

2 Vol. 26, No. 4 ;login:

motd
Stirring the Pot

I try hard to share positive messages.
People accuse me of being “unrealistic”
or even call me “Pollyanna” for my occa-
sional assertion that “each day is better
in each and every way.” I guess I’m tem-
porarily abandoning that for this col-
umn. I fear I will stir the pot a bit.

The world has so many targets to shoot
at. Let’s start with the proliferation of
licenses for “open source” and other sorts
of software.

The GPL would have people who benefit
from software return back to the devel-
opment community any and all modifi-
cations they make. Doesn’t that sound
nice? Freedom to use software, financial-
ly free updates from those who repair it,
what could be better?

You probably know that I was president
of BSDI (a company marketing a Berke-
ley-style OS). BSDI’s software division
has been acquired by Wind River Sys-
tems. I haven’t participated in BSDI
strategy meetings since my departure a
couple years ago, so I think I’m free to
speculate as to what’s going on.

Why didn’t Wind River choose Linux for
their UNIX story? Zero dollar licensing is
complemented by plenty of support
from the development community. What
possible objection could Wind River
have?

I imagine they objected to the rather
stringent licensing terms of the GPL. I
believe that they, as a company
approaching half a billion dollars per
year of revenue, felt that they should
gain some return on the R&D invest-
ment that they would be putting into
their operating system in order to turn it
into a commercially viable, documented,
tested – maybe even certified – product
that has not only pre-sales support and
actual marketing and sales behind it but
also a post-sales support staff that is ded-
icated to helping customers get their
commercial applications running. I have
to believe that Wind River felt that giving
their R&D – their intellectual property –
out to the world for free (of course, they
get others’ fixes and enhancements back,
too) just wasn’t a winning financial
proposition.

I sympathize with this position. I tried to
run a small company selling BSD-style
software and support. It’s an extremely
challenging game! Well, at least for me it
was.

So, I believe the GPL supporters need to
believe that they’re only going to see
GPLed software in systems that have spe-
cialized hardware that is difficult to
reproduce or have some other very high
barrier to entry. Commercial (i.e., for-
profit) companies have a hard time
defending the public divulsion of their
intellectual property (IP). Without IP,
they face uphill battles every time fund-
ing is required. It’s hard to run a compa-
ny without funding; I’m an expert on
that.

A Slashdot article mentions that a court
test of the GPL is soon to come. It seems
someone has taken some GPLed software
from the net and built a product – but
they refuse to part with the enhance-
ments. That’s dirty pool: the license is
clear about the required tradeoffs. If they
used GPLed code, they need to abide by
the licensing terms! I hope the courts
find that such clearly stated yet implicit

contracts are valid. I don’t want to live in
the world where other, more complex
requirements might be put on this sort
of software development and distribu-
tion.

So what do we have? We have a huge set
of publicly available software. We have
more than a dozen different licenses,
each with its own little flavor of freedom
or other buzzwords. It’s a fascinating
world we live in, and the fascination only
increases as people study and debate the
merits of each one.

by Rob Kolstad

Dr. Rob Kolstad has long

served as editor of

;login:. He is also head

coach of the USENIX-

sponsored USA Com-

puting Olympiad.

<kolstad@usenix.org>

EDITORIAL STAFF

EDITORS:

Tina Darmohray <tmd@usenix.org>

Rob Kolstad <kolstad@usenix.org>

STANDARDS REPORT EDITOR:

David Blackwood <dave@usenix.org>

MANAGING EDITOR:

Alain Hénon <ah@usenix.org>

COPY EDITOR:

Steve Gilmartin

TYPESETTER:

Festina Lente

PROOFREADER:

Lesley Kay

MEMBERSHIP, PUBLICATIONS,

AND CONFERENCES

USENIX Association

2560 Ninth Street, Suite 215

Berkeley, CA 94710

Phone: +1 510 528 8649

FAX: +1 510 548 5738

Email: <office@usenix.org>

<login@usenix.org>

<conference@usenix.org>

WWW: <http://www.usenix.org>

3July 2001 ;login:

ED
IT

O
RI

A
LS

apropos
Call It Like It Is

One of the things you learn to live with
as a graduate of UC Berkeley are jokes
about political activism and far-left, “out
there” behavior. I didn’t choose Berkeley
for that reason, but my friends and fami-
ly do note a buck-the-system streak in
me. Recently, when my kids brought
home a standardized test form, I guess
that streak took over. On the section that
asked about ethnicity, I bucked the sys-
tem and created my own category. The
choices were the familiar ones: Asian,
African American, Native American, His-
panic, White (not of Hispanic descent),
and so on. These choices bother me
because they are not consistent. For
example, I figure that if I’m “White” then
the other choices need to be things like
“Yellow, Red, Black, Beige” and so on. Or
if someone else is “African American” or
“Native American” then the rest of them
should go something like “European
American, Asian American” and so on.
Or you can do the “oids”: Caucasoid,
Mongoloid, Negroid, etc. But you gotta
be consistent, or it sends an additional
message (a topic for another magazine,
I’m sure). So I crossed out “White” and
wrote “European American” then sent
the form in to the unsuspecting teacher.
She probably fixed it for me.

Accurate naming conventions are impor-
tant. Agreed upon nomenclature goes at
least half the distance in facilitating fruit-
ful problem-solving discussions. When

you don’t share a common “language”
for a topic, it’s very hard to get to the
root of the problem and devise a solu-
tion-oriented plan of action. That was
the problem I faced in 199X as a hiring
manager at Lawrence Livermore Nation-
al Laboratory. LLNL did not have a sys-
tem administrator job description. As
such, whenever I hired a new system
administrator, I had to figure out which
non-fit description to place them in.
Existing descriptions in our general field,
were operator, computer programmer,
and computer associate. In over-simpli-
fied terms these were folks who hung
tapes, cut code, or provided administra-
tive assistance by using computerized
applications for a living. None of them
were a good fit for a system administra-
tor.

The problem with the lack of an appro-
priate job description for the system
administrators manifested itself in many
different ways. The most troublesome for
me was at salary and review time. Dur-
ing the review meetings, system adminis-
trators would be compared with their
“peers” in whatever category they’d been
placed in. And, no matter what category
that was, they were under-performing.
For instance a system administrator may
have performed some backups over the
course of the year, but not nearly as
many as the operators had. Similarly,
they may have written some shell scripts
to automate system administration, but
that hardly compared the with the com-
puter scientists, who created and main-
tained huge libraries of code. And so
their performance in their category was
poor, the review was subpar, and the
resulting salary increase wasn’t much.
Over time. this snowballed into all kinds
of personnel problems such as low
esteem, low retention, and difficulty in
hiring. I wanted a job description that
used the right title, described the right
qualifications, and measured the right
skills; I wanted the right nomenclature
for our profession!

It was natural that I became interested in
SAGE and the SAGE Job Descriptions. I
felt they were the ticket I was looking for
to address my own hiring and assess-
ment woes at LLNL. Note that the play-
ers wouldn’t necessarily change, just the
agreed-upon naming and description of
them. Over the years I’ve heard from
many HR groups that this (re)classifica-
tion of their system administrators was
very helpful. This underscores my belief
that baseline nomenclature is key. We’re
not alone in this, as taxonomy is the
underpinning of many scientific and
technical efforts. It’s clear that common
language is basic to common goals.

We’re currently considering updating the
SAGE Job Descriptions to make them
less

UNIX-centric – turns out making them
more neutral is the easy part. Expanding
them to embrace other prevalent OSes
might be more difficult. The crux of the
problem is that other OS system admin-
istrators have different titles for “our”
skill-set categories and some of our titles
mean entirely different things to them.
Probably the best example of this is
“Network Administrator,” which seems
to mean two quite different things to
UNIX and NT/Netware system adminis-
trators. A fundamental question facing
us in this update is, “Do we fit their jobs
into our categories, or do we maintain
separate categories?” There are good
arguments for each approach. Part of me
feels that describing entirely separate cat-
egories increases the divide which we’re
actually trying to bridge.

I welcome your thoughts on this topic.

by Tina
Darmohray

Tina Darmohray, co-

editor of ;login:, is a

computer security and

networking consultant.

She was a founding

member of SAGE.

<tmd@usenix.org>

Vol. 26, No. 4 ;login:

Part 5: In Search of Cleopatra’s Needles
During his fifty-four year reign around 1500 B.C., the Pharaoh Thothmes III

saw erected two 70-foot columns before the great temple of Heliopolis, near

what is today Cairo. These two exclamatory masts were powerful symbols of

Egyptian spiritual and technological supremacy, singular and immutable sig-

nals to contrast with North Africa’s seething, inconstant desert sands. For

almost 3,500 years, they adorned the entrance to the impressive temple as a

symbolic gateway, with little competition from their surroundings.

The first of the needles changed hands as a gift to the British people, in 1819 in recogni-
tion of Nelson’s victory over the French fleet at the Battle of the Nile in 1798. An odd
gift perhaps, a lump of stone so heavy that it took years even to muster the effort to
move it – but the significance lay more in its shape than its composition. The symbolic
gesture was repeated for the United States in 1881, when the Khedive of Egypt, hoping
to stimulate economic investment in his country, gave the twin monument to the city of
New York. Since then, the obelisks have been emulated in several large cities, including
Paris and Washington. They have nothing at all to do with Cleopatra (preceding her by
some 1,500 years), nor are they made of any valuable substance, but their singularity of
form conveys a powerful symbolism which is recognized by all cultures.

Symbolism is at the very root of our being. It is about the attachment of meaning to
patterns (patterns of material or of behavior). It is a seemingly irrational phenomenon,
not unique to humans, but quite possibly the very essence of our intelligence. Symbol-
ism is interesting because it underlines an important dichotomy: the difference between
information and meaning. In Part 4 of this series, we met the three horseman of
entropy: the good, the bad, and the ugly. Information (entropy) has three interpreta-
tions: the good (that variation is information), the bad (that variation, hence informa-
tion, brings uncertainty), and the ugly (that information tends to increase with and
result in degenerative aging, or disorder).

The essence of these interpretations is that information and meaning are two very dif-
ferent things. Indeed, too much information is simply noise. Imagine a television from
which the antenna has been removed. The screen is a speckled swarm of fuzzy dots,
devoid of any obvious meaning. However, it is not devoid of information. On the con-
trary, the length of a message you would have to send to a friend, so that he or she could
reproduce the precise picture, would have to be very great indeed. The point is not that
there is little information, but that there is so much information that it is impossible to
find any meaning in it. If one could trace the effect back to its many causes, one would
find the history of colliding particles in the early universe which led to today’s cosmic
background radiation. All that information is represented on our television screens, but
the essential connection from cause to effect is a little more than we are willing to grasp,
or care about.

Failing the Half-Closed-Eye Test
It is necessary to limit information in order to attach meaning. Symbolism is about
attaching meaning to limited lumps of information. Lighthouses, totem poles, monu-

10

needles in the
craystack: when
machines get sick

by Mark Burgess

Mark is an associate
professor at Oslo
College and is the
program chair for
LISA 2001.

<Mark.Burgess@iu.hio.no>

11July 2001 ;login:

●

C

O
M

PU
TI

N
GTo make a garbage heap,

one only needs to collect

a sufficient number of

individually meaningful things

and put them all together.

ments, company logos, and even icons of the natural world, such as mountains (e.g.,
Mount Fuji), are all simple statements with very low entropy: concentrated powerful
signals which are easily seen against their surrounding environments. The more com-
plex a message is, the more analysis it requires, and the harder it is to discern its mean-
ing.

The importance of such strong signals is not just symbolic, rather the opposite: the rea-
son they have symbolic significance is because they are effective competition with their
surroundings. Competition is not a word normally used in computer science, certainly
not in information theory: we are used to the relative certainty of propositions and
logic, not to the bullying and submission of the boxing ring; but competition is a crucial
concept whenever systems interact.

This has broad ramifications for information. Strong signals have a powerful effect on
the environment. Conversely, too much information or meaning becomes garbage. It is
indistinguishable from no information. Indeed, the whole concept of “renormalization”
in science is about trimming away the noise to see what is left. If every signal is equally
loud, the result is just loud noise.

Look at the Web pages of many ISPs, for instance, and one finds a seething jumble of
signals, from advertisements to links, to imagery, to text and color – not unlike the
pornographic neon jumble of urban market districts. If one half closes one’s eyes and
looks at a page of information, the immediate impact of its layout and any strong sym-
bols is all that can be seen. Today, multimedia messages assail us from every angle,
detracting from overall impact of any one part. Commercial television is perhaps the
worst example in some countries, where invasion by commercials, rapid cuts, overlaid
text information, unnatural emphasis of voice, inappropriate music and never a second
of silence, pollute any message being conveyed with toxic irrelevancy.

To make a garbage heap, one only needs to collect a sufficient number of individually
meaningful things and put them all together. There is a reason why the Washington
Monument (another obelisk) is used as a symbol of strength and unity, rather than a
haphazard slum or shanty town, where there is much more information. There is a rea-
son why Big Ben in London is well known; the Vigeland Monument in Oslo; the Eiffel
Tower in Paris; the Statue of Liberty in New York. These are strong signals, dominating
their environments.

Today, we constantly erode the meaning of symbols by abusing them out of context.
Think of mobile phones which now spam us with well-known music, rather than the
low-info bell, or imagine the Eiffel Tower in the Amazon rain forest. Such loss of context
demeans the significance of symbols, creating garbage out of art. Understanding the sig-
nificance of mixed signals is a subtle business; in fact, it is one of the perpetually
unsolved problems which demands our attention. Part 4 of this series was about how to
use information maximally, by limiting and structuring it; it was also about the funda-
mental limitations incurred when information is limited for the purpose of ordering.
That discussion provided a mapping from cause to effect and showed the limits
incurred on going back the other way.

But what about this opposite direction? Separating signal from noise is much harder.
Going from observed effect to the possibly many causes is a much harder problem,
because summarial effect is often a mixture of many causes (a many-to-one mapping),
and the combination is not necessarily a linear superposition. Yet this problem is clearly
at the heart of all diagnostics, fault analysis, intrusion detection, and performance tun-
ing. What can we hope to find out from observations?

NEEDLES IN THE CRAYSTACK ●

“Imagination is more important than knowledge”
We take many complex things around us for granted. For instance, according to statis-
tics textbooks, coin tosses and rolled dice are considered random events. Is this true? A
coin has only two sides, it is circular: the simplest shape possible in two dimensions. A
die is scarcely more complicated. Isn’t it possible to predict the outcome? How hard
could it be?

What we know is that, if we do toss coins or dice, the distribution of results, over many
throws, seems pretty random. The reason is, of course, only that we can’t be bothered to
figure it out. It is not all that difficult, in principle, to predict the outcome. We know
Newton’s laws, we know about gravity, and we know about geometry. So what’s so hard?
The answer is: everything else – the environment. The environment (fingers, the table,
floor, air, height, etc.) comprises a bunch of variables which are quite complicated. Since
we are lazy, and the problem of coin tossing is not the least bit interesting, we pretend
we don’t know how to do it and call the result “random.” So random means “other vari-
ables” which we don’t account for. It turns out that, when we get down to quantum
mechanics, and the subatomic, the world turns out to be unpredictable for completely
unknown reasons, but for most things, random means “too complicated to really ana-
lyze.” In a coin toss, we classify all of the complex variables into just two outcomes – a
many-to-two mapping.

If we want to know what causes the result, it is not possible to extract information about
all of those causal variables just from the two outcomes. One cannot reverse a many-to-
few mapping. Lost detail is gone forever.

Statistics was invented in order to get something out of situations like this. Statistics
says: “Even though we can’t reasonably analyze some problem in complete detail, we can
still try to say something about them.” The usual way that statistics is presented is rather
obtuse, and even a little dishonest. The idea is that we go out and measure a bunch of
stuff in some problem and plot the outcomes in some way. Then we try to fit some off-
the-shelf probability model (Gaussian, Poisson, Parot, etc.) and work out a bunch of
standard things. That approach is a little bit like trying to say something about human
behavior by matching hairstyles.

In order to use statistics meaningfully, we need a model of what causes the results: a
hypothesis which can be tested. That means we essentially have to guess how the map-
ping from many causes to few results works. From such a model, one can then work out
the consequences and see whether they match observation. This is how science is done.
Einstein, always good for a quote, said that “imagination is more important than knowl-
edge.” What he meant was that, to understand nature, we need to dream up models by
imaginative means. They can then be confirmed or denied. He did not mean, as some
have suggested, that imagination overrides knowledge, only that knowledge itself is not
enough for finding answers: creativity is needed.

Once information has been discarded or lost, it is not possible to go back and recreate it,
unless it is somehow coded into a local potential, as was discussed in Part 4, or jour-
naled in an ever growing archive. The only way to refine one’s understanding of events,
to amplify on “it was just random,” is to postulate a reason and then collect evidence
which supports or denies it. Imagination is itself just a random entropic walk of possi-
bilities, loosely constrained by a hypothesis.

12 Vol. 26, No. 4 ;login:

For most things, random

means “too complicated to

really analyze.”

A Comedy of Errors
Our brains are extremely good at fitting models to data – almost too good, in fact. It is
as inconceivable as it is inevitable. When I was younger, I would sit and watch the televi-
sion noise, after everyone had gone to bed, with a friend. While listening to Led Zep-
pelin, we would wait for the rabbit on the bicycle to race across the bottom on the
screen, as it often did, late at night. The rabbit had apparently been observed by many of
our friends, while watching the fuzzy dots. Of course, some prefer to look for faces in
clouds, or emotional expressions on car radiator grills. The essence is the same.

At the end of the 19th century, the Italian astronomer Sciaparelli was having much the
same problem. He trained his telescope on Mars and was amazed to find a criss-cross
pattern of lines which he called canali. Percival Lowell misinterpreted his notes and thus
began the legend of the Canals of Mars. The canali were later discovered to be a trick of
the low-resolution distortion, or a loss of information, about random dark spots on the
surface. A century later, another blurred picture of Mars apparently revealed a gigantic
human face carved into the surface. On closer inspection, it was another trick of the
light, fueled by lack of resolution, much to the disappointment of UFO enthusiasts and
indeed Hollywood, who went ahead and made the movie anyway.

Model fitting is intrinsic to the way our cognition works, and we use that to good effect.
When we look for meaning, we do so by attaching interpretive models to data we per-
ceive. The process of problem solving is the forward process of mapping cause to effect.
The reverse process is that of diagnostics, mapping effect back to cause. Our capacity for
reasoning might even have developed as a by-product of this ability for causal analysis.

Models are essential to the way we think, so to understand any data, to diagnose any sit-
uation, we need some kind of causal model. We build mental-model imagery by gener-
ating high-entropy associations, when we parse language; this gives us the ability to infer
things from previous experience and leave things unsaid. When we say “cake,” we don’t
just think of a description of physical attributes, we think of the cake Granny made on
Saturdays when we were small. We think that it was like the one in the cafe the other
day. We think, not of one cake but of all cakes, of different colors, shapes and sizes, and
of all our experiences eating cakes, and of parties. Perhaps we think of a cookery pro-
gram on the television or a famous chef. From one starting place, our thinking diffuses
into every niche of possible meaning. Those who are good at diagnostics are often those
who are good at this random walk of association.

In other words, concepts are not isolated things in our minds. The robustness of mean-
ing has only to do with the competitive strengths of the different interpretations. Our
memories are dense networks, tied into many models. We have no unique search-key:
there is no unique way of attaching meaning to memory; rather, we tie memories into
many different models of meaning, which compete for attention. This feature of human
cognition is what we exploit in blending systematic, rational thought with the appar-
ently random walk of imagination. It is how we solve problems and diagnose causal
change. This is not at all like databases. Computers work more like warehouses. We find
a piece of information and store it on a shelf at a particular place. None of the other
information is aware of it. No free relationships are forged. We have learned to make
simple associations with relational databases, but these are very primitive.

Time’s Causal Arrow
One of the apparent paradoxes of change, which was first pondered in the world of
physics, is how the apparently reversible laws of physics can lead to irreversible conse-

13July 2001 ;login:

Model fitting is intrinsic to the

way our cognition works, and

we use that to good effect. ●

C

O
M

PU
TI

N
G

NEEDLES IN THE CRAYSTACK ●

quences. Reversibility is a property of physical law which means that time has no arrow.
The fundamental equations of physical systems work just as well forwards as backwards.
There is no concept of past or future. This resembles the problem of correlation in sta-
tistical analysis. If two things are correlated, A being correlated with B means that B is
correlated with A. There is no arrow which tells us whether A caused B, whether B
caused A, or whether they are both by-products of some deeper cause. This is precisely
the problem that models try to unravel.

The “paradox” of reversibility is not really such a mystery to the three horsemen of
entropy, because it all has to do with how things spread out into an environment. Many
apparent paradoxes of physics arise because physicists forget the environment sur-
rounding their object of attention, as a matter of routine. Physics is about isolating the
signals of nature into single threads which are independent of one another. The aim is
to find the arrow from cause to effect as clearly as possible, by stripping away the jungle
of irrelevancy. Amongst the approaches used is to try to physically isolate effects from
other signals by putting them in a box, or by shielding systems from their environments,
or by performing control experiments and subtracting one from the other to obtain the
variance.

The mystery of reversibility is this: the laws of physics describe infinitesimal changes;
they are formulated in terms of “differentials,” or changes so small that the environment
is irrelevant to them. However, the laws also include recipes for combining small
changes into large ones. It is at this larger scale, where we take a step back from the small
details and do the half-closed-eyes test, that the environment becomes important. How
we combine the infinitesimal changes is important, and that combination puts out feel-
ers into the environment, where other signals and effects are lurking. Every time we
combine tiny changes into larger ones, the effects of the environment play an infinitesi-
mal role. As we get farther and farther from the starting point, and after many such
combinations, we begin to see a real change, reflected in the landscape of influences
from the surroundings. Systems spread out into their environments, mixing with other
signals as they go. Suddenly, the way the infinitesimal changes were combined (their his-
tory) becomes very important to the final result.

The following analogy might be helpful. If you drive your car one meter in any direc-
tion, the world around does not have any great effect on you, and the change is easily
undone. However, if you drive half way across the continent, then the route you take
begins to play an important role: the features of the landscape make one route unequiv-
alent to another. That places an implicit arrow on the journey. Complex changes are not
easily undone without a memory of exactly what transpired. The way that physics is for-
mulated, the memory of how changes transpire is usually lost (dissipated) to the envi-
ronment; one chooses to ignore the information and treat it as ambient noise, and thus
it seems like a mystery how the rest of the changes happened.

When we look for changes in the machinery of computer communities, this principle is
of central importance. It is not enough to collect data about changes, do little statistical
analyses, plot graphs, etc. if one cannot separate the important signals from the environ-
ment. Physicists throw away parts of a signal which they are not interested in (and
sometimes get confused, but not as often as one might expect); this is how they find
order in chaos.

The meaning of signals is a mapping from cause to effect. Signals which change things
are more than just correlations (which are bi-directional), they are directed arrows, like

14 Vol. 26, No. 4 ;login:

Complex changes are not

easily undone without a

memory of exactly what

transpired.

conditional probabilities. Auto-correlations have direction in a time-series only by
virtue of time’s arrow.

Pins and Needles
When machines get sick, they exhibit certain observable symptoms. These are clues as to
the cause. Humans, for instance, get sore throats, perhaps skin coloration, headaches,
pain, and so on. The same symptoms characterize most illnesses because there are only
so many things which can hurt or change visibly. Computers run slowly, perhaps even
stop working or jumble data. There is only a finite number of symptoms which we
observe, but the number of possible causes is far greater. In a sense, finding out the
cause of machine illness from a few symptoms is like the problem of determining why a
flipped coin shows heads or tails. It is a many-to-one mapping, which one is trying to
reverse.

Of course, we would like to correct an illness at its source, if possible. Merely addressing
the symptoms ignores the causal chain of events which led to the problem, and the fact
that the chain is often unidirectional. Turning over a tossed coin does not change the
conditions of the environment which selected one of its faces in the first place. The level
of detail in such a response would be incommensurate with the level of detail in the
environment which caused the result. That cannot be a cure. Similarly, patching symp-
toms does not cure the illness which causes them.

In complex machines, the cause of sickness has to be a strong signal. There is a lot of
complexity, or entropy in modern computers, in biological systems which compete for
resources. A weak signal would just be a whisper in the wind. In order to be noticed
amongst the other things going on, the problem has to be sufficiently strong. That often
means that by the time the signal has grown to noticeable levels, it is already well estab-
lished, and hard to counteract.

The significance of such a signal would be its strength. Humans get sick when bacteria
or viruses replicate themselves to such a degree that they present a signal in our bodies
which is so strong as to be toxic. They start drawing resources from other tasks which
suffer as a result. The point is not whether they are foreign or not. Cancers are not for-
eign, but they are also strong signals which are pathological. The effect of a strong dose
of almost any substance or signal (even water!) is toxic to a system, because it drives that
system in a direction which is not its usual one.

The Search for Extra-Network InteLligencE?
In recent years, it has become popular to build anomaly and intrusion detection systems
that listen for rabbits on bicycles amidst the storm of traffic on networks. What is the
likelihood of finding anything interesting?

We would like to be on the lookout for signals which could be dangerous or helpful to
us. There are many signals out there, waiting to be understood. Searching for messages
in complex signals is like trying to find a needle in a haystack. There are many examples
of this problem: all kinds of diagnostics, fault detection (including medicine) may be
viewed as such a search. Looking for genes in DNA by examining the coding and look-
ing for patterns is another example. Even more difficult is the problem of figuring out
the causal relationships between gene action and manifestations of phenotype (species
and characteristics) and cell function. In the Search For Extra-Terrestrial Intelligence
(SETI), scientists look for what might be a meaningful signal in the bath of fuzzy dots
on your TV screen. Cryptanalysis has many of the same difficulties: how to tell a bit-
stream encrypted message from noise?

15July 2001 ;login:

Searching for messages in

complex signals is like trying

to find a needle in a haystack. ●

C

O
M

PU
TI

N
G

NEEDLES IN THE CRAYSTACK ●

In each case, the problem is to identify meaning in a mass of data by looking for causal
threads. If we were lucky, every important signal would be a strong, low-entropy obelisk
contrasting with a sandy desert. Unfortunately, nothing is so simple. Where you find
one obelisk, others appear. Often, for the sake of efficiency, one compresses signals into
as small a space as possible. This is certainly true of network traffic. In a desert full of
obelisks, none of them seem to distinguish themselves anymore. This, of course, is one
thorn in the side of intrusion detection systems. How do we distinguish a good signal
from a bad signal? How do we attach meaning to patterns of traffic? Can we, for exam-
ple, see the difference between a denial of service attack and a legitimate transfer of
data? Stealth attacks are deliberately low-entropy signals, designed to be hidden.

In system administration we are often trying to walk the fine line between necessary
complexity and the ability to control, but as we have seen in the previous issues, com-
plexity cannot really be controlled, it can only be regulated by competitive means.
Sometimes ecologists introduce a species of animal or plant into an ecology, perhaps a
predator which will control a parasite or infestation (like the snails or hedgehogs of
Hawaii). They introduce one species because that is a simple signal, something which
seems to be controllable. Sometimes this happens by accident (as with the grey squirrel
in England). In order to make a difference, such a species needs a selective advantage,
which is a very low entropy signal. The problem with such a signal is that it will tend to
dominate. Dominant signals are often toxic. On the other hand, if one were to just
throw a bunch of random animals into a system, their effect would be unpredictable,
but perhaps more balanced. This is the dilemma discussed in Part 3.

Another example is drugs. Drugs (medications) are low-entropy signals designed to tar-
get specific “problems,” where problem is defined as something possibly dangerous or
undesirable to us. Drugs are failing today because they make themselves very obvious. If
you keep hitting something in the same place, it will either wear out or move out of the
way. A good analogy would be that, if the Germans had invaded Poland and kept on
invading Poland during the Second World War, then everyone would simply have
moved somewhere else and left them to it. That would not have had the desired effect.
Had they attacked everyone at the same time, the result would probably have been a fail-
ure, because each signal would have been too weak to be noticed. (“You, soldier! Sur-
round the enemy!”)

When the environment or an external influence acts with a strong signal, it leaves a
marked effect and tends to order the system. This is the way that certain genes become
important. This is the way that computer programs are able to learn by finding signals
which can be digitized into a particular path through a data structure or a digital value.
This is how the brain learns, we presume, although no one actually knows how the brain
learns. Bacteria become resistant to drugs by genetic selection in the face of a low-
entropy signal. A single threat is easy to resist. Too much of a good thing, and it loses its
significance.

Rotate Shields; Long Live the Collective!
Machines are subject to a variety of influences. Every influence is a signal, a message to
the system which changes it somehow. Some changes are good, some bad, and some
neutral. This bath of information is called the environment. It acts like a potential, or
fitness landscape in which a machine is meant to survive and fulfill its function. Those
machines which have evolved in complex environments have evolved defenses to many
of the signals which are contrary to their stability. Human-made machinery, however, is
put together in the way that humans see the world: by the half-closed-eye method. We

16 Vol. 26, No. 4 ;login:

In system administration we

are often trying to walk the

fine line between necessary

complexity and the ability to

control.

extract the simplest machine which solves the main part of a complex task. We build to
solve the problem as we see it.

Simplification helps understanding, but to quote Einstein again: “Everything should be
made as simple as possible but no simpler!” If animal evolution had simplified to the
extent that human machine-building does, they would all be dead. Human machines
have traditionally been built for protected environments: assuming that the user will do
no harm. Today, the network has unleashed a force which has taken the propositional
world of computing by surprise: competition, fuelled by its ally diversity. Entropy arrives
center stage, and our machines are ill-equipped to deal with it. Our diagnostic abilities
have not been built into our technology in the same way that evolution pits competition
against strong signals.

Once machines, driven by humans, were connected in a network, it was inevitable that
there would be a variety of players with a variety of motivations, some good, some bad,
and some ugly. The environment of users and other machines, which our computers
bathe in, by console and by network, contains many signals which help and oppose the
system. We are just learning how to shield ourselves from such signals, as DNA did with
cell walls, as organisms did with skin: we can build firewalls and filters for the network
and access controls for resources, so that unwanted signals are not passed.

These controls are not perfect, however. The environment is huge, the machine is small;
the resources available to a complex environment, to prod and to poke the system for
weakness, are huge. Unlike, genetically determined machines, computers are reliant on
humans to make changes. Adaptive systems do not really exist today.

Strong signals are needles in the side of the machine. There are a few ways that
machines can resist such toxic signals. The first is to have a defense of any kind. The
next level is by redundancy: if one strategy for protection fails, another can take over.
The next is the bane of the Borg: rotating shield modulations. We vary the defensive
strategy constantly, to prevent an attacker from adapting to the defensive signal. This is
the strategy used by screen-savers, to avoid permanent damage to monitors from per-
sistent, strong signals. In a competitive environment, constancy is both your friend and
your enemy. It is an arms race, i.e., a race to stand still. It is the principle of the Red
Queen (a quote from Through the Looking Glass):

“Well in our country,” said Alice, still panting a little, “you’d generally get to somewhere
else – if you ran very fast for a long time as we’ve been doing.”

“A slow sort of country!” said the Queen. “Now here, you see, it takes all the running you
can do, to keep in the same place. If you want to get somewhere else, you must run twice
as fast as that!’’

In computer systems, one could rotate system policy at random (cfengine can do this,
for instance) to prevent users from learning system policy and adapting to it. By making
the signal less obvious, one can actually win stability. This is the lesson of non-coopera-
tive Game Theory. In the future, we shall have to learn to adapt and embrace complex-
ity, if we are to create machines which have the ability to communicate in a collective. If
we haven’t learned this already from society (love thy neighbor and lock thy door), then
we’ll have to learn it all over again, the hard way.

The Babel Acupuncture
Our world is teeming with information: its jungles, its species, its cities and the ever
changing dynamics of it all are an information system of formidable complexity. From

17July 2001 ;login:

“Everything should be made

as simple as possible but no

simpler!” ●

C

O
M

PU
TI

N
G

NEEDLES IN THE CRAYSTACK ●

this complex world, humans have imagined meaning in the simplicity of low-entropy
symbols. It is a Tower far greater than Babel. Then, having built the Tower, we push it
down again, polluting precious meaning through repetitive strain, and the meaning
becomes the garbage which we fail to tidy up after ourselves, like a multimedia virus
which sweeps to every quiet corner of the world. The result might be something indis-
tinguishable from the fuzzy snow on a TV screen. The “Snow Crash” is no myth.

All the needles we have made, we turn on ourselves, in our community bartering
grounds, as we compete for supremacy in whatever value system we hold dear. Whether
economist, hacker, warmonger, or merely egoist, we slowly shoot ourselves in the foot
with tiny needles.

18 Vol. 26, No. 4 ;login:

Sun Microsystems is right: “The Network Is the Computer”™. Chances are, if

you use a computing machine of any sort, you have a need to make it net-

work-aware at some point. Personal Digital Assistants (PDAs) are great can-

didates for both wired and wireless networking, extending the functionality

of your networked desktop workstation to your pocket. This article discusses

a simple set of steps for establishing a persistent connection between your

Palm Pilot and your Linux workstation using Palm’s Hot Sync cradle and the

Point-to-Point Protocol (PPP).

Note: Please refer to RFC1661 for further details regarding the PPP.

So What?
Why would you want to do this, you ask? Well, I am not sure I can answer that for you,
but here are some reasons that might help:

1. You are writing a networked Palm application that you want to test on a real
device, but you don’t want to pay for a wireless modem just to test your
application.

2. You need to telnet to a remote workstation and all you have with you is your Palm
Pilot (it could happen . . .).

3. You want to set up a kiosk consisting of nothing but Palm cradles and a Linux box
where you want users to be able to browse the Web using only their Palm Pilot.

These are some possible situations where the knowledge presented in this article might
be of some use. If for no other reason, it is an interesting exercise nonetheless. Further-
more, it is kind of cool to have the ability to telnet or browse the Web using your Palm
Pilot.

For those of you most familiar with Microsoft Windows, the subject of this article may
seem less arcane since using the Microsoft RAS protocol makes PDA networking rather
simple. It’s not as evident how one would go about networking a Palm Pilot with one’s
Linux workstation, however. Recognizing that wireless Palm Pilot networking, using a
wireless modem (like those offered by OmniSky) or a Palm VII is optimal for PDA net-
working, these alternatives are still rather pricey. PPP networking provides a cost-effec-
tive alternative for doing cool networking “things” with your Palm Pilot: application
testing, for example.

Preparation
Most Linux distributions come with a number of PPP utilities. If you are unfamiliar
with PPP, please refer to the PPP HOWTO articles at http://wwww.linuxdoc.org. Estab-
lishing a PPP connection between your Palm and Linux workstation is not that different
from establishing a PPP connection with your Internet Service Provider (ISP), although
configuring your Palm device correctly can be a little tricky. Also note that in the steps
presented below, I am using the Beta version of RedHat Linux 7.0 (kernel version 2.4.0-
0.99.11), and a Palm Vx (Palm OS v.3.5.0), so your results may vary slightly depending
on your specific configuration.

OK, here we go. First, connect your Palm cradle to a free serial port at the back of your
workstation. Make sure your cradle is properly connected. One way to do this is to grab

19July 2001 ;login: PALM PILOTS ●

by James Caple

James Caple has eight
years of combined
industry experience
in proposal develop-
ment, hardware hack-
ing, UNIX systems
administration, and
most recently, Java
and C programming.

jcaple@patriot.net

palm pilots and the
point-to-point
protocol

●

N

IF
TY

H
A

C
K

S
| C

O
M

PU
TI

N
G

http://wwww.linuxdoc.org

pilot-link from http://pilot-link.sourceforge.net and try to use the pilot-xfer utility to
transfer a Palm Database (PDB) from your device to your workstation. For example, try
to transfer MemoDB as follows:

[root@localhost]# pilot-xfer /dev/ttyS1 -f MemoDB

If you have trouble with this step, try using /dev/ttyS3. If all else fails, read the pilot-xfer
documentation for further details.

PPP Configuration
Secondly, if you want to be able to reach machines beyond your own Linux workstation
with your networked Palm Pilot, you will need to make sure that your kernel supports
IP Masquerading. In the worst case, you will need to rebuild your kernel with support
for IP Masquerading, but chances are, if you are using the latest RedHat distribution, it
is already supported in your kernel. In addition, I had to remove the ipchains module in
order for my ppplogin script (see below) to work. You can do this using the following
command:

[root@localhost]# rmmod ipchains

You must either create or modify your existing /etc/ppp/options file to contain these
parameters:

lock
debug
noauth
crtscts

Now create a simple script in /etc/ppp called ppplogin, which should contain the follow-
ing lines:

Load the NAT module (this pulls in all the others).
modprobe iptable_nat

Note: Change eth0 to ppp0 if you use a modem.
Dial-up for your Internet connection.
iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE

Turn on IP forwarding.
echo 1 > /proc/sys/net/ipv4/ip_forward

10.100.166.56 is the IP of the local Linux workstation.
192.168.1.2 is the IP I wish to assign to the Palm device.
Modify accordingly.
/usr/sbin/pppd 10.100.166.56:192.168.1.2 connect \

'/usr/sbin/chat -vf /etc/ppp/chat' /dev/ttyS1

Finally, the last step in configuring PPP on your Linux machine is to create the
/etc/ppp/chat script. This file should simply contain a line that reads TIMEOUT 30, or
whatever timeout value you wish to assign to pppd.

Configure Network
Now that we have configured the PPP Server, we need to set up the network configura-
tion on the Palm device. The accompanying screenshots, grabbed from the Palm OS
Emulator for UNIX, show how to configure your network settings.

Step 1. Tap Prefs and select Connection from the pull-down menu.

Step 2. Select Direct Serial and tap Edit.

Step 3. Tap Details and configure as seen.

20 Vol. 26, No. 4 ;login:

Step 2

Step 3

Step 1

http://pilot-link.sourceforge.net

Step 4. Select Network from the pull-down menu and create a new Service as shown.

Step 5. Tap the Details button in step 4 and configure as shown.

Step 6. Tap the Script button in step 5 and configure as shown.

While these screenshots may prove helpful, I have made this process somewhat easier by
providing Connection and Network Palm Databases containing this configuration
information. If you want, you can download these files and install them on your device,
which could save you some frustration (see Resources, below). Once you have obtained
these Palm Databases, you can use the pilot-xfer utility on your Linux machine to install
them on your Palm device like so:

[root@localhost]# pilot-xfer /dev/ttyS1 -i NetworkDB ConnectionDB

You might want to make a backup copy of your original databases before doing this,
however (see the pilot-xfer man page).

Now we are ready to test our configuration. Place your Palm Pilot in the Hot Sync cra-
dle. Tap the Prefs icon and select Network from the pull-down menu. Change your
working directory on your Linux workstation to /etc/ppp, and run the ppplogin script as
root. You can look at your system logfile after running ppplogin to make sure it is run-
ning properly (e.g., tail -f /var/log/messages). The following lines from /var/log/mes-
sages indicate that pppd is waiting for a ppp connection request on /dev/ttyS1:

Apr 30 22:07:02 velocis pppd[2715]: pppd 2.4.0 started by root, uid 0
Apr 30 22:07:03 velocis chat[2716]: timeout set to 30 seconds
Apr 30 22:07:03 velocis pppd[2715]: Serial connection established.
Apr 30 22:07:04 velocis pppd[2715]: Using interface ppp0
Apr 30 22:07:04 velocis pppd[2715]: Connect: ppp0 <—> /dev/ttyS1

Finally, tap the Connect button on your Palm (see step 4, above), and wait a second for
the connection to get established. Provided you have IP Masquerading and your PPP
settings properly configured, you should be able to access remote machines using a tel-
net client, or even a Web browser. You can also use this configuration to test your own
custom network-aware Palm applications.

Conclusions
Establishing a PPP connection between your Palm and Linux workstation is just about
as easy as dialing up your local ISP. There can be a number of benefits in having the
ability to do this as well. The most notable benefit I see, however, is that this configura-
tion, using your Palm Linux workstation and Palm Pilot, can provide a low-cost alterna-
tive to testing your network-aware Palm applications on real devices, without requiring
more expensive wireless modems and service providers.

Resources
RFC1661 – http://www.cis.ohio-state.edu/cgi-bin/rfc/rfc1661.html
PPP-HowTo – http://www.linuxdoc.org/HOWTO/PPP-HOWTO/index.html
Pilot-Link – http://pilot-link.sourceforge.net
Palm OS Emulator (POSE) – http://www.palm.com/devzone
Sample Palm Network / Connection Databases –

http://www.trexlabs.com/USENIX/pdbs.tar.gz
Telnet Client for Palm – http://www.mochasoft.dk
Web Browser for Palm – http://www.ilinx.co.jp/en

21July 2001 ;login: PALM PILOTS ●

●

N

IF
TY

H
A

C
K

S
| C

O
M

PU
TI

N
G

Step 4

Step 5

Step 6

http://www.cis.ohio-state.edu/cgi-bin/rfc/rfc1661.html
http://www.linuxdoc.org/HOWTO/PPP-HOWTO/index.html
http://pilot-link.sourceforge.net
http://www.palm.com/devzone
http://www.trexlabs.com/USENIX/pdbs.tar.gz
http://www.mochasoft.dk
http://www.ilinx.co.jp/en

22 Vol. 26, No. 4 ;login:

the tclsh spot
The last several Tclsh Spot articles have shown ways to write simple client-

server applications with Tcl. These pairs all used pure ASCII text to transmit

data, in the tradition of SMTP, NNTP, POP, etc. This article will expand on the

client-server articles and the previous article about the binary command, to

develop a program to examine the behavior of telnet servers.

It’s almost embarrassing to admit how many years I’ve used telnet without ever wonder-
ing what went on under the hood. The telnet protocol not only handles the printable
ASCII text that we see on our screen, it also sends a number of unseen commands to
negotiate how the session will be managed.

Peter Burden published a nice overview of the telnet protocol at
http://www.scit.wlv.ac.uk/jphb/comms/telnet.html.

The telnet configuration commands all start with a binary 0xff byte, referred to as IAC
(for Interpret-as-Command). The 0xff is followed by a binary command between 0xf0
and 0xfe, which is followed by the data required by the command.

Opening a connection to a telnet server is easy in Tcl: we just use the normal socket
command.

set connection [socket $Client(ipAddress) 23]

The default behavior for the socket command is to open a buffered connection to the
remote host and translate carriage-return/newline pairs to whatever the normal line ter-
mination characters are on the local host.

This works fine for printable ASCII text, but creates a problem with binary data, where a
0x0a might be not be a newline and adding a 0x0d will break a binary data stream.

The solution is to use the Tcl fconfigure command to modify the socket’s behavior to
something more acceptable for binary data.

The fconfigure command will modify several aspects of the channel including whether
the channel should be buffered, the size of the buffer to use, whether to block on
read/write and how to translate binary characters.

by Clif Flynt

Clif Flynt is president
of Noumena Corp.,
which offers training
and consulting serv-
ices for Tcl/Tk and
Internet applications.
He is the author of
Tcl/Tk for Real Pro-
grammers and the
TclTutor instruction
package. He has
been programming
computers since
1970 and a Tcl advo-
cate since 1994.

<clif@cflynt.com>

Syntax: fconfigure channelId ? name? ?value?

fconfigure Configure the behavior of a channel
channelId The channel to modify
name The name of a configuration field which includes:

-blocking boolean If set true (the default mode), a Tcl program will block on a gets, or read until data is
available. If set false, gets, read, puts, flush, and close commands will not block.

-buffering newValue If newValue is set to full, the channel will use buffered I/O. If set to line, the buffer will
be flushed whenever a full line is received. If set to none, the channel will flush when-
ever characters are received.

-translation{inMode outMode} Controls how end-of-line translations are performed. Acceptable values for inMode
and outMode include:
auto On input, treats any combination of cr and lf as line terminators. On output

line termination is sent as whatever is native for the current platform.
binary No end-of-line translations are performed.
cr On input, all cr characters are converted to newline. On output, newlines are

converted to a cr character.
crlf On input, all crlf characters are converted to newline. On output, newlines are

converted to a crlf sequence.

http://www.scit.wlv.ac.uk/jphb/comms/telnet.html

23July 2001 ;login: THE TCLSH SPOT ●

We can modify the behavior of our socket with this code:

fconfigure $connection -translation binary -buffering none -blocking 0

The previous client-server pairs used the Tcl gets command to read a line of text from
the server. Again, looking for a newline doesn’t work with binary data.

The Tcl read command handles this problem.

Syntax: read channelID ?numBytes?

read Read a certain number of characters from a channel.
channelID The channel to read data from
numBytes Optionally, the number of bytes to read. If this argument is left out, all

available data is read.

These commands enable us to build a non-line-oriented client with commands like this:

set s [socket $argv 23]

fconfigure $s -translation binary -buffering none -blocking 0

fileevent $s readable "readData $s"

proc readData {s} {
set n [read $s]
if {[eof $s]} {

close $s
return
}
Process data.

}

Whenever there is data available in the input buffer, the readData procedure will be
evaluated to read and process the data. Since the socket is configured to be non-block-
ing, the read command will read whatever is in the buffer, whether it ends in a newline
or not.

This brings us to the processing part of this example, which is to print out a human-
friendly version of the server’s requests.

Since Tcl is (like most of us) primarily text oriented, the first thing to do with the binary
data is convert it into printable ASCII to make it easier to work with. Since the telnet
protocol is byte oriented, it makes sense to convert the data into single byte hex values.

We can use the Tcl binary scan command to convert the binary data to a string of Hex
values.

Syntax: binary scan binaryString formatString arg1 ?varName1? ... ?varNamen?

binary scan Converts a binary string to one or more printable ASCII strings
binaryString The binary data
formatString A string that describes the format of the ASCII data
varName* Names of variables to accept the printable representation of the binary

data

For example to convert a string to hexadecimal values:

Convert "abc" to "616263", save value in hexData
binary scan "abc" "H*" hexData

That’s better, but still hard to read and work with. If the string were a list of individual
byte values, we could read the string more easily and use Tcl’s list-processing commands
to step through the data.

●

PR

O
G

RA
M

M
IN

G
|N

IF
TY

H
A

C
KS

| C
O

M
PU

TI
N

G

24 Vol. 26, No. 4 ;login:

The Tcl split command will convert a string into a list, splitting on whatever character
(or characters) you desire.

Syntax: split data ?splitChar?

split split data into a list.
data The data to split.
?splitChar? An optional character (or list of characters) to split the data at

A common use of the split command is converting some character-delimited string (like
a spreadsheet export file) into a proper Tcl list.

Convert "3/23:Cab from Airport:35.00"
to
{3/23 {Cab from Airport} 35.00}
set line "3/23:Cab from Airport:35.00"
set lst [split $line ":"]

By default, the splitChar is a whitespace. You can define any other character or characters
to be the split character, as the previous example does. You can even declare the split
character to be an empty string, which splits a string into a list where each character is a
separate list element.

convert "abcd" to {a b c d}
set lst [split "abcd" ""]

The next step is to convert the list of single hex values into a list of byte values. We could
step through the list two elements at a time using Tcl’s foreach command, but since this
is a fairly simple pattern to convert, it’s faster to use the regsub command.

The regsub command will modify patterns that match a regular expression to another
pattern. The syntax looks like this:

Syntax: regsub ?options? expression string subSpec varName

regsub Copies string to the variable
varName. If expression matches a portion of string then that portion is replaced by

subSpec.
options Options to fine-tune the behavior of regsub may be one of:

all Replace all occurrences of the regular expression with the
replacement string. By default only the first occurrence is
replaced.

-nocase Ignores the case of letters when searching for match.
— Marks the end of options. Arguments which follow this will

be treated as regular expressions, even if they start with a
dash.

expression A regular expression which will be compared to the target string.
string A target string to which the regular expression will be compared.
subSpec A string which will replace the regular expression in the target string.
varName A variable in which the modified target string will be placed.

In the simple use of regsub, the subSpec value will be a simple string:

Convert powerful to useful.
regsub "power" "Regular expressions are powerful" "use" string2

The regexp command will sort parenthesized subsets of a regular expression pattern
into separate variables. Similarly, the Tcl regsub command supports merging patterns

from the original string in the subSpec value. These substitutions are specified by using
a backslash-escaped number in the subSpec string to correspond to the parts of the pat-
tern you wish to substitute. The number denotes which part of the pattern will be sub-
stituted for the backslash-escaped value.

The pattern \0 will substitute for the entire matched portion of the string. If sections of
the regular expression are placed in parentheses, these sections can be addressed as \1
for the first parenthesized expression, and \2 for the second, etc.

Invert the positions of "a" and "c"
x will contain the string : "abc becomes: cba"
regsub "(a)(.)(c)" "abc" {\0 becomes: \3\2\1} backwards

Which, finally gets us to a simple three-line procedure to convert a binary string to a list
of hexadecimal-coded byte values:

Convert binary strings to lists of hex values
"abc" converts to "61 62 63"

proc bin2hex {binaryString} {
binary scan $binaryString "H*" hexData
regsub -all {([^]) ([^])} [split $hexData ""] {\1\2} hexList
return $hexList

}

The final process is to step through the list of binary data and print out something a
simple human can easily read. The first byte of any command will be the IAC symbol,
0xFF. The value after that will be a byte that denotes which command this is.

In C, we might parse the second byte with a case command like this:

switch (i) {
case FE: {processFE; break;}
case FD: {processFD; break;}

}

In Tcl, we can let the interpreter handle the parsing, and instead of using a switch state-
ment to parse our commands, we can name the procedures for the command name.

Define procedures to process the command
proc FE {...} {

Process the FE command
...

}
proc FD {...} {

Process the FD command
...

}
...
Select the command from the hexadecimal list
(something like FA of FD)
set cmd [lindex $hexList $position]

Evaluate the command
$cmd

The number of bytes after the command byte varies for each command. Some of the
information commands (like terminal type) can even include free-form ASCII data.

In C, it would be nice to use a pointer, and advance the pointer as we process each com-
mand and data.

25July 2001 ;login: THE TCLSH SPOT ●

●

PR

O
G

RA
M

M
IN

G
|N

IF
TY

H
A

C
KS

| C
O

M
PU

TI
N

G

Unfortunately, this isn’t an option in Tcl, so we’ll have to use the lindex command to
select each byte we want to look at from the list, and increment our position counter
after we process each command.

To make life simpler, the procedures that process each command are defined to return
the number of bytes to increment the pointer to get to the next IAC marker.

The telnet protocol allows interleaving of ASCII text and IAC commands in a data
stream, so we have to check each byte to see if it’s an IAC symbol and process the com-
mand if it is.

set lst [binaryStrings::bin2hex $string]

for {set i 0} {$i < [llength $lst]} {incr i} {
Get the current character
set l [lindex $lst $i]

Loop for as long as the current character is
an IAC marker
while {[string match $l "ff"]} {

Get the command byte
incr i
set cmd [lindex $lst $i]

Evaluate the command, and increment
the position marker
incr i [$cmd [lrange $lst $i end]]

Get the next byte – if it’s still an IAC we’ll
loop.
set l [lindex $lst $i]

}
}

The procedures that process the commands contain the logic for handling each telnet
command and also save a comment about what they’ve done.

The basic format of the procedures is:

proc fd {sublist ...} {
Process the fd command
...
addInfo $subl TELOPT_
return $commandLength

}

The addInfo procedure uses an associative array as a lookup table to get the human-
readable information about each command and puts that string into a temporary com-
ment buffer, which is combined by the main loop when a command has completed.

proc addInfo {subl prefix} {
variable Telnet
variable Lookups

set m [lindex $subl 0]
scan $m %x dec
set id [array names Lookups ${prefix}*.$dec]
if {[string match $id ""]} { set id UNKNOWN.-1 }
append Telnet(comment-temp) " $Lookups($id)"

}

26 Vol. 26, No. 4 ;login:

The lookup table has indices in the form mnemonic.decimalValue, and could be con-
structed with code like this:

set Lookup(IAC.255) {interpret as command:}
set Lookup(DONT.254) {you are not to use option}
set Lookup(DO.254) {please, you use option}
...

However, the telnet include file (telnet.h) already has a nice set of comments that would
be useful for this application. Rather than making up my own messages, I decided to
write a little script to read the include file, find the lines in the form

#define mnemonic value /* Comment */

and use them to generate the lookup table to convert the binary values to a human-
readable text. This uses the regexp command’s support for sorting patterns into separate
variables to recognize the lines with valid information and build the array index and
value.

##
proc readIncludeFile {arrayName fileName}–
Read an include file, and make a lookup table for all the
lines that match a
#define xxx val /* comment */
or
#define xxx val
format
#
Arguments
arrayName: The name of an array in the calling procedures scope.
fileName: The full path for the include file to be read.

Results
Adds new indices to the arrayName in the form:
set arrayName(mnemonic.value) "comment"

proc readIncludeFile {arrayName fileName} {

upvar $arrayName localArray

set if [open $fileName r]

while {[set len [gets $if line]] = 0} {

Use the Advanced Regular Expression "\s"
Class Shorthand to encode for whitespace.
set m [regexp \

{#define[\s]+([^\s]+)[\s]+([^\s]+)[\s]+/*([^*]+) */} \
$line all mnemonic num comment]

If no match, it might be a line with no comment
if {!$m} {

set m [regexp {#define\s+([^\s]+)\s+([^\s]+)} \
$line a mnemonic num]

set comment "No Comment"
}

If still no match, this line must note be a #define line
skip it.
if {!$m} {continue}

Holler if there's a collision. I guess a human will
need to deal with this file.
if {[info exists localArray($mnemonic.$num)]} {

27July 2001 ;login: THE TCLSH SPOT ●

●

PR

O
G

RA
M

M
IN

G
|N

IF
TY

H
A

C
KS

| C
O

M
PU

TI
N

G

puts "COLLISION: $num"
exit

}

Everyone's happy, assign the value
set localArray($mnemonic.$num) $comment

}
}

The readIncludeFile requires Tcl 8.1 or newer to use the [\s] convention for describing
whitespace.

This procedure is invoked as

readIncludeFile Lookups /usr/include/arpa/telnet.h

That covers all the pieces in this application. When you run it, it can send some simple
responses to the server, and will report all the IAC messages the server sent to the client.
This can be useful if you are trying to figure out what optional protocols your server
supports, or if you are writing a robot that needs to talk with a telnet server.

If you run the program with the telnet server distributed on RedHat 6.2 Linux, it will
return:

COMMENT: please, you use option: terminal type
COMMENT: please, you use option: terminal speed
COMMENT: please, you use option: X Display Location
COMMENT: please, you use option: New – Environment variables

If you use the program to examine a BSD system it will return:

COMMENT: please, you use option: Unknown Option
COMMENT: I will use option: Encryption option
COMMENT: please, you use option: terminal type
COMMENT: please, you use option: terminal speed
COMMENT: please, you use option: X Display Location
COMMENT: please, you use option: New – Environment variables
COMMENT: please, you use option: Old – Environment variables

As usual, this code for this example is available at http://noucorp.com.

28 Vol. 26, No. 4 ;login:

http://noucorp.com

We’ve started looking at new features in C9X, the recent standards update

to C. In this column we’ll look at a couple of C9X features that you can use

to declare and initialize structures.

Flexible Array Members
If you’ve been around C for a long time, you might have encountered the following sort
of usage, which goes by the name “struct hack”:

#include <stdio.h>
#include <stdlib.h>

struct A {
int a;
int b[1];

};

int main()
{

const int N = 10;
int i;

struct A* p = malloc(sizeof(struct A) +
sizeof(int) * (N - 1));

p->a = 100;
for (i = 0; i < N; i++)

p->b[i] = i;

printf("%d %d %d\n", p->a, p->b[0], p->b[N-1]);

return 0;
}

The idea here is that you have a struct, and one of the struct members is an array, and
the array is of variable length. So you put it at the end of the struct, and you allocate
extra space for the struct. So the memory for the struct object has some extra space
tacked on to it, for the elements of the array.

This usage represents undefined behavior, even though it will work much of the time.
With C9X, however, the usage has been legitimized, and goes by the name “flexible array
member.” Such a member must be the last in the struct, and the length is omitted within
the []. The corresponding C9X version of the example above would be:

#include <stdio.h>
#include <stdlib.h>

struct A {
int a;
int b[];

};

int main() {
const int N = 10;
int i;

struct A* p = malloc(sizeof(struct A) +
sizeof(int) * N);

p->a = 100;

29July 2001 ;login: C9X ●

flexible array
members and
designators in C9X

by Glen
McCluskey

Glen McCluskey is a
consultant with 20
years of experience
and has focused on
programming lan-
guages since 1988.
He specializes in Java
and C++ perfor-
mance, testing, and
technical documenta-
tion areas.

<glenm@glenmccl.com>

●

PR

O
G

RA
M

M
IN

G
|N

IF
TY

H
A

C
KS

| C
O

M
PU

TI
N

G

for (i = 0; i < N; i++)
p->b[i] = i;

printf("%d %d %d\n", p->a, p->b[0], p->b[N-1]);
return 0;

}

No actual array space is allocated within the struct object, so we allocate extra space for
N elements instead of N-1. However, the size of the object takes into account the align-
ment restrictions on the array. For example, with this code:

#include <stdio.h>

struct A {
char a;

};

struct B {
char a;
int b[];

};

int main() {
printf("%d\n", sizeof(struct A));
printf("%d\n", sizeof(struct B));
return 0;

}

the size of A will typically be 1, and the size of B will be 4.

There are some restrictions on the use of flexible array members. For example, you can-
not have an array of objects, if the object type includes a flexible array member:

struct A {
int a;
int b[];

};

struct A data[10];

Nor can an object of such a type be used as a member in the middle of another type:

struct A {
int a;
int b[];

};

struct B {
struct A a;
double b;

};

In both cases, the flexible array member causes problems with object layout, because its
total size is not known.

Designators
Suppose that you’re initializing a struct object, and your code looks like this:

#include <stdio.h>

struct A {
int x;
int y;

};

30 Vol. 26, No. 4 ;login:

struct B {
struct A a;
double b;

};

struct B obj = {37, 47, 12.34};

int main() {
printf("%d %d %g\n", obj.a.x, obj.a.y, obj.b);
return 0;

}

Even in this simple example, the initialization of the B object is a little confusing. The
first two values, 37 and 47, get assigned to the A sub-object within B, and then the 12.34
value gets assigned to the second field of B.

Designators can be used to make such initialization much more clear. Here’s an equiva-
lent program to the one above:

#include <stdio.h>

struct A {
int x;
int y;

};

struct B {
struct A a;
double b;

};

struct B obj = {
.a = {

.x = 37,

.y = 47
},
.b = 12.34

};

int main() {
printf("%d %d %g\n", obj.a.x, obj.a.y, obj.b);
return 0;

}

The notation:

.x = value

is used to initialize a specific field; the fields need not be given in order, and you can
omit fields.

You can also use designators to specify particular elements in array initialization, like
this:

#include <stdio.h>

struct A {
int x;
int y;

};

struct A data[] = {
[100].x = 37, [100].y = 47

};

31July 2001 ;login:

●

PR

O
G

RA
M

M
IN

G
|N

IF
TY

H
A

C
KS

| C
O

M
PU

TI
N

G

C9X ●

int main()
{

printf("%d %d\n", data[0].x, data[0].y);
printf("%d %d\n", data[100].x, data[100].y);

return 0;
}

In this example, the designator notation is not only easier to read, but it allows you to
jump ahead to initialize a specific array element, without having to specify zeros for all
the previous elements. Another example of initializing sparse arrays in this way looks
like this:

#include <stdio.h>

#define N 10000

int data[] = {[0] = 1, [N/2] = 2, [N-1] = 3};

int main() {
printf("%d %d %d\n", data[0], data[N/2], data[N-1]);
return 0;

}

You can also use designators in union initialization. The existing C rules say that an ini-
tializer for a union is applied to the first member of the union. For example, in this
code:

#include <stdio.h>

union U {
char a;
double b;

};

union U obj = {12.34};

int main() {
printf("%g\n", obj.b);
return 0;

}

the double initializer value is applied to the char member, and you will get garbage when
you later try to access the double value. With designators, however, this problem is easily
solved:

#include <stdio.h>

union U {
char a;
double b;

};

union U obj = {.b = 12.34};

int main()
{

printf("%g\n", obj.b);

return 0;
}

Using a designator, you can initialize any member of a union.

You can use designators and flexible array members in your programming to make your
job easier, and your code easier to read and maintain.

32 Vol. 26, No. 4 ;login:

33July 2001 ;login: MUSINGS ●

When you get to read this, it will be in the depths of summer. But, today it is

May Day, and the Chinese have proved to be a disappointment.

You might recall the ruckus stirred up when the US refused to say “we’re sorry” about
the death of a Chinese fighter pilot who collided with a US spy plane 70 miles off the
coast of the Chinese mainland in April. As an afterthought, some Chinese hackers
threatened a coordinated attack against the US between May 1 and May 7. Both days are
important: May 1 is International Workers’ Day, and May 7 is when the US sent three
cruise missiles into the Chinese embassy in Serbia (oops). At least that time, the US said
“sorry” right away.

I had thought that perhaps something would really happen. After all, the “1i0n worm,” a
worm that was (and perhaps still is) exploiting Linux systems sends /etc/shadow off to
an address at china.com (which is registered in the Asia Pacific, at least), and was written
by a Chinese hacker group of the same name. The Lion worm exploits BIND 8.2 (not
again!!), but only on Linux systems running on x86. A portion of its install includes the
setup of more automatic scanning, the t0rn rootkit, as well as DDoS agents, like trinoo
and TFN2K.

If the Chinese were really using a worm to exploit and collect Linux systems worldwide,
and these systems now had DDoS agents installed, they might have “systems to burn”
and create a really interesting set of floods in the US. But, nothing has happened (so
far). Also, the tools installed, especially trinoo, are really primitive compared with later
DDoS agents, which include the ability to update themselves and execute any command
as root.

More FUD
The other interesting event of the day was the issuance of CERT advisory CA-01-09
(http://www.cert.org/advisories/CA-2001-09.html). For one thing, this was more of a
paper than an advisory. I wrote to a friend who works for CERT and suggested that they
add an “Executive Summary,” so that people will have at least a clue of what it is about
and how important it is.

And really, I wondered, how important can it be? CA-01-09 explains some issues in how
Initial Sequence Numbers (ISN) are generated, and how studies by Tim Newsham
(http://www.guardent.com/comp_news_tcp.html) and Michal Zalewski
(http://razor.bindview.com/publish/papers/tcpseq.html) show that the methods used by
many vendors are insufficient to guard against even a “weak” attack that relied on guess-
ing the ISN. I have no argument with the analyses, which date back to seminal papers by
Robert Morris (1985, ftp://research.att.com/dist/internet_security/117.ps.Z) and Steve
Bellovin (1989, http://www.research.att.com/~smb/papers/ipext.ps). How could I argue
against these guys?

But what I was wondering about is just how relevant this issue is to current configura-
tions of various servers’ OSes. What got people’s attention in 1994 was the very interest-
ing attack against Tsutomu Shimomura’s home network on Christmas day, the very
attack that led to the search for Kevin Mitnick (who in all likelihood did not create the
attack and might not even have launched it). The attack actually turned the warnings of
Morris and Bellovin into something real for the first time. You can find a variant of this
attack named rbone2 on some exploit sites even today.

The attack relies on finding a pair of systems that have a trust relationship and rsh
servers that are reachable by the attacker. Now, anyone with any security training should

by Rik Farrow

Rik Farrow provides
UNIX and Internet
security consulting
and training. He is
the author of UNIX
System Security and
System Administrator’s
Guide to System V.

<rik@spirit.com>

musings

●

SE

C
U

RI
TY

|P
RO

G
RA

M
M

IN
G

|N
IF

TY
H

A
C

KS
| C

O
M

PU
TI

N
G

http://www.cert.org/advisories/CA-2001-09.html
http://www.guardent.com/comp_news_tcp.html
http://razor.bindview.com/publish/papers/tcpseq.html
ftp://research.att.com/dist/internet_security/117.ps.Z
http://www.research.att.com/~smb/papers/ipext.ps

be aware that using rsh is a very bad idea. This lapse led me to believe that Shimomura
could not have been a security guru since he was using rsh. What Shimomura had done
was use TCP wrappers to provide access control based on the IP source address, and
then allowed root access between his pair of trusted Sun systems. That is what the
attacker exploited using a tool like rbone2.

The tool first uses a SYN flood to “disable” a port on the trusted server. Before this
attack, a SYN flood was something that happened to busy Web servers (also a new thing
in 1994). Most servers had a connection queue for each port that was only about ten
entries deep. If an attacker sent TCP SYN packets with spoofed source addresses, the
server’s TCP stack would send SYN-ACKs, then wait for responses that would never
come, eventually timing out after 75 seconds. So, all an attacker had to do to SYN flood
a service was to send enough packets to keep the connection queue filled. The attack
tool sent 20 packets.

Next, the tool sent more SYN packets, but this time to the trusting host, and using the
tool’s real IP address. This allowed the tool to collect ISNs from the soon-to-be victim.
Before UNIX vendors bothered to generate pseudo-random ISNs, ISNs were VERY pre-
dictable, with each subsequent ISN being 128,000 greater than the previous (unless
more than one second had passed, which would also increment the value by 128,000).
The attack tool collected a sequence of ISNs, resetting the connection each time instead
of letting it complete (which prevents TCP wrappers from ever being invoked and log-
ging the failed connection).

Now, the attack tool has a potential value for the next ISN and can proceed. The attack
tool spoofs the IP address of the trusted server and sends a SYN packet to the victim.
The victim responds to the trusted server, but the port used is the one that was SYN
flooded, and the packet is discarded. Then, the attack tool sends a spoofed reply, which
must include the victim’s ISN (plus one) in the response if it is to succeed. If the attack
tool has guessed the victim’s ISN correctly, it can finish the attack.

Keeping in mind that the attacker never sees any response packets, what can be done to
the victim? The attack tool sends packets to execute commands as root to open a hole in
the victim’s defenses, allowing remote access as root (for example, echo ++ >> /.rhosts
is part of this attack). The only way the attacker can tell if the attack has succeeded is to
try an rsh to the victim, and if this works, the attack has succeeded. If not, well why not
try again until it does work?

My own problem with this is twofold. How many people would consider using the r
commands and trust relationships today? SSH provides a drop-in replacement for the r
commands that includes digital signatures that positively identify both the client and
the server to each other. So spoofing the source IP address won’t work anymore. But
perhaps people are still using the r commands.

The advisory also mentions TCP hijacking, but this requires more than guessing the
ISN. You must also know the socket information, presumably by sniffing, in which case
you don’t need to guess the ISN.

The CERT advisory points out that even if the ISN gets incremented with pseudo-ran-
dom numbers, it is still possible to guess the increment, given enough attempts. The
advisory points out that given a series of ISNs, they will tend to fall around an “average”
value over time, and given enough attempts, the attack tool could still guess an ISN.
Sure. Why not?

34 Vol. 26, No. 4 ;login:

What is easier to do, and more likely, is to guess an ISN and send RESETs to break exist-
ing connections. In the case of shutting down an existing connection, you still need the
socket information. If the attacker has that, the ISN (actually the acknowledgment
value) only needs to be within the TCP window in order to be accepted, and then the
RESET flag will cause the connection to be terminated. If you are curious about typical
TCP Window values (used by the receiver to control how many bytes of data the sender
may transmit without receiving an acknowledgment), check out the nmap-os-finger-
prints file (get nmap from www.insecure.org), and you can see that this value varies from
as small as 512 bytes to as much as 32K-1 (Windows NT/SP3, W=7FFF).

But this is still a problem. How does the attacker know the socket information (source
port, source IP address, destination port, destination IP address) without sniffing pack-
ets? The destination info is easy, as you can port scan the destination server and glean
that info. But the source info is much more difficult, as (at the very least) the client port
will be some value between 1 and 65535.

There are cases where the client port is easy to guess. Communications between DNS
servers may use the same port at each end (53/tcp). Is this the thing that CERT is so
worried about? Maybe. A determined attacker could disrupt updates to root servers,
with the effect that new DNS info could not be received. Remember what happened
when Microsoft’s DNS servers could not be reached in January? All of their domains,
and related Web and email servers, effectively disappeared from the Internet.

Well, sorry, but this still seems pretty far-fetched to me. I also wondered about BGP4,
used to exchanged routes between core routers. BGP4 requires that peer routers keep a
live TCP connection at all times, so breaking a connection (and keeping it down for
some time) would force the peers to announce new routes. The problem with ISN
guessing affecting routers using BGP4 is that they use RFC2385, and sign their TCP
headers, preventing spoofing. To be honest, I found this interesting, as someone decided
that spoofing was enough of a threat to BGP4 that RFC2385 was considered that solu-
tion (http://www.faqs.org/rfcs/rfc2385.html, published in 1998).

So, should you worry about the ability of attackers to guess ISNs? If you are using the r
commands, and have no firewall to protect the servers running these commands, yes. If
you are worried about people hijacking or resetting TCP connections, no. The true solu-
tion is to use encrypted connections, such as SSH, SSL, or IPSec. While improving the
methods used for ISN generation is important, encryption is the better countermeasure
(as the CERT advisory notes).

Also, congratulations to OpenBSD and the Linux developers for having already imple-
mented strong ISN, a la RFC1948. Note that FreeBSD has included the OpenBSD solu-
tion, and that other OS vendors, like Sun, support more secure ISN generation as a
tunable kernel parameter, but not by default.

MS Horror Story
I just spent the last couple of hours installing Windows 2000 Professional. I guess
Microsoft thought that if you got the Pro version, it should be difficult to install (for
pros only, get it?). The fifth reboot just completed, soon after I elected to “Finish config-
uration of this server later.” Well, I was sure that was what I selected, but Win2K has a
“mind” of its own, and went about setting up Active Directory and other services after I
told it “later.”

I have seen a preview of the SAGE 2000 Salary Survey, and it seems that lots of you have
to manage Windows servers (second only to Solaris). Sorry to hear that. The other inter-

35July 2001 ;login:

I have seen a preview of the

SAGE 2000 Salary Survey, and

it seems that lots of you have

to manage Windows servers

(second only to Solaris). Sorry

to hear that.

●

SE

C
U

RI
TY

|P
RO

G
RA

M
M

IN
G

|N
IF

TY
H

A
C

KS
| C

O
M

PU
TI

N
G

MUSINGS ●

http://www.faqs.org/rfcs/rfc2385.html

esting tidbit was that people who only manage Windows servers get paid less (a LOT
less) than people who also manage UNIX systems. I really wondered about that. Is this
merely because people consider UNIX so much more difficult than Windows, or
because basic Windows administration is based on carrying about a CD pack, and rein-
stalling software frequently? Sorry, didn’t mean to criticize anyone, but I did quote a
UNIX sysadmin in a past column who described Windows sysadmin as exactly that. At
least it would explain the salary gap.

Ah, Win2K is finally rebooted. After installing the (!#$!!) software that I need that will
only run under Windows (yes, I know about and have installed StarOffice, and yes, I still
use VMWare on my notebook, thanks), I have to reboot again. I notice that Win2K has a
nifty new feature where your menu choice fades out after you have selected it. I call this
the “LCD screen simulation effect,” so that you can get some of the feeling of having an
LCD screen without spending the money.

Before I conclude this column, I would like to thank the three Libertarians who were so
annoyed by my February column that they wrote me letters many times longer than the
actual column itself. I do read my email and will respond to any letters you care to send
me, and am still wondering exactly why my cynicism only annoyed Libertarians.

36 Vol. 26, No. 4 ;login:

37July 2001 ;login: ISP ADMIN ●

Usenet News
Introduction
In this installment, I look at many diehard Internet users’ favorite application

and every service provider’s headache: news. Usenet news is defined by

RFC977 (NNTP proposed standard) and RFC1036 (Usenet message stan-

dard).

The problem of news is a difficult one for a service provider, due to the following attrib-
utes:

■ Very high volume of both posts and news data itself
■ Very high (exponential?) rate of increase in both number of posts and MB of data

year after year
■ High number of end users
■ The distributed distribution model implemented by NNTP, making reliability

and “correctness” (i.e., posts containing all of the data they are supposed to)
problematic

■ Infrastructure costs, including bandwidth and disk space
■ Personnel costs to monitor spam and illegal articles originating on their network, as

well as to manage the news infrastructure itself
■ Legal problems associated with spam, illegal pornography, and warez (illegal soft-

ware)

Small Provider Infrastructure
A small provider (and most enterprises who offer news to their employees for that mat-
ter) will likely utilize a single machine for
news. This single machine performs all three
functions typically required in a news infra-
structure: inbound news relay, outbound
news relay, and serving news to clients.

Figure 1 contains a diagram of how a small
provider might set up their news infrastruc-
ture. The center box labeled “news server”
handles all three basic news functions:
inbound news relay, outbound news relay,
and client news readers. The inbound articles
come into the machine from the various
sources of news (peers, commercial providers,
upstream ISPs, etc.). The outbound articles
leave the server though the outbound news
connection(s) (usually the same sources as the inbound news streams). All of the cus-
tomers who want news point their news clients to this same machine.

It is very likely that a small provider is not going to want to deal with the hassles of news
and will outsource news to a provider like Critical Path (formerly Supernews/RemarQ).
(The References section contains a pointer to a listing of news providers at the Open
Directory project home page.) While some larger providers do utilize commercial news
services providers, it is usually more cost effective for a big provider to set up their own
news infrastructure.

ISPadmin
by Robert Haskins

Robert Haskins is

currently employed

by WorldNET, an ISP

based in Norwood,

MA. After many

years of saying he

wouldn't work for a

telephone company,

he is now affiliated

with one.

<rhaskins@usenix.org>

●

SY

SA
D

M
IN

| S
EC

U
RI

TY
|P

RO
G

RA
M

M
IN

G
|N

IF
TY

H
A

C
KS

| C
O

M
PU

TI
N

G

news
server

readers

readers

news feeds

Figure 1

38 Vol. 26, No. 4 ;login:

Large Provider Infrastructure
A large provider is likely to deploy separate machines (or groups of machines) for each
function: inbound news relay, outbound news relay and client news serving. Of course,
functions can be combined; for example, inbound and outbound news relay can be the
same machine if the inbound and outbound news volume isn’t too high.

Figure 2 outlines how a larger provider
might set up their inbound news infra-
structure. The box marked “INR” illus-
trates an inbound news relay machine.
This machine takes all off-site incoming
feeds and consolidates them into a sin-
gle feed. Only the very largest providers
would need more than one INR
machine for performance reasons. (Of
course, they may have multiple INR
machines for redundancy purposes.) A
single machine to consolidate incoming
feeds keeps transit costs to a minimum.

Multiple inbound news relay machines accept feeds from the inbound news relay
machine(s). Each inbound news relay machine sends news articles to multiple news
reading servers (indicated by “NRS1” and “NRSx”) which news reading clients (not
shown) attach to. Note that depending upon the news server hardware and software
running on the news reading servers, each server can feed hundreds of news clients con-
currently. The first class of machines to require scaling is usually the news reading
servers, followed by the inbound news relay.

Figure 3 shows how a big provider
could set up their outbound news
(posts originating on their network)
infrastructure. The boxes marked
“ONR1” and “ONRx” indicate out-
bound news relay machines, which
take articles from the news reading
servers (labeled “NRS1” and “NRSx”)
and send them to the machine labeled
“ONR”. The outbound news relay
might be located on the same machine
that provides the inbound news relay

function, depending upon the number of articles originating on the providers network.
This outbound news relay machine is tasked with sending articles originating on the
providers network to the Internet at large through the outbound news feeds previously
configured. The outbound news relay machines (machines labeled “ONRx”) are typi-
cally the last part of the news infrastructure that requires scaling, since news clients
don’t usually originate many news articles.

Cyclical News File System (aka The Trash Can)
The vast majority of news implementations utilize either Internet Software Consor-
tium’s INN (originally written by Rich Salz) which is open source or Openwave’s
Typhoon/Cyclone series of commercial software. Before discussing the applications
in particular, a short history and discussion of the circular news file system would be
helpful.

NRS1INR1

INRx NRSx

inbound
newsfeeds

INR

Figure 2

NRS1ONR1

ONRx NRSx

outbound
newsfeeds

ONR

Figure 3

Prior to the implementation of the cyclical news file system (CNFS) within INN, many
providers (including Time Warner Cable of Maine and Ziplink) who had implemented
INN 1.x switched to Typhoon and Cyclone because INN simply could not handle the
load, or expire articles automatically. Typhoon/Cyclone (and, more recently, INN) both
feature an implementation of a cyclical news file system that eliminates many of the
headaches when managing a news infrastructure, in particular, article expiration.

Article expiration is the process by which articles are “cancelled” and deleted from the
list of available articles for download. As articles “age,” they are expired. Historically,
article expiration was handled by setting parameters within an INN configuration file.
Every day at a certain time, a process ran which deleted articles that met the criteria set
in the configuration file, and all of the news indexes were re-indexed. This process could
take hours for a large news system, frequently causing service interruptions.

With the rapid growth of the size of newsfeeds, the partitions articles were stored on fre-
quently filled up if an administrator was not diligent in keeping the expiration configu-
ration file up-to-date with the added news groups. Also, performing the expiration
would often cause service interruptions due to the load put on the news server while
running the article expiration.

A cyclical news file system has no concept of article expiration. Once the disk is filled,
the oldest articles are simply overwritten with new articles in a cyclical news file system.
Therefore, there is no need to perform the CPU-consuming expiration process and its
associated overhead. The INN 2.0 release includes CNFS support.

Openwave’s Twister and Cyclone
Twister and Cyclone are commercial service provider-grade news server implementa-
tions. Many service providers utilize these products for serving news to their customers.
Some of the features of Openwave’s Twister and Cyclone products include:

■ Virtual server support
■ Customizable anti-spam filtering
■ Synchronized article numbering across the entire news server infrastructure
■ Real-time statistics and logs capable of generating bills
■ Post filtering
■ Automated moderator support
■ Feeds automatically adjusted without administrator intervention for optimal

throughput and efficiency.

Openwave has a free version of their discussion software named Breeze. Of course, there
are limits to how many feeds and readers can connect to it, but it might be worth some
investigation if you are in the market for Usenet news server software.

Internet Software Consortium’s INN
INN is freeware and doesn’t have all of the bells and whistles that commercial applica-
tions like Openwave’s servers have. However, it is a fully functional news server and per-
fectly capable of serving news. The advent of the CNFS in INN makes it much more
robust and usable in a service provider environment. Features of INN 2.3.1 include:

■ Python, Perl, and Tcl authentication and filtering plug-in support
■ News reading over SSL
■ Email gateway to news
■ Exponential backoff for posting, enabling some level of anti-spam support

39July 2001 ;login: ISP ADMIN ●

●

SY

SA
D

M
IN

| S
EC

U
RI

TY
|P

RO
G

RA
M

M
IN

G
|N

IF
TY

H
A

C
KS

| C
O

M
PU

TI
N

G

For many providers, large and small, INN is a fine solution to the problem of Usenet
news. If the added features of a commercial news product (like article synchronization,
virtual server support, and real-time statistics) are required, then a provider would likely
utilize a commercial-grade server.

News Client Software
News client software bears a brief mention. Both Microsoft and Netscape browsers con-
tain client news reading capability. While they both can read news, I personally find
them not nearly as functional as the Forte Agent news-reading client. For those folks
who have been around since before the GUI days, you can still read news from the
UNIX command line utilizing tin, trn, pine or a multitude of other character-based news
readers. If you are interested in finding out more about news clients, please check out
the appropriate Web site in the References.

Storage Considerations
When designing news infrastructure, many details must be considered. In the area of
storage, single-disk spindles (i.e., not RAID or other fault-tolerant storage technology)
are usually utilized for storage as losing articles is a tolerable event. Also, backups are
almost never performed (except for those news providers who archive such things)
because once again, losing articles is acceptable. Once the hardware failure is repaired,
news will begin filling the disks again very rapidly!

News articles can be stored and shared via NFS mounts. Historically, many problems
arose, including file locking and performance issues, from using NFS for article storage,
which accounts for the limited use of NFS in news implementations.

It is not recommended that NFS be utilized for news implementation; storage area net-
works, or SANs, provide a much better way to achieve similar functionality and perfor-
mance.

Other Considerations
As you are probably aware, Usenet news hosts thousands of news groups in a multitude
of languages. For providers with networks located solely in the US, it is sufficient to
carry the 50,000 or so English-only groups. International service providers would likely
carry a complete feed with all non-English groups as well.

End subscribers control the groups to which they subscribe. When news clients initially
connect to news servers, the servers will query clients as to what group headers to down-
load (usually all are downloaded). Once the group headers are downloaded, end users
can subscribe (download article headers within each group) to whatever set of groups
interests them, and then download individual article bodies that they wish to view.

Most providers carry local news groups (a group dedicated to restaurant reviews in the
provider’s city, for example). In fact, the Openwave series of news servers enables “vir-
tual groups” to be located across servers and only visible to certain classes of clients (for
example, the customers of a particular ISP in a wholesale ISP’s news infrastructure).
This is a very useful feature for a wholesale service provider.

One might wonder how much effort and hardware it took to run a news infrastructure
at a moderate-sized ISP. At Ziplink, we had a moderate-sized English language only
news infrastructure containing 50,000 groups and 200 news clients. These clients were
served by two Sun Ultra 5 machines, each with 512MB of RAM and approximately
36GBs of disk space. One machine ran Cyclone and was the inbound and outbound

40 Vol. 26, No. 4 ;login:

news relay, while the other machine ran Typhoon and was the news reader machine.
The load on either machine was never higher than 1, and usually between 0.3 and 0.5.
The aggregate feeds were on the order of 2 Mbps, from a handful of UUNET news feeds
and several news peers.

Occasionally a news spam complaint will arrive in the abuse mailbox of a provider. Usu-
ally, it is very easy to track down the perpetrators of news spam, as the logs and message
headers themselves contain exactly when and where the message originated. Forging
message headers makes this process much more difficult, but the logs again make it easy
to determine positively whether or not a message originated on a particular provider’s
network. Generally, Usenet news spam is much less of a problem for an ISP than junk
email. In 2.5 years at Ziplink, I handled one Usenet spam complaint but hundreds of
unsolicited commercial email complaints.

Legal Aspects of News
I’ve asked John Nicholson (the lawyer who writes in ;login: about legal issues surround-
ing computers) to cover ISP legal areas, as I’m not an attorney. Usenet news would defi-
nitely be an important topic for any discussion around service provider legal liability.

Most ISPs consider themselves “common carriers.” Having “common carrier” legal sta-
tus would exempt ISPs from liability of what is carried over their infrastructure. How
true this belief really is, I am not sure. If considered a “common carrier,” a service
provider cannot be held liable for pornography or illegal software originating or resid-
ing on their infrastructure. (An example of an entity with common carrier status would
be the US Postal Service; the USPS cannot be held responsible for someone sending ille-
gal drugs through postal mail.)

Most if not all providers perform no content based censoring (moderating) of what con-
tent flows through their network. Of course, decisions not based on content but strictly
on technical capacities and related areas (for example, limits placed on news articles
based on the amount of disk space or network bandwidth available) is an acceptable
means of controlling one’s destiny as an ISP while not jeopardizing the potential for
“common carrier” legal status.

Conclusion
Providing Usenet news functionality can be a difficult task for any provider. For a
smaller provider, one machine can handle inbound, outbound, and news reading capa-
bility. For a larger provider, functionality is split up based inbound, outbound, and news
reading capability.

Openwave’s discussion products function as a good commercial news server, while INN
remains the open source stalwart. Spam is not too much of an issue when it comes to
news, and those who do spam are relatively easy to catch. Most ISPs do not filter groups
for fear of losing “carrier” status. At this point it is unclear ISPs have this status under
any circumstances.

Next time, I’ll take a look at how service providers deploy their name service infrastruc-
ture. In the meantime, please send your questions and comments regarding ISPs, system
administration, or related topics to me.

41July 2001 ;login:

REFERENCES

NNTP proposed standard (RFC977):
ftp://ftp.isi.edu/in-notes/rfc977.txt

Usenet message standard (RFC1036):
ftp://ftp.isi.edu/in-notes/rfc1036.txt

RFC Editor: http://www.rfc-editor.org/

Critical Path Supernews/RemarQ:
http://www.supernews.net/

Open Directory Project list of commercial news
providers:
http://dmoz.org/Computers/Usenet/Feed_Services/

ISC’s INN: http://www.isc.org/products/INN/

Openwave’s discussion server software:
http://discussion.openwave.com/

Microsoft Internet Explorer:
http://www.microsoft.com/windows/ie/

Netscape Navigator:
http://home.netscape.com/browsers/index.html

Forte Inc., Agent / Free Agent:
http://www.forteinc.com/

tin: http://www.tin.org/

pine: http://www.washington.edu/pine/

trn: http://trn.sourceforge.net/

ISP ADMIN ●

●

SY

SA
D

M
IN

| S
EC

U
RI

TY
|P

RO
G

RA
M

M
IN

G
|N

IF
TY

H
A

C
KS

| C
O

M
PU

TI
N

G

ftp://ftp.isi.edu/in-notes/rfc977.txt
ftp://ftp.isi.edu/in-notes/rfc1036.txt
http://www.rfc-editor.org/
http://www.supernews.net/
http://dmoz.org/Computers/Usenet/Feed_Services/
http://www.isc.org/products/INN/
http://discussion.openwave.com/
http://www.microsoft.com/windows/ie/
http://home.netscape.com/browsers/index.html
http://www.forteinc.com/
http://www.tin.org/
http://www.washington.edu/pine/
http://trn.sourceforge.net/

42 Vol. 26, No. 4 ;login:

by Brent Chapman

Brent Chapman is an
IT infrastructure and
network architecture
consultant based in
Silicon Valley. He is
coauthor of the
O’Reilly & Associates
book Building Inter-
net Firewalls, and
creator of the Major-
domo mailing list
management pack-
age. He is also a
founding member of
SAGE and was the
original SAGE post-
master.

brent@greatcircle.com

what are your
intentions?
Air traffic controllers, with their ability to use radar to see exactly what air-

craft are doing, seem to be the very picture of omniscience in their domain

(at least until the 30-year-old mainframe in the basement blows another vac-

uum tube, and the whole screen goes blank). However, there’s a big differ-

ence between “all-seeing” and “all-knowing.” A controller might be able to

see exactly what a given aircraft is doing, but be totally in the dark about

why the aircraft is doing that. If the controller doesn’t know and can’t figure

it out, the pilot of the aircraft in question soon hears something like “Cessna

Four Three Zero Papa, what are your intentions?” The controller needs to

know what each of the pilots in their care is trying to accomplish, so that the

controller can coordinate all their actions to get them each safely and effi-

ciently to their destinations.

Whether we realize it or not, as IT professionals we often face similar situations. Any
competent system administrator can examine a system and determine the details of how
the system is configured, but they may still be totally in the dark about why it is config-
ured that way. Without understanding the “why” behind a system’s configuration, it’s
much more difficult to make changes or updates to the system successfully, because it’s
much more difficult to predict the effects (positive or negative) that those changes will
have. It’s also difficult to evaluate how well a system is currently doing its job, when
you’re not entirely sure just what job it was designed to do.

When documenting our systems and networks, we often spend a huge amount of effort
documenting what they are, how they’re configured, and how to use them, but little or
no effort documenting why we set them up that way. While a certain amount of “what”
and “how” documentation is definitely called for, particularly as a map of the situation,
there are two problems with producing only this form of documentation. First, much of
this documentation quickly gets out of date, particularly if it covers system-level details
like how much memory and disk space a system has; when you need to know such info,
it’s usually better to get it from the system directly. Second, even if it’s kept accurate, this
documentation doesn’t tell a later reader (months or years after the system was
deployed) anything at all about why the system is configured that way, which makes it
more difficult to repair, extend, replace, or retire.

Examples of questions that are often left unanswered in the documentation include:

■ Why are we using a given package or version for a particular service?
■ Why Postfix? (rather than Sendmail or QMail or whatever)
■ Why Oracle? (rather than MySQL or Postgres or whatever)
■ Why BINDv8? (rather than BINDv9)
■ Why RedHat? (rather than Debian or SuSE)

■ Why are we using a particular vendor or service provider?
■Why Dell? (rather than Compaq or Micron or whoever)
■ Why Sun? (rather than HP or SGI or whoever)
■ Why UUNET? (rather than XO or PSINet or whoever)
■ Why Exodus? (rather than Level3 or Digital Island or whoever)

■ Why are certain services provided by particular systems, rather than some other
system?

■ Why are certain services grouped onto particular systems?
■ Why are other services given their own systems?

■ Why are our standard systems what they are?

43July 2001 ;login: WHAT ARE YOUR INTENTIONS? ●

■ Why this config for an engineering desktop?
■ Why this config for an engineering laptop?
■ Why this config for a non-engineering desktop?
■ Why this config for a non-engineering laptop?

■ Why is our IP address plan set up the way it is?
■ Why do we allocate a /24 to each office?
■ Why do we skip every other /24 in the allocation?
■ Why do we allocate all the point-to-point /30s as we do?

Competent IT professionals usually have good reasons for the things they do. They can
usually tell you those reasons, if you ask. Months or years later, however, it can be diffi-
cult to obtain this information; the professionals in question may have worked on so
many things since then that they no longer remember, or they might not even be with
the organization anymore. A much better approach is to create a short explanation
(maybe just a paragraph or two) of why a system is the way it is at the time the system is
configured.

These reasons are often discussed and debated among staff while the system is being
designed and deployed; all you need to do is capture the conclusions of those discus-
sions and debates. At a small shop, an archive of your internal IT email discussion list
might be sufficient, if you’ve got a good search mechanism. Or you might want to go
one small step further and establish a special archived email alias just for these “wis-
dom” summaries; the trick will be to remember to create such summaries and send
them to the alias for recording.

Growth plans are a related issue. Competent IT professionals usually include avenues for
efficient future growth in their designs, but those avenues often aren’t obvious later,
especially if the person looking for them wasn’t a participant in the original design
process. These growth plans and thoughts should be documented when the system is
designed and deployed, so that they can be used when needed in the future.

Assumptions about the environment and its future are another thing that should be
documented when a system is designed and deployed. Documenting these assumptions
will help later IT staff determine when a design is no longer suitable for the current
(ever changing) situation, and should be revised or replaced. For example, if you design
an IP address plan to accommodate a dozen large field offices, total, over the next five
years, but your company has shifted plans and is instead now opening a dozen small
offices per month, you probably need to rethink your address plan.

Assumptions can also take the form of constraints, which might not apply in the future.
If you don’t document them at design and deployment time, however, it will be more
difficult to take advantage of later changes that ease those constraints. For example,
you’ve probably heard the joke about the mother teaching her child their family’s tradi-
tional method of preparing a roast, which starts with cutting the roast in half. The child
asks “Why?” and the mother says, “Well, that’s the way we’ve always done it; that’s the
way my mother taught me to do it.” The child, being a naturally curious sort, goes and
asks Grandma “why cut the roast in half?” and gets the same answer. The child recurses
through ancestresses until eventually reaching one who answers, “Because it wouldn’t fit
in the pan that I had when I was a young bride.” That’s a perfect example of a system
carried forward far longer than necessary, because nobody realized that the relevant
constraint (the size of the pan) no longer applied.

To get a good idea of what your “why” documentation should cover, imagine the ques-
tions that a new hire would ask if they were made responsible for that system or service.

Assumptions about the

environment and its future are

another thing that should be

documented when a system is

designed and deployed.

●

SY

SA
D

M
IN

| S
EC

U
RI

TY
|P

RO
G

RA
M

M
IN

G
|N

IF
TY

H
A

C
KS

| C
O

M
PU

TI
N

G

Assume that this person is a competent system administrator, and knows how to find
and use vendor documentation for the system or service; they’d still want to know
things like who the primary users are, why this particular platform and/or software
package was chosen to provide the service, what the growth plans are, what the unusual
or subtle aspects of this configuration are, and so forth.

As a consultant, asking “why?” is often the most important service that I provide to my
clients. The act of explaining their concerns or goals to an outsider (me) often clarifies
those concerns and goals. This, in turn, often makes a range of solutions clear as well,
and the task becomes one of evaluating and choosing between those solutions, then
implementing the chosen solution. There’s no magic to hiring a high-priced consultant
for this type of exercise (though I certainly don’t mind the business!); you can apply this
same method very well yourself, if you just take the time to do so.

So... what are your intentions?

44 Vol. 26, No. 4 ;login:

As a consultant, asking

“why?” is often the most

important service that I

provide to my clients.

Introduction
Probably the majority of all BIND installations in the world are configured to

run named as super-user. This implies full access to the operating system,

which probably is the most dangerous configuration possible. Any vulnerabil-

ity in BIND, such as a buffer overflow bug, will put the entire underlying

operating system at risk. However, there are two protection mechanisms in

BIND8 to limit the consequences of a buffer overflow: running named in a

change-rooted environment and changing the owner of the process to other

than super-user. Although the measures in the following text will not elimi-

nate the potential and real security vulnerabilities in BIND, the goal is to do

what can be done to contain the damage caused by an attack.

Changing the root directory of a process to something other than the system root (‘/’) is
a very effective method to limit the execution environment to the bare minimum. The
rationale is to withdraw all vulnerable system tables and databases (e.g., /etc/passwd)
from the reach of the service process. If the password database does not exist, it cannot
be exploited. A change-rooted execution environment also permits file and directory
permissions more rigorous than otherwise possible. Figure 1 shows the directory struc-
ture of our setup.

Simply moving the process to a change-rooted environment is not enough. Although
only the super-user can execute the
chroot() system call, the super-user
can also cancel the effect of chroot()
and break out from the change-
rooted area. Simon Burr1 has put
together an excellent Web page on
how to attack against chroot(). Conse-
quently, we must follow the principle
of least privilege and change the user
owning named from root to, for
example, an unprivileged bind
account. Of course, there must not be
any set-user-id executables in the
change-rooted area.

Since BIND-8.1.2, one has been able
to use a command-line option to
instruct named to change-root itself
immediately after it has started up,
and another option to change the
user-id the process is running on.
Sun Microsystems has been distrib-

45July 2001 ;login: BIND8 ●

by Timo Sivonen

Timo Sivonen is a
consultant working
for Greenwich Tech-
nology Partners. His
interests include
operating systems,
security management
and model railroads.

tljs@greenwichtech.com

setting up BIND8 in
a change-rooted
environment on
solaris

●

SY

SA
D

M
IN

| S
EC

U
RI

TY
|P

RO
G

RA
M

M
IN

G
|N

IF
TY

H
A

C
KS

| C
O

M
PU

TI
N

G

Figure 1. Directory hierarchy

uting BIND8—version 8.1.2—since Solaris 7, but sadly, Sun’s version (in.named) has
neither feature available. This is strikingly disturbing since change-root is never com-
pletely safe if the process is owned by root.

In the following text, we will take a generic approach and describe how to perform
change-root first and then execute named in the restricted environment. This approach
has two advantages:

■ The process won’t have any open file descriptors outside the change-rooted area.
■ Since you do not rely on chroot() internal to a program, you can use the same

method to change-root other unix services as well. There is also Wietse Venema’s
very useful chrootuid2 utility that not only changes the root directory but also
launches the process with the given user-id.

Obviously, there has been little improvement in system security if one runs BIND in a
restricted environment yet the operating system has all the default network services
such as telnet, FTP, XDMCP and others available to the world. SANS’ Step-by-Step
Guide3 is a good source for instructions how to build a hardened Solaris system.

Getting Started
In the following text we will assume that you have either built BIND-8.2.3 from the
source,4 or you have obtained the binaries from Sunfreeware.com.5 You can install the
binaries and the configuration files to the default locations, since we will have to copy
those to the change-rooted hierarchy.

The first step is to decide where to put our BIND hierarchy and create bind, the BIND
account, in /etc/passwd. The BIND directory will be the home directory of the account.

It is customary to have all BIND-related files and directories under /var/named but you
can also use some other location if your /var is limited in space. We will need approxi-
mately 7MB of disk space for the base setup, and you probably want to reserve some
additional space for your logs, zone, and dump files.

Edit /etc/passwd, /etc/shadow, and /etc/group to set up the bind account. In the follow-
ing text we will discuss the entries that must be added in each file.

/etc/passwd:
bind:x:65533:65533:Berkeley Internet Name Daemon:/var/named:/nonexistent

bind does not have to have any specific user or group id, as long as those do not conflict
with any existing accounts. Since bind is meant to be a restricted account with minimum
access rights and no login, it is a good practice to assign a first available id in descending
order from 65535, the highest possible user-id. Note that the home directory of the
account points to the root of the BIND hierarchy. This is not absolutely necessary yet it
is quite handy.

/etc/shadow:
bind:NP:6445::::::

The password field for bind in /etc/shadow must contain NP to disable logins.

/etc/group:
bind::65533:bind

To be complete we also want to set up a group for bind. You should select the highest
available group id for the account. The only member of the group is bind itself.

46 Vol. 26, No. 4 ;login:

Files and Directories
Careful construction of the change-rooted directory hierarchy is critical to our setup.
The guidelines described in the manual page of in.ftpd6 offer a good starting point.

1. Create the /var/named directory.

mkdir /var/named
chown root:root /var/named
chmod 551 /var/named
ls -ld /var/named
dr-xr-x--x 4 root root 512 Feb 11 14:04 /var/named

Create the /var/named directory and set its owner and group to root. Set the directory
permissions to mode 551 to permit read and directory access for the owner and group
and directory-only access for everyone else (including bind).

2. Change your default directory to /var/named and create the first-level directories

under named/.
Here we create the top level of our change-rooted environment. There will be only a few
directories in our structure named will need write access to. For example, there has to be
a read-write directory for named to store the transferred zone files.

cd /var/named
mkdir dev etc namedb usr var
ln -s usr/sbin .
chown root:root *
chmod 551 *
chmod 751 namedb
ls -la
total 12
dr-xr-x--x 4 root root 512 Feb 11 14:04 .
drwxr-xr-x 4 root root 512 Feb 11 14:04 ..
dr-xr-x--x 4 root root 512 Feb 11 14:04 dev
dr-xr-x--x 4 root root 512 Feb 11 14:04 etc
drwxr-x--x 4 root root 512 Feb 11 14:04 namedb
lrwxrwxrwx 1 root root 10 Feb 11 14:04 sbin -> usr/sbin
dr-xr-x--x 4 root root 512 Feb 11 14:04 usr
dr-xr-x--x 4 root root 512 Feb 11 14:04 var

Our change-rooted sbin/ directory is a symbolic link to the change-rooted usr/sbin/. The
purpose of this step is to store all executables and the corresponding shared libraries
into a single hierarchy. Consequently, there will be no need to ever change the usr/ hier-
archy after it has been set up. This serves the purpose of creating the change-rooted
environment in the first place.

3. Change your directory to dev/ and create the necessary device nodes.

The devices are specific to your operating system and possibly even the version you are
running. Therefore you should verify the major and the minor device numbers with
‘ls -lL’ from the system /dev directory before proceeding with creating the devices.
Moreover, five out of seven devices we need are specific to Solaris: the only generic
devices are dev/null and dev/zero.

cd dev
mknod conslog c 21 0
mknod log c 21 5
mknod null c 13 2
mknod syscon c 0 0
mknod tcp c 11 42

47July 2001 ;login: BIND8 ●

●

SY

SA
D

M
IN

| S
EC

U
RI

TY
|P

RO
G

RA
M

M
IN

G
|N

IF
TY

H
A

C
KS

| C
O

M
PU

TI
N

G

mknod udp c 11 41
mknod zero c 13 12
chown root:sys *
chown root:tty syscon
chmod 666 conslog null tcp udp zero
chmod 640 log
chmod 620 syscon
ls -la
total 4
dr-xr-x--x 2 root root 512 Feb 11 15:06 .
dr-xr-x--x 8 root root 512 Feb 11 14:59 ..
crw-rw-rw- 1 root sys 21, 0 Feb 11 15:05 conslog
crw-r----- 1 root sys 21, 5 Feb 11 15:05 log
crw-rw-rw- 1 root sys 13, 2 Feb 11 15:05 null
crw--w---- 1 root tty 0, 0 Feb 11 15:05 syscon
crw-rw-rw- 1 root sys 11, 42 Feb 11 15:05 tcp
crw-rw-rw- 1 root sys 11, 41 Feb 11 15:05 udp
crw-rw-rw- 1 root sys 13, 12 Feb 11 15:05 zero

We need to set up the dev/ directory for the proper operation of the network and syslog.
Since BIND uses TCP and UDP, both dev/tcp and dev/udp device files must be present.
These files should be readable and writable by the world (mode 666).

The files dev/conslog, dev/log, and dev/syscon control logging to the system console and
syslog. BIND must be able to write to these devices for logging to work properly. One
significant advantage of having these devices in the change-rooted area is the ability to
collect log messages from BIND to syslog.

Traditionally the default log device, /dev/log, has been a UNIX domain socket. The
Solaris /dev/log is a STREAMS device that nicely circumvents the boundaries of the
change-rooted area. As a result, you don’t have to specify additional log sockets for each
change-rooted hierarchy: creating a private dev/log in your dev directory is enough.

Another benefit from using dev/log and syslog for logging is to move all log informa-
tion beyond the reach of named as soon as a new entry is generated. This makes it con-
siderably more difficult for an attacker to tamper with the logfiles.

The null device is there for garbage collection purposes. Any program, including BIND,
may want to redirect its input or output to /dev/null, and an attempt to open a non-exis-
tent device would surely generate an error message.

The zero device is required by ld.so to set up shared libraries properly. If this device is
missing you won’t be able to start any change-rooted programs that utilize shared
libraries.

4. Create the necessary system files in etc/.
Unlike the real /etc, our change-rooted etc/ will have only the minimum number of
files, i.e., passwd, group, and netconfig. You have to change your default directory to
../etc/ to create these files.

In the following text we will use the ex line editor to create the system files. This is
because it is easier to show all the right keystrokes for a line editor than for vi or textedit.
Of course, you can always choose to use your favorite editor but you cannot use
admintool since it can only modify the default system databases.

cd ../etc
ex passwd

48 Vol. 26, No. 4 ;login:

"passwd" [New file]
:a
root:*:0:1:Super-User:/:/nonexistent
bind:*:65533:65533:Berkeley Internet Name Daemon:/:/nonexistent
.
:w
"passwd" [New file] 2 lines, 101 characters
:q

Our minimal passwd file will contain only two accounts, root and bind. These two are
needed since we will start named as the super-user, but the owner of the process will
change to bind as soon as possible. There will not be other user accounts.

ex group
"group" [New file]
:a
root::0:root
other::1:root
sys::3:root
tty::7:root
bind::65533:bind
.
:w
"group" [New file] 4 lines, 54 characters
:q

Again, group will contain only the most necessary group entries. We have to include sys
and tty, since we copied the ownerships and permissions of our change-rooted devices
from the real /dev.

ex netconfig
"netconfig" [New file]
:a
udp tpi_clts v inet udp /dev/udp -
tcp tpi_cots_ord v inet tcp /dev/tcp -
.
:w
"netconfig" [New file] 2 lines, 120 characters
:q

Our netconfig can be very minimal, since we need only UDP and TCP. This is one area
where the manual page of in.ftpd and empirical data disagree, since the manual page
instructs to include ticotsord into the list of networks and copy straddr.so to usr/lib/:

ticotsord tpi_cots_ord v loopback - /dev/ticotsord straddr.so

Note that you would also have to create the corresponding device in the dev/ directory
to use ticotsord:

mknod /var/named/dev/ticotsord c 105 1
chown root:sys /var/named/dev/ticotsord
chmod 666 /var/named/dev/ticotsord
ls -l /var/named/dev/ticotsord
crw-rw-rw- 1 root sys 105, 1 Feb 11 15:05 /var/named/dev/ticotsord

Taking these steps and setting up ticotsord does not seem to yield anything, since named
works fine without it. Moreover, you should not install a service or a facility into the
change-rooted environment if you don’t know what it does and especially if it is not
really needed by the process you are setting up in the first place. The bottom line is that

49July 2001 ;login: BIND8 ●

●

SY

SA
D

M
IN

| S
EC

U
RI

TY
|P

RO
G

RA
M

M
IN

G
|N

IF
TY

H
A

C
KS

| C
O

M
PU

TI
N

G

there seems to be neither benefit nor harm in setting up ticotsord, which basically ren-
ders it unneeded in our change-rooted environment.

Finally, we have to set the proper ownership and permissions for individual files. All files
in the directory must be owned by root and set read-only to everyone.

chown root:root *
chmod 444 *
ls -la
total 10
dr-xr-x--x 2 root root 512 Feb 11 15:05 .
dr-xr-x--x 8 root root 512 Feb 11 15:05 ..
-r--r--r-- 1 root root 75 Feb 11 15:39 group
-r--r--r-- 1 root root 313 Feb 11 15:52 netconfig
-r--r--r-- 1 root root 101 Feb 11 15:10 passwd

Note that there is no etc/shadow. It is not required since the change-rooted environ-
ment has no login and therefore no passwords to store. Again, this differs from the
guidelines for in.ftpd.

5. Set up usr/.
The usr/ hierarchy will accommodate the executables, the required shared libraries and
time-zone information. Note that Solaris BIND uses /usr/tmp and BIND 8.2.3 uses
/var/tmp. We will create a symbolic link for usr/tmp/ anyway, and the real location for
our temp directory will be var/tmp/.

cd ../usr
mkdir -p lib sbin share/lib
chown -R root:root *
chmod -R 551 *
ln -s ../var/tmp .
ls -la
total 6
dr-xr-x--x 2 root root 512 Feb 11 15:55 lib
dr-xr-x--x 2 root root 512 Feb 11 15:55 sbin
dr-xr-x--x 3 root root 512 Feb 11 15:55 share
lrwxrwxrwx 2 root root 10 Feb 11 15:55 tmp -> ../var/tmp

The entire change-rooted usr/ hierarchy must be read-only. There are no files or directo-
ries in this subtree that would ever change once it has been constructed, and the permis-
sions must be set accordingly.

The best choice to protect the change-rooted usr/ is to have it on a read-only media.
This could also be a separate (loopback) file system that has been mounted read-only.
One alternative, offered by 4.4BSD,7 i.e., FreeBSD, is to set the “system immutable” flag
for all the files and directories in the change-rooted usr/. An immutable file may not be
changed, moved, or deleted. However, the kernel should run in a secure mode to prevent
anyone from turning this flag off.

6. Copy the BIND executables to usr/sbin/.
The default installation directory for BIND 8 named and named-xfer is /usr/local/sbin.
You only have to change your default directory to usr/sbin/ and copy the executables.
These must be owned by root, and the permissions must be execute-only to the world.

cd sbin
cp -p /usr/local/sbin/named /usr/local/sbin/named-xfer .
chown root:root *
chmod 111 *

50 Vol. 26, No. 4 ;login:

ls -la
total 10
dr-xr-x--x 2 root root 512 Feb 11 15:05 .
dr-xr-x--x 8 root root 512 Feb 11 15:05 ..
--x--x--x 1 root root 619400 Feb 11 14:52 named
--x--x--x 1 root root 329200 Feb 11 14:52 named-xfer

Since we place named-xfer in the change-rooted usr/sbin/, as opposed to the default
/usr/local/sbin, we have to specify the new location in named.conf. Otherwise named will
not be able to find named-xfer and transfer zones.

7. Set up the shared libraries.
We have to copy the required shared objects—libraries—and ld.so.1, the run-time link
editor, into our usr/lib/ in order to be able to execute BIND change-rooted. We will use
the ldd command to find out what shared libraries are needed:

ldd ./named
libnsl.so.1 => /usr/lib/libnsl.so.1
libsocket.so.1 => /usr/lib/libsocket.so.1
libc.so.1 => /usr/lib/libc.so.1
libdl.so.1 => /usr/lib/libdl.so.1
libmp.so.2 => /usr/lib/libmp.so.2
/usr/platform/SUNW,Ultra-5_10/lib/libc_psr.so.1

Now we have to copy these libraries and ld.so.1 in our usr/lib/. Since Solaris maintains
the specific name (the shared library itself) and a generic name (a symbolic link to the
specific shared library) of each shared object, we will use tar to copy these to our envi-
ronment properly. However, we can simply copy the files that have only the specific
name, i.e., the link loader ld.so.1, architecture-specific libc_psr.so.1, and nss_files.so.1.

cd ../lib
(cd /usr/lib ; tar cf - libc.so* libdl.so* libmp.so* \
libnsl.so* libsocket.so*) | tar xvBf -
cp -p /usr/platform/SUNW,Ultra-5_10/lib/libc_psr.so.1 .
cp -p /usr/lib/ld.so.1 .
cp -p /usr/lib/nss_files.so.1 .
chown root:root *
chmod 111 ld.so.1
chmod 555 lib* nss*
ls -la
total 4094
dr-xr-x--x 2 root root 512 Feb 6 07:51 .
dr-xr-x--x 4 root root 512 Feb 6 08:03 ..
---x--x--x 1 root root 181840 Dec 9 01:05 ld.so.1
lrwxrwxrwx 1 root root 11 Feb 6 05:51 libc.so -> ./libc.so.1
-r-xr-xr-x 1 root root 1015768 Dec 9 01:03 libc.so.1
-r-xr-xr-x 1 root root 16932 Dec 9 01:03 libc_psr.so.1
lrwxrwxrwx 1 root root 12 Feb 6 05:51 libdl.so -> ./libdl.so.1
-r-xr-xr-x 1 root root 4304 Dec 9 01:05 libdl.so.1
lrwxrwxrwx 1 root root 12 Feb 6 05:51 libmp.so -> ./libmp.so.2
-r-xr-xr-x 1 root root 6732 Jul 15 1997 libmp.so.1
-r-xr-xr-x 1 root root 19304 Jul 15 1997 libmp.so.2
lrwxrwxrwx 1 root root 13 Feb 6 05:51 libnsl.so -. /libnsl.so.1
-r-xr-xr-x 1 root root 726968 Dec 9 01:03 libnsl.so.1
lrwxrwxrwx 1 root root 16 Feb 6 05:51 libsocket.so /libsocket.so.1
-r-xr-xr-x 1 root root 53656 Jul 16 1997 libsocket.so.1
-r-xr-xr-x 1 root root 27000 Jul 16 1997 nss_files.so.1

51July 2001 ;login: BIND8 ●

●

SY

SA
D

M
IN

| S
EC

U
RI

TY
|P

RO
G

RA
M

M
IN

G
|N

IF
TY

H
A

C
KS

| C
O

M
PU

TI
N

G

The most interesting shared object in our list is nss_files.so.1. It is required by the
Name Service Switch, as documented in the manual page of nsswitch.conf.8 Solaris has
three possible databases to store user and password information, i.e., files in the /etc
directory, NIS, and NIS+. Since our change-rooted setup uses its local passwd database
only, we do not need other nss_* methods from /usr/lib, such as nss_nisplus.so.1. Note
that we do not need nss_dns.so.1 either, since the operation of named does not require
resolver.9

8. Set up the time zones.

The time-zone data files from /usr/share/lib/zoneinfo are needed to report timestamps
correctly in logfiles. We only have to copy this hierarchy to our change-rooted
usr/share/lib/ and ensure that the ownerships and permissions are properly set.

cd ../share/lib
(cd /usr/share/lib ; tar cf - zoneinfo) | tar xvBf -
chown -R root:root .
find . -type f -print | xargs chmod 444
find . -type d -print | xargs chmod 551
ls -la
total 8
dr-xr-x--x 3 root root 512 Feb 6 05:47 .
dr-xr-x--x 3 root root 512 Feb 6 05:47 ..
dr-xr-x--x 10 root root 1536 Nov 25 1998 zoneinfo

9. Set up var/.
Named must be able to write into the subdirectories of var/. It uses the log, run, and tmp
directories for its logfiles, control channel and process id storage, respectively.

Note that var/log/ will not be needed if you decide to set up named to use syslog exclu-
sively. We will discuss the details of this configuration later in the text.

The control channel of named, var/run/ndc.d/ndc is a UNIX domain socket owned by
the super-user. It is created before named changes its user-id to bind, and obviously, it is
writable by the super-user only. You can use this to your advantage since var/run/ can be
set to writable by root, read-only by the group, and unavailable by everyone else.

Finally, we have to keep var/tmp/ for named and named-xfer to write their temporary
files. These may potentially all use the available disk space, but at least the risk has been
contained in a single directory that can be monitored regularly. You may also want to
consider limiting the disk usage of bind by setting up a file system quota.

cd ../../../var
mkdir -p log run/ndc.d tmp
chown -R root:bind log
chown -R root:root run tmp
chmod 771 log
chmod 750 run
chmod 1777 tmp
ls -la
total 10
dr-xr-x--x 5 root root 512 Feb 11 06:00 .
dr-xr-x--x 8 root root 512 Feb 11 07:08 ..
drwxrwx--x 2 root bind 512 Feb 11 15:06 log
drwxr-x--- 3 root root 512 Feb 11 15:37 run
drwxrwxrwt 2 root root 512 Feb 11 15:00 tmp

52 Vol. 26, No. 4 ;login:

10. Configure BIND.

First, we have to change our default directory to /var/named/namedb/ and create the sec-
ondary/ subdirectory. This directory will host all the zone files transferred from name-
servers that this host is secondary for.

cd ../namedb
mkdir secondary
chown root:bind secondary
chmod 2770 secondary
ls -ld secondary
drwxrws--- 2 root bind 512 Feb 20 10:26 secondary

Set the owner and the group of the subdirectory to root and bind, respectively. Set the
permissions to read-write to the owner and the group, set-group-id to the group, and
inaccessible to the others. The purpose of the set-group-id mode is to force the group
ownership of the files in secondary/ to bind, regardless of the creator of a file.

Now we have our files and directories set, and we can proceed by creating named.conf,
the BIND configuration file. In the following example we will only set up a cache-only
nameserver that runs in our change-rooted environment. Note that the setup of master
and slave nameservers and how to run your DNS are not in the scope of this document:
you should consult Albitz & Liu10 on those topics.

We have to use the options statement to specify the directory and file locations. All
absolute pathnames in the following example are in respect to the change-rooted envi-
ronment. In other words, although the real working directory of BIND is
/var/named/namedb, after chroot() the named process sees /var/named as the root direc-
tory (‘/’) and the path to the working directory will be /namedb.

Note that all named-created files will be stored into the change-rooted var/tmp, i.e.,
/var/named/var/tmp. These files will have bind as the owner and the group.

options {
directory "/namedb";
named-xfer "/sbin/named-xfer";
pid-file "/var/tmp/named.pid";
dump-file "/var/tmp/named_dump.db";
memstatistics-file "/var/tmp/named.memstats";
statistics-file "/var/tmp/named.stats";

};

We have to set up the named control channel in a safe place. The preferred location,
which is subject to file system security on your host, is a UNIX domain socket in the
change-rooted var/run/ndc.d. The controls statement sets the owner, and the group of
the directory, where the control socket resides (e.g., var/run/ndc.d), to root and read-
write permissions to the owner only.

This behavior really is a workaround, since Solaris cannot set permissions for UNIX
domain sockets. The permissions are handled properly, for example, on FreeBSD.

controls {
unix "/var/run/ndc.d/ndc" perm 0600 owner 0 group 0;

};

We will need only the reverse map for localhost (127.0.0.1) and the list of root name-
servers for a cache-only nameserver.

53July 2001 ;login: BIND8 ●

●

SY

SA
D

M
IN

| S
EC

U
RI

TY
|P

RO
G

RA
M

M
IN

G
|N

IF
TY

H
A

C
KS

| C
O

M
PU

TI
N

G

zone "0.0.127.in-addr.arpa" in {
type master;
file "db.127.0.0";

};

zone "." in {
type hint;
file "db.cache";

};

If your nameserver acted as a slave to other nameservers, you should store the zone files
in the secondary/ subdirectory. As with the files defined in the options statement, the
zone files will have bind as the owner and the group. The following fictitious zone is here
as an example only:

zone "sub.domain.net" in {
type slave;
file "secondary/bak.sub.domain.net";
masters { 169.254.27.16; };

};

You can save all log information into the change-rooted var/log/ directory. In our exam-
ple we maintain three versions and roll the logfile over if its size exceeds 200KB.

logging {
channel local_log {

file “/var/log/named.log” versions 3 size 200k;
severity notice;
print-category yes;
print-severity yes;
print-time yes;

};
category lame-servers { null; };
category default { local_log; };

};

Storing named log information to the change-rooted area has two problems. From the
forensics point of view, it is generally not considered a good idea to leave audit informa-
tion within the reach of possibly compromised server process. If the change-rooted area
is compromised, there is a danger that the attacker could tamper with the log entries.

The management aspect to logging speaks for centralized log control. Since Solaris sys-
log can collect log information from a change-rooted dev/log device, we only need to
decide which log facility to use. In the following example we will use LOG_LOCAL0:

cd /etc
ex syslog.conf
“syslog.conf” 34 lines, 981 characters
:a
local0.info /var/log/named.log
.
:w
"syslog.conf" 36 lines, 1049 characters
:q
touch /var/log/named.log
chown root:root /var/log/named.log
ls -l /var/log/named.log
-rw-r--r-- 1 root root 10453 Feb 23 05:29 /var/log/named.log

54 Vol. 26, No. 4 ;login:

The last step is to define the channel and the category for logging. Note that we cannot
use the built-in default_syslog channel since once a channel has been defined, it cannot
be altered. We can still define our own channel and modify the default category to for-
ward all logging to syslog:

logging {
channel local_syslog {

syslog local0;
severity notice;
print-category yes;
print-severity yes;
print-time yes;

};

category default {
local_syslog;

};
};

Starting Up
Now that we have our directory hierarchy, files, and devices configured, we can start
named change-rooted. This simply means entering the following command:

/usr/sbin/chroot /var/named /sbin/named -u bind -c /namedb/named.conf
ps -ef | grep bind | grep -v grep

bind 27621 1 0 17:07:12 ? 0:00 /sbin/named -u bind -c /namedb/named.conf
tail /var/adm/messages
Feb 11 17:07:12 london.greenwichtech.com named[27620]: starting

(/namedb/named.conf).

You can use ndc to control and stop named, but you have to specify the pathname to the
ndc control socket:

ndc -c /var/named/var/run/ndc.d/ndc stop

We want named to start automatically during system boot, which means adding the
aforementioned command in the RC scripts. Instead of modifying /etc/init.d/inetsvc, the
default location to start named in RC, we should keep the original Solaris script intact
and write our own RC script that will be executed immediately after inetsvc, aka,
/etc/rc2.d/S72inetsvc. Edit /etc/init.d/named as follows:

cd /etc/init.d/
ex named
"named" [New file]
:a
#!/bin/sh

BINDD="/var/named"
PIDF="$BINDD/var/tmp/named.pid"
NDCHANNEL="$BINDD/var/run/ndc.d/ndc"

case "$1" in
'start')

if [-x /usr/sbin/chroot -a \
-x "$BINDD/sbin/named" -a \
-f "$BINDD/namedb/named.conf" \

]; then
cd "$BINDD" > /dev/null 2>&1
if [$? -ne 0]; then

echo "${0}: ${BINDD}: cannot cd." >&2

55July 2001 ;login: BIND8 ●

●

SY

SA
D

M
IN

| S
EC

U
RI

TY
|P

RO
G

RA
M

M
IN

G
|N

IF
TY

H
A

C
KS

| C
O

M
PU

TI
N

G

exit 1
else

/usr/sbin/chroot "$BINDD" \
/sbin/named -u bind -c /namedb/named.conf

if [$? -eq 0]; then
echo 'chroot-named starting'’

fi
fi

fi
;;

'stop')
if [-x /usr/local/sbin/ndc -a \

-r "$NDCHANNEL" -a \
-w "$NDCHANNEL" \

]; then
/usr/local/sbin/ndc -c "$NDCHANNEL" stop

fi
;;

*)
echo "Usage: $0 { start | stop }"
exit 1
;;

esac
exit 0
:w
"named" [New file] 39 lines, 715 characters
:q

Our RC script checks that the executables and the configuration file are available and
then proceeds with starting up named. To stop named, the script checks that the name
daemon control program, ndc, and the control channel are available and then requests
named to shut itself down.

Please note that although chroot() changes the root directory of your process, it does not
change the default directory. To change-root cleanly we should change our working
directory to the change-rooted area before calling chroot(). Secondly, the Solaris fchroot()
system call can be used to reverse the operation of change-root if there is an open file
descriptor to a directory before chroot() was called.

The owner and the group of the named script must be root and sys, respectively. The
permissions of the file must be read-write and execute to the owner and read-only to
the group and the others. After you have set the ownership and the permissions you
must create the symbolic links for the RC directories:

chown root:sys named
chmod 744 named
cd ../rcS.d
ln -s ../init.d/named K42named
cd ../rc0.d
ln -s ../init.d/named K42named
cd ../rc1.d
ln -s ../init.d/named K42named
cd ../rc2.d
ln -s ../init.d/named S72named

Now we are all set, and you can start and stop BIND with the RC script. named will start
automatically when you reboot the system next time.

56 Vol. 26, No. 4 ;login:

Version Control
One common management problem with a change-rooted area is maintaining consis-
tent versions of your binaries and other executables between the change-rooted envi-
ronment and the rest of the system. For example, when the vendor releases a patch for
BIND or the C library, you want to be sure that your change-rooted area(s) will also get
updated. On the other hand, you do not want to update the change-rooted executables
automatically, without evaluating at least the dependencies first.

You may want to consider your standard UNIX environment as “development” or “stag-
ing” and your change-rooted areas as “production.” Often there are strict procedures
that define how applications and services move from development to production.
Accordingly, when you install a vendor patch, it goes to the development/staging area.
You may want to set up a secondary change-rooted area for testing purposes and update
your production area only after you have ensured that the patched executable or library
won’t break anything.

To avoid inconsistency in change-rooted production, you probably want to monitor not
only integrity of the change-rooted files but also compare them with their counterparts
elsewhere in the system. You may not implicitly remember which production files you
have to update afterwards, but at least you will be notified.

Conclusions
The text has described how to set up and run BIND 8 change-rooted on Solaris and
more specifically, on Solaris-2.6. This is the most protective setup available on UNIX,
and the same methodology can be applied to change-rooting other UNIX services as
well. The author has been running change-rooted BIND 8.2.3 on Solaris and FreeBSD
since the release of the recent CERT advisory.11

Generally speaking, it is unwise to run any super-user-owned network service on your
machine, especially if you haven’t taken any steps to protect the operating system from
an attack. From the practical point of view, there is no reason why you should not
change-root your named, since, requiring few external resources, it is almost an ideal
program to be confined.

The most significant threat to running named or any other UNIX process change-
rooted is the possibility that the attacker might be able to revert back to the system root.
For this reason a change-rooted process is never completely safe if it is owned by the
super-user.

57July 2001 ;login:

REFERENCES

1. S. Burr, How to break out of a chroot() jail,
http://www.bpfh.net/simes/computing/chroot-break.html,
January 31, 2001.

2. W. Venema, Chrootuid-1.2,
ftp://coast.cs.purdue.edu/pub/tools/unix/sysutils/chrootuid/,
August 16, 1993.

3. H. Pomeranz et al., Solaris Security: Step-by-
Step, Version 1.0, The SANS Institute, 1999.

4. Internet Software Consortium, BIND 8.2.3
source package,
ftp://ftp.isc.org/isc/bind/src/8.2.3/bind-src.tar.gz,
January 26, 2001.

5. Sunfreeware.com, BIND 8.2.3 Package for
SPARC/Solaris8,
ftp://ftp.sunfreeware.com/pub/freeware/sparc/8/bind-8.2.3-sol8-sparc-local.gz,
January 29, 2001.

6. Sun Microsystems, Inc., in.ftpd – Internet File
Transfer Protocol server, Solaris System Adminis-
trator’s Reference Guide, March 4, 1997.

7. M. K. McKusick, et al., The Design and Imple-
mentation of the 4.4BSD Operating System, Addi-
son-Wesley, 1996.

8. Sun Microsystems, Inc., nsswitch.conf – config-
uration file for the name service switch, Solaris
System Administrator’s Reference Guide, April
28, 1997.

9. Sun Microsystems, Inc., resolver – resolver rou-
tines, Solaris Programmer’s Reference Guide,
December 30, 1996.

10. P. Albitz, C. Liu, DNS and BIND, 3rd Edition,
O’Reilly & Associates, September 1998.

11. CERT® Coordination Center, CA-2001-02:
Multiple Vulnerabilities in BIND,
http://www.cert.org/advisories/, January 29, 2001.

BIND8 ●

●

SY

SA
D

M
IN

| S
EC

U
RI

TY
|P

RO
G

RA
M

M
IN

G
|N

IF
TY

H
A

C
KS

| C
O

M
PU

TI
N

G

http://www.bpfh.net/simes/computing/chroot-break.html
ftp://coast.cs.purdue.edu/pub/tools/unix/sysutils/chrootuid/
ftp://ftp.isc.org/isc/bind/src/8.2.3/bind-src.tar.gz
ftp://ftp.sunfreeware.com/pub/freeware/sparc/8/bind-8.2.3-sol8-sparc-local.gz
http://www.cert.org/advisories/

58 Vol. 26, No. 4 ;login:

Organizations, in many ways, act like living creatures. The shared feelings

and beliefs in a company, or even in a department of a company, can some-

times take on a life of their own. Biologists describe something as alive if it

has recognizable boundaries and takes active steps to preserve the integrity

of those boundaries. In this and the next couple of articles, we will discuss

how this works with organizations.

If a living thing picks up something it can’t ingest (say, a splinter), the first response is
typically to isolate it first (for example, grow a protective layer of tissue around the
splinter) and then expel it. In the case where we eat food that is tainted, the first step is
skipped – we just get rid of what we can’t digest, sometimes violently.

Organizations are pressured to digest people, ideas, and technology. Sometimes they
cannot. So organizations act very much like other living things: they isolate, and then
expel, what they cannot integrate. At its best, this is a very natural response that keeps
the organization healthy. At its worst, it is a prelude to death throes.

We believe that these patterns of behavior are very deeply ingrained in us. They are not
necessarily irrational, but they are certainly a-rational. They take place below the level of
rational thought. As a result, symbolism, so beloved by the unconscious mind, is often
employed by an organization’s “immune system.”

One very clear way to see this is the phenomenon of scapegoats. The term comes from
the Old Testament Jews, who, once a year, would have a ceremony where the sins of the
entire tribe were symbolically transferred to a goat, who was then driven out into the
desert to die. So this behavior is wired into our traditions for several millennia.

Nearly everyone who has worked at a company for a few years has seen scapegoats. A
project fails, money or business is lost, there is a period of confusion. Then somebody
(typically two managerial levels below the real source of the problem) is identified as the
cause of the debacle. Depending on the company culture, the person may be publicly
humiliated, be forced to resign, be fired, or spend several years “in the penalty box”
where they are given postings to Siberia, or put in charge of preparing the budget. Man-
agers are often defrocked or their organization is gutted. Technical people are more
likely to be let go, or promoted to high-sounding but meaningless titles (“Corporate
Technology Guru”) and ignored.

When this happens, the majority of partly guilty people can relax – their sins have been
forgiven, handed to the scapegoat, and they can get on with running the organization.
This is actually healthier for the organization than recriminatory wallowing in its fail-
ures, so organizations that have a well-developed immune response tend to succeed over
the long run. Large, successful companies often have carried scapegoating to a high art
form. Sometimes it is the scapegoat’s personality that causes the problems. Sometimes it
is poor business or technical judgment. Often, the most virulent and irrational scape-
goating involves ideas.

Say a new employee, call him Smarty, arrives and quickly starts saying loudly to every-
one in sight that the current project should be scrapped and rewritten in Java. The
immediate effect of these pronouncements is to make the current staff, all C++ experts,
feel stupid. Nobody likes to feel stupid. Moreover, Smarty is criticizing the plans of the
organization, increasing the stress level of both managers and programmers. In effect,
the organization begins to run a fever. Sometimes, the new idea infects a few people and
spreads through the organization. (Depending on the idea, this may be a good or bad
thing!)

get my goat
by Steve Johnson

Steve Johnson has
been a technical
manager on and off
for nearly two de-
cades. At AT&T, he’s
best known for
writing Yacc, Lint,
and the Portable
Compiler.

yaccman@earthlink.net

and Dusty White

Dusty White works
as a management
consultant in Silicon
Valley, where she acts
as a trainer, coach,
and troubleshooter
for technical compa-
nies.

dustywhite@earthlink.net

59July 2001 ;login: GET MY GOAT ●

Bearing the sins of an entire

organization is hard work.

●
TH

E
W

O
RK

PL
A

C
E

| S
YS

A
D

M
IN

| S
EC

U
RI

TY
|P

RO
G

RA
M

M
IN

G
|N

IF
TY

H
A

C
KS

| C
O

M
PU

TI
N

GBut sometimes the idea is too uncomfortable. The organization will isolate it and then
reject it. A key manager makes a couple of suggestive comments, and those in the know
realize that Smarty’s days are numbered. People stop wanting to sit next to him at lunch.
Key pieces of information just don’t seem to make it to Smarty’s desk. He gets more and
more uncomfortable and may not even realize why. Eventually, if he doesn’t get so
uncomfortable he leaves, he will be transferred or fired. Then the organization will
heave a collective sigh of relief (ignorance being bliss, after all). The stress level goes
down, and the organization actually functions better (albeit they may still be doing the
wrong thing).

If Smarty is a manager, the projects he championed may be cancelled. In one case we
know of, the manager left, and the project he had protected against great opposition was
almost immediately canned. Three months later, it was resurrected under another name.
A year after that, it was the biggest income producer for the department. When the orig-
inal manager pushed the project, the organization couldn’t “digest” it. After the sins
were laid on this manager and he left, the “infection” left with him. That allowed the
organization to see the positive things about the project, and find a way to digest it,
under a different name.

You say, is this fair? Of course not. Bearing the sins of an entire organization is hard
work. Scapegoats are rarely happy people and may even develop serious health problems
from carrying all those sins that aren’t theirs. Perhaps they can gain some solace by
thinking that some people who died to save others from their sins are pretty fondly
remembered by various religions. Fair or not, it does seem to be inevitable, wired into
our culture if not our neurology.

Clearly, it is best not to become a scapegoat. If you encounter resistance to your ideas or
your style, be aware of your effect on other people. Watch particularly for any sign that
people are feeling put down or inferior to you, because this generates strong negative
energy in most people.

Sometimes, however, you must push for what you believe is right, even if it gets you in
organizational hot water. In one case we are aware of, an individual took a stand that he
knew would get him scapegoated because he honestly believed that this was the best
thing for the company (in which he held many stock options).

He indeed was scapegoated; the organization came together and, in fact, took the path
he had espoused, and the company went on to become successful. He was, in effect, paid
several million dollars to be a scapegoat (at least, that’s how he sees it now). Considering
how painful the experience was, he doesn’t feel overpaid.

In a large company, a physical transfer to a new location is often the best way to recover
from scapegoating. (One scapegoat I know took a posting to Japan. When someone
asked his boss why he was sent to Japan, a co-worker quipped, “We don’t have an office
on the moon yet.”) He returned in triumph several years later – the beliefs that had got
him exiled had finally won the day in his old organization, and his recent successes in
Japan had given people more respect for him. He was out of the penalty box.

For many people, however, the best thing to do is to learn what you can from the experi-
ence of being scapegoated, and then leave. Pick your next company wisely. Watch the
effect you have on others. Make sure you have some allies – peers and managers – before
trying to make big changes in the organization. And when scapegoats are created (and
they will be), show some compassion. It could easily have been you.

60 Vol. 26, No. 4 ;login:

The New Moving Target
The recent shakeout in parts of the high-tech sector has had some interesting

effects on employment patterns, especially here in the Silicon Valley area.

I’ve watched long-term employees become contractors, and folks who have

been contracting decide to “hunker down” and become employees. I’ve also

been watching the inflammation of the usual mythology about employees vs.

contractors on projects and think it’s time to share some observations in the

hope of increasing the light-to-heat ratio.

I’ll say up front that I’ve been primarily a contractor for many years, and am a “career”
contractor with no desire to become an employee at a typical company. Project man-
agers reading this will not be surprised to hear that I have found good project manage-
ment to make more of a difference than the employee-contractor ratio on a project.
This has been the case with every project in which I have ever participated, either as an
individual contributor or as the project manager, in an employee role or as a contractor.
For those who have been burned by excessive rote-oriented project management, I has-
ten to add that the quality of project management is often inversely proportional to the
amount of paper (virtual or otherwise) generated by the approach. One consequence of
the recent market roller coaster is that many companies are short-staffed, have scarce
financial resources, or both. Yet, as always, the amount of work needing to be done
hasn’t decreased! New projects with short turnaround times are popping out of the
woodwork at many firms as companies struggle to adjust to changing conditions and
requirements. You probably just want to get things done, but you have to figure out the
best way to do it. Traditional solutions tend to involve bringing in teams of contractors
or scraping up a few die-hards on staff to overload. There are a lot more options out
there, but to understand how to use them, it’s useful to take a quick survey of some of
the major types of contributors. Armed with this knowledge, we may be able to put
together teams that will leverage dwindling financial and attention-span resources in a
more effective way than usual.

Types and Tendencies: A Guideline, Not a Rule
For the past several years in particular I have been involved in team-oriented project
work, to carry out specific large e-commerce or IT build-outs (30K IT user to 500K ISP
user rollouts) from 3 to 14 months in duration. I’ve been a team member, team leader,
have constructed teams, and have been handed already-formed teams. My observations
are primarily in the area of project-oriented work, rather than long-term “virtual
employee” work. I believe that the insights have validity in both situations. In my experi-
ence, I have found that significant, repeatable differences exist between various types of
contributors. Obviously, individual dedication is a major factor – you will always meet
people who are the exception to the general rule, either in a positive or negative direc-
tion. The last thing that I want to do is create a new set of knee-jerk mythologies! It is
never good practice to rule out someone, or to guarantee their presence on a team,
based solely on their work orientation. The primary goal of this article, in fact, is to
encourage people to reconsider the idea that either contractors OR employees are always
better.

by Strata Rose
Chalup

Founder, VirtualNet
Consulting; Strata
Rose Chalup special-
izes in large-scale
messaging deploy-
ment. A sysadmin
since 1983, she is
now enjoying a sab-
batical to scuba dive,
read sci-fi, fix her
house network, and
get enough sleep.

strata@virtual.net

contractors or
employees? it’s not
that simple!

It is never good practice to

rule out someone, or to

guarantee their presence on a

team, based solely on their

work orientation.

Individuals reading this article may recognize themselves in one of the types described,
and should take two specific messages away from this article. The first is that people
generally move through various states in their careers, whether they are employees or
contractors. These states are not necessarily progressions from one stage to another, but
are more about the person’s focus at that point in their career. The second message is
that each state tends to have specific strengths and weaknesses associated with it. Per-
sons concerned with improving their job skills can use these descriptions to celebrate
and improve their strengths, and work on correcting their perceived weaknesses. Those
who feel that their particular work style is in itself an exception to the rule will, I hope,
come away with a better understanding of the prejudices that may work against their
participation in various projects. They can also look at some of the positive aspects of
other styles of contribution, and choose to develop some of those capabilities, regardless
of their focus.

HERE, BUT NOT HERE
The sloppiest work I routinely encountered was done by employees who were just bid-
ing their time to early retirement, in what is generally referred to as “rest and vest.”
Many were in their final year of a four-year vesting, or were coming up to a significant
vesting shelf. These folks are often just concentrating on not getting fired, and it’s like
pulling teeth to do anything that will affect them. Now that the market has tanked, we
may see less of this kind of attitude, and that’s just fine with me. Of course, not everyone
who is waiting to cash out has the “throw-away” attitude. Until recently, however, there
were enough of these cases that you were almost certain to run into them in various
industry sectors. Let me hasten to say that I don’t want to tar with the same brush those
folks who have decided that their current job and their future career are a bad match,
and who have made up their mind to leave. These folks are usually trying very conscien-
tiously to leave with a clean slate and a good impression. Ditto for the majority of older
employees awaiting retirement, early or not, who generally have a lifetime of work
habits that keep them following through.

NEW KIDS ON THE BLOCK
Next in quality were the junior contractors who hadn’t learned the ropes yet, independ-
ent or not, and the junior or intermediate ones who came from a generic technical con-
sulting shop. You know the type – on hourly at a good rate as W2 subcontractors via an
agency, and generally “hire and forget” in terms of direct supervision once they pass the
resume and phone screen. If you have high standards as a project manager, you will find
that many (not all, but many) of these folks will take extra effort to handle. This subset
is not used to being held to certain levels of documentation and accountability and may
need substantial education on change control. If they are new to contracting, or new to
the industry itself, their business skills will almost certainly need some attention, even
on simple issues like communication and follow-through. The fact that they are usually
dedicated to your project is a substantial asset that by itself can overcome some of the
liabilities.

Many projects will bring in “generic” contractors as extra manpower to achieve specific
ends, rather than as problem solvers. Junior contractors may not realize this. Many of
them entered contracting as a way to keep troubleshooting or design skills prioritized in
their careers. A distressing number of them have a bit of a chip on their shoulders,
thinking of themselves “the smart guys/gals who were brought in because nobody here
could do the job.” As such, they often feel they have carte blanche to make or suggest
changes that can be disruptive of project success and overall client relationships. The

61July 2001 ;login: CONTRACTORS OR EMPLOYEES? ●

The sloppiest work I routinely

encountered was done by

employees who were just

biding their time to early

retirement, in what is

generally referred to as “rest

and vest.”

●
TH

E
W

O
RK

PL
A

C
E

| S
YS

A
D

M
IN

| S
EC

U
RI

TY
|P

RO
G

RA
M

M
IN

G
|N

IF
TY

H
A

C
KS

| C
O

M
PU

TI
N

G

specific role of junior contractors should be made clear to both the agency and the con-
tractor during the screening process.

SYSTEMS RONIN FOR HIRE
These are new kids on the block after they’ve been around the block a few times. They
come in, get the job done, and go home again. Occasionally, they are marking time
while waiting for a better assignment to come along and have to be nudged a bit to
make sure that t’s are crossed and i’s are dotted. Sometimes they are independent, but
most often they are from contract agencies. They are not yet oriented as “career contrac-
tors” but are very definitely focused on contracting. They have usually picked up a good
set of business skills and have a solid enough technical background that the agency
always has a new gig for them. A significant minority have an entrepreneurial bent and
may be in contracting while keeping an eye on start-up opportunities. A rare few may
need to be explicitly reminded that their job is to do what they were hired for, under
your direction, not to invent new work for their agency or go off on tangents. These can
be both the best and the worst of the crop: the worst are the people who don’t like what
they are here to do and are looking for something more interesting; the best are the
career-minded folks who are just starting out and are genuinely trying to build the busi-
ness for themselves and for their agencies. If they actually discover serious infrastructure
flaws at the site, encourage them to have their agency submit a proposal to deal with the
situation. In any case, they should not consider themselves free to “fix” the site infra-
structure beyond the scope of their job or project duties, even if the time spent would
not negatively affect the project.

JOE OR JANE EMPLOYEE
Here we have our standard-bearers, the folks who make the wheels turn and the sun rise
– regular employees who are not planning an imminent change in career or a cash-out
on their options. They understand the need for quality, and are generally pro-active
about things like documentation, change control, and good planning. They understand
that they will be taking the reins once the project is in sustaining mode and the contrac-
tors leave. In addition, they usually bring in valuable experience of the organization
itself – how to obtain resources, who to contact to resolve difficulties, and so on. They
are generally integrated into the existing structure of the organization or business, and
can apply leverage exactly where it’s needed to get the job done and move things along.

This integration can be a double-edged sword. Employees on a team are likely to
directly report elsewhere and have substantial other responsibilities, often to basic infra-
structure commitments which supersede an individual project. The selective availability
of employees as a project or team resource needs to be realistically balanced against the
demands of the project. It is vital to come to an understanding with employees’ manage-
ment about their role in a project, and achieve consensus on the level of time and effort
that will be committed by the employee. It is also an excellent idea to make sure that the
employee does not feel “drafted” to participate in the exchange and that management’s
idea of the employee’s time availability for a project is actually grounded in reality.

WILDCARDS/MOONLIGHTERS
Each individual of this type is a case unto him or her self. That is the “moonlighter”
contractor, the guy or gal who is doing a contract for a few months while between jobs,
or to pick up a little extra income, or to see if they want to get into contracting full-time.
This is not uncommon in programming or IT work. These folks range all over the map
in technical seniority – 2 years to 5 years to 10 years! If they are older, they are more

62 Vol. 26, No. 4 ;login:

likely to be making a move into full-time contracting. If they are younger, well, that’s
less likely. They are often receptive to offers of an employee position, and may be using
contracting as a way to “test-drive” your company before settling down. Perhaps they’ve
had an unpleasant experience elsewhere.

So – what about moonlighters? These folks can be a godsend, turning into employees
who will provide continuity and settle down, or they can be the “fast and loose” type
who come in, razzle-dazzle the problem, but leave an undocumented and unmaintain-
able solution. In the worst case, they may get a job offer somewhere else and leave before
the contract is up! When you evaluate contractors’ resumes, make sure to get the skinny
on which positions were contract and which were employee. Evaluate the person on
their merits, consider their work history, and figure out if their involvement works for
you.

SYSTEMS-TEAM CONTRACTORS
Here you often find the employees of project-oriented contracting firms, who are on
salary rather than on hourly pass-through. They are contracting on behalf of their par-
ent organization and make up part of a virtual team of sysadmins working together.
These folks usually combine the best qualities of regular employees and career contrac-
tors. They are conscious of the need to maintain the brand image of their employer, and
they work with a higher degree of professionalism than most agency contractors. One
advantage of using a “systems team” contracting firm is that, unlike “body shop” con-
tract firms, the team-oriented sysadmins are often explicitly encouraged to call upon
each other as backup on contracts. The best firms employ a substantial amount of
group infrastructure to encourage this behavior, including mailing lists for hot issues,
databases of past problem solutions, and the like.

A successful systems-team shop probably has several employees of nationwide profes-
sional stature whose expertise in total spans several important categories in system
administration, such as backups, storage area networks, or high-performance servers.
These employees serve as architectural and design resources for the whole group, and
can represent a great leveraged resource for your project.

CAREER CONTRACTORS
Career contractors have a long-term reputation to protect and are accustomed to being,
if not more careful, then perhaps more thorough than the regular employees. Docu-
mentation gets finished at the end of the project, changes are checked against the design
or the management, specifications get written before implementation starts. A good
contractor realizes that he or she has all the responsibility, but none of the decision-
making ability, of the organization employee, unless such ability has been explicitly del-
egated. The best contractors are aware of how much the worst ones poison the well for
all contractors, and will work extra hard to combat that image and build confidence in
the contractor community. Career contractors, incorporated or not, are committed to
what some call “the brand of Me” and see each project as a chance to build that brand
image by delivering high-quality work. Most of their jobs come from word-of-mouth
referrals and repeat business, so they have strong motivation to do well.

Independent career contractors are likely to be senior in technical skills, with 10 to 15+
years of industry experience, and also to possess commensurate business skills from
having to interface with many companies and teams over their career. They generally
have very focused work habits, and are producing real work for you throughout most of
the eight hours billed, unlike most employees. They aren’t cheap, but they do provide

63July 2001 ;login:

●
TH

E
W

O
RK

PL
A

C
E

| S
YS

A
D

M
IN

| S
EC

U
RI

TY
|P

RO
G

RA
M

M
IN

G
|N

IF
TY

H
A

C
KS

| C
O

M
PU

TI
N

G

CONTRACTORS OR EMPLOYEES? ●

amazing value. The primary caveat with career contractors, particularly independents, is
that they may have substantial responsibilities to other clients. It is highly desirable to
get a specific commitment of time and resources for the projected period of the project.

RISING STARS
At the very top of the quality scale we have the career-track employee who is planning
his or her rise within the company. This person is usually a superstar. A super-duper star
most times! This is the person whose reputation is responsible for the myth that
employees are always better than contractors. He or she is motivated, has the same qual-
ity agenda as a senior independent contractor (the brand of Me), and is willing to burn
the candle at both ends and in the middle to deliver as platinum-plated a result as possi-
ble. If you find one of these folks in your organization, you had better have an escalating
series of responsibilities to hand out. He or she is focused on the climb to the top, either
at your company or somewhere else. You have a motivated resource without the usual
time or budget constraints, since this person will give up their personal time to succeed
and they are on salary. Do the rest of us a favor: please don’t take too much advantage of
this and burn the poor guy or gal out!

Match the Person to the Project
So – what’s the best ratio of employees to contractors on a project? It really depends on
how you classify the folks you have to work with, and what you can get. Trying to iden-
tify a standard figure like 20/80 or 30/70 or 40/60 can produce a great project or a disas-
trous project, depending on who participates. I’d say that the key would be to figure out
what resources you have within the company and carefully build the ones you don’t
have, being careful to match types and individuals with the roles you have to carry out
the project. For instance, if you have a superstar employee who can provide careful
mentoring and management, or you are managing just the one project and can do it
yourself, you could fill in more with “Joe BodyShop” type contractors. On the other
hand, suppose you have mostly junior employees, or a substantial percentage who are
getting itchy feet for whatever reason. In that situation, you’d be better off making sure
you have at least one highly senior contractor, because he or she will help keep the proj-
ect on track and actually provide more continuity than employees who are on their way
out the door. For many projects, a bit of digging in your own organization may preclude
the need to hire contractors at all – approach management with a strong plan, and you
can often pick up a portion of people’s time, especially if your department or group is
willing to kick in what would have been contractor money toward overhead on the
“loaner” project members from other departments.

More than One Right Answer
As you can tell by now, there is definitely more than one right answer to the question of
employees vs. contractors. Successfully staffing any project requires an understanding of
“people issues” as well as of the technical specifications of the project. By paying atten-
tion to both of these factors, it is possible to create a team mix more closely tailored to
the project requirements. Examining some of the work styles and motivations of both
employees and contractors in different stages of their careers shows us that there is con-
siderably more flexibility possible in staffing most projects than we might have previ-
ously believed.

64 Vol. 26, No. 4 ;login:

65July 2001 ;login:

the bookworm
by Peter H. Salus

Peter H. Salus is a
member of the ACM,
the Early English Text
Society, and the Trol-
lope Society, and is a
life member of the
American Oriental
Society. He is Editori-
al Director at
Matrix.net. He owns
neither a dog nor a
cat.

<peter@matrix.net>

INTERNET TELEPHONY

L.W. MCKNIGHT, W. LEHR, AND D.D. CLARK,

EDS

Cambridge, MA: MIT Press, 2001. Pp. 395.

ISBN 0-262-13385-7.

BOOK REVIEWED IN THIS COLUMN

Everyone knows that I get and read a lot
of books. Frequently, I look at books I
dislike. By and large, I try to avoid really
negative reviews. This column is devoted
to a negative review because I fear that
this book will be well-regarded because it
originates from a major publisher.

Who’s on the phone?
I’m at a complete loss as to why
McKnight, Lehr, & Clark’s Internet Tele-
phony was published. It is rife with out-
dated “facts,” misleading in import,
poorly proofread, and (in general) an
embarrassment to its publisher.

The volume comprises 13 chapters, many
of which are by the editors’ students. “An
Introduction to Internet Telephony” (1-
13), is nothing of the kind. It flatly notes
that “If a reader is hoping to unravel the
mysteries of, for example H.323, H.324
. . . , we suggest that person look else-

where”[p. 5]. (This appears to be the sole
mention of the ITU’s standards.) The
editors further note that “We define
Internet Telephony as the services, appli-
cations, and equipment for mediated
human communication emerging from
the convergence of the Internet and
telecommunications. That is the subject
of this book” [p. 7].

I found little of that subject elucidated.

I was looking forward to Dave Clark’s “A
Taxonomy of Internet Telephone Appli-
cations” [pp. 17-42]. Here, I was reward-
ed. Clark is the author (or co-author) of

about 15 RFCs, most interestingly of
RFC 1633 (June 1994) on “Integrated
Services.” In “Taxonomy,” he uses some
of this information, as well as material in
RFC 2205 (September 1997) and 2211
(September 1997). It’s unclear to me why
RFC 2750 (January 2000), which updates
2205, isn’t cited, unless this volume has
been in production for over a year. One
of Clark’s great assets is his view that the
“various industry players” will find it
increasingly incapable of agreement,
necessitating resolution “in a multina-
tional context” [p. 41].

McKnight’s and McGarty’s essay on “Vir-
tually Global Telcos” [pp. 43-91]
informed me that “the World Trade
Organization (WTO) has superseded the
ITU as the organization setting the terms
for international telecommunications
services” [p. 68]. While it is true that the
CCITT was subsumed into the ITU, this
led to the formation of ITU-T, the
“Telecommunication Standardization
Sector.” Those of us who follow H.320,
H.323, etc., would be surprised by this
cis-Atlantic chauvinism. I found it yet
more fascinating as McKnight and
McGarty repeatedly cite SS7 (Signaling
System 7), which is a 1980 CCITT stan-
dard which was detailed in an AT&T
paper at the Spring 1987 International
Switching Symposium. The business
concepts within the essay may be valu-
able, the misleading statements vitiate
them.

Lehr’s piece on “Vertical Integration”
[pp. 93-124] would have made a good
10-pager. But it is rife with platitudes
like: “There are strong incentives to inte-
grate vertically (and horizontally) for
each of the participants in the service
provider value chain” [p. 112]; and:
“Technological advances have been
reducing network costs in absolute
terms. . . .” [p. 123].

I was looking forward to Dave Clark’s “A
Taxonomy of Internet Telephone Appli-
cations” [17-42]. Here, I was rewarded.

66 Vol. 26, No. 4 ;login:

Clark is the author (or co-author) of
about 15 RFCs, most interestingly of
RFC 1633 (June 1994) on ”Integrated
Services.” In “Taxonomy,” he uses some
of this information, as well as material in
RFC 2205 (September 1997) and 2211
(September 1997). It’s unclear to me why
RFC 2750 (January 2000), which updates
2205, isn’t cited, unless this volume has
been in production for over a year. One
of Clark’s great assets is his view that the
“various industry players” will find it
increasingly incapable of agreement,
necessitating resolution “in a multina-
tional context'' [p. 41].

McKnight’s and McGarty’s essay on “Vir-
tually Global Telcos” [43-91] informed
me that “the World Trade Organization
(WTO) has superseded the ITU as the
organization setting the terms for inter-
national telecommunications services”
[p. 68]. While it is true that the CCITT
was subsumed into the ITU, this led to
the formation of ITU-T, the “Telecom-
munication Standardization Sector.”
Those of us who follow H.320, H.323,
etc., would be surprised by this cis-
Atlantic chauvinism. I found it yet more
fascinating as McKnight and McGarty
repeatedly cite SS7 (Signaling System 7),
which is a 1980 CCITT standard which
was detailed in an AT&T paper at the
Spring 1987 International Switching
Symposium. The business concepts with-
in the essay may be valuable, the mis-
leading statements vitiate them.

Lehr’s piece on “Vertical Integration”
[93-124] would have made a good 10-
pager. But it is rife with platitudes like:
“There are strong incentives to integrate
vertically (and horizontally) for each of
the participants in the service provider
value chain” [p. 112]; and: “Technologi-
cal advances have been reducing network
costs in absolute terms . . .” [p. 123].

Clark, Again
Dave Clark’s “Local-Loop Technology
and Internet Structure” [pp. 125-140] is
a diamond among the coal. Though it’s a
version of a paper that appeared two
years ago, Clark has revised and emend-
ed it. Clark really understands the prob-
lems facing the LEC as well as the capa-
bilities of the LECs’ wire lines. He con-
cludes that “there may be increased com-
petition in the provision of [consumer]
services . . . This derives from the open
character of the Internet design that mil-
itates against vertical integration of the
Internet service provider and the higher-
level service provider” [p. 139]. Dr.
Clark, meet Dr. Lehr.

That’s the first five or 13. I’m not going
to savage each of the others (sorry). The
one by Mutooni and Tennenhouse [pp.
143-163], for example, is an excellent
presentation on “Internet Telephony and
the Datacentric Network.” But McKnight
and Shuster, “After the Web” [pp. 165-
190], is full of weird statistics and
graphs.

Let me start with a look at the growth of
the Internet. On p. 175 there is a graph
of Internet hosts attributed to Network
Wizards showing 0 in January 1969 and
30 million hosts in January 1997. The 30
million was reported by NW in January
1998. The graph on the next page (no
attribution) levels out predicting under
100 million hosts from January 2002
through January 2011. Using the infor-
mation from Network Wizards and
NSI, we passed 100 million hosts last
November.

The bibliographical references are either
misspelt (“Lotter” for Mark Lottor) or
absent. Talking about numbers of Inter-
net hosts or Internet host growth with-
out a reference to John Quarterman is
absurd. Referring to a 1997 (dead) URL
(Hilgemeier) for “Internet Growth” is
not useful.

Etc.
I’m very unhappy about this book. My
suggestion is that if you’re interested in
Internet Telephony, get Hersent, et al. IP
Telephony [Addison-Wesley, 2000]. The
few good articles in this volume aren’t
worth $40.

LINUX ADMINISTRATION:

A BEGINNER’S GUIDE

STEVE SHAH

New York: McGraw-Hill, 2001. Pp. 643 +

CD-ROM. ISBN 0072131365.

REVIEWED BY PAUL GUGLIELMINO

<paulg@ccs.neu.edu>

[Paul Guglielmino is a UNIX administrator in
Boston.]

Steve Shah’s Linux Administration: A
Beginner’s Guide is a well written and
comprehensive book on Linux adminis-
tration. The book is divided into seven-
sections: installing Linux as a server, sin-
gle-host administration, Internet servic-
es, intranet services, advanced Linux net-
working, and two appendixes. Some spe-
cific areas dealt with are software instal-
lation, the bootup and shutdown
process, Samba, DHCP, and backups.
Internet services covered are SMTP with
Sendmail, DNS, FTP, and Web services
with Apache. This book is written for
beginners, but there is a section about
some of the more advanced features of
the Linux kernel. This includes, among
other things, IP masquerading, IP chains,
packet filtering and the /proc file system.
Unfortunately, in trying to cover as
much ground as he has, Shah can’t delve
into the details of any one subject, but I
think he does a good job of giving a clear
overview of each topic without over-
whelming new users with details.

Even though the book does not have
“RedHat” in the title, it is obviously cen-
tered on the RedHat distribution. There
are several references to RedHat in the
text; more specifically, the installation
chapter only describes the installation
process for RedHat. In fact, other distri-
butions are only mentioned in a few sen-
tences in the opening chapter. The book
comes with a CD, which has a watered
down RedHat 7 distribution.

Although very good overall, the book
could stand some improvement in a few
places. My biggest complaint is that the
security chapter could have been devel-

oped more. There was no mention of
TCP wrappers or the importance of
good passwords. (On the plus side, there
was a whole chapter dedicated to SSH.)
The installation chapter could have said
more about dual booting Linux and
Windows, since this is an issue that could
potentially scare away new users of
Linux. I was also a little disappointed in
the chapter devoted to the Linux kernel.
Since this book is about Linux adminis-
tration, I would expect this chapter to be
one of the most thorough. Although
Shah does explain many of the different
options that are available in the kernel
and then goes on to show you how to
compile your own, he could have
described the history of the kernel and
the kernel module system in more detail.

In addition, the primary discussion of
LILO occurs in an earlier chapter, but it
would have been more useful to cover
LILO in the context of the Linux kernel.
Since the book is RedHat-centric, show-
ing how to install the kernel via RPMs
would have been helpful. Another small
complaint is that there is a small chapter
on POP but no mention of IMAP any-
where.

The introduction states that the reader
should be a “strong user in Windows.”
The best part of the book may come in
the first chapter in a section titled “The
major differences between Windows
2000 and Linux.” Here there are discus-
sions of the separation of the GUI from
the kernel, single and multi-user philoso-
phies, the Windows registry versus text-
based configuration files, and Active
Directory vs. NIS. Other than that great
section and a couple pages of blueprints
about the boot and shutdown processes,
there is not much reason to be well
versed in Windows to read this book. I
liked that the software installation chap-
ter explained both how to use RPM and
how to compile packages from the
source. RPM is a great tool, but it’s
important for a system administrator to
understand what her tools do and how

they do it. The SMTP chapter was a very
good introduction to Sendmail, which
can be a very complex program to
administer. The chapter was Sendmail-
centric, but that doesn’t matter much
because it is by far the most common
MTA on the Internet. In each of the
“Internet” chapters, Shah has included a
mechanics section that could be consid-
ered a very condensed version of the rel-
evant RFC. It is important for trou-
bleshooting to know not only what soft-
ware does but also how it does it. Each
chapter has a nice set of summary bul-
lets, and most chapters include a small
list of useful links or book references to
learn more.

I would definitely recommend this book
to those new to the world of Linux and
UNIX. However, if you have some expe-
rience in UNIX, but are new to Linux, I
would advise checking into other Linux
books on the market or just looking to
the Linux Documentation Project on the
Web for help.

DATA MUNGING WITH PERL

DAVID CROSS

Greenwich, CT: Manning Publications Co.,

2001. Pp. 283.ISBN 1-930110-00-6.

REVIEWED BY WILLIAM ANNIS

<annis@biostat.wisc.edu>

With entire rows of bookstores full of
books on learning CGI programming
with Perl in 10 easy lessons, it’s nice to
see one highlighting Perl’s data process-
ing capabilities more generally.

The book is divided into three parts with
several chapters apiece. The first part is
an overview. After defining “munging”
and introducing his CD collection file –
which will show up in examples
throughout the rest of the book – Cross
discusses Perl itself then goes on in
Chapter 2 to discuss important issues
like separating parsing from munging,
choosing the right data structure for
your problem, and approaching audit
trails and data validation.

67July 2001 ;login:

●

BO
O

K
RE

V
IE

W
S

DATA MUNGING WITH PERL ●

book reviews

Chapter 3, “Useful Perl Idioms,” gives an
excellent overview of sorting in Perl,
including a description of the Orcish
Maneuver and a very nice explanation of
not only how the Schwartzian Transform
works but also why you’d use it. Tools for
debugging and benchmarking are intro-
duced in this chapter, as is the DBI inter-
face. Chapter 4 goes over important
string manipulation functions and regu-
lar expressions.

Part 2, “Data Munging,” is the heart of
the book. Starting with simple transfor-
mations of ASCII data to other formats,
Chapter 5 ends with a discussion of sev-
eral CPAN libraries for manipulating
and formatting numeric data. Chapter 6,
“Record-oriented Data,” starts with a
three-page digression on the while
(<FILE>) {} idiom, which seems a bit
strange coming so late in the book. It
goes on to various types of line-oriented
records and introduces useful idioms
using the Perl special variables which
apply to records ($”, $/, $, etc.). Data
caching, CSV, and multi-line records are
touched on, and Chapter 6 ends with a
good overview of date and time manipu-
lation, including parsing dates, using
POSIX::strftime, Date::Calc, and
Date::Manip. Chapter 7, with a discus-
sion of various sorts of fixed-width and
binary data formats, ends Part 2.

Chapter 8 starts off Part 3, “Simple Data
Parsing,” by introducing more complex
data files and metadata. There is a brief
section showing how regular expressions
are not sufficient to parse HTML, fol-
lowed by an introduction to parsing ter-
minology. Chapter 9, “HTML,” builds a
few tools for summarizing and manipu-
lating HTML using the CPAN modules
HTML::Parser, HTML::LinkExtor, and
HTML::TokeParser. The chapter ends
with an example for getting a weather
report from Yahoo!. Chapter 10, “XML,”
starts off with a quick introduction to
XML and makes a clear distinction
between valid and well-formed XML.
The chapter is only concerned really with

well-formed XML, so there is no discus-
sion of DTDs. After discussing several
modules for XML parsing – XML::Parser,
XML::DOM, and XML::RSS – Cross ends
with a tool for turning XML markup of
documentation into POD, HTML, and
plain text. Chapter 11, “Building Your
Own Parsers,” gives a nice description of
Parse::RecDescent. After introducing
parser-writing using Windows INI files
as an example, the chapter ends with a
parser for Cross’s CD collection file.

The emphasis on using existing tools
from CPAN is a strong feature of this
book. Appendix A gives brief documen-
tation on the modules used in the main
text. Finally, Appendix B is a very dense
and brief overview of Perl itself. This,
with the Perl boosterism early in the
book, is a bit odd. No one unfamiliar
with Perl is going to be able to use this
book as a recipe book, but for experi-
enced Perl programmers it is an excellent
overview of Perl’s many data manipula-
tion capabilities.

DNS AND BIND, 4TH EDITION

PAUL ALBITZ AND CRICKET LIU

O’Reilly & Associates, Sebastopol, CA, 2001.

Pp. 622. ISBN 0-596-00158-4

REVIEWED BY RIK FARROW

rik@spirit.com

I have the second edition of this excellent
book, but remembered a couple of small
problems I had when I first examined
DNS and BIND back in 1997. For exam-
ple, I only dimly understood the mean-
ing of “canonicalization,” and I really
wanted Albitz and Liu to explain the
term in their book so I wouldn’t have to
ask someone and appear clueless. The
second edition just assumes that you
know what the canonical name means,
but the fourth edition actually defines it
on page 8. Thank you, guys.

Of course, that’s not the biggest change
in a book that has grown by 200 pages in
two editions. A lot of the book has been
revised “for the first time,” and that has

made the new edition easier to under-
stand. The explanations are a bit longer
and are certainly clearer than before.

The other big difference is that the
fourth edition includes both version 8
and version 9 features, something my old
edition misses entirely. So, you can learn
about how to configure BIND to handle
IPv6 addresses, and to use transaction
signatures. If you are using version 9,
you can even use DNSSec, a method that
will quadruple the size of your zone files
while adding security that only other
participating BIND 9 servers will appre-
ciate. Mind you, I do think that DNS
does need better security, and anxiously
await the outcome of the ongoing exper-
iments with DNSSec in The Netherlands,
Germany, and Sweden. Evi Nemeth has a
new chapter in her sysadmin book about
DNSSec, as well as a version of that
information in the last special edition of
;login:. Even so, it helped having yet
another explanation of a complicated
topic.

Overall, I liked the changes and improve-
ments to the fourth edition and can rec-
ommend it to anyone who uses BIND. I
think the authors have done a great job
in improving this book and deserve to be
congratulated.

68 Vol. 26, No. 4 ;login:

The Felten Case
By the time you read this much will have
happened with this affair. Still, we
thought you might like to see a copy of
the news release sent out on June 6 by
the Electronic Frontier Foundation.

The USENIX Association joined the case
as a plaintiff since it seems clear that the
Digital Millenium Copyright Act
(DMCA), as interpreted by the recording
industry, threatens to limit what may be
presented at USENIX Association con-
ferences and workshops.

Trenton, NJ – The Electronic Frontier
Foundation (EFF) today asked a federal
court to rule that Princeton University
Professor Edward Felten and his research
team have a First Amendment right to
present their research on digital music
access-control technologies at the
USENIX Security Conference this August
in Washington, DC, despite threats from
the recording industry.

When scientists from Princeton Univer-
sity and Rice University tried to publish
their findings in April 2001, the record-
ing industry claimed that the 1998 Digi-
tal Millennium Copyright Act (DMCA)
makes it illegal to discuss or provide
technology that might be used to bypass
industry controls limiting how con-
sumers can use music they have pur-
chased.

Like most scientists, the researchers want
to discuss their findings and publish a
scientific paper about the vulnerabilities
of several technologies they studied.
Open discussion of music customer
control technologies has resulted in
improved technology and enhanced
consumer choice.

“Studying digital access technologies and
publishing the research for our col-
leagues are both fundamental to the
progress of science and academic free-
dom,” stated Princeton scientist Edward
Felten. “The recording industry's inter-

70 Vol. 26, No. 4 ;login:

news
USENIX MEMBER BENEFITS

As a member of the USENIX Association,
you receive the following benefits:

FREE SUBSCRIPTION TO ;login:, the Associa-

tion’s magazine, published eight times a

year, featuring technical articles, system

administration articles, tips and techniques,

practical columns on security, Tcl, Perl, Java,

and operating systems, book and software

reviews, summaries of sessions at USENIX

conferences, and reports on various stan-

dards activities.

ACCESS TO ;login: online from October 1997

to last month <www.usenix.org/

publications/login/login.html>.

ACCESS TO PAPERS from the USENIX Confer-

ences online starting with 1993

<www.usenix.org/publications/library/

index.html>.

THE RIGHT TO VOTE on matters affecting the

Association, its bylaws, and election of its

directors and officers.

OPTIONAL MEMBERSHIP in SAGE, the System

Administrators Guild.

DISCOUNTS on registration fees for all

USENIX conferences.

DISCOUNTS on the purchase of proceedings

and CD-ROMs from USENIX conferences.

SPECIAL DISCOUNTS on a variety of products,

books, software, and periodicals. See

<http://www.usenix.org/membership/

specialdisc.html> for details.

FOR MORE INFORMATION

REGARDING MEMBERSHIP OR

BENEFITS, PLEASE SEE

<http://www.usenix.org/

membership/membership.html>

OR CONTACT

<office@usenix.org>

Phone: +1 510 528 8649

FOR INFORMATION ABOUT

CONFERENCES, PLEASE SEE

<http://www.usenix.org/

events/events.html>

OR CONTACT

<conference@usenix.org>

Phone: +1 510 528 8649

pretation of the DMCA would make sci-
entific progress on this important topic
illegal.”

Felten’s research team includes Princeton
University scientists and plaintiffs Bede
Liu, Scott Craver, and Min Wu. Also
members of the research team and plain-
tiffs are Rice University researchers Dan
Wallach, Ben Swartzlander, and Adam
Stubblefield. Another scientist and plain-
tiff is Drew Dean, who is employed in
the Silicon Valley. The USENIX Associa-
tion has joined the case as a plaintiff.

The prominent scientist and his research
team originally planned to publish the
paper in April at the 4th International
Information Hiding Workshop. However,
the scientists withdrew the paper at the
last minute because the Recording
Industry Association of America (RIAA)
and the Secure Digital Music Initiative
(SDMI) Foundation threatened litigation
against Felten, his research team, and the
relevant universities and conference
organizers.

SDMI sponsored the “SDMI Public
Challenge” in September 2000, asking
Netizens to try to break their favored
watermark schemes, designed to control
consumer access to digital music. When
the scientists’ paper about their success-
ful defeat of the watermarks, including
one developed by a company called Ver-
ance, was accepted for publication, Matt
Oppenheim, an officer of both RIAA and
SDMI, sent the Princeton professor a let-
ter threatening legal liability if the scien-
tist published his results.

EFF filed the legal challenge in New Jer-
sey federal court against RIAA, SDMI,
Verance, and the U.S. Justice Department
so that the researchers need not fear
prosecution under DMCA for publishing
their research.

“When scientists are intimidated from
publishing their work, there is a clear
First Amendment problem,” said EFF’s
Legal Director Cindy Cohn. “We have

71July 2001 ;login: UPTURNS AND OTHERWISE ●

long argued that unless properly limited,
the anti-distribution provisions of the
DMCA would interfere with science.
Now they plainly have.”

“Mathematics and code are not circum-
vention devices,” explained Jim Tyre, an
attorney on the legal team, “so why is the
recording industry trying to prevent
these researchers from publishing?”

USENIX Executive Director Ellie Young
commented, “We cannot stand idly by as
USENIX members are prevented from
discussing and publishing the results of
legitimate research.”

EFF is challenging the constitutionality
of the anti-distribution provisions of the
DMCA as part of its ongoing Campaign
for Audiovisual Free Expression (CAFE).
The CAFE campaign fights over-reaching
intellectual property laws and restrictive
technologies that threaten free speech in
the digital age. “The recording studios
want to control how consumers can use
the music they buy. Now they want to
control scientists and publishers, to pre-
vent consumers from finding out how to
bypass the unpopular controls,” said EFF
Staff Attorney Robin Gross.

Media professionals have been invited
to attend a June 6 press conference and
simultaneous teleconference on the
Felten case featuring the legal team and
Professor Felten.

The legal team includes EFF attorneys
Lee Tien, Cindy Cohn, and Robin Gross.
Outside lead counsel Gino Scarselli,
argued the Junger case where the 6th
Circuit Court of Appeals ruled unani-
mously that computer code is creative
expression worthy of First Amendment
protection. Also members of the legal
team are James Tyre, a technology savvy
lawyer from Southern California who co-
founded the Censorware Project and
wrote an amicus brief in Universal v.
Reimerdes, and Joe Liu, a Professor of
Law at Boston College. Local counsel in
New Jersey are First Amendment special-
ists Frank Corrado of Rossi, Barry,

Corrado, Grassi and Radell, and Grayson
Barber, chair of the ACLU-NJ privacy
committee.

For more background on Professor
Felten and his team's legal challenge:

http://www.eff.org/sc/felten/

Upturns and
Otherwise

The best (only good?) part of accumulat-
ing years is a chance to see long waves.
I’ve been on this rock long enough to see
trees mature, which should just about
settle the question about me, and if that
doesn’t, this will: A former colleague of
mine, talking to his grandfather on what
turned out to be his grandfather’s
deathbed, asked him if he was sorry to
be going. The grandfather said, “I have
only one regret: I won’t get to see how it
all turns out.”

That so sums up the essence of the long
wave, I want to repeat myself. The
chance to see long waves is a privilege,
and of course, it sure as hell beats the
alternative. That said, I’ve seen down-
turns before and you’ll see them again.
While anyone can prosper in fat years,
only the well-prepared prosper in lean
years. Yeah, there is an element of luck in
it, but just like Satchel Paige said, “The
harder I work, the luckier I get.”

It is during a downturn that evolution
happens. It is when there is survival pres-
sure that survival of the fittest has mean-

ing. Everyone who is enough of a
USENIX member to be reading this is off
to a good start and if you want to read
that as elitist, please do. For all that any
decent person wants to share a measure
of their good fortune, survival is more
elemental than decency, and it is a form
of power. Power is never given, only
taken. Each of us, when confronted with
a world in which, especially suddenly,
there is less to go around, will have to
choose what they want to maximize, and
I suggest you maximize your marketabil-
ity.

Speaking purely idiosyncratically, which
is to say with the subjective bias of per-
sonal myopia, what has worked for me
through several complete turns of the
business cycle is to always be worth more
than I am paid, to never assume that any
saleable skill necessarily comes with a
durable market, that hybrid vigor works
for careers even better than it works for
seed corn, that nothing begets loyalty like
a frightening commitment to excellence
in preference to maneuvered advantage,
and that more opportunities exist than
anyone can ever exhaust but only on the
condition that you keep your eyes open
enough to notice the blamed things.

Where does USENIX fit in this? For me,
at least, it has been one long tub soak in
hybrid vigor, a daily wake-up call telling
me what it is I do not know and didn’t
even know I didn’t know, a place to teach
and be taught, to be put on the spot in
so many ways by people who are the
best there is at what they do that I just
couldn’t help absorb something, by
osmosis if nothing else. For much of my
career, I have attended USENIX on my
own nickel, and I always figured that the
pain was more than compensated by the
gain. You can invest in yourself any way
you damned well please – I’m in no posi-
tion to tell you how to run your life –
but if you want a career that spans more
than one business cycle, you had better
invest in things that are durable, that
make your survivability more probable

by Daniel Geer

President, USENIX
Board of Directors

<geer@usenix.org>

●

U

SE
N

IX
 N

EW
S

http://www.eff.org/sc/felten/

72 Vol. 26, No. 4 ;login:

than for the guy sitting next to you. For
me, memorizing as much as I could of
the combined proceedings of USENIX
has been, at once, impossible and essen-
tial. Building up a web of colleagues who
are as good, as pervasive, as central, as
insightful, as bizarre as the USENIX
attendees has made me resistant if not
immune to business cycles.

However much your mileage may vary,
check your gas gauge. I recommend you
fill up here. Self-serve if you have to.

Update on EFF
DMCA Cases

The Electronic Frontier Foundation
(EFF) is pursuing several legal cases to
protect copyright and fair-use rights by
opposing the anti-circumvention rules of
the Digital Millennium Copyright Act
(DMCA) on the grounds that the act
violates the constitutional right to free
expression. The cases build on EFF’s ear-
lier precedent-setting victory, Bernstein
v. U.S. Department of Justice, where a fed-
eral appeals court ruled that code is free
speech and, therefore, protected by the
Constitution.

USENIX has generously supported our
work on these important cases. In turn,
we will attempt to give regular updates
to ;login: so that USENIX members can
watch our work as it develops. While this
support has been greatly needed and
appreciated, the cost of this effort has
greatly outstripped our annual budget,
even with the support of USENIX. As a
member-supported organization, the
EFF relies on the backing of those who
believe that free speech is essential. If you
believe we are doing the right thing in
opposing the DMCA, we invite you to
join EFF and to assist us in our efforts.

BACKGROUND
The Digital Millennium Copyright Act
was introduced in Congress several years
before it actually passed in 1998. From
its inception, the law was rife with prob-
lems for free speech and the growth of
technology. Most particularly, the anti-
circumvention rules of section 1201 of
the DMCA give content holders much
broader rights to digital content than
they ever held with non-digital content.

Concerned about fair use and reverse
engineering, EFF, with several other
groups, including members of the library
and scientific communities, fought
against passage of the DMCA. However,
the music, movie and software indus-
tries, with their bottomless funding
bases, lobbied hard for its passage, and,

ultimately, the DMCA became the law of
the land.

This law is problematic on several levels.
Most importantly, it will eviscerate the
public side of the copyright bargain —
the part that recognizes that the goal of
the copyright monopoly is to give
authors the incentive to produce works
so that eventually those works will fall
into the public domain or be available
for fair use or ordinary use to all people.
The DMCA effectively eliminates fair use
by letting content owners use technology
to completely control all uses of their
works. This has already come to a head
in the 2600 case (see below), where con-
tent owners have gone after an electronic
newspaper for publishing computer
code.

Also troublesome is the criminalization
of circumvention software based upon
its possible misuse, even though it has
plain and important acceptable uses.
This has also come to a head in the 2600
case, where software that circumvents the
encryption code used on DVDs was
posted on the Internet to facilitate the
creation of a DVD player using the
Linux operating system. The court held
that since the software could be used to
pirate DVDs, it was in violation of the
DMCA.

Finally, the impact on science could be
quite severe, since those who seek to do

USENIX BOARD OF DIRECTORS

Communicate directly with the USENIX Board
of Directors by writing to <board@usenix.org>.

PRESIDENT:

Daniel Geer <geer@usenix.org>

VICE PRESIDENT:

Andrew Hume <andrew@usenix.org>

SECRETARY:

Michael B. Jones <mike@usenix.org>

TREASURER:

Peter Honeyman <honey@usenix.org>

DIRECTORS:

John Gilmore <john@usenix.org>
Jon “maddog” Hall <maddog@usenix.org>
Marshall Kirk McKusick <kirk@usenix.org>
Avi Rubin <avi@usenix.org>

EXECUTIVE DIRECTOR:

Ellie Young <ellie@usenix.org>

by Cindy Cohn

Legal Director, Electronic Frontier
Foundation

Cindy@eff.org

73July 2001 ;login:

encryption research that could be used
for circumvention by others must effec-
tively clear their work with the content
industry ahead of time or face liability
for publishing it. Science rarely works
that way, even where the results could
affect national defense. We’ve just recent-
ly seen the beginning of this problem, as
the SDMI, a record industry coalition,
issued threatening letters to Professor
Edward Felten and others. The threat
succeeded in convincing the professors
to withdraw a paper about the breaking
of the watermarks on digital music from
a scientific conference in late April 2001.

LEGAL CASES

2600 CASE

In January of 2000, the movie industry
brought a lawsuit under the DMCA. This
case was brought in the federal District
Court in the Southern District of New
York against 2600 Magazine based upon
the discovery that the secret key to the
weak encryption system used on DVDs
was posted all over the Internet. The
eight major motion picture studios sued
2600 Magazine based upon its publica-
tion of the DeCSS code, its news cover-
age of the controversy, and the large
number of links the magazine provided
to the code.

From the outset the EFF knew this case
was not going to go well; the judge in the

case, Judge Kaplan, sided with the indus-
try from the very first hearing. We
fought a temporary restraining order,
but the court found that the anti-cir-
cumvention rules of the DMCA prevent-
ed 2600 Magazine from publishing or
even linking to DeCSS, because it could
be used to circumvent the encryption
placed on DVDs. CSS is designed to pre-
vent copyright infringement, but the
court held that publishing DeCSS was
illegal even when no infringement had
occurred — despite the fact that it was
being used for legitimate, even constitu-
tionally protected, purposes — simply
because it could be used for infringe-
ment.

The case was argued before the Second
Circuit Court of Appeals on May 1, 2001.
The lower court’s ruling basically says
that code is not free speech, the Bernstein
decision notwithstanding. The appellate
briefs describe the lower court’s decision
as “putting the anti-circumvention rules
of the DMCA on a collision course with
the Constitution.” EFF is asking the Sec-
ond Circuit to prevent this by interpret-
ing the statute consistent with the First
Amendment and settled copyright laws.

In late January, eight amicus briefs were
filed in support of EFF’s appeal of the
injunction against 2600 Magazine,
including from the ACLU, the Digital
Future Coalition, librarians, journalists,
computer scientists, law professors, edu-

cators, and cryptographers. A sponsor of
the computer programmers’ brief, noted
Princeton University Computer Science
Professor Edward Felten, stated, “The
lower court’s interpretation of the
DMCA would effectively shut down
research in some areas of computer secu-
rity by banning the publication of
research results in those areas. Ironically,
it has already prevented me from pub-
lishing research results that could be
used to strengthen the protection of
copyrighted works.”

The EFF successfully convinced noted
constitutional scholar and advocate
Kathleen Sullivan, dean of the Stanford
Law School, to argue the case on behalf
of 2600 Magazine. The Second Circuit
will either send the case back down to
the trial court for further hearings (if, for
instance, we are successful in convincing
the appellate court that the trial court
misapplied the law), or it will be set for a
review of the appellate panel decision by
the entire Second Circuit Court and then
probably petitioned for decision by the
U.S. Supreme Court. While the exact
path is difficult to predict, it is likely that
this case will continue for at least two to
three more years.

More information about this case is
available on the EFF Web site at:
<http://www.eff.org/pub/Intellectual_
property/Video/MPAA_DVD_cases/>.

USENIX SUPPORTING MEMBERS

Addison-Wesley
Kit Cosper
Earthlink Network
Edgix
Interhack Corporation
Interliant
Lessing & Partner
Linux Security, Inc.
Lucent Technologies
Microsoft Research
Motorola Australia Software Centre
New Riders Publishing

Nimrod AS
O’Reilly & Associates Inc.
Raytheon Company
Sams Publishing
The SANS Institute
Sendmail, Inc.
Smart Storage, Inc.
Sun Microsystems, Inc.
Sybase, Inc.
Syntax, Inc.
Taos: The Sys Admin Company
TechTarget.com
UUNET Technologies, Inc.

HAPPY BIRTHDAY FRUUG ●

●

U

SE
N

IX
 N

EW
S

http://www.eff.org/pub/Intellectual_

74 Vol. 26, No. 4 ;login:

PAVLOVICH V. DVD-CCA

The DVD Copy Control Association
(DVD-CCA), a newly formed association
of the Motion Picture Association of
America (MPAA), is suing hundreds of
individuals who put DeCSS on their Web
sites, alleging that the plaintiffs misap-
propriated trade secrets when they
reverse engineered DVD technology. At
issue in the case is the First Amendment
right to free expression, as well as the
right to engage in lawful reverse engi-
neering. EFF is coordinating the defense,
representing Andrew Bunner and paying
for additional outside counsel for him.
Mr. Bunner is the only defendant who
has been properly brought into the Cali-
fornia courts. The superior court issued
an injunction preventing the publication
of DeCSS by the defendants, and we have
appealed. The First Amendment Project,
a California-based nonprofit located in
Oakland, has been serving as lead coun-
sel on the appeal.

In addition, EFF co-operating counsel
Allon Levy has also represented Matthew
Pavlovich, one of the many named
defendants who are not properly sued in
California. Pavlovich won an initial vic-
tory in December 2000 when the Califor-
nia Supreme Court granted his petition
for review based on lack of personal
jurisdiction and sent the matter back to
the appellate court for further review.
EFF also assisted in locating counsel for
Derek Fawkus, another person who
claimed that California jurisdiction was
improper since he is based in Scotland
and has never even visited California.

Both issues – the jurisdiction question
concerning Mr. Pavlovich and the appeal
of the preliminary injunction by Mr.
Bunner – have been fully briefed and are
currently scheduled to be heard together
by the California Court of Appeals at a
date to be set soon. We expect the argu-
ments to be held in May or June 2001.
The remainder of the case has been put
on hold by the California Supreme

Court pending the appellate court deter-
mination.

More information about the case is avail-
able at:
<http://www.eff.org/IP/Video/DVDCCA
_case/>.

OTHER RELATED PROJECTS
In addition to the litigation, we are doing
ongoing public awareness work around
this issue, with speeches, press work, and
grassroots efforts under our CAFE proj-
ect (Campaign for Audiovisual Free
Expression). CAFE is a multi-avenue
campaign to educate and engage the
public in the issues surrounding fair-use
rights, and in particular the DVD/DeCSS
legal cases. Campaign strategies include
public discussions through our BayFF
public forum; posting up-to-date infor-
mation on the DVD/DeCSS cases on our
Web site, with extensive links to other
sites; media coverage; and most recently,
our Radio EFF Program. We have also
recently released the “Open Art License,”
an attempt, with homage to the Free
Software Foundation and the open
source movement, to allow artists to
release their works to the public to be
freely copied and used as long as original
attribution is made. We believe that
unless people outside the technology
community understand this issue, we
will not be successful in combating the
DMCA.

The CAFE project Web page is available
at: <http://www.eff.org/cafe/>.

CONCLUSION
We recognize that the battle against sec-
tion 1201 of the DMCA will be a long,
difficult one. We expect it to continue for
at least five years and to change as the
technology to limit access to digital con-
tent continues to develop. Although
DVDs are currently at the center of the
dispute, it is only a matter of time before
books, music, multimedia tools and con-
tent as diverse as human thought will be
similarly locked up and metered out to

us. We believe that such a scenario would
create a world much different than our
current one – one in which we would be
much the poorer for the loss of access to
what, at the end of the day, is really our
shared culture. From the standpoint of
technological progress, we also see that
criminalizing the software tools that
might be used for illegal purposes, even
if they are not being used illegally, is like-
ly to become more and more prevalent if
1201 is allowed to stand. The scientific
process itself, and the Internet’s promise
of science freely available to all interested
persons, not just those pre-selected to sit
in ivory towers or corporate offices, is
ultimately at risk.

Happy 20th
Birthday FRUUG!

April 1981 – April 2001
April 2001 marked the 20th birthday of
the Front Range UNIX Users Group
(FRUUG), making it the oldest, still-run-
ning local UNIX users group around.
Our ripe old age – probably a century in
high-tech years – provides a good excuse
for a bit of senile reminiscing about all
we’ve managed to accomplish in these
two decades. It turns out that we’ve been
surprisingly on top of quite a few tech-
nological developments well before their
time; and embarrassingly wrong about a
few, too.

by Steve Gaede

Steve Gaede has
been FRUUG coordi-
nator since 1984. In
his early years, he
created UNIX capaci-
ty planning tools.
Today he undertakes
a variety of research
and prototyping
projects through his
company Lone Eagle
Systems Inc.

gaede at loneagle.com

http://www.eff.org/IP/Video/DVDCCA
http://www.eff.org/cafe/

FRUUG’s largest concentration of mem-
bers is in Boulder, with membership
extending along the Front Range of the
Rocky Mountains from Pueblo, Col-
orado, to Cheyenne, Wyoming. The
group meets roughly monthly, schedul-
ing meetings around the availability of
interesting talks and speakers rather than
attempting to meet on a particular day
each month. It currently has close to 300
members, with around 70 attending any
given meeting.

Though it started as a sort of UNIX sup-
port group, it exists today more as a for-
ward-looking computing technology
group, not limited to UNIX operating
system topics. Despite its changing role,
one facet of FRUUG has remained con-
sistent: it has served as a gathering place
and a stable touchstone for computing
professionals to meet and make contacts
for more than two decades.

The Early Years
In 1981, Dick Hackathorn and Rick
Patch founded the Boulder Users Group
(BUG), named without the adjective
describing what it was we used because
in those days nobody dared toy with the
sacred trademark of Bell Laboratories.
The group quickly grew beyond the
boundaries of Boulder and its members
voted to re-name it in early 1982. Those
(including the author) who preferred the
more colloquial sound of BUG still tend
to pronounce FRUUG as if it rhymes
with BUG.

In those days, Boulder was a relative
hotbed of UNIX activity, with research
institutions like the University of Col-
orado, the National Center for Atmos-
pheric Research (NCAR), and the
National Institute of Science and Tech-
nology (NIST), as well as commercial
organizations like Bell Labs, Cray Labs,
NBI, and Storage Technology working
with the UNIX operating system. One of
the first USENIX conferences was held in
Boulder in 1980, pre-dating FRUUG’s
founding by a year. Though not officially

75July 2001 ;login:

affiliated with any national group,
FRUUG’s meetings for years included
reports on current events from the most
recent USENIX conferences.

One of the features that put Boulder on
the UNIX map was the fact that the High
Altitude Observatory’s UNIX machine
(hao) was a key component in the UUCP
networking backbone that enabled
UNIX systems to transfer mail to each
other. For those who didn’t experience
those days, UUCP stands for “UNIX-to-
UNIX Copy” and was the basis for a
store-and-forward network that was used
to copy messages to a remote system
(usually over modem connections) and
then remotely execute a mail program to
send them on to their next hop. The net-
work was completely ad hoc. Mail
addresses specified the route to be taken,
and the whole thing
depended on making a
lot of personal contacts to
establish connections.

The early meetings were
small enough that they
could be hosted by just
about any company that
had a few chairs. They
usually included a brief
talk, a tour of whatever
facility we visited, and a
round-table discussion
that provided a forum for
people to ask questions
like: “Can I set up a
UUCP connection to
you,” or, “Do you have a
driver for such and such a
disk?” The unspoken
question often on mem-
bers’ minds was: “What
would it be like to work
here?”

The days in which meet-
ings toured up and down
the Front Range gave us a
good feel for the UNIX
activity in the environs.

The community of those using the
UNIX operating system was relatively
small and insular, and there was a fair
amount of circulation between compa-
nies as interesting projects came and
went. A memorable fall 1981 meeting
was held in an outpost of Interactive Sys-
tems that occupied the old Rocky Moun-
tain National Park headquarters in
downtown Estes Park; that round-table
discussion took place around a roaring
fire in a huge stone fireplace with a fall
snow beginning outside.

The Dawn of Desktop
Computing
The early 1980s saw the convergence of
three technical advancements that would
form the basis for the desktop computers
that we all use today. The Motorola
68010 family of microprocessors provid-

Meeting announcement for a 1982 meeting at NCAR;
including a review of the cafeteria’s

“gastric delights.”

HAPPY BIRTHDAY FRUUG ●

●

U

SE
N

IX
 N

EW
S

76 Vol. 26, No. 4 ;login:

ed support for memory mapping,
enabling the UNIX operating system to
run on desktop computers with isolated
virtual memory for each process – one of
those basic features that the Wintel
world wouldn’t implement until more
than a decade later. Winchester disks
became smaller than a filing cabinet and
could fit into desktop workstations. And
bitmapped displays enabled the graphical
user interfaces that brought a new mean-
ing for the word “mouse” into the ver-
nacular.

We heard from quite a number of
Motorola 68000-based UNIX system
vendors as the desktop computing world
developed, and many of them have been
long forgotten. We had a demonstration
of a workstation by Fortune Systems in
November 1982. Masscomp showed us
multiprocessing based on Motorola
processors in March 1984. We heard
about UNIX workstations from NBI and
Integrated Solutions in 1985. Bill Joy,
from an outfit called Sun Microsystems,
showed us a system that looked like
many others at the time. The Sun 2/120
boasted a Motorola 68010 processor,
bitmap display, optical mouse, and of
course Berkeley 4.2BSD UNIX with a
kernel-based windowing system. Who
would have guessed how the landscape
would change between then and now.

Although many of us hoped that the
68000 series would win the microproces-
sor cook-off by virtue of its clean design,

the UNIX community didn’t ignore Intel
architecture processors. The IBM PC
came on the market, and it didn’t take
long for the UNIX operating system to
be ported to Intel 8086 processor-based
machines even without memory map-
ping support. When Intel released the
286 processor, UNIX was ported to it
before DOS was, and systems and soft-
ware were available from AT&T, Microp-
ort, and Xenix. We’ve had meetings
through the years on UNIX for the PC,
including talks from the folks at BSDi,
from Bob Gray and Dick Dunn on
“Cheap UNIX,” and meetings on Linux
as it arrived on the scene.

In the early 1980s, window systems were
typically kernel-based, but in 1986 we hit
it right with a talk on the X Window Sys-
tem. Despite how Sun came out ahead of
all of the other workstation vendors we
heard from, our Sun-sponsored talk on
NeWS (Network Extensible Window Sys-
tem) was one of those innovations that
didn’t get very far. We still have (some-
where) a video of the Great X Windows
Debate that pitted the X Window System
against Sun’s NeWS, Microsoft Windows,
and Apple QuickDraw in February 1988.

Network computing became a hot topic
in the late 1980s. We heard about Inte-
grated Solutions’ Transparent Remote
File System (TRFS), Apollo’s Network
Computing System (NCS), and of course
Sun’s Network File System (NFS). For
remote procedure calls, the debate raged
between Open Network Computing
(ONC) and Distributed Computing
Environment (DCE).

The C programming language encoun-
tered some competition from its object-
oriented cousin C++, on which we host-
ed our first meeting in 1988. Many relat-
ed topics, like the Standard Template
Library and Design Patterns, followed as
the years went on.

The Internet Appears on the
Radar Screen
Our 10th Anniversary FRUUG meeting
announcement in April 1991 was a dou-
ble issue on real paper as we introduced
Colorado SuperNet (CSN) to FRUUG
members, with the first, local, commer-
cial offering of dialup UUCP and SLIP
services. Colorado SuperNet was one of
the first Internet service providers any-
where, receiving state funding to pro-
mote the use of the Internet within Col-
orado for research, education, and – for
the first time – business. We promoted
the nonprofit, state-funded CSN for a
number of newsletter issues, helping our
members become aware of this great
alternative to ad hoc UUCP connectivity
and the long-distance dialup services
provided by UUNET. CSN was eventual-
ly groomed for a corporate takeover.
Qwest did the deed, and then shut them
down over the holidays just this year –
bringing some finality to our tax-funded
efforts.

Though at the time they were years away
from becoming FRUUG Executive Com-
mittee members, Neal McBurnett and
Joe VanAndel demonstrated tools for
surfing the Internet in February 1994,
including such classics as Mosaic and
Lynx. Remember Lynx? In our 1994
meeting announcement we touted it as
the less “resource-intensive” alternative
to Mosaic, suggesting that the systems we
used weren’t quite as powerful as they
are today. That February meeting was
followed by an ISP cook-off with the
Colorado-based ISPs presenting — and
debating – their various benefits. Inter-
net pioneer Mike O’Dell kicked off the
meeting with a presentation on how the
Internet worked at the time, and we had
nearly a full house in the 500-seat NIST
auditorium, the largest facility available
to us.

Keeping Us Up-to-Date
The middle and late 1990s saw a contin-
uation of our trend of keeping members

Demonstration of an early UNIX worksta-
tion at NBI in 1985 (from left to right:

Steve Gaede, Ron Hughes, Bruce Sanders)

up-to-date on emerging technologies
including networking, window systems,
security, Internet connectivity, software
engineering, and programming lan-
guages. The acronyms describing some
of our most recent five years of meetings
are sometimes dizzying: Y2K, PDA, STL,
RPC, ONC, DCE, ISDN, ADSL, MPEG,
DNS, BIND, XML, RMI, AWT, and

JDBC, OMG, CORBA, and even NT,
COM, and OLE. Which of these will be
forgotten in a decade?

We had Perl tutorials from Tom Chris-
tiansen and even an appearance by Larry
Wall. John Ousterhout gave us his vision
for Tcl/Tk and his concept of agents. We
heard about open source from Richard
Stallman, about cyberterrorism from
Rob Kolstad, and the potential horrors of
Y2K from Evi Nemeth. In 1995 James
Gosling visited us to talk about his
browser called HOTJAVA, and as a side
note discussed the features of the experi-
mental programming language called
Java used to create it.

An Interesting Trip
In November 1999 Bill Joy chatted with
us about his journey “from BSD to Jini,”
and shared quite a few interesting stories
about the technology that has been
developed during those years. It’s been
an interesting trip for FRUUG as well,
and we hope that the next decade will

77July 2001 ;login:

bring us as interesting a time as the last
two have been — and with the contin-
ued involvement of our FRUUG mem-
bers, it no doubt will be.

An Invitation
We invite you to visit the FRUUG Web
site at http://www.fruug.org and peruse
some of the relics from our meeting
archive. We’re working on getting as
many of the old artifacts online as
possible.

Thanks!
Thanks to all those who have con-
tributed to FRUUG over the years, espe-
cially the FRUUG Executive Committee
for contributing to this historical per-
spective and gathering for monthly
lunches to discuss technical topics of the
day – and plan meetings. The FRUUG
Executive Committee currently includes:
Tom Cargill, Mark Carlson, Barb Dijker,
Dick Dunn, Steve Gaede, Neal McBur-
nett, Carol Meier, Bill Meine, Joe VanAn-
del, and Wally Wedel.

25 Years Ago

In the depths of my mouldering masses
of paper lies a copy of a letter from Lew
Law (“Director of Technical Services,”
Harvard Science Center) to Mel Ferentz,
dated June 24, 1976.

It begins:

“The Science Center is upgrading its
present computer system which runs
UNIX from an 11/45 to an 11/70. As a
result we wish to sell the following:

(1) 11/45 CPU with memory manage-
ment KY11C (serial number
1147)

(2) Hardware bootstrap
(3) KW11L – line frequency clock
(4) DL11 – single asynchronous serial

line interface

(5) 24K non-parity DEC core
(6) FP11B floating point processor

$35,800
(7) 96K non-parity core – Cambridge

Memory Expandacore 11 $13,200
(8) RS04 controller only for fast

swapping disc $5,400

Items 1 to 6 are to be sold as a package.
Items 7 and 8 could be sold separately.
All DEC equipment was purchased
7/1/74 and has been under maintenance
contract since installation”

Wow!

This really illustrates Moore's law to me.
96K core memory for $13,200! 25 years
later, I can buy 45G for under $150
retail.

Lew also supervised the publication of
the UNIX manuals – in 1976 this was the
justly famed sixth edition. He wrote:

“Printing and shipping of the UNIX
documents seems to have gone quite well
– we have ordered over 200 Program-
mers Manuals and 170 Documents. Most
of these have already been shipped.”

There was an order form in UNIX
NEWS, 6.

That issue of UNIX NEWS also informed
us of the move of Western Electric's
Patent Licensing office to Greensboro,
NC. Richard G. Shahpazian, “Patent
License Manager.”

Best Papers
Online!
Over the past decade, the Program Com-
mittees from many of the USENIX con-
ferences and workshops have given out
Best Paper, Best Student Paper, and Best
Presentation awards. A list of these
awards, with links to the actual papers is
now available at http://www.usenix.org/
publications/library/proceedings/
best_papers.html Note: You do not need
to be a USENIX member to access the
papers in this compendium.

25 YEARS AGO ●

The FRUUG Executive Committee plan-
ning the next meeting, from a 1996 Boul-

der Daily Camera article. (from left to
right: Tom Cargill, Steve Gaede, Wally
Wedel, Carol Meier, Mark Carlson)

by Peter H. Salus

USENIX Historian

<peter@matrix.net>

●

U

SE
N

IX
 N

EW
S

http://www.fruug.org
http://www.usenix.org/

	motd
	apropos
	burgess
	caple
	flynt
	mccluskey
	farrow
	haskins
	chapman
	sivonen
	johnson
	chalup
	bookworm
	bookreviews
	usenixnews

