

Meeting of the Minds
[Editor’s Note: Tina wrote this great column and graciously
allowed me to run it under the MOTD banner. RK]

In-person meetings are generally held for three reasons: to
gather information, to disseminate information, and to use the
collective brainpower of the group. I classify the meetings I
attend into two types: the Well-Known (which I loathe) and the
Unknown.

Well-Known meetings were originally created to provide a way
for an organizational unit or project team to assemble and easily
exchange information. Because the meeting is pre-scheduled and
perpetual, folks forget to ask whether the time expenditure is
still necessary or useful. As a result, a non-trivial number of
these meetings are content-free and ultimately a waste of every-
one’s time. And, of course, the meeting has a preset start and
ending schedule, thus too often ensuring wasted time. I find
myself sitting in these meetings focused on all the things that
await me back at my office and frustrated that I’m not using the
time to get to them.

My contempt for these never-ending meetings is not widely
shared among my colleagues. Maybe they get a lot more out of
the gatherings than I do. I think, though, it’s because these get-
togethers are a lot easier than the “Unknown”-type meetings.
Let’s face it: There’s not much at stake in regular group meetings.
Everyone pretty much knows the drill. There are rarely any sur-
prises, and there isn’t a whole lot of preparation for the meeting:
just show up, listen, maybe contribute a thought or two, kill the
hour (or two), and return to your regularly scheduled tasks.

Many folks embrace the Well-Known meetings and recoil at the
Unknown meetings, those one-off gatherings that are called to
seek resolution, force common ground, or report status. I’ve
decided that the distaste for the Unknown meeting is because
they’re not as easy as the Well-Known meetings: There’s often
more at stake with less predictability, and thus they are sur-

rounded with uneasy anticipation of the consequences if the
meeting doesn’t go well.

As with most things, however, “no risk, no reward.” If there is
more on the line with the high-profile Unknown meetings, there
is more to be gained as well. I relish that potential, and you can
too! Here’s a strategy to get you in the mind-set to tackle the
Unknown meeting head on, and most of all, use it to your bene-
fit in the workplace.

Instead of considering the Unknown meeting as a “command
performance,” in which you’re being summoned to appear
before your managers and their managers (potentially for “judg-
ment”), consider it an opportunity. Even if you’ve been
requested to attend and report on a particular topic, never lose
sight of the fact that you can turn that into an opportunity to
turn the tide in a direction of your choosing.

You don’t have to be a passenger!

No matter who called the meeting, you can decide what you
want out of it. Determine what your position is and decide what
you need to do to get your point across and persuade your audi-
ence.

Prepare Yourself
Now that you’ve identified what you want to get out of the meet-
ing, assemble a professional presentation that persuasively eluci-
dates exactly your point of view and moves the group in the
direction you want – and I mean exactly the direction you want.

Realize how strong the power of suggestion is. Suggest to the
attendees that they’ll see it your way! Consider your own reac-
tion to a presenter who starts a session with honesty – “I’m
sorry, I’m feeling a bit overwhelmed by this group” – versus “I’m
delighted to join you today; I’m excited to share my ideas about
XXX with you.” You may be feeling the former, but whatever you
do, be sure to say, act, and look like you mean the latter! Also, if
you’re attending as a group or giving a joint presentation, make
certain everyone is on board with your goal and the way you
plan to achieve it. There is no room for an apparent crack in the
armor if you want to succeed.

Do Your Homework
Know your audience. These meetings are often filled with deci-
sion-makers, many of whom you may not know. Find out ahead
of time what you can about them and about any opinion they
may have about the meeting topic. During the meeting, try to
acknowledge the different types of people in the audience so that
each of them feels they’ve played a part. Often they fall into
broad groups:

2 Vol. 29, No. 1 ;login:

motd
by Tina
Darmohray
Tina Darmohray,
contributing editor
of ;login:, is a com-
puter security and
networking consult-
ant. She was a
founding member of
SAGE. She is cur-
rently a Director of
USENIX.

tmd@usenix.org

3February 2004 ;login:

n Drivers – people who get to the point and solve the problem; people for whom the
solution, not the means, is paramount

n Analyticals – people who require lots of data to make decisions; give them enough
data to help them feel comfortable about decision-making

n Expressives – people who thrive on and enjoy the thrill of the conception of a new
idea (but not necessarily its execution); listen to and acknowledge their creative
ideas; make sure they feel included in the creative part of the meeting

n Amiables – those who seek relationships and personal approval for their interac-
tion and participation in projects; make sure they feel included and that the meet-
ing will foster good feelings and relationships

n Naysayers – those who, for whatever reason, feel compelled to see the dark side of
any and all proposals; acknowledge their concerns and perhaps assist them in
restating concerns as goal-oriented action items that are required in order to
move forward

Don’t be lulled into lack of preparation just because you’re attending a discussion-only
meeting instead of one where you are giving a more formal presentation. Take some
time to organize your thoughts and your position and run it past a colleague for “prac-
tice” just as you would if you were giving a presentation. Consider making a list of “the
top seven reasons why we should XXX,” for example. You’ll find the pre-meeting
preparation and discussion with your peers gives you a perspective from the “informa-
tion consumer” standpoint and also gives you invaluable practice in discussing and
presenting your points in a less structured setting.

Stack the Deck
Create some allies in the crowd. Prior to the meeting, make some phone calls to people
you think you can persuade to come over to your side. Listen to what they say! Don’t
be afraid to change your ideas slightly if you can achieve broad buy-in. Of course,
don’t compromise your vision too much. In a sense, and as much as possible, have the
meeting ahead of time by touching base with those who will attend. Ideally, the meet-
ing can just be an affirmation of the topic presented. If not, at least you’ll be fore-
warned of the issues that will come up and you can be best prepared to address them.

Stand and Deliver!
Once you’ve prepared for the meeting, you’re ready to present your topic in a confi-
dent and persuasive way. You know your audience and who you can count on in the
crowd to vote your way. You’re prepared for the counter-arguments and are armed
with information to support your stance. The only thing that stands between you and
your desired outcome is the time to pass before the meeting happens. So look forward
to these Unknown meetings as opportunities to influence your workplace, and use
them to your advantage to get an idea accepted, forge an alliance, head off a problem,
or get a project “green-lighted.”

Conclusion
So what’s the big picture? Use meetings as a tool. Help participants see it your way.
Contribute when appropriate; don’t just absorb. Communicate, both before and dur-
ing the meeting. Understand what the goals are or set them yourself. Meetings can be
great, but you must make the greatness happen.

EDITORIAL STAFF
EDITOR

Rob Kolstad kolstad@usenix.org

CONTRIBUTING EDITOR
Tina Darmohray tmd@usenix.org

MANAGING EDITOR
Alain Hénon ah@usenix.org

COPY EDITOR
Steve Gilmartin

PROOFREADER
jel jel@usenix.org

TYPESETTER
Festina Lente

MEMBERSHIP, PUBLICATIONS,
AND CONFERENCES

USENIX Association
2560 Ninth Street, Suite 215
Berkeley, CA 94710
Phone: 510 528 8649
FAX: 510 548 5738
Email: office@usenix.org

login@usenix.org
conference@usenix.org

WWW: http://www.usenix.org
http://www.sage.org

Vol. 29, No. 1 ;login:

Dear Editor,

I found the “one up on LRU” article in
the August 2003 ;login: issue (Vol. 28,
No. 4) to be difficult to understand, even
after several readings and consulting the
original paper in the FAST proceedings.
I sensed on my first reading that
Megiddo and Modha are presenting an
important result that will be widely
implemented and eventually be incorpo-
rated into every undergraduate CS pro-
gram.

This caused me to reread and study the
paper until I got a better understanding.
For my own benefit, I decided to write
my own interpretation of the paper and
am providing it to ;login: in the hope
that it will be of benefit to other readers
(provided that it is an accurate interpre-
tation).

Here is my interpretation:

The primary objective of a cache man-
agement system is to hold those pages in
cache that are most likely to be reused in
the near future. In an ideal system, pages
that will be used only once in a while
will never be cached, since they will not
be reused in the near future. The focus
of the system now becomes one of man-
aging those pages that will be seen again
in the near future. Although not quite
ideal, the Least Recently Used (LRU)
algorithm is a simple and effective solu-
tion for handling those pages that will
be used twice or more, since any page
that is used twice will likely be used
again (from empirical observation and
captured in the Principle of Locality).
However, it is extremely difficult if not
impossible to determine in advance that
a page will be used only once.

The basic idea of the ARC system is to
divide the cache into two parts: one part
for pages that have been used only once
and one part for pages that have been
used twice or more. Any request for a
page that previously had been used only

once causes that page to be reassigned to
the other part of the cache, the part with
pages that have been used twice or more.
Separate LRU lists are used to track the
pages in the cache: T1 (using the
nomenclature from the ARC paper) for
the pages that have been used only once
recently and T2 for those pages that have
been used twice or more.

The challenge is to determine how big to
make each of the two parts. If the target
size for the part managed by the T1 list
(called target_T1 in the paper) is too
large, then pages that deserve to stay in
the cache, because they have been used
frequently recently, have been prema-
turely ejected. If target_T1 is too small,
then a page may be ejected before its
second request. The solution in ARC is
to keep a list of recently ejected pages for
each of T1 and T2 (called B1 and B2,
respectively). If the requested page is in
B1, then it is likely that target_T1 is too
small and so ARC increments target_T1
by one. If the requested page is in B2,
then it is likely that target_T1 is too
large and so ARC decrements target_T1.
That is, ARC dynamically adjusts tar-
get_T1 based on recent access patterns
before loading the requested page into
cache and putting it on the T2 list.

Note that a request for a page on B2
(which causes target_T1 to decrease)
does not necessarily result in a page on
the T1 list being ejected from cache.
Consider the case where there were sev-
eral requests in a row for pages on the
T1 list, which would have resulted in
those pages being moved from the T1
list to the T2 list without any change in
target_T1. Even with the decrement of
target_T1 due to the request for a page
on B2, the T1 part of the cache is still
below the target, so a page from the T2
list is ejected from cache.

There is one more case that has not yet
been discussed: the case where the
requested page has not been used at all
recently. That is, the requested page is

letters to the editor

4

neither in the cache (i.e., not in T1 or
T2) nor on the history lists (i.e., not in
B1 or B2). Before ARC can load the
requested page into the T1 part of the
cache, it must decide which page to eject
from the cache and which page to eject
from history. If adding the requested
page to T1 will cause T1 to exceed the
target_T1, then ARC ejects the LRU page
of T1 from the cache; otherwise, it ejects
the LRU page of T2 from the cache. In
other words, ARC allows the T1 part of
the cache to grow until it reaches the tar-
get_T1 size. Similarly, if adding the
requested page causes the number of
pages that have been seen only once (i.e.,
in T1 and B1) to exceed the size of the
cache (c in the paper), then the LRU
from B1 is deleted; otherwise the LRU of
B2 is deleted. Note that the reason c was
selected as limit for the number of pages
used only once recently (i.e., T1 + B2) is
that tracking more pages would imply
that, even if the whole cache were being
used for pages only seen once recently,
the pages being requested for the second
time would already have been cycled out
of the cache (this is my conjecture).

This raises the question of how much
history should be kept. (The following is
my conjecture.) As discussed in the pre-
vious paragraph, the number of pages
that have been seen only once that are
being tracked (i.e., T1 + B1) is limited to
c (the size of the cache). Since there is a
balance being sought between tracking
of pages that have been used only once
recently and those that have been used
twice or more, it can be concluded that
no more than 2c pages should be
tracked in total. That is, T1 + B1 + T2 +
B2 should be less than or equal to 2c.

Note that T2 + B2 can exceed c, even
though T1 + B1 cannot exceed c. This is
because pages can move from T1 to T2,
but not back again (without being com-
pletely recycled). That is, the ARC algo-
rithm is never going to eject a page in
cache unless it needs room to load

another page (since a request for a page
from T1 results in it being reassigned to
T2 without any cache movement).

This provides us with all the informa-
tion required to construct the ARC algo-
rithm, which manipulates the four lists
(T1, T2, B1, and B2) and the cache when
a page p is requested using one of the
following five cases:

p is on T2:
Use the page again
move p to MRU(T2)

p is on T1:
This is an OK cache hit
move p from T1 to MRU(T2)

p is on B1:
Need to get it in the cache
so allocate more space for T1
increment target_T1
if T1’s part is full

i.e., size T1 >= target_T1
move LRU(T1) to MRU(B1)
eject MRU(B1) from cache

else
move LRU(T2) to MRU(B2)
eject MRU(B2) from cache

endif
move p from B1 to MRU(T2)
load p into cache

p is on B2:# (similar to B1)
Darn, wish it was in the cache
... so deallocate space for T1
decrement target_T1
if T1's part is full

i.e., size T1 >= target_T1
move LRU(T1) to MRU(B1)
eject MRU(B1) from cache

else
move LRU(T2) to MRU(B2)
eject MRU(B2) from cache

endif
move p from B2 to MRU(T2)
load p into cache

p has not been used recently:
i.e., it is not on T1, T2, B1 nor B2
if seen once list is full

i.e., T1 + B1 = c
if B1 has entries

delete LRU(B1)
if T1's part is full

i.e., size T1 >=
target_T1

5February 2004 ;login:

move LRU(T1) to
MRU(B1)

eject MRU(B1) from
cache

else
move LRU(T2) to

MRU(B2)
eject MRU(B2) from

cache
endif

else# B1 is empty
eject LRU(T1) from cache
delete LRU(T1)

endif
else

if cache is full
if too much history being

kept
delete LRU(B2)

endif
if T1’s part is full

i.e., size T1 >=
#target_T1
move LRU(T1) to

MRU(B1)
eject MRU(B1) from

cache
else

move LRU(T2) to
MRU(B2)

eject MRU(B2) from
cache

endif
endif

endif
insert p into MRU(T1)
load p into T1

Note that I had to inline a “replace” sub-
routine here in order to see all the list
and cache manipulations together (they
are divided between two routines in the
paper [and are on backing pages in
;login:!]). I also relegated the handling of
dirty pages to the eject function, since it
is not really germane to the new con-
cepts introduced by ARC.

Regards

Henry Baragar
henry.baragar@instantiated.ca

Principal, Technical Architecture
Instantiated Software Inc.

The authors respond:

This letter will be of value and interest
to readers of ;login:. However, there is
one subtle point of ARC that the author
has not captured. Inclusion of this will
make the exposition complete. The fol-
lowing is known as the “learning rule”
and is a very important part of making
the algorithm work:

Upon a hit in B1, the parameter tar-
get_T1 is incremented by a maximum of
1 or B2Length/B1Length. But target_T1
can never exceed the cache size. Simi-
larly, upon a hit in B2, the parameter
target_T1 is decremented by a maxi-
mum of 1 or B1Length/B2Length. But
target_T1 must be nonnegative.

Nimrod Meggiddo and
Dharmendra S. Modha

###

Tina,

I got my copy of ;login: this morning
and read your “Value Added” article
(;login: Vol. 28, No. 5, p. 4). One would
think what you wrote goes without say-
ing.

However, imagine a world that was
invaded by idiots in the desperate belief
by some that a warm body was better
than no body, and a day when candi-
dates and employees could name their
prices (often petty) regardless of skill
and what-not, which has now evolved
into a world where many people are
working harder than ever, are fearful of
losing their job, and are, at times,
rewarded with management that
believes employees have nowhere to go
and that there are plenty of qualified
people to replace them.

Oh, that’s right. That happened to our
world.

So, yes, it needed to be said. Partly to
acknowledge the mistakes of the past
and present, but also to remind everyone

LE
TT

ER
S

Vol. 29, No. 1 ;login:

of the value the people-who-answer-
questions have. And that they help make
the world something you can live with
and even enjoy – fighting off that nasty
stuff.

It’s funny to me – to one of your other
points – that there is no specific func-
tional classification for these values-ori-
ented individuals. Some are adminis-
trative assistants; some are system
administrators; others are programmers;
and some are even managers, directors,
and VPs. By “function” anyway. To me,
these people are really generalists of the
human race, and I know because I’m
one of them. I don’t think I’m at the top
of the ladder. But I’m lucky. I’m appreci-
ated very much for what I do and am.

Being one, and being a manager and
benefactor of these Beings with Values, I
first of all wanted to say all of this. Then
I had to be a nit picker and tell you that I
saw two other attributes that deserve
mention as well (after all, you had to
cram this into a single column):

1. Teamwork. There are lots of people
who can answer a variety of questions
competently, but they don’t play well
with others. Those who do this task
willingly and even cheerfully and
with passion are the most valued and
enjoyed of all.

2. Diplomacy & honesty. The diplomacy
is a given and relates to teamwork: if
people don’t like the way you talk to
them, they won’t come and ask you
questions until they are damned des-
perate. The honesty is twofold and the
premise is credibility. First, self-hon-
esty: knowing what your value is and
not over- or under-stating it (which is
difficult). Second, honesty toward
others but with a touch of diplomacy
when required.

Debby Hungerford
debby-h@pacbell.net

6

RENEW ONLINE TODAY!
Renewing or updating your USENIX
membership has never been easier!

You will receive your renewal notice via
email and one click will take you to an

auto-filled renewal form.

Or visit
http://www.usenix.org/membership/

and click on the appropriate links.
Your renewal will be processed instantly.

Your active membership allows the Associ-
ation to fulfill its mission.

Thank you for your continued support!

7February 2004 ;login: LISA ‘03 l

l

C

O
M

M
EN

TA
RY

Commentary
LISA ’03
I’ve been attending LISA regularly for so long that I can go to two confer-
ences, back to back and not wear the same LISA t-shirt more than once. I
have to pick and choose which USENIX/SAGE t-shirts to bring. I started
coming here (I’m at LISA ’03 as I write) in 1992, before the start of the
Tech Bubble. I’ve seen a lot of change in the 12 years I’ve been coming
here, some good, some bad.

One of the most interesting changes is the way papers are presented. The refereed
track is now just one of two or three tracks worth going to. It used to be the only track.
So, there’s more choice. On the other hand, the papers aren’t as revolutionary as they
used to be. I’ll never forget the guy who got up and said, “I didn’t write rdist, I just
fixed it.” Gotta love that confidence. Papers seem to have split into two camps: theoret-
ical (and nearly incomprehensible) or . . . well, variations on a (set of) theme(s). And,
this isn’t all a bad thing. Our profession is maturing, and along with that comes spe-
cialization and refinement. And, don’t get me wrong, there are a number of very inter-
esting papers.

Another noteworthy change is the quality of the tutorials. I talked to my coworkers
about the quality of their tutorials, and we agreed across the board that they were bet-
ter than normal. I saw Dan Klein walking down the hall and had to stop him and
mention this to him. Hats off to him and the entire training program group. I
attended another well-known open source conference this year, and the quality was
significantly better here at LISA. (Granted, some of the instructors were the same, so
some of the tutorials at the other conference were pretty good. But for each good one,
two or more were a waste of time.)

I’ve chatted with a number of people here this year, and we’re all agreed that this con-
ference is very subdued. Part of this is undoubtedly the result of the San Diego fires
that are raging about five miles from the hotel. Some people are having problems with
the smoke, and it’s hard to go out to eat (many places are closed, including the only
walkable place to eat “off-campus”). It’s also difficult to focus on abstract problems
when real people are losing their homes.

However, I’ve noticed a decline in enthusiasm and determination in the attendees for a
number of years. Sure, there are always the hard-core “true believers.” They’ll stay up
and have meaningful conversations in small cliques late into the night. But with the
post-bubble decline in attendance and the isolation-inducing use of laptops (more on
that later), it’s getting harder and harder to have cool conversations with people.

I think this decline in the socialization aspect of the conference is due not only to lap-
tops, but to the composition of the people attending LISA. During the “boom” years,
everyone and their sister attended LISA. As times have gotten tough, though, most
people who show up now are newbies (typically, a group of support people will send
the new people in the group to the conference, since the others have previously
attended). There is a significant reduction in “graybeards.” The number of people
wearing past LISA t-shirts is in sharp decline.

Clearly, it’s important that we have “new blood.” I think it’s important that more man-
agers attend, and that the NT administrators of the world “join the fold.” But, as a side
effect, we have a group of people with a little less in common. And, especially here in

by Sean Kamath

kamath@geekoids.com

Vol. 29, No. 1 ;login:

the US, we prefer to hang with people who are like us. (I personally enjoy hearing the
horror stories of university administration, as well as hearing the lucky people com-
plaining about where they’re going to put their next SunFire 12K. It’s all interesting to
me.) That personal preference makes it harder for us to reach out.

Regarding laptops, I believe they are double-edged swords. On the one hand, being
able to keep in touch with stuff going on back home is really handy. The overcrowding
of and long waits for the terminal room are a thing of the past. But at the same time, I
see people doing their homework in tutorials and the disappearance of many a great
hallway-track conversation. That’s right, in the hall waiting for the terminal room to
have an open spot. I see more and more groups of people sitting together, but each
person’s head is down focusing on his or her laptop. Newcomers and old hands would
have an easier time communicating if it weren’t for their laptops.

Last night, I was with a couple of other people, everyone’s eyes trained on their laptop
screens. Then one of the guys asked us a question. It was relatively innocuous, but
what a change it made! After almost an hour of chatting, it was late and I had to go to
bed. But that conversation was one of the most rewarding things I’ve experienced here.

I guess that’s what I miss most about the conferences of late. This is an opportunity to
meet people in a variety of roles around the world. And you don’t meet someone by
sitting down next to them, cracking the laptop, and reading. I hope it’s just a fad.

8

9February 2004 ;login: MUSINGS ●

●
SE

C
U

R
IT

YAs usual, 2003 was a bad year for security. No surprise there, as I think we
all are just waiting for the next “bad thing” to fall out of the network.

January brought Slammer, the world’s first flash worm. With a one-UDP-packet pay-
load, Slammer spread with amazing speed, doubling its rate of infection every 8.5 sec-
onds for the first 10 minutes. Even though Slammer attacked a UDP port that should
never be open through a firewall, it managed to penetrate even bank networks, as well
as parts of the “critical infrastructure.” If nothing else, Slammer was a reminder of how
porous our network perimeters have become. Or, that we no longer really have net-
work perimeters.

March brought Spring, and with it, two new Sendmail vulnerabilities. These sent
UNIX sysadmins scrambling to find any versions of Sendmail running on their net-
works. The simultaneous forced upgrade to a new version of the configuration file
simply made the patch more difficult for many. In an ideal world, all systems would be
running the latest version of Sendmail anyway, so no config file upgrade would be nec-
essary. But we don’t live in an ideal world, do we?

Summer brought with it West Nile Virus, as well as SoBig and Blaster. SoBig.F used
bugs in IE that should have been patched at least two years before. Microsoft had put
out patches for those bugs, but there were still 30 other extant IE bugs until the IE
megapatch that came out in November. SoBig.F also allegedly used the lure of porn to
start its spread.

And Blaster? Blaster displays the classic features of current worms. Security researchers
find a problem in MS code, work up an exploit as a means of proving said flaw, and
report it to MS. MS spends six weeks “perfecting” the patch, then announces it. The
security researchers, LSD (Last Stage of Delirium) never post the exploits, which
allegedly can even take down Win3K with its buffer overflow protection, but a Chinese
group posts dcom.c, which works against Win2K. Several days later, an anonymous
party launches Blaster, which whips its way across the Internet. Just coincidently, the
eastern United States experiences the largest blackout to occur in decades while Blaster
spreads. Technicians at First Energy, the starting point for the cascading failure, do not
get notified of problems in their part of the grid because of “computer failure.”

In September, Microsoft posts a second patch that fixes five more problems in RPC,
the same module exploited by Blaster. It seems that as soon as MS put out the first
patch, people (like those working on the Nessus project) discovered more vulnerabili-
ties in RPC. Microsoft did discover a couple of these problems on their own, but not
all of them, in a module for which they had just spent six weeks designing a patch.

While all of this is happening, targeted attacks continue. Targeted attacks are the real
Internet menace, not worms or viruses. While MS blunders might get most of the
press, people are making real money stealing intellectual property and financial data
over the Internet. These attacks result in billions of dollars changing hands every year,
yet they go largely unnoticed. Why? Most organizations don’t learn of the attacks until
after the disaster occurs, and then are quite unwilling to appear as victims. Perhaps
some honest organization should come forward and confess, just to make others more
aware of the issues.

Someone shared a story about a targeted attack with me this fall and allowed me to
share some of the general details. The attacker was after some financial data that would
provide a considerable advantage. Rather than attempting to penetrate the targeted

musings
by Rik Farrow
Rik Farrow provides
UNIX and Internet
security consulting
and training. He is
the author of UNIX
System Security and
System Administra-
tor’s Guide to System
V.

rik@spirit.com

Vol. 29, No. 1 ;login:

company, the attacker instead went after the target’s ISP. After
exploiting a single Windows system, the attacker leveraged that
attack to gain access to an account with domain administrator’s
privilege. Using that privilege, the attacker now had access to
the hidden shares that are turned on by default in every Win-
dows system in the NT lineage. The attacker then captured
some email from an executive at the target company that con-
tained the desired (not encrypted!) information. A classic tar-
geted attack, and one that netted the perpetrators a very large
amount of money.

Also in November, someone broke into a server at kernel.kbits.net
and inserted the following code into the Linux kernel:

if ((options == (__WCLONE|__WALL)) && (current->uid = 0))
retval = -EINVAL;

(Note the assignment of 0 to the current->uid rather than a
comparison against 0 as might be expected.)

The unauthenticated change in the source code for sys_wait4()
was noticed by Larry McVoy, who was mostly annoyed by it.
It took a little while before someone realized that this small
change could upgrade a process to root after a system call that
resulted in a wait. The change was not propagated to any public
source tree, but was the first attempt noticed. In December, two
other Linux archive sites also noticed changes in CVS files, but
fixed those changes before more than a handful of people
downloaded those files.

The Future
One would hope that the future would appear to be more
cheery. Sorry, but it just doesn’t look too good to me.

Apple’s shiny new MacOS X now has security holes without
corresponding security patches. While Apple dithers in provid-
ing patches, an unnamed security researcher claims to have dis-
covered over 200 local elevations of privilege (ways to become
root) in 10.3.

Microsoft’s shiny, but no longer new, Trustworthy Computing
initiative appears to have had little effect. We hear that Windows
2003 (Win3K) has new security features that make it much
more secure than previous versions, but that assertion has not
yet been put to the test. When MS announced a similar claim
for Win2K, servers put on the Internet as demos suffered
numerous “power failures.” Adding insult to injury, some Linux
PowerPC people put a Linux server up, posted the root pass-
word, and offered to give the computer to anyone who could
exploit it. No one did in two weeks, when the system was taken
down because their ISP was being attacked.

Microsoft is trying to do better. Their current problem lies in
old code. The RPC vulnerabilities are a good example. This is

code that appears across the entire NT lineage, including
Win3K, because it dates from that time. While Microsoft is
working hard at writing better code now, that does not mean
that old code is magically better.

We are seeing determined attempts at backdooring open source
code. And we still see problems with open source code, even in
key security applications such as OpenSSH, OpenSSL, and
Apache. Writing secure code that actually works has turned out
to be more difficult than anyone imagined.

I still believe it is possible to design secure systems, but only by
keeping them simple, or through careful compartmentalization
(think jails and chroot). Microsoft is not going down this path,
but the move in this direction in the open source community is
not especially strong either. At least it does exist.

Some people quip that if open source was as popular as Win-
dows, it would have as many killer worms and vulnerabilities.
No doubt there is some truth in this. But I do believe that open
source has a better chance of being more secure by having many
dedicated people poring over every change to the source tree.

10

11February 2004 ;login:

In this installment of ISPadmin, I interview Paul Graham, the man behind
one approach to Bayesian spam filtering. Paul has a new book coming out
in May titled Hackers and Painters. I interviewed him via email in October
and November of 2003.

RH: You are well known throughout the community for your outstanding anti-spam
work, but less so for anything previous to that. Please tell us a little about yourself
before you invented the “Bayesian” anti-spam concept.

PG: I went to grad school in the ’80s intending to study AI. AI turned out to be a lost
cause, but Lisp seemed worth salvaging from the wreckage, so I concentrated on that.
While I was in grad school I got interested in painting, so afterward I went to art
school – first to the Accademia in Florence, and then to RISD [Rhode Island School of
Design]. Unfortunately, art school is a joke; mostly what you learn is how to act like an
artist.

After a few years of being a starving artist in New York, I decided it would be a good
idea to make a lot of money, so I dragged my friends Robert Morris and Trevor Black-
well into starting a startup with me. We were, as far as I know, the first ASP. We sold
the company to Yahoo in 1998, and it’s now Yahoo Store.

After that I could work on what I wanted. One thing I’d always wanted to do was
design a new, better Lisp. And to test this new language, Arc, I wrote a spam filter in it.

I didn’t invent the concept of Bayesian spam filtering, by the way. I just invented a vari-
ant of it that worked well and was easy to implement.

RH: I suppose that is strictly true, given the Microsoft patents and other work prior to
yours. Why did it take your essay “A Plan for Spam” in August 2002 to kick-start the
idea into what it is today? Was it simply an issue of publicity?

PG: Earlier Bayesian filters didn’t work very well, so they tended to lead to the opposite
conclusion, that filtering wasn’t a viable option. What was new in “A Plan for Spam”
was not the idea of Bayesian filtering, but that Bayesian filtering could be done in a
way that worked. And the algorithm was so simple that anyone who was skeptical
could try it and see for themselves.

There was one other good statistical filter at the time, Bill Yerazunis’s CRM114, but I
don’t think he’d written anything about it then. His algorithm is very ingenious, and
very effective, too, because it looks at multiword phrases.

RH: In your first answer, you mentioned that you wrote a Bayesian implementation to
test the Arc language. Why haven’t you released any publicly available Bayesian anti-
spam Lisp (or related) implementations you have written? Also, are you partial to any
particular publicly available Bayesian anti-spam implementation(s)?

PG: I haven’t released my filter because I haven’t released Arc itself yet. No one would
be able to run the code.

As far as I know, the two most effective filters right now are CRM114 and Brian Bur-
ton’s SpamProbe. Both have filtering rates around 99.9%.

RH: One of the greatest benefits of the Bayesian approach is how it adapts to changing
data (i.e., spam). Spammers have adapted their methodology to get around any filter-
ing attempts. Do you think the Bayesian approach will be able to keep ahead of the
spammers in this proverbial “arms race”? Are there any other promising anti-spam
methods out there which have merit?

ISPADMIN l

l

SY

SA
D

M
IN

ISPadmin
by Robert Haskins
Robert D. Haskins is
currently employed
by Renesys Corpora-
tion in Hanover, NH.

rhaskins@usenix.org

Vol. 29, No. 1 ;login:

PG: A Bayesian filter works by comparing incoming email to the spam and legitimate
mail you’ve received in the past, to see which it’s more like. So the only way to spoof a
Bayesian filter is to make spams sound more like real email. You can’t get away with
saying things like “ACT NOW!” because people never say that in real email.

The spam of the future will consist of some more or less neutral text, plus a link. The
question is, what will the response rate be for such low-key spam? If it’s low enough,
spam will stop being profitable, and we win. And if not, we just follow the link and run
the filter on whatever’s waiting there. In this new kind of spam, the sales pitch is
pushed one step back, but if the user can get to it, so can a filter.

I think there is also room for other anti-spam methods. You don’t have to rely on just
one. For example, it would be a great thing if Congress passed an airtight spam law.
But I don’t have much hope of that; this is the same Congress that gave us the DMCA.

RH: You mentioned that you have done a lot of work with Lisp. While many people
are superficially familiar with the Lisp “family” of languages, can you give us a (short)
introduction to the language? What makes Lisp unique?

PG: Its origins: Lisp grew out of an effort by John McCarthy in the late 1950s to
answer the question, What is the smallest number of operators you need in order to
write an interpreter for a language in itself? His answer was seven.

Once you’ve implemented these seven operators, you can write the rest of the language
on top of them. This is why Alan Kay, the inventor of Smalltalk, said, “Lisp isn’t a lan-
guage, it’s a building material.”

Kay also called Lisp “the greatest single programming language ever designed.” A lot of
people think that, and the reason they do is probably that Lisp’s origins as an exercise
in axiomatization forced it to be very elegant.

That’s what professors see when they look at Lisp. When undergrads look at Lisp, what
they see is that the syntax looks weird. But all those parentheses are there for a reason.
Lisp code is made out of Lisp data structures. This was the trick that made McCarthy’s
Lisp so small, and it is also a lot of the reason Lisp is so powerful in practice. It means
you can write programs that write programs. Once you’ve gotten used to that kind of
power, it’s hard to give it up.

RH: Let’s say I ran a Web site and wanted to build some applications in a language like
Lisp. What [open source] programs/environments are available for people to imple-
ment Lisp applications in a Web server?

PG: The two main ones are AllegroServe and PLT Scheme. PLT Scheme probably has
more people working on it. And Scheme has continuations, which are extremely useful
here because they let you transcend the statelessness of HTTP sessions. You can make a
Web page that behaves like a subroutine call.

RH: How do you currently earn your livelihood? And do you have any sponsors for the
Arc development work you are doing?

PG: A couple friends and I sold a startup to Yahoo in 1998. So there are no sponsors
except me. I think that will help make Arc a better language, because it doesn’t have to
do anything except be good to program in.

RH: Do you have any books in the works? Any releasable software in the works?

PG: Both, actually. I’m in the final negotiations with a publisher about a new book. I’m
also now finishing the Arc core, which, since I’m doing the McCarthy thing, will be
both a language spec and runnable software.

It would be a great thing if
Congress passed an airtight
spam law. But I don’t have
much hope of that; this is the
same Congress that gave us
the DMCA.

12

RH: Some have criticized the 2003 Spam Conference at MIT, saying it should have
been called the “2003 Spam Filtering Conference,” since there was limited coverage of
anything besides filters (e.g., sender authentication). What is your response to those
critics? Is the upcoming 2004 conference going to have more coverage of anti-spam
non-filtering topics than the 2003 conference?

PG: My response is the text of the conference Web site at the time:

“Interested in spam filters? Come join us at a conference on spam filtering. While any-
one will be welcome, we’re hoping most of all to make this conference an opportunity
for hackers working on spam filters to get together and compare notes.”

Hard to claim this is unclear.

The 2004 conference site doesn’t refer to filtering specifically, but I expect that’s still
what most of the talks will be about, because filtering is the most active area of
research at the moment.

RH: You mentioned that a tough, enforceable law against spam would go a long way
toward solving the issue. Do you think legislation will result in less spam, or will the
(bad) spammers keep doing this regardless of the “social” pressures (like laws) which
are applied? What are your thoughts on the topic of legislation as a means to reduce
spam?

PG: I think a tough, enforceable (and enforced) law against spam would help. The
question is, will Congress give us one? The laws they’re currently considering have
been watered down by lobbyists. Perhaps it will require two steps: Congress passes a
watered-down law, we find (surprise!) that it doesn’t work, and then, under pressure,
they pass a fairly tough law that does work.

Even a wimpy, sporadically enforced law might help. People really start to look askance
at a practice that has criminal penalties. In a famous Wall Street Journal article, one
spammer said:

“You can call me spam queen, I don’t really care. As long as I’m not breaking any laws,
you don’t have to love me or like what I do for a living.”

Many spammers say roughly this, if not to reporters, then to their friends and families.
If spamming were a federal crime, they would have to be willing to become criminals
to keep doing it. I think many wouldn’t.

RH: Recently, I was amused to find an online article about how Sanford (a.k.a. Spam-
ford) Wallace is running a nightclub in New Hampshire (see http://www4.fosters.com/
News2003/October2003/October_19/News/su_1019b.asp). Have you personally met any
spammers? Have you ever had any sort of conversation with one?

PG: I’ve never met any spammers that I know of, though I believe a few came to the
spam conference last year. I think the only times I’ve talked to spammers have been
when I couldn’t tell whether some email was a spam or not. I need to know because
I’m trying to keep track of filtering rates, so when I’m not sure, I try to ask the sender.
Usually it is a spam, but occasionally it might be a friend of a friend whose name I did-
n’t remember.

RH: Is there anything you’d like to add before we wrap up the interview?

PG: Some URLs: Anyone who wants to learn more about the spam conference, which
is in January, can learn more at http://spamconference.org, and there are (a few) more
details about Arc at http://paulgraham.com.

13February 2004 ;login:

l

SY

SA
D

M
IN

ISPADMIN l

14

Attackers use buffer overflows and format string vulnerabilities to manipu-
late software both to gain access to and to raise privilege on computer sys-
tems. This paper details the means by which these vulnerabilities can be
prevented in C programs. This introduction to current exploitation tech-
niques will motivate and explicate why precautions are necessary.

Buffer overflows are nothing new. One of the means by which the Morris worm spread
was a buffer overflow in fingerd. The technique didn’t become popular, however, until
the release of two papers [3, 4] that detailed discovery and exploitation of these vul-
nerabilities. A number of defenses are covered in [2].

Over time, different techniques and tools for preventing the exploitation of these vul-
nerabilities have been proposed and, time and time again, defeated. The problem lies
in the fact that C allows low-level control with very little abstraction from the machine.
Proposed solutions such as StackGuard, StackShield [11], and PaX [25] are not fully
able to prevent exploitation, since their protection mechanisms are applied to poorly
written code after its creation. These programs do complicate the job of the attacker
and are a useful stopgap for preventing the exploitation of the occasional bug left by a
security-conscious programmer, but software written without security in mind will
continue to be victimized.

The goal of this paper is to introduce the reader to the concepts behind various buffer
overflow techniques and the techniques required to prevent them. Format strings are
also discussed, because they use similar methods for exploiting software. Some exam-
ples are given using assembly language for 32-bit Intel processors. Most readers should
be able to follow along without previous assembly language experience.

This paper examines exploits from the perspective of a UNIX-based operating system;
Windows exploitation is covered in [23] and [24]. Readers used to programming in C
on either platform should have no trouble with the discussion.

Buffer overflows are not the only security problems that exist in software. The inter-
ested reader should also study [1] for an overview of other security considerations.
Subsequent sections of this paper describe the concepts behind buffer overflow and
format string attacks. The material on exploitation is simplified to introduce the
reader to problems of which she should be aware without requiring her to acquire an
expert knowledge of the techniques. Serious readers will want to digest the papers
listed in the references. They can be read in roughly the order they are listed.

Exploiting a Buffer Overflow
If you’re already familiar with the concepts behind a buffer overflow exploit, you can
skip this section. The concepts in the section are more fully described in [3] and [4].

Suppose you have a program that looks like this:

#include <stdio.h>

int main (int argc, char *argv[]) {
char buf[256];
if (argc < 2) {

avoiding buffer
overflows and
related problems

Vol. 29, No.1 ;login:

by Steven
Alexander
Steven programs in
C/C++, assembly
languages and Uni-
BASIC. He has expe-
rience with UNIX and
Windows security,
firewalls, and IDSes.

alexander.s@mccd.edu

printf("Oops.\n");
return -1;

}
strcpy(buf, argv[1]);
return 0;

}

EXAMPLE 1. SIMPLE EXPLOITABLE PROGRAM

This program is trivially vulnerable to a buffer overflow. The strcpy function performs
no bounds checking on buf and will blindly copy argv[1] until the program crashes or
strcpy encounters a null character '\0'.

Before entering main, the operating system exec call pushes the return instruction
pointer onto the stack. Upon entering main, the frame pointer is pushed onto the
stack. Then the stack pointer is copied over the frame pointer to mark the local stack
frame. Finally, the stack pointer is decremented to make room for local variables,
growing “downward.” The function prologue for main typically looks like this in
assembly language:

pushl %ebp ; save frame pointer
movl %esp,%ebp ; create new frame
subl %esp, $0x100 ; make room for local vars

EXAMPLE 2. TYPICAL FUNCTION INVOCATION PROLOGUE

The stack should now look like Figure 1.

The function epilogue (executed as the function returns) consists of popping the saved
frame pointer from the stack and executing a return instruction. Intel machines use
the ret instruction to tell the processor to take the next value from the stack and move
it into the program counter. Program execution then resumes at whatever address that
value contains.

An attacker can carefully craft input to cause this program to execute a command shell
(or anything else on the system). Here is one method to do this:

First, an attacker writes a code snippet to execute a command shell (this is called
“shellcode”). This is normally done by compiling something similar to the following:

#include <stdio.h>

void main() { system ("/bin/sh"); }

EXAMPLE 3. SHORT PROGRAM TO RUN A SHELL

The exec functions are also commonly used. This code is compiled to assembly lan-
guage for easy modification. It is then changed to reduce code size, to remove null
bytes, and to ensure that the string "/bin/sh" can be stored in a location that the attacker
has permission to write to. Luckily for the attacker, it is easy to find already written
shellcode on the Internet for most operating systems. Shellcode can be a lot more
complicated than the previous example if the vulnerable program has enough room to
store it. When attacking network software, shellcode is used that can bind "/bin/sh" (or
cmd.exe for Windows) to a network port. After modification, the shellcode is assem-
bled into machine-executable instructions. It is beyond the scope of this paper to go
further into the details of writing shellcode.

The next step is to find the address of buf[0] (see Example 1). Sometimes, this is found
using a debugger like gdb. Other times, it can be approximated, as is detailed in Aleph
One’s paper [4].

15February 2004 ;login: AVOIDING BUFFER OVERFLOWS l

l

SY

SA
D

M
IN

Figure 1

Vol. 29, No. 1 ;login:

Finally, argv[1] (which is strcpy’d into buf) is filled with the following:

The shellcode is written into buf[0]. The rest of the buffer is filled with null instruc-
tions (NOPs). On Intel’s x86 processor line, a NOP is encoded as 0x90, which is the
same as xchg eax, eax. Swapping the eax register with itself has, of course, no effect.
The next four bytes overwrite the saved frame pointer. The last four bytes overwrite
the saved instruction pointer with the address of buf[0], which contains shellcode.
When the function returns, this code will be executed. When the address is not known
exactly, it can be guessed by prepending the NOPs to the shellcode and attempting to
point to any location within the series of NOPs. The base stack address for the system
should be known, so with a 256-byte buffer, the process can be repeated using 200-
byte increments from the base stack address downward. Shellcode tends to be shorter
than 50 bytes.

Advanced Buffer Overflow Techniques
Many advanced buffer overflow techniques were developed to defeat protection mech-
anisms such as StackGuard, StackShield, and PaX. Others exploit particular situations
such as a one-byte overflow. As the referenced papers show, even subtle mistakes can
be exploited. The reader interested in learning how everything really works should
make an attempt to read through all of the references.

HEAP OVERFLOWS

Not every vulnerable program is as straightforward as the one presented in Example 1.
Sometimes, the memory being written to is on the heap or in the bss segment rather
than the stack. In this case, the saved instruction pointer can’t be written over (not in a
straightforward manner, anyway), but other important data may be vulnerable.
Conover details some of the possibilities in [5]. Some of the most dangerous problems
occur when pointers of any type can be overwritten. Overwriting function pointers to
point at illicit code will cause that code to be executed the next time the function is
called. Overwriting other pointers can sometimes cause saved instruction pointers,
function pointers, or important structures like _atexit or .dtors to be overwritten by a
subsequent instruction.

One of the more interesting heap overflow techniques involves overwriting the bound-
ary tags on areas of memory used by malloc in order to cause the unlink or frontlink
macros to overwrite a function pointer or a saved instruction pointer. These tech-
niques are detailed in [16] and [17].

Techniques have also been developed to exploit C++ code [19]. All of the usual C tech-
niques still apply. However, C++ implements virtual function pointers in order to pro-
vide classes, and these can, in some cases, be overwritten and cause other code to be
executed instead.

DEFEATING PROTECTION MECHANISMS

StackGuard and StackShield are two tools that complicate exploitation by protecting
return addresses. StackGuard works by placing a “canary” value between the saved
frame and instruction pointers. If the canary is overwritten, the program will quit
rather than resume execution at the saved address. StackShield works by saving the

Some of the most dangerous
problems occur when
pointers of any type can be
overwritten.

16

Figure 2

return address in a secure location rather than the stack. These techniques were
bypassed in [11]. StackGuard was patched before the publication of [11] to protect the
saved address more strongly. StackGuard had previously used either a random canary
value (assigned to each function at run time) or a null canary which contained string-
terminating characters such as '\0' and '\n'. The new technique, proposed by Aaron
Grier, saves the result of XORing the return address with the assigned random canary
value. During the function epilogue, the saved value is XORed with the assigned value
and compared to the return address. If the return address is not what is expected, the
program exits. This can be circumvented by overwriting function pointers or entries
from .dtors [20], _atexit [21], PLT, and GOT [14].

PaX is a set of kernel patches that also alleviate program exploitation. One of its fea-
tures is to make stack and heap memory non-executable. A non-executable stack patch
for Linux was first released by Solar Designer but was later circumvented by Solar
Designer [9] and Rafal Wojtczuk [8] using a technique called return-into-libc that is
used when an attacker cannot provide his own code to be executed (as is the case with
a non-executable stack). Instead, the attacker finds the address of a call to system and
arranges to have the string "/bin/sh" on the stack. An improvement of this attack that
uses mmap and strcpy to set up its own executable area of memory was used against
PaX [10].

PaX also uses a feature called Address Space Layout Randomization [25]. With ASLR,
entropy is introduced into stack and library function addresses. Reference [12] shows
that programs can be exploited with PaX ASLR running. ASLR can in some circum-
stances be brute-forced; this will generate a lot of noise, as was intended [25]. How-
ever, log files can be trimmed once root access is gained.

SUBTLE MISTAKES

Even a one-byte overflow can be enough to exploit a program. Klog [7] shows how
writing one byte past the end of a buffer can be used to overwrite the least significant
byte of the saved frame pointer. In some conditions, this can be used to cause the call-
ing function to retrieve its saved instruction pointer from the wrong location.

For example, say that function1 calls function2. The least significant byte of the saved
frame pointer is overwritten in function2 and the function returns. In function1, the
saved frame pointer is copied to the stack pointer. If this happens near the return of
function1 (so the program doesn’t crash), the instruction pointer will be retrieved
from a location lower down on the stack than it should be. In some situations it is pos-
sible to force the program to retrieve its return address from user-supplied input
stored on the stack. An attacker simply needs to provide an address containing shell-
code she would like executed.

A program can also be exploited simply by filling a buffer without a terminating null
character. Take the following snippet, for example:

#include<stdio.h>
void main(){

char buf[256];
char tmp[64];
strncpy(tmp, argv[1], 64);
strncpy(buf, argv[2], 256);

. . .

17February 2004 ;login:

Even a one-byte overflow
can be enough to exploit a
program.

AVOIDING BUFFER OVERFLOWS l

l

SY

SA
D

M
IN

Vol. 29, No. 1 ;login:

EXAMPLE 4. COPYING SUPPLIED ARGUMENTS TO LOGICALLY JOINED VARIABLES

Twitch’s paper [6] describes attacks in which the input to tmp (argv[1]) is exactly the
size of the buffer. In C, strings are terminated with a null character '\0'. strcpy and
strncpy both terminate strings with a null character, as should be expected. The pri-
mary difference is that strncpy uses an extra argument, the maximum number of char-
acters to copy. However, strncpy does not null-terminate a string unless the string’s
length is less than the provided maximum number of characters . If argv[1] in the
above example is 64 characters or longer, tmp will not be null-terminated. As such, any
future references to tmp that are not bounded will read past the end of tmp and into
buf. This is a common mistake because programmers assume that the string is safe
after using strncpy the first time.

Twitch demonstrated methods to exploit a program in which the string saved “lower”
on the stack (in this case tmp) was later copied using an unbounded copy. In this situ-
ation, the contents of the string above it (in this case buf) can be used to copy over
other data, even a saved instruction pointer.

FORMAT STRING VULNERABILITIES

Format string exploits are deadly but easy to prevent. Consider the following program:

#include <stdio.h>
void main() {

char buf[512];
char tmp[512];
read(0, buf, 512);
sprintf(tmp, buf);

}

EXAMPLE 5. SPRINTF WITHOUT A FORMAT STRING

The last line of code should read sprintf(tmp, "%s", buf);. Unfortunately, the format
specifier was omitted. As a result, an attacker can provide his own format specifiers in
their input. An exploit is possible because of the %n specifier.

The %n specifier saves the number of bytes written so far to the memory address
pointed to by the corresponding argument. Programs are exploited in this manner by
writing to the saved instruction pointer (or another function pointer, _atexit, etc.). To
write a 32-bit address, one or two bytes are written at a time. An attacker could for
instance write to &function_pointer, &function_pointer+1, &function_pointer+2, and
&function_pointer+3.

The attack isn’t very complicated but takes awhile to explain. Since the aim of this
paper is awareness and avoidance, see [13] for an introduction and [14] and [15] for
more advanced techniques. Because of their ability to write over arbitrary locations in
memory, format strings are one of the most flexible exploitation techniques. Fortu-
nately, they are also not very common.

Writing Secure Code
The need for rigorous bounds checking should be clear by now. Fortunately, this isn’t
difficult when writing new software. Finding all of the flaws in old software can be a
real headache, however.

Note that even an astute programmer will never write perfect code with regard to any
useful metric. However, by using the following guidelines, it will be difficult to find
exploitable boundary conditions in your programs. Readers should refer to [1] after

Finding all of the flaws in old
software can be a real
headache.

18

they are finished with this paper. The examples and usage below should be compared
with the documentation for your system.

INTEGER OVERFLOWS

Care should be taken when converting from signed to unsigned integers [22].
Exploitable conditions sometimes occur because type conversion leads to integers
being interpreted differently than intended. As an example, note that the signed 32-bit
integer -1 equates to 0xFFFFFFFF, the maximum possible value that can be stored in
an unsigned integer. When integers are converted from signed to unsigned, or vice
versa, they should be checked to make sure they are still within an acceptable range of
values.

THE gets() FUNCTION

gets() is perhaps the most insecure function a programmer can use. It takes only one
argument, a buffer pointer that is never verified for integrity. fgets should be used
instead:

char *fgets(char *str, int size, FILE *stream);

fgets will read at most size-1 characters from stream. The input characters are written
to str and are null-terminated. Below is a simple example of proper use:

#include <stdio.h>
int main() {

char buf[256];
fgets(buf, sizeof(buf), stdin);
printf("%s\n", buf);
return(0);

}

EXAMPLE 6. PROPER WAY TO INPUT CHARACTER STRINGS

strcpy()
strcpy has no bounds checking and should be replaced with strncpy:

char *strncpy(char *dst, const char *src, size_t len);

strncpy will only null-terminate a string if it is less than len characters in length. The
following snippet is a proper use of strncpy:

strncpy(buf, buf_with_user_input, sizeof(buf) -1);
buf[sizeof(target) - 1] = ‘\0’;

EXAMPLE 7. PROPER USE OF STRNCPY

strcat()
strcat also has no bounds checking; use strncat instead. Using strncat is trickier than
other functions, though, because it doesn’t write to the beginning of a buffer. It has
this template:

char *strncat(char *s, const char* append, size_t count);

strncat appends the null-terminated string append to the null-terminated string s. It
appends at most count non-null characters, then adds a terminating '\0'. The follow-
ing example is a proper usage of strncat:

strncat(buf, "something else to say", sizeof(buf) -
strlen(buf) - 1);

19February 2004 ;login: AVOIDING BUFFER OVERFLOWS l

l

SY

SA
D

M
IN

Vol. 29, No. 1 ;login:

EXAMPLE 8. PROPER USE OF STRNCAT

The OpenBSD project introduced two new string functions, strlcpy and strlcat, both of
which require the size of the buffer to be passed to them rather than the maximum
number of characters to write [18]. This eases the programmer’s job. Remember, it
only takes one byte to make a program exploitable. If the -1 had been forgotten in
Example 8, it would be a potentially exploitable program.

One of the other advantages of the OpenBSD strlcpy function is speed. Unfortunately,
strncpy zero-fills the end of a string rather than adding just a single null character.
This can degrade performance when the strings being copied are significantly smaller
than the buffer they are copied into (as is often the case).

sprintf()
sprintf has no bounds checking; snprintf should be used instead:

int snprintf(char *str, size_t size, const char *format, ...);

snprintf writes at most size-1 characters to str and appends a terminating '\0'. Any
additional characters are discarded. snprintf can be used as follows:

snprintf(buf, sizeof(buf), "%s", other_buffer);

EXAMPLE 9. PROPER USE OF SNPRINTF

memcpy()
A few exploits have occurred in the wild because memcpy was used improperly to
copy strings. The number of bytes copied should be, at most, the size of the smaller
buffer minus one. The string should be manually null-terminated. The prototype for
memcpy is as follows:

void *memcpy(void *dst, void *src, size_t, len);

Proper usage for a string buffer would be:

maxlen = (sizeof(buf1) < sizeof(buf2)) ? sizeof(buf1)
: sizeof(buf2);

memcpy(buf1, buf2, maxlen -1);
buf1[sizeof(buf1)-1] = '\0';

EXAMPLE 10. PROPER USE OF MEMCPY

The scanf() family
The scanf family of functions has the following prototypes:

int scanf(const *char format, ...);
int fscanf(FILE *stream, const *char format, ...);
int sscanf(const char *str, const *char format, ...);

The format specifiers used with this set of functions should limit the size of the input,
as in the following example:

char buf[64];
fscanf(stdin, "%63s", buf);

EXAMPLE 11. LIMITING INPUT STRING SIZES IN SCANF

read()
The read system call has the following prototype:

ssize_t read(int d, void *buf, size_t nbytes);

read is meant for inputting raw data; it does not null-terminate its destination buffer.
If you use read to get string data, remember to null-terminate the buffer manually. The

REFERENCES

[1] Matt Bishop, “How to Write a Setuid Pro-
gram,” ;login: 12:1 (January-February 1987), pp.
5–11. http://nob.cs.ucdavis.edu/~bishop/
papers/Pdf/1987-sproglogin.pdf

[2] Crispin Cowan et al., “Buffer Overflows:
Attacks and Defenses for the Vulnerability of
the Decade” (2000). http://www.immunix.org/
StackGuard/discex00.pdf

[3] Mudge, “How to Write Buffer Overflows”
(October 1995). http://www.insecure.org/stf/
mudge_buffer_overflow_tutorial.html

[4] Aleph One, “Smashing the Stack for Fun
and Profit,” Phrack Magazine 49 (November
1996). http://www.phrack.org/phrack/49/P49-14

[5] Matt Conover, “w00w00 on Heap Over-
flows” (January 1999).
http://www.w00w00.org/files/articles/heaptut.txt

[6] twitch, “Taking Advantage of Non-Termi-
nated Adjacent Memory Spaces,” Phrack Maga-
zine 56 (May 2000).
http://www.phrack.org/phrack/56/p56-0x0e

[7] klog, “The Frame Pointer Overwrite,”
Phrack Magazine 55 (September 1999).
http://www.phrack.org/phrack/55/P55-08

[8] Rafal Wojtczuk, “Defeating Solar Designer’s
Non-Executable Stack Patch” (February 1998).
http://www.securityfocus.com/archive/1/8470

[9] Solar Designer, “Getting Around Non-Exe-
cutable Stack (and Fix).”
http://www.securityfocus.com/archive/1/7480

[10] Nergal, “The Advanced Return-Into-Libc
Exploits: PaX Case Study,” Phrack Magazine 58
(December 2001).
http://www.phrack.org/phrack/58/p58-0x04

[11] Bulba and Kil3r, “Bypassing StackGuard
and StackShield,” Phrack Magazine 56 (May
2000).
http://www.phrack.org/phrack/56/p56-0x05

[12] Anonymous, “Bypassing PaX ASLR Protec-
tion,” Phrack Magazine 59 (July 2002).
http://www.phrack.org/phrack/59/p59-0x09

[13] Pascal Bouchareine, “Format String Vul-
nerability” (July 2000).
http://www.hert.org/papers/format.html

[14] scut, Team Teso, “Exploiting Format String
Vulnerabilities” (September 2001).
http://www.team-teso.net/articles/formatstring/

[16] Michel Kaempf, “Vudo Malloc Tricks,”
Phrack Magazine 57 (August 2001).
http://www.phrack.org/phrack/57/p57-0x0b

[17] anonymous, “Once upon a free(),” Phrack
Magazine 57 (August 2001).
http://www.phrack.org/phrack/57/p57-0x0c[16]

20

better option for user input is usually fgets. The following example uses read correctly
(for inputting string data):

read(0, buf, sizeof(buf)-1);
buf[sizeof(buf)-1] = '\0';

EXAMPLE 12. PROPER USE OF READ WHEN INPUTTING STRING

Pointers
Unfortunately, it is all too common to see pointers misused:

void some_function(char *string) {
char buf[256];
int i;
for(i=0;i<=256;i++) {

buf[i]=string[i];
}

}

EXAMPLE 13. FILLING A LOCAL BUFFER

This example will copy up to 257 bytes from string into buf and can overwrite the
saved frame pointer. This is exactly the problem that klog describes in [7]. The code
should read:

void some_function(char *string) {
char buf[256];
int i;
for(i=0;i<255;i++) {

buf[i]=string[i];
}
buf[255] = '\0';

}

EXAMPLE 14. BETTER CODE FOR FILLING A BUFFER

Notice that <=256 was changed to <255, which copies two fewer bytes. The two-byte
difference prevents overwriting the frame pointer and allows room to null-terminate
the string.

Conclusion
A program can be exploited with as little as a single byte buffer overflow, a missing
null, or a missing format string. Code should be carefully written and rechecked from
time to time. Nobody writes perfect code, but well-written code is much harder to
exploit.

Programmers should always check the bounds of the input to their programs. Strings
should always be null-terminated. Format strings should always be provided.

Using PaX or StackGuard is recommended if it is available for your system. They can’t
fix bad code, but they will make an attacker’s job more difficult.

21February 2004 ;login:

[18] Todd C. Miller and Theo de Raadt, “strlcpy
and strlcat: Consistent, Safe String Copy and
Concatenation.”
http://www.openbsd.org/papers/strlcpy-paper.ps

[19] rix, “Smashing C++ VPTRS,” Phrack Mag-
azine 56 (May 2000).
http://www.phrack.org/phrack/56/p56-0x08

[20] Juan Bello Rivas, “Overwriting the .dtors
Section” (March 2001).
http://www.synnergy.net/papers/dtors.txt

[21] Pascal Bouchareine, “__atexit in Memory
Bugs: Specific Proof of Concept with Statically
Linked Binaries and Heap Overflows.”
http://community.core-sdi.com/~juliano/
heap_atexit.txt

[22] blexim, “Basic Integer Overflows,” Phrack
Magazine 60 (December 2002).
http://www.phrack.org/phrack/60/p60-0x0a.txt

[23] dark spyrit, “Win32 Buffer Overflows,”
Phrack Magazine 55 (September 1999).
http://www.phrack.org/phrack/55/P55-15

[24] David Litchfield, “Windows 2000 Format
String Vulnerabilities” (2001). http://
community.corest.com/~juliano/win32format.doc

[25] PaX: http://pax.grsecurity.net/

AVOIDING BUFFER OVERFLOWS l

l

SY

SA
D

M
IN

22

keeping employees
by keeping them
happy

Vol. 29, No. 1 ;login:

Part II — Management 101
Editor’s Note: Chris wrote a three-part series, Part I of which appeared in 2000. The other
two descended into a black hole on your editor’s computer, only to resurface recently.

Expect Part III in the next issue.

Employee retention is a difficult challenge that faces most managers today.
This series is designed to help managers better understand the unique needs
of employees, the measures necessary for keeping them happy, and the jus-
tification and reasoning for doing so.

If you have missed one or more of this series of articles, please feel free to read them at
the author’s Web site: http://www.3rdmoon.com/crusso/articles.

A large part of ensuring that your employees are kept happy is making certain that
you, as a manager, are behaving in a manner that is appropriate to your station. If you
are not, then your team will be directly affected in a number of ways: one, your actions
are likely to actually cause problems that the team will have to deal with or clean up
later; and two, whether you cause problems or not, they will be annoyed or upset by
your actions. In either case, your staff will not be very happy with you, and in time are
likely to leave.

The following is a list of things that I believe are most critical to keep in mind when
working day-to-day as a manager. As you read, genuinely ask yourself how many of
these principles you think you are following – and how many you are not. Consider
making a list as you read.

Every Situation Is Different
It is very important to understand that every single person, and every single situation,
is very different from every other. This means that there can be absolutely no hard-
and-fast rule for every company, department, group, or individual.

For example, some employees are very senior and capable, and can probably work with
little or no intervention from a manager for days and weeks on end. If you stand over
these people, guiding their every move, your tires will probably be slashed by the end
of the week. There are others who will need step-by-step guidance on an hourly basis.
If you let these employees work on their own for weeks on end, they will likely wind
up doing something completely inappropriate, or possibly doing absolutely nothing at
all.

There are also effects based upon the size of your group. If you manage a smaller
group, your personal “technical” involvement might be fairly significant. If, however,
you manage a larger group, you may simply not have time to be so involved, and may
not even know much about the technical aspects of what your team does.

But even if you do work in a larger group, there’s the chance that a critical emergency
might come up on a day when much of your staff is out. You may not have touched
the “technology” itself for six months, but sure as the day is long, you had better roll
up your sleeves, grab a screwdriver, and jump into the fray with what staff you have.

by Christopher M.
Russo
Chris is an informa-
tion technology man-
ager with extensive
experience building
and running high-
performance enter-
prise, software devel-
opment, and quality
assurance teams.
cmrusso@3rdmoon.com

23February 2004 ;login:

Otherwise, your group is going to have some serious problems, and your team is not
likely to be very impressed when they’re working until midnight and you left at 5:00
and are home watching The Simpsons.

Remember, You Are the Boss
A great many of my philosophies strongly promote the notion of having the team
decide the best solution to this issue or that. This is critically important, and is the cor-
nerstone of most of my feelings on how to keep a team happy and productive.

In fact, if you ask me, I will usually be the first to say that “I don’t really do anything,”
“I’m just another member of the team with a different role,” and “Talk to him – he’s
the guy on my team who actually makes the decision with regards to x, y, or z.”

It is, however, very important to remember that you are still the boss. It is good to take
up the “I’m just a member of the team” position and posture within your team on
many things, but it is equally important to be able to step up and make a firm state-
ment of direction or policy when it is needed. Again, remember that every situation
and every person is different – you are really just going to have to use your best judg-
ment and see how it goes.

Management ≠ Perfection
Just because you are the manager does not mean that you are infallible. Nor does it
mean that you are any better than anyone else. People who feel that they have attained
some sort of perfection – whether they are management or otherwise – are simply
fooling themselves.

You are not perfect – you are not even close. The most amazing and capable people I
know are the ones who are well into their later years and still saying things like “I’m
just learning,”“I learn a little more every day,” and “Oooops!”

You will make mistakes, just like anyone else. What’s more, you should own up to them
whenever you do make mistakes. It will allow you to grow as a person, and in fact,
your team is likely to harbor significant respect for your ability to simply look a little
sheepish and simply say “Oops! Sorry!”

Provide Direction
It is important that a manager provide his or her team with a clear and consistent
direction. This doesn’t mean that you should be lording it over everyone or mandating
exact procedures by which everything is done. Rather, it means that you should pro-
vide guidelines and methods of operation that are consistent with your corporation
and departmental goals.

For example, if you run an IT group for a major corporation, you are likely to want to
provide directions like: “Try to minimize turnaround time on all ticket closures,”
“Ensure that each customer feels they have been helped in a friendly manner,” or
“Trim the top 10% of simple calls from the call queue.”

Under most circumstances, you should not be determining exactly how this is to be
done. For example, in the scenario we mentioned above, you probably would not want
to mandate things like “All employees will stay 30 minutes extra each day to reduce
ticket backlog,”“All employees will attend politeness and customer support training,”
or “John will identify all of the simplest calls in our queue, and then I will then develop
procedures by which to remove them entirely.”

KEEPING EMPLOYEES l

Just because you are the
manager does not mean that
you are infallible.

l

TH

E
W

O
R

K
P

LA
C

E

Vol. 29, No. 1 ;login:24

Function as a Member of the Team
One important element of keeping a team of people happy is ensuring that decisions
are made by the team as a whole, not by the manager alone. It may sound ludicrous,
but some of the most successful teams I have seen have had some of the least directly
involved managers.

In successful team environments the manager usually sets a general direction and then,
for the most part, sits back and allows the team to work out the details of the imple-
mentation. If the team appears to be going off course, the manager will attempt to
guide the team back in the appropriate direction.

To illustrate what I mean, let’s look at two different examples of the same group. In
both cases, we picture a group of about 12 people and one manager. The group is
responsible for supporting all of the desktops for a small organization of standard
users.

In scenario A, our manager is very involved and direct. The manager senses that the
team is off course in their handling of a particular ticket. The manager walks to the
front of the room and says, “OK, look folks, this is how we’re going to handle this,” and
begins to articulate the exact course of action.

In scenario B, our manager is involved but a lot less direct. Upon sensing a deviation
from the proper course, the manager keeps his peace and listens carefully to the dis-
cussion, hoping that the team will come back on course naturally. If this does not hap-
pen over some reasonable period of time, the manager asks some casual leading
questions, like “What would happen if we tried solution B?” or “Has anyone asked the
customer if solution C might be helpful?”

In the first scenario, the manager is setting direction, but also giving his or her staff
explicit instructions on how to deliver on those requirements. This means that the staff
is not really being given the opportunity to use their skills and come up with solutions
on their own, but, instead, is forced to deal with solutions that are thrust upon them.
As we’ve mentioned before, this usually makes people pretty unhappy.

In the second scenario, the manager is attempting to gently guide the team toward the
solutions that he or she feels are appropriate, but not mandating that they be done one
way or another. The manager is also giving the team an opportunity to disagree with
his or her ideas and express that in an open forum. This allows the staff to be actively
involved in the final decision, which gives them a feeling of ownership in the solution
and promotes strong interest by the whole team in a successful conclusion. This will,
of course, make most team members fairly happy.

Mistakes Are OK
Are you perfect? If you said yes, please re-read the section on management perfection
and consider seeking counseling. No one is perfect, and everyone makes mistakes. I
like to keep a list of my biggies handy to remind me of how hilariously flawed I truly
am. One of my favorites was the time I pushed the button that I thought would shut
down the one server I was working on, and it turned out to be the button to the UPS
that powered 13 production servers. Boy, that server room got really quiet all of a sud-
den. Um . . . oops?

The point is that this is OK. Sure, it certainly hurt, and if I managed to do it again,
or even worse, three times in a row, well, then I probably would deserve some harsh
words and possibly having some responsibilities removed . . . like perhaps that of hav-
ing fingers with which to shut down servers. However, my manager at the time simply
laughed, said “Oops,” and told me that it was OK and not to worry about it. Further,

25February 2004 ;login:

when one of the senior VPs came down from his office looking to have my head on a
platter, my manager calmly explained to the enraged individual that we were sorry but
that these things happen.

Of course, I was extremely happy that my manager was so supportive and understand-
ing – especially when I was basically expecting to lose my job over the incident.

Many people are punished for things that they do wrong. The end result is that people
are typically afraid to try. The analogy I like to use is that of a small child learning how
to color in a coloring book. What do you think would happen if you stood over the
child and barked at them when they used the wrong color, or perhaps colored outside
the lines? After a very short period of time, the child would become frustrated and
upset, and might never try coloring again for fear of being chastised. Their trust in you
would certainly be lessened, and they would be unlikely to try anything beyond what
they already knew was acceptable to you. This would lead to further unhappiness,
because the child would be unable to grow and flourish.

While your employees are certainly not children, and it’s likely that what they are
doing is a bit more complicated than coloring in a coloring book, this principle
remains the same. If your employees are deathly afraid of making mistakes for fear of
retribution, then they are not likely to be able to work very efficiently – in many cases,
they may think of a very clever solution for a complex problem, but be scared to try it
lest they make a mistake and incur your wrath. Ultimately, your employees will feel
crippled and unable to do the things they need to in order to do a good job.

Another interesting twist on this is that managers should be willing to accept that their
employees are going to make choices that may very well be the wrong ones. In most
cases, the manager will certainly try and redirect the employee to a more appropriate
solution, but the worker may still see it differently and want to proceed as they have
suggested. In these cases the manager should seriously consider allowing the employee
to go ahead with his or her plans, despite even the most assured failure. (Obviously,
one would need to use some discretion here – I wouldn’t allow anyone to do anything
that would cause a nuclear meltdown, but a woefully failure-bound filing system
might not do too much damage.)

This may seem a bit crazy, but consider the possible outcomes. If the employee fails as
the manager has predicted, then he or she will likely learn a lesson, fix the problem,
and move on. Or he or she will have a success to be proud of. In either case, you have
allowed the employee to extend wings and fly a bit, and you will enjoy the person’s
gratitude. By the way, if one comes by to jokingly rub your nose in it, accept it gra-
ciously — after all, this time you were wrong.

Know Your Place
Are you a manager, or an individual contributor? Some people are actually both. Some
of those who fill both roles are doing it because it is appropriate and necessary – often
in smaller teams. Others are doing it because they can’t let go and are far too involved
in things that are outside their job scope.

It is very important that you do your job, not the job of your staff. If you are managing
16 people and are sitting in on conversations where you are regularly and actively driv-
ing technical decisions, then there is a very good chance that you are butting in where
you should not be.

For example, my team is currently working on deploying customer-configurable
installations of over 12 different complex Web-hosting technologies. There is no way,
as a manager of roughly 20 people, that I can possibly understand all the nuances of

It is very important that you
do your job, not the job of
your staff.

l

TH

E
W

O
R

K
P

LA
C

E

KEEPING EMPLOYEES l

Vol. 29, No. 1 ;login:26

one of these technologies, let alone 12. I spend the majority of my time working on
staffing and personnel issues, budgets, presentations, scheduling, coordination with
other teams, and general direction of my staff.

I simply don’t have time to work much on the technologies anymore, and even if I did,
the time would be much better spent improving my ability to manage the team. I
should, and do, read books on team building, attend project management and
employee compensation training, and even write articles to encapsulate and solidify
my feelings and ideas on the subject.

The point is that if you feel the need to decide and do everything yourself, then why
bother hiring all those capable people? You worked very hard to find and employ those
people because they have particular skills and qualities that make them ideal to work
in your organization. Lean on them – harness their skills and abilities to get the job
done. It will make you a better manager, make your team feel more appreciated, and
reduce frustration because your far more technically astute staff will not have to spend
most of their time dealing with your simple mistakes and really dumb questions.

Remember from Whence You Came
Most managers were once people working in the front lines. Very few managers
remember this. Personally, I have been a retail clerk at a software store, a pet store, a
donut shop, and a hardware store. I have been a summer camp counselor, and a soft-
ware developer, and I have even run my own very small software company. I was a
nanny for a couple of years, and eventually I got my first out-of-college technology job
as a field service technician. From there I went on to work as a desktop and server sup-
port person, went into management of an engineering support team, became a con-
sultant for a year or so, and finally wound up where I am now, as a manager of an
engineering team.

I have learned things from each and every one of these jobs that I use in my daily life,
and I always try very hard to remember what it was like to be in the jobs I had before.
Why is this valuable?

First and foremost, it reminds me that I am no different or better than anyone else. I
know that I was not born a manager, and I know that my being here is only through a
personal desire to change my focus from technical to managerial.

Second, it enables me to remember what all my managers did that I did not like. I
remember the manager who didn’t understand anything about what I did, but insisted
that he be involved in every decision and wasted my time forcing me to explain every
aspect of the technology to him. I remember the manager who wouldn’t let me spend
$30 to attend a training course so I could continue to bill our customers, but spent
$150 on a speaker system for the graphics designer who had yet to produce a single
cent for the company. I remember the manager who yelled at me for half an hour
when I delivered a load of sheetrock to the wrong house. I remember many, many
things that made me very unhappy, and it helps me to ensure that I don’t do those
things to my team.

Finally, it helps me to remember the things that a few of my managers did that really
made me happy and gave me a lot of motivation. I remember the manager of the soft-
ware store, who bought me lunch at the local sub shop every day and encouraged me
to put together a plan to sell some tough-to-move merchandise, despite the fact that I
was only 14. I remember when my boss took us all to Riverside for a day in the middle
of the week because he thought we were working extremely hard and needed a break. I
remember when my boss gave me a $3000 bonus out of the blue because he felt I was
doing a really good job. I remember when one boss sent me home at 2 p.m. and told

Most managers were once
people working in the front
lines. Very few managers
remember this.

27February 2004 ;login:

me not to come back for a couple of days because I had worked over the weekend to
solve a really critical problem and he felt I really deserved it. I remember many things
that I try to emulate in my day-to-day management of people because I know how it
made me feel about my job and I want my staff to feel the same way.

Delegate and Promote Responsibility
As a manager, you cannot and should not do it all. It is inappropriate and foolhardy to
think otherwise. Therefore, it is important to identify tasks and responsibilities that
other team members can take on for you. This delegation can be as simple as assigning
someone to monitor tickets, and as complicated as having someone serve in a “team
lead” role, handling personnel-related issues for particular members of your staff.

Doing this fulfills two very important requirements. First, delegation ensures that you
are not overwhelmed and are therefore able to more effectively do your job. After all, if
you are so busy that you are not even able to read through all of your email or answer
your phone messages, you are very likely to be out of sync with some very important
developments in your corporation. Needless to say, the better you can do your job, the
happier your staff is likely to be.

Second, it gives members of your staff responsibilities that will challenge them and
allow them to grow, both personally and professionally. This is very motivating, as it
shows not only that you have faith and confidence in your employees but also that you
are giving them something which will look great on their resume. (Sorry, but when
you work in the technology industry, it seems that most things really boil down to how
good this or that will look on your resume, which is usually updated monthly.)

It is important to understand that the key here is to delegate, not abdicate. The differ-
ence is that in delegation, you assign the responsibility and work with the person as is
appropriate and necessary to ensure that the efforts end in success. When you abdicate
something, you basically dump it on the person, wish him or her luck, and disappear –
only to show up again to smack the person for doing a bad job. Abdication is
extremely poor behavior on any manager’s part, and horribly distressing for the
employee.

Also remember that it is important not to thrust delegated responsibilities on someone
but, rather, to find people who would like to do such things and to be sure that they
understand the particulars of the role. Forcing new roles upon people can sometimes
cause a lot of stress and unhappiness.

Don’t Complain to Your Team
This is a tough lesson to learn, especially if you are friendly with your team, as I am.
This can be particularly difficult if you also happen to be a somewhat emotional crea-
ture, as many people are. Things happen in our day-to-day lives as managers that are
very frustrating, and sometimes completely nerve-racking: for example, tough conver-
sations with your manager about what you can and cannot provide for your team, or
the looming possibility of someone breaking up your team and scattering the people
to the four winds.

It is important to remember that you really need to keep your emotions and a lot of
this information to yourself. If you start complaining that the team is going to be bro-
ken into pieces long before you know for sure that it will, your staff is going to become
extremely concerned and that will severely affect everything that they do. Or if you

The key here is to delegate,
not abdicate.

l

TH

E
W

O
R

K
P

LA
C

E

KEEPING EMPLOYEES l

Vol. 29, No. 1 ;login:28

complain continually about your boss, they will feel like you have no support above
you, which means that you are going to be ineffective in keeping the team on track.

Certainly don’t hide important information from your staff – just remember where
and when it is appropriate to share, and always keep in mind the potential impact of
said sharing.

Hold the Shield; Wave the Banner
Always remember that your team is a group of capable, intelligent people whom you
trust and respect. As a manager, you will constantly have members of your team and
their actions questioned and judged by outsiders. This kind of thing is very upsetting
to people, especially if it is unchecked.

Certainly, don’t be blind to the possibility that your team has in some way failed, but
always be sure to defend your team and its reputation against attacks from other
groups and individuals. Stand calmly and firmly in the way of derisory remarks and
explain to the commenter that while you certainly could be wrong, you’re pretty cer-
tain that your team handled the issue appropriately. Be sure to check with your team
and understand what happened, of course. If something did happen, then do your best
to remedy it, but always assume that they did it the right way first – especially in the
face of contempt.

Also be certain to tout your team’s successes. Raise the banner of victory high in front
of those who may care and do a little minor flaunting. Be sure not to go overboard
here, or you will come across as being very phony, and possibly even insulting to other
teams that are not nearly as amazing as yours. However, it is important to highlight the
team’s successes so that they feel appreciated for what they’ve done. They work very
hard, and a little genuine recognition goes a long way.

So how did you do? Did you find that you are doing many of these things, some of
them, or none of them? Perhaps you think I’m completely wrong about everything
and have no idea what I’m talking about.

Regardless of whether or not you feel I am correct, consider trying the following exer-
cise: Spend some time going over the list of Management 101 principles. If you have
not done so already, think hard about which of these principles you follow and which
you do not. Consider how your actions have been successful or unsuccessful. Try to
identify the reasons why you think this is so. Further, try to identify some methods
that I did not list but that you have successfully used in your organization. Identify
why this has been a positive experience for your employees. Write all of this informa-
tion down and keep it handy for when you read my next article.

In addition, create a short bulleted list of the principles that you feel you would like to
work on. Print this list out and keep a copy taped on your wall – preferably where you
can see it and your employees cannot. Review it regularly and ask yourself constantly if
you are making any improvements. Pay careful attention to changes you see happening
in your team as a result.

If you do all of these things and keep practicing, you will be ready for my next article,
which will address some of the more advanced and varied points of keeping your team
happy and employed in your organization. Good luck!

29February 2004 ;login:

●

P

R
O

G
R

A
M

M
IN

G

working with C# interfaces

Suppose that you’re doing some C programming and
have a list of numbers to sort in descending order.
Instead of writing your own sort routine, you decide it
would be better to use the library function qsort. Here’s
some sample code:

#include <stdio.h>
#include <stdlib.h>

#define N 10

int cmp(const void* ap, const void* bp) {
int a = *(int*)ap;
int b = *(int*)bp;

return (a < b ? 1 : a == b ? 0 : -1);
}

int main() {
int i;
int list[N];

for (i = 0; i < N; i++)
list[i] = i;

qsort(list, N, sizeof(int), cmp);

for (i = 0; i < N; i++)
printf("%d ", list[i]);

printf("\n");
}

It is possible to make general use of the library sort function
because its interface has been standardized, and the element
comparison function has been factored out and is supplied by
the user.

Suppose that you’d like to write some equivalent C# code. What
might it look like? Here’s one way of doing it:

using System;
using System.Collections;

public class MyComparer : IComparer {

public int Compare(object aobj, object bobj) {
int a = (int)aobj;
int b = (int)bobj;

return (a < b ? 1 : a == b ? 0 : -1);
}

}

public class SortDemo {
public static void Main() {

const int N = 10;
ArrayList list = new ArrayList();

for (int i = 0; i < N; i++)
list.Add(i);

list.Sort();

for (int i = 0; i < N; i++)
Console.Write(list[i] + " ");

Console.WriteLine();

list.Sort(new MyComparer());

for (int i = 0; i < N; i++)
Console.Write(list[i] + " ");

Console.WriteLine();
}

}

When this code is run, the result is:

0 1 2 3 4 5 6 7 8 9
9 8 7 6 5 4 3 2 1 0

This approach uses an instance of the ArrayList class, a list of
objects represented using an internal array. ArrayList has a Sort
method, which sorts the objects in natural (ascending) order.
There’s also a Sort method to which you specify a comparator.
Since C# has no global functions, the idea here is that an object
of a class MyComparer is created and passed to the Sort method.
MyComparer is a class whose instances serve as wrappers for a
comparison method, the equivalent of the C comparison func-
tion.

Because the Sort method is part of a standard library class that
will call a user-supplied comparator method, there has to be
some way of uniformly specifying what such methods look like.
C# uses what are called interfaces for this purpose. In the exam-
ple above, the standard interface IComparer would be declared
like this:

public interface IComparer {
int Compare(object a, object b);

}

A class such as MyComparer then implements the interface by
defining a method Compare with the appropriate signature.
The Compare method has similar semantics to what is found in

by Glen
McCluskey
Glen McCluskey is a
consultant with 20
years of experience
and has focused on
programming lan-
guages since 1988.
He specializes in Java
and C++ perfor-
mance, testing, and
technical documen-
tation areas.
glenm@glenmccl.com

WORKING WITH C# INTERFACES ●

Vol. 29, No.1 ;login:30

C, returning -1, for example, if the first element is “less than”
the second and 1 if the first element is “greater.”

The Sort method in ArrayList is declared like this:

void Sort();

void Sort(IComparer);

The first of these declarations represents the default, and the
second has a single parameter of type IComparer, meaning that
an object of any class that implements the IComparer interface
can be passed to the Sort method.

A C# interface specifies that an implementing class will define
particular methods with specific signatures, but says nothing
about what those methods will actually do. If, for example, I
write a comparator method to be used in sorting, and that
method returns a random value (-1, 0, 1) each time it is called,
then the sorting process isn’t going to turn out very well. An
interface is a contract that specifies what, not how.

Writing Your Own Interface
When might you wish to use your own interfaces? Consider an
application where you have some objects of classes for which it
is meaningful to calculate the distance between objects. For
example, the objects might represent X,Y points on a plane or
calendar dates, and your application needs to know the distance
between any two objects.

Here’s some code that shows how an interface can be defined
and then used:

using System;

public interface IDistance {
double GetDistance(object obj);

}

public class Point : IDistance {
private int x, y;

public Point(int x, int y) {
this.x = x;
this.y = y;

}

public int GetX() {
return x;

}

public int GetY() {
return y;

}

public double GetDistance(object obj) {
Point pobj = obj as Point;
if (pobj == null)

throw new NullReferenceException();

double sum = 0;

sum += (x - pobj.x) * (x - pobj.x);
sum += (y - pobj.y) * (y - pobj.y);

return Math.Sqrt(sum);
}

}

public class DistDemo {
public static void Main() {

IDistance p1 = new Point(10, 10);
IDistance p2 = new Point(20, 20);

Console.WriteLine("distance = " + p1.GetDistance(p2));
}

}

The interface IDistance specifies a single method GetDistance.
The idea is that you have an object, and GetDistance is called to
compute the distance between that object and another:

double distance = obj1.GetDistance(obj2);

The interface doesn’t specify how the distance is computed. In
our example, we calculate the Euclidean distance between two
X,Y points.

Note that the GetDistance implementation uses the “as” opera-
tor. The IDistance interface is specified generically, to work on
any type of objects. However, when the interface is imple-
mented in the Point class, it’s only meaningful to compute the
distance between one Point and another. The “as” operator
checks whether an arbitrary object is of type Point, and, if so,
returns a Point reference. Otherwise it returns null.

Programming in Terms of Interfaces
In the previous example, you might have noticed lines of code
such as the following:

IDistance p1 = new Point(10, 10);

A class type like Point is compatible with the type of interface
that it implements, such as IDistance.

In some situations, this compatibility can serve as the basis for a
whole style of programming. Suppose, for example, that you’re
using the standard class ArrayList in your application. You can
specify method parameter types and so forth using the ArrayList
type, but it’s also possible to use IList, a system interface that
ArrayList implements. IList describes a collection that supports
indexable access to individual members.

Here’s an example of this idea:

using System;
using System.Collections;

public class IntDemo {
static void method1(IList list) {

list.Add(10);
list.Add(20);

31February 2004 ;login:

list.Add(30);
}

static void method2(IList list) {
for (int i = 0; i < list.Count; i++)

Console.WriteLine(list[i]);
}

public static void Main() {
IList list = new ArrayList();

method1(list);
method2(list);

}
}

method1 and method2 are implemented in terms of IList
instead of ArrayList.

Why does this matter? Suppose that at some later time you want
to use a class LinkedList in place of ArrayList. Arrays and linked
lists have some performance tradeoffs. For example, random
access is much faster in an array than in a linked list, but insert-
ing in the middle of a linked list is much faster than in an array.

If you program in terms of interfaces, as this example illus-
trates, then it’s possible to change the underlying implementa-
tion of a data structure without having to touch most of your
code. In the example, method1 and method2 are not pro-
grammed in terms of particular data structures such as
ArrayList, but in terms of an interface that specifies methods
like Add. Programming in this way is an example of what is
called polymorphism, or programming using a particular inter-
face without regard to the underlying implementation details.

Extending Interfaces
It’s possible to extend interfaces, just as with classes. For exam-
ple, in this code:

public interface Interface1 {
void f1();

}

public interface Interface2 : Interface1 {
void f2();

}

public class ClassA : Interface2 {
public void f1() {}
public void f2() {}

}

Interface2 extends Interface1, and ClassA must define both f1
and f2 in order to actually implement the interfaces.

Our example from the previous section uses the standard inter-
face IList. This interface extends the more general interface ICol-
lection, which defines the property Count (a count of the
number of elements in a collection) used in our example.

You can also specify that a class implement more than one
interface – for example, the IList, IComparer, and IDistance
interfaces discussed above. Implementing interfaces defines the
“implements” relationship between the class and the interface
(the term “mix in” is sometimes used to describe adding capa-
bilities to a class by implementing additional interfaces).

Testing Interface Types
If you have an object reference of interface type, it’s possible to
distinguish the underlying class type, using the “is” operator, as
in the following:

using System;

public interface IDummy {}

public class ClassA : IDummy {}

public class ClassB : IDummy {}

public class TestDemo {
static void f(IDummy obj) {

if (obj is ClassA)
Console.WriteLine("found a ClassA object");

}

public static void Main() {
IDummy obj1 = new ClassA();
f(obj1);

IDummy obj2 = new ClassB();
f(obj2);

}
}

This technique is useful for performance reasons – for example,
if you need to find out whether an IList reference actually refers
to an ArrayList, a LinkedList, or something else.

It’s also useful at times to define marker interfaces, empty inter-
faces that serve only to distinguish a particular class that imple-
ments them. Here’s an illustration:

using System;

public interface IDummy {}

public class ClassA : IDummy {}

public class ClassB {}

public class MarkerDemo {
static void f(object obj) {

if (obj is IDummy)
Console.WriteLine("found an IDummy object");

}

public static void Main() {
ClassA obj1 = new ClassA();
f(obj1);

ClassB obj2 = new ClassB();

WORKING WITH C# INTERFACES ●

●

P

R
O

G
R

A
M

M
IN

G

Integration with Inline
Perl is a great language, but there are some things that
are best left to a compiled language like C. This month,
we take a look at the Inline module, which eases the
process of integrating compiled C code into Perl pro-
grams.

Perl exists to make easy things easy and hard things possible. If
you are writing programs using nothing but Perl, thorny issues
like memory management just go away. You can structure your
program into a series of reusable Perl modules and reuse some
of the many packages available from CPAN. Things start to
break down if you need to use a C library that does not yet have
a Perl interface. Things get hard when you need to optimize a
Perl sub by converting it to compiled C code.

Languages like Perl, Java, and C# focus on helping you program
within a managed runtime environment. Reusing C libraries
cannot be done entirely within these environments. Each of
these platforms offers an “escape hatch” for those rare occasions
when compiled code is necessary. In Java, the Java Native Inter-
face (JNI) serves this purpose. In C#/.Net, programs can be
linked to “unmanaged code,” compiled libraries that live outside
the .Net environment. In Perl, integration with external libraries
is performed using XSubs and the esoteric XS mini-language.

Linking compiled code into Perl, Java, or .Net is necessary for a
minority of projects. It is one of those “hard things that should
be possible.” Compared to Perl Java and .Net, Perl’s XS interface
is the oldest and admittedly the least easy to use. XS is a mix of
C, C macros, and Perl API functions that are preprocessed to
generate a C program. The resulting C source is then compiled
to produce a shared object file that is dynamically linked into
Perl on demand, where it provides some Perl-to-C interface
glue and access to other compiled code, such as a library to
manipulate images, an XML parser, or a relational database
client library.

Creating an XS program is a little tricky. The mini-language
itself is documented in the perlxs manual page and the perlxstut
tutorial that come with Perl. XS programs may need to call Perl
API functions, which are documented in the perlguts and perl-
api manual pages. You can find more information in books like
Programming Perl, Writing Perl Modules for CPAN, and Extend-
ing and Embedding Perl.

To create simple XS wrappers around compiled libraries, start
by preprocessing a C header file with the h2xs tool and write
additional XS wrapper functions as necessary. Another com-
mon approach uses swig to create the necessary wrapper code
without using XS explicitly. If you are knowledgeable about Perl
internals, you might avoid both approaches and write XS inter-
face code from scratch.

Writing XS wrappers is tricky, and the skill is difficult to learn.
Many long-time Perl programmers avoid XS because of its
complexity. The state of XS is one of the factors that led the Perl
development team to start the Perl 6 project. One of the goals
behind Perl 6 is the creation of a new runtime engine, Parrot,
that provides a substantially simplified interface for integrating
with compiled code.

Enter Inline::C
One day at the Perl Conference in 2000 (shortly after the Perl 6
project was announced), Brian Ingerson had an epiphany. Link-
ing Perl to compiled C programs is one of those “hard things

by Adam Turoff
Adam is a consultant
who specializes in
using Perl to manage
big data. He is a
long-time Perl Mon-
ger, a technical editor
for The Perl Review,
and a frequent pre-
senter at Perl confer-
ences.
ziggy@panix.com

32 Vol. 29, No. 1 ;login:

practical perl

f(obj2);
}

}

You can use this technique to give a group of classes a particular
property that can be distinguished at runtime.

Interfaces are quite useful in specifying required behavior, and
they enable you to program in terms of high-level types without
having to get into implementation details.

33February 2004 ;login:

●

P

R
O

G
R

A
M

M
IN

Gthat should be possible,” but there was no good reason why it
needed to be hard. He set out to create a much simpler way to
integrate Perl and C in the same program.

The result is his Inline::C module, which greatly simplifies inte-
grating Perl with compiled C code. The goal behind Inline::C is
to hide all of the complexity of Perl/C integration behind a sim-
ple, easy-to-use interface. With Inline, this task is as simple as
can be, even simpler than linking C code with Java or C# pro-
grams.

Beyond just integrating C and Perl code in the same program,
Inline is about combining Perl with any number of languages in
one program, using the same simple interface. Inline::C, the first
and oldest Inline module, integrates C code with Perl; other
Inline modules enable you to integrate Perl with C++, Java,
Python, and Tcl. Some language-integration modules, like
Inline::Java, are in the early stages of development, while oth-
ers, like Inline::C, are more heavily used and quite stable. In fact,
Inline::C is so stable that it is no longer necessary to write XS
glue code to load a C library into a Perl program.

Using Inline::C
One common use of Inline::C is to embed, or “inline,” C func-
tions within a Perl program. Here is a Perl program imple-
mented with a mix of Perl and C code:

#!/usr/bin/perl -w
use strict;
use Inline C => <<END_OF_C;
int add(int x, int y) {

return x+y;
}
END_OF_C

print add(3, 4), "\n"; ## prints 7

The use Inline declaration takes a few parameters. The first is
the string “C”, which indicates that the code segment that fol-
lows (in this case, a heredoc) is a C program. The next parame-
ter is the actual text of a C program, a simple function that adds
two integers.

Later, in the Perl portion of the program, the subroutine call
add(3, 4) will be handled by the C function add found earlier in
this program. When this Perl script is run, the C program will
be extracted, compiled, and dynamically loaded.

A Perl program can have multiple instances of inlined C code.
For example:

#!/usr/bin/perl -w
use strict;
use Inline C => <<END_OF_C;
int add(int x, int y) {

return x+y;
}
END_OF_C

use Inline C => <<END_OF_C;
int mult(int x, int y) {

return x*y;
}
END_OF_C

print add(3, 4), "\n"; ## prints 7
print mult(3, 4), "\n"; ## prints 12

Or, more conventionally, a segment of inlined C code can con-
tain multiple definitions:

#!/usr/bin/perl -w
use strict;
use Inline C => <<END_OF_C;
int add(int x, int y) {

return x+y;
}

int mult(int x, int y) {
return x*y;

}
END_OF_C

print add(3, 4), "\n";
print mult(3, 4), "\n";

However, this usage gets to be cumbersome. A more readable
option is to keep the Perl parts and the C parts of a program
separated. In this next example, the C portion of a program is
inlined in the __DATA__ section of a Perl script. The use Inline
C => “DATA”; declaration tells the Inline module to look for C
code in the data segment of the current Perl program. Since the
Inline module can integrate languages other than C, the __C__
token is necessary to declare that the code that follows is in C.
Other material, such as Pod documentation, could precede the
__C__ token and still be visible within the __DATA__ section.

#!/usr/bin/perl -w
use strict;
use Inline C => "DATA";

print add(3, 4), "\n";
print mult(3, 4), "\n";
__DATA__
__C__
int add(int x, int y) {

return x+y;
}

int mult(int x, int y) {
return x*y;

}

PRACTICAL PERL ●

Vol. 29, No.1 ;login:34

Another option is to store the C source code in another file. The
Inline module prefers that source code found in external files be
located in another directory. In this example, the two C func-
tions above, add and mult, are stored in src/add_mult.c. Here is
the updated Perl program:

#!/usr/bin/perl -w
use strict;
use Inline C => "src/add_mult.c";

print add(3, 4), "\n";
print mult(3, 4), "\n";

These are a few of the more common ways to integrate Perl and
C in a single program. The Inline module supports other mech-
anisms, such as compiling and loading C code that’s created at
runtime. Although I can think of many reasons why I want to
dynamically create Perl code at runtime, I can’t think of a rea-
son why I would want to dynamically create and load C code at
runtime. Nevertheless, that option exists.

How Inline Works
When mixing C and Perl code in the same program, the C
sources must be compiled before they can be used. Inline is not
a C interpreter or a C compiler; rather, it is an environment for
integrating pieces of a program written in Perl with other lan-
guages.

Compiling the C sources as they appear in the inlined code seg-
ments is insufficient, since wrapper code is still necessary to
manage the interface between Perl and C. The process is com-
plicated but mechanical. The Inline::C module performs all of
the work that would normally be done by hand when writing
XS interfaces using h2xs or swig.

When these Perl programs are first run, Inline automatically
generates the necessary XS wrappers for the C functions add
and mult, pre-processes that XS code into C, compiles the
resulting C code, and loads the object file into the current Perl
process. These object files are saved in a cache directory (usually
named _Inline in the current directory), where they can be
reused the next time the program is run. Programs that use
Inline in this manner are a little slow to run the first time, but
every time thereafter, the object files are loaded in as is, and the
program runs with no noticeable overhead.

Programs tend to change over time. Each time a Perl program is
run, it is read by the Perl interpreter, compiled, and run. The
inlined C portion of these programs could also be modified,
and running a compiled version of an out-of-date C program
isn’t very useful. That is why Inline uses a checksum to match
up the C source and object files. If the checksums match, the
compiled version is loaded immediately. If the fingerprints do

not match, Inline transparently compiles the updated source
code before loading it.

Advanced Uses for Inline::C
The C functions add and mult are admittedly quite simplistic.
However, they show that simple C functions can be integrated
into Perl programs with little effort. Inline::C handles all of the
complexity of converting Perl data structures to and from sim-
ple C data types (int, long, double, and char *). Inline::C also
supports passing Perl scalar variables (SV * structures in C) to
and from C functions.

Long-time Perl programmers also expect to have the ability to
pass a list of values to a sub and to receive one back. These tech-
niques are also supported, but are slightly more difficult to
write. Inline::C manages some of this complexity but cannot
hide all of it. See the Inline::C and Inline::C-Cookbook manual
pages for more details on using inlined C code with these
behaviors.

Many C libraries don’t deal with simple C data types, but focus
on application-specific data structures. Writing interface code
to create C structs, examine struct members, or operate on
structs is slightly more difficult. Inline still manages to hide
much of the complexity for these situations. Writing glue code
to use these kinds of C libraries may require using some Perl
API functions. Thankfully, examples can be found with the
Inline manual pages and in the perlguts and perlapi manual
pages.

While the easiest way to use Inline is to combine bits of Perl and
C in the same source file, the most interesting use is to provide
access to an existing C library. Perl provides built-in functions
for standard trigonometric functions like sin and cos, but not
for tan, asin, acos, atan, or any of their hyperbolic counterparts.
All of these are provided by the standard math library, Libm.
Here is a small Perl program that uses Inline to provide the nec-
essary interfaces to these trigonometric functions:

#!/usr/bin/perl -w
use strict;
use Inline C => "DATA",

ENABLE => "AUTOWRAP",
LIBS => "-lm";

my $pi = 4*atan(1);
print “pi = $pi\n”;

__DATA__
__C__
double tan(double x);
double asin(double x);
double acos(double x);
double atan(double x);

35February 2004 ;login:

●

P

R
O

G
R

A
M

M
IN

GThe use Inline declaration above turns on the “Autowrap” fea-
ture, which generates wrapper code for simple function proto-
types. The LIBS => "-lm" declaration specifies options to pass to
the compiler when creating the object file. In this case, the glue
code that Inline generates is linked against the math library,
Libm.

Building with Inline
The examples presented thus far use Inline in a manner that
compiles C programs as necessary, at runtime. Normally, Perl
modules that provide interfaces to C libraries compile the XS
interface once, at build time. Modules are installed with both
the Perl source and the compiled XS interfaces.

Inline can be used to compile interface wrappers at build time
as well. Here is a small module that turns on these features.
First, use h2xs to create the appropriate boilerplate module
files. (Although h2xs started out as a tool to convert C header
files into XS interfaces, common usage today does not involve
profiling header files or creating XS stubs.)

[ziggy@cantillon ~]$ h2xs -AXP Math::Libm
Writing Math/Libm/Libm.pm
Writing Math/Libm/Makefile.PL
Writing Math/Libm/test.pl
Writing Math/Libm/Changes
Writing Math/Libm/MANIFEST
[ziggy@cantillon ~]$

Next, update the newly created Perl module,
Math/Libm/Libm.pm, to include the necessary Inline magic:

package Math::Libm;
use 5.008;
use strict;
use warnings;

use Inline C => "DATA",
ENABLE => "AUTOWRAP",
LIBS => "-lm",
NAME => "Math::Libm",
VERSION => '1.00';

our $VERSION = '1.00';

1;
__DATA__
__C__
double tan(double x);
double asin(double x);
double acos(double x);
double atan(double x);
// ... other libm prototypes ...

This use Inline declaration uses two new options, NAME and
VERSION. These options tell Inline to build the C wrapper code
as if it were a typical XS interface.

Finally, update the autogenerated Makefile.PL. The standard
use ExtUtils::MakeMaker should be replaced with a use
Inline::MakeMaker declaration. At this point, the standard
build/test/install process will use Inline to create, build, com-
pile, and install a Perl module that loads the compiled interface
from the site library and will not compile the C code the first
time the module is used.

Building this module uses the following familiar steps:

[ziggy@cantillon ~/Math/Libm]$ perl Makefile.PL
Checking if your kit is complete...
Looks good
Writing Makefile for Math::Libm
[ziggy@cantillon ~/Math/Libm]$ make
cp Libm.pm blib/lib/Math/Libm.pm
/usr/bin/perl -Mblib -MInline=NOISY,_INSTALL_ -
MMath::Libm -e1 1.00 blib/arch
... Inline Diagnostic messages ...
[ziggy@cantillon ~/Math/Libm]$ make test && make install
...
[ziggy@cantillon ~/Math/Libm]$

Conclusion
Integrating Perl with C used to be a chore. With Inline, integrat-
ing with simple C functions is easy, and integrating with more
complex C functions is possible. Using Inline is much easier
than the alternatives, like writing XS code from scratch or using
Java or .Net interfaces to integrate C libraries.

PRACTICAL PERL ●

36 Vol. 29, No. 1 ;login:

the tclsh spot

Previous Tclsh Spot articles have described some of the
details in building a firewall validation system. This
application uses an agent style of client-server relation-
ship, with one master program controlling several
agents that run on different physical platforms to gen-
erate packets and analyze how they are processed.

Tcl’s clean-socket mechanism, support for importing code at
runtime, and support for safe child interpreters make it a pow-
erful tool for agent applications.

However, the base distribution of Tcl supports only unen-
crypted TCP sockets. When transferring code snippets to be
executed on a client machine, we want to ensure that the data
has not been modified and that the sender is a system we trust.

The SSL protocol (initially developed by Netscape to provide
secure Web transactions) is an application-independent proto-
col that supports server and client authentication. With its sup-
port for authenticating servers and negotiating encryption keys,
SSL provides the strong encryption and validation tools that
this type of application requires.

Since it’s so easy to extend Tcl with new commands, it wasn’t
long before SSL support was added with an extension.

The TLS (Transport Layer Security) extension is an interface to
the OpenSSL libraries that provides for validated, encrypted
conversations over a TCP socket. This is a mature package used
by the Tcl http daemon to support secure Web transactions as
well as numerous other applications. The TLS extension was
originally written by Matt Newman and has been maintained
by several folks, including Jeff Hobbs and Dan Razell.

This article describes the TLS extension, and how to set up a
secure link between a master and the remote agents, and intro-
duces use of a safe child interpreter to evaluate suspect code

from a remote site. Many thanks go to Dan Razell for his help in
understanding how TLS works and his tips on how to construct
a secure client and server.

The first step is to download the TLS code from http://
sourceforge.net/projects/tls/. The latest released version (1.4.1)
has some minor bugs that are fixed in the CVS archives and will
be released soon as version 1.5.

Once downloaded, the usual ./configure; make; make install will
install the TLS extension on your system.

Once this is done, you can prove that it worked by starting your
Tcl shell and trying to package require the TLS extension:

$> tclsh
% package require tls

1.50
%

The program flow for opening a secure client socket is similar
to opening a standard Tcl client socket. Your script will open an
I/O channel and then evaluate puts, gets, read, and flush com-
mands as necessary. The difference between using a normal
socket and a secure socket is that instead of opening the channel
with the socket command, the channel is opened with the
secure socket (tls::socket) command.

Syntax: tls::socket ?-switch value? host port

-switch value A key-value pair to define how this socket
should behave. There are several options
including:

-requestbool
Request a certificate from peer during SSL
handshake. Default: true

-serverscript
Handshake as a server. The script will be eval-
uated when a client attempts to connect.

-require bool
Require a valid certificate during SSL hand-
shake. Default: false

-password script
A script to invoke when OpenSSL requires a
password. The script should return a plain-
text password to be used, perhaps by query-
ing a user.

-keyfile fileName
A private key file to use.

-cafile fileName
Defines a CA file to use.

by Clif Flynt
Clif Flynt is president
of Noumena Corp.,
which offers training
and consulting ser-
vices for Tcl/Tk and
Internet applications.
He is the author of
Tcl/Tk for Real Pro-
grammers and the
TclTutor instruction
package. He has
been programming
computers since
1970 and a Tcl advo-
cate since 1994.

clif@cflynt.com

37February 2004 ;login:

●

P

R
O

G
R

A
M

M
IN

G-certfile fileName
Defines the certificate to use.

host The name or IP address of the host.

port The name or port number of the port to connect to.

Once OpenSSL and the TLS extension are installed, you can
write a Tcl script that will interact with a secure Web site. This
code snippet will send an HTTP GET request to a secure Web
server and retrieve a few lines of the reply.

package require tls
set s [tls::socket -request 0 127.0.0.1 8443]
puts $s "GET / HTTP/1.0\n";
flush $s
set page [read $s]
puts $page

This script generates this output:

HTTP/1.0 200 Data follows
Date: Sun, 07 Dec 2003 02:42:09 GMT
Server: Tcl-Webserver/3.4.2 September 3, 2002
...

SSL supports several authentication modes when establishing a
socket connection. Either or both endpoints can authenticate
each other, or you can suppress authentication entirely. This
example demonstrates the simplest case, establishing a connec-
tion without authentication of either endpoint.

The -request 0 option allows the two ends of the socket to
negotiate an encryption key without requiring authentication.
The connection will be encrypted, and thus be private, but the
identity of the two endpoints is not confirmed.

For simple encrypted conversations without authenticating the
identity of the participants, the SSL handshake only needs to
exchange public keys and confirm that messages can be
encrypted and decrypted. To authenticate a sender’s identity,
the participants need access to a trusted certificate that provides
a digital fingerprint to identify the sender.

Since the agents will be evaluating code that could be malicious,
it’s important to use both the encryption and validation fea-
tures of SSL. (The code could still be malicious, but at least the
agent will be certain of the source.)

In order for the two ends of a conversation to authenticate each
other, they need some way to refer to a trusted third party that
will authenticate their identities. Rather than actively involve
this third party in every transaction, the handshake supports
using signed certificates. This allows the authentication to be
recorded ahead of time. During the SSL handshake, an end-
point can request that a peer transmit its certificate. The signa-
ture on the certificate can then be verified against the public
signature of the third party.

The third party is called a certificate authority (CA). Each end-
point maintains a set of these signatures for use whenever it
requests a certificate from some other endpoint. The signatures
are themselves represented as certificates. Web browsers usually
come supplied with CA certificates from parties such as RSA
Security and Verisign, which the browser will implicitly trust.

Thus, in order to establish a secure connection (one which is
both authenticated and private), SSL needs a certificate and key
to compare with the values sent from the other process. The SSL
protocol requires a CA certificate at the receiving endpoint to
verify the certificate from the sender. The sender obviously
needs to transmit a certificate containing its own public key, but
it also needs its corresponding private key in order to sign the
message itself, so that the receiver can ensure that the message
indeed came from the sender.

For a Web site running SSL, you’ll want a certificate signed by a
well-known and trusted authority, such as Verisign, RSA, or
Microsoft. For this application, where the participants must
install custom software and configuration files, the certificates
can be signed by a local CA. The applications trust the certifi-
cates because they are part of the installation.

You can create the keys and certificates you’ll need from the
openssl command line, or using a GUI like the SimpleCA Tcl
script developed by Joris Ballet (http://users.skynet.be/ballet/
joris/SimpleCA). SimpleCA is a thin front end over openssl that
lets you fill in a form instead of following a challenge-response
script. The interaction with openssl is recorded in a log file for
later examination.

The latest (Rev 28) version of SimpleCA will create a root cer-
tificate for you (if none exists) when you start the application. It
will start by requesting the basic information with forms like
this:

When the forms are complete openssl will be used to generate a
rootca.pem file containing the root CA.

The file can be viewed with the OpenSSL command openssl
x509 -in rootca.pem, or with cat. It will resemble this:

THE TCLSH SPOT ●

Vol. 29, No.1 ;login:38

——-BEGIN CERTIFICATE——-
MIIClDCCAf2gAwIBAgIBADANBgkqhkiG9w0BAQQFADB2MQswCQYDVQQGEwJVUzEc
MBoGA1UEChMTTm91bWVuYSBDb3Jwb3JhdGlvbjEQMA4GA1UECxMHVGVzdGluZzEW
...
——-END CERTIFICATE——-

Once this is complete, you should create client and server certificates using the Certificates/New Certificate Request menu choice. As
with the root certificate, the forms will prompt you for the basic information required to create the certificate and what file to save it
in. On the first screen, select Personal for a client certificate, and SSL Server for the server-side certificate.

The forms for a server certificate will request information about the company requesting the certificate (such as physical address),
while the personal/client certificate only needs a common name and email address.

When this is complete, SimpleCA will have created files named certificates/SITENAME.csr and certificates/SITENAME.key for the
server certificate and certificates/EMAIL.csr and certificates/EMAIL.key for the client certificate (assuming you accept default names
and paths).

The Certificate Request files (*.csr) will resemble this:

——-BEGIN CERTIFICATE REQUEST——-
MIICEDCCAXkCAQAwgZ0xCzAJBgNVBAYTAlVTMREwDwYDVQQIEwhNaWNoaWdhbjEP
MA0GA1UEBxMGRGV4dGVyMRwwGgYDVQQKExNOb3VtZW5hIENvcnBvcmF0aW9uMREw
...
——-END CERTIFICATE REQUEST——-

and the key files will resemble this:

——-BEGIN RSA PRIVATE KEY——-
Proc-Type: 4,ENCRYPTED
DEK-Info: DES-EDE3-CBC,5FBB5CBE38B2C08A

3Jv8/+t74zvyY7qlkUxhb1aKdqpOEebRhg/LbdFrSaPWKQkQ2nITyAmQR6d3QW6p
tffYqBm3d0YiOTFLcgNCjhEGhLRYgpw1MxRKq6VRXTjknB6fJn2Zjai0jVXERU44
...
——-END RSA PRIVATE KEY——-

The next step is signing the certificates, which is handled under the CA/Sign PKCS#10 Certificate Request menu. This will allow you
to select the certificate to sign, display the information about that certificate, request the root authority password, and, finally, sum-
marize what is going to happen with a screen like this:

This sequence of steps will generate files named certificates/SITENAME.crt and
certificates/EMAIL.crt. These are binary datafiles by default, though you can
force them to be generated as ASCII export files by specifying a .pem suffix when
you select the file name.

The main GUI
shows a summary of
the certificates that
have been created:

If you’ve used the defaults (and created binary datafiles), the final step
is to transform the client and server certificates into the flat ASCII export format, using the Tools/Export Certificate menu option.
This will generate files named for their serial number. In this example, the default names will be 1000.pem and 1001.pem.

The important files for creating validated TLS sockets are the rootca.pem, *.key, and SERIAL_NUM.pem files.

39February 2004 ;login:

●

P

R
O

G
R

A
M

M
IN

GCreating a client socket with validation is very similar to the
previous example. For a validated connection, however, the
application needs paths for the certificates and keys, needs to
request a certificate from the peer, and must be able to provide
a password.

This example provides all the necessary information, using a
trivial hardcoded procedure to provide the password:

package require tls

proc getPassword {} {
return "testing"

}

set port 2000
set host localhost
set certDir /usr/SimpleCA28/certificates

set s [tls::socket -password getPassword \
-keyfile $certDir/clif@noucorp.com.key \
-certfile $certDir/../1000.pem \
-cafile $certDir/../rootca.pem \
-request true -require true $host $port]

puts $s "this is a message from the client"

The server side of this socket is a bit more complex. Like a basic
TCP server socket, rather than opening a channel to a remote
site and immediately transferring data, the secure server waits
until a client requests a connection to a particular port. When a
client requests a connection, a new port is assigned for the con-
versation and a callback script defined in the tls::socket -server
command is evaluated.

A simple TCP server to report the current time and close the
connection looks like this:

#!/usr/local/bin/tclsh
socket -server openConnection 12345

proc openConnection {channel ip port} {
puts $channel [clock format [clock seconds]]
close $channel

}

A secure server needs to wait until the handshake is complete
(and successful) before processing data messages.

The tls::handshake command forces a handshake and returns
the status of a handshake that’s in process. The tls::handshake
command will read a message if one is available, and returns 0 if
the handshake is still in progress (non-blocking) or 1 if the
handshake was successful. If the handshake failed, this routine
will throw an error.

Syntax: tls::handshake channel

channel The channel being opened.

This would lead to a trivial solution, such as the one used for
the openConnection procedure:

proc openConnection {channel clientaddr clientport } {

Wait until the handshake is complete

set fail [catch {tls::handshake $channel} complete]
while {!$fail && !$complete} {

after 100
set fail [catch {tls::handshake $channel} complete]

}
puts $channel [clock format [clock seconds]]
close $channel

}

This solution has a big problem. It will hang in the openCon-
nection procedure until the handshake is complete and success-
ful. At best, this blocks the server from accepting other
connections until the handshake is complete, and at worst, if
the handshake cannot be successful (e.g., the client closes the
connection), it will hang forever.

A better solution makes use of the Tcl fileevent (described in
the previous Tclsh Spot article) to watch for messages and force
them to be absorbed by tls::handshake until tls::handshake
returns a successful handshake (or until the channel is closed).
This technique supports having several clients connecting at
once.

proc openConnection {channel clientaddr clientport } {
global tlssignal
global msgsignal

Wait until the handshake is complete.

fileevent $channel readable [list handshakeHandler
$channel $clientaddr]

vwait tlssignal($channel)

puts $channel [clock format [clock seconds]]
close $channel

}

proc handshakeHandler {channel clientaddr} {
global tlssignal

Optionally, reject connection based on IP
address–based access control list.

Check for death of client channel.

if {[eof $channel]} {
close $channel
return

}

Absorb message and report status.

set fail [catch {tls::handshake $channel} complete]

if {!$fail && $complete} {
set tlssignal($channel) " "

}
}

THE TCLSH SPOT ●

Vol. 29, No.1 ;login:40

The final step for making a useful agent is to support real data
messages, as well as handshakes. This uses the fileevent com-
mand again — in this case, to grab messages and process them:

proc openConnection {channel clientaddr clientport } {
global tlssignal
global msgsignal

Wait until the handshake is complete.

fileevent $channel readable [list handshakeHandler
$channel $clientaddr]

vwait tlssignal($channel)

Eval processMessage when data is available.

fileevent $channel readable [list processMessage
$channel]

}

For a simple agent test, the processing might be to return the
number of characters sent:

proc processMessage {channel} {
if {[eof $channel]} {

close $channel
return

}
set len [gets $channel message]
puts $channel "Message length is: $len"
flush $channel

}

Real agents, however, execute code rather than evaluating pre-
defined procedures.

Running code from an outside source on my system (even if
I’ve proven that the source is known and trusted) gives me the
heebie-jeebies. Even in code that’s not supposed to be mali-
cious, there’s the potential for a bug.

The Tcl solution for this problem is the interp command, and
the support for creating safe child interpreters.

Syntax: interp create ?-safe? ?interpName?

interp create Create a new slave interpreter

-safe Make this a safe interpreter with no ability to
do damage to your system.

interpName An optional name for this interpreter.

The interp command creates a new child interpreter within a
running Tcl process. In actual terms, this means a new state
structure and hashtables for variables and procedures.

Using a hashtable technique to map the names of commands to
the compiled code that implements them makes it easy to create

a safe interpreter. The interpreter simply leaves commands like
open, exec, and socket out of the hashtable. This makes it
impossible for a script running in a safe interpreter to invoke
those commands.

The next example shows both how a full-featured interpreter
can be created and how to create one without access to the file
system:

Create an interpreter with full access.

set int1 [interp create fullservice]

Load the Tk extension and build a GUI.

$int1 eval "load /usr/local/lib/libtk8.2.so"
$int1 eval "label .l1 -text "OK"; grid .l1"

Create an interpreter that cannot access the file system.

set int2 [interp create -safe limited]

This throws an error.

$int2 eval "load /usr/local/lib/libtk8.2.so"

When a new interpreter is created, Tcl creates a new command
with the same name as the new interpreter. The command
interp create newInterp creates a new interpreter named newIn-
terp and a new command newInterp. As with other Tcl objects,
a script will interact with the interpreter by using the new com-
mand.

As shown in the previous example, you can evaluate a script
within the child interpreter with the interpName eval com-
mand.

This example shows how we can create a new safe interpreter to
evaluate commands received from a remote system. In this
example, Tcl commands could be evaluated.

Create a new safe interpreter.

interp create -safe safeInterp

Receive

proc processMessage {channel} {
if {[eof $channel]} {

close $channel
return

}

set rply [safeInterp eval [gets $channel]]
puts $channel "$rply"
flush $channel

}

If we need to add new procedures to the interpreter, they can be
added within an interpName eval command like this:

41February 2004 ;login:

●

P

R
O

G
R

A
M

M
IN

GsafeInterp eval {
proc checksum {string} {

set total 0
foreach c [split $string “”] {

scan $c %c x
incr total $x

}
return $total

}
}

However, to be useful, even a safe interpreter needs to be able to
interact with a file system, or perform some other unsafe inter-
action. The interpreter alias command can be invoked within a
parent interpreter to allow a slave to run certain scripts within
the parent environment (which may be a full-service inter-
preter). This leads to a tightrope act in which we open small
holes in the safe interpreter to perform tightly defined unsafe
actions”

Syntax: interpName alias targetName sourceName

targetName The name by which a procedure will be refer-
enced in the child interpreter.

sourceName The name by which a procedure is referenced
in the parent interpreter.

For example, if we needed to add a logging facility to the check-
sum procedure shown above, it couldn’t be done – that proce-
dure runs in a safe interpreter and can’t open any channels.

However, using the alias command, we can link a logging proce-
dure in the main interpreter to a procedure name in the safe
child interpreter:

Create a safe interpreter.

interp create -safe safeInterp

Link the 'writeLog' procedure in this environment
to the 'log' procedure in the safe child interpreter.

safeInterp alias log writeLog

Define writeLog.

proc writeLog {data} {
set of [open /tmp/agent.log "a"]
puts $of $data
close $of

}

Define a procedure to use the logging facility.

safeInterp eval {
proc checksum {string} {

set total 0
foreach c [split $string " "] {

scan $c %c x
incr total $x

}
log "$total $string"
return $total

}

And that provides all the tools for creating a cryptographically
secure agent system in Tcl. The complete code for the client and
server is just 131 lines and is available at http://www.noucorp.com.

The next Tclsh Spot will show you how to start using these tools
to evaluate a firewall.

THE TCLSH SPOT ●

42 Vol. 29, No. 1 ;login:

building a virtual IPv6 lab using
user-mode Linux

The function of an operating system is to provide users
and applications with a high-level abstraction of the
underlying hardware architecture, isolating them from
the complexity of such architecture and providing them
with a simple and consistent view of system resources.
Applications running within a certain operating system
actually deal with a “virtual machine” composed of the
physical hardware and the layer of abstraction superim-
posed on it by the operating system. User-mode Linux
(UML) is a port of the Linux kernel to the virtual
machine composed of the physical hardware and the
Linux kernel. In simple terms, UML is a kernel patch that
allows users (even unprivileged users) to run an instance
of the Linux kernel as a user-land process. UML was
introduced by Jeff Dike and is available for the 2.4 ker-
nel series as a patch, while being a standard part of the
2.6 kernel series.

In this article, the kernel running as a user process will be called
the UML kernel, while the “real” kernel will be called the Linux
kernel. Similarly, the virtual machine consisting of the UML ker-
nel, its root file system and the processes created by it will be
called the UML machine, while the “real” machine will be called
the host machine.

Having the ability to run a Linux kernel as a user-space process
has many practical applications. Some of the uses of UML are:

■ Kernel development: With UML, familiar user-space debug-
ging and performance profiling tools can be used for kernel
development. A misbehaving UML kernel can be just killed
like a normal process – no need to reboot if your experi-
mental kernel crashes.

■ Virtual hosting: With UML, a single physical machine can
host a number of UML machines, depending on the avail-
able processing power and memory. Each UML machine
can be dedicated to a user to run whatever services he or she
needs.

■ Honeypot building: A UML machine can be used as a hon-
eypot for hackers, where it offers a sandbox for them to play
around in without causing any harm, while providing secu-
rity experts with the opportunity to study their techniques.

■ Virtual networking: UML machines running on the same
host can be networked together and with the host machine.
They can also be connected to the rest of the world, using
the host machine as a gateway.

Being a data network engineer, I am mostly interested in virtual
networking; in fact, the original motivation for me to explore
UML was my need for IPv6 routers and servers to experiment
with as part of an IPv6 migration study I am working on. In the
lab, UML provides me with a cost-effective and space-conserv-
ing method of constructing an IPv6 network to test routing and
serving with the new network layer protocol. Outside the lab,
UML provides me with a “virtual portable lab” in my laptop,
allowing me to carry my experimental IPv6 network with me
while I move around.

In this article, I’ll present a method for creating UML machines
for experimenting with the IPv6 protocol. The procedure pre-
sented, however, can be used for other data-networking experi-
ments. The article assumes that the reader is familiar with IPv6
and will show how to create an IPv6 network consisting of three
IPv6 routers connected with point-to-point links. One of the
routers is the host machine (called alpha) and the other two are
UML machines, ghost and shadow (see Figure 1). Although
the standard Linux kernel contains an IPv6 stack, it is recom-
mended to use the USAGI Linux stack. The USAGI (UniverSAl
playGround for IPv6) implementation has better performance,
better standard conformance, and fewer bugs compared to the
IPv6 stack of the standard kernel. The home page of the USAGI
project is http://www.linux-ipv6.org. In our project, we’ll use the
standard Linux kernel for ghost and the USAGI kernel for
shadow, just to illustrate the procedure for both kernels. The
routing software we’ll be using is GNU Zebra (http://www.
zebra.org).

The article will show the reader what software components are
needed, how to customize and create a UML kernel, how to cre-
ate a root file system for the UML machine, and how to config-
ure networking. Using pre-built components all the way makes
the process much easier but leads to a rigid configuration, while
building all components from scratch may be difficult and time-
consuming. Therefore, the procedure presented tries to adopt a

by Salah M.S.
Al-Buraiky
Salah M.S. Al-Buraiky
is a data network engi-
neer working for the
Communication Solu-
tions Engineering
Group of Saudi
Aramco. He is also an
electrical engineering
graduate student at
King Fahd University
of Petroleum and Min-
erals. He is specializing
in data communication
and machine learning.

salah.buraiky@aramco.com

43February 2004 ;login:

hybrid approach to achieve a balance between customizability
and ease of implementation.

The Building Software Blocks
The needed software components are:

■ A fresh source tree for a recent kernel obtained from any
kernel source repository mirror. The kernel source I’ll be
using for this article is http://www.kernel.org/pub/linux/
kernel/v2.4/linux-2.4.20.tar.bz2.

■ A USAGI-patched kernel. This can be obtained from
ftp://ftp.linux-ipv6.org/pub/usagi/stable/kit/ or any other
USAGI mirror. I had some trouble compiling the USAGI
kernel with the UML patch, but the following USAGI pack-
age worked for me:

usagi-linux24-stable-20021007.tar
with patch: uml-patch-2.4.19-51.bz2

■ The UML patch to be applied to the kernel. Choose a patch
that matches the version of the kernel source tree you have
downloaded. The patches I’ll be using here are http://
prdownloads.sourceforge.net/user-mode-linux/uml-patch-
2.4.20-6.bz2, for the standard kernel, and http://prdownloads.
sourceforge.net/user-mode-linux/uml-patch-2.4.19-51.bz2
for the USAGI kernel.

■ The user_mode_linux package. This package contains a
pre-built UML kernel and a number of utilities to be used
with UML. The pre-built UML kernel contained in the
package will only be used initially and will be replaced by
a customized kernel once the root file system is built. The
version used for this article is
http://prdownloads.sourceforge.net/user-mode-linux/
user_mode_linux-2.4.19.5um-0.i386.rpm.

■ The UMLBuilder package. The root file system of a UML
kernel is created within an ordinary file structured like a
file system rather than on a disk partition, as is usually the
case with “real” kernels. We’ll call that file the rootfs file. A
relatively easy way to create a customized rootfs file is to
use UMLBuilder, a graphical application for creating rootfs
files from RPM-based distributions (e.g., RedHat and
SuSE). UMLBuilder requires the user_mode_linux package
in order to work. The version used for this article is
http://prdownloads.sourceforge.net/umlbuilder/
umlbuilder-1.40-5.i386.rpm.

■ The GNU Zebra Routing Package: There isn’t a need to
worry about downloading GNU Zebra, since it is part of
the RedHat distribution.

After getting the needed software, perform the following
preparatory steps.

First, install the RPM packages:

rpm -i user_mode_linux-2.4.19.5um-0.i386.rpm

rpm -i umlbuilder-1.40-5.i386.rpm

Second, copy all RPM files in the distribution CDs to a direc-
tory on the host machine (alpha). In my case, that directory is
/tmp/redhat/rpm. On the CDs, the binary RPM files are kept in
/mnt/cdrom/RedHat/RPMS (assuming the CD is mounted on
/mnt/cdrom). Those RPM files will be used by UMLBuilder.

Now create a directory for the project (/home/usenix in my
case) and copy the kernel tarballs and the UML patches to it.

Building the Root File System
The root file system for a Linux system is usually hosted by a
hard disk or a hard disk partition. It is more convenient, how-
ever, to use an ordinary file as the root file system for a UML
machine. Linux uses a special device called the loopback device
(not to be confused with the network loopback interface) to
enable dealing with an ordinary file as if it were a block device,
allowing a file to host a file system and a directory tree. Obtain-
ing a root file system for our UML machine can be done by
downloading a pre-built one from the UML home page, by cre-
ating it from scratch using basic Linux tools, or by using UML-
Builder. The approach chosen here is to rely on UMLBuilder.

Start by launching the UMLBuilder GUI from within the X win-
dow system launching and xterm and typing: UMLBuilder_gui.
Press “next” and you’ll be presented with a number of distribu-
tions to choose from. Choose RedHat 8.0. When asked about
the location of the RPMs, enter /tmp/redhat/rpm.

Now, you’ll be presented with a selection of packages to choose
from. Choose “Various Network Server Daemons (network-
server)” and press “next.” In the file system settings window,
specify the mount point for device udb0 as “/”, the size of the
file system as 400MB, and the file system type as ext2. Leave the
filename as rootfs. In the Miscellaneous Settings window, set the
hostname as ghost and the IP address as 10.20.0.1. Set root’s
password and press “next.” You’ll be asked about the location
where the files pertaining to the UML instance should be
stored. Enter /home/usenix/ghost and press “next.” All settings
will be displayed so that you can review them. If all are correct,
proceed by pressing the relevant button. The creation of rootfs
will start and might take a quite long time to finish.

After the building completes, the directory /home/usenix/ghost
should contain, among other files, the rootfs file and a shell
script called “control” that facilitates launching the UML
machine. Edit the control script so that the variables net and
hostiface are set to the values indicated below:

net="eth0=tuntap,,,10.20.0.254"
hostiface="tap0"

The second line sets the name of the host machine’s interface
linking it to the UML machine to tap0 (creates an interface on

BUILDING A VIRTUAL IPV6 LAB ●

●
N

ET
W

O
R

K
IN

G

Vol. 29, No. 1 ;login:44

alpha called tap0). The first line sets the IP address of that inter-
face to 10.20.0.254. Although our interest is IPv6 configuration,
we’ll configure IPv4 addresses for the time being so that we can
use them to test connectivity even before we start our IPv6 con-
figuration (see Figure 1 for the network’s topology).

At this stage you can launch the UML machine by typing (from
an xterm): /home/usenix/ghost/control start.

To shut down the UML machine, just type, as root: shutdown -h
now.

Keep in mind that the UML kernel used to boot the machine is
actually the binary /usr/bin/linux installed as part of the
user_mode_linux package (remember that the UML kernel is
just another user-land program). In the following section, we’ll
create our own UML kernels.

Patching and Compiling a Standard Kernel
Start by uncompressing the kernel source tree and extracting
the files in the archive:

bzip2 -d linux-2.4.20.tar.bz2
tar -xvf linux-2.4.20.tar

The directory /home/usenix/linux-2.4.20 contains the kernel
source tree.

Next, copy the patch to the kernel source tree uppermost direc-
tory and apply the patch:

cp uml-patch-2.4.20-6.bz2 /home/usenix/linux-2.4.20
cd /home/usenix/linux-2.4.20
patch -p1 < uml-patch-2.4.20-6

Now we have a UML-patched kernel, and we can start the ker-
nel configuration and compilation.

Launch the kernel configuration GUI:

make xconfig ARCH=um

(ARCH=um sets the architecture to UML instead of the default
x86 architecture.)

Under Network Options, enable IPv6 support as a module (it is,
of course equally possible to enable IPv6 support as an integral

part of the kernel rather than a module).
Disable all unneeded drivers, protocols,
and features.

Now, create the prerequisite object files:

make dep ARCH=um

Now, create the UML kernel itself:

make linux ARCH=um

If the compilation succeeds, you’ll find
an executable called linux in the direc-
tory /home/usenix/linux-2.4.20/. This is

our newly created UML kernel.

If you choose to configure some parts of the kernel as modules,
then you need to compile the modules and install them in
rootfs.

To compile the modules for the UML kernel, type:

make modules ARCH=um

To install the modules, start by making sure that the UML
machine is shut down and then mount the rootfs file:

mkdir /mnt/rootfs
mount -o loop /home/usenix/ghost/rootfs /mnt/rootfs

The commands typed above mount the rootfs file system on
/mnt/rootfs.

To install the modules in rootfs, type:

make modules_install INSTALL_MOD_PATH=/mnt/rootfs/

The name of the directory containing the modules must match
the kernel’s version, therefore:

mv /mnt/rootfs/lib/modules/2.4.20
/mnt/rootfs/lib/modules/2.4.20-6um
umount /mnt/rootfs

At this stage we have the root file system built, an IPv6-enabled
kernel built, and the associated kernel modules built and
installed.

Place your newly created UML kernel in /usr/bin:

mv /home/usenix/linux-2.4.20/linux /usr/bin/ghost

Edit the control script to launch the new kernel by changing the
line (line 126):

exec $linux $initrd umid="$name" $fs $swap
mem=$memsize $net $ux $args "$@"

to{

exec ghost $initrd umid="$name" $fs $swap
mem=$memsize $net $ux $args "$@"

Figure 1

45February 2004 ;login:

●
N

ET
W

O
R

K
IN

G

Patching and Compiling a USAGI Kernel
To create the USAGI-based UML machine, we’ll use the same
rootfs. So start by copying the ghost UML directory and editing
the control script:

cp -R /home/usenix/ghost /home/usenix/shadow

In shadow’s control script make the following changes:

net="eth0=tuntap,,,10.30.0.254"
hostiface="tap1"

Change the line (line 126):

exec $linux $initrd umid="$name" $fs $swap
mem=$memsize $net $ux $args "$@"

to:

exec shadow $initrd umid="$name" $fs $swap
mem=$memsize $net $ux $args "$@"

Now, patch and compile the USAGI kernel:

bzip2 -d usagi-linux24-stable-20021007.tar.bz2
tar -xvf usagi-linux24-stable-20021007.tar
cd usagi/

Specify the major kernel version USAGI is to be compiled for by
typing:

make prepare TARGET=linux24

Now copy and apply the patch:

cp uml-patch-2.4.19-51.bz2
/home/usenix/usagi/kernel/linux24
cd /home/usenix/usagi/kernel/linux24
patch -p1 < cp uml-patch-2.4.19-51

Now configure and compile the UML kernel just as we did with
the standard kernel:

make xconfig ARCH=um
make dep ARCH=um
make linux ARCH=um
make modules ARCH=um

With the USAGI kernel we have chosen to compile IPv6 sup-
port as part of the kernel rather than as a module.

Place your newly created USAGI UML kernel in /usr/bin:

mv /home/usenix/USAGI/usagi/kernel/linux24/linux
/usr/bin/shadow

Install the USAGI kernel modules, just as we did with the stan-
dard kernel:

mount -o loop /home/usenix/shadow/rootfs /mnt/rootfs
make modules_install INSTALL_MOD_PATH=/mnt/rootfs/
umount /mnt/rootfs

At this stage, the creation of our IPv6 UML machines is com-
pleted and it is now time to bring life to the machines.

BUILDING A VIRTUAL IPV6 LAB ●

Figure 2

Vol. 29, No. 1 ;login:46

From an xterm:

cd /home/usenix/ghost
./control ghost

After ghost completes booting, from another xterm boot
shadow:

cd /home/usenix/shadow
./control shadow

The virtual consoles of both UML machines should be appear-
ing on your screen (see Figure 2).

IPv6 Addressing, Routing, and Connectivity
Testing

ADDRESSING

We are ready now to enter the world of IPv6 networking. We’ll
start by assigning our routers their network addresses. On
ghost, load the IPv6 module:

insmod ipv6

then assign the IPv6 address:

ifconfig eth0 add 3000::1/64

which, on shadow, should be:

ifconfig eth0 add 2000::1/64

On alpha, load the IPv6 module if you have IPv6 support com-
piled as a module:

insmod ipv6
ifconfig tap0 add 3000::2/64
ifconfig tap1 add 2000::2/64

(See Figure 1.)

ROUTING

Now that we have created two UML hosts and assigned them
IPv6 addresses, we are ready to configure Zebra to perform
OSPFv3 dynamic routing. GNU Zebra provides an implemen-
tation for a number of IPv4 and IPv6 dynamic routing proto-
cols with an interface similar to Cisco’s CLI. The Zebra routing
system consists of a kernel routing table manager daemon
called zebra and a number of routing daemons, each imple-
menting an IPv4 or an IPv6 routing protocol. The manager dae-
mon zebra receives input from the protocol-specific routing
daemons and modifies the kernel routing table accordingly.
Examples of routing daemons that are part of Zebra are ospfd
and ospf6d: ospfd is the OSPFv2 routing daemon, which per-
forms OSPF routing for IPv4, and ospf6d is the OSPFv3 routing
daemon, which performs OSPF routing for IPv6. Note that
although the OSPF version designed to work with IPv6 is OSPF
version 3, the zebra OSPFv3 daemon is called ospf6d. The “6”

here indicates the IP version rather than the OSPF version.
There can be more than one protocol-specific routing daemon
running on the same host. A machine operating in a dual-stack
environment (a network in which IPv4 and IPv6 coexist) can,
for example, run ospfd and ospf6d simultaneously.

Since configuring and running zebra is a prerequisite for run-
ning any protocol-specific daemon, we’ll start with the creation
of the zebra daemon configuration file:

On ghost:

vi /etc/zebra/zebra.conf

!
! Setting the hostname for the zebra daemon
!
hostname ghostz
!
! Setting the password for the zebra daemon
!
password zebra
!
! Setting the enable password for the zebra daemon
!
enable password zebra

Note that the bangs (!) are used to add comments to the config-
uration file.

On shadow:

hostname shadowz
password zebra
enable password zebra

On alpha (the host machine):

hostname alphaz
password zebra
enable password zebra

The next step is configuring the OSPFv3 daemon.

Since our virtual network is a rather small one, all our IPv6
routers will be configured in the same area (area 0.0.0.0 or area
0). Just like OSPFv2, OSPFv3 assigns each router a unique 32-
bit router ID. In our virtual network, we’ll assign ghost the ID
0.0.0.2, shadow the ID 0.0.0.3, and alpha the ID 0.0.0.1.

To configure the OSPFv3 daemon on ghost:

vi /etc/zebra/ospf6d.conf

!
hostname ghostz
password zebra
enable password zebra
!
router ospf6

router-id 0.0.0.2

47February 2004 ;login:

redistribute static
interface eth0 area 0.0.0.0

!

On shadow:

vi /etc/zebra/ospf6d.conf

!
hostname shadowz
password zebra
enable password zebra
!
router ospf6

router-id 0.0.0.3
redistribute static
interface eth0 area 0.0.0.0

!

On alpha:

vi /etc/zebra/ospf6d.conf

!
hostname alphaz
password zebra
enable password zebra
!
router ospf6

router-id 0.0.0.1
redistribute static
redistribute connected
interface tap0 area 0.0.0.0
interface tap1 area 0.0.0.0

!

Note that we added the “redistribute connected” statement so
that alpha tells ghost about shadow (which is directly con-
nected) and tells ghost about shadow using OSPFv3.

Although we have chosen to perform the configuration through
editing the configuration files, we could have established a Tel-
net session to the daemons and configured routing using the
Cisco-like interface. This could be done by typing:

telnet localhost zebra

or

telnet localhost 2601

for zebra and

telnet localhost ospf6d

or

telnet localhost 2606

for ospf6d. Now to start OSPF routing, type the following in all
three machines:

/etc/init.d/zebra start
/etc/init.d/ospf6d start

CONNECTIVITY TESTING

To test the connectivity, ping shadow from ghost:

ping6 2000::1

Successful pinging indicates that routing is working without
problems and that we have successfully completed the construc-
tion of our IPv6 lab!

To display the IPv6 routing table, type:

route -A inet6

or:

ip -6 route show

You’ll notice that the routes obtained through dynamic routing
have a higher metric than static and directly connected routes.

You can also capture the IPv6 traffic using:

tcpdump -qtfn ip6

Increasing Topological Complexity
The IPv6 lab we have constructed is a simple one, with only
three routers and one OSPF area, but it illustrates the basic pro-
cedures needed for virtual UML networking. Creating more
complex networks can be done using nested UML machines
and the uml_switch daemon. A nested UML machine is a UML
kernel launched from within a UML machine. The uml_switch
is a daemon that simulates physical switches and can be used to
connect a number of UML machines running on the same
physical hosts. Information about nesting and the uml_switch
can be found in the UML Kernel Home Page
(http://user-mode-linux.sourceforge.net).

Conclusion
This article shows how to use User-mode Linux (UML) to build
a simple IPv6 lab on a laptop (a lab in the lap). OSPFv3 was
enabled to perform dynamic routing among the three IPv6
routers in our virtual network. Virtual UML networking is par-
ticularly valuable when it comes to studying and experimenting
with new technologies like IPv6 when not enough test machines
are available. In addition, UML virtual networking is more cost-
effective, takes much less space, and allows rapid prototyping
and experimentation portability.

BUILDING A VIRTUAL IPV6 LAB ●

●
N

ET
W

O
R

K
IN

G

48 Vol. 29, No. 1 ;login:

Editor’s Note: This article is somewhat specific to Solaris 9 but seemed of general
interest to all those interested in filesystem technology.

“Come out, come out, wherever you are!” – Recall the popular refrain that
brings back memories of childhood games such as “hide and seek.” It was
so much simpler then. Together, you and your friends defined the bound-
aries of play and then simply had fun. You could easily define what was in
and out of bounds. It would have been an entirely different game if you or
your friends could become invisible by hiding within the trees.

Hiding in the Filesystem
The purpose of this article is to highlight some of the methods that can be used to
hide programs and data in a filesystem. This article focuses primarily on how extended
file attributes, introduced in the Solaris™ Operating System (“Solaris OS”), version 9,
could be abused for this purpose.

Hiding programs and data within the Solaris OS or any other operating system is not a
new concept. In fact, variants of the UNIX® operating system encourage the use of
“hidden” files to store users’ preferences, configuration settings, and other attributes.
These “hidden” files, known as “dot files,” are not really hidden. They are simply not
displayed using the ls(1) command unless the –a option is given. While any user can
create “dot files” by creating a file that begins with the character “.”, they are also easily
detectable using the ls or find(1) commands as well as with filesystem integrity tools
such as Tripwire or AIDE (assuming a baseline had previously been created that could
be used for comparison).

Similarly, attackers have attempted to “hide” their programs and data by using naming
conventions that map to similar but unused names on the filesystems. In the past, this
has led to a plethora of names such as /dev/… and /usr/ccs/alpha. These files, just as
with the “dot files” above, can only be created under directories to which the user has
write access. Often, to the untrained or unfocused eye file names such as these look
legitimate. As a result, they have been quite successfully used to hide programs and
data on systems. The detection methods for files of this type are similar to those for
“dot files.”

In a similar vein, some developers have even been known to embed entire programs
within existing software packages. Often these Easter Eggs, as they are called, are used
to hide a game or some feature of the software. Unless discovered, these features will
lie dormant on the system. A malicious developer could use this method to steal
resources or information or even launch denial-of-service or other attacks. Once iden-
tified, however, a fingerprint of the affected software can often be developed to aid in
the detection of the Easter Eggs. You must always be careful whom you decide to trust.

Another, more sophisticated method for hiding programs and data involves the use of
file slack space. Slack space is the amount of space left over when the file does not end
at a block boundary. Typically, small files tend to leave a significant amount of slack
space on a filesystem, which can be used to store other information. Tools have been
developed, such as bmap for the Linux operating system, to store and retrieve data
from a file’s slack space. The Solaris OS does not support the ability to write to slack
space by default, but it is possible to hide information in slack space by writing directly
to the disk device. Similarly, detection involves reading from the disk device.

hiding within
the trees

by Glenn M.
Brunette, Jr.
Glenn Brunette is the
Chief Security Archi-
tect for Sun Profes-
sional Services in the
United States and
the co-founder of
the Solaris Security
Toolkit (a.k.a. JASS).
He is focused prima-
rily on the develop-
ment of recommend-
ed practices, method-
ology, training, and
tools to improve the
quality and security
of customer environ-
ments.

glenn.brunette@sun.com

49February 2004 ;login: HIDING WITHIN THE TREES ●

●

TE

C
H

N
O

LO
G

YLastly, loadable kernel modules can be used to intercept system calls in order to hide
programs and data according to some set of rules. These modules must be loaded into
the kernel at each system boot, but they can provide a quick and easy method for an
attacker to hide from an administrator. SLKM is an example of a tool that implements
these basic file-hiding capabilities. Loadable kernel modules can be difficult to
develop, but once written are easily used. Loadable kernel modules can be very diffi-
cult to detect and require offline analysis even when used in conjunction with filesys-
tem integrity tools. The good (or possibly very bad) news is that only users with
administrative privileges, such as root in the Solaris OS, can use the modload(1M)
command to load a kernel module. If you find such a module running on your system,
you can safely assume that a user or process with those privileges loaded it.

The Solaris 9 OS provides a new capability called extended file attributes which can
permit any user to “hide” programs and data. This method is similar to the use of slack
space in that the programs are not actually stored in the viewable filesystem. However,
a user does not need any special tools to create or use extended file attributes. New
methods (commands, options, etc.) are required for administrators to detect the use
and existence of extended file attributes.

Introduction to Solaris 9 OE Extended File Attributes
Starting in the Solaris OS version 9, the UFS, NFS, and TMPFS filesystems were
enhanced to include extended file attributes, enabling application developers to associ-
ate specific attributes with a file. For example, a developer of a file management appli-
cation for a windowing system might choose to associate a display icon with a file. In
the past, this has been done using application logic that bound a particular file type or
name to a specific icon.

Using Solaris 9 OE extended file attributes, a developer can more readily do this by
binding the icon directly to a file, thereby providing the ability to simplify the applica-
tion’s logic. The extended attributes assigned to a file are arbitrary in nature and take
the form of regular files that are stored within a hidden directory associated with a
given file. This is referred to as the file’s extended attribute namespace. By default, no
files in the Solaris 9 OE have extended attributes. Note that while different in imple-
mentation, in concept this capability is similar to Microsoft NTFS Alternate Data
Streams or the older Apple MacOS Resource Forks.

Using Extended File Attributes
Extended file attributes can be created using either a set of shell commands or a C API.
For the purposes of this discussion, we will focus on the shell commands. For those
interested in the C API, refer to the attropen(3C), fchownat(2), fsattr(5), fstatat(2),
openat(2), renameat(2), and unlinkat(2) manual pages.

To manage extended file attributes for any given file, use the runat(1) command. Using
this command, you can perform various operations to create, display, read, modify, or
delete objects within a file’s extended attribute namespace. The following sections
describe some typical scenarios highlighting the creation, display, and removal of
extended file attributes.

Create an Extended File Attribute
To create an extended file attribute for the sample.conf file, located in the current
directory, use the following command sequence:

Vol. 29, No. 1 ;login:50

$ runat ./sample.conf cp /etc/motd ./motd

In this example, the content of the /etc/motd file is copied into a file called motd
stored within the hidden extended file attribute directory that is associated with the
file sample.conf. This same technique can be used to modify an extended file attribute
by overwriting an existing attribute file with a new one containing the updated con-
tent. Note that you must be able to write to a filesystem object in order to be able to
create an extended file attribute for it.

Display an Extended File Attribute
To determine if a particular file, in this case sample.conf, has extended file attributes,
you can use the following command sequence:

$ runat ./sample.conf ls –l
total 2
-rw-r—r— 1 gbrunett staff 49 Aug 25 14:16 motd

In this example, the file motd, created in the step above, was displayed. No other
extended attributes were found. The contents of file motd can be read using the cat(1)
command, as in the following example:

$ runat ./sample.conf cat motd
Sun Microsystems Inc. SunOS 5.9 Generic May 2002

Delete an Extended File Attribute
If an extended file attribute is no longer needed, it can be disassociated from its parent
file and removed from the hidden extended attribute directory. For example, to remove the
motd attribute file that is associated with sample.conf, use the following command
sequence:

$ runat ./sample.conf rm motd

To verify that the object has been removed, list the file’s extended attributes using the
method described above:

$ runat ./sample.conf ls –l
total 0
$

Limitations of Extended File Attributes
The extended file attribute functionality that exists in the Solaris 9 OE only supports a
single, flat directory structure. It is not possible to create subdirectories within the
extended attribute namespace. Attempts to create directories using the mkdir(1) com-
mand will fail, as in the example below:

$ runat ./sample.conf mkdir test
mkdir: Failed to make directory "test"; Invalid argument

Similarly, the creation of either symbolic or hard links is prohibited. Attempts to create
links within the extended attribute namespace result in error messages similar to the
following:

$ runat ./sample.conf ln -s ../test2 .
ln: cannot create ./test2: Invalid argument
$ runat ./sample.conf ln -s `pwd`/test2 .
ln: cannot create ./test2: Invalid argument

51February 2004 ;login: HIDING WITHIN THE TREES ●

●

TE

C
H

N
O

LO
G

Y$ runat ./sample.conf ln `pwd`/test2 .
ln: cannot create link ./test2: Invalid argument

Lastly, any command executed using the runat command that relies on it knowing its
current working directory is also likely to fail, as is shown in the following example:

$ runat ./sample.conf man ls
getcwd: Not a directory

Accessing the Extended File Attribute namespace
In addition to running specified commands, the runat command can provide a user
shell within the extended file attribute namespace. This provides the user with an
interface for manipulating extended file attributes without having to repeatedly exe-
cute runat commands. To enter a file’s extended attribute namespace, simply execute
the runat command with only a file argument, as in the following example:

$ runat ./sample.conf

This causes a new user shell to be spawned within the extended file attribute name-
space. From here, attribute creation, modification, and removal operations can pro-
ceed without having to prefix each command with runat <filename>. For example:

$ runat ./sample.conf
$ pwd
cannot access parent directories
$ cp /etc/motd .
$ ls -l
total 2
-rw-r—r— 1 gbrunett staff 49 Aug 25 16:54 motd
$ exit

To exit the user shell, simply type exit. To select a different shell, you can specify the
shell name as the command to be executed, as in the following example:

$ runat ./sample.conf /bin/csh

Security Implications of Extended File Attributes
While the original intent behind the development of extended file attributes was good,
they offer a significant opportunities for misuse. Many of the security implications of
extended file attributes stem from three primary concerns:

■ Extended file attributes cannot be disabled on the system.
■ Extended file attributes are not readily visible to administrators.
■ Commands may be executed in the extended file attribute namespace.

Each of these points will be addressed in more detail in the following sections. It is
important to understand these problems more completely so that you can develop an
appropriate policy on the use of extended file attributes in your environment.

Extended File Attributes Cannot Be Disabled on the System
It is an often-recommended administration practice to disable any service or feature
that you do not need. Extended file attributes, however, are integrated with the Solaris
OS and cannot be disabled. This presents a problem for an organization wishing to
control access to this functionality.

Vol. 29, No. 1 ;login:52

In lieu of preventing the use of this functionality, an administrator is forced to be on
the defensive and attempt to detect the creation, modification, or removal of extended
file attributes.

Extended File Attributes Are Not Readily Visible To |
Administrators
Since an administrator cannot configure the Solaris 9 OE to prohibit the use of
extended file attributes, methods for detection must be addressed. Extended file attrib-
utes provide a great opportunity for those wishing to conceal information or data. In
particular, extended file attributes could be used to hide hacking tools or root kits, cir-
cumvent site security policies by concealing illegal or illicit material, or even used as an
additional file repository (for filesystems that do not enforce quotas).

Caution: As of the publication of this paper, filesystem integrity tools such as Tripwire
and AIDE do not check for the existence of or changes to extended filesystem attrib-
utes. As a result, it is possible that changes made to systems in this manner could go
undetected.

Solaris OS commands such as find will typically not return results for those potential
matches that occur as extended file attributes. There is no mechanism for including
extended file attributes in the results returned except through the mechanisms described
below.

DETECTION USING THE ls(1) COMMAND
The first method for detecting the use of extended file attributes is the new -@ option
to the ls command. Without this option, the ls command is not able to detect or show
the use of extended file attributes:

$ ls -@
total 2
-rw-r—r—@ 1 gbrunett staff 0 Aug 25 14:16 test
-rw-r—r— 2 gbrunett staff 0 Aug 25 14:28 test2

In the above example, the ls command was able to detect the presence of extended file
attributes associated with the file test. Note that no extended file attributes were found for
the file test2. The presence of attributes is indicated by the display of the @ symbol follow-
ing the object’s permissions.

Note: Do not use the -@ option in combination with the -l option, otherwise extended
file attribute information will not be displayed. Also, when the -@ option is used,
access control list information associated with the object will not be displayed.

This process can be further automated across a filesystem or group of filesystems using the
find command using the –xattr option:

$ find / -xattr –exec –ls
12891479 0 -rw-r—r— 1 gbrunett staff 0 Sep 2 12:00 /tmp/test

Note: Commands that check for the size of filesystem objects will continue to report
only the objects’ actual size and not that of the extended attributes. As a result, objects
such as /tmp/test in the above example will show a size of 0 even though the size of its
extended attributes could be considerable.

53February 2004 ;login: HIDING WITHIN THE TREES ●

●

TE

C
H

N
O

LO
G

YDETECTION USING THE runat(1) COMMAND.
Another method for detecting the presence of extended file attributes is to use the
runat command itself. As noted above, extended file attributes can be listed by using
the ls command in conjunction with the runat command, as in the following example:

$ runat ./sample.conf ls –al
total 4
drwxr-xr-x 2 gbrunett staff 512 Aug 25 15:11 .
-rw-r—r— 1 gbrunett staff 0 Aug 25 14:16 ..
-rw-r—r— 1 gbrunett staff 0 Aug 25 15:11 .abc
-rw-r—r— 1 gbrunett staff 49 Aug 25 15:08 motd

In this example, two extended file attributes were found, motd and .abc. It is recom-
mended that you use the -a option to the ls command in order to find any extended
attributes that take the form of “dot files.”

This process can be further automated across a filesystem or group of filesystems using the
find command in conjunction with the runat command, as in the following example:

$ find . -xattr -print -exec runat {} ls -al \;
/tmp/test
total 16
-rw-r—r— 1 gbrunett staff 49 Sep 2 12:00 test2

DETECTION USING SOLARIS AUDITING
The Solaris Auditing subsystem, also known as the Solaris Basic Security Module
(“BSM”) is a fine-grained kernel auditing facility. As such, it is able to audit the use of
those system calls involved in the creation, modification, or destruction of extended
file attributes.

The specific audit events that are relevant to extended file attributes are shown in the
following table:

The Solaris Auditing subsystem must be enabled on the system, using the bsmconv(1M)
command, and configured to log these particular events. For more information on
configuring and using the Solaris Auditing facility, see the Solaris 9 OE product docu-
mentation as well as the Sun BluePrints™ article titled “Auditing in the Solaris 8 Oper-
ating Environment.” While this paper was originally written about the Solaris 8 OE, all
of the concepts and commands remain relevant for the Solaris 9 OE.

Commands May Be Excecuted In the Extended File Attribute
Namespace
Another concern with the implementation and use of extended file attributes is the
ability to execute commands from within the extended attribute namespace. This can
be a significant issue when attempting to find commands that may be running on the

Audit Event System Call

AUE_FCHOWNAT fchownat(2)

AUE_FSTATAT fstatat(2)

AUE_OPENAT_* openat(2)

AUE_RENAMEAT renameat(2)

AUE_UNLINKAT unlinkat(2)

Vol. 29, No. 1 ;login:54

system. For example, let’s consider a scenario where we attempt to find information on
a running process called nap.

For our scenario, we will first create an extended attribute for the file sample.conf by
copying the sleep(1) program and renaming it to nap:

$ runat sample.conf cp /usr/bin/sleep ./nap
$ runat sample.conf ls –l
total 10
-r-xr-xr-x 1 gbrunett staff 4856 Aug 25 15:22 nap

Next, we will execute the nap program from within the sample.conf file’s extended
attribute namespace using the following command:

$ runat sample.conf ./nap 30000 &
[1957]

We can verify that the nap program is running by using the ps(1) command:

$ ps -aef | grep nap | grep -v grep
gbrunett 1958 1957 0 15:23:39 pts/17 0:00 ./nap 30000
gbrunett 1957 1633 0 15:23:39 pts/17 0:00 /bin/sh -c ./nap 30000

Remember, as noted above, you cannot get the current working directory of extended
file attributes. As a result, the pwdx(1) command fails:

$ pwdx 1958
pwdx: cannot resolve cwd for 1958: Not a directory

A different response is returned when a program is launched from within a directory
that is later removed. In this case, the result of the pwdx command is:

pwdx: cannot resolve cwd for 8248: No such file or directory

Using this distinction, you may be able to determine whether a program was executed
from within an extended attribute namespace.

Summary
Solaris 9 OE extended file attributes are not a cause for immediate alarm and panic,
but their existence and use must be clearly understood. As with any new capability,
there is an opportunity for someone to misuse it to gain some kind of advantage. By
understanding how extended file attributes are created, managed, and detected, you
will be able to better defend your systems from attack as well as detect forms of misuse
or abuse of this capability.

REFERENCES
PUBLICATIONS
What’s New in the Solaris 9 Operating
Environment?
http://docs.sun.com/db/doc/806-5202/
6je7shk4h?a=view

Solaris 9 Operating Environment Product
Documentation
http://docs.sun.com/prod/solaris.9

Auditing in the Solaris 8 Operating
Environment
http://www.sun.com/solutions/blueprints/0201/
audit_config.pdf

Linux Data Hiding and Recovery
http://www.linuxsecurity.com/feature_stories/
data-hiding-forensics.html

TOOLS
AIDE
http://www.cs.tut.fi/~rammer/aide.html

bmap
ftp://ftp.scyld.com/pub/forensic_computing/
bmap/

runat(1) Manual Page
http://docs.sun.com/db/doc/816-0210/
6m6nb7mjs?a=view

Solaris Loadable Kernel Modules (SLKM)
http://packetstormsecurity.nl/groups/thc/
slkm-1.0.html

Tripwire
http://www.tripwire.com/

55February 2004 ;login:

the bookworm
BOOKS REVIEWED IN THIS COLUMN

by Peter H. Salus
Peter H. Salus is a
member of the ACM,
the Early English Text
Society, and the Trol-
lope Society, and is a
life member of the
American Oriental
Society. He owns nei-
ther a dog nor a cat.

peter@netpedant.com

The fictitious news group periodically
quoted at tedious length reads like no
news group I’ve ever seen.

I look forward to reading Papadimitriou’s
next theoretical work.

Scheme
Nearly everyone who knows me knows
that I like Scheme. It’s the best of the
descendants of Lisp. But it’s over 25
years since Guy Steele and Gerry Suss-
man wrote their MIT AI memo (#452,
January 1978), and many pages have
been written about Scheme. Dybvig’s
third edition is both an introduction
and a reference book. It’s really very
good and deserves a place on your book-
shelf – but only after you read it.

Eric Raymond said that learning Lisp
makes you a better programmer. Scheme
is the right dialect to learn; and Dybvig’s
book is the way to learn it.

Lots o’ Laughs
OK. So it’s the New Year and you’ve read
the latest User Friendly. Luckily, O’Reilly
has come up with The Best of the Joy of
Tech, so you won’t have any trouble con-
tinuing to laugh at Nitrozac and
Snaggy’s view of the geek world. They
manage to poke fun at nearly every
trend.

Oh. You didn’t know? The Joy of Tech is
an online comic. Now they’re in book
form.

Buy an extra as a Valentine gift for your
favorite geek.

I’ve only a few books I want to talk
about this month: it’s not that the pub-
lishers have ceased production, but I just
can’t get very interested in CSS or in M$.

Incident Response
Incident response teams are the thing
today. There’s Lucas and Moeller, as well
as Mandia and Prosise (reviewed in this
issue of ;login: by Anton Chuvakin).

Lucas and Moeller have turned out a
small, first-rate book, easy to read yet
full of solid information. They set out a
number of the pieces needed for an inci-
dent response team and then proceed to
assemble them in a clear fashion. They
describe the kinds of incidents that
require responses: internal and external,
worms, viruses, intrusions, etc., in a
lucid fashion. Even SYN floods are men-
tioned. The 50 pages of appendixes are
exceptional: a sample incident report,
the federal cybercrime laws, an FAQ, a
table of domain name extensions, and a
list of well-known port numbers are
included. The bibliography is somewhat
disappointing, but adequate.

Turing
Papadimitriou is an outstanding thinker
where computational theory is con-
cerned. I have several of his books. In
Turing he has written a romance novel
combined with a history of computa-
tional theory in the form of a series of
lectures by Alan Turing and a dystopic
image of the Internet.

It’s a failure on every front, I’m afraid.

THE EFFECTIVE INCIDENT RESPONSE
TEAM
JULIE LUCAS AND BRIAN MOELLER

Boston: Addison-Wesley, 2004. Pp. 303.
ISBN 0-201-76175-0.

TURING
CHRISTOS H. PAPADIMITRIOU

Cambridge, MA: MIT Press, 2003. Pp. 284.
ISBN 0-262-16218-0.

THE SCHEME PROGRAMMING
LANGUAGE, 3RD ED.
R. KENT DYBVIG

Cambridge, MA: MIT Press, 2003. Pp. 295.
ISBN 0-262-54148-3.

THE BEST OF THE JOY OF TECH
NITROZAC AND SNAGGY

Sebastopol, CA: O’Reilly, 2003. Pp. 192.
ISBN 0-596-00578-4.

Vol. 29, No. 1 ;login:

Is It 10 Years
Already?
by Peter H. Salus

I’d like to celebrate February 4, 1994.
Here’s why.

At every USENIX meeting from 1986
on, Keith Bostic would stand up and
announce that “35% of the CSRG’s pro-
grams are AT&T code free”; “55% . . .”;
“about 77% . . .”. At the June 1991 meet-
ing in Nashville, BSD Networking
Release 2 was available.

Net2, a USA-Russia collaboration, was
turned into a commercial product,
BSDi. (It had been complete in 1991, but
it was only released in 1993 thanks to
legal delays introduced by UNIX System
Laboratories, which filed suit to the
effect that BSDi infringed USL’s copy-
right, and sought an injunction to pre-
vent sales.)

On March 3, 1993, the court denied the
preliminary injunction. On March 30,
1993, Judge Dickinson Debevoise of the
US District Court of New Jersey reaf-
firmed his denial of USL’s motion.

USL filed a motion for reconsideration.
The court denied the motion. In June
1993, the Regents of the University of
California struck back, filing suit against
USL.

In the meantime, Novell had acquired
USL.

On Friday, February 4, 1994, Novell and
the University of California agreed to
drop all suits and countersuits.

BSDi immediately announced the avail-
ability of 4.4-Lite.

Could someone bring this to the atten-
tion of Darl McBride?

INCIDENT RESPONSE & COMPUTER
FORENSICS, 2D ED.
CHRIS PROSISE, KEVIN MANDIA, AND MATT

PEPE
McGraw-Hill Osborne Media, 2003 Pp. 507.
ISBN 007222696X.

REVIEWED BY ANTON CHUVAKIN
Incident Response is back with a
vengeance! I should disclose that I was
very impressed with the first edition, for
many reasons. Most of the points I liked
about it are still valid, and new ones
abound.

As before, the book is a great combina-
tion of high-level policy and methodol-
ogy material with hands-on “hex dumps
and disk images” stuff. The focus is on
tools and technology as well as on the
process of response and forensics.

The authors cover incident response
process in great detail: from policy to
secure and auditable host configuration,
system logging, network monitoring,
and evidence acquisition on multiple
platforms. In fact, I liked the balanced
platform coverage of both UNIX/Linux
and Windows. The book also contains a
lot of neat background material on
TCP/IP and filesystems, making the
book useful for the less security-savvy.

The useful distinction between first
response and investigation is outlined.
The reader will know what to do when
confronted with a freshly hacked box
and will also learn how to approach a
hard disk extracted from the worksta-
tion of a dishonest employee. So, both
cursory and in-depth response are cov-
ered.

I also enjoyed network-based-evidence
chapters on monitoring and traffic
analysis (using tcpdump, ethereal,
tcpflow, tcptrace). Overall, the data
analysis chapter was the most fun for
me. Also enlightening were the chapters
on evidence collection and preservation
methods. To navigate the maze of what

56

is allowed and what is not, – get the
book.

Another awesome chapter was the one
on reversing and hostile binary analysis.
While not comprehensive, it seem to
summarize the “busy man’s reversing
tips,” applicable in daily security prac-
tice.

The main advantage of the book, in my
opinion, is its comprehensive nature. It
is both a practical “how to” guide and a
good reference for “what is out there.”
The book conveys the sense of having
been written by people who actually did
all the things described in it. It might
sound strange, but I also appreciated the
lack of a “legal material” chapter. Legal
advice should be heard from a lawyer
and not from a security book (and is
usually extremely boring anyway).

book reviews

57February 2004 ;login:

news

●

U
SE

N
IX

 N
EW

S

USENIX MEMBER BENEFITS

Report from the Nominating
Committee
The USENIX Association is governed by
its Bylaws and by its Board of Directors.
Elections are held every two years, and
all eight Board members are elected at
the same time. Four of them serve as at
large and four also serve as statutory
officers – President, Vice President, Trea-
surer, and Secretary.

Per Article 7.1 of the Bylaws of the
USENIX Association, a Nominating
Committee proposes a slate of board
members for the membership’s consid-
eration. As a practical matter, the pur-
pose of a Nominating Committee is to
balance continuity and capability so as
to ensure that the incoming Board is
composed of persons shown by their
actions to be both dedicated to the Asso-
ciation and prepared to lead it forward.

Our recommendations to you are as fol-
lows:

PRESIDENT:
Michael B. Jones, Microsoft Research

VICE PRESIDENT:
Clem Cole, Ammasso

TREASURER:
Theodore Ts’o, IBM

SECRETARY:
Alva Couch, Tufts University

AT LARGE:
Brian Noble, University of Michigan
Matt Blaze, University of Pennsylvania
Geoff Halprin, The SysAdmin Group
John Nicholson, Shaw Pittman LLP
Marshall Kirk McKusick, Author and
Consultant
Jon “maddog” Hall, Linux International

We have every confidence that this slate
is exactly what the Association needs. We
thank the Association for this opportu-
nity to serve in this most important of
roles, but, more important, we thank the
nominees for their willingness to stand
for election and to serve.

Dan Geer (Chair), Consultant
Andrew Hume, AT&T Labs–Research
Aviel D. Rubin, Johns Hopkins Univer-
sity Information Security Institute

USENIX MEMBER BENEFITS
As a member of the USENIX Association,
you receive the following benefits

FREE SUBSCRIPTION TO ;login:, the Association’s
magazine, published six times a year, featur-
ing technical articles, system administration
articles, tips and techniques, practical
columns on such topics as security, Tcl, Perl,
Java, and operating systems, book reviews,
and summaries of sessions at USENIX con-
ferences.

ACCESS TO ;login: online from October 1997
to last month: www.usenix.org/
publications/login/.

ACCESS TO PAPERS from the USENIX Confer-
ences online starting with 1993:
www.usenix.org/publications/library/proceedings/

THE RIGHT TO VOTE on matters affecting the
Association, its bylaws, election of its direc-
tors and officers.

DISCOUNTS on registration fees for all
USENIX conferences.

DISCOUNTS on the purchase of proceedings
and CD-ROMS from USENIX conferences.

SPECIAL DISCOUNTS on a variety of products,
books, software, and periodicals. See
<http://www.usenix.org/membership/
specialdisc.html> for details.

FOR MORE INFORMATION
REGARDING MEMBERSHIP OR

BENEFITS, PLEASE SEE
http://www.usenix.org/

membership/

OR CONTACT
office@usenix.org

Phone: 510 528 8649

USENIX BOARD OF DIRECTORS
Communicate directly with the USENIX Board
of Directors by writing to board@usenix.org.

PRESIDENT:
Marshall Kirk McKusick, kirk@usenix.org

VICE PRESIDENT:
Michael B. Jones, mike@usenix.org

SECRETARY:
Peter Honeyman, honey@usenix.org

TREASURER:
Lois Bennett, lois@usenix.org

DIRECTORS:
Tina Darmohray, tina@usenix.org
John Gilmore, john@usenix.org
Jon “maddog” Hall, maddog@usenix.org
Avi Rubin, avi@usenix.org

EXECUTIVE DIRECTOR:
Ellie Young, ellie@usenix.org

NOMINATING COMMITTEE REPORT●

Vol. 29, No. 1 ;login:

■ One 5-day track with general and
FREENIX sessions

■ One 5-day track of various SIGs
and invited programs

■ Tutorials on all 6 days
■ Invited/keynote talks held on 5 days

as plenaries
■ Vendor BOFs
■ Guru and BOF sessions as usual

It was also agreed that beginning in
2005, the USENIX Annual Technical
Conference will be moved to an
March/April timeframe.

PKI Workshop
USENIX will again cooperate with the
PKI Workshop in 2004 under the same
terms as 2003. USENIX will not be pay-
ing travel expenses for attendance at the
workshop.

POLICIES
Miscellaneous changes were made to the
USENIX Policies regarding travel and
registration fees for volunteers attending
conferences, and regarding the SAGE
dues split, and including a fuller descrip-
tion of election ballots in Section 1.

FUTURE BOARD MEETINGS
The Board agreed to hold a long-term
strategy meeting in the San Francisco
Bay Area on March 1, 2004, followed by
a regular meeting on March 2.

The next meeting will be on June 27,
2004, at the Annual Technical Confer-
ence in Boston.

Summary of the USENIX
Board of Directors’ Actions

The following is a summary of the
actions taken by the USENIX Board of
Directors from June 12, 2003, through
December 4, 2003.

FINANCES
The first draft budget for 2004 was
reviewed and approved, with the follow-
ing actions decided upon:

■ USENIX will allocate $25,000 to
Association marketing in 2004.

■ Standards efforts will be supported
at $23,400 in 2004, which includes
membership in The Open Group
and funding of standards activities.

■ USENIX will maintain its Comput-
ing Research Association member-
ship and provide some funding for
travel to CRA conferences, not to
exceed $8,000 total.

■ USENIX will co-sponsor the CRA-
Snowbird Conference in July 2004.

■ USENIX will provide up to $5,000
for travel to the SANE conference(s).

■ The Association will have a full
audit every four years, immediately
prior to the election of new officers.

USENIX STUDENT PROGRAMS:
USENIX will allocate $35,000, plus
whatever is raised from outside spon-

58

sors, to support student stipends for
2004.

USENIX will again sponsor the USA
Computing Olympiad in the amount of
$15,000 in 2004.

USENIX will sponsor the 2004 Internet
Measurement Conference student
stipends in the amount of $10,000.

USENIX will provide $5,000 for student
stipends for the October 2005 Middle-
ware Conference.

CONFERENCE REGISTRATION FEES

USENIX will reduce registration to the
technical sessions by $50 for Security,
OSDI, FAST, VM, and NSDI, and will
reduce student fees by $110 for Annual
Tech, LISA, and Security in 2004.

USENIX will reduce the technical ses-
sion registration fees by $50 to all of its
conferences (this replaces the policy of
offering a $50 Web registration dis-
count).

CONFERENCES
Annual Technical Conference
It was agreed to accept the new format
for the 2004 USENIX Annual Technical
Conference as outlined below. The staff
will come up with a proposal for new
registration fees that will allow attendees
to pay a reduced rate for attending fewer
than 5 days of technical sessions.

The new format for the 6-day confer-
ence will feature:

by Tara Mulligan and
Ellie Young
tara@usenix.org
ellie@usenix.org

USENIX SUPPORTING MEMBERS
Ajava Systems

Aptitune Corporation

Atos Origin BV

Computer Measurement Group

Delmar Learning

Electronic Frontier Foundation

Interhack

MacConnection

The Measurement Factory

Microsoft Research

Sun Microsystems, Inc.

Taos – The SysAdmin Company

UUNET Technologies, Inc.

Veritas Software

Several readers entered the latest haiku
competition, which requested “a haiku
that reveals the joys or frustrations that
surround the process of developing
scripts or programs.” Below is a com-
pendium of the best, with my (Rob Kol-
stad] favorite saved for last.

Andrew Siegel:
Turn on debug code
Problems become memories
Sanity is lost

David Mostardi:
Programmer? Coder?
Nah, too boring. How about:
Knight in Bright Armor

Tobias Kreidl:
Compiled, no errors
I now launch my new routine . . .
Another core dump

The pointers are pure
My stack is clean as can be
Why the overflow?

Matthew Hurlburt:
Shell script holy wars
Korn versus Bash versus C
Zealot warriors

User cannot work
I program a solution
Onto the next one

Angels sing above
Will miracles never cease?
A clean compile!

Troubled is the night
Programs crashing like thunder
The code is not good

Howard Owen:
CPAN is chasing
Dependencies, and loading
Perl five eight one

An Expectation
Wintry, unmaintainable
My God, Tcl sucks!

Bashing through Spring flood
Undergraduate hackers
Crack servers once more

59February 2004 ;login:

RUNNERS UP:
Clif Flynt

Tiny gems of thought
Encased in a matrix of dross
like perls before swine.

Daniel Singer:
A Bash Trilogy

beginning to code
keywords flow like summer rain
a script is blooming

i run my shell script
“‘end of file’ unexpected”
one quote too many

like a chortling stream
nascent script runs perfectly
i feel bourne again

MY FAVORITE:
Sameer Ajmani:

Craftsman or hacker
Code poet or code monkey
Who am I today?

Anagram Contest
You’ve played anagrams. That’s where
you take the letters of a word or phrase
and scramble them to make a new word
or phrase:
ROB KOLSTAD STARK BLOOD

The phrase “Information Superhighway”
is rich with all sorts of fun words. See if
you can come up with the best anagram.
Be sure to use all the letters! Consult
http://www.oneacross.com/anagrams for
starting places.

HAIKUS ●

David Mather:
Sometime last Summer
I wrote a clever Perl script
I can’t read it now

Clif Flynt:
Recursive function
Like a snake eating its tail.
Will it never end?

A wish is granted.
And ideas can take form.
A magic bottle.

A bottle of dreams.
A cup of designs and tools.
My plate is now full.

Laughing beams of light
Live on in a photograph
My dreams live in code.

Evolution

Tickle your fancy.
Dream of fantastic projects.
Then comes the fun part.

The sky’s the limit.
Ideas flying about
Like kites on a string

Kites dance in the air.
Leaves are scattered by the wind.
Who wrote this garbage?

Sean Callanan:
Trees branch out to NULL
Program, reaching nothingness
Leaves me with a core.

K.C. Smith:
Counting the brackets
Four five six seven eight crap
Counting the brackets

●

U

SE
N

IX
 N

EW
S

More Haikus!

60

conference reports
September 11th gave new urgency to the
debate over whether information collec-
tion and dissemination is dangerous or
empowering. One view is that vulnera-
bility information should be kept secret
and out of the hands of potential crimi-
nals and foreign agents. Another view is
that the public needs to be informed
about security weaknesses, so that peo-
ple can take appropriate precautions and
so that there will be a constituency to
pressure for the rapid repair of vulnera-
bilities. Meanwhile, policy makers strug-
gle to find a balance between promoting
security research, constructive informa-
tion sharing, remediation and protecting
commercial interests. Industry has tried
to develop ‘best practices’ for reporting
and repairing vulnerabilities, but major
disagreements – over how much infor-
mation to disclose, to whom, and when
– persist.

The federal government has tried to
both establish standards for commercial
entities to share information about vul-
nerabilities and to pass laws to deter the
distribution of information that may
enable cyberattacks. However, critics say
these initiatives help only a select few,
threaten proprietary information, deter
legitimate security research and are
overly expensive. During the course of
this day-long conference, featured
speakers and participants will work
towards a solution for both industry and
government that promotes computer
security and addresses the economic,
governmental, and social issues that
arise under current research and report-
ing practices.”

The format of this conference was a
series of brief panel presentations, each
considering a particular question related
to the conference subject. Discussion
followed each panel, facilitated by the
session moderator. The summaries rep-
resent my own observations and notes.
However, some details were gleaned
from the blog maintained by the confer-

This issue’s reports on the Cybersecu-
rity, Research, and Disclosure Confer-
ence, and on LISA ’03.

Our thanks to the summarizers, Cedric
Bennett for Cybersecurity and the fol-
lowing for LISA ’03:

Josh Simon, for once again coordinating the
summarizing of the Conference events

Venkata Phani Kiran Achanta
Siddharth Aggarwal

Kenytt Avery
Emma Buneci

Marko Bukovac
Carrie Gates

Robert W. Gill
der.hans

Hernan Lafitte
Jarrod Millman

Bryan Palmo
Ari Pollack

William Reading
Jason Rouse

Kevin Sullivan
Aaron Teche

Steve Wormley

Cybersecurity, Research, and
Disclosure Conference
STANFORD UNIVERSITY LAW
SCHOOL, CENTER FOR INTERNET
AND SOCIETY, STANFORD,
CALIFORNIA
NOVEMBER 22, 2003

The Center for Internet and Society
(CIS) is a public interest technology law
and policy program at Stanford Law
School and a part of the Law, Science,
and Technology Program. The CIS
brings together scholars, academics, leg-
islators, students, programmers, security
researchers, and scientists to study the
interaction of new technologies and the
law and to examine how the synergy
between the two can either promote or
harm public goods such as free speech,
privacy, public commons, diversity, and
scientific inquiry. The CIS strives as well
to improve both technology and law,
encouraging decision-makers to design
both as a means to further democratic
values.

The Web site describing the purpose of
this conference at http://cyberlaw.
stanford.edu/security/ as of 12/9/03 read
like this:

“This conference explores the relation-
ship between computer security, privacy,
and disclosure of information about
security vulnerabilities.

Summarized by
Cedric Bennett
Cedric Bennett is an
independent consult-
ant specializing in the
management of
information security
in higher education.
Most recently, he
served as the director
for information secu-
rity services at Stan-
ford University.
Ced.Bennett@Stanford.edu

Vol. 29, No. 1 ;login:

ence organizers at http://cyberlaw.
stanford.edu/blogs/ as of 11/27/03.

WELCOME AND INTRODUCTION
Jennifer Granick, Center for Internet
and Society (CIS)
In her opening remarks, Ms. Granick
talked about the critical nature of com-
puter and network systems and the sub-
sequent importance of security. She
touched on a few of the relevant and
legal issues, including some of her own
experiences, and set the stage for the
remainder of the day’s discussions:

n Security vulnerability information
treated as trade secrets

n Internal emails showing security
vulnerabilities in voting systems
treated as DMCA copyright viola-
tion cases

n Individuals prosecuted and impris-
oned for disclosing security vulner-
abilities

The “full disclosure” faction argues that
disclosing vulnerabilities assists every-
one in patching those vulnerabilities and
that it facilitates effective risk manage-
ment. The other side argues that such
information out in the open assists those
who would do wrong things. She
asserted that there was general agree-
ment that responsible disclosure helps
security more than it harms it. Of con-
cern around that proposition, however,
are the following questions: Who makes
that calculation? What factors are con-
sidered? What are the long- and short-
term costs? Are they worth it?

PANEL
WHEN DOES DISCLOSURE BEST PROMOTE
SECURITY AND MINIMIZE EXPLOITATIONS, AND
HOW MUCH INFORMATION SHOULD BE DIS-
CLOSED AT A GIVEN POINT IN TIME, AND TO
WHOM?
Jennifer Granick, Stanford CIS, modera-
tor; David Litchfield, NGS Software;
Tiina Havana, Department of Electrical
and Information Engineering, Univer-
sity of Oulu, Finland; Gerhard Eschel-
beck, Qualys

61February 2004 ;login: CYBERSECURITY, RESEARCH, AND DISCLOSURE CONFERENCE l

l

 C
O

N
FE

R
EN

C
E

R
EP

O
RT

SMs. Havana focused on what she called a
checklist for designing a vulnerability
disclosure policy and considered the
political aspects of security and disclo-
sure. “Can we manage to get the process
such that there is no need for public reg-
ulation?” In her somewhat philosophical
presentation, she spoke about the com-
plexity of communicating security dis-
coveries and also about the timing of an
information release strategy.

Mr. Litchfield self-identified as an indi-
vidual who has published proof-of-con-
cept code eventually used in the Slam-
mer worm (because “code is a better way
to get an idea across than English”). But
he also believes that we must not use the
“real” code to illustrate the problem. He
believes strongly in the value of respon-
sible disclosure and promotes the guide-
lines for security vulnerability published
by the Organization for Internet Safety.
He is concerned that many researchers
and vendors do not adhere to those
guidelines even while claiming they are
part of organizational policy.

He believes it is important to stick to
those guidelines not only because they
promote responsible disclosure, but also
because by doing so an example is set for
others. Researchers and vendors have a
responsibility to stick to their words
about disclosure and repair, respectively.
Because of his experience with the Slam-
mer worm, he has publicly declared that
he will no longer publish proof-of-con-
cept code, because something he wrote
intended for educational use was mis-
used for nefarious purposes – he doesn’t
want to be part of that. When asked if
his code made it that much easier for the
black-hat hackers, he said that they are
smart enough to write their own code:
“If anything, I saved him about 20 min-
utes.” When asked why, if it only saved
20 minutes, he made the moral decision
to stop writing such proof-of-concept
code, he replied, “Because 20 minutes is
still 20 minutes.”

Mr. Eschelbeck, a researcher who is
developing a database of vulnerabilities

and exploits, reported on some of his
findings:

n Although there are thousands of
vulnerabilities, we only need to
worry about approximately 10–15
high-profile ones that cause all the
trouble, but those very prevalent
vulnerabilities change over time.
That is because systems are con-
stantly being modified, installed,
and reinstalled, which causes many
vulnerabilities to reappear.

n Many, many vulnerabilities remain
unpatched for extended periods of
time.

n The half-life of a critical vulnerabil-
ity is 30 days (i.e., it takes about 30
days to clear a critical vulnerability
by 50%).

n Some vulnerabilities don’t go away
(for keeps) – they keep coming
back.

n According to the data he has col-
lected, coordinated disclosure is
better than uncoordinated disclo-
sure in fighting exploits.

In discussion there was significant agree-
ment among the speakers that vulnera-
bility information should only be
publicly released when a patch is avail-
able. However, if the vulnerability is dis-
covered in the wild, that is a different
situation. There was also some agree-
ment that the threat of vulnerability dis-
closure has some impact on patch
production by vendors.

PANEL
HOW CAN INDEPENDENT RESEARCHERS BE
ADEQUATELY COMPENSATED FOR THE VALU-
ABLE SERVICE THEY PROVIDE TO VENDORS
AND CUSTOMERS WHILE ENCOURAGING
RESPONSIBLE REPORTING?
Chris Sprigman, Stanford CIS Fellow,
moderator; Len Sassaman, Anonymizer,
Inc.; Chris Wysopal, @Stake
Mr. Wysopal contrasted two kinds of
incentives, the academic model and the
commercial model. In the academic
model, recognition is the reward, as is
the sense of contributing to the “com-

mon good.” Recognition also leads to
gaining a reputation as an expert, which
can lead to job offers, book publications,
etc. In the commercial model, on the
other hand, the rewards can be jobs,
time-based value for software vendors
(i.e., first-to-market), direct selling of
vulnerability information, “bug boun-
ties” by vendors (most recently), and,
possibly, government-sponsored
research (although this may come with
strings attached).

Mr. Sassaman believes that vendors are
not motivated to release secure products
unless it can be shown to affect their
bottom line. He also believes that black-
hat malware creators are doing us a
favor by bringing vulnerabilities out into
the open (and that this is okay because
they don’t target but just “blast”). Fortu-
nately, although zero-day, targeted
exploits are possible, they are not yet
common. Motivations of researchers
must be considered; what does a
researcher gain (or lose) by adhering to
vulnerability publication guidelines? We
need to structure an environment in
which good behavior is rewarded and
bad behavior has consequences.

In discussion, the question of ideology
as a motivator was raised. Some thought
this was best, since it is unstoppable.
There was also a question about a rumor
that spammers are paying hackers for
exploits (and some confirmation that it
was true). There was a reiteration of the
notion that responsible reporting gets us
the greatest good with the least risk.

PANEL
DOES THE COMMERCIALIZATION OF SECURITY
INFORMATION PROMOTE SECURITY, OR
SHOULD REPORTING BE AN ACADEMIC OR
GOVERNMENTAL FUNCTION?
Chris Sprigman, Stanford CIS Fellow,
moderator; Shawn Hernan, CERT; Sim-
ple Nomad, NMRC; Sunil James, iDE-
FENSE US
Mr. Sprigman started this panel with the
question, “Does commercialization pro-
vide motivation sufficient to facilitate

62 Vol. 29, No. 1 ;login:

discovery, disclosure and security, or
does it have the opposite effect?

Mr. Hernan believes in capitalism and
free speech. But he believes that societal
safety must be considered as well. He
used examples of sharing vulnerability
information with regard to critical infra-
structures such as hospitals, power, and
so on. There is lots of evidence that
information has value. There is money
to be made in commercialization. He
objects to a model of restricted informa-
tion.

He also commented that commercializa-
tion of security/vulnerability can dra-
matically complicate the process of
identifying and fixing security problems.
He believes there is a certain amount of
hubris in the computer/network security
community with regard to disclosure.
He stated that the CERT mailing list is
~150,000 people; Bugtraq has ~50,000
subscribers;, but an episode of Friends
draws ~30,000,000 viewers.

Mr. James believes that commercializa-
tion is good. A company such as iDE-
FENSE can provide incentives
(payments) to researchers and other
contributors and add its own value to
the information. He raised the question
of trust of vulnerability information
which is voluntarily provided.

Mr. Nomad indicated that he was com-
ing from an entirely different perspective
and that he had a speech to make that
might be considered, but was not
intended to be, a rant. He has serious
concerns about the role of government
in such research. Today, as was men-
tioned earlier in this conference, the
DMCA is being used to prevent disclo-
sure of security vulnerabilities. The USA
Patriot Act makes port-scanning into a
country’s Internet space illegal (possibly
an act of war). This is creating an envi-
ronment that stifles legitimate research.

On the other hand, he is aware of spam-
mers who are paying large sums for
exploit code. He has met people in Seat-

tle who make a very comfortable living
(six figures) writing spammer exploit
code (but won’t work for Microsoft
“because they are evil”).

As a result of this repressive legislation
and commercialization, computer and
network security is suffering. He prefers
the “academic” model of research and
believes information should be free. No
single reporting model will fit everyone;
such a model won’t work.

In discussion, the question was asked
when there are any situations in which it
makes sense to notify the vendor and no
one else. Mr. James indicated that they
take that into account in their disclosure
model. They notify the vendor first and
then they notify their customers. He
acknowledged that it is a difficult bal-
ance to maintain. This raised the ques-
tion of customer certification: how do
they know that their customers are not
terrorists or mobsters?

Mr. Nomad asked the rhetorical ques-
tion, “What if a law was passed that said
that every time you discovered a vulner-
ability, you had to write a worm for it?”
Such a law would be highly motivational
in getting people to fix their systems.

PANEL
WHAT PRACTICES OR POLICIES FACILITATE
COMMUNICATION BETWEEN VENDORS AND
RESEARCHERS? WHAT SHOULD THE
RESEARCHER DO? WHAT SHOULD THE VEN-
DOR DO? SHOULD PRACTICES DIFFER FOR
SMALL VENDORS, ISPS OR WEB SITE OWN-
ERS?
David Dill, Stanford University, moder-
ator; Steve Lipner, Microsoft; Matt
Blaze, AT&T
Mr. Blaze expressed the concern that the
premise of the discussion regarding vul-
nerability disclosure and software patch-
ing is like the study of medicine being
about the efficient disposal of corpses.
His assertion is that we need to write
more secure software. But, just as we
don’t completely understand physics,
biology, or chemistry, we don’t yet

understand enough about computer
code.

He sees this as a research and engineer-
ing problem. Those disciplines follow
certain rules (scientific methodology) ,
to wit: You don’t just trust me because of
my reputation; current work builds
upon the work of others, and everything
is published (except that you must argue
convincingly that your publication con-
tributes significantly to the body of
knowledge). He quoted Alfred Hobbs, a
figure from the 1850s whose research
into and ability to pick various strong-
lock mechanisms created a lot of contro-
versy at the time, and suggested that we
might learn some lessons from it if we
consider it to be about Internet security
rather than physical lock mechanisms.

Mr. Lipner described some of the prob-
lems of trying to develop and maintain
secure code. He works in three time
frames:

n Response – to the next bug. Follow
responsible rules of telling the ven-
dor and allow them to fix the prob-
lem before telling others.

n Release – to cut the vulnerability
rate down. He is against the release
of concept code, since there is good
evidence that it is used by others in
exploits.

n New technology – avoid reintroduc-
ing old vulnerabilities as well as new
ones.

About 10% of the thousands of bug
reports they receive reflect real prob-
lems, with about 1% actually exposing
vulnerabilities. They must look at all of
the reports.

In discussion it was noted that no ven-
dor wants to release code with security
vulnerabilities. Many more people are
harmed by the release of exploit code
than benefit from using it for responsi-
ble testing. On the other hand, if one
person thinks of a clever idea (an
exploit), the chances are good that
someone else has also.

63February 2004 ;login:

l

 C
O

N
FE

R
EN

C
E

R
EP

O
RT

SPANEL
HOW DO YOU MOTIVATE THE VENDOR TO
RELEASE MORE SECURE SOFTWARE WITHOUT
CRIPPLING INNOVATION?
Scott Blake, BindView, moderator;
Mary Ann Davidson, Oracle; Bruce
Schneier, Counterpane
Mr. Schneier said that transparency is
critical (where “transparency” means
that we understand the vendor’s process
for dealing with bugs). He wondered if
we need a threat of transparency to
make vendors do a better job. He feels it
is better to get the top software vendors
to introduce effective security ideas than
to get hundreds of researchers to do so.
Vendors are not stupid and they are not
charities, but they need incentives. He
believes that society has several “knobs”
it can tweak to create those incentives:

n Public exposure
n Competition
n Law (criminal, statute, tort)
n Technology/economics (cheaper to

develop more secure code than to
fix it later)

n Society (what’s “OK”)

Ms. Davidson declared that security is
not antithetical to innovation (security
is not the enemy of feature sets). But it
must be built in from the beginning. No
one really knows what the cost of a
secure system is (yet). Software needs to
be better even though it will never be
perfect. Moreover, security is always
someone else’s job (although that is
beginning to change). She is concerned
about the “L” words (legislation and lia-
bility); Congress will do something if
industry doesn’t.

In motivating vendors, she sees:

n Use of security as one of the pur-
chasing criteria (the Department of
Defense does this today)

n Requiring software to have secure
conditions set as a default

n Security as becoming a market dis-
criminator

n Big cost avoidance (doing it right
the first time – she admits to having

trouble convincing her manage-
ment of that proposition)

She also wonders about:

n A “UL” approach to software secu-
rity

n A required licensing scheme for
programmers (we don’t let just any-
one build a bridge and test it by let-
ting people drive over it to see if it
stays up)

n More education on writing secure
software from higher education.

n The development of better tools to
automate best practices

In discussion Mr. Schneier said that he
doesn’t like to see more regulation but
that it nevertheless may be a part of the
solution. Ms. Davidson also pointed out
that the government is a very large cus-
tomer of software and that regulation
isn’t the only way they can influence
vendor behavior.

One participant suggested that comput-
ing has become too “everyman”; market-
ing has convinced people that they need
computers, but those people do not
know how to maintain them [ignoring, I
thought, that most people do not know
how to maintain their cars either, but we
don’t suggest that’s a reason for them
not to have them – cb].

It was suggested that developers need to
internalize security as a key part of the
development. When someone else asked
about incentives employers can offer
employees to act in that way, the
response was: (positively) salary, bonus,
stock option, or (negatively) job loss.

PANEL
WHAT POLICIES OR PRACTICES ENCOURAGE
THE INSTALLATION OF PATCHES?
Lauren Gelman, Stanford CIS, modera-
tor; Stephanie Fohn, Security Consul-
tant; Vincent Weafer, Symantec
Mr. Weafer feels that patching is a big
issue – it is often just a matter of pure
numbers (which are large). Given a fixed
set of resources, where should one be

CYBERSECURITY, RESEARCH, AND DISCLOSURE CONFERENCE l

allocating energy? More than just patch-
ing needs to be considered; setup and
other security measures (e.g., firewalls)
need to be used. How does the industry
deal with the home users with regard to
patching? This may be solved either
through education or automation.

Patching is very complex, says Ms. Fohn.
For example, many companies don’t
trust patches, others can’t find all the
computers that need patching, and oth-
ers believe that they don’t need to patch
as long as they have a firewall. Until
recently, the risk-adjusted cost of patch-
ing has been higher than the risk-
adjusted cost of not patching. These
costs (of patching) have included not
only the people-time and tools they use
but the risk of making things worse with
patches. This comparison has started to
shift toward patching because the risk-
adjusted cost of not patching is going
up. Vendors could helpfully work on
reducing the risk of patching (as another
incentive to encourage patching).

In discussion, the question of the loca-
tion of liability was raised. Mr. Weafer
feels that it is more on the user than the
vendor and can actually be found to be
on vendors, users, and the maintenance
(IT) folks as well. There was some dis-
cussion of automatic patching coming
from vendors (a growing trend) and the
practicality/usability of that for some-
one at the other end of a slow connec-
tion.

PANEL
WHAT ARE THE PRACTICAL CONSIDERATIONS
IN FORMULATING, IMPLEMENTING, AND
ENFORCING VULNERABILITY DISCLOSURE POLI-
CIES OR BEST PRACTICES?
Jennifer Granick, Stanford CIS, modera-
tor; Jim Duncan, Cisco; Hal Varian,
Haas School of Business, University of
California, Berkeley
According to Mr. Varian, it isn’t so much
the technology as the practices that can
be at the root of the problem. He feels
that a good model is to assign the liabil-
ity to the party that is most involved

64 Vol. 29, No. 1 ;login:

with the risk. (He provided an example
of law regarding ATMs: in England, the
liability is assigned to the customer – a
bad model in his view – but in the US,
the liability is assigned to the banks,
which he sees as a good model.) How-
ever, he feels that strict liability is not
optimal; if one party bears all of the
cost, the other parties don’t have reason
to be careful, because they will be com-
pensated if something goes wrong (e.g.,
Microsoft). A better approach is to apply
a negligence rule, where the courts
establish a level of due care. If the due-
care standard is set well, the parties have
incentive to meet that standard as a nat-
ural part of doing business.

An alternative and possibly more practi-
cal approach is to consider insurance.
Insurance companies are basically selling
risk management to their customers. In
order to obtain the insurance, a com-
pany must conform to minimum guide-
lines (e.g., so many sprinklers per square
foot to qualify for fire insurance). In
some ways, they are imposing the due-
care standards that would be set by
courts and are probably better at it
because they have their own financial
incentives. The problem for cyber-insur-
ance, of course, is that the actuarial data-
bases don’t yet exist, and there are no
incentives yet in place for such data to be
collected.

Mr. Duncan observed that vendors often
deal with customers but not the actual
consumers of their products. He also
discussed “need to know” as an impor-
tant criterion for disclosure and agreed
that there is a need for transparency. We
need a way to report the information
safely – all the standard (security) rules
apply to these transactions. Unfortu-
nately, crypto is hard to use and most
people get it wrong.

“Scoring” vulnerabilities is very subjec-
tive; everyone does it their own way.
This makes measurement impossible.
Timeline is another issue; nearly every-
one agrees on disclosure but not on the

calendar for it (even down to the partic-
ular days of the week to avoid when dis-
closing problems). When the issues cross
vendor lines, solving them becomes even
more complex. There is a lack of case
law and experience, but there is more
focus on these problems and we are get-
ting better.

In discussion, there was consideration of
“need to know” and of appropriate
information sharing among responsible
parties as a way to build the knowledge
base (e.g., the 12 Federal Reserve banks
sharing operating information in a non-
competitive way). This was another
argument in favor of transparency.

PANEL
WHAT ROLE SHOULD LEGAL RULES PLAY, AND
HOW CAN THE LAW HELP OR HURT SECURITY
IN THE AREA OF VULNERABILITY DISCLOSURE?
Greg Schaffer, PricewaterhouseCoop-
ers, moderator; Peter Swire, Professor
of Law at Ohio State University;
Stephen Wu, InfoSec Law Group
Mr. Swire presented a model for when
disclosure helps security (from a book
he is writing). This model explores the
paradox that there are times when dis-
closure can be a good thing and other
times when disclosure can be a bad
thing (“good” and “bad” being defined
as helping the defenders and helping the
attackers, respectively). In illustrating
this model, he contrasted physical exam-
ples and software examples. He also
asserted that we might want more dis-
closure just because it helps our general
democracy (and might help us with pri-
vacy and confidentiality).

Mr. Wu pointed out that there might be
liability questions that arise from dis-
closing vulnerabilities and there might
be liability questions that arise from not
disclosing, as well (a “damned if you do
and damned if you don’t” kind of issue).
He also raised a question about manda-
tory reporting requirements. He pro-
vided a quick tutorial on the sources of
liability (i.e., contract, tort, and statutory

law) for the approximately 60% non-
lawyers attending the conference .

In discussion, someone commented on
Mr. Swire’s model, pointing out that he
was distinguishing between the physical
world and the software world but that a
distinction made between mechanism
and instances would have been a better
approach. Mr. Swire replied that when
considering instances, one must often
consider the first instance differently
than others (since that will often educate
the defenders and change the effect of
subsequent instances). This led to a dis-
cussion of the ability of the law to oper-
ate in this complex arena (and the
likelihood, or not, of lawyers staying out
of the fray). There seemed to be some
agreement that we will have some very
confused judges, at least for a while.

PANEL
BRIEF CONCLUDING REMARKS

Jennifer Granick, Stanford CIS; Lauren
Gelman, Stanford CIS; Scott Blake,
BindView; Greg Schaffer, Pricewater-
houseCoopers
No one today has argued against the
idea that the market has failed to pro-
vide security. Instead of capitalism sav-
ing us, we are beginning to conclude
that there may be a role for government,
a conclusion that many of us find both
interesting and disturbing.

There are some interesting (legal) ques-
tions to be answered with regard to dis-
closure, nondisclosure, and liability.
What if one can become liable for know-
ing something and not disclosing it?

Security is about more than fixing “this
one bug.” It could be about democracy.
We don’t know enough about security to
know that it ought to (or not) be con-
sidered differently from other scientific
enterprises.

Some people think that the disconnect is
about Republicans and Democrats, but
it is really about the information-tech-
nology and legal communities. Both
have well-developed models of their

65February 2004 ;login: LISA ’03 l

l

 C
O

N
FE

R
EN

C
E

R
EP

O
RT

Suniverses and like to be the masters of
their respective domains. Neither likes
the discomfort of not having a handle
on important things that apply to their
realms. There are lots of people who
have not thought about these problems
and won’t until there is a crisis, and then
the decisions are unlikely to be well-con-
sidered and thoughtful. There is a seri-
ous need for us to think about these
problems in advance, as we have been
doing today.

17th Large Installation
Systems Administration
Conference (LISA ’03)
San Diego, California
October 26–31, 2003
KEYNOTE ADDRESS

INSIDE EBAY.COM: THE SYSTEM ADMINISTRA-
TOR’S PERSPECTIVE

Paul Kilmartin, eBay, Inc.
Summarized by Bryan Parno
Kicking off the 17th annual LISA confer-
ence, Paul Kilmartin, eBay’s director of
availability and performance engineer-
ing, gave a spirited and engaging tour of
the development of eBay’s infrastruc-
ture, from a single PC in eBay founder
Pierre Omidyar’s bedroom to the cur-
rent SAN-based system composed of
hundreds of enterprise-level machines.
Along the way, eBay’s user population
exploded from a few hundred in 1995 to
over 85 million today.

Throughout the talk, Kilmartin stressed
the incredible importance of availability.
Since eBay averages $738 of gross mer-
chandise sales every second, the prospect
of any prolonged outage is costly indeed.
This intense usage also makes eBay the
world’s 75th largest economic market,
falling somewhere between Uzbekistan
and the Dominican Republic. Kilmartin
repeatedly emphasized how the magni-
tude of eBay’s 85 million user-base
impacts virtually every decision the
company makes.

In the historical segment of his talk, Kil-
martin highlighted eBay’s transition
from a system based on two-node Veri-
tas clusters to a large-scale SAN. On the
plus side, this cut down on the amount
of idle hardware, always an important
consideration for cost-conscious admin-
istrators. It also provided a greater
degree of fault minimization and isola-
tion, since the two-node clusters suf-
fered from electrical issues during
servicing. Unfortunately, shortly after
the migration to the SAN, the co-loca-
tion company hosting the site
announced it would be going out of
business. Kilmartin’s team of system
administrators built an entirely new
SAN in three weeks and made the
migration with only two hours of down-
time in September of 2001. The bank-
ruptcy of the Exodus storage facility in
November of 2001 forced yet another
move.

Even though the public perceives eBay as
an industry leader, Kilmartin repeatedly
emphasized his preference for remaining
firmly in the mainstream of technology.
On several occasions, he urged the audi-
ence to forge on ahead and aggressively
report problems, so that after a few years
of maturation, eBay could adopt the
“new” technology. He offered several tips
to the audience, encouraging system
administrators to doubt everything, to
make the system work hundreds of
times before trusting it, and to challenge
“best procedures” by at least asking for
references. He also emphasized the
importance of knowing one’s role on the
team, citing his initial resistance to
eBay’s foray into the car market (now, he
says, a Corvette sells on eBay every 64
minutes). Kilmartin also stressed the
need to constantly seek out a better
understanding of the customer and how
the customer uses the product. Com-
menting on hiring decisions, he
reminded the audience that neither
experience nor certification necessarily
equates to competence. Concluding with
a return to the theme of availability, Kil-

martin asserted the need for vendors to
recognize eBay as an active customer,
not a cadaver; in other words, the com-
pany needs working solutions that can
be diagnosed and repaired on the fly, not
systems that need to be taken offline and
dissected to provide information.

REFEREED PAPERS

ADMINISTERING ESSENTIAL SERVICES
Summarized by Ari Pollack
RADMIND: THE INTEGRATION OF FILESYSTEM
INTEGRITY CHECKING WITH FILESYSTEM
MANAGEMENT

Wesley D. Craig and Patrick M.
McNeal, University of Michigan
Wesley and Patrick introduced radmind,
a filesystem management tool designed
to replace similar tools, such as Tripwire
and cfengine, and overcome some limi-
tations with existing products. Tripwire,
for instance, does not scale well or know
the difference between unintended
changes and OS updates.

Radmind is based on existing work from
people in the sysadmin community such
as Evard and Anderson, and on features
from tried-and-true software. Like Trip-
wire, it includes integrity. Features in
both rsync and radmind include copying
of files and comparison to policy, not a
live filesystem. Borrowing from
cfengine, radmind provides abstract
configuration and abstraction of any file
set.

Radmind goes further than tripwire; in
addition to detecting unwanted changes
to the filesystem, it can automatically
revert back to a known good state con-
figured in the policy. It only generates
reports when something unusual hap-
pens. It is easy to understand, has simple
setup and configuration, and requires no
programming skills for successful use.
Radmind is platform-independent; it
works on Windows, and it is already in
use on MacOS X laptops, Linux and
Solaris servers, and supercomputing
clusters.

66 Vol. 29, No. 1 ;login:

FURTHER TORTURE: MORE TESTING OF
BACKUP AND ARCHIVE PROGRAMS

Elizabeth D. Zwicky, Great Circle
Associates
Elizabeth presented the results of her
findings from torture-testing various
backup tools for UNIX and UNIX-like
systems. This is a follow-up to her 1991
paper, which was inspired by frustration
at conflicting rumors and vague docu-
mentation. The term “backup program”
is used loosely; there is no correct term
for something that’s intended to copy
files to another medium for storage
(rather than immediate usage).

What she found in 1991 can be summed
up as, “don’t trust what you’ve heard, go
out and verify.” She had heard reports
that “cpio doesn’t handle too many hard
links,” so she found out what “too many”
meant.

Her latest paper presents a new round of
verification of old, out-of-date data.
Some of the properties of backups she
covers are: file size, devices, strange
names, access permissions, holes
(numerical representations of nulls on
the filesystem), long names, and links. In
1991, every tool died at some point
except dump, resulting in core dumps
and/or data corruption. Now, nothing
handles paths over the maximum path
length defined by the operating system,
and nothing but restore handled holes
absolutely correctly.

Elizabeth says that while backups are
difficult, testing backup tools is fun and
not that hard. Also, backup programs
have different targets and are not consis-
tently useful to everyone. She also pre-
sented some conclusions stemming from
her research:

n Don’t write your own backup pro-
gram; there are more than enough
already.

n Never use old file formats for back-
ups.

n The name of your backup program
does not predict its performance in
your configuration.

n Long pathnames are an unsolved
problem.

n Trust, but verify.
n Backup programs need time to

mature.

AN ANALYSIS OF DATABASE-DRIVEN MAIL
SERVERS

Nick Elprin and Bryan Parno, Harvard
University
Nick and Bryan took a look at the differ-
ent kinds of common mail storage for-
mats in use. The three most common
are: mbox format, where every email is
concatenated into a flat text file; maildirs,
where every email is stored in a database
file; and databases, where all mail is
stored in some kind of structured data-
base.

The two database formats used for test-
ing were Cyrus, which uses Berkeley DB,
and their own SQL model using MySQL.
Here is what Nick and Bryan found:

n Mbox performs better than Cyrus
for a small account in a full-text
search.

n Cyrus performs better than maildir
and mbox for larger accounts.

n MySQL performs better than the
others overall.

n Maildir always performs the worst.

Databases allow better fine-tuning of
mail servers and better scalability. File-
based solutions perform better on some
operations, such as expunging mail.
However, performance is usually not the
only factor when deciding on a mail for-
mat. Maildirs do not suffer from the
same locking problems as mbox, and a
structured database may require more
overhead than is acceptable in some sit-
uations.

INFORMATION AND CONTENT
MANAGEMENT
Summarized by Kenytt Avery

A SECURE AND TRANSPARENT FIREWALL WEB
PROXY

Roger Crandell, James Clifford, and
Alexander Kent, Los Alamos National
Laboratory
James Clifford describes the LANL Web
proxy as a “benevolent man in the mid-
dle.” In contrast to ordinary Web proxies
like Squid, the LANL Web proxy pro-
vides access control on incoming rather
than outgoing connections. The purpose
of the proxy is to allow access to internal
Web applications (e.g., Web mail, Nagios
network monitoring) from public Inter-
net sites outside the firewall.

The proxy consists of two pieces, the
redirection daemon redird, which redi-
rects HTTP requests for internal docu-
ments to the equivalent request via
HTTPS, and the Web flow daemon wfd,
which handles authentication and for-
warding requests to the internal net-
work. The external server contains a
wildcard SSL certificate for lanl.gov,
allowing it to proxy for any internal sys-
tem.

According to the authors, the chief bene-
fit of the proxy solution is its simplicity,
requiring no configuration changes or
extra software to be installed on the
client beyond an ordinary Web browser.
This is in contrast to VPN solutions,
which require client software and user
training, or to non-transparent proxy
servers, which require browsers to be
configured to use them.

An important question from the audi-
ence concerned the security of potential
clients. An untrusted client machine
might be running keystroke logging or
screen capture software. Clifford
responded that the solution has worked
well as a stopgap measure until a full
VPN can be implemented. In the mean-
time, efforts have been underway to
educate users about the risks of using
unknown clients.

67February 2004 ;login:

l

 C
O

N
FE

R
EN

C
E

R
EP

O
RT

SURL: http://www.lanl.gov/orgs/ccn/
publications.shtml

DESIGNING, DEVELOPING, AND IMPLEMENT-
ING A DOCUMENT REPOSITORY

Joshua S. Simon, Consultant; Liza
Weissler, METI
Josh Simon described a solution to a
problem faced by many large sysadmin
teams, that of finding documentation. In
order to address the constant flow of
email asking about various tasks within
their consulting company, he and Liza
Weissler built a Web-based document
management system with the goal of
making it easier to find information.

The first problem the authors faced was
one of categorization: At one point they
identified 52 different types of docu-
ment. While it is clear that a document
management system is considerably
more useful when items are separated
into categories, users are often unwilling
to make the effort to do so as each docu-
ment is entered. A practical solution was
to define a small number of top-level
categories (e.g., Customers, Internal,
Marketing, Recruiting, Other), each with
a small number of subcategories. Cate-
gories were assigned single-letter codes,
allowing each document to be classified
with a two-letter code (e.g., IC for Inter-
nal Code).

The other major problem the authors
faced was maintaining the metadata
about each document once it had been
stored in the system. While users sub-
mitting documents were encouraged to
supply metadata, consultants who were
not currently assigned to billable proj-
ects were recruited to serve as “librari-
ans,” with the ability to edit and update
other users’ records.

Combining a coarsely grained catego-
rization scheme with constant mainte-
nance by librarians dramatically
improved the accessibility of informa-
tion to employees. The system began
with approximately 800 documents and
grew to 1200 in its first five months. By

that point, only two documents
remained in the “Other” class. The sys-
tem is still in use, and the authors hope
to make the code publicly available.

DRYDOCK: A DOCUMENT FIREWALL

Deepak Giridharagopal, University of
Texas at Austin
Giridharagopal works in a university
research lab, a relatively open environ-
ment where many autonomous groups
share responsibility for publishing con-
tent to the Web. The lab’s management
needed to enforce a policy on publishing
information to the Web, ensuring that
sensitive or proprietary information is
not accidentally made available on the
public Web server. Enforcing policy
requires oversight and accountability,
both of which are addressed by the Dry-
Dock system. Until the implementation
of DryDock, policy was enforced only
when complaints were received.

The DryDock system uses a Web appli-
cation to manage a Web site. Content is
stored in CVS, and document metadata
and approvals are stored in a MySQL
database. The approach requires two
Web servers: an internal staging server
located behind the firewall and an exter-
nal production server located on the
DMZ. Authors are free to work with the
content on the staging server, using
methods such as FTP or WebDAV to
access the document root. The produc-
tion server, however, is stripped of
non-essential programs and hardened.
DryDock automatically propagates
content from the staging server to the
production server via SSH once the
appropriate approvals have been obtained.

Giridharagopal suggests that one way to
look at DryDock is as a tool to shift
responsibility for content oversight away
from sysadmins and back to manage-
ment. Sysadmins are responsible for
keeping the system running, but in order
for any content to appear on the public
Web site, DryDock requires it to be
approved. Web authors are free to work
directly on the staging server, and Dry-

LISA ’03 l

Dock will show the differences between
the current contents of the staging
server and that of the public Web site.
Users are informed when pages have
changed, and those with management
authority are able to approve publica-
tion. DryDock logs the time at which
files were approved and which users
approved them, and allows content to be
rolled back to previous versions when
necessary. In use for over a year, the sys-
tem has resulted in improved Web server
security and better management over-
sight of the publication process.

URL: http://tools.arlut.utexas.edu/
DryDock/

SYSTEM AND NETWORK
MONITORING
Summarized by Venkata Phani Kiran
Achanta

RUNTIME DETECTION OF HEAP-BASED
OVERFLOWS

William Robertson, Christopher
Kruegel, Darren Mutz, and Fredrik
Valeur, University of California, Santa
Barbara
This paper is about a technique that
protects the management information of
boundary-tag-based heap managers
against malicious or accidental modifi-
cation. William started out by describing
the motivation behind his work, which
he mainly attributes to the increasingly
common buffer overflow exploits result-
ing from use of various insecure lan-
guages for application development. He
reinforced his argument by citing the
recent vulnerabilities in OpenSSH,
MySQL, etc.

He explained how the buffer overflow
exploit occurs and then discussed exist-
ing approaches to detect and prevent
them, pointing out flaws and describing
limitations in existing methods.

Then he introduced his approach, an
adaptation of the canary-based stack-
protection scheme, where the canaries
are seeded with a random number,
which a mechanism prevents the

68 Vol. 29, No. 1 ;login:

intruder from seeing. This detection
scheme has been implemented as a
patch to the GNU libc library.

William did some micro- and macro-
benchmarking and stability evaluation.
Later, he discussed techniques to be
adopted to handle buffer overflow
exploits.

The software can be downloaded from
http://www.cs.ucsb.edu/~rsg/heap.

DESIGNING A CONFIGURATION MONITORING
AND REPORTING ENVIRONMENT

Xev Gittler and Ken Beer, Deutsche
Bank
The configuration monitoring and
reporting environment (CMRE) is a tool
designed to collect and report on the
many configuration details of systems
within an enterprise. Its goal is to pro-
vide a single, complete, up-to-date
repository of all system configuration
information regardless of platform or
use.

Gittler described their operating envi-
ronment as a conglomeration of diverse
systems with different standards and
procedures and discussed the potential
problems posed by such an environ-
ment.

CMRE needs few prerequisites in order
to do its job; in fact, the necessary
framework for CMRE already exists at
their shop. CMRE is modular, flexible,
and runs on many different platforms. It
is written in a combination of Perl, Korn
shell, and PHP and uses proprietary as
well as open source software. CMRE
currently collects data on thousands of
UNIX and Windows systems at
Deutsche Bank worldwide.

Gittler showed us some GUIs of CMRE
and explained the usefulness of the data
it collected. He then described the sce-
narios where they ran into problems
when designing and deploying this sys-
tem.

Although most of the organizations have
this kind of monitoring tool already in

use, Gittler advocated the superiority of
CMRE, citing the simplicity and non-
intrusive nature of the tool and the ease
in interpretation of the gathered data.

Contact information: xev.gittler@db.com;
ken.beer@db.com

NEW NFS TRACING TOOLS AND TECHNIQUES
FOR SYSTEM ANALYSIS

Daniel Ellard and Margo Seltzer,
Harvard University
Daniel opened with the background and
motivation for doing the paper. He then
discussed the usefulness of looking at
passive NFS traces over a period of time
and talked about the work already done
in this arena. He went on to cite some
examples of basic and advanced analyses
of the gathered data and their relevance
to system administration.

The two main tools used for data gather-
ing and analysis were nfsdump and nfs-
scan. Several related utilities were used
in the analysis part. The data was gath-
ered in a university environment, and
measures were taken to anonymize the
data as much as possible. There is con-
trol over anonymity of the data if some-
one wants to use the tool for real data
collection and analysis.

The software and the results can be
found at http://www.eecs.harvard.edu/
sos/software/.

DIFFICULT TASKS MADE EASIER
Summarized by Jarrod Millman

EASYVPN: IPSEC REMOTE ACCESS MADE
EASY

Mark C. Benvenuto and Angelos D.
Keromytis, Columbia University
As a student at Columbia University,
Mark developed EasyVPN to integrate
an unencrypted, untrusted wireless LAN
into the Computer Science Depart-
ment’s LAN and to the Internet. His
main design goal was to create a simple
and easy-to-use VPN based on IPSec.
Unfortunately, as anyone who has tried
to do this in a heterogeneous environ-
ment knows, setup varies with each

IPSec platform; furthermore, managing
certificates is too complicated for users
and too time-consuming for administra-
tors. To address these issues, Mark cre-
ated a solution that leverages the wide
availability of Web browsers with
SSL/TLS support and the familiarity of
users with Web-based interfaces. The
Web interface allows the user to create
and download the configurations and
certificates for their computer without
further burdening the system adminis-
trator or requiring the user to under-
stand the technical minutiae.

EasyVPN is composed of three main
components: the client, the gateway, and
the VPN server. The client receives the
certificate from the gateway, which
serves as the certificate authority (CA).
The VPN server trusts the client because
it trusts the gateway. Thus, EasyVPN is
built on trust and the easy manageability
of the CA. To demonstrate the feasibility
of such an approach, Mark implemented
EasyVPN using Linux FreeS/WAN and
Windows clients.

THE YEARLY REVIEW, OR HOW TO EVALUATE
YOUR SYS ADMIN

Carrie Gates and Jason Rouse,
Dalhousie University
Many nontechnical managers and
employers do not fully understand what
a system administrator is or what he or
she does. Only recently have there been
any publications on the hiring and firing
of system administrators. Moreover, there
is no clear course of study or career path
for becoming a system administrator.
Consequently, it comes as no surprise
that there is no systematic approach for
evaluating the performance or effective-
ness of a system administrator. Carrie
and Jason presented an approach to
evaluating system administrators based
on three criteria: achievement of goals,
achievement of specified service levels,
and general competence. Using these
three broad criteria, they developed a
quantitative system for evaluating sys-

69February 2004 ;login:

l

 C
O

N
FE

R
EN

C
E

R
EP

O
RT

Stem administrators that is measurable
and fair.

The first criterion, measuring the
achievement of stated goals, requires
that the manager and administrator
work together and provides the manager
with an objective assessment of perfor-
mance. To better understand how an
administrator was achieving specified
service levels, Carrie and Jason refined
this criterion to four components: avail-
ability, usability, security, and customer
service. General competence was meas-
ured by how often the administrator
needed to revisit the same problem.
Breaking the evaluation into these three
criteria provides the manager with an
effective tool to isolate the system
administrator’s strengths and weak-
nesses. They concluded by describing
five different scenarios illustrating how
you might deploy this system, what
types of scores you might get, and an
interpretation of those scores with sug-
gestions for appropriate action. It was
emphasized that this system was meant
to initiate a wider and more extensive
discussion on this important topic.

PEER CERTIFICATION: TECHNIQUES AND
TOOLS FOR REDUCING SYSTEM ADMIN
SUPPORT BURDENS WHILE IMPROVING
CUSTOMER SERVICE

Stacy Purcell, Sally Hambridge, David
Armstrong, Tod Oace, Matt Baker, and
Jeff Sedayao, Intel Corp.
Before peer certification, trouble tickets
at Intel Online Services (IOS) were
received by help-desk technicians, who
would pass them on to the system and
network administrators to handle. This
caused constant interruptions for the
administrators, frustrated the techni-
cians because they weren’t able to solve
the problems, and impeded customer
service due to the lack of direct contact
between the customer and the problem
solver. IOS wanted a way to allow the
technicians to handle the tickets them-
selves, but needed to ensure that the
technicians were qualified to do so. To
this end, they created a peer certification

process to add qualified troubleshooting
personnel.

The certification process divided trou-
bleshooting personnel requirements in
two ways – specialty areas and specialty
levels. Certification for a specific area
and level requires previous-level certifi-
cation, an oral test, and monitored com-
pletion of tasks. Once implemented,
peer certification resulted in an increase
in the number of staff able to make
changes and a reduction in the number
of trouble tickets referred to the system
administrators.

EMERGING THEORIES OF SYSTEM
ADMINISTRATION
Summarized by Kevin Sullivan

ISCONF: THEORY, PRACTICE, AND BEYOND

Luke Kanies, Reductive Consulting, LLC
Luke describes his development experi-
ences with a configuration management
tool, ISconf. Although ISconf has gone
through significant rewrites since the
initial version, it still functions by pair-
ing listings of commands with a list of
hosts for those commands to be run on.
ISconf ’s use of make satisfies three com-
ponents of deterministic ordering: state
maintenance, failure on error, and con-
sistent ordering. The concept of atomic-
ity is one which ISconf does not currently
possess. In many processes, the lack of
support for atomicity requires human
intervention when an error is encoun-
tered. Also, hidden preconditions of a
system create situations that ISconf
would have difficulty handling. The dis-
cussion of these shortcomings will help
the development of ISconf and tools like
it. ISconf is still a very useful tool and
when combined with other configura-
tion management tools these inherent
problems can be mitigated.

LISA ’03 l

SEEKING CLOSURE IN AN OPEN WORLD:
A BEHAVIORAL AGENT APPROACH TO
CONFIGURATION MANAGEMENT

Alva Couch, John Hart, Elizabeth G.
Idhaw, and Dominic Kallas, Tufts
University
Alva opened by describing a race
between theory and practice in which
theory always wins. The main goals of
his work are portable validation, where
validation occurs once and the results
are the same everywhere, and to produce
an algebraic model of configuration
management. Couch contends that these
goals can be achieved through the use of
closures and conduits. Closures are like a
black-box system that has well-defined
inputs and outputs and functions
exactly as specified. Conduits are com-
munication channels between closures.
The first step in developing a closure is
separating internal and external parame-
ters. If it were not for latent precondi-
tions, the composition of closures would
be closures themselves. This essentially
creates complex services with known
functionality and well-defined inputs
and outputs. File editing was an initial
prototype of this work. A file-editing
closure can define all permissible actions
to a file in an attempt to reduce errors.
Many system administrators are
wrapped up in the minutiae of the many
systems they manage and have less time
to do high-level coordination of ser-
vices. When these low-level systems are
treated as closures and conduits, it
becomes easier to focus on more
advanced system administration tasks.

ARCHIPELAGO: A NETWORK SECURITY
ANALYSIS TOOL

Tuva Stang, Fahimeh Pourbayat, Mark
Burgess, Geoffrey Canright, Kenth
Engø, and Åsmund Weltzien, Oslo
University College
Tuva Stang presented a tool that was
intended to visually model intercon-
nected networks. These networks can be
physical, social, or knowledge networks.
Graph theory was used to show the con-
nections that exist between groups of

70 Vol. 29, No. 1 ;login:

people, hosts, or other information
sources. The most well-connected nodes
will become visually apparent. An inter-
esting comparison was drawn between
an organizational chart and the charts
presented here; in some cases they differ,
and the truly connected people are
revealed. As a security tool, Archipelago
can reveal vulnerable points in a net-
work or even the nodes that should be
best secured, due to their importance.
The graphs produced by this tool show
both the importance and centrality of
the nodes.

PRACTICUM: UNUSUAL TECHNIQUES
FROM THE FRONT LINES
Summarized by William Reading

THREE PRACTICAL WAYS TO IMPROVE YOUR
NETWORK

Kevin Miller, Carnegie Mellon
University
First Idea: IP Anycast

IP anycast is the same as shared unicast,
in which one IP address is assigned to
multiple hosts and the network routing
is configured to deliver to one of the
many machines that have that IP address
configured.

Migrating is not very difficult. For
servers that simply use DNS, only an
update to DNS is required. In an IP any-
cast environment, without requiring a
configuration change, clients end up
using a server that is closer to them than
others on the network.

Second Idea: Source Address Verification

Filtering is accomplished by performing
source address verification on edge
routers using unicast reverse path for-
warding. This uses the unicast routing
table to make the filtering policy and
requires little work compared to tradi-
tional filtering with ACLs.

Third Idea: Host Filtering

This builds on the topics mentioned ear-
lier. Essentially, the problem is that there
are a large number of hosts that need to

be denied access to the network due to
viruses and such.

Expect scripts are tedious and can cause
problems, so a host route is given, essen-
tially pointing to a sinkhole – which
then drops the packets. When the host
has been cleaned up, the route is removed.

TOSSING PACKETS OVER THE WALL USING
TRANSMIT-ONLY ETHERNET CABLES

Jon Meek and Frank Colosimo, Wyeth
Protecting an internal network while
monitoring from remote sites consid-
ered to be insecure poses a difficult
problem. The talk was loosely organized
into the topics of hardware, software,
and applications.

On the hardware side, simply snipping
the wires does not work, and it is hap-
hazard to do things like soldering a
paper clip to an Ethernet card if security
is concerned.

However, it is possible to create a circuit
that does not permit packets to return
over the line. By writing custom soft-
ware which only relays packets to a spec-
ified host on an internal network from
the crippled line, security can be main-
tained.

THE REALITIES OF DEPLOYING DESKTOP
LINUX

Bevis King, Roger Webb, and Graeme
Wilford, University of Surrey
Linux offers a number of benefits for
deploying on the desktop, yet a certain
degree of Windows compatibility is a
must. However, using Linux on the cor-
porate desktop reduces the support time
required.

Running Microsoft Windows in a virtual
machine has a number of benefits for
support because the Windows machines
do not have direct access to the network,
have abstracted hardware, and are not
writable by the end user.

The desktops themselves have greater
access to scientific applications that only
run on UNIX, and there is a completely

supported X server running to host
these applications remotely.

CONFIGURATION MANAGEMENT:
TOOLS AND TECHNIQUES
Summarized by Marko Bukovac

STRIDER: A BLACK-BOX, STATE-BASED
APPROACH TO CHANGE AND CONFIGURA-
TION MANAGEMENT AND SUPPORT

Yi-Min Wang, Chad Verbowski, John
Dunagan, Yu Chen, Helen J. Wang,
Chun Yuan, and Zheng Zhang,
Microsoft Research

In a dynamic talked welcomed by
administrators who have Microsoft
Windows machines on their network,
Dr. Wang presented STRIDER, a Win-
dows tool that helps to pinpoint the ori-
gin of Windows registry problems.
Windows XP has about 200,000 registry
entries storing all configuration data, so
finding a source of evil is downright
impossible without a proper tool. By
using white-box data (from support
documentation) and black-box testing,
STRIDER manages to narrow down the
number of possible problems in the reg-
istry, making identification fathomable
for a human administrator.

Starting with all the registry entries,
STRIDER creates a smaller subset by
mechanically eliminating entries that are
irrelevant to the current problem. It
then uses a statistical model to filter out
the entries that may be relevant but are
most likely not the root of the problem.

71February 2004 ;login:

l

 C
O

N
FE

R
EN

C
E

R
EP

O
RT

SEach entry in the smaller subset is then
compared to a computer genomics data-
base, a data set obtained from trou-
bleshooting experiences and black-box
tests, to potentially pinpoint the solu-
tion.

In addition to the published paper, Dr.
Wang has a Web page at http://
research.microsoft.com/~ymwang where
one can find more information on
STRIDER.

CDSS: SECURE DISTRIBUTION OF SOFTWARE
INSTALLATION MEDIA IMAGES IN A HETERO-
GENEOUS ENVIRONMENT

Ted Cabeen, Impulse Internet Services;
Job Bogan, Consultant
CDSS provides a framework for a distri-
bution of software images over a num-
ber of protocols. Software images are
stored on an isolated server for every
user who is trying to download an
image. The user can communicate only
with the designated server and can
obtain only the requested files. The sys-
tem does not require any additional
setup on the user’s side, as CDSS uses
standard protocols (HTTP, FTP, SMB,
etc.) and a set of shell scripts to access
the desired information.

A user who visits a Web page that lists all
available software images selects the
ones he or she’s interested in and pro-
vides necessary passwords to access
them. At that point, a directory is cre-
ated for that user, containing only the
requested images. At the same time, the
servers necessary to allow the user to
access the data over the desired protocol
are configured and started. By using
Linux firewall rules, the user’s request is
redirected to a non-standard port for
each protocol and the data is made avail-
able.

CDSS is under a GPL license; more
information about it can be found at
http://cdss.sf.net.

VIRTUAL APPLIANCES FOR DEPLOYING AND
MAINTAINING SOFTWARE

Constantine Sapuntzakis, David Brum-
ley, Ramesh Chandra, Nickolai
Zeldovich, Jim Chow, Monica S. Lam,
and Mendel Rosenblum, Stanford
University
Computer Appliance is a device, like
Tivo, for which the software is installed
by the manufacturer (who also provides
updates) rather than by the user. Sapuntza-
kis and fellow researchers took this con-
cept and applied it to virtual appliances,
which are just like the physical appli-
ances but without the hardware. Rather
than running the appliances on the bare
x86 hardware, the authors use the
VMware GSX Server.

In the presentation and the demo that
followed, Sapuntzakis introduced the
basic concepts and presented a proto-
type model that allows creation, publica-
tion, execution, and update of virtual
appliances. He argues that using virtual
appliances reduces the amount of time
needed to administer computers, by
having a central management unit con-
trol all the software for all the appliance
users.

Sapuntzakis et al. also developed a
unique configuration language, CVL
(collective virtual appliance language),
whose syntax is used to describe VAP
configurations. Their demo showed the
audience sample .cvl files and how to
administer the VAPs. More information
on Sapuntzakis and the project can be
found at http://suif.stanford.edu/
~csapuntz/.

CONFIGURATION MANAGEMENT:
ANALYSIS AND THEORY
Summarized by Aaron Teche

GENERATING CONFIGURATION FILES: THE
DIRECTOR’S CUT

Jon Finke, Rensselaer Polytechnic
Institute
At LISA 2000, Jon Finke presented a
paper about configuration generation
from a relational database. At LISA ’03,

Yi-Min Wang and Chad Verbowski
receiving the Best Paper Award from

Æleen Frisch

LISA ’03 l

he shared his improvements using XML
and XSL, with data stored in the rela-
tional database for configuration man-
agement. While the original system
worked very well, it wasn’t flexible
enough. Any layout changes required a
PL/SQL programmer, and the PL/SQL
programmer needed presentation skills.
In comes XML with XSL transforms.
The relational database is still used, but
the data goes from the database to XML
through an XSL translation to the final
output. XML and XSL are platform-
independent, which makes this solution
vendor-independent. And, finally, the
move to an XML/XSL system provides
basic consistency checking along the
transformation path.

PREVENTING WHEEL REINVENTION: THE PSG-
CONF SYSTEM CONFIGURATION FRAMEWORK

Mark D. Roth, University of Illinois at
Urbana-Champaign
Most configuration management tools
are designed monolithically and can’t
mix and match ideas and functionality.
This results in lots of wheel reinvention.
Mark Roth presented his solution to this
problem, psgconf. While monolithic
configuration management tools man-
age file configs, not abstract ones, psg-
conf solves this problem with modularity.
The psgconf framework is a hierarchy of
small, write-once-use-often Perl mod-
ules that manage the configuration at a
conceptual level. It is intended to know
what the data is and to control manipu-
lation of that data according the require-
ments set by the admin.

SMARTFROG MEETS LCFG: AUTONOMOUS
RECONFIGURATION WITH CENTRAL POLICY
CONTROL

Paul Anderson, University of Edin-
burgh; Patrick Goldsack, HP Research
Laboratories;Jim Paterson, University of
Edinburgh.
LCFG is a config tool that takes a high-
level specification and generates a
machine profile. LCFG can rebuild an
entire site from bare metal, given a cen-
tral source repository. SmartFrog pro-

72 Vol. 29, No. 1 ;login:

vides a framework for configuration
management of distributed applications.
It is a runtime environment which
orchestrates the workflow of computers
according to configuration. SmartFrog
in combination with LCFG can control
and maintain a robust service that auto-
matically reallocates machines and ser-
vices based on demand, including the
ability to rebuild around failure.

NETWORK ADMINISTRATION
Summarized by Hernan Laffitte

DISTRIBUTED TARPITTING: IMPEDING SPAM
ACROSS MULTIPLE SERVERS

Tim Hunter, Paul Terry, and Alan Judge,
eircom.net

The authors’ company, eircom.net, is the
biggest ISP in Ireland, with approxi-
mately 500,000 users. For them, spam is
a big problem: On several occasions they
have seen their server outages reported
on by the media. To help alleviate this
problem, they have configured a tarpit-
ting mechanism.

The method known as “tarpitting” involves
inserting a time delay between the
moment a message is received by the
SMTP server and the moment when the
server returns its “250 OK” response.
This time delay varies: The goal is for it
to be zero for legitimate users and up to
30 seconds per message for spammers.
This solution is a reasonable middle
ground; there is no need to filter mes-
sages based on content, which raises pri-

vacy concerns or risks dropping poten-
tially valid messages.

The paper explains how eircom.net
implemented a centralized database of
messages recently received from each
client. A “Theory” section of the paper
explains how to set the right parameters
so client addresses get tarpitted and
untarpitted over time, according to how
many messages they send. The “Data”
section explains how the method was
implemented across eircom.net’s various
mail servers, using qmail as SMTP
server, and IP multicast to share client
behavior data, which each machine
stores locally on a SQL database.

Finally, a “Tarpitting in Practice” section
describes the political problems involved
in setting the right parameters for the
tarpit and developing policies to follow
when a would-be spammer is found in
the tarpit. The authors also include data
gathered from an actual spamming ses-
sion, with the spammer trying to navi-
gate around the restrictions posed by the
tarpit.

This method has helped eircom.net
solve the problem of burst attacks, but
some work remains to be done regard-
ing lower-level spamming. In conclu-
sion, tarpitting is a useful addition to the
anti-spam toolbox.

USING SERVICE GRAMMAR TO DIAGNOSE
BGP CONFIGURATION ERRORS

Xiaohu Qie, Princeton University; Sanjai
Narain, Telcordia Technologies
It is not uncommon for all routers on a
BGP network to be operational and yet
route packets incorrectly. This happens
because traditional network diagnostic
tools can only detect localized errors,
such as bad cables or software failures.
More automated tools are needed to sys-
tematically search through the problem
space.

This paper analyzes the use of the Ser-
vice Grammar technique for diagnosing
BGP configuration errors. BGP presents
a number of challenges for its imple-

Tim Hunter and Paul Terry receiving
the Best Paper Award from

Æleen Frisch

mentation: At the low level, individual
routers have to be configured independ-
ently, yet the high-level global routing
policy of the (sometimes very large) net-
work has to be kept consistent across all
routers.

Since BGP is a complex protocol, the
manual configuration of routers is a
time-consuming and error-prone task.
This paper presents a Service Grammar
for configuring BGP networks. This Ser-
vice Grammar consists of a “BGP Require-
ments Language,” which expresses the
BGP logical structures; a Configuration
Database, which abstracts the different
vendor-specific configurations; and a
Diagnosis Engine, which is a set of algo-
rithms that validates the configuration
database and provides useful informa-
tion for the debugging process.

The paper includes an example network,
where Service Grammar was used to
diagnose the configuration of nine Cisco
routes, grouped in five ASes.

SPLAT: A NETWORK SWITCH/PORT
CONFIGURATION MANAGEMENT TOOL

Cary Abrahamson, Michael Blodgett,
Adam Kunen, Nathan Mueller, and
David Parter, University of Wisconsin,
Madison
The old network infrastructure of the
University of Wisconsin Computer Sci-
ence Department consisted of multiple
unmanaged Ethernet switches, where
people would just plug in their worksta-
tions. When the old network was
replaced with 50 managed switches
using VLANs, the need arose to imple-
ment a solution to automate the man-
agement of the network infrastructure.

After considering the existing solutions,
the authors of the paper decided to
implement the Splat tool. This tool pro-
vides an easy-to-use interface for config-
uring the switch ports while enforcing
sysadmin best practices.

Using Splat’s CLI interface is relatively
straightforward; the tool was designed to
accommodate relatively inexperienced

73February 2004 ;login:

l

 C
O

N
FE

R
EN

C
E

R
EP

O
RT

Sadministrators. For example, to connect
a host to a switch port, the only required
parameters are the hostname and the
label of the data jack on the wall. The
tool does the rest: updates the database,
computes the new VLAN configuration,
and issues the required switch configu-
ration command using the Rancid
switch configuration manager. The cur-
rent configuration data is stored in a
PostgreSQL database, which can also be
queried using Splat.

The use of the tool is enforced because,
without it, the VLAN number is not cor-
rectly configured for the switch port,
which means the network connection
won’t work. Also, the tool “locks” the
switch port to the MAC address of the
workstation. Thus, using Splat is easier
than changing all these parameters by
hand.

This creates a virtuous cycle: the Splat
database is the definitive data source for
host/switch-port mapping. And since it’s
easier to use Splat than to configure the
switches by hand, the Splat database is
kept current. This way, the sysadmins
can easily follow the best practices when
managing the switch port configuration.

GURU SESSIONS

IPSEC

Hugh Daniel, Linux FreeS/WAN Project
Summarized by Siddharth Aggarwal
Since this was a guru session, it involved
direct questions to the speaker by the
audience. Hugh Daniel began by saying
that IP networking is antithetical to
IPSec. Most system administrators find
implementing IPSec problematic
because the setup is not done correctly.
So the speaker explained a test setup for
a Web site in which all the machines are
physically kept together.

Daniel clarified some misconceptions
about IPSec – for example, that it is
technically a transport mechanism and
not a technique for authentication or
encryption. It is the job of Internet Key
Exchange (IKE) to maintain pre-shared

secrets and RSA keys. Daniel introduced
various ways of deciding if two hosts can
talk to each other: pre-shared secrets,
RSA keys, X Auth, X.509, etc. Also, a
brief introduction about a PDA that
runs Linux, called Zaurus, was given.

Daniel then introduced the Wavesec
technology, which uses a combination of
opportunistic encryption (OE), dynamic
DNS, and DHCP. OE enables you to set
up IPSec tunnels without coordinating
with another site administrator and
without hand-configuring each tunnel.
He also explained the goal of Free
S/WAN, which is to provide a host-to-
host or network-to-network privacy
environment via a distributed database
of DNS entries and keys. He explained
why FreeS/WAN emphasizes an anti-
NAT (Network Address Translation).
IPSec fails when packets go through a
NAPT (network address and port trans-
lation) box, because NAPT mangles the
packets.

The session concluded with some links
to useful resources:
http://www.freeswan.ca
http://www.wavesec.org
http://www.freeswan.org/talks/lisa-2003

AFS
Esther Filderman, The OpenAFS Project;
Garry Zacheiss, MIT
Summarized by Venkata Phani Kiran
Achanta
The AFS guru session consisted of ques-
tions about large file size support, read-
write replication functionality, status of
disconnected AFS, back-up strategies,
and many other topics as well.

Some people asked whether there were
plans to make read-write replication of
volumes. Esther said the Coda filesystem
does RW replication of volumes (there is
no notion of cell in Coda yet), but they
were not sure whether it would be avail-
able in AFS or not. Garry added that
Coda is entirely a research project and is
not for use in a production environ-
ment.

LISA ’03 l

Regarding disconnected AFS status,
Garry said that there was an initial ver-
bal commitment from the University of
Michigan to incorporate disconnected
AFS functionality into OpenAFS code,
but they later backed out because they
are heavily into OpenBSD research.

Alf Wachsmann from Stanford Linear
Accelerator Center made an announce-
ment about an OpenAFS best-practices
workshop being held at SLAC in Febru-
ary.

People were curious to know how MIT
and PSC were doing backups. Garry said
they were using butc with a bunch of
self-written Perl scripts, which need no
human interaction. Esther said that they
would do a vos dump locally and, with
HSM support, would migrate that dump
to a repository. She added that there
used to be an add-on to Legato a while
back. The most popular backup solution
for AFS is TSM. Cornell University is
working to tie AFS into Amanda.

There were some people interested in
using OpenAFS in a grid computing
environment, but lack of file support for
files greater than 2GB seems to be a lim-
itation for them.

A newbie asked about recovery when an
RW volume is lost. Esther said they can
always do a vos dump of the existing RO
copy of the volume as an RW volume
and start using it as if nothing had hap-
pened.

Somebody asked whether the 22-charac-
ter limit in the naming size of volumes
would be increased in future releases of
OpenAFS. Garry said that there are no
plans to increase it, but that there is a
workaround using MD5 hashing. Esther
added that if they did increase the limit,
the old AFS clients would be confused.

Answering a question on ideal client
cache size, Esther said that it would
mostly depend on the chunk size at their
site. Someone asked whether to restart
the file server once a week if clients are

74 Vol. 29, No. 1 ;login:

using it 24/7. Garry said there is no
necessity to restart.

There was discussion about MRAFS,
which is heavily used by Naval Research
Labs; different authentication tech-
niques; and why AFS uses Kerberos.

Like any other open source project, Open-
AFS also seems to suffer from lack of
“more” volunteer time. The gurus were
optimistic about the future of OpenAFS
and said that if more volunteers were
willing to contribute to the OpenAFS
project, there would be much more
functionality that could be incorporated
into OpenAFS.

MBAS FOR SYSADMINS

Brent Chapman, Great Circle Associates
Summarized by Carrie Gates
Why should a system administrator pur-
sue an MBA? There are two answers to
this. The first is the marketing-type
answer, which is that it will, on average,
add 25–40% to your current salary. The
second answer is that it provides a better
understanding of the entire business
environment, such as finance and per-
sonnel, which in turn will allow you to
better relate to the concerns of those
who work in these other departments.

There are three paths to an MBA: stan-
dard full-time courses, part-time
courses, and the executive-level MBA.
Although the full-time MBA allows a
student to complete the degree more
quickly, the part-time MBA enables one
to keep working while obtaining the
degree. Unfortunately, the part-time stu-
dents often miss out on many of the
opportunities available to the full-time
students. Conversely, the part-time stu-
dents tend to be older and have more
business experience, and so the full-time
students often miss out on learning
from discussions with them. The execu-
tive MBA is a combination of the two
approaches, but is more expensive and is
geared toward senior managers (where
their company is paying for tuition).
Typical courses consist largely of case

studies, with a single case study taking
up 5–25 pages of scenario. These case
studies are used to generate and guide
discussion.

The bottom line is that you will get out
of an MBA what you put into it. MBAs
offer a wealth of learning opportunities,
both in the classroom and outside of it,
as well as providing the opportunity for
considerable networking within the
business field. For those who are inter-
ested in pursuing a management path, it
can also provide an extra credential
when applying for management posi-
tions. Beyond this, it can provide some-
one who has a technical background
with the confidence to pursue career
paths such as CIO or CTO.

PKI/CRYPTOGRAPHY

Greg Rose, QUALCOMM, Inc.
Summarized by der.hans
Rose mentioned that there are two types
of cyphers, symmetric and asymmetric.
Symmetric cyphers, such as DES and
Rijndael (accepted as AES), are the tra-
ditional type of cypher and there is evi-
dence they were used as far back as 2000
BC. Symmetric cyphers use the same key
both ways. Asymmetric cyphers, a.k.a.
public key cyphers, such as RSA, use dif-
ferent keys for encryption and decryp-
tion.

All the old cell phone cryptography was
broken. Rose was first to break some of
the algorithms. The new 3G cell net-
works use different but equivalent
ciphers. All use 128-bit keys. One of the
problems with the old algorithms is that
they were created behind closed doors.
Review of the algorithm and the code is
important to be certain an implementa-
tion is secure.

Rose gave several examples of cryptogra-
phy that was weak due to shortcomings
in the algorithms or errors in the imple-
mentation. He mentioned that most
Web server administrators know that-
most of the CPU is used in putting the
padlock on the browser, not in transmit-

ting the data. For instance, small keys
take constant time because they fit 32-
bit CPUs, but large keys have to be bro-
ken up and done “longhand.” Going
from 1024 bits to 2048 bits cubes the
time needed to generate the key. Com-
putational time equals lost battery life
for cell phones.

LINUX

Bdale Garbee, HP Linux and Open
Source Lab/Debian
Summarized by Hernan Laffitte
Topics such as the SCO lawsuit and the
end-of-life announcement from RedHat
figured prominently in the first segment
of the talk. Mr. Garbee explained that
HP’s first concern is supporting its cus-
tomers, many of whom run SCO and
RedHat, and also promoting the use of
open and free standards.

Another important issue facing Linux
developers is that a number of indepen-
dent software vendors (ISVs), such as
Oracle, and hardware manufacturers,
such as HP, will only certify their prod-
ucts against a small number of commer-
cial Linux distributions. This is a result
of the economic realities of setting up
QA and support, and the fact that no
two Linux distributions seem to use the
same kernel.

Setting up standards for Linux distribu-
tions will help alleviate this problem,
and Linux 2.6 will have a feature set
closer to what many ISVs want. Other
companies, however, will want to add
different features to the kernel. And
there is always the issue, even if every-
body agrees on the current standard, of
negotiating which features will go into
the next one.

Economic realities also conspire against
selling Linux to the general (read: non-
techie) public. For example, putting a
line of Linux-powered machines on the
shelves of a computer store involves a lot
of expenses: printing a different set of
manuals, different packaging, tracking a
different part/model number from the

75February 2004 ;login:

l

 C
O

N
FE

R
EN

C
E

R
EP

O
RT

Sfactory down to the store in Kalamazoo
. . . it’s all expensive, even if the OS is
free.

Actually, the money involved in the OS
licensing is not as much as many believe.
It’s simply a question of demand. The
demand is growing, but it’s still not
there. The marketing people would say,
“Come back next year if you have 10
times the current volume.” Also, Mr.
Garbee commented jokingly, whatever
distribution you choose to sell, the rest
of the Linux users will hate you.

The juggernaut is rolling in the right
direction, though. For example, HP
recently released a BIOS patch for one of
its systems specifically to improve Linux
compatibility, and is working to improve
Linux compatibility in general.

Mr. Garbee also talked about his experi-
ence in porting Linux to the Itanium
platform. A big percentage of the Ita-
nium 2 systems shipping in the first
quarter of production were Linux, and
the trend increased in the second quar-
ter. Linux is also very popular in Itanium
workstations, and HP-UX customers like
having the possibility of replacing old
PA-RISC machines with Itanium with-
out having to make any changes to the
software.

In addition to his work on UNIX and
Linux, Mr. Garbee is a prominent mem-
ber of the amateur satellite community.
The talk touched briefly on the issues of
Linux in space (it was used in an experi-
ment on the shuttle, and will also be
used in the amateur radio experiment
on the international space station). Mr.
Garbee also discussed the technology of
amateur satellites. He stressed that there
is a constant need to simplify the hard-
ware requirements. The 1802 processor
used on many satellites, for example,
runs at 100 KIPS (kilo instructions per
second). Things don’t happen very fast
in space, so there is no need for lots of
processing power. And amateur satellites
are a fun hobby in part because the
types of problems faced when working

on 8-bit micro-controllers are quite dif-
ferent from the ones encountered when
working on Linux for Itanium systems
at HP.

AUTOMATED SYSTEM
ADMINISTRATION/INFRASTRUCTURE

Paul Anderson, University of
Edinburgh; Steve Traugott,
Infrastructures.Org
Summarized by Kevin Sullivan
Configuration management seemed to
be a central theme of this year’s confer-
ence, and it took center stage at this guru
session. A packed room gathered to hear
Paul Anderson and Steve Traugott give
their opinions on the state of automated
system administration. The hour-and-a-
half session was very informative, with a
great discussion of theory interspersed
with various tools administrators are
using today.

The discussion quickly turned to “push”
vs. “pull” systems in configuration man-
agement. Steve and Paul contended that
many people who think they have a
“push” system actually have a “pull” sys-
tem. Steve said that a “pull” system is
advantageous because it reduces the
threat of divergence, since a machine
will properly configure itself before it
offers any services. Paul added that
“pull” systems don’t require any knowl-
edge about the state of the machine at
configuration time, so offline hosts will
not be missed.

Paul went on to describe a configuration
fabric consisting of hardware, software,
specifications, and policies. Soon the
room was buzzing about the tools used
to build and maintain this fabric. Each
tool employed a different paradigm:
Anderson’s tool, LCFG, tells a host what
it wants to look like, while Traugott’s
ISConf – originally a quick fix aimed at
building up an infrastructure – tells a
host what to do.

Also discussed was “The Test,” in which
you imagine taking a random machine
that has never been backed up, destroy

LISA ’03 l

it, and then have its services recovered
within 10 minutes. Both Paul and Steve
note that their infrastructure manage-
ment systems pass The Test.

PROFESSIONAL GROWTH AND DEVELOPMENT

David Parter, University of Wisconsin,
Madison
Summarized by Marko Bukovac
David Parter led an excellent free-flow-
ing discussion covering several topics of
interest to system administrators in
industry and academia. The first topic
came from mid-level administrators
who were interested in knowing how to
mentor their students and colleagues.
Senior administrators recommended
that students develop a range of techni-
cal skills, including “people skills,” which
is a big part of the job. In addition, men-
tors should always treat system adminis-
tration as a legitimate profession (it is
not always seen as such by users). Stu-
dents should be encouraged to commu-
nicate with their mentors (who should
set some time aside to work with stu-
dents) and ask questions using SAGE
online resources, such as the Web site,
IRC channels (irc.sage-members.org
#sage-members), and the mailing list
(sage-members@sage.org).

Mid-level admins mentioned that logical
thinking and thorough knowledge of the
fundamentals (though it can sometimes
be hard to define what fundamentals
really are) are perhaps the most highly
valued skills in the field. Some admins
mentioned that students’ fear of “break-
ing things” slows their growth and that
they should be encouraged to experi-
ment, only not on the main servers. A
debate about the relative importance of
depth cersus breadth concluded that
they are equally important.

To keep their job fun and interesting,
some administrators would like their
jobs to change with time and include
more research. While there is no overall
solution to this, as it is company-depend-
ent, some senior admins recommended
books, such as O’Reilly’s Love Your Job,

76 Vol. 29, No. 1 ;login:

and some recommended writing and
sharing tools, which can then lead to
more communication between compa-
nies and to more research on the subject.
Many recommended getting books and
taking classes on time management,
since this is a skill that many admins
(especially younger ones) lack. Giving
small group tutorials and then expand-
ing might lead to giving a tutorial at a
LISA conference.

Many of the admins wondered how to
take control of their careers. Senior
admins saw themselves in the position of
having to join the management and
abandon technical duties, to the dismay
of most of them. The main suggestion in
this case was to check with HR (even
before getting hired) to ask about job
growth and possible future duties. Some
admins considered switching from uni-
versity environments to the “real world”
but feared that they were not ready for it
(myth: work at the university is not as
important and difficult as work at the
corporation). All of them were encour-
aged by the corporate admins, who said
that academia is not at all different from
the corporate world.

The session concluded with a discussion
about personal career plans. Everyone
should have a personal career plan and
an idea of what their dream job would
be. One should not be afraid to ask the
employer about future plans and how
the job will evolve. In their work, admins
need to manage users, systems, and
management, and many find it very
tricky to manage all three successfully.
Some senior admins suggested taking
nonsystem administration courses, such
as management, as well as documenting
all political decisions (resources, time,
budget) made by their supervisors.
Managing management is a vital part of
the job, and senior admins recom-
mended learning this skill.

INVITED TALKS

OUTSOURCING: COMMON PROBLEMS AND
CURRENT TRENDS IN THE OUTSOURCING
INDUSTRY

John Nicholson, Shaw Pittman LLP
Summarized by Emma Buneci
Outsourcing has been a hot topic over
the past few years, and John Nicholson
presented an excellent overview of the
topic. Outsourcing is defined as the
long-term contracting of an information
system or business process to an external
service provider in order to achieve
strategic business results.

The top-tier providers are IBM, CSD,
EDS, and ACS, while in the second tier
we find Perot Systems, Accentrue, CGI,
Unisys, and Lockheed Martin Siemens,
as well as other consulting firms. As an
interesting change, the hardware
providers, such as Dell, Compaq, and
HP, have all been moving into providing
services for their clients. As offshore
providers, there are typically the larger
Indian companies, such as the Tata
Group. IBM is the dominant player in
the global market and was able to main-
tain this position by drawing on its own
strengths and taking advantage of the
leadership and accounting problems at
other companies.

After outlining the seven major trends in
the outsourcing industry – mid-sized
markets; outsourcing of IT, business
process, and business transformation;
offshore outsourcing; shareholder influ-
ence; renegotiation of existing agree-
ments; piecemeal deals; and the
changing nature of IT departments –
Nicholson discussed problems with out-
sourcing. The three major issues seem to
be timing, customer perspective, and
perceived poor customer service.

Rushed negotiations, differing expecta-
tions, and poor communication with
end users lead to a very unhappy rela-
tionship. In order to minimize prob-
lems, any outsourcing deal must be
treated with the same care and planning
as buying a used car. It makes sense to

talk to multiple vendors because talking
to only one vendor will undercut negoti-
ating leverage. The customers must be
clear about document scope, service lev-
els, and cost. Pricing must be clearly
specified before signing the deal. Assump-
tions and dependencies must be avoided:
If there is any assumption or depend-
ency written in a deal, it must be speci-
fied how it will imply a change in the
price.

Using an independent deal consultant is
highly recommended; in the same way
that a car mechanic is crucial to buying a
used car, a consultant will know how to
look for and evaluate problems that you
might not see. The final piece of advice:
“Communicate, communicate, commu-
nicate!”

A CASE STUDY IN INTERNET PATHOLOGY:
FLAWED ROUTERS FLOOD UNIVERSITY’S
NETWORK

Dave Plonka, University of Wisconsin,
Madison
Summarized by Jason Rouse
Dave Plonka gave an enlightening talk
on the story behind the flooding of the
University of Wisconsin’s public NTP
server. On May 14, 2002, Dave was
reviewing network logs. He was quite
surprised to find a nearly 90,000 packet-
per-second forwarding rate through one
of the university’s public NTP servers.
Seeing that the source port was fixed
and IP addresses associated with the
flows were random, Dave’s first guess
was a distributed denial of service. To
combat this, he placed university-local
blocks on the ingress routers.

A month later, however, Dave was sur-
prised to find the access control lists
dropping over 250,000 packets per sec-
ond, all with the same IP profile! This
time, Dave decided to escalate the inves-
tigative procedure. He chose the two top
talkers and emailed them directly, received
immediate responses, and found the
commonality was a Netgear product.
After searching for the model number,
Dave located a few references to the

77February 2004 ;login:

l

 C
O

N
FE

R
EN

C
E

R
EP

O
RT

Sproduct, one such reference, to ICSA
Labs, mentioning that the Netgear
router did not include a battery-backed
clock.

Plonka’s next step was to examine the
hardware and software directly. He
downloaded the firmware available from
the Netgear Web site. After a cursory
examination, he found that the Netgear
firmware included the IP address of one
of the university’s NTP servers. As soon
as he made this discovery, Plonka con-
tacted Netgear directly via their help
desk and customer service channels.
After a number of days without
response, Plonka phoned a Netgear
executive directly.

Plonka then guided the formation of a
team consisting of Netgear employees,
university employees, and independent
experts. This key step ensured that the
problem could be addressed in a way
that was fair to the university, the com-
pany, and the Internet community as a
whole. The initial response was to point
users to an “Instant Code” update, avail-
able from the Netgear Web site. Interest-
ingly, this code had been available for
some time, but had not been widely
advertised or adopted by the product
community.

Understanding the difficulties involved
in communicating to such a diverse user
group, the review team pursued other
options in order to mediate the large
amount of incoming NTP traffic.
Finally, the team concluded that the
implementation of an anycast NTP time
service at the Wisconsin site could suc-
cessfully handle such a traffic load. As of
this writing, Netgear and the University
of Wisconsin have undertaken a project
to provide this anycast deployment.

Plonka’s experiences were summed up in
two pieces of sage advice. First, involve
all parties in any dialogue when search-
ing for a solution. Second, recognize that
the Internet is a shared resource based
on the good citizenship of many, many
users, and act accordingly.

ORGANIZATIONAL MATURITY MODELS:
ACHIEVING SUCCESS AND HAPPINESS IN
MODERN IT ENVIRONMENTS

Geoff Halprin, The SysAdmin Group
Summarized by Jason Rouse
Geoff Halprin has the courage to say
what we’ve all been thinking: Sysadmins
have a hard work life. What with the
economic downturn since the dot-com
bomb, the reactionary posture we have
to assume in order to meet fluid busi-
ness goals, and the organic nature of
system and software development,
sysadmins truly have a difficult juggling
act in front of them.

Halprin described system administra-
tion as a constant quest for reliability,
availability, and serviceability. As a part
of this quest, system administrators
must combat the often organic growth
of systems and software, engineering
fixes in order to maintain systemic
improvements. Halprin also mentioned
the distinct lack of recognition for sys-
temic improvements, leading to a lack of
work in this area. This cycle of low
reward and organic growth leads to sys-
tems that age badly, requiring more and
more work to maintain them as time
passes.

Halprin also understands that system
administrators must deal with constant
change. Systems creep toward states of
increased entropy, and Halprin shows
how system administrators can combat
this gradual degradation. By having an
exact worst-case cost associated with
downtime, Halprin believes that system
administrators can communicate more
effectively with management, achieving
management buy-in. Management buy-
in improves overall workflow manage-
ment, thus lightening the workload on
the system administrator. Management
buy-in also allows a larger measure of
root-cause analysis, so often missing in
highly dynamic workplaces.

Finally, given that systems will break,
how do system administrators minimize
or control failures? Halprin’s answer is to

LISA ’03 l

ensure that system administrators con-
tinuously move toward a proactive
stance, constantly re-evaluating their
workflows and incident handling.

NETWORK TELESCOPES: TRACKING DENIAL-
OF-SERVICE ATTACKS AND INTERNET WORMS
AROUND THE GLOBE

David Moore, CAIDA (Cooperative
Association for Internet Data Analysis)
Summarized by Carrie Gates
David Moore described network tele-
scopes, what they are and how they can
be used. The basic premise is to take a
chunk of IP address space that receives
little or no legitimate traffic (or receives
traffic that can easily be filtered) and
analyze the traffic that it receives. All of
the traffic seen by that space (other than
any known, legitimate traffic that has
been filtered) represents some unusual
network event.

For example, network telescopes can be
used to examine the presence of spoofed-
IP denial-of-service attacks on the Inter-
net. Say you have a /8 network that you
can use as a network telescope. This
address space represents 1/256 of the
Internet. If an attacker is DoSing some
target using spoofed IP addresses that
have been randomly chosen, then the
telescope should see approximately
1/256 of the response traffic, as that is
the likelihood that an IP address in the
telescope address space has been chosen.
By analyzing this information, we can
infer the number of DoS attacks occur-
ring on the network, as well as informa-
tion about the attack itself. Over the past
two years, for example, there have been
approximately 40 DoS attacks against
/24 networks per hour. The majority of
these consisted of SYN floods against
HTTP services.

Network telescopes can also be used to
study the spread of Internet worms.
Assuming that there are no biases (or
bugs!) in choosing the next IP address to
infect (that is, any target IP address has
been chosen randomly across the entire
Internet address space), a network tele-

78 Vol. 29, No. 1 ;login:

scope can expect to see 1/256 of the
scanning traffic generated by any one
instance of the worm. It was seen with
Code Red that the majority of the infec-
tions were ISPs providing home and
small-business connectivity. Within 10
hours, Code Red had infected 360,000
hosts, indicating that there was no effec-
tive patch response to the spreading
infection. Additionally, Code Red
remained inactive for 12 days and then
became active again. It was well known
that the worm would reactivate on
August 1, and so there was a lot of media
coverage. Despite this, the majority of
previously infected machines were not
patched until August 2, after being rein-
fected.

For users interested in building their
own network telescope, all that is
required is a globally accessible network
address space that can be monitored.
Suggested tools for analyzing the cap-
tured data include FlowScan (for analyz-
ing flows), CoralReef (for analyzing
packets), and AutoFocus (which analyzes
both flows and packets). The effective-
ness of the network telescope will
depend largely on the amount of address
space that can be monitored. The larger
the address space, the more traffic it will
be able to analyze. For example, a /8 net-
work represents 1/256 of the Internet,
but a /16 will only see 1/65536 of the
Internet and so will have considerably
less chance of seeing any traffic that has
been randomly addressed.

Network telescopes, especially when
deployed across a large address space,
can provide significant insight into non-
local network events.

INTERNET GOVERNANCE RELOADED

Paul Vixie, Internet Software
Consortium
Summarized by der.hans
[Note: Due to the fires in Southern Cali-
fornia, Paul Vixie was unable to attend
LISA ’03, so kc claffy substituted for him
on short notice and used his slides.]

kc explained that governance is needed
for such shared resources as IP addresses,
domain names, AS numbers, and proto-
col numbers. Governance means that
those who are affected by a decision get
to help make that decision. Stakeholders
are those who hold/own/use/control the
resources and those who allocate the
resources.

The first example of shared resources kc
mentioned is global routable IP. Demand
appears to be higher than scale allows.
ARIN/RIPE/APNIC/LACNIC are con-
stantly searching for an equilibrium
between routing table size and mini-
mum allocation size.

The next example was Verisign’s typo-
squatting with SiteFinder. While the talk
wasn’t specifically about Verisign,
SiteFinder became the primary topic,
with lots of input from the audience.

Verisign doesn’t see itself as the steward
of public resources; it sees itself as the
owner of those public resources. Unfor-
tunately, the contract with Verisign
apparently doesn’t specify which view is
correct. Both kc and Vixie were in Wash-
ington, D.C., for the first ICANN secu-
rity meeting about the Verisign
typosquatting. kc pointed out that
ICANN responded with impressive
speed and integrity with regard to
Verisign’s typosquatting, which was
turned off 19 days after Verisign insti-
tuted it.

Responding to customer requests, ISC
created a patch for BIND9 to block
SiteFinder. China opted out of Site-

kc claffy

Finder by null-routing Verisign’s IP for
SiteFinder. kc described SiteFinder, ISC’s
BIND9 patches, and China’s blocking of
SiteFinder as examples of cybernetic
warlordism.

Several times, kc suggested getting
involved, emphasizing how close we are
to the action. This is Internet policy
being made right before our eyes, and
we can participate. She reminded every-
one to be courteous, mature, and profes-
sional. We can help make the rules.

Vixie says SiteFinder’s losers are regis-
trars, domain registrants, spam victims,
Web surfers, other typosquatters, users
of non-Web protocols, and the Internet
governance trust model. He challenges
Verisign to provide diverse and specific
examples of entities other than Verisign
that benefit from SiteFinder.

Vixie predicts lawsuits and countersuits
before the SiteFinder and stewardship
vs. ownership issues are resolved.

Many members of the audience men-
tioned that the governance organiza-
tions need to be non-national and
specifically non-USA.

Resources:

http://www.icann.org/tlds/agreements/
verisign/

http://www.icann.org/announcements/
announcement-17sep03.htm

http://www.icann.org/correspondence/
twomey-to-tonkin-20oct03.pdf

http://secsac.icann.org/
http://www.icannwatch.org/
http://www.isoc.org/
http://www.ntia.doc.gov/
http://www.stanford.edu/class/ee380/

Abstracts/031001.html

HIGH RISK INFORMATION: SAFE HANDLING
FOR SYSTEM ADMINISTRATORS

Lance Hayden, Advanced Services for
Network Security (ASNS)
Summarized by Jason Rouse
Lance Hayden began by explaining that
most information, if viewed in the
proper context, could be damaging and,

79February 2004 ;login:

l

 C
O

N
FE

R
EN

C
E

R
EP

O
RT

Stherefore, high risk. Examples of such
information could be names, addresses,
credit card numbers, or phone numbers.
Since system administrators are often
tasked with securing and maintaining
systems on which this data is stored,
Hayden believes that it is in the best
interest of system administrators to
make themselves aware of the ongoing
work in regulatory legislation and prac-
tices.

Hayden gave an excellent overview of
current and future legislation and inter-
pretations, focusing on their impact on
system administrators. He produced a
world map, showing the increase in data
privacy legislation across the globe, and
then outlined a six-step iterative process
to enable system administrators to edu-
cate themselves about the high-risk
information they might handle and then
inventory and build a strategy for deal-
ing with that information. Review and
alignment of IT with core business goals
is a key factor in this process.

Summing up, Hayden introduced the
“true” OSI model – one where the
“financial” and “political” layers heap
upon the application layer. In this envi-
ronment, Hayden argues, system admin-
istrators must be aware not only of their
place in the legal and social infrastruc-
ture but of their potential liability and
methods to mitigate this risk.

PANEL: MYTH OR REALITY: STUDIES
OF SYSTEM ADMINISTRATORS
Moderators: Jeff R. Allen, Tellme Net-
works, Inc.; Eser Kandogan, IBM
Research
Panelists: Nancy Mann, Sun Microsys-
tems; Paul Maglio, IBM Research;
Kristyn Greenwood, Oracle; Cynthia
DuVal, IBM Software
Summarized by Kevin Sullivan
This session assembled three researchers
from major corporations, each of whom
studies the actions and responsibilities
of system administrators. For some it
was surprising to learn that there is a lot

of research devoted to usability within
the system administration community.
It was quickly suggested that “system
administration is a misunderstood pro-
fession, both from inside and out.” The
session focussed on how usability experts
can study what system administrators
do, and how system administrators can
employ usability research tools to improve
how they do their jobs.

The panel suggested that there are four
aspects to system administration: psy-
chological, technological, cognitive, and
social. These aspects can be studied in
various ways, including diaries, lab stud-
ies, questionnaires, and observation.

Kristyn Greenwood discussed how she
conducts usability studies known as
“DBAs in the Wild.” This was a natura-
listic observation of DBAs and SAs
where the researchers recorded every
action of the user. The primary aim was
to provide this information to product
development teams so that they could
improve their products based on the
feedback from these sessions. Interest-
ingly, Kristyn found that SAs spent 18%
of their time on group coordination
compared to 27% on actual trou-
bleshooting.

Paul Maglio spoke on his study of inter-
nal Web administrators at IBM. His
focus was on the methods of communi-
cation used in problem solving, namely,
phone or instant messaging. Paul also
noted that large portions of time are
spent on collaboration and communica-
tion. He suggested that tool develop-
ment focus on collaborating and
allowing the user to shift effortlessly
between systems. A particularly insight-
ful comment was that command line
interfaces do not provide the situational
awareness that is important to many
complex tasks.

Nancy Mann spoke about her study,
“Who Manages Sun Systems?” This
study aimed to develop a profile of a sys-
tem administrator, including experience,
tasks, goals, motivators, and tools. Infor-

LISA ’03 l

mation gathered in the process will also
be provided to software design teams to
improve the overall experience for sys-
tem administrators.

It is quite apparent that system adminis-
trators need well-designed tools just as
much as novice users. This panel showed
that there are people devoted to improv-
ing the computing experience for all
types of users. Usability as it applies to
system administrators is very different,
but just as important.

SPAM MINI-SYMPOSIUM
Summarized by Steve Wormley
The first part of the LISA ’03 Spam
Mini-Symposium consisted of two pre-
sentations.

EMERGING SPAM-FIGHTING TECHNIQUES

Robert Haskins, Computer Net Works
and Rob Kolstad, SAGE
The authors started with a quick survey
of the audience which found that most
receive over 30 spam messages per day.
The first point mentioned was that one
of the problems with spam is the defini-
tion. The end users know spam when
they see it, the ISP knows it uses resources,
and the spammer knows it makes them
money. Yet, spam is hard to define. A
second problem is that bulk email is
cheap for the sender. Of course, the
spammers say “Just hit delete,” but we all
know it’s not that easy for the recipient.
Bandwidth costs continue to increase
and the consumer bears the cost of the
email. For one example, Rob Kolstad
apparently receives 400 spam messages
per day.

One interesting point that was made is
that spam is fraud. Spam has misleading
subject lines and advertises fraudulent
products. Also, opt-out in spam isn’t a
way to escape, and opt-in is a joke. And
finally, spam almost always hides its sites
and sources. More spam problems
include that spam is hard to winnow, it
overloads mailboxes, and the messages
themselves are annoying. And sending

80 Vol. 29, No. 1 ;login:

spam is easy there are fairly low barriers
to entry.

The presenters believed that most spam
is already covered by existing laws: fraud
is already covered, as is trespass. New
laws for other email will be expensive
and difficult to pursue. In addition, the
issues of free versus regulated speech
versus privacy will be difficult to balance
going forward. And the root of the issue
is that spammers spam because people

buy stuff from spam: at least one survey
said 7% of recipients have ordered from
unsolicited e-mail.

How spammers are still sending mail
varies. There are still open relays spam-
mers can use. More these days are also
hijacking PCs to send their spam. Some
service providers also allow spam via
“pink contracts,” allowing them to avoid
typical terms of service. The presenters
mentioned that even the smallest service
providers should be able to block most
outgoing spam should they choose to.

Spam turns out to be an arms race.
Spam is not easy to stop because most
spam comes from forged sources,
hijacked systems, drive-by spamming
from wireless, gypsy accounts (set up,
spam, and leave), and the content (what
the spam points to) is often not trace-
able.

The practical solutions consist of edu-
cation, technical solutions, legal solu-
tions, or social solutions. Education is
such things as getting people to shut
down open relays, which is often an
issue in developing countries, and hav-
ing people secure their home PCs. One

of the better legal, social, and economic
methods is to enforce existing laws.

On the technical side, it is fairly easy to
handle outbound spam: simply require
authentication of the user sending the
mail. The inbound side of spam is
where the problem is. The first recom-
mendation is to replace RFC 822. Other
ideas are things like blacklists, whitelists,
distributed collaborative filters, onetime
or limited-use addresses, challenge
response, forcing the sender to compute
something, filtering services, scoring and
rating products(SpamAssassin), enter-
prise plug-ins, and Bayesian filtering.
Bayesian filtering uses probability theory
to perform its spam checks; CRM 114
looks at 16 observations for each word
and works fairly well. Blacklists are good
for providers. Reporting spam is impor-
tant so that things can get fixed where
possible.

ADAPTIVE FILTERING: ONE YEAR ON

John Graham-Cumming, ActiveState
John’s presentation emphasized the fact
that the best way to control spam was to
increase barriers to entry. One way to do
this is with filtering. Products such as
POP file use adaptive filtering to gauge
the level of spamminess of an email.

One of the reasons spam filtering is a big
issue is the “Grandma Problem”: now
that Grandma is starting to get spams,
filtering them is becoming more impor-
tant. Many filters exist today both in
open source and commercial products.
John expects that by 2004 every mail
client will have adaptive filtering.

The primary adaptive filtering issues are
the man-in-the-street usability issues,
false positives, overtraining, oneman
spam, and internationalization. Things
such as integration into the mail client,
auto whitelisting, and the filter guarding
against false positives help. However,
overtraining needs to be handled by the
user, who may click the “spam” button
on far too many messages, causing the
system to think everything is spam. For

The Spam Mini-Symposium

internationalization the filter system
needs to understand how languages
work and how punctuation and tok-
enization should be handled.

Most spammers are trying to overwhelm
filters with good words which are then
hidden using various HTML tricks such
as comments and invisible ink. As the
arms race progresses, the spammers try
more things, and the anti-spammers
sometimes get more fingerprints. The
question is, do filters make spam more
effective, since at least one spammer has
claimed that filters helped him by reduc-
ing complaints.

PANEL DISCUSSION: CURRENT BEST

PRACTICES AND FORTHCOMING ADVANCES

Part 2 of the Symposium was moder-
ated by Dan Klein, with the presenters
from the first spam session and three
additional participants.

First there was a brief presentation by
Ken Schneider of Brightmail. Brightmail
provides a spam filtering package with
service and products. They estimate that
over 50% of email is spam now. The
majority of the spam messages advertise
products, and another large category of
spam is adult advertisement. Brightmail
uses a set of decoy accounts on client
systems to collect spam, which their
operations center then classifies, and
they creates rules which are sent back to
the clients.

Other panel members were Laura
Atkins, president of the Spamcon Foun-
dation, which is working to keep mail
usable, reduce false positives, assist with
legal fees for anti-spammers and file
suits against spammers; and Daniel
Quinland, the author of SpamAssassin.
SpamAssassin is an open source product
which uses anything that works to stop
spam. He also encouraged everyone to
implement SPF, at http://spf.pobox.com/.

Who writes the software for spammers?
The general consensus was that it was
commercial organizations, some soft-

81February 2004 ;login:

l

 C
O

N
FE

R
EN

C
E

R
EP

O
RT

Sware often shipped with anti-spam soft-
ware to test the spam before it’s sent.

One of the more contentious issues
which came up in the round table was
the issue of challenge response. The con-
sensus from the panel was that none of
them thought it was a good idea. Some
of the issues included fake challenges
from spammers, spammers faking a
known good address, spammers using a
sweatshop to accept all the challenges,
and the general annoyance to people
who send you email for legitimate rea-
sons.

The panel then was asked about block-
ing customers with viruses by ISPs. They
felt it was useful for customer ISPs but
not necessarily co-location facilities.
There was also some concern that it
could affect the common carrier status
of an ISP.

How do people handle users who report
spam that is actually requested email?
Brightmail in this case requires a mini-
mum threshold for something to be
classified as spam.

What about the spam program writers?
Apparently in many cases the programs
are legitimate bulk mail tools for various
companies. Rob Kolstad pointed out
that programmers cannot be responsible
for content.

Is spam legislation needed? Rob Kolstad
felt that the main things was that spam-
mers should not be able to say what they
are doing is legal. Laura Atkins responded
that the DMA (Direct Marketing Associ-
ation) is in the pockets of the people on
Capitol Hill. The DMA does not want
opt-in for email. They also don’t want
this to become the requirement for
future marketing.

COPING WITH THE DISAPPEARANCE OF
NETWORK BOUNDARIES

Peyton Engel, Berbee
Summarized by Jason Rouse
Peyton Engel highlighted the advance-
ment of technologies such as VPNs, dis-

tributed computing, and load-balancing
boxes and how the introduction of these
technologies has blurred the boundaries
of traditional IT roles and network
demarcation points.

When using these technologies, one has
to ask questions about liability and due
diligence. If a distributed computing
cluster is compromised and is used to
scan or compromise other networks,
who is responsible? Since VPN technol-
ogy effectively extends network bound-
aries to arbitrary limits, how do we
handle cybersecurity threats in this new
environment? This, Engel argues, is the
world into which we will be heading in
the coming months.

As organizations begin to incorporate
these new technologies, Engel believes
that security is frequently overlooked, or
existing security solutions are trusted to
operate in environments for which they
were never designed. Engel dealt with
these questions and more, citing the
need for competent, well-rounded secu-
rity practitioners and the defense-in-
depth strategy of multi-level, multi-
vector infrastructure and employee pro-
tection. Engel also noted the growing
fluidity of administrative domains, for
example merging two corporate net-
works.

Engel believes that this new environ-
ment will provide both challenges and
insights into tomorrow’s best practices,
and that these issues will become the
groundwork for system, network, and
security administrator approaches in the
coming years.

SECURITY VS. SCIENCE: CHANGING THE
SECURITY CULTURE OF A NATIONAL LAB

Rémy Evard, Argonne National
Laboratory
Summarized by Carrie Gates
Rémy Evard gave a presentation on
changing the culture of a research sci-
ence lab to incorporate secure practices.
Such a change in culture requires several
stages, starting with reaction mode and

LISA ’03 l

then moving through project mode and
institutionalize mode before achieving
an ongoing program.

The reaction mode, in which they started,
consisted of a climate where there were
no policies or support for security. For
example, there were no policies restrict-
ing the use of cleartext passwords. The
result was a number of intrusions, and
poor results from security auditors. The
problem was the culture – the belief was
that effective security would keep users
from being able to do what they wanted
to do, and so there was no support for
security, which translated into no fund-
ing and no direction.

The catalyst for change, causing them to
enter the project mode, was a new direc-
tor who took security more seriously
and asked for an internal report. The
report’s recommendation was for the
development of a security policy com-
mittee. This committee was formed with
the goal of fixing everything (!), fol-
lowed by passing another audit. A key
part of attaining this goal was the devel-
opment of policies. And a key part of
drafting acceptable policies was holding
general discussions of the policy in town
hall meetings with the entire lab. This
helped to alleviate the fear that people
would not be able to perform their
work, and helped to create the buy-in
required to have the policies work. By
the end of this stage, an internal risk
assessment had been performed, ongo-
ing internal scanning for vulnerabilities
was being performed, and firewalls had
been deployed.

There was a gradual move into the insti-
tutional mode after this. Here the goals
were to reduce the effort required to
achieve effective security (while still
keeping up the energy for it) and to pre-
pare for the next audit. The technical
activities consisted of improving both
consistency and integration and deploy-
ing practical solutions. During this
stage, an intrusion detection system was
also deployed, which has been found to

82 Vol. 29, No. 1 ;login:

be useful for detecting large-scale scans
and viruses. By the end of this stage, the
auditors returned and performed both a
management review and a technical
review. The resulting grade: “effective”
(A).

There were three points Evard felt were
key factors in their success in deploying
appropriate security policies and infra-
structures. The first was that the highest
level of management “got it,” and that
they bought into the process and the
necessity of having security. The second
was that audits work and provide valu-
able motivation and feedback. The third
factor was that everyone helped and
became involved.

TALKING TO THE WALLS (AGAIN)
Mark Burgess, Oslo University College
Summarized by Siddharth Aggarwal
Mark Burgess discussed the evolution of
pervasive computing and the challenges
it could pose to system administrators in
the years to come.

He introduced the topic by looking at
smart houses and smart cities, which
will make extensive use of pervasive
computing in the future. According to
Burgess, pervasive computing brings up
new challenges for a system administra-
tor because of the diversity of devices
that have to be managed, coupled with
the high density of communication.
Because of limited consumer demand,
the slow introduction of these devices
will tend toward a non-standardized,
heterogeneous computing environment.
This also leads to a lot of security issues.

Burgess grouped the challenges posed by
pervasive computing into three cate-
gories: diversity, stability, and sociology
of interaction. When implementing per-
vasive computing, a key decision to be
made is who should control the system.
Who decides the policies and controls
the resources? This leads to another
question: Should humans and comput-
ers cooperate with each other or com-
pete against one another? Should a

device adapt to the environment, or
should the environment adapt to the
device when it comes into a system?
Burgess discussed various techniques,
such as game theory, for modeling inter-
action between such systems.

Burgess finished by introducing modern
concepts like the pull model of commu-
nication between systems having an
emergent behavior, human-computer
swarms, and pseudo-hierarchical social
swarms. The emphasis is on systems
having probable control, probable risk,
and probable behavior rather than
absolute control. He concluded by say-
ing that the world is controlling us as
much as we are controlling it. The chal-
lenge lies with system administrators to
find stable points for equilibrium.

THROUGH THE LENS GEEKLY: HOW
SYSADMINS ARE PORTRAYED IN POP CULTURE

David N. Blank-Edelman, Northeastern
University
Summarized by Ari Pollack
David Blank-Edelman presented a
highly entertaining talk on the portray-
als of sysadmins in US popular culture.
In the minds of the public, sysadmins
typically get lumped into a broader
“computer person” category along with
programmers and hackers/crackers, so
the examples in this talk included both
sysadmin and sysadmin-related charac-
ters, mostly from the movies. David
noted that portrayals of sysadmins broke
down into three polarities: “competent
or incompetent,”“good or evil,” or “hip
or really uncool.” Examples were shown
of each, much to the amusement of the
crowd.

After this demonstration, David sug-
gested that these portrayals are closely
tied to the public’s views on computing
and technology in general (e.g., people’s
views of computers as being totally com-
petent or incompetent get projected
onto sysadmins). Given that people
accept the stereotypes they see in popu-
lar culture when they interact with
sysadmins on a daily basis, David ended

with tips on ways to respond to these
stereotypes in the workplace.

HOW TO GET YOUR PAPERS
ACCEPTED AT LISA
Tom Limoncelli, Lumeta Corporation;
Adam Moskowitz, Menlo Consulting
Summarized by Carrie Gates
Limoncelli and Moskowitz based their
talk on their experiences as program
committee paper referees. Their first
advice to potential authors was to read
and follow the instructions on the call
for papers.

The paper submission process for LISA
consists first of submitting an extended
abstract (not a full paper) and a paper
outline. An “extended abstract” is a short
version of the full paper, consisting of
about 4–5 pages (not 4–5 paragraphs!).
It should not be a teaser but, rather,
should provide enough details to allow
the committee to make a decision, with-
out providing details of required back-
ground knowledge.

Abstracts are then reviewed by the com-
mittee members. Each paper is assigned
to 4 or 5 readers, who rank the paper on
a scale of 1 to 5 in various categories,
such as the quality of writing and appro-
priateness to the conference. The com-
mittee meets as a whole and reviews the
rankings of the various papers, accepting
the papers with obviously high scores,
and rejecting papers with obviously low
scores. The committee then reviews each
of the remaining papers until a final
program has been designed.

The three main criteria for getting a
paper accepted at LISA are:

1. Is the work worthwhile? (For work
that is publishable but not appro-
priate for LISA, the reviewers will
suggest other forums for publica-
tion.)

2. Has it been done before?
3. Can the author write well?

What makes a good paper? First, the
potential author should note that the

83February 2004 ;login:

l

 C
O

N
FE

R
EN

C
E

R
EP

O
RT

Spurpose of the refereed-papers track at
LISA is to advance the state of the art in
system administration. Otherwise good
papers might be rejected if they do not
meet this criterion. Alternatively, an
author can be asked to give an invited
talk instead (ITs tend to be on hot topics
or by cool people). The author should
recognize that the audience is highly
technical and write for this audience. If
there is any confusion about the level at
which a paper should be written, review
the papers that have been published at
previous LISA conferences (available on
the USENIX Web site).

In terms of style, the author should
introduce the topic immediately, and
then proceed to explain the terms or
process or arguments. This allows the
reader to know immediately what the
paper is about, rather than needing to
read several paragraphs before finding
the actual topic. Also, the author should
explain why the work is original, show-
ing how his or her work is different from
(or, hopefully, better than!) work that
others have done in the same area. (All
authors should list their references in
their extended abstracts – this is a pet
peeve of some of the program commit-
tee.)

In summary, a good paper is clearly
written, concise, relevant to LISA, and
advances the current knowledge in the
area of system administration. It clearly
shows the data, methodology, and
results, and it discusses related work,
showing how the current approach is
different from or better than previous
approaches.

SECURITY LESSONS FROM “BEST IN CLASS”
ORGANIZATIONS

Gene Kim, Tripwire, Inc.
Summarized by Carrie Gates
Gene Kim gave a presentation on some
research he has been doing on the secu-
rity practices of “best-in-class” organiza-
tions, such as Verisign and the New York
Stock Exchange. His goal is to determine
the characteristics of a best-in-class organ-

ization, and how these can be achieved
in other organizations.

Best-in-class operations and security
organizations can be recognized by four
criteria. First, they have the highest
server to system administrator ratio,
often with 100+ servers per administra-
tor. The second characteristic is that they
have the lowest mean time to repair, as
well as the highest mean time between
failures. The final characteristic is they
demonstrate the earliest integration of
security into operations (when com-
pared with other organizations).

Many of the problems encountered by
organizations today are created by peo-
ple. For example, the IT department
often does not know about changes that
have been made by the security depart-
ment. This results in an adversarial rela-
tionship between security and operations
instead of a close working relationship.
To further complicate matters, many
downsized companies have developers
instead of administrators maintaining
production servers. Finally, documenta-
tion is often not performed, resulting in
only a couple of people in the entire
organization who know how things
really work.

This situation affects how work is per-
formed, resulting in constant firefighting
rather than proactive server man-
agement. This further results in situa-
tions where no two servers are the same,
complicating the system administration
practice.

By comparison, best-in-class organiza-
tions have controls embedded in secu-
rity and operations to manage change.
These organizations have identified what
they consider to be the key issues (e.g.,
outages with a long remediation time,
inconsistent system footprints in 1000+
servers running critical business pro-
cesses), and have developed approaches
to controlling these issues (e.g., integrity
scans every 10 minutes for business con-
tinuity, regular audits to determine

LISA ’03 l

whether system footprints across servers
are identical).

The main observations are that best-in-
class organizations have developed prac-
tices that make it easy to understand,
know, and recover to good states in the
system. Additionally, they have devel-
oped proper processes and procedures
for managing change, rather than taking
an ad hoc, firefighting approach to the
process.

WHAT WASHINGTON STILL DOESN’T GET

Declan McCullagh, CNET News.com
Summarized by William Reading
Why do we need Washington? They pro-
vide national defense and handle foreign
affairs and interstate commerce, among
other things.

However, Washington also wants to reg-
ulate where it is actually difficult or impos-
sible to do so without a number of very
negative implications.

Although it was struck down, the Com-
munications Decency Act was one of
Congress’s first attempts at online cen-
sorship. It banned “indecent” or “patently
offensive” words. As former Sen. James
Exon (D-Neb) said, “This is the time to
put some restrictions or guidelines on
it.”

Washington politicians, Bill Clinton
among them, also suggested having a
sort of “V-Chip” for Internet access.

Al Gore, who still claims that he “took
initiative in creating the Internet,” sup-
ported an equivalent to the “Clipper
chip” for computer networks.

Some politicians do not even realize that
some legislation is simply impossible,
having indicated that they do not sup-
port bills such as “602P,” which was a
hoax that claimed the U.S. Postal Service
would begin to charge for email.

The “Office of Cybersecurity” does not
seem to gauge threats very well, with
cybersecurity advisor to the White

84 Vol. 29, No. 1 ;login:

House Richard Clarke resigning over the
Sapphire worm.

Rep. Howard Berman (D-Cal) proposed
that “a copyright owner shall not be
liable in any criminal or civil action for
disabling, interfering with, blocking,
diverting, or otherwise impairing the
unauthorized distribution, display,
performance, or reproduction of his or
her copyrighted work on a publicly
accessible peer-to-peer file trading net-
work” (http://thomas.loc.gov/cgi-bin/
bdquery/z?d107:h.r.05211).

Others advocate destroying computers:
“If we can find some way to do this
without destroying their machines, we’d
be interested in hearing about that,” Sen.
Orrin Hatch (R-Utah) said. “If that’s the
only way, then I’m all for destroying
their machines. If you have a few hun-
dred thousand of those, I think people
would realize [the seriousness of their
actions]. There’s no excuse for anyone
violating copyright laws,” Hatch said.

STICK, RUDDER, AND KEYBOARD: HOW
FLYING MY AIRPLANE MAKES ME A BETTER
SYSADMIN

Ross Oliver, Tech Mavens, Inc.
Summarized by Robert W. Gill
Ross Oliver has been a sysadmin for 15
years and a pilot for 13. He has logged
over 500 flying hours and is almost
instrument rated. His invited talk
focused on the lessons sysadmins can
take from aviation. The talk was relaxed,
fun, and chockfull of useful ideas to
make the lives of sysadmins easier.

Despite new laws like HIPAA, IT is still
very unregulated. Ross presented nine
areas in which he thinks IT and sysad-
mins can learn from aviation. Briefly
summarized, his points were:

1. Make use of checklists. Use them as
memory aids and as tools to avoid mis-
steps. Checklists allow you to standard-
ize tasks for multiple actors and can be
used as a training tool.

2. Prepare for abnormal procedures.
Anticipate what things can go wrong
and prepare how to deal with them
before there is a problem. Drilling is
important to ensure that the steps you’ve
worked out are correct and to provide
confidence when you need to use the
procedures under fire.

3. Perform “pre-flight” planning. Plan-
ning ahead reduces in-flight workload
and puts all variables on the table. You
will save time and effort by making deci-
sions in advance, adhering to a checklist
format, and allowing for peer review.

4. Know how things work. A checklist
will not cover everything, and instru-
ments can lie. By understanding the
underlying technology, sysadmins can
better cope with situations that fall out-
side normal operations.

5. Learn to assess risk. Understand your
own biases so that they don’t distort
your viewpoint.

6. Identify chains of errors, in which sev-
eral different factors combine to cause
an accident. Aviation has, for the most
part, routed out most single-cause fail-
ures; instead, crashes often result from a
series of missteps. Such tragedies often
occur after signs of a low-level problem
have been ignored.

7. Deal with crew resource management.
Command and control structures are, at
times, too rigid for the environment.
Sysadmins are often soloists, accustomed
to working at their own pace. Each group
needs to find the right amount of struc-
ture (checklists, peer review, etc.).

8. Work toward continuous improve-
ment. Strive to find little things you can
do to make things better. Learn from
other industries (such as aviation with
its 100 years of experience).

9. Beware automation. Automation is
best applied to frequently utilized and
well-understood functions, but is worst
suited to exception handling, since it is

difficult to account for all the possible
exceptions.

As technology becomes more involved
in public safety, the risks become greater.
Ross’s talk offered excellent examples of
how these steps have helped the aviation
industry improve its safety record and
how they can be applied to the work of
sysadmins.

SECURITY WITHOUT FIREWALLS

Abe Singer, San Diego Supercomputer
Center
Summarized by Ari Pollack
Abe Singer presented a look at why fire-
walls are so popular these days, why they
should be used, and why they don’t need
to be used. A common misconception
among technical and non-technical peo-
ple alike is that you’re not secure unless
you have a firewall. Firewall vendors
want to make you think installation will
solve all your problems; in reality, fire-
walls fail all the time, and they do
require a great deal of effort to be con-
figured properly. Misconfigured firewalls
can inhibit real productivity and do
nothing to enhance security. Addition-
ally, there are no data or statistics about
the effectiveness of firewalls.

The SDSC currently takes many security
precautions to ensure that their systems
will be secure against an attack, even
without a firewall. Some of these pre-
cautions, such as using restricted sudo
or patching early and often, may be
commonplace in many organizations,
but they provide an added level of secu-
rity nonetheless and have little to no
impact on day-to-day usability. Inexpe-
rienced users may do things by accident,
and in many cases they do not care
about security; they just want to do their
work, and will try to get around defenses
that make it harder for them to perform
their job.

There is a place for firewalls, but they
may not be worth the effort for all net-
works. In some cases, 95 to 100% of the
security effort at an organization is

85February 2004 ;login:

l

 C
O

N
FE

R
EN

C
E

R
EP

O
RT

Sspent on firewalls. In reality, this should
be closer to 5%. Firewalls can be useful
for hosts that can’t be secured on their
own, such as printers or embedded
devices, and they can give an extra layer
of protection, but firewalls should not
be used as the only line of defense.

WORKSHOP SERIES

AFS
Esther Filderman, The OpenAFS Project;
Garry Zacheiss, MIT; and Derrick Bras-
hear, CMU
The AFS workshop covered many topics:
Open AFS roadmap, Kerberos integra-
tion, IBM’s Stonehenge project, APIs,
and other AFS workshops.

Derrick Brashear presented the
OpenAFS roadmap:

n 1.3 coming soon.
n MacOS 10.3 support now (on Ope-

nAFS 1.2.10a).
n large file support “coming soon”

(actually available, but only limited
testing has been done).

n FreeBSD and OpenBSD ports are
coming along nicely.

n Linux 2.6 kernel is problematic with
respect to the interface used by
PAGs (Process Authentication
Groups). IBM Germany and SUSE
have been working together some
on this as well.

The second theme was managing Ker-
beros: MIT vs. Heimdal vs. OpenAFS (or
Arla or Transarc AFS). The consensus is
that most common configuration ques-
tions and issues have solutions, and that
those interested should consult the AFS
Wiki, as well as the OpenAFS mailing
list archives.

Next, we heard what IBM has been
doing with the Stonehenge project. In a
nutshell, the Stonehenge project is about
putting together a turnkey storage man-
agement system that uses AFS as its net-
worked filesystem layer. IBM has been
developing the management interfaces
and has released a Java API so that oth-

ers can build management tools for AFS
as well.

Alf Wachsmann and Venkata Achanta
discussed the Perl API they have been
working on under the direction of Nor-
bert Gruner (which utilizes XS). The
API now containts vos and vldb inter-
faces, so volume management programs
can be written as well. For those inter-
ested in a different Perl API, Phil Moore
has released his to CPAN. The primary
difference in the two APIs is that Phil’s
forks off shell calls to the underlying
commands, while Norbert’s uses XS and
saves the overhead of the fork/exec.
Phil’s API is more complete, however.

Wolfgang Friebel gave an update on the
German AFS workshop that took place
October 7–10, 2003. Alf Wachsmann
and Randy Melen announced an AFS
Best Practices workshop, to be hosted by
Stanford Linear Accelerator Center on
March 24–26, 2004.

SYSADMIN EDUCATION

Curt Freeland, University of Notre
Dame; and John Sechrest, Peak Internet
Services
This workshop featured discussions of
core topics for system administration
education programs, a roundtable pres-
entation of participants’ courses, and
discussions of future work in the area.

Participants assembled a list of core top-
ics in system administration and dis-
cussed how this hypothetical list
compared to the actual syllabi various
programs offer. A consensus is that a
single system administration course is
not enough, and that programs need to
be more comprehensive. Various issues
and strategies for encouraging schools
and departments to offer system admin-
istration courses were discussed.

Curt Freeland and John Sechrest have
assembled a list of universities that offer
courses and programs in system admin-
istration. While there are many such
courses and programs, of particular note
are two new programs in Europe:

LISA ’03 l

Netherlands Master in System and Net-
work Engineering (http://www.os3.nl/).

Master’s degree in Network and System
Administration at Oslo University
College (http://www.iu.hio.no/data/
msc.html)

These two are of special note as they
lead to Master’s degrees and are not sim-
ply standalone courses.

Work on the theoretical foundations of
system administration is advancing as
can be seen in this year’s SAGE Achieve-
ment awards. Participants discussed
some ways to help students join with
faculty to do further research in system
administration.

ADVANCED TOPICS

Moderators: Adam Moskowitz, Menlo
Computing; Rob Kolstad, SAGE
Transcribed and summarized by Josh
Simon and Rob Kolstad
This meeting included experimental use
of IRC as a backchannel for interper-
sonal communications to keep the inter-
ruptions down. It led to a few interest-
ingly surreal conversations and mixed
evaluations.

The meeting led off with introductions
and then the opening question: What’s
the most difficult challenge you have
right now? Or, What do you wish you
had to address challenges? Replies
included: Overcoming cultural and
political resistance to centralized system
administration. Sales is a problem. Some
have succeeded (with templates and the
like). One participant said: “I can sell it.
Only takes a 1–2 hour presentation to
sell management . . . which is 50% of the
problem. Technical dudes MUST buy
in!” Standard builds were advocated.

Linux was said to be a hard sell but used
anyway due to its affordability – lots of
machines coming in under the radar.

Someone noted that heterogeneous clus-
ter participants seem willing give up
some autonomy for functionality and its

86 Vol. 29, No. 1 ;login:

darker side: “If you drive people to out-
source their S.A., you’re screwed again.”

More draconian measures included the
“network citizenship” notion: “We just
unplug machines that aren’t in confor-
mance with our standards.” Another
participant disables ports when viruses
are discovered.

But “Technical dictatorships don’t often
work well enough. Standardization is
good; innovation is good. There must be
collaboration and accommodation.
[Sharing] the goals helps.”

The next discussion is shown in fairly
deep detail in order to convey a sense of
the workshop’s ebb and flow. It has been
dramatically condensed even in this
lengthy summary.

Cash flow was one participant’s #1 prob-
lem. “We don’t have good structures for
doing things like collaborative adminis-
tration, charge-backs, funny money
(between departments). Industry-wise:
Administrative toolsets that we have
don’t support sysadmins well enough
(we end up using sneakernet, telephone,
etc.). How do we create for the service
industry something like financial instru-
ments in the financial community? We’ll
want data-feeds between/among our
toolsets. Consider carrying around a lit-
tle micro-charging header on services
being rendered (e.g., a virus elimina-
tion). Millions of small businesses need
this!”

Discussion ensued: “Granularizing these
tasks hurts innovation. We are pure
overhead.”

“We’re on the tail end of the stick and
get our budgets cut first when things
aren’t great.”

“Of course, being a profit center doesn’t
help that much – everyone else is just as
messed up as we are.”

“. . . and this leads to bad local optimiza-
tions.”

“People think they want detailed sum-
maries of IT costs, but then they balk
and refuse to buy certain services/prod-
ucts. Bad global impact.”

“You must be in a very large company
for market forces to work effectively
among divisions – otherwise you don’t
have the proper efficiencies of scale.”

“It’s good to know costs. Sometimes,
though, this perverts the problem solu-
tion technique by pushing costs around.
Monetary values on various services
sometimes thwart corporate missions.”

“People buy bandwidth, CPU, disk and
want to own it ‘forever’. They want to
pay once. They prefer to think of having
a computer, not the use of 100,000 CPU
cycles to do an operation.”

“From whose point of view does one
look at costs [and value]? Customer, VP,
Manager, CIO, CEO: different points of
view!”

“Don’t artificially granulate the cost. I
like the all-you-can-eat approach. Tiered
plans are fine, but try to avoid artificial
situations with costs over which you
have no control. Try to cost things so
that both sides of the arrangement
arrive at mutual efficiency. I wonder if
monthly billing is going to increase our
customers’ perceptions of us.”

“We should teach them what we’re
doing! ‘I did a tuneup for you.’”

“Auto repair; you pay book rate,
independent of how long it takes. We
need to insert (deliberately) a noisy level
of suffering-causing failures so people
understand what ‘good’ is.”

[General group muttering: It’s unethical.]

[Consider a] “popup [that] says ‘Net-
work failed . . . we repaired it for you in
background’”

“Valuation of services is the main prob-
lem. Outsourcing has hidden costs (e.g.,
cost of data access). ‘Flexibility’ is never
valuated. Agility counts!”

“Must valuate the ‘cost’ or ‘value’ of
NOT doing something.”

“Management at our institution wanted
disaster recovery after a disaster, despite
our requests for years prior.”

Why can’t we describe ourselves/our
job?

“J. Deming says, ‘You can’t fix [manage]
what you can’t measure.’”

“We just got into metrics. We use RUM
(‘resource utilization metric’): 10% of
time doing tickets, 10% training, etc.
Management prefers this to ‘17 minutes
to add a user’.”

“I am opposed to bad metrics and bad
charges – these are worse than having
nothing at all. Metrics disincentize. [For
example,] you promote or terminate
people based on the number of tickets
closed (thus punishing those who can
solve difficult problems).”

One group member told this story: “I
tried to morph into an MBA; failed. I’m
really a consultant. I repeatedly encoun-
tered a request for ‘a better way to do
system administration’. Yet, lots of
organizations denied there was a prob-
lem. I finally theorized: I think it’s our
fault. The knowledge we bubble up to
our management is ‘good news’ intended
to make us look good. ‘We’re doing fine;
everything is under control.’ Instead, we
need to send more details than the CIO/
COO wants to hear. We need face-time
with management structure to make
them learn enough to understand the
real problems in their own infrastruc-
ture. IT buttresses all people. We need to
make that clear!”

General discussion about actual use and
sizes of LDAP scaling.

Challenge: Document management sys-
tem. Anyone have any good solutions?

Xerox Docushare was mentioned repeat-
edly. Webdav, twiki, Zope, and DCWork-
flow were mentioned.

87February 2004 ;login: LISA ’03 l

l

 C
O

N
FE

R
EN

C
E

R
EP

O
RT

SChallenge: How do we keep things fun
(esp. for those with spouses and chil-
dren)?

Comments included: “movie bucks,”
general agreement, free coffee, the
notion that the job isn’t fun, the notion
that it shouldn’t be too much fun,
engendering pride, development vs. fire-
fighting, uninterrupted time for proj-
ects, SWAT team assignments vs.
development projects, project demos,
fellowship, recognition, separating work
from socialization/other-
parts-of-life, involving others in pur-
chases (e.g., peripherals), “development
teams” to attack projects in a sprint, and
two-way radios.

A short discussion of spam covered its
volume and demoralization potential.
Email size limits were discussed. Some-
times email is the only way to share large
files; this means that a new mechanism
is required.

How does one evaluate value? How
much is RH10 really worth?

General discussion of integration
costs/issues, pricing, etc., continued.
One person noted: “There’s nothing
RH’ish about this question. Senior level
sysadmin means understanding vendors
pull the rug out at any time and we must
proactively deal with this. I don’t put
certain products in core services. Build-
ing too many dependencies on some-
thing you’re locked into can be bad.
Recently Verisign changed their licensing
terms to charge us a lot since we’re an
unusual site. Plan for this! We use open
source when we can, open standards. We
need to be agile.”

Complexity was raised as an issue: “We
see increasing complexity: volume man-
agers, grids, etc. etc. How do we keep
these different level of sysadmins cur-
rent on these when we have 1,000
machines, many of which change a lot?”

Comments included: the expense of
diversity, the impossibility of having “all
senior sysadmins,” a disagreement about

that, and a list of different solutions for
NAS, SAN, and other storage manage-
ment.

One of the group had “a management
issue. I have a good fire-fighting sysad-
min, short tasks, etc. This person wants
to do ‘more meaty’ things but can’t.”
How to solve this?

Suggestions included: career counseling
and a set of discussions about that,
“spinning his own job to him,” encour-
aging him to grow, his inability to recog-
nize his own failure, training, the
adrenaline and endorphins of firefight-
ing, and a thought that maybe he should
be a firefighter/savior kinda of person.

What about lifecycle management for
files? We get thousands of new files per
day and we need to manage where they
reside, where the copies are, etc. Anyone
know any software to do this?”

Suggestions included: Permabit and
Alien Brain (though that is mostly in the
audio space).

One person had an interesting issue:
“Availability is declining. I see three
management psychoses. First one: Every
time availability declines, they increase
‘process’ to fix the problem. Currently,
we have a 90-minute daily change man-
agement meeting. They’re squeezing. #2:
Ownership. They’re so afraid about
someone dropping a problem, they cre-
ate process to thwart moving the solu-
tion to the best person for the job.
Admins work on a per-machine basis,
not on subsystems. Ownership is sticky
– must stay on phone with people for
hours to fix things. #3: We’re ‘xxx.com’,
and we do things differently and no one
can teach us anything.”

Discussion included: hire a consultant
(though the problem owner said that
that would be impossible), a general
throwing-up-of-hands that this problem
was unsolvable, the notion that ‘fear to
fix problems’ is also part of the uptime
problem in addition to ‘procedurizing,’
‘philosophy of processes,’ be careful of

sensitivity to alarms, demonstration of
how process hurts the metric, and admo-
nitions to play by the (presumably defec-
tive) rules until it’s clear they’re bad.

Finally the group made predictions for
11/16/2004. A few of them were particu-
larly interesting:

n Unemployment levels will still be
above 5% for the national average
[100%]

n Context-aware services (those that
are location-dependent) will begin
to be deployed (there’ll be some in
major cities) [14/30]

n Sun’s market share will continue to
decline [100%]

n Spam will force a sea change (dis-
continuity) in either government, or
business, or both, such as major leg-
islation or some major company
doing something really dramatic, or
something [27/30]

n There’ll be a significant backlash
against the RIAA in particular and
digital rights management in gen-
eral, probably from a university or
collection of universities, with the
potential to completely change the
landscape [22/30]

n The SCO thing will still be going on
and still nobody will give a $#!+
[28/30]

n You will still not be able to use
native IPv6 end to end across the
Internet in any useful way [28/30]

n No technical solution will stem the
tide of spam on the Internet back-
bone [100%]

n There still won’t be a widespread
music CD copy-protection system
[100%]

n Most consumer PCs sold will not
have a floppy drive and will have
writable DVD drive [25/30]

n A Windows-based
virus/worm/whatever will cause
widespread data loss [26/30]

n SCO will lose the lawsuit [100%]

88 Vol. 29, No. 1 ;login:

THE LISA GAME SHOW
Summarized by Josh Simon
This year’s quiz show was more exciting
than in years past for a few reasons. On
Monday, Rob Kolstad’s laptop – the
ancient piece of crap with a broken
screen – was stolen out of a locked
room, which was supposedly guarded by
security as well. He didn’t have the most
current version of the code or questions
backed up to his home network. (Les-
son: Back up your laptop frequently!) So
Rob was more invisible than usual this
conference, rewriting the game show
software, writing new questions, choos-
ing audio songs involving smoke and
fire (because of the nearby wildfires and
the ashfall the first half of the week), and
trying not to go completely insane. In
addition to the hardware and software
issues, we’d changed the format slightly.
We now had four rounds of four con-
testants (involving 16 people) instead of
the three rounds of three (nine people).
Consensus after the fact was that it kept
Rob from spending time with the con-
testants and in the banter that’s very
popular.

Things in the show itself were going
okay, modulo a “wrong answer” buzzer
effect every time we exited a question to
go back to the board, regardless of the
correctness (or not) of the answer, until
for no apparent reason the software
crashed just before the midpoint of
game one. Luckily, we’d been keeping a
manual transaction log at the judging
table so we had it to recover from. The
show resumed (after Rob did a code fix
in real time with the main monitors off
and Dan Klein did an improvisational
comedy routine to keep folks enter-
tained) only to have the buzzer system
fail spectacularly in the middle of
another game. So Dan and Josh went to
the backup system of contestants raising
their hands. We had a couple of
instances where the contestants didn’t
wait to be acknowleged and so the
wrong person answered, but it didn’t
seem to affect the final scoring much.

The first- and second-place finishers in
each round won one of the Linux
adapter kits for their Sony PlayStations;
the third- and fourth-place contestants
in each round won a variety of books
from several publishers.

The final round (with the winners from
the first four rounds) ended in a tie for
first and second place, so we played a
tie-breaker catgeory. That caused us to
end in a tie for second and third place,
so we played another tie-breaker cate-
gory. When all was said and done, we
declared Ken Hornstein the winner, and
he walked away with his Linux adapter
kit, a satellite photo of the smoke
plumes from the San Diego fire (with
the Town & Country more or less cen-
tered on the map), and an signed (by
Dan Klein) photo of the Sunday sun,
with the visible sunspots. Final-round
winners also received valuable cash
prizes in the form of pictures of dead
presidents ($25 each for third and
fourth place, $50 for second place, and
$100 for the grand winner).

SAVE THE DATE!
13th USENIX Security Symposium

August 9–13, 2004 u San Diego, California

The USENIX Security Symposium brings together
researchers, practitioners, system administrators, sys-
tem programmers, and others interested in the latest

advances in security of computer systems.

–Steve Bellovin, AT&T Fellow, AT&T Labs Research;
co-author of Firewalls and Internet Security: Repelling the

Wily Hacker (Addison-Wesley Professional, 2003)

http://www.usenix.org/sec04/

“This is the most important
conference I go to.”

SAVE THE DATE!
2004 USENIX Annual
Technical Conference

June 27–July 2, 2004 u Boston, Massachusetts

http://www.usenix.org/usenix04/

NEW
 FO

RMAT!

The new-format Annual Tech ’04 will feature:
u 2.5 days of General Sessions—original and inno-

vative papers about modern computing systems
u 2.5 days of FREENIX—a showcase for the latest

developments in and interesting applications of
free and open source software

u 5 days of content from Special Interest Group Ses-
sions, including UseLinux, Security, and more

u 6 days of training with up to 30 tutorial offerings
u Famous-name Plenary Sessions every day
u Special social events every evening
u Plus BoFs and Guru Is In Sessions

;login:
USENIX Association
2560 Ninth Street, Suite 215
Berkeley, CA 94710

POSTMASTER

Send Address Changes to ;login:

2560 Ninth Street, Suite 215

Berkeley, CA 94710

• 2 Days of Technical Sessions
• Invited Talks by leaders in the field

• Keynotes by: Mendel Rosenblum,

Associate Professor of Computer

Science, Stanford University & Miguel

de lcaza, Co-Founder and CTO, Ximian

• Work-in-Progress Reports

PERIODICALS POSTAGE
PAID

AT BERKELEY, CALIFORNIA
AND ADDITIONAL OFFICES

RIDE ALONG ENCLOSED

	motd
	letters
	opinion
	musings
	haskins
	alexander
	russo
	mccluskey
	turoff
	flynt
	al-buraiky
	brunette
	bookworm
	history
	report
	young
	haikus
	stanford
	lisa03

