graph images for specific servers aggregated over a particular number
of days. I used Otter to generate the graphs. Otter will use the maximum size of a page
when it’s printing to file. For animations this is not preferable, because the images will
vary in size and common nodes between frames will jump over the screen. So we define
four anchor points in every frame, with the minimum value set to the minimum outde-
gree found in all frames. After this we normalize all outdegrees to be a percentage of the
maximum outdegree found in all frames.

I extended the program to use only a limited number of nodes in the animation to
improve visibility of the most connected nodes. After doing a day-by-day animation for
364 days in 2000, the nodes were still jumping a little. The way to solve this problem is
to generate intermediate frames that smooth out the movement of the nodes between
frames. Because of time constraints, this has not yet been implemented.

Future projects at CAIDA include the integration of bandwidth estimation data into a
database with Otter and/or Walrus as a front end. The data will be collected by a tool
suite called netchar that uses features from Bruce Mah’s pchar, Allen Downey’s clink, and
Constantinos Dovrolis’ pathrate. The data-processing back end refines and extends
capabilities in Allen Downey’s clink, estimates the bandwidth and latency of each link
appearing in a path, and will assemble a view of the subnets connecting the hosts.

83June 2001 ;login: REX REPORT FROM THE FIELD ●

●
TH

E
W

O
RK

PL
A

C
E

| S
YS

A
D

M
IN

| P
RO

G
RA

M
M

IN
G

| C
O

M
PU

TI
N

G

http://www.caida.org/analysis/routing/reversetrace
http://www.caida.org/cgi-bin/skitter_summary/main.pl

Finally, the graphical user interface will lay out the graph generated by the back end and
allow the user to drill down into the collected data and estimated characteristics.

To further strengthen the relation between CAIDA and VU, CAIDA provided us with a
GLOBE server in San Diego; in return, VU will set up a skitter machine in Amsterdam.
Also, by using CAIDA’s data, we can find the best locations for our GLOBE boxes to pro-
vide good service coverage, and their data on bandwidth and round-trip time will help
us to optimize GLOBE.

Of course the other notable aspects of the exchange were the experiences I had and the
new contacts I made. During my work at CAIDA, I met a lot of fantastic people and
brought back a number of memories (a rollercoaster park, a real American Thanksgiv-
ing, bonfires, parties, etc.) which made the exchange a success.

All in all I found it was a great exchange and would like to thank the following people
and institutions for making it all possible: ReX, a USENIX/NLnet endeavor
<rex@usenix.org; rex@nlnet.nl>; Gale Berkowitz; Frances Brazier; Evi Nemeth; kc claffy;
and Maarten van Steen.

84 Vol. 26, No. 3 ;login:

REFERENCES TO PROGRAMS

USED/MENTIONED:

Reverse traceroute servers allow the user to
traceroute from the server’s perspective. The
user can see the return path from that server to
his or her own machine or to other machines.

Looking-glass servers allow users to see BGP
tables at a particular point in the Internet.

NetGeo uses “whois” records to determine the
location given a domain name. See
<http://www.caida.org/tools/utilities/netgeo>.

Geoplot is a light-weight java applet that allows
users to create a geographical image of a data set.
See:
<http://www.caida.org/tools/visualization/geoplot>.

Otter is a tool used for visualizing arbitrary net-
work data that can be expressed as a set of
nodes, links, or paths.See
<http://www.caida.org/tools/visualization/otter>.

pchar:
<http://www.employees.org/~bmah/Software/pchar/>.

clink: <http://rocky.wellesley.edu/downey/clink/>.

http://www.caida.org/tools/utilities/netgeo
http://www.caida.org/tools/visualization/geoplot
http://www.caida.org/tools/visualization/otter
http://www.employees.org/~bmah/Software/pchar/
http://rocky.wellesley.edu/downey/clink/>.

Collaborative Research Experience for
Women in Undergraduate Computer
Science and Engineering (CREW)
Program
A nerd hunches in a cubicle pounding away at her keyboard 24/7. She is suc-

cessful, but is that what most women beginning a computing career want?

This image may discourage many undergraduate students from pursuing a career in
computing research.

“The stereotype of the loner computer scientist can be especially deterrent to women,”
said Jan Cuny, 1997-2000 co-chair of the Computing Research Association Committee
on the Status of Women in Computing Research (CRA-W). “Women tend to be more
motivated by interaction, and so may be rebuffed by the isolation assumed to be associ-
ated with research.”

To address this stereotype, the Computing Research Association’s Committee on the
Status of Women (CRA-W) has been implementing a variety of programs.

With support from USENIX and the National Science Foundation, the Collaborative
Research Experience for Women in Undergraduate Computer Science and Engineering
(CREW) program gives undergraduate women the opportunity to experience a year-
long research project. It is hoped that this experience will show students a more realistic
view of a career in computing and encourage them to attend graduate school. CREW
supports the formation of teams of undergraduate women who collaborate on joint
research projects under the direction of a faculty member at their home institutions
during the academic year.

Dr. Lynn Stauffer from Sonoma State University describes the research experience she
had with her students this way: “I have found the CREW program to be a wonderful
way to introduce talented CS students to research at our small university. Without a
graduate program and with a demanding local high-technology industry, our computer
science department has a tough time interesting students in research work that does not
have any monetary benefits (i.e., talented CS students can easily find well-paying intern-
ships nearby). Also, the simplified application process makes putting a proposal together
more doable for already very busy faculty. In fact, I found the proposal writing part of
the project particularly enjoyable, and I believe the student researchers learned a lot
from the experience.”

In the last few years, CREW teams have studied robot navigation and vision, parallel
processor communication, Web navigation, and integrated circuit design. At the end of
their projects, students write summaries of their work and are encouraged to submit
papers and present their work to other appropriate journals and conferences. Students
have presented their work at CHI 2001, SIGCSE 2001 and the National Conference on
Undergraduate Research.

There were eight projects funded in 1998-1999, 10 projects in 1999-2000, and 11 proj-
ects in 2000-2001. The fourth year’s awards will be announced June 30 for the 2001-
2002 academic year. Because of additional funding from USENIX, twice as many
projects as previous years will be funded for next year. It is hoped that by securing even

85June 2001 ;login: WOMEN IN COMPUTING ●

THANK YOU TO SHEILA E. CASTANEDA, CREW

PROJECT DIRECTOR AND CHAIR, ASSOCIATE

PROFESSOR, COMPUTER SCIENCE DEPARTMENT,

CLARKE COLLEGE, DUBUQUE, IA FOR HER CON-

TRIBUTIONS TO THIS ARTICLE AND PROGRAM

women in
computing

by Jennifer P. Rubenstein

Computing Research Association
Committee on the Status of
Women in Computing Research
(CRA-W)

<jpr@cra.org>

●
TH

E
W

O
RK

PL
A

C
E

| S
YS

A
D

M
IN

| P
RO

G
RA

M
M

IN
G

| C
O

M
PU

TI
N

G

more funding, as many as 100 projects for the 2002-2003 academic year can be sup-
ported. An average of three students collaborate on each project, so the impact on indi-
viduals and institutions is substantial.

Evaluation results from the first three years of the program have been encouraging.
Based on student surveys:

■ 75% indicated that this was their first experience doing research
■ 67% indicated that they plan to attend graduate school
■ 25% credited CREW for their increased interest in and preparation for graduate

school

If CREW can increase graduate school enrollment for women by 25% as it scales up to
100 projects, that would mean an additional 75 or more women choosing to attend
graduate school every year.

CRA-W was established in 1991 with the goal of taking positive action to increase the
number and success of women in CS&E research. The committee is comprised of lead-
ers in computing research from academia and industry. It is an action-based committee,
implementing projects that aim to eliminate barriers to the full participation of women.
More information about CRA-W and CREW can be found at
<http://www.cra.org/craw/>.

The Computing Research Association is a tax-exempt (501c3) association of more than
180 North American academic departments of computer science and engineering
(CS&E); 25 research laboratories and centers in industry, government, and academia
engaging in basic computing research; and six affiliated professional societies [USENIX
being one]. CRA works to strengthen research and education in the computing fields,
expand opportunities for women and minorities, and improve public understanding of
the importance of computing and computing research in our society. More information
about CRA is available at <www.cra.org/>.

86 Vol. 26, No. 3 ;login:

http://www.cra.org/craw/

87June 2001 ;login:

the bookworm
by Peter H. Salus

Peter H. Salus is a
member of the ACM,
the Early English Text
Society, and the Trol-
lope Society, and is a
life member of the
American Oriental
Society. He is Editori-
al Director at
Matrix.net. He owns
neither a dog nor a
cat.

<peter@pedant.com>

MAPPING CYBERSPACE

MARTIN DODGE AND ROB KITCHIN

London & New York: Routledge, 2001. Pp. 260.

ISBN 0-415-19884-4.

DIGITAL COPYRIGHT

JESSICA LITMAN

Amherst, NY: Prometheus Books, 2001. Pp. 208.

ISBN 1-57392-889-5.

WHITE HAT SECURITY ARSENAL

AVIEL D. RUBIN

Boston, MA: Addison-Wesley, 2001. Pp. 510.

ISBN 0-201-71114-1.

INTRUSION DETECTION

REBECCA GURLEY BACE

Indianapolis, IN: Macmillan Technical Publishing,

2000. Pp. 339.ISBN 1-57870-185-6.

BOOKS REVIEWED IN THIS COLUMN

Every so often, rather than lots of brief
comments, I spend time on a book or
two. This month I’m devoting the col-
umn to three items, which are, quite sim-
ply, outstanding.

The Universe of the Net
Mapping Cyberspace is a brilliant attempt
at grappling with the representation of
what has been called “cyberspace.” I say
representation because Dodge and
Kitchin are not merely geographers or
cartographers. They are also concerned
with the sociocultural concepts that
Baudrillard (or Greimas or Derrida)
would endorse.

Maps are attempts at presenting the sur-
face of the world in two-dimensional
symbolic form, according to a pre-WWII
encyclopedia. Over the past decades, we
have used “map” in a far broader sense.
In the early 1970s, Gould and White
wrote Mental Maps, a study of the geog-
raphy of perception of the images we
form of places, and Joan Foley of the
University of Toronto was examining the
ways students and faculty related campus
locations to one another.

The term “cyberspace” was used by Bill
Gibson in an article in Omni in 1982,
and in 1984 it appeared in his Neuro-
mancer. The OED Additions Series (vol.
3, 1997, s.v.) defines cyberspace as “The
notional environment within which elec-
tronic communication occurs, esp. when
represented as the inside of a computer
system . . . the space of virtual reality.”

This last definition takes us to Howard
Rheingold’s 1991 Virtual Reality and his
1993 The Virtual Community: Home-
steading on the Electronic Frontier.

We generally think of maps on flat pieces
of paper, or wrapped on a sphere (a
globe). But much more is involved in our
attempts at mapping information and
communications technologies (Chapter
5), mapping asynchronous media (Chap-
ter 7), or mapping synchronous social
spaces (Chapter 8), to say nothing of
“imaginative mappings” (Chapter 10) or
the future (Chapter 11). By preceding
these chapters with four introductory
chapters (1-4) on cyberspace, geography,
and cartography, Dodge and Kitchin
have produced a genuine “must read” for
sociologists, political scientists, and net-
work engineers.

Think of it, how does one go about map-
ping a MUD or a MOO? What is
entailed in mapping a chat room? Yet I
would guess that no one reading this has
any doubt as to the conceptual reality of
the places we meet online, in the sites we
converse in, in the spaces we bargain and
market in.

Dodge and Kitchin devote a good deal of
time to their discussion of Usenet. And
well they might. From the three groups
of 1979, to the 300 of 1986, to the 20,000
or so as of last year, the growth of the
news groups has reflected the growth in
the numbers of users.

I have long found the notion that the
vast reticulum that comprises the Inter-
net contains a culture like that of the
“coffeehouse,” a fascinating one. Smith’s
views of communities in cyberspace
are important here, and Rheingold has
used the coffeehouse as a metaphor
for Usenet, so we can reflect upon
Baudrillard and the notion of the “elec-
tronic coffeehouse.”

After email and the Web, Usenet is the
next most frequent use of the Internet.
Dodge and Kitchin limn the “spatial

88 Vol. 26, No. 3 ;login:

structure” as composed of two features:
groups and articles. It’s important, they
point out (using Smith’s Netscan data),
to note the geographical diffusion of
postings: of 238 TLDs, there were post-
ings from 205 of them in 1997. Of these,
41% were from hosts in the US. The
conceptual cartography of Usenet is thus
vastly different from geographical car-
tography. In fact, the percentages don’t
reflect numbers of hosts, either: in 1999,
over 50% of hosts were in the US. Some
areas are more voluble than their repre-
sentation reflects.

Cyberspace is non-planar, so we must
deal more with conceptual maps than
with bi-dimensionality. What Dodge and
Kitchin have done is not so much map
cyberspace as give us impetus to find
hyper-cartographical means to represent
connectivity in the 21st century. Their
chapters on mapping asynchronous and
synchronous spaces, “spatial cognition of
cyberspace,” and “future mappings of
cyberspace” are of value here.

Napster, etc.
In 1998, lobbyists (largely from the
film/TV and recorded music industries)
persuaded the US Congress to pass the
Digital Millennium Copyright Act
(DMCA), which sharply restricts private
use of works that are under copyright.
The concepts of pay-per-view and pay-
per-listen follow, as does the ongoing
war on Napster. (It’s not clear to me
whether the forces of Mammon know
about Gnutella, yet.)

Jessica Litman, a law professor at Wayne
State University, has turned out a bril-
liant book, Digital Copyright, on this
topic.

Litman skims through the nearly 300
years of copyright law and goes into
some detail where the contributions of
copyright lawyers, greedy media moguls,
and avaricious congressional representa-
tives combined to create a stupid law
with nearly no technical input. Nor any

consideration for the user, the scholar, or
the ordinary citizen.

Glued to the traditions of distribution,
contemporary recording, and produc-
tion, executives still think in terms of
centralized manufacture and distribu-
tion. To a certain extent, this militates
against companies like Napster, but
shared files over the Internet are decen-
tralized, and Gnutella and Freenet pro-
vide the recording and distribution com-
panies with no easy target to haul into
court.

There is already some recognition that
the DMCA hasn’t worked and that some
new legislation is required (see Ham &
Atkinson, “Napster and Online Piracy,”
Progressive Policy Institute report, May
2000). As Litman points out: “Unless the
stakeholders do something very different
this time around, though, that law won’t
work either” (p. 170).

Litman enabled me to understand just
how the DMCA protects neither authors
nor artists but, rather, the corporate
media masters.

Shrink-wrapped software licenses in
microscopic print may constitute the
greatest support there could be for the
FSF, for Linux, for the Open Source
movement. Digital Copyright will explain
just why the DMCA is hopeless.

Countering the Interlopers
Avi Rubin has been doing good work
about security matters for a long time.
His article on one-time passwords was
one of the very best in the final volume
of Computing Systems. So I approached
his book on how to handle Internet
threats with great interest. I was well-
rewarded.

This is not your standard how-to securi-
ty book. This is a well-designed, well-
written volume on just what the threats

are, how they work, and what you have
on hand to resist these threats.

Viruses, worms, denial of service attacks
are just the beginning of this. Most inter-
estingly, Rubin dissects the Morris Work,
Melissa, I Love You, and several other
malicious invertebrates. His explanations
of just how these infiltrative beasties
work is just brilliant.

I enjoyed his section on secure transfer
and on setting up session keys, too. His
chapters on SSL and on encrypted email
are also fine.

This is a “different” security book, and
it’s one you really need.

(I feel I ought to mention Bace’s Intru-
sion Detection here. While DDoS attacks
block, most other attacks are intrusive.
In well under 300 pages (plus appen-
dices), Bace fully informed me of prob-
lems and methods.)

	motd
	apropos
	letters
	1372-osdi2000confrpts
	burgess
	mccluskey
	1375-usingjava27
	flynt
	farrow
	forte
	haskins
	sellens
	knell
	chalup
	threadgill
	johnson
	dittmer
	rubenstein
	bookworm
	sagenews

