
T H E U S E N I X M A G A Z I N E

F E B R U A R Y 2 0 0 7 V O L U M E 3 2 N U M B E R 1

O P I N I O N Musings
RIK FARROW

T E C H N O L O G Y Commodity Grid Computing with Amazon’s S3 and EC2
S IMSON GARFINKEL

Roadmap to a Failure-Resilient Operating System
JORR IT N. HERDER, HERBERT BOS, BEN GRAS, PH I L I P
HOMBURG, AND ANDREW S. TANENBAUM

Hardware Virtualization with Xen
STEVEN HAND, ANDREW WARFIELD, AND KEIR FRASER

S Y S A DM I N ConfigurationManagement:Models andMyths, Part 4
MARK BURGESS

Xen Installation and Configuration
LE IGH GRI FF IN AND JOHN RONAN

Debugging a Firewall Policy with Policy Mapping
ROBERT MARMORSTEIN AND PHI L KEARNS

C O L U M N S Practical Perl Tools: Spawning
DAVID BLANK-EDELMAN

ISPadmin:DHCP Services
ROBERT HASKINS

Virtualizing Asterisk
HEISON CHAK

/dev/random
ROBERT G. FERRELL

B O O K R E V I E W S Book Reviews
EL IZABETH ZWICKY ET AL .

S TA N D A R D S Multithreading in C and C++
HANS BOEHM, B I LL PUGH, AND DOUG LEA

U S E N I X N O T E S USENIX Board of Directors Meetings and Actions
ELL I E YOUNG

SAGE Update
JANE-ELLEN LONG AND ALVA COUCH

John Lions FundWrap-up

C O N F E R E N C E S WORLDS ’06;OSDI ’06;HotDep ’06;Workshop forWomen
inMachine Learning;Grace Hopper Celebration ofWomen
in Computing 2006

The Advanced Computing Systems
Association

For a complete list of all USENIX & USENIX co-sponsored events,
see http://www.usenix.org/events.

WORKSHOP ON EXPERIMENTAL COMPUTER
SCIENCE (ECS ’07)
Sponsored by ACM SIGARCH and ACM SIGOPS in cooperation
with USENIX, ACM SIGCOMM, and ACM SIGMETRICS

JUNE 13–14, 2007, SAN DIEGO, CA, USA
http://www.expcs.org/
Paper submissions due: February 9, 2007

THIRD INTERNATIONAL ACM SIGPLAN/SIGOPS
CONFERENCE ON VIRTUAL EXECUTION
ENVIRONMENTS (VEE ’07)
Sponsored by ACM SIGPLAN and ACM SIGOPS in cooperation
with USENIX

JUNE 13–15, 2007, SAN DIEGO, CA, USA
http://vee07.cs.ucsb.edu
Paper submissions due: February 5, 2007

2007 USENIX ANNUAL TECHNICAL
CONFERENCE
JUNE 17–22, 2007, SANTA CLARA, CA, USA
http://www.usenix.org/usenix07

THIRD WORKSHOP ON HOT TOPICS IN SYSTEM
DEPENDABILITY (HOTDEP ’07)
Co-sponsored by USENIX

JUNE 26, 2007, EDINBURGH, UK
http://hotdep.org/2007
Paper submissions due: February 15, 2007

2007 USENIX/ACCURATE ELECTRONIC
VOTING TECHNOLOGY WORKSHOP (EVT ’07)
Co-located with Security '07

AUGUST 6, 2007, BOSTON, MA, USA
http://www.usenix.org/evt07
Paper submissions due: April 22, 2007

16TH USENIX SECURITY SYMPOSIUM
AUGUST 6–10, 2007, BOSTON, MA, USA
http://www.usenix.org/sec07
Paper submissions due: February 1, 2007

2007 LINUX KERNEL DEVELOPERS SUMMIT
SEPTEMBER 4–6, 2007, CAMBRIDGE, U.K.

21ST LARGE INSTALLATION SYSTEM
ADMINISTRATION CONFERENCE (LISA ’07)
Sponsored by USENIX and SAGE

NOVEMBER 11–16, 2007, DALLAS, TX

FIRST WORKSHOP ON HOT TOPICS IN
UNDERSTANDING BOTNETS (HOTBOTS ’07)
Co-located with NSDI ’07

APRIL 10, 2007, CAMBRIDGE, MA, USA
http://www.usenix.org/hotbots07
Paper submissions due: February 26, 2007

SECOND WORKSHOP ON TACKLING COMPUTER
SYSTEMS PROBLEMS WITH MACHINE LEARNING
TECHNIQUES (SYSML07)
Co-located with NSDI ’07

APRIL 10, 2007, CAMBRIDGE, MA, USA
http://www.cs.duke.edu/nicl/sysml07

THIRD INTERNATIONAL WORKSHOP ON
NETWORKING MEETS DATABASES (NETDB ’07)
Co-located with NSDI ’07
Sponsored by USENIX in cooperation with ACM SIGCOMM

APRIL 10, 2007, CAMBRIDGE, MA, USA
http://www.usenix.org/netdb07

4TH USENIX SYMPOSIUM ON NETWORKED
SYSTEMS DESIGN AND IMPLEMENTATION
(NSDI ’07)
Sponsored by USENIX in cooperation with ACM SIGCOMM
and ACM SIGOPS

APRIL 11–13, 2007, CAMBRIDGE, MA, USA
http://www.usenix.org/nsdi07

11TH WORKSHOP ON HOT TOPICS IN OPERATING
SYSTEMS (HOTOS XI)
Sponsored by USENIX in cooperation with the IEEE Technical
Committee on Operating Systems (TCOS)

MAY 7–9, 2007, SAN DIEGO, CA, USA
http://www.usenix.org/hotos07

5TH ACM/USENIX INTERNATIONAL CONFERENCE
ON MOBILE COMPUTING SYSTEMS, APPLICATIONS,
AND SERVICES (MOBISYS 2007)
Jointly sponsored by USENIX and ACM SIGMOBILE, in
cooperation with ACM SIGOPS

JUNE 11–15, 2007, PUERTO RICO
http://www.sigmobile.org/mobisys/2007/

Upcoming Events

contents

OPINION
2 Musings

RIK FARROW

TECHNOLOGY
7 Commodity Grid Computing with Amazon’s

S3 and EC2
S IMSON GARFINKEL

14 Roadmap to a Failure-Resilient Operating System
JORRIT N. HERDER, HERBERT BOS, BEN GRAS,
PH I L IP HOMBURG, AND ANDREW S. TANENBAUM

21 Hardware Virtualization with Xen
STEVEN HAND, ANDREW WARFI ELD, AND
KEIR FRASER

SYSADMIN
28 ConfigurationManagement:Models andMyths,

Part 4
MARK BURGESS

37 Xen Installation and Configuration
LE IGH GRI FF IN AND JOHN RONAN

44 Debugging a Firewall Policy with Policy
Mapping
ROBERT MARMORSTEIN AND PHI L KEARNS

COLUMNS
52 Practical Perl Tools: Spawning

DAVID BLANK-EDELMAN

59 ISPadmin:DHCP Services
ROBERT HASKINS

64 Virtualizing Asterisk
HEISON CHAK

67 /dev/random
ROBERT G. FERRELL

BOOK REVIEWS
70 Book Reviews

EL IZABETH ZWICKY ET AL .

STANDARDS
75 Multithreading in C and C++

HANS BOEHM, B I LL PUGH, AND DOUG LEA

USENIX NOTES
77 USENIX Board of Directors Meetings and Actions

ELL I E YOUNG

78 SAGE Update
JANE-ELLEN LONG AND ALVA COUCH

79 John Lions FundWrap-up

CONFERENCES
81 WORLDS ’06
86 OSDI ’06
108 HotDep ’06
114 Workshop forWomen inMachine Learning
114 Grace Hopper Celebration ofWomen in

Computing 2006

V O L . 3 2 , # 1 , F E B R U A R Y 2 0 0 7
E D I TO R

Rik Farrow
rik@usenix.org

M A N A G I N G E D I TO R
Jane-Ellen Long
jel@usenix.org

CO P Y E D I TO R
David Couzens
proofshop@usenix.org

P R O D U C T I O N
Lisa Camp de Avalos
Casey Henderson

T Y P E S E T T E R
Star Type
startype@comcast.net

USEN IX ASSOC IATION
2560 Ninth Street,
Suite 215, Berkeley,
California 94710
Phone: (510) 528-8649
FAX: (510) 548-5738

http://www.usenix.org
http://www.sage.org

;login: is the official
magazine of the
USENIX Association.

;login: (ISSN 1044-6397) is
published bi-monthly by the
USENIX Association, 2560
Ninth Street, Suite 215,
Berkeley, CA 94710.

$85 of each member’s annual
dues is for an annual sub-
scription to ;login:. Subscrip-
tions for nonmembers are
$120 per year.

Periodicals postage paid at
Berkeley, CA, and additional
offices.

POSTMASTER: Send address
changes to ;login:,
USENIX Association,
2560 Ninth Street,
Suite 215, Berkeley,
CA 94710.

©2007 USENIX Association.

USENIX is a registered trade-
mark of the USENIX Associa-
tion. Many of the designa-
tions used by manufacturers
and sellers to distinguish their
products are claimed as trade-
marks. USENIX acknowl-
edges all trademarks herein.
Where those designations ap-
pear in this publication and
USENIX is aware of a trade-
mark claim, the designations
have been printed in caps or
initial caps.

2 ; LOG I N : VO L . 3 2 , NO . 1

R I K F A R R O W

musings
rik@usenix.org

A S T E C H NO LOG I S T S , W E A R E STU C K
in a terrible double bind.We need to build
upon the successes of the past—those who
ignore history surely suffer from their igno-
rance. But there comes a time when past
paradigms must be supplanted by new
ideas, or we stagnate. This conundrum gets
magnified by the effect of experience; that
is, the more expert we become at a particu-
lar technology, the more value it has for us.
To abandon what we know well, even if it
no longer serves us, is like killing the goose
that lays the golden eggs.

Strange thoughts indeed, but if you have read my
columns before, I doubt that you are at all sur-
prised. And it was new ideas, not retreads, that
brought me to this point. I was fortunate enough
to attend the WORLDS, OSDI, and HotDep work-
shops and symposium in Seattle (November
2006), where I got flooded with new ideas. Just as
Washington State was being deluged with record
rainfall, I felt like a privileged student at a fast-
paced series of advanced seminars.

I discovered that OSDI and its ACM-sponsored
companion, SOSP, are considered the most presti-
gious of operating systems conferences. One
young attendee told me that getting a paper
accepted at either conference could assure your
future. I asked more seasoned veterans what they
thought of this notion, and I got thoughtful
responses that mostly agreed with this. I certainly
came away impressed and uplifted (who cared if it
was pouring rain outside?).

I would describe the view from ten thousand feet
of OSDI ’06 as papers presented on file system
enhancements, performance improvements as well
as measurement techniques, methods for improv-
ing reliability of operating systems, and security.
You can read the summaries to get the complete
picture, along with the papers themselves online. I
want to constrain myself to those papers that
most excited, entertained, or disturbed me.

Code Defense

Feng Zhou described SafeDrive as a method for
guarding against failed device drivers through lan-
guage extensions. By adding annotations to device
drivers, processing and compiling those drivers,
then using them with a modified Linux kernel,
crashes in those drivers will be avoided, even safe-

ly recovered from. This is a pretty amazing idea, different from previous
papers that included microkernel designs, separate hardware protection
domains, and other techniques for software fault isolation (including SFI and
XFI). I found myself wondering how good this solution was, as it still relied
on the programmer doing the right thing (annotating the code properly in
all the required places), with the programmer being the weak link already.

Still, SafeDrive does come closer to the solution of a real problem. Device
drivers are notoriously difficult to write and debug. And the word in secu-
rity circles is that wireless device drivers are looking like tempting targets,
as a successful attack here bypasses all current defenses—except, of course,
for solutions such as SafeDrive or XFI.

Úlfar Erlingsson of Microsoft Research presented the paper on XFI, a sys-
tem that creates safe extensions by binary rewriting of Windows x86
Portable Executables. The inline guards provide runtime checks before
calling other functions or making computed jumps, thus guarding against
executing code at unexpected locations because of bugs or attacks. Úlfar’s
chosen example was one of my very favorites, a bug in a JPEG decoder that
allows code of an attacker’s choice to be executed. In a live demo, the unsafe
version crashed the browser, while the XFI-protected version of the library
returned, preventing a browser crash (and a potentially exploited system).

Charlie Reis presented BrowserShield, a different approach to protecting
Internet Explorer. In research sponsored by Microsoft, Charlie explained
that many browser vulnerabilities could be defended against by rewriting
scripts before they could be interpreted by a browser. In the sample imple-
mentation, scripts would be partially rewritten using the Microsoft firewall
(ISA) as a proxy, along with a bit of JavaScript running within the browser
itself. When used in conjunction with patches and anti-virus software, this
approach prevented successful attacks related to 19 critical vulnerabilities
found during 2005 in IE.

I want you to consider the implications of these fine research papers. We
can’t write secure or even defect-free software. Having accepted this fact,
our finest scientists are designing a patchwork of systems that may make it
possible to run buggy and dangerous systems as safely as possible. I know
personally how difficult it is to write software , and I decided early on not
to expose myself to the embarrassments suffered, because people continue
to find security holes in software that is open source, over 20 years old,
and written by programmers who are much better at it than I ever was.
There is a temptation to blame programming languages, but we have yet to
develop a safe programming language. After all, that is just another pro-
gramming project (or meta-programming project), with all the complexi-
ties that that brings. Perhaps there is yet another way . . .

Charlie Reis also presented a WiP about building a browser where each site
gets encapsulated by running within its own process. The Konqueror
browser actually facilitates this work, according to Charlie. Divide-and-
conquer has been a strategy that has worked well for some secure servers,
such as Postfix and DJBDNS, and I personally feel that isolation of code
and the use of least privilege is critical in any future solution. In the three
papers just described, the approaches are to notice that software has been
either exploited or simply run amuck, or to filter out attacks after they are
known but not yet patched (BrowserShield).

At HotOS in 2005, I learned of an operating system called Asbestos. In
Asbestos, all data gets tainted with labels as it flows through the system,
and tainted data cannot escape via the network once it is mixed with data
that has a different taint. During OSDI ’06 Nickolai Zeldovich described
HiStar, the successor to Asbestos. Like Asbestos, information flows get

; LOGIN: FEBRUARY 2007 MUSINGS 3

tainted. But HiStar goes beyond Asbestos in that everything gets labeled
with categories, and these categories control how information can flow
through the system. Nickolai used the example of running ClamAV, an
open-source anti-virus system that must have read permission on all of an
owner’s files. HiStar can safely read all files because it prevents ClamAV
from leaking any information read in any file.

HiStar approaches, and may have reached, what I’d like to see in a new,
secure operating system. In HiStar, there is no root, nor is there a complex
policy definition (as in SELinux); it is a system designed from the ground up
to provide robust isolation. Combined with programming techniques, such
as having a browser thread for each site visited, HiStar just might be the OS
I have been dreaming of. It will take time to tell, plus additional time for me
and others to understand this completely different OS with a Linux API.

Reduction and ConfigurationManagement

Although log compression and configuration management might not seem
related, there was an amazing paper by Chad Verbowski (also of Microsoft
Research) and others that does unite these two disparate topics. Flight
Data Recorder (FDR) (say, haven’t I heard of another similarly named soft-
ware project?) has the goal of capturing configuration and file changes
from Microsoft systems and will be shipped with Windows Vista. Using a
time window of only 6 ms, FDR captures all changes to system configura-
tion–related registry entries and files, saves the log locally, then cleverly
compresses it, without losing any interesting data, before uploading the
compressed logs to a server. The goal was to capture data from thousands
of servers while using less than 1% of network bandwidth, with a less than
20 MB/day logfile per system that can be analyzed in 3 seconds.

Sounds unbelievable, but FDR manages to compress each event into an
average of 0.7 of a byte. The motivation for this clever work was the dis-
covery that 33% of system outages were related to configuration changes,
so tracking those changes was key to system reliability.

Speaking of system reliability, the final talk had to do with an interesting
sensor network, one you might have heard about if you read science news.
Geoff Werner-Allen explained some of the problems he and his co-authors
had in monitoring Reventador, an active volcano located in an Ecudorian
jungle. The current monitoring scheme relies on a barely luggable device
powered by multiple car batteries. The team built small sensors powered by
flashlight batteries, complete with a small seismometer and a microphone
that captures subsonics typical of the rumblings of Reventador. The sensor
communicated via a mesh to a single wireless uplink and then to a base
station located in a hotel several kilometers away.

The sensors worked well. But in the hotel, the electric generators only ran
about three hours a day, not enough to charge the batteries on the laptop
used as the base station. Even with the occasional loss of the base station,
the researchers were able to collect useful data. Geoff explained that time
synchronization of the sensors had worked great in the lab but not so well
in the field, but they were able to correct for time differences using some
clever analysis.

If you think this is a cool project, well, so do I. There were some real down-
sides to the onsite research, though. One of the sensors shut down unex-
pectedly, and the cause turned out to be a chunk of rock that had smashed
its antenna. Keep in mind that these researchers had to hike out and place,
and later recover, the sensors on a very active volcano. Another issue had

4 ; LOG I N : VO L . 3 2 , NO . 1

to do with insurgent groups that would block the only road leading back
to “civilization.” When this occurred, the supply truck would be blocked
as well, and there would be no beer. Ah, the pains of doing field research.

After this talk, attendees for the most part stayed in the conference room.
There were clusters of people gathered around the final three speakers.
After fifteen minutes, USENIX staff had to urge people to move elsewhere
so that the room could be reconfigured for HotDep ’06.

The Lineup

We begin this issue with an article by Simson Garfinkel. Simson has been
studying recycled hard drives and needed a way to store massive amounts
of data and then analyze that data. While searching for the perfect hard-
ware solution, he decided to try Amazon’s Simple Storage Service (S3) and
Elastic Computing Cloud (EC2). His article reports his experiences using
these systems, their security, availability, and suitability for various uses.
I really liked learning about EC2 and S3, as these services are a real hint
of the distributed services we will see much more of in the near future.
Simson also compares the Amazon services to other grid computing servic-
es. Like Simson, you might find that these services provide an alternative
to buying and building your own grid computing cluster for a research
project, but they are not quite ready for commercial use yet.

In the next article, Jorrit Herder and other project members provide an
update to MINIX 3 that focuses on failure resilience. Herder writes a per-
fect companion article to the OSDI summaries, in that this paper looks at
some of the same issues, such as device driver reliability, using a microker-
nel designed to run everything except a few core services in isolated tasks
in userspace. I asked Jorrit why their work hadn’t appeared at OSDI, and
he said that this particular research wasn’t far enough along at the OSDI
paper submissions deadline.

Steven Hand and members of Xensource explain the issues involved in vir-
tualization. I had become curious about what Intel and AMD were doing in
the newer CPUs to provide hardware support for virtualization. I knew
that a VM ideally sees an environment that appears exactly the same as a
native, bare-metal environment, but at the same time the VM monitor
must capture all direct accesses to the underlying hardware. There is also
the messiness that occurs when an OS within a VM believes it controls the
page maps, but in reality the VM page maps are just another level of
abstraction on top of the monitor’s page maps. Also, the Intel IA-32 archi-
tecture was not designed with VMs in mind, so there are instructions that
behave differently when executed outside of ring 0 (in nonprivileged
mode), causing more problems for designers of VMs. I hope this article
will instruct you in what hardware manufacturers have done to help sup-
port the growing use and improve the performance of VMs.

In the Sysadmin section, Mark Burgess completes his cycle of articles about
configuration management. Mark continues his exploration of how config-
uration management should be done by moving on from the representation
of configuration information to talking about style of management. Should
there be centralized, authoritative control, or something much more adap-
tive modeled on the economics of trade? As always, Mark provides a
deeply thoughtful and very well written article.

Next, Leigh Griffin and John Ronan have written a guide to getting Xen
servers up and running. Hewing to the operating system theme, which
veered off into the world of VMs without much assistance, these two men

; LOGIN: FEBRUARY 2007 MUSINGS 5

decided that the world needed an easy-to-follow beginners’ guide, and they
set about writing it, then sharing it with ;login: readers.

Robert Marmorstein and Phil Kearns have written about the tool they have
been building that analyzes firewall policies, based on Linux netfilter. They
start by building a series of tests to determine whether a firewall configura-
tion actually worked as expected. From this experience they discovered
that it made more sense to analyze firewall rulesets and then convert these
rules into classes of systems that have similar policies. This technique can
reveal unpleasant surprises in your firewall configurations, but ones that
you will want to discover yourself, instead of having someone else do it for
you.

David Blank-Edelman plays along with the operating system theme by
explaining fork and how to work with multiple-thread Perl scripts. As
David explains, this is a much deeper topic than can be handled in a col-
umn, but with his usual aplomb he provides us with working examples
and pointers to cool modules that make using multiple threads a bit easier.

Robert Haskins decided to take a look at the various projects and products
that support DHCP. As always, Robert writes from the viewpoint of an ISP,
giving us a different perspective on a service that we generally configure
and forget (until there is a change or a problem). Heison Chak joins in the
VM subtheme, discussing how he runs different versions of Asterix within
Xen virtual machines, and Robert Ferrell entertains us with his own views
on operating systems.

In the Book Reviews, Elizabeth Zwicky, our official book reviewer, leads off
with a long look at Mastering Regular Expressions. As Elizabeth writes, this
is a topic that we all should learn more about, and she tells you just why
this is important and what this book can do for you. Elizabeth next tackles
a couple of management-level books, then has strong words about the final
book on her list this issue. Next, Paul Armstrong discusses a good book he
has read about IPv6. Sam Stover provides us with another in-depth look at
a security book, and I follow on with two reviews of my own, including
the newest in the Sysadmin Handbook series.

In Standards, some members of the C standard committee invite you to
comment on changes related to support for threads. Finally, we have sum-
maries for WORLDS, OSDI, and HotDep. We also received summaries of
the Grace Hopper conference and workshop focusing on women in com-
puting, and we end on that needed note.

Stuckness

I began my column by alluding to the tendency to stick with what is well
known. Voyaging out beyond the frontier is risky, upsetting, and disturb-
ing, because it suggests that perhaps what we have spent years learning is
not the best solution. Pioneers have always had it rough. When we consid-
er that Galileo was ordered to stand trial for heresy for his book suggesting
that the earth revolves around the sun, our own trials pale. We do not face
a literal burning at the stake for suggesting new ideas. We might be roasted
for going up against the status quo, but that is only ego bruising, and at
worst harmful to one’s career.

I don’t want to suggest (quoting Firesign Theater) that “Everything you
know is wrong.” Hardly. I do want to encourage you to keep on the look-
out for new ideas, software, operating systems, and techniques that might
very well solve problems in security, system administration, programming,
and configuration management that so plague us today.

6 ; LOG I N : VO L . 3 2 , NO . 1

; LOGIN: FEBRUARY 2007 COMMODITY GRID COMPUTING 7

S I M S O N G A R F I N K E L

commodity grid
computingwith
Amazon’s S3 and EC2
Simson L. Garfinkel is an Associate Professor at the
Naval Postgraduate School and a Fellow at the
Center for Research on Computation and Society at
Harvard University. He is also a consulting scientist
at Basis Technology Corp., which develops software
for extracting meaningful intelligence from unstruc-
tured text, and a founder of Sandstorm Enterprises,
a computer security firm that develops advanced
computer forensic tools used by businesses and gov-
ernments to audit their systems.

simsong@acm.org

AMAZON .COM R E C EN T LY I N T RODUC ED
two new storage and computing services
that might fundamentally change the way
that we provision equipment for both e-
commerce and high-performance comput-
ing. I learned about these services a few
days after I had started looking for quotes
to purchase a multiblade server with 10–20
TB of storage to further my own research in
computer forensics. Rather than moving
ahead with that purchase, I decided to eval-
uate whether or not I could use Amazon’s
offering for this real-world problem.My
conclusion is that Amazon’s offering is
good enough for my research and will prob-
ably save me tens of thousands of dollars,
but the system isn’t yet ready for hosting
serious e-commerce customers.

Amazon’s Simple Storage Service (S3) and Elas-
tic Compute Cloud (EC2) break up Amazon’s
awesome computer infrastructure into tiny little
pieces that the company can incrementally rent
out to any individual or business that needs e-
commerce or high-performance computing infra-
structure. Like Google and Yahoo!, Amazon has
built computing clusters around the world, each
with tens of thousands of computer systems. The
theory behind these services is that economies of
scale allow Amazon to run and rent out these
services to businesses at a cheaper price than
businesses can provide the services to themselves.

Amazon’s Simple Storage System

Amazon announced S3 back in March 2006. The
service allows anyone with a credit card to store
information on Amazon’s redundant and replicat-
ed storage network. Storage costs are 15 cents per
gigabyte per month; data transfer is 20 cents per
gigabyte. You may store an unlimited amount of
information, and there is no setup fee.

The best way to think about S3 is as a globally
available distributed hash table with high-level
access control. You store data as a series of name/
value pairs. Names look just like UNIX filenames;
the value can be any serialized object between 0
and 5 GB. You can also store up to 4K of metadata
with each object.

All objects in Amazon’s S3 must fit in the same global namespace. The
namespace consists of a “bucket name” and an “object name.” Bucket
names are available from Amazon on a first-come, first-serve basis. You
can’t have “foo” because it’s already been taken, but you could probably get
a bucket name with your last name, and certainly with your last name fol-
lowed by a random seven-digit number. Bucket names are reasonably
secure: You can list the names of the buckets that your account has creat-
ed, but you can’t list the buckets belonging to other people. You can only
have 100 buckets per account, so don’t go crazy with them.

Access control is based on these buckets. You can make your bucket read-
able by up to 100 Amazon Web Service Account IDs and read/write for up
to another 100 IDs. You can also make a bucket world readable, although
this is a lot like handing the world a blank check, since downloads do cost
20 cents per gigabyte. Near the end of this article we’ll see how this cost
compares with existing hosting services.

You send data to S3 using a relatively straightforward SOAP-based API or
with raw HTTP “PUT” commands (a technique that has taken on the name
“REST,” short for Representational State Transfer). Data can be retrieved
using SOAP, HTTP, or BitTorrent. In the case of BitTorrent, the S3 system
operates as both a tracker and the initial seed. There is also a program
called JungleDisk that lets you treat storage on S3 as if it were a remote file
system; JungleDisk runs on Linux, Mac OS, and Windows.

After delving into the needless complexity of SOAP, I gave up and decided
to use the pure HTTP/REST API. I’m using S3 to store images of hard
drives that I have acquired or developed during the course of my research
in computer forensics. With REST, I can store raw data without having to
first base-64 encode it. I also found it much easier to code up a simple S3
REST implementation than to deal with all of the overhead required for the
SOAP client.

S3 Performance and Security

I tested S3’s performance with the REST API from networks at MIT, Har-
vard, and my house. Both universities have ridiculously fast connections to
multiple Internet carriers. Despite this speed, both my upload and down-
load speeds averaged between 1 and 2 MB per second, depending on the
time of day. I saw similar performance from my house, where I have a 30
megabit per second Verizon FiOS connection. Based on the feedback in the
Amazon developer forums, these performance figures are at the upper end
of what others are seeing. One developer in Germany reported seeing be-
tween 10 and 100 kilobytes per second, depending on the time of day.
Although this speed is simply not fast enough for doing serious computa-
tion, it is good enough for backups and for using S3 to deliver Web objects.
Clearly, though, performance is an area that needs work for all S3 users.

Security is another important part of any storage system. Amazon’s S3 has
impressive support for privacy, integrity, and short-term availability. The
long-term availability of the service is unknown, since it ultimately de-
pends upon Amazon’s internal level of commitment. Surprisingly, the
weakest part of S3 is the service’s authentication architecture. I’ll discuss
each of these issues next.

Data privacy is accomplished through the use of encryption and access
control. If you want your data to be encrypted, encryption must be done
before the data is sent to S3. You can protect names of the objects and
other metadata by communicating with Amazon’s Web servers using SSL

8 ; LOG I N : VO L . 3 2 , NO . 1

with HTTPS on port 443. In my testing with a 2-GHz Intel Core Duo
MacBook on MIT’s network, downloading data from S3 over SSL took
roughly 10% longer than downloading the same data over raw HTTP. This
minor overhead demonstrates that the computational cost of encrypting
data these days is really minor compared to other costs; nonetheless,
encryption still isn’t free.

Integrity for stored data is accomplished with an end-to-end check using
the MD5 cryptographic hash as a checksum. When an object is stored to
S3, Amazon’s system computes the MD5 of that object and returns that
hash with its response. My S3 implementation compares Amazon’s com-
puted hash with a hash that I computed locally. If the two don’t match, my
implementation resends the data. Although my implementation will send
objects of any size, my code never sends objects larger than 16 MB.

Short-term availability is a reflection of Amazon’s connectivity, the load on
its servers and network fabric, and even the reliability of its code. In my
testing I found that somewhere between 0.1% and 1% of all PUTs had to be
retried because the PUT did not complete successfully. Normally PUTs suc-
ceeded on the second retry, but sometimes I needed to retry three or four
times. An Amazon employee posting in one of the developer forums rec-
ommended implementing an exponential back-off for failed writes [1], but
my implementation just retries as soon as it receives an error. After writing
more than a terabyte to S3, I never experienced a failure that required
more than four retries.

Long-term availability is a bigger question, unfortunately. Once the data is
actually stored at S3, it’s Amazon’s responsibility to ensure that it remains
available for as long as the customer pays the bills. Amazon claims that the
data is stored on multiple hard drives in multiple data centers. Unfortu-
nately, Amazon doesn’t back up this claim with any sort of Service Level
Agreement (SLA). There is also no backup or recovery service in the event
that you accidentally delete some important data. As a result, it’s important
to maintain a backup of any important data stored inside S3.

The authentication strategy of Amazon Web Services (AWS) looks quite
robust at first. Unfortunately, it’s really a steel bunker built on a foundation
of quicksand.

AWS supports a simple authentication strategy based on the SHA1-HMAC
algorithm. Every AWS account has an Access Key ID and a Secret Access
Key. The Access Key ID is a 20-character string that’s used to uniquely
identify your account; the Secret Access Key is a 41-character string that’s
used to digitally sign SOAP and REST requests. To sign a request, you sim-
ply compute the HMAC of the request parameters using the Secret Access
Key as the key for the HMAC. This HMAC is sent along with the request.
Amazon’s servers, which know your Secret Access Key, compute the same
HMAC. If the two HMACs match, then the request is authorized. Requests
include a timestamp to prevent replay attacks.

The HMAC approach is fast, efficient, and pretty secure. The underlying
weakness is that the credentials are downloaded from the AWS Web site.
This means that anyone who knows your Amazon username and password
can download your Secret Access Key. Since Amazon allows the password
to be reset if you can’t remember it, by simply clicking on a link that’s sent
to the account’s registered email address, anyone who has control of your
email system can effectively delete all of the information you have stored
in S3. Amazon will have to rethink this authentication architecture before
organizations can trust it with mission-critical information.

; LOGIN: FEBRUARY 2007 COMMODITY GRID COMPUTING 9

The other real problem with S3 is the cost structure: Currently it costs
nearly as much to upload and download a piece of information as it costs
to store that same data for three months. Although this may be a dramatic
demonstration that the cost of storage is dropping much faster than the
cost of bandwidth, these bandwidth charges make S3 simply unaffordable
for many projects. Unfortunately, Amazon’s pricing made the S3 service
completely unusable for me until the company introduced its second grid-
computing offering—a high-performance computing utility that let me
move my computation close to my data.

The Elastic Compute Cloud

Amazon’s Elastic Compute Cloud (EC2) makes S3’s pricing strategy far
easier to manage by eliminating the bandwidth charges for moving data
between storage and computation.

As its name implies, EC2 lets you rent time on a “cloud” of computers.
These computers are all the equivalent of 1.7-GHz Xenon servers with 1.25
GB of RAM and 160 GB of local disk. The cost of these machines is 10
cents per CPU per hour. As with S3, it costs 20 cents per gigabyte to move
data between the rest of the Internet and EC2. However, there is no charge
to move between EC2 and S3. According to Amazon, each virtual machine
has 250 megabits per second of bandwidth, although how that translates to
speed between EC2 and S3 depends upon a variety of factors.

The “machines” that Amazon delivers with EC2 are actually virtual ma-
chines, each running on top of the Xen platform. You create a virtual
machine by storing a disk image inside S3 using special tools that Amazon
provides and then running a Java program that instantiates the virtual
machine. A second Java program lets you monitor the progress of the
machine’s creation; when it is ready, the script displays the computer’s
hostname. Obviously, the image that you instantiated should have an
account that lets you log into the machine.

Because EC2 is based on Xen, it should support any Linux distribution as
well as NetBSD, FreeBSD, Plan 9, and other operating systems. In practice,
though, EC2 is largely based on the RedHat Fedora Core operating system,
although there are instructions on the Internet for using it with Ubuntu
distributions. I found this disappointing, because FreeBSD and Darwin, fol-
lowed by Ubuntu, are my preferred operating systems.

Amazon makes no promises about the reliability of the EC2 computers:
Each machine can crash at any moment, and they are not backed up. In
my experience these machines don’t crash, but, remember, computers do
fail. If you want reliable storage, you can run two or more EC2 machines
as a cluster. A better approach, though, is to have the EC2 machines store
information in S3, which is sold as a reliable, replicated service.

What’s really neat about EC2 is that you can build a small system and
expand it as it becomes more popular, by simply bringing up more virtual
computers. In fact, you could even bring up virtual machines on Thurs-
days and Fridays, if those are your busy days, and shut those machines
down during the rest of the week.

The EC2 security model is similar to that of S3, except that commands are
signed with an X.509 private key. Unfortunately, you download your pri-
vate key from the AWS Web site, so the security still fundamentally de-
pends on the AWS username and password. That private key can be used
to start up machines, shut them down, and configure the “firewall” that

10 ; LOG I N : VO L . 3 2 , NO . 1

protects your virtual machines on the EC2 infrastructure. The firewall
allows you to control which IP addresses and ports on the Internet can
reach which of your virtual machines. By default all ports are closed;
you’ll probably want to open the firewall to allow port 22 (ssh) through,
at the least. Machines that run Web servers should probably have port 80
opened. And, of course, you’ll probably want to configure the firewall so
that your virtual machines can communicate with each other, at least on
some ports.

Amazon had an early security problem with EC2: The company was
neglecting to wipe the computer’s virtual disk drives before switching them
from one customer to another. That problem has since been corrected.

s3_glue:A C++ implementation of the S3 REST API

As I already mentioned, I’ve been using S3 and EC2 for my research in
computer forensics. As part of my research I’ve created an open source sys-
tem for imaging hard drives and storing the results in highly compressed
but random-access disk images [2]. This October I added support for S3 to
the library so that images could reside on the local computer or on Ama-
zon S3.

Amazon provides code samples for S3 in C#, Java, JavaScript, Perl, Python,
and Ruby. Although these examples are instructive, my disk-imaging sys-
tem is written in C++ for performance reasons. To make the code usable
for others I separated out the basic S3 implementation from the code that
is specific to my forensics library. The implementation can be downloaded
from http://www.simson.net/s3/. It uses libcurl [3] for HTTP.

Recall that S3 objects are all given object names and that these objects are
in turn placed into buckets. The REST API turns object and bucket names
into URLs of the form http://s3.amazonws.com/bucket-name/object-name.
Data is downloaded with an HTTP GET and uploaded with an HTTP PUT.
There is also provision for setting up a virtual host (e.g., http://bucket.s3
.amazonws.com/object-name), which makes it somewhat easier to have S3
directly serve Web content to browsers.

S3 requests are authenticated through additional terms that are added to
the query section of the URL. The “Signature=” term includes the HMAC
of the requests headers represented in a canonical form and the user’s AWS
Secret Access Key. The “Expires=” term allows you to specify when the
query will expire. Finally, the “AWSAccessKeyId=” term specifies the
requestor. Remember, authentication isn’t needed for buckets that are
world-readable or world-writable.

HTTP 1.1 allows a client to request a range of bytes; S3 implements this
part of the protocol, allowing you to request a few bytes of a very large
object. S3 limits an object overall to 5 GB, although a bug in Amazon’s
load balancers means that objects are effectively limited to 2 GB in size. I
store disk images larger than 16 MB as multiple pages, each of which is 16
MB in length before being compressed, so the 2GB limitation wasn’t a
problem for me.

My S3 implementation provides simple and efficient C++ functions for list-
ing all buckets that belong to a user, making a new bucket, deleting a
bucket, selectively listing the contents of a bucket, getting an object, saving
an object, and removing an object. The code supports arbitrary name/value
pairs for metadata on an object. This metadata needs to be stored with an
object but can be independently retrieved.

; LOGIN: FEBRUARY 2007 COMMODITY GRID COMPUTING 11

S3 is pretty powerful as far as it goes, but there is a lot of functionality
missing. There is no way to rename an object, for example. There is no
way to search—you can’t even search for objects of a particular length or
that have a particular metadata field in their headers. In this way, S3 is a lot
like Berkeley DB or the Python “dictionary” data structures: You can store
data, get it back, and iterate. Anything else is up to you. Because objects
can be listed and retrieved in lexical sort order, I expect that many applica-
tions will encode a lot of information inside the file name. That’s what I
did.

In addition to my S3 implementation, I’ve also created a command-line
utility called “s3.” This program is mostly for testing the S3 library and
maintenance of the S3 system. It implements UNIX-like commands for list-
ing the contents of a bucket, copying the contents of an object to standard
output, deleting an object, deleting a set of objects, and managing buckets.
This program is also available from my Web site.

Crunching the Numbers

In my research I have been running programs that take literally a month
to run on a workstation with a terabyte hard drive. With Amazon’s EC2
and S3 I can split the task up and run it on 30 virtual computers over the
course of a day, for roughly $72. Or I can run it on 60 virtual computers
for 12 hours, again for $72. This simple example demonstrates the big
advantage of renting time on another organization’s grid over building your
own. Unless you have enough work to occupy your grid 100% of the time,
every hour that a computer isn’t working is an hour that you paid for but
received nothing in return.

There are other alternatives to Amazon’s offerings. Dreamhost, an ISP that I
use for some of my personal work, just dramatically lowered the cost of its
Web-hosting plans. For just $9.95/month you can have 200 GB of storage
(automatically increasingly by 1 GB each week) and 2 TB a month of band-
width. Amazon would charge $30 for the same storage but a whopping
$400 for that much bandwidth. Unfortunately, Dreamhost had significant
reliability problems this past summer.

Pair.com, a premium Web-hosting company at the other end of the cost/
performance spectrum, charges $9.95/month for a basic Web-hosting
account with 500 MB of disk storage and 40 GB per month of bandwidth.
Amazon would charge 7.5 cents for the storage and $8 for the same band-
width. Pair.com will rent you a dedicated 2.8-GHz Celeron computer with
512 MB of RAM and an 80-GB hard drive with 600 GB per month of traffic
for $249/month. Amazon’s EC2 machines are faster, have twice the RAM
and twice the local disk, and cost just $72/month, although that 600 GB
per month of bandwidth will cost you another $120. On the downside,
Pair will provide 24/7/365 server monitoring and support, whereas the
Amazon servers can crash and there is no support other than what’s avail-
able in the developer forums. But Pair won’t let you bring up 50 machines
after lunch and then shut them down when you go home for dinner.

Whereas Amazon’s EC2 is an automated provisioning system for virtual
machines, another approach is being pursued by 3Tera, a small company in
Aliso Viejo, California. 3Tera has developed an operating system for grid
computing that allows a single application to be deployed across multiple
machines in an automated fashion. As of this writing 3Tera has licensed its
technology to UtilityServe, which will run AppLogic-based applications for
between 75 and 99 cents per RAM-GB hour; bandwidth is $1.49 to $1.99

12 ; LOG I N : VO L . 3 2 , NO . 1

per GB; the company includes between 100 and 4000 GB of storage in its
base packages, and it sells additional storage for $99 per 50 GB.

Conclusions

S3 and EC2 are obviously both young and immature services: They are
tantalizing in what they promise, but Amazon needs to address the issues
of authentication, availability, and long-term stability before businesses
should seriously rely on this offering. I wouldn’t trust my business to S3 or
EC2 without a signed contract in place that clearly outlined Amazon’s obli-
gations and my recourse against Amazon if those obligations were not met.

At the same time, I think that S3 and EC2 are a taste of the kinds of com-
puter utility services that will be available in the not-so-distant future.
High-quality storage, computation, and bandwidth will be available at
commodity prices. With any luck other companies will reimplement the
server side of Amazon’s APIs, making it possible to move a service easily
from one provider to another. With these kinds of services, I can spend my
time using a computer utility, rather than building one from blade servers
and RAID boxes. I can then devote my time to worrying about algorithms
instead of rack space, electricity bills, and cooling.

Because it is running so many computers, Amazon can run them a lot
cheaper than I can. Assuming that the company can make good on its
implicit availability and bandwidth commitments, this is going to be a very
compelling offering.

REFERENCES

[1] http://developer.amazonwebservices.com/connect/thread.jspa
?messageID=46813.

[2] http://www.afflib.org/.

[3] http://curl.haxx.se/.

; LOGIN: FEBRUARY 2007 COMMODITY GRID COMPUTING 13

14 ; LOG I N : VO L . 3 2 , NO . 1

J O R R I T N . H E R D E R , H E R B E R T B O S ,
B E N G R A S , P H I L I P H O M B U R G , A N D
A N D R E W S . T A N E N B A U M

roadmap to a
failure-resilient
operating system
Jorrit Herder holds an M.Sc. degree in Computer
Science (cum laude) from the Vrije Universiteit in
Amsterdam and is currently a Ph.D. student there.
His research focuses on operating system reliability
and security, and he is closely involved in the design
and implementation of MINIX 3.

jnherder@cs.vu.nl

Herbert Bos obtained his M.Sc. from the University of
Twente in the Netherlands and his Ph.D. from the
Cambridge University Computer Laboratory (UK). He
is currently an assistant professor at the Vrije
Universiteit in Amsterdam with a keen research
interest in operating systems, high-speed networks,
and security.

herbertb@cs.vu.nl

Ben Gras has an M.Sc. in computer science from the
Vrije Universiteit in Amsterdam and has previously
worked as sysadmin and programmer. He is now
employed by the VU in the Computer Systems
Section as a programmer working on the MINIX 3
project.

beng@cs.vu.nl

Philip Homburg received a Ph.D. from the Vrije
Universiteit in the field of wide-area distributed sys-
tems. Before joining this project, he experimented
with virtual memory, networking, and XWindows in
Minix-vmd and worked on advanced file systems in
the Logical Disk project.

philip@cs.vu.nl

Andrew S. Tanenbaum is a professor of computer sci-
ence at the Vrije Universiteit in Amsterdam. He has
written 16 books and 125 papers and is a Fellow of
both the ACM and the IEEE. He firmly believes that
we need to radically change the structure of operat-
ing systems to make them more reliable and secure
and that MINIX 3 is a small step in this direction.

ast@cs.vu.nl

I N R EC ENT YEARS , D E P ENDAB I L I T Y AND
security have become prime concerns for
computer users. Nevertheless, commodity
operating systems, such asWindows and
Linux, fail to deliver a dependable and
secure computing platform. The lack of
proper fault isolation in the monolithic ker-
nel of commodity systems means that a
local failure can easily spread and corrupt
other components. A single bug, say, a
buffer overrun in a network driver, can over-
write crucial data structures, causing a sub-
sequent, but unrelated, action to trigger a
fatal exception. Recovery is usually not pos-
sible except by rebooting the computer.

While software is buggy by nature, device drivers
are known to be especially failure-prone [1, 2]. It
is irrelevant whether the failures are due to hard-
ware glitches, improper device documentation,
the arcane kernel programming environment, lack
of quality control, limited testing, or code imma-
turity. The crucial point is that pieces of untrust-
ed, third-party code, such as drivers and other
extensions, run inside the kernel and can poten-
tially take down the entire system. This property
is inherent to the monolithic design used in com-
modity operating systems, and it cannot be solved
through mere programming effort.

Our approach to dependability is to cope with
imperfection and counter the more fundamental
problem that driver failures threaten to take down
the entire operating system. In particular, we have
enhanced the MINIX 3 operating system with
fault-resilience techniques to improve operating
system dependability. We accept the fact that soft-
ware is not perfect and probably never will be,
and anticipate failures in device drivers and other
critical operating system components. Our system
is designed to withstand such failures and can
often repair itself in a manner that is transparent
to applications and without user intervention.

MINIX 3 has been under development for the past
two years and is becoming increasingly mature.
We have already reported on MINIX 3’s multiserv-
er architecture [3] and mechanisms to deal with
dead device drivers [4]. In this article we loosely
summarize what we have done to make MINIX 3
resilient against failures, where we stand now, and
what is left for future work. An overview of the

highlights of MINIX 3’s development and a tentative roadmap for future
work are given in Figure 1. As the figure shows, we hope to release a thor-
oughly tested fault-resilient version of MINIX 3 early next year.

The remainder of this article is organized as follows. We start out with a
short introduction to the recent history of MINIX 3. Then we give an
overview of the fault-resilience mechanisms we have implemented thus far
and perform a brief reality check. In the end, we discuss our current and
future work that will eventually lead to the release of a fault-resilient ver-
sion of MINIX 3 and then conclude.

F I G U R E 1 : O V E R V I E W O F T H E H I G H L I G H T S O F M I N I X 3 ’ S
D E V E L O P M E N T A N D T E N TAT I V E R O A DM A P F O R F U T U R E
WO R K .

The Recent History ofMINIX 3

As a base for MINIX 3 we used MINIX 2, which already ran some servers
in user space but still had in-kernel device drivers. Starting in late 2003,
we removed the drivers from the kernel, developed a user-space device
driver framework, and officially released MINIX 3 in October 2005. Since
then, the system has been downloaded over 100,000 times and a small but
growing user community has formed to support MINIX 3. The official Web
site (www.minix3.org) and newsgroup (comp.os.minix) are frequented by
many enthusiasts who want to participate in our quest for a secure and
dependable operating system.

The architecture of MINIX 3 is shown in Figure 2. All servers and drivers
run as independent user-mode processes—each encapsulated in a private
address space protected by the MMU hardware—on top of a tiny microker-
nel of under 4000 lines of executable code. The bottom half of the micro-
kernel is responsible for programming the CPU and MMU, interrupt han-
dling, and IPC. The in-kernel clock and system task provide an interface to
kernel services, such as I/O and alarms, for the user-mode parts of the
operating system. The most common servers provide file system services
and process management functionality. A special server, called the reincar-
nation server, manages all servers and drivers and constantly monitors the
system’s well-being. With this design as a stable base we were able to
achieve failure resilience, as we discuss below.

; LOGIN: FEBRUARY 2007 ROADMAP TO A FAULT-RES I L I ENT OS 15

F I G U R E 2 : A R C H I T E C T U R E O F M I N I X 3 . T H E O P E R AT I N G S Y S T E M
I S C O M PA R TM E N TA L I Z E D I N U S E R S PA C E , B U T C O M P O N E N T S
C A N I N T E R A C T W I T H E A C H O T H E R B Y PA S S I N G M E S S A G E S . T H E
P O S I X R E A D () C A L L , F O R E X A M P L E , I S T R A N S F O R M E D I N T O A
R E Q U E S T T O T H E F I L E S E R V E R , W H I C H A S K S T H E D I S K D R I V E R
T O R E A D T H E B L O C K F R O M D I S K , W H I C H , I N T U R N , A S K S T H E
I N - K E R N E L S Y S T E M TA S K T O P E R F O R M P R I V I L E G E D O P E R A -
T I O N S , S U C H A S W R I T I N G T O T H E D I S K ’ S I / O P O R T S .

MINIX 3 currently runs over 400 standard UNIX applications, including
the X Window system, two C compilers, language processors, several
shells, many editors, a complete TCP/IP stack that supports BSD sockets,
a virtual file system infrastructure, and all the standard shell, file, text
manipulation, and other UNIX utilities. The POSIX-compliant interface
offered by MINIX 3 facilitates porting of common Linux and BSD applica-
tions. For example, porting an application to our system is often simply a
matter of recompilation.

Performance measurements on a 2.2-GHz Athlon show that the overhead
of our system is 5–10% compared to the base system (MINIX 2) with in-
kernel device drivers [3]. User-mode Fast Ethernet runs at full speed, and
our user-mode disk drivers show an average overhead of about 8% to per-
form disk I/O compared to in-kernel disk drivers. Since neither MINIX 2
nor MINIX 3 has been tuned for performance, we expect to find a some-
what higher overhead when the system is compared to Linux or FreeBSD.
Nevertheless, MINIX 3 feels fast and responsive. For example, the boot
time, as measured between exiting the multiboot monitor and getting the
login prompt, is less than 5 seconds. At that point, a POSIX-compliant
operating system is ready to use.

Crash simulation experiments show that our system can withstand failures
and gracefully recover by restarting the driver rather than rebooting the
entire computer [3]. For example, in one experiment, we used wget to
retrieve a 512-MB file from the Internet while repeatedly killing the
Ethernet driver every 4 seconds. The network transfer successfully com-
pleted in all cases, with a performance degradation of just 8%. Although
these experiments prove the viability of our approach, manually killing a

16 ; LOG I N : VO L . 3 2 , NO . 1

driver to simulate a crash is not representative for many device driver fail-
ures. Therefore, we recently started to experiment with automatic fault
injection, with promising results, as discussed next.

Achieving Fault Resilience

The key principles we used to make MINIX 3 failure resilient are fault iso-
lation, defect detection, and run-time recovery. Fault isolation is required
to prevent problems from spreading and limit the damage bugs can do.
When a bug is properly caged it becomes easier to pinpoint the defect, and
recovery may be possible. In the following we briefly discuss how we real-
ized each principle in MINIX 3. As an aside, this model may have conse-
quences for the accountability of software vendors [5], but in this article,
we focus on the technical aspects of our design.

FAULT ISOLATION

Although we have fully compartmentalized the operating system in user
space, as illustrated in Figure 2, isolation cannot be achieved by means of
address-space separation alone. This is because servers and drivers need
potentially dangerous mechanisms to communicate and share data in order
to make the system work. Instead of granting such powers to all processes,
we have carefully reduced the privileges of each according to the Principle
Of Least Authority (POLA). Each device driver, for example, is loaded with
a protection file that precisely lists its resources, including device memory,
I/O ports and IRQ lines, and IPC capabilities. The reincarnation server
ensures that the restriction policy is in place before the newly started driv-
er gets to run.

Memory protection is realized by combining MMU and kernel protection.
The MMU ensures that a process cannot directly access another process’s
memory. However, to prevent memory corruption in processes that need to
share data, processes can grant access to precisely specified memory areas
by sending a capability that is checked by the kernel when data is read or
written. It has to be noted that DMA is still a potential danger, but this is a
hardware problem and not a limitation of our system. Fortunately, I/O
MMUs are becoming more common, and when we have the proper hard-
ware we will solidify our defenses.

DEFECT DETECTION

The reincarnation server is the central component that guards all servers
and drivers in the system. During system initialization the reincarnation
server adopts all processes in the boot image as its children; servers and
drivers that are started on the fly also become its children. Therefore, in
line with the POSIX model, the reincarnation server will be notified by the
process manager when a system process exits. Based on the exit status
retrieved from the process manager, three cases can be distinguished: a
process exit or panic, a CPU or MMU exception, or a user signal. Each of
these cases is considered as a separate defect class.

In addition, the reincarnation server has three other ways to monitor the
system for anomalies. When a driver’s protection file specifies so, the rein-
carnation server periodically pings the driver and expects it to reply with a
heartbeat message. Not responding is considered a defect and initiates the

; LOGIN: FEBRUARY 2007 ROADMAP TO A FAULT-RES I L I ENT OS 17

recovery procedure. Furthermore, the reincarnation server acts as an
arbiter in case of problems. For example, the network server can request
replacement of an Ethernet driver that does not adhere to the multiserver
protocol. Finally, the user can instruct the reincarnation server to dynami-
cally update the system. In this way, when a bug or other vulnerability is
found, the defective component can be replaced on the fly as soon as a
patch is available.

RECOVERY PROCEDURE

When a server or driver is started, it can be associated with a (generic)
shell script that governs its recovery procedure. When a defect has been
detected, the reincarnation server looks up the malfunctioning process’s
recovery script from its internal tables and runs it. All relevant parameters,
such as the component that failed, defect class, and failure count, are
passed along so that the script can decide what to do. The simplest policy
may log the error and shut down the malfunctioning component, but in
many cases it is possible to replace it with a fresh copy. A sample policy
script that uses a binary exponential backoff protocol in restarting failed
components is shown in Figure 3.

F I G U R E 3 : R E C O V E R Y S C R I P T T H AT U S E S A B I N A R Y E X P O N E N -
T I A L B A C K O F F P R O T O C O L I N R E S T A R T I N G A F A I L E D C O M P O -
N E N T T O P R E V E N T B O G G I N G D OW N T H E S Y S T E M I N C A S E O F
R E P E A T E D F A I L U R E S , U N L E S S T H E U S E R E X P L I C I T LY R E Q U E S T -
E D A D Y N A M I C U P D AT E [4] .

Once a component has been restarted it needs to be reintegrated into the
system. First, the reincarnation server updates the corresponding name
server entry in the data store, which uses a publish/subscribe mechanism to
inform dependent components about the new system configuration. For
example, the file server will be notified when a disk driver is restarted and
its new IPC endpoint is published in the data store. At this point, the file
server can reinitialize its own tables and can request the driver to reinitial-
ize itself. If the restarted component lost state during its crash, it can, in
principle, retrieve a backup made by the crashed component from the data
store. In our current prototype implementation, however, all drivers are
stateless or can be reinitialized from the server level. Recovery of stateful
components is not used by our prototype implementation, but the mecha-
nisms required to do so are in place.

18 ; LOG I N : VO L . 3 2 , NO . 1

Reality Check

Although our system has been designed to recover from failures in both
servers and drivers, there are limits to what we can do. Since the core oper-
ating system servers maintain a lot of state, recovery is currently not sup-
ported. For example, the process server keeps track of process IDs, child-
parent relationships, alarms, and more. Although a crash does not take
down the entire system, all user programs will be seriously hampered.
Nevertheless, our approach deals with an important class of problems,
since 70% of the operating system typically consists of driver code, with
reported error rates 3–7 times higher than those of ordinary code [2].

The assumption underlying our recovery procedure is that failures are
transient and can be repaired by replacing malfunctioning components.
For example, rare timing causing an exception, software aging from memo-
ry leaks, and the like may bring down a component, but in many cases a
restart will cure the problem. Moreover, our design not only helps when
disaster strikes but also opens the possibility for ante-mortem updates. At
any point in time the user can update the system by requesting the reincar-
nation server to replace a component under suspicion with a new one.
This feature helps system administrators to keep the system in good shape
without system downtime. It may also be useful in embedded systems that
need to automatically replace components when new versions are avail-
able.

Work for the Near Future

The general fault-resilience mechanisms presented here are currently
implemented in MINIX 3, but more work needs to be done, as shown in
Figure 1. In particular, a better performance assessment and a more thor-
ough evaluation of MINIX 3’s ability to recover from failures are needed.
We have already studied the performance of MINIX 3 compared to MINIX
2 and have concluded that the transformation of in-kernel drivers into
user-space drivers resulted in a performance overhead of about 5–10%. We
are currently investigating how MINIX 3 compares to other UNIX-like
operating systems such as Linux and FreeBSD. Preliminary results show
that the overhead is somewhat higher, but we do not have the precise
numbers yet. However, because MINIX 3 is not optimized for perfor-
mance—in contrast to the other systems—it will be hard to tell to what
extent the overhead is due to MINIX 3’s multiserver design or to the differ-
ences in, for example, compiler quality, memory management algorithms,
and file system implementation.

In addition, we are working on a better evaluation of MINIX 3’s ability to
survive failures in critical operating system components and transparently
repair the system. Our current focus has been to reincarnate dead device
drivers, but recovery from failures in stateful components has our interest
as well. Furthermore, we have mostly tested the system’s failure resilience
by manually killing components, but this approach is not representative
for failures that are caused by, say, programming bugs. Therefore, we
recently ported the fault injection tool used by Nooks [6] to MINIX 3,
which allows us to inject more representative faults by mutating the driver
binaries. This method already proved its value, as we discovered a small
number of bugs in the core components, which we fixed. More important-
ly, the results thus far indicate that our system is indeed capable of surviv-
ing and recovering from common failures.

; LOGIN: FEBRUARY 2007 ROADMAP TO A FAULT-RES I L I ENT OS 19

20 ; LOG I N : VO L . 3 2 , NO . 1

Summary and Conclusion

In this article, we briefly described the recent history of our work on
MINIX 3 and we showed how the modular design of MINIX 3 can be
exploited to achieve failure resilience within the operating system. A time-
line with the highlights of MINIX 3 thus far and a tentative roadmap for
future work was presented. Although more development and testing is
needed, the principles discussed here show that it is possible to improve
operating system dependability by revisiting design choices that were made
decades ago. All in all, we believe that MINIX 3 has serious potential to
claim a niche in the operating system market—for example, on moderately
powerful embedded systems where security and dependability are at stake,
such as mobile phones, set-top boxes, and medical appliances.

REFERENCES

[1] T.J. Ostrand and E.J. Weyuker, “The Distribution of Faults in a Large
Industrial Software System,” Proc. 2002 ACM SIGSOFT Int. Symp. on
Software Testing and Analysis, ACM, pp. 55–64, 2002.

[2] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler, “An Empirical
Study of Operating System Errors,” Proc. 18th ACM Symp. on Operating
System Principles, pp. 73–88, 2001.

[3] J.N. Herder, H. Bos, B. Gras, P. Homburg, and A.S. Tanenbaum,
“Reorganizing UNIX for Reliability,” Proc. 11th Asia-Pacific Computer
Systems Architecture Conference, pp. 81–94, 2006.

[4] J.N. Herder, H. Bos, B. Gras, P. Homburg, and A.S. Tanenbaum, “Who’s
Afraid of Dead Device Drivers,” Technical Report IR-CS-D29, Vrije
Universiteit, Amsterdam, 2006.

[5] A.R. Yumerefendi and J.S. Chase, “The Role of Accountability in
Dependable Distributed Systems,” Proc. 1st Workshop on Hot Topics in
System Dependability, 2005.

[6] M.M. Swift, M. Annamalai, B.N. Bershad, and H.M. Levy, “Recovering
Device Drivers,” Proc. 6th Symp. on Operating System Design and
Implementation, pp. 1–15, 2004.

; LOGIN: FEBRUARY 2007 HARDWARE VIRTUALIZATION WITH XEN 21

S T E V E N H A N D , A N D R E W W A R F I E L D ,
A N D K E I R F R A S E R

hardware virtual-
ization with Xen
Steven Hand is a Senior Lecturer at the University of
Cambridge and a founder of XenSource, the leading
open source virtualization company. His interests
span the areas of operating systems, networks, and
security.

steven.hand@cl.cam.ac.uk

AndrewWarfield completed his Ph.D. at the
University of Cambridge in May 2006. He now works
as the lead storage architect for XenSource, and is
also an Adjunct Professor in the Computer Science
Department at the University of British Columbia.
Andrew currently lives in Vancouver, Canada.

andrew.warfield@cl.cam.ac.uk

Keir Fraser is an EPSRC academic fellow and lecturer
at the University of Cambridge and a founder of
XenSource. He completed his Ph.D. in 2004 and now
manages the Xen project.

keir.fraser@cl.cam.ac.uk

X EN I S A V I RTUA L MACH I N E MON I TO R
(VMM) that we’ve been developing at the
University of Cambridge for the past sever-
al years. As a VMM, Xen allows a single
physical computer to be divided up into a
number of smaller virtual computers, each
running its own operating system and
applications. Xen is free, but is also avail-
able as part of a number of commercial
offerings.

Xen was designed from day one to get every last
ounce of performance out of commodity x86
machines. The past year has seen chip vendors
such as Intel and AMD launch next-generation
processors that provide hardware assistance for
virtualization. In this article, we provide a back-
ground to Xen, show how these new hardware
features can be used to provide high-performance
virtualization even for proprietary or legacy oper-
ating systems, and look toward the future of hard-
ware virtualization.

Xen:Virtualization for theMasses

System virtualization technology has been around
for over four decades. Pioneered by IBM with
VM/370, system virtualization allows you to di-
vide a single powerful computer into a number of
smaller, less powerful computers called virtual
machines. Each virtual machine runs its own op-
erating system and applications and is strongly
isolated from other virtual machines. This provides
enhanced flexibility, management, and security.

For many years, virtualization was limited to “big
iron” machines. However, the increasing power
and prevalence of commodity off-the-shelf
(COTS) systems have made virtualization an
attractive technology for regular x86 boxes.
Virtual machine monitors (VMMs) such as Xen
and VMware provide system virtualization for
COTS systems and are now in use on hundreds of
thousands of machines worldwide.

There is, however, a problem: The Intel IA-32
architecture was not designed with virtualization
in mind, and so certain instructions which should
trap when executed with insufficient privilege
simply behave differently, and various privileged
states are visible even to user-mode software. This
means that traditional system virtualization
approaches are insufficient. Instead, new tech-
niques are needed to make x86 VMMs a reality.

THE PROBLEM WITH IA-32

In a classic 1974 paper, Popek and Goldberg describe the basic principles
for system virtualization. In particular, they identify three requirements for
something to be considered a VMM:

� Equivalence: Software running in a virtual machine should behave ex-
actly as it would on a “real” machine (barring timing effects).

� Performance: The vast majority of machine instructions executed
when running within a virtual machine should be executed “natively”
on the real hardware, and without intervention from the VMM.

� Resource control: The VMMmust be in complete control of the hard-
ware resources.

These requirements typically lead to a “trap and emulate” approach in
which the VMM runs hosted operating systems in user mode. Most of the
time, the software runs exactly as it would on a real machine, but if the
operating system (OS) attempts to perform a privileged operation, a hard-
ware trap will occur. Since the VMM executes in supervisor mode, it can
catch this hardware exception, inspect the state of the OS that caused it,
and emulate the behavior that would have occurred on real hardware. The
VMM can then resume the virtual machine, allowing execution to continue.

This approach will satisfy Popek/Goldberg requirements as long as the
processor is guaranteed to trap whenever any privileged operation is
attempted in user mode. Unfortunately, the original IA-32 architecture does
not guarantee this: Various instructions which should trap don’t, and in
some cases they simply have different semantics than they would have on a
real machine. In addition, certain kinds of privileged machine state (such
as page tables and segment descriptor tables) reside in memory and hence
are visible to user-mode software.

SOLVING THE PROBLEM

There are two main ways that we can work around these problems with
the IA-32 architecture: binary rewriting and paravirtualization. In the for-
mer approach, the VMM dynamically scans the memory of the guest OS
looking for problematic instructions, and rewrites any it finds with alterna-
tive instruction sequences. This approach is costly and fragile, especially as
the x86 uses variable-length instructions, but it can be made to work in
most cases.

The latter approach, used by Xen, modifies the operating system source
code to make it aware that it is running on top of a VMM. The resulting
enlightened operating system can run extremely efficiently in a virtual
machine environment: Typically an overhead of just 1% is observed. It can
also work in cooperation with the VMM to provide advanced features such
as CPU, memory, and device hotplug, or even live migration, seamlessly
relocating a running virtual machine from one physical node to another.

At the time of writing, there are enlightened versions of modern Linux,
BSD, and Solaris operating systems that run efficiently on Xen. Further-
more, Microsoft has announced that it is working on an enlightened ver-
sion of its forthcoming “Longhorn” operating system.

Nonetheless, there is a large existing base of legacy operating systems that
cannot use the paravirtualized technique. To support these, we need to
look to the processor vendors and their recently introduced hardware sup-
port for virtualization.

22 ; LOG I N : VO L . 3 2 , NO . 1

Hardware Virtualization

To work around the problems with the original IA-32 architecture, both
major processor vendors have recently introduced hardware extensions.
Intel’s technology is called VT-x, or VT for short, and ships in most recent
processors including the Xeon 51xx series, the Xeon 71xx series, and the
Core Duo and Core 2 Duo processors. The equivalent AMD technology,
called AMD-V, ships in recent (stepping F2) Opteron and AMD64 proces-
sors. (Although there are some important differences between VT-x and
AMD-V, this article will avoid them in the interests of simplicity. More
technical details on both technologies are available from the references
given at the end of the article.)

These hardware virtualization (HV) technologies both operate by making
the processor aware of multiple virtual machine contexts (VMCs). A VMC
is analogous to a process control block (PCB) in an operating system: a
copy of the state required to resume or schedule that virtual machine. The
VMC holds a strict superset of the contents of a PCB, however; for exam-
ple, in addition to the values of general purpose and floating-point regis-
ters and flags, the VMC will contain the values of the processor control
registers (such as cr0, cr4, and cr8). The VMC will also include the values
of certain model-specific registers (MSRs) such as CSTAR and EFER, as
well as an expanded version of each segment selector.

Hence with hardware virtualization technology, the VMM acts somewhat
like a traditional operating system, but scheduling virtual machines instead
of processes. The HV extensions include instructions to launch and/or
resume a given VMC, which causes the hardware to load the relevant
processor state and continue execution. The new execution environment
includes its own privilege levels (“rings” in IA-32 terminology), so the
operating system kernel can operate in what it believes is supervisor mode
and runs its own applications in what it believes is user mode. The new
execution environment can also operate in a completely independent
processor mode; for example, the VMM can run in 64-bit mode, one VM
in 32-bit paged mode, and another VM in 16-bit real mode.

The act of launching and/or resuming a VMC is sometimes called entering
a virtual machine and, as previously mentioned, can be seen as analogous
to scheduling a process in an operating system. However, things are differ-
ent when we consider the opposite case: exiting a virtual machine. Where-
as in an operating system a process will usually only be descheduled as a
result of an interrupt or system call, a VMM wishes to intercept execution
in a much wider range of situations. Examples include instructions that
manipulate processor interrupt state, interactions with the TLB, instruc-
tions that access or update control registers or MSRs, and attempts to put
the processor into a halt state.

To allow maximum flexibility, hardware virtualization allows the VMM to
select precisely which events it wants to intercept. The selected events will
cause a vmexit, effectively a trap from the running virtual machine into the
VMM. Since the set of allowable events includes all privileged x86 instruc-
tions, this allows implementation of the classic trap-and-emulate scheme,
and hence it enables efficient virtualization of nonparavirtualized operating
systems.

; LOGIN: FEBRUARY 2007 HARDWARE VIRTUALIZATION WITH XEN 23

XEN: HARDWARE VIRTUAL MACHINES

Xen uses the hardware virtualization technologies described above to
enable support for legacy or proprietary operating systems. It uses the trap-
and-emulate approach to deal with privileged instructions, which enables
efficient virtualization without the overhead or fragility of binary rewriting.

However, existing hardware virtualization support only provides part of the
solution required to enable the execution of hardware virtual machines. In
particular we can consider a modern COTS system as comprising three
main components:

� The processor
� The memory subsystem
� The I/O subsystem

Current VT-x and AMD-V technologies help with processor virtualization,
but they do not deal with memory or I/O. Software support within Xen is
required to complete the picture.

VIRTUALIZ ING MEMORY

Most operating systems expect a contiguous range of physical memory
(RAM) starting from address 0x0. When running on top of a VMM, how-
ever, many operating systems are run concurrently, and will be allocated
varying amounts of physical memory from the overall pool. One job for
the VMM then is to translate between physical addresses as seen by an
individual virtual machine (“guest physical addresses” or just “physical
addresses” for short) and the actual physical addresses as seen by the real
hardware (“machine addresses”).

There are two interesting cases to consider depending on which mode
the virtual machine is executing in: (1) real mode or protected mode or
(2) paged mode. In the former case, addresses generated by the virtual
machine are physical addresses (albeit modified by segment translation); in
the latter case the virtual machine generates virtual addresses, which it
expects to be translated via the processor’s paging mechanism. Xen handles
both of these cases by the same means: shadow page tables.

The basic idea is simple: The guest creates and manages its own page
tables, which translate from virtual to guest physical addresses. When the
guest wishes to use an address space for the first time, it will update its cr3
register to point to the root page table. Using hardware virtualization, this
causes a vmexit, which allows Xen to create a shadow copy of the root
page table. Unlike the guest version, the version used by Xen translates
from virtual addresses directly to machine addresses, and so it can be used
by the “real” (hardware) MMU.

For space efficiency, it is not necessary to make shadow copies of every
part of the current page table; instead, copies can be made on demand as
the operating system (or its hosted processes) access various parts of the
virtual address space. In addition, Xen must be able to track any updates
made by the guest to its page tables and reflect the appropriate changes in
the shadow copies. For these reasons, Xen ensures that guest page table
pages are always mapped read-only. As a consequence, any page table mod-
ification attempted by the guest will result in a fault into the VMM. Xen
can then intercept the access and maintain coherence between guest and
shadow page tables.

The current implementation (in Xen 3.0.3) has been designed for high per-
formance and includes a number of optimizations above and beyond the

24 ; LOG I N : VO L . 3 2 , NO . 1

scheme just described. It also incorporates support for other modes of
operation, which may be used for the live migration of virtual machines.
Interested readers can learn more from the references given at the end of
the article.

VIRTUALIZ ING I/O

The final part of the picture entails dealing with the I/O subsystem. This
includes simple platform devices (such as timers and interrupt controllers),
disk drives, video cards, USB controllers, and network interface cards.

COTS systems expect to access such devices either via I/O instructions
(direct or memory mapped) or via memory-mapped PCI bus addresses. As
with page table updates, Xen intercepts any such accesses and emulates the
behavior of device hardware. For platform devices, this is relatively
straightforward since they perform no actual I/O per se. Other devices are
more complex and may require the ability to send packets on a real net-
work interface card or read data from a real storage device.

Xen supports these I/O devices by instantiating a device model process for
each virtual machine. This emulates the behavior of the rest of the plat-
form hardware, which can be configured to include the desired number
and type of network interface cards, IDE controllers, graphics cards, and
USB controllers. These virtual devices handle any accesses made by device
drivers running in the virtual machine, mirroring the state transitions that
would be made by an equivalent piece of hardware. They also interact with
a—potentially virtualized—instance of that hardware: For example, a disk
device can be represented as a sparse file.

Providing an emulated platform allows operating systems to run without
requiring that they are at all aware of virtualization. However, emulation
can be rather slow, particularly for devices such as network interface cards,
which can require many (emulated) bus cycles to, for example, transmit a
packet.

Hence Xen also provides the ability to load new, virtualization-aware
device drivers into the operating system after it has been installed. These
paravirtualized drivers understand the underlying VMM, and hence they
can more directly interact with the virtual hardware. In the case of net-
working, this can increase performance by an order of magnitude.

Next Steps in Hardware Virtualization

We’ve seen how Xen uses existing hardware virtualization of the processor
to efficiently and robustly run unmodified operating systems, augmenting
this with software support for memory virtualization (shadow page tables)
and I/O virtualization (device model).

Looking ahead, we envision a number of further hardware enhancements:
hardware support for memory virtualization, platform virtualization, and
device virtualization.

NESTED/EXTENDED PAGE TABLES

Even though shadow page tables can be implemented efficiently, they still
require a number of transitions between the VMM and the guest. These
transitions can cost hundreds or even thousands of cycles, and so it is
desirable to keep their number to an absolute minimum. To this end, both
Intel and AMD have recently announced hardware support for virtualizing

; LOGIN: FEBRUARY 2007 HARDWARE VIRTUALIZATION WITH XEN 25

the MMU. Intel’s scheme is called extended page tables (EPT); AMD’s is
called nested page tables (NPT).

Both operate by adding an extra level of translation; in essence, a new
page table (called the EPT or NPT, respectively) is introduced to translate
between (guest) physical and machine addresses. There is one of these per
virtual machine, since all address spaces within that virtual machine share
the same physical to machine mapping. In addition, the hardware is now
explicitly aware of the guest page tables.

Consequently, on a TLB miss, the hardware can walk the guest page tables
directly, using the additional EPT or NPT to translate the physical address-
es contained within page table entries. On completion of the walk, the TLB
is updated with the resulting virtual to machine mapping and execution
continues.

Note that even though this extra level of indirection does involve more
lookups, it does not require any vmexits, hence improving overall efficien-
cy. The hardware can also cache intermediate translation results to further
improve performance.

VIRTUALIZ ING THE PLATFORM

Help is also coming for platform virtualization. First in line are extensions
from AMD and Intel that allow enhanced protection from DMA-capable
devices.

In today’s COTS systems, devices are not subject to any translation or pro-
tection checks when they access memory. This means that a malicious or
buggy device driver can program a device to read or write any piece of
memory in the system, bypassing the VMM and any installed security
policy.

Currently shipping AMD-V chips include support for device exclusion vec-
tors (DEVs), which addresses this risk. A DEV is a bitmap with 1 bit for
every 4K page of physical (host) memory. Any attempted memory access
by a device first causes a lookup (based on the device and bus ids) to a
protection domain; this is then used to select an appropriate DEV, and the
target address is checked against the appropriate bit. If the bit is set, the
access is disallowed. This can be used by a VMM to protect itself and any
other key data (such as security policies) from rogue DMA accesses.

Similarly, Intel has announced VT-d, a forthcoming technology aimed at
providing enhanced support for platform virtualization. VT-d is also a
northbridge-based approach that interposes on device accesses, and it also
maps devices to protection domains. However, VT-d takes a more general-
ized IOMMU approach: In particular, device-issued DMA addresses are no
longer “physical” addresses but are instead translated through a hardware
table. This allows protection as well as arbitrary remapping of the bus
address space. VT-d support is expected to ship in 2007.

VIRTUALIZ ING DEVICES

Finally, there is work on making I/O devices themselves virtualization-
aware, to allow direct yet safe sharing between multiple virtual machines.
This is particularly of interest for high-throughput, low-latency devices
such as gigabit network interface cards and next-generation graphics cards.

Some of this work involves proposed extensions to PCIe being developed
by the PCI-SIG. These extensions include address translation and the

26 ; LOG I N : VO L . 3 2 , NO . 1

introduction of virtual functions within PCI devices. There is also ongoing
development of “smart” I/O devices that provide translation, protection,
and multiplexing between multiple clients. Early results indicate that bare-
metal performance can be maintained without sacrificing safety.

Conclusion

As virtualization continues to grow as an important technique for manag-
ing modern systems, the software and hardware used to provide it are
maturing at a dramatic rate: The original version of Xen stemmed from a
research project at the University of Cambridge and allowed a specific
handful of modified operating systems to be efficiently virtualized on unco-
operative x86 hardware. Nearly four years later, Xen is a mature and robust
VMM supporting paravirtualized OSes that are increasingly maintained by
the OS developers themselves; Xen has further been incorporated as a core
feature in the major Linux distributions, being directly included with their
release kernels.

Chip makers have also embraced virtualization and have released hardware
features to assist VMMs. Xen now includes support for both Intel’s VT and
AMD’s V processor extensions, allowing unmodified legacy OSes to be effi-
ciently and safely virtualized. As a result, Xen can now host nonparavirtu-
alized OSes, such as Microsoft Windows, on modern hardware. Hardware
will continue to evolve in support of virtualization in the immediate fu-
ture, providing more direct support for both memory and I/O devices. We
look forward to incorporating these features into Xen as they become avail-
able, as they promise to provide even greater performance and stability for
the virtualization of COTS systems.

REFERENCES

The following resources are useful for finding out more about hardware
virtualization and Xen:

“Intel Virtualization Technology,” Intel Technology Journal:
http://www.intel.com/technology/itj/2006/v10i3/index.htm.

AMD64 Architecture Programmers Manual, Volume 2: System Programming:
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech
_docs/24593.pdf.

Xen downloads: http://xensource.com/download.

Symposium on Operating System Principles (SOSP) 2003 paper on Xen:
http://www.cl.cam.ac.uk/netos/papers/2003-xensosp.pdf.

Shadow2 presentation at Fall 2006 Xen Summit:
http://www.xensource.com/files/summit_3/XenSummit_Shadow2.pdf.

Xen Source Code Repository: http://xenbits.xensource.com.

; LOGIN: FEBRUARY 2007 HARDWARE VIRTUALIZATION WITH XEN 27

28 ; LOG I N : VO L . 3 2 , NO . 1

M A R K B U R G E S S

configuration
management:
models and myths

PA RT 4 : T H E R E ’ S NO I /O

W I THOUT U

Mark Burgess is professor of network and system
administration at Oslo University College, Norway.
He is the author of Cfengine and many books and
research papers on system administration.

Mark.Burgess@iu.hio.no

T R AD E AN D COMMUN I CAT I ON HAV E
been in partnership since symbiosis
emerged from evolution’s curiosity shop, as
a trick for smuggling contraband into the
sum of the parts. This partnership is central
to management of systems. Communica-
tion pervades, from the question a user
asks at the help desk, to the data received
from a router, to traffic flow statistics, to
the implementation of configuration oper-
ations performed by software—there is an
exchange of messages about state, about
intention, and about change. Computer
management is also increasingly about
trade. All this communication is not for
whim or curiosity; it has a direct value to us
in terms of time,money, or service.
However you look at it, the world of net-
works is the world of commerce.

When two parties wag their tongues or dance
their dances, they are both altered by the ex-
change. When more parties are involved, there
is a cumulative effect that spreads out along den-
tritic paths, binding the squawking flock together
and forming a network. The trails blazed by those
conversational patterns fashion the resulting be-
havior of all parties in the network. This wave of
influence is the essence of management, whether
it spreads like a diplomatic envoy or like a forest
fire.

In this piece, I hope to persuade you to reexamine
your beliefs about centralized, authoritative man-
agement in computing (or elsewhere). I want to
argue that, in our modern world (surfing its way
on the rising wave of free-market economics), we
need to rethink the tradition of hierarchical, cen-
tralized governance in guiding the behavior of
systems. It’s a familiar song: Delegation and de-
centralization are not only desirable but inevitable
if we are to cope with the rate at which we have
to (re)configure and repair systems in a vibrant
and adaptive network, built on the economics
foundation of trade and services.

From a Cat’s Cradle, Like a Bat Out of Hell

This is the network age, an age in which webs of
communication are accelerating our technological
and economic development. What is a network?

We overload this most important word with a plethora of meanings. Even
in the limited domain of computer science, its meaning is not clear. Some-
times we mean the cable that joins the computer to the wall; sometimes we
mean the infrastructure that enables communication between computers,
including the routing and the switching; sometimes we implicitly mean the
protocols that are spoken over these channels of copper and air; and some-
times we mean the abstract collection of computers themselves that are
connected by the infrastructure (a social network of interaction formed
between human and computer).

A network is “simply” a device or construct that joins many things or
places together. The first technological networks were roads and sewers,
built many thousands of years ago. Even before that, humans formed tribes
linking humans together in structures of about thirty. But we should not be
fooled into thinking that networks are human creations. In nature, net-
works are everywhere: Crystals and molecules are held together by net-
works of interatomic bonds. The structures of these networks determine
the large-scale properties of the substances they form. In biology it is not
genes that generate the complexity of the living world, but rather the net-
works of interconnections formed from the proteins that the genes encode.
Our bodies are ripe with networks, as Arab scholars discovered and drew
in exquisite detail during the first millennium: networks for blood trans-
port, nerve signals, immunity, etc. Biology is a testament to the successful
cooperation of multiple communicating parts.

Face-Centered Squareness

But as humans, we are frightened by complexity, even as we embrace it.
The structures we configure purposely into networks (i.e., their topologies)
are simple-minded. As they grow beyond our designs, we fret like worried
parents over the consequences of this growth and try to protect systems
with firewalls and other barriers. Recall Alvin Toffler’s comments about
industrialization from the last episode of the series.

It is no coincidence that published maps of the Internet look like snow-
flakes or leaves (see the images famously generated by Bill Cheswick at
AT&T). It is not that the Internet appears biological; the point is that these
biostructures are themselves networks. This is what networks look like
when they emerge in the natural world purely as a result of mutually bene-
ficial interaction. When engineers design networks they look quite differ-
ent—like stars and trees. Humans only build in this “organic” way when
things are “out of control” (i.e., when they are no longer designed by an
engineer), but they “grow” following an economic principle of development
rather than a regulated one. Why not? If these structures are so successful
in nature, why don’t we build like this? Perhaps we are small-minded.

Humans love to build centralized and hierarchical structures, whether
industries, governments, or armies. Possibly there is a social-anthropic rea-
son for this (perhaps an expert, on reading this, will tell me the answer):
There is evidence to show that people have evolved to work in groups of
around thirty at the most. Once this size is exceeded, they tend to break up
into subgroups that cluster around a new leader. Another reason might be
cultural, though the structure of families in which a family clusters around
a dominant male, as attested to by the unfailingly nauseating and pre-
dictable references to “my father” or “daddy, daddy” (seldom “my mother”
or “my family”) at every tearful moment in American TV and film.

; LOGIN: FEBRUARY 2007 CONFIGURATION MANAGEMENT: MODELS AND MYTHS 29

But there is a fascinating phenomenon going on here. Even if the size of
our attention is limited, there is nothing obviously programmed into us
that says how these groups must be organized, or is there? Well, roll up!
Be amazed by our human propensity (perhaps desire) to subordinate our-
selves before an authority figure. We behave like a bureaucracy of sheep in
uniform. I always think of the scene from Monty Python’s Life of Brian in
which Brian tells the crowd, “Don’t listen to me—you have to think for
yourselves,” to which the crowd cheers in unison, “Yes, yes! We must
think for ourselves!”

Why command hierarchies? There is no evidence to suppose that such a
structure is better than another. It is somewhat “natural” perhaps, like a
dividing river or a branching tree, but it is far from robust. The tree struc-
ture has a certain clarity to it, but also great fragility. A tree is all about not
reproducing the same alternative twice. A branching tree is a clean, eco-
nomical, and logical separation of concerns, but the same properties also
make it a structure of minimum redundancy and therefore quite fragile and
blooming with bottleneck inefficiency.

F I G U R E 1 . F R O M C E N T R A L I Z E D S TA R T O P O L O G Y , T O
H I E R A R C H I C A L C E N T R A L I Z A T I O N , T O D E C E N T R A L I Z E D
M E S H T O P O L O G Y .

Create Like a God,Command Like a King, andWork Like a Slave

In terms of overhead, we can see why subordination (i.e., centralization) is
appealing—if everyone follows a single master (Fig. 1a), then there are
only N – 1 agreements instead of N(N – 1)/2 in a community of N agents.
And yet public keys have shown us that we can form peer-to-peer collabo-
rations with only N agreements and a little skill. What about consistency?

Every piece of knowledge must start from somewhere. That means there
must be a source and a direction from which the information spreads. If
there is only one source of information, then it must be consistent. Hence
starlike topologies are perfect for local consistency. Q.E.D. If we move up a
scale, then coordinating local communities according to a common policy
can also be done from a single source; hence star hierarchies solve the
problem (Fig. 1b). Tradition wins the day.

So, fine; centralization is sufficient, if we assume that the chief of the net-
work can handle the burden—but is it necessary? The odds seem to be in

30 ; LOG I N : VO L . 3 2 , NO . 1

favor of centralization. But is this good engineering? Let’s look at this dipo-
lar list:

� Centralization (single source) versus delegation
� Top down versus bottom up
� Hierarchical versus peer-to-peer
� Data normalization versus data-mining

What if we look at survivable networks, such as biological organisms?
Biological “devices” evolved only to survive in a changing environment.
How? Through redundant distributed networking—the opposite of central-
ization. Even though some few of our major organs are singular (e.g., the
brain and the heart) there is still redundancy built in: We are amazed by
stories of how people who have suffered brain injuries learn, for the most
part, to reroute their brain functions as a result of the phenomenal inbuilt
redundancy. The single points of failure (spinal cord, heart, etc.) are still
our greatest weaknesses, and these things limit our growth.

But surely all this redundancy and variation is much too expensive to
maintain! I quote Toffler once again: “As technology becomes more sophis-
ticated, the cost of introducing variations declines.’’ Recall that the fear
Toffler spoke of in industrialization was precisely that mass-production
would lead to an inflexible lack of choice in a market—that you could
have any color as long as it was black. Well, he also argued that this was
nonsense once you have technology, because that is when you really can
afford to make things cheaply.

So do we see any such technologies that diversify the playing field for con-
figuration management? Indeed, we have various levels of automation
tools, from SNMP-based Tivoli and Openview to policy-template configura-
tion tools such as Cfengine, LCFG, Pikt, and the Web-based interfaces pro-
vided by a variety of operating systems. Although SNMP is now widely
regarded as a failure (even by the IETF) for everything with the possible
exception of monitoring, the template-based tools, albeit imperfectly, en-
able great variability in mass-produced environments. The largest Cfengine
installations, for instance, run into the tens of thousands on a single site,
some with large variations from laptops to supercomputers. Clearly varia-
tion management is no longer a real issue for technology. Let’s see how it
comes about.

Speak toMe inMany Voices,Make ThemAll Sound Like One

The first universal theory of symbolic communication was pioneered by
Claude Shannon in the 1940s. He turned the idea of communication into a
science and implicitly solved the issue of maintenance at the same time.
His theory of communication over a noisy channel is one of the classics of
electrical engineering (or information science; take your pick). It makes
that important point that you cannot escape from the problem of signal
noise in a system. All systems contain noise (uncontrolled variations), in
some manner or form. If a message is communicated in a noisy environ-
ment it becomes unclear, rough and grainy; the chance of it being under-
stood and obeyed is much smaller (as the pony said to the ventriloquist,
“I’d love to talk to you, but I’m afraid I’m a little horse”).

Symbolic (digital) communication was the basic technology that enabled
electronic networking and computation. After this, the idea of queuing and
packet switching brought us from the fast train-track communication of
the telephone network to the automobile diversity of the Internet protocol.

; LOGIN: FEBRUARY 2007 CONFIGURATION MANAGEMENT: MODELS AND MYTHS 31

Networks now relay communications between peers by encapsulating any
kind of message with a single lingua franca of IP (more or less).

The messages might now all sound like a single language, but they carry
more diversity than ever before. By deregulating the centralized structure
of the telecoms and by deregulating the single source content using the
open (emergent) standard of IP, diversity has grown into a commerce of
communication with a tolerable level of variation. Remarkably, a plethora
of standards has converged into one, just as kids who are left to dress with-
out school uniforms converge on jeans and T-shirts and a small number of
basic themes. The lesson here is that when you deregulate something, you
might actually end up with greater uniformity than before, because people
lose interest in fighting for supremacy—they become content to live and
prosper in their own niches.

In previous issues, I talked about the structure of patterns in a configura-
tion. A network too is a configuration, which can be laid out as a formal
language. The hierarchical tree structure we are used to in a context-free
language (e.g., XML) has no a priori superiority to that of a more random
peer-to-peer structure. Hierarchies possess relative computational simplicity,
meaning that they are cheap to parse or build by linear computation, but
they are only marginally more expressive than regular grammars that corre-
spond to peer relationships.

Why would we think that a context-free, military hierarchy was the best
solution to management? Perhaps because the alternatives are currently
too hard for us to fully understand. Grammars that use parentheses make
it easy to put things in boxes, and this is a comfortable way of marking out
territory and assigning responsibility. But, in practice, we do not even use
deep hierarchies in the organization of network patterns, usually imple-
menting only two levels: master and slave hosts. That depth of pattern
grammar can easily be built as a regular language, but it is “faux,” being
more about limitation than structure. It requires only that each slave in the
network promise to follow the instructions of a master, which in linguistic
terms is just a prefix. This is perhaps a clue that what we really value is
perceived cheapness rather than subordination. We just think that hierarchy
must be cheaper than a less structured pattern, although the theory of lan-
guages says otherwise.

Selling Your Soul at the Crossroads

In the past few years, users and researchers alike have come to realize the
economic limitations of hierarchical regulation. A hierarchy implies a set of
bottlenecks and barriers, of permissions and subordinations, but users
have been given the power to compute and, by George, they do! Service-
oriented computing has arrived to stay. It is direct, it is valuable to individu-
als, and it is subordinate to no one.

Technology is no longer the plaything of governments and governing
boards for strategic purposes; it lies in the hands of ordinary folk who sim-
ply want to trade. This desire to trade, to exchange information and servic-
es in mutually beneficial ways, is what has driven the Internet into a state
of biological complexity. It is a new technological symbiosis that enables
our society to move to a new level of cooperation that can handle groups
of bigger than thirty.

But what of the cost of this ad hoc, symbiotic organization? Price is clearly
a subjective point of view in this story, and the cost of management is
somewhat dependent on your particular skills (as Toffler says, “As technol-

32 ; LOG I N : VO L . 3 2 , NO . 1

ogy becomes more sophisticated . . .”). Today these currencies for manage-
ment are in flux, and centralization is being displaced by peer services,
through the Web, and through file-sharing software. Could it be that
planned structure could be supplanted by an organically (economically)
grown emergent structure?

Well, this might all sound like a dream from some 1970s biological materi-
al, but don’t reject this thought without seeing the wood in the trees: Just
because a network was not designed does not mean that it is less function-
al than one that is. Just because behavior emerges from the cradle of eco-
nomic self-interest (symbiosis) does not mean that it is less predictable
than a military operation. All life and society emerged this way—and we
do very nicely, thank you.

So, in case you thought I had forgotten about configuration management
in this daydream about networking, let’s tie the floating pieces in our
Article-Area-Network together, seeing how we can have the best of both
worlds: predictability and freedom along with personal safety and oppor-
tunistic self-interest.

AutonomousMeditation:The State of Standing Still

Shannon’s model of the noisy channel applies equally to computers talking
to themselves. Self-interest begins with the correct functioning of the indi-
vidual. What easier way to maintain system state than to have it chant that
state over and over again until it works harmoniously?

The passage of time brings many influences to bear on systems that we do
not have any control over. Developers of computer systems have made a
frequent error in viewing configuration management only as change manage-
ment (as in a transaction system such as a database). It is a bit like believ-
ing that the weather is really an air conditioner with a nice neat knob to
switch it on and off.

Self-maintenance is communication if you see a computer system as being
in a constant state of meditation, at each moment repeating a mantra that
we can call its state. We would like it to chant a message that agrees with
our policy for its state. By repeating the message one then reinforces it.
This metaphor describes the idea of autonomous configuration manage-
ment.

From the previous articles, we think of the state of the computer as
some string of configuration-operational characteristics that forms an
alphabet. This can be coded in any imaginable way (e.g., suppose it is
“ABHEKSYGHETFDH . . . ,” where A means something like “chmod 644
/etc/passwd,” etc.)

After a while, corruption of the state message owing to run-time interac-
tions, meddlesome users, and network connections (i.e., noise) could lead
to this state message being garbled, changing some of the symbols into
others. Such a change must be corrected by reiterating the actual policy
(e.g., “ABCD” -> “ABXD” -> “ABCD”). Just like the message over a noisy
channel, we have to correct these errors.

The convergent operations we mentioned in the last article deal with this
problem nicely. In operational language, a single operator is a unit of one
kind of instigator of change, which we write:

O q = q’

; LOGIN: FEBRUARY 2007 CONFIGURATION MANAGEMENT: MODELS AND MYTHS 33

34 ; LOG I N : VO L . 3 2 , NO . 1

to mean an operation applied to a state q leads to a transition to a new
state q’. But rather than thinking about a transition from one state to a new
state, think of this, rather, as error correction. A “convergent” operator is a
message that tells any state to transform into a policy compliant state:

C (Any state) -> (Policy state)

The policy state is said to be a fixed point of the policy operator since once
you get there you stay there. So, in terms of this language, all we need to
do is to repeat the entire policy over and over again, like a never-ending
mantra, with a separate operator for each independent kind of change:

C1C2C3 . . . Cn (Any state) -> (Policy state)

Alva Couch called this the Maelstrom property in his LISA paper from
2001. The importance of this property is that a computer can simply chant
its policy message to itself, applying strings of these operational messages,
and this will ensure that it is always in the error-corrected, policy-compli-
ant state. This is not science fiction. The approach was developed original-
ly and used for Cfengine, in a limited form, and something like it is now
being used in NETCONF and some other configuration management tech-
nologies designed to replace SNMP.

Though I Speakwith the Tongues of Convergent Fixed-Point Operators

There is, of course, a danger to emphasizing the role of communication,
language, or error correction too much. In the network management com-
munities people often get stuck by confusing basic ideas with the technolo-
gies that communicate them. It would be no surprise to us that our leaders
failed to govern the country if they held the view that management were
the same as SNMP. Ideas generalize implementations; they should not be
limited by them.

In the case of SNMP there was a conscious decision made by the IETF to
avoid complexity in the protocol. This regulation, in turn, led to an explo-
sion of complexity in the data structures (MIBs). You cannot suppress
noise by trying to pretend it is not there. What fixed-point semantics offers
us (at least in the cases where it has been possible to implement such a
thing) is the guarantee that a message repeated will be easily implemented,
rather than being a Mission Impossible.

What I am proposing here is that it can be sufficient to manage device
internals individually, while allowing networks to trade freely. The result
will not necessarily be “out of control” in a bad way; it will regulate itself
autonomically.

Five Farthings, Say the Bells of St.Martin’s

For managing the configurations of computers, networks are not essential.
It is clearly possible to administer changes and repairs to a completely iso-
lated, stand-alone computer, either manually or with the aid of automa-
tion, “one-on-one.” However, the network opened the door to both collab-
oration and interconnection, therefore making it possible to manage sys-
tems remotely. This is only true, however, if such collaboration has an eco-
nomic justification.

We can disconnect any computer from a network and take over the man-
agement of the device, and no one can stop us; hence the idea that com-
puters are “controlled” from outside is only a convenient fiction. They are
controlled insofar as they want to be. It is an act of voluntary cooperation to

; LOGIN: FEBRUARY 2007 CONFIGURATION MANAGEMENT: MODELS AND MYTHS 35

allow oneself to be managed by an external authority. Just as we bow to
authorities, network management researchers find this idea almost impos-
sible to accept.

Messages of different types have different values for us. Just being associat-
ed with a service provider in a BGP peering agreement can be worth a lot
of money—kudos to the peer that earns respect and hence the promise of
future profit. Association is a social currency that is worth something—
not necessarily money. We have to learn to recognize the different forms
of currency in play in economic cooperation. The face of commerce is
changing.

Why would anyone talk about trade if they could control everything and
nail everything down. You only have to compare the state of dictatorships
with democracies to answer that one. The authoritarian regime might ar-
gue, you need me for:

� Offloading and convenience
� Specialist knowledge
� Separation of concerns
� Mutual advantage

But all of these things can, in fact, be obtained from your neighbor and
today these are used as the primary reasons for outsourcing to companies
that are considered to be subordinate, not superordinate, authorities.

Don’t we need a law-maker or some other kind of authority to govern? In
contract law it is observed that the threat of litigation in an authoritarian
regime is essentially insignificant in determining whether the terms of a
contract are upheld or broken. The principal factor that determines wheth-
er or not people break the law is the potential loss in economic value to
the participants in the contract. Hmmm. . . think about that one.

Haggling Over the Price

It is possible to describe policy patterns and structures graphically using a
theory of promises. We have been developing this theory in Oslo for the
past two years. It allows us to study these matters of economically motivat-
ed cooperation. Promise theory tells us that we do not have to abandon
personal autonomy to have distributed cooperation.

The economics of system administration change. At the beginning of the
1990s, when I developed Cfengine, there was a particular need for compet-
itive garbage collection in systems—simply to keep them alive. Disks had
finite size and the memory of the system was limited. This shaped the
functions that were built into the configuration engine. Today, this recy-
cling task has (for the moment) been deemphasized, as we have wider
margins in modern systems. Tools that are produced today place more
emphasis on installation, as if our fossil reserves of storage were infinite, or
they ignore the presence of unnecessary processes, as if the heat produced
by these unnecessary computations will not cost us dearly in the long run
(either from increased electricity bills or the melting of the polar ice caps).
The only thing that will apparently convince us to be more careful today is
our confused paranoia over “security” (whatever that means to us).

Today “over-provisioning” (over-provisionizationing) allows us to swagger
richly through the data center, paying little attention to the waste. This too
is purely a matter of economics. We currently have no incentive to try to
improve, but the time will come again when this bountiful Cretaceous era
of information diversity meets its Tertiary boundary, and our systems will

36 ; LOG I N : VO L . 3 2 , NO . 1

once again have to deal with loads that tax their resources to extinction.
Limits will be reached, and we shall be operating once again on the edge
where the balance of trade proves crucial to the survival of the species.

Please Sir, ISOWant to Buy Your BS-Enabled ITILity!

So what of the tail end of this tale? Services. The service paradigm has ar-
rived to stay, in business, in commerce, and certainly in computing. This
paradigm has all but wiped out the conventional notion of system adminis-
tration in the eyes of network research and development and the telecom
service providers. To them UNIX is an application service; Windows is
something to be updated over a network.

Businesses are gearing up for service management. Standards of good prac-
tice for service delivery management were developed by the British govern-
ment in the late 1990s and have grown into a ubiquitous standard of prac-
tice in business today called the Information Technology Infrastructure
Library (ITIL). The manuals and documents for this standard are still
sold at great expense, and a summary was published as British Standard
BS15000 and now also as ISO20000. These documents mention configura-
tion management, although they say nothing about how (or indeed if) it
can be implemented. They merely recommend that a software engineering
type of versioning be used for the management for all kinds of configura-
tion data. This is not the same story I have been telling in these articles,
but it is a higher-level aspect of it.

It is probably possible to describe any enterprise as a number of interacting
services, trading with one another for mutual advantage. Once the advan-
tage disappears, the enterprise falls apart. ITIL and its bureaucratic rival
the NGOSS/eTOM (enhanced Telecom Operations Map) help managers to
see some aspects of good governance, so that service providers will be able
to document their organizations and associated feel-good behavior, but
they speak only of quality of the process surrounding the service (a sort of
managerial version of the meditation discussed here). They say nothing
about practical implementation or of the technical challenges.

In this series I have tried to show that the matters of system configuration
and policy-guided behavior have a technical basis that is sometimes ig-
nored. The future of low-level configuration management (in the sense of
computer governance) lies with automation, whereas the high-level behav-
ior of interaction lies in commerce. There is much research to be done in
this area. We must understand the science and the economics of this, not
merely the tradition and the doctrine—and that science is of communica-
tion. Communication, in turn, requires language: There must be a lan-
guage to express the changes, desires, and policies of our self-regulating
systems. And only when all of these pieces of the puzzle are in place can
we say that we have fully understood configuration management.

; LOGIN: FEBRUARY 2007 XEN INSTALLATION AND CONFIGURATION 37

L E I G H G R I F F I N A N D J O H N R O N A N

Xen installation
and configuration
Leigh is a student assistant researcher at the TSSG,
Waterford Institute of Technology. He has now
returned toWIT to complete his studies in the B.Sc.
in Applied Computing Degree.

lgriffin@tssg.org

John Ronan is a senior researcher at the TSSG,
Waterford Institute of Technology, and also a radio
ham (EI7IG).When not experimenting with new net-
work technologies, he can be found bouncing AX25
packets through LEO satellites.

jronan@tssg.org

TH I S GU I D E I S D E S I GN ED TO G E T A
Xen server up and running in no time. It is
a simple copy-and-paste guide which
should get you through a bare-bones
install with minimal trouble and time. Xen
is an exciting and still relatively new tech-
nology; more information can be obtained
by visiting the Xen homepage at
http://www.xensource.com and also by
reading “The Inevitability of Xen,” by
Crowcroft et al. [1]. The only limitations you
will find with Xen will derive from your
hardware or your ingenuity.

As this guide is aimed at beginners, it is going to
cover the installation of Xen from the binary
packages. The binary packages are recommended
for people who are new to Xen and are uncom-
fortable with the range of configuration options
that the source install offers.

The latest stable release of Xen can be found at
http://www.xensource.com/products/downloads/.
The sources are also available from BitTorrent
sites, among others; however, we recommend
going with the official releases to ensure validity,
security, and stability [2]. We obtained the 3.0.1
binary install file and thus will use this as a refer-
ence for the rest of the guide; simply replace 3.0.1
with your 3.0.x in the relevant positions in order
to install the software successfully.

The Linux Filesystem Hierarchy Standard
recommends placing the source file in the
/usr/src folder, and that’s where we will put it
and unpack it [3].

Prerequisites

We ran the following commands to install the
dependency packages and to remove some outdat-
ed and unnecessary packages (using Debian):

xen:# apt-get remove exim4 exim4-base lpr nfs-
common portmap pidentd pcmcia-cs pppoe
pppoeconf ppp pppconfig

xen:# apt-get install screen ssh debootstrap
python python2.3-twisted iproute bridge-utils
libcurl3-dev

Now that we have the necessary files installed,
let’s extract the software from its .tar file and run
the install script:

xen:# /usr/src$ cd xen-3.0.1-install
xen:# /usr/src/xen-3.0.1-install$./install.sh
xen:# /usr/src/xen-3.0.1-install$ mv /lib/tls /lib/tls.disabled

The last command is necessary to avoid the emulation slowdown problems
with the glibc libraries that are installed by default [2].

You should now have the Xen software installed on your computer. To start
the Xen services at boot time, the following commands need to be run:

xen:# update-rc.d xend defaults 20 21
xen:# update-rc.d xendomains defaults 21 20

The final additions to be made are to add the Xen kernel to the bootloader
program (Grub). Scroll through the file until you find the line that reads:

BEGIN AUTOMAGIC KERNELS LIST

Just above that is the place where we must make our addition to the file.
Enter the following text:

title Xen 3.0 / XenLinux 2.6.12
kernel /boot/xen.gz dom0_mem=64000
module /boot/vmlinuz-2.6.12-xen0 root=/dev/hda1 ro console=tty0

Note that it is important to make sure that your root is indeed /dev/hda1.
If it is not, simply change the value after root= to match it. If you are
unsure what your root name is, scroll further down the menu.lst file and
you will see the default kernel and its root value.

Reboot the machine; at the boot prompt, Grub will now list Xen 3.0/
XenLinux 2.6.12 as the first kernel and boot it automatically. Everything
should load normally and you will be given your standard login. If the
machine does not boot, the following may fix the problem.

If the Xen machine executes a hard reboot as it is starting up, the problem
rests with the amount of RAM in your machine. You will get no error mes-
sage with this problem, and the last thing you will see is a line that says:

“Scrubbing free RAM.”

Then the screen will go black and do a hard reboot. The solution is to
remove the excess RAM (while still keeping the DIMMs balanced) and
reboot the machine. Currently, the binary install can only cope with a max-
imum of 3583 MB of RAM. To use more RAM, a source install needs to be
performed and PAE support must be built into the kernel; however, this
topic lies outside the scope of this guide.

Creation of Domains

Now that we have the Xen software installed, it is time to get to the cre-
ation of the virtual machines. First, we are going to create a storage area
for our virtual machines:

xen:# mkdir /virtual && cd /virtual

Here we are going to create two directories in which to store and configure
the images:

xen:/virtual# mkdir vm_base
xen:/virtual# mkdir images

We will create a default image and swap image from which our virtual
machines will be derived. Execute the following commands:

38 ; LOG I N : VO L . 3 2 , NO . 1

xen:/virtual# dd if=/dev/zero of=/virtual/images/vm_base.img bs=1024k
count=xxxx
xen:/virtual# dd if=/dev/zero of=/virtual/images/vm_base-swap.img
bs=1024k count=xxx

Note that the value that count= specifies is the size the image will be in
megabytes. Simply change it to a value that will suit your needs; only your
machine capacity is the limit. (See p. 65 for sample file sizes.)

Now we need to format the base image to be ext3 so that it can serve as
our journaling filesystem. We have chosen ext3 as it is faster than ext2 and
has stronger guarantees for data integrity [4].

xen:/virtual# mkfs.ext3 /virtual/images/vm_base.img

Answer yes to the question prompted regarding the warning about the
block special device. Now we need to configure the swap file to be a swap
area:

xen:/virtual# mkswap /virtual/images/vm_base-swap.img

Next it’s time to install the Debian base system to our newly created image.
First, though, we need to mount our image:

xen:/virtual# mount -o loop /virtual/images/vm_base.img /virtual/vm_base

Debootstrapping the Base Image

We run the debootstrap command to download all the prerequisite pack-
ages, using the following command:

xen:/virtual# debootstrap —arch i386 sarge /virtual/vm_base/
http://ftp2.de.debian.org/debian

Now change root and configure the images apt program to specify how we
want to pull down our software and updates:

xen:/virtual# chroot /virtual/vm_base
xen:# apt-setup

During the standard apt setup, you will be asked some basic questions
regarding your location and which mirror you wish to use to speed up the
process. When this is done, edit the sources.list that comes with apt and
change the word testing to stable wherever it appears in the file. Now
update your software repository:

xen:# apt-get update

The next step in the installation process involves setting up the locales for
your region:

xen:# apt-get install localeconf

Choose the locales to install depending on your country (e.g., en_IE
ISOxxxx for Ireland or en_US ISOxxxx for the United States).

Next, configure the base system using base-config. A menu with various
installation options will be presented to you. The important things to con-
figure are:

1. Users and passwords. This is where you set the default user name,
password, and root password. This is an important part as each im-
age subsequently created from the base image will have these default
passwords, which will need to be changed.

2. The time zone.

; LOGIN: FEBRUARY 2007 XEN INSTALLATION AND CONFIGURATION 39

3. Which software to install. When the program prompts for additional
software to be installed we choose “none,” as this is the base image,
from which the other virtual machines will later be derived. Each de-
rived machine can be customized when it is ready.

When you are satisfied with the system, simply hit return and you are fin-
ished configuring the base system.

There are some small configurations still to be completed. First, remove
the hostname from the system. We remove the hostname because deboot-
strap copies this from the host machine to the newly created image so both
will have the same hostname:

xen:# rm -f /etc/hostname

Now we need to create our networking interfaces by editing
/etc/network/interfaces:

auto lo
iface lo inet loopback

address 127.0.0.1
netmask 255.0.0.0

Next we edit the fstab file; it must end up looking exactly like the follow-
ing in order to represent the internal structure of the virtual image, its
mountpoints, and its filesystem types:

/dev/hda1 / ext3 defaults 1 2
/dev/hda2 none swap sw 0 0
/dev/pts devpts gid=5,mode=620 0 0
none /dev/shm tmpfs defaults 0 0

These values will map to the configuration file values for the root and
swap later on in the configuration of the virtual domains themselves.

Our last configuration option sees the creation of the hosts file:

127.0.0.1 localhost.localdomain localhost
The following lines are desirable for IPv6 capable hosts
::1 ip6-localhost ip6-loopback
fe00::0 ip6-localnet
ff00::0 ip6-mcastprefix
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters
ff02::3 ip6-allhosts

Now we leave the chroot environment with exit. All that is left is for us to
copy the kernel modules to our virtual machine and unmount the image.

xen:/virtual/vm_base# cp -dpR /lib/modules/2.6.12.6-xenU\
/virtual/vm_base/lib/modules/

xen:/virtual/vm_base# mv /virtual/vm_base/lib/tls /virtual\
/vm_base/lib/tls.disabled

xen:/virtual/vm_base# umount /virtual/vm_base

The base image is now complete.

Creation of Virtual Domains

Now that we have a base image to work off of, it is time to go and make
some virtual machines. We will do this by copying the base image like so:

xen:/virtual/vm_base# cp -pf /virtual/images/vm_base.img\
/virtual/images/vm01.img

40 ; LOG I N : VO L . 3 2 , NO . 1

xen:/virtual/vm_base# cp -pf /virtual/images/vm_base-swap.img\

/virtual/images/vm01-swap.img

Now we create a configuration file for this new domain. Xen is located in
/etc/xen, so that is the place where we will leave the configuration files,
because the Xen software automatically scans this directory for the match-
ing file. We use /etc/xen/myfirstdomain.sxp as the name for our first
domain.

Here is a copy of the domain that we created:

name=”myfirstdomain”
kernel=”/boot/vmlinuz-2.6.12.6-xenU”
root=”/dev/hda1”
memory=64
disk=[‘file:/virtual/images/vm01.img,hda1,w’,’file:/virtual/images\
/vm01-swap.img,hda2,w’]

network
vif=[‘’]
dhcp=”off”
ip=”10.0.0.50”
netmask=”255.0.0.0”
gateway=”10.0.0.254”
hostname=”myfirstdomain.yourdomain.org”

extra=”3”

The ip addresses should match ranges within your organization’s network.
It is simply a case of sorting the networking out more then anything else.
We set DHCP to be off in our instance, but if your network requires DHCP
to be on as a means of dealing with addresses it’s simply a matter of chang-
ing “off” to “on.”

The root value is the value that we set earlier in the /etc/fstab file. The
mappings between the swap and root values that we set earlier in the
/etc/fstab file are also evident in the specification of the disk value.

Note that the memory value is the amount of RAM in megabytes that you
are going to give to this domain. In this case, our domain is going to
receive 64 MB of RAM to work with.

Now to start the machine, you need to be logged in as root.

Once in as root, you have access to the Xen software. If you type in xm
help, you will get a listing of the available commands and how to use them.
To create a domain we will execute the following command:

xen:# xm create -c myfirstdomain.sxp

There is no need to specify the exact path to the myfirstdomain file, as the
Xen software automatically looks in /etc/xen for a file matching the config-
uration file you are using. If you placed the configuration file elsewhere,
simply insert the complete path to the file.

The -c flag is used to ask for a console for the domain you have just
launched. If all goes ok, you should see the machine booting up and even-
tually you will get to the login prompt. If you get an error saying the
domain failed to balloon, it is an error associated with allocating too little
memory to the virtual machine. You have not allocated enough RAM to
allow domU to boot successfully. You will have to use the xm destroy
myfirstdomain to stop the domain, then edit the configuration file to allo-
cate more memory to your domain, and use the create command to launch
the domain.

; LOGIN: FEBRUARY 2007 XEN INSTALLATION AND CONFIGURATION 41

Log in with the default username and password that you specified in the
configuration of the base system. It is a good idea now to change the
default password. This is a major security issue, as each domain is created
from the same base system and thus has the same username and pass-
words!

With your domain you should be able to ping the master Xen server, other
xen domains floated, and other hosts on the same network as yours. It
should also be possible to ssh into the domain.

When you are finished with your domain and wish to exit it, you can do a
shutdown as normal, which will send you back to the original Xen domain
from where you came, or if you wish to leave it running and wish to return
to Xen, simply hold down CTRL +]. This will take you back to Xen. If you
run xm list you should see your domains that are successfully floated, in-
cluding information such as how much memory they are allocated and
their domain name. To get a console to one of them simply run xm console
myfirstdomain where myfirstdomain is the name of the domain we specified
within the configuration file and is the name that appears in the list of
domains we see when xm list is run.

If you wish to create more domains it is simply a matter of copying the
base image:

xen:# cp -pf /virtual/images/vm_base.img /virtual/images/vm0X.img
xen:# cp -pf /virtual/images/vm_base-swap.img /virtual/images\
/vm0X-swap.img

The vm0X just needs to be changed to a new unique number or name.

A corresponding config file needs to be created in /etc/xen, which refer-
ences the newly created image file in its disk= parameter.

If you wish to have your domains started automatically at startup, a link
must be created in the auto folder that Xen scans as the system boots. This
can be achieved by doing this:

xen:# ln -s /etc/xen/myfirstdomain.sxp /etc/xen/auto

Restart the machine and see if the domains come up successfully.

Extra Configuration

The final configuration that must be done in order to create more than
three domains may need to be performed now.

Each virtual image and its swap area run on a loop each. The default num-
ber of loops is 7. If you attempt to float a fourth or fifth domain you will
get this error:

“Error: Device 769 (vbd) could not be connected. Backend device not found.”

This means that we can only create at most three domains with this setup
(as each requires two loops to run). So we need to do some editing to vital
files. Again, ensure a backup has been made in case things go wrong.

We need to edit the modules configuration file /etc/modules.conf and add
these options anywhere in the file:

options loop max_loop=64
rmmod loop
modprobe loop

Once done, if you are running devfs, the new loops should have been auto-
matically created.

42 ; LOG I N : VO L . 3 2 , NO . 1

If you still only see seven values for loop, you need to edit /dev/MAKEDEV
and recompile it to make the changes take place. This is a very big file; you
need to scroll down until you see the following:

loop)
for part in 0 1 2 3 4 5 6 7
do

makedev loop$part b 7 $part $disk
done
;;

This needs to be changed to:

loop)
for part in `seq 0 63`
do

makedev loop$part b 7 $part $disk
done
;;

Then recompile by running makedev loop.

Verify in /dev that there are now 64 loops created, which is enough for 32
machines to be created. If you need more, change the 63 to a number you
desire.

When this is done, restart the machine and everything should be working
fine.

RESOURCES AND LINKS

[1] J. Crowcroft et al., “The Inevitability of Xen,” ;login:, 30, no. 4 (2005):
10–13. Available at http://www.usenix.org/publications/login/2005-
08/pdfs/crowcroft.pdf.

[2] Xen User’s Manual. Available at http://www.cl.cam.ac.uk/Research/SRG/
netos/xen/readmes/user/.

[3] Filesystem Hierarchy Standard Group, R. Russell et al., eds., File System
Hierarchy Standard, 2004. Available at http://www.pathname
.com/fhs/pub/fhs-2.3.pdf.

[4] M.K. Johnson, “Red Hat’s New Journaling File System: ext3,” 2001.
Available at http://www.redhat.com/support/wpapers/redhat/ext3/
#advantages.

[5] F. Timme, “The Perfect Xen 3.0 Setup for Debian,” 2006. Available at
http://www.howtoforge.com/perfect_setup_xen3_debian.

Acknowledgment: This work is partially supported by the IST ENABLE project under the
European Commission’s 6th framework program.

; LOGIN: FEBRUARY 2007 XEN INSTALLATION AND CONFIGURATION 43

44 ; LOG I N : VO L . 3 2 , NO . 1

R O B E R T M A R M O R S T E I N A N D
P H I L K E A R N S

debugging a fire-
wall policy with
policy mapping
Robert Marmorstein will graduate from the College
ofWilliam and Mary this summer with a Ph.D. in
Computer Science.When he is not actively research-
ing ways to manage and analyze firewalls, he spends
his time avoiding grues in the Great Underground
Empire.

rmmarm@cs.wm.edu

Phil Kearns is an Associate Professor of Computer
Science at the College ofWilliam and Mary. His
research interests lie in the general area of computer
systems.

kearns@cs.wm.edu

I F YOU MANAG E A L A RG E N E TWOR K ,
chances are good that lurking somewhere
in your firewall policy is an error that could
compromise the security of your network.
Firewalls are subject to many different
kinds of configuration errors. Although
many of these glitches are relatively harm-
less, some can seriously compromise your
policy’s correctness and reliability. Inserting
a rule into the policy twice may cause a
negligible performance hit but usually does
not affect the correctness or security of the
policy. However, a typo in a critical rule may
give an untrusted host access to your
important servers. Until recently, debug-
ging a firewall policy with more than a few
rules was a challenging and tedious task. In
the past few years, however, new tools for
analyzing the policy have made finding fire-
wall gremlins much easier.With these tools,
you can find and repair many common fire-
wall problems quickly and easily.

ITVal is a framework we designed for testing ipta-
bles-based Linux firewalls. It was originally
intended to provide an open-source alternative to
existing commercial testing tools such as the Fang
firewall analysis engine [7, 9] and the Internet
Security Scanner [3]. Like those tools, it relied
either on the user’s ability to create logical queries
describing the desired behavior of the firewall or
on a pregenerated set of generic tests. We quickly
discovered, however, that devising meaningful and
effective queries required nearly the same effort as
inspecting the firewall by hand. To address this
problem, we came up with a new method of de-
bugging the firewall rule set.

Our new technique is easily usable by any system
administrator. It doesn’t need extensive prepara-
tion of queries, cases, or tests. In fact, the only
input requirement is a textual representation of
the policy (easily generated by the iptables -L -v -n
command). As output, it produces a map of the
network that can be used for detecting anomalies
in the policy.

The policy map divides hosts into groups based
on their interaction with the firewall. If the fire-
wall treats two hosts the same, they will belong to
the same group. If they are treated differently, they
belong to different groups. A correct policy will

; LOGIN: FEBRUARY 2007 DEBUGGING A FIREWALL POLICY WITH POLICY MAPPING 45

Target Source Destination Port
1 ACCEPT Anywhere 128.30.40.0/24 DNS
2 ACCEPT 128.30.40.0/24 Anywhere DNS
3 ACCEPT 128.30.40.0/24 64.15.175.5 NTP
4 ACCEPT 128.30.40.0/24 128.30.40.0/24
5 DROP !128.30.40.0/24 128.30.40.13
6 ACCEPT 128.30.40.0/24 218.30.40.10 SMTP
7 ACCEPT 128.30.40.0/24 128.30.40.10 IMAP
8 ACCEPT 128.30.40.0/24 128.30.40.12 SSH
9 ACCEPT Anywhere 128.30.40.11 HTTP
10 ACCEPT Anywhere 128.30.40.12 HTTP

usually divide the hosts of a network into logical, easily identifiable groups
based on their function within the network. One group might be the “all
workstations” group. If the network distinguishes between different kinds
of workstations, there may, instead, be separate groups for “Solaris worksta-
tions” and “Linux workstations.” Other groups might be the “Web servers”
group and the “wireless hosts” group.

It is significant that the map generated by the component of ITVal de-
scribed in this article does not rely upon user input. The map is generated
by processing only the iptables rules set that defines the firewall policy. In
a very real sense, it is merely a different representation of the set of iptables
rules, but we contend that it makes the difficult task of finding some errors
in firewall configuration much easier.

Since you probably have a good intuitive idea of the various types of hosts
on your network, it is relatively easy to check that the firewall policy map
represents a correct policy. The policy map probably won’t reveal every
error in your policy, but it will make many of the most significant errors
instantly visible. A quick glance at the policy map will reveal significant
bugs in the firewall policy that query-based tools could not easily uncover.

Debugging a Firewall

To create a policy map, you need to create a few important input files. The
first step is to dump a copy of your firewall policy to disk. If you have root
access, this can be done simply by typing iptables -L -n -v > myRules at the
command line. If your firewall uses packet mangling, you also need to
dump the NAT table to disk with iptables -t NAT -L -n -v > myNatRules.

You also need to provide a query file, myQuery, containing the single state-
ment QUERY CLASSES;. This tells ITVal to generate the policy map for the
input firewall.

You can now use the command ITVal -F myRules -N myNatRules -q myQuery
to generate the policy map. ITVal will create a list of the various host
groups in the firewall policy and display them on stdout.

The firewall policy in Table 1 protects subnet 128.30.40.0/24 from the
outside world. The network has a few key servers: a mail server (128.30.
40.10) and two identical Web servers (128.30.40.11–12). Hosts on the net-
work also talk to two special machines outside the network: a name server
(128.30.1.128) and a network time server (64.15.175.5). The policy contains
several errors, which can easily be detected by inspecting the policy map.

T A B L E 1 : A B U G G Y F I R E WA L L P O L I C Y

This policy is intended to enforce a few important rules. We want to allow
mail traffic only between trusted clients and the mail server. (This is unre-

alistic, since the mail server will also need to send and receive messages
from the outside world, but it makes the example much simpler.) We also
want both Web servers to allow HTTP connections from any host and SSH
connections from clients on the trusted subnet. Furthermore, any of our
systems should be able to access domain name service and the network
time service, but only from appropriate servers. Using ITVal, we can gener-
ate a map of this firewall policy. The policy map for the firewall in Table 1
looks like this:

QUERY CLASSES; There are 6 host classes:
Class1: #Untrusted Hosts and DNS Server

<Everything not explicitly listed in the other classes>
Class2: #NTP Server

64.15.175.5
Class3: #Trusted Network, including the Mail Server

128.30.40.[0–10]
128.30.40.[14–255]

Class4: #Web Servers
128.30.40.[11–12]

Class5: #Anomalous Host 128.30.40.13
128.30.40.13

Class6: #Anomalous Host 218.30.40.10
218.30.40.10

The policy map consists of a list of various classes of hosts, which corre-
spond to the different types of systems on the network. Each class consists
of a set of hosts with some common properties. Two hosts belong to the
same class if and only if any packet sent or received by one of them is
treated the same as if it had come from (or to) any of the others. If two
hosts are in different classes, there is some essential difference between
them in the firewall policy that distinguishes them from each other.

In the listing given here, each element of a class is given as an address or a
range of addresses. For instance, in class 4, the element 128.30.40.[11–12]
represents a set containing the addresses 128.30.40.11 and 128.30.40.12. A
brief inspection of the various classes enables you to easily identify their
members. For instance, class 2 corresponds to the external NTP server.
Class 3 represents the trusted hosts of the network. Class 4 represents the
Web servers of the network. Classes 5 and 6 are anomalous. Class 5 con-
sists of a decommissioned print server that no longer belongs on the net-
work. Class 6 is an artificial class caused by an error in the firewall. All
other hosts belong to class 1. For easier reference, we have added com-
ments to the output that identify each class.

F I G U R E 1 : A N I T V A L N E T W O R K M A P

Figure 1 is a graphical depiction of the policy map. By inspecting the map
for anomalies, you can detect several important policy errors.

46 ; LOG I N : VO L . 3 2 , NO . 1

Catching Typos

In a policy of more than a few dozen rules, there is a good chance that one
of the rules contains a typo. In the sample policy, a typo on line 6 prevents
SMTP traffic from reaching the mail server. The policy map immediately
highlights this error. Since 218.30.40.10 doesn’t correspond to any of the
important servers, the existence of class 5 is a clear indication of an error
in the policy. A search through the rule set for the address 218.30.40.10
uncovers the typo and allows us to patch the problem by transposing the
first two digits of the address. Repairing the problem gives us a new policy
map. The new map looks like this:

QUERY CLASSES; There are 5 host classes:
Class1: #Untrusted Hosts and DNS Server

<Everything not explicitly listed in the other classes>
Class2: #NTP Server

64.15.175.5
Class3: #Trusted Network, including the Mail Server

128.30.40.[0–10]
128.30.40.[14–255]

Class4: #Web Servers
128.30.40.[11–12]

Class5: #Anomalous Host 128.30.40.13
128.30.40.13

Detecting Outdated Rules

The new policy contains yet another anomalous class. Host 128.30.40.13
in class 5 of the new policy map does not correspond to any of our impor-
tant servers. Why has it been distinguished as a special class?

It is very easy to forget to change the firewall policy after altering the net-
work infrastructure. The sample policy contains rules for an experimental
print server that has been taken offline and no longer needs special protec-
tion from external hosts. In the meantime, the server’s IP address has been
reused as the address of a new workstation. As a result, the firewall makes
a distinction between that address and the other systems. Rule 5 of the
original policy, originally designed to protect the print server from untrust-
ed hosts, is now blocking network traffic to the new workstation. Remov-
ing the outdated rule from the policy resolves this issue and gives us the
following policy map:

QUERY CLASSES; There are 4 host classes:
Class1: #Untrusted Hosts and the DNS Server

<Everything not explicitly listed in other classes>
Class2: #NTP Server

64.15.175.5
Class3: #Trusted Network, including the Mail Server

128.30.40.[0–10]
128.30.40.[13–255]

Class4: #Web Servers
128.30.40.[11–12]

Detecting Overly Broad Rules

Sometimes the easiest way to temporarily allow hosts to access an external
service is to open that service up to any external host. This is a bad prac-
tice which often leaves a network open to intrusions from untrusted hosts,

; LOGIN: FEBRUARY 2007 DEBUGGING A FIREWALL POLICY WITH POLICY MAPPING 47

but it is very convenient when bringing a new system online for the first
time. In the long run, however, it is usually much better to use a more spe-
cific rule that allows only trusted hosts to provide that service.

The DNS server does not appear in any of the classes explicitly listed in
the policy map. This is because the members of class 1, the “everything
else” class, have been hidden to save space. Counter to our expectations,
the DNS server has been lumped into this class with all of the untrusted
hosts. To permit DNS traffic only from the appropriate server, the firewall
policy ought to distinguish that server from other hosts outside the net-
work. The fact that the DNS server is grouped with untrusted hosts indi-
cates either that DNS traffic is allowed from any external host or that all
DNS traffic is blocked by the firewall.

Examining the firewall policy reveals an error in rules 1 and 2. Those rules
should grant DNS access only from the DNS server (128.30.1.128), and
not from other external hosts.

This error can be easily repaired by inserting the correct IP address into
each rule. DNS traffic will then be permitted only to the appropriate server.
Running ITVal on the new policy gives us a new policy map:

QUERY CLASSES; There are 5 host classes:
Class1: #Untrusted Hosts

<Everything not explicitly listed in the other classes>
Class2: #NTP Server

64.15.175.5
Class3: #DNS Server

128.30.1.128
Class4: #Trusted Network, including the Mail Server

128.30.40.[0–10]
128.30.40.[13–255]

Class5: #Web Servers
128.30.40.[11–12]

Detecting Shadowed Rules

Another common error is to create a rule in the policy that shadows other
rules. Since iptables considers rules in sequential order, a rule that accepts
or drops packets from an entire subnet will take precedence over a narrow-
er rule that occurs later in the chain. These shadowed rules can be easily
identified in the policy map.

In the policy map, the mail server does not have its own class. Instead it is
grouped with the trusted workstations on the network. This is a good sign
that one or more of the rules protecting the mail server has been shad-
owed. By looking through the rule set for rules corresponding to the mail
server and/or the trusted hosts, you can easily see that rule 4 shadows
rules 6 and 7. It turns out that the rule is unnecessary and can be deleted.
Removing the rule creates a new rule set with the following policy map:

QUERY CLASSES; There are 7 host classes:
Class1: #Untrusted Hosts

<Everything not explicitly listed in the other classes>
Class2: #NTP Server

64.15.175.5
Class3: #DNS Server

128.30.1.128
Class4: #Trusted Clients

128.30.40.[0–9]

48 ; LOG I N : VO L . 3 2 , NO . 1

128.30.40.[13–255]
Class5: #Mail Server

128.30.40.10
Class6: #Primary Web Server

128.30.40.11
Class7: #Secondary Web Server

128.30.40.12

The removal of rule 4 introduced two new classes into the policy map. As
expected, there is a new class containing the mail server. The class contain-
ing the Web servers has also changed. The erroneous rule hid some dis-
crepancies in how the two Web servers are treated by the firewall that need
to be addressed. Now that the rule has been removed, these errors have
become visible.

DetectingMissing Rules

In the new policy, the primary and secondary Web servers belong to sepa-
rate classes. Why is this? Rules 8, 9, and 10 allow HTTP access to both
servers, but they allow SSH access only to the secondary Web server. The
policy is missing a rule that would permit SSH access to the primary
server.

Inserting a new rule to fix this problem gives us the policy shown in Table
2, which has the following policy map:

QUERY CLASSES; There are 6 host classes:
Class1: #Untrusted Hosts

<Everything not explicitly listed in the other classes>
Class2: #NTP Server

64.15.175.5
Class3: #DNS Server

128.30.1.128
Class4: #Trusted Clients

128.30.40.[0–9]
128.30.40.[13–255]

Class5: #Mail Server
128.30.40.10

Class6: #Web Servers
128.30.40.[11–12]

T A B L E 2 : A C O R R E C T F I R E WA L L P O L I C Y

A graphical depiction of a map for the new policy is shown in Figure 2.
Both Web servers now belong to class 6. The map now conforms to our
expectations. There are separate classes for the mail server, the DNS server,
and the NTP server. The Web servers are grouped into a single class. The
set of trusted clients forms a group and all other systems are grouped as
untrusted hosts.

; LOGIN: FEBRUARY 2007 DEBUGGING A FIREWALL POLICY WITH POLICY MAPPING 49

Target Source Destination Port
1 ACCEPT 128.30.1.128 128.30.40.0/24 DNS
2 ACCEPT 128.30.40.0/24 128.30.1.128 DNS
3 ACCEPT 128.30.40.0/24 64.15.175.5 NTP
4 ACCEPT 128.30.40.0/24 128.30.40.10 SMTP
5 ACCEPT 128.30.40.0/24 128.30.40.10 IMAP
6 ACCEPT 128.30.40.0/24 128.30.40.11 SSH
7 ACCEPT 128.30.40.0/24 128.30.40.12 SSH
8 ACCEPT Anywhere 128.30.40.11 HTTP
9 ACCEPT Anywhere 128.30.40.12 HTTP

F I G U R E 2 : M A P O F T H E N E W P O L I C Y

Penetration Testing

In addition to making certain kinds of policy errors immediately obvious,
the policy map can be used with other penetration testing techniques for
more comprehensive and accurate verification. Since the firewall treats all
hosts in a class the same, testing one address from each class gives com-
plete coverage of the entire firewall policy. For instance, when using nmap
[2] or hping2 [1] to search for unfiltered ports, it can be useful to use
source address spoofing to test that the firewall rejects packets from a vari-
ety of sources. Instead of using a randomly selected source address, you
can take one address from each class to be sure that all interesting behav-
iors of the firewall have been tested.

What If I Don’t Use iptables?

ITVal currently only parses iptables firewalls, but the general technique of
generating a policy map can be used with any type of firewall. A more
technical description of policy mapping can be found in the proceedings of
LISA ’06 [6], which outlines the algorithm used to compute the various
classes of the policy map. A quick-and-dirty approximation to the policy
map can be created by listing all the addresses (and address ranges) explic-
itly mentioned in the firewall policy. While such a listing is far less precise
and useful than the policy map, it can reveal some of the behaviors uncov-
ered by the policy map and can provide a good sample of addresses to use
during penetration testing. You might also try converting your rule set into
an iptables policy using some of the scripts Bill Stearns has made available
on his Web site [8] (mileage will vary!).

Conclusion

Maintaining a well-tested and tightly configured firewall is an important
part of overall network security. Thanks to tools such as ITVal, it no longer
needs to be an arduous task. By periodically testing whether your firewall
policy conforms to your general expectations about the organization of
your network, you can quickly and easily identify and repair significant
firewall errors.

In addition to generating a policy map, ITVal provides many other useful
tools for detecting problems in your firewall, including various ways to test
for spoofing protection and to check whether viruses and Trojans can
access backdoors through your firewall. More information about ITVal is
available in the proceedings of Freenix ’05 [5] and LISA ’05 [4]. The tool
itself can be downloaded from http://itval.sourceforge.net.

50 ; LOG I N : VO L . 3 2 , NO . 1

REFERENCES

[1] P. Bogaerts, HPING Tutorial, August 2003:
http://www.radarhack.com/dir/papers/hping2_v1.5.pdf.

[2] Fyodor, “The Art of Port Scanning,” Phrack 7, no. 51 (September
1997).

[3] Internet Security Systems, Internet Scanner User Guide Version 7.0 SP 2
(2005):
http://documents.iss.net/literature/InternetScanner/IS_UG_7.0_SP2.pdf.

[4] R. Marmorstein and P. Kearns, “An Open Source Solution for Testing
NAT’d and Nested iptables Firewalls,” in 19th Large Installation System
Administration Conference (LISA ’05) (December 2005), pages 103–12.

[5] R. Marmorstein and P. Kearns, “A Tool for Automated iptables Firewall
Analysis,” in FREENIX Track: 2005 USENIX Annual Technical Conference
(April 2005), pages 71–82.

[6] R. Marmorstein and P. Kearns, “Firewall Analysis with Policy-based
Host Classification,” in 20th Large Installation System Administration
Conference (LISA ’06) (December 2006).

[7] A. Mayer, A. Wool, and E. Ziskin, “Fang: A Firewall Analysis Engine,”
in Proceedings of the IEEE Symposium on Security and Privacy (May 2000).

[8] B. Stearns, http://www.stearns.org/.

[9] A. Wool, “Architecting the Lumeta Firewall Analyzer,” in Proceedings of
the 10th USENIX Security Symposium (August 2001).

; LOGIN: FEBRUARY 2007 DEBUGGING A FIREWALL POLICY WITH POLICY MAPPING 51

52 ; LOG I N : VO L . 3 2 , NO . 1

D A V I D B L A N K - E D E L M A N

practical Perl tools:
spawning
David N. Blank-Edelman is the Director of Technology
at the Northeastern University College of Computer
and Information Science and the author of the book
Perl for System Administration (O’Reilly, 2000). He has
spent the past 20 years as a system/network admin-
istrator in large multi-platform environments, in-
cluding Brandeis University, Cambridge Technology
Group, and the MIT Media Laboratory. He was the
program chair of the LISA ’05 conference and was
one of the LISA ’06 Invited Talks co-chairs.

dnb@ccs.neu.edu

A S TH E PA R EN T O F A N EW BABY, I ’ V E
really come to appreciate the idea of multi-
tasking. Remind me to tell you about the
times I’ve successfully fed my child from a
bottle while simultaneously going to the
bathroom and petting a cat that asserted it
could not live another moment without
some attention. (Ok, maybe I won’t tell you
about them, though wouldn’t that make a
swell column?) Having the number of unin-
terrupted time slots shrink considerably
since our child was born has made me a
fan of things in the Perl world that help get
tasks done more quickly or efficiently.
Multitasking is one of those techniques,
and that’s just what we’re going to talk
about in today’s column.

Fork()ing

Let’s start out with one of the basic building
blocks of most multitasking Perl code: fork()ing.
The fork() function comes from the UNIX system
call of the same name, though it works on most
other operating systems as well. This now in-
cludes Windows operating systems, thanks to
work in 1999 by ActiveState that Microsoft itself
sponsored.

Here’s a quick review of fork() for those of you
who didn’t grow up teething on (or perhaps even
loading) the V7 magtapes. When you call fork()
from a Perl program, a copy of the running
process is made. This copy receives all of the con-
text of the program that called fork(), including the
run-time environment, any variables in play at the
time, and open file handles. The new process is
called the “child process” with the original one
dubbed the “parent process.” Since the program
that called fork() continues to run in both the
child and the parent processes it is up to your
code to ensure that the child process knows to do
childlike things (processing something, etc.) and
that the parent acts parental (e.g., creating new
children or waiting for existing children to finish).

How does your code know whether it is running
as the child or the parent process? Almost every-
thing about the two running processes is the
same. The key difference is that the parent
receives back the pid of the child spawned by
fork() as a return code from that fork() call. The

child receives a 0 from the same call. This leads to the following idiom you
see in most code that uses fork():

my $childpid = fork();
die “Fork failed:$!\n” if !defined $childpid; # fork returns undef on failure

if $childpid == 0, we are in the child process and need to do stuff
if ($childpid == 0) { ... do stuff }

we’re the parent and so we need to reap the fork()d process when done
else {
waitpid waits for a particular pid vs. wait() which will
reap any child process that has completed
waitpid($childpid,0);
}

A parent process must retrieve the exit status of all of its children once
they have completed, a process known as “reaping,” or the child processes
continue to live on as “zombies” until the parent process dies. Reaping is
performed by wait() or waitpid() as seen in the code above. The waitpid()/
wait() functions will (you guessed it!) wait until the child in question has
finished before returning.

Warning: Because we have a student fork-bomb one of our machines at
least once or twice a year (mostly unintentionally) I feel compelled to
mention that code that either looks like, acts like, or boils down to this:

while (1) { fork(); } # bad bad bad bad

is, as the comment says, bad bad bad bad. A program that fork()s out of
control like this is a fork-bomb. If process limits allow (e.g., Solaris
defaults; see the maxuprc kernel parameter) this program will consume all
available spots in your process table, causing the system to melt down and
be a real pain to clean up to boot. If you are going to write code that
repeatedly fork()s, always build in some kind of big red button to shut the
process down, for example:

while (1) { fork() unless (-f /tmp/stop); } # create /tmp/stop to end

or impose limits to keep the problem self-quashing:

while (1) { die “Over the fork limit” if $limit++>100; fork(); }

With this little snippet we’ve covered all of the basics you have to know to
begin programming using fork(). Toward the end of the column we’ll see an
easier way to use this functionality.

Basic Threading

The second simple method for multitasking involves threading. Before we
go much further I want to insert a number of caveats about threading
under Perl:

1. Thread support is comparatively new to Perl. Actually, it is more accu-
rate to say that this kind of thread support is new to Perl. There was an
attempt in the past (around Perl 5.005 or so) to add threads but that
model never proved to be stable and was eventually moved to “depre-
cated” status and will leave the code as fast as the Perl 5 developers
can get it out (with version 5.10, as I understand it). Support for the
current model looks pretty good and is under active maintenance, so
you probably don’t need to worry. Still, I want you to know that the

; LOGIN: FEBRUARY 2007 PRACTICAL PERL TOOLS: SPAWNING 53

ground around this issue is a little softer than usual, so you’ll need to
step carefully. Things such as debugger support for threads are still a
little shaky (better in 5.8.5+ but still incomplete), but threads are defi-
nitely usable today.

2. Perl threads are likely to be different from any of the other threading
models you have seen before. They are not your granpappy’s light-
weight processes or precisely any other thread implementation you’ve
encountered before. We’ll talk about what they are, but I thought it
best to prime you for what they are not first.

3. To use the current threading model, your Perl interpreter has to be
built with a special option at compile time. This is not enabled by de-
fault in a source build, and different OS vendors are more or less ad-
venturous. For example, until Solaris 10 Sun did not have it turned on
in the Perl interpreter that ships with Solaris; Apple does turn it on for
OS X. To tell if you have it enabled, look for the line that contains usei-
threads= in the output of perl -V. If it says define you are all set. If it
says undef, then you will have to rebuild the interpreter. As a related
aside, there is a module called forks that provides the same API as the
threads module we’ll be using but does it using fork() calls. If you’d like
to play with the threads stuff on an OS that doesn’t provide a threaded
Perl but does support fork() natively, this module may do the trick for
you.

If you are still with me after passing the “Danger, This Means You!” para-
graphs above, it means you are interested in how threads work in Perl.
Let’s look at that now. Modern versions of Perl, when enabled at compile
time, provide something called “interpreter threads” or “ithreads” for
short. I’ll use “thread” and “ithread” to mean the same thing in this col-
umn.

A standard Perl program gets run by a single Perl interpreter thread that
handles the interpretation and execution of a program from start to finish.
Perl threads allow you to start up additional Perl interpreters that inde-
pendently execute parts of your code. Each interpreter thread gets its own
copy of the state of the Perl program at that point. If this sounds to you a
little bit like a fork() situation we’ve already covered, that shows you are on
the ball.

One difference from fork() is the ability to actually share data between
threads. With fork(), the children get a copy of all of the variables in play
but changes made by a child aren’t seen in the parent’s copy unless they
work out some sort of external synchronization mechanism. With ithreads,
the situation is a little different. By default, ithreads don’t actually share
any data; the copies they have of the program’s state are completely inde-
pendent. However, if you’d like two ithreads to share access to a variable,
you do have the ability to mark that variable as shared using a separate
pragma. A shared variable can be changed by one thread and all other
threads will see this change as well. This provides considerable power to
the programmer but also potential peril, since reading and writing to a
shared resource need to be carefully coordinated. Let’s take a look at some
sample code and then we’ll see how such issues are addressed in Perl.

use threads;

sub threaded_sub {
print “running in thread id: “ . threads->self->tid() . “\n”;

}

my $thread = threads->create(\&threaded_sub);

54 ; LOG I N : VO L . 3 2 , NO . 1

this shows a scalar return result, but we could also pass a list
my $result = $thread->join;

This code shows nearly the simplest use of ithreads I can demonstrate. To
use ithreads, we define a subroutine whose code will be executed in a
thread. As a thread is created, it is assigned an id (with the main or initial
thread when the program first runs being called thread id 0). The thread
being created here isn’t particularly exciting, since it only prints its id and
then exits, but you get the idea.

The create() line takes that code and spins off a new thread to run it. At
that point the subroutine threaded_sub is happily executing in a separate
thread. The result of the create() command is a thread object we can use
for thread control operations. The next line executes one of these opera-
tions called join(), a method similar in intent to wait()/waitpid() from our
fork examples. join() waits for the desired thread to complete and retrieves
the return value from that thread. If we did not include the join() statement,
Perl would complain when the program exits leaving behind an unjoined
thread:

Perl exited with active threads:
0 running and unjoined
1 finished and unjoined
0 running and detached

If we didn’t care at all about the results of that thread, we could replace the
method join() with one called detach().

Now let’s get a bit more sophisticated. I mentioned before that different
threads do not share the same data unless explicitly instructed to do so.
That sharing is performed by adding the threads::shared pragma and mark-
ing certain variables with this status:

use threads;
use threads::shared;

my $data : shared = 1; # share($data) can also be used
now all threads will read and write to the same variable

Congratulations: With this step we’ve now stepped onto the rickety bridge
over the deadly gorge of Parallel Programming Peril (cue the dramatic allit-
eration music)! With race conditions and other nasty beasts waiting for us
at the bottom of the gorge we have to step very carefully. As soon as you
begin to deal with a shared resource, you need to make sure that the right
piece of code updates that resource at the right time. The other pieces of
code running at the same time must also follow the right protocol to avoid
having that update get inadvertently overwritten. To deal with these cir-
cumstances Perl offers a set of functions such as lock().

As you can probably guess, lock() attempts to place a lock on a variable and
blocks until it succeeds. It’s useful when several threads want to modify a
shared value:

{ lock($data); $data++; }

Why use curly braces in that example? Perl’s threading model has no func-
tion called “unlock()”; locks are released when they pass out of scope. By
using curly braces around these statements we’ve set up a temporary scope
that just includes the update to the variable $data after the lock is in place.

There are other idioms for thread programming that avoid doing this sort
of dance. I don’t want to go too deeply into parallel programming tech-
niques, but this one bears a quick look because it comes up so frequently.

; LOGIN: FEBRUARY 2007 PRACTICAL PERL TOOLS: SPAWNING 55

Here’s a modified version of the example used in the official Perl threads
tutorial (perldoc perlthrtut):

use threads;
use Thread::Queue;

my $DataQueue = Thread::Queue->new;
$thr = threads->create(

sub {
while (defined($DataElement = $DataQueue->dequeue)) {
print “Thread “
. threads->self->tid()
. “ popped $DataElement off the queue\n”;

}
print “Thread “ . threads->self->tid() . “ ready to exit\n”;

}
);

print “Thread “ . threads->self->tid() . “ queues 12\n”;
$DataQueue->enqueue(12);
print “Thread “ . threads->self->tid() . “ queues A, B and C\n”;
$DataQueue->enqueue(“A”, “B”, “C”);
print “Thread “ . threads->self->tid() . “ queues undef\n”;
$DataQueue->enqueue(undef);
$thr->join;

Let’s go over the code in some detail, because it might not be immediately
clear what is going on. First, we create a queue for the two threads we are
going to use to share. One thread will place new values at the end of the
queue (enqueue()); the other will grab values from the top of the queue
(dequeue()) to work on. By using this scheme the threads don’t have to
worry about bumping into each other.

After creating a queue, the second thread (i.e., the one that is not the main
thread) gets defined and launched via the create command. The subroutine
defined in this command just attempts to pop a value off the queue and
print it. It will do this for as long as it can retrieve defined elements from
the queue. It may not be readily apparent from the code here, but when
faced with an empty queue, dequeue() will sit patiently (block/hang), wait-
ing for new items to be added. Think of the second thread as always waiting
for new elements to appear in the queue so it can retrieve and print them.

The rest of the program takes place in the main thread while the second
thread is running. It pushes several values onto the queue: the first a
scalar, the second a list, and the third an undefined value. It ends with an
attempt to join the second thread. The net result is that the code prints
something like this:

Thread 0 queues 12
Thread 0 queues A, B and C
Thread 0 queues undef
Thread 1 popped 12 off the queue
Thread 1 popped A off the queue
Thread 1 popped B off the queue
Thread 1 popped C off the queue
Thread 1 ready to exit

This looks like all of the action first takes place in the main thread (0) fol-
lowed by the second thread’s work, but that’s just the order the output is
received. If you step through the main thread with a debugger, you’ll find
that the main thread will queue a value, the second thread prints it, the

56 ; LOG I N : VO L . 3 2 , NO . 1

main thread queues another value, the second thread prints it, and so on.
Thread::Queue has its limitations (some of which are solved by other mod-
ules), but in general it provides a fine way to pass things around among
threads that all have to coordinate tasks.

Now that you know about queues, we’ve finished a good surface look at
threads in Perl. Be sure to see the documentation for the threads and
threads::shared pragmas and the Perl thread tutorial (perlthrtut) for more
information on other available functionality.

ConvenienceModules

We could spend a lot more time talking about threads, but I want to make
sure I mention one more topic before we come to an end. As you probably
guessed, Perl has its share of modules that make working with fork() and
threading a little easier. Let me show you one that I’m particularly fond of
using: Parallel::ForkManager.

I like Parallel::ForkManager because it makes adding parallel processing to
a script easy. For example, I have a script I use when I want to rsync the
individual directories of a filesystem to another destination. I use this in
cases where it is necessary to copy over each subdirectory separately for
some reason. Here are some choice pieces from the code:

opendir(DIR, $startdir) or die “unable to open $startdir:$!\n”;
while ($_ = readdir(DIR)) {

next if $_ eq “.”;
next if $_ eq “..”;
push(@dirs, $_);

}

closedir(DIR);

foreach my $dir (sort @dirs) {
(do the rsync);

}

One day I realized that directory copies like this don’t have to take place
serially. Several directories can be copied simultaneously with no ill effects.
Adding this parallel-processing functionality was just a matter of changing
the code that said:

foreach my $dir (sort @dirs) {
(do the rsync);

}

to:

run up to 5 copy jobs in parallel
my $pm = new Parallel::ForkManager(5);

foreach my $dir (sort @dirs){
->start returns 0 for child, so only parent process can start new
children, once we get past this line, we know we are a child process
$pm->start and next;

(do the rsync);

$pm->finish; # terminate child process
}

$pm->wait_all_children; # hang out until all processes have completed

The added code creates a new Parallel::ForkManager object that can be

; LOGIN: FEBRUARY 2007 PRACTICAL PERL TOOLS: SPAWNING 57

used to fork a limited number of child processes (->start), have them exit
at the right time (->finish), and then clean up after all children with one
command (->wait_all_children). The module does all of the scut work
behind the scenes necessary to keep only a limited number of fork()ed
processes going. I find the ease of adding parallel processing to my scripts
(just four lines of code) has made me much more likely to create scripts
that handle several tasks simultaneously. There are other convenience
modules that are worth looking at (e.g., Parallel::Forker does all that
Parallel::ForkManager can do, but it allows you to specify that certain
child processes must wait to run after others have completed). Be sure to
do searches for “fork,” “parallel,” and “thread” at search.cpan.org to see
what is available. If you find yourself needing a really sophisticated multi-
tasking framework, you’d be well served to check out the POE framework
at poe.perl.org.

Oops, I have to go back to getting many, many things done at the same
time. Take care, and I’ll see you next time.

58 ; LOG I N : VO L . 3 2 , NO . 1

; LOGIN: FEBRUARY 2007 ISPADMIN: DHCP SERVICES 59

R O B E R T H A S K I N S

ISPadmin: DHCP
services
Robert Haskins has been a UNIX system administra-
tor since graduating from the University of Maine
with a B.A. in computer science. Robert is employed
by Shentel, a fast-growing network services provider
based in Edinburg, Virginia. He is lead author of
Slamming Spam: A Guide for System Administrators
(Addison-Wesley, 2005).

rhaskins@usenix.org

I N TH I S E D I T I ON O F I S PADM I N , I TA K E
a look at the area of DHCP [1] services. DHCP
stands for “Dynamic Host Configuration
Protocol” and is used by many Ethernet-
based networks for handing out IP address-
es to client devices (PCs) in an easy, scalable
manner. It is based upon the older BOOTP
protocol though it does have its own IETF
standards (RFC2131 [2] and RFC2132 are pri-
mary; see [3] for a more complete list). DHCP
is closely related to other network protocols
such as TFTP and DNS, which is why many
commercial software vendors package their
DHCP offerings with these (and other) relat-
ed protocol servers.

Background

Of course, traditional enterprise networks are a
big user of DHCP services, allowing easy dynamic
and persistently available IP addresses for busi-
ness users. In provider networks, DHCP is used
only in certain access methods, such as cable
modems and traditional end subscriber Ethernet
access (e.g., switches and some wireless access
points) for use in deployments such as apartment
buildings. Wireless access points (such as those
from Colubris) often support multiple IP address
assignment methods, including RADIUS and
DHCP [4]. Other access technologies (such as
DSL and dialup) are typically assigned IP address-
es via RADIUS or similar authentication protocol,
and therefore they are not usually associated with
DHCP services.

DHCP Feature Requirements

At a basic level, the service provider requires very
similar features to an enterprise needing address
assignment services. Some of the more important
features required in just about every DHCP
deployment include:

� Assignment of “persistent” IP addresses to
specific MAC addresses

� A graphical user interface (GUI) to help sup-
port personnel troubleshoot problems

� Flexibility in managing address pools

You might be wondering why I included a GUI as
a must-have. Support personnel are a different
breed of folks and need a GUI in order to effi-
ciently handle customer trouble requests. Also, a

small organization will want a Microsoft-type GUI instead of a command
line for managing DHCP on a small network.

For a service provider (or large enterprise), additional DHCP features
required often include:

� The ability to easily extend the server’s functionality
� Command-line access
� Large-scale deployments (millions of clients)
� An interface to provider provisioning systems
� An easy-to-use Application Programming Interface

Many of these features are found in the DHCP servers targeted at carrier-
class service providers covered in this article.

Deploying a DHCP Server

Planning is key to bringing up any new network infrastructure and DHCP
is no exception. DHCP startups can be phased in, by pointing only a limit-
ed number of LAN segments (say, a single class C of 254 possible clients)
at the new DHCP server in question. Going back to the original DHCP
server is easy, as it involves just changing the DHCP helper address on the
LAN segment you moved in the first place.

Designing advanced options such as RFC 3046 (Option 82), called the
Relay Agent Information Option [5], can be tricky, because they are often
specific to the hardware vendor in question. Option 82 is a DHCP feature
where the client gives the server additional information about itself so that
the server can select the proper IP address for the client and assist the
client in self-configuration. It pays to test these features completely in the
lab prior to rollout, so that vendor promises can be turned into reality
without nasty surprises late in the rollout!

Solutions

There are many DHCP solutions available on the market, and most have
decent support for service providers. Many of the service-provider-directed
solutions are part of “suites” that handle other functionality, such as over-
all IP address management, DNS, TFTP, and similar functions.

I SC DHCPD

The reference DHCP implementation is ISC’s full-featured DHCPD [6].
Here is a listing of DHCPD features from the ISC Web site:

� DHCP Failover Protocol support
� OMAPI, an API for accessing and modifying the DHCP server and
client state

� Conditional behavior
� The ability to store arbitrary information on leases
� Address pools with access control
� Client classing
� Address allocation restriction by class
� Relay agent information option support
� Dynamic DNS updates
� Many bug fixes, performance enhancements, and minor new DHCP
protocol features

60 ; LOG I N : VO L . 3 2 , NO . 1

Many smaller service providers utilize ISC’s DHCPD on their networks.
However, to use it in a large production network, additional development
work would probably be required. For example, a GUI would likely be
needed for support personnel, and a provisioning interface/system would
have to be developed.

MICROSOFT DHCP

Microsoft’s DHCP server [7] is probably the leader in terms of the sheer
number of DHCP servers in use, but there are likely few large deploy-
ments. (I don’t know of many good sources of DHCP server market data,
though Birds-eye.net [8] offers one somewhat dated source.) Anecdotal
evidence suggests that Microsoft is only used in small-service-provider
deployments. The Microsoft DHCP server has come a long way since NT
3.5 and now includes features such as clustering/failover [9] and better
management of address scopes and ranges.

LUCENT VITALQIP

The VitalQIP [10] server is a product from Lucent that contains a DHCP
server along with other functions in one application, including IP address
management and a DNS server. VitalQIP’s real strength is its scalability, as
the software is designed from the ground up for very large networks. To
this end, it is a “manager of manager” of sorts, able to manage different
underlying DHCP platform types (MS Windows, IBM AIX, and Lucent’s
own) all from one interface. Of course, if you are a service provider who
doesn’t have several million clients, then this solution is probably too large
(and likely too expensive) for you.

NOMINUM

Nominum [11] is a big player in the carrier-class service provider software
market for DNS and DHCP servers. In fact, according to its Web site, its
“products were developed by Nominum engineers based on lessons they
learned from writing BIND (version 9) and ISC-DHCP (version 3).” Its
DHCP product offering, called the Dynamic Configuration Server (DCS), is
part of its “Triple Play” product line, including authoritative as well as
caching DNS servers. Similar to the other carrier-grade solutions, the
Nominum solution is designed around scalability, reliability, speed, and
ease of use and integration into service provider provisioning systems. Like
Lucent’s offering, unless you support millions of subscribers, this solution
probably isn’t for you.

INCOGNITO

Incognito Software [12] is a relative unknown in the DHCP market,
though the company has been around since 1992. It has a nice product
suite, with solutions to many of the issues service providers face:

� DHCP
� DNS
� ENUM [13]
� SIP
� IP address management
� TFTP

; LOGIN: FEBRUARY 2007 ISPADMIN: DHCP SERVICES 61

Incognito’s DHCP product is called IP Commander and is a native applica-
tion running on a number of platforms, including Microsoft Windows
NT/2000/XP/2003, Sun Solaris 8, and Red Hat 9/AS3/ES3. It includes sup-
port for a number of protocols, including DHCP, DNS, and TFTP. This
product has all of the features one would expect in a carrier-grade product,
including scalability, reliability, performance, and easy integration with
back-end provisioning systems. The only feature missing is a Web interface
for support personnel, though it wouldn’t be very hard to build one on top
of the provided command-line interface. All in all, this is a good product
for any provider to look into further.

CISCO CNR

Cisco’s carrier-class DHCP offering is called Cisco Network Registrar
(CNR) [14]. This is a very scalable, flexible, and robust DHCP server,
offering TFTP, DNS, and IP address management capabilities. One of the
biggest benefits of CNR is how it scales from one server to one cluster of
servers to multiple clusters of servers over very large networks. Another
big benefit to CNR is how extensible it is: One can write embedded scripts
to handle all the customizations one needs when running a DHCP network
of any size. CNR has both a CLI and a Web-based GUI, though the GUI
could use some extensive human factors improvements. (In other words, I
found it hard to use when evaluating the GUI.) CNR is another good
option for a small but growing provider who needs DHCP and associated
services.

Conclusion

For the service provider, DHCP is a core part of the cable modem and tra-
ditional Ethernet-based networks (apartment complexes and such). Service
providers have many of the same DHCP-related requirements a traditional
enterprise network operator has, plus a few others. These additional re-
quirements include ease of extending the capabilities server, provisioning,
CLI access, and very large-scale deployments.

The reference DHCP implementation is the ISC DHCPD server, which is
good for many smaller installations. Microsoft incorporates a DHCP server
as part of many versions of Windows, which is a good option for small
providers. A small to mid-size provider would do well to look at Incog-
nito’s IP Commander and Cisco Registrar, both excellent choices for these
markets. A large carrier might consider any of the DHCPs listed previously,
in addition to Lucent’s VitalQIP or Nominum.

REFERENCES

[1] Wikipedia DHCP page:
http://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol.

[2] RFC2131 text: http://www.ietf.org/rfc/rfc2131.txt.

[3] Network Sorcery DHCP page:
http://www.networksorcery.com/enp/protocol/dhcp.htm.

[4] Colubrus MGW-3500: http://www.colubris.com
/global-wireless-network-management/wlan-accessories.asp.

[5] Option 82 Relay Information Option:
http://www.networksorcery.com/enp/protocol/bootp/option082.htm.

62 ; LOG I N : VO L . 3 2 , NO . 1

[6] ISC DHCPD: http://www.isc.org/sw/dhcp/.

[7] Microsoft TechNet home for DHCP: http://www.microsoft.com/
technet/itsolutions/network/dhcp/default.mspx.

[8] Birds-eye.net Enterprise DHCP Market Research: http://www
.birds-eye.net/analysis_archive/enterprise_dhcp_market_research.shtml.

[9] Cluster support for Microsoft DHCP servers:
http://technet2.microsoft.com/WindowsServer/en/library
/5df3d4e9-e846-413a-bd9a-99645ac580991033.mspx?mfr=true.

[10] Lucent VitalQIP home: http://www.alcatel-lucent.com/wps
/portal/products/detail?LMSG_CABINET=Solution_Product
_Catalog&LMSG_CONTENT_FILE=Products/Product_Detail_000143.xml.

[11] Nominum Dynamic Configuration Server home:
http://www.nominum.com/products.php?id=4.

[12] Incognito IP Commander:
http://www.incognito.com/products/IPCommander/overview.jsp.

[13] ENUM (mapping telephone numbers via a DNS-like protocol):
http://en.wikipedia.org/wiki/Telephone_Number_Mapping.

[14] Cisco Network Registrar:
http://www.cisco.com/en/US/products/sw/netmgtsw/ps1982/index.html.

; LOGIN: FEBRUARY 2007 ISPADMIN: DHCP SERVICES 63

64 ; LOG I N : VO L . 3 2 , NO . 1

H E I S O N C H A K

virtualizing
Asterisk
Heison Chak is a system and network administrator
at SOMA Networks. He focuses on network manage-
ment and performance analysis of data and voice
networks. Heison has been an active member of the
Asterisk community since 2003.

heison@chak.ca

A S C PU AN D MEMORY MODU L E S B E -
come faster and more affordable, setting
up what we used to call a “big box” to host
multiple virtual machines (VMs) for server
consolidation and still achieve close-to-
native performance is becoming a reality
without costing a fortune.

Although commercial virtualization products such
as VMWare, Parallels, and Solaris Zones focus on
delivering ease of deployment and administration
of VMs, they all have their limitations, ranging
from minimum CPU requirements to supported
OSes. Xen, however, is an open source virtualiza-
tion software that is designed with goals similar to
those of some commercial products. It also has
certain limitations, the biggest one being its
inability to run a nonmodified OS (with the ker-
nel being the issue), which has made running the
Windows OS impossible in the past. This short-
coming has been addressed with the added sup-
port of Intel VT-enabled CPUs or the AMD
Pacifica equivalent. (See the Hand article about
hardware virtualization, this issue, p. 21.)

Virtualization

Xen was chosen mainly because of the available
support for running Windows as a guest OS, with
hardware virtualization. The object was to find a
virtualization platform that enabled Windows,
Linux, and Solaris operating systems. My initial
reasons for virtualization were:

� To reduce energy consumption
� The ability to bring up a test environment
within minutes

� To stage and test Asterisk 1.4

Until recently, SCSI drives have always been cho-
sen for their performance and reliability. With
Serial ATA (SATA) drives becoming more preva-
lent and larger in capacity, the gap is closing.
Replacing an array of RAID 5 SCSI drives with big
mirrored SATA drives can increase capacity and
reduce electricity consumption. The reduced spin-
dles of SATA drives will generate less heat, reduc-
ing cooling requirements.

Building the Virtualization Host

To get started, I installed Xen from source onto a
Linux box running Debian Sarge. I then patched
a Linux 2.6 kernel with Xen modifications and

compiled as a dom0 kernel (for the host OS). After booting the Linux box
with the newly built dom0 kernel, you can build a domU kernel (for the
guest OS) and a virtual machine template based on Debian. This template
can be used to quickly deploy new Linux VMs.

Whereas the kernel for domU remains under /boot of dom0, the root (/) of
the VMs resides in image files (.img). Each image file has an ext3 file sys-
tem and contains a Debian install:

vm:/# ls -l /boot/*xen[0U]
-rw-r—r— 1 root root 2347714 2006-11-27 22:57 /boot/vmlinuz-2.6.16.29-
xen0

-rw-r—r— 1 root root 1263925 2006-11-27 14:40 /boot/vmlinuz-2.6.16.29-
xenU

vm:/# ls -l /vserver/images/
-rw-r—r— 1 root root 4194304000 2006-10-30 21:54 debian01.img
-rw-r—r— 1 root root 2097152000 2006-10-30 21:56 debian01-swap.img
-rw-r—r— 1 root root 4194304000 2006-10-30 23:35 debian02.img
-rw-r—r— 1 root root 2097152000 2006-10-30 23:38 debian02-swap.img
-rw-r—r— 1 root root 4194304000 2006-10-28 08:43 debian_base.img
-rw-r—r— 1 root root 2097152000 2006-10-28 09:50 debian_base-
swap.img

Deploying a new VM involves duplicating debian_base.img and
debian_base-swap.img image files.

See http://www.howtoforge.com/debian_sarge_xen_3.0.3 for step-by-step
instructions on how to install Xen on a Debian Sarge system.

Asterisk and Xen

Two VMs have been set up to test Asterisk 1.2 and 1.4, with 128 MB of
memory and one virtual CPU assigned to each VM:

vm:/# xm list
Name ID Mem(MiB) VCPUs State Time(s)
Domain-0 0 374 1 r——- 200.4
asterisk-12 1 128 1 -b—— 20.6
asterisk-14 2 128 1 -b—— 13.1

Both virtual machines have access to the Internet to check out the latest
source of Asterisk via subversion. Compiling libpri and asterisk was rela-
tively easy; as one might guess, the tricky part is with the Zaptel drivers.
These are loadable kernel modules that may need access to hardware, spe-
cialized PCI interfaces that communicate with the PSTN. Aside from CPU
and memory, virtualizing hardware is more involved and sometimes diffi-
cult or impossible.

With Xen 3.0.3, PCI devices can be assigned solely to a VM (domU) but it
is not used (or hidden) in the host OS (dom0). (“Tiger” refers to the
Zaptel card.)

vm:/# lspci | grep -i tiger
00:09.0 Network controller: Tiger Jet Network Inc. Tiger3XX Modem/ISDN
interface

00:0a.0 Communication controller: Tiger Jet Network Inc. Tiger3XX
Modem/ISDN interface

00:0c.0 Communication controller: Tiger Jet Network Inc. Tiger3XX
Modem/ISDN interface

vm:/# cat /etc/xen/debian01-config.sxp
name=“asterisk-12”

; LOGIN: FEBRUARY 2007 VIRTUALIZ ING ASTER ISK 65

kernel=“/boot/vmlinuz-2.6-xenU”
root=“/dev/hda1”
memory=128
disk=[‘file:/vserver/images/debian01.img,hda1,w’,

‘file:/vserver/images/debian01-swap.img,hda2,w’]

Assign FXO interface to asterisk-12 domU
pci = [‘00:0a.0’]

network
vif=[‘’]
dhcp=“off”
ip=“10.155.200.1”
netmask=“255.255.0.0”
gateway=“10.155.1.1”
hostname=“asterisk-12.ykz.zealnetworks.com”

extra=“3”

By assigning a PCI to a domU, one can build Zaptel drivers and use the
FXO interface to make calls to the PSTN or to use it as a timing device for
Meetme conference.

Limitationwith ztdummy

Ideally, a virtual machine should not remain hardware-independent. In
Asterisk, conferencing requires a reliable clock to mix audio. Such a timing
source is usually featured in the Digium hardware PCI cards, or one can
choose to use the ztdummy driver. In Linux 2.6, ztdummy defaults to
using the kernel’s real-time clock, which is not available to a Xen domU.
Falling back to using the USB clock (i.e., OHCI_UCD) didn’t work either,
as USB support in domU seemed lacking at the time this article was writ-
ten.

Until ztdummy works properly in domU, one may need to assign the PCI
interface to the virtual machine if conferencing is required. Hardware
dependency for a virtual machine may not be elegant, but it works.

66 ; LOG I N : VO L . 3 2 , NO . 1

; LOGIN: FEBRUARY 2007 /DEV/RANDOM 67

R O B E R T G . F E R R E L L

/dev/random
Robert is a semiretired hacker with literary and
musical pretensions who lives on a small ranch in
the Texas Hill Country with his wife, five high-
maintenance cats, and a studio full of drums and
guitars.

rgferrell@gmail.com

HAV ING BEEN IMMERSED IN COMPUTER-
related jargon for most of my life, I tend to
scoff at the notion that said vocabulary is
anything other than perfectly logical and
apropos. On those rare occasions when the
planetary gears align and free radicals
roam the wild prairie unfettered, however,
objectivity sneaks in for a brief visit and I
find myself reflecting on the mystical na-
ture of the terminology adopted by our
austere and august profession.

Since operating systems are on the plate for this
issue, let’s start there. The name UNIX itself is a
famously wry cut at what must have seemed at
the time the semimythical Multics, whose opera-
tional status the Creators grew weary of anticipat-
ing in futility. This saucy philosophical underpin-
ning ensured that lexicographic mayhem was
more or less inevitable. Take as evidence of this
postulate the cascade of variants that followed as a
result of AT&T having trademarked “UNIX”:
ULTRIX, XENIX, AIX, Dynix, AUX, POSIX, HP-
UX, DG/UX, Linux, and, yes, USENIX. The fact
that computer geeks tend to have active, if some-
what bizarre, senses of humor just adds an extra
layer of rich, velvety goodness to the mix.

In this issue my peculiar phraseology focus is on
the “log” bog. Somewhere along the tortuous path
of multiuser computing evolution, it became de
rigueur to refer to the action of connecting to a
mainframe or server as “logging.” That in itself is
curious: Why “log”? I have to date three roughly
equally unlikely hypotheses as to the origin of this
term:

1. Watching the tape drives spin reminded
them of the lumberjacks’ sport of birling.

2. Users waiting for an available terminal
looked like harvested lumber getting jammed
together on a river.

3. The perniciously high error rate of their pro-
grams spawned a deep-seated urge to have at
the CPU with an uprooted tree.

[Oh, and if you just happen to know “log”’s true
origin, please keep it to yourself. However flawed,
I prefer my etymological fantasies unsullied by
prosaic factoids.]

We’re not quite finished with log, however, for we
have yet to consider the Great and Uniquely
Topical to This Publication Preposition
Proposition: to log “in” or “on”? I’m reminded

thereby of George Carlin’s reply to being instructed to get on an airplane
(paraphrased for your protection): “No, thanks. I’m getting in the plane.”

So, which is it? Does one “log in” or “log on”? The answer seems to be
platform-specific, at least according to Bob DuCharme’s useful and unex-
pectedly entertaining The Operating Systems Handbook. One logs on to IBM
mainframes, but logs in to UNIX or VMS. One can generally circumnavi-
gate this prickly semantic conundrum altogether by hacking in, of course.

Disclaimer: I’m only kidding (as far as you know).

Moving along, I’ve always been fascinated in a “look-at-that-funky-insect-
crawling-around-in-the-sink-I-hope-it-doesn’t-sting” sort of way with ker-
nel programming. I don’t really understand it at any deep level, but I’ve
never been proficient at resisting the urge to muck about under the hood.
Most of the time my more creative attempts are stillborn, but once in a
while the compiler is so traumatized by my complete lack of comprehen-
sion of C syntax that it gets confused and kicks out a viable kernel. Ac-
tually, “viable” is not nearly so accurate a term as “insane.” Well, we all
have our hobbies.

Another of my hobbies is writing new front ends in Perl for common sys-
tem functions. I’ve rewired rm, for example, so that it merely moves the
target file into an obscure directory. I’ve also added undocumented options
that accomplish pointless tasks, such as list processes in numerical order
by the hex representation of the letters in their names. There is no conceiv-
able use for this listing scheme, admittedly, but paucity of utility is pretty
much my hallmark where coding is concerned. My crowning achievement
in this arena was lsuf, which listed all files in a given directory not in use
by a process.

I once messed with kill so that it generated a little ASCII art animation of
whatever was entered as arguments being run through with a spear by a
tiny Viking warrior. In the same vein I’ve animated mount, umount, and
fsck, the nature of which embellishments I leave to the reader’s fertile
imagination.

Perhaps my most ambitious foray into this twisted realm was when I decid-
ed to create an entire “artificial horizon” for one of my Internet-facing Sun
boxes. I mangled every command line utility that could conceivably be of
use to anyone gaining illicit access to the system for the sole purpose of
driving said intruder crazy. I substituted characters when renaming, creat-
ed spurious columns for ps, generated nonsense for netstat, and redirected
ls to random commands such as file /dev/*. I made a text file of all the
magical personages I could think of from literature and the cinema to be
displayed when someone typed which; more triggered the response, “Don’t
be greedy!” but not much else. The command perl (regardless of the argu-
ments) brought up a man page expounding the natural history of the oys-
ter. Try to grep something and up popped a Freud-in-the-Box:

grep nameserver /etc/resolv.conf

You seem to have unresolved nameserver issues. Tell me about your
childhood.

In short, I rendered the system thoroughly useless to anyone not privy to
the fact that I’m a nut case. Come to think of it, awareness of my mental
status probably wouldn’t be of any real benefit. Some things just can’t be
dealt with in a rational manner.

On a distantly related closing note, did I ever mention that my friends of
the “dabbling in the supernatural on a boring Saturday night” persuasion

68 ; LOG I N : VO L . 3 2 , NO . 1

have declared me a psychic damper? Apparently my very presence in the
general area is equivalent to the Blue Screen of Death for Ouija board ses-
sions and seances. It’s not that I’m some huge skeptic of ghosts, UFOs, and
their ilk, surprisingly. In truth I take no stance, since in the absence of evi-
dence an absolute belief in the existence or nonexistence of something is
equally bogus. If a bona fide ghost floated up and shook my hand, I’d just
shrug and cross ectoplasm off the list of things I’ve never seen.

Overall, I find natural phenomena more inconvenient than frightening. I
got struck in a half-hearted way by lightning a few years ago, for example,
but it just made me spill my beer. I was hoping super-powers might devel-
op as a result, but all I really have to show for the experience, other than a
slightly more robust liver, is a tiny hole-shaped scar on the heel of my right
hand, where several palmar folds intersect, and a tendency to attract foam
packing peanuts from a considerable distance. All hail Static Boy!

; LOGIN: FEBRUARY 2007 /DEV/RANDOM 69

70 ; LOG I N : VO L . 3 2 , NO . 1

book reviews
E L I Z A B E T H Z W I C K Y
W I T H
P A U L A R M S T R O N G ,
S A M S T O V E R , A N D
R I K F A R R O W

MASTER ING REGULAR EXPRESS IONS:

UNDERSTAND YOUR DATA AND BE

MORE PRODUCTIVE

Jeffrey E. F. Friedl
O’Reilly, 2006. 484 pages.
ISBN 0-596-52812-4

By a strange twist of fate, a sig-
nificant percentage of all the Java
code I have ever written went di-
rectly into production on mis-
sion-critical systems. For all I
know, it’s still deployed: all five
lines of it. What has this got to
do with regular expressions? I
ended up writing this delicate,
important code that we were go-
ing to have to release without
proper testing in a language I
didn’t know because I wasn’t
scared of regular expressions.
Not, you will note, because I was
a wizard with them—no, I was
merely competent, confident
enough about regular expres-
sions, and nervous enough about
breaking things that people felt it
would be in good hands. And,
indeed, it worked better after I
fixed it than it did before.

Had I read this book first, I proba-
bly would have done a better,
faster, more efficient job and felt
calmer doing it. I started reading
this book with the warm confi-
dent glow you get when you’re re-
viewing on good, firm ground—

here’s a topic I know something
about. No, I didn’t. I mean, obvi-
ously I did have some basic com-
petence, but I still spent a lot of
time going “Wow. Now that’s
cool.” And even more time going
“Huh? Now if I read that again,
I’m going to really understand
something complicated and inter-
esting.” The author at one point
says, “It’s not necessarily easy to
wrap one’s brain around this, but
once it ‘clicks,’ it’s a valuable
tool.” This is certainly true of the
recursive regular expression he’s
discussing at that point, but it’s
more generally true of the book as
a whole.

At some point, you are going to
need to do regular expressions.
You could do it by trial and error
and reading manuals, but believe
me, I’ve seen a lot of people do
that, and it’s not pretty. Instead,
you should buy this book. If you
don’t already know something
about regular expressions, it’s go-
ing to be slow going. That’s pret-
ty much the nature of the territo-
ry; take heart from the idea that
it’s even slower when you do it
by trial and error. If you’ve man-
aged to solve a number of inter-
esting problems with regular ex-
pressions, but it was harder than
you’d hoped, there are some odd
failures, and you have a feeling
that there was luck involved, you
should find this not an easy read,
but an enlightening one.

Does it matter what language
you’re struggling with? Probably
not. The book covers Perl, Java,
.NET, and PHP in chapters of
their own, and it has tables for a
number of other languages, plus
information on how to figure out
what’s going on inside your regu-
lar expression engine if it’s not
covered. Besides, the basic con-
cepts are language-independent.

WHY SOFTWARE SUCKS . . . AND

WHAT YOU CAN DO ABOUT IT

David S. Platt
Addison-Wesley, 2006. 242 pages.
ISBN 0-321-46675-6

This book is not really meant for
us. Instead, it is meant for non-
technical people who are com-
puter users and want to know
why technical people are tortur-
ing them. It will be enlightening,
sometimes in a “self-knowledge
hurts” kind of a way and some-
times more in a “Gee, those other
techies are just like us, I guess”
kind of a way.

I enjoyed it thoroughly—I like a
good rant, when I agree with it—
and I did learn a few things. I
feel warmer and fuzzier about
software phoning home when it
crashes, for instance. Mostly, I
thought it was good fun, and ac-
tually surprisingly positive, giv-
en the title.

CATASTROPHE DISENTANGLEMENT:

GETTING SOFTWARE PROJECTS BACK

ON TRACK

E. M. Bennatan
Addison-Wesley, 2006. 270 pages.
ISBN 0-321-33662-3

This is a practical guide to figur-
ing out if you are dealing with a
certifiable catastrophe and then
getting your project back on
track, if at all possible. You can
tell it’s a practical guide, because
sometimes it tells you that, in
fact, it is not possible to recover,
and you should give up. It is a
systematic, process-oriented
book, better suited to large com-
panies with official “Projects”
than to startups, but even so, it
has a refreshing willingness to
admit the existence of politics
and personal feelings.

This book is best suited for
somebody with some manage-
ment experience. It would be
helpful if you think the project
is going down the tubes, but
everybody else is either more

experienced or on too many hap-
py drugs, you’re not sure which.
It would also be helpful in a situ-
ation where everybody agreed
there was a disaster at hand, but
nobody knew how to get out of it
again.

HACK THE STACK: USING SNORT AND

ETHEREAL TO MASTER THE 8 LAYERS

OF AN INSECURE NETWORK

Michael Gregg, Stephen Watkins
(Technical Editor), George Mays,
Chris Ries, Ron Bandes, and
Brandon Franklin
Syngress, 2006. 442 pages.
ISBN 1-59749-109-8

I began worrying about this book
when I got to the subtitle. No, I
don’t mean I objected to the bit
about the 8 layers—I figured
(correctly) that they’d intention-
ally added a layer to the OSI
model that involves people. I
mean the bit about Snort and
Ethereal, which are lovely tools,
but minimally helpful at hacking
people and downright useless at
the hardware level. However,
subtitles, like the rest of the cov-
er, tend to be editorial decisions
over which the authors have very
little control.

The idea of using the OSI net-
working stack as a way to under-
stand networking as a whole, in
a practical context, is a good
one. It’s made more difficult by
the poor match between the OSI
model and the way TCP/IP
works in practice, but a bit of jig-
gering makes it come out func-
tional.

Nevertheless, this book tries to
cover everything about network
security. And I do mean every-
thing—from the breeds of dogs
that might be appropriate as
guard dogs through the bits in an
Ethernet frame through encryp-
tion, secure software develop-
ment, and security policies. The
results range from OK to so bad
they’re funny: “Depending on
placement, the windows should

be either opaque or translucent.”
Yes, this is referring to physical
windows. It is unclear to me
whether the authors meant
“Windows in high-security areas
should be either opaque or
translucent” (although if you’re
going to make the thing opaque,
surely getting rid of it would be a
better option) or whether they
really meant “translucent or
transparent.” But in any case, in
my world, network security is
not incompatible with having at
least the occasional transparent
window.

The coverage of physical security
and encryption is worth avoiding
at all costs. About Basic XOR en-
cryption it says, “This type of en-
cryption does not contain any
mathematical theory or func-
tions that would introduce diffu-
sion or confusion, which helps
prevent cryptanalysis attacks
that are based on statistical
analysis.” Now, my understand-
ing of cryptographic theory is
basic, but it’s sufficient to tell me
that XOR is a mathematical func-
tion, that diffusion and confu-
sion are complicated, interesting
concepts that you can’t mention
once without further explana-
tion, and that XOR with a key
that’s significantly shorter than
the encrypted text is in fact vul-
nerable to statistical analysis.

The interesting part of the book
is the demonstrations of practi-
cal uses of snort, ethereal (or
wireshark, as it is now known)
and other tools, some of them in-
tended for good, some of them
neutral, and some of them dis-
tinctly ill-intentioned. This book
would be even more useful if the
screen shots were more legible,
but there’s lots of installation in-
formation. On the whole, I’d rec-
ommend choosing a different
book on hacking tools and sys-
tem administration.

I PV6 ESSENTIALS, 2ND ED. :

INTEGRATING IPV6 INTO YOUR

IPV4 NETWORK

Silvia Hagen
O’Reilly, 2006. 418 pages.
ISBN 0-596-10058-2

R E V I E W E D B Y
P A U L A R M S T R O N G

If you’re after a solid technical
reference on IPv6, this is certain-
ly a good resource. The writing
style makes for easy reading and
the book is well laid out, starting
with some history and then
working its way up the stack as
you progress through.

There’s also a vast amount of in-
formation about not only IPv6
but all the networking technolo-
gies that you might employ
when using it. Making the book
even more enjoyable to read is
that everything is referenced by
RFC and there are notes when an
RFC has been superseded. If
you’re thinking you’ve forgotten
too much about the ins and outs
of networking, an introduction
to the required information to
understand a chapter is, for the
most part, also included.

Although the technical side of
the book is excellent, I found a
few of the sections on deploy-
ment to be a little thinner than I
would have liked. Particularly
frustrating was the case study of
the University of Porto, where
the sentence “They see the proj-
ect as a very interesting experi-
ence with some peculiar and
proactive measures to overcome
various problems that had to be
solved by the network adminis-
trators” left me with the ques-
tion, “What problems and how
did you solve them?”

Although it’s aimed at a technical
audience, if you’re a manager
and your team is considering de-
ploying IPv6, you should consid-
er reading Chapter 1, which cov-
ers history, why you might de-
ploy it, and misconceptions, and

; LOGIN: FEBRUARY 2007 BOOK REVIEWS 71

pages 285–310 of Chapter 10,
covering integration, case stud-
ies, what’s missing in IPv6, secu-
rity, cost, and vendor support.

REAL DIGITAL FORENSICS :

COMPUTER SECURITY AND

INCIDENT RESPONSE

Keith J. Jones, Richard Bejtlich,
and Curtis W. Rose
Addison-Wesley Professional, 2005.
688 pages. ISBN: 0-321-24069-3

R E V I E W E D B Y
S A M S T O V E R

If you are interested in network
or host-based forensics, this
book belongs on your shelf.
Scratch that: It belongs on your
desk. Not in your hands—on
your desk. You’ll need your
hands on the keyboard. I don’t
know about you, but I learn bet-
ter when I can do something, in-
stead of just reading about it—
and this book is all about doing
things. Not only are there a ton
of exercises throughout the
chapters, there are four “Foren-
sic Analysis” chapters that walk
you through different Linux,
Windows, and USB device foren-
sic processes.

The book starts out with a chap-
ter each on Windows and *NIX
Live Response, then moves into
three chapters of network-based
forensics. Some of the tools and
tips given in the Windows and
*NIX chapters might be familiar
to veteran sysadmins. The net-
work chapters were obviously
written by Mr. Bejtlich, as any-
one familiar with his other
works will immediately recog-
nize his idiosyncratic hostnames
and writing style. There is a
small bit of overlap with one of
his The Tao of Network Security
Monitoring, which he actually
references (unlike some other
authors I could mention).

The first five chapters are pretty
basic; however, the host-specific
chapters will be a good primer

for the network folks, and vice
versa for the network chapters
and the host folks. At this point,
everyone is at a common starting
point, and digging into the
forensic process begins. Chapter
6 walks you through forensic ac-
quisition, which is the process
by which you obtain the data to
analyze. There are plenty of tips
that relate directly to the legal
process—probably the most in-
timidating aspect of forensic
work. A good example is docu-
mentation: There is a whole
chapter named “Before You Jump
In” with a three-page section la-
beled “Document, Document,
Document!”

After the acquisition comes the
analysis, and this is where the
book really shines. There are sev-
en chapters dedicated to forensic
analysis techniques ranging from
Windows Registry Reconstruc-
tion (Chapter 12) to analyzing
Windows and Linux files of un-
known origin (Chapters 13 and
15). All seven chapters have nu-
merous pseudo “real-life” case
studies—along with actual data
on the included DVD, which
gives you the feeling that you’re
truly doing the analysis.

Now that you’re hooked on the
forensic process, Chapters 16
and 17 help you build your own
tool kit. I found this part of the
book to be a little lean, but I
know any author is at a disad-
vantage when trying to keep up
with all of the latest and greatest
tools out there. Since this edition
was published over a year ago,
there are a number of tools that
aren’t discussed. Personally, I’d
really like to see the next edition
have a bit more coverage of open
source tools. Not that the au-
thors shy away from open source
resources; quite the opposite is
true. A number of great tools,
such as dcfldd and Pasco, are
used extensively throughout. I’d

just like to see more. Several of
the more common commercial
tools are also discussed (e.g.,
FTK, Paraben’s PDA Seizure, and
the ubiquitous EnCase).

The remaining chapters deal
with two new and rather exciting
areas. There are three chapters
on mobile device forensics that
deal with cell phone and PDA
devices. The final section focuses
on online forensics, with a chap-
ter each on “Tracing E-mail” and
“Domain Name Ownership.”

In all, I think this book is a
must-have for any budding
forensics analyst. The case stud-
ies are valid and true to real life.
The formatting of the book lends
itself to a classroom setting as
well. Since the data is provided,
it would make for an interesting
exercise to see what nuggets stu-
dents (and teacher!) could un-
earth. There are a few minor
spelling and grammatical errors,
but nothing worth complaining
about. This is truly a fine work—
I can’t wait for the second
edition.

PRACTICAL CRYPTOGRAPHY

Niels Ferguson and Bruce
Schneier
Wiley, 2003. 432 pages.
ISBN: 0471223573

R E V I E W E D B Y
E R I C S O R E N S O N

To be clear from the outset: I
cannot in this review provide an
objective assessment of the accu-
racy of Bruce Schneier and Neil
Ferguson’s Practical Cryptogra-
phy. I’m not fit to lick Bruce
Schneier’s cryptographical boots,
let alone poke holes in his math,
but I can say with certainty that
the book provided me with a
powerful lens through which to
view the crypto systems I know
and use the most (IKE, SSL, and
WEP). I can heartily recommend
it to anyone who wants to learn
what differentiates good cryp-

72 ; LOG I N : VO L . 3 2 , NO . 1

tosystems from bad ones and
how to make (more) sure the
ones you build are the former,
not the latter.

The authors first provide a gentle
introduction to first principles
(“complexity is the worst enemy
of security”), then step deeper
into cryptographic primitives
such as block ciphers and hash
functions and use these building
blocks to solve real-world prob-
lems, including creating a secure
channel over an untrusted medi-
um and negotiating session keys
using public-key crypto. The last
third of the book emerges from
the heavy math to discuss tech-
nical and political issues sur-
rounding PKI, the standards
process, and technology patent-
ing.

The book is aimed at engineers
who are designing or implement-
ing a computer system that uses
cryptography, so the section on
ciphers and cipher modes, hash-
es, and MACs has a very prag-
matic format: the authors discuss
the purpose of each kind of
primitive, survey the landscape
of options, and offer a recom-
mendation. I found this discus-
sion both fascinating and useful.
Previously, when setting up
IPSEC VPNs, I had known there
were MD5 and SHA options for
packet authentiation, but other
than selecting the one both end-
points supported I didn’t know
which to choose. Now I do: The
authors recommend SHA be-
cause of the higher potential for
“birthday” attacks against MD5.

The book’s mathematical discus-
sions of randomness, prime
numbers, and modulo arithmetic
get heavy pretty quickly. The au-
thors realize this and provide
both escape hatches (“we won’t
use this formula [for entropy], so
you don’t need to remember it”)
and levity (“most of the math

dates back thousands of years, so
it can’t be too difficult, right?”).
They start with basic high school
math concepts like the Sieve of
Eratosthenes and build from
there. I confess I got lost around
the section discussing Garner’s
Formula, but I believe with time
and patience one could make it
through the whole discussion
without needing external refer-
ences or specialized training.

As I said, the book provides a
lens to examine existing cryp-
tosystems. Nowhere is this more
evident than in the final chap-
ters, on the dreams versus the re-
ality of PKI and the evils of secu-
rity protocol design by commit-
tee. Bruce’s razor-sharp
skewering of politial compromis-
es to security problems will be
familiar to readers of his blog
and Crypto-Gram newsletters;
like his nontechnical book Se-
crets and Lies, Practical Cryptog-
raphy gives us the treat of read-
ing his ideas in a more extended
format.

Schneier and Ferguson’s Practical
Cryptography is a mine of infor-
mation for people who want to
know more about crypto sys-
tems, whether to create new ones
or simply to understand better
the protocols we use every day to
read our email, conduct banking
transactions, or browse the Web
over wireless while sipping a
mocha. The authors don’t shy
away from technical details, so
protocol designers could use this
book to avoid pitfalls they might
not have known existed, but nei-
ther is this book so dense as to
be incomprehensible to non-
mathematicians. Highly recom-
mended.

L INUX ADMIN ISTRATION HAND-

BOOK, SECOND EDITION

Evi Nemeth, Garth Snyder, and
Trent R. Hein, with Adam Boggs,
Matt Crosby, and Ned McClain
Prentice Hall PTR, 2006. 1,000 pages.
ISBN: 0-13-148004-9

R E V I E W E D B Y
R I K F A R R O W

This latest in the series of admin-
istration handbooks shares its
friendly yet authoritative tone
with its predecessors. I felt I was
constantly being provided with
excellent advice and guidance as
I read sections of this book, ad-
vice that I generally agreed with
(a nice feeling). I started out in
Chapter 7, “Adding a Disk,” a
thorough tutorial in the various
issues involved in adding a new
disk to a Linux system. I wanted
to see just how much what I al-
ready knew from experience
matched the chapter and to learn
about features I had never used.
Along the way, I picked up con-
cepts I hadn’t understood, such
as the use of hdparm, software
RAID, and Linux Logical Volume
Management. I liked how the au-
thors have provided accurate
cross references to other sections
(by page number, not section
number, making these easy to
find). In the chapter on TCP/IP
networking, I learned about mii-
tool, something I knew must be
there (a way to configure autone-
gotiation of network interfaces)
but was never able to find. This
book covers all of the sysadmin
topics.

Even a 1,000-page book cannot
cover all there is to know about
the myriad system administra-
tion topics mentioned. The au-
thors’ strategy in those cases is to
suggest the best references avail-
able, be they other books, man
pages, or Linux doc files. They
go beyond just explaining soft-
ware to covering network hard-

; LOGIN: FEBRUARY 2007 BOOK REVIEWS 73

ware and providing advice about
which backup hardware will best
fit your needs. It is this soup-to-
nuts approach that has helped
make this the most popular sys-
tem administration series of all
time.

Occasionally I did identify some-
thing that I considered an over-
sight. For example, although
Linux does support the route
command, it has largely been re-
placed by the much more power-
ful ip command, which gets no
mention at all (that I could find).
ip appears to be a direct connec-
tion to the IP stack in the kernel
that gives you more control than
route and ifconfig combined, but
a section of the book on this
would have been great (and is on
my wish list for the next edi-
tion). Other than this minor
oversight, I consider this a great
book, one both new Linux sysad-

mins and other experienced
sysadmins will appreciate hav-
ing.

C IN A NUTSHELL

Peter Prinz and Tony Crawford
O’Reilly, 2005. 600 pages.
ISBN: 0-596-00697-7

R E V I E W E D B Y
R I K F A R R O W

I can’t say I read this book cover
to cover. It is a reference book, as
its title suggests, and it functions
very well at that. I learned C the
way I was taught to learn lan-
guages in college: with a gram-
mar, some examples, and a com-
piler to practice with (BDS C).
That left lots of holes in my
knowledge of C, holes that C in a
Nutshell performs well to fill in.

The authors describe the use of
the auto storage class specifier as
“archaic,” just like my knowl-
edge of C. They just as clearly

explain what the restrict type
qualifier does (provides a hint to
the compiler that an object will
only be referenced via the given
pointer). The single largest sec-
tion in the book covers libc, and
it differs from the online man
pages in several ways, the most
important of which is to provide
program examples showing how
the function is used. The book
starts with the grammar (223
pages), then explains the stan-
dard headers and functions (next
270 pages), then finishes up by
describing gcc, make, and gdb.

Altogether, this book is a great
desktop reference for anyone
who needs to understand C.
Somehow I have managed to
read and write C programs with-
out this book, but I will certainly
appreciate having it handy in the
future—it is now within easy
reach of my favorite chair.

74 ; LOG I N : VO L . 3 2 , NO . 1

; LOGIN: FEBRUARY 2007 STANDARDS: MULTITHREADING IN C AND C++ 75

H A N S B O E H M , B I L L P U G H ,
A N D D O U G L E A

standards:
multithreading
in C and C++

Hans Boehm is a researcher at HP Labs
who is best known for his work on garbage
collection. Recently he has focused on
improving concurrent programming foun-
dations, especially for C++.

hans.boehm@hp.com

William Pugh is a professor at the
University of Maryland, College Park. His
current research focus is on developing
tools to improve software productivity, reli-
ability, and education.

pugh@cs.umd.edu

Doug Lea, a professor of computer science
at SUNY Oswego, is the author of several
widely used software packages and com-
ponents, as well as articles, reports, and
standardization efforts dealing with
object-oriented software development.

dl@cs.oswego.edu

MA I N ST R E AM D E S K TO P
and server machines
increasingly require explicit-
ly concurrent programs to
achieve full performance,
owing to the increasing
prevalence of both single-
chip multiprocessors and
hardware support for multi-
ple threads.

Currently a common way to
write such programs is to pro-
gram in C or C++, with the aid of
a threads library, such as an im-
plementation of the POSIX
pthreads interfaces, to provide
concurrency. This is also an es-
tablished technique for handling
multiple concurrent event
streams, even on single-threaded
single-processor machines.

Unfortunately, this approach has
turned out not to be completely
sound, primarily because reliable
multithreaded execution re-
quires certain guarantees about
the language and compiler that
cannot easily be provided by a li-
brary or library specification [1].
Some of the associated issues
have been understood for many
years. The second half of this pa-
per briefly outlines a symptom of
this issue that appears to not
have been well recognized.

As a result, several of us have
started an effort to address these
problems by directly defining the
meaning of multithreaded pro-
grams in the underlying pro-
gramming language. Initially this
is being done in the context of
C++, building on some earlier
work in the context of Java [2, 3].

There appears to be consensus
that these issues should be ad-
dressed in the current ongoing
revision of the C++ standard. In
that context, we are addressing
three somewhat separable issues:

1. Defining the meaning of exist-
ing programs in the presence
of threads. Our current ap-
proach largely follows
pthreads and leaves the se-
mantics undefined if there is
a data race, i.e., if a program
modifies a location while an-
other thread is accessing it.
This approach appears to be
the only plausible one for C
and C++. However, it can only
succeed if the definition of a
data race is made precise
enough for programmers,
compiler writers, and hard-
ware to know when data races
occur and how to avoid them.
Currently, it is not defined at
all. Among other consequen-
ces, unexpected compiler
transformations regularly
break multithreaded pro-
grams (as illustrated in the
example that follows).

2. Defining an atomic operations
library to allow the construc-
tion of correct multithreaded
programs without locks. This
does not directly affect most
existing application-level pro-
grams, though a significant
number of them should be
modified to use this library in
order to ensure correctness.
Such a library is necessary for
development of portable core
libraries and infrastructure
code that increasingly use
lock-free techniques to imple-
ment high-performance syn-
chronization support. Defin-
ing an atomics library relies
critically on the semantics of
memory operations and data
races.

3. Designing a threads API that
meshes better with the rest of
the C++ language.

We expect that the first two is-
sues and their solutions also ap-
ply, with minor modifications, to
C. And compatibility would be
greatly desirable. We expect the
last issue is mostly C++ specific,

76 ; LOG I N : VO L . 3 2 , NO . 1

though there are likely to be ex-
ceptions, such as support for
thread-local storage.

As a result, we would like to en-
courage members of the C com-
mittee to follow our discussions
and to provide input, particular-
ly if they see aspects of our ap-
proach that would make it less
palatable to the C committee,
and hence lead to unnecessary
divergence between C and C++.

A Simplified Example

We illustrate some of the prob-
lems addressed by this work
with a simple case in which the
current language specifications
for C and C++ are clearly inade-
quate for multithreaded pro-
grams. This is only one among
many possible examples. It helps
demonstrate that the problems
are in fact profound and must be
addressed by the language speci-
fication and compilers. It also
points out that the expected im-
pact on compilers is likely to be
nontrivial.

Consider the following declara-
tions and function definition:

int global_positives = 0;
typedef struct list {
struct list *next;
double val;
} * list;

void count_positives(list l)
{
list p;
for (p = l; p; p = p -> next)
if (p -> val > 0.0)
++global_positives;

}

Now consider the case in which
thread A performs

count_positives(<list containing
only negative values>);

while thread B performs

++global_positives;

This should be perfectly correct,
since count_positives in this spe-
cific case does not update glob-
al_positives, and hence the two
threads operate on distinct glob-
al data and require no locking.

But some existing optimizing
compilizers (including gcc,
which tends to be relatively con-
servative) will “optimize”
count_positives to something
similar to

void count_positives(list l)
{
list p;
register int r;

r = global_positives;
for (p = l; p; p = p -> next)
if (p -> val > 0.0) ++r;
global_positives = r;
}

This transformation is clearly
consistent with the C language
specification, which addresses
only single-threaded execution.
In a single-threaded environ-
ment, it is indistinguishable from
the original.

The pthread specification also
contains no clear prohibition
against this kind of transforma-
tion. And since it is a library and
not a language specification, it is
not clear that it could.

However, in a multithreaded
environment, the transformed
version is quite different, in that
it assigns to global_positives,
even if the list contains only neg-
ative elements. Our original pro-
gram is now broken, because the
update of global_positives by
thread B may be lost, as a result
of thread A writing back an earli-
er value of global_positives. By

pthread rules, a thread-unaware
compiler has turned a perfectly
legitimate program into one with
undefined semantics.

This is a contrived example, but
similar issues have been encoun-
tered in practice, and these are
discussed in more detail in
Boehm [1]. We hope this has
served as a brief introduction to
the kind of problems we are try-
ing to address and will encour-
age others to follow the discus-
sion.

REFERENCES AND FURTHER READING

[1] H.-J. Boehm, “Threads Can-
not Be Implemented as a Li-
brary,” in Proceedings of the ACM
SIGPLAN 2005 Conference on Pro-
gramming Language Design and
Implementation, pp. 26–37, 2005.
Also available at http://www
.hpl.hp.com/techreports/2004
/HPL-2004-209.html.

[2] JSR-133 Expert Group, JSR-
133: Java Memory Model and
Thread Specification:
http://www.cs.umd.edu/~pugh/
java/memoryModel/jsr133.pdf,
August 2004.

[3] J. Manson, W. Pugh, and S. V.
Adve, “The Java Memory Mod-
el,” in Conference Record of the
Thirty-Second Annual ACM Sym-
posium on Principles of Program-
ming Languages, January 2005.
Also available at http://www.cs
.umd.edu/users/jmanson/java
/popl05.pdf.

; LOGIN: FEBRUARY 2007 USEN IX NOTES 77

USENIX
notes

USEN IX BOARD OF DIRECTORS

Communicate directly with the
USENIX Board of Directors by
writing to board@usenix.org.

P R E S I D E NT

Michael B. Jones,
mike@usenix.org

VI C E P R E S I D E NT

Clem Cole,
clem@usenix.org

S E C R E TA RY

Alva Couch,
alva@usenix.org

TR EA S U R E R

Theodore Ts’o,
ted@usenix.org

D I R E C TO R S

Matt Blaze,
matt@usenix.org

Rémy Evard,
remy@usenix.org

Niels Provos,
niels@usenix.org

Margo Seltzer,
margo@usenix.org

EX E C UTIVE D I R E C TO R

Ellie Young,
ellie@usenix.org

SUMMARY OF USEN IX BOARD OF

DIRECTORS MEETINGS AND ACTIONS

E L L I E Y O U N G
ellie@usenix.org

The following is a summary of
the actions taken by the USENIX
Board of Directors from July
through December 2006.

CO N F E R E N C E S

The following people were invit-
ed to serve as program chairs for
upcoming conferences:

� Jeff Chase and Srinivasan Se-
shan for the 2007 USENIX
Annual Technical Conference

� Paul van Oorschot for the
2008 USENIX Security Sym-
posium

� David Wagner for the 2nd
USENIX/ACCURATE Elec-
tronic Voting Technology
Workshop

It was agreed to hold the 2007
Linux Kernel Developers Summit
in Cambridge, UK.

It was agreed that USENIX would
sponsor a workshop on Hot Top-
ics in Understanding Botnets
(HotBots ’07), to be held along-
side NSDI, per a proposal by
Niels Provos.

It was agreed that USENIX will
sponsor the Distributed Event-
Based Systems Workshop and
fund $3,000 in student stipends
for it.

It was agreed that USENIX be an
in-cooperation sponsor of the
ACM Symposium on Computer
Human Interaction for Manage-
ment of Information Technology
(CHIMIT) and the ACMWork-
shop on Experimental Computer
Science.

USENIX will be a co-sponsor of
the SETIT 2007 conference.

It was decided that when book-
ing future hotels for the LISA
conference, we will alternate ven-
ues between the West Coast and
the Boston and D.C. areas.

USEN IX MEMBER BENEFITS

Members of the USENIX Association
receive the following benefits:

F R E E S U B S C R I P T I ON to ;login:, the Associ-
ation’s magazine, published six times
a year, featuring technical articles,
system administration articles, tips
and techniques, practical columns on
such topics as security, Perl, VoIP, and
operating systems, book reviews, and
summaries of sessions at USENIX
conferences.

ACC E S S TO ; LOG I N : online from October
1997 to this month:
www.usenix.org/publications/login/.

ACC E S S TO PA P E R S from USENIX confer-
ences online:
www.usenix.org/publications/ li-
brary/proceedings/

TH E R I GH T TO VOT E on matters affecting
the Association, its bylaws, and elec-
tion of its directors and officers.

D I S COUNT S on registration fees for all
USENIX conferences.

D I S COUN T S on the purchase of proceed-
ings and CD-ROMs from USENIX
conferences.

S P E C I A L D I S COUNT S on a variety of
products, books, software, and
periodicals. For details, see
www.usenix.org/membership
/specialdisc.html.

TO J O I N SAG E , see www.usenix.org/
membership/classes.html#sage.

F O R MOR E I N FO RMAT I ON regarding
membership or benefits, please see
www.usenix.org/membership/
or contact office@usenix.org.
Phone: 510-528-8649

TRA I N I N G

It was agreed to proceed with
discussions with the SANS Insti-
tute on offering tutorials at each
other’s events.

O UTR EAC H / G O O D WO R KS

It was agreed, per a proposal
from Garth Gibson, that USENIX
would host a repository of com-
puter anomaly data.

It was agreed to contribute
$15,000 to the USA Computing
Olympiad in 2007, per a propos-
al from Rob Kolstad.

Niels Provos will liaison with
Kirk McKusick on BSD issues/
conferences.

It was agreed to continue fund-
ing POSIX and ISO SC22 stan-
dards activities in 2007, with an
additional amount to support at-
tendance at the C++ meeting in
Oxford.

F I N A N C E S

The registration fees for the
USENIX Annual Technical Con-
ference were raised by $10 per
day, and for FAST and NSDI by
$20 for the three-day technical
session registration. The registra-
tion fees for HotOS were reduced
to match those of the other
USENIX three-day workshops.

Member dues, which had not
been raised since 2005, were in-
creased by $5.00 for USENIX
and SAGE, in order to cover in-
creased costs.

A first-draft budget for 2007 was
approved in December 2006, and
the auditor was selected to per-
form the audit of the 2006 finan-
cial statements.

SAG E

Upon notification that Strata
Rose Chalup was stepping down
as SAGE Programs Director, the
USENIX Board of Directors
passed a motion thanking Strata
for her services to USENIX,

SAGE, and the profession of sys-
tem administration. At this time,
SAGE activities will be managed
by Jane-Ellen Long, with assis-
tance from Tony Del Porto and
oversight and guidance from
Alva Couch, who is chair of the
SAGE subcommittee of the
USENIX Board of Directors.

SAGE UPDATE

J A N E - E L L E N L O N G

jel@usenix.org

A L V A C O U C H
alva@usenix.org

A lot has been happening lately.
The sad news first: Strata has
moved on to nurture her grow-
ing consulting practice at Virtu-
al.Net Inc. We’ll miss her vision,
her dedication, and her humor.
We hope she’ll drop in from time
to time to cheer us and nudge us
into the future, and of course
SAGE members can always catch
her on the sage-members discus-
sion list. (Haven’t joined yet? See
www.sage.org/lists/.)

A L L A B O UT L I SA

Those of you who weren’t lucky
enough to be among the over
1,200 attendees of this year’s
LISA Conference can now listen
to Cory Doctorow’s fascinating
keynote address and to Alva
Couch’s own provocative “lunch
& learn” session on “The Future
of System Administration: How
to Stop Worrying and Learn to
Love Self-Managing Systems.”
Even if you did attend the four-
track LISA, you probably had to
make some hard choices among
sessions. Now’s your chance to
catch up on what you missed: All
the refereed papers are open to
USENIX and SAGE members on-
line, and many talk slides are up
as well, at www.usenix.org
/events/lisa06/tech/.

We are delighted that Paul An-
derson has agreed to chair LISA

‘07. Paul has been a contributor
to SAGE and USENIX for many
years. He is the author of a SAGE
booklet on system configuration,
as well as a SAGE white paper on
the topic; he’s organized the
Configuration Management
Workshop at LISA every year
since 2002; and he’s the principal
author of LCFG. Watch the
SAGEWeb home page for the
Call for Papers, coming in early
2007: www.sage.org/index.html
#confs.

We are pleased to announce that,
once again, two SAGE awards
were presented at LISA ’6. The
Outstanding Achievement Award
went to Tobias Oetiker and Dave
Rand, and the Chuck Yerkes
Award went to Doug Hughes.
Read more at www.sage.org
/about/outstanding.html and
www.sage.org/about/yerkes.html.

SAG E S H O RT TO P I C S
G E T LO N G E R

Internet Postmaster: Duties and
Responsibilities, by Nick Chris-
tenson and Brad Knowles, is now
online at www.sage.org/pubs
/15_postmaster/. Available very
soon: Host Configuration and
Maintenance with Cfengine, from
The Source, a.k.a. Mark Burgess
and his henchwoman Æleen
Frisch, who have taught many of
you in LISA training classes.
This booklet was inspired by a
discussion on sage-members.

YouChoose: SAGE members have
told us you love the SAGE Short
Topics series and want more.
Some of you have said you only
want PDFs. Some have said
you’d rather have a different
booklet instead of whatever one
came out most recently. We took
a good hard look at the program
and came up with an answer
that, we hope, addresses these is-
sues. Instead of waiting for one
booklet to have its day in the sun
before publishing another, we
plan to publish at will. All the

78 ; LOG I N : VO L . 3 2 , NO . 1

PDFs will be available anytime to
all SAGE members. We’ll put up
an online ordering form as well.
Each year of your membership
you may choose any one booklet
to be sent to you for free, and
you may order any additional
print booklets for $10 per book-
let, as of yore. BTW, have you
noticed that the booklets are get-
ting longer? Greater depth of in-
formation as well as greater
breadth is the goal.

Want to write a booklet? Have an
idea for a subject and/or author?
Please let us know: send a note
to sagebooklets@sage.org.

N EW W H ITE PA P E R S O N L I N E

White papers from the LISA ’06
Hit the Ground Running Track
are now online. If you don’t feel
ready to write a booklet, but
your job has offered you a learn-

ing experience and you’d like to
keep others from having to go
through that particular torture,
write a white paper to share with
the world via www.sage.org/pubs
/whitepapers/whitepapers.html.

W H AT D O YO U WA NT
F ROM SAG E ?

We have our own ideas, but to
truly serve the membership,
we need to know what’s most
important to you. How can we
best serve you? Please send your
ideas, fully formed or carry-out
to bake at home, to us at
suggestions@sage.org.

Thanks for supporting SAGE,
and we’ll catch up with you
again in April.

JOHN LIONS FUND WRAP-UP

The USENIX Board voted to
match up to $250,000 in 2006
donations to establish the John
Lions Chair in Operating Sys-
tems at the University of New
South Wales.

USENIX received $39,224 from
outside donors in 2006. Linux
Australia made the largest dona-
tion, $18,022. USENIX matched
dollar for dollar all donations, so
the grand total donated to
UNSW for this campaign will be
$80,000.

Theodore Ts’o, USENIX Treasur-
er, presented a check for this
amount to Gernot Heiser, who
represented UNSW, at
linux.conf.au 2007.

; LOGIN: FEBRUARY 2007 USEN IX NOTES 79

U S E N I X ’ 0 7 W I L L F E AT U R E :
An extensive Training Program, covering crucial topics
and led by highly respected instructors

Technical Sessions, featuring the Refereed Papers Track,
Invited Talks, and a Poster Session

Plus BoFs andmore!

http://www.usenix.org/usenix07

J O I N TH E COM M U N IT Y O F P RO G R A M M E R S, D EV E LO P E R S, A N D SYSTE M S
P RO F E S S I O N A LS I N S H A R I N G S O LUTI O N S A N D F R E S H I D E A S.

2 0 0 7 U S E N I X A N N UA L

TE C H N I C A L CO N F E R E N C E

J U N E 1 7 – 2 2 , 2 0 0 7,

SA NTA C L A R A ,

C A L I F O R N I A , U SA

Join us in Santa Clara, CA, June 17–22, for the 2007 USENIX

Annual Technical Conference. USENIX Annual Tech has

always been the place to present groundbreaking research

and cutting-edge practices in a wide variety of technologies

and environments. USENIX '07 will be no exception.

; LOGIN: FEBRUARY 2007 CONFERENCE REPORTS 81

conference
reports

WORLDS ’06: 3rd USENIX
Workshop on Real, Large
Distributed Systems

Seattle,Washington
November 5, 2006

Summarized by Iulia Ion

MEASUREMENT AND MONITORING

Geolocalization on the Internet
through Constraint Satisfaction

Bernard Wong, Ivan Stoyanov,
and Emin Gün Sirer, Cornell
University

Bernard Wong presented a new
method of determining the loca-
tion of Internet hosts, based on
constraint satisfaction. With ex-
isting techniques such as static
databases, users have to get pre-
cise city location data from the
database and constantly update
this information. The authors
propose a dynamic approach that
uses latency information to deter-
mine the location of nodes. The
main challenge is caused by net-
work congestion, which might in-
troduce extra delay and therefore
makes it difficult to locate node
positions.

Bernard presented the Octant sys-
tem, which extracts constraints
based on network measurements,
anchors them to the globe, and
makes a latency-to-distance rela-
tionship. Given the basic assump-
tion that there is a strong correla-
tion between latency and dis-
tance, Octant shows the likeliness
that a node is a particular dis-
tance away. The data is afterward
formalized as positive and nega-
tive constraints. Given different
landmarks, the speaker proposes
taking the intersection of the con-
straints. To deal with overaggres-
sive constraints, different weights
can be assigned. Therefore, re-
sults have different degrees of
confidence, which increases ex-
ponentially as the latency reduces
linearly. An additional technique

used in Octant to address indirect
routing and its effects on con-
straint construction involves
piecewise localization, wherein
each node is localized depending
on another. Some other results-
improving techniques are conges-
tion estimation (reducing or in-
creasing the actual latency as
measured) and removing regions
where people are unlikely to live,
such as oceans, rural areas, and
deserts.

To evaluate Octant, the authors
collected traceroute data among
51 PlanetLab nodes and com-
pared the results to previous ge-
olocalization techniques. GeoLim
proved to be the next best system.
Octant is able to extract more ag-
gressive constraints with lower
error rates. The use of geographic
and demographic constraints can
further reduce the size of the esti-
mated target region. A demo can
be viewed at https://www.cs
.cornell.edu/~bwong/octant
/query.html.

Audience questions addressed the
following: (1) How would Octant
perform on DSL nodes of Planet-
Lab? Bernard answered that al-
though currently Octant uses
traceroutes to get the latency in-
formation, different measurement
techniques could also be used to
fit with the PlanetLab DSL nodes
model. (2) How well does Octant
work outside the United States?
Bernard answered that the system
has not yet been evaluated. The
results would depend on the con-
centration of nodes in the region
(e.g., in Europe it would work
better than in Australia). Octant
pins down the intermediate
nodes in series, but pinning down
the first router depends on the
previous ones. (3) How accurate-
ly are you able to pin down inter-
mediate routers toward the end?
Bernard replied that it is difficult
to measure accuracy. (4) How
often do the final regions end up

I N T H I S I S S U E

WORLDS ’06................................81
Summarized by Iulia Ion

OSDI ’0686

Summarized by Rik Farrow, Geoffrey
Lefebvre, Andrew Miklas, Anthony
Nicholson, Prasanth Radhakrishnan,
and Leonid Ryzhyk

HotDep ’06................................108
Summarized by Yin Wang, Avishay
Traeger, and Geoffrey Lefebvre

Workshop forWomen in
Machine Learning114

Summarized by Lisa Wainer

Grace Hopper Celebration
ofWomen in Computing
2006 ..114
Summarized by Rae Harbird

being disconnected parts? An-
swer: It happens a lot.

A Platform for Unobtrusive Measure-
ments on PlanetLab

Rob Sherwood and Neil Spring,
University of Maryland

The talk was given by Rob Sher-
wood. Rob started by explaining
the need for measurements and
the benefit that these would
bring to many applications such
as performance optimization,
overlay construction, and net-
work diagnosis. The grand chal-
lenge would be to record a day in
the life of the Internet. The prob-
lems encountered in making
such measurements are mainly
due to firewalls, abuse reports,
and limited bandwidth. Abuse
reports occur because exception-
al measurement traffic is often
considered suspicious and pre-
vents one from measuring every-
thing.

The measurement platform used
was Sidecar, which works by in-
jecting probes into normal traf-
fic. Rob presented the tool, how
it works, and a couple of quick
examples. Basically, Sidecar
tracks connections by recording
data as it passes by. Neither side
knows that there is any sort of
probing going on. Sidecar can
traverse NATs and firewalls.
Probes are retransmissions and
require no end-point support.
The authors can modify probes
for specific measurements such
as reducing TTLs, sending
probes in trains, and adding IP
options.

Rob explained that most often
the abuse reports were caused by
the application logs. The lesson
learned is that when doing traffic
generation, one must pay atten-
tion to what abuse records are
generated. Other problems were
caused by clock irregularities
(clocks would change rate and
jump backward), causal packets
reordering, and lag in I/O Sys-

tems Calls. The Artrat tool can
be used to try to decide from the
receiver side where the bottle-
neck is. The technique uses the
IP timestamp option with ICMP
echo to measure queuing delay.

Rob was asked whether the
measurement platform requires
symmetric routes. He answered
no. Sidecar doesn’t require sym-
metric routes, but it does assume
that the Sidecar listening ma-
chine is on both the forward and
the reverse path. In their experi-
ments, they simply ran Sidecar
on one of the end-hosts to ac-
complish this.

ConfiDNS: Leveraging Scale and
History to Improve DNS Security

Lindsey Poole and Vivek S. Pai,
Princeton University

The talk was given by Lindsey
Poole.

Although cooperative DNS re-
solver systems, such as CoDNS,
have demonstrated improved re-
liability and performance over
standard approaches, their secu-
rity has been weaker, since any
corruption or misbehavior of a
single resolver can easily propa-
gate. The authors addressed this
weakness in a new system called
ConfiDNS, which augments the
cooperative lookup process with
configurable policies that utilize
multisite agreement and per-site
lookup histories.

The threat model used focuses
on client-side attacks because
they are easier to carry out and
harder to catch. The advantage
of the technique is that there is
no need to change the server in-
frastructure. An incrementally
deployable client-side solution
can be carried out. The authors
evaluated the system and proved
that ConfiDNS can provide bet-
ter security than CoDNS and
local resolvers, while retaining
the other benefits of CoDNS,
such as incremental deployabili-

ty, improved performance, and
higher reliability.

Lindsey was asked whether it
would be more useful to source-
route DNS lookups from each
client and avoid local name-
servers entirely. The reasons for
not using this approach would
be a large increase of lookup traf-
fic to potentially constrained
nameservers, and failure to de-
fend against adversaries operat-
ing on the local network. Con-
fiDNS can use encrypted peer
traffic to avoid local adversaries,
and the peer traffic can be ab-
sorbed at peer resolvers, mitigat-
ing the impact on remote name-
servers. The final observation
was that only 10% of failures are
client-side, and 30% are server-
side.

MANAGING SCARCE RESOURCES

Resource Management for Global
Public Computing: Many Policies Are
Better Than (N)one

Evangelos Kotsovinos, Deutsche
Telekom Laboratories; Iulia Ion,
International University in Germany;
Tim Harris, Microsoft Research
Cambridge

The talk was given by Evangelos
Kotsovinos.

Management responsibility in
global public computing systems
is distributed among different in-
dividuals and organizations.
Such stakeholders can be net-
work administrators, server
owners, or infrastructural au-
thorities. Unfortunately, high-
level resource management facil-
ities are often absent from public
computing systems. Whereas
federation is crucial for scalabili-
ty and cost-efficiency, it intro-
duces important resource man-
agement challenges related to
expressing policies and manag-
ing policy overlaps. Usually,
there are different users asking
for resources on a server. The
challenge is reaching a decision

82 ; LOG I N : VO L . 3 2 , NO . 1

given the different policies and
interests of different stakeholders.

Evangelos explained that these
overlaps occur because different
stakeholders may have different
views on how server resources
are to be apportioned. The auth-
ors proposed a practical system
that allows the different stake-
holders to independently express
federated policies. The Role
Based Resource Management
system (RBRM) provides mecha-
nisms for resolving potential
constraint overlaps automatical-
ly and reaches decentralized de-
cisions.

Role-based resource manage-
ment policies are defined using
a Web interface and consist of
the following elements: role dec-
larations (a group of users to
which common policies apply),
role entry conditions, constraint
definitions (reservation or usage
limitation on a resource that ap-
plies to all members of a role),
and constraint relationships.
When more than one constraint
is applicable to a user request for
a certain resource there is an
overlap; the system needs to de-
termine how much of the re-
source can be made available to
the user. The system supports
advanced pattern-matches for
existing constraints, together
with variable bindings, and gen-
erates a replacement constraint
for the ones that overlap.

When a user requests resources
from a server, resource allocation
is determined based on the poli-
cies deployed on the server, re-
source availability, and user
properties and credentials. De-
pending on these inputs, the sys-
tem allocates the requested re-
sources, denies access, or starts
negotiation.

The authors demonstrated ex-
perimentally on the XenoServers
platform that the system scales
gracefully and introduces only a

very low performance overhead.
RBRM is suitable for operating in
realistically large and complex
settings. Furthermore, it has
been able to express a large set of
real-world policies that users of
existing platforms have request-
ed.

The addressed questions were:
(1) How would the system work
for servers or services as opposed
to users who do it for them-
selves? (2) Give us some exam-
ples of where it would be useful
to negotiate. Would the user be
happy with less? Evangelos an-
swered that users will ask for
a much higher allocation than
they actually need. In such cases
they might reconsider it. (3) Do
you have a model for online ne-
gotiation? Can you do RBRM re-
cursively? The answer was yes,
it’s supported by the framework.
(4) Suppose I gave all the band-
width away and somebody else
comes. Is there a way I can rene-
gotiate resource allocation for
running sessions? Evangelos an-
swered that, with the current
model, once resources are allo-
cated, they cannot be revoked for
the lifetime of the session.

Evangelos invited everyone to at-
tend the demo session scheduled
later that day where the authors
would present a demo of the
running system. Further infor-
mation can be obtained at
http://www.xenoservers.net/.

Optimizing Grid Site Manager
Performance with Virtual Machines

Ludmila Cherkasova and Diwaker
Gupta, Hewlett-Packard Labs;
Eygene Ryabinkin, Roman Kurakin,
and Vladimir Dobretsov, Russian
Research Center “Kurchatov Institute”;
Amin Vahdat, University of California,
San Diego

The talk was given by Lucy
Cherkasova and dealt with
analysis of Grid workload for the
past year from a Tier-2 Resource

Center at the RRC Kurchatov In-
stitute (Moscow, Russia). The
analysis revealed that a large
fraction of Grid jobs have low
CPU utilization.

Virtualization can add many de-
sirable properties to Grid com-
puting, such as customized envi-
ronments, QoS provisioning, and
policy-based resource allocation.
Additionally, the authors sought
to justify an economic and per-
formance incentive to move to a
VM-based architecture. Using a
simulation model, they showed
that a half-size infrastructure
augmented with four VMs per
node can process 99% of the load
executed by the original system
in RRC Kurchatov Institute.

The authors described a proto-
type design built on top of the
Xen VMM. The goal of the devel-
oped prototype is to integrate
VMs in the Grid workflow. The
prototype offers a clear separa-
tion between mechanisms and
policies, was deployed for test-
ing, and was integrated with the
Grid workflow in the Kurchatov
Institute.

Future work involves getting
data from the running system,
investigating how often migra-
tion is needed, and addressing
scalability issues. The authors
plan to determine the best mi-
gration policies and develop a
management suite for enterprise
applications.

These follow-up questions were
asked: (1) To what extent are the
presented resource usage figures
representative of global public
computing platforms in general?
While the data we have are quite
representative (spanning more
than a year), this is the first Grid
workload study of a single data
center. We do not have enough
publicly available data from
other data centers to draw gener-
al conclusions.

; LOGIN: FEBRUARY 2007 CONFERENCE REPORTS 83

(2) What fraction of resources
are used by short versus long
jobs? Study has shown that 20%
of overall CPU usage is con-
sumed by the jobs that run less
than one day (which represent
92% of all the jobs). Jobs that
run around 3 days (representing
4% of all the Grid jobs) are re-
sponsible for 42% of overall CPU
usage.

For further information check
out http://www.hpl.hp.com/
personal/Lucy_Cherkasova/
projects/grid-vm.html.

PLANETPANEL

Learning from PlanetLab

Thomas Anderson, University of
Washington; Timothy Roscoe, Intel
Research Berkeley

The session was started by
Thomas Anderson.

Although PlanetLab has been
enormously successful in foster-
ing distributed system research,
it is not as successful as it could
be. Thomas looked at nine im-
portant reasons why PlanetLab is
not yet the platform for huge dis-
tributed systems. PlanetLab is
not viral, as is BitTorrent, where
people are contributing resourc-
es to the system. There are no
people contributing resources in
order to get access to the system.
PlanetLab has enduring limita-
tions. In terms of scalability, al-
though the number of partici-
pants is increasing, the number
of online nodes remains con-
stant.

Thomas’s hypothesis is that not
enough has been learned from
past experience. He describes
nine decisions that have been
crucial to PlanetLab’s success but
which, he argues, should be
rethought now that PlanetLab is
successful. His points are:

1. Centralizing trust: PLC is a
trusted intermediary be-
tween node owners and

node users. Thomas argues
that a single point of trust is
unsustainable and that trust
should be explicit and flexi-
ble. Each site should be able
to select its own PLC.

2. Centralizing resource con-
trol: PlanetLab Central con-
trols resource allocation. Site
administrators have very
limited control over what
runs on their site, or which
jobs get which resources.
Thomas argues for better in-
centives for management.

3. Decentralizing management:
By design, PlanetLab pro-
vides minimal services to
users, which has not worked
in practice. The authors
argue that encouraging com-
munity contributions is in-
consistent with centralized
trust/control. Instead, we
need a set of initial versions
of services to demonstrate
that the API is complete.

4. Treating bandwidth as free:
PlanetLab does not charge
users for bandwidth. The
authors believe that the lack
of accounting offers perverse
incentives. Instead, accurate
fine-grained cost account-
ing, visible to applications,
is needed.

5. Providing only best effort:
PlanetLab provides no re-
source reservations or re-
source predictability. There
are no limits on the number
of jobs that run on each
node. The authors’ view is
that power users crowd out
everyone else and that there
is room for much better
short-term/long-term sched-
ulers.

6. Using Linux as the execu-
tion environment: Thomas
argues that Linux is the
wrong API for distributed
systems. The audience ar-
gued for the advantages of
Linux and gave as examples

the existence of top, person-
al folders, and ssh agents.

7. Distributing OS services:
PlanetLab is a distributed OS
with few distributed servic-
es.

8. Evolving the API: PlanetLab
was designed to evolve.

9. Focusing on the machine
room: PlanetLab focused on
large machines. Thomas
brings up the issue of run-
ning PlanetLab on PDAs and
other small devices.

Thomas concludes that for Plan-
etLab or GENI to thrive requires
large-scale community involve-
ment in defining and improving
the platform.

The Lessons of PlanetLab

Thomas Anderson, University of
Washington; Marc Fiuczynski,
Princeton University; Michael
Freedman, New York University;
Rob Ricci, University of Utah

Michael Freedman talked about
the problem of misaligned incen-
tives and pointed out that the
success of PlanetLab is largely
judged by the number of nodes
and of slices, not by impact and
result.

Another problem with PlanetLab
is that slices cannot specify poli-
cies. The proposed solution is to
provide an ability to easily deter-
mine the current status of ses-
sions. However, the concern is
that virtualization and isolation
of resources is not a panacea.

Michael also argued that decen-
tralized trust/control exists and
that sites rarely enforce their
local AUPs, and only then in a
haphazard manner; therefore he
proposes an explicit method for
expressing rules and policies.

Marc E. Fiuczynski brought
again into discussion the lack of
incentive for people to con-
tribute with resources and ar-
gued that not enough resources
are available, because people do
not contribute. Again the discus-

84 ; LOG I N : VO L . 3 2 , NO . 1

sion was brought to ssh forward-
ing, which got broken as Planet-
Lab evolved. The reason for this
is that a degree of isolation be-
tween researchers was needed,
but instead the result was re-
source isolation. Are there things
that PLC could be doing differ-
ently to provide incentives or
recognize input from users? The
future envisages Private Planet-
Lab (MyPLC) where you can
bring up your own private Plan-
etLab in 30 minutes. MyPLC lets
you have complete control over
software and API, allowing you
to implement your own resource
control and have several Planet-
Lab deployments. In such a con-
text, Marc referenced the work
on Role Based Resource Manage-
ment and expressed his hope of
using such a framework to do
policy management in a scalable
fashion.

Real challenges remain in speci-
fying peering agreements be-
tween private PlanetLabs (e.g.,
what to do when one party is in
violation of an agreement) and
resource management and con-
trol (expressing federated re-
source management policies and
managing conflicts). Finally, the
session ended with a reference to
the Prisoner’s Dilemma: If I buy
10 boxes, what’s the benefit to
me?

TRENCHES

Summarized by Rik Farrow

Towards Fingerpointing in the Emulab
Dynamic Distributed System

Michael P. Kasick and Priya
Narasimhan, Carnegie Mellon
University; Kevin Atkinson and
Jay Lepreau, University of Utah

Mike Kasick began by explaining
that the number of errors pro-
duced while Emulab is used
overloads operators. Emulab has
1300 users, 430 local nodes, and
740 remote nodes (including
PlanetLab) and uses software

created over five years compris-
ing 490,000 lines of code, within
many scripts. Emulab allows
users to create virtual networks
as well as load operating systems
and applications on the PCs
within Emulab.

Since the existing error-reporting
system was deficient, they first
built tblog, a set of scripts that
logged all errors to a database,
and included new functions that
can be called from within scripts.
tblog performs call-chain analy-
sis to determine which of a cas-
cade of error messages contains
information about the event that
caused the failure to occur. In
the previous system, operators
would have to examine several
email messages and collect con-
text from other log files to deter-
mine the triggering event.

Tblog improved the situation,
but it did not solve the root
problem. Existing scripts pro-
duced opaque messages, de-
signed to be human readable but
not machine parsible. Their sec-
ond approach, tbreport, focuses
on producing structured error
messages that are easily parsible
by scripts because they include
consistent error types and suffi-
cient context, and always propa-
gate the primary errors, avoiding
“me too” error messages. Mike
provided some examples of how
tbreport helped to improve error
analysis through live use on Em-
ulab. David Anderson of
Carnegie Mellon asked, “What
five-page document should I
read now to avoid the problems
you found in Emulab?” Mike an-
swered that there isn’t such a
document, but he advises people
to modularize code. When peo-
ple write code, they focus on the
success case and don’t includes
labels in code so you can grep
through it searching for failure
points. Also, use RPC mecha-
nisms to do global finger-point-
ing.

Data Management for Internet-Scale
Single-Sign-On

Sharon E. Perl, Google Inc.; Margo
Seltzer, Harvard University and Oracle
Corporation

Sharon Perl described her expe-
riences while building a unified
login system for Google Ac-
counts that supports both Gmail
and AdSense. Google began life
without any notion of customer
accounts, but work began in
April 2002 to create a very sim-
ple backend database. Version 2
used the same API, but it re-
placed the database with a repli-
cated Berkeley DB–based system.
Sharon pointed out that “at
Google’s scale, even rare events
happen often.” They needed
consistency, automated failover,
and low latency.

Sharon knew about Paxos, a con-
sensus algorithm designed so
that all nodes in a distributed
system will agree on a value.
After a Google tech talk by
Margo Seltzer, Sharon became
aware that Berkeley DB could do
replicated backups and already
provided the simple key-to-value
support needed, so she decided
to make a Berkeley DB system
that worked like Paxos. The pro-
duction single sign-on system re-
lies on a single master system
which holds a lease that allows
the master to commit changes. If
there is a timeout by the master
leaseholder (on the order of sec-
onds), replicants vote to select a
new master. The actual data gets
replicated across several datacen-
ters. Locking depends on the
Chubby Lock mechanism (see
the relevant paper in OSDI ’06).

A lively Q&A session followed.
One person wondered how they
would know if they had multiple
masters at some point, and
Sharon answered that they could
look at timestamps in logs and
see that sometimes there were
two masters. Another person
asked how clock skew would af-

; LOGIN: FEBRUARY 2007 CONFERENCE REPORTS 85

fect lease timeouts. Sharon an-
swered that someone within
Google who understood hard-
ware came up with a safe time-
out value (which is on the order
of several seconds, as I found out
later). Someone asked about
server replacements. Sharon an-
swered that reboots are okay, as
no state gets lost, but losing a
disk would be a problem.

A Distributed File System for a Wide-
Area High Performance Computing
Infrastructure

Edward Walker, University of Texas at
Austin

Ed Walker works in the Texas
Advanced Computing Lab and
uses NSF TeraGrid, a national
high-performance computing in-
frastructure for performing large-
scale engineering and scientific
problems. TeraGrid currently
uses GPFS crossmounts for sup-
porting remote file sharing. But
because of operating systems is-
sues, not all sites can use IBM’s
GPFS, and in a survey of users in
2005, scp was cited as the most
important data management
tool.

Ed pointed out that many desk-
tops are becoming computation
science–capable and that the ma-
jority of links within TeraGrid
participants have less than 2%
utilization, so that bandwidth
can be used. He then described
XUFS, a userspace overlay that
hooks file system calls by inter-
posing a shared object before libc
to get transparent file system
redirection. XUFS has goals of
location transparency (since lap-
tops and even desktops move
easily), performance, and private
name space, but not file sharing,
as his research has shown that
scientific computing files are
rarely shared (umask of 077).
XUFS aggressively uses local
caches, and it also performs
write-on-close to sync up locally

made changes with the remote
copy.

In performance testing, XUFS
does as well as or better than
GPFS in most cases (the excep-
tion being smaller files). XUFS
has a command-line tool for
flushing the local write cache in
case of a client crash, and auto-
matic recovery in case of host
crashes or network outages.
Gunnar Sirer asked about the
lack of support for file sharing.
Ed answered that out of nearly
2000 GPFS users, only one had
changed the default permissions
to all group read permissions
within directories.

OSDI ’06: 7th USENIX
Symposium onOperating
Systems Design and
Implementation

Sponsored by USENIX in coop-
eration with ACM SIGOPS

Seattle,Washington
November 6–8, 2006

Opening Remarks

Summarized by Rik Farrow

OSDI 2006 began with record
rains in Seattle, but the rain and
local flooding did nothing to
dampen the mood in the confer-
ence. Jeff Mogul started out with
the usual summary of the num-
ber of papers submitted versus
those accepted (149/27), telling
us that each paper was reviewed
multiple times and that shep-
herds helped with each accepted
paper. Papers that did not meet
the format required by the CFP
were rejected without review. As
OSDI, together with SOSP, is the
top venue for publishing refereed
operating-system-related papers,
hopeful authors are strongly mo-
tivated to do much more than
adhere to formatting.

Jeff thanked the program com-
mittee members and the people

and organizations who spon-
sored OSDI. He pointed out
that registration fees do not
begin to cover the cost of the
conference, but through the
work of Robbert van Renesse and
USENIX, enough money was
raised to pay for registration fees
and travel expenses for 72 stu-
dents, as well as two receptions.
Jeff also told us that he had set
up osdi2006.blogspot.com so
that summaries and comments
on papers could be posted in real
time during the conference.

Brian Bershad announced the
winner of the SIGOPS Hall of
Fame award, “Safe Kernel Exten-
sions without Runtime Check-
ing,” by George C. Necula and
Peter Lee. The two Best Paper
awards went to “Rethink the
Sync” and “Bigtable: A Distrib-
uted Storage System for Struc-
tured Data.”

I found most of the papers excit-
ing and was busy emailing links
to abstracts to friends and ac-
quaintances who I thought
would likely be interested (most
were). OSDI certainly has be-
come one of my favorite confer-
ences, being full of great infor-
mation and new ideas.

LOCAL STORAGE

Summarized by Anthony Nicholson

Rethink the Sync

Edmund B. Nightingale, Kaushik
Veeraraghavan, Peter M. Chen, and
Jason Flinn, University of Michigan

Awarded Best Paper

The authors note that asynchro-
nous I/O provides good user-per-
ceptible performance, but it does
not provide reliable and timely
safety of data on disk. Synchro-
nous I/O provides data safety
guarantees but incurs significant
overhead. Ed Nightingale pre-
sented a new model of “external-
ly synchronous” I/O that resolves
this tension by approximating

86 ; LOG I N : VO L . 3 2 , NO . 1

the performance of asynchro-
nous I/O while providing the
data safety of synchronous I/O.
The main reason synchronous
I/O is slow is that applications
must block until data has been
written safely to disk. The au-
thors argue that only the user,
not applications, should be con-
sidered “external” to the system.
Therefore, under their model,
applications need not block on
I/O operations but can perform
other work while writes are
queued. The system only blocks
when some output that depends
on a pending write is about to be
externalized to the screen, disk,
or network—in other words,
when any event occurs that
would make the user think that
the I/O has completed.

External synchrony preserves
the same causal ordering of
writes as synchronous I/O. The
fact that unrelated I/O operations
can be batched and overlapped
without violating causal ordering
is what enables the performance
wins in their system. Their im-
plementation leverages their
prior work (Speculator, SOSP
’05) to track causal dependencies
across multiple applications and
throughout the kernel. “Commit
dependencies” inside the kernel
track all the processes and ob-
jects that are causally dependent
on a given pending write. Com-
mit dependencies are forwarded
to applications that become
tainted by uncommitted data, to
ensure preservation of causal or-
dering. They modified the Linux
ext3 file system to support exter-
nal synchrony, and they com-
pared the performance of their
system to native ext3 in both
asynchronous and synchronous
I/O mode and to ext3 synchro-
nous with write barriers. Their
evaluation results show that
ext3, even using synchronous
I/O, does not guarantee data
durability across crashes or
power failures, but ext3 with

write barriers provides the same
data safety of external synchrony,
although at a severe performance
cost. Their performance on vari-
ous file system benchmarks
shows performance close to that
of asynchronous ext3, while pro-
viding superior security guaran-
tees to that of synchronously
mounted ext3. The performance
of ext3 using synchronous I/O is
also an order of magnitude slow-
er than that of external syn-
chrony. Their performance on
the specweb99 benchmark also
shows that external synchrony
adds minimal latency overhead
as compared to asynchronous
file systems.

David Anderson from Carnegie
Mellon asked whether there was
a corner case where an applica-
tion would do an asynchronous
write, see it failed, and change
behavior based on that. Ed re-
sponded that in their system, by
the time an application discovers
a write has failed it would have
already moved on, complicating
recovery. He argued, however,
that “failure notification” usually
means kernel panic and crashing
owing to hardware failure, so the
user has bigger problems in that
case. George Candea from EPFL
asked about network latency in
the mySql benchmark from their
paper. Ed said that the client and
server were on the same box in
their evaluation, because the
SpecWeb benchmark was more
concerned with network latency.
George explained that he was
more interested in group commit
latency. In that case, Ed said,
their system gets the benefit of
group commit but wouldn’t be
able to commit multiple transac-
tions from the same client be-
cause of the rules of external
synchrony. Micah Brodsky from
MIT asked whether performance
would suffer under external syn-
chrony for high bandwidth, se-
quential I/O operations. Ed said
you would still see improve-

ment, because the OS wouldn’t
be blocking between operations
if they weren’t dependent on
each other. Micah wondered how
their performance would com-
pare to that of asynchronous I/O
for such large sequential opera-
tions. Ed noted that asynchro-
nous I/O is limited by the speed
to write to memory, and external
synchrony would be similarly
limited.

Type-Safe Disks

Gopalan Sivathanu, Swaminathan
Sundararaman, and Erez Zadok, Stony
Brook University

Gopalan Sivathanu began by not-
ing that data on disk consists of
two things: data and pointers.
The structure of pointers on disk
implies how disk blocks are or-
ganized via higher-level abstrac-
tions into files and directories.
Unfortunately, today’s disks are
pointer-oblivious. The file sys-
tem knows all about the seman-
tics of data and the disk knows
about the hardware details. But
because the interface between
OS and disk is so constrained,
little information is exchanged
between the two. Everything is
just reading and writing blocks.
The disk doesn’t know the high-
level reason for a read/write. For
example, it would be nice for a
RAID system to prioritize the
handling of metadata blocks, be-
cause those are more important.
Type-safe disks try to bridge this
semantic gap. The authors pro-
pose an extended interface be-
tween the kernel and disk, to en-
able both type-awareness (disks
tracking pointers) and type-safe-
ty (disks using pointer informa-
tion to enforce constraints).

Because type-safe disks are con-
scious of the relationship be-
tween data and pointers, they
can do such things as automati-
cally garbage-collect data blocks
that are no longer referenced by
any file or directory. Offloading
these tasks to the disk lets the

; LOGIN: FEBRUARY 2007 CONFERENCE REPORTS 87

file system component of the op-
erating system shrink in size and
complexity. The authors added
additional API calls between file
system and disk, such as “allo-
cate block,” “create pointer,” and
“delete pointer.” They have im-
plemented a prototype in Linux
as a pseudo-device driver and
have ported the ext3 and vfat file
systems to support TSD. The
porting effort was minimal (ap-
proximately two person-weeks).
Their case study is a security ap-
plication (ACCESS: A capability
conscious extended storage sys-
tem), which is disk-enforced ac-
cess control. To access data, an
application must provide the
disk with a valid capability (an
encryption key). Thus the maxi-
mum amount of data that can be
exposed is that which is current-
ly in use or cached at a higher
level. Traditionally, if the OS
were compromised, then all data
on disk would be compromised.
ACCESS establishes a security
perimeter on the disk itself in-
stead.

Michael Scott from the Universi-
ty of Rochester asked how TSD
would work with a file system
that doesn’t use the hierarchical
pointer design, such as a file sys-
tem that stores file data in a
chain of blocks interconnected
by pointers. Gopalan answered
that they can support such file
systems because the pointers
tracked by type-safe disks need
not be the same as those main-
tained by the file system in its
own metadata. Margo Seltzer
from Harvard asked how this
was different from the semanti-
cally smart disk work. Gopalan
responded that semantically
smart disks need to do a lot of
operations at the disk level to
infer the sort of information that
type-safe disks explicitly are
given through the API. Margo
concluded that the two solutions
are basically the same but the

implementation cost is different.
Gopalan disagreed.

Another questioner asked where
private keys for disk blocks can
be stored, if we don’t trust the
operating system that can read
application memory. That dis-
cussion was taken offline. Emin
Gün Sirer from Cornell asked
how they settled on the API be-
tween the kernel and disk. Why
not just move the whole file sys-
tem into the disk? Gopalan an-
swered that because we often
want to run multiple file systems
(or none at all, for certain data-
bases) at once, not all functional-
ity can be pushed into the disk.
He was not confident that their
API was the most minimal inter-
face possible.

Finally, Chad Verbowski from
Microsoft Research asked how
they would properly keep the
parity blocks in a RAID system.
Gopalan answered that if one
wants to use type-safe disks,
then all layers of the file system
software stack must be modified,
including the RAID software.

Stasis: Flexible Transactional Storage

Russell Sears and Eric Brewer,
University of California, Berkeley

Rusty Sears stated that systems
researchers in particular often
abandon off-the-shelf storage so-
lutions because of their poor per-
formance and reinvent the wheel
on every project that juggles a
large amount of data. The goal of
their project was to provide a
transactional storage framework
that provides good performance
off the shelf but is easily extensi-
ble to meet the needs of users
without requiring that applica-
tions be rewritten because they
are too tied into the underlying
plumbing. This saves users from
having to concern themselves
with details of logging, recovery,
etc., unless they really want to.
Stasis has the following three de-
sign principles: (1) Provide sim-
ple, thin APIs to low-level com-

ponents. (2) Ensure high-level
semantics via local invariants.
(3) Make all module interactions
explicit—this lets them place
policy decisions in replaceable
modules.

Russell gave an example of im-
plementing a concurrent hash
table on top of Stasis. They wrap
operations with Stasis calls so
that the underlying layers know
how to undo the operation that
is being wrapped, in case a trans-
action needs to be rolled back.
Russell also discussed their case
study: persistent objects. In
other words, these are systems
that support transactional up-
dates over a series of objects. To
optimize these updates, Stasis
can conserve log bandwidth by
only logging diffs. Also, they
halve memory usage by deferring
page cache updates. Low-level
modules implement log updates
and defer writes to the page
cache in order to save memory.
They implemented group com-
mit in the log manager, and eval-
uation shows good performance
gains. Since the log manager sees
all updates that are produced, it
could be extended to transpar-
ently implement automatic repli-
cation, etc. Stasis can also ensure
temporal ordering of certain
writes (such as external syn-
chrony). Similar to type-safe
disks, the type-system of the disk
could be coupled to a type-sys-
tem of a higher-level application,
since these modules are all ex-
tensible. The authors are inter-
ested in implementing zero-copy
I/O for the page file or replicat-
ing the page file on multiple
servers.

Compared to atop Berkeley DB
and SQL, performance is reason-
able, with the optimizations de-
scribed here doubling through-
put and halving required mem-
ory. There were no questions.
The project Web page is
http://www.cs.berkeley.edu/
~sears/stasis/.

88 ; LOG I N : VO L . 3 2 , NO . 1

RUNTIME REL IAB I L ITY MECHANISMS

Summarized by Geoffrey Lefebvre

SafeDrive: Safe and Recoverable Ex-
tensions Using Language-Based Tech-
niques

Feng Zhou, Jeremy Condit, Zachary
Anderson, and Ilya Bagrak, University
of California, Berkeley; Rob Ennals,
Intel Research Berkeley; Matthew
Harren, George Necula, and Eric
Brewer, University of California,
Berkeley

Feng Zhou began his talk by not-
ing that many operating systems
and applications run loadable
extensions. These extensions are
often buggier than their hosts
and execute in the same protec-
tion domain. To address this
issue, the authors present Safe-
Drive, a language-based ap-
proach to extension safety.
SafeDrive can be decomposed
into two principal components:
the Deputy source-to-source
compiler and the run-time recov-
ery system. Although the princi-
ples presented could be applied
to other systems, the talk and the
paper focused on adding type-
based checking and restart capa-
bility to existing Linux device
drivers. The core idea is to trans-
form code written in C into a
safe variant, addressing issues
such as out-of-bound array ac-
cesses, null terminated strings,
and unions.

Previous approaches to retro-
fitting type safety to C, such as
CCured, required the use of fat
pointers, which contain both the
pointer and bound information.
This approach unfortunately re-
quires changing the memory lay-
out of data structures, making
the modified extensions incom-
patible with their host’s binaries.
Instead of using fat pointers,
Deputy relies on the programmer
adding lightweight annotations
to header files and extension
source code. Since SafeDrive re-
lies on run-time checks, it must

provide mechanisms to deal with
violations. SafeDrive enforces
the invariant that no driver code
will execute after a failure. The
SafeDrive run-time system tracks
all kernel resources used by a de-
vice driver, using wrappers
around kernel API functions.
Each tracked resource is paired
with a compensation operation
that performs an undo when a
fault occurs in a driver. As an ex-
ample, the compensation opera-
tion for a spinlock is to release
the lock.

Compared to approaches using
hardware memory protection
such as Nooks, SafeDrive pro-
vides finer-grained memory pro-
tection. This allows it to catch
more errors at compile time and
exhibit less run-time overhead.

Andrew Baumann from the Uni-
versity of New South Wales stat-
ed that many bugs are concur-
rency-related and asked whether
SafeDrive can detect and recover
from such errors. Feng Zhou an-
swered that SafeDrive does not
currently address this issue. Brad
Karp from University College
London asked whether SafeDrive
handled integer overflow, specifi-
cally the case where a signed in-
teger overflow could result in a
different memory allocation than
the size requested. Feng Zhou
answered that SafeDrive doesn’t
deal with integer overflow but
that, in most cases, memory allo-
cation routines should handle
this issue. Rik Farrow asked
what happens when program-
mers make errors writing the an-
notations. The answer is that the
Deputy type system will catch
some of the errors. Michael Swift
from the University of Wisconsin
asked how easy would it be to in-
tegrate this with Nooks to allow
catching errors that only Nooks
is able to catch. Feng Zhou said
that it should be feasible to do
so. Finally, someone from the
University of California, Santa

Cruz, asked whether SafeDrive
was able to cope with complex
data structures. Feng replied that
by being able to deal directly
with pointers, Deputy is able to
do so.

BrowserShield: Vulnerability-Driven
Filtering of Dynamic HTML

Charles Reis, University of Washington;
John Dunagan, Helen J. Wang, and
Opher Dubrovsky, Microsoft; Saher
Esmeir, Technion

Charles Reis began by pointing
out that vulnerabilities in
browsers are dealt with by patch-
ing, but there will often be a long
delay between the time a patch is
released and its application. This
delay opens a dangerous time
window when attackers can even
use the patch as a blueprint to
create exploits. A previous ap-
proach, Shield, aims to provide
protection equivalent to patch-
ing but with easier deployment
and roll-back. Shield allows fil-
tering of malicious static content
using vulnerability signatures.
BrowserShield’s goal is to provide
similar protection for dynamic
Web content by rewriting em-
bedded scripts into safe equiva-
lents on their way to the brows-
er.

BrowserShield consists of a
JavaScript library and a logic in-
jector, which could be located at
the server, at the firewall, or even
as a proxy on the client. Both
components are configured
using flexible policies that can be
tailored to address specific vul-
nerabilities. The injector per-
forms a first translation which
modifies the HTML to remove
exploits and wraps all embedded
scripts to force them to be in-
voked via the BrowserShield li-
brary. The library performs a
second translation during page
rendering by dynamically rewrit-
ing scripts to access the HTML
document tree via an interposi-
tion layer. The evaluation shows
that, combined with anti-virus

; LOGIN: FEBRUARY 2007 CONFERENCE REPORTS 89

and HTML filtering, Browser-
Shield provides patch-equivalent
protection for all 19 vulnerabili-
ties in IE for which patches were
released in 2005.

George Candea from EPFL asked
about the guarantees that can be
provided that pages will be ren-
dered correctly. The answer is
that it’s much easier to roll back
a policy than an applied browser
patch when something goes
wrong. BrowserShield policy
only affects pages, not the brows-
er itself. George then asked how
to evaluate the policies. Charles
answered that the two metrics
are how easy it is to write a poli-
cy and how to thoroughly test
policies. Jason Flinn from Uni-
versity of Michigan asked
whether the scripting was part of
the TCB. Charles Reis said it is.
Brad Chen from Google asked
about specific things that the au-
thors would like to see added or
removed from JavaScript.
Charles Reiss answered that a
smaller API would make it easier
to achieve complete interposi-
tion. Benjamin Reed from Yahoo!
inquired how to debug a policy
once deployed. Charles Reis an-
swered that it’s important to first
distinguish whether a problem is
due to BrowserShield or due to
the page or browser. A solution
would be to render the page in
a unprotected browser running
in a virtual machine. Benjamin
further asked what the core
dump should look like. Charles
answered that BrowserShield
could be enhanced with a set of
debugging policies to generate
the appropriate information.

Finally, Diwaker Gupta from
UCSD asked how to prevent infi-
nite loops in the script transla-
tion. Charles answered that if the
script had an infinite loop then
its interpretation would fall into
an infinite loop, but he didn’t
think that it was possible for a

script to force the translation
step into an infinite loop.

XFI: Software Guards for System Ad-
dress Spaces

Úlfar Erlingsson, Microsoft Research,
Silicon Valley; Martín Abadi, Microsoft
Research, Silicon Valley, and University
of California, Santa Cruz; Michael
Vrable, University of California, San
Diego; Mihai Budiu, Microsoft Research,
Silicon Valley; George C. Necula,
University of California, Berkeley

Úlfar Erlingsson began by intro-
ducing XFI, a software-based
protection system that provides
safe system extensions. He pro-
ceeded with a demo of a JPEG
image containing an exploit
being rendered by both an un-
modified JPEG library and an
XFIed version of the same legacy
library. The first case resulted in
an application crash, whereas the
XFIed version properly trapped
and gracefully aborted the ren-
dering.

The XFI implementation creates
safe extensions from existing
Windows x86 Portable Executa-
bles by performing binary rewrit-
ing. The rewriter adds inline
guards or short machine-code se-
quences that perform checks at
run-time. Guards are placed on
computed control-flow transfers
using unique labels as valid tar-
get identifiers. A guard verifies
that the label is present at the
target site before performing a
computed jump or call. This
mechanism ensures that all
transfers remain within the con-
trol-flow graph. The rewriter also
adds memory access guards to
ensure that computed memory
accesses lie within valid memory
regions. The validation uses a
fast path when the address lies
within bounds established at
load time. Memory accesses out-
side of these bounds fall through
a slow path that validates the ad-
dress using data structures simi-
lar to page tables. The binary is
also modified to use two stacks,

a scoped stack and an allocation
stack. The scoped stack contains
return address and variables that
are accessed by name only. The
allocation stack contains data
that can be accessed using com-
puted access. This mechanism
allows the integrity of the scoped
stack to be established through
static verification.

Because rewriting binaries is a
tricky process, XFI doesn’t re-
quire this step to be trusted. In-
stead, XFI relies on a trusted ver-
ifier to parse the binary at load
time, ensuring that binaries have
the appropriate structure and the
appropriate guards. The verifier
is simple, fast, and consists of
only 3000 lines of straightfor-
ward code, mostly x86 decoding
tables, increasing confidence in
its correctness.

Bryan Ford from MIT asked how
XFI ensures that the heap is not
incorrectly seen to contain
matching identifiers. Úlfar an-
swered that a guard checks
whether computed control flows
are to targets within the binary,
in addition to matching identi-
fiers and the verifier ensuring
that identifiers are unique. Jim
Lawson from MSB Associates
asked whether XFI rejects self-
modifying code. Úlfar acknowl-
edged this. Rik Farrow asked
about binary size increase. Úlfar
answered that code size can in-
crease by a factor of two or more
but that most of the additional
code is either in nonexecutable
verification hints or in out-of-
band trampolines, which are not
invoked often. Therefore the in-
crease in code size has a minimal
impact on performance and i-
cache behavior.

90 ; LOG I N : VO L . 3 2 , NO . 1

OS IMPLEMENTATION STRATEGIES

Summarized by Andrew Miklas

Operating System Profiling via Laten-
cy Analysis

Nikolai Joukov, Avishay Traeger, and
Rakesh Iyer, Stony Brook University;
Charles P. Wright, Stony Brook
University and IBM T.J. Watson
Research Center; Erez Zadok, Stony
Brook University

Nikolai presented a new ap-
proach to operating system pro-
filing. He showed that the loga-
rithmic distributions of an OS’s
latencies can reveal most, if not
all, aspects of the OS’s internal
operation. He presented several
methods to analyze these profiles
and provided interesting exam-
ples of the sorts of conclusions
that can be drawn using the pro-
filer data. Among others, the au-
thors were able to diagnose a
locking error in the Linux kernel
without having to examine the
source code. Also, because the
latency can be measured entirely
outside of the kernel, the meth-
od can be used to analyze operat-
ing systems even if the source is
not available.

The basic technique involves re-
peatedly measuring the times re-
quired to complete OS requests.
The latency of each request de-
pends on the path taken through
the code and interactions with
other processes. Therefore, the
distribution of these values can
be used to make inferences about
an operating system’s inner
workings. The latencies are used
to generate histograms that can
be analyzed either visually or by
a provided automatic data-analy-
sis toolset. Various events, such
as being blocked on a lock, show
up as spikes on the histogram.
Correlations between different
requests can reveal their con-
tention on a shared resource. For
example, similar spikes on the
histograms of two different sys-
tem calls that only appear when
the two are run together suggest

that they contend on the same
lock.

Although the profiler can be
used without any kernel changes
whatsoever, it can take advan-
tage of kernel instrumentation
points if they are available. Load-
able drivers can also be used as
vantage points from which to
measure latencies. The authors
created a tool that can patch
Linux file systems to automati-
cally produce latency data. The
presented profiler adds negligi-
ble overheads. The generated
profiles are usually smaller than
1 kilobyte. The profiler adds less
than 200 CPU cycles per profiled
call, whereas existing profilers
add overhead per profiled event.
For example, if a system call is
trying to acquire several sema-
phores and to perform I/O, exist-
ing profilers would add overhead
for each such event. As a result,
the presented profiler is efficient.
As measured with the Postmark
benchmark, the system’s CPU
time was affected by less than
4%.

Marcel Rosu of the IBM T.J. Wat-
son Research Center asked
whether the technique makes
heavy use of CPU cycle counters
in order to cheaply measure in-
tervals of time and if they tested
their system on CPUs that use
variable clocks, such as those
found in notebook computers.
Although they didn’t test on vari-
able-clock CPUs, “it should be
possible,” Nikolai said, “to sim-
ply apply a scaling factor to han-
dle the cases where the CPU isn’t
running at its maximum fre-
quency. Also, remember that our
system doesn’t rely on using
CPU cycle counters. We could
use an off-CPU high-precision
timer if the CPU lacked an ap-
propriate method of measuring
intervals.” Brad Chen of Intel
asked whether the profiler can be
used to analyze anomalous cases,
rather than just bad implementa-

tions of the main case. The paper
describes a “sample profile,”
where instead of folding all the
latencies for a given test togeth-
er, these were separated based on
fixed time intervals. Nikolai’s
group used this method to ana-
lyze ReiserFS’s performance dur-
ing the relatively infrequent peri-
ods of time when the Linux
buffer flushing daemon bdflush
was active.

CRAMM: Virtual Memory Support for
Garbage-Collected Applications

Ting Yang and Emery D. Berger,
University of Massachusetts Amherst;
Scott F. Kaplan, Amherst College; J.
Eliot B. Moss, University of
Massachusetts Amherst

Ting Yang began by saying that
the memory management com-
ponent of an OS and the heap-
management component of a
garbage-collected (GC) run-time
environment must cooperate
with each other to ensure good
performance under all memory
loads. Today’s operating systems
don’t provide enough VM so-
phistication to support GC run-
times effectively when memory
pressures are significant. As a re-
sult, current run-times are reac-
tive; they only resize the heap
once performance has degraded.
In contrast, CRAMM is predic-
tive; it can determine the best
heap size and suggest that the
run-time adjust it before the sys-
tem begins to experience perfor-
mance loss.

CRAMM consists of two compo-
nents: an extension that sits in
the kernel’s VM subsystem, and a
heap-size model that exists in
the run-time environment. The
kernel-mode component tracks
each process’s working-set size
(WSS): the amount of memory
that the process needs so that it
does only a small amount of
swapping. The model compo-
nent computes the heap size that
would cause the process’s WSS to
just fit within the maximum

; LOGIN: FEBRUARY 2007 CONFERENCE REPORTS 91

amount of memory the operating
system is willing to allocate. If
the current heap size and the
computed optimal heap size dif-
fer, the model asks the run-time
to adjust the size of the heap.
The system can therefore quickly
respond to changes in memory
pressure by reducing the size of
the heap before it is swapped
out, avoiding reclamation-trig-
gered thrashing. CRAMM adds
only about 1–2.5% overhead dur-
ing ordinary test runs where
memory is plentiful. In ex-
change, CRAMM dramatically
improves the performance in sit-
uations where memory pressure
suddenly increases.

Chris Stewart, University of
Rochester, asked whether the au-
thors assumed that when using
copying garbage collectors, the
number of pages used to hold
“copied survivors” does not
change rapidly and wondered
whether their system therefore
would be able to handle flash-
loads when the run-time uses
copying GCs. Ting explained
that they keep track of the CS
value from one invocation of the
GC to the next and apply a
smoothing function. The maxi-
mum value ever seen for the CS
value is weighted more heavily
to ensure that they don’t under-
estimate this parameter.

Flight Data Recorder: Monitoring
Persistent-State Interactions to Im-
prove Systems Management

Chad Verbowski, Emre Kıcıman,
Arunvijay Kumar, and Brad Daniels,
Microsoft Research; Shan Lu, University
of Illinois at Urbana-Champaign; Juhan
Lee, Microsoft MSN; Yi-Min Wang,
Microsoft Research; Roussi Roussev,
Florida Institute of Technology

Chad presented the Flight Data
Recorder (FDR), a new tool
which will ship with Windows
Vista that allows all changes to
the persistent state of a system to
be logged for later analysis. He
explained that various system

management tasks that up until
now have been something of a
black art essentially reduce to
queries over the logs gathered by
the FDR. As a motivating exam-
ple, Chad told of a server at Mi-
crosoft that would exhibit ex-
tremely poor performance every
few weeks. A system administra-
tor eventually determined that
this was because the system’s
page file was being inappropri-
ately shrunk. Unfortunately, he
was unable to determine why
this was happening. The best he
could do was to send out email
to the other admins asking them
to make sure they weren’t resiz-
ing the file. However, after run-
ning the FDR for a few weeks,
the logs were used to quickly
pinpoint the offending script.

Currently, system management
tools break down into roughly
three categories. Some use a sim-
ilar logging approach but, owing
to space constraints, activate
only on demand. These types of
tools are of limited usefulness
when trying to determine why a
particular piece of configuration
data changed. Another class of
tools uses signatures to look for
known-bad configurations.
However, creating signatures
general enough to be useful
across a wide variety of machines
is a time-consuming process. Fi-
nally, manifest-based approaches
require that applications provide
the system with a list of all con-
figuration dependencies. Howev-
er, the authors point out that the
uninstall tools included in many
software packages leave behind
files and configuration data, sug-
gesting that building complete
manifests is impractical.

The proposed approach simply
logs all changes to the system’s
persistent state. The main contri-
bution of the work is its novel
method of encoding the activity
logs. This method requires on
average just 0.5–0.9 bytes per

event. Since typical systems gen-
erate on the order of 10 million
events per day, the resulting logs
are small enough to be practical-
ly sent over the network, ar-
chived, correlated with other
systems, and quickly queried.
The authors report that they are
able to execute common queries
against a day’s worth of stored
data in as little as three seconds.
They also note that it should be
possible to serve as many as
5000 systems running the FDR
with a single archive server.

The authors see the FDR as
being useful not only for system
management but also for ensur-
ing that various security and
management policies are being
followed. For example, the logs
captured by the FDR can be used
to determine how often a locked-
down production server is modi-
fied without proper approval.
The FDR can also be used to as-
sist in locating system “extensi-
bility points”: configuration set-
tings that control the loading of
extra system services or plug-ins.
This has important implications
for detecting and removing mal-
ware. In summary, the FDR has
made it possible to know about
everything that is happening on
a system.

Q: Can the FDR be used to pre-
dict how a system will respond
to a configuration change? A: We
can search for another system
that already has the configura-
tion change but is otherwise sim-
ilar to the machine in question.
If we can find such a machine,
we can use it to approximate
how this system would behave
with the change. Q: What is the
right way to query the logs gen-
erated by the FDR? Should we be
using SQL, or perhaps a cus-
tomized query engine with a pro-
grammatic API, etc.? A: Right
now, we just expose the raw ta-
bles as they are in the log file.
Any special-built query engine

92 ; LOG I N : VO L . 3 2 , NO . 1

should be optimized for queries
of the form “What files have
been changed since time T?”
since the most common requests
seem to be those that look for
modified configuration entries.
Q: Other types of events might
be worth logging. For example,
did you consider logging all
socket activity? A: We did think
about logging IPC activities, but
the system doesn’t currently im-
plement this feature.

WORK- IN-PROGRESS REPORTS (WIPS)

Summarized by Andrew Miklas

Taking the Trust out of Global-Scale
Web Services

Nikolaos Michalakis

If you were to contract out the
hosting of a dynamic Web site to
a number of content delivery
networks, how could you be sure
that every system serving your
customers was running the exact
software you supplied to the
CDNs? This problem becomes
even more severe for content dy-
namically generated by ordinary
Internet users, where contract
law might not be sufficient moti-
vation to ensure that the distrib-
utors don’t behave maliciously.

Nikolaos is researching ways to
certify that dynamic content is
served correctly in an environ-
ment where the delivery systems
are not fully trusted by the con-
tent providers. The basic design
has clients forward a fraction of
the signed responses from one
server to other replicas for verifi-
cation. If the verifying replica
computes a different result, it
publishes the erroneous signed
response so that other hosts can
learn of the misbehaving server.

Information Flow for the Masses

Max Krohn, Micah Brodsky, Natan
Cliffer, M. Frans Kaashoek, Eddie
Kohler, Robert Morris, and Alex Yip

Today’s Web sites are serving an
increasing amount of user-con-
tributed content. They are no
longer places where users go to
passively download information,
but instead they act as meeting
points where people can ex-
change content. For example,
consider Wikipedia, which is
built on content contributed by
its users.

However, sites today do not
allow users to contribute to the
applications running on them.
Wikipedia does not allow anony-
mous users to patch up the Me-
diaWiki software running on the
live servers, as it does with its
content. The main reason why
this can’t be allowed in today’s
hosting environments is security;
a malicious patch could be used
to leak ordinarily inaccessible in-
formation.

Traz is a novel Web-hosting envi-
ronment that applies Asbestos-
like reasoning to Web servers.
User-contributed code may be al-
lowed to manipulate data ordi-
narily inaccessible to the con-
tributing user, but it will not be
allowed to leak this information
back to that user. Traz therefore
allows Web sites to safely exe-
cute user-provided code against
privileged information. Traz runs
on ordinary commodity operat-
ing systems and allows develop-
ers to write their applications
using any programming lan-
guage.

AutoBash: Hammering the Futz Out
of System Management

Ya-Yunn Su and Jason Flinn

We’ve all experienced it: a sys-
tem that isn’t performing quite
the way we’d like. Maybe the
video hardware doesn’t set the
appropriate resolution when

plugging an external monitor
into a notebook. Perhaps the
wireless card doesn’t reassociate
with the nearest access point
correctly on wake-up. No matter
what the problem, we typically
use the same approach to solve
it: Type the symptoms into
Google, find a page that de-
scribes a fix, apply the steps
described in the fix, and check
to see whether the problem is
corrected. If not, back out the
changes, and repeat. This pro-
cess, which Ya-Yunn termed
“futzing,” requires a substantial
amount of manual intervention
and can lead to serious frustra-
tion.

AutoBash is a tool that auto-
mates the futzing process. When
the user notices a configuration
error, he or she describes the
symptoms to the tool. AutoBash
will search its database for sce-
narios where a user started with
the current configuration, ap-
plied some changes, and ended
up with a new configuration that
satisfies the desired description.
Once a record is found, the steps
required to adjust the user’s con-
figuration will be automatically
replayed. If the user is dissatis-
fied with the result, he or she
will be given the opportunity to
have the changes automatically
rolled back and will possibly be
presented with another solution.
Finally, should the tool be unable
to automatically correct the
error, it will watch as the user
does so manually, so that other
users may benefit from the futz-
ing done by this user.

Dynamic Software Updating for the
Linux Kernel

Iulian Neamtiu and Michael Hicks

Software updates are a necessari-
ly evil. In order to apply them, a
service must typically be restart-
ed. For many applications, the
downtime that must be incurred
in order to restart is undesirable.
Worse, updates to system soft-

; LOGIN: FEBRUARY 2007 CONFERENCE REPORTS 93

ware such as the kernel can ne-
cessitate a full reboot of the ma-
chine, resulting in an even
longer stretch of downtime.

Gingseng, a tool worked on by
the presenter, can apply updates
to running user-mode services. It
does this by determining strate-
gic locations in a service’s execu-
tion where the code can be safely
updated. Patching kernel code,
however, is far more difficult,
owing to its low-level and highly
concurrent nature. Iulian de-
scribed some of his work to
make Ginseng able to update a
live Linux kernel.

iTrustPage: Preventing Users from
Filling Out Phishing Web Forms

Troy Ronda and Stefan Saroiu

The U.S. economy loses billions
of dollars each year to phishing
attacks. Even worse, phishing
erodes the public’s trust in the
Web as a platform for e-com-
merce. Troy claimed that many
forms used to legitimately gather
information originate from well-
established Web sites, whereas
phishing attacks are usually
done from newly created sites.
Fortunately, there are a number
of services that can be used to es-
timate the popularity and thus
the trustworthiness of a site.
Phishing pages must also appear
similar to their targets. Although
it is difficult to design an algo-
rithm to compare two Web
pages, Troy mentioned that a
person can usually determine
with ease if one Web site is mim-
icking another.

These two key observations form
the basis of iTrustPage, a Firefox
extension that helps users avoid
phishing attacks. When a user
tries to fill out a form on a page
that is not well established,
iTrustPage stops the user from
proceeding and asks the user to
describe the task that he or she is
trying to accomplish. Using this
description, iTrustPage makes a

query to Google and shows the
user the Web sites associated
with the first few hits. The user
then indicates which Web site
looks most similar to the page
the user was expecting. Finally,
the tool redirects the user to the
organization’s legitimate Web
page and away from the phishing
attempt. iTrustPage is currently
available for download at
http://www.cs.toronto.edu/
~ronda/itrustpage/.

Failures in the Real World

Bianca Schroeder and Garth A. Gibson

A major challenge in running
large-scale systems is that com-
ponent failure is the norm rather
than the exception. Unfortunate-
ly, most work on dealing with
failures is based on simplistic as-
sumptions rather than real fail-
ure data. Bianca has been collect-
ing and analyzing failure data
from several real-world installa-
tions. The initial results indicate
that many commonly used fail-
ure models are not supported by
real data. For example, the prob-
ability of a RAID failure can be
an order of magnitude larger,
based on actual observation,
than one would expect given the
standard model, which uses ex-
ponentially distributed intervals
between failures.

Motivated by these initial results,
Bianca is continuing to collect
and analyze failure data from a
large variety of real-world instal-
lations. By carefully grounding
new failure models in real data,
researchers will be able to more
accurately model a system’s re-
sponse to component failure.

Dynamically Instrumenting Operating
Systems with JIT Recompilations

Marek Olszewski, Keir Mierle, Adam
Czajkowski, and Angela Demke Brown

Operating systems, like applica-
tions, grow more complicated
each year. Unfortunately, the
techniques and tools used to in-

strument, trace, and debug ker-
nel-level code have not advanced
as quickly as their user-mode
counterparts. For example, tools
such as Valgrind have made it
possible to inject instrumenta-
tion into running user-mode
code using JIT recompilation
techniques. Because these probes
are dynamically compiled direct-
ly into the surrounding code,
they perform much better than
traditional patch-and-redirect
techniques. Unfortunately, JIT
instrumentation tools are cur-
rently unable to instrument ker-
nel code.

Marek plans to create JIT instru-
mentation tools that can be used
with kernel code. Given the
time-sensitive nature of much of
a kernel, this approach may
make it possible to instrument
code that previously could not
be probed for performance rea-
sons. By bringing the proven
benefits of JIT instrumentation
to the kernel, Marek will assist
systems programmers in better
understanding their operating
systems and ultimately will help
them to produce more efficient
and correct kernels.

Pattern Mining Kernel Trace Data to
Detect Systemic Problems

Christopher LaRosa, Li Xiong, and Ken
Mandelberg

Profilers, debuggers, and system
call tracers can all be used to di-
agnose performance issues with-
in a process. However, diagnos-
ing performance problems that
result from the interplay of two
or more processes can be compli-
cated. For example, determining
why an X server is exhibiting
poor performance can involve
gathering and correlating traces
from both the X server and any
active X clients. Unfortunately,
there are few tools to automati-
cally correlate traces, and pro-
grammers must usually resort ei-
ther to poring over the gathered

94 ; LOG I N : VO L . 3 2 , NO . 1

data by hand or writing ad-hoc
scripts.

Christopher plans to apply data-
mining techniques to system-
wide activity traces. Using these
techniques, anomalous condi-
tions that might impact system
performance can be automatical-
ly detected and isolated, even if
they span multiple processes. He
provided an example involving a
stock-ticker toolbar applet that
unnecessarily flooded the X serv-
er with requests. His trace ana-
lyzer was able to automatically
detect the excess of X calls and
pinpoint their origin. He would
appreciate it if DTrace or LTT
users would share their hard-to-
find bugs with him, so that he
can test the effectiveness of his
system’s automatic detection.

Spectrum: Overlay Network Band-
width Provisioning

Dejan Kostić

Overlay networks are currently
used to efficiently disseminate
content. However, because of
their decentralized nature, it can
be difficult to ensure that there is
enough outbound capacity to
support all receivers as well as
prevent other overlays from
“stealing” bandwidth from high-
er-priority services. This presents
a serious problem when overlays
are used to transfer streaming
media, where timely delivery of
content is necessary for the sys-
tem to operate correctly.

Dejan is working on algorithms
to measure and disseminate
bandwidth availability informa-
tion throughout an overlay net-
work. By doing so, the system
can make globally optimal deci-
sions about how much band-
width to dedicate to a media
stream. This is especially useful
when the same overlay is carry-
ing a variety of different content.
For example, a BitTorrent–like
transfer through the overlay
might be permitted as long as it

doesn’t cause anyone’s video
stream to drop below a certain
bit-rate.

An Infrastructure for Characterizing
the Sensitivity of Parallel Applications
to OS Noise

Kurt B. Ferreira, Ron Brightwell, and
Patrick Bridges

Many commodity operating sys-
tems do not scale well to the
number of processors found in
today’s supercomputers. When
running such operating systems,
as much as 50% of the system’s
performance can be used by the
operating system itself. For this
reason, many of today’s largest
supercomputers run stripped-
down operating systems that im-
pose as small an overhead as pos-
sible.

Kurt’s research seeks to under-
stand exactly how this overhead,
termed “OS noise,” affects the
bottom-line performance of vari-
ous scientific computing applica-
tions running on large super-
computers. He is also interested
in finding ways to reduce the
overheads found in ordinary op-
erating systems in order to make
them more suitable for use on
large supercomputers.

Limits of Power and Latency Reduc-
tions by Intelligent Grouping

David Essary

Disk accesses are a very expen-
sive operation; entire classes of
applications are limited by the
I/O capability of their hosts,
rather than its raw processing
power. Improving an I/O subsys-
tem’s ability to quickly respond
to requests can greatly improve
the overall efficiency of such sys-
tems.

David’s research seeks to im-
prove storage access time and
throughput by carefully control-
ling how the data is physically
laid out on disk. Data can even
be stored on multiple drives in
an array to give the reading

process more flexibility when de-
ciding how to optimally read the
data back. These techniques can
result in a 70% reduction in disk-
related latencies and energy con-
sumption. David also discussed
some of his work on predictive
retrieval algorithms and how he
had explored theoretical limits.
Finally, he pointed out that his
work to reduce seek operations
not only improves performance
but also reduces drive power
consumption.

Distributed Filename Look-up Using
DNS

Cristian Tapus, David Noblet, and Jason
Hickey

One of the challenges in building
a distributed file system is find-
ing a way to locate the data and
metadata associated with files.
Usually, this information is repli-
cated to provide reliability and
thus might be distributed across
a wide-area network. A central-
ized directory service is undesir-
able because it provides a single
point of failure and may behave
as a bottleneck for the system.

Cristian noted that many of the
problems faced when serving file
metadata and data are in fact the
same as those solved by DNS.
For example, both DNS and FS
metadata are used to resolve
names in a hierarchical name
space to addresses. For these rea-
sons, Cristian suggested using
DNS itself as a localization ser-
vice for the data and metadata of
files in a distributed FS. Looking
up a file would involve making a
DNS query for a name such as
“passwd.etc.mojavefs.caltech
.edu.” The query would return
the addresses of the replica file
servers that could serve the
named file. Replication of the
metadata is handled automatical-
ly by the caching mechanisms
built into DNS.

; LOGIN: FEBRUARY 2007 CONFERENCE REPORTS 95

Bounded Inconsistency BFT Protocols:
Trading Consistency for Throughput

Atul Singh, Petros Maniatis, Peter
Druschel, and Timothy Roscoe

Many protocols exist for ensur-
ing the high availability of a sys-
tem despite the potential for
byzantine failure of its compo-
nents. However, these protocols
have negative scaling properties:
The more nodes added, the high-
er the performance penalties as-
sociated with keeping all of the
components synchronized.

Atul proposed a solution where
replicas return results that differ
slightly from the correct result.
The key is that the variability of
the response is bounded; a client
can be sure the true value is
within some range of the re-
turned quantity. By allowing the
replicas to run slightly out of
sync, the overall performance of
the system can be improved.
This approach can be useful for
applications that don’t require
precise results. For example, it
might be acceptable for a disk
quota system to allow a user to
consume at most 5% more disk
space than the allotted quota.

EyesOn: A Secure File System That
Supports Intelligent Version Creation
and Management

Yougang Song and Brett D. Fleisch

Versioning file systems are often
used to enhance the security ca-
pabilities of an operating system.
Since they preserve the change
history for each file, they can
help system administrators both
detect intrusions and roll back
unauthorized changes. However,
maintaining a comprehensive
change history can become over-
whelmingly expensive in both
disk space and performance
overhead.

The EyesOn system aims to pre-
serve normal file operations and
existing file structures while
leaving the complexity of recov-

ery operations to the time they
are requested. EyesOn extends
the same strategy used by file
system journaling to record its
in-memory modified data in a
log without significant addition-
al processing. EyesOn uses these
logs to create file versions that
can be used to accelerate the re-
trieval of a file’s change history.
Versions are created based on
user-supplied predicates that can
make use of statistics stored in
the log. For example, predicates
can use the elapsed time since a
file was last modified, the total
size of the change, or whether
the user has explicitly requested
that a snapshot of the file be
taken at this time. Two types of
versions are created in EyesOn.
Normal versions are created for
quickly retrieving recent changes
and will automatically be culled
once they reach a certain age.
Landmark versions are created
for keeping valuable information
for a longer time.

Robust Isolation of Browser-Based Ap-
plications

Charles Reis

First it was online email. Next
came online scheduling, photo
archiving, and journaling. Today,
companies have begun testing
online word processors and
spreadsheet applications. Even-
tually, it’s possible that most ap-
plications will be run on racks of
systems in far-away data centers
and served over the Web.

If the future of applications is the
Web, than in some sense the fu-
ture of operating systems is the
Web browser. Although they
may never directly interact with
hardware, they certainly will ful-
fill other roles traditionally han-
dled by an operating system. For
example, Web browsers should
ensure that a buggy or malicious
script on one site doesn’t ad-
versely affect the scripts of an-
other. Browsers should also pro-
tect the locally stored data

associated with one site from
unauthorized access by scripts
from another site. Charles is cur-
rently looking at ways to build
these types of containment
mechanisms into browsers such
that changes to the server-side
applications are kept to a mini-
mum.

Stealth Attacks on Kernel Data

Arati Baliga

Rootkits use an array of impres-
sive techniques to hide them-
selves from detection. Some go
so far as to rewrite portions of
the in-memory kernel image to
perfect the illusion. New system
calls might be added to render
the rootkit’s processes invisible
to ps. Others carefully manipu-
late the process lists and file sys-
tem handlers to evade detection.

Arati is investigating all of the
ways in which rootkits can tamp-
er with the running kernel image
by solely manipulating kernel
data. She hopes to use her find-
ings to develop monitoring sys-
tems that can’t be easily fooled.
In particular, she is looking at at-
tacks that do not employ con-
ventional hiding techniques yet
are able to cause stealth damage
to the system and evade detec-
tion from state-of-the-art integri-
ty monitoring tools.

PROGRAM ANALYSIS TECHNIQUES

Summarized by Geoffrey Lefebvre

EXPLODE: A Lightweight, General
System for Finding Serious Storage
System Errors

Junfeng Yang, Can Sar, and Dawson
Engler, Stanford University

Junfeng Yang began his talk by
noting that storage systems er-
rors are the worst kind of error
since they can result in corrup-
tion of persistent state, possibly
leading to permanent loss of
data. To address this issue, the
authors presented EXPLODE, a
system to find errors in storage

96 ; LOG I N : VO L . 3 2 , NO . 1

systems. EXPLODE borrows ideas
from model checking by being
comprehensive, but instead of
running the checked system in-
side a model checker, EXPLODE

runs client-defined checkers in-
side the checked system. Run-
ning on a real system allows it to
easily check storage stacks. A file
system checker can be used to
find errors in storage layers ei-
ther above or below the checked
system. Another advantage of
this approach is that checkers are
easy to write. A checker for a
storage system can be written in
less than 200 lines of C++ and
often consists of a simple wrap-
ping layer around existing utili-
ties such as mkfs and fsck. The
authors state that this work com-
pletely subsumes their previous
work (FiSC).

Because bugs are often triggered
by corner cases, EXPLODE’s core
idea is to explore all choices. EX-
PLODE provides choose(N), an N-
way fork that allows checkers to
fork at every decision point dur-
ing testing and explore every
possible operation. Before ex-
ploring a decision point, EX-
PLODE checkpoints the state of
the system. A checkpoint is sim-
ply the recorded sequence of re-
turn values from choose(). To re-
store a checkpoint, EXPLODE

deterministically replays this se-
quence from the initial state.
These two mechanisms allow
EXPLODE to perform an exhaus-
tive state exploration. At any
point during testing, a checker
has the ability to force crashes.
Upon a forced crash, EXPLODE

generates crash disks based on
all possible orderings of dirty
buffers. A checker-supplied rou-
tine then tests all disks for spe-
cific invariants.

A challenge faced by the authors
was dealing with nondetermin-
ism. The choose() primitive
could be called by nonchecking
code such as interrupt handler.

EXPLODE solves this problem by
filtering on thread ID. EXPLODE

must deterministically schedule
all threads involved with the
checked system. This includes
the checker’s thread but also all
threads belonging to the checked
storage system. By playing with
thread’s priorities, EXPLODE is
able to enforce deterministic
scheduling most of the time and
can detect when it fails to do so.

Junfeng then presented an evalu-
ation of EXPLODE. The authors
tested various file and storage
systems such as ext2, ext3, JFS,
the VFS layer, NFS, Berkeley DB,
and VMware with EXPLODE and
found bugs in all of them. Some-
one from UCSD asked about the
option not to replay instrument-
ed kernel functions and if doing
so could lead to nondetermin-
ism. Junfeng answered that short
traces were deterministic, since
calls to these kernel functions
succeed most of the time, but
that long traces had nondeter-
minism. Someone asked whether
it was possible to test subcompo-
nents of file systems. Junfeng an-
swered that normally filesystem
implementations were not struc-
tured that cleanly, so it makes
more sense to check a file system
as a whole. Another person
asked how EXPLODE handled
nondeterminism created by disk
actually performing an operation
out of order internally. Junfeng
answered that EXPLODE uses a
RAM disk, which avoids this
problem.

Securing Software by Enforcing Data-
Flow Integrity

Miguel Castro, Microsoft Research;
Manuel Costa, Microsoft Research
Cambridge; Tim Harris, Microsoft
Research

Manuel Costa began his presen-
tation by noting that most of the
software in use today is written
in C++. This body of software
has a large number of defects and
there exist many ways to exploit

these defects, such as corrupting
control data. He presented some
of the various approaches to se-
curing software. He noted that
removing or avoiding all defects
is hard and that although it is
possible to prevent attacks based
on control-data exploits, certain
attacks can succeed without
compromising control flow. Ap-
proaches based on tainting can
prevent noncontrol-data ex-
ploits, but they may lead to false
positives and have a high over-
head.

To address these issues, the au-
thors present a new approach to
secure software based on enforc-
ing Data-Flow Integrity (DFI).
Their approach uses reaching
definition analysis to compute a
data-flow graph at compile time.
For every load, compute the set
of stores that may produce the
loaded data. An ID is assigned to
every store operation and, for
each load, the set of allowed IDs
is computed. The results of the
analysis is used to add run-time
checks that will enforce data-
flow integrity. Stores are instru-
mented to write their ID into the
run-time definition table (RDT).
The RDT keeps track of the last
store to write to each memory lo-
cation. Loads are instrumented
to check whether the store in the
RDT is in their set of allowed
writes. If a store ID is not in the
set during a check, an exception
is raised. Because the analysis is
conservative, an exception guar-
antees the presence of an error.
There are no false positives.
Manuel also noted that control-
flow attacks are a form of data-
flow attacks. It is possible to use
the same mechanism to protect
control-flow data.

Manuel described a set of opti-
mizations to improve the run-
time performance. The most im-
portant optimization is to
rename store IDs so that they ap-
pear as a continuous range in the

; LOGIN: FEBRUARY 2007 CONFERENCE REPORTS 97

definition set. The membership
test can be replaced with a sub-
traction and a compare. The
evaluation presented demon-
strates that this optimization is
fundamental to the performance
of DFI. On average, DFI imposes
a space overhead of around 50%,
and the run-time overhead
ranges from 44% to 103%.

Brad Karp from University Col-
lege London asked whether DFI
handles function pointers and
other complex program con-
structs. Manuel answered that
DFI handles function pointers
but has problems with certain
pieces of software written in as-
sembly. These problems can re-
sult in not detecting certain DFI
violations. An alternative would
be to use CFI in this case. It is
important to understand that
these limitations are a property
of the program to instrument,
not the attack. Bill Bolosky from
Microsoft Research asked
whether every store had to be in-
strumented. Manuel acknowl-
edged that this was the case.

From Uncertainty to Belief: Inferring
the Specification Within

Ted Kremenek and Paul Twohey,
Stanford University; Godmar Back,
Virginia Polytechnic Institute and State
University; Andrew Ng and Dawson
Engler, Stanford University

Ted Kremenek began by saying
that all systems have correctness
rules, such as not to leak memo-
ry, or to acquire some lock before
accessing data. We can check
these rules using program analy-
sis, but the problem is that
missed rules lead to missed bugs.
The specification of a system is
the set of these rules and invari-
ants. The problem addressed in
this talk is how to find errors
that violate these rules when we
don’t know what the rules are or,
more precisely, how we can infer
the specification. The talk pre-
sented a general framework to
do so and the technique is de-

scribed using an example: find-
ing resource leaks by inferring
allocators and deallocators.

There are many sources of
knowledge that can be used to
infer system rules, such as be-
havioral tendencies (i.e., pro-
grams are generally correct) and
function names, but there isn’t a
way to bind all of this informa-
tion together. To address this
issue, the authors present an ap-
proach based on the Annotation
Factor Graph (AFG), a form of
probabilistic graphical modeling.
This approach reduces all forms
of knowledge, either from evi-
dence or intuitions, to probabili-
ties. The idea is to express pro-
gram properties to infer as
annotation variables and infer
these annotations by combining
scores obtained from factors.
Factors represent models of do-
main-specific knowledge and are
used to score assignments of val-
ues to annotation variables based
on the belief that an assignment
is relatively more or less likely to
be correct.

The talk focused on how to infer
resource ownership using AFGs.
First, functions return values
and parameters are annotated.
The domain for a return value
annotation variable is to return
or not return ownership, and the
domain for a function parameter
is to claim or not claim owner-
ship. Ted Kremenek then de-
scribed some of the factors used
to infer resource ownership.
Some use static analysis based on
common programming axioms
such as that a resource should
never be claimed twice; others
are based on ad-hoc knowledge
such as function names.

The evaluation was based on in-
ferring annotations on five proj-
ects: SDL, OpenSSH, GIMP,
XNU, and the Linux kernel. The
authors’ technique obtained a
90%+ accuracy on the top 20
ranked annotations. It was also

able to infer allocators unknown
or misclassified by Coverity Pre-
vent. Using their technique, the
authors found memory leaks in
all five projects. Ted Kremenek
described a complex memory
leak they were able to find in the
GIMP library.

Someone from Yahoo! asked
how well the tool performs when
allocators that are simply wrap-
pers around malloc are factored
out. Ted answered that although
many allocators call malloc, the
tool doesn’t use this knowledge.
Brad Chen from Google asked
whether the tool would be con-
fused by realloc. Ted answered
that the tool did infer that realloc
was both an allocator and a deal-
locator. Corner cases, such as
this one, are detected automati-
cally but have to be dealt with
separately. They had a similar
issue with certain functions in
the Linux kernel. Such outliers
have to be modeled explicitly but
are fairly rare. Micah Brodsky
from MIT asked whether AFGs
are an instance of Bayesian Net.
Ted answered that AFGs and
Bayes Nets belong to the same
family of probability modeling.
The authors actually started with
Bayes Net but found the class to
be too rigid. AFGs were much
easier to work with. Someone
asked what other things could be
modeled. Ted answered that
locks are very behavioral, so
their approach would work well.
He stated that the temporal rela-
tionship could be expressed as a
grammar.

98 ; LOG I N : VO L . 3 2 , NO . 1

DISTR IBUTED SYSTEM

INFRASTRUCTURE

Summarized by Anthony Nicholson

HQ Replication: A Hybrid Quorum
Protocol for Byzantine Fault
Tolerance

James Cowling, Daniel Myers, and
Barbara Liskov, MIT CSAIL; Rodrigo
Rodrigues, INESC-ID and Instituto
Superior Técnico; Liuba Shrira,
Brandeis University

The authors address the problem
of building reliable client-server
distributed systems. They note
that the current state of the art
either requires a small number of
replicas (3f+1) but has high
communication overhead or re-
duces communication complexi-
ty by requiring a much larger
number of replicas (5f+1). The
second case still suffers from de-
graded performance in cases of
write contention, however. They
propose a hybrid scheme that
combines the best aspects of
both schemes to achieve a low
number of replicas (3f+1) while
bounding communication over-
head.

Their system uses a two-phase
write protocol. First, a client ob-
tains a timestamp grant from
each replica. This grant is essen-
tially a promise to execute the
given operation at a given se-
quence number, assuming agree-
ment from a quorum of replicas.
In the second phase, the client
forms a certificate from 2f+1
matching grants and sends this
certificate to all the replicas,
which then complete the write
operation. A certificate proves
that a quorum of replicas has
agreed to a given ordering of op-
erations. Importantly, the exis-
tence of a certificate precludes
existence of conflicting certifi-
cate. Replicas are forbidden to
have two outstanding grants in
progress, and they return the
currently outstanding grant to
clients while a grant is in prog-
ress, as proof that it is busy. The

authors have deployed both their
Hybrid Quorum (HQ) and BFT
prototypes on Emulab. Their re-
sults show that HQ performs
better than BFT up until around
25% contention.

Atul Adya from Microsoft Re-
search noted that their protocol
allows clients to commit opera-
tions on behalf of other clients,
and asked whether this was a se-
curity hole. James said that since
certificates are free-standing and
cryptographically signed, any
client can send a certificate to a
replica and it will commit faith-
fully on behalf of the originating
client. Bill Blaskey, also from
MSR, noted that commit could
be painful because potentially
thousands of operations occur
per second. James noted that all
data lives completely in RAM in
their experiments, and a reboot
is considered a failure. Petros
Maniatis from Intel Research
asked why the authors chose to
do a two-phase protocol with
3f+1 replicas, rather than a one-
phase protocol with 5f+1 repli-
cas. James noted that they could
have done so but decided that
5f+1 is just too many. The last
question involved whether col-
luding replicas would just always
tell clients that they had an out-
standing grant, to force the slow
path of the protocol. James re-
sponded yes, in the worst case
this would happen.

BAR Gossip

Harry C. Li, Allen Clement, Edmund L.
Wong, Jeff Napper, Indrajit Roy, Lorenzo
Alvisi, and Michael Dahlin, University
of Texas at Austin

The motivation scenario for talk
is a live, peer-to-peer streaming
media application. Such applica-
tions can fall apart, however, in
the presence of malicious nodes,
if it is not in a node’s self-interest
to forward a data packet on to its
peers. The authors introduce the
concept of BAR Gossip, a gossip
protocol that makes it in the in-

terest of selfish nodes to act for
the benefit of the overall system,
while detecting and punishing
byzantine (malicious) nodes.
BAR Gossip is in fact two proto-
cols: balanced exchange and op-
timistic push.

During balanced exchange, at
each round every node selects
one partner, the partners ex-
change their transaction histo-
ries, and then they trade equal
numbers of data updates. Clients
must commit to their histories
before discovering their partner’s
history; similarly, they must send
the data updates first in encrypt-
ed form before subsequently
sending the key. This makes
bandwidth a “sunk cost,” so it
is illogical for selfish nodes to
withhold the data key from their
partner later on. The authors
also introduce the notion of veri-
fiable partner selection to pre-
vent clients from talking to more
than one client per round (to ac-
cumulate more updates).

The second part of BAR Gossip is
optimistic push, which handles
bootstrapping for new nodes. In
this case, unequal numbers of
updates may be exchanged, but
the lesser peer must sacrifice the
same amount of energy and
bandwidth by sending junk to
even out the exchange. Their
simulation results show that fol-
lowing the protocol was the most
beneficial strategy for clients in
all cases.

Rob Sherwood from Maryland
asked about cases where clients
consider different weights for in-
bound and outbound traffic.
Harry argued that such asymme-
try can be handled by sizing key
requests accordingly. Rob re-
sponded that in cases where one
is downloading illegal content, it
might be overwhelmingly impor-
tant never to upload anything.
Harry countered that in such ex-
treme cases BAR Gossip might
not work. Jim Liang from UIUC

; LOGIN: FEBRUARY 2007 CONFERENCE REPORTS 99

noted that the authors assume
that all clients know the com-
plete membership list. Harry said
that they are currently looking at
handling cases where clients
have only partial membership in-
formation. Jim further asked
how the BAR Gossip protocol
achieves low latency for stream-
ing media. Harry said their ex-
periments showed an average la-
tency of 20 seconds for a live
video stream. This compares fa-
vorably with existing streaming
media applications (such as the
free NCAA Final Four video
feed). Another questioner asked
how their protocol handles col-
lusion. Harry replied that they
have no explicit mechanism for
this, because handling collusion
in game theory is difficult. Their
results showed, however, that
BAR Gossip is robust for small
colluding groups (with up to
30% nodes colluding). The last
question concerned the scalabili-
ty of BAR Gossip. Harry cited
three limitations in scaling their
system: (1) handling dynamic
membership churn, (2) handling
nodes with only partial member-
ship information, and (3) locali-
ty-aware partner selection. They
are currently looking at all three
issues.

Bigtable: A Distributed Storage Sys-
tem for Structured Data

Fay Chang, Jeffrey Dean, Sanjay
Ghemawat, Wilson C. Hsieh, Deborah
A. Wallach, Mike Burrows, Tushar
Chandra, Andrew Fikes, and Robert E.
Gruber, Google, Inc.

Awarded Best Paper

Mike Burrows described
Bigtable, a storage system de-
signed for in-house use at
Google. Bigtable developed in re-
sponse to a need to store infor-
mation on over 10 billion URLs,
with wide variety in the size of
objects associated with a given
URL, and variety in usage pat-
terns. Commercial databases are
obviously unsuitable owing to

the scale (petabytes of data on
billions of objects, with thou-
sands of clients and servers).
Bigtable stores data in a three-di-
mensional, sparse sorted map.
Data values are located by their
row, column, and timestamp.

Since these tables can be quite
large, Bigtable allows dynamic
partitions by row, called tablets,
which are distributed over many
Bigtable servers. Clients can
manage locality by choosing row
keys in such a way that data that
should be grouped together
achieves spatial locality. A given
tablet is owned by one server,
but load balancing can shift
tablets around. Similarly to
tablets, locality groups are parti-
tions by column instead of row.
These locality groups, however,
segregate data within a tablet. All
data is stored as files in the
Google File System (GFS), with
different locality groups stored as
different files in GFS. One mas-
ter Bigtable server controls the
many tablet servers. Clients ac-
cess a tablet by requesting a han-
dle from the Chubby lock service
(described in another OSDI
talk), then doing read/write di-
rectly with the tablet server that
owns a given tablet. The client
only talks to the master when it
needs to manipulate metadata
(e.g., create a table or manipulate
ACLs). Currently, Bigtable is de-
ployed on over 24,000 machines
in approximately 400 clusters
and is used by over 60 projects at
Google.

The first question concerned the
poor random read performance
described in the paper and noted
that the authors attributed this
to shared network links. The
questioner added that it seems
an easy optimization to move
tablet servers closer to the GFS
storage that the tablets actually
reside on. Mike answered that,
by default, if a GFS server is col-
located with the tablet server, the

tablet’s data will be stored on
that GFS server. Atul Adya from
Microsoft Research asked how
they deal with hierarchical
data—does this generate thou-
sands of columns in their table
paradigm? Mike noted that
Bigtable is not a database, and
such hierarchical data situations
are not suited for Bigtable. He
noted that their clients need to
conform to how Bigtable works,
not the other way around.
George Candea from EPFL asked
whether they had any technical
insights to offer based on their
experiences. Mike said that if
you have the freedom to do so,
build something with a custom
API that matches the needs of
both clients and users.

DISTR IBUTED SYSTEMS OF L ITTLE

TH INGS

Summarized by Anthony Nicholson

EnsemBlue: Integrating Distributed
Storage and Consumer Electronics

Daniel Peek and Jason Flinn, University
of Michigan

Daniel Peek described Ensem-
Blue, a framework for integrating
consumer electronic devices
(CEDs) into commodity distrib-
uted file systems (DFSes). This
has been difficult because of the
closed nature of CEDs and be-
cause such devices cannot sim-
ply run the DFS’s client software
to integrate its storage with all
the user’s other computing de-
vices. Instead, Dan described
how EnsemBlue leverages the
user’s general-purpose comput-
ers (such as desktops and lap-
tops) to act as a bridge between
the DFS and each CED that con-
nects to the computer (e.g.,
when an iPod syncs with a user’s
desktop machine).

A key challenge here involves
namespace conflicts between the
DFS and the proprietary naming
structures found on CEDs. En-
semBlue handles this by tracking

100 ; LOG I N : VO L . 3 2 , NO . 1

mappings between the name of
an object in the DFS and its
name on each given CED. Since
the CEDs comprise a closed sys-
tem, the general-purpose com-
puters in the system must exe-
cute all custom code in the
system. These computers there-
fore need to know when data is
updated in the system, to take
certain actions such as updating
custom indexes on CEDs. The
authors leverage the fact that
every DFS has a distributed noti-
fication protocol already—the
cache consistency mechanism.
Therefore, the authors introduce
the concept of a “persistent
query,” which is an object in the
DFS that indicates what the
query is looking for, such as new
mp3 files added to the DFS. The
authors presented an example of
how a persistent query for all
new m4a files could be used to
implement a transcoder from
m4a to mp3 files. Finally, the au-
thors described how they handle
disconnected devices that cannot
speak with the general file server.
In such situations, several of the
user’s devices might be able to
contact each other but not the
remote file server. One of the de-
vices becomes a “pseudo-file
server,” acting as a file server to
the best of its ability, serving to
the other devices those files that
it happens to have at the time.

One questioner ask how this
work would fit into the universal
Plug-and-Play (uPnP) initiative.
Dan responded that currently,
EnsemBlue requires read and
write access to the device
(through USB, for example).
Their future work will allow
them to work with arbitrary pro-
tocols such as uPnP. Jawwad
Shamsi fromWayne State Uni-
versity asked whether they re-
quire a separate general-purpose
device for each mobile device.
Dan answered that any number
of CEDs can connect to any
number of general-purpose com-

puters. Christopher Stewart from
the University of Rochester
asked whether they had encoun-
tered any performance tradeoffs
in building the protocol that in-
teracts with the dedicated host
machine. Dan responded that
they hadn’t measured the perfor-
mance of integrating data back
to the DFS through the general-
purpose computer, but since
their system is weakly consistent
anyway, such performance
would not be that important.

Persistent Personal Names for Global-
ly Connected Mobile Devices

Bryan Ford, Jacob Strauss, Chris
Lesniewski-Laas, Sean Rhea, Frans
Kaashoek, and Robert Morris,
Massachusetts Institute of Technology

Currently, locating users’ person-
al devices over the Internet is dif-
ficult. Local discovery protocols
such as Bonjour don’t work over
long distances, and requesting
DNS names for all of one’s de-
vices is impractical at best. Bryan
Ford argued that people should
be able to name their devices in a
personal fashion and have global
connectivity with each other’s
devices, without having to keep
changing the way the devices lo-
cate each other. Their proposed
solution is called UIA (Unman-
aged Internet Architecture).

In UIA, users managed their own
personal namespaces. When
they acquire a new device (such
as a phone, laptop, or camera)
they assign a name to the device
and “introduce” it to their exist-
ing devices. Each device has a
unique endpoint identifier
(EID)—just a hash of its public
key. All clients running UIA be-
long to an overlay that lets this
namespace exist atop IP. Users
assign short personal names to
identify their friends. Other
users’ devices can then be named
by the combination of friend
name and device name. Devices
then gossip to propagate their
name records. Friendship is tran-

sitive, so if Alice knows Bob di-
rectly, and Bob knows Charlie,
Alice can name Charlie’s phone
as Phone.Charlie.Bob. The au-
thors have implemented UIA on
Linux, Mac OS X, and the Nokia
770 tablet. A UIA name daemon
and router run atop the TCP/IP
stack in userspace, with some
GUI controls as well. Bryan also
showed an entertaining demo
video that highlighted the ease of
use of the UIA paradigm. Their
code is available for download
(in a rough state!) on their proj-
ect Web page: http://pdos
.csail.mit.edu/uia/.

Mark Aiken from Microsoft Re-
search asked how this system
manages connectivity to devices
that have moved while being
communicated with. Bryan an-
swered that in UIA’s routing pro-
tocol, devices track other devices
in their local social neighbor-
hood and then hope to find a few
devices that are stable enough to
be rendezvous points to dissemi-
nate current IP address informa-
tion. These stationary nodes help
bootstrap what is essentially a
distributed DNS scheme. Anoth-
er questioner asked whether the
authors had conducted any us-
ability studies of their system.
Bryan answered that they hadn’t
had any users outside their re-
search group. Mahur Shah from
HP noted that all the examples in
the talk deal with devices that
are fully owned by one user. He
wondered how this would work
for shared devices—in a family
setting, for example. Bryan noted
that they discuss this in the
paper. Each physical device can
have multiple EIDs and go by
different names.

; LOGIN: FEBRUARY 2007 CONFERENCE REPORTS 101

A Modular Network Layer for
Sensornets

Cheng Tien Ee, Rodrigo Fonseca, Sukun
Kim, Daekyeong Moon, and Arsalan
Tavakoli, University of California,
Berkeley; David Culler, University of
California, Berkeley, and Arch Rock
Corporation; Scott Shenker, University
of California, Berkeley, and
International Computer Science Institute
(ICSI); Ion Stoica, University of
California, Berkeley

Cheng Tien Ee described work at
Berkeley on a modular network
layer for sensor networks. The
authors recognize that sensor
nets software from different or-
ganizations does not interoperate
easily. The specific problem they
address in this work is monolith-
ic, vertically integrated network
stacks. Intuitively, one would ex-
pect that if such network layers
were modularized there would
be a good deal of overlay among
different implementations. Since
the authors argue that we are
probably stuck with multiple
network protocols, they focus on
making it as efficient as possible
to run multiple network proto-
cols at once on one system.

Their solution decomposes the
network layer into modules.
First, they break the network
layers into the data plane and the
control plane. Each of these is
further subdivided into many
components, such as an output
queue and forwarding engine in
the data layer, and a routing en-
gine and routing topology in the
control plane. They show how
diverse protocols can actually
share components, such as out-
put queues, resulting in run-time
benefits and code reuse. Their
evaluation of several common
protocols showed that protocol-
specific code made up a small
fraction of the total code base for
their implemented examples.

Matt Welsh from Harvard was
concerned about the interplay
among different network proto-
cols with regard to such things as
packet scheduling and memory
usage. Cheng responded that
memory management is indeed a
cross-layer issue and that they
are currently looking at dealing
with such effects. Matt also
asked whether the code was
available, and Cheng said they
are currently attempting to inte-
grate their work into TinyOS.
Eddie Kohler from UCLA asked
about the types of protocols that
would fit this model less well
than the examples the authors
chose. Cheng answered that they
can decompose any class of pro-
tocols, but the main difficulty
they have with more complex
protocols is the decomposition
of REs (Routing Engines) and
FEs (Forwarding Engines) into
smaller ones that can be better
reused. An example of such a
protocol is one with multiple
phases during the forwarding of
a packet along its path. For such
protocols, it is not immediately
clear how the further decompo-
sition can be done. An indication
of an improperly decomposed
network protocol would be mul-
tiple similar functions, such as
packet forwarding methods,
being implemented within a type
of component. The last question
noted that there are protocols
they can’t support, but this is due
to SP (Sensornet Protocol); for
example, anything with rate lim-
iting can’t be represented to SP.
To the question of whether there
is anything the authors would
have wanted from the lower-
level abstractions that they don’t
currently supply, Cheng replied
that he didn’t need anything else
from SP and, on the contrary,
found it often provided more
info than necessary.

OPERATING SYSTEM STRUCTURE

Summarized by Leonid Ryzhyk

Making Information Flow Explicit in
HiStar

Nickolai Zeldovich and Silas Boyd-
Wickizer, Stanford University; Eddie
Kohler, University of California, Los
Angeles; David Mazières, Stanford
University

Nickolai Zeldovich stated that
the HiStar operating system aims
to prevent malicious and buggy
software from leaking sensitive
user data by making all informa-
tion flow within the system ex-
plicit. The HiStar kernel imple-
ments six types of objects used
as building blocks for user-level
software: containers, segments,
address spaces, threads, gates,
and devices. Each object is as-
signed a security label that con-
trols how the object can be mod-
ified or observed and can be
thought of as a taint. Data in a
tainted object can only be ac-
cessed by other tainted objects.
Any data that flows outside the
system has to be untainted first.
Untainting can only be per-
formed by a thread that has an
untaint label.

Coming up with the right design
of taint tracking can be difficult,
if one wants to avoid covert
channels. In a naive design, ma-
licious applications could com-
municate by modifying and ob-
serving taint levels of different
objects. HiStar closes this covert
channel by making all nonthread
object labels immutable. To
avoid covert channels arising
from resource allocation, HiStar
provides a specialized IPC ab-
straction where the client do-
nates initial resources to the
server.

Flexibility is achieved by intro-
ducing multiple categories of
taint. For example, UNIX users
can be emulated by assigning a
taint category to each user. A su-

102 ; LOG I N : VO L . 3 2 , NO . 1

peruser can then be implement-
ed as a thread holding untaint
privilege for all user categories.
As a result, root has no special
privileges in the system and is
not fundamentally trusted by the
kernel.

Nickolai illustrated the HiStar ar-
chitecture using two case stud-
ies. First, a running example of a
virus scanner was used to intro-
duce the taint-based access con-
trol model and demonstrate how
HiStar allowed encapsulating ap-
plication-specific security poli-
cies in a separate component.
Second, an implementation of
the UNIX authentication process
based on an untrusted authenti-
cation service was described.

The main group of questions re-
lated to the HiStar resource man-
agement policy and dealing with
different types of covert chan-
nels. Nickolai explained that
static preallocation of resources
is preferred in cases where you
really want tight control over in-
formation flow, but in less-sensi-
tive applications that is likely to
be too restrictive. With regard to
covert channels, someone asked
how HiStar dealt with latency-
based covert channels. Nickolai
replied that although they were
working on some ideas, the cur-
rent implementation did not pre-
vent such channels.

Another question was whether
the authentication service could
leak the password by denying
and allowing login requests. The
answer was that this could not
happen, since every request is es-
sentially handled by a newly
forked instance of the authenti-
cation service, which is not al-
lowed to communicate any data
back to the original instance of
the service. Another interesting
question was whether HiStar
could accommodate legacy ap-
plications requiring communica-
tion with the outside world.
Nickolai said that HiStar could

accommodate most legacy appli-
cations, but it may not be able to
provide any added security if the
application is monolithic and re-
quires frequent network interac-
tion.

Splitting Interfaces: Making Trust Be-
tween Applications and Operating
Systems Configurable

Richard Ta-Min, Lionel Litty, and David
Lie, University of Toronto

In the modern OS, the trusted
computing base of an application
includes not only the kernel but
also all the privileged user-level
services that run under the root
account. By compromising one
of these services, the attacker
gets access to all sensitive data in
the system.

Proxos aims to reduce the TCB
by isolating sensitive applica-
tions inside their own private in-
stances of the OS running under
control of a virtual machine. All
other applications run inside the
public “commodity” OS. The
commodity OS is also used for
communication among secure
applications running inside pri-
vate OSes. This is achieved by se-
lectively routing some system
calls issued by secure applica-
tions to the commodity OS. The
developer specifies which calls
should be routed by using the
Proxos routing language. To ben-
efit from the Proxos architecture,
secure applications need to be
split into components running
inside the commodity OS and
those running inside the private
OS.

The main performance overhead
comes from context switching
between the private and the
commodity OS, which turns out
to be an order of magnitude
slower than Linux kernel call.
However, at least for the proof-
of-concept applications that have
been ported to Proxos (Web
browser, SSH authentication
server, and the Apache Web serv-

er with SSL certificate service),
this did not prove to be a prob-
lem, as the resulting end-to-end
overhead was negligible.

Q: The private OS can become as
complex as Linux itself. So how
does this help reduce the TCB?
A: Yes, security-sensitive applica-
tions still have to trust the entire
Linux kernel, but not the privi-
leged processes running on top.
Q: Is it necessary to write proxy
code for each ioctl to the com-
modity OS? A: Yes, but in our ex-
perience things you want to iso-
late do not require this. Q: So,
are you claiming that context-
switch time is irrelevant? A: This
is the case for applications that
we have ported so far. Of course,
for applications that do more
kernel calls the performance im-
pact would be greater. Q: In your
performance evaluation you
compare overhead of Proxos
against Linux running on top of
Xen. What would be the over-
head compared to Linux running
on hardware? A: We haven’t
done such experiments but the
overhead can be estimated based
on available performance data
for Xen.

Connection Handoff Policies for TCP
Offload Network Interfaces

Hyong-youb Kim and Scott Rixner, Rice
University

Hyong-youb Kim focused on ef-
ficient utilization of TCP offload
capabilities available in some
modern NICs. Whereas offload-
capable NICs can potentially im-
prove the performance of net-
work-intensive applications by
taking over some of the TCP pro-
cessing load, it turns out that if
used without care this feature
can easily saturate the NIC and
degrade the overall system per-
formance.

Three techniques for optimizing
connection handoff policy were
proposed:

; LOGIN: FEBRUARY 2007 CONFERENCE REPORTS 103

1. Prioritize packet processing
on the NIC by giving pack-
ets handled by the host
processor higher priority
than packets processed by
the NIC.

2. Dynamically adapt the
number of TCP connec-
tions handled by the NIC
based on the length of
packet queues.

3. Compensate for the hand-
off cost by offloading long-
lived connections to the
NIC.

The proposed techniques were
evaluated using a system simula-
tor modeling the NIC as a MIPS
processor with 32 MB of RAM.

Q: If there is a sudden change in
number of received packets,
would there be a lot of overhead
in switching? For example, what
happens if someone wants to
DoS by starting to send lots of
long packets and then stopping?
A: The NIC currently does not
switch connections back to the
host, so there’s no overhead in-
volved in reducing the number
of connections. If the host wants
to hand a connection to the NIC
it has to transfer a small buffer,
but it’s cheap. Q: You simulate
the NIC as a single general-pur-
pose processor; however, actual
network processors are more
complex and have multiple spe-
cialized cores. Are your results
representative of what would be
observed on real hardware? A:
Network processors are not good
at handing NIC workloads, so
they should not be used for
NICs. Network processors are
built for switching packets. NIC
workloads are different, and net-
work processors do not work
well.

DISTR IBUTED STORAGE AND

LOCKING

Summarized by Leonid Ryzhyk

Ceph: A Scalable, High-Performance
Distributed File System

Sage A. Weil, Scott A. Brandt, Ethan L.
Miller, Darrell D.E. Long, and Carlos
Maltzahn, University of California,
Santa Cruz

Sage A. Weil described Ceph as a
high-performance distributed
file system designed to accom-
modate hundreds of petabytes of
data. The main principles under-
lying the Ceph architecture are
separation of data and metadata,
use of intelligent storage devices,
and adaptable dynamic metadata
management.

In his talk, Sage described the
two main components of Ceph,
the metadata store called MDS
and the distributed object store
called RADOS. MDS achieves ex-
cellent scalability by dynamically
partitioning the directory tree
among metadata servers based
on metadata access frequencies.
In addition, MDS simplifies the
metadata structure by replacing
file allocation data with seeds to
a system-wide well-known hash-
ing function called CRUSH,
which is very stable in the face of
storage device failures and other
storage capacity changes.

The RADOS object store pro-
vides scalability and reliability
through replication, failure de-
tection, and recovery. RADOS
achieves scalability by using in-
telligent object store nodes that
take advantage of a very compact
representation of the cluster state
(made possible by CRUSH), en-
abling them to efficiently com-
municate with local peers to
quickly recover from failures or
any other changes to the cluster.
To enable the use of Ceph for ef-
ficient communication, while
guaranteeing data safety, RADOS
implements a two-phase write
acknowledgment protocol. The

first acknowledgment confirms
that the update has been propa-
gated to all replicas, while the
second confirms that the update
has been physically committed
to disk. RADOS uses the EBOFS
object file system for local data
storage. EBOFS implements a
non-POSIX interface that sup-
ports features such as atomic
transactions and asynchronous
commit notifications.

Q: Does Ceph support directory
move/rename? A: Yes. The only
thing that moves is the inode,
not the directory. Q: What is the
effect of network latency on per-
formance numbers? A: One of
the assumptions is that we are
deploying in a data center envi-
ronment. In principle, however,
you could deploy it in a wider
scenario if you have sufficient
bandwidth. Q: In your model,
metadata lookups are done on
the server. What are the charac-
teristics of your workload that
make this more appropriate for
scalability than doing the lookup
on the client? A: High-perfor-
mance workloads with high con-
tention for metadata require con-
sistency to be managed within
the metadata server. Q: What is
the recovery strategy for metada-
ta? A: The short-term log dou-
bles as a journal, so if a metadata
server fails, another node can
rescan its journal.

Distributed Directory Service in the
Farsite File System

John R. Douceur and Jon Howell,
Microsoft Research

Jon Howell described Farsite as a
distributed serverless file system
for networks of workstations.
The focus of the current talk was
on the design and implementa-
tion of a distributed metadata
service for Farsite. The design
goals included support for fully
functional directory move opera-
tions, including moves across
partitions, support for atomic

104 ; LOG I N : VO L . 3 2 , NO . 1

moves, support for load balanc-
ing, and hotspot mitigation.

The authors observe that the
conventional approach to meta-
data partitioning based on path
names precludes load balancing.
Instead they suggest implement-
ing partitioning based on hierar-
chical immutable file identifiers.
Since the identifier hierarchy is
not tied to the path hierarchy,
load balancing and directory
(re)naming become completely
orthogonal. File identifiers are
compactly represented using a
variant of the Elias y coding. Ef-
ficient lookup is achieved by
storing the file map in a data
structure similar to the Lampson
prefix table.

To implement atomic rename op-
erations, the recursive path leas-
es mechanism is introduced. It
enables safe locking of the chain
of file identifiers from the file-
system root to a file, without
putting excessive pressure on the
root server. Finally, the Farsite
metadata service minimizes false
sharing by implementing a fine-
grained locking scheme, where a
client acquires locks for individ-
ual file metadata fields required
for the requested access mode,
rather than for the entire file.

Q: Does the repeated load rebal-
ancing have an impact on the
efficiency? A: Yes, one of the de-
sign decisions we made was
that when we delegate load we
can never coalesce it again. In
practice it seems to work well.
Q: Why aren’t we already all
using Farsite-like things on our
mostly empty disks? Is there
a drawback to this approach?
A: The greatest limitation is that
byzantine fault tolerance de-
pends on assumptions about
how many machines may fail,
but if they are all running homo-
geneous software and have a
similar vulnerability, they can all
fail/misbehave in the same way.
Q: Suppose we adopt a less pure

approach and put some stuff in-
side protected infrastructure.
How does that change things? A:
Without having to care about
byzantine fault tolerance, things
would be much simpler. Howev-
er, metadata load is a huge factor,
which we would like to distrib-
ute among multiple machines.

The Chubby Lock Service for Loosely-
Coupled Distributed Systems

Mike Burrows, Google Inc.

Chubby is a large-scale distrib-
uted lock service used in several
Google products, including
GFS and Bigtable. Mike focused
mainly on introducing the Chub-
by API and the motivation be-
hind it and describing the ways
Chubby has been used, rather
than on how it was implement-
ed.

The main purpose of Chubby is
to provide distributed-systems
developers with a reliable and
scalable implementation of the
distributed consensus protocol.
However, experience has shown
that even if implemented as a li-
brary, the consensus protocol is
still difficult to use for develop-
ers. Therefore, Chubby encapsu-
lates it inside the familiar lock
service API.

In addition to providing lock and
unlock operations, Chubby al-
lows associating small data
records with locks and adopts a
UNIX-like naming scheme for
them, which makes it look and
feel like a file system. However, it
is not well suited for storing
large amounts of data and lacks a
number of filesystem features
such as file renaming, atomic
multifile operations, and partial-
file reads and writes. This lack of
features helps simplify the Chub-
by design and prevents develop-
ers from misusing it as a distrib-
uted file system.

Lock clients can be notified of
certain types of events, including
file content changes, file cre-

ation/deletion, and lock acquisi-
tion. Chubby is designed to sup-
port large numbers of clients per
lock. Although changes of the
lock ownership are typically in-
frequent, clients tend to periodi-
cally poll the lock, creating a lot
of read traffic. To reduce this
traffic, a consistent write-
through client-side cache is
used.

Q: Are there any examples of in-
teractions that you had with the
user community that led to the
file-system abstraction? A: No,
the design decision happened
before the user base. I would put
the main reason down to sharing
an office with Rob Pike and Sean
Quinlan (Plan 9 people), so
everything looked like an FS.
Q: Chubby allows developers to
easily get reliability guarantees
by using a lock server instead of
a state machine. Were there
other projects that had to go off
and implement a state machine?
A: Well, we did. There is a state
machine library that we use; at
present there are no other users
of it. Q: It seems like large-scale
tools are becoming increasingly
more integrated. Have you
thought about bad interactions
where one misbehaving applica-
tion of a tool can cause cascading
failure in other applications?
A: Yes, it happens all the time.
My system has managed to bring
down many others. What you do
is analyze exactly what hap-
pened, fix your programming
steps, and fix your code so that
every single problem can’t hap-
pen again, and of course some-
thing else happens next time.

; LOGIN: FEBRUARY 2007 CONFERENCE REPORTS 105

LARGE DISTR IBUTED SYSTEMS

Summarized by Prashanth
Radhakrishnan

Experiences Building PlanetLab

Larry Peterson, Andy Bavier, Marc E.
Fiuczynski, and Steve Muir, Princeton
University

This talk, given by Larry Peter-
son, was about the authors’ ex-
perience building PlanetLab
(PL). PL is a global platform for
deploying and evaluating plane-
tary-scale network services. PL
has machines spread around the
world, with users’ services run-
ning in a slice of PL’s global re-
sources.

The PL design was a synthesis of
existing ideas to produce a fun-
damentally new system: It was
experience- and conflict-driven.

Larry listed the requirements
identified at the time PL was
conceived and the design chal-
lenges they faced. Given its scale,
PL had to rely on site autonomy
and decentralized control for
sustainability, while also manag-
ing the trust relationships be-
tween the users of PL and the
owners of the machines. Next, it
had to balance the need for re-
source isolation while coping
with support for many users
with minimal resources. Finally,
PL had to be a stable, usable sys-
tem, supporting long-running
services and short experiments,
while continuously evolving
based on feedback.

PL’s management architecture
has the following key features to
address the design challenges.
PlanetLab Control (PLC), a cen-
tralized front-end, acts as the
trusted intermediary between
PL users and node owners. To
support long-lived slices and ac-
commodate scarce resources, PL
decouples slice creation from re-
source allocation. Node-owner
autonomy is achieved by making
sure that only owners generate
resources on their nodes and that

they can directly allocate a frac-
tion of their node’s resources to
virtual machines (VMs) of a spe-
cific slice. To support slice man-
agement through third-party
services, PLC allows delegation
of slice-creation by granting tick-
ets to such services. For scalabil-
ity, PL was designed so that mul-
tiple PL-like systems can coexist
and federate with each other. As
per the principle of least privi-
lege, management functionality
has been factored into self-con-
tained services, isolated into
their own VMs and granted min-
imal privileges. To address the
resource allocation issues, PL
provides fair sharing of CPU and
network bandwidth and simple
mechanisms to protect against
thrashing and overuse. Finally,
keeping PL’s control plane or-
thogonal from the VMM, lever-
aging existing software, and
rolling out upgrades incremen-
tally helped PL evolve while also
being operational.

Larry concluded with lessons
learned from their experience.
Key among them was the obser-
vation that decentralization fol-
lows centralization; that is, a
centralized model is important
for a system to achieve critical
mass, and it is only by federation
that the system can scale.

During the Q&A session, Sean
Rhea of Intel Research Berkeley
asked about Larry’s comments
on the proposal to set aside
physical boxes for measure-
ments. Larry said he was not
convinced about reserving physi-
cal resources, but rather thought
that logical isolation was suffi-
cient. David Anderson of CMU
noted that Larry’s talk presented
a rosy picture of PL, in contrast
to the PL panel in WORLDS ’06
that discussed problems with PL.
David asked about the observed
problems with running latency-
sensitive services, disk thrash-
ing, and scheduling. Larry said

that there was room for improve-
ment in scheduling. He also
noted that since the PL code is
available, the community was
welcome to track down bugs that
hamper their research and report
patches. He said that there was a
known kernel bug that could
cause problems with latency-
sensitive slices and that things
would improve when the next
kernel upgrade is rolled out.

iPlane: An Information Plane for
Distributed Services

Harsha Madhyastha, Tomas Isdal,
Michael Piatek, Colin Dixon, Thomas
Anderson, and Arvind Krishnamurthy,
University of Washington; Arun
Venkataramani, University of
Massachusetts Amherst

Harsha Madhyastha presented
iPlane, a service that provides ac-
curate predictions of end-to-end
Internet path performance. He
started off with the observation
that large-scale distributed serv-
ices, such as BitTorrent, depend
on information about the state of
the network for good perfor-
mance. But most current Inter-
net measurement efforts, such as
GNP and Vivaldi, provide only
latency predictions between a
pair of nodes. In contrast, iPlane
measures a richer set of metrics,
such as latency, loss rate, and
available bandwidth.

iPlane continuously performs
measurements to generate and
maintain an atlas of the Internet
by doing traceroutes from a few
distributed vantage points. For
scalability, targets are clustered
on the basis of BGP atoms and a
representative target from each
atom is used to approximate the
performance of targets in the
atom.

iPlane uses structural informa-
tion such as the router-level
topology and autonomous sys-
tem (AS) topology to predict
paths between arbitrary nodes in
the Internet. This prediction is

106 ; LOG I N : VO L . 3 2 , NO . 1

made by composing partial seg-
ments of known Internet paths
so as to exploit the similarity of
Internet routes. Next, iPlane
measures the link properties in
the Internet core and edge. In the
Internet core, the special vantage
points measure the link attrib-
utes. Link properties at the Inter-
net edges are obtained by partici-
pating in BitTorrent swarms and
measuring the links to the end-
hosts while interacting with
them.

Thus, to measure path properties
between any two hosts, first the
path between them is predicted.
Then, iPlane composes the meas-
ured properties of the con-
stituent path segments to predict
the performance of the compos-
ite path.

iPlane has been demonstrated to
improve the overlay performance
of several representative overlay
services such as content distribu-
tion networks, swarming peer-
to-peer filesharing, and VoIP.

During the Q&A session, Buck
Krasic of the University of
British Columbia observed that
participating in BitTorrent
swarms to measure Internet edge
link properties might result in
conservative estimates; for exam-
ple, BitTorrent clients may have
multiple connections open and
the bandwidth that iPlane ob-
serves might just be a fraction.
He asked whether iPlane had
some technique to compensate
for that. Harsha replied that they
were using BitTorrent to measure
bandwidth capacity, not the
available bandwidth, and that
bandwidth capacity can be meas-
ured using a pair of back-to-back
packets. And since measure-
ments from BitTorrent are based
on passive monitoring of a TCP
connection of several packets, it
is likely that at least one pair of
back-to-back packets will be ob-
served.

Fidelity and Yield in a Volcano
Monitoring Sensor Network

Geoff Werner-Allen and Konrad
Lorincz, Harvard University; Jeff
Johnson, University of New Hampshire;
Jonathan Lees, University of North
Carolina; Matt Welsh, Harvard
University

Geoff Werner-Allen presented
this science-centric evaluation of
a 19-day sensor network deploy-
ment at Reventador, an active
volcano in Ecuador. The data
collected by the sensor network
deployment was evaluated based
on five metrics, namely, robust-
ness, event detection accuracy,
data transfer performance, tim-
ing accuracy, and data fidelity. Of
these, Geoff dealt with robust-
ness, timing accuracy, and data
fidelity in his talk.

The sensor hardware they used
for volcano monitoring was
small and provided real-time
data acquisition, unlike conven-
tional standalone dataloggers,
which are unwieldy, and it
logged data to a local flash drive.
Their sensor network contained
16 sensor nodes, each equipped
with a seismometer, a micro-
phone, and an antenna. These
nodes continuously sample seis-
mic and acoustic signals and log
the data to local flash memory.
They also run an event-detection
algorithm that transmits a time-
stamped report to the base sta-
tion upon detection of a seismic
event. The base station, located
4.6 km away from the sensor de-
ployment, initiates data collec-
tion if it receives triggers from
more than 30% of the sensor
nodes within a certain time.

The overall robustness of the
system was limited by power
outages at the base station and a
single three-day software failure.
Discounting these, the mean
node uptime exceeded 96%, in-
dicating that the sensor nodes
themselves were reliable. Flood-
ing Time Synchronization Proto-

col (FTSP) was used for time
synchronization between sensor
nodes. Although predeployment
results with FTSP were good,
during deployment they ran
into stability issues, leading to
occasional incorrect time-stamp
reports. They developed a time
rectification approach that filters
and remaps recorded time
stamps to accurately recover
timing despite the incorrect
time stamps. They evaluated the
fidelity of the collected data by
performing an analysis of the
seismic and acoustic signals
from a seismological perspective.
Their results indicate that the
collected signal quality and tim-
ing match the expectations of the
infrasonic and seismic activity
produced by the volcano.

Geoff concluded his talk with
the three lessons they learned
from this deployment: Ground
truth and self-validation are criti-
cal, network infrastructure is
more brittle than sensor nodes,
and it’s important to build confi-
dence with domain scientists.

During the Q&A session, Geoff
was asked whether they look at
sensor networks as a tool that
scientists in other domains could
use without requiring the com-
puter scientist’s presence. Geoff
responded by stating that this
was a great observation and that
they wanted sensor networks to
eventually be used like that.
Someone from Stony Brook Uni-
versity asked whether it was pos-
sible to simply broadcast time
from the base station. Geoff
replied that such a broadcast
would work only with single-hop
networks, which isn’t the case
with the Reventador deployment.
Mehul Shah of HP Labs asked
about the fidelity of the measure-
ments with respect to its rele-
vance to the domain scientists.
Geoff said that the scientists are
still working on the results ob-
tained and that their initial obser-
vations are encouraging.

; LOGIN: FEBRUARY 2007 CONFERENCE REPORTS 107

HotDep ’06: Second
Workshop on Hot Topics in
SystemDependability

Seattle,Washington
November 8, 2006

F INDING THE NEEDLE IN THE

HAYSTACK

Summarized by Yin Wang

Comprehensive Depiction of Configu-
ration-dependent Performance Anom-
alies in Distributed Server Systems

Christopher Stewart, Ming Zhong, Kai
Shen, and Thomas O’Neill, University of
Rochester

Presenter: Chris Stewart

Distributed server systems such
as J2EE application-server sys-
tems have wide-ranging work-
load conditions. The assumption
here is the reasonable perfor-
mance expectation based on
knowledge of the system design
(e.g., Little’s Law). The problem
is performance anomalies, that
is, when performance falls below
expectation. Previous work
shows that anomaly characteri-
zation can aid the debugging
process and guide online avoid-
ance. Chris’s goal is to depict all
anomalous conditions.

A three-step process was taken:
(1) generate performance expec-
tations by a whole-system perfor-
mance model; (2) search for
anomalous run-time conditions;
and (3) extrapolate a compre-
hensive depiction. An example
was shown of a submodel hierar-
chy (a four-level submodel for
J2EE application servers), with
its advantages and limitations.
The next step is to determine the
anomaly error threshold, which
is different for online avoidance
and debugging. Then Chris ex-
plained decision-tree-based de-
pictions, why they chose to use
decision trees, and how they
classify anomaly conditions. For
the case study of JBoss, where

three performance anomalies
were found and fixed, the deci-
sion tree displayed with the three
anomalies described. This ap-
proach cannot detect nondeter-
ministic anomalies, and the
model accuracy requires manual
investigation. Furthermore, de-
bugging remains manual. The
take-away message is that depic-
tion of anomalies can aid debug-
ging and avoidance.

Jay Wylie asked how to interpret
anomalies that are good. Chris
responded, “We don’t consider
that. The anomalies here are out-
of-expectation anomalies.” To
Ken Birman’s question of
whether the magnitude between
anomalies and normal perfor-
mance is similar, Chris said that
it is based on empirical observa-
tion. What about a known
source of anomalies? For exam-
ple, when garbage collection
kicks in, does the performance
degrade? Is this something you
can’t model? Chris agreed that
this was a problem, but he said
that his group hopes “to block
out those known anomalies.”
John Wilkes asked how hard it is
to build models. “The model is
borrowed heavily from the NSDI
’05 paper. Actually, a simple
model is adequate for it, like Lit-
tle’s Law,” was the response. In
reply to a question on how con-
trolled searches must be in order
to detect anomalies, Chris com-
mented that this work involved a
benchmark-controlled environ-
ment. For a long trace of system
execution, the performance vari-
ation may be huge.

Geoff Voelker asked, “In terms of
the size of configurations ex-
plored, they seem to be relatively
small. In a large system you may
have lots of choices, for example,
cache parameters. What do you
do in this case?” Chris replied,
“We hope to investigate a sys-
tematic method to explore sys-
tem configurations. Within this

work, we have eight run-time
conditions and 7 million possi-
ble configurations.” The final
question, “Do you know when to
stop exploration?” elicited a re-
sponse of “It depends on end
use. If you want to do avoidance,
you want to stop when you man-
age to satisfy the performance
goal. For debugging, it depends
on the quality of code you want.”

Static Analysis Meets Distributed
Fault-Tolerance: Enabling State-
Machine Replication with
Nondeterminism

Joseph G. Slember and Priya
Narasimhan, Carnegie Mellon
University

Presenter: Joseph Slember

State-machine replication is a
standard way to add fault toler-
ance, but if replication is not
100% deterministic, it is difficult
to do. The goal here is to target
nondeterminism when it mat-
ters, and programmer intent
must be respected. Joseph
showed a picture of a three-tier
replicated server system and ex-
plained the complexity of the
problem. The approach adopted
is compile-time static analysis
with run-time compensation.

Next Joseph explained the tax-
onomy of nondeterminism (ab-
breviated as ND hereafter). ND–I
includes pure (or first-hand)
ND, for example, random(), get-
time(), and contaminated (or sec-
ond-hand) ND, which is the ND
induced by pure ND. ND–II in-
cludes superficial ND and other
ND types. For static analysis,
they built an ND dictionary of C
and C++. They then added data
structures to store results of ND
actions. Code snippets are gener-
ated and inserted as functions.
For run-time compensation,
there is a tradeoff between
checkpoint-to-compensate (high
bandwidth) and reexecute-to-
compensate (high CPU).

108 ; LOG I N : VO L . 3 2 , NO . 1

Ken and Lorenzo broke in with
“How much is the compensation
overhead?” The answer is that it
depends on the application-level
characteristics. For example,
with Apache there is no compen-
sation at all. To the question
“What is the advantage of your
technique over the backup
method?” Joseph explained that
the backup does not work on
multitier systems. In response
to “If the compensation falls be-
hind, and the replica is ahead,
can the other one catch up or
they will be inconsistent?”
Joseph said that as soon as the
replica is compensated, it is con-
sistent. The concurrency is in-
creased by doing it this way.

Joseph continued with the pre-
liminary evaluation. The tier
number is between 2 and 4, with
clients between 2 and 4. He
showed a graph on experiments
with 5% forward and backward
ND. The graph displayed that
the technique scales well. Anoth-
er graph on 60% forward and
backward ND shows increased
overhead. An insight from these
results is that lower amounts of
ND cause much less overhead.
Thus application characteristics
will determine the overhead.

Jay Wylie asked whether all tiers
get analyzed at the same time or
independently. It turns out that
you can do it independently. The
worst case is that tiers are fully
transparent. Ken and Lorenzo
asked whether there has been
prior work doing replication on
ND programs, writing down
what the program did, then the
backup waiting for the primary
to know what to do. The cost
seems to be not that great.
Joseph added that breaking
down the overhead is a subject of
future work. In reply to “How
does your approach compare
with the method where the mas-
ter decides and the slave asks for
the answer?” Joseph said that the

slave has to ask for everything in
that case, and we don’t need that,
so future work will aim toward
making it more efficient. Miguel
Castro asked whether the project
does compensation at the same
time. It does, and this helps to
increase the concurrency of the
program. Geoff Voelker asked
how to know which ND a func-
tion call is going to depend on.
Joseph replied that they map
calls to different ND.

Correlating Multi-Session Attacks via
Replay

Fareha Shafique, Kenneth Po, and
Ashvin Goel, University of Toronto

Presenter: Ashvin Goel

Typical attack characteristics in-
clude low-level or stealthy be-
havior, small footprint, and mul-
tiple sessions. The idea in this
paper is to replay the attacks.
The basic replay method is to
compare outputs with replay run
and the original run. But if the
replay is nondeterministic, the
output could differ. The solution
is training using nondeterminis-
tic inputs to obtain output statis-
tics. The outlier is classified as
the attack.

Ashvin showed the experiments
of unit tests on different applica-
tions and multisession attacks.
The unit test result is a matrix
showing the sensitivity of the
method to changes in inputs.
The multisession result is a dia-
gram with attack multisession
and user multisession. There is a
great output difference between
the attack and the user. In con-
cluding, Ashvin proposes replay-
ing sessions with changed inputs
to correlate attacks. Future work
includes nondeterministic replay
and the case of long-running ses-
sions.

Chris Stewart asked whether it is
important that legitimate user
outputs are not modified. If you
have a false positive, you roll
back, and the output is modified.

Ashvin explained that false posi-
tives do not matter if it is securi-
ty-critical. For analysis, we are
not concerned about 100% cor-
rectness. You probably need a
human to identify the attack at
the end. George Candea asked
about the cost of acting on false
positives. What if you roll back
actions that are really important?
Ashvin said, “We don’t get too
many false positives. False nega-
tives are more important for the
work. Because we have roll-back
recovery, we can reverse the roll-
back, but the cost is huge. It is
important not to have many false
positives. We still need a
human.” Another question con-
cerned a paper from USENIX on
trying to undo operator mistake
and then traveling back in time,
but it is hard to redo a change
you should not have undone and
the cost is high. Ashvin ex-
plained that the system has to be
offline once you have an intru-
sion. It depends on how long it
takes you to fix it. Jim Thorn-
ton’s question on what to do if a
legitimate change results in a dif-
ferent output was deferred to an
offline discussion.

Automatic On-line Failure Diagnosis
at the End-User Site

Joseph Tucek, Shan Lu, Chengdu Huang,
Spiros Xanthos, and Yuanyuan Zhou,
University of Illinois at Urbana-
Champaign

Joseph Tucek showed the com-
monly seen Windows XP error
message window that asks you to
send an error report, which is
mainly the core dump. It is not
easy to reproduce a bug with just
core dumps. The real insight is
that because there is a well-de-
fined set of steps that are general-
ly taken during debugging, why
not automate it? The proposed
solution is online automated di-
agnosis. First capture the mo-
ment of failure; then run analysis
tools only on the relevant por-
tions of the program; finally, au-

; LOGIN: FEBRUARY 2007 CONFERENCE REPORTS 109

tomate the debugging process in
a humanlike protocol. For replay
and reexecution, they used their
checkpoint/reexecute framework
in their SOSP ’05 Rx paper. For
analysis, their project begins
with the core dump, which pro-
vides an inexpensive starting
point. For the example of memo-
ry bug detection, it works by
monitoring accesses. The analy-
sis process is too expensive for
production runs. It has to be
modified and inserted during
mid-run. It is feasible only be-
cause they limit it to recent and
relevant execution.

As experimental results, there
are three bugs found with failure
types correctly identified. Joseph
displayed in detail the example
of a TAR bug. The take-away
message is that a dynamic back-
ward slice can tell a concise story
of the problem and that the tool
can perform analysis at the end-
user side.

Solom Heddaya was interested in
the number of times the system
failed but no bugs were found.
For deterministic bugs, Joseph
claimed 100% success rate, but
“occasionally, we have to go back
more checkpoints, and it is pos-
sible that the earliest checkpoint
is after the root cause. For the
case of nondeterministic bugs,
the result is not so good.” George
Candea said that he thought
most bugs are nondeterministic,
but the reproducibility varies.
Joseph conceded that some non-
determinism comes from the en-
vironment, but they are eliminat-
ing this source. Ken Birman
asked how far one must go in
rolling back and checkpoints.
Joseph said that, “according to
statistics, we go back more when
necessary, and give up if you can-
not find it far enough.” In re-
sponse to whether backward
slicing requires source code,
Joseph said it did not and that

they use binary instrumentation
with the tool PIN from Intel.

Kai Shen stated that there are al-
ready many debugging tools out
there. So what are the take-home
points? Joseph replied that their
tools are feasible because of the
low overhead. “Debugging is not
an art. There is a process we can
use.” Chris Stewart wondered
how the logic here can be differ-
ent for different systems. “We try
to be general,” said Joseph. “Java
is different. We do not deal with
that. If you have more specific
knowledge, it would provide
much better results.”

PRAGMATIC CHOICES FOR THE

NEW AGE

Summarized by Avishay Traeger

The Case for Byzantine Fault Detec-
tion

Andreas Haeberlen, Max Planck
Institute for Software Systems and Rice
University; Petr Kouznetsov and Peter
Druschel, Max Planck Institute for
Software Systems

Speaker: Andreas Haeberlen

Byzantine Fault Tolerance (BFT)
is a well-known technique that is
used in distributed systems to
mask a bounded number of
byzantine faults. BFT incurs
large overhead in that it requires
3f+1 replicas, where f is the num-
ber of faults to tolerate, and it
does not scale well. This work
describes Byzantine Fault Detec-
tion (BFD), an alternative ap-
proach that aims at detecting
these faults, rather than masking
them. Whereas detection is not
sufficient for irreversible behav-
ior, it is an efficient and scalable
alternative for recoverable faults.
It can also deter bad behavior.
The detection system uses only
f+1 replicas and requires that
only one replica complete a re-
quest before returning to the
client (rather than requiring that
most replicas complete, as in
BFT).

Each node in this system has a
state machine and a detector.
The detector can inspect all mes-
sages at the local node. When
the detector observes a fault it
informs its local application and
provides evidence to other detec-
tors. Since the detector only
knows about messages on the
local node, only observable
faults can be detected. In the de-
tector, each action is undeniably
associated with the identity of
the node that has performed the
action, allowing the system to
gather irrefutable evidence of
faulty behavior. In addition, the
detector is complete (finds evi-
dence against faulty nodes when-
ever faulty behavior is observed)
and accurate (does not generate
valid evidence against correct
nodes).

Byzantine Fault Detection is a
good choice for systems with re-
coverable state, systems already
using BFT (to ensure that faults
are quickly detected), and sys-
tems that span multiple adminis-
trative domains. Other consider-
ations include the number of
nodes in the system, the delay
the nodes can tolerate, and the
amount of available bandwidth.

Safe at Any Speed: Fast, Safe Paral-
lelism in Servers

John Jannotti and Kiran Pamnany,
Brown University

Speaker: Kiran Pamnany

Many server applications are
multithreaded, with one thread
handling each request. Concur-
rency helps improve perfor-
mance, but the programmer
needs to synchronize access to
shared resources, which is error-
prone. The programming philos-
ophy presented is that one
should start with a serial, correct
application and gradually im-
prove parallelism, as opposed to
starting with a highly concurrent
but buggy program and progres-
sively fixing bugs. In an event-

110 ; LOG I N : VO L . 3 2 , NO . 1

driven program it is possible to
improve parallelism without
adding locking: If two handlers
do not use the same global vari-
ables or contexts, they can run in
parallel. This work uses static
analysis to determine which han-
dlers should be allowed to run
together, and it enforces the con-
straints at run-time.

The solution uses static analysis
to identify aliases, locate event
handlers, determine global vari-
ables that are read or written by
each handler, examine context
usage by each handler, and iden-
tify system calls made by each
handler. When the analysis is
complete, any concurrency is-
sues are reported. In cases where
static analysis cannot determine
if handlers can run concurrently,
conservative behavior is used to
ensure safety. The analyzer pro-
vides detailed feedback to the
programmer so that constraints
can be removed, either by split-
ting the handler or by adding an
explicit lock. Profiling can help a
programmer decide which con-
straints should be removed.

At run-time, a multithreaded
event management library runs
handlers concurrently, subject to
the constraints generated by the
static analysis. Colors and hues
are assigned to event handlers:
Handlers that may run in parallel
are assigned different colors, and
those that may run in parallel if
and only if their contexts differ
are assigned different hues. Two
levels of queues are used to
schedule event handlers; the first
level has one queue for each hue
and the second level has one
queue for each color. This ap-
proach results in a conservative
approximation of the con-
straints, but it enables efficient
scheduling without expensive
locking.

Chunkfs: Using Divide-and-Conquer
to Improve File System Reliability and
Repair

Val Henson and Arjan van de Ven, Intel
Open Source Technology Center; Amit
Gud, Kansas State University; Zach
Brown, Oracle, Inc.

Speaker: Val Henson

Today, it can take several days to
run a file system check (fsck) on
production file systems. As disk
capacity is growing at a much
faster rate than bandwidth and
seek time is remaining fairly con-
stant, the situation will only get
worse. In addition, as capacity
grows, the likelihood of disk er-
rors grows as well. Existing solu-
tions (journaling, copy-on-write,
soft updates, etc.) can reduce the
frequency with which one must
run fsck, but not the duration of
the fsck. Finally, an entire file
system can fail from a small
number of faults. These issues
imply that file systems should be
designed with repair in mind.
Developers can use several tech-
niques to achieve this: They
should use on-disk formats that
are conducive to repair, use sim-
ple on-disk data structures, cre-
ate optimizations for reading
data for repair, allow for fast in-
cremental file system checks,
and add features such as check-
sums, redundancy, and scrub-
bing.

Chunkfs is a proposed repair-dri-
ven filesystem architecture,
where the file system is split into
several chunks that are as self-
contained as possible. Each
chunk has its own block number
space, allocation bitmaps, and
superblock. This allows individ-
ual chunks to be fscked, greatly
reducing fsck time. Other bene-
fits include being able to change
the size of the file system and de-
fragment quickly. Since chunks
do not have much common
metadata, Chunkfs has built-in
multithreaded scalability. It can

also allow for per-chunk filesys-
tem formats.

Chunkfs uses continuation in-
odes to deal with issues such as
files, hard links, and renames
that cross multiple chunks. To
avoid having many of these con-
tinuation inodes, chunkfs uses
smart allocation and sparse files
so that a file has at most one
continuation inode per chunk.
Because these continuation in-
odes contain pointers to other
chunks, some chunks may need
to be checked together. You can
find a project page for Chunkfs
at http://www.nmt.edu/~val/
chunkfs/.

Towards a Dependable Architecture
for Internet-scale Sensing

Rohan Narayana Murty and Matt
Welsh, Harvard University

Speaker: Rohan Narayana Murty

An Internet-scale sensing (ISS)
system consists of a large num-
ber of geographically distributed
data sources tied into a net-
worked framework for collect-
ing, filtering, and processing
potentially large volumes of real-
time data. The infrastructure is
heterogeneous, decentralized,
and volatile: Failures are fre-
quent, and the system must be
reliable in the sense that it con-
tinues to process (possibly in-
complete) data. ISS systems need
a highly scalable solution for de-
pendability. This work argues
that ISS systems should be de-
signed to offer feedback to end
users on the fidelity and cover-
age of the results returned by the
system and should make use of
simple, lightweight replication
techniques.

In many ISS applications, avail-
ability is more important than
correctness. It is very difficult to
guarantee correctness on such a
system, and many applications
are naturally tolerant to dimin-
ished quality of the data. The
goal of this work is to provide

; LOGIN: FEBRUARY 2007 CONFERENCE REPORTS 111

mechanisms that mitigate the ef-
fects of failures (without dimin-
ishing availability) and provide
feedback on the quality of an-
swers to the end user. Query re-
sults should contain feedback
about the fraction of sources rep-
resented in the answer, as well as
information about the age of the
data.

This work has three basic design
principles to achieve these goals.
First, it uses structured operator
replication, which means that
more resources are devoted to
replications of operators that are
higher in the dependency tree
since they can lead to larger fail-
ures. Second, it uses free-run-
ning operators. Operators do not
need to maintain consistency
with each other, which obviates
the need for expensive protocols.
However, typical operators have
a finite (and often short) causali-
ty window that defines the set of
past input tuples that affect its
internal state, which allows them
to eventually return to a consis-
tent state after a failure. Third, it
uses best-guess reconciliation to
determine the most accurate an-
swer among possible divergent
states of the free-running opera-
tors. To do so, it can use value-
based reconciliation, state-based
reconciliation, or a measure of
replica divergence.

HIDDEN GEMS (EXTENDED

ABSTRACTS)

Summarized by Geoffrey Lefebvre

Making Exception Handling Work

Bruno Cabral and Paulo Marques,
University of Coimbra, Portugal

Presented by Bruno Cabrel

Exceptions are the standard
mechanism for error handling in
modern programming languages.
Unfortunately, dealing with ex-
ceptions is a tedious process.
Programmers often avoid the
issue by writing empty handlers
to save time. Programmers who
take the effort to write proper ex-

ception-handling code see their
productivity impaired. The au-
thors argue that exception han-
dling should not interfere with
normal programming tasks but
instead become a system issue.
In this scenario, the run-time en-
vironment provides a set of
generic exception handlers and
deals with exceptions automati-
cally. The programmer only has
to wrap the code with try blocks
at the appropriate locations. Be-
cause the system may have to try
multiple handlers when an ex-
ception occurs, this approach re-
quires that try blocks be resum-
able and appear atomic.

Speculations: Providing Fault-
tolerance and Recoverability in
Distributed Environments

Cristian Tapus and Jason Hickey,
California Institute of Technology

Presented by Cristian Tapus

Cristian began his talk by noting
that distributed systems are
ubiquitous. It is now mandatory
that we build safe and reliable
systems. Failures are frequent in
highly parallel machines. It is
critical that systems expected to
run for a long time support fault
tolerance. Unfortunately, tradi-
tional checkpoint mechanisms
are application-specific, their im-
plementation is expensive in
terms of man-hours, and they are
also error-prone.

To address these issues, the au-
thors present a new program-
ming model based on speculative
execution. The approach sepa-
rates fault recovery code from
computation. Fault recovery be-
comes transparent and automat-
ed and the design of distributed
systems is simplified. Specula-
tions are implemented as an ex-
tension to the Linux kernel. The
implementation provides system
calls to begin, abort, and commit
speculative executions. Out-
bound messages sent while exe-
cuting speculatively are marked
accordingly. A process automati-

cally switches to speculative exe-
cution when it receives a mes-
sage marked as speculative.

Discrete Control for Dependable IT
Automation

Yin Wang, University of Michigan;
Terence Kelly, Hewlett-Packard
Laboratories; Stéphane Lafortune,
University of Michigan

Presented by Yin Wang

Workflows are programs written
in high-level languages and used
increasingly for IT automation.
These languages can express
concurrency, contingency, com-
position, etc., making workflow
programming difficult and error-
prone. The authors present an
approach based on discrete con-
trol theory which provides safe
execution of possibly flawed
workflows. Their approach uses
finite-state automata to represent
all execution states reachable
from the initial state.

The safety specifications are rep-
resented by forbidden states or
as regular expressions. The goal
is to ensure that the system
reaches satisfactory termination
without entering forbidden
states. A discrete controller is au-
tomatically generated offline.
The controller dynamically dis-
ables controllable transitions
based on the current execution
state, avoiding transitions to for-
bidden states when possible. The
approach presented allows work-
flows to be partially decoupled
from the dependability require-
ments.

SecondSite: Disaster Protection for the
Common Server

Brendan Cully, University of British
Columbia; Andrew Warfield, University
of Cambridge

Presented by Brendan Cully

Brendan began his talk by noting
that disaster can strike at any
time. Whether caused by floods,
severed power lines, or di-
nosaurs, site disasters can and do
happen. The typical solution is

112 ; LOG I N : VO L . 3 2 , NO . 1

to teleport your server to a new
location by restoring a backup
and redirecting traffic using
DNS. The problem is that back-
ups are expensive and do not al-
ways work and DNS updates can
take hours, even days, to propa-
gate.

The solution to this problem is
to think under the box and use
virtualization. The favored ap-
proach is to constantly replicate
a primary site by performing a
continuous live migration of vir-
tual machines. Virtual machines
are never suspended; their mem-
ory is simply marked copy-on-
write when a snapshot is taken.
Brendan stated that one of the
major challenges is dealing with
replication overhead. This issue
can be addressed partially by
using delta compression. Anoth-
er challenge is how to take con-
sistent snapshots of multiple
servers. Snapshots of individual
virtual machines are taken inde-
pendently but coordination is re-
quired to maintain causality
within the global snapshot.

Debate Panel

All presenters took questions from the
audience.

George Candea asked what appli-
cations were most amenable to
the SecondSite approach. He
hinted that databases have large
write sets and deal with disaster
naturally by shipping their log.
Brendan agreed that databases
were probably not the best candi-
date but that there are many exist-
ing server applications without
built-in recovery mechanisms.

Someone asked Cristian whether
programmers would be able to
deal with speculations intuitive-
ly. Cristian stated that people in
other communities, especially in
the scientific computing commu-
nity, are very excited about the
idea of speculations.

Christopher Stewart asked Yin
Wang, “By leaving the choice to

the program, could a program go
down a wrong path?” Yin ex-
plained that their approach guar-
antees that programs do not go
down forbidden paths.

John Wilkes asked Bruno Cabrel
about the metrics used to evalu-
ate his approach. He answered
that exception injection could be
used as an evaluation tool.

Someone asked a joint question
to Bruno and Cristian, since the
work of both deals with remov-
ing the need for programmers to
deal with errors. Are the tech-
niques mutually exclusive?
Bruno answered that their in-
tended targets are different. The
exceptions framework aims to
be a general platform solution,
whereas Speculations targets dis-
tributed applications. Cristian
added that although they differ,
the goal is the same: to have
cleaner code that is easier to rea-
son about.

Someone stated that if a system
magically handles errors, then
you have a system that is slightly
wrong. How do you reason about
this? Cristian answered that this
is a similar problem to compiler-
generated errors. People do not
suspect that their compiler or
their operating system is wrong.
John Wilkes seems to disagree
on the last point. The goal is to
increase the level of confidence
in the application.

George Candea asked Bruno
whether he learned anything sur-
prising from some of the studies
on exception handling he cited.
The major surprise for Bruno
was that the exception-handling
code only accounts for 4 to 8
percent. John Wilkes enquired
about the applications that were
included in these studies. Bruno
answered that the studies looked
at 16 professional applications
such as JBoss.

Petros Maniatis stated that many
generic catch blocks will not be
acceptable for certain applica-

tions. Is there a clean way to
override the generic handlers?
Bruno explained that the set of
recovery blocks can be defined
by the platform or the program.

George Candea enquired about
the differences between Second-
Site and some of the related work
from Stanford, especially the
Collective. Andrew Warfield
jumped into the conversation
and stated that the Collective
was more about the transport
format than the ability to capture
instantaneous snapshots of run-
ning virtual machines.

Christopher Stewart said that
there exists a subculture in the
dependability community that
believes that exceptions should
simply be logged and not han-
dled. He then asked Bruno and
Cristian for their opinion on the
matter. Bruno answered that this
is similar to checked versus
unchecked exceptions. He be-
lieves that all exceptions should
be handled. Cristian said that
not handling exceptions can re-
sult in violation of program cor-
rectness. If you transparently roll
back an application without any
notification, then the same prob-
lem could resurface later and you
could end up in a worse state. He
believes it is important to report
errors to the application. The
best approach is to combine the
two: Provide availability and re-
port the error. But in the end, no
approach will be perfect.

; LOGIN: FEBRUARY 2007 CONFERENCE REPORTS 113

Machine Learning:
Theory,Applications, Experi-
ences—AWorkshop forWomen
inMachine Learning

San Diego, California
October 4, 2006

Organizers: LisaWainer,Uni-
versity College London;Hanna
Wallach,University of Cam-
bridge; JenniferWortman,
University of Pennsylvania.
Faculty advisor: Amy Green-
wald, Brown University

Summarized by Lisa Wainer

The workshop was a one-day
event offering a showcase of
work by women involved in ma-
chine learning research. The
main objective of the workshop
was to offer female faculty, re-
search scientists, and students in
the machine learning communi-
ty an opportunity to meet, ex-
change ideas, and learn from
each other. It also gave women in
other areas of computer science
the opportunity to learn about
cutting-edge research in a grow-
ing field. The workshop was
open to anyone, male or female,
to attend free of charge and was
co-located with the Grace Hop-
per Celebration of Women in
Computing. The workshop suc-
ceeded in bringing together
women from different stages of
their careers, from established
researchers to Ph.D. candidates
and even undergraduate stu-
dents. It provided an opportuni-
ty for established researchers to
act as mentors and for students
to find much needed role mod-
els. There were ninety-six regis-
tered participants in all, and
quite a few unregistered atten-
dees (two of whom were male).

The invited faculty talks covered
a diverse set of topics, were well
received by the audience, and in-
spired much discussion during
the session breaks. The student

presentations were divided into
short talks, spotlights, and
poster presentations. Talks were
generally of high quality: Rough-
ly half fell into the category of
theory and half were on applica-
tions of machine learning. The
general reaction of participants
was extremely positive. There
was a vigorous discussion at the
end of the workshop about is-
sues for women in the machine
learning community and in com-
puter science in general. The
lively discussions covered the
differences in working in theo-
retical as opposed to application-
based disciplines, the impor-
tance of role models and
mentoring, how to raise profiles
of women in machine learning,
and whether the workshop
should be run again in the fu-
ture.

A few general conclusions were
reached. The first was that role
models are an important aspect
of encouraging more women
into computer science and ma-
chine learning as well as retain-
ing women once in the field. The
second was that events such as
this workshop are seen as being
very important to help women
network, to produce collabora-
tive work, and to meet socially.
There was a unanimous response
to the last point, in that the par-
ticipants wanted the workshop
to run again next year. Many
suggested that they would like it
to run alongside a machine
learning conference. Many atten-
dees commented that the invited
talks and student presentations
were of exceptionally high quali-
ty. Participants were eager to in-
teract and take part by being ac-
tive during the poster sessions
and asking the speakers ques-
tions. Overall, the organizers and
the participants felt that the
workshop was very valuable, and
they are planning to hold the
event again next year.

Grace Hopper Celebration of
Women in Computing 2006,
MakingWaves

San Diego, California
October 4–7, 2006

Summarized by Rae Harbird

This conference was the sixth in
a series designed to bring the re-
search and career interests of
women in computing to the fore-
front. The presenters, from in-
dustrial, academic, and govern-
ment communities, presented
their current work while special
sessions focused on the role of
women in today’s technology
fields. From my perspective it
was a rare and special opportuni-
ty to meet women from and hear
talks on a diverse range of sub-
ject areas spanning the entire
breadth of computer science.
The atmosphere was truly cele-
bratory, with a strong emphasis
on women’s achievements and
the excitement of working in
such a dynamic and fascinating
field. The benefits of collabora-
tion and networking for success
underpinned the fabric of the
conference, reflecting the skills
at which women traditionally
excel. The conference organizers
made great efforts to ensure that
the social events were just as re-
warding as the technical ses-
sions. I am looking forward to
GHC ’07.

Dasher: Information-Efficient Text
Entry

Hanna Wallach, University of
Cambridge

The objective of the presentation
was to introduce the audience to
Dasher, a novel information-effi-
cient text-entry system, driven
by continuous pointing gestures.
Keyboards, despite their ubiqui-
ty, are inefficient for two reasons:
They do not exploit the pre-
dictability of normal language,
and they waste the fine analog

114 ; LOG I N : VO L . 3 2 , NO . 1

capabilities of the user’s muscles.
Gestural alphabets, such as those
used on a Palm Pilot, use fine
motor movements but are often
unreliable. Devices with limited
keyboards, such as mobile
phones, use prediction tech-
niques for text entry but this is
also clumsy and requires two
modes: word completion and
disambiguation. Four important
things are missing: the ability to
take advantage of fine motor
movements, exploitation of the
redundancy of language, lan-
guage independence, and single-
mode operation allowing users
to write and disambiguate at the
same time. Dasher is based on
principles of machine learning
and information theory and is in-
tended to rectify these inefficien-
cies. Incorporating an adaptive
language model of the sort also
used in speech recognition,
handwriting recognition, and
text compression, Dasher offers
helpful predictions to the user
without constraining the range
of words that can be written.

Comparing Dasher with use of a
standard keyboard showed that
although Dasher users typed
fewer characters per minute,
error rates (percentage of incor-
rectly typed words) were lower.
Experiments showed that using
Dasher with an eyetracker is
much faster than using an on-
screen keyboard and has a signif-
icantly lower error rate. Dasher
is designed to be a competitive
text-entry system used wherever
a full-size keyboard is not possi-
ble, such as with wearable and
palmtop computers, as well as
for disabled users. Anyone can
use it, as no training is needed,
and it is fast and fun to learn. In
a recent case study conducted by
Mick Donegan at the ACE Cen-
ter, Paul, who suffers from cere-
bral palsy, used Dasher to write
his thesis for a degree in Business
and IT. Paul reported that Dasher
required less head movement,

generated fewer spelling mis-
takes, and was about four times
faster than an on-screen key-
board.

Panel: Building and Managing a
Strong Research Group

Nancy Amato, Texas A & M University;
Tracy Camp, Colorado School of
Mines; Elizabeth Royer, University of
California; Violet Syrotiuk, Arizona
State University

As a Ph.D. student who is start-
ing to think about my research
career, I was pleased to attend
this panel led by women who are
experts in their chosen field,
which happens to coincide with
mine. Although the focus was
academia in the United States,
the points made were easily
translated to a UK context. The
talk had two principal strands:
first, describing how to get fund-
ing for your research group and,
second, covering tips on advising
students.

As far as obtaining funding goes,
some background work is neces-
sary to get your foot in the door:
The importance of networking
cannot be overemphasized, as
you need to establish mentors
and partners for your research.
Publicize your work and ideas by
giving as many talks as possible,
both within your institution and
outside. The main recommenda-
tions for successful proposal
writing were to communicate
your ideas to as many people as
possible and to ensure that your
proposal fits the specification
provided by the funding body.
The panel advised researchers to
read and familiarize themselves
with proposals that have suc-
ceeded already. The pros and
cons of working on single or
multiple Principal Investigator
proposals were discussed. Both
are viewed as important to your
career, the latter because it pro-
vides the opportunity to show
the specific expertise that you
can bring to a project and the op-

portunity to do it really well. It
may also offer the opportunity of
working with more senior staff.
It is important to remember that
proposals are often rejected, and
the panel emphasized the impor-
tance of giving careful considera-
tion to feedback received and
being persistent. Acting as a pan-
elist on funding bodies is also an
important learning experience.
Some of the panelists admitted to
not giving enough talks as new
researchers; making such presen-
tations can be hard, but they are
a great way to increase your
confidence.

Finding good students for your
research group was covered next;
panelists advised teaching gradu-
ate classes and being proactive
in recruiting students. There
are distinct advantages in imple-
menting schemes that allow
undergraduates to gain short pe-
riods of experience. The tech-
niques covered for getting the
best out of your research stu-
dents reflected best practice used
in industry. Primarily, it is impor-
tant to set clear expectations and
establish clear goals and mile-
stones; preferably, these things
will be written down. Tracy
Camp has a document outlining
student expectations on her Web
pages. Establishing a mentoring
hierarchy for students not only
takes some of the pressure off ad-
visors but also gives newer re-
searchers experience in mentor-
ing for themselves. The visibility
and reputation of your research
group are, of course, important,
and recommendations mirrored
those given for publicizing your
own research. Network whenev-
er you have the opportunity, vol-
unteer for activities, and be will-
ing to host talks and give talk
tours.

; LOGIN: FEBRUARY 2007 CONFERENCE REPORTS 115

On Program Security

Hongxia Jin, IBM Almaden Research
Center

In an email exchange with
Hongxia, she said that she aimed
to give the audience a quick
technical overview of program
security and, in particular, to
give those who are interested
in finding out more a good start-
ing point. Hongxia described
some elementary design princi-
ples for achieving software secu-
rity based on her years of experi-
ence working in the area. She
says that even though every-
body’s application context may
be different, the same design
principles should be applicable.

In describing the motivation for
her research, Hongxia explained
that hackers can reverse-engi-
neer programs to understand or
even modify existing programs
quite easily. Consequently, com-
petitors may learn trade secrets
or copy algorithms to reuse in
competing products. They can
also remove protections and re-
distribute the pirated program
for a profit. The general problem
of program protection is widely
thought to be impossible, imply-
ing that program protection is an
important, wide-open problem.
Hongxia described two methods
used to defend against attacks.
Preserving code integrity by
guarding against tampering is
one technique. Static integrity
can be enforced using crypto-
graphic hashing of all or part of a
program, although this can im-
pose a high processing overhead.
But what about run-time integri-
ty? You can detect the presence
of a debugger, for example, by
measuring execution times be-
tween particular sections of the
code. The actions taken if tam-
pering is detected also need to be
given some thought. On the one
hand, you could abort execution;
on the other, it may be attractive
to delay failure until a later time,

inserting plausible yet mislead-
ing operations.

Finally, Hongxia gave an exam-
ple of her research in this area.
Bearing in mind that eventually
a determined attacker will suc-
ceed, it is advantageous to detect
on-going tampering as early as
possible. In this way you may be
able to restrict the extent of the
eventual damage. One way in
which you can do this is to use
an auditing log to record hacking
activities. A smart hacker can
tamper with the log, but to coun-
teract this you can make the log
itself tamper-resistant. Hongxia
described a scheme in which log
entries are encrypted and trans-
mitted back to a central clearing
point. The source of the log en-
tries and the clearing point share
a key which is continually but
independently evolved in both
places. Even if the hackers suc-
ceed in subverting the encryp-
tion scheme, they cannot go
backward, so some evidence of
the attack will still be recorded.

Shifting the Tide of Network Security:
Being Safe, Being Aware, and Being
Active

Nicole A. Pauls, TriGeo Network
Security

In an email exchange with
Nicole, she commented that she
viewed the conference as an op-
portunity to talk about improv-
ing things for the women of to-
morrow and an opportunity for
everyone to see what women are
doing today. Even though the
focus of the conference is on
women in academia, it was
equally important to see women
in industry talking about their
research. In Nicole’s presenta-
tion, she described pragmatic
strategies for improving security.
Many of us think of network se-
curity tools as necessary evils of
prevention, but the truth is that
we can’t protect ourselves from
everything. Software holes can
be exploited before patches can

be deployed; “trusted” users can
become dangerous by opening
the wrong email at the wrong
time, and everything happens so
quickly that we might not even
know until it’s too late. Nicole
explored a defense in-depth net-
work security strategy, covering
architecture, monitoring, and ac-
tive defenses. In terms of archi-
tecture, security must be some-
thing that we think about from
the outset in the design of our
networks and systems. We have
to think about security on many
levels, protecting each element
so that it can still operate secure-
ly even if, say, the firewall fails.
Detection is an essential weapon
in our armory, which is where
logging and auditing come in.
Good organization and manage-
ment are really the keys to suc-
cess here; centralizing logging
with a syslog server coupled
with automated log analysis
tools is the way to go. Deciding
how you are going to respond to
a security incident is equally im-
portant. First and foremost, you
need to have a set of clearly doc-
umented policies clarifying the
risks and responses. Your biggest
problem here might be wrestling
with the internal politics in an
organization. On a practical
level, you should not expect to
do everything at once: prioritize
and implement what you can,
when you can.

Wireless Sensor Networks and Real-
World Applications

Nirupama Bulusu, Portland State
University

In her talk Nirupama encour-
aged us to “come learn about the
opportunities and computing
challenges in wireless sensor net-
works.” Although fairly broad,
this talk illustrated how sensor
technology is being applied in
areas such as digitized health
care, energy management, condi-
tion-based maintenance, and
habitat monitoring. The projects

116 ; LOG I N : VO L . 3 2 , NO . 1

Nirupama chose to illustrate the
applications of sensor technolo-
gy were very exciting; the mate-
rial would make a great educa-
tional pack, encouraging
children and young adults to
consider a career in computer
science or engineering.

Most sensor applications involve
monitoring either space or ob-
jects or both. In terms of moni-
toring space, sensors might be
used for such things as environ-
mental and habitat monitoring
and precision agriculture. For
example, a vineyard in Oregon
uses sensors to monitor tempera-
ture and moisture; Roger the dog
collects the data using a wireless
collection device in his collar.
The ZebraNet project monitor-
ing zebra movement in Kenya
was a somewhat more challeng-
ing application. Nodes (or ze-
bras) are highly mobile and only
sparsely populate the environ-
ment. Transferring data to a col-
lection point (which may also be
mobile) requires nodes to self-or-
ganize and actively route data.

The final example, an applica-
tion to detect the presence of
cane toads in the Australian out-
back, had a clever twist. The
problem of how you detect a
cane toad is interesting. It tran-
spires that sensors can be used to
hear when a cane toad is nearby
by analyzing the acoustic fea-
tures of the toad call, since cane
toad calls have a completely dif-
ferent signature from those of
other amphibians. Nirupama
gave an “under the bonnet” view
of some of the challenges pre-
sented by sensor-based applica-
tions. For example, localization,
determining the position of sen-
sors, and distributing this infor-
mation to other nodes can be a
complex task, yet workable solu-
tions now exist. And what about
the future? Sensor networks for
urban applications will form the
“next tier of the Internet,” lever-

aging the cell phone installed
base of acoustic and image sen-
sors to capture readings.

Part of the Problem/Part of the
Solution

Claudia Morrell, University of
Maryland; Revi Sterling, University of
Colorado; Sophia Huyer, Women and
Global Science and Technology

The panel explored the issues af-
fecting women surrounding de-
ployment of Information and
Communication Technology
(ICT) in developing countries.
Nongovernmental organizations
(NGOs) are increasingly employ-
ing ICT tools as part of their
strategy. Whereas ICTs show
great promise in alleviating en-
trenched economic, health, and
gender disparities, they may be
exacerbating gender gaps. De-
spite the best intentions, many
aid-focused initiatives intended
to assist women’s unique devel-
opment goals are challenged
with long-term sustainability
and the ability to have wide-
ranging impact upon the culture.
Several women-friendly projects
were presented. The Grameen-
Phone scheme enables women to
buy cell phones and rent usage,
SchoolNet Africa provides com-
puters to schools in Africa, and
TeleCenters are springing up in
Latin America and Africa. In the
past year or so, important syner-
gies have emerged. The 1st
Women and ICT Symposium
was held in 2005. At last it is
possible to combine known in-
formation on emerging markets,
people, and technologies. A task-
force was formed which has been
recognized by the UN Global Al-
liance for ICT for Development
as a community of expertise.

The Impact of ICT on Women in
Brazil

Dilma M. Da Silva, T.J. Watson
Research Laboratories

In her presentation, Dilma Da
Silva reviewed the current status
of ICT deployment in Brazil
with respect to women. In the
1980s, the government imposed
tight controls on the market, en-
couraging local development of
software and hardware where
possible. The 1990s were charac-
terized by dramatic improve-
ments in phone, cell, and net-
working services, but by around
1995 over 35,700 jobs were cut
in the IT industry (representing
a 48.1% reduction). At present,
technology deployment is un-
even. The Brazilian business tri-
angle (São Paulo, Rio de Janeiro,
and Belo Horizonte) has high-ca-
pacity fiber, virtual private net-
works, and bandwidth on a par
with the United States and Eu-
rope, whereas most of the coun-
tryside has no access at all. But
the government is actively pro-
moting the use of electronic vot-
ing, and the percentage of tax re-
turns completed online is
growing.

So where do women fit into this
picture? In 2000, the World
Bank reported that Brazil has one
of the widest gender gaps in
Latin America. Even with the
same qualifications as male col-
leagues, women got only 54% of
what men received as wages and
comprised only 20% of the IT
workforce. Socially, women are
not considered suitable for ICT-
related jobs and this, in turn, in-
fluences women’s interests and
goals. Dilma also pointed out
that despite these disappointing
statistics, this is not the whole
picture. The situation is reflected
in my own experience: In my de-
partment there are two very tal-
ented Brazilian women studying
for their Ph.D.s.

; LOGIN: FEBRUARY 2007 CONFERENCE REPORTS 117

EVT ’07 will be co-located with the 16th USENIX Secu-
rity Symposium (Security ’07), August 6–10, 2007.

Important Dates
Submissions due: Sunday, April 22, 2007,
11:59 p.m. PDT

Notification of acceptance: Friday, June 1, 2007
Final files due: Thursday, June 28, 2007

Workshop Organizers
Program Co-Chairs
Ray Martinez, Martinez Consulting Group
David Wagner, University of California, Berkeley

Program Committee
Ben Adida, Harvard University
Mike Alvarez, California Institute of Technology
Andrew Appel, Princeton University
Doug Jones, University of Iowa
Sharon Laskowski, National Institute of Standards and
Technology

Dave Magelby, Brigham Young University
Margaret McGaley, National University of Ireland,
Maynooth

Whitney Quesenbery, Whitney Interactive Design
Peter Ryan, Newcastle University
Dan Wallach, Rice University

Overview
In the United States and many other countries, most
votes are counted and transported electronically, but the
practical and policy implications of introducing elec-
tronic machines into the voting process are emerging in
this new area. Both voting technology and its regula-
tions are very much in flux, with open concerns
including reliability, robustness, security, human factors,
transparency, equality, privacy, and accessibility.

The USENIX/ACCURATE Electronic Voting Tech-
nology (EVT) workshop seeks to bring together
researchers from a variety of disciplines, ranging from
computer science and human factors experts through
political scientists, legal experts, election administrators,
and voting equipment vendors. EVT seeks to publish
original research on important problems, including how
the software and hardware in voting might be engi-
neered to be more robust against tampering or how it
might be written to be more easily and openly verified.
Papers exploring “end-to-end” approaches that strive to
ensure that the integrity of the election is independent of
software and hardware are also encouraged. EVT also
welcomes submissions on how these systems might be
engineered to be more usable by the broad voting popu-
lation. EVT also seeks discussion of how election regu-
lations and standards may evolve to support better
election technologies. Additionally, EVT encourages
position papers on the practicality (or impracticality) of
the technological advances in electronic voting, particu-
larly with the limited budgets available to many elec-
tions administrators. EVT will consider papers covering
the gamut of technology as it is used in elections,
ranging from voter registration and vote collection
through tabulation and post-election auditing. We are
interested in both future technologies and systems
widely used today around the world.
EVT ’07 will be a one-day event, Monday, August 6,

2007, co-located with the 16th USENIX Security Sym-
posium in Boston, Massachusetts. In addition to paper
presentations, the workshop may include panel discus-
sions with substantial time devoted to questions and
answers. The proceedings of the workshop will be pub-
lished electronically. Attendance at the workshop will
be open to the public, although talks and refereed paper
presentations will be by invitation only.
In particular, we welcome papers considering:

August 6, 2007 Boston, Massachusetts, USA

Announcement and Call for Papers

2007 USENIX/ACCURATE Electronic Voting
Technology Workshop (EVT ’07)
Sponsored by USENIX: The Advanced Computing Systems Association, and ACCURATE: A Center for Correct,
Usable, Reliable, Auditable, and Transparent Elections

http://www.usenix.org/evt07

�� Design and analysis of electronic voting schemes
and protocols

�� Deployment and lifecycle concerns
�� Mitigating threats (including insider threats)
�� Usability and accessibility (both for voters and for
administrators)

�� Legal issues, including how voting systems must
comply with the ADA and HAVA, or the effect of
intellectual property rights and nondisclosure
agreements on voting system testing, certification,
and deployment

�� The technology standards process and how it
should evolve

Submission Instructions
All submissions must be in English and must include a
title and the authors’ names and affiliations. We will
accept both short position papers (i.e., up to six [6]
pages long) and longer, conference-style submissions
(up to a maximum of sixteen [16] pages). Please format
papers in two columns, single-spaced, using no smaller
than 11 point Times Roman type in a text block of 6.5"
by 9".
Each submission should have a contact author who

should provide full contact information (email, phone,
fax, mailing address). One author of each accepted
paper will be required to present the work at the work-
shop.
Authors are required to submit papers by 11:59 p.m.

PDT, April 22, 2007. This is a hard deadline; no
extensions will be given. All submissions to EVT ’07
must be electronic, in PDF format, via a Web form,
which will be available on the EVT ’07 Call for Papers
Web site, http://www.usenix.org/evt07/cfp. Authors are
encouraged to follow the U.S. National Science Foun-
dation’s guidelines for preparing PDF grant submis-
sions:

�� https://www.fastlane.nsf.gov/documents/pdf_create
/pdfcreate_01.jsp

Simultaneous submission of the same work to mul-
tiple venues, submission of previously published work,
and plagiarism constitute dishonesty or fraud. USENIX,
like other scientific and technical conferences and jour-
nals, prohibits these practices and may, on the recom-
mendation of a program chair, take action against
authors who have committed them. In some cases, pro-
gram committees may share information about sub-
mitted papers with other conference chairs and journal
editors to ensure the integrity of papers under consider-
ation. If a violation of these principles is found, sanc-
tions may include, but are not limited to, barring the
authors from submitting to or participating in USENIX
conferences for a set period, contacting the authors’
institutions, and publicizing the details of the case.
Authors uncertain whether their submission meets

USENIX’s guidelines should contact the program chair
at evt07chairs@usenix.org or the USENIX office,
submissionspolicy@usenix.org.
Accepted material may not be published in other

conferences or journals for one year from the date of
acceptance by USENIX. Papers accompanied by
nondisclosure agreement forms will not be read or
reviewed. All submissions will be held in confidence
prior to publication of the technical program, both as a
matter of policy and in accordance with the U.S. Copy-
right Act of 1976.
Authors will be notified of acceptance decisions via

email by June 1. If you do not receive notification by
that date, contact the Program Chairs at evt07chairs
@usenix.org.

Registration Materials
Complete program and registration information will be
available in June 2007 on the workshop Web site. The
information will be in both HTML and PDF. If you
would like to receive the latest USENIX conference
information, please join our mailing list: http://www
.usenix.org/about/mailing.html.

Rev. 12/22/06

Sponsored by

in cooperation
with ACM
SIGCOMM and
ACM SIGOPS

Register by Monday, March 19, and save: http://www.usenix.org/nsdi07

NSDI ’07 will be co-located with the following workshops, all of which
will be held on April 10, 2007:

• First Workshop on Hot Topics in Understanding Botnets (HotBots ’07)
http://www.usenix.org/hotbots07

• Second Workshop on Tackling Computer Systems Problems with Machine
Learning Techniques (SysML07)
http://www.cs.duke.edu/nicl/sysml07

• Third International Workshop on Networking Meets Databases (NetDB ’07)
http://www.usenix.org/netdb07

Join us in Cambridge, MA, April 11–13, 2007, for the 4th USENIX

Symposium on Networked Systems Design and Implementation

(NSDI ’07), which will focus on the design principles of large-scale

networks and distributed systems. Join researchers from across the

networking and systems community—including computer networking,

distributed systems, and operating systems—in fostering cross-

disciplinary approaches and addressing shared research challenges.

http://www.usenix.org/nsdi07

Lisa Camp de Avalos
Pencil

T H E U S E N I X M A G A Z I N E

F E B R U A R Y 2 0 0 7 V O L U M E 3 2 N U M B E R 1

O P I N I O N Musings
RIK FARROW

T E C H N O L O G Y Commodity Grid Computing with Amazon’s S3 and EC2
S IMSON GARFINKEL

Roadmap to a Failure-Resilient Operating System
JORR IT N. HERDER, HERBERT BOS, BEN GRAS, PH I L I P
HOMBURG, AND ANDREW S. TANENBAUM

Hardware Virtualization with Xen
STEVEN HAND, ANDREW WARFIELD, AND KEIR FRASER

S Y S A DM I N ConfigurationManagement:Models andMyths, Part 4
MARK BURGESS

Xen Installation and Configuration
LE IGH GRI FF IN AND JOHN RONAN

Debugging a Firewall Policy with Policy Mapping
ROBERT MARMORSTEIN AND PHI L KEARNS

C O L U M N S Practical Perl Tools: Spawning
DAVID BLANK-EDELMAN

ISPadmin:DHCP Services
ROBERT HASKINS

Virtualizing Asterisk
HEISON CHAK

/dev/random
ROBERT G. FERRELL

B O O K R E V I E W S Book Reviews
EL IZABETH ZWICKY ET AL .

S TA N D A R D S Multithreading in C and C++
HANS BOEHM, B I LL PUGH, AND DOUG LEA

U S E N I X N O T E S USENIX Board of Directors Meetings and Actions
ELL I E YOUNG

SAGE Update
JANE-ELLEN LONG AND ALVA COUCH

John Lions FundWrap-up

C O N F E R E N C E S WORLDS ’06;OSDI ’06;HotDep ’06;Workshop forWomen
inMachine Learning;Grace Hopper Celebration ofWomen
in Computing 2006

The Advanced Computing Systems
Association

For a complete list of all USENIX & USENIX co-sponsored events,
see http://www.usenix.org/events.

WORKSHOP ON EXPERIMENTAL COMPUTER
SCIENCE (ECS ’07)
Sponsored by ACM SIGARCH and ACM SIGOPS in cooperation
with USENIX, ACM SIGCOMM, and ACM SIGMETRICS

JUNE 13–14, 2007, SAN DIEGO, CA, USA
http://www.expcs.org/
Paper submissions due: February 9, 2007

THIRD INTERNATIONAL ACM SIGPLAN/SIGOPS
CONFERENCE ON VIRTUAL EXECUTION
ENVIRONMENTS (VEE ’07)
Sponsored by ACM SIGPLAN and ACM SIGOPS in cooperation
with USENIX

JUNE 13–15, 2007, SAN DIEGO, CA, USA
http://vee07.cs.ucsb.edu
Paper submissions due: February 5, 2007

2007 USENIX ANNUAL TECHNICAL
CONFERENCE
JUNE 17–22, 2007, SANTA CLARA, CA, USA
http://www.usenix.org/usenix07

THIRD WORKSHOP ON HOT TOPICS IN SYSTEM
DEPENDABILITY (HOTDEP ’07)
Co-sponsored by USENIX

JUNE 26, 2007, EDINBURGH, UK
http://hotdep.org/2007
Paper submissions due: February 15, 2007

2007 USENIX/ACCURATE ELECTRONIC
VOTING TECHNOLOGY WORKSHOP (EVT ’07)
Co-located with Security '07

AUGUST 6, 2007, BOSTON, MA, USA
http://www.usenix.org/evt07
Paper submissions due: April 22, 2007

16TH USENIX SECURITY SYMPOSIUM
AUGUST 6–10, 2007, BOSTON, MA, USA
http://www.usenix.org/sec07
Paper submissions due: February 1, 2007

2007 LINUX KERNEL DEVELOPERS SUMMIT
SEPTEMBER 4–6, 2007, CAMBRIDGE, U.K.

21ST LARGE INSTALLATION SYSTEM
ADMINISTRATION CONFERENCE (LISA ’07)
Sponsored by USENIX and SAGE

NOVEMBER 11–16, 2007, DALLAS, TX

FIRST WORKSHOP ON HOT TOPICS IN
UNDERSTANDING BOTNETS (HOTBOTS ’07)
Co-located with NSDI ’07

APRIL 10, 2007, CAMBRIDGE, MA, USA
http://www.usenix.org/hotbots07
Paper submissions due: February 26, 2007

SECOND WORKSHOP ON TACKLING COMPUTER
SYSTEMS PROBLEMS WITH MACHINE LEARNING
TECHNIQUES (SYSML07)
Co-located with NSDI ’07

APRIL 10, 2007, CAMBRIDGE, MA, USA
http://www.cs.duke.edu/nicl/sysml07

THIRD INTERNATIONAL WORKSHOP ON
NETWORKING MEETS DATABASES (NETDB ’07)
Co-located with NSDI ’07
Sponsored by USENIX in cooperation with ACM SIGCOMM

APRIL 10, 2007, CAMBRIDGE, MA, USA
http://www.usenix.org/netdb07

4TH USENIX SYMPOSIUM ON NETWORKED
SYSTEMS DESIGN AND IMPLEMENTATION
(NSDI ’07)
Sponsored by USENIX in cooperation with ACM SIGCOMM
and ACM SIGOPS

APRIL 11–13, 2007, CAMBRIDGE, MA, USA
http://www.usenix.org/nsdi07

11TH WORKSHOP ON HOT TOPICS IN OPERATING
SYSTEMS (HOTOS XI)
Sponsored by USENIX in cooperation with the IEEE Technical
Committee on Operating Systems (TCOS)

MAY 7–9, 2007, SAN DIEGO, CA, USA
http://www.usenix.org/hotos07

5TH ACM/USENIX INTERNATIONAL CONFERENCE
ON MOBILE COMPUTING SYSTEMS, APPLICATIONS,
AND SERVICES (MOBISYS 2007)
Jointly sponsored by USENIX and ACM SIGMOBILE, in
cooperation with ACM SIGOPS

JUNE 11–15, 2007, PUERTO RICO
http://www.sigmobile.org/mobisys/2007/

Upcoming Events

PERIODICALS POSTAGE
PAID

AT BERKELEY, CALIFORNIA
AND ADDITIONAL OFFICESUSENIX Association

2560 Ninth Street, Suite 215
Berkeley, CA 94710

POSTMASTER
Send Address Changes to ;login:
2560 Ninth Street, Suite 215
Berkeley, CA 94710

http://www.usenix.org/usenix07

2007 USEN IX Annual
Technical Conference

Join us in Santa Clara, CA, June 17–22, for the 2007 USENIX

Annual Technical Conference. USENIX Annual Tech has always

been the place to present groundbreaking research and cut-

ting-edge practices in a wide variety of technologies and

environments. USENIX ’07 will be no exception.

US EN I X ’ 0 7 W I L L F E ATU R E :
• An extensive Training Program, covering crucial topics and led by highly respected instructors

• Technical Sessions, featuring the Refereed Papers Track, Invited Talks, and a Poster Session

• Plus BoFs and more!

