
F e b r u a r y 2 0 0 5 V O L U M E 3 0 N U M B E R 1

O P I N I O N MOTD
RO B KO LSTA D

Who Needs an Enemy When You Can Divide
and Conquer Yourself?
M A R C U S J . R A N U M

SAGE-News Article on SCO Defacement
RO B KO LSTA D

T E C H N O L O G Y Voice over IP with Asterisk
H E I S O N C H A K

S E C U R I T Y Why Teenagers Hack: A Personal Memoir
STEV E N A L E X A N D E R

Musings
R I K FA R ROW

Firewalls and Fairy Tales
TI N A DA R M O H R AY

The Importance of Securing Workstations
STEV E N A L E X A N D E R

Tempting Fate
A B E S I N G E R

S Y S A D M I N ISPadmin
RO B E RT H A S K I N S

Getting What You Want: The Fine Art of Proposal Writing
TH OM A S S LUY TE R

The Profession of System Administration
M A R K B U R G E S S

P R O G R A M M I N G Practical Perl: Error Handling Patterns in Perl
A DA M T U RO F F

Creating Stand-Alone Executables with Tcl/Tk
C L I F F LY NT

Working with C# Serialization
G L E N M CC LU S K EY

B O O K R E V I E W S The Bookworm
P E TE R H . SA LU S

Book Reviews
R I K FA R ROW A N D C H U C K H A R D I N

U S E N I X N O T E S 20 Years Ago . . . and More
P E TE R H . SA LU S

Summary of USENIX Board of Directors Actions

T H E U S E N I X M A G A Z I N E

The Advanced Computing Systems Association

C O N F E R E N C E S 18th Large Installation System
Administration Conference
(LISA ’04)

EuroBSDCon 2004

STEPS TO REDUCING UNWANTED TRAFFIC ON
THE INTERNET WORKSHOP (SRUTI ’05)

JULY 7–8, 2005, CAMBRIDGE, MA, USA
http://www.usenix.org/sruti05
Paper submissions due: March 30, 2005

LINUX KERNEL SUMMIT '05
JULY 17–19, 2005, OTTAWA, ONTARIO, CANADA

14TH USENIX SECURITY SYMPOSIUM
(SECURITY ’05)

AUGUST 1–5, BALTIMORE, MD, USA
http://www.usenix.org/sec05
Paper submissions due: February 4, 2005

INTERNET MEASUREMENT CONFERENCE 2005
(IMC ’05)
Sponsored by ACM SIGCOMM in cooperation with USENIX

OCTOBER 19–21, 2005, NEW ORLEANS, LA, USA

19TH LARGE INSTALLATION SYSTEM
ADMINISTRATION CONFERENCE (LISA ’05)
Sponsored by USENIX and SAGE

DECEMBER 4–9, 2005, SAN DIEGO, CA, USA
http://www.usenix.org/lisa05
Draft papers and extended abstracts due: May 10, 2005

4TH USENIX CONFERENCE ON FILE AND
STORAGE TECHNOLOGIES (FAST ’05)

DECEMBER 14–16, 2005, SAN FRANCISCO, CA, USA
http://www.usenix.org/fast05

2005 USENIX ANNUAL TECHNICAL
CONFERENCE

APRIL 10–15, 2005, ANAHEIM, CA, USA
http://www.usenix.org/usenix05

2ND SYMPOSIUM ON NETWORKED SYSTEMS
DESIGN AND IMPLEMENTATION (NSDI ’05)
Sponsored by USENIX, in cooperation with ACM SIGCOMM
and ACM SIGOPS

MAY 2–4, 2005, BOSTON, MA, USA
http://www.usenix.org/nsdi05

3RD INTERNATIONAL CONFERENCE ON MOBILE
SYSTEMS, APPLICATIONS, AND SERVICES
(MOBISYS ’05)
Jointly sponsored by USENIX and ACM SIGMOBILE,
in cooperation with ACM SIGOPS

JUNE 6–8, 2005, SEATTLE, WA, USA
http://www.usenix.org/mobisys05

FIRST ACM/USENIX INTERNATIONAL CONFERENCE
ON VIRTUAL EXECUTION ENVIRONMENTS (VEE ’05)
Sponsored by ACM SIGPLAN and USENIX,
in cooperation with ACM SIGOPS

JUNE 11–12, 2005, CHICAGO, IL, USA
http://www.veeconference.org
Paper submissions due: February 18, 2005

10TH WORKSHOP ON HOT TOPICS IN
OPERATING SYSTEMS (HOTOS X)

JUNE 12–15, 2005, SANTA FE, NM, USA
http://www.usenix.org/hotos05

For a complete list of all USENIX & USENIX co-sponsored events,
see http://www.usenix.org/events

Upcoming Events

V O L . 3 0 , # 1 , F E B R U A R Y 2 0 0 5

E D I TO R
Rob Kolstad
rob@usenix.org

CO N T R I B UT I N G E D I TO R
Tina Darmohray
tmd@usenix.org

M A N AG I N G E D I TO R
Jane-Ellen Long
jel@usenix.org

CO P Y E D I TO R
Steve Gilmartin
proofshop@usenix.org

P R O O F R E A D E R
proofshop
proofshop@usenix.org

T Y P E S E T T E R
Star Type
startype@comcast.net

U S E N I X A S S O C I AT I O N

2560 Ninth Street,
Suite 215, Berkeley,
California 94710
Phone: (510) 528-8649
FAX: (510) 548-5738

office@usenix.org
login@usenix.org
conference@usenix.org

http://www.usenix.org
http://www.sage.org

;login: is the official magazine of
the USENIX Association.

;login: (ISSN 1044-6397) is
published bi-monthly by
the USENIX Association,
2560 Ninth Street, Suite 215,
Berkeley, CA 94710.

$85 of each member’s annual
dues is for an annual subscrip-
tion to ;login:. Subscriptions for
nonmembers are $115 per year.

Periodicals postage paid at
Berkeley, CA, and additional
offices.

POSTMASTER: Send address
changes to ;login:,
USENIX Association,
2560 Ninth Street,
Suite 215, Berkeley,
CA 94710.

©2005 USENIX Association.

USENIX is a registered trade-
mark of the USENIX Associa-
tion. Many of the designations
used by manufacturers and sell-
ers to distinguish their products
are claimed as trademarks.
USENIX acknowledges all
trademarks herein. Where those
designations appear in this pub-
lication and USENIX is aware of
a trademark claim, the designa-
tions have been printed in caps
or initial caps.

contents

OPINION
2 MOTD

RO B KO LSTA D

4 Letters to the Editor
5 Who Needs an Enemy When You Can Divide

and Conquer Yourself?
M A RC U S J . R A N U M

8 SAGE-News Article on SCO Defacement
RO B KO LSTA D

TECHNOLOGY
10 Voice over IP with Asterisk

H E I S O N C H A K

SECURITY
14 Why Teenagers Hack: A Personal Memoir

STEV E N A L E X A N D E R

17 Musings
R I K FA R ROW

20 Firewalls and Fairy Tales
TI N A DA R M O H R AY

23 The Importance of Securing Workstations
STEV E N A L E X A N D E R

27 Tempting Fate
A B E S I N G E R

SYSADMIN
31 ISPadmin

RO B E RT H A S K I N S

39 Getting What You Want: The Fine Art
of Proposal Writing
TH OM A S S LUY TE R

46 The Profession of System Administration
M A R K B U R G E S S

PROGRAMMING
47 Practical Perl: Error Handling Patterns in Perl

A DA M TU RO F F

53 The Tclsh Spot: Creating Stand-Alone
Executables with Tcl/Tk
C L I F F LY NT

59 Working with C# Serialization
G L E N M CC LU S K EY

BOOK REVIEWS
64 The Bookworm

P E TE R H . SA LU S

65 Book Reviews
R I K FA R ROW A N D C H U C K H A R D I N

USENIX NEWS
67 20 Years Ago . . . and More

P E TE R H . SA LU S

68 Summary of USENIX
Board of Directors Actions
TA R A M U L L I GA N

CONFERENCE REPORTS
69 18th Large Installation System

Administration Conference (LISA ’04),
November 14–19, 2004

90 EuroBSDCon 2004, October 29–31, 2004

R O B K O L S T A D

motd

T H E O N LY G O O D S P A M C O M E S
F R O M H O R M E L

Dr. Rob Kolstad has long served as editor of ;login:. He
is SAGE’s Executive Director, and also head coach of
the USENIX-sponsored USA Computing Olympiad.

kolstad@sage.org

Let’s review some of the latest news about
spam.

n Message security firm MX Logic reported that
November compliance with the USA’s CAN-SPAM
act hit 6%, doubling October’s 3% compliance rate.
They add that 69% of spam is sent through “zom-
bies,” usually home computers controlled by spam-
mers to send email on behalf of bulk mailers. In
related news, a Maryland judge ruled that Mary-
land’s anti-spam law is unconstitutional, since it
“seeks to regulate commerce outside the state’s bor-
ders.”

n Iowa ISP Robert Kramer sued 300 spammers in an
effort to stem the 10,000,000 daily spam emails he
saw (in 2000). A U.S. District Court judge ruled
that one spammer must pay him US$720M, and
another must pay US$360M. Widespread opinion is
less than optimistic about actually collecting these
damages.

n Anti-spam firm Postini reports that 88% of email is
now spam; 1.5% of those messages contain viruses.
MessageLabs says as high as 6%, depending on the
report. Every related news story I checked predicted
that 2005 will see the true rise of phishing. (My
own mailbox has seen no relief at all from spam.
The graph below shows the rolling average of the
number of my personal spam emails for the past 15
months.)

n The loss of productivity due to spam is gauged at
anywhere from hundreds of dollars per year per
employee on up. Administrators sometimes find
themselves buried in spam or in requests to make it
stop. Phishing is a US$137M–500M industry,
depending on whose numbers you believe.

Now let’s think back to the Golden Age of Email. You
remember: each electronic message evoked thoughts of
Christmas, like a package of joy waiting to be
unwrapped. The bell rung by biff to signal a new mes-
sage set off a Pavlovian salivation of anticipation at a
new missive—perhaps it was a product order, a busi-
ness prospect, or greetings from a long-lost friend.
Those were the days!

2 ; L O G I N : V O L . 3 0 , N O . 1

Alas, those halcyon days of communication of a certain
purity are gone. The tears have been shed; we’ve moved
on.

What happened? In a nutshell, some lawyers in the
Southwest tested the waters of Internet advertising and
found them bountiful. Subsequently, every budding
entrepreneur with a scam, fraud, herbal pharmaceuti-
cal, erotic Web site, or home-mortgage connection has
decided that “almost-free” advertising can make big
profits. It’s almost as though someone is creating bill-
boards that read, “If you can#t splel VaigrA, you cn
mkae big MONEY wtih b.ul.k adtervising on teh
I*N*T*R*E*N*E*T.”

Some institutions are trying to stem the tide. We have
black lists, white lists, and grey lists. We have black
hole (non-)routing, sender protection frameworks, and,
best of all, 150 vendors raking in two-thirds of a billion
US dollars in 2004 just to slow the scourge. Venture
capitalists pumped US$23M into anti-spam firms in
August 2004 alone.

Current solutions seem to fall roughly into these cate-
gories:

n Stopping spam at the gateway to the local network
(e.g., a list of unacceptable IP addresses)

n Filtering of spam using software (maybe by a third
party)

n Laws that suggest spamming should be stopped
n Blocking by (a very few) ISPs of outgoing email con-

nections from computers that seem to have been
compromised

Perhaps looking at the bigger picture will help, since
these measures are having an all-too-limited effect.

n Almost all spammers are motivated by money,
although a tiny fraction are concerned with dissemi-
nating a political, a religious, or even a bizarre scien-
tific message. The low up-front investment for uni-
versal and affordable access to the Internet (DSL,
cable modems, businesses, hosting companies, even
Internet cafes) drives down the entry cost. Crackers
who take over others’ computers (creating “zom-
bies”) send out more than two-thirds of the current
flood of spam. Spammers would have no interest in
this endeavor if they could not obtain customers.
Behind-the-scenes reports reveal that spammers
profit as do all scam artists: by selling dreams,
appealing to greed, and selling items widely per-
ceived to be unavailable in mainstream markets.

n Spammers enjoy anonymity. There are no means to
complain about or avoid spam; requests to be
removed from spammers’ lists are widely believed to
be ignored or, worse, are used as confirmation of the
address.

n Spammers obtain their revenue at the credit-card-
processing bureau, but the connections among their

emails, credit card accounts, and true identities are
not discernible by mortals.

Stopping any of a spammer’s three enablers will thwart
them:
n Remove access to cheap and easy sending of bulk

emails.
n Remove anonymity: make spammers stand up per-

sonally for their products and services.
n Remove their ability to collect money easily and

secretly.

I initially thought removing anonymity would solve the
problem. Creating a positive identification token for
tens of millions of Internet users is a very pricy proposi-
tion, and one not likely to serve the purpose. It appears
that many people would gladly sell spammers their
token for relatively small amounts of money.

Removing the other two enablers might yield better
results. ISPs can either completely block outward port
25 traffic or restrict it to a set of well-known email
servers. One would think it would be in the ISPs’ best
interests to shut down spammers. It’s worked for Com-
cast, with 5.7 million subscribers. They implemented
exactly this idea in June, stopping about 700 million
emails per day.

Removing the ability to collect money is a very simple
step to slow spammers: Identify a spam offer as fraud by
purchasing the product and confirming that it is fraud,
then (presumably with legal backing) work backward
through the credit-card folks to shut down the offender.
This seems like just the thing for our U.S. Federal Trade
Commission. Existing legislation gives them plenty of
ability to prosecute those who break laws not just once
but millions of times. If the laws do not enable this, the
laws need to be fixed. The “mood of the people” is such
that this should work out quite easily. In fact, the state
of Virginia sentenced a spammer to prison for nine
years (though the constitutionality of that law is proba-
bly under study now as well).

Note that these proposals stop the problem at its
source, not after it has consumed network bandwidth
(not free), passed filters (not free; the manpower to
deploy them has a cost), or even made it all the way to
inboxes (where “just press delete” is a stupidity no
longer even amusing).

The filtering folks, the black-hole list maintainers, com-
mercial firms, and an heroic set of thousands of admin-
istrators are doing a great job of slowing the infection of
this parasite on the Internet. None of them, however,
has the ability to stop the problem at its source. ISPs
and federal agencies do—and in many countries.

Why is spam OK? Why do we have to “take it”? I think
we should do a much better job of encouraging those
who can stop spam to do so.

; LO G I N : F E B R UA RY 2 0 0 5 M OTD 3

letters to
the editor

TO : R H A S K I N S @ C N E T WO R K . COM

Robert,

I just had the chance to read
your response to Nick Chris-
tenson’s letter to the editor in
[the October] ;login:. In your
re-sponse you wrote, “I will
admit, I haven’t set up an MTA
for SPF enforcement. But from
a quick perusal of instructions
for doing so, it does not look
like an easy, straightforward
task.”

You should have written which
MTA instructions you were
looking at. SPF support is avail-
able in Stalker’s CommuniGate
Pro and is a straightforward

task. I am including a screen
shot to show that.

In the image you can see an
option to specify checking SPF
records during SMTP receiving,
where the options are: disabled;
add header enabled (reject on
fail).

I understand that your purpose
was to introduce SPF, but I’m
writing just to say that I tend to
agree with Nick. I’m certain
that more MTAs can be made to
use SPF quite simply, so there
would be no artificial hurdle to

adoption of the technique.
Based on my experience so far,
the biggest hurdle is changing
MTAs so that forwarding does-
n’t break SPF (but I’ve found
that other techniques, such as
external POP polling, can be
used to circumvent the prob-
lems with forwarding).

Kindest regards,

J A S O N M A D E R
jason@ncac.gwu.edu

RO B E RT H A S K I N S R E P L I E S :

I was talking about integrating
SPF with Sendmail. It looks as
though it’s easy to integrate SPF
enforcement into Communi-
gate Pro!

D E A R E D ITO R :

In “Wireless Security: A Discus-
sion” in the December ;login:,
Marcus Ranum raised a number
of valid points, but I was most
struck by his complaint, “I was
going to be forced to waste time
installing security measures.”
Wow. Isn’t this exactly the
“luser” attitude many of us
fight every day? Hasn’t making
and selling these “security
measures” been a large part of
Marcus’s professional life? If
even he is seriously annoyed at
the prospect of actually having
to use security measures, we
must have a terribly long way
to go.

If I may be permitted an anal-
ogy: If I don’t want people peer-
ing at the cargo in the back of
my vehicle parked at the con-
ference hotel, I put the cover
over it, rather than bitch at the
guy who says, “Hey, I can see
your laptop in there!” (Nor do I
run to “mommy”: “He’s peek-
ing, he’s peeking!”).

J O H N H A S C A L L
Iowa State University

4 ; L O G I N : V O L . 3 0 , N O . 1

M A R C U S J . R A N U M

Marcus Ranum is CSO for Tenable Network Security
and a well-known security products designer and
implementer. He holds the TISC “Clue” and ISSA
Lifetime Achievement awards and is the author of the
recently published The Myth of Homeland Security
(reviewed by The Bookworm in this issue).

mjr@ranum.com

I S U R V I V E D T H E U N I X W A R S , U N L I K E
most of the companies involved in them.
Perhaps you remember Pyramid, SCO, Apollo,
DEC, Sun, Silicon Graphics, Gould, and so on.
In their day, they fought ferocious scorched-
earth wars trying to win customers’ minds
and money. The survivors, with the excep-
tion of Sun (a.k.a. “The Last Man Standing”)
have either gone into the mists of time or
are niche players forced into new markets in
order to survive. Other than their conflict,
what did they have in common? They were
all selling some kind of UNIX operating
system.

Back in the UNIX wars, the vendors had two primary
axes on which they could compete: hardware speed
and features of their UNIX flavor. Toward the end of
the UNIX wars, a third battle evolved, surrounding the
“desktop metaphor”—the look and feel of the worksta-
tions’ GUI. If you were around back then, you’ll
remember the ferocious fights over whether or not the
“3D-look” widgets of the Open Software Foundation
(OSF) Motif metaphor were just flash and glitter or
whether they were actually kind of cool. Today, few
remember the argument, and the code in question
would be considered remarkably tight and lightweight
compared to what people now use. If you step back
and look at the UNIX wars from a high altitude, the
actual battlefield was very small—GUIs and features in
a UNIX operating system don’t really sway customers
much; the vendor who won (Sun) did so because they
offered a consistent software experience (SunOS, later
Solaris) across a broad spectrum of hardware at differ-
ent performance levels from desktop to data center. In
other words, the customers didn’t care if the GUI had a
3D look and feel as long as it was fast, reliable, and
affordable.

You don’t need to be an advanced student of history to
know what happened. While the UNIX vendors beat
each other up over what amounted to nitpicking
details, another vendor offered the same consistent
kind of software experience across a broad spectrum of
hardware (including laptops)—I am referring, of
course, to Microsoft/Intel. Through the lens of 20/20
hindsight, it is clear that the UNIX vendors were short-
sighted losers arguing over what to watch on television
and fighting for the remote control while the house
burned down around them.

Now, read this carefully: I am not bashing Microsoft
Windows. As a UNIX system administrator with
20+ years of experience, and a Windows system

who needs an enemy
when you can divide
and conquer yourself?

; LO G I N : F E B R UA RY 2 0 0 5 W H O N E E D S A N E N E MY ? 5

administrator since Windows 1.0, I can tell you that
there isn’t a whole lot of difference in the workload of
efficiently running either environment. Sure, there are
lots of annoying details in either one, but it takes about
the same time for an expert to load and configure each
system. (In the old days, UNIX machines were faster to
bring online because of the prevalence of decent tape
drives, while Windows was primarily loaded by floppy,
but that was about the only difference.)

In other words, customers didn’t “choose” Windows
because it was better (or worse) than UNIX—they did it
because Microsoft/Intel was careful to guarantee them a
consistent software experience across a broad spectrum
of hardware. And, of course, the application developers
flocked to that consistent software experience because it
meant their products were cheaper to develop without
the headaches of version-specific differences.

In 1985, when I wrote code for my UNIX machine, it
worked on all the other UNIX machines because there
was basically a single flavor of UNIX, which all used the
same compiler, and everything just worked. Today, you
actually have to be quite careful if you want to write
code that compiles and works correctly on Solaris,
Linux, and BSD.

Indeed, most “open source” packages now include spe-
cial tools that dynamically reconfigure the code based
on complex knowledge bases that encode the differ-
ences in how Solaris says “tomato” and Linux says
“tomahto.” It takes longer to configure code than to
compile it, these days, which is categorically not the
case on Windows. Windows stuff just works and usu-
ally keeps working. Do you think that this might, just
maybe, have something to do with why major apps like
Adobe Photoshop, Macromedia Director, Adobe Pre-
miere, etc., are still not available on UNIX and never
will be?

Why is all this relevant? Because the UNIX wars didn’t
end and, consequently, the “last man standing” is still
Microsoft/Intel.

What do I mean, “They didn’t end”?

I installed Linux on one of my systems the other day so
I could use it as a teaching vehicle for my class on sys-
tem log analysis. But first I had to email a bunch of my
friends and ask them, “What version of Linux should I
use? Red Hat? Debian? Gentoo? Mandrake? Slackware?
Do you think I could get away with OpenBSD or
FreeBSD?” The responses I got indicated that none of
my friends use the same thing but that I could be sure
that if I used Flavor X some adherent of Flavor Y was
going to bust my chops about it, and that someone was
sure to show up with Flavor Z and have trouble making
things work. Do you hear the sound of distant laughter
coming from Redmond? I do.

The early days of the Linux movement were heralded
with grand pronouncements of war to the death with
Microsoft—war from the desktop to the data center, and
a free, compatible high-performance alternative to Win-
dows. What I see now is that the open source move-
ment was more like a 14-year-old punk standing in the
street telling Mike Tyson that he had an ass-whipping
coming. Not the Mike Tyson we see today, either, but
the Mike Tyson who could deliver a line-straight punch
that could knock a hole through the side of a steel I-
beam.

Unlike Tyson, no doubt, Microsoft was at least courte-
ous enough to pay lip service to the threat that the 14-
year-old was making, using Linux as a “credible threat”
to help argue that Windows was not, in fact, a monop-
oly. Guys, let’s face the facts: Windows is a monopoly
because short-sighted open source geeks and UNIX
weenies were too busy squabbling over whether RPM
was better than build-from-source or Gnome versus
KDE, etc., ad nauseam.

The tragedy here is that, unlike during the UNIX wars,
the battlefield now is even more narrow. The hardware
spectrum is a constant, so system performance is barely
an issue: Nobody measures whether Slackware is faster
than OpenBSD, and if someone did, nobody’d care any-
how. So the battle in the free UNIX space is entirely over
command line options, system administration para-
digms, installation packaging, and 3D GUI features.

I’ve got news for you: Real Programmers Don’t Care
about that garbage. Has it managed to completely
escape the attention of the open source movement that
Adobe, Macromedia, Corel (mostly), and so forth have
blithely continued to be non-UNIX while waiting for
the dust to settle? Only now they have realized that it
won’t settle and that oh-so-quietly the rush of
announcements of support for Linux has not translated
into a rush of quality applications.

Let me make a prediction for you. The open source
movement is not going to hurt Microsoft to any signifi-
cant degree. But it’ll put Sun out of business. Good
move, guys! Do I hear the sound of distant laughter
from Redmond?

Is it too late to save the situation? Yes, I think it is. At
this point, there are too many adherents of, and too
much investment in, the “not invented here syndrome”
for anybody involved in the various free UNIX flavors to
come to their senses until there is only one man left
standing.

But that’s not going to happen because, with free soft-
ware, it doesn’t cost very much to remain standing for-
ever. It’s an issue of ego, not technology, so don’t expect
sense or sanity to kick in. We all know the expression
“divide and conquer,” but Microsoft didn’t even need to
do that—they could just sit back and watch free UNIX

6 ; L O G I N : V O L . 3 0 , N O . 1

; LO G I N : F E B R UA RY 2 0 0 5 W H O N E E D S A N E N E MY ? 7

fail to become a credible threat because, well, frankly, it
was in the hands of egotistical detail-oriented ama-
teurs.

Who’s left that can compete with Microsoft? The place
to look for alternatives is wherever there is a broad
spectrum of hardware with a consistent software expe-
rience. That doesn’t leave much: proprietary devices
like PDAs and gaming consoles. If you want a high-
impact platform that doesn’t come from Redmond,

look to what the grown-ups at Sony are producing for
their Playstation 2 network. The platforms are consis-
tent and won’t fragment into competing versions,
because they are proprietary and the folks producing
them are in business to make money, not for their per-
sonal gratification and lust for limelight. Or if you
want a consistent software experience—go with Win-
dows.

Remember: Real Programmers Don’t Care.

SAVE THE DATE!
NSDI ’05, 2nd Symposium on Networked

Systems Design and Implementation
May 2–4, 2005, Boston, MA
http://www.usenix.org/nsdi05

The NSDI symposium focuses on the design principles of large-scale networks and dis-
tributed systems. Join researchers from across the networking and systems community—
including computer networking, distributed systems, and operating systems—in fostering
cross-disciplinary approaches and addressing shared research challenges.

R O B K O L S T A D

SAGE–news
article on SCO
defacement
kolstad@usenix.org

E A C H W E E K O R S O , A S U M M A R Y O F
6–20 Web articles of interest to the system
administration community is sent to the
sage-news@sage.org mailing list, which
has about 1,200 members.

On Thursday, December 2, the following article
appeared:

#######

Vandalism: SCO site vandalized

news.com has a screen shot of the SCO website
hack. It’s interesting to see what unethical people
can do to a company presumably pursuing lawful
royalties for its intellectual property.

[I found it amusing. . .RK]

http://news.com.com/Image+Screen+shot+of+SCO
+
hack/2009-7349_3-5469293.html

Soon thereafter, Steven Jenkins and I had an exchange
on the roles and duties of editors in situations like
this. This column summarizes that discussion and
attempts to clarify the issues raised and resolutions
we came to.

The email exchange will be presented here as a one-
on-one discussion, in the belief that a discussion for-
mat is much easier to follow.

O U R D I S C U S S I O N

Steven: I don’t think that SAGE should encourage
this type of illegal behavior. The second sentence in
the summary just didn’t discourage hacking as much
as it should have. Furthermore, I read the editorial
comment as being supportive of this sort of activity. I
realize that humor is very difficult to convey in email
(or written word). However, given the comment’s
terseness, it can certainly be interpreted as SAGE
finding pleasure in the defacement of SCO’s property.

Rob: I can see how the bracketed editorial remark’s
antecedent for “it” isn’t clear. I meant the image itself
was amusing. I imagine the word “interesting” was
potentially not as well chosen as it could have been.
Did you find the image amusing?

Steven: Yes, I personally found the image funny. But I
don’t think it’s appropriate for the professional system
administrators organization itself to make light of the
illegal defacing of a Web site. Keep in mind that sys-
tem administrators at SCO will have to replace the
original Web site, track down how the vandals broke
in, and then address those security holes. SAGE rep-
resents those system administrators!

8 ; L O G I N : V O L . 3 0 , N O . 1

; LO G I N : F E B R UA RY 2 0 0 5 S CO D E FAC E M E NT 9

Rob: Ignoring the actual behavior that triggered this apparent defacement, are
you saying that my editorial comment (which was bracketed and signed) would
still, even with a properly expressed antecedent, be out of line?

Steven: I think that organizations and the editors of publications should be held
to a higher standard than a random organization member. I’d be somewhat
embarrassed if a SAGE member publicly cheers about this; it’s worse when an
editor cheers.

Rob: Of course, I’m not representing SAGE in bracketed, signed remarks. I really
didn’t mean to encourage such things either. The news, however, was interesting
in the context of our community.

I would be sorry if my amusement (which is apparently shared by you) were to
be taken as encouragement of such activity. But it seems that the raising of the
bar or standard you advocate would require me to refrain from comments of all
kinds, and that doesn’t feel right, either.

Steven: Editorial pages (or remarks) are taken by many to be the view of the
publication, unless there is a stable of known editors with varying viewpoints. I
think the same holds true for electronic newsletters.

O U R CO N C LU S I O N S

After a telephone conversation between Rob and Steven, a few points were
agreed upon:

n The newsletter footer will explain that editorial comments represent the edi-
tors’ opinions and not SAGE’s.

n We will expand the editorial board, most likely to include Steven.

If you’re interested in joining the editorial board, we’re always open to wider
participation! Contact sage-news-owner@sage.org to join the team.

H E I S O N C H A K

voice over IP
with Asterisk
Heison Chak is a system and network administrator
at SOMA Networks. He focuses on network manage-
ment and performance analysis of data and voice
networks. Heison has been an active member of the
Asterisk community since 2003 and will be deliver-
ing a tutorial on VoIP Principles and Practice at the
USENIX ’05 Annual Technical Conference.

heison@chak.ca

A S T E R I S K I S A S O F T W A R E - B A S E D P B X
that runs under Linux, *BSDs, and Mac OS X.
It can also be used as a VoIP gateway and
can provide a bridge to the PSTN (Public
Switched Telephone Network, a.k.a. Plain
Old Telephone Service). IAX (Inter-Asterisk
eXchange), pronounced “eeks,” is a protocol
used by Asterisk as an alternative to SIP,
H.323, etc., when connecting to other VoIP
devices that support IAX.

This article describes some of the interesting things I
have done using Asterisk and VoIP, told as the story of
a business trip from my home in Toronto.

It was 12:15 in the morning and I had just gotten
home from work. Realizing that I had not yet packed
for my trip to San Francisco, I was a little worried
about missing my early morning flight. I knew that
snooze alarms no longer worked for me; I would
often keep hitting the snooze button when the alarm
went off, or I would just be so used to the sound that I
wouldn’t even hear it at all. Either way, I could wind
up being late. The AGI (Asterisk Gateway Interface)
script I had installed on my Asterisk box that serves
wake-up calls solved both my problems with snooze
alarms.

Wake-Up Calls

Before going to bed, I dial ext. 100 from any phone
in the house to request a wake-up call, and the voice
of Allison Smith (Allison is the voice of Asterisk)
prompts me for the desired time. At 6:30 a.m. that
morning, Asterisk called the auto-answer extension of
my IP phone in the bedroom. Besides telling me that
it was a wake-up call and announcing the current
weather in Toronto, Allison also challenged me to
repeat a four-digit number after her. If I failed to
respond or if I hung up after three tries, Asterisk
would call for help, playing back my own recorded
voice begging her to wake me up on that same auto-
answer extension. The last resort would usually get
me the unpleasant voice of my mother.

Dynamic Contents

That morning, I managed to get out of bed before
Asterisk escalated the call, yet I missed the weather
report when Allison did the announcement. I wanted
to double-check the weather in both Toronto and San

10 ; L O G I N : V O L . 3 0 , N O . 1

; LO G I N : F E B R UA RY 2 0 0 5 VO I C E OV E R I P W ITH A STE R I S K 11

Francisco, as well as make sure my flight was on time before heading out to the
airport, but my laptop was already packed away.

With the help of a PHP script on my Web server, I was able to look at reformat-
ted contents from theweathernetwork.com and aircanada.com on my IP phone
as I hit the service button. Calling ext. 102 invoked weather.agi, allowing me to
get a more detailed weather report based on the three-digit airport code (e.g.,
736 for SFO and 999 for YYZ). A TTS (Text-to-Speech) engine from Cepstral
was used to announce the weather forecast of the requested city. After hearing
that Toronto’s temperature was in the minus 40s, I was happy to find out San
Francisco would be in the mid-60s throughout the week.

IAXy

Given it was a Monday morning, the check-in line-up wasn’t so bad. However, I
was not making friends with airport security, especially when they found this lit-
tle blue thingie in my luggage and wanted me to explain what it was: “Okay, this
blue thingie is called IAXy (pronounced ‘eek-see’); it’s an analog telephone
adapter that allows telephone calls to be made over the Internet with a regular
telephone, and the ‘y’ in IAXy doesn’t stand for anything, it’s just a product from
Digium (http://www.digium.com) with a cool name.”

Then, I heard a very familiar voice saying, “Yeah, this is similar to what Vonage
and other voice-over-broadband providers are offering, but he is doing it with
some open source software.” I turned around and there was my boss, who was
traveling with me. I was glad he was there, or there would have been a good
chance I’d have missed my flight.

Toll-Free Service

I promised to call home when I landed, but my cell phone had very poor recep-
tion at the baggage claim. So I went to a pay phone and dialed my home number
without inserting any money. . .and it worked! That was my first time calling my
toll-free number—my VoIP provider was charging $0.03/min. While most VoIP
providers charged a monthly access fee plus usage, I chose one that supported
IAX on a prepaid account with no monthly fee. Calls made within US48 were
$0.03/min, while calls made within Canada were only $0.02/min. My VoIP
provider also provided a Web page for customers to monitor their usage.

After the call had terminated on the PSTN in Chicago, it was delivered to me via
IP over the Internet to my Asterisk server behind a firewall. The voice on IVR
(Interactive Voice Response) sounded very much the way it does on a landline.

I entered my wife’s extension number, and the IVR responded with, “Please wait
while I connect your call.” My wife and I talked for a few minutes before hang-
ing up. Next, I tested the calling card extension and entered my boss’s mobile
number. It freaked him out when he saw my home number showing up on his
mobile when I was standing right next to him.

Telemarketers and Junk Faxes

As soon as I had network connectivity for my laptop, I wanted to check my
email and there were a few .wav voicemail attachments from the PBX. Upon
receiving voice messages, Asterisk would send a notification to email with an
attachment of the voicemail file. Clicking on the attachments allowed me to lis-
ten to the recording without dialing into the PBX. I was also interested in other
calls that I missed during the flight, and that’s when my PHP-based CDR (Call
Detail Record) report came in handy. Through Mozilla, I queried against my

12 ; L O G I N : V O L . 3 0 , N O . 1

PostgreSQL-based CDR and saw multiple entries of the same toll-free number.
Taking a closer look at the CDR, I suspected it was a telemarketing firm who
had made many attempts in the past few days but kept getting trapped in the
IVR menu until the telemarketing agent finally hung up.

Blacklisting such a telephone number would result in a fast busy signal by Aster-
isk upon receiving CID (Caller ID) matched calls. In most cases, my number
was removed from their database within two more attempts. Incoming faxes
could also be blocked with this technique, after identifying the CID from which
the junk originated.

Free Long Distance

Most hotels in the Bay Area offered complimentary high-speed Internet connec-
tivity, and I was looking forward to making free long distance calls over IP. I con-
nected my IAXy to the RJ45 outlet and moved the telephone in my room over to
the IAXy from the wall jack. Unfortunately, there was no dial tone when I picked
up the handset.

To verify that my problem was not related to the IAXy, I connected my laptop to
the network and soon found out that I needed to register to the hotel’s proxy
before using the high-speed connection. Knowing that I could not use the IAXy,
I started up iaxcomm (an IAX-based soft IP phone, http://iaxclient.sourceforge
.net/iaxcomm/) in Linux and used the microphone and speaker on my laptop to
chat with my wife. Unlike the toll-free calls I made earlier that cost me
$0.03/min, calls made with iaxcomm were completely free, even if I were to call
someone in Toronto with iaxcomm, since Asterisk was providing a bridge to the
PSTN. During the conversation, we noticed some acoustic echo issues, but these
were resolved when I switched over to a headset with a built-in microphone.

Dialplan

To demonstrate how Asterisk can be used to filter unwanted numbers (a.k.a.
“the ‘ex-girlfriend’ feature”), let’s examine the dialplan, stored in the file exten-
sions.conf. The Asterisk dialplan file consists of a collection of contexts. Each
context consists of a collection of extensions. The priority of an extension speci-
fies the order in which it is executed by Asterisk.

[context]
exten => <extension>,<priority>,<application>(<args>)

In the following example there are two contexts, [incoming] and [real_exten-
sions]. Extensions 100, 101, and 102 have been included by the [incoming]
context using the include command.

When the [incoming] context answers a call with extension “s,” it executes each
line of exten => s, according to the priority. It performs Caller ID number
matching. If there is a match, it plays a fast busy tone. If all matches fail, it
moves on to priority 30, plays the IVR greeting, and waits for a number to be
entered. If a caller enters 101, it will then ring my IP phone for 20 seconds
before passing the caller to the voicemail application with the unavailable flag,
“u.”

[incoming]
exten => s,1,Wait,1 ; Wait a little for CallerID
exten => s,2,Answer ; Asterisk answers the line
exten => s,3,DigitTimeout,5 ; Set Digit Timeout to 5sec.
exten => s,4,ResponseTimeout,10 ; Set Response Timeout to 5sec.
;
; Black listing numbers

; LO G I N : F E B R UA RY 2 0 0 5 VO I C E OV E R I P W ITH A STE R I S K 13

;
; Jump to priority 20 if CID matches, else goto priority 6
exten => s,5,GotoIf($[${CALLERIDNUM} = 18668493243]?20:6)
; Jump to priority 20 if first 6 digits of CID match, else goto priority 30
exten => s,6,GotoIf($[${CALLERIDNUM:0:6} = 647722]?20:30)
;
; Banned numbers
;
exten => s,20,Congestion ; Plays the fast busy tone
;
; Auto attendant says,
; “Thank you for calling, if you know the 4 digit extension . . . ”
;
exten => s,30,BackGround(ivr-greeting)
include => real_extensions
[real_extensions]
exten => 100,1,AGI,wakeup.agi
exten => 101,1,Dial(SIP/cisco1,20,Tr)
exten => 101,2,Voicemail(u101)
exten => 102,1,AGI,weather-station.agi

Conclusion

I’ve described a few of the interesting ideas that can be accomplished with
Asterisk and some programming. Most of these ideas are based on the Asterisk
dialplan and AGI (Asterisk Gateway Interface). While the dialplan handles
routing of calls through Asterisk, the AGI provides hinges for the logic to extend
beyond the dialplan with other programming languages. For rapid develop-
ment/deployment, most people use Perl and PHP to write AGIs. However, if you
are concerned about performance, you may want to execute only AGIs that are
written in C.

S T E V E N A L E X A N D E R

why teenagers
hack: a personal
memoir
Steven is a programmer for Merced College.
He manages the college’s intrusion detection
system.

alexander.s@mccd.edu

B R O W S I N G T H R O U G H S O M E O L D
issues of ;login: online, I came across the
“Point/Counterpoint” that Tina Darmohray
and Rob Kolstad wrote in April of 2002
about the possible culpability of the securi-
ty community in the hacking career of Ben
Breuninger, a.k.a. konceptor. (The young
man was invited to represent the “black
hats” at a computer conference in Orlando,
Florida.) Both their points of view are inter-
esting. I do agree with Rob that a twenty-
one-year-old ought to have known better.
But sometimes growing up is hard to do.

I don’t think anyone intended the 1998 conference to
be exploitative, but I can imagine the unintended
consequences it may have had. While the “good”
attendees may have encouraged Ben to pursue com-
puters in other ways, being funded to appear at the
conference must have stroked his ego fiercely.

I understand this because, unfortunately, I myself did
not start out on the right side. I straightened myself
out a long time ago, but for a while things were a little
different from the way they are now.

The dark side was very tempting because it offered
numerous benefits, both perceived and real, for a
teenager. It was rebellious and cool. It was empower-
ing to know more about computers and networks
than the adults around me; break-ins were a way of
proving this. Nobody my age cared that I could write
neat programs in assembly language or even cared to
know what the hell assembly language was.

Quake skills would win you a few friends, but my
computer couldn’t run the game, and I wasn’t particu-
larly interested in playing video games anyway. Hack-
ing?1 That was cool. Almost none of my peers under-
stood anything about the mechanics of it—what they
did understand was picked up from movies like
Wargames and (shudder) Hackers—but damned if I
wasn’t sticking a finger up at the authorities and the
system.

One of the worst aspects was the wild myths that sur-
rounded hacking. I once heard the insane assertion
that anyone who was able to hack MIT’s network
would be admitted into the MIT CS program. Stories
of companies hiring hackers for six-figure salaries
floated around here and there. Most unfortunately,
there is truth to some of the stories.

I think that it is important for adults to reach out to
young black hats and try to convince them to pursue
their interest in security through other means. One of

14 ; L O G I N : V O L . 3 0 , N O . 1

; LO G I N : F E B R UA RY 2 0 0 5 W H Y TE E N AG E R S H AC K 15

my high school teachers was instrumental in bringing me around. Sadly, many
adults are quite unhelpful.

I became interested in computers at 13, started hacking by 14, and gave hacking
up at 16; I had finally grown up enough to join the mainstream. I had skated
through my first two years of high school not trying to do particularly well. By
the time I was a junior, I knew that I wanted to go to college (yay!), major in
computer science, etc., and I knew what I needed to do to get there. The major
reasons that I quit hacking are that I no longer valued the popularity that it
brought me, I realized the consequences it might bring upon me, I came to
understand the stress and problems it was causing admins worldwide, and I fig-
ured out that I wasn’t really respected, just feared. In other words, I grew up.

The problem was that in about the second or third week of my sophomore year,
I had hacked my high school’s Web site. I got away with it—barely. My IP
address was logged. The school contacted my ISP. The ISP thought it was me but
said they couldn’t swear to it (I don’t know why; maybe the log times were
sketchy). They knew, I knew they knew, and I knew they couldn’t prove it.

Fast-forward a couple of years. I’m a high school senior. I’m assembling applica-
tions for various colleges. I’m pulling straight As, have strong SAT scores, AP
classes, etc. Two Windows NT servers crash in the middle of a Service Pack 3
install and someone decides to blame me. I’m pulled out of class, searched, have
a floppy disk confiscated, and am interrogated for three hours by three vice prin-
cipals. The computer I use at school is searched, but the only “bad” thing on it is
mIRC.

My stepdad and I met with three vice principals, two network admins, and a
police officer. One of the network admins explained that they knew that I had
been responsible, because the IP address of the computer I used in my program-
ming class was displayed on the trademark Blue Screen of Death when the
servers crashed (no, I’m not kidding). I wasn’t in the class with the suspect com-
puter when the “attack” occurred, but the theory was that I had written a pro-
gram to crash the servers at a certain time, then erase itself.

They never did settle on a technical explanation for the crash. The last I heard,
they suspected it was a one-megabyte IP packet (I’m still not kidding, and, no, I
have no idea who came up with the notion). Since I was officially in violation of
the school’s acceptable-use policy by having mIRC installed, I was banned from
using any school computer. Since I couldn’t use school computers, I was drop-
failed from my programming class and my networking class. My stepdad bought
the administrators’ reasoning, of course.

The networking class was a work-study class that had me working at a local ISP
(my ISP, the one that almost caught me!). Someone (one of the vice principals,
most likely) called the ISP and talked to my boss, the network admin. They
explained everything and laid out the “evidence” for him. The school suggested
that the ISP fire me. My boss, thank Joe Pesci,2 told them basically to go to hell.
As he put it, in rather unkind language, their admins were liars and idiots to
boot.

My point is that, while some professionals try to help talented youths apply their
skills in positive ways, other adults are not so reasoned in their approach.

These days I look at what happened as having been, for the most part, a karmic
kick in the ass. The whole situation did, after all, start with me doing things I
shouldn’t have been doing. But at the time, I was not encouraged to move over
to the right side. If it had not been for some very supportive people, primarily
my boss and my girlfriend (who is now my wife), I don’t think I would have
changed. My gut reaction was to grab my assembly manuals and write an
implacable, firmware-flashing bit of madness to wreak havoc throughout my
school district. It was hard to walk away.

16 ; L O G I N : V O L . 3 0 , N O . 1

It is unbelievably empowering to know that you don’t have to play by the same
rules as everyone else. I understand from the “Point/Counterpoint” article that
Ben Breuninger didn’t have a grudge against LLNL. I don’t think that mattered.
Hacking gives you the ability to exist outside the law (for a while). The risk is
relatively low, and you’re aren’t hurting other people in a way that is tangible, as
it is with other crimes. (Of course, those in the DoS business are looking to
cause tangible losses.)

I felt spurned by “the system” when I got into trouble. Before that, I felt empow-
ered. I think others also feel empowered by the respect and awe they are handed
and believe that they are placed above or outside the system because of it. Some
feel that the system will actually reward their transgressions if they prove them-
selves skillful enough.

I don’t think there is a lot that can be done once people who should have grown
up already act out and find themselves on the wrong side of the law. I am very
glad that I grew up before I met the fate others, like Ben, have suffered.

I think that hiring convicted or active hackers sets a terrible precedent. It rein-
forces the myths that make the dark side alluring. I don’t think that learning
from a teenage hacker or respecting his knowledge on technical matters is bad. I
do think these kids should be encouraged to do more productive things (kudos
to Rob on USACO in this context). Those who are caught young enough should
be both punished and steered in new directions.

The bottom line is, however, that some kids will not grow up. They will con-
tinue to make poor choices and to break the law. They will continue to value the
adulation of their peers and the myths of idiots over the well-reasoned advice of
adults and professionals, and there really isn’t a thing anybody can do about it.

1. Forgive me for using this in the media-driven rather than kernel-hacking sense.

2. See George Carlin’s You Are All Diseased.

R I K F A R R O W

musings
Rik Farrow provides UNIX and Internet security
consulting and training. He is the author of
UNIX System Security and System Administrator’s
Guide to System V.

rik@spirit.com

A C U R I O U S C O N F L U E N C E O F E V E N T S
has prompted me to renew my acquain-
tance with NFS security. For some reason, I
had allowed NFS to slip from my awareness
some time ago. Perhaps it was because the
problems facing those who wanted to use
NFS securely seemed overwhelming. Just as
likely, other new things that glittered and
shimmered with expectation grabbed my
attention, leaving the venerable NFS to sit
ignored in a corner.

But only by me. Many organizations rely on NFS,
including my friends at San Diego Supercomputing
Center. Elsewhere in this issue, you should find a tale
told by Abe Singer about the experience he and his
fellow workers had with an intrusion that began in
Spring of 2004. The intruder continued to abuse
SDSC systems for weeks and, at some point, took
advantage of old, known weaknesses in NFS to do so.

While in Atlanta teaching my class for LISA, I asked
how many people were using NFS in their organiza-
tions and was surprised by the result. I guess I had
been asking the same question in the wrong venues,
because lots of people indicated that they were using
NFS. That, coupled with listening to Brian
Pawlowski’s (Netapp.com) Invited Talk about the
future of NFS, really got me interested.

The Past

NFS started out at UC Berkeley and then was adopted
by Sun Microsystems. The concept of a network file
system didn’t start with NFS but had (at least) one
earlier, significant implementation. Apollo Domain
had a network file system, along with single sign-on,
unified user accounts, and home directories sup-
ported via the network file systems. You could log on
to any Apollo workstation and get your home envi-
ronment. While this may sound familiar, the underly-
ing architecture paid serious attention to security.
Apollo also had signed patches that could be centrally
installed by the system administrator. But I digress.

NFS security, ever since its beginning, had barely
existed. I won’t say it didn’t exist; that would be
unfair. And today, most organizations continue to use
the earliest form of NFS security, not because nothing
else exists, but because it is the lowest common
denominator and works on anything that supports
NFS.

; LO G I N : F E B R UA RY 2 0 0 5 M U S I N G S 17

In the past, NFS security took two forms: user identifi-
cation, and IP address–based access control. Let’s talk
about user identification first.

The user identification is called AUTH_UNIX, a some-
what misleading name, as AUTH hints at authentica-
tion, when there really is none at all. In AUTH_UNIX,
each Remote Procedure Call (RPC) request sent to an
NFS server includes the requesting user’s ID number
(UID). The UID gets assigned to your account via your
/etc/passwd entry associated with your login shell and is
used to signify ownership of files by being included in
file attributes (within inodes). You can see the UID and
GIDs (group IDs) associated with files when you use
the command ls -ln (the -n option suppresses the con-
version of UIDs to names).

NFS includes this very same UID, along with up to 16
GIDs, in each RPC request. The UID and GIDs will then
be used to determine access to files and directories on
the NFS server. Perhaps at this point you have dis-
cerned why I don’t call AUTH_UNIX authentication.
While a UID may be used to identify a user, it is not in
itself a form of authentication. Anyone who can mani-
pulate the RPC request can insert any UID he or she
wants. No authentication is required to do this. None at
all.

A Curious Tool

Back in 1991, Leendert van Doorn wrote a tool he called
the nfsshell. The nfsshell generates legal NFS client
requests, with the optional feature that the user of
nfsshell can insert the desired UID into any request. No
special privilege is required to use nfsshell—that is, you
can run nfsshell as an ordinary user and can easily mas-
querade as other users when accessing an NFS server.

Van Doorn, who now works for IBM (he is shown act-
ing as an antenna in his signature page, http://www
.research.ibm.com/people/l/leendert/), created nfsshell
to demonstrate the insecurity of AUTH_UNIX. You
can find a copy of nfsshell on Van Doorn’s Web page,
although you will need to find patches, and perhaps an
include file, if you want to get this working on Linux.

I configured an old Solaris system (2.7) to act as an NFS
server, then tested it using a Linux system. Then I fired
up nfsshell and started experimenting. Nfsshell worked
as advertised in that I could create a file on the NFS
server that could only be read by some other user,
change the UID with nfsshell to be the same as that
user, and read that file. The interface to nfsshell is simi-
lar to FTP or smbclient in general outline, and not at all
hard to use.

One saving grace to NFS that I should point out is that
by default UID zero, or root, gets mapped to -2 (user-
name “nobody,” by tradition). So changing the UID to 0

in nfsshell usually works worse than picking on some
other UID. Note that you can disable this safety feature
on your NFS server by exporting or sharing directories
and using the option anon=0. You really don’t want to
do this. You can use the root option with a list of host-
names if you really want to permit root access to spe-
cific systems. This feature was designed for diskless
workstations, pretty rare beasts these days.

At this point, NFS users should be either experiencing
shock or muttering to themselves, “I knew it was so.”
On a more practical note, you should be wondering
what you can do to add real security to NFS. After all,
this is a disaster, isn’t it?

NFS also started out with host-based access control.
That is, the person who configured the NFS server
could limit which clients could mount an exported
(“shared” in Solaris) file system. There have been loads
of problems with this scheme, some involving bugs,
others involving configuration errors, and many mean-
ing that file systems were exported to the world. Dan
Farmer and Wietse Venema’s SATAN scanner (1995)
alarmed the world when released, as well as alarming
NFS administrators when the tool would announce file
systems exported to the world.

Another problem with earlier versions of NFS is that
they relied on UDP for transport. UDP was chosen
because it is stateless and was quite a bit faster than
TCP back in the early eighties. UDP is also trivial to
spoof, making it easy to get around the host-based
access control, which relies on the IP address of the
client. NFS versions 3 and 4 support TCP instead of
UDP as the transport mechanism, and you can include
“tcp” in the options when you export or share file sys-
tems, forcing the use of TCP.

Host-based access control does not solve the problem of
authentication. For that, real authentication, based on
cryptography, is required.

Authentic

Even before Van Doorn’s nfsshell appeared, people were
concerned about the lack of authentication in NFS. Sun
Microsystems developed AUTH_DH, where DH stands
for Diffie-Hellman key exchange. (AUTH_DH used to be
called AUTH_DES, but I am using its more modern
label.) Instead of simply relying on a UID, AUTH_DH
uses Diffie-Hellman to exchange session keys for each
user. The session key is used to encrypt a pair of time-
stamps that are included in the RCP header. If the
decryption fails, or the timestamp falls outside a five-
minute window, then the request is considered unau-
thenticated.

AUTH_DH relies either on NIS to distribute public and
private keys or on the manual distribution of the

18 ; L O G I N : V O L . 3 0 , N O . 1

; LO G I N : F E B R UA RY 2 0 0 5 M U S I N G S 19

/etc/publickey file to all NFS servers and clients. Every
time a user changes her password, the public key file
must be updated, so practical use of AUTH_DH seems
to imply use of NIS as well. You can read more about
using AUTH_DH in O’Reilly’s Managing NFS and NIS.

Generic Security Services for RPC, or RPCSEC_GSS,
represents the emerging alternative to AUTH_DH. GSS
can support not only authentication but also integrity
and privacy, and support for all three have been added
to NFSv4 and in some cases are included in patches for
older versions of NFS. GSS can use multiple security
providers, with Kerberos v5 being the most common.

Setting up a Kerberos Domain is in many ways akin to
setting up NIS servers, in that you need secure systems
to run the Kerberos Distribution Center (KDC), as well
as slave servers for backups. I had hoped to torture
myself by setting up a KDC for this column but, fortu-
nately, ran out of time. If you have a Kerberos infra-
structure or have been moved by a real desire for NFS
security to set one up, by adding krb5 to the export or
share options, you can inform your NFS servers to per-
mit access only to NFS clients that can handle Ker-
beros v5 authentication.

NFSv4 is not limited to Kerberos support for authenti-
cation; it is also beginning to include support for SSL-
style authentication using LIPKEY/SPKM plugged into
the lower layers of GSS instead of Kerberos. The
advantage to SPKM is that NFS RPC requests can be
authenticated by installing public key certificates for
NFS servers or the CAs for those servers on client sys-
tems, similar to the way in which Web browsers
include certificates for signing authorities. Using SSL, a
session key gets generated and is used to sign RPC
headers. Once again, you can add real authentication,
but this time without setting up either NIS or Kerberos.

The downside to RPCSEC_GSS is that support for it is
still very thin. Sun Microsystems has both clients and
servers, and Kerberos support is included in newer
versions of HP/UX and with AIX 5.2 (with a requested
addition). But support in the Linux and BSD world is
not quite there yet. You can visit http://www.linux-nfs
.org and volunteer your efforts (or other forms of assis-
tance) or check out CITI for FreeBSD support
(http://www.citi.umich.edu/u/rees/). You can also read

more about the state of NFS security in Michael Eisler’s
presentation about it: http://www.nfsconf.com/pres03
/eisler.pdf.

There are other things you should do when using NFS.
When exporting directories, it is wise to disable the
use of set-user-ID and device files on the exporting
server. The options nosuid and nodev in the export or
share statement handle this and prevent a miscreant
who has gotten root on a server from creating an SUID
shell that will work on all systems that have mounted
the file system. Note that clients can use the same flags
when mounting remote file systems, disabling the use
of SUID and device files from a possibly compromised
remote system.

You might think that perhaps CIFS, Microsoft’s Com-
mon Internet File System, would be a more secure
choice. While it is true that CIFS (supported as Samba
on UNIX systems) does include real authentication, it
is not the same as NFS. For one thing, CIFS is oriented
toward added file shares for one user at a time. That is,
instead of mounting a file system for use by all users,
you instead mount a file share using a username and
password for one user. CIFS does not send plaintext
passwords across the network (unless misconfigured),
but the challenge-response pairs it does use can be
cracked and passwords guessed.

Microsoft responded to this threat by beginning to sup-
port (you guessed it) Kerberos v5 with Windows 2000.
Note that MS Kerberos v5 has some proprietary exten-
sions added to each ticket that are only of use (or inter-
est to) Microsoft systems. While MS Kerberos could be
used to support UNIX systems (as the additional cruft
will be ignored), the reverse is not true. Do you really
expect some self-respecting UNIX system to under-
stand the wacky, variable-length data structures that
Microsoft uses as Security Identifiers (SIDs)? Perhaps
some day.

So, sure, you can use CIFS instead of NFS. But really,
NFS with Kerberos support is just as secure, and more,
uh, UNIXy as well.

I wish I could say more, especially after having man-
aged to disturb at least some of my readers, but that is
the state of the art today.

20 ; L O G I N : V O L . 3 0 , N O . 1

T I N A D A R M O H R A Y

firewalls and
fairy tales
Tina Darmohray, contributing editor of ;login:, cur-
rently serves as Stanford’s Information Security
Officer. She is the editor of the Short Topics booklet
Job Descriptions for System Administrators and was a
founding member of SAGE.

tmd@iwi.com

T H E R E C E N T I S S U E O F A P O P U L A R
security rag had the following ad for a secu-
rity appliance inside the front cover: “If You
Believe Routers Can Secure Your Network,
You’ll Need Another Fairy Tale to Come True.”
This kind of sales and marketing FUD has
been used to hype the differences in security
products for years. With firewalls, in particu-
lar, there’s some historical background to all
the mud slinging which can give consumers
some market insight and savvy when shop-
ping for a solution.

Recall that the Internet was the outcome of a coopera-
tive research project. In its early days, the challenge
was to get and keep the computers talking to each
other. Many professional friendships were made
between humans at either end of the “next hop,” as
manual intervention and tweaking of routing tables
kept the Net humming. A spirit of cooperation perme-
ated the network, and guest accounts and remote
access were de rigueur.

In 1988 the Morris worm hit the Internet hard. It
marked the end of blind trust on the Net. Before the
Morris worm, professional gatherings focused on sim-
plifying administration and improving reliability of the
machines and the network that connected them. After
the worm, attention turned to securing the network as
well. Network administrators started cobbling together
network access controls. Increasingly, Net News dis-
cussions, BoFs, and conferences dealt with the new
focus on computer and network security. It became a
necessary evil.

Today’s booming computer security market masks the
early struggles of security-minded individuals. The
early implementers of network access control often
found themselves not just explaining the technology
but defending it as well, as they were perceived as
being counter to the spirit of cooperation that had
been the norm. Giving an invited talk on network
security was sometimes like volunteering to be the per-
son in the dunking booth at the local carnival!

Despite their unpopularity in the user community, fire-
walls were deployed one network connection at a time.
The earliest firewalls consisted of routers configured to
filter out packets destined for particular internal net-
work ports, thereby denying access to internal services.
To those managing the network connections, this was
an obvious countermeasure. The router hardware and
software already existed and was in place. All that had
to be done was to use an existing capability to imple-
ment a more secure stance.

Additionally, since the changes were made at the net-
work layer (layer 3 of the textbook 7-layer network
model), they were transparent to users’ applications. A
packet-filtering router yields a lot of bang for the buck.
Even simple access control lists (ACLs) can dramati-
cally enhance site security. And, as with all firewalls, the
“conservation of energy” is huge as you protect many
internal machines with a small set of perimeter devices.

A simple filtering router examines network packets for
source and destination IP address, source and destina-
tion port numbers, and protocol type. Using this infor-
mation, decisions are made to route or reject packets.
Administrators choose the ports to be forwarded or
dropped based on the way that ports are assigned to
applications. A UNIX kernel reserves ports < 1024 for
privileged processes; it randomly assigns ports 1024
and above, as needed, to processes that request them.
The reserved ports are conventionally assigned as “well-
known ports” with a particular service being associated
with a particular port number. Thus, rejecting packets
destined for a particular well-known port translates
into filtering out the corresponding service. For exam-
ple, rejecting all traffic to TCP port 23 is intended to
disallow Telnet connections. Similarly, rejecting traffic
for TCP port 80 would disallow HTTP connections, and
so on. (For a list of well-known ports and their assign-
ments, see http://www.iana.org/
assignments/port-numbers.)

Simple packet filters provided a cheap and easy security
solution, but the debate had just begun. Many argued
that they didn’t provide enough protection. Like most
security solutions, firewalls are about narrowing the
window of opportunity for intrusion. Critics pointed
out that packet-filtering firewalls innately fell short of
application-level firewalls. For the most part, the criti-
cisms focused on the tenuous binding of port numbers
to applications. Recall that this binding is based on the
UNIX convention of assigning ports. This is not a stan-
dard that must be rigidly adhered to, but a convention,
a traditional way of doing things. To that end, there’s
nothing stopping someone from running a service on a
different-than-expected port and thereby slipping
around the packet filter. The most common example of
this is the abuse of the high-end ports, numbered 1024
and higher. These ports must be allowed through static
filters in order to accept the return traffic of internally
initiated connections.

My favorite story on this subject concerns a battered
university administrator who implemented a few sim-
ple packet filters to disallow some of the most danger-
ous services, like inbound Telnet. Predictably, the stu-
dents rebelled and publicized their own version of the
well-known port assignment convention, with Telnet
found on the port number matching the last four digits
of someone’s telephone extension. Most of the new port

assignments were > 1024, and glided right through the
packet filter, much to the dismay of the security-
minded network administrator.

The critics of packet-filtering firewalls usually fell in the
application proxy firewall camp. They argued that
proxy firewalls are more secure because, since they
work at the application layer, they could examine the
payload of the packet, enabling them to be protocol-
specific. They could also authenticate traffic at the user
level. However, in those early firewall days, purists who
felt that packet filters just weren’t secure enough were
forced to build their own proxy firewalls, since there
were none commercially available at that time.

Writing proxy firewalls isn’t for everyone. There’s real
coding involved and, since it’s for security purposes, it
better be well written and torture-tested. That’s too tall
an order for many system administrators, so packet fil-
ters remained a popular alternative. However, some
able and willing administrators took the time to write
proxies. A few of those early efforts were the DEC
SEAL, SOCKS, and the TIS Firewall Toolkit. The latter
two played a key role in what happened next in the evo-
lution of firewalls.

When SGI acquired MIPS one afternoon in 1992, the
MIPS proxy firewall named SOCKS1 became publicly
available. Finally, a proxy firewall was available to the
masses. SOCKS was written by David Koblas, a system
administrator for MIPS Computer Systems. It is an ele-
gant solution, ultimately providing a mechanism to
protect internal systems by means of transparent prox-
ies that operate at the TCP protocol level.

However, there was a hitch. The transparency came at a
price: Software needed to be deployed on each client
computer. While this was reasonable for the small
homogeneous MIPS Computer network, it can be logis-
tically prohibitive on any large-scale network with mul-
tiple OS platforms.

In 1994, the White House was shopping for a vendor
who could get it onto the Internet securely. Marcus
Ranum, then of Trusted Information Systems (TIS), was
up to the task. He brought up whitehouse.gov and in
the process developed the TIS Firewall Toolkit
(FWTK). The FWTK proxies actually implemented a
secure subset of the most common network application
protocols. Because his work was funded with taxpayer
money, Marcus decided to release a version of the
FWTK to the Internet community. The release wound
up being an ingenious marketing move that gained a
huge following for the TIS technology. It
didn’t require any software modifications on client sys-
tems and therefore ran quite easily in heterogeneous
environments. But the lack of software mods came at
the price of transparency to the users. Users were
exposed to the “double hop” it took to get out of the

; LO G I N : F E B R UA RY 2 0 0 5 F I R E WA L LS A N D FA I RY TA L E S 21

network via the proxy firewall. For example, to Telnet
outbound from the protected network, a user would
Telnet to the proxy server and then issue the command
to connect to the final destination.

While functional, this wasn’t nearly as elegant as the
entirely behind-the-scenes connections that transpar-
ent proxies like SOCKS made on the users’ behalf. A
further drawback to the true application proxy
approach was the necessity of providing a specially
coded proxy program for each protocol that was to tra-
verse the firewall. With the rapid proliferation of pro-
tocols in the latter half of the 1990s, proxy firewall
vendors were forced to play a continuous game of
catch-up. So proxy firewall fans were left to port code
or provoke users, with no real alternatives in between.

Meanwhile, vendors began to warm up to the emerging
firewall market. Livingston Enterprises was among the
first to market routers as firewalls. They heeded Brent
Chapman’s call for more security functionality and
implemented the features he outlined as being critical
(and missing in most vendors’ routers).2

At the time, and for a good while after Livingston’s
early entry into the firewall market, leading vendors
such as Cisco didn’t provide the increased functional-
ity that industry spokesmen like Brent were calling for.
Cisco eventually caught up, but their slow market
entry was a black eye for them with the security enthu-
siasts for years, and a soft underbelly on which proxy
firewall proponents hammered.

Probably the most innovative of the early vendor
entries in the market was Checkpoint’s stateful packet-
filtering firewall. Checkpoint introduced a packet-fil-
tering product that considered connection-state infor-
mation when deciding to pass or drop traffic. Tracking
connection state (including “virtual” connections for
nominally connectionless protocols like UDP) enables
you to permit traffic to pass through the packet-filter-
ing firewall only if it is associated with a connection
you’ve explicitly approved, such as the data connection
of an FTP session, or the UDP response to a DNS
query. Checkpoint also introduced dynamic packet fil-
tering, which opens only the ports you need at the
time you need them. So, for example, if you need to
permit traffic on a high-level port in response to an
outbound connection request, that port is allowed, but
only for the duration of the connection. These two
major improvements to vanilla packet filtering really
raised the security bar for packet-filtering solutions.

Aside from these early breakthroughs, there hasn’t
been a huge change in the bottom line of firewalls in
more than a decade: packet-filtering firewalls look at
layer 3 information, while proxies are able to inspect
the actual content of the packets. Once you open the
payload portion of the packet, you can make decisions
on that content as well, e.g., on user identity or
whether the data matches the kind of bits that should
be associated with a specific protocol. Beyond that,
though, most of the “new” entries into this market
space are just new marketing variations on the old
theme. Eventually the commercial version of the Fire-
wall Toolkit, Gauntlet, developed transparent proxies
and incorporated packet-filtering features to respond
to its perceived failings. Packet-filter vendors added
the ability to filter on packet payload. And everyone
moved toward “appliance” firewalls and Web GUIs for
administration.

TIS’s Gauntlet and the Livingston Firewall router are
gone, and a horde of new names have taken their
place. The mainstream commercial firewall products
available today are actually hybrids of the packet filters
and application proxies first developed in the early
1990s. “Deep Inspection” firewalls are just packet fil-
ters that are going a little further up the stack than tra-
ditional packet filters. “Intrusion Prevention” devices
are usually combinations of signature-based intrusion
detection systems and traditional firewall technology
that shut down connections based on patterns in their
payload, in addition to making decisions based upon
ports or protocols.

What is true is that solutions continue to merge, as
each of the two primary areas takes a little more from
one or the other and incorporates it into its baseline. A
close look at the new marketing rarely reveals actual
new technology, though.

Next time you see a new firewall advertisement, take a
step back and analyze the claims through the lens of
history before you decide to fear or to fantasize that
fairy tales have come true.

1. D. Koblas, “SOCKS,” Proceedings of the Third USENIX
UNIX Security Symposium (Baltimore, MD: USENIX Associa-
tion, September 1992).

2. D. Brent Chapman, “Network (In)Security Through IP
Packet Filtering,” Proceedings of the Third USENIX UNIX
Security Symposium (Baltimore, MD: USENIX Association,
September 1992).

22 ; L O G I N : V O L . 3 0 , N O . 1

S T E V E N A L E X A N D E R

the importance
of securing
workstations
Steven is a programmer for Merced College.
He manages the college’s intrusion detection
system.

alexander.s@mccd.edu

S E C U R I N G W O R K S TAT I O N S I S A S
i m p o r t a n t as securing servers. Even so,
the security of workstations is often
ignored, because servers are individually
more important.

Eyes on the Prize

Most of the attention given to computer security by
system and network administrators focuses on servers
and network devices. Allocating the bulk of a net-
work administrator’s resources to these systems
makes sense, since a failure or security breach in one
of them has the furthest-reaching consequences.
Some recent privacy laws (such as SB 1386 in Califor-
nia) require the disclosure of security breaches where
personal information may have been disclosed. Such
laws are likely to reinforce the focus on server secu-
rity. It is important, however, to implement and main-
tain comparable security measures for workstations.

Much of the attention given to PC security has
focused on viruses, worms, and spyware, since such
malware can affect productivity. Unfortunately, too
many organizations fail to consider the other threats
to PC systems and the consequences of a successful
security breach by a person, rather than by a random
automated attack.

Some of the most lucrative targets for data thieves are
large database servers, but workstations also contain
valuable information (including passwords for
servers). It is important to note that not all worksta-
tions (or servers) are created equal. It may only be
necessary to implement minimal security measures in
a computer lab at a college or university—provided,
of course, that the lab machines are kept separate
from the rest of the network. The machines in a com-
puter lab have little information that is of value to an
attacker. Of course, an attacker can still use the
machines to launch other attacks, trade pirated soft-
ware, or snoop on a student checking his email. On
the other hand, a workstation belonging to someone
in the human resources or payroll departments might
be a worthwhile prize by itself. Such systems often
contain an abundant amount of valuable information
which, if compromised, might lead to an embarrass-
ing public disclosure with financial consequences.

Employees in different areas of an organization might
have many sorts of valuable information on their
workstations, including payroll and tax information,
company financial data, strategic and planning infor-
mation, confidential memos, and more. To make mat-
ters worse, access to this data is harder—if not impos-

; LO G I N : F E B R UA RY 2 0 0 5 S E C U R I N G WO R KSTATI O N S 23

24 ; L O G I N : V O L . 3 0 , N O . 1

sible—to audit than is access to a centralized database server. Encouraging
employees to store as little as possible on their own workstations might have a
small positive effect, but such efforts can be obstructed by real-world needs, as
well as by the fact that an attacker is likely to gain access to the same centralized
resources as the owner of a compromised machine.

IT departments can also pose a major risk. Not only do programmers and other
IT employees often have valuable data on their machines, their other duties
often introduce extra security risks. It is not unusual for IT staff to run a wide
variety of applications, test out new third-party software of various sorts, and
test internally produced software. This software, particularly if it is a networked
application, can be a security risk. In larger IT departments, the job responsibili-
ties of individual employees might be well separated (though not necessarily),
but in small departments employees are often required to take on responsibili-
ties that might properly belong to several different positions. Part of this prob-
lem can be alleviated by using separate machines to test software, but too often
this is not an option.

The security of an individual workstation is unlikely to be as important as the
security of many of the servers in an organization. The security of all worksta-
tions together, however, might be as important as the security of all servers.
While an individual server can hold more data, breaking into a workstation is
often easier and may provide a larger reward for the effort expended. It may also
be used as a foothold to a larger system.

Building Secure Systems

It is essential to secure new machines and to put management and patching pro-
cedures into place before giving the machines to employees or connecting them
to the network. The folks at the San Diego Supercomputing Center have done
some admirable work in this area. Abe Singer’s “Life Without Firewalls” dis-
cusses this work and is required reading.1

All new systems should be fully patched, and automated patching should be set
up. Windows Automatic Update can be useful, but many administrators (partic-
ularly in larger organizations) would do well to use Microsoft’s SUS (Software
Update Services) or SMS (Systems Management Server). Antivirus software
should be installed on all Windows machines; it is less of a concern for other
platforms. Anti-spyware tools should be used as well.

Additional security measures must also be put into place on each workstation.
Unnecessary services should be turned off, default accounts should be disabled
or the passwords changed, etc. Most of the “best practices” applied to servers
apply to workstations. The Center for Internet Security has published useful
guides for Linux, FreeBSD, Solaris, Windows, and other systems.2

Open source systems should use buffer overflow protection. Many books and
articles about security say little, if anything, about this. They should! The
amount of protection used depends on the requirements of the system and on
considerations such as performance. Compiler patches such as StackGuard and
ProPolice/SSP provide good protection with a minor performance impact. The
addition of OS-level protection such as PaX and W^X provides much better
security but at a higher performance cost. The SmashGuard Web site has infor-
mation about several buffer overflow protection mechanisms.3 Information
about W^X is available from the OpenBSD site.4

The NSA has produced guidelines for Windows 2000 and XP.5 The recommen-
dations are somewhat restrictive, so most administrators would do best to study
the NSA and CIS suggestions and then develop their own policy. Pay attention
to network logon rights, terminal services access, and remote registry access

; LO G I N : F E B R UA RY 2 0 0 5 S E C U R I N G WO R KSTATI O N S 25

even if host firewalls are used. Windows administrators should also study the
new features available in Windows XP Service Pack 2. The Windows XP firewall
is not very flexible but is adequate for many networks and, if manageable, it
should be used. Once a reference system has been constructed, new machines
can be built using tools such as Ghost or Altiris to clone them. Reference config-
urations can be maintained on UNIX using cfengine.

In most circumstances, users should not be given full administrative rights to
their own machines. The more privileges a user has, the more likely that person
is to use those privileges to circumvent security measures. What an administra-
tor sees as necessary the user may see as irksome. If users must be given local
administrative rights (more common in academic than business environments),
measures can be taken to restrict certain prohibited software (such as Kazaa or
edonkey). There are a number of ways this can be accomplished; for instance,
software can be restricted directly using MS Group Policy and indirectly by pre-
venting network traffic using firewalls. Tools such as Altiris can be used to
inventory the software installed on workstations throughout the organization.

Data loss is important to consider. It can come about through an intelligent
attack or by simple hardware failure. Network storage can be used to mitigate
this problem. Each user should have his or her own folder on the network,
which can be used as a repository for important documents and data. The user
folders should be backed up regularly.

Network Security

Firewalls have taken a beating at the hands of several security experts in the past
few years. One of the major reasons is that many people (technical folks as well
as managers) think that firewalls are a cure-all; instead, because of the way they
are used, they become a palliative. Many people think it is okay to put a firewall
on the border of a network, ignore everything on the inside, pat themselves on
the back, and announce, “We’re secure. We have a firewall.” Shame on them!
May they find themselves in the company of a BOFH and an empty tape safe.

Firewalls do not (and never will) block out all of the bad traffic while allowing
well-intentioned, legitimate users to access the network. Firewalls can be used
to restrict the types of traffic that are allowed through, though, thus narrowing
the window of vulnerability. By enforcing certain restrictions, firewalls require
attackers to have a greater degree of skill or luck in order to launch a successful
attack. Often, as is the case for much of what I discuss here, the firewall is a
router with packet-filtering capabilities.

Firewalls should be used at the border of a network to prevent or hinder recon-
naissance and to prevent access to services and machines that should not be
accessed from outside the network (such as internal DNS and FTP servers).
Most (but not all) ICMP traffic should be blocked, thus preventing a lot of
reconnaissance activities. Unfortunately, blocking all ICMP breaks things. For
instance, many administrators have caused problems by blocking the “fragmen-
tation needed” ICMP packets that are required by Path MTU Discovery.6 Certain
services that must be accessible to the outside should be placed on a screened
subnet so that a compromise of one of them poses less of a threat to the rest of
the network.

Critical divisions within the network should be separated from each other.
Departments should be logically separated and traffic between them controlled.
Whenever possible, a user should be unable to use his or her workstation to
access workstations of users in other departments. If collaboration is required
between departments, shared storage should be set up on a server that members
of both departments can access.

26 ; L O G I N : V O L . 3 0 , N O . 1

Separation can be achieved in a number of ways. VLANs can be used but have a
number of issues.7 Firewalls are more flexible but can be difficult to configure
correctly. The problem with firewalls is that IP addresses are unauthenticated.
Just because an incoming IP address matches the one used by Debbie Sipiyae in
Accounting doesn’t mean that the packet wasn’t generated by Joe Student in the
computer lab. Vulnerability to IP spoofing can be mitigated by using ingress and
egress filtering. This filtering should be used at the network border and between
segments within the network. This won’t prevent all address spoofing, of course;
a user in Accounting will still be able to spoof the address of someone else in
Accounting, but he shouldn’t be able to use an IP address that belongs to Mar-
keting, HR, or IT.

System administrators may need to access workstations throughout the organi-
zation. If possible, this access should be restricted to certain administrative
workstations and servers rather than allowing all IT personnel to have this net-
work access. Because administrators require such open network access, system
administrators (and possibly support staff) should be placed on a different net-
work segment from other IT staff (such as programmers), who do not need
unfettered access to the rest of the network.

When a workstation is compromised, the accounts of the users who use that
workstation are usually compromised as well. Furthermore, access to one sys-
tem on a network is often used to gain access to others systems and accounts.
These risks are greatly reduced by not using plaintext passwords and by using
solid password encryption. Abe Singer wrote a ;login: article about eliminating
plaintext passwords,8 and I talked about password encryption in another ;login:
article.9 Many system administrators still seem to believe that sniffing is difficult
or impossible on switched (as opposed to hub) networks, but this is not so.10

Conclusion

The importance of information does not vary according to the machine the
information resides on. A file containing names and social security numbers is
just as valuable whether it is stored on a highly secure file server or a Windows
PC. Owing to the fact that administrators do not know in advance what infor-
mation will be used or stored by each of the users of an organization, the secu-
rity of each user’s machine should be as strong as possible.

REFERENCES
1. Abe Singer, “Life Without Firewalls,” ;login:, vol. 28, no. 6, December 2003, pp. 34–41.
See also Singer’s “Tempting Fate” in this issue.

2. Center for Internet Security, http://www.cisecurity.org/.

3. SmashGuard, http://www.smashguard.org/.

4. OpenBSD, http://www.openbsd.org/papers/.

5. NSA Information Assurance, http://www.nsa.gov/ia/.

6. Richard van den Berg and Phil Dibowitz, “Over-Zealous Security Administrators Are
Breaking the Internet,” Proceedings of the 16th Systems Administration Conference (LISA
’02), November 2002, http://www.usenix.org/publications/library/proceedings/lisa02/tech
/vanderberg.html.

7. Rik Farrow, “Network Defense: VLAN Insecurity,” March 2003,
http://www.spirit.com/Network/net0103.html.

8. Abe Singer, “No Plaintext Passwords,” ;login:, vol. 26, no. 7 (November 2001), pp.
83–91.

9. Steven Alexander, “Password Protection for Modern Operating Systems,” ;login:, vol.
29, no. 3 (June 2004), pp. 23–33.

10. Dug Song, “dsniff,” http://monkey.org/~dugsong/dsniff/.

A B E S I N G E R

tempting fate
Abe Singer has been a computer security researcher
with the Security Technologies Group at the San
Diego Supercomputer Center for the past five years.
His work has involved growing SDSC logging infra-
structure and analysis capabilities, participating in
incident response and investigation, and working
with the TeraGrid Security Working Group. Mr.
Singer, with Tina Bird, is the author of Building a
Logging Infrastructure, SAGE Short Topics booklet
#12. Mr. Singer’s current research is in automation of
syslog parsing and analysis toward data mining of
logs for security. In addition to his work at SDSC, Mr.
Singer is an occasional consultant, expert witness,
and lecturer. Prior to SDSC, he was a consultant for
several years and a programmer and system admin-
istrator for over 15 years.

abe@sdsc.edu

I N T H E D E C E M B E R 2 0 0 3 I S S U E O F
;login: I wrote an article called “Life Without
Firewalls” in which I talked about how we
do security at SDSC, why we do not use fire-
walls, and how we have been very success-
ful at keeping out intruders.

If I were superstitious, I’d say I should have known
better than to tempt fate. In the Spring of 2004, SDSC
had an intrusion that gave us a pretty good amount of
grief.

Rik Farrow suggested that I call this article “Eating
Crow,” but I stand by what I said in my previous arti-
cle. The intrusion was successful only because we
didn’t follow our own rules well enough. Our strategy
helped us detect the intruder quickly and reduced the
scope of the intrusion (it could have been much
worse, and for some other sites it was). Eight of our
hosts (out of several hundred) had root compromises;
moreover, the intruder was able to modify user-
owned files on one of our NFS servers. Our reference
system model allowed us to have the compromised
hosts reinstalled and up and running in less than two
hours each—we didn’t have to think twice about rein-
stalling a host.

As for our lack of firewalls, in this case a firewall
would not really have helped (as I’ll explain below).
In fact, shortly after the attacks, Marcus Ranum sent
me an email saying simply, “Living without Firewalls .
. . ;-),” so I explained what happened, to which he
responded, “aw crap, transitive trust, gets ’em every
time.”

So I’ll explain how our intruder got it, where we
failed, and how our security strategy helped mitigate
the problem; I’ll also talk about what we’ve learned
and what we’re doing differently. I’m going to be
deliberately vague about some things, to protect the
privacy of some of the people who have been compro-
mised and because the intruder is still actively attack-
ing sites.

Beginning in December 2004, we started hearing
about compromises at other sites. The intruder had
gotten root on some machines and had installed a tro-
janed SSH client, which he used to gather usernames
and passwords to other sites as users logged on to the
compromised hosts and then SSHed into remote
sites.1

The intruder would then log in to a user’s account at
the remote site and look around for ways to compro-
mise the host or any other host at the remote site.

; LO G I N : F E B R UA RY 2 0 0 5 TE M P TI N G FATE 27

By March 2004, we knew of several sites that had com-
promises. Tina Bird published a bulletin which
described the activity at Stanford and elsewhere.2

One morning in late March I received an email from one
of our systems about a failed sudo attempt by one of our
sysadmins (our version of sudo sends email to root
when it fails). A quick phone call verified that it indeed
was not the sysadmin. The host on which this happened
was the host we use to manage the rest of our
machines—those machines allow root rsh from the
management host so that we can automate configura-
tion of multiple hosts (this was described in my previ-
ous article). Of course, this definitely got our attention.

A quick check of logs found an rlogin3 to that account
from a workstation. A ps on that workstation showed a
root-owned process called “foosh”—definitely a bad
sign.

The process disappeared within minutes of our looking
at the host. We believe the intruder had spotted us and
decided to leave.

A check of the logs showed a particular user logging in
(via SSH) to one of our workstations from a remote site
with which we collaborate, and within a minute that
user logged in again from a cable modem somewhere in
the Pacific Northwest. Following immediately were
logins from the workstation to every other system on
which the user had an account (and numerous failed
attempts on hosts where the user did not have an
account).

Our logs also showed, shortly after the rash of logins,
that root was su’ing to several users, including the
user who had initially gotten my attention. The tty from
which the su’s were executed corresponded to one that
the suspected user had logged in to, and that user didn’t
have any privileged access. This was our indication that
the intruder had definitely gotten root on a host.

Various log entries gave us a clue about what the
attacker was doing. He had managed to get root on a
system and had done some investigating to determine
who might have privileged access. We think he looked
at things like who was in the root group, the SSH
known_hosts file, etc. He targeted our management sys-
tem, which only has accounts for those users who need
it. Thus, he needed an account on that host for which
he didn’t already have the password. He picked a user
who had access and su’ed to that user in order to be able
to rlogin to the management system. Once there, the
intruder apparently tried sudo, hoping to take advan-
tage of cached sudo credentials, which failed.

So how did the intruder get root on the first host? We’re
pretty sure he used a local kernel exploit. We had
patched the host but had not rebooted it, so the patch
had not actually taken effect (Mistake #1). We figured
this not only from our knowledge of the patch state of

the host, but because the intruder placed an executable
in a user’s home directory and modified the user’s .cshrc
to try to run the binary anytime that user logged in to a
Solaris box. The intruder was trying to get users to root
boxes for him. Fortunately, the intruder wasn’t very
good at writing shell scripts, as there was a syntax error
in the .cshrc file.

The logs also showed the intruder trying things like
putting a “+” in .rhosts (which is disabled on our hosts
and is logged when an rlogin is attempted). We found
keys added to various users’ .ssh/authorized_hosts file.
Process accounting also showed the intruder running a
program called “n,” but he had erased his tools before
logging out, so at the time we didn’t know what it was.

We rebuilt the machine and rebooted others that had
the same patch applied. We checked all users’ author-
ized_hosts and .rhosts files to make sure there were no
other accounts accessible. We changed the password for
the known compromised account.

I also called the site from which the compromised user
had originally logged in—where the password had been
intercepted—to let them know they probably had a
compromise. They called me back a couple of hours
later and confirmed that they had been owned.

A couple of days later, we found some modified auth-
orized_keys files again and discovered that another
Solaris host was compromised. This host was not vul-
nerable to the same exploit that had been previously
used, so the intruder had another exploit. This host had
also been patched but not rebooted. We did a lather,
rinse, repeat—reinstalled and rebooted hosts that
needed it. This host was also a Solaris 8 host, as was the
first host compromised, so we decided that all Solaris 8
hosts needed to be patched and rebooted (Mistake #2).

That weekend we discovered the intruder had gotten
root on a Solaris 9 box. We then realized we needed
to make sure all of our hosts were fully patched and
rebooted. Machines were carefully rebooted one by
one to make sure they came up okay, and at midnight
a few hosts that ran special applications were left for the
sysadmins who administered them to reboot (Mistake
#3).

The next morning, before the machines had been
rebooted, the intruder got root on another host, su’ed to
yet another user, and sent an email out to every email
address at SDSC and UCSD that he could find, with
some rather rude ASCII art and some typical script-kid-
die language, talking about how great he was and what
losers we were.

That was embarrassing, but we were able to recover,
reinstall the host that was compromised, reboot every-
thing, and make sure all our patches were up to snuff.

28 ; L O G I N : V O L . 3 0 , N O . 1

After that, we did not discover any more root compro-
mises on our Solaris or Linux hosts (I’ll qualify that
with “that we could detect”). News of the various intru-
sions spread, and we started getting calls from the
press. A spokesperson was appointed to deal with the
press. He was quoted as saying that the attacker had
only gotten a few perimeter systems and had not gotten
at our infrastructure (Mistake #4), which was true at
the time: A few workstations had been compromised,
but our file servers were intact, and we had no indica-
tion that the intruder had gotten onto any of those
hosts (although we did have some indications that he
tried).

The day after the newspaper article came out, the
intruder got root on the login node of one of our super-
computers, did a “wall” to all the users with some more
ASCII art, and did a “shutdown” on the host. In the
“wall” message, he quoted the part of the news story
about not getting at our infrastructure and claimed that
this shutdown was proof that he had actually gotten at
our infrastructure. We believe the intruder exploited an
unpatched FTP server that shouldn’t have been running
on the host in the first place (Mistake #5).

So that system was taken offline. It was due to go out of
production in a few weeks anyways, so we just left it
offline.

Somewhere in the mix of this, I received a call from
someone at another university. They had found John-
the-Ripper running on a cluster of theirs, with what
appeared to be a fragment of our shadow password file,
including my encrypted password. He sent me a copy,
and I was able to confirm that it was indeed my pass-
word.

Thus, we also knew that the intruder was cracking
passwords in addition to running trojaned SSH clients
at other sites.

When we took down the supercomputer, we also
changed passwords for all users (several thousand) and
audited our other supercomputers to make sure that
there weren’t signs of a compromise.

From then on, things calmed down. We continued to
see the intruder log in to compromised accounts (even
with the password changes), but no sign of root com-
promise. This was an acceptable state, not a great state,
but we could live with it; our big concern was root
compromise and compromise of our infrastructure—
the file servers, DNS servers, and such.

I then received a call from someone at yet another uni-
versity. He had found what appeared to be a copy of my
email inbox. He gave me the header timestamps from
the first and last message, and they corresponded to
messages in my inbox. And the dates were from a cou-
ple of weeks after we had cleaned everything up. We
had no idea at the time how the intruder had accessed

it—there were no signs of root compromise anywhere.
And we didn’t know how my account could have been
compromised, as I had not logged in from other sites—
had not left credentials available for use—and the logs
did not show any suspicious logins to my account. A
log message showed some more failed attempts to use
“+” in my .rhosts file, but we didn’t know how it had
been put there. The assumption was that my password
had somehow been compromised. So I changed all my
credentials and started logging in only from my laptop
using an SSH private key that had never left the laptop.
(It’s a Mac OS9 laptop, so I felt pretty good about the
integrity of the OS.)

Finally, a few weeks later, we figured out how the
intruder had done it. We had heard of a well-known
tool called nfsshell4 that the intruder had used at some
other sites, and so we tried it at our site. It worked. The
nfsshell tool exploits NFS servers that allow clients to
send mount requests from an unprivileged (“high”)
source port. And once a file system is mounted, there is
no validation of the UID used in NFS file operations. In
other words, nfsshell allows an unprivileged user to
mount a file system and then read and write files using
any UID. Since we squash root access via NFS, the
intruder was unable to write files as root, but was able
to write to files owned by any other user. So that’s how
he was able to stick SSH keys into authorized_keys
files, and how he got at my inbox, etc.

While we were looking at this problem, but before we
could react with a fix, the intruder decided to erase a
couple of home directories. At that point we took SDSC
off the Internet until we could remedy the situation.

It turns out there was a simple kernel parameter that
had to be set to disable unprivileged ports, and that
parameter had not been set. nfsshell is a very old ex-
ploit, and our previous server had been immune; we
had made the assumption that the new one was equally
immune (Mistake #6).

We fixed the file server, cleaned up, and brought SDSC
back online.

Since then, we continue to have the occasional user
account compromise, but no new root compromises.
We have seen the attacker come back and try the same
exploits, with no success.

Based on our lessons learned, we have changed a few
things at SDSC: We have shortened our patch cycle (it
was about a month long), and reboots get priority over
uptime. We have implemented two-factor (token-
based) authentication on our critical infrastructure
machines, as the only people who have to access those
are system administrators.5

So now you’re probably wondering why I stand by my
previous article and why I say a firewall would not have
helped. If we had had a firewall, we would have had to

; LO G I N : F E B R UA RY 2 0 0 5 TE M P TI N G FATE 29

30 ; L O G I N : V O L . 3 0 , N O . 1

allow inbound SSH, so that our users could log in. The
intruder used the same access mechanism our users
do, often from the same outside hosts.

Second, as I indicated at the beginning of this article,
we mostly were owned because of things we should
have been doing. It does show, however, that doing it
right is hard. You have to, well, do all of it right. If we’d
had our machines fully patched and rebooted, the
intruder probably wouldn’t have gotten root, at least
not with the techniques that we saw him use.

Also, many of the things we do mitigated the extent of
the compromise. For instance, squashing root and set
on our file servers kept the intruder from creating
setuid-root files and running them on other hosts.

Having Kerberized sudo kept the intruder from getting
sudo privileges, even when he managed to obtain a
user’s password. Having a separate set of credentials for
privileged access is definitely a Good Thing.

Our centralized log server allowed us to look at log
activity across hosts and provided assurance that we
had a good copy of log information, even if the
intruder erased or altered logs on the compromised
host.

And having reference systems allowed us to recover
quickly. Our Solaris hosts take a couple of hours to
reinstall, mostly unattended (it takes a while for a new
host to install all of its patches). Our Linux hosts take
around half an hour.

We fared better than some other sites. For instance, we
know of one site that allowed root logins via SSH for
sysadmin purposes. The intruder owned the worksta-
tions that the intruders were using to manage other

systems, and from there just got the root password.
Another site that we know of did not have root
squashed on their NFS server, so the intruder was able
to create setuid-root programs from one host and then
log on to another host and run the program. Yet
another site had to rebuild all of their compromised
hosts by hand—they had not automated the process.

Some lessons we learned about intrusions: Never
underestimate the capabilities of your attacker. Assume
your communications are being monitored. Don’t
taunt the animals. And reboot everything.

REFERENCES
1. In the academic community this is a very common prac-
tice; organizations are involved in collaborative activities,
researchers may be at one institution and be using the facili-
ties at another, etc. In fact, most of SDSC’s several thousand
users are located at other institutions, as our business is to
provide computing resources to researchers.

2. Stanford University Information Technology Systems and
Services, “Security Bulletin on Multiple UNIX Compro-
mises,” http://securecomputing.stanford.edu/alerts/multiple-
unix-6apr2004.html.

3. I often get funny looks when I mention using rlogin. We
only allow r-commands between hosts that we manage, and
we only allow managed hosts on the networks that this traffic
travels over. So spoofing tcp connections requires access to
the local network.

4. nfsshell, ftp://ftp.cs.vu.nl/pub/leendert/nfsshell.tar.gz.

5. I still believe that token-based authentication is too much
of an expense (not just the hardware costs, but the support
overhead) to do for all users, but it’s appropriate for those
who have privileges.

R O B E R T H A S K I N S

ISPadmin
Robert Haskins has been a UNIX system administra-
tor since graduating from the University of Maine
with a B.A. in computer science. Robert is employed
by Renesys Corporation, a leader in real-time
Internet connectivity monitoring and reporting. He
is lead author of Slamming Spam: A Guide for System
Administrators.

rhaskins@usenix.0rg

T H I S A R T I C L E I S B A S E D O N T H E N E W
book Slamming Spam: A Guide for System
Administrators (ISBN 0-13-146716-6) by
Robert Haskins and Dale Nielsen. This
material is copyright 2005 Addison-Wesley
Professional, all rights reserved. It is reprint-
ed with permission of the publisher,
Addison-Wesley Professional. This material
is taken from Chapter 12 and is identical to
the Camram section in the book, except
that Figures 4 through 8 have been deleted
for space reasons.

Camram is a “sender verification” system, similar to
challenge/response systems TMDA and ASK. It has a
very nice Web-based interface to CRM114 in addition
to its native sender verification functionality. The idea
is any message that is not from a sender who com-
putes a certain algorithm (using a Hashcash) is
processed through CRM114. Any message that does-
n’t have the computation result in the headers must
be analyzed by CRM114.

While sender verification is controversial within the
anti-spam community, these types of systems are use-
ful to some people. Camram might be used in any
installation that desired a graphical, Web-based inter-
face to CRM114. It also could be used at a site where
additional protection beyond traditional header/con-
tent analysis (such as SpamAssassin or bogofilter)
was desired. If enough email originators use sender
compute headers, impact on recipient Camram email
infrastructure would be reduced, due to the fact that
those messages with sender compute headers bypass
the more resource-intensive CRM114 checks.

For more information on Camram, see http://www
.camram.org.

Camram

The reason for Camram’s original implementation
was as a reference implementation for a sender com-
pute system, namely Hashcash. Although this is still a
large part of the goal, Camram has tight integration
with the CRM114 spam classifier. It also contains a
graphical user interface to manage itself and the
CRM114 application as well. Camram is worth imple-
menting just for the ease of use it provides in manag-
ing CRM114.

Camram can be set up as an invisible proxy between
your existing MTA and email systems that want to
send your users email. This eliminates the need to

; LO G I N : F E B R UA RY 2 0 0 5 I S PA DM I N 31

32 ; L O G I N : V O L . 3 0 , N O . 1

run Camram on your existing (perhaps overly loaded) email systems. Camram
refers to this setup as the interception method. You should be aware that Cam-
ram is still a work-in-progress. Some of the functionality doesn’t work precisely
as expected, but it should be suitable for most situations. Be sure to check the
Camram Web site often for code updates.

I N B O U N D M E S S AG E S

You can deploy Camram in two different ways in your inbound email infrastruc-
ture. The first way is by using procmail to redirect incoming messages, in a setup
where Camram is run on the same machine as the end user mailboxes. This is
the setup we cover here.

The second method that can be used is interception. This method “intercepts”
the SMTP port 25 connection and redirects it to the Camram server, which
processes the message and sends it to the mailbox. The interception method is
used in a situation where your organization’s email system is distributed into
machines that perform the email relay function and servers that house mail-
boxes. Another case is when your primary server is Exchange/Domino, where
you cannot run Camram directly on the mail server. Implementing an anti-spam
solution such as Camram on a separate system helps to distribute the load on
machines outside of your regular mail machines.

In either case, the actual processing of messages is the same, regardless of
whether the procmail or interception methods are used. Figure 1 shows the flow
of messages through the Camram system.

F I G U R E 1 .

Camram inbound message flow. (From http://www.camram.org; courtesy of Keith
Dawson, dawson@worlds.std.com; used with permission.)

O UTB O U N D M E S S AG E S

Messages leaving the Camram system must be stamped to show that they have
been processed through the Hashcash computational system (see Figure 2). This
is done as a proxy, using the EmailRelay software. The message is reinjected into
the MTA on port 30025.

F I G U R E 2 .

; LO G I N : F E B R UA RY 2 0 0 5 I S PA DM I N 33

Camram outbound message flow.

Installation

Camram can be downloaded from http://www.camram.org/download.html. We
cover Camram version 0.3.25 here. The build script downloads all of the needed
components, including:

n TRE—Regular Expression matching library required by CRM114
n CRM114—The Controlled Regular Expression Mutilator covered in

Chapter 8, “Bayesian Filtering”
n Hashcash—Implements the sender compute algorithms required by Camram
n EmailRelay—MTA used by Camram to implement its message stamper

functionality
n normalizemime—Used by CRM114 to convert MIME-encoded text

These are external packages that Camram requires for operation. Camram will
download and install Python if it is not available on the system or if it is not at
the correct version level when you run the buildit.sh script (shown next). After
downloading, become root, extract the files, add the Camram group and user,
and run the build script like this (the downloaded installation is assumed to be
/usr/local/src/raging_dormouse-0.3.25.tar.gz):

bash$ sudo su
mkdir /usr/local/src/camram-0.3.25
cd /usr/local/src/camram-0.3.25
groupadd camram
useradd -g camram -m -d /usr/local/camram camram
tar xzvf ../raging_dormouse-0.3.25.tar.gz
mv raging_dormouse-0.3.25/* .
bash buildit.sh

You may need to restart the download script if a download error takes place.
The raging_dormouse release will exit the build process if there is a checksum
error in one of the components. The build script will make sure that the appro-
priate third-party applications have been downloaded before continuing on.

After the initial setup script has been run, several additional steps need to take
place. These actions include:

n Setting up the Camram GUI for use under Apache
n Setting up the MTA (Sendmail) to work with Camram
n Configuring a Procmail recipe for use with Camram

A PAC H E I N STA L L ATI O N

Next, install the Camram hooks for the Apache Web server. The installer
attempts to copy the configuration to the Apache configuration directory on
some Linux distributions, namely /etc/httpd/conf. If this is not how Apache is
set up on your system (for example, Debian), then copy the configuration file
manually to the Apache configuration directory and restart Apache like this:

cp -p /usr/local/camram/ancillary/camram.conf/etc/apache/
camram.conf

/etc/init.d/apache restart

S E N DM A I L (MTA) I NTE G R ATI O N

Integrating Camram with Sendmail requires setting up Sendmail to listen on three
IP addresses and ports: we use 127.0.0.1 port 25, 127.0.0.1 port 30025, and the
publicly available inbound interface. Any available IP and port combination can
be used, but these are what Camram recommends, so they are the ones we use.

34 ; L O G I N : V O L . 3 0 , N O . 1

If you set up Sendmail per our examples in other parts of this book,
sendmail.mc is located in /usr/local/src/sendmail-8.12.11/cf/cf/. If your current
configuration is sendmail.cf, then edit your sendmail.mc file and add the follow-
ing three lines, replacing 192.168.16.9 with the public IP address of your Cam-
ram machine that accepts email from the Internet:

DAEMON_OPTIONS('Port=smtp,Addr=192.168.16.9, Name=MTA')dnl
DAEMON_OPTIONS('Port=smtp,Addr=127.0.0.1, Name=MTA')dnl
DAEMON_OPTIONS('Port=30025,Addr=127.0.0.1, Name=MTA')dnl

These lines tell Sendmail to listen to port 25 on its public IP address and local-
host address (127.0.0.1), as well as 30025 on localhost for reinjecting messages
into the MTA. Then rebuild sendmail.cf, install it (saving the old one), and
restart Sendmail:

bash$ sudo su
cd /usr/local/src/sendmail-8.12.11/cf/cf/
make sendmail.cf
cp /etc/mail/sendmail.cf /etc/mail/sendmail.cf.old
cp sendmail.cf /etc/mail/sendmail.cf
/etc/init.d/sendmail restart

Camram is now integrated into your Sendmail installation for all users on the
system.

P RO C M A I L I NTE G R ATI O N

The code below illustrates a procmail recipe showing Camram integration.
This can be specified on a per-user basis by placing the recipe in each user’s
.procmailrc file or in a system-wide /etc/procmailrc file.

MAILDIR=$HOME/Maildir
DEFAULT=$MAILDIR/
ORGMAIL=$MAILDIR/
Directory for storing procmail configuration and log files
PMDIR=/var/log/procmail
Put ## before LOGFILE if you want no logging (not recommended)
LOGFILE=$PMDIR/log
Set to yes when debugging
VERBOSE=no
Remove ## when debugging; set to no if you want minimal logging
LOGABSTRACT=all
Replace $HOME/Msgs with your message directory
Mutt and elm use $HOME/Mail
Pine uses $HOME/mail
Netscape Messenger uses $HOME/nsmail
Some NNTP clients, such as slrn & nn, use $HOME/News
Mailboxes in maildir format are often put in $HOME/Maildir
#MAILDIR=/var/spool/spamtrap # Make sure this directory exists!
##INCLUDERC=$PMDIR/testing.rc
##INCLUDERC=$PMDIR/lists.rc
:0fw
| /usr/local/camram/bin/procmail_filter
:0
* < 2
/dev/null

If you are not using Maildir-formatted mailboxes, you should change the lines
that read

DEFAULT=$MAILDIR/
ORGMAIL=$MAILDIR/

to be

DEFAULT=
ORGMAIL=

; LO G I N : F E B R UA RY 2 0 0 5 I S PA DM I N 35

Camram Configuration

Besides the procmail recipe, Camram has three files that can be changed to
adjust its behavior:

n /usr/local/camram/ancillary/global_configuration—Default values; we do
not make any changes to this file

n /var/spool/camram/configuration—Where most site-specific changes are
made to adjust Camram’s functions

n /usr/local/camram/ancillary/camram.local—The email relay script used to
control the parameters when sending messages from Camram

We also cover how to set up appropriate cron jobs and Camram users at the end
of this section.

/ VA R / S P O O L / C A M R A M / CO N F I G U R ATI O N

The valid parameters in the configuration file are the same ones that are valid in
the global_configuration file. The configuration file is broken down into the fol-
lowing sections:

Core
Spam analysis
Spam storage
Filter configuration
User email addresses

All of the changes we list next are confined to the Core section. Besides the ones
we cover here, some of the parameters you should consider adjusting include
any keyword involving a path or any of the CRM114-scoring thresholds. A
default file with just the section headers (listed previously) is created at Camram
install time. You might want to make a copy of this file before making changes to
it. At a minimum, the following parameters should be defined under the Core
section in order to change from their default values:

authorized_users = comma-list:root,esj,dale

This should be a comma-separated list of privileged users who can manage the
server via the GUI.

challenge_URL_base=string:http://mydomain.com/camram/pdgen.cgi

This is the parameter indicating the URL address for the challenge Web page.
Change “mydomain.com” to be the address of your Web server.

correction_URL =string:http://mydomain.com/camram/correct.cgi

This is the URL where users enter corrections for messages misclassified as spam
or ham.

reinjection_SMTP_port = string:30025

This is the port where Camram sends messages back to the MTA. If you used
our example, leave this at 30025.

central_administration = boolean:0

This controls whether end users have access to the CRM114 retraining (0) or
only the administrator has access to retraining (1). We recommend setting this
to 0 so that end users can train their own filters.

password_key=string:notswordfish

This is the key used for the private password mechanism. Be sure to change it!

log_level=integer:1

The default logging level is 1. This value can be anything from 0 to 9, where 0 is
no output and 9 is very verbose. Unless you are troubleshooting a problem, 1
should be acceptable. Messages are logged in /var/log/messages.

36 ; L O G I N : V O L . 3 0 , N O . 1

/ U S R / LO C A L / C A M R A M /A N C I L L A RY/ C A M R A M . LO C A L

The camram.local file is the script that starts up the email forwarder program,
EmailRelay. A few changes need to be made in this file, but before going through
those, be sure to make a copy of the file as it was initially distributed:

cd /usr/local/camram/ancillary
cp -p camram.local camram.local.orig

This makes a backup copy of camram.local as camram.local.orig. This script is
automatically read each time Camram is run, so there is no need to perform any
steps to make changes to this file active. You should consider making the follow-
ing changes to the parameters in this file:

camram_architecture=procmail

If you are running Camram on the same machine as the email boxes (as we are
in our example), this should be procmail; otherwise, it should be set to intercept.

stamper_interface=ip address

This is the IP address of the interface that stamped messages should be accepted
on. ip address should be set to the internal IP address, which accepts email from
users on your local network. Do not set this to any externally available IP ad-
dress or you could stamp messages for spammers!

filter_interface=ip address

This defines the interface of the server where email from the Internet originates.
ip address should be set to an externally accessible interface that the MX record
for your domain is set to, or a host that accepts mail for your domain.

local_smart_host=ip address

This is the machine that knows how to route email from your server/domain or
if your Camram machine is behind a firewall. If your Camram machine is the
smart host gateway, then set this to 127.0.0.1.

After changes are made to this file, the script must be invoked.

Executing the script /etc/init.d/camram.local start will start the script on many
Linux systems.

C RO N J O B S

There are three cron jobs that need to be set up to perform various tasks.
Camram distributes suggested cron entries for each.

/usr/local/camram/ancillary/sweepup.py

This script deletes messages in the Camram dumpster. Be sure to run this often
enough so that directory lookups don’t get too slow when too many files are
present.

/usr/local/camram/ancillary/clean_mail_queue.py

This script forwards feedback to the end user and should be run very often.
Camram’s example cron job runs every minute.

/usr/local/camram/ancillary/mbox2spamtrap.py

This script automatically scans the missed_spam_box folder for messages incor-
rectly classified by CRM114 and retrains it accordingly.

; LO G I N : F E B R UA RY 2 0 0 5 I S PA DM I N 37

S E T TI N G U P C A M R A M U S E R S

Each user who is going to have email (we assume all users) will need to have the
appropriate directory and files set up on the system. This is accomplished by
running the following script for every user on the system:

/usr/local/camram/ancillary/clean_configuration.py -u username

You need to change username to be the user you want to set up on the system. If
you are running Camram in intercept mode (without delivery to mailboxes on
the machine Camram is running on), you need to create those accounts with the
following command:

/usr/local/camram/ancillary/new_account.py -u username

If you are running in procmail mode (like we are in our example), the accounts
already exist as “real” UNIX users, so this step must be skipped.

After setting up your users, you must run the edit_config_cgi script to create
user accounts and set up the database by going to the URL http://mydomain
.com/camram/edit_config.cgi. Change “mydomain.com” to be the name of the
Camram server you set previously. See the next section for using this screen.

Using Camram

Camram classifies messages into three possible categories:

n Red—Definitely spam; delivered to junk email folder

n Yellow—Possibly spam, possibly non-spam; delivered to spamtrap (possibly
spam) folder

n Green—Definitely not spam; delivered to inbox

This results in an accurate classification system of messages, and it requires
users to look in their spamtrap folder. Camram has a Web interface for accessing
many functions. If you have followed our previous examples, the following
screens are available at the listed URLs.

http://mydomain.com/camram/edit_config.cgi

The edit_config screen allows the administrator to edit the default settings for
each user and should be run after adding each user, to perform initial setup.

http://mydomain.com/camram/correct.cgi

This screen allows the user to correct CRM114 misclassifications via a Web
browser.

http://mydomain.com/camram/recover.cgi

The recover screen allows user access to the junk email folder (Camram calls it
the dumpster) from a Web browser.

P R E F E R E N C E S

The parameters in the edit_prefs.cgi screen are stored in each user’s home direc-
tory, in ~user/.camram/configuration. However, the parameters should be
changed only by the preferences Web interface and not directly via editing the
file, as changes will likely get overwritten. The parameters listed here are the
same ones that are defined by the global_configuration file shown previously.

The defaults here are reasonable. The field labeled my_email_addresses
should be updated with all aliases for each user. These addresses represent the
addresses for which Camram will accept Hashcash stamps for this account.

38 ; L O G I N : V O L . 3 0 , N O . 1

S PA MTR A P

The correct.cgi screen allows each user to manage their spamtrap (yellow mes-
sages), which is the mail folder containing messages that Camram was unsure
about when it ran the classifier on them. Simply check the checkbox on the left
side for each misclassified message and click the Process button, and your mes-
sages will be sent to your inbox and the Bayesian classifier will be retrained.

R E COV E R

The recover.cgi screen lists all messages in the dumpster and inbox. This screen
allows you to pull false positive messages out of the dumpster and into the
spamtrap for reclassification. Copies of all messages processed and classified as
spam or not spam will end up in the dumpster. Do not be alarmed by the pres-
ence of non-spam emails. It is unfortunate that the dumpster contains more
than just rejected spam messages because you can’t just browse it quickly to
identify false positives.

T H O M A S S L U Y T E R

getting what
you want
T H E F I N E A R T O F
P R O P O S A L W R I T I N G

In daily life Thomas is part of a small yet highly flexi-
ble UNIX support department at ING Bank in the
Netherlands. He took his first steps as a junior UNIX
sysadmin in the year 2000. Thomas part-times as an
Apple Macintosh evangelist and as a board member
of the Dutch J-Pop Foundation.

tsluyter@xs4all.nl

I would like to extend my warmest thanks to those
people who helped me write this article. A few of
my colleagues and a number of members of the
Ars Technica and Sysadmin Talk forums provided
me with reviews of version 1.0 which were invalu-
able to me.

T H R O U G H O U T T H E L A S T T W O Y E A R S
I have written a number of technical pro-
posals for my employer. These usually
concerned either the acquisition of new
hardware or modifications to our current
infrastructure.

Strangely enough, my colleagues didn’t always
achieve the same amount of success with their pro-
posals as I did, which got me to thinking, “How does
one write a proper proposal anyway?”

This mini-tutorial aims to provide a rough outline of
what a proposal should contain, along with a number
of examples. Throughout the document you’ll also
find a number of Do’s and Don’ts to point out com-
mon mistakes.

The examples predominantly focus on the acquisition
of hardware. This is due to the nature of my line of
work, but let me say that the stuff I’ll be explaining
applies to many other topics. You may just as well
apply them to desired changes to your network, some
software that you would like to use, and even to some
half-assed move that you want to prevent manage-
ment from making.

I’ve never been a great fan of war, but Sun Tzu really
knew his stuff! Even today his philosophies on war
and battle tactics are still valid and are regularly
applied. Not just in the military—these days it’s not
uncommon to see corporate busybodies reading The
Art of War while commuting to work. In between my
stuff you’ll find quotes from Sun Tzu I thought were
applicable to the subject matter.

Zen and the Art of Getting What You Want

“Though we have heard of stupid haste in war, cleverness
has never been seen associated with long delays.”
Sun Tzu, The Art of War

It happens occasionally that I overhear my colleagues
talking about one of their proposals. Sometimes the
discussion centers on why their idea got shot down
and the question, “What the heck was wrong with the
proposal?” They had copied a proposal that had
worked in the past and replaced some information
with their own. When I ask them to show me said
proposal, I’m presented with two sheets of paper, of
which one is the quote from our vendor’s sales depart-
ment. The other consists of 30% header/footer, a short
blurb on what we want to buy, and a big box repeat-
ing all of the pricing info.

The problem with such a document, of course, is that
management gets its nose rubbed in the fact that we

; LO G I N : F E B R UA RY 2 0 0 5 G E T TI N G W H AT YO U WA NT 39

40 ; L O G I N : V O L . 3 0 , N O . 1

want to spend their money (and loads of it, too). To them such a proposal con-
sists of a lot of indecipherable technical mumbo-jumbo (being the quote and
some technical stuff), with the rest of the document taking up money-Money-
MONEY.

While to you it may seem that the four or five lines of explanation provide
enough reason to buy the new hardware, to management this will simply not do.

In writing a proper proposal, it is essential to keep your organization’s upper
echelons in mind. However, don’t forget about your colleagues, either. It is more
than logical that you should run a proposition past your peers to see whether
they agree with all of the technicalities.

In order to make sure that both your targets agree on your proposal, you will
have to: (1) employ tech-speak to reach your peers; and (2) explain your reason-
ing in detail to your management.

To craft such a document, there are a number of standard pieces to the puzzle
that you can put in place. I’ll go over them one by one. One thing I want you to
realize, though, is that drafting a proposal will take time. Expect to spend at
least half a day on writing a modest proposal.

Pieces to the Puzzle

My proposals tend to consist of several sections, some of which are optional, as
not every type of proposal requires the information contained therein. For
instance, not every project will require resources that can easily be expressed in
numbers, and hence there may be no need for a list of costs. Here is the canoni-
cal list of proposal sections:

n Summary—Describes briefly your current problem, your solution for this,
and the estimated costs.

n Introduction/scope—Gives your audience a clear picture of the troubled
environment involved.

n Problems and proposed solutions—Describes in detail what is wrong, what
the repercussions are (and what they may become), and your proposed solu-
tion.

n What is required—A list of things that you’ll need to fix the problem.

n Other options—Of course, management wants the ability to save money.
Here’s where you give them the option to do so.

n Making it work—Describes which departments need to put in resources and
what their tasks will be.

n Breaking things down—The costs of the various options set off against their
merits and flaws.

n Final words—A last plea to your audience.

Now let’s detail them.

TH E S U M M A RY

“The art of war teaches us to rely not on the likelihood of the enemy’s not coming, but
on our own readiness to receive him.” Sun Tzu, The Art of War

Keep this part as short and simple as possible. Use one, maybe two short para-
graphs to describe the current situation or problem and describe how you’ll fix
it. Use very general terms and make sure that it is clear which of the reader’s
needs you are addressing.

; LO G I N : F E B R UA RY 2 0 0 5 G E T TI N G W H AT YO U WA NT 41

Be very careful not to put too much stuff in this section. Its main purpose is to
provide the reader with a quick overview of the problem you’re trying to solve
and your final goal. This allows the reader to grasp quickly the subject of your
proposal and helps ensure that it will be found more easily on a cluttered desk.
A short summary means quick recognition. Here is an example:

In the past year UNIX Support have put a big effort into improving the
stability and performance capacity of their BoKS and NIS+ infrastructural
systems. However, the oldest parts of our infrastructure have always fall-
en outside the scope of these projects and have thus started showing
signs of instability. This in turn may lead to bigger problems, ending in
the complete inaccessibility of our UNIX environment.

I propose that we upgrade these aging servers, thus preventing any
possible stability issues. The current estimated cost of the project is
$16,260.

I NTRO D U C TI O N / S CO P E

When it comes down to the technical nitty-gritty, most managers have only a
broad view of things going on in the levels beneath them. That’s the main reason
why you should include a short introduction on the scope of your proposal.

Give a summary of the services that the infrastructure delivers to the “business.”
This helps management form a sense of its importance. If a certain service is
crucial to your company’s day-to-day operation, make sure that your reader
knows this. If it will help paint a clearer picture, you can include a simple
graphic on the infrastructure involved.

The whole point of this section is to imprint on management that you are trying
to do something about their needs, not yours. It’s one thing to supply you with
resources to tickle one of your fancies, but it’s a wholly different thing to pour
money into something that they themselves need. Here’s an example:

BoKS provides our whole UNIX environment with mechanisms for user
authentication and authorization. NIS+ provides all of the Sun Solaris
systems from that same environment with directory services, containing
information on user accounts, printers, home directories, and automated
file transfer interfaces.

Without either of these services it will be impossible for us to maintain
proper user management. Also, users will be unable to log in to their
servers should either of these services fail. This applies to all depart-
ments making use of UNIX servers, from Application and Infrastructure
Support all the way through to the Dealing Room floor.

P RO B L E M S A N D P RO P O S E D S O LUTI O N S

“Whoever is first in the field and awaits the coming of the enemy, will be fresh for the
fight; whoever is second in the field and has to hasten to battle will arrive
exhausted.” Sun Tzu, The Art of War

When writing your proposal, try to keep others’ perspectives in mind. Try to
anticipate any questions your reader might have and introduce your ideas in a
way that will appeal to your audience. If you simply describe your goal instead
of providing proper motivation, you’ll be the one who “is second in the field.”

In the previous section of your document you provided a quick description of
the environment involved. Now you’ll have to describe what’s wrong with the
current situation and what kind of effects it may have in the future. If your pro-
posal covers the acquisition or upgrade of multiple objects, cover them sepa-

42 ; L O G I N : V O L . 3 0 , N O . 1

rately. For each object, define its purpose in the scope you outlined in the previ-
ous section. Describe why you will need to change its current state and provide
a lengthy description of what will happen if you do not.

However, don’t be tempted to exaggerate or to fudge details so that things will
seem worse than they are. First, a proposal that is overly negative may be
received badly by your audience. Second, you will have to be able to prove all of
the points you make. Not only will you look like an ass if you can’t, but you may
also be putting your job on the line! So try to find the middle road. Zen is all
about balance, and the “art of getting what you want” should also be. Here’s an
example:

Recently the master server has been under increased load, causing deteri-
oration of both performance and stability. This in turn may lead to prob-
lems with BoKS and with NIS+, which most probably will lead to symp-
toms like: Users will need more time to log in to their UNIX accounts;
users may become unable to log in to their UNIX accounts; user
accounts and passwords may lose synchronicity.

Close off each subsection (one per object) with a clearly marked recommenda-
tion and a small table outlining the differences between the current and the
desired situation. Keep your recommendation and the table rather generic. Do
not specify any models or makes of hardware yet.

The example below is focused on upgrading a specific server, but you can use
such a table to outline your recommendations regarding just about anything—
versions of software, for example, or specifics regarding your network architec-
ture. It will work for all kinds of proposals:

UPGRADES: UNIX Support recommends upgrading the master server’s
hardware to match or exceed current demands on performance.

Current Recommended
System type Sun Netra T1 200 —–
Processor Ultrasparc IIe, 500MHz 2x Ultrasparc IIIi, 1GHz
Memory 512MB 1 or 2GB
Hard drives 2x 18GB + 2x 18GB ext. 2x 36GB, int. mirror

The point of this section of your proposal is to convince your readers that
they’re the captain of the Titanic and you’re the person who can spot the iceberg
in time. All is not lost. Yet.

W H AT I S R E Q U I R E D TO M A K E TH I S WO R K ?

“The general who wins a battle makes many calculations in his temple ere the battle
is fought. The general who loses a battle makes but few calculations beforehand.”
Sun Tzu, The Art of War

Now that you have painted your scenario, and you’ve provided a vision of how
to go about solving things, you will need to provide an overview of what you
will be needing.

Don’t just cover the hardware you’ll need to acquire, but also take the time to
point out which software you’ll need and, more important, which departments
will need to provide resources to implement your proposal. Of course, when it
comes to guesstimates regarding time frames, you are allowed some slack. But
try to keep your balance and provide your audience with an honest estimate.

One thing, though: Don’t mention any figures on costs yet. You’ll get to those
later on. Here’s an example of what it takes to get “it” to work:

; LO G I N : F E B R UA RY 2 0 0 5 G E T TI N G W H AT YO U WA NT 43

A suitable solution for both Replica servers would be the Sun Fire V210.
These systems will come with two Ultrasparc II processors and 2GB of
RAM installed. This configuration provides more than enough processing
power, but is actually cheaper than a lower spec’ed V120.

OTH E R O P TI O N S

“Do not interfere with an army that is returning home. When you surround an army,
leave an outlet free. Do not press a desperate foe too hard.” Sun Tzu, The Art of War

The above quote seems to be embodied in one of Dilbert’s philosophies these
days: “Always give management a choice between multiple options, even if there
is only one.”

Of course, in Dilbert’s world, management will always choose the least desirable
option, for instance choosing to call a new product the “Chlamydia,” because “it
sounds Roman.” It will be your task to make the option you want to implement
the most desirable in the eyes of your readers.

In case your proposal involves spending money, this is where you tell manage-
ment: “All right, I know times are lean, so here are a number of other options.
They’re less suitable, but they’ll get the job done.” Be sure that even these alter-
natives will do the job you want them to. Never give management an option that
will not be usable in real life. Here’s an example:

Technically speaking, it is possible to cut costs back a little by ordering
two new servers instead of four, while re-using two older ones. This
alternate scenario would cut the total costs back to about $8360, saving
$3300.

If the main subject of your proposal is already the cheapest viable option, say so.
Explain at length that you have painstakingly eked out every penny to come up
with this proposal. Also mention that there are other options, but that they will
cost more money/resources/whatever. Feel free to give some ballpark figures.
Here’s an example:

Unfortunately, there are no cheaper alternatives for the Replica systems.
The Sun Fire V120 might have been an option, were it not for the fol-
lowing facts:

n It is not in the support matrix as defined by UNIX Support.
n It is not natively capable of running IP Multi Pathing.
n It will reach its so-called End of Life state this year.

Basically, you need to make management feel good about their decision to give
you what you want. You really don’t want them to pick any solution other than
the one you’re proposing, but you are also obliged to tell them about any other
viable possibilities.

M A K I N G IT WO R K

For some projects, you are going to need the help of other people. It doesn’t
matter whether they are colleagues, people from other departments, or external
parties. In this section you will make a list of how many resources you are going
to need from them.

Instead of going into heavy details, just give a broad description of the tasks laid
out for these other parties. Estimate how many hours it will take to perform
these tasks and how many people you will need from each source. Such a list
will not only give management a clear picture of all of your necessities, but will
also provide your readers with the scale of the whole project. Here’s an example:

44 ; L O G I N : V O L . 3 0 , N O . 1

In order to implement the proposed changes to our overall security we
will require the cooperation of a number of our peer departments:

n Information Risk Management (IRM) will need to provide AS and our
customers with clear guidelines, describing the access protocols which
will be allowed in the future. It is estimated that one person will need
about 36 hours to handle all of the paperwork.

n Security Operations (GSO) will need to slightly modify their proce-
dures and some of the elements of their administrative tools to accom-
modate the stricter security guidelines. It is estimated that one person
will need about 25 hours to make the required alterations.

Breaking Things Down

You’ll need to make this section as short as possible, since it covers the costs of
all of the viable options that you provided in previous sections. Create a small
table, setting off each option against the costs involved. Add a number of
columns with simple flags you can use to steer the reader to the option of your
choice.

Perhaps it will help clarify to recall product comparison charts in consumer
magazines or sites on the Web. In comparing products they often include a
number of columns marked with symbols like + (satisfactory), ++ (exceeds
expectations), – (not too good), or – – (horrific). This will allow you to compare
a number of distinct qualities in the options before you.

It goes without saying that you should be honest when assigning these values. If
another option starts to look more desirable by now, you really have to re-evalu-
ate your proposal. For example:

Current Expected
System Hardware Costs* Needs Growth

Master V240, 2x CPU, 2GB RAM, 2x 36GB HD, 1x DVD $6,638.10 + +

Master-alt V480, 2x CPU, 4GB RAM, 2x 36GB HD, 1x DVD $20,575.00 ++ ++

Replica V210, 2x CPU, 2GB RAM, 2x 36GB HD, 1x NIC $4,811.10 ++ ++

*Price per unit. Multiply by amount of systems to get full price.

F I N A L WO R D S

“The clever combatant imposes his will on the enemy, but does not allow the enemy’s
will to be imposed on him.” Sun Tzu, The Art of War

Use two or three concluding paragraphs to impress your reader with the force of
your arguments. Shortly summarize the change(s) that you’re proposing and
repeat your arguments. Be firm, yet understanding. Here’s an example:

We have provided you with a number of possible scenarios for replace-
ment, some options more desirable than others. In the end, however,
we are adamant that replacement of these systems is necessary and that
postponing these actions may lead to serious problems within our UNIX
environment, and thus in our line of business.

Regarding Tone and Use of Language

Keep in mind at all times who your target audience is. It is quite easy to fall back
into your daily speech patterns when writing an extensive document; at some
point that may lead to catastrophe.

Assume that it is all right to use daily speech patterns in a document that will
not pass further than one tier above your level (meaning your supervisor and

; LO G I N : F E B R UA RY 2 0 0 5 G E T TI N G W H AT YO U WA NT 45

your colleagues). However, once you start moving beyond that level you will
really need to tone it down.

Some points of advice:

n Avoid expletives at all times.
n Avoid using technical slang. Of course you’re free to use standard

technical terms, but leave out terms such as “boxen,” “a win” (or
“winnitude,” for that matter), and “kludge.”

n Avoid overly long sentences. This is a trap I fall into quite easily
myself, as you may have noticed while reading this article. It tends to
make it difficult to follow a train of thought.

n Don’t be afraid to use your vocabulary. Words like “adamant” and
“imperative” tend to have more impact than “I’m very sure” or “It is
important.”

Regarding Versioning and Revisioning

At ING Bank we include a small table at the beginning of each document which
outlines all of the versions that document has gone through. It shows when each
version was written and by whom. It also gives a one-liner regarding the modifi-
cations, and each version has a separate line showing who reviewed the docu-
ment.

Of course, it may be wise for you to use different tables at times: one table for
versions that you pass between yourself and your colleagues and one for the
copies that you hand out to management. Be sure to include a line for the review
performed by your supervisor in both tables. It’s an important step in the life
cycle of your proposal.

This may be taking things a bit far for you, but it’s something we’ve grown
accustomed to.

Final Thoughts

“Begin by seizing something which your opponent holds dear; then he will be
amenable to your will.” Sun Tzu, The Art of War

In other words, management is almost sure to give in if you simply make sure
they know things will go horribly wrong if you are not allowed to do what you
just proposed.

Of course, no method is the be-all and end-all of writing proposals, and mine is
no exception. Some may simply find it too elaborate, while in other cases man-
agement may not be very susceptible to this approach. Try to find your own
middle road between effort and yield. Just be sure to take your time and be pre-
pared for any questions you may get about your proposal.

M A R K B U R G E S S

the profession
of system
administration
O S L O U N I V E R S I T Y O F F E R S
M A S T E R ’ S D E G R E E I N
N E T W O R K / S Y S T E M
A D M I N I S T R AT I O N

Mark Burgess has a Ph.D. in theoretical physics and
lives in Oslo, Norway. A 14-year veteran of system
administration research, he has written 9 books and
has published over 40 papers in international jour-
nals.

Mark.Burgess@iu.hio.no

Editor’s Note: For system administration to
be recognized as a profession, some sort of
accredited training must exist. I asked Mark
to write about his university’s new program
as an FYI for our readers and a spur for
other universities.

Mark was recently made the world’s first
full professor specifically in the field of sys-
tem administration. His paper “On the
Theory of System Administration,” pub-
lished in Science of Computer Programming
last year, has been the journal’s top down-
loaded paper since it appeared.—RK

AT O S L O U N I V E R S I T Y C O L L E G E , T H E
two-year international Master’s degree in
Network and System Administration has
now been running for just over a year. All
teaching is carried out in English.

Although there has been no advertising of the course,
the number of applications has been high. In the first
year, 99 people applied for the 10 places, with 32
applications coming from outside Norway. This year,
155 applied for the 10 places, of whom 55 were from
outside Norway. Many potential students apply from
from Asia and Africa, and a few from Europe. Only
one so far has applied from the U.S.

Students are led through four stages of development
in the four semesters of the course:

n Learning basic principles
n Developing independent investigative skills

and learning how to write documentation
n Extending analytical and critical skills
n Putting everything together in a final project,

preferably in an industrial setting

Some unusual aspects of the curriculum include a
course in supercomputers and virtual machines (with
the generous help of IBM); a course in analytical
methods based on Mark Burgess’s latest book, Analyti-
cal Network and System Administration: Managing
Human-Computer Systems; and a comprehensive
course in ethics and social aspects of system adminis-
tration.

46 ; L O G I N : V O L . 3 0 , N O . 1

A D A M T U R O F F

practical perl

E R R O R H A N D L I N G P AT T E R N S
I N P E R L

Adam is a consultant who specializes in using Perl to
manage big data. He is a long-time Perl Monger, a
technical editor for The Perl Review, and a frequent
presenter at Perl conferences.

ziggy@panix.com

H A N D L I N G E R R O R S I S T H E B A N E O F
any program. In some programming lan-
guages, error handling is tedious to do
properly, so we often forget to do it, or we
do it improperly. In Perl, there are a few
common idioms for handling errors that
are both robust and easy to use.

I’m a big fan of design patterns in software develop-
ment. Through patterns, we can talk intelligently
about the code we write, the modules we use, and the
behavior (and misbehavior!) of the software we come
across on a regular basis. Patterns are a vocabulary
that lets us focus on the big picture and ignore the
meaningless high-level or low-level details.

In thinking about software design patterns, many
people reach for the book Design Patterns: Elements of
Reusable Object Oriented Software, written by Erich
Gamma et al. However, patterns are a deep topic, and
there is much more to know about patterns than is
found in that book.

The concepts behind patterns did not start with one
book describing better ways to build object-oriented
software. In fact, the idea started with an alternative
view of architecture put forth by Christopher Alexan-
der in the 1970s. Alexander’s premise was that we
need a common language to discuss architectural
principles—something the customer, the engineer,
and the architect can all understand. When specialists
focus on minutiae or elevate professional fashion over
customer needs, we all lose.

Alexander’s key insight is that we can work together
to build open-ended vocabularies that describe the
systems we build—whether they are buildings,
towns, cars, airports, compilers, network monitoring
software, or Web-based applications. In the realm of
software, patterns are about describing the behavior
of a module of code or an entire system. Once you
start to see a pattern, it is easy to see the pattern
repeated. From there, it is easier to repeat the good
patterns and avoid the bad ones.

Patterns in Perl

Patterns came to software development through
analysis of object-oriented systems. A classic pattern
describes how to construct an object with a specific
set of known behaviors, and how to combine compat-
ible objects based on the patterns they implement.
This school of design is quite prevalent within the
Java community. If you have ever come across an iter-
ator or a factory, you’ve seen some of the behaviors
described in Design Patterns in use.

; LO G I N : F E B R UA RY 2 0 0 5 P R AC TI C A L P E R L 47

48 ; L O G I N : V O L . 3 0 , N O . 1

But patterns are not restricted to objects or any other domain. Because patterns
are an open-ended vocabulary, we can use patterns to describe different levels of
software, ranging from a single line of code all the way up to a large, complex
project like a database server or a Web-based content management system. Pat-
terns are everywhere in software.

For a concrete example, look at the following patterns for error handling. If you
are familiar with C, you may have seen this idiom for opening a file:

FILE *fp;
fp = fopen("/my/file", "r");
if (fp == NULL) {

return -1; // ERROR - could not open file
}

In Perl, there’s always more than one way to do it. If you learned how to pro-
gram in C, you can program in Perl in a C-like manner:

open(my $fh "/my/file");
if (!$fh) {

return -1; ## ERROR - could not open file
}

In these brief snippets, there is exactly one operation being performed: opening
a file. If there is any problem opening this file, then the operation terminates
immediately.

Here is a more natural expression of the same basic intent in Perl:

open(my $fh "/my/file") or return -1;

In this formulation, there is one operation to perform, and it is expressed all at
once in a single statement. Furthermore, the intent of the whole statement reads
quite naturally: do something or recover immediately. Not only is this statement
easier to write, but it is much easier to read. Consequently, this statement is also
easier to remember and get right the first time.

In many simple scripts, it is common or even advisable to terminate immedi-
ately at the first point of failure. This pattern is known as “open or die,” and it is
one of the most common patterns in Perl programming:

open(my $fh "/my/file") or die "Cannot open '/my/file'\n";

Using “open or die” may seem extreme at first, but it provides a simple way to
express a set of necessary preconditions for a script. For example, consider a
script run periodically by cron that needs to read and write some files. If any of
those files are missing or cannot be created, the script cannot proceed. If it does
continue to run, it could generate bad output, or, in the worst case, do damage
to a running system. Using the “open or die” pattern allows this script to open
all of its files and succeed, or gracefully terminate when any one of its files can-
not be opened.

Error Handling in Perl

How does the “open or die” pattern work? The key is the ultra-low-precedence
or operator that connects the two statements. If there is any true value whatso-
ever on the left half of the expression (in this case, the result of an open opera-
tion), it will return that value immediately and not evaluate the right-hand side
(die). The right-hand side (die) will be executed only if the left-hand side
(open) returns a false value.

This pattern uses the or operator instead of the higher-precedence || (Boolean or)
operator, for a couple of reasons. First, it is clearer when reading the code. Sec-
ond, because or is an ultra-low-precedence operator, there is no ambiguity:

; LO G I N : F E B R UA RY 2 0 0 5 P R AC TI C A L P E R L 49

The first statement *must* be "open" with two parameters
The second statement *must* be "die" with one parameter
open FH, "/my/file" or die "Cannot open '/my/file'\n";

Using the higher-precedence || operator would be ambiguous to Perl:

Is the second parameter "/my/file" ||
or is it an open followed by || die?
open FH, "/my/file" || die “Cannot open '/my/file'\n";

Another important characteristic of “open or die” is the behavior of the left-
hand side of the expression, open. If open encounters any error whatsoever, it
will return a false value. For any other result, it will return some true value.
Therefore, the die clause in this statement will execute only when there is an
open failure. (The actual cause of the failure can be found elsewhere, in the spe-
cial variable $!.)

The true power in this small pattern is not that it is a concise expression of the
proper behavior for opening files, but in its general utility in similar contexts.
Most Perl functions that handle system interaction provide the same behavior—
return false on error, true on success. This includes functions like chdir, mkdir,
unlink, and so on. For conciseness, Perl programmers generally call this overall
pattern “open or die.”

In C, the pattern is just the opposite—return zero (false) on success, and a non-
zero error code (true) on error. This leads to cumbersome idioms like the exam-
ple above with fopen. In Perl, the system built-in function behaves in a C-like
manner, returning false (zero) on success, and a true (non-zero) value on fail-
ure. The result is similar to the cumbersome “system and die” pattern, since the
system built-in adheres to this C-like behavior:

system "/bin/date" and die "Can't find '/bin/date'";

(The “system and die” pattern is generally regarded as broken. Larry Wall has
declared that this unfortunate misfeature will be fixed in Perl 6.)

Recovering from Errors in Perl

Using the “open or die” pattern is a great way to terminate your script at the first
sign of error. But sometimes you do not want to terminate your script. Rather,
you need to exit immediately from a subroutine, break out of a loop, or just dis-
play a warning message.

Even though this pattern is commonly called “open or die,” the right-hand side
doesn’t need to call die. Any recovery action fits the pattern, including return,
warn, or even print.

Below is a sub that takes a filename and returns all non-blank lines that do not
start with a hash character (i.e., comments). If it cannot open a file, it exits
immediately and returns false:

sub get_lines {
my $filename = shift;
my @lines;

open(my $in, $filename) or return;
while (<$in>) {

next if m/^$/; ## Skip blank lines
next if m/^#/; ## Skip comment lines
push (@lines, $_);

}

return @lines;
}

50 ; L O G I N : V O L . 3 0 , N O . 1

Carp, Croak, and Friends

Functions like die and warn can report exactly where an error occurred. That
may work for scripts, where the cause of the error is likely nearby. But this
behavior does not work very well when using modules. Although your program
may have issued a warning or terminated at line 135 of SomeModule.pm, that
message may not mean anything to you, especially if you installed SomeModule
from CPAN.

It makes more sense to identify the location of the code that led to the error in
SomeModule.pm. This is more likely the cause of the problem, especially when
using well-tested modules. This is the problem that the Carp module solves.
Carp is a standard module that is bundled with Perl which provides the error-
reporting functions carp and croak, which can be used in place of warn and die.
When these functions display a warning or a termination message, they report
the location where the current sub was called, not the location where an error
was encountered (i.e., the location of the call to carp or croak).

Here is a simple program that demonstrates the difference between these two
sets of functions:

1: package Testing;
2: use Carp;
3:
4: sub test_carp {
5: carp "Testing carp";
6: }
7:
8: sub test_warn {
9: warn "Testing warn";
10: }
11:
12: package main;
13:
14: Testing::test_carp();
15: Testing::test_warn();

And here is the result:

Testing carp at test.pl line 14
Testing warn at test.pl line 9

Note that carp focuses attention on where the sub test_carp was called, while
warn focuses attention within the body of test_warn. This is why module
authors should prefer the functions provided by Carp over the standard built-in
functions.

Returning Errors in Perl

Patterns for handling errors are important. By understanding when and how
functions like open return errors, we can use a clear and concise pattern for
handling errors when they occur. The beauty behind this pattern lies in its
extensibility. Not only can it be used with many recovery strategies, but it can be
used with any sub that signals errors the same way open does.

Recall for a moment how open communicates errors: It returns a false value on
failure, and some true value on success; any error message will be returned
through a pre-defined variable ($! in this case). Any other sub that behaves in
this manner can be used with the “open or die” pattern.

This process sounds simple enough, except that there is some subtlety involved.
Remember that there are precisely five false values in Perl:

; LO G I N : F E B R UA RY 2 0 0 5 P R AC TI C A L P E R L 51

n The number 0
n The string “0”
n The empty string
n The empty list
n The undefined value (undef)

There is another, subtle wrinkle in Perl behavior. Subroutines can be called in
one of two possible ways: in scalar context and in list context. In list context,
there is precisely one false value, the empty list. All other values produce a list of
one element, which is true. The following program illustrates the differences:

sub return_empty {return;}
sub return_string {return "";}
sub return_zero {return "0";}
sub return_0 {return 0;}
sub return_undef {return undef;}

Test scalar return values
($_ = return_empty) and print "True (scalar empty)";
($_ = return_string) and print "True (scalar string)";
($_ = return_zero) and print "True (scalar zero)";
($_ = return_0) and print "True (scalar 0)";
($_ = return_undef) and print "True (scalar undef)";

Test list return values
(@_ = return_empty) and print "True (list empty)";
(@_ = return_string) and print "True (list string)";
(@_ = return_zero) and print "True (list zero)";
(@_ = return_0) and print "True (list 0)";
(@_ = return_undef) and print "True (list undef)";

As described above, this program produces the following output:

True (list string)
True (list zero)
True (list 0)
True (list undef)

These rules may sound complicated, but they really aren’t. They help Perl do the
right thing in a variety of common circumstances. This program demonstrates
that if you want to return a false value in all circumstances, just use a simple
return statement—it will return false whether you, the caller, uses list or scalar
context. Therefore, any sub that uses this behavior can plug right into the “open
or die” pattern with no extra effort.

Alternative Error Mechanisms in Perl

Returning a false value is often sufficient for signaling an error. But sometimes
there are legitimate values returned that happen to be false but do not signal an
error. Consider a sub that returns a series of numbers that could include zero, or
a sub that returns a series of strings which could include the empty string. In
these situations, it may not be feasible to say that “any false value” signals an
error. In these cases, it is generally better to say that “the undefined value” sig-
nals an error.

A common example of this pattern is reading lines from a file:

while (<>) {
...

}

The purpose of looping over a file line by line is to process one line at a time.
However, sometimes it is possible to read an empty string from a file, or a line
containing the single character 0. These values should not signal end-of-loop.

52 ; L O G I N : V O L . 3 0 , N O . 1

What is actually happening here is that Perl sees that construct and interprets it
as this instead:

while (defined($_ = <>)) {
...

}

This behavior allows Perl to act as we expect it should. The construct will read
every line from the file, including blank lines and lines that contain the number
zero. The undefined value will be returned when there is an error reading from
the file, such as when trying to read past the end-of-file. Thus, Perl can read
each and every line from a file (regardless of whether that line is “true” or not)
and terminate when reaching end of file.

You can reuse this pattern in your programs as well. If you need to return false
values (like zero) from a sub but still want to plug into the “open or die” pat-
tern, just remember to check to see whether the return value is defined. If it is
not, then some error must have occurred:

defined(add_user()) or die "Cannot add user";

Conclusion

Handling errors is a key aspect of any program. In Perl, there are many patterns
for handling errors. If you are comfortable programming in a C-like manner, you
can use the error-handling patterns that feel comfortable to you. However,
native Perl patterns for handling errors are simpler to use and easier to get right
the first time.

Corrections

In my last column on Class::DBI, I used this idiom to edit a temporary file:

sub get_input {
open (my $fh, ">/tmp/library.data.$$");
....

}

Jeremy Mates wrote in, identifying this as a security flaw. I want to thank him
profusely for pointing this out. Jeremy goes on to say:

Insecure temporary file handling problems are unfortunately far too com-
mon in code still being written and used, despite being trivial to eradicate
through the use of secure alternatives such as mktemp(1) and various
modules in Perl, such as File::Temp.

For soliciting input from an external editor, I recommend the use of my
Term::CallEditor module, which uses File::Temp to create a secure tempo-
rary file that an editor can be run on.

Thanks, Jeremy.

C L I F F L Y N T

the tclsh spot
C R E AT I N G S TA N D - A L O N E
E X E C U TA B L E S W I T H T C L / T K

Clif Flynt is president of Noumena Corp., which
offers training and consulting services for Tcl/Tk
and Internet applications. He is the author of
Tcl/Tk: A Developer’s Guide and the TclTutor
instruction package. He has been programming
computers since 1970 and a Tcl advocate since
1994.

clif@cflynt.com

D Y N A M I C L A N G U A G E S L I K E T C L A R E
great for rapid development. In a few hours
you can churn out applications that would
take days or weeks (or even months) to
develop in compiled languages like C, C++,
or Java.

The downside of developing an application in a high-
level dynamic language is that clients need to have
the appropriate interpreters and libraries installed on
their system before they can run your application.

The solution to this problem is to wrap the applica-
tion and interpreter into a single executable. For Tcl,
there are several choices:

n Tcl-Wrapper (http://sourceforge.net/projects
/tclpro/): The first Tcl wrapper, it was developed by
Scriptics as part of the TclPro development suite.
This is the only wrapping application that stores
the Tcl code as compiled bytecodes, providing
some code obfuscation. This application is now
supported by ActiveState
(http://www.activestate.com) as part of the TclDev
package.

n Wrap (http://www.xs4all.nl/~nijtmans/wrap.html):
Jan Nijtmans created a proof-of-concept wrapping
application to demonstrate how a smaller exe-
cutable could be made using upx and wrap. Jan is
no longer supporting this application, but it
spawned the current StarPack, Freewrap, and
TOBE wrappers.

n FreeWrap (http://freewrap.sourceforge.net/): This
application is written by Dennis LaBelle and is
based on D. Richard Hipp’s mkTclApp. This is
excellent for pure Tcl applications. The command-
line interface is very simple and clean.

n StarPack (http://www.equi4.com/): Developed by
Jean-Claude Wippler and Steve Landers, this is
part of a set of deployment solutions that includes
a single-file Tcl/Tk interpreter, compressed appli-
cations to be run by that single-file interpreter, and
wrapped executables with interpreter, application
code, and data. This package has more features
than FreeWrap. It is very useful for wrapping a
pure Tcl application or one that includes a Tcl-
stubs-enabled library. It uses a more complex
application build sequence, which may take a few
steps to create an application.

n TOBE (http://www.hwaci.com), developed by D.
Richard Hipp, provides the most control and sup-
ports extensions that are not Tcl-stubs-enabled.
Using this package requires compiling a small “C”
code wrapper and linking that to the Tcl libraries.

; LO G I N : F E B R UA RY 2 0 0 5 TH E TC LS H S P OT 53

54 ; L O G I N : V O L . 3 0 , N O . 1

All of these wrapping solutions are built around a zip archive. Part of the zip-file
specification allows a prefix to be placed ahead of the actual archive. The prefix
can even be an executable program, which allows a zip archive to be an applica-
tion. This is how self-extracting zip files are created. The Tcl wrapping programs
all use a modified tclsh or wish interpreter as the prefix.

The problem with just prepending the tclsh interpreter to a zip file is that a use-
ful Tcl interpreter is not just a single executable file. When the Tcl interpreter
starts it loads a number of Tcl files with support for other commands.

In order to make a single executable, these files need to be included with the
archive, and the Tcl interpreter needs to understand how to find the files.

Enter Tcl’s Virtual File System (VFS) API to solve the problem. Just as UNIX
streams generalized the interface between different devices, Tcl’s VFS generalizes
the interface between different directory systems. With a little bit of glue to read
a directory format, any collection of files can be mounted as a directory and the
files can be read. If the collection supports writing, they can also be written.

For example, the VFS API enables a Tcl script to mount an FTP site as a direc-
tory, search the site with the glob and cd commands, and open and read files
with open, gets, and read commands.

For a wrapped application, this means that the Tcl support libraries can be
placed in the zip archive and the Tcl interpreter can be told to look for them
there, instead of looking for them on the hard drive (/usr/local/lib/tcl8.4, for
instance).

The default search path for the Tcl libraries is compiled into the Tcl interpreter.
You can define an alternative path to the libraries with the environment vari-
ables TCL_LIBRARY and TK_LIBRARY.

The basic steps in creating a wrappable Tcl interpreter are:

n Write glue functions to interface between the Tcl VFS and the file collec-
tion format.

n Write a function that will:

1. Mount the file collection.

2. Set TCL_LIBRARY to point to the new directory.

3. Set TK_LIBRARY to point to the new directory.

4. Initialize Tcl and Tk interpreters.

5. Load and evaluate the Tcl application.

n Add code to invoke your Tcl initialization procedure.

Any of the wrappers described above will work for a pure Tcl application. To
wrap a FORTRAN application, however, we need more control. The big problem
is that a FORTRAN application will have a main entry point defined by the
FORTRAN compiler/linker. This will conflict with the main function in a nor-
mal tclsh.

The TOBE paradigm lets us put the code to initialize the Tcl interpreter in a
function that is invoked by the FORTRAN code, rather than in the normal main
function.

When you download TOBE from http://www.hwaci.com/sw/tobe/index.html
you get:

n Sample Makefile for Linux and cross-compiling with mingw.

n zvfs.c, the glue that lets a zip file be accessed like a file system.

n tkwinico.c, a function that provides a custom windows icon.

; LO G I N : F E B R UA RY 2 0 0 5 TH E TC LS H S P OT 55

n main.c, the main function that mounts the zip file and initializes the Tcl
interpreter.

n main.tcl, a sample Tcl application to wrap.

I’ll start with a simple example of using TOBE to wrap a single script, and then
show how to use TOBE to wrap a FORTRAN application.

The first step is to be certain you have Tcl and Tk static libraries available. Many
distributions only include the dynamic libraries, but to make a completely self-
contained executable, we need to link with static libraries.

If you don’t have libtcl*.a on your system, you can build it.

To build Tcl from scratch:

1. Download the Tcl sources from http://sourceforge.net/projects/tcl/.

2. Untar the archives (tar -xvzof tcl8.4.6-src.tar.gz).

3. Change to the UNIX directory (cd tcl8.4.6/unix).

4. Configure the Makefile (./configure -disable-shared).

5. Make the libraries (make).

6. Repeat for tk.

Note that you need to include the -disable-shared option to configure. The
default configure script makes shared libraries, but not static libs.

Also, you don’t need to install the new libraries. We can build TOBE applica-
tions using a different version of Tcl than the default on our system.

The next step to use TOBE for a simple application is to edit the Makefile. The
sample Makefile is created with hard links to Richard Hipp’s home directories,
and is guaranteed not to work for anyone else. However, the Makefile includes
commented-out generic paths as examples of what might exist on your system.

Use your favorite editor to find each of the /drh/ lines in the Makefile and com-
ment them out. Either uncomment a previous generic line or define a path that’s
appropriate to your system.

My preference is to place the TOBE and application directories in the same
directory as the Tcl and Tk source directories, and to use relative paths in this
format:

The linker option used to link against the TCL library
#
LIB_TCL = ../tcl8.4.6/unix/libtcl8.4.a -lm -ldl

The default Makefile has hooks for many Tcl extensions, including BLT, SQLite,
and Img. The executable will be smaller if we don’t include extensions we aren’t
using, so uncomment all of the -DWITHOUT_foo options in the Makefile.

Once this is done, you should be able to type make in the tobe directory, watch
it build zvfs.o, main.o, etc., link these with the Tcl and Tk libraries, tack a little
bit of zip magic onto the end of the file, and build an executable zip file.

Any errors indicate that you don’t have the paths set correctly or are missing a -L
option in a library path definition.

When this is done, you should be able to use unzip -t to examine the contents of
the new file and confirm that it really is a zip file.

The sample main application in main.c is hardcoded to run the Tcl program
main.tcl in the zip archive.

You can add code for a simple Tcl application to src/main.tcl, rerun make, and
create a new tobe that will run that application. For real projects, modify the
Makefile to generate an application with the name you prefer, or just rename the
tobe executable this creates.

56 ; L O G I N : V O L . 3 0 , N O . 1

To use TOBE with the FORTRAN/Tcl library described in the previous couple of
“Tclsh Spot” articles, we need to merge code from the TOBE main.c into
ftcl_start (in ftcl_c.c) to initialize the interpreter from the zip archive, instead of
using the default files located on your system.

The original ftcl_start function took a single argument, the name of the script to
load. The modified version requires two arguments: the name of a script to load
and the name of the executable. (Your FORTRAN program can get this informa-
tion using the f2kcli package from http://www.winteracter.com/f2kcli/index.htm.)

We need to pass the name of the executable to Tcl_FindExecutable after creating
the Tcl interpreter. The Tcl_FindExecutable function finds the full path to the
application and saves it internally for use by a number of the Tcl interpreter’s
housekeeping tasks.

After creating the Tcl interpreter with

ftcl_interp = Tcl_CreateInterp();
Tcl_FindExecutable(executableName);

the code can set a few global variables. For this application, we aren’t accepting
any command-line flags, so the argv and argc global variables are set to empty
and 0, respectively. The argv0 variable holds the name of the application, which
is stored locally in an array named executableName. Finally, the tcl_interactive
variable is set to false to let the Tcl interpreter know that it’s running a script, not
running as an interactive shell.

When tclsh is used as an interactive shell, the Tcl interpreter tries to evaluate
each line as a Tcl command, and if that fails, it tries to evaluate the line as a sys-
tem command. This is proper for an interactive shell, but inappropriate behavior
for most scripts.

Tcl_SetVar(ftcl_interp, "argv", "", TCL_GLOBAL_ONLY);
Tcl_SetVar(ftcl_interp, "argc", "0", TCL_GLOBAL_ONLY);
Tcl_SetVar(ftcl_interp, "argv0", executableName,

TCL_GLOBAL_ONLY);
Tcl_SetVar(ftcl_interp, "tcl_interactive", "0", TCL_GLOBAL_ONLY);

Next, the zip file system is mounted and Tcl’s global environment array is set to
point to the zip file system.

Tcl keeps a copy of the user’s environment in the env array. All of the environ-
ment variables you can set in your shell are stored in this array, with the envi-
ronment variable name used as the array index. For instance, puts $env(PATH)
would print out the path.

In this case, since we need to force the Tcl interpreter to look for the initializa-
tion files in the zip archive, we overwrite the original values for the
TCL_LIBRARY and TK_LIBRARY indices to point to the zip file system.

/* We have to initialize the virtual file system before calling
** Tcl_Init(). Otherwise, Tcl_Init() will not be able to find
** its startup script files.
*/

/* Initialize the zip file system package */
Zvfs_Init(ftcl_interp);

/* Mount the zip archive (this executable) as /zvfs */
retval = Zvfs_Mount(ftcl_interp, Tcl_GetNameOfExecutable(),

"/zvfs");

/* Point env(TCL_LIBRARY) and env(TK_LIBRARY) to the zip direc-
tories */

Tcl_SetVar2(ftcl_interp, "env", "TCL_LIBRARY", "/zvfs/tcl",
TCL_GLOBAL_ONLY);

; LO G I N : F E B R UA RY 2 0 0 5 TH E TC LS H S P OT 57

Tcl_SetVar2(ftcl_interp, "env", "TK_LIBRARY", "/zvfs/tk",
TCL_GLOBAL_ONLY);

Now the code can initialize the Tcl and Tk interpreters with Tcl_Init and Tk_Init:

if(Tcl_Init(ftcl_interp)) {
ftcl_debug_message("ftcl_start - Tcl_Init:",
Tcl_GetVar(ftcl_interp, "errorInfo", TCL_GLOBAL_ONLY)) ;
return 1;

}

if(Tk_Init(ftcl_interp)) {
ftcl_debug_message("ftcl_start - Tk_Init:",
Tcl_GetVar(ftcl_interp, "errorInfo", TCL_GLOBAL_ONLY)) ;
return 1;

}

If your application might need to create new interpreters with extensions
loaded, you must include a call to Tcl_StaticPackage to let the Tcl interpreter
know that a statically linked package has been loaded into the interpreter.

For example, if you need to create child interpreters with Tk loaded, you might
do it with these commands. Note that the load is invoked with an empty string
and a package name, instead of the more common usage of providing a file
name. This format is used when the file is already loaded and the script just
needs to invoke the extension’s initialization function in the new slave inter-
preter.

interp create withwish
withwish eval {load "" tk}
withwish eval {pack [canvas .c]}
withwish eval {.c create text 100 50 -text "child interp"}

If you leave out the Tcl_StaticPackage call, this code would generate an error
message like

package "tk" isn’t loaded statically

By including this line, the Tk package can be loaded into a new slave interpreter.

Tcl_StaticPackage(ftcl_interp,"Tk", Tk_Init, 0);

If your application has other extensions it may need to load into slave inter-
preters, you must include a call to Tcl_StaticPackage for each one.

We need to make a couple of modifications to the FORTRAN and Tcl code to
run inside a TOBE application.

The code we had in lander.f90 called ftcl_start with the single argument
config.tcl. The ftcl_start function then called Tcl_EvalFile to load and evaluate
the config.tcl script in the current directory.

When we package and ship this application, we’ll have a single file, and there
won’t be any config.tcl in the current directory. The config.tcl file will be in the
zip archive, which is mounted as /zvfs.

Changing the original ftcl_start from this original:

CALL ftcl_start('config.tcl')

to this provides the application name and causes the Tcl_EvalFile to try to evalu-
ate the file in the zip archive:

CHARACTER(256) :: exe
CALL get_command_argument(0,exe)
CALL ftcl_start('/zvfs/config.tcl', exe)

Similarly, in the config.tcl script that loads the GUI and starts the Lunar Lander
application running, we originally just sourced files from the current directory
like this:

source options.tcl

58 ; L O G I N : V O L . 3 0 , N O . 1

source setConditions.tcl
source GUI6.tcl

In order to run within a TOBE, we need to source these files from the /zvfs direc-
tory. The simple solution is to just add the /zvfs/ to the paths.

source /zvfs/options.tcl
source /zvfs/setConditions.tcl
source /zvfs/GUI6.tcl

The final steps are to compile the new ftcl_c.c, link the application, and create
the magic TOBE zip archive.

These steps are all in the sample Makefile that comes with TOBE. They can be
combined into a single sequence of commands like this:

lander: lander.f90 ftclz.a
$(FC) -o tobe.zip $(FLAGS) lander.f90 ftclz.a $(LIBS)
rm -rf zipdir
mkdir zipdir
ln -s /usr/local/lib/tcl8.4 zipdir/tcl
ln -s /usr/local/lib/tk8.4 zipdir/tk
cp $(TCL_APPFILES) zipdir
cat ../tobe/src/null.zip >>tobe.zip
cd zipdir; /usr/bin/zip -qr ../tobe.zip *
cd ..
mv tobe.zip lander

And with that, we’ve created a stand-alone Tcl/FORTRAN application that can
be shipped to our client without worrying whether they have the proper Tcl
interpreters installed on their system.

As usual, the complete code described in this article is available at
http://www.noucorp.com.

; LO G I N : F E B R UA RY 2 0 0 5 WO R K I N G W ITH C # S E R I A L I Z ATI O N 59

G L E N M C C L U S K E Y

working with C#
serialization
Glen McCluskey is a consultant with 20 years of
experience who has focused on programming
languages since 1988. He specializes in Java and
C++ performance, testing, and technical docu-
mentation areas.

glenm@glenmccl.com

AT S O M E P O I N T I N T H E D E V E L O P -
m e n t of most software applications,
design decisions are made about how to
store and retrieve application data. For
example, if your application reads and
writes to disk files, you need to make basic
choices about how to represent the data on
disk.

In this column we want to look a bit at C# I/O issues,
and in particular at a mechanism called serialization.
Serialization is used to convert C# objects into
bytestreams, in a standardized way, so that those
objects can be saved to disk or sent across a network.

The Need for Serialization

Let’s start by considering a couple of examples. The
first one writes a floating-point value to a text file and
then reads it back:

using System;
using System.IO;

public class SerialDemo1 {
public static void Main() {

// write double value to text file

double d1 = 0.1 + 0.1 + 0.1;
StreamWriter sw =

new StreamWriter("out", false);
sw.WriteLine(d1);
sw.Close();

// read double value back from text file

StreamReader sr = new
StreamReader("out");

string ln = sr.ReadLine();
double d2 = Double.Parse(ln);
sr.Close();

// compare values

if (d1 != d2) {
Console.WriteLine("d1 != d2");
Console.WriteLine("difference = " +

(d1 - d2));
}

}
}

When this program is run, the result is:

d1 != d2
difference = 5.55111512312578E-17

For some reason, our attempt to store a floating value
in a text file fails. If we know much about floating-
point, we may not be surprised, given that many deci-
mal values have no exact representation in binary. For
example, the common value 0.1 is the sum of an infi-

60 ; L O G I N : V O L . 3 0 , N O . 1

nite series of binary fractions. Somehow our initial value got changed a bit, due
to roundoff factors and so forth.

Here’s another example. This time we’re trying to store short (16-bit) values, and
our program is as follows:

using System;
using System.IO;

public class SerialDemo2 {
public static void Main() {

// write short value to binary file

short s1 = 12345;
FileStream fs1 =

new FileStream("out", FileMode.Create);
fs1.WriteByte((byte)((s1 >> 8) & 0xff));
fs1.WriteByte((byte)(s1 & 0xff));
fs1.Close();

// read short value from binary file

FileStream fs2 =
new FileStream("out", FileMode.Open);

int b1 = fs2.ReadByte();
int b2 = fs2.ReadByte();
short s2 = (short)((b2 << 8) | b1);
fs2.Close();

// compare short values

if (s1 != s2) {
Console.WriteLine("s1 != s2");
Console.WriteLine("difference = " +

(s1 - s2));
}

}
}

Our approach in this code is to pick apart the values, write the individual bytes
to a binary file, then read them back.

The output of this program is:

s1 != s2
difference = -2295

Unfortunately, we made a mistake when we read the value back from the file—
we got the byte order wrong.

These examples serve to illustrate why serialization is important—there needs
to be some standard mechanism for converting objects into bytestreams and
back again.

A Serialization Example

Let’s go back to the first example, where we are trying to store a floating-point
value. Let’s assume that we have such a value represented in an object, and we
want to store that object to a file and then later retrieve it. Here’s some code that
will do so:

using System;
using System.IO;
using System.Runtime.Serialization;
using System.Runtime.Serialization.Formatters.Binary;
using System.Runtime.Serialization.Formatters.Soap;

[Serializable]

; LO G I N : F E B R UA RY 2 0 0 5 WO R K I N G W ITH C # S E R I A L I Z ATI O N 61

public class MyObject {
private double dvalue;

public MyObject(double dvalue) {
this.dvalue = dvalue;

}

public double GetValue() {
return dvalue;

}
}

public class SerialDemo3 {
public static void Main() {

// serialize MyObject instance to file

double d1 = 0.1 + 0.1 + 0.1;
MyObject obj1 = new MyObject(d1);
FileStream fs1 =

new FileStream("out", FileMode.Create);
BinaryFormatter fmt1 = new BinaryFormatter();
fmt1.Serialize(fs1, obj1);
fs1.Close();

// deserialize MyObject instance from file

FileStream fs2 =
new FileStream("out", FileMode.Open);

BinaryFormatter fmt2 = new BinaryFormatter();
MyObject obj2 = (MyObject)fmt2.Deserialize(fs2);
fs2.Close();
double d2 = obj2.GetValue();

// compare object values

if (d1 != d2) {
Console.WriteLine("d1 != d2");
Console.WriteLine(“difference = " +

(d1 - d2));
}

}
}

The example creates an instance of MyObject, containing a double value, and
then creates a BinaryFormatter. The formatter is used to convert an object into a
bytestream and takes care of all details of conversion, such as traversing arrays
and object graphs (for example, linked lists).

At a later point, the process is reversed and the bytestream converts back into an
object. Obviously, the serialization process is making use of some internal for-
mat for laying out objects and individual data items such as floating-point val-
ues.

Other kinds of formatting are possible. For example, if in our demo we go
through and change BinaryFormatter to SoapFormatter, then the serialization
format will be XML-based.

Using serialization in this way takes care of our original problem with being able
to represent floating-point values exactly.

Transient Data

Making use of serialization is often as simple as the previous example illustrates,
with all the details handled automatically. But it is also possible to exercise a
finer degree of control over the process.

62 ; L O G I N : V O L . 3 0 , N O . 1

Let’s consider another example, where we have an object containing an internal
table, a table whose values are computed in some obvious way. By default, the
serialization process will convert such tables into a bytestream, along with all
other fields in the object. However, doing so may waste a lot of space.

To get around this problem, it is possible to specify that certain fields in an
object not be serialized and, further, to specify a callback mechanism that is
invoked when an object is deserialized. Using the callback, the object’s table can
be reconstructed at deserialization time.

Here’s what the code looks like:

using System;
using System.IO;
using System.Runtime.Serialization;
using System.Runtime.Serialization.Formatters.Binary;

[Serializable]
public class MyObject : IDeserializationCallback {

private uint length;
private uint offset;
[NonSerialized] private uint[] tab;

private void buildtab() {
tab = new uint[length];
for (uint i = 0; i < length; i++)

tab[i] = i * i + offset;
}

public MyObject(uint length, uint offset) {
this.length = length;
this.offset = offset;
buildtab();

}

public uint GetValue(uint index) {
return tab[index];

}

public virtual void OnDeserialization(Object x) {
buildtab();

}
}

public class SerialDemo4 {
public static void Main() {

// serialize object to file

MyObject obj1 = new MyObject(1000, 1000);
FileStream fs1 =

new FileStream("out", FileMode.Create);
BinaryFormatter fmt1 = new BinaryFormatter();
fmt1.Serialize(fs1, obj1);
fs1.Close();

// deserialize object from file

FileStream fs2 =
new FileStream("out", FileMode.Open);

BinaryFormatter fmt2 = new BinaryFormatter();
MyObject obj2 = (MyObject)fmt2.Deserialize(fs2);
fs2.Close();
Console.WriteLine(obj2.GetValue(25));

}
}

; LO G I N : F E B R UA RY 2 0 0 5 WO R K I N G W ITH C # S E R I A L I Z ATI O N 63

The internal table in this example is a pretty simple one, a table of squares plus
an offset. For example, the value for 25 will be 1625, or 25 * 25 + 1000. Since
the table can be computed, there’s no point in serializing it. Instead, we rely on
the OnDeserialization method as a hook to be called when an instance of MyOb-
ject is deserialized.

In other words, only the table length and offset are serialized for MyObject
instances, and these values are sufficient to reconstruct the object. The actual
table is marked with a [NonSerialized] attribute. Doing it this way saves a great
deal of disk space. More generally, you might wish to use a scheme of this sort
when the physical and logical representations of an object are fundamentally
different from each other.

Serialization is an important tool that you can use to store and transmit C# data
in a standardized way. You no longer have to worry about devising custom data
formats or about issues such as byte ordering.

SAVE THE DATE!
MobiSys 2005, The 3rd International Conference on

Mobile Systems, Applications, and Services
June 6–8, 2005, Seattle, WA

http://www.usenix.org/mobisys05

Mobisys 2005 will bring together engineers, academic and industrial researchers, and
visionaries for three exciting days of sharing and learning about this fast-moving field.

64 ; L O G I N : V O L . 3 0 , N O . 1

P E T E R H . S A L U S

the bookworm
Peter H. Salus is a member of the
ACM, the Early English Text Society,
and the Trollope Society, and is a
life member of the American
Oriental Society. He owns neither a
dog nor a cat.

peter@netpedant.com

B O O KS R EV I E W E D I N TH I S CO LU M N

I NTRO D U C TI O N TO COM P UTE R
S E C U R IT Y
Matt Bishop
Boston, MA: Addison-Wesley, 2004.
Pp. 784. ISBN 0321247442.

TH E MY TH O F H OM E L A N D S E C U R IT Y
Marcus J. Ranum
2nd ed., John Wiley & Sons, 2003.
Pp. 240. ISBN 0471458791.

B U I L D I N G A P P L I C ATI O N S W ITH TH E
L I N UX STA N DA R D BA S E
Core Members of the Linux Stan-
dard Base Team
Upper Saddle River, NJ: Prentice Hall
PTR 2004. Pp. 272 + CD-ROM.
ISBN 0131456954.

L I N UX J O U R N A L 1 9 9 4 – 2 0 0 3 A RC H I V E

Seattle, WA: SSC, 2004. CD-ROM.
(https://www.ssc.com/cgi-bin/lj
/back_issue.) ISBN 1578310237.

TH E C U LT O F M AC
Leander Kahney
San Francisco: No Starch Press, 2004.
Pp. 280. ISBN 1886411832.

I’ve got a lot of stuff to write about
this month, not least because this
will be my last “Bookworm.” I have
been writing reviews for ;login:
since 1989. That’s 15 years. I have
no idea how many books I’ve read,
commented on, reviewed.

However, fear not. There are other
Bookworms.

On 2 May 1898, George Bernard
Shaw wrote his farewell article in
the Saturday Review: “The younger
generation is knocking at the door,”
he wrote, “and as I open it there
steps sprightly in the incomparable
Max.”

I am not GBS, and so no mere Max
Beerbohm will follow me. Rather,
in the April issue, there steps
sprightly in the incomparable
Æleen Frisch.

And now to the books . . .

S E C U R IT Y

Over a year ago, I reviewed Bishop’s
massive Computer Security. The
volume to hand—a mere two-
thirds the size—is a revised and
cut-down version. As near as I can
tell, Bishop has removed much of
the mathematics and some of the
explanatory material; the two chap-
ters (on assurance) by Elisabeth
Sullivan have been retained.

This results in a volume that is
much less a university-level text-
book, and more the sort of thing
that a practitioner might read.

If you have been eager to delve into
computer security in a systematic
way, this is the book for you. It will
not grow out of date, because it
deals with principles. It is chock-
full of examples. Bishop has done
the field a great service.

A very different tack is the one
taken by Marcus Ranum. His book
is an out-and-out rant concerning
The Myth of Homeland Security. I
can’t say I loved every page: a num-
ber of pages actually frightened me.
But Ranum does a great job. To
quote him: “Researching the
Department of Homeland Security,
the FBI, CIA, INS, the PATRIOT

Act, and so forth, one falls into a
rabbit’s hole of interdependent
lameness and dysfunction.” Yep.
Ranum is neither as focused nor as
self-confident as Schneier, but his
book is well worth reading. I read
most of my copy sitting in Dulles,
having had to take off my shoes
despite the fact that neither the
magnetometer nor the wand had
been triggered. I felt much safer.

Y E T M O R E P E N G U I N S

The LSB is an innovation that has
enabled tens of thousands of pro-
grammers to write in confidence,
rather than insecurity. In a mere 14
chapters, the Core Team has deliv-
ered methodologies for creating,
testing, and certifying code that
will be LSB 2.0 compliant. I wrote
about LSB 1.0 several years ago. I’m
thrilled that we now have 2.0, and
application programmers will be
happy to see this book.

Do you read LJ? Do you have a
shelf or a stack of old issues? Well,
throw ’em out! Get the Linux Jour-
nal Archive, a CD-ROM containing
all 116 issues from March 1994
through December 2003. I’ve been
reading it on Mozilla. I’m told it’s a
snap on Lynx or Konqueror. I’m
sure Firefox’ll be just fine. There’s
even a rumor that you can use IE.
And it’s really useful. I reread stuff
by Doc Searls and Marcel Gagne. I
even reread some stuff of mine.

LOW- H A N G I N G F R U IT

I think you can get The Cult of Mac
even if you don’t use one. Perhaps
not. I’m not a member of the cult.
But I have used a Mac, and I’ve
authorized purchases of cubes for
folks working for me. This book is
fun even for a guy like me.

It looks like an issue of Wired.
Great typefonts. Outstanding pic-
tures. Well printed. Hardbound. On
top of that, there’s content. That’s
right. Unlike many illustrated
books, this one has substance.

Get it for someone you love as a
Valentine’s Day present!

Ave atque vale!

book reviews
S PA M K I N G S : TH E R E A L STO RY
B E H I N D TH E H I G H - RO L L I N G
H U C KSTE R S P U S H I N G P O R N , P I L LS,
A N D % * @) # E N L A RG E M E NTS
Brian S. McWilliams
Sebastopol, CA: O’Reilly and Associ-
ates, 2004. 256 pp. ISBN 0596007329.

Reviewed by Rik Farrow
rik@spirit.com

I had just finished burning a CD
with seven months’ worth of spam
(740 MB), part of a project I had
started last year on the sources of
spam relays, when I decided to read
Spam Kings. I wondered whether
McWilliams’ book would provide
any insight into the minds of the
people who spam. It does that, and
more.

McWilliams is an investigative
reporter who has appeared in the
public eye before with his writing
as well as his exploits, such as pub-
lishing the contents of Saddam
Hussein’s email. In Spam Kings he
has created a detailed narrative that
brings the lives of both spammers
and anti-spammers into focus. He
spins his research into the business
of spamming into colorful and
sometimes astonishing accounts of
spammers. McWilliams’ main char-
acter, David Hawke (a.k.a. Britt
Greenbaum, Walter Smith, Michael
Girdley, Bo Decker), is a chess-
playing, ex-neo-Nazi health fanatic
whose spamming exploits begin in
a double-wide in South Carolina
and continue on the mountain
slopes of the Northeast. Hawke not
only makes a good living “work-
ing” part-time, but also shares his
skills with young chess players he
meets at tournaments.

McWilliams also examines the
ranks of spam fighters, following
them as they spar online or do a
better job of tracking down spam-
mers than the state authorities who
occasionally arrest and prosecute
them. Being an active anti-spam
activist isn’t much fun: it requires
lots of hard work, determination,
and a thick skin to take the online
insults. One advocate gets into her
car only to discover a bullet hole in
the windshield, and many others
receive death threats by phone.

As Hawke writes in his manual for
spammers, The Bulkbook, spam-
ming (as well as anti-spam activi-
ties) is not for everyone: “If you are
bothered by complaints or easily
swayed, then you should stop read-
ing this immediately and find
another plan for making money.”

Spam Kings will not teach you the
technical details of spamming, but
it will introduce you to the social
and some of the economic details.
For example, a response rate of
0.2% is considered very good. And
sex, or, rather, promises that your
sexual experiences will be
increased or improved, sells.

McWilliams scribes a fascinating
story that I found easy to read. If
you have ever wanted to know
more about the seamy underground
of spamming, this is the book for
you.

Two on Mobility

M O B I L E A P P L I C ATI O N S :
A R C H ITE C TU R E , D E S I G N A N D
D EV E LO PM E NT
Valentino Lee, Heather Schneider,
and Robbie Schell
Upper Saddle Hill, NJ: Prentice-Hall,
2004. 331 pages. ISBN 0-13-117263-8.

M O B I L E I P V 6 : M O B I L IT Y I N A
W I R E L E S S I NTE R N E T
Hesham Soliman
Boston: Addison-Wesley, 2004. Pp. 338.
ISBN 0-201-78897-7.

Reviewed by Chuck Hardin
chardin@naming-schemes.org

As the number of wireless devices
connected to the Internet increases,
so does the number of applications
designed for such devices and the
requirement to provide them with
reasonable IP connectivity. It’s
therefore unsurprising that there
are more books covering these sub-
jects and that they display a wide
range of quality.

Soliman’s Mobile IPv6 covers the
subject of the IETF draft standards
for mobile extensions to the IPv6
address space. These extensions are
intended to provide clients with
session continuity and full reacha-
bility as they go from network to
network.

Unfortunately, the book does not
provide a similar continuity as it
goes from subject to subject, nor is
its coverage of basic material com-
plete. The summary of Internet
protocol layers, for example, lists
only five layers; I think the OSI
would like to know where the
other two layers went. The material
in the chapter on security is rather
disjointed. I’m not sure why the
basics of public key cryptography
are covered in such superficial
detail, just enough to get the basic
concepts but not enough to imple-
ment anything useful.

Mobile Applications is significantly
better organized. It clearly achieves
its purpose, which is to describe
approaches to designing applica-
tions to be run on wireless devices.
It does not cover actual implemen-
tation of such systems in detail, but
that is not its stated purpose.
Although it is ostensibly a Hewlett-
Packard publication, the book does
not dwell exclusively on HP’s solu-
tions in this space; there’s one men-
tion of their OpenView monitoring
product, but that’s it.

The striking thing about both
books is their emphasis on design
principles that seem good regard-
less of whether one is working with
wireless networks or not. When
Mobile Applications urges the reader
to design with a range of browsers

; LO G I N : F E B R UA RY 2 0 0 5 B O O K R EV I E WS 65

66 ; L O G I N : V O L . 3 0 , N O . 1

in mind or to avoid requiring the
use of plug-ins that may not be
available to many users, or when
Mobile IPv6 recommends familiar-
izing oneself with IETF standards, I
can only reply, “Amen.” Perhaps

wireless technology is temporarily
forcing programmers to adopt bet-
ter habits in some ways.

I hope that Soliman improves his
book; it discusses a subject that

deserves good coverage, and with a
tighter focus and better organiza-
tion, it would provide that. Mobile
Applications, on the other hand, is a
fine reference work as it is.

USENIX Membership Update
Membership renewal information, notices, and receipts are now being sent to you electronically! Remember

to print your electronic receipt if you need one when you receive the confirmation email.

If you have not provided us with an email address, you are welcome to update your record online.

See http://www.usenix.org/membership.

You are welcome to print your membership card online as well. The online cards have a new design with

updated logos—all you have to do is print!

Please note that some annual membership dues will increase as of Feb. 1, 2005:

• Individual membership dues: currently $110, will be $115.

• Educational membership dues: currently $230, will be $250.

• Corporate membership dues: currently $440, will be $460.

• Student and Supporting memberships will remain at their current rates.

• SAGE membership dues will remain the same at $40.

USENIX
notes

U S E N I X B OA R D O F D I R E C TO R S

Communicate directly with the
USENIX Board of Directors by
writing to board@usenix.org.

P R E S I D E NT

Michael B. Jones,
mike@usenix.org

V I C E P R E S I D E NT

Clem Cole,
clem@usenix.org

S E C R E TA RY

Alva Couch,
alva@usenix.org

TR E A S U R E R

Theodore Ts’o,
ted@usenix.org

D I R E C TO R S

Matt Blaze,
matt@usenix.org

Jon “maddog” Hall,
maddog@usenix.org

Geoff Halprin,
geoff@usenix.org

Marshall Kirk McKusick,
kirk@usenix.org

E X E C UTI V E D I R E C TO R

Ellie Young,
ellie@usenix.org

20 Years Ago . . . and More

Peter H. Salus
peter@usenix.org

January 1985. 1200 USENIX mem-
bers in Dallas for the Winter Con-
ference. Rob Kolstad gave the
keynote. Lauren Weinstein gave a
progress report on Stargate. Susan
Nycum spoke about liability issues
in Netnews transmissions.

Gad! Some topics just don’t go
away.

Doug Comer and Ralph Droms
talked about tilde trees; there was a
first paper on NFS; Steve Johnson
chaired an impressive languages
session (DIBOL, Modula-2, Con-
current C); papers by Ian Darwin
and Geoff Collyer, by Ray Essick,
by Peter Honeyman and Pat Parse-
ghian. A status report on the
USENIX UUCP project by Karen
Summers-Horton and Mark Hor-
ton. Really good stuff. Meaty stuff.
Oh, yeah. And Mike O’Brien on
mail in CSNET.

Which reminds me.

In last June’s ;login:, I celebrated the
1984 Technical Conference. It stim-
ulated Mike O’Brien to send the fol-
lowing email. (Incidentally, when
Mike was a graduate student, it was
he who produced the first USENIX
distribution tapes; Mike also was
the distributor of the 50-bugs tape
[“by special request”] in 1976.)
Mike writes:

I wanted to note my memories
of the Salt Lake City conference.
If I remember correctly, this con-
ference was the pinnacle in the
series of by-then-traditional
“wizards” parties.” For some
years, the hosting wizards at
each conference had tried to
outdo previous hosts in provid-
ing an exotic, elaborate party.
The tradition probably began at
the Santa Monica conference,
when Dave Yost hosted the party
at his home in the Hollywood
Hills, providing a tank of

; LO G I N : F E B R UA RY 2 0 0 5 U S E N I X N OTE S 67

U S E N I X M E M B E R B E N E F ITS

Members of the USENIX Associa-
tion receive the following benefits:

F R E E S U B S C R I P T I O N to ;login:, the Associ-
ation’s magazine, published six times
a year, featuring technical articles,
system administration articles, tips
and techniques, practical columns on
such topics as security, Perl, Java, and
operating systems, book reviews, and
summaries of sessions at USENIX
conferences.

A C C E S S T O ; L O G I N : online from October
1997 to this month:
www.usenix.org/publications/login/.

A C C E S S T O P A P E R S from USENIX confer-
ences online:
www.usenix.org/publications/
library/proceedings/

T H E R I G H T T O V O T E on matters affecting
the Association, its bylaws, and elec-
tion of its directors and officers.

D I S C O U N T S on registration fees for all
USENIX conferences.

D I S C O U N T S on the purchase of proceed-
ings and CD-ROMs from USENIX
conferences.

S P E C I A L D I S C O U N T S on a variety of prod-
ucts, books, software, and periodicals.
For details, see
www.usenix.org/membership
/specialdisc.html.

F O R M O R E I N F O R M AT I O N regarding
membership or benefits, please see
www.usenix.org/membership/
or contact office@usenix.org.
Phone: 510-528-8649

68 ; L O G I N : V O L . 3 0 , N O . 1

helium, a tank of oxygen, and a
box full of balloons.

At this conference, the party was
held in a ski cabin owned by the
university, up by Snowbird or
some such. To get there was
quite a drive, the last part of it
through the woods on a snow-
covered hillside. The cabin itself
was quite rustic.

No sooner had I come in the
front door than a bunch of wiz-
ards, who were all gathered near
the back door, asked me, “Want
something to drink?”

“Not just yet, thanks,” I replied.

“No, no, you want something to
drink!”

“Nope, sorry, maybe later.”

“You don’t understand. You
really want something to
drink!”

“All right, all right, I want some-
thing to drink!”

“OK! Take your pick!”

One of them swung open the
back door, to reveal a snowbank
up to the roofline. Holes had
been punched in the snowbank,
and bottles of various elixirs had
been stuffed into the holes, so
that the picture presented was of
a glowing white wine-rack.

Things only got better from there.

(For a picture of Dennis Ritchie
with Bill Joy and of Tom Ferrin with
Mike Karels, taken at Snowbird, see
A Quarter Century of UNIX.)

Summary of USENIX
Board of Directors Actions

Tara Mulligan

The following actions were taken
by the USENIX Board of Directors,
6/27/04–12/10/04.

R E Q U E STS F O R F U N D I N G , 2 0 0 5

In 2005, $48,000 will be budgeted
for standards efforts to support new
developments in the Linux Stan-
dards Base, participation in POSIX

IR meetings, representation at the
International Standards Organiza-
tion meetings, membership in The
Open Group, and collaboration
with the Free Standards Group.

USENIX will continue to support
the USA Computing Olympiad in
the amount of $15,000. USACO
supports pre-college students who
show great promise for careers in
computer science.

The Board approved a donation of
$50,000 to the Electronic Frontier
Foundation in partial fulfillment of
its 2001 commitment of $150,000.

USENIX will fund the Computing
Research Association Committee
on the Status of Women in Com-
puting Research in the amount of
$40,000. It will sponsor systems
students in their Distributed Men-
toring Program. For more informa-
tion, see http://www.cra.org
/Activities/craw/dmp/index.php.

CO N F E R E N C E S

USENIX will sponsor a new work-
shop, Steps to Reducing Unwanted
Traffic on the Internet (SRUTI),
July 7–8, 2005, concerned with
finding ways to stop attacks on sev-
eral standard Internet protocols:
see http://www.usenix.org/events
/sruti05/.

The Virtual Execution Environ-
ments (VEE) Conference in June
2005 in Chicago will merge the
USENIX Virtual Machine and Tech-
nology Symposium (VM) and the
ACM SIGPLAN Workshop on In-
terpreters, Virtual Machines, and
Emulators (IVME). It was felt that
researchers working on virtual exe-
cution environments would be bet-
ter served by having a single top-
notch event, rather than two
smaller ones.

CO N F E R E N C E R E G I STR ATI O N F E E S

Registration fees for 2005 confer-
ences were raised slightly to keep
up with rising costs as follows:

Annual Tech and LISA Tutorials:
1/2 day, $325; 1 day, $625: 2 days,
$1,200; 3 days, $1,775; 4 days,

$2,300; 5 days, $2,825; 6 days (LISA
only), $3,150; students, $200/day

LISA: half Technical Session/half
Training day, $425

Annual Tech and LISA Technical
Sessions, members: 1 day, $250; 2
days, $500; 3 days, $650; students,
$90/day

Security Tutorials: 1 day, $650; 2
days, $1,250; students, $200/day

Security Technical Sessions: mem-
bers, $675; students, $270

Technical Sessions for all 3-day
conferences with no tutorials:
members, $675; students, $270

M E M B E R S H I P D U E S

The Board voted to raise member
dues for the first time in three
years: Individual, $115 (increase of
$5); Educational, $250 (increase of
$20); Corporate, $460 (increase of
$20); Affiliate, $110 (increase of
$5). Student, Supporting, and
SAGE dues are unchanged.

SAG E

The SAGE Transition Team (Geoff
Halprin, Trey Harris, David Parter,
and Lorette Cheswick) is pursuing
setting up SAGE as an independent
entity. An application for 501(c)(3)
non-profit status has been filed
with the IRS, and a Letter of Deter-
mination as to whether that status
will be granted is pending. The
USENIX office continues to pro-
vide all SAGE services and benefits.

COM M IT TE E S

The Board will form an audit com-
mittee in 2005, to comply with new
California legislation regarding
non-profit organizations.

N E XT M E E TI N G

The next regular meeting of the
Board of Directors will be held on
Monday, April 11, 2005, at the
USENIX Annual Technical Confer-
ence in Anaheim, CA. The Board
will also meet on April 12, to dis-
cuss strategic directions.

conference
reports

LISA ’04: 18th Large
Installation System
Administration
Conference

Atlanta, Georgia
November 14–19, 2004

S P E C I A L AWA R D S

Doug Hughes was the recipient
of the first Chuck Yerkes Award
for Outstanding Individual
Contribution on Member
Forums, and Brent Chapman
was the recipient of the SAGE
Outstanding Achievement
Award.

CO N F E R E N C E S U M M A R I E S

Configuration Management
Workshop

Paul Anderson, University of
Edinburgh

Summarized by John
Hawkins

This year’s configuration work-
shop was attended by 27 peo-
ple, from a range of academic
and commercial organizations
with often widely differing
requirements for their configu-
ration management tools.

In the three years since the first
workshop, there has been
great-er recognition that the
configuration problem extends
beyond that of configuring sin-
gle machines toward methods
of managing collections of
nodes, often in a decentralized
manner or by a devolved man-
agement team.

This workshop took a slightly
different form from previous
ones. Each of the four sessions
followed a different theme, con-
centrating on separate areas of
the problem. The traditional
presentations of attendees’ tools
were not present this time,
helping to avoid the “tool wars”
of previous workshops. It is
now widely agreed that no cur-

rent tool adequately solves all
the

problems in configuration man-
agement, and that collaboration
between researchers in the field
and a refocusing on the principles
behind tool design, rather than the
refinement of any one tool, are
required for future progress.

As usual, a range of polls were
taken. The majority of attendees
regard themselves as tool develop-
ers, but a much smaller number
have written tools that are also
used by others. Many manage
either high-performance clusters
or Windows machines, and well
over half indicated a strong inter-
est in the theoretical research
issues in system configuration, in
addition
to practical concerns of tool
development.

Some attendees felt that those
within the configuration commu-
nity are approaching a consensus,
but others thought there is some
way to go yet. The problems
involved are only beginning to be
specified in words whose mean-
ings are agreed on, and there is
still much duplication of work.

Attempts were made to define a
number of terms in common usage
but with slightly ambiguous or
overloaded meanings. “Policy”
was suggested to be a description
of what a machine is intended to
do, including intended collabora-
tions as well as configurations.
“Service Level Agreements”
(SLAs) were defined as relation-
ships promising service within
specific tolerances.

Effort is required on the specifica-
tion of intermachine relationships.
A tool may correctly configure a
machine in isolation, but more
complex ways of capturing the
details of a service specification are
needed to ensure that interma-
chine relationships hold, thus pro-
ducing the desired service behav-
iors.

; LO G I N : F E B R UA RY 2 0 0 5 1 8 TH L A R G E I N STA L L ATI O N SYSTE M A DM I N I STR ATI O N CO N F E R E N C E 69

Our hearty thanks go:
To the LISA ’04 scribe
coordinator:
John Sechrest
To the LISA ’04
summarizers:
Tristan Brown
Rebecca Camus
Andrew Echols
John Hawkins
Jimmy Kaplowitz
Peter H. Salus
John Sechrest
Josh Simon
Gopalan Sivathanu
Josh Whitlock
And to the
EuroBSDCon 2004
summarizer:
Jan Schaumann

SLAs cross a dividing line, since
they require active monitoring.
While it is essential that this moni-
toring be integrated into the tool,
it should be part of a layer distinct
from the specification language
currently used.

As soon as dynamic properties are
introduced, much of the certainty
that previously existed is lost, and
it will no longer be possible to tell
what’s true or false at any particu-
lar time, thus moving into the
realm of probabilities. This is a
fundamental problem that must be
lived with. It was suggested that
this uncertainty has at least two
dimensions, time and value uncer-
tainty.

The possibility of a set of stan-
dards for configuration was dis-
cussed, with the POSIX standard
for UNIX as an analogy. The use of
a low-level API for configuration
was also suggested.

Mark Burgess led a session on
decentralized configuration, illus-
trated by Ed Smith’s simulation of
a decentralized service manager
capable of reconfiguring in
response to node failure.

A move away from centrally man-
aged systems is required to cope
both with problems of scale and
with vulnerability to central points
of failure that are becoming prob-
lematic for large sites. However,
this move brings with it reductions
in predictability, trust, and relative
simplicity of management. Decen-
tralized management allows
autonomy where some configura-
tion decisions are made by the sys-
tem by use of protocols, including
those for negotiation and service
discovery. To govern this
autonomous behavior, the system
must have in place an awareness of
its environment that is unneces-
sary under central management
and policy control.

There was some discussion of per-
vasive computing, the manage-
ment of large numbers of small
devices, but this is currently an
open problem and it may be too

early to consider it in any detail
since the range of requirements of
such systems is not yet fully
understood.

Luke Kanies and Alva Couch
talked of the difficulty of achieving
more widespread adoption of con-
figuration management tools. Bar-
riers to adoption include the hos-
tility of system administrators
used to the current ways of work-
ing, the complex task of respecify-
ing the configuration of the site
under the new tool, and unhelpful
management attitudes not aided
by poor cost models and lack of
trust in often inadequately proven
systems.

Alva’s presentation described how
the cost of configuration manage-
ment goes through four phases,
each phase reaching a point where
the cost rapidly increases and a
more sophisticated approach to
configuration management must
be adopted. Most sites have
reached the point at the end of the
second phase where the configura-
tion is managed “incrementally,”
for example with cfengine, but en-
counters problems with hidden
preconditions requiring bare-metal
rebuilds. They are not aware of
how to make the transition to a
“proscriptive” management strat-
egy.

Site managers need to know at
what point it becomes more eco-
nomical to adopt a heavyweight
tool such as LCFG, with huge ini-
tial costs in setup and staff training
but more robust results in han-
dling large numbers of machines.

The problem of loss of institu-
tional memory between the “incre-
mental” and “proscriptive” phases
would be alleviated if data mining
techniques could be used to pull
out a large proportion of the cur-
rent configuration and convert this
to configuration data for the new
system. There was some discus-
sion as to whether this is
intractable.

A session on case studies with
Steven Jenkins and John Hawkins

attempted to increase the number
of specific examples of configura-
tion problems tool users are actu-
ally grappling with. Question-
naires were distributed, and
although these have yet to be ana-
lyzed at the time of writing, the
response was impressive, and it is
hoped that this exercise will prove
fruitful.

On devolved aspect resolution, it
was suggested that the system
should follow the human process
of resolution. Political lines are
important and should be reflected
by the machine aspect resolution.
An expert system could be utilized
to predict the impact of the choice
of value.

Suggestions about where research
should focus from this point
included the formalization and
documentation of the collective
knowledge so far, provision of lim-
ited user control, description of
conflicts within configurations
and procedures for their resolu-
tion, mechanisms for configura-
tion transactions, and the identifi-
cation of a wider range of
case-study examples with a variety
of candidate tools on which to try
them.

This is likely to remain an active
area for some time, but there was a
general feeling of optimism at the
workshop that solutions to many
of the problems are reachable.

Sysadmin Education Workshop

John Sechrest, PEAK Internet Services;
Curt Freeland, University of Notre
Dame

Summarized by John Sechrest

The system administration educa-
tion workshop addresses the
process of system administration
education at the university level.
This was the seventh year of the
workshop. Previous materials for
system administration course con-
tent were discussed and an earlier
curriculum of how many different
courses might fit together into a
degree program was reviewed.

70 ; L O G I N : V O L . 3 0 , N O . 1

A new Web site (http://education
.sage.org) was unveiled as a start-
ing point for information collec-
tion, and an online content man-
agement tool called Drupal was
explored
(http://education.sage.org/drupal).

The goal of the Web site is to
enable more collaboration and
cooperation between groups
working on university sysadmin
education.

Over the last two years, there has
been a reduction in the number of
universities that support system
administration courses. The
changes in the economy are being
felt in the universities.

There was a substantial discussion
of just-in-time learning materials
for university training for existing
system administration staff and
how these materials might be
shared in the context of other
courses. There was also discussion
of how online learning modules
might be useful.

The system administration
education mailing list is now at
sysadm-education@sage.org.

Advanced Topics Workshop

Adam S. Moskowitz, Menlo Computing

Summarized by Josh Simon

The Advanced Topics Workshop
started with a quick overview of
the new moderation software and
continued with introductions
around the room—businesses
(including consultants) outnum-
bered universities by about 2 to 1,
and the room included three for-
mer LISA program chairs and six
former members of the USENIX
Board or SAGE Executive Com-
mittee.

Our first topic was introducing the
concepts of disciplined infrastruc-
ture to people (i.e., it’s more than
just cfengine or isconf, or infra-
structure advocacy, or getting rid
of the ad hoc aspects). Some envi-
ronments have solved this prob-
lem at varying levels of scale; oth-
ers have the fear of change

paralyzing the system administra-
tion staff. One idea is to offload the
“easy” tasks either to automation
(while avoiding the “one-off”
problem and being careful with
naming standards) or to more jun-
ior staff so that senior staff can
spend their time on more interest-
ing things. Management buy-in is
essential; exposing all concerned
to LISA papers and books in the
field has helped in some environ-
ments. Like many of our problems,
this is a sociological one and not
just a technical one. Remember
that what works on systems (e.g.,
UNIX and Windows boxes) may
not work for networks (e.g.,
routers and switches), which may
be a challenge for some of us. We
also noted that understanding
infrastructures and scalability is
very important, regardless of
whether you’re in systems, net-
work, or development. Similarly
important is remembering two
things: First, ego is not relevant,
code isn’t perfect, and a developer’s
ego does not belong in the code.
Second, the perfect is the enemy of
the good; sometimes you have to
acknowledge there are bugs and
release it anyway.

After the morning break, we dis-
cussed self-service, where sysad-
min tasks are traditionally handed
off (ideally in a secure manner) to
users. Ignoring for the moment
special considerations (like HIPAA
and SOX), what can we do about
self-service? A lot of folks are
using a number of Web forms or
automated emails, including the
business process (e.g., approvals),
not just the request itself. One
concern is to make sure the
process is well defined (all edge
cases and contingencies planned
for). We’ve also got people doing
user education (“we’ve done the
work, but if you want to do it
yourself the command is . . .”).
Constraining possibilities to do
only the right thing, not the wrong
thing, is a big win here.

Next we discussed metrics. Some
managers believe you have to

measure something before you can
control it. What does this mean?
Well, there are metrics for service
goals (availability and reliability
are the big two), in-person meet-
ings for when levels aren’t met,
and so on. Do the metrics help the
SAs at all, or just management? It
can help the SAs identify a flaw in
procedures or infrastructure, or
show an area for improvement
(such as new hardware purchases
or upgrades). We want to stress
that you can’t measure what you
can’t describe. Do any metrics
other than “customer satisfaction”
really matter? Measure what peo-
ple want to know about or are
complaining about; don’t just
measure everything and try to fig-
ure out what’s wrong from the
(reams of) data. Also, measuring
how quickly a ticket got closed is
meaningless: Was the problem
resolved, or was the ticket closed?
Was the ticket reopened? Was it
reopened because of a failure in
work we did, or because the user
had a similar problem and didn’t
open a new ticket? What’s the pur-
pose of the metrics? Are we adding
people or laying them off? Quanti-
fying behavior of systems is easy;
quantifying behavior of people
(which is the real problem here) is
very hard. But tailor the result in
the language of the audience, not
just numbers. Most metrics that
are managed and monitored cen-
trally have no meaningful value;
metrics cannot stand alone, but
need context to be meaningful.
Some problems have technical
solutions, but metrics is not one of
them. What about trending? How
often and how long do you have to
measure something before it
becomes relevant? Not all metrics
are immediate.

After a little bit of network trou-
bleshooting (someone’s Windows
XP box was probing port 445 on
every IP address in the network
from the ATW), we next discussed
virtualized commodities such as
User Mode Linux. Virtual
machines have their uses—for

; LO G I N : F E B R UA RY 2 0 0 5 1 8 TH L A R G E I N STA L L ATI O N SYSTE M A DM I N I STR ATI O N CO N F E R E N C E 71

research, for subdividing
machines, for providing easily
wiped generic systems for firewalls
or DMZ’d servers where you worry
about them being hacked, and so
on. There are still risks, though,
with reliance on a single point of
failure (the hardware machine)
theoretically impacting multiple
services on multiple (virtual)
machines.

Next we discussed how to get the
most out of wikis as internal tools.
What’s out there better than
TWiki? We want authentication
out of LDAP/AD/Kerberos, among
other things. The conference used
PurpleWiki, which seems to be
more usable. There’s a lot of push-
back until there’s familiarity.
They’re designed for some specific
things, but not everything. You
need to be able to pause and refac-
tor discussions if you use it as, for
example, an email-to-Wiki gate-
way. (There is an email-to-Wiki
gateway that Sechrest wrote.) If
email is the tool most people use,
merging email into a wiki may be a
big win. Leading by example—
take notes in the wiki in real time,
format after the fact, organize it
after you’re done—may help sell it
to your coworkers.

Next we listed our favorite tool of
the past year, as well as shorter
discussions about Solaris 10, IPv6,
laptop vendors, backups, and
what’s likely to affect us on the
technology front next year. We fin-
ished off by making our annual
predictions and reviewing last
year’s predictions; we generally did
pretty well.

K EY N OTE A D D R E S S

Going Digital at CNN

Howard Ginsberg, CNN

Summarized by Gopalan
Sivathanu

Howard spoke about CNN’s plan
to move video storage, playout,
and editing from physical media to
file-based operations on disk. The

main motivating factors behind
this change are improving the
speed of general operations like
editing and transfer and bringing
about a better means for locating
archived data. He pointed out that
through file operations, searching
becomes much easier than pulling
out physical videotapes.

According to CNN, using digital
format for storing video simplifies
access, eases manageability, and
provides ready adaptability and a
competitive edge in expediting the
operations so as to bring news at
the right time. Howard introduced
the method that CNN plans to
adopt to bring about this change: a
system called “Integrated Produc-
tion Environment” (IPE), whose
operations would broadly be man-
aging media assets, scheduling the
various operations on the media,
production, playout, and, finally,
archiving the old data so that they
can be accessed quickly whenever
required.

While speaking about the com-
plexity involved in such a huge
transition, Howard presented
numbers for the approximate stor-
age space required for storing one
day’s video in high-res and low-res
formats. He pointed out that, since
high-res video might require
around 22GB of storage per day,
performing operations like editing
and file transfer required for
acquiring, archiving, and transfer-
ring data is a big challenge.

Howard then discussed the various
pros and cons of making this tran-
sition. The major pros he pointed
out are parallelism in recording
and editing, sharing, versioning,
flexibility, and transfer speed. The
main disadvantages are absence of
“at scale” reference architectures
and the asynchronicity between
deployment and technological
improvement wherein technologi-
cal development renders the sys-
tem obsolete by the time it’s
deployed.

Howard pointed out that provid-
ing forward and backward com-

patibility between software and
hardware is one of the important
challenges in making the transi-
tion. He then described the project
phases and workflow and gave a
brief overview of the system archi-
tecture.

S PA M / E M A I L

Scalable Centralized Bayesian Spam
Mitigation with Bogofilter

Awarded Best Paper!

Jeremy Blosser and David Josephsen,
VHA Inc.

Summarized by Gopalan
Sivathanu

Jeremy and David presented the
paper together. Jeremy began by
describing the spam problem and
existing solutions such as check-
summing and sender verification.
Before introducing their own solu-
tion, he went into the history of
Bayesian filtering and discussed its
disadvantages. He then described
their Bogofilter Bayesian classifier,
which they implemented on a
Linux and Qmail plaform. He gave
the salient features of the method
and its capabilities. They believe
the success rate to be as high as
98–99%.

They displayed a graph showing
the percentage of inbound mail
blocked as spam to total inbound
mail before and after implement-
ing Bogofilter. It showed a sharp
increase in the number of mails fil-
tered after Bogofilter was installed,
in late April of 2003, and the per-
formance has persisted for over a
year.

Jeremy and David described the
training phase required for
Bogofilter: sorting several days’
worth of messages sorted into
spam and non-spam teaches
Bogofilter how to differentiate
spam in a given environment.
They explained that, after training,
the parameters of Bogofilter have
to be tuned by running it over a
sample of presorted mail and log
output and comparing error rates.
They gave a 10-minute demonstra-

72 ; L O G I N : V O L . 3 0 , N O . 1

tion of their automated training
scripts.

I N V ITE D TA L KS

What Is This Thing Called System
Configuration?

Alva Couch, Tufts University

Summarized by Jimmy
Kaplowitz

Alva Couch talked about efforts to
find a “good enough” path to con-
figuration management. What
would be ideal would be to
describe to the computer the
desired high-level behavior, but
nowadays we still manually trans-
late this into an implementation
specification for the computers to
interpret. Couch distinguished
between host-based configuration,
where individual machines are set
up to cooperate in providing a
service, and the more fault-toler-
ant network-based method of con-
figuration, where a service is set
up network-wide. The languages
used in system configuration can
either be procedural, an intuitive
paradigm that shows the steps of
implementation that lead to the
desired result, or declarative, a
nonobvious but clear form of lan-
guage that simply states the
desired intent and leaves it to soft-
ware to determine the implemen-
tation. These contrasts reflect a
continuum of rigor leading from
manual and unstructured changes
on individual hosts to declarative
specifications applied to the entire
fabric of the network. The most
important aspect of a configura-
tion system, however, is the disci-
pline of the administrators adopt-
ing it. This is much more
important than the software
involved.

Configuration specifications can
either be proscriptive, specifying
everything, or incremental, where
some requirements are specified
but others are not. Beginners,
Couch says, are not proscriptive
enough, allowing the presence of
latent preconditions that differ

among hosts. The next step
beyond this is a federated network,
where software can change the
function of individual machines in
response to usage patterns and
other conditions. As network
management systems gain com-
plexity from ad hoc to federated,
they become harder to start man-
aging but easier to continue and
finish managing. Simpler configu-
ration management systems are
better on smaller-scale networks
and over shorter periods of time,
but in large and long-lived net-
works these techniques help.

Configuration languages, at their
core, describe data and state, not
the algorithms with which pro-
gramming languages concern
themselves. Existing languages to
manage federated networks have
classes of machines, but they are
insufficient when the classes over-
lap. The best solutions use aspect
composition to satisfy constraints
that specify what properties the
administrators require the net-
work configuration to possess.
These constraint-based languages
are useful but hard. Configuration
language theory is still in its
infancy.

Anomaly Detection: Whatever
Happened to Computer Immunology?

Mark Burgess, Oslo University College

Summarized by Jimmy
Kaplowitz

Anomaly detection in the context
of computers is the process of
monitoring systems and looking
for anything unusual, or “funny,”
and maybe fixing it, too. To do this
it is necessary to determine what
an anomaly is. Are intrusions
anomalies? What about viruses
and malware? Should the system
signal that regulation is needed?
Regardless, the management of the
anomaly detection system should
be simple and flexible.

Burgess emphasized the scientific
approach to this problem. He says
there are two types of knowledge:
uncertain knowledge about the

real world, such as that found in
biology and experimental physics,
and certain knowledge about the
fantasy worlds of math and model-
ing. It is hard to define what a pat-
tern is that an anomaly detection
system would be looking for, but a
rough guess would be a noticeable
repetition or continuous variation.
This is modeled with rules, and
the knowledge we have about nor-
mal behavior is modeled with
parameterized expressions.

Anomalies can be modeled as dis-
crete events. For this task, one can
use languages anywhere on the
Chomsky hierarchy of languages,
ranging from regular languages to
recursively enumerable languages.
In practice, all discrete anomalies
are finite in length, so regular lan-
guages and the regular expressions
that comprise them will suffice. It
is also possible to use techniques
such as epitope matching or prob-
abilistic searching of the pattern
space.

Continuous modeling of anom-
alies is a high-level way to attack
the problem. This always involves
intrinsic uncertainty, since each
point represents a summary of
many values. It is possible to
include time in the model, consid-
ering sequences rather than indi-
vidual anomalous symbols, but
remembering all things doesn’t
usually help. On the other hand,
forgetting temporal details implies
certainty.

In fact, whether the model is dis-
crete or continuous, there will
always be uncertainty, either over
whether the symbol is correctly
matched or over whether the
shape of the trend is significant.
How to deal with this uncertainty
is an important matter of policy.
One example of a policy question
is where to set thresholds. Small
variations should be ignored, but
striking differences need to be
dealt with. Also, one can focus on
high-entropy anomalies, which are
very broad, or specific and focused
low-entropy anomalies.

; LO G I N : F E B R UA RY 2 0 0 5 1 8 TH L A R G E I N STA L L ATI O N SYSTE M A DM I N I STR ATI O N CO N F E R E N C E 73

Burgess’ conclusion re-emphasizes
that there is inevitable uncertainty
in anomaly detection and that pol-
icy is necessary to resolve it. We
lack causally motivated models to
explain the reasons behind the
anomalies that occur. Human
beings are still the state of the art
for anomaly detection. It is impor-
tant not to make the sample size
too large when determining
whether an event is anomalous or
not, since with a large enough
sample nearly everything looks
like normal variation. Burgess fin-
ished by saying that the next step
for anomaly detection is to
develop higher-level languages to
describe policy.

What Information Security Laws
Mean for You

John Nicholson, Shaw Pittman

Summarized by Rebecca Camus

With the prevalence of e-com-
merce over the past several years,
more and more emphasis has been
placed on guaranteeing consumers
that their personal information
will be secure in the business’s
databases and while the customer
is performing online transactions.
John Nicholson addressed the
topic of information security by
first giving the user a crash course
in civics, then presenting both fed-
eral and state-level regulations and
laws that businesses must comply
with, and finally discussing what
the government is doing to enforce
these regulations.

Nicholson began by delineating
the differences between state and
federal regulations and how fed-
eral and state laws interact. Fed-
eral law has the power to preempt
state law on controversial issues
relating to individual protections.
However, states have the power to
make these laws stricter if they
wish.

The next topic that Nicholson cov-
ered regarded federal laws. In the
past few years, the federal govern-
ment has passed several informa-
tion security laws that all busi-

nesses must comply with. The
ones presented in this lecture and
brief explanations of each are:

Federal Information Security
Management Act: requires each
business to inventory their com-
puter systems, identify and pro-
vide appropriate security protec-
tions, and develop, document, and
implement information security
programs.

Gramm-Leach-Bliley Act: requires
financial institutions to protect
nonpublic financial information
by developing, implementing, and
maintaining their information
security programs.

Health Insurance Portability and
Accountancy Act: requires all
health-related industries (includ-
ing any company that deals with
any health-related businesses or
companies that self-insure their
employees) to install safeguards in
protecting the security and confi-
dentiality of their customers’ iden-
tifiable information.

Sarbanes-Oxley Act: requires that
all stored information must be
accurate. In addition to the
requirements of each law, they all
require that companies perform
frequent testing and risk assess-
ments and fix all subsequent prob-
lems.

Prompted by the increase in iden-
tity thefts, California has led the
way with state-level information
security laws. Even businesses not
located in California but with cus-
tomers who are California resi-
dents must comply with Califor-
nia’s new information security
laws. According to California’s SB
1386, a resident cannot have his or
her full name or first initial and
last name connected with either
his or her Social Security Number,
driver’s license number, California
identification card number, or
account/
credit card/debit card number,
access code, or password. In addi-
tion to SB 1386, California has
also passed AB 1950, which
requires all businesses (even third-

party companies who have pur-
chased information about Califor-
nia residents) dealing with Califor-
nia residents to implement and
maintain reasonable security pro-
cedures to protect the information
from unauthorized access or modi-
fication.

All of these regulations are being
heavily monitored and enforced by
the Federal Trade Commission.
Businesses that violate any of these
laws or regulations are subject to
heavy fines and possible lawsuits.

I NTR U S I O N A N D V U L N E R A B I L IT Y

D E TE C TI O N

Summarized by Josh Whitlock

A Machine-Oriented Vulnerability
Database for Automated Vulnerability
Detection and Processing

Sufatrio, Temasek Laboratories,
National University of Singapore;
Roland H. C. Yap, School of Computing,
National University of Singapore;
Liming Zhong, Quantiq International

The motivation for the work is
that CERT-reported vulnerabilities
have increased greatly in the
period from 1995 to 2002. The
increase, at first glance, is expo-
nential; there have been decreased
reports in the time period, though.
To address this increase in vulner-
abilities, system administrators
look at vulnerability reports and
use databases of vulnerabilities.
However, such human interven-
tion is not scalable to the increase
in the number of vulnerabilities.
The solution is to increase the
speed of addressing new alerts by
moving from human language to
machine language reports. The
goal of the work is to create a new
framework and database that can
be used by third-party tools by
making the framework declarative
and flexible.

Related work on this subject
includes Purdue Coop Vulnerabil-
ity database, ICAT, Windows
Update, and Windows Software
Update Server. ICAT is not de-
signed for automatic responses

74 ; L O G I N : V O L . 3 0 , N O . 1

but is geared more toward mere
vulnerability searches. Windows
Update and Windows Software
Update Server, two automatic
patch update systems, are closed
and have black-box updates.
Issues with these products men-
tioned above include concerns
that black-box scanners and
updaters might leak information
and do not address problems such
as what is affected by the vulnera-
bility in a system.

To produce a prototype of the
framework, approximately 900
CERT advisories were examined
manually. Information scavenged
from the advisories included con-
ditions for vulnerabilities to exist
and the impact of vulnerabilities.
A scanner written in Perl and a
mySQL database were used as the
prototype. A symbolic language
was created and used to store a
vulnerability source, an environ-
ment source, a vulnerability conse-
quence, and an exploit.

The conclusions reached were that
manual translations of vulnerabili-
ties were not feasible due to the
increasing size; the key to a better
framework is the abstraction of
vulnerabilities instead of new
tools, and this issue needs the
involvement of many organiza-
tions, including CERT, BugTraq,
and SANS.

DigSig: Runtime Authentification
of Binaries at Kernel Level

Axelle Apvrille, Trusted Logic; Serge
Hallyn, IBM LTC; David Gordon,
Makan Pourzand, and Vincent Roy,
Ericsson

DigSig is a kernel module whose
main intent is to provide protec-
tion from trojan horses. The mod-
ule achieves this goal using public
key cryptography, signing known
trusted programs using a hidden
private key, and verifying signa-
tures at program load using the
public key. Previous attempts
include CryptoMark and modules
from IBM Research, but DigSig
seeks to contribute by being prac-

tical, simple to install, and effi-
cient.

DigSig uses SHA-1 and RSA en-
cryption, supports signature revo-
cation, and has good performance.
The main problems for DigSig
include the lack of support for net-
work file systems, lack of script
handling (allowing for trojaned
scripts going uncaught), and no
protection against vulnerabilities
such as buffer overflows.

I3FS: An In-Kernel Integrity Checker
and Intrusion Detection File System

Swapnil Patil, Anand Kashyap,
Gopalan Sivathanu, and Erez Zadok,
Stony Brook University

The motivation for I3FS (pro-
nounced I cubed FS) is that intru-
sions are on the rise; prevention is
nearly impossible, and effective
intrusion handling requires timely
detection. The most common ways
to detect intrusions are to establish
invariant, run-scheduled integrity
checks and to use non-kernel pro-
grams for the detection. I3FS does
all this by existing in the kernel at
the file system layer and using
checksums for integrity checks. A
look at other tools shows that
many are user tools, including
Tripwire, Samhain, and AIDE. The
Linux Intrusion Detection System
is one of the few kernel tools. I3FS
was designed with a threat model
of unauthorized replacement of
key files, modification of files
through raw disk access, and mod-
ification of data in the network.
I3FS has a stackable file system.
The administrator can choose
which files to protect and the pol-
icy for protecting them. The poli-
cies range from checking inode
fields to the frequency at which
checks are performed.

I3FS is implemented using an
in-kernel Berkeley database and a
B+ tree format. With caching,
performance is good.

I N V ITE D TA L KS

LiveJournal’s Backend and mem-
cached: Past, Present, and Future

Lisa Phillips and Brad Fitzpatrick,
LiveJournal.com

Summarized by Andrew Echols

LiveJournal started out as a college
hobby project, providing blogging,
forums, social networking, and
aggregator services. Today, Live-
Journal boasts over 5 million user
accounts and 50 million page
views every day. LiveJournal
quickly outgrew its capacity sev-
eral times over, starting with a sin-
gle shared server and scaling up to
five dedicated servers.

Each step along this path had
problems with reliability and
points of failure, with each
upgrade merely trying to remedy
the problem at hand. Eventually,
the user database was partitioned
into separate user clusters, but as
growth continued, this system
became chaotic as well.

Today, there is a global database
cluster with 10 individual user
database clusters, as well as sepa-
rate groups of Web servers, proxy
servers, and load balancers. Fur-
thermore, master-master clusters
were implemented so that each
database master has an identical
cold spare ready in the event of a
hardware failure.

LiveJournal also uses a large
amount of custom software that
has been open sourced. Perlbal is a
load balancer written in Perl that
provides single-threaded, event-
based load balancing. Perlbal also
has multiple queues for prioritiz-
ing free and paid users.

MobileFS is a distributed user-
space file system where files
belong to classes. The file system
tracks what devices files are on
and utilizes multiple tracker data-
bases.

Memcached provides a distributed
memory cache, taking advantage
of unused system memory to
reduce database hits. Memcached

; LO G I N : F E B R UA RY 2 0 0 5 1 8 TH L A R G E I N STA L L ATI O N SYSTE M A DM I N I STR ATI O N CO N F E R E N C E 75

is now in use at many sites,
including Slashdot, Wikipedia,
and Meetup.

NFS, Its Applications and Future

Brian Pawlowski, Network Appliance

Summarized by John Sechrest

Brian Pawlowski is active in the
development of NFS version 4.
NFS is a distributed file system
protocol started in 1985. The cur-
rent version is version 3; the new
revision of NFS, version 4, was
influenced by AFS. Brian outlined
how NFS was used in the past and
contrasted it with how it is being
used today. Grid computing and
the larger Internet are putting
more demands on distributed file
systems.

NFSv4, an openly specified dis-
tributed file system with reduced
latency and strong security, is well
suited for complex WAN deploy-
ment and firewalled architectures.
NFSv4 represents a huge improve-
ment in execution and coordina-
tion over NFSv3, also improves
multi-platform support, and is
extensible. It lays the groundwork
for migration/replication and
global naming.

NFSv4 adds a Kerberos V5
(RFC1510) authentication system
as a way to create a secure distrib-
uted file system. It also provides
finer grained control for access,
including optionally supporting
ACLs.

NFSv4 is available now in some
platforms. More will be coming
out over the next six months. It is
available for Linux 2.6, but not by
default; you must add it explicitly.

Future development in NFS may
include session-based NFS, direc-
tory delegations, migration/repli-
cation completion, failover, proxy
NFS, and a uniform global name-
space.

Brian spent some time outlining
how NFS works in a grid or clus-
tered environment.

NFSv4 seems like a substantial
transformation, which will make a

significant difference for distrib-
uted file systems.

CO N F I G U R ATI O N M A N AG E M E NT

Summarized by Josh Whitlock

Nix: A Safe and Policy-Free System
for Software Deployment

Eelco Dolstra, Merijn de Jonge, and
Eelco Visser, Utrecht University

Transferring software from
machine to machine is hard, espe-
cially when packages don’t work
right. There can be difficulties
with multiple versions and unreli-
able dependency information. The
central idea of Nix is to store all
packages in isolation from one
another so that dependency and
version problems evaporate. This
is done by storing the path of each
package as an MD5 hash of all the
inputs used to build the package,
thus producing automatic version-
ing. When a Nix package is
installed, if there are dependen-
cies, those packages are automati-
cally installed too. Versioning is
dealt with by having symlinks that
point to the current environment.
To roll back to a previous version
means changing a symlink to
point to the old version. To delete
previous versions, the symlink to
the old version is removed and the
version is removed from disk. Nix
thus allows for safe coexistence of
versions, reliable dependencies,
atomic upgrades and rollbacks,
and multiple concurrent configu-
rations.

I N V ITE D TA L K

Documentation

Mike Ciavarella, University of
Melbourne

Summarized by Rebecca Camus

Mike Ciavarella presented on the
importance of documentation to
system administrators. However,
instead of simply stating how
essential documentation is to sys-
tem administrators, he sparked
many people’s interests by compar-
ing the work of a system adminis-

trator to Alice from the book
Through the Looking Glass.

He began the discussion by rein-
forcing the fact that system admin-
istrators are very different from the
users they support. Many times
these differences lead to a lack of
communication between the user
and the system administrator,
which, in turn, causes the sysad-
min to feel underappreciated and
leads to a sense of frustration.
Such sysadmins often feel little
motivation to use valuable time
documenting their system.

It is essential for system adminis-
trators always to document their
work, for multiple reasons. A sys-
tem administrator will often be
working on several projects at
once, and it is very easy to forget
what one has previously done on a
project when dealing with several
other concurrent projects. Also,
the system administrator has to
think of the future. It is common
for things to go wrong in a system
that has not been worked on
recently. It is helpful to be able to
reference documentation that will
help solve the problem at hand.
And a system administrator may
move on to other projects. It is
helpful to those dealing with the
system to be able to reference the
material that was written when the
system was created.

Overall, documentation will
improve the way system adminis-
trators are perceived, emphasizing
their professionalism and ulti-
mately saving time and reducing
stress.

G U R U S E S S I O N

Linux

Bdale Garbee, HP Linux, CTO/Debian

Summarized by Tristan Brown

Topics included HP’s commitment
to Linux, stabilization of the Linux
kernel, and future directions for
Linux.

HP has a huge commitment to
Linux across their product line.

76 ; L O G I N : V O L . 3 0 , N O . 1

Every division uses Linux to some
degree, although some (such as
the Laptop division) would like to
see more. Linux represents a
source of future growth, given its
current immature state in the mar-
ket. One problem currently faced
is the variety of distributions that
are used and supported, even at
HP. Not only are tier-A distribu-
tions used (e.g., SuSE or RedHat),
but so are near-tier-A distribu-
tions, such as some international
distributions. For many people, a
noncommercial distribution like
Debian is required. Efforts to cre-
ate one Linux strategy are under-
way at HP.

The discrepancies between ver-
sions of the Linux kernel can be a
problem, as many libraries and
applications need to be compiled
against a specific kernel. This has
traditionally been a problem for
Linux, although recent efforts to
stabilize major interfaces have
resulted in less churn. This is a
good thing, due to the tendency
for closed-source drivers to be
compiled for specific versions.
Certification is also easier, since
certification is typically done for a
specific kernel. The end result is
that the kernel can now be consid-
ered a serious tool for end users.

There are many niches Linux is
now or will be entering, beyond
the typical desktop or server
setup. A significant portion of
high-performance computing is
done using Linux clusters, and
Linux is beginning to enter the
financial markets. At the other end
of the spectrum, HP is beginning
to work with Linux in the embed-
ded space, although not much for
real-time uses. They are also tak-
ing Linux to the DSP market.

N E T WO R K I N G

autoMAC: A Tool for Automating
Network Moves, Adds, and Changes

Christopher J. Tengi, Joseph R.
Crouthamel, Chris M. Miller, and
Christopher M. Sanchez, Princeton
University; James M. Roberts, Tufts
University

Summarized by Tristan Brown

Network administration at Prince-
ton’s Computer Science depart-
ment, with more than 1500 hosts
and 100 subnets, is less than triv-
ial. To manage this system, the
autoMAC tools were developed.
The toolset replaces a largely man-
ual process of entering host infor-
mation into a database, configur-
ing a switch, and connecting a
patch cable with a fully automatic
approach. Key to this system are
several tools:

Web registration system. This
allows administrators and users to
enter configuration information
that is validated and automatically
entered into the DHCP, DNS, and
NIS databases. This replaces a pre-
vious manual system that involved
editing a file using vi.

NetReg server. This server answers
DHCP requests for all hosts and
acts as a gateway for unauthenti-
cated users. When an unrecog-
nized host is attached to the net-
work, all HTTP requests are
intercepted and redirected to a reg-
istration page.

FreeRADIUS. This technology,
originally created for wireless
access points, allows a device’s
MAC address to be used as an
authentication key without any
special configuration from the
client end. When the switch sees a
device, it asks the server for infor-
mation about its MAC address.
Known devices are automatically
switched to their appropriate
VLAN, while unknown devices
end up on the registration VLAN.

With these tools, adding a host to
the database is simple to perform,
and moving from one Ethernet
port to another requires no config-

uration changes at all. Future
improvements include automatic
virus scanning that moves infected
hosts to a quarantine VLAN. More
information is available at
http://www.cs
.princeton.edu/autoMAC/.

More Netflow Tools for Performance
and Security

Carrie Gates, Michael Collins, Michael
Duggan, Andrew Kompanek, and Mark
Thomas, Carnegie Mellon University

Network analysis for large ISP net-
works can involve massive data
sets consisting of over 100 million
flow records per day stored for a
period of months. To deal with
this demand for storage and pro-
cessing, the SiLK tools were devel-
oped. Based on Netflow logs, the
custom SiLK format takes less
than half the space and has several
tools to perform statistical analysis
on the data.

The SiLK logfile format starts with
the directory tree, with data segre-
gated by log date and type of traf-
fic. Several fields from the Netflow
log are removed, and others, such
as time, are stored with reduced
range or precision. HTTP traffic is
isolated from the rest, allowing the
transport type and port number
fields to be reduced to two bits of
data, specifying only the TCP port
used. This results in a two-byte
savings over other packet types
and reduces each entry to less than
half the size of the original Net-
flow record.

To complement the compact log-
file format, SiLK includes four
tools to analyze traffic patterns
and seven utilities for summariza-
tion. The tools all operate across
the directory structure and can
work with sets of IP addresses.
Analysis performed with the tool
set can be used by administrators
in a variety of ways, such as
detecting virus traffic on the net-
work.

The SiLK tool set is available at
http://silktools.sourceforge.net.

; LO G I N : F E B R UA RY 2 0 0 5 1 8 TH L A R G E I N STA L L ATI O N SYSTE M A DM I N I STR ATI O N CO N F E R E N C E 77

I N V ITE D TA L K

Flying Linux

Dan Klein, USENIX

Summarized by Tristan Brown

This talk poses a simple question:
Is Linux robust enough to power
the computers responsible for fly-
by-wire in state-of-the-art aircraft?
These computers operate with
real-time constraints and no toler-
ance for unexpected failure. Linux
faces several difficulties meeting
these demands.

Linux developers work on activi-
ties they enjoy, not necessarily the
drudge-work required to eliminate
elusive, rarely encountered bugs.
Corporate developers are paid to
do the work the Linux developers
don’t do.

The Linux source contains mil-
lions of lines of code, many of
them experimental, untested, or
irrelevant to a fly-by-wire system.
Knowing which components to
compile in is a difficult task, and
tracking the interrelations between
these systems is all but impossible.
A GraphViz graph of the FreeBSD
kernel (fewer than half the lines of
code of Linux) results in a graph
so complex that individual nodes
and edges are no longer distin-
guishable.

Linux is the most exploited oper-
ating system, counting only man-
ual attacks. The kernel receives
hundreds of patches from all over
the world. Which contributors can
you trust? The NSA has decided to
harden Linux, but are we sure vul-
nerabilities haven’t slipped in
through a back door?

The loose, open development
model of Linux isn’t ideal for cre-
ating a secure, stable platform.
Ignoring this, however, there is yet
another problem. Fly-by-wire sys-
tems are computers: they can react
only to the situations they have
been programmed for. Mechanical
or sensor failures can result in the
computer taking the wrong course
of action. Human pilots have the

ability to adapt to new situations
much better than their electronic
counterparts, although this advan-
tage is steadily shrinking.

The unfortunate conclusion is that
Linux, like its penguin mascot,
may never fly. The difficult task of
creating a hardened, real-time sys-
tem can be left to purpose-built
software, and Linux can remain
the general-purpose operating sys-
tem it was designed to be.

S PA M M I N I -SYM P O S I U M

Filtering, Stamping, Blocking, Anti-
Spoofing: How to Stop the Spam

Joshua Goodman, Microsoft Research

Summarized by John Hawkins

This talk gave a broad picture of
the difficulties currently being
caused by widespread proliferation
of spam, the techniques recently
adopted by spammers to get
around ever more complex spam-
filtering tools, and possible solu-
tions to further deal with spam.

A number of statistics were pre-
sented, including the results of a
poll in which 40% of respondents
stated that spam overload was the
biggest problem faced by IT staff.
Spam has increased from around
8% of all email in 2001 to at least
50% currently. Wasted time deal-
ing with unwanted messages,
offense caused by often obscene
content, and a lowering of trust in
email systems make spam a major
problem.

Examples of different spammer
techniques were given, such as
enclosing content in an image,
swapping letters of words, and
using coded HTML to confuse fil-
ters. Techniques for gaining access
to computers to turn them into
spam relays were also mentioned.

A range of methods to deal with
spam were discussed, some of
which may be combined to
increase effectiveness: Better filter-
ing and use of machine-learning
techniques will identify more com-
plex patterns: using honeypots,

which should never receive “good”
mail, to identify messages that are
definitely spam; charging small
amounts per message as an eco-
nomic barrier to profitable spam;
computational challenges requir-
ing a calculation on the client,
making it difficult to send many
messages simultaneously. Many of
the techniques discussed are only
applicable in certain situations,
and most have significant draw-
backs. Some proved unpopular
with the audience, which was
composed mainly of email admins.

Approaches for anti-spoofing
email addresses, types of non-
email spam, and legal approaches
to tackling spam, such as the Can-
Spam Act, were also mentioned.

The speaker pressed the case for a
specific conference to cover spam-
related issues, due to the increas-
ing seriousness and complexity of
the problem.

Lessons Learned Reimplementing an
ISP Mail Service Infrastructure to
Cope with Spam

Doug Hughes, Global Crossing

Summarized by John Hawkins

In contrast to the previous talk by
Joshua Goodman, which gave a
wide-angle view of current spam
issues, this talk discussed the
specifics of dealing with spam
while managing an engineering
mail platform with 200 users, a
number of ISPs including one with
1096 users, and 4 to 6 million
mails processed a day.

The talk began with some statis-
tics, identifying the source and
nature of the spam dealt with and
how some of the trends are chang-
ing. Of the mail received from
Italy, for example, 90% is currently
being blocked as spam. It was
found that 98% of spam could be
blocked by examining the headers
alone.

The main part of the talk was more
technical, covering how the sites’
mail systems were configured to
deal with spam. The majority of
the filtering employs a modified

78 ; L O G I N : V O L . 3 0 , N O . 1

version of smtpd using a binary
search tree to store logs, which
vastly reduces search time. Sender
addresses can be compared with
those previously seen to assess
whether a message is likely to be
genuine.

The system was shown to be very
effective, blocking up to 98% of
spam while giving virtually no
false positives.

I N V ITE D TA L K

Grid Computing: Just What Is It and
Why Should I Care?

Esther Filderman and Ken McInnis,
Pittsburgh Supercomputing Center

Summarized by Josh Whitlock

There are different types of grid
computing, including utility com-
puting (where processing cycles
are for sale), distributed comput-
ing, and high-performance
resource sharing. What grid com-
puting actually is lies between
these types. Examples of grids
include the CERN Large Hadron
Collider Computing Grid, sup-
porting approximately 12
petabytes of data per year with
6000+ users, and the Electronic
Arts Grid for the Sims Online
game, with approximately 250,000
players. The challenges of using
grid computing include flexible
virtual organizations having differ-
ent site policies and disparate
computing needs.

Components of grids include secu-
rity, toolkits, job management,
data movement, and Web portals.
Security for grid computing is
basic X.509. The standard toolkit
is Globus. Condor is a job man-
ager for grids, and while flexible
and portable, it is not open source
or simple to use. Data movement
is supported with programs such
as GridFTP, which is built on top
of regular FTP but is used for
high-performance, secure, and
reliable data transfer. Web portals
are used to provide a consistent
front to a grid that makes mainte-
nance less difficult.

Grids are most successful when
they have a purpose: setting up a
grid at a university that everyone
can use for their own purpose is
not a good idea, but setting one up
for a research project is a good
idea. Political challenges in run-
ning a grid include coordinating
work between sites that don’t trust
one another and implementing
common policies. Technical chal-
lenges include having interopera-
ble software between sites and
synchronizing upgrades to the grid
software.

M O N ITO R I N G A N D

TRO U B L E S H O OTI N G

Summarized by Andrew Echols

FDR: A Flight Data Recorder Using
Black-Box Analysis of Persistent State
Changes for Managing Change and
Configuration

Chad Verbowski, John Dunagan, Brad
Daniels, and Yi-Min Wang, Microsoft
Research

The Flight Data Recorder concept
presented in this talk targets audit-
ing, configuration transaction, and
“what if” scenarios. In auditing
scenarios, the FDR would assist in
troubleshooting by identifying
what is on a machine, and by
answering questions like what is
installed, where, when, and by
whom. Changes are then grouped
logically into change actions.

These change actions can be
treated as transactions, allowing
groups of changes to be automati-
cally rolled back if they are no
longer wanted, poorly done, had
an adverse effect, or were mali-
cious.

The information gathered also aids
in answering “what if” questions
regarding the impact of certain
changes. This requires the forma-
tion of “application manifests,”
which are records of an applica-
tion’s frequency of interactions, all
states read, all states written, and
how often it is run.

The approach taken in the
research is to get into the lowest
level of the OS. There, state inter-
actions can be monitored and
understood. To be useful, informa-
tion gathered must then be ana-
lyzed and presented in a way use-
ful to humans. This is
implemented as a service that logs
gathered information locally. Peri-
odically, the logs are uploaded to
central storage, where they can be
processed and inserted into a data-
base. Finally, a client may view this
information online or retrieve it
for offline use.

Real-Time Log File Analysis Using the
Simple Event Correlator (SEC)

John P. Rouillard, University of
Massachusetts, Boston

All forms of log analysis result in
false reports, but the Simple Event
Correlator aims to perform auto-
mated log analysis while minimiz-
ing errors through proper specifi-
cation of recognition criteria.
Information can be gained from
logs by looking for certain pat-
terns. These patterns may appear
across multiple logs. Absences of
events and relationships between
events should also be noted.

Relationships between events may
take the form of one event taking
place before or after another, or in
a sequence. Events may also be
coincident within a certain period
of time. If there is some event that
occurs periodically, its absence
would be significant.

Relationships between events are
important for combining events.
For example, some program may
emit an error without a username
attached to it, but only after
another related event that contains
a username. Correlation may take
place by watching for one event,
then expecting another within a
certain amount of time that can be
matched with the first.

SEC allows for analysis of logs in
real time using simple rules for
single events, as well as many
complex rules which support

; LO G I N : F E B R UA RY 2 0 0 5 1 8 TH L A R G E I N STA L L ATI O N SYSTE M A DM I N I STR ATI O N CO N F E R E N C E 79

matching multiple events within
given windows or thresholds and
as pairs. With proper use of these
rules, relationships between events
such as those mentioned above
may easily be detected.

I N V ITE D TA L K

A New Approach to Scripting

Trey Harris, Amazon.com

Summarized by Josh Whitlock

People think of scripts being dif-
ferent from programs. People
think of Perl, Python, and bash
shell code as scripts, while they
think of C, C++, and Java code as
programs. Scripts are interpreted,
while programs are compiled. In
fact, scripts are a subset of pro-
grams. They are programs that
make heavy use of their environ-
ment (files and directories), define
few complex data structures, have
no outer event loop, are run by
either the author or administrator,
and have a primary purpose of
ensuring a given state is achieved
in a system. Scripts should be dis-
tinguished from programs because
good programming methodology
is well researched while good
scripting methodology is not.

As an example, consider a script
that wants to mount a remote file
system via NFS. If the script does
nine things, there are nine places
where the script can fail. Restart-
ing the script when it fails could
result in unwanted and incorrect
duplication of tasks (e.g., multiple
mountings). Adding error check-
ing code to the script simply con-
volutes the code. The problem
with error checking code is that it
is syntactic and not based on
implementation. The error check-
ing needs to be semantic. The
Commands::Guarded
command set for Perl is available
from CPAN. Each guard consists
of two parts: a condition, or guard
statement, and an executable state-
ment. For example:

ensure { $var == 0 }
using { $var = 0};

means “if $var is not zero, then set
$var equal to zero.” To effectively
use guarded commands, decom-
pose the code into atomic steps.
For each step, write the necessary
and sufficient condition for the
step to complete. Use the guards as
the conditions for each step.

There are many benefits to using
guarded commands. They make
scripts more resilient because they
make testing semantic. If the envi-
ronment changes, the script is
more likely to continue to func-
tion.

Guarded commands reduce the
amount of error-checking code,
thus making the code easier to
read and maintain. If a script ter-
minates prematurely, the script
will pick back up exactly where it
left off, thanks to the guards.

G U R U S E S S I O N

AFS

Esther Filderman, The OpenAFS
Project

Summarized by Peter H. Salus

Esther (Moose) Filderman knows
more about AFS than anyone else
I’ve ever encountered. She illus-
trated this knowledge and her
quick wit for about an hour, at
which time the session dissolved
into a sequence of queries from the
floor, comments, and idle remarks.

She began by noting that “AFS was
rather clunky and difficult to
administer, but then the universe
changed.” What happened, of
course, was that it moved from
Carnegie Mellon to a startup called
Transarc, which open-sourced
“Andrew.”

Originating in 1986, the core has
been maintained and guided since
1988 (when Moose joined the
crew). It is now “tightly secure”
with a Kerberos-like mechanism.
“AFS is a good complement to
Kerberos,” Moose said. It has the
structure of a distributed file sys-
tem, and users can’t tell what’s
what: everything looks like /afs.

There are lots of protections avail-
able, but AFS is still “slow,”
though “speed is coming along
nicely.” The biggest problem (of
course) is with the I/O. “Read
times are better; write times are
getting better.”

Apparently, when there are lots of
path or sharing changes, one
should opt for AFS over NFS.

Definitely interesting and worth-
while.

SYSTE M I NTE G R IT Y

Summarized by John Sechrest

LifeBoat: An Autonomic Backup and
Restore Solution

Ted Bonkenburg, Dejan Diklic, Ben-
jamin Reed, Mark Smith, Steve Welch,
and Roger Williams, IBM Almaden
Research Center; Michael Vanover, IBM
PCD

LifeBoat is a backup solution
designed for ease of use. The goal
is to reduce the total cost of own-
ership for a system by reducing
client support costs.

Over 50% of current support costs
involve PC clients. While these PC
clients often have mission critical
software on them, the underlying
server automation generally does
not reach down to the PC clients.
LifeBoat is aimed at resolving this
by creating a complete rescue and
recovery environment.

Targets for the backup system can
be network peers, dedicated
servers, or local devices. This
means that the backup must
include file data as well as file
metadata. In order for it to be user
friendly, it must enable users to
restore individual files. More criti-
cally, it must support special pro-
cessing for open files locked by
Windows OS. LifeBoat provides a
kernel driver to obtain file han-
dlers for reading locked files.

In order to manage the backed-up
data, LifeBoat uses an object stor-
age device called SCARED that
organizes local storage into a flat
namespace of objects. The data is

80 ; L O G I N : V O L . 3 0 , N O . 1

not interpreted; it can be
encrypted at the client and stored
encrypted on the storage devices.
These storage devices authenticate
clients directly, supporting a
method of keeping the data path-
ways secure.

LifeBoat can use centralized
servers, peers, or local devices for
backup. This offers some flexibil-
ity in the overall problem of find-
ing a good place to put data when
you are on the road with your lap-
top.

LifeBoat is packaged as a Linux
boot CD providing software used
for maintenance. This allows for a
rescue and restoration of a system
when there is a problem.

While perhaps the term “auto-
nomic” is being overused in this
case, the system looks as though it
enables users to easily back up sys-
tems, including mobile systems.
This is one of the great problems
in an organization supporting PC
systems. And the solution looks as
though it will integrate well in a
corporate environment supporting
autonomous server configuration
strategies.

PatchMaker: A Physical Network
Patch Manager Tool

Joseph Crouthamel, James Roberts,
Christopher M. Sanchez, and
Christopher Tengi, Princeton
University

What do you do when you have
lots of networks and wires, with
1500 hosts, 675 switch ports, and
1100 patch ports, and you want to
keep track of what is plugged into
what? Often a huge amount of the
time spent debugging a problem
involves locating the port causing
the problem. Hand-tracing old
wires is very time-consuming.

There used to be a Perl CGI for
patch information, but it did not
scale very well. As the port count
increased, they felt they needed a
better tracking system. By putting
a Web interface on the front end, it
became more useful for a broad
group of people.

This program has a patch data-
base, which is searchable. This is
support port monitoring and man-
agement and enables direct
changes in the VLAN information.
It allows for the cables to be docu-
mented and for the switch to be
managed directly and to track
information about each host. It
makes it more effective by present-
ing a visual view of a patch panel.

This is an open source package
written in mySQL, PHP, DHTML,
and CSS. It supports SNMP/Sflow
and uses Mrtg/nMon to monitor
network activities.

They keep information on patches,
racks, hosts, panels, port count,
SNMP, and more.

In the future, they hope to add
GUI creation, user authentication
and privilege levels, change log-
ging, QoS/rate limiting, security
ACL management, switch configu-
ration, file management, and end-
user PortMaker.

This project looks like a local solu-
tion that is trying to evolve into a
set of broader network manage-
ment tools. That the whole site
can be managed through manag-
ing the configuration is an impor-
tant step forward toward bringing
automation to network manage-
ment. It is too bad that they did
not then integrate this data and
structure with a configuration
management system. When hosts
are deployed by a management
system, you need to deploy the
network as well. This package will
work for people to patch by hand,
but it has not progressed to the
point where a content manage-
ment system could do it.

http://www.cs.princeton.edu
/patchmaker

Who Moved My Data? A Backup
Tracking System for Dynamic
Workstation Environments

Gregory Pluta, Larry Brumbaugh,
William Yurcik, and Joseph Tucek,
NCSA/University of Illinois

NCSA has a lot of highly mobile
computers, employees, and stu-

dents. With increased laptop use,
in particular, they found that they
had to rethink their approach to
data management.

Far too many people look at lap-
tops as a way to provide persistent
data storage, and this puts the data
at risk. As the systems move in
and out of the network, the
backup process can easily fail.

NCSA started to look at the per-
centage of laptops vs. percentage
of backup success rate. They
wanted to be able to find the
important data that was vital to the
organization.

They set up a backup tracking sys-
tem, with authentication servers.
This integrates with a Web-based
application to go through the data
and search for material. It makes a
list of machines and users who
have not been backed up and
allows them to work to increase
the backup success rate.

This talk clearly shows that for
organizations that have informa-
tion as their main product, it is
vital to work out a meaningful
backup process. And for the most
part, people do not back up PCs
and they don’t back up laptops.
NCSA’s system provides an organi-
zational framework to enable these
backups. This was a good measure
for NCSA, but it leaves me wishing
for a good distributed file system
that knows what to do with mobile
users.

S PA M M I N I -SYM P O S I U M

What Spammers Are Doing to Get
Around Bayesian Filtering & What
We Can Expect for the Future

John Graham-Cumming, Electric Cloud

Summarized by Jimmy
Kaplowitz

Graham-Cumming started by
describing several spam-related
trends that have occurred in the
past year or so. Most major email
clients support adaptive filtering,
with the notable exception of Out-
look. Spam is getting slightly sim-

; LO G I N : F E B R UA RY 2 0 0 5 1 8 TH L A R G E I N STA L L ATI O N SYSTE M A DM I N I STR ATI O N CO N F E R E N C E 81

pler and less tricky, but not very
fast. Spam is also using Cascading
Style Sheets.

The speaker then described spe-
cific tricks spammers are using,
ranging from hard-to-read color
and Internet Explorer’s odd han-
dling of hexadecimal color codes
to Web bugs and nonexistent zero-
width images. From July 2003 to
April 2004, email software firm
Sophos has noted the relative fre-
quencies of certain tricks. Spam-
mers try to hide red-flag words
and include innocuous words.
About 10% of spam uses obscure
Web site addresses, 20% uses sim-
ple trickery such as the insertion
of spaces or punctuation charac-
ters into red-flag words, and
another 20% inserts HTML com-
ments to break up red-flag words.
About 80% of spam uses trickery
of some sort, but the percentage
that doesn’t is increasing. Even
some bulk email software manuals
point out that anti-filtering tricks
often make spam easier to filter.
There are even spam-sending pro-
grams that include SpamAssassin
technology to allow the spammer
to test and tweak their mail for
maximum penetration. A very
common occurrence in spam is for
the text/plain MIME part to con-
tain very different content from
the text/HTML MIME part.

The speaker presented seven
tough questions to ask vendors of
anti-spam software. The first ques-
tion is, “How do you measure your
false positive rate?” Claims of
99.999% accuracy are meaning-
less, since a mail filter that deletes
all mail can claim to have removed
100% of all spam. Ask what the
false positive and false negative
rates are, and how the vendor
knows. Another question is, “How
often do you react to changes in
spammer techniques?” The third
question, designed to cut through
the hype, is, “What are your top
two ways of catching spam?” In
order to prevent spammers from
receiving feedback on your read-
ing preferences, another important

behavior to confirm is that the
software prevents Web bugs from
firing. It also must properly handle
legitimate bulk mailings as non-
spam, deal gracefully with user
reports of legitimate mail as spam,
and have a good method to sepa-
rate non-English spam from other
non-English mail.

At the end of the talk, Graham-
Cumming predicted that spam-
mers will continue to reduce their
use of obfuscations and other
trickery and that the set of popular
spam tricks will continue to
change.

P L E N A RY S E S S I O N

A System Administrator’s Introduction
to Bioinformatics

Bill Van Etten, The BioTeam

Summarized by John Sechrest

BioTeam is an organization of sci-
entists, developers, and IT profes-
sionals who have an objective—
vendor-agnostic professional
services aimed at solving large-
scale bioinformatics problems for
large companies.

Bill Van Etten provided a quick but
detailed introduction to genetics
and genomics. He then went on to
talk about how computing is
impacting current biological
activities.

H I STO RY

1866 Genetic theory published—
Mendel
1869 DNA discovered—Miescher
1952 DNA is genetic material—
Hershey
1953 DNA structure—W&C
1959 Protein structure deter-
mined—Perutz, Kendrew
1966 Genetic code
1977 DNA sequenced—Sanger
1988 Human Genome Project
started
2001 Human genome sequenced

G E N E TI C S TR IVI A

Everything you are is either pro-
tein or the result of protein action.

Proteins are folded strings of
amino acids (20).
Proteins’ structure is important.
Genes are a hunk of DNA that
defines a protein.
There are 3 billion DNA letters
(made up of only 4 characteristics)
in the human genome.
Five percent of human DNA con-
tains genes.
999/1000 DNA is identical
between any two people.
Human genes are 98% the same as
those of a chimpanzee.
Human genes are 50% similar to
those of a banana.

In 1953, it was discovered that
DNA structure is a 3D structure in
the form of a double helix. In
1968, the DNA code was broken
using Sanger DNA sequencing.
DNA of all possible lengths from a
known starting point is treated.
Each strand ends with a radioac-
tive dideoxy nucleotide which ter-
minates the chain. The strands are
weighted.

You get something like:

ACTGAGTGAGCTAACTCA
CATTAATTGCGTT

It all happens in a single capillary
tube, and the results are read via
laser spectrometer. This leads to
high throughput sequencing (see
http://www.sanger.ac.uk/Info./IT).

And this leads to an explosion of
public sequence databases, which,
in turn, leads to a large number of
computing related activities:
genetic mapping sequence analy-
sis, genome annotation, functional
genomics, comparative genomics,
expression analysis, coding
regions, and genetic coding.

The growth of the genetic scien-
tific inquiry has followed the
growth in computing power. All of
this information is able to be
processed through computer-aided
data analysis.

There are some interpersonal dif-
ferences between wetlab people
and computer scientists: Wetlab
people know that biology is unreli-
able but think computers work

82 ; L O G I N : V O L . 3 0 , N O . 1

well all the time. Computer people
think that biology works great but
that computers have problems all
the time.

The half-life of scientific informa-
tion is five years.

S E Q U E N C I N G S EA R C H I N G
A LG O R ITH M S

There are several sequencing
searching algorithms, which build
and map sequences. These include
Blat, Blast, and HMMR (Hidden
Markoff Matching =-> HMM).
They involve many pattern-match-
ing approaches. Each tool is par-
ticular to each pattern and struc-
ture.

BioInformatics is full of problems
that are embarrassingly parallel.
There is a great deal of data, but it
is generally easy to decompose the
problem into a number of little
problems. This type of problem
leads to a great many cluster and
grid-style solutions.

But because many of the people
who are trying to use these sys-
tems are scientists who have a
hard time with computing details,
they found that a portal architec-
ture was a fabulous step forward.

All the gory details of LSF, Grid
Engine, and Condor are really dis-
tractions for scientists who are just
trying to get data back out.

While clusters are cheap ways to
increase computing power, they
are often hard to build, manage,
and use. It is also difficult for sci-
entists to map computing to com-
puters in the cluster, making it
hard to achieve high throughput
and high performance .

BioTeam has developed a tool
called iNquiry, which is a rapid
cluster installer with a persistent
graphical user interface. It is built
around the Apple Xserver. You can
see an example of it at http://
workgroupcluster.apple.com.
(Ask for a login.)

It supports the automatic deploy-
ment of a cluster for biocomput-
ing, including: network services;

DRM—LSF, etc.; admin tools;
monitoring tools; biological
applications (200).

The most impressive idea that I
got from this talk was that they
wrote a DTD to create a command
line interface and write an XML
description of the command-line
which was used to generate Web
interfaces for command lines. This
hides system from the scientists in
an elegant way that has leverage.

As a serious win on the cool mar-
keting idea, they used an Apple
iPod to build the cluster. All the
data is on the iPod, and it drives
the boot and install process (and
the sysadmin gets to keep the
iPod).

While this works well on the Mac
OS X-based Xserver, it works less
well on some Linux system hard-
ware platforms. It uses a system
imager.

The core work for the DTD/XML
solution was done by Catherine
Letondal. It is called pise:

http://www.pasteur.fr/recherche
/unites/sis/Pise/CCP11/s6.html

http://www.pasteur.fr/recherche
/unites/sis/Pise/

http://bioinformatics.oupjournals
.org/cgi/reprint/17/1/73.pdf

For more details that might inter-
est you, read Bill Bryson’s book A
Short History of Nearly Everything.

Web site: http://bioteam.net

S E C U R IT Y

Summarized by Tristan Brown

Making a Game of Network Security

Marc Dougherty, Northeastern
University

The idea is to make a closed, fire-
walled network with a collection
of hosts running various
unpatched and insecure services.
Give each team a host, and give
the teams two days to defend their
machines while exploiting every-
one else. The result is Capture the
Flag tools, a framework for online

war games. Run services on your
host and gain defensive points.
Compromise other people’s servers
and gain offensive points. The
toolkit facilitates the competition
in two ways:

1. Service verification. A flag
service is run on each host,
allowing the central server to
perform confirmation of the
actual flag file on the server.
The process allows the cen-
tral server to determine what
team is in control of each
server and to defeat simple
cron jobs designed to ensure
that one team’s flag file stays
in place. This is a complex
procedure and is currently
being overhauled to become
even more robust.

2. Scoring. A scoreboard show-
ing each team’s progress is
kept available. This simple
touch is an effective motiva-
tor to keep people working
on the project.

The tool framework has room for
future expansion. Different games
can be implemented (verification
is based on Perl scripts), and a
larger game based on a large net-
work of networks or autonomous
systems is being planned. More
information can be found at
http://crew.ccs.neu
.edu/ctf/.

Securing the PlanetLab Distributed
Testbed: How to Manage Security in
an Environment with No Firewalls,
with All Users Having Root, and No
Direct Physical Control of Any System

Paul Brett, Mic Bowman, Jeff Sedayao,
Robert Adams, Rob Knauerhause, and
Aaron Klingaman, Intel Corporation

PlanetLab is an environment with
unique security requirements—
the system must remain secure
despite the fact that owners and
users of each system have root
access on the machines. To ensure
availability, several tools are used.
Nodes run virtual servers to allow
users to operate as root in their
virtual server but not in any oth-

; LO G I N : F E B R UA RY 2 0 0 5 1 8 TH L A R G E I N STA L L ATI O N SYSTE M A DM I N I STR ATI O N CO N F E R E N C E 83

ers. Packets are tagged to identify
the originator of all data, thus
ensuring accountability among the
research-ers. Traffic control is uti-
lized to ensure that no one node
uses excessive system bandwidth.
In the event of a compromise, sys-
tems can be remotely rebooted
with a magic packet, causing them
to start off of a CD. The machine
then enters debug mode, restrict-
ing access and allowing remote
forensics to be performed. Patches
may be applied, bringing the node
back to a known, safe state.

Because of all the measures taken
to protect the network, a large
compromise resulting in rooted
nodes was detected and contained
within minutes. Further security
reviews since have resulted in an
effort to decentralize administra-
tion and eliminate reusable pass-
words. To support future expan-
sion, a federated decentralization
scheme is being implemented.

Secure Automation: Achieving Least
Privilege with SSH, Sudo, and Suid

Robert A. Napier, Cisco Systems

Automation and scripting across
the boundary between hosts is a
difficult process often subject to
security vulnerabilities. Although
insecure tools such as Telnet and
RSH may no longer be used, SSH
and sudo can still be used to
exploit a system. A design para-
digm of small, simple scripts that
do one task very well and with the
least privilege possible can help to
prevent unauthorized access due
to an improperly written script.
Several techniques can be used to
harden scripts:

SSH command keys can be used to
perform a command on another
host without the possibility of
using the session to execute a
shell. This ensures that a script can
only perform its single task on the
remote machine, and it keeps
attackers from performing
unwanted actions on the remote
machine.

Properly configured sudo can give
scripts the ability to do just what
they need and no more. It should
not be used to give scripts com-
plete root access.

Scripts should have a unique user
ID to isolate their domain on the
system even further.

Setuid and setgid can both be used
to allow a script to work as
another user. Setgid has the advan-
tage that fewer exploits have been
performed against it. Setuid to root
is generally a bad idea for a script.

By following the principle of least
privilege and asking, “How much
access do I need?” rather than
“How much security do I need?”
overall vulnerability due to scripts
can be reduced.

I N V ITE D TA L K

System Administration and Sex
Therapy: The Gentle Art of Debug-
ging

David Blank-Edelman, Northeastern
University

Summarized by Peter H. Salus

Blank-Edelman’s underlying thesis
is that we can improve our system
administration through learning
from other fields. He likes sex
therapy. This is because:

Debugging is getting harder.

Debugging is not merely binary.

Both fields (sysadmin and sex
therapy) deal with complex
systems.

The phenomena are harder
because of interdependency;
because we don’t control the
“parts” and haven’t written the
software; as availability increases,
the level aided decreases.

We all feel that “sex should just
work.” Blank-Edelman listed a
number of male and female myths
concerning sex that he found in
several therapy books. He then
moved to “system administration
should just work,” where the prin-
cipal assumptions involve:

Plug and play

It’s just (merely) . . .

No administration toolkit

Printing

The Internet

“You have the source, right?”

Blank-Edelman analogized
between sex therapy and Agans’
(2002) “Nine Indispensable
Rules”:

1. Understand.

2. Make it fail.

3. Look at it.

4. Divide and conquer.

5. Change one thing at a time.

6. Keep an audit trail.

7. Check the plug.

8. Get a fresh view.

9. If you didn’t fix it, it isn’t fixed.

Good advice.

The comparative metaphor was
attractive and Blank-Edelman is a
good presenter, but it wore thin
long before the 90 minutes were
up, and there were too many old
and trite jokes and anecdotes.

G U R U S E S S I O N

RAID/HA/SAN (with a Heavy Dose of
Veritas)

Doug Hughes, Global Crossing; Darren
Dunham, TAOS

Summarized by Andrew Echols

The RAID/HA/SAN guru session
consisted of a Q&A, primarily
about using Veritas products for
RAID, high availability, and SAN
setups.

The gurus recommended a few
mailing lists for questions related
to the session topics. Each list is at
<list-name> mailman.eng.auburn
.edu, and uses <list-name>-request
mailman.eng.auburn.edu to
subscribe:

Veritas Applications: veritas-app

Veritas Backup Products: veritas-
bu

84 ; L O G I N : V O L . 3 0 , N O . 1

Veritas High Availability Products:
veritas-ha

Veritas VxVM, VxFS, and HSM:
veritas-vx

Sun storage appliance: ssa-man-
agers

A small sample of the topics dis-
cussed follows.

Regarding experience with VxVM
and Sun Cluster, it was noted that
Solaris 10 has a new file system,
ZFS, which has its own volume
management. There are known
issues, but Sun is likely motivated
to drop the requirement for VxVM
to use Sun Cluster. Sun is also
pushing ZFS as something that
just does the right thing and hides
the details.

In another case, a user recently
started using Veritas Foundation
Suite 4 and wanted to reduce the
number of inodes. There appeared
to be a very high amount of over-
head, but it was suggested that
there might be differences between
definitions of gigabytes (2^30 vs.
10^9) between programs. It was
also noted that there may be prob-
lems with the size of the private
region.

Commenting on the maturity of
the Linux Volume Manager, the
gurus felt that it had some nice
features, primarily a combination
of those provided by Veritas and
AIX. The naming scheme is good
and fairly robust. It still needs mir-
roring, but that can be worked
around at the RAID level.

TH E O RY

Summarized by John Sechrest

Experience in Implementing an HTTP
Service Closure

Steven Schwartzberg, BBN Technolo-
gies; Alva Couch, Tufts University

This talk is a part of an ongoing
discussion in configuration man-
agement. How can you create a
system which can programmati-
cally be configured in a coherent
and consistent way?

Two concepts put forward are
“closures” and “conduits.” Clo-
sures act as an element of the net-
work and conduits are the mecha-
nism by which closures talk to
each other.

A closure is a self-contained appli-
cation that is self-managing and
self-healing and where all opera-
tions affecting the closure must be
within this or another closure.

If this is so, then the closure will:

Provide consistency

Create a common command lan-
guage

Operate the same way regardless
of OS or other applications

Provide security

Provide a single interface into the
closure

Detect intrusion and potentially
repair modifications

Hide complexity

Understand the dependencies and
be a mediator

Provide configuration language in
plain English

Eliminate typographical errors

All of these things are good ideas.

This was proposed in an earlier
paper, but how does it work in
reality? This talk covered the expe-
rience of building an HTTP clo-
sure:

1. Start with RH 9 w Apache.

2. Create a protected directory.

3. Wrap Apache binaries with
scripts.

4. Move all HTML, logs, configura-
tion files, and modules into the
repository.

5. Create a Perl script to allow
management of the closure.

At the first iteration of the closure
language, they supported a limited
command set:

assert—Create a virtual domain.

post—Upload a file into the
domain.

retract—Remove a file from the
domain.

allow—Grant permission to users
and modify configuration options.

Deny—Remove permissions as
above.

For example:

Assert foo.edu
post info.html
www.foo.edu/info.html
allow cg www.foo.edu/cgi-bin
retract www.foo.edu/
information

But this leads to problems and
ambiguity. They had problems
with how they specified files vs.
directories, the renaming of files,
and dealing with indexes.

In order to address these prob-
lems, they tried to gain idempo-
tence (making order not matter)
by hiding the complexity of the
commands and trying to create
statelessness. Post must only deal
with directories, so you load the
whole site each time.

This was an interesting experi-
ment. It showed that there were
many places where procedural
complexity and all the details of a
configuration make it hard to pres-
ent a simplified solution. This was
a good first step in understanding
how a closure might be built.
However, Apache seems like a dif-
ficult example to process. Perhaps
a simpler service would be a better
starting point for illustrating the
idea of closure.

Meta Change Queue: Tracking
Changes to People, Places, and Things

Jon Finke, Rensselaer Polytechnic
Institute

At RPI all of the data about all of
the different systems is stored in
databases.

Getting this data where it needs to
go, and doing it in a timely man-
ner, has taken some thought.
Many of the issues are related to
who owns the data and who needs
the data. Often these are in differ-
ent parts of the organization.

; LO G I N : F E B R UA RY 2 0 0 5 1 8 TH L A R G E I N STA L L ATI O N SYSTE M A DM I N I STR ATI O N CO N F E R E N C E 85

Different data sets—CMMS, LDAP,
ID card, Space—need to be inte-
grated into the process. By setting
up a Meta_Change_Queue Table,
the changes to the data sets can be
identified. A Listener can be set up
to catch and process these data
changes in a low-overhead way.

This table uses a vendor-provided
trigger to input real-time data.
This protects the business logic of
the program, which allows third-
party programs to work com-
pletely and still be integrated into
the larger campus data process.

Through this mechanism a single
sign-on system for campus has
been created and maintained.

In order to do this, Jon needed to:

Index a key column and set to null
after processing

Import with a trigger, which works
well with Oracle target systems

Include a low-priority batch queue

A key idea is to use a trigger to
catch deletions and move things to
the history table on deletes.

All source code is available on
Jon’s Web site
(www.rpi.edu/~finkej/), but it is
not packaged and is mostly in
PLSQL.

Solaris Zones: Operating System Sup-
port for Consolidating Commercial
Workloads

Daniel Price and Andrew Tucker,
Sun Microsystems, Inc.

Solaris Zones are a way to run
multiple workloads on the same
machine. They are akin to Jails in
BSD. Because they all use the same
kernel, they gain efficiency, but
they do not gain the independence
of multiple kernels like User Mode
Linux. These are not virtual
machines.

A set of processes look the same at
the base machine. It supports a
reduced root-permissions struc-
ture, in order to prevent escaping
from a zone as you can from a
chroot.

They support per-zone resource
limits.

This was an interesting introduc-
tion to Solaris Zones. However, it
did end up coming off as a sales
talk more than a comparison with
the state of the art. Solaris Zones
are a good thing, just as Jails are a
good thing. I wished there had
been a broader perspective in this
talk.

I N V ITE D TA L K

Used Disk Drives

Simon Garfinkel, MIT Computer Sci-
ence and Artificial Intelligence Labora-
tory

Summarized by Jimmy
Kaplowitz

Simon Garfinkel explained that
much data is frequently left behind
when a computer owner tries to
remove it from the hard drive.
This is because of the common
choice to use quick but vastly
incomplete erasure methods such
as the DEL and FORMAT com-
mands of Micro-soft operating sys-
tems. The data left behind by these
tools stays around for a long time,
since hard drives are quite long
lived. Physical security and OS-
level access controls fail to ensure
data privacy when drives are
repurposed or given to a new
owner. Cryptography, which
would provide that assurance, is
rarely used on-disk.

The author did a study of 235 used
hard drives, some of which were
obtained for as little as $5. The
contents of the drives included
runnable programs and private
medical information. The data was
deleted to different degrees, so the
author developed several different
levels of deletion to keep these
separate. Level 0 files are ordinary
files in the file system. Level 1 files
are temporary files in standard
temporary directories. Level 2
includes recoverable deleted files,
such as those in DOS where only
the first letter of the filename is

lost. Level 3 is partially overwrit-
ten files.

An overview of digital forensics
tools was given. Among hard-drive
forensics tools, the two main cate-
gories were consumer and profes-
sional tools. All of them were able
to undelete files at level 2 and
search for text in level 3 files. The
professional tools also had knowl-
edge of file formats, were able to
perform hash-based searching, and
could provide reports and time-
lines useful for auditing and legal
testimony purposes.

The author then described the
challenge of performing forensics
on many drives at once with very
little time for each drive, explain-
ing some of his choices of tools as
well as some of the gotchas he had
to overcome. In total, he worked
with 125GB of data. The data
included very common parts of the
OS, Web caches, authentication
cookies, credit card numbers,
email addresses, medical records,
personal and HR correspondence,
personnel records, and similar
items.

Garfinkel told several more horror
stories about really sensitive data
being revealed, and suggested the
creation of a US privacy commis-
sioner or some other federal
waste-auditing role. He cautioned
that all of his warnings about
recoverable data on hard drives
applies equally well to USB drives,
digital cameras, and other types of
media. However, when faced with
a police officer ordering deletion
of (for example) a picture on a dig-
ital camera, the recoverability of
dirty deletion is usable to preserve
one’s data.

The author mentioned the Depart-
ment of Defense’s standard for san-
itizing media containing non-clas-
sified data and then proceeded to
discuss other tools for overwriting
media. The tools discussed range
from standard UNIX dd to com-
mercial tools such as Norton Disk
Doctor. It was pointed out that
Windows XP and NT hide a little-

86 ; L O G I N : V O L . 3 0 , N O . 1

known sanitization program in
their installation; it’s called
cipher.exe.

The author discussed the exotic
threat of hard drives with hostile
firmware that lie about their state
and snoop on other hard drives in
the same system. It is even possi-
ble for such hard drives to infect
other drives with hard-drive
viruses. There is a level 4 part of
the disk, the vendor area, which is
where the firmware lives. This can
be overwritten by really expensive
sanitization tools.

The talk concluded with a sober-
ing question: If the author was
able to get so much private info for
under $1000, who else is doing
this?

Work-in-Progress Reports

Summarized by John Sechrest

WiPs are brief introductions to
topics that people are currently
working on. Seven people stood
up and gave rapid descriptions of
ongoing projects.

OGSAConfig—A proof of concept
implementation of an architecture
to make grid fabrics more manage-
able

Edmund Smith, University of Edin-
burgh

Split the problem down for a grid
by allowing each node in the grid
to get a different profile. You can
do this with a constraint-resolu-
tion problem.

OGSA config project:
http://groups.inf.ed.ac.uk
/ogsaconfig/

CfengineDoc—A tool which uses
GraphViz and NaturalDocs to doc-
ument the import execution order
of cfengine scripts

Christian Pearce, Perfect Order

How to describe the meaning of a
cfengine file. Used Inkscape to
draw a cfengine config file and
then discovered GraphViz. Then
got AutoDoc and found Natural-
Docs. Use it to describe SysNav
Interface.

http://cfenginedoc.com
http://naturaldocs.com
http://autodoc.com
http://cfwiki.org
http://sysnav.com
http://inkscape.com

Verifiable Secure Electronic Voting—
An electronic voting system that
allows voter verification of indi-
vidual votes, and makes a passing
nod towards being a secure and
private voting environment

Zed Pobre, Louisiana State
University

Use a UID + voting ID + MD5.
Supports many different voting
styles.

Grand Unified Documentation
Theory, or What’s wrong with cur-
rent documentation standards.
Can we fix it?

David Nolan, CMU

Trying to create an interface to a
single place for documentation
using a wiki front end, with some
customizations for raw access and
a choice of editor.

vitroth+lisa04@cmu.edu
sadm-l@lists.andrew.cmu.edu

CADUBI: Creative ASCII Drawing
Utility by Ian

Ian Langworth, Northeastern Uni-
versity

Received Best WiP Award!

CADUBI is in all kinds of ports. It
is Old Crap, very old.

CADUBI 1.2: two maintainers to
the last version.

Go AWAY . . . Use TetraDraw.

(This was incredibly humorous.)

Geographic Firewalling

Peter Markowski, Northeastern
University

Wireless firewalls are natively geo-
graphic entities. This way you can
choose where people get services.
Limit your perimeter.

Portable Cluster Computers and
InfiniBand Clusters

Mitch Williams, Sandia National
Laboratories

Received 2nd Best WiP Award!

A cluster in a box. It is one foot
tall, has four CPUs, and by using
LinuxBios it can boot in 12 sec-
onds. Working on adding infini-
band and creating embedded
Linux clusters.

I N V ITE D TA L KS

Lessons Learned from Howard Dean’s
Digital Campaign

Keri Carpenter, UC Irvine;
Tom Limoncelli, Consultant

Summarized by Andrew Echols

Howard Dean’s presidential cam-
paign was unconventional in its
approach to putting the campaign
online. Traditionally, candidate
activities take the form of getting
out to the people, giving speeches,
and kissing babies. Online cam-
paigning takes this approach fur-
ther, putting more content online
and organizing supporters over the
Web.

Joe Trippi, the Dean campaign
manager, a veteran of the dot-com
boom, wanted to run an “open
source” campaign. Traditional
campaigns have been online
before, but they have limited
themselves to creating, essentially,
a brochure Web site. The Dean
campaign, however, created an
online social movement with tools
like blogs, meet-ups, and mailing
lists. Furthermore, control of the
message was opened up to Web
site visitors. Supporters were
trusted and ex-pected to aid in
crafting the movement.

The campaign blog provided up-
to-the-minute articles and discus-
sion of activities. It provided a
central online community for the
campaign. It also allowed visitors
to post comments, opening up the
dialog.

The potential of the online cam-
paign is apparent when one con-
siders where it took the campaign.
In January 2003, the campaign

; LO G I N : F E B R UA RY 2 0 0 5 1 8 TH L A R G E I N STA L L ATI O N SYSTE M A DM I N I STR ATI O N CO N F E R E N C E 87

had only 432 known supporters
and $157,000 in the bank. By the
end of the campaign, it had raised
over $50 million from 300,000
individuals, with 640,000 support-
ers on a mailing list and 189,000
meet-ups. The online campaign’s
success story is that it took
Howard Dean from obscurity to
being, for a time, the front-run-
ning contender for the Democratic
nomination.

Storage Security: You’re Fooling
Yourself

W. Curtis Preston, Glasshouse
Technologies

Summarized by Josh Whitlock

Until recently, storage people did
not have to worry that much about
security. Because storage was not
meant to be accessible on a net-
work, security was not designed
into storage technology. Now that
network security is becoming
more of an issue, storage security
must be reconsidered. One prob-
lem is that storage and security
people speak different languages.
Storage people talk in terms of
zones, LUNs, and mirroring, while
security people talk in terms of
ACLs, VLANs, and DMZs. By
learning how each other operate
and working together, storage and
security people will be better able
to locate and address vulnerabili-
ties.

There are a number of security
issues for storage. People can get
inside the SAN and there have full
access to the data by exploiting
configuration mistakes such as
open management interfaces and
default passwords. Management
interfaces are often plugged into
the corporate management back-
bone, are visible from the LAN,
use plaintext passwords, and often
have default passwords. This prob-
lem can be solved by putting man-
agement interfaces on a separate
LAN and upgrading to interfaces
like SSL and SSH that don’t use
plaintext passwords. The backup
person can be the greatest security
risk of the SAN, because that per-

son has root access. Depending on
the backup person’s security
astuteness, a hacker could gain
access to the backup server via
social engineering and insecure
server configuration.

A hacker with access to the
backup server has complete con-
trol over
all the data. The greatest threat to
tape backups is theft. Social engi-
neering could be used to sway a
low-income employee transport-
ing the backups into stealing the
tapes. Discarded media that is not
sanitized properly before being
sold could be scavenged for data.
SAN issues with security deal with
zones. For enforcement methods,
hardware-enhanced zones are the
only type of zoning that offers a
meaningful level of access control.
LUN masking hides LUNs from
specific servers and should not be
considered a security mechanism,
but commonly is.

Suggestions for improving storage
security include shutting down
whatever is non-essential, testing
NAS servers for weaknesses, and
putting the NAS on a separate
LAN. Learning about weaknesses,
planning for security, and working
with vendors to make storage
technologies more secure are other
means of improving security.

I M P R E S S I O N S F ROM A L I S A N E W B I E

Chris Kacoroski, Comcast
kacoroski@comcast.net

Hi,

As a LISA ’04 newbie with a focus
on configuration management
training, I attended tutorials every
day and missed many of the tech-
nical sessions. What follows are
my opinions, which you are obvi-
ously free to agree or disagree
with.

Overview:

Having all areas covered by wire-
less really changes how the audi-
ence listens to the speakers. I
would go to a session and while

the speaker was setting up, I
would go online and check out the
servers at work, along with my
favorite Web sites. I noticed sev-
eral other people also doing this. If
the speaker was covering some-
thing I was not interested in, I
responded to emails. With the IRC
channel, I saw some folks holding
side chats while speakers were
talking. This is a good thing for
folks like me who
do not have a backup in their job
(one day I was able to fix a prob-
lem with our name servers), but
from a speaker’s viewpoint, I
would think it could be very frus-
trating that some people are not
paying atten-tion.

I was impressed by LISA’s leader-
ship and staff’s emphasis on learn-
ing from each other. They encour-
aged this via the LISA bingo game,
where you had to get signatures of
people, the lunches provided with
the tutorials, and the acknowledg-
ment of the importance of “hall-
way track,” where I definitely
learned the most. I was also
impressed by the folks who taught
the tutorials; these are people who
write books (e.g., O’Reilly’s LDAP
by Gerald Carter).

The days were very intense, with
sessions from 9 to 5:30. Then
there were BoFs from 7 to 11 p.m.
After that the hallway track typi-
cally continued from 1 to 3 a.m. I
averaged about five hours of sleep
a night. I definitely had informa-
tion overload.

The high points for me were:

System Logging and Analysis
Tutorial

Marcus Ranum

I liked the idea of “artificial igno-
rance,” where if you see a log mes-
sage that is okay, you filter it out
but keep a count of how often it
happens. In a short period of time,
the only messages that get past the
filters are ones that you have not
seen before and that you need to
look at. By keeping a count of
messages, you can be alerted if a

88 ; L O G I N : V O L . 3 0 , N O . 1

message that normally happens
100 times a day jumps to 1000
(something probably happened). I
also learned just how unreliable
UDP really is and ways around this
problem (using TCP or local
server filtering).

Marcus briefly mentioned log-
watch, plog, and logbayes, and
went into detail on his NBS tool,
which is used to implement the
idea of Artificial Ignorance. Mar-
cus is a good presenter who makes
the material real through several
real-life examples.

Cfengine Tutorials

Mark Burgess

The introductory tutorial was not
that interesting, but the advanced
tutorial was excellent. I picked up
enough new ideas and hints that I
really need to go back and re-read
the manual (some of this is due to
a new version that has some signif-
icant changes, such as subrou-
tines). Mark even created a patch
to re-solve a specific problem I
have been having with my use of
cfengine.

Change Management Guru Session

Gene Kim

The book provided with this ses-
sion is very good, as it provides a
recipe that my management can
use to start to implement good
change-management practices.
Because this book is based on real
data about the impact of unman-
aged changes, I think I will have a
good chance of getting it imple-
mented.

Configuration Management Session

Alva Couch/Mark Burgess

Mark’s discussion on computer
immunology did not grab me—too
far out in the future, but Alva’s dis-
cussion about the phases of con-
figuration management and the
difficulty in moving from one level
to another was excellent, as he
also listed the benefits of moving
to the next level. I will be able to
use this to show my management

where I am trying to go. The
phases are:

Level 0—Ad hoc: Uses ad hoc
tools to manage the systems.
Pretty much anything goes. There
are no barriers, since everybody
does their own thing. Also, there is
no documentation, reproducibility,
or interchangeability of systems.
This starts to fail when the num-
ber of systems goes above 50–100.

Level 1—Incremental: Uses incre-
mental management—implements
a tool such as cfengine and just
manages a few things on the
machines. One barrier is that each
sysadmin has to be trained on the
tool you use. This level provides
documentation of the systems and
ease of updating 1000s of systems.
This starts to fail when you need
to manage entire systems, not just
parts of them.

Level 2—Proscriptive: Controls
the entire system by building from
bare metal for each system. A bar-
rier is loss of memory of how a
machine was set up (e.g., why a
machine was configured in a cer-
tain manner). Lots of work to doc-
ument exactly how the system was
set up before it was rebuilt. Need
to do a lot of testing to ensure that
the bare-metal rebuild will work.
This provides guaranteed repro-
ducibility, where you can create
any system from bare metal.

Level 3—Enterprise: Divorces the
hardware from the machine use so
machines are interchangeable—
we can move services between
machines as needed. All machines
are created alike. A barrier is the
loss of freedom to take care of your
own machine (e.g., you do not
know which machine will be the
Web server). The benefit is that
any machine is interchangeable
with another. Kind of like thin
clients, where a person can log on
to any terminal and get their own
environment. Companies like
CNN use this for their Web server
farms.

Alva then went on to show how
each organization will need to

determine which level has the best
payoff. For example, his group has
decided to stay at level 2, because
they rebuild machines every six
months and it makes no sense to
go to level 3. Paul Anderson’s
group has moved to level 3,
because they do not rebuild
machines every six months, so the
cost-benefit equation makes sense.

BoFs & Hallway Track

The asset management BoF had
the idea of tracking MAC address
to IP address to switch port in
order to alert you to any changes
in the data center. I really liked
what one participant had to say: he
used SNMP to get all kinds of data
from his servers—the only thing
he was lacking was an automated
process to determine what power
plug a computer was using.

As I said at the beginning, I
focused on configuration manage-
ment. My environment consists of
about 100 servers (Mac, Linux,
Solaris, Windows), 1500 need-to-
be-managed Mac workstations,
and 700 Windows workstations.
What I learned from the BoFs,
hallway track, and sessions was:

Cfengine is a good choice for me
to manage my systems.

I need to move to automated
builds of systems.

Cfengine has a lot of functionality
that I was not aware of. I had been
trying to figure out hacks for cer-
tain items that cfengine does out
of the box.

Many folks who use cfengine do
not really use it in depth but only
use a small portion of it. Mark
Burgess was the only person I
found who really understood all
of it.

I have about a two- to three-year
project ahead of me to get every-
thing managed.

A monitoring system that uses
SNMP to tie MAC address to IP
address to switch port has lots of
benefits for asset management and

; LO G I N : F E B R UA RY 2 0 0 5 1 8 TH L A R G E I N STA L L ATI O N SYSTE M A DM I N I STR ATI O N CO N F E R E N C E 89

sending alerts when things
change.

Change management is critical.
Tracking the success rate of
approved changes really makes it
much easier to diagnose and
resolve problems, since most prob-
lems result from recent changes.

cheers,

ski

EuroBSDCon 2004

Karlsruhe, Germany
October 29–31, 2004
Summarized by Jan Schaumann

jschauma@netmeister.org

EuroBSDCon 2004, the third
installment of BSDCon in the Old
World, opened with a full day of
tutorials, which was followed by
two days of presentations conclud-
ing with the Best Paper award.

Speakers were unfortunately not
able to sit in on the tutorials, so
instead of learning about “Debug-
ging Kernel Problems” from Greg
Lehey, “Using IPv6 on BSD: Con-
cepts, Configuration and Opera-
tion” from Benedikt Stockebrand,
“Hands-on CVS” from Albert
Mietus, or “Content Management
with TYPO3” from Martin Alker
and Ursula Klinger, I took advan-
tage of the free wireless network
and spent most of the day prepar-
ing for my own talk.

Jordan Hubbard’s keynote speech,
“*BSD Is Dying—Anonymous
Coward, Slashdot, ©1993, 1994,
1995, 1996, 1997, 1998, 1999,
2000, 2001, 2002, 2003, 2004,” on
Saturday morning marked the offi-
cial start of the conference. As
manager of BSD Technologies for
Apple Computer Inc., Jordan
doesn’t require much introduction
in the BSD community. He stressed
the fact that with Mac OS X being
based on BSD, this family of oper-
ating systems has quickly become
the biggest desktop UNIX variant.
(Judging by the count of Apple

laptops among the audience, it
seemed that Apple’s hardware also
enjoyed some popularity among
BSD hackers, though, of course,
several people were running their
favorite BSD in favor of Mac OS
X.)

The 23 papers presented were
divided into two tracks each day,
forcing attendees to make often
difficult decisions when choosing
among two concurrently sched-
uled topics. It might be worth
mentioning that NetBSD—often
playing a smaller role than its
cousins when it comes to media
exposure—dominated the confer-
ence, with a total of 11 papers pre-
sented either by NetBSD develop-
ers or on NetBSD-related topics.

The first talk I attended was Antti
Kantee’s presentation on “Using
Application-Driven Checkpointing
for Hot Spare High Availability,” in
which he discussed a kernel inter-
face for checkpointing processes,
separating them into data and
metadata, and making it an appli-
cation’s responsibility to make sure
that checkpoints are taken rather
than relying on an outside process.
This approach allows time-critical
applications to provide high relia-
bility on a software level much in
the way that RAID provides redun-
dancy and data security on the
hardware level.

Having discussed “The Flaf
Filesystem” with the paper’s
author, Søren Jørvang, the night
before, I decided to remain in
track “A.” The “first load all files”
file system presented in Søren’s
paper uses an interesting
approach: At mount time, all
metadata for the file system is
loaded into memory. This reduces
the code size enormously, but, at
the same time, provides modern
features like crash robustness and
high metadata performance by tak-
ing advantage of ever increasing
memory size and disk bandwidth
on today’s systems compared to
average file system usage.

In the next session, Alistair Crooks
(in the first of three talks) and
Valeriy Ushakov discussed issues
related to porting NetBSD to hand-
held devices. The geek appeal of
seeing live demonstrations of an
HP Journada executing a boot-
loader from within its native oper-
ating system, Windows CE, to
boot into NetBSD is certainly non-
negligible. Furthermore, this talk,
consciously or not, prepared the
audience for the following two
talks in track “A”: As handheld
computers have limited resources,
getting third-party applications
installed is not always easy, but the
NetBSD Packages Collection may
promise some remedy, as was
shown in the first afternoon
sessions.

Alistair Crooks’ second talk
focused on the NetBSD Packages
Collection and its strength as a
portable framework, followed by
Krister Walfridsson’s presentation
on “Cross-Building Packages”
from a powerful machine for
another architecture. “A Portable
Packaging System” provides a nice
overview of the NetBSD Packages
Collection, or “pkgsrc,” as it’s
known by its users. In it, Alistair
focused on the portability, and the
problems encountered during the
porting, of the framework, which
allows system administrators of
such different UNIX flavors as
Darwin, Solaris, IRIX, and even
Interix (to name a few) to manage
over 5000 third-party applications.

As mentioned above, building
large packages from source may
take
significant resources or time on
certain platforms. The NetBSD
operating system is fully cross-
compilable, yet taking this
approach in the third-party soft-
ware management framework is
challenging, to say the least. Kris-
ter Walfridsson has developed an
approach to allow for just that, by
intercepting the exec system calls
and modifying “the commands in
such a way that they do the corre-
sponding operation for the target

90 ; L O G I N : V O L . 3 0 , N O . 1

architecture.” His presentation
included a live demonstration of
this remarkable system.

Track “B,” at the same time, saw a
talk by Dirk Meyer on “Lightweight
FreeBSD Package Cluster in a Jail,”
a paper that was to win the Best
Paper award of the conference. As I
said, it was difficult choosing
which talks to attend.

Martin Husemann, scheduled to
present his paper “Fighting the
Lemmings,” unfortunately could
not attend EuroBSDCon due to ill-
ness. On short notice, Dirk Meyer
filled in with a demonstration of
“Making Life Easy with FreeBSD
Filesystem Snapshots.” This much
more practical session was wel-
come after the largely theoretical
day.

Saturday concluded in Track “A”
with Dru Lavigne’s presentation
“But I Am Not a Developer. . .How
Can I Contribute to Open Source?”
Even though Dru struggled with
some technical difficulties and
could only project parts of her
slides, this talk was very well
received and won her the award for
second-best paper. In it, Dru shared
thoughts and insights from a much
less technical point of view, which
certainly was appreciated by the
mostly developer-focused confer-
ence audience.

The next morning, talks started at
9:15 a.m. with Hubert Feyrer’s talk
about “vulab,” a system Hubert
developed to enable students to
perform exercises as part of a
course in system administration he
teaches at the University of Regens-
burg. The system enables the
instructor to define certain tasks,
set time limits, and even check
whether the task has been finished
correctly. It seemed unfortunate
that due to the early time slot
(many people had stayed up late in
the hotel bar), only a few people
attended.

My own talk, “NetBSD/Desktop:
Scalable Workstation Solutions,” in

the following time slot seemed to
be well received, but I should let
somebody else be the judge of this.
Like the majority of the other talks,
the paper and slides can now be
downloaded from the conference
Web site.

Following the coffee break, I at-
tended Stucchi Massimiliano and
Matteo Riondato’s “code walk-
through and a case study” of the
FreeSBIE system, a LiveCD based
on FreeBSD. Stucchi and Matteo
won the award for the third-best
paper, based on the positive feed-
back that conference attendants
showed for this very practical talk.

“The NetBSD Status Report” is a
regular presentation at many con-
ferences (such as USENIX, or more
recently, at SUCON ’04) and pro-
vides a nice summary of where the
NetBSD Project stands, where it’s
headed, and what kinds of new fea-
tures can be expected in future
releases. Naturally, this status
report, presented by Ignatios Sou-
vatzis, focused on the upcoming
2.0 release and the release’s per-
formance improvements. The
NetBSD Project had also released
their new logo the night before
(incidentally also from EuroBSD-
Con), but due to the short notice
this did not make its way into the
status report. After all, Ignatios had
to present yet another talk after the
lunch break, “A Machine-Indepen-
dent Port of the SR Language Run-
Time System to NetBSD.”

The conference talk program con-
cluded with Alistair Crooks’ third
(but who’s counting?) presentation,
“The A-tree—A Simpler, More Effi-
cient B-tree.” It turns out that Alis-
tair used this talk as an excuse to
reminisce about how times have
changed since the ’70’s. The rela-
tion here is that obviously times
have changed since B-trees were
discovered in 1970. Since systems
nowadays have an abundance of
memory and disk space compared
to then, memory-to-memory copy-
ing has become much faster, allow-

ing a larger set of information to be
held in memory at a time. (You will
notice that this is basically the
same assumption underlying Søren
Jørvang’s flaf, as mentioned above,
so maybe these guys are on to
something here.) The conclusion of
his paper is that this approach
allows for search times equivalent
to those in a B-tree, while insertion
and deletion are much simpler.

The conference ended with the
closing remarks and the presenta-
tion of the Best Paper awards.
EuroBSDCon ended officially just
in time, and it seemed everybody
agreed that it was a big success.

Conference Web site:
http://2004.eurobsdcon.org.

; LO G I N : F E B R UA RY 2 0 0 5 E U RO B S D CO N 2 0 0 4 91

Important Dates
Draft papers, extended abstracts, and invited talk and workshop

proposals due: May 10, 2005
Notification to authors: June 2005
Final papers due: September 27, 2005

Conference Organizers
Program Chair
David N. Blank-Edelman, Northeastern University CCIS

Program Committee
Gerald Carter, Samba Team/Hewlett-Packard
Strata Rose Chalup, VirtualNet Consulting
Lee Damon, University of Washington
Rudi van Drunen, Leiden Cytology and Pathology Labs
Joe Gross, Google
Jason Heiss, Overture, a Yahoo! company
Tom Limoncelli, Cibernet Corp.
John “Rowan” Littell, Earlham College
Tom Perrine, Sony Computer Entertainment America
Yi-Min Wang, Microsoft Research
David Williamson, Tellme Networks
Elizabeth Zwicky, Acuitus

Invited Talk Coordinators
William LeFebvre, Independent Consultant
Adam S. Moskowitz, Menlo Computing

Guru Is In Coordinator
Philip Kizer, Texas A&M University

Workshops Coordinator
Luke Kanies, Bladelogic, Inc.

Training Program Coordinator
Daniel V. Klein, USENIX

Overview
The annual LISA conference is the meeting place of choice for
system, network, database, storage, security, and all other computer-
related administrators. Administrators of all specialties and levels of
expertise meet at LISA to exchange ideas, sharpen old skills, learn
new techniques, debate current issues, and meet colleagues and
friends.

People come from over 30 different countries to attend LISA.
They include a wide range of administration specialties. They hail
from environments of all sorts, including large corporations, small
businesses, academic institutions, and government agencies. Atten-
dees are full-time, part-time, student, and volunteer admins, as well
as those who find themselves performing “admin duties” in addition
to their day jobs. They support combinations of operating systems
ranging from open source, such as Linux and the BSD releases, to
vendor-specific, including Solaris, Windows, Mac OS, HP-UX, and
AIX.

Refereed Papers
Refereed papers explore techniques, tools, theory, and case histories
that extend our understanding of system and network administration.
They present results in the context of previous related work. The
crucial component is that your paper present something new or
timely; for instance, something that was not previously avalable, or
something that had not previously been discussed in a paper. If you
are looking for ideas for topics that fit this description, the Program
Committee has compiled a list of some good open questions and
research areas, which appears in a separate section below. This list is
not meant to be exhaustive; we welcome proposals about all new
and interesting work.

It is important to fit your work into the context of past work and
practice. LISA papers must provide references to prior relevant work
and describe the differences between that work and their own. The
online Call for Papers, http://www.usenix.org/lisa05/cfp, has refer-
ences to several resources and collections of past papers.

Proposal and Submission Details
Our submission requirements this year are a bit different from prior
years, so please take a moment to read these new guidelines.
Anyone who wants help writing a proposal should contact the Pro-
gram Chair at lisa05chair@usenix.org. The conference organizers
want to make sure good work gets published, so we are happy to
help you at whatever stage we can in the process.

Proposals can be submitted as draft papers or extended abstracts.
Draft papers are preferred. Like most conferences and journals,
LISA requires that papers not be submitted simultaneously to more
than one conference or publication and that submitted papers not be

December 4–9, 2005 San Diego, California, USA

Announcement and Call for Participation

19th Large Installation System Administration
Conference (LISA ’05)
Sponsored by USENIX, the Advanced Computing Systems Association, and SAGE, the People Who Make IT Work
http://www.usenix.org/lisa05/cfp

Get Involved!
Experts and old-timers don’t have all the good ideas. This is your
conference, and you can participate in the planning in many ways:

• Submit a draft paper or extended abstract for a refereed
paper.

• Suggest an invited talk speaker or topic.
• Share your experience by leading a Guru Is In session.
• Propose a tutorial topic.
• Organize or suggest a Birds-of-a-Feather (BoF) session.
• Email an idea to the Program Chair.

previously or subsequently published elsewhere for a certain period
of time.

Draft papers: A draft paper proposal is limited to 16 pages,
including diagrams, figures, references, and appendices. It should be
a complete or near-complete paper, so that the Program Committee
has the best possible understanding of your ideas and presentation.

Extended abstracts: An extended abstract proposal should be
about 5 pages long (500–1500 words, not counting figures and refer-
ences) and should include a brief outline of the final paper. The form
of the full paper must be clear from your abstract. The Program
Committee will be attempting to judge the quality of the final paper
from your abstract. This is harder to do with extended abstracts than
with the preferred form of draft papers, so your abstract must be as
helpful as possible in this process to be considered for acceptance.

General submission rules:
• All submissions must be electronic, in ASCII or PDF format

only. ASCII format is greatly preferred. Proposals must be sub-
mitted using a Web form located on the LISA ’05 Call for
Papers Web site, http://www.usenix.org/lisa05/cfp

• Submissions containing trade secrets or accompanied by nondis-
closure agreement forms are not acceptable and will be returned
unread. As a matter of policy, all submissions are held in the
highest confidence prior to publication in the conference pro-
ceedings. They will be read by Program Committee members
and a select set of designated outside reviewers.

• Submissions whose main purpose is to promote a commercial
product or service will not be accepted.

• Submissions can be submitted only by the author of the paper.
No third-party submissions will be accepted.

• All accepted papers must be presented at the LISA conference
by at least one author. One author per paper will receive a regis-
tration discount of $200. USENIX will offer a complimentary
registration for the technical program upon request.

• Authors of an accepted paper must provide a final paper for
publication in the conference proceedings. Final papers are lim-
ited to 16 pages, including diagrams, figures, references, and
appendices. Complete instructions will be sent to the authors of
accepted papers. To aid authors in creating a paper suitable for
LISA’s audience, authors of accepted proposals will be assigned
one or more shepherds to help with the process of completing
the paper. The shepherds will read one or more intermediate
drafts and provide comments before the authors complete the
final draft.

For administrative reasons, every submission must list:
1. Paper title, and names, affiliations, and email addresses of all

authors. Indicate each author who is a full-time student.
2. The author who will be the contact for the Program Committee.

Include his/her name, affiliation, paper mail address, daytime
and evening phone numbers, email address, and fax number (as
applicable).

For more information, please consult the detailed author guide-
lines at http://www.usenix.org/lisa05/cfp/guidelines.html. Proposals
are due May 10, 2005.

Training Program
LISA offers state-of-the-art tutorials from top experts in their fields.
Topics cover every level from introductory skills to highly advanced.
You can choose from over 50 full- and half-day tutorials covering
everything from performance tuning, through Linux, Solaris, Win-
dows, Perl, Samba, TCP/IP troubleshooting, security, networking,
network services, backups, Sendmail, spam, and legal issues, to pro-
fessional development.

To provide the best possible tutorial offerings, USENIX continu-
ally solicits proposals and ideas for new tutorials. If you are inter-
ested in presenting a tutorial or have an idea for a tutorial you would
like to see offered, please contact the Training Program Coordinator:

Daniel V. Klein
Tel: +1.412.422.0285
Email: dvk@usenix.org

Invited Talks
An invited talk discusses a topic of general interest to attendees.
Unlike a refereed paper, this topic need not be new or unique but
should be timely and relevant or perhaps entertaining. An ideal
invited talk is approachable and possibly controversial. The material
should be understandable by beginners, but the conclusions may be
disagreed with by experts. Invited talks should be 45–60 minutes
long, and speakers should plan to take 30–45 minutes of questions
from the audience.

Invited talk proposals should be accompanied by an abstract
describing the content of the talk. You can also propose a panel dis-
cussion topic. It is most helpful to us if you suggest potential pan-
elists. Proposals of a business development or marketing nature are
not appropriate. Speakers must submit their own proposals; third-
party submissions, even if authorized, will be rejected.

Please email your proposal to lisa05it@usenix.org. Invited talk
proposals are due May 10, 2005. All abstract submissions must be
electronic, in ASCII or PDF format only. ASCII format is greatly
preferred.

The Guru Is In Sessions
Everyone is invited to bring perplexing technical questions to the
experts at LISA’s unique The Guru Is In sessions. These informal
gatherings are organized around a single technical area or topic.
Email suggestions for Guru Is In sessions or your offer to be a Guru
to lisa05guru@usenix.org.

Workshops
One-day workshops are hands-on, participatory, interactive sessions
where small groups of system administrators have discussions
ranging from highly detailed to high-level. The primary goal of
workshops is to provide a forum for system administrators to define
and develop a given topic in depth. Topics that develop into a com-
munity with mailing lists and yearly workshops are especially desir-
able. Previously successful workshops have focused on configura-
tion management, system administration education, and AFS.

A workshop proposal should include the following information:
• Title
• Objective
• Organizer name(s) and contact information
• Potential attendee profile
• An outline of potential topics
Please email your proposal to lisa05workshops@usenix.org.

Workshop proposals are due May 10, 2005.

Work-in-Progress Reports
A Work-in-Progress report (WiP) is a very short presentation about
work you are currently undertaking. It is a great way to poll the
LISA audience for feedback and interest. We are particularly inter-
ested in presentations of student work. To schedule your short report,
send email to lisa05wips@usenix.org or sign up the first day of the
technical sessions.

Suggested Topics for Authors and Speakers
Want to write a refereed paper for LISA or give an invited talk, but
don’t have an idea for a topic? Here’s a list of open questions and
research areas that the LISA ’05 organizers and a few colleagues
created as a good starting place. We’re especially interested in
papers and talks that address the following topics, but we welcome
proposals about all new and interesting work.

• Are all our sites really that different? Are we missing a more
standardized methodology? Or are we just all rugged individu-
alists who are causing our own problems (e.g., the account
management problem)?

• Can you architect an infrastructure that won’t be obsolete in 3+
years?

• Case studies: How do we move from reactive to proactive?
• Case studies: Sometimes we need to see the overall, integrated

result, instead of yet another new tool to do the same thing
some older tool already does

• Designing machine rooms for the next 3+ years
• DIY-IT (the “IT Garage Trend”)
• Dynamic building of coalitions/collaborative environments
• Exploring collaborative tools and “social software”
• Exploring P2P, VoIP, and XML
• How can we design systems that fail-safe by default?
• How do people manage their personal email?
• How do you “manage” your manager?
• How do we train sysadmins to solve problems
• Improving tools for diagnosing problems with systems: Why

can’t our systems do a better job of explaining what’s wrong
with them?

• Information sharing: Need to know vs. publish and flag
• Innovative ways to exploit ticket systems
• Intel has suggested it’s hit the limit with a 4Ghz processor;

how do we deal with this cap?
• It’s 2005: Why do we still have computer viruses?
• Managing content and collaborative systems for our customers:

We are increasingly being asked to create and manage systems
for our users to then expand and “grow.” Consider the business
use of blogs, wikis, and other systems that can have open-
ended growth and change at the hands of “non-professional
syadmins” (i.e., users). Do these have special challenges for
sysadmins?

• Metrics
• Outsourcing/offshoring system administration: Is it possible?
• People management: More and more “classic sysadmins” are

being pushed into first- and second-level management. How do
we teach these high-geek people to manage people without
growing pointy hair? What should sysadmins be learning to
prepare for the day when they wake up managing 3–10 rugged
individualist sysadmins (that were likely their peers the day
before)?

• Real system administration tools: Why does every sysadmin/
site have to roll its own tools?

• Scaling: How do you deal with the next 2x in storage, backup,
networking, address space, database, productivity, etc.?

• Scripting languages (stuff around them)
• Selling sysadmin to management: What is your personal ROI?

How do we measure it?
• Spam
• The “scaling problem”: How do we scale (share) successful

tools and processes, content creation and system extensions,
and sysadmin experience?

• Tools for understanding information flows in networks and
systems

• Virtualization: Benefit or bane?
• What can big sites learn from small sites?
• What have/haven’t we learned about picking defaults?
• XML usage for configuration (management)
• Zero administration systems: Why not?
Thanks to Marcus Ranum, Rob Kolstad, and the LISA ’05 orga-

nizers for contributing to this list.

Contact the Chair
The Program Chair, David Blank-Edelman, is always open to new
ideas that might improve the conference. Please email any and all
ideas to lisa05chair@usenix.org.

Final Program and Registration Information
Complete program and registration information will be available in
September 2005 at the conference Web site, http://www.usenix.org/
lisa05. If you would like to receive the latest USENIX conference
information, please join our mailing list at http://www.usenix.org/
about/mailing.html.

Sponsorship and Exhibit Opportunities
The oldest and largest conference exclusively for system adminis-
trators presents an unparalleled marketing and sales opportunity for
sponsoring and exhibiting organizations. Your company will gain
both mind share and market share as you present your products and
services to a prequalified audience which heavily influences the
purchasing decisions of your targeted prospects. For more details
please contact sales@usenix.org.

Rev. 1/4/05

Important Dates
Submissions due: March 30, 2005, 11:59 p.m. EST
Notification of acceptance: May 3, 2005
Final papers due: May 23, 2005

Conference Organizers
Program Chairs
Dina Katabi, MIT
Balachander Krishnamurthy, AT&T Labs—Research

Program Committee
Paul Barford, University of Wisconsin
Steven M. Bellovin, Columbia University
Herve Debar, France Telecom R&D
Mark Handley, University College London
Doug Maughan, U.S. Department of Homeland Security
Chris Morrow, UUNET
Vern Paxson, ICIR/ICSI
Dawn Song, Carnegie Mellon University
Paul Vixie, ISC

Steering Committee
Clem Cole, Ammasso, USENIX Liaison
Dina Katabi, MIT
Balachander Krishnamurthy, AT&T Labs—Research

Overview
The Internet is under increasing attack with unwanted
traffic in the form of spam, distributed denial of service,
virus, worms, etc. Unwanted traffic on the Internet has
manifested itself as attacks via many protocols (IP, TCP,
DNS, BGP, and HTTP) and popular applications (e.g.,
email, Web). Recently, attacks combining multiple
exploits have become common. Many solutions have
been proposed for specific attacks, some of which have
had limited success. SRUTI seeks research on the
unwanted traffic problem that looks across the protocol
stack, examines attack commonalities, and investigates
how various solutions interact and whether they can be
combined to increase security. Original research,
promising ideas, and steps toward practical solutions at

all levels are sought. We look for ideas in networking
and systems, and insights from other areas such as data-
bases, data mining, and economics. SRUTI aims to
bring academic and industrial research communities
together with those who face the problems at the opera-
tional level. SRUTI ’05 will be a one-and-a-half-day
event. Each session chair will play the role of a discus-
sant and present a summary of the papers in the session
and a state-of-the-art synopsis of the topic. The work-
shop will be highly interactive, with substantial time
devoted to questions and answers. Submissions must
contribute to improving the current understanding of
unwanted traffic and/or suggestions for reducing it.
The Proceedings of the workshop will be published.
To ensure a productive workshop environment, atten-
dance will be by invitation and/or acceptance of paper
submission.

Topics
Relevant topics include:

uu Architectural solutions to the unwanted traffic
problem

uu Scientific assessment of the spread and danger of
the attacks

uu Practical countermeasures to various aspects of
unwanted traffic (Spam, DoS, worms, etc.)

uu Cross-layer solutions and solutions to combination
attacks

uu Attacks on emerging technologies (e.g., sensors,
VOIP, PDAs) and their countermeasures

uu Privacy and anonymity
uu Intrusion avoidance, detection, and response
uu Virus, worms, and other malicious code
uu Analysis of protocols and systems vulnerabilities
uu Handling errors/misconfigurations that might lead to

unwanted traffic
uu Attacks on specific distributed systems or network

technologies (e.g., P2P, wireless networks)
uu Data mining with application to unwanted traffic
uu New types of solutions: incentive-based, economic,

statistical, collaborative, etc.

July 7–8, 2005 Cambridge, Massachusetts, USA

Announcement and Call for Papers

Steps to Reducing Unwanted Traffic on the Internet
Workshop (SRUTI ’05)
Sponsored by the USENIX Association

http://www.usenix.org/sruti05/cfp

Paper Submissions
All submissions must be in English and must include a
title and the authors’ names and affiliations. Submis-
sions should be no more than six (6) pages long and
must be formatted in 2 columns, using 10 point Times
Roman type on 12 point leading, in a text block of 6.5"
by 9". Papers should be submitted in PDF or Postscript
only. Each submission should have a contact author
who should provide full contact information (email,
phone, fax, mailing address). One author of each
accepted paper will be required to present the work at
the workshop.

Authors must submit their papers by 11:59 p.m. EST,
March 30, 2005. This is a hard deadline—no exten-
sions will be given. Final papers are due on May 23,
2005, to be included in the workshop Proceedings.

The SRUTI workshop, like most conferences and
journals, does not allow submissions that are substan-
tially similar to works that have been published or are
under review for publication elsewhere. Accepted
material may not be published in other conferences or
journals for one year from the date of acceptance by
USENIX. Papers accompanied by nondisclosure agree-
ment forms will not be read or reviewed. All submis-
sions will be held in confidence prior to publication of
the technical program, both as a matter of policy and in
accordance with the U.S. Copyright Act of 1976.

How to Submit
Authors are required to submit papers by 11:59 p.m.
EST, March 30, 2005. This is a hard deadline—no
extensions will be given. All submissions to SRUTI ’05
must be electronic, in PDF or PostScript, via a Web
form at http://www.usenix.org/sruti05/cfp/.

Authors will be notified of acceptance decisions via
email by May 3, 2005. If you do not receive notifica-
tion by that date, contact the Program Chairs at
sruti05chairs@usenix.org.

USENIX Association
2560 Ninth Street, Suite 215
Berkeley, CA 94710

POSTMASTER
Send Address Changes to ;login:
2560 Ninth Street, Suite 215
Berkeley, CA 94710

PERIODICALS POSTAGE
PAID

AT BERKELEY, CALIFORNIA
AND ADDITIONAL OFFICES
RIDE ALONG ENCLOSED

JOIN US IN ANAHEIM IN 2005
for the latest ground-breaking information

on a wide variety of technologies and environments.

April 10–15, 2005
Anaheim, CA

Check out the Web site for more information!
www.usenix.org/usenix05

