
Namespace Management in Virtual Desktops
D u t c h t . M e y e r , J a k e W i r e s , N o r M a N c . h u t c h i N s o N ,

a N D a N D r e W W a r f i e l D

Back to the Future: Revisiting IPv6 Privacy Extensions
D a v i D B a r r e r a , G l e N N W u r s t e r , a N D P . c . v a N o o r s c h o t

Making System Administration Easier by Letting the
Machines Do the Hard Work, Or, Becoming an Agile
Sysadmin
J o s h u a f i s k e

Conference Reports from OSDI ’10 and Co-located
Workshops

f e B r u a r y 2 0 1 1 v o l . 3 6 , N o . 1

t h e a D v a N c e D c o M P u t i N G
s y s t e M s a s s o c i a t i o N

usenix_login_feb11_covers.indd 1 1.18.11 3:06 PM

2011 USENIX Federated Conferences Week
June 12–17, 2011, Portland, OR, USA
Events include:

3rd USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud ’11)
June 14, 2011
http://www.usenix.org/hotcloud11
Submissions due: March 7, 2011

3rd Workshop on Hot Topics in Storage and File
Systems (HotStorage ’11)
June 14, 2011
http://www.usenix.org/hotstorage11
Submissions due: March 9, 2011

3rd Workshop on I/O Virtualization (WIOV ’11)
June 14, 2011

2011 USENIX Annual Technical Conference
(USENIX ATC ’11)
June 15–17, 2011
http://www.usenix.org/atc11

2nd USENIX Conference on Web Application
Development (WebApps ’11)
June 15–16, 2011
http://www.usenix.org/webapps11

2011 Electronic Voting Technology Workshop/
Workshop on Trustworthy Elections
(EVT/WOTE ’11)
C O - L O C AT E D W I T H U S E N I X S E C U R I T Y ‘ 1 1 A N D S P O N S O R E D B Y
U S E N I X , A C C U R AT E , A N D I AV O S S

August 8–9, 2011, San Francisco, CA, USA
http://www.usenix.org/evtwote11
Submissions due: April 20, 2011

20th USENIX Security Symposium
(USENIX Security ’11)
August 10–12, 2011, San Francisco, CA, USA
http://www.usenix.org/sec11
Submissions due: February 10, 2011

f o r a c o M P l e t e l i s t o f a l l u s e N i X
a N D u s e N i X c o - s P o N s o r e D e v e N t s ,
s e e h t t P : // W W W . u s e N i X . o r G / e v e N t s

9th USENIX Conference on File and Storage
Technologies (FAST ’11)
S P O N S O R E D B Y U S E N I X I N C O O P E R AT I O N W I T H A C M S I G O P S

February 15–17, 2011, San Jose, CA, USA
http://www.usenix.org/fast11

Workshop on Hot Topics in Management of
Internet, Cloud, and Enterprise Networks and
Services (Hot-ICE ’11)
C O - L O C AT E D W I T H N S D I ’ 1 1

March 29, 2011, Boston, MA, USA
http://www.usenix.org/hotice11

4th USENIX Workshop on Large-Scale Exploits
and Emergent Threats (LEET ’11)
C O - L O C AT E D W I T H N S D I ’ 1 1

March 29, 2011, Boston, MA, USA
http://www.usenix.org/leet11

8th USENIX Symposium on Networked
Systems Design and Implementation (NSDI ’11)
S P O N S O R E D B Y U S E N I X I N C O O P E R AT I O N W I T H A C M S I G C O M M
A N D A C M S I G O P S

March 30–April 1, 2011, Boston, MA, USA
http://www.usenix.org/nsdi11

European Conference on Computer Systems
(EuroSys 2011)
S P O N S O R E D B Y A C M S I G O P S I N C O O P E R AT I O N W I T H U S E N I X

April 10–13, 2011, Salzburg, Austria
http://eurosys2011.cs.uni-salzburg.at

13th Workshop on Hot Topics in Operating
Systems (HotOS XIII)
S P O N S O R E D B Y U S E N I X I N C O O P E R AT I O N W I T H T H E I E E E
T E C H N I C A L C O M M I T T E E O N O P E R AT I N G S Y S T E M S (T C O S)

May 8–10, 2011, Napa, CA, USA
http://www.usenix.org/hotos11

3rd USENIX Workshop on Hot Topics in
Parallelism (HotPar ’11)
May 26–27, 2011, Berkeley, CA, USA
http://www.usenix.org/hotpar11

U P C O M I N G E V E N T S

usenix_login_feb11_covers.indd 2 1.18.11 3:06 PM

E d i t o r

Rik Farrow
rik@usenix.org

M a n a g i n g E d i t o r

Jane-Ellen Long
jel@usenix.org

C o p y E d i t o r

Steve Gilmartin
proofshop@usenix.org

p r o d u C t i o n

Casey Henderson
Jane-Ellen Long
Jennifer Peterson

t y p E s E t t E r

Star Type
startype@comcast.net

u s E n i X a s s o C i at i o n

2560 Ninth Street, Suite 215,
Berkeley, California 94710
Phone: (510) 528-8649
FAX: (510) 548-5738

http://www.usenix.org
http://www.sage.org

;login: is the official magazine of the USENIX
Association. ;login: (ISSN 1044-6397)
is published bi-monthly by the USENIX
Association, 2560 Ninth Street, Suite 215,
 Berkeley, CA 94710.

$90 of each member’s annual dues is for
a subscription to ;login:. Subscriptions for
nonmembers are $125 per year.
Periodicals postage paid at Berkeley, CA,
and additional offices.

POSTMASTER: Send address changes to
;login:, USENIX Association, 2560 Ninth
Street, Suite 215, Berkeley, CA 94710.

©2011 USENIX Association
USENIX is a registered trademark of the
USENIX Association. Many of the designa-
tions used by manufacturers and sellers
to distinguish their products are claimed
as trademarks. USENIX acknowledges all
trademarks herein. Where those designa-
tions appear in this publication and USENIX
is aware of a trademark claim, the designa-
tions have been printed in caps or initial
caps.

F E b r u a r y 2 0 1 1 , v o l . 3 6 , n o . 1

o p i n i o n

Musings R I k F A R R O W .2

F i l E s y s t E M s

Namespace Management in Virtual Desktops D U T C H T . M E y E R , J A k E W I R E S ,

N O R M A N C . H U T C H I N S O N , A N D A N D R E W W A R F I E L D .6

n E t w o r k

Safely Using Your Production Network as a Testbed R O B S H E R W O O D . 12

Back to the Future: Revisiting IPv6 Privacy Extensions D Av I D B A R R E R A , G L E N N

W U R S T E R , A N D P. C . vA N O O R S C H O T . 16

s y s a d M i n

Automating Configuration Troubleshooting with ConfAid M O N A AT TA R I yA N A N D

J A S O N F L I N N . 27

Making System Administration Easier by Letting the Machines Do the Hard Work,
Or, Becoming an Agile Sysadmin J O S H U A F I S k E . 37

GNU Parallel: The Command-Line Power Tool O L E TA N G E . 42

C o l u M n s

Practical Perl Tools: Hither and Yon D Av I D N . B L A N k - E D E L M A N . 48

Pete’s All Things Sun: Comparing Solaris to RedHat Enterprise and AIX—
Virtualization Features P E T E R B A E R G A Lv I N . 54

iVoyeur: More Ganglia on the Brain D Av E J O S E P H S E N . 59

/dev/random R O B E R T G . F E R R E L L . 65

b o o k s

Book Reviews E L I z A B E T H z W I C k y, W I T H R I k F A R R O W A N D S A M S T O v E R 67

n o t E s

Have You Seen the Latest USENIX Short Topics in Sysadmin Books? A N N E D I C k I S O N . 70

C o n F E r E n C E s

9th USENIX Symposium on Operating Systems Design and Implementation 72

Workshop on Supporting Diversity in Systems Research . 101

Workshop on Managing Systems via Log Analysis and Machine Learning
Techniques . 104

Sixth Workshop on Hot Topics in System Dependability . 110

2010 Workshop on Power Aware Computing and Systems . 116

Articles_final.indd 1 1.18.11 3:06 PM

 2 ;login: vOL. 36, NO. 1

Rik is the editor of ;login:.

rik@usenix.org

Walking near where I live on a warm winter afternoon, it hit me . Layers . Every-
where I looked there were layers of rocks, leftovers from millions of years ago, now
exposed by weathering . How apropos to many of the topics covered in this issue .
There are layers in virtualization, layers in file systems, layers in networking, as
well as pluses and minuses with having so many layers .

Layers are not necessarily a bad thing . I was once asked to create drop-down, cas-
cading menus using a primitive drawing library . Popping open a menu of choices
was fairly easy, as was drawing a second-level menu . I just created a bunch of text
rectangles of the correct size, making certain they stacked perfectly . But I also
needed to deal with saving the pixels that were present before I drew the menu and
with replacing those pixels once a selection was made . Today, you would just use
a library, a list of menu items, a corresponding list of functions to call, and every-
thing would get taken care of . In other words, you would take advantage of higher
layers of software that made a task that was once difficult easy to do .

Layers

Layers occur everywhere in computers . As I type this sentence, each keypress gets
converted into a set of bits, sent over a serial link, received by a character device
driver, passed through the line handling code, placed in a queue associated with a
particular virtual TTY and copied to the program I am using, which then inter-
prets the character and writes it to an X Window library routine, which eventually
calls a kernel routine so that it can display some bits on my screen . And, of course, I
am simplifying things quite a lot . But it is the many layers that make what appears
to be, and really needs to be, a simple action appear to work in a trivial fashion .

Simple devices have fewer layers . Your microwave may have a menu of items it
“knows” how to cook, displayed in funky letters on its display . On such simple
systems there are few layers, and a lot of programming effort is required just to
spell out BEEF . Move up to a smartphone, and even though the device is smaller,
the computing power is immensely bigger, and the layers have grown as well . Then
move onto a modern PC running Linux or Windows 7, and the number of layers
grows even faster . You might think that a smartphone running Linux or Windows
would have just as many layers as a desktop running the same OS, but you’d be
wrong . The smartphone is more limited, with a simplified API that programmers
are required to use .

OpiniOnMusings
r i k F a r r o w

Articles_final.indd 2 1.18.11 3:06 PM

 ;login: FEBRUARy 2011 Musings 3

Semantic File Systems

Instead of thinking about characters on a screen, let’s consider file systems . At
the hardware interface, the OS presents sector-sized blocks to devices along with
directions about where to write the sector . Modern disk drives may ignore the
location directions and just write the sector in the first free block available, keep-
ing track of where the OS thinks the block resides . So even disks have their own
layers—internal, hidden levels of indirection .

Now let’s get really squirrelly and pop way up the stack to an operating system
running within a VM . This virtualized OS “thinks” it is writing to a disk, but really
it is sitting atop a hypervisor which may take the block write and convert it into a
network write to some remote storage device . From the perspective of the virtu-
alized OS, it is convenient not to have to consider what really happens when the
OS writes a sector . But from other perspectives, blindly treating blocks as blocks
wastes lots of information .

Including semantics in file systems is not a new idea . File metadata has provided
some level of semantics in just about every file system, with the exception of main-
frame OSes . But virtualization rips away the assumption that a block written on a
disk includes some semantic information, because VMMs today are, for the most
part, blind to this information .

Storage companies just love this . I really wondered why EMC bought VMware,
until I realized just how much virtualization features, like migration, rely on SANs .
And with the semantic information about what is being written lost, the opportu-
nity to do clever things is greatly reduced . Sure, a smart filer can handle deduplica-
tion, as data is just data . But from a system administrator’s perspective, the blocks
on those filers are just blocks . They no longer represent anything meaningful .
Instead, the amount of storage required increases .

The Lineup

During the enormous poster session at OSDI (75 posters!), Dutch Meyer managed
to catch my eye . Perhaps it was because I knew Meyer from his work as a summa-
rizer, but I think it was really because he and his co-authors are looking at the issue
of layers in virtualization in their research . In their article they point out just how
much is lost, and how much there is to gain, by preserving file semantics below the
level of a VM .

I also met Rob Sherwood during OSDI . Sherwood presented a paper on FlowVisor,
a prototype implementation of network slicing that relies on OpenFlow . Flow-
Visor allows new services to be tested on live networks by partitioning the network
based on how traffic is switched . OpenFlow by itself stands to be a game-breaking
technology for the operators of large clusters of systems .

During USENIX Security ’10, David Barrera proposed sharing work he had done
with Glenn Wurster and Paul Van Oorschot on improving a part of IPv6 that has
security implications . In IPv6, the lower 48 bits of an address are, by default, the
MAC address of the network interface . But that address is supposed to be unique .
And that implies that an adversary could track the mobile devices as they move
from one IPv6 network to another . Barrera shares their approach to fixing this
issue, along with a very nice explanation of IPv6 host addresses .

Articles_final.indd 3 1.18.11 3:06 PM

 4 ;login: vOL. 36, NO. 1

Mona Attariyan and Jason Flynn (also met during OSDI) share their work on
providing an automated way of solving configuration error problems . Their project
involves statically tracing execution flow, then monitoring execution until an
error occurs . They can revisit the execution, trying out different paths, until they
determine which variables, identified with taint, were most likely to have caused
the error . Very cool and useful work .

Josh Fiske shares his experience using Linux virtualization from his work at
Clarkson University . Fiske takes advantage of layers, by automating the process of
spinning up new VMs and configuring them, as well as installing and configuring
a set of application packages .

Ole Tange shows off his own software project, GNU Parallel . GNU Parallel is a
replacement for xargs with a focus on forking as many processes in parallel as
desired, allowing you to take better advantage of multicore or multi-threaded
systems . Tange has also designed GNU Parallel to avoid some weaknesses in how
xargs processes its arguments, making it an excellent replacement .

David Blank-Edelman gets right into the theme of file systems by exploring some
of the included Perl libraries for copying and renaming files . He also takes a look at
CPAN modules that go well beyond the basics, such as using FTP, SFTP, SCP, and
the wrappers for rsync .

Peter Galvin compares virtualization options in Solaris, AIX, and RHEL . Expand-
ing on the comparison in his December 2010 column, Galvin explores the pluses
and minuses of these three enterprise-ready operating systems . Not surprisingly,
hardware support does make a difference here .

Dave Josephsen continues his exploration of Ganglia . In this column, Josephsen
demonstrates how to write plug-ins in C for the data-collecting daemon, gmond .
While writing C programs may not be something everyone feels comfortable with,
for often repeated tasks on critical servers their performance cannot be beat . And,
as Josephsen points out, using C means that other packages do not need to be
installed for this trick to work .

Robert Ferrell explains how the threat of worms like Stuxnet requires us to think
outside the box, or at least the comic book, to find new solutions .

Elizabeth Zwicky explains how she can review so many books each issue, tells us
about her experience reading eBooks, then presents us with her views of three new
books . I take a quick look at a book about building your own PCs, and I like what I
see enough to order the recommended list of parts for my new desktop . Sam Stover
waxes enthusiastic over a book about lock picking, a great hobby for any geek, as
well as a useful skill for physical penetration testers .

This issue includes summaries from OSDI ’10 . LISA summaries were not complete
when I turned this issue in for printing (really!), so they will be out in April 2011 .
We also have summaries from four workshops, including some excellent advice
from the Diversity Workshop to anyone either in grad school or planning to work
toward an advanced degree .

I can look out my office window and see the layers in the rock, similar to the
Coconino Sandstone and Hermit Shale layers seen in the Grand Canyon [1] . If I
move my chair a little, I can see basalt that capped the Mogollon Rim with hard
rock from volcanic eruptions millions of years ago . These layers make for spectac-
ular views, as well as supporting the local economy by attracting hordes of tourists .

Articles_final.indd 4 1.18.11 3:06 PM

 ;login: FEBRUARy 2011 Musings 5

Our computer systems are composed of many more layers, rapidly deposited over
a period of just decades . If our computers performed as slowly as they did in 1969,
where a dual-CPU MULTICS system peaked out at six million instructions per
second, we wouldn’t have so many layers—they would be too performance-inten-
sive .

Layers make programming and, to some extent, using computers much simpler .
They also have other implications . More lines of code means more bugs . And deep
software stacks also allow operating system vendors to lock in customers, as the
only way to bypass these layers is to port software to other operating systems’ lay-
ers . I’ve been thinking and writing about the implications of these layers for many
years, and you can take a look at where I hope we are going both in security and in
dealing with these layers [2] .

References

[1] Grand Canyon Layers: http://www .bobspixels .com/kaibab .org/geology/gc_layer
 .htm and http://education .usgs .gov/schoolyard/IMAGES/GrandCanyon .jpg .

[2] Rik Farrow, “Software Insecurity,” IQT Quarterly, vol . 2, no . 2: http://
www .rikfarrow .com/IQT_Quarterly_2010 .pdf .

Articles_final.indd 5 1.18.11 3:06 PM

 6 ;login: vOL. 36, NO. 1

file systems
Dutch Meyer is a PhD student,

under the supervision of

Andrew Warfield, at the

University of British Columbia.

His research investigates the impacts of

virtualization on network-available storage

systems.

dmeyer@cs.ubc.ca

Jake Wires received his MS in computer

science from the University of British

Columbia. He currently works in the

Datacenter and Cloud Division at Citrix, where

his focus is storage virtualization.

Jake.Wires@Citrix.com

Norman Hutchinson is an

associate professor at the

University of British Columbia.

His research interests center

on programming languages and operating

systems, with particular interests in object-

oriented systems, distributed systems, and file

systems.

norm@cs.ubc.ca

Andrew Warfield is an

assistant professor at the

University of British Columbia.

He advises students on a

wide range of topics, including virtualization,

storage, and security.

andy@cs.ubc.ca

Namespace Management in
Virtual Desktops
d u t C h t . M E y E r , J a k E w i r E s , n o r M a n C . h u t C h i n s o n , a n d
a n d r E w w a r F i E l d

Even as virtualization has promised to ease cluster scale and management, it
presents system administrators and storage system designers with opaque blobs of
data that represent entire virtual volumes . In these environments, application and
file-level semantics are abandoned long before data reaches the disk . Our research
borrows from past work and is creating virtual storage interfaces that preserve
file-level information in order to improve the management and efficiency of storage .

Virtualization has been widely used to reduce operational costs of mid- and large-
scale server farms . Now it is making headway in desktop computing, where it has
played a central role in recent efforts to migrate users from individual worksta-
tions to centrally administered servers . Virtual Desktop Infrastructure (VDI) is
the latest manifestation of the well-known thin-client paradigm . It attempts to
lure end users—who have previously been reluctant to embrace thin clients—by
providing a computing environment almost identical to the familiar desktop PC .
There are good reasons to believe this approach is working .

Gartner predicts that 40 percent of all worldwide desktops—49 million in total—
will be virtualized by 2013 [2] . Already, many organizations have deployed VDI to
tens of thousands of users [6] . This surge is being driven by administrators who
have long seen the value of centralizing PC resources . They find that a significant
economy of scale comes from the reduced operating costs provided by a VDI envi-
ronment . There are, however, big challenges posed by such large and centralized
installations, particularly with respect to storage .

In current VDI implementations, virtual disks are stored as opaque files on a
central network server . File formats like Microsoft’s VHD and VMware’s VMDK
encapsulate entire disk images using a read-only base image (or Gold Master) as a
template disk . Modifications to the base image are stored in one or more separate
overlay images allocated for each VM . This allows the rapid creation of new VMs
with minimal initial overhead . But as VMs mature, their overlay images diverge,
leading to increased storage consumption and maintenance burden . The block
level approach used by these file formats, while simple to implement, lacks the
contextual information necessary to begin addressing this divergence problem .
Administrators are presently faced with the choice of either allowing images to
diverge without bound, resulting in a serious management problem for tasks like
upgrade, or resetting images to the original master at daily or weekly frequencies,
which frustrates users who desire to install their own software .

Articles_final.indd 6 1.18.11 3:06 PM

 ;login: FEBRUARy 2011 Namespace Management in Virtual Desktops 7

This information-poor block interface also extends through much of the storage
stack in enterprise VM environments . In a traditional PC the transformation from
file to block requests occurs very low in the stack, so many storage features oper-
ate at the file level . However, in virtualization environments this transformation
occurs at the top . Below the guest VM’s block level, the VMM will map the virtual
drive to a file format for virtual disks . Since a shared storage system is required
for live VM migration and recovery in case of a physical server failure, the block
requests must then travel over the network . They are processed by a centralized
storage system that aggregates many physical drives, often storing the images on
yet another file system . In total, an enterprise virtualization storage stack will
have easily twice the distinct layers of a desktop PC, most of which are unaware of
the original file semantics .

Semantics Lost

This loss of semantics limits file-oriented performance optimizations . For exam-
ple, it is often the case that different VMs on the same physical host read and store
identical files that happen to be at different logical disk offsets . Common storage
optimizations around caching, deduplication, and placement—often implemented
within OS and file system code with the benefit of object boundaries—must be
approximated at the block layer .

Block semantics also diminish the administrator’s ability to administer . In
time-sharing systems, administrators could see user files and their accesses . If a
configuration file was incorrect, it could be inspected and even changed . If a file
management policy was not being followed, it could be detected directly . Admin-
istrators could scan the whole system for all files of a given type or name . The
corresponding view in a contemporary virtualization system is a stream of block
requests passing to an opaque virtual disk file .

This can make simple tasks, such as changing a user’s security settings in Internet
Explorer, unnecessarily complicated . The administrator can use Remote Desktop
or Terminal Services to modify the machines directly, but must access each VM
individually . With scripts they may do the job faster, but this requires knowledge of
specialized syntax . If the VMs can be turned off, the administrator can mount the
disks for inspection . Or perhaps she could email the VM’s owner and ask politely
for help . These restrictions are largely consequences of using opaque containers
and protocols . They seem ridiculous, given that the files are already being hosted
on a single shared storage system .

Users do not directly see these layer intricacies, of course, but they also don’t get
many explicit benefits . Instead, they are forced into an anachronism—PC-era
isolation, despite mainframe-style consolidation . Consider file sharing in this
environment: users can copy files to a network drive, create a file server on their
local VM, or email files as attachments . Those options seem natural for a PC, but
in a VDI any shared data is already hosted by a dedicated file server . The barriers
to collaborating on this file are vestiges of an era when hard drives were physi-
cally isolated—and virtual disks preserve these barriers without offering any
real benefits . A better approach would be to share the file without creating copies
and without the complexity and overhead of creating what is in effect a proxy file
server .

Obviously, today’s file systems were not designed for use in virtual environments .
But what would a new, virtualization-aware file system look like? We feel that

Articles_final.indd 7 1.18.11 3:06 PM

 8 ;login: vOL. 36, NO. 1

some very good ideas can be reappropriated, refurbished, and redeployed from past
research to help address these issues .

Namespace Composition

Many of the these problems stem from the forfeiture of file semantics at the top of
the predominantly block-oriented virtual storage stack . However, there’s no funda-
mental reason that most of the storage stack can’t instead use a file interface . File-
based network protocols like CIFS and NFS are in widespread use, and virtual disk
management based on a file interface was introduced with Ventana in 2006 [3] .

Like Venti [4], which inspired it, Ventana used a single global store for all files .
Individual disk images were created by selecting the necessary files from this pool,
and shared access was protected with copy-on-write . Conceptually, this composi-
tion could be considered similar to a very fine-grained use of UnionFS . Unfortu-
nately, the Ventana implementation never saw much use or distribution .

Systems like Ventana require that the file interface extend all the way from the
guest operating system to the network storage system . In practice, there are tech-
nical limitations that make this difficult . Most notably, the Windows boot process
requires a block device, which precludes using a file interface . However, this prob-
lem is not impossible to overcome . Linux already provides NFS boot, which would
be a sufficient solution for Windows . In our own lab we use a custom Windows file
system driver to transition to a CIFS interface during boot, which has much the
same result . Although this approach requires synthesizing a block interface for the
early boot stages, it is much simpler than recreating file semantics from a stream
of block requests [1] .

Whether one uses CIFS, NFS, or another protocol in place of a block interface,
the benefits are significant . At the VM level, it removes the need for any type of
block-level processing . The VMM benefits from the file interface, because it opens
up opportunities for caching when multiple VMs are reading from the same files .
The network interface to centralized storage can also be file-based, possibly NFS
or CIFS, which is easier to reason about than iSCSI and available on more afford-
able hardware . Finally, the cluster administrator is put back in the position of
dealing with file access and management . This helps in technical administration,
such as troubleshooting a client misconfiguration and managing diverging disks . It
opens the door to replacing inefficient per-client services, such as virus scanners,
with centralized alternatives . This could be used to solve the “Antivirus Storm”
problem, where a number of idle clients, unaware that they are all sharing storage
resources, engage their antivirus software and place stress on centralized storage .

A file interface would also help administrators simply understand what their
system is doing . Often, it is too easy for an administrator to be unaware that a
considerable portion of their storage resources is handling completely unneces-
sary tasks such as defragmenting virtual disks or writing IE temp files over the
network to highly redundant and expensive storage . Given the current structure of
block requests and opaque disk images, such waste can go unnoticed .

Virtual Directories

Restoring file semantics to the storage stack may not be enough . Many believe
that today’s file systems are already too complex to manage [5], so navigating a
large cluster of such hierarchies would probably challenge an administrator . In

Articles_final.indd 8 1.18.11 3:06 PM

 ;login: FEBRUARy 2011 Namespace Management in Virtual Desktops 9

other environments, virtual directories have been the subject of some interest in
combating complex file hierarchies . For virtualization, we think the idea could be
extended to provide even more benefits .

The virtual directory mechanism traces back to Gifford’s 1991 paper proposing
semantic file systems, and perhaps even earlier, to UNIX systems which first
displayed devices through a file interface . In the current context, complex searches
for files can be represented persistently as a virtual directory . This allows users to
create directories that display semantic information rather than filesystem loca-
tion information . As an example, users might want their music collection displayed
in the file system as a directory containing all files from a certain artist, regard-
less of the hierarchical location of those files .

Combined with an enterprise-wide storage system like the one proposed above,
this mechanism would be a powerful management and collaboration aid . For end
users, this would provide support for three fundamental workflows .

First, for users operating on multiple VMs, the process of circumventing the
unnecessarily strong barriers between VM file systems could be eliminated .
Rather than creating a new file server or copying the file over a network, a user
could merely request that the file be mapped into both file systems . Of course,
there are complex notions of user-identity and access control that need to be
addressed . Similar problems have been addressed in the past [7], although in dif-
ferent contexts, making this a ripe area for further research .

Second, to facilitate information finding, one could use virtual directories for per-
sistent queries, such as “find me all spreadsheet files from the accounting group .”
Currently, one could search for such files, but the illusion of decentralized storage
requires that users first locate the appropriate network servers and then aggregate
results from multiple sources . Furthermore, persistent queries are more powerful
than searches, because they can stay current with publish/subscribe notifications .

Third, virtual directories and namespace composition could work together to
empower file publishers, while simplifying the steps required to collaborate on a
file . Rather than sending an email to relevant parties containing a network address
or copy of the file, a publisher could (with the help of a Microsoft Outlook plug-in)
include a capability to access the file in an email . Shared access to this file could
be coordinated with copy-on-write, writer locks, or integrated version control soft-
ware . No doubt, each of these options should probably be available, since different
collaboration models are appropriate for different files . In any case, this approach
shifts the age-old problem of maintaining and merging multiple file copies from an
ad hoc management approach to one that is consistent and centralized in a single
enterprise-wide file system . Certainly, merging will occasionally be required, but
that’s okay . Most non-expert computer users are already familiar with the need to
merge files, since they do this over email already . What they aren’t aware of is the
fact that other management options exist for this problem .

Virtualization administrators, similarly, would benefit greatly from virtual
directories . Aggregating files from VM file systems into a single namespace could
provide opportunities to view a user’s files in terms of their similarity or dis-
similarity to those of their peers . The latter may provide opportunities to locate
misconfigured machines via outlier detection . The former would allow adminis-
trators to considerably collapse the large space of files in a large enterprise . Virtual
files may also be useful: consider, for example, creating a master log for a cluster

Articles_final.indd 9 1.18.11 3:06 PM

 10 ;login: vOL. 36, NO. 1

by reading Windows Events through the logging facilities of each VM and merging
them . Again, these mechanisms provide new opportunities to diagnose problems
or to catch warnings before they become problems .

Towards a Virtualization-Friendly File System

Cluster-wide virtualization is disruptive to internal network, compute, and storage
infrastructure . However, corresponding changes have yet to propagate to our file
systems . Our research experiences suggest to us that deep stacks without semantic
information lead to misconfiguration and inefficiency . Namespace composition
offers one organizing principle, but many issues remain . Simplicity and platform-
agnosticity at the block level have served us well, but ensuring those traits in
file- and object-based protocols is more difficult . There are also questions about
layering in the storage stack . It’s not yet clear how much functionality should be
placed in the client file system . Alternatively, the VMM’s role in hosting many
guest file systems suggests performance benefits to co-locating similar VMs and
providing features at that level . Then again, centralizing storage in back-end filers
is appealing for simplicity .

For end users, there is already widespread awareness that we need better tools to
organize and navigate data, but virtualization may be important in shaping those
solutions . Virtualized desktops and datacenters act much like PCs, but their archi-
tecture is closer to time-sharing systems . We need to find a balance between isola-
tion and ease of sharing in these environments . Even for individual users, creating
VMs in order to isolate known-good OS and application configurations is benefi-
cial . However, sharing and synchronizing files between these isolated systems is
not easy or robust . With support for file sharing between VMs, virtual directories
offer a compelling alternative . Semantic file organization may also improve our
ability to find what we want among larger collections of file systems . However, that
approach implies that namespace location is no longer a useful guide for the physi-
cal disk locations for our files .

While many open questions remain, we see great promise in these semantic-rich
storage stacks and file system structures . Administrators need a file-oriented
view of storage to efficiently understand and assist their users, while users may see
benefits to novel file organizations and simpler work flows through explicit shar-
ing . Storage is, for many good reasons, slow to change, but if we are to address the
shifts in PC and cluster design, changes are on the way .

References

[1] A .C . Arpaci-Dusseau and R .H . Arpaci-Dusseau, “Information and Control in
Gray-Box Systems,” in Proceedings of the Eighteenth ACM Symposium on Operat-
ing Systems Principles, 2001, pp . 43–56 .

[2] C . Pettey and H . Stevens, “Gartner Says Worldwide Hosted Virtual Desktop
Market to Surpass $65 billion in 2013,” March 2009: http://www .gartner .com/it/
page .jsp?id=920814 .

[3] B . Pfaff, T . Garfinkel, and M . Rosenblum, “Virtualization Aware File Systems:
Getting Beyond the Limitations of Virtual Disks,” in 3rd Symposium on Networked
Systems Design and Implementation (NSDI ’06), 2006 .

[4] S . Quinlan and S . Dorward, “Venti: A New Approach to Archival Storage,” in
Proceedings of the Conference on File and Storage Technologies, 2002, pp . 89–101 .

Articles_final.indd 10 1.18.11 3:06 PM

 ;login: FEBRUARy 2011 Namespace Management in Virtual Desktops 11

[5] M .I . Seltzer and N . Murphy, “Hierarchical File Systems Are Dead,” 12th Work-
shop on Hot Topics in Operating Systems (HotOS XII): http://www .usenix .org/
event/hotos09/tech/full_papers/seltzer/seltzer .pdf .

[6] VMWare, Customer Case Studies by Product, November 2010: http://www
 .vmware .com/products/view/casestudies .html .

[7] E . Wobber, M . Abadi, M . Burrows, and B . Lampson, “Authentication in the Taos
Operating System,” in Proceedings of the Fourteenth ACM Symposium on Operating
Systems Principles, 1993, pp . 256–269 .

Articles_final.indd 11 1.18.11 3:06 PM

 12 ;login: vOL. 36, NO. 1

netwOrkSafely Using Your Production Network
as a Testbed
r o b s h E r w o o d

FlowVisor is a prototype implementation of network slicing, a technique for allow-
ing production and experimental network protocols to safely share the same physi-
cal infrastructure . FlowVisor relies on OpenFlow, a new protocol for managing
switches and routers that controls network traffic using patterns found in packets .

Network administrators must strike a careful balance between providing a solid,
reliable network and a network that has the cutting-edge services demanded by
its users (e .g ., multicast, IPv6, IP mobility, or something more radical such as a
traffic load balancing service) . This is particularly challenging in a research or
university setting, as some of the requested services are themselves experimental
and therefore already disruption-prone in nature . Further complicating this issue
are up-and-coming technologies like OpenFlow [3] that allow network adminis-
trators, operators, and researchers to program custom services into the network .
OpenFlow provides programmatic control of how packets are forwarded, and with
it researchers are prototyping novel network services [1, 2] . But while OpenFlow
allows interesting new network services, this additional freedom comes at the cost
of additional potential sources of network instability .

Common practice is to deploy new services in a smaller testbed or isolated VLAN
and then, after some time has passed and confidence has been built, transition
the service to the production network . This approach has two main shortcomings .
First, typically for reasons of cost, testbeds rarely have the same size, number of
users, heterogeneity, or, more generally, complexity as the real production net-
works . As a result, it’s not uncommon for a service to work correctly in the testbed
but still have problems in the production network . Second, once the service has
passed its testbed evaluation, there is typically not an incremental and controlled
(e .g ., user-by-user) way of deploying the service in the production network . For
example, on most routers, multicast support is a binary feature: it is either enabled
or disabled, so some error in the service could affect all users, not just the ones that
elect to use multicast .

Our approach, as demonstrated by our first prototype, called FlowVisor [7], is to
divide the network into logical partitions, called slices, and to give each service
control over packet forwarding in its own network slice . Users then opt in to one
or more network services: that is, they delegate control of subsets of their traffic to
specific services . The existing production network services (e .g ., Spanning Tree,
OSPF, etc .) run in a slice, and by default, all users are opted into the production
slice . Critically, the FlowVisor ensures strong isolation between slices: that is,
actions in one slice do not affect another slice .

Rob Sherwood is a Senior

Research Scientist at Deutsche

Telekom Inc.’s R&D Lab in Los

Altos, California. Additionally,

Rob is a member of the Clean Slate Lab at

Stanford University.

r.sherwood@telekom.com

Articles_final.indd 12 1.18.11 3:06 PM

 ;login: FEBRUARy 2011 Safely Using Your Production Network as a Testbed 13

For example, a network administrator, Alice, could use FlowVisor to divide her
network into three slices (Figure 1) . The first slice the administrator keeps for her-
self as a production slice and in it runs standard, well-vetted network protocols,
e .g ., OSPF, Spanning Tree, or basic MAC-address learning/switching using avail-
able open source software such as Quagga [6] or NOX [4] . The administrator then
delegates the second and third slices to two network researchers, Bob and Cathy .
Bob is developing a network service optimized for high throughput, and Cathy is
running a service optimized for low packet-loss . Then the network’s users are able
to pick and choose (e .g ., via an authenticated Web page) which slices control their
traffic . For example, users not trusting the research slices might elect to have all
of their traffic controlled by Alice’s production slice . By contrast, an early adopter,
Doug, might be more interested in the new slices and elect to have his gaming
traffic be controlled by Cathy’s slice, his HTTP traffic be controlled by Bob’s slice,
and the rest of his traffic (e .g ., VoIP) controlled by Alice’s production slice . The key
point is that the FlowVisor would enforce isolation between these slices so that
if one slice had a problem (e .g ., created a forwarding loop), it would not affect the
other slices even though they shared the same physical hardware . Further, new
services would be deployed more incrementally, i .e ., user by user, creating a more
graceful service introduction process .

Figure 1: Network slicing allows multiple network protocols to run safely together on the same
physical infrastructure.

Slicing Control and Data Planes

Network slicing is a way of allowing multiple services to share control of the same
physical network resources . At a high level, the internals of modern switches,
routers, base stations, etc . are typically divided into a control plane and a data
plane (also called the slow path and the fast path, respectively) . The control plane
is a collection of software applications typically running on a general-purpose
CPU, where the data plane is one or more application-specific integrated circuits
(ASICs) . The control plane is responsible for formulating higher-level forwarding
rules of the form “if a packet matches pattern, then apply actions,” which are then
pushed down to, and enforced by, the data plane . The exact nature of the pattern
and actions varies by device: for example, on a router, the pattern might be a CIDR-
prefix and actions would be “decrement TTL and then forward out port 14 .” The
important point is that there is a communications channel between the control and
data planes .

Articles_final.indd 13 1.18.11 3:06 PM

 14 ;login: vOL. 36, NO. 1

Similar to how a hypervisor sits between multiple virtual machine operating sys-
tems and the underlying hardware, network slicing is a layer between the multiple
control planes and the underlying data planes . Each slice runs its own logical con-
trol plane and makes its own packet-forwarding rules . The slicing layer ensures
isolation between slices by verifying that forwarding rules from different control
planes/services do not conflict . Note that once a rule is pushed into the data plane,
packets are forwarded at full line speed, so network slicing has no packet forward-
ing performance penalty . Network slicing can even isolate bandwidth between
slices by mapping a slice’s actions onto a per-interface quality of service (QoS)
queue .

Our network slicing implementation, FlowVisor, is implemented on top of Open-
Flow . OpenFlow is an open standard for controlling data planes of existing
network hardware . An already existing and deployed switch or router can be Open-
Flow-enabled with a firmware upgrade . Once a network device supports Open-
Flow, network administrators or researchers can write their own control logic to
make low-level packets forwarding decisions, e .g ., writing a new routing algorithm .
In OpenFlow, the control plane is moved off the network device to an external con-
troller (typically, a commodity PC); the controller talks to the data plane (over the
network itself) using the OpenFlow protocol . The controller is simply a user-space
process that speaks the OpenFlow protocol to OpenFlow-enabled devices .

The FlowVisor acts as a transparent OpenFlow proxy, sitting between the switch
and a set of OpenFlow controllers . The FlowVisor intercepts messages as they pass
between switch and controller, and rewrites or drops them to ensure that no ser-
vice violates its slice configuration . FlowVisor’s configuration file specifies which
sets of resources are controlled by each slice, including topology and bandwidth,
and which classes of packets each slice manages .

Deployment and Scalability

Even though it is still a research prototype, FlowVisor has been deployed in various
capacities on eight campuses and on one national backbone provider’s network .
At Stanford University, for example, FlowVisor runs on two different VLANs of
the physical production network, including 15 wired switches and 30 wireless
access points . It has been in place for over one year and slices the network that the
authors use for their daily email, Web traffic, etc . On each of the seven other cam-
puses (including Georgia Tech, University of Washington, Clemson University,
Princeton, Rutgers, the University of Wisconsin, and the University of Indiana),
FlowVisor manages a testbed network, but there are plans underway to move to
the production network . Additionally, the National Lambda Rail (NLR)—a national
backbone provider—has deployed OpenFlow and FlowVisor on a dedicated five-
node nationwide circuit .

Recently, FlowVisor-sliced networks were showcased at the ninth GENI Engi-
neering Conference . Five distinct OpenFlow-based projects ran simultaneously
on the same physical network nodes, as contributed by the eight campuses and
NLR . This demonstration is evidence that FlowVisor-style network slicing has the
necessary isolation capabilities to test new research on commercially available
production equipment .

We also evaluated the FlowVisor in terms of its scalability and overhead . The
FlowVisor’s total workload is the product of the number of switches, times the
average number of messages per switch, times the number of slices, times the aver-

Articles_final.indd 14 1.18.11 3:06 PM

 ;login: FEBRUARy 2011 Safely Using Your Production Network as a Testbed 15

age number of rules per slice . Our Stanford deployment does not produce a measur-
able load on our deployed FlowVisor, so we instead created a synthetic workload
that is comparable to the peak rate of a published real-world 8000-node enterprise
network [5] . Using this synthetically high workload, the FlowVisor maintains
under 50% CPU utilization on a single process on a modern server . In terms of
performance, we find that FlowVisor adds an average of 16 milliseconds of latency
for setting up a new flow and no overhead for additional packets in a flow . Thus, we
believe that a single FlowVisor instance could manage a large enterprise network
with minimal overhead .

Conclusion

FlowVisor-style slicing combined with OpenFlow offers potential relief to opera-
tors and researchers looking to deploy new network services without sacrificing
network stability . Our current efforts are focused on expanding our deployments
and better “bullet-proofing” isolation between slices . The source code for Flow-
Visor is freely available from http://www .openflow .org/wk/index .php/FlowVisor .

References

[1] D . Erickson et al ., “A Demonstration of Virtual Machine Mobility in an Open-
flow Network,” in Proceedings of ACM SIGCOMM (Demo), August 2008, p . 513 .

[2] B . Heller, S . Seetharaman, P . Mahadevan, Y . Yiakoumis, P . Sharma, S . Baner-
jee, and N . McKeown, “ElasticTree: Saving Energy in Data Center Networks,” 7th
USENIX Symposium on Networked Systems Design and Implementation (NSDI ’10) .

[3] N . McKeown, T . Anderson, H . Balakrishnan, G . Parulkar, L . Peterson, J .
Rexford, S . Shenker, and J . Turner, “OpenFlow: Enabling Innovation in Campus
Networks,” ACM SIGCOMM Computer Communication Review, vol . 38, no . 2, April
2008, pp . 69–74 .

[4] http://www .noxrepo .org .

[5] R . Pang, M . Allman, M . Bennett, J . Lee, V . Paxson, and B . Tierney, “A First Look
at Modern Enterprise Traffic,” in Proceedings of the Internet Measurement Confer-
ence 2005, pp . 15–28 .

[6] http://www .quagga .net .

[7] R . Sherwood, G . Gibb, K .-K . Yap, M . Cassado, G . Appenzeller, N . McKeown, and
G . Parulkar, “Can the Production Network Be the Test-Bed?” in Proceedings of the
10th USENIX Conference on Operating Systems Design and Implementation (OSDI
’10), pp . 1–14 .

Articles_final.indd 15 1.18.11 3:06 PM

 16 ;login: vOL. 36, NO. 1

Back to the Future: Revisiting IPv6
Privacy Extensions
d a v i d b a r r E r a , g l E n n w u r s t E r , a n d p . C . v a n o o r s C h o t

Network stacks on most operating systems are configured by default to use the
interface MAC address as part of the IPv6 address . This allows adversaries to
track systems as they roam between networks . The proposed solution to this prob-
lem—IPv6 privacy extensions—suffers from design and implementation issues
that limit its potential benefits . Our solution creates a more usable and configu-
rable approach to IPv6 privacy extensions that helps protect users from being
tracked .

With more people adopting IPv6, some features of the protocol are slowly being
explored by a small user-base . Security issues related to IP packet fragmentation
and malicious route headers [4] have been identified, and new RFCs addressing
those issues have been published (e .g ., RFC 5095 and RFC 5722) . Over many years,
the iterative process of identifying flaws and creating fixes led to IPv4 becoming a
stable and mature protocol . Since IPv6 is much newer and only now being broadly
deployed, many of its features have not enjoyed broad testing or security analysis .
In this article we concentrate on one such feature: IPv6 privacy extensions .

IPv6 provides the option for clients to assign themselves an IPv6 address based on
a 64-bit prefix periodically broadcast by a local server, and a 64-bit value derived
from the network interface identifier—usually the MAC address of the network
card . Having a globally routable IP address which includes (and therefore reveals
to remote servers) the MAC address of a client was regarded as a potential privacy
issue, leading to the development of IPv6 privacy extensions (RFC 4941) . Through
the use of these extensions, a host can generate and assign itself a partially
randomized (but still valid) IP address at fixed intervals, allowing connectivity
without revealing its MAC address . The existing IPv6 privacy extensions are not
only important for personal privacy, but also for hiding information which can oth-
erwise allow wide-scale targeted malware attacks such as Internet-scale hit lists .

Paradise Lost

The initial IPv6 address design choices have had a detrimental impact on privacy .
The proposed privacy extensions can also fail to provide the benefits they were
designed for . Having recorded multiple IPv6 addresses, an adversary can trivially
map two or more of these addresses to the same client, sometimes even when pri-
vacy extensions are in use . In practice, the adversary could be a corporation wish-
ing to provide targeted services only to users that fit a specific profile (e .g ., users
who have visited more than three coffee shops in the past week or have been at five
airports in the past month) . Other adversaries may include governments or eaves-

David Barrera is a PhD

student in computer science

at Carleton University under

the direction of Paul van

Oorschot. His research interests include

network security, data visualization, and

smartphone security.

dbarrera@ccsl.carleton.ca

Glenn Wurster completed

his PhD in computer science

(2010) at Carleton University

under the direction of Paul

van Oorschot. His interests include software

security, system administration, operating

systems, and Web security.

gwurster@scs.carleton.ca

Paul van Oorschot is a

professor of computer science

at Carleton University in

Ottawa, where he is Canada

Research Chair in Authentication and

Computer Security. He was Program Chair of

USENIX Security ’08, Program Co-Chair of

NDSS 2001 and 2002, and co-author of the

Handbook of Applied Cryptography (1996).

paulv@scs.carleton.ca

Articles_final.indd 16 1.18.11 3:06 PM

 ;login: FEBRUARy 2011 Back to the Future: Revisiting IPv6 Privacy Extensions 17

droppers who wish to follow users as they roam through multiple locations . While
the tracking of users in IPv6 is partially addressed by the IPv6 privacy extensions,
the specification has a number of design issues which can cause implementations
to fall short of the goal of keeping the client-to-IP-address mapping private across
locations .

Without privacy extensions, tracking is possible because the last 64 bits of a cli-
ent’s IPv6 address are constant: if a client has IPv6 address 1::2345:6789 while
on network 1, the client may have IPv6 address 2::2345:6789 when using network
2 . This provides the means to track users as they move between IPv6-capable
networks . Existing privacy extensions essentially randomize the last 64 bits every
x seconds .

Paradise Regained

We propose a new technique and prototype implementation for generating private
IPv6 addresses . Our proposal differs from current IPv6 privacy extensions in that
it can be configured for different privacy requirements and is capable of provid-
ing private addresses even if an administrator has configured the network to
deter their use . Our proposal provides as much privacy as IPv4 and has minimal
overhead . We also describe the implementation of a Linux kernel prototype of our
proposal .

In this article we identify issues with the current state of IPv6 privacy extensions
that could lead to a downgrade attack, enabling eavesdroppers to track IPv6 users
as they move through networks . We also identify issues with currently deployed
implementations of IPv6 privacy extensions in modern operating systems, and
we propose a more flexible and robust algorithm for generating private IPv6
addresses .

IPv6 Background

Before we explain the details of our proposal, we will review relevant terminology
and background on how clients are assigned IPv6 addresses and on the originally
proposed privacy extensions . We will use the generally accepted terminology .

u Prefix: the first (most significant) 64 bits of an IPv6 address . A prefix can be
learned through periodic router advertisements, assigned by DHCPv6, or self-
assigned (e .g ., for loopback and link local addresses) .

u Interface identifier: the least significant 64 bits of an IPv6 address . The prefix
and interface identifier together fully specify an IPv6 address .

u Preferred lifetime: a lifetime associated with a particular IPv6 address dur-
ing which the address should be used to initiate connections . Once the lifetime
expires, the IPv6 address is deprecated, but still active for the remaining open
connections . The address remains deprecated until the valid lifetime expires .

u Valid lifetime: a lifetime associated with a particular IPv6 address . When it
expires, the IPv6 address is removed from the network interface by the kernel and
no longer used .

Obtaining ipv6 Addresses

Clients can obtain IPv6 addresses through one of three methods: (1) the user
manually assigns a valid IPv6 address to an interface; (2) a periodically advertised

Articles_final.indd 17 1.18.11 3:06 PM

 18 ;login: vOL. 36, NO. 1

prefix is prepended to the self-generated interface identifier; or (3) a DHCP server
is queried and the received response used . We review methods (2) and (3) .

S TaT E L E S S a D D R E S S a U T o - C o N F I g U R aT I o N

IPv6 provides a method for clients to automatically assign themselves a valid IPv6
address based on periodically broadcast router advertisements . In a typical setup,
a router broadcasts the IPv6 prefix that all clients should prepend to their auto-
configured interface identifier . In 1998 the authors of RFC 2462 suggested that
clients use their network MAC address in the generation of the interface identifier .
The rationale was that this provided sufficient uniqueness and would require no
persistent storage . Nine years later, RFC 4862 removed the MAC address sugges-
tion, allowing hosts to choose their own method for generating interface identi-
fiers . The interface identifier is always appended to the network prefix, after which
the Duplicate Address Detection (DAD) algorithm is run by the client to ensure
that the address is unique to the network segment, and therefore globally unique
(as prefixes are also unique) .

In cases where a MAC address is used as the interface identifier (still currently
the default behavior of Linux and Mac OS), the IPv6 address reveals information
which can be used to identify the client hardware . This ability to determine the
hardware configuration of a machine may lead to additional information about
the client being revealed on the network . For example, Mac OS runs on a specific
underlying hardware platform, allowing the identification of Apple users based
only on MAC addresses . This ability to determine the characteristics of a client
through the MAC address can be used in a targeted attack on a user or organization
(e .g ., sending a malicious PDF that only exploits Mac OS) . Bellovin et al . [3] argue
that the MAC address could also be used by IPv6 worms to target specific hosts .

I N a D V E R T E N T I P V 6 U S E R S

We define inadvertent IPv6 users as users who unknowingly use IPv6 to connect
to remote servers . While the vast majority of Internet users currently use IPv4,
modern OSes attempt to use IPv6 by default when resolving hosts . In a typical
network, connecting (and therefore revealing the source IP address of the connec-
tion) to a remote server over IPv4 will not typically allow the server to track the
individual or identify the network hardware . Connecting to the same server over
IPv6 may reveal sufficient information to track the individual and identify hard-
ware . Because stateless address auto-configuration does not depend on additional
client software (other than an updated kernel), it is likely to cause inadvertent IPv6
use . This increases the importance of IPv6 privacy extensions that truly provide
protection and information hiding .

D H C P V 6

With the addition of stateless address auto-configuration for IPv6, hosts can
obtain network information and learn how to route packets without installing
additional software . While this may seem ideal from a network management
standpoint (e .g ., set up a route prefix advertisement daemon and IPv6 just works),
there may be other configuration parameters needed by hosts in order to actually
communicate with external hosts . These parameters will vary from network to
network, but some include WINS, NTP, NETBIOS, and DNS .

Articles_final.indd 18 1.18.11 3:06 PM

 ;login: FEBRUARy 2011 Back to the Future: Revisiting IPv6 Privacy Extensions 19

There are cases where administrators may choose to replace stateless auto-
configuration with DHCPv6, or use both simultaneously . When using DHCPv6 for
address assignment, the server keeps track of assigned addresses and the hosts
using them, as DHCP did in IPv4 . When using both, a host obtains its IPv6 address
through stateless auto-configuration and other information through a server on
the local network . The issue of tracking clients using IPv6 is specific to those who
obtain an address through stateless address auto-configuration .

original Privacy Extensions

IPv6 privacy extensions for stateless address auto-configuration were proposed
specifically to address privacy concerns with having a static and globally unique
interface identifier . Concerns that a well-placed sniffer (or prolific ad network)
might track users as they roam through different networks are partially mitigated
by privacy extensions through using periodically changing random interface
identifiers . RFC 4941 specifies the algorithm used to generate a random identifier,
as well as when to update it . As shown in Figure 1, a hash function (MD5 is sug-
gested in the RFC) is used to generate the interface identifier . The first 64 bits of
output are used as the interface identifier, while the last 64 are stored for the next
iteration of the algorithm, which takes place every x seconds (or when a duplicate
address is detected by the client) . The first iteration of the function uses a random
value as the history value .

Figure 1: Original privacy extension address generation

The current specification has two important limitations . The only configurable
parameter is the interval at which new random interface identifiers are gener-
ated . The default interval is to generate a new identifier every 24 hours . This still
allows a user moving between two or more IPv6 networks in a 24-hour window to
be tracked by an adversary (since the client’s interface identifier will not change
during this time, even if the network prefix does) . The expert user can configure
the regeneration interval to be smaller, at the expense of no longer maintaining
long-lasting connections (e .g ., SSH or movie downloads) .

The intervals are dependent on the configuration of the network . If a user has
configured the interval for regeneration of addresses to be small, but the network
advertises smaller intervals, the smallest takes precedence . This means that if
the network is configured to advertise prefixes with valid lifetimes of 60 seconds,
a user with privacy extensions enabled will generate a new and different IPv6
address roughly every 60 seconds . This will severely impact user experience: no
connection made will last more than 60 seconds .

0 63 64 127

History Value
0 63

Hash Function (MD5)

64

63 0

Network Prefix

Network Prefix

Interface Identifier

Interface Identifier

Resulting IPv6 Address

128

Every x
seconds

Articles_final.indd 19 1.18.11 3:06 PM

 20 ;login: vOL. 36, NO. 1

The latest RFC for privacy extensions also specifies that system implementers
should add an option for the user to enable or disable random interface identifiers
on a per-prefix basis . This is similar to our proposal in that a new full IPv6 address
is generated when the prefix changes (the user changes networks), but differs
in that they rely on the client to maintain a list of networks for which privacy
extensions should be enabled (or disabled) and do not use the prefix directly in the
generation of random interface identifiers .

New Privacy Extensions Proposal

In this proposal we focus on protecting clients who configure their IPv6 address
through router advertisements from being tracked as they move between IPv6-
enabled networks . We do not address clients configured through DHCPv6 or
clients with static IPv6 addresses . We assume that each IPv6 network visited by a
client is associated with a distinct prefix (routing problems result if two networks
share the same IPv6 prefix) .

We assume that the attacker does not have access to the LAN segment, and hence
cannot associate IPv6 addresses with MAC addresses, but we do not assume that
the network administrator is totally benign . We assume the network administra-
tor is capable of modifying router advertisements, forcing users to renew their
IPv6 address often . We assume an attacker attempting to track the client can see
traffic generated with each IPv6 address the client uses . We do not attempt to pro-
tect against tracking clients using higher-level protocols such as HTTP [5] .

Figure 2: Generation of new IPv6 addresses

The new proposal is for clients to generate IPv6 address interface identifiers (I)
through hashing the IPv6 prefix advertised by the router advertisement daemon
(p) with a t-bit random number (R) incremented by n (in order to resolve dupli-
cate addresses) . R is generated locally and does not leave the client . The generated
interface address is composed of the first 64 bits of the resulting m-bit hash value,
as illustrated in Figure 2 .

I = H(p | (R + n))

0 63 64 127

Unused Output Bits
0 63

Hash Function

Random Number

m64

0 63 0

Network Prefix

Network Prefix

Interface Identifier

Interface Identifier

t

Resulting IPv6 Address

n
(R)(p)

Articles_final.indd 20 1.18.11 3:06 PM

 ;login: FEBRUARy 2011 Back to the Future: Revisiting IPv6 Privacy Extensions 21

We require a pre-image resistant hash function H [8] so that given the prefix and
interface identifier, an attacker cannot determine R . Keeping R hidden prevents
an attacker from determining that two distinct IPv6 addresses correspond to the
same client . There are no compatibility or interoperability concerns should two
clients choose to use different hash functions in generating the interface identifier .

To ensure that a new I is generated for every new network prefix (which is not pos-
sible in the current privacy extensions), p is included in the hash . There are several
options regarding when to change R, allowing the client control over when to start
using a new interface identifier . To prevent known attacks [11, 8] against guess-
ing R, its length (t) should be sufficient (e .g ., t = 128 or 256 bits should certainly
be enough), and it should be set from a cryptographically secure random number
generator .

Should a client discover (through duplicate address detection) that it is attempting
to use the same generated IPv6 address as another client on the local network (an
unlikely scenario), the client should generate a new I (and hence IPv6 address) by
incrementing n and recomputing the hash . The client should reset n to 0 on reboot
and whenever p or R changes .

Generation of New Random Numbers

Our proposal includes several options on when to (re)generate R, resulting in a
changed IPv6 address . The different options provide different levels of privacy
protection, which we now discuss .

 1 . generate R on oS install . If R is generated during system install and then
never changed, I will change when the network prefix advertised by the router
changes . As long as p remains constant, so will I . This option is useful for laptops
in enterprise environments . As long as the laptop is on the corporate network, the
IPv6 address will be fixed . When the laptop is removed from the network (e .g ., the
employee goes to a USENIX workshop), the interface identifier I will change, pre-
venting the employee from being tracked as they roam between networks . When
they rejoin the enterprise environment, they will re-obtain the original interface
identifier .

 2 . generate R on oS reboot . This option results in a new IPv6 address every time
the computer is rebooted, even if the client receives the same IPv6 prefix from the
broadcast daemon .

 3 . generate R on network interface change . This option results in a new interface
identifier I being generated whenever the client computer brings up the network
interface . Since interfaces are brought up on boot and when connecting to a wire-
less network, a client will use a different I each time it joins a network broadcast-
ing the same IPv6 prefix .

 4 . generate R when the user chooses . This option results in a new interface
identifier I being generated based on user involvement (e .g ., the user regenerates
R when transitioning between tasks) . While we include this option for complete-
ness, we do not suggest defaulting to this option .

 5 . generate R every x seconds . In this option, the client generates a new IPv6
address every x seconds . This approach closely parallels the current IPv6 pri-
vacy scheme . Unlike the approaches discussed above, a new IPv6 address may
be generated while network connections are open, causing these connections to
be dropped . To reduce the number of dropped connections, the kernel can avoid
deleting old IPv6 temporary addresses associated with active network connec-

Articles_final.indd 21 1.18.11 3:06 PM

 22 ;login: vOL. 36, NO. 1

tions . As long as the active network prefix is the same as that contained in the old
temporary address, the temporary address can continue to be used . While we note
that x does not need to stay fixed (i .e ., a new x can also be chosen when the random
identifier is updated), we currently see no additional benefit in randomly changing
x . A default x of one day mirrors the current default with IPv6 privacy extensions .

We suggest the generation of a new random number (and hence interface iden-
tifier) whenever the network interface is brought up (option 3) . This method
generates IPv6 addresses as frequently as possible without interrupting open con-
nections (since connections are terminated when the interface goes down) .

Our proposal is designed so that given two distinct IPv6 addresses, it should be
hard for an attacker to answer the question, “Did the same client use both IPv6
addresses?” To answer this question, the attacker must be able to determine that
the same R value was used in the generation of both addresses (since two clients
sharing the same R value is extremely unlikely) .

In answering this question, we assume that the attacker has access to the gener-
ated interface identifier as well as to the prefix . The security, therefore, depends
on the difficulty of determining the random number provided to the pre-image
resistant hash function—which is assumed to be hard for a sufficiently large R . An
attacker attempting to track a client would need to keep trying random values for R
until finding one which generates multiple distinct and observed interface identi-
fiers; therefore a birthday attack [2, 8] does not seem to help .

Because the interface identifier changes whenever the prefix changes, a client
connecting through two networks with different prefixes will also connect with
different interface identifiers, leaking no information in the IPv6 address .

One potential attack against our proposal involves a network administrator (as
attacker) broadcasting target prefixes in an effort to detect what interface identi-
fier would be used by the client on that network (e .g ., the administrator broadcasts
prefix 1:2:3::/64 to determine what IPv6 address the client would attempt to use
on that network) . The attack would be successful if R was not updated by the cli-
ent before visiting the target network . One way to defend against this attack is to
configure the client to generate a new R whenever it enables or makes a change to
the network interface .

The proposal for generating interface identifiers relies on an appropriate random
number generator . If R can be guessed, an attacker can determine whether a client
using the same R value generated multiple distinct IPv6 addresses using dis-
tinct prefixes . The proposal also depends on a pre-image resistant hash function
(SHA-2 should suffice) .

Our approach does not protect against an attacker identifying two addresses used
by a client through correlating the time at which one IPv6 address stops being used
and another starts . We expect that as IPv6 privacy extensions are deployed, the
volume of IPv6 address churn will make correlations more difficult .

As an extension to the core approach, it may be possible to use multiple IPv6 tem-
porary addresses concurrently on a host . As an example, a new IPv6 address could
be used for every application running on the client (e .g ., Web browsing would use
one IPv6 address, DNS queries would use another, and an active SSH connection
may use a third) . While not directly privacy related, a server may also choose to use
multiple IPv6 addresses (e .g ., as a method for distributing firewalls [12]) .

Articles_final.indd 22 1.18.11 3:06 PM

 ;login: FEBRUARy 2011 Back to the Future: Revisiting IPv6 Privacy Extensions 23

Implementation

For our prototype implementation, we used version 2 .6 .34 of the Linux kernel . We
modified the currently implemented IPv6 privacy extensions . The modified kernel
provides several sys-controls which can be read and written to by user-space
programs, controlling the operation of IPv6 privacy extensions . These sys-controls
are as follows:

use_tempaddr: controls whether or not to enable privacy extensions . Possible
values are listed in Table 1 .

temp_valid_lft: the maximum amount of time a temporary address is valid . In the
original approach, a new distinct temporary address would be created . In this pro-
posal, the lifetime of an already existing temporary address will be extended when
router advertisements are received if both p and R are unchanged .

temp_prefered_lft: the maximum amount of time a temporary address will be
the preferred address for the interface . As with temp_valid_lft, the lifetime will be
extended if both p and R are unchanged when a router advertisement is received .

temp_random (new): a 32 byte (256 bit) random value R used as input to the hash
function . This sys-control is specific to our proposal .

We tested our prototype by switching between several IPv6 networks and verify-
ing that the generated IPv6 addresses were different at each network . We did not
notice any impact on activities such as Web browsing and SSH . During the course
of implementing the proposed IPv6 privacy extensions in Linux, we found several
bugs which cause IPv6 privacy extensions to be disabled and/or have all temporary
addresses deleted . We have a patch in version 2 .6 .37 of the Linux kernel which
addresses these implementation deficiencies . We will be submitting our proposed
revisions to privacy extensions to the Linux kernel in hopes that this will help
improve adoption .

Value Meaning

0 Privacy extension disabled

1 Original privacy extension enabled but not used by default for new
outgoing connections

2 Original privacy extension enabled and used by default for new
 outgoing connections

5 Proposed privacy extension enabled but not used by default for new
outgoing connections

6 Proposed privacy extension enabled and used by default for new
 outgoing connections

Table 1: Possible values and their meanings for the use_tempaddr sys-control in the modified
kernel.

Articles_final.indd 23 1.18.11 3:06 PM

 24 ;login: vOL. 36, NO. 1

other Related Work

Cryptographically Generated Addresses [1] (CGA) were proposed to prevent steal-
ing and/or spoofing IPv6 addresses . CGAs define a method for securely associat-
ing a public key to an IPv6 address . The interface identifier of the IPv6 address is
a cryptographic hash of the public key, which can later be verified by the recipient
of the packet or message . Because CGAs tie a public key to an IPv6 address, even as
hosts switch networks, they are uniquely identifiable through use of the public key .
CGAs, like our proposal, use a cryptographic hash to generate the interface identi-
fier, but the purpose of CGAs is contrary to ours and our proposal does not involve
public keys .

Mobility extensions (RFC 3775) define ways in which a mobile host can move
between networks while maintaining open connections, even if the networks use
different link layer technologies (WiMAX, LTE, WiFi) . This is accomplished by
establishing a tunnel (usually with IPSec) to the home network . The mobile host is
then reachable through the proxy home network . Route optimization (RFC 4866)
allows the correspondent node (server) to communicate directly with the mobile
host, even though the mobile host’s IPv6 address may continue to change . IPv6
Mobile extensions with route optimization are illustrated in Figure 3 .

Figure 3: Communication with Mobile IPv6 agents

For mobile agents, implementing route optimization is mandatory . The corre-
spondent node receives both the home address and care-of address and can track
the location of the mobile agent as it moves between IPv6 networks . Because the
mobile agent is also tied to the fixed home address, enabling privacy extensions at
the mobile agent does not prevent the correspondent node from tracking the mobile
agent . To prevent tracking the mobile agent, the home address and care-of address
must be changed at the same time . Otherwise, the correspondent node can tie the
old address to the new address and continue to track the mobile node .

Mobility extensions aim to address connection persistence problems rather than
privacy concerns . The former have also been solved independently in the cell phone
industry at the link layer, where cell towers hand off connections to prevent active
phone calls from being dropped when a device switches towers .

Tracking at Other Layers

Guha and Francis [6] demonstrate how to track users through DNS . Their analy-
sis shows that dynamic DNS updates combined with geolocation [9] can provide a
passive attacker with all the approximate locations visited by a victim . Geolocation
in IPv6 may also reveal more accurate results compared to IPv4 due to address
allocation recommendations (http://www .apnic .net/policy/ipv6-address-policy) .

Home Agent

care-of-address

Correspondent
Node

Mobile Agent

home address

Articles_final.indd 24 1.18.11 3:06 PM

 ;login: FEBRUARy 2011 Back to the Future: Revisiting IPv6 Privacy Extensions 25

Users with private IPv6 addresses may be tracked at the application layer through
cookies [7] or browser characteristics [5] . Protecting privacy at all layers is clearly
a difficult problem and beyond our scope, but we argue that in order to have privacy
at higher-level protocols, underlying protocols must also be private .

While we do not address the problem of tracking users on the LAN specifically
in this article, we note that tracking users at the Ethernet level is possible due to
clients broadcasting their MAC addresses [10] . Because MAC addresses in the
Ethernet header are overwritten on a hop-by-hop basis, attackers outside the LAN
do not obtain the MAC address of a client . This article focuses on the network
layer, where tracking can be performed across the Internet .

Conclusion

We have proposed a new way of generating the interface identifier used in tempo-
rary IPv6 addresses . The use of temporary addresses prevents tracking clients as
they move between IPv6 networks . Our approach does not use MAC addresses,
which can be used to identify client hardware .

Our proposal has several benefits over the current IPv6 privacy extension scheme,
including: (1) the ability to maintain a consistent IPv6 address over an extended
period regardless of the lifetime specified by a router advertisement (as long as
the prefix being advertised does not change); (2) the ability to always use the same
interface identifier while connected to a network broadcasting an unchanging
prefix; (3) the ability to configure when a new interface identifier should be created
(e .g ., whenever the network interface is brought up); and (4) not being able to track
a client through the use of a common interface identifier across networks broad-
casting different IPv6 prefixes . We have implemented and tested the approach in
Linux and found that it generates new interface identifiers as designed while not
impacting Internet activities .

A version of this article is also available as Technical Report TR-10-17 (September
9, 2010), Carleton University, School of Computer Science .

References

[1] T . Aura, “Cryptographically Generated Addresses (CGA),” in Proceedings of the
6th International Information Security Conference (ISC ’03), pp . 29–43 .

[2] M . Bellare, O . Goldreich, and H . Krawczyk, “Stateless Evaluation of Pseudoran-
dom Functions: Security beyond the Birthday Barrier,” 19th International Confer-
ence on Cryptology (Crypto ’99) .

[3] S . Bellovin, B . Cheswick, and A . Keromytis, “Worm Propagation Strategies in an
IPv6 Internet,” ;login:, vol . 31, no . 1 (February 2006), pp . 70–76 .

[4] P . Biondi, A . Ebalard, M . Balmer, and V . Manral, “Ipv6 Protocol Type 0 Route
Header Denial of Service Vulnerability,” April 23, 2007: http://www .securityfocus
 .com/bid/23615 .

[5] P . Eckersley, “A Primer on Information Theory and Privacy”: https://www
 .eff .org/deeplinks/2010/01/primer-information-theory-and-privacy .

[6] S . Guha and P . Francis, “Identity Trail: Covert Surveillance Using DNS,” in
Proceedings of the Privacy Enhancing Technologies Symposium, 2007 .

Articles_final.indd 25 1.18.11 3:06 PM

 26 ;login: vOL. 36, NO. 1

[7] D . Kristol and L . Montulli, “HTTP State Management Mechanism,” RFC 2965
(Proposed Standard), October 2000 .

[8] A .J . Menezes, P .C . Van Oorschot, and S .A . Vanstone, Handbook of Applied Cryp-
tography (CRC Press, 1996) .

[9] J .A . Muir and P .C . Van Oorschot, “Internet Geolocation: Evasion and Counter-
evasion,” ACM Computing Surveys (CSUR), vol . 42, no . 1 (2009), pp . 1–23 .

[10] L . Peterson and B . Davie, Computer Networks: A Systems Approach (Morgan
Kaufmann, 2007) .

[11] B . Preneel and P .C . van Oorschot, “On the Security of Iterated Message Authen-
tication Codes,” IEEE-IT, vol . 45, no . 1 (January 1999), pp . 188–99 .

[12] H . Zhao, C .-K . Chau, and S .M . Bellovin, “ROFL: Routing as the Firewall
Layer,” in New Security Paradigms Workshop (NSPW), 2008 .

Articles_final.indd 26 1.18.11 3:06 PM

 ;login: FEBRUARy 2011 27

Mona Attariyan is a PhD

candidate at the Computer

Science and Engineering

Department of the University

of Michigan. Her research interests broadly

include software systems, especially operating

systems and distributed systems.

monattar@umich.edu

Jason Flinn is an associate

professor of computer science

and engineering at the

University of Michigan. His

research interests include operating systems,

distributed systems, storage, and mobile

computing.

jflinn@umich.edu

Complex software systems are difficult to configure and manage . When problems
inevitably arise, operators spend considerable time troubleshooting those prob-
lems by identifying root causes and correcting them . The cost of troubleshooting
is substantial . Technical support contributes 17% of the total cost of ownership of
today’s desktop computers [3], and troubleshooting misconfigurations is a large
part of technical support . Even for casual computer users, troubleshooting is often
enormously frustrating .

Our research group is exploring how operating system support for dynamic
information flow analysis can substantially simplify and reduce the human effort
needed to troubleshoot software systems . We are focusing specifically on configu-
ration errors, in which the application code is correct, but the software has been
installed, configured, or updated incorrectly so that it does not behave as desired .
For instance, a mistake in a configuration file may lead software to crash, assert,
or simply produce erroneous output .

Consider how users and administrators typically debug configuration problems .
Misconfigurations are often exhibited by an application unexpectedly terminat-
ing or producing undesired output . While an ideal application would always output
a helpful error message when such events occur, it is unfortunately the case that
such messages are often cryptic, misleading, or even non-existent . Thus, the
person using the application must ask colleagues and search manuals, FAQs, and
online forums to find potential solutions to the problem .

ConfAid helps mitigate such problems . ConfAid is run offline, once erroneous
behavior has been observed . A ConfAid user reproduces the problem by executing
the application while ConfAid monitors the application’s behavior . The user speci-
fies the application she wishes to troubleshoot and its sources of configuration
data (e .g ., httpd .conf for the Apache Web server) . ConfAid automatically diagnoses
the root causes of self-evident errors, such as assertion failures and exits with non-
zero return codes . ConfAid also allows its user to specify undesired output (e .g .,
specific error strings); it monitors application output to files, network, and other
external devices for such user-specified error conditions .

When ConfAid observes erroneous application behavior, it outputs an ordered
list of probable root causes . Each entry in the list is a token from a configuration
source; our results show that ConfAid typically outputs the actual root cause as
the first or second entry in the list . This allows the ConfAid user to focus on one or

sysadminautomating Configuration Troubleshooting
with Confaid
M o n a a t t a r i y a n a n d J a s o n F l i n n

Articles_final.indd 27 1.18.11 3:06 PM

 28 ;login: vOL. 36, NO. 1

two specific configuration tokens when deciding how to fix the problem, which can
dramatically improve the total time to recovery for the system .

The rest of this article briefly describes ConfAid’s design and implementation, and
it gives a short summary of our experiments with ConfAid . More details can be
found in our OSDI ’10 paper [1] .

Design Principles of Confaid

We begin by describing ConfAid’s design principles .

Use White-Box Analysis

The genesis of ConfAid arose from AutoBash [8], our prior work in configuration
troubleshooting . AutoBash tracks causality at process and file granularity in order
to diagnose configuration errors . It treats each process as a black box, such that all
outputs of the process are considered to be dependent on all prior inputs . We found
AutoBash to be very successful in identifying the root cause of problems, but the
success was limited in that AutoBash would often identify a complex configuration
file, such as Apache’s httpd .conf, as the source of an error . When such files contain
hundreds of options, the root cause identification of the entire file is often too
nebulous to be of great use .

Our take-away lessons from AutoBash were: (1) causality tracking is an effec-
tive tool for identifying root causes, and (2) causality should be tracked at a finer
granularity than an entire process to troubleshoot applications with complex con-
figuration files . These observations led us to use a white box approach in ConfAid
that tracks causality within each process at byte granularity .

Operate on Application Binaries

We next considered whether ConfAid should require application source code for
operation . While using source code would make analysis easier, source code is
unavailable for many important applications, which would limit the applicability
of our tool . Also, we felt it likely that we would have to choose a subset of program-
ming languages to support, which would also limit the number of applications
we could analyze . For these reasons, we decided to design ConfAid to not require
source code; ConfAid instead operates on program binaries .

Embrace imprecise Analysis

Our final design decision was to embrace an imprecise analysis of causality that
relies on heuristics rather than using a sound or complete analysis of information
flow . Using an early prototype of ConfAid, we found that for any reasonably com-
plex configuration problem, a strict definition of causal dependencies led to our
tool outputting almost all configuration values as the root cause of the problem .
Thus, our current version of ConfAid uses several heuristics to limit the spread of
causal dependencies . For instance, ConfAid does not consider all dependencies to
be equal . It considers data flow dependencies to be more likely to lead to the root
cause than control flow dependencies . It also considers control flow dependencies

Articles_final.indd 28 1.18.11 3:06 PM

 ;login: FEBRUARy 2011 Automating Configuration Troubleshooting with ConfAid 29

introduced closer to the error exhibition to be more likely to lead to the root cause
than more distant ones . In some cases, ConfAid’s heuristics can lead to false nega-
tives and false positives . However, our results show that in most cases, they are
quite effective in narrowing the search for the root cause and reducing execution
time .

Confaid’s Information Flow analysis

Figure 1: ConfAid propagates configuration tokens throughout the application using infor-
mation flow analysis. When an error happens, ConfAid uses the propagated information to
determine the root cause of the undesired outcome.

We use the example in Figure 1 to illustrate the mechanics of ConfAid . Assume
that the application exhibits an error if the configuration token ExecCGI exists
in the config file . When the application runs, ConfAid uses taint tracking [7] to
dynamically monitor the propagation of configuration tokens and to determine
how the erroneous outcome depends on the configuration data . When the applica-
tion reads the value of the ExecCGI token from the configuration file, ConfAid
taints the memory location that stores that value of token to indicate that its value
could change if the user were to modify the value of ExecCGI in the configuration
file . As the application executes, ConfAid observes that the value of execute_cgi
depends on the value of the token, so it also taints that memory location . When the
error happens, ConfAid sees that the error could have been avoided if the branch
that tests execute_cgi had a different outcome . Since execute_cgi is tainted by the
ExecCGI option, ConfAid identifies that configuration option as the root cause of
the error .

To analyze the information flow, ConfAid adds custom logic, referred to as instru-
mentation, to each application binary using Pin [6] . The instrumentation monitors
each system call, such as read or pread, that could potentially read data from a con-
figuration source . If the source of the data returned by a system call is a configura-
tion file, ConfAid annotates the registers and memory addresses modified by the
system call with a marker that indicates a dependency on a specific configuration
token . Borrowing terminology from the taint tracking literature, we refer to this
marking as the taint of the memory location . If an address or register is tainted by
a token, ConfAid believes that the value at that location might be different if the
value of the token in the original configuration source were to change .

Articles_final.indd 29 1.18.11 3:06 PM

 30 ;login: vOL. 36, NO. 1

/* a, b, c and d are read from the config file*/

if (c == 0) { /* c set to 0 in config file */

 x = a; /* taken path */

} else {

 y = b; /* alternate path */

}

z = d;

if (z) assert(); /* The erroneous behavior */

Figure 2: Example to illustrate causality tracking. The assertion only depends on variable z,
which itself depends on the value of configuration token d. Configuration token c only affects
variables x and y.

ConfAid specifies the taint of each variable as a set of configuration options . For
instance, if the taint set of a variable is { FOO, BAR }, ConfAid believes that the
value of that variable could change if the user were to modify either the FOO or the
BAR token in the configuration file .

Taint is propagated via data flow and control flow dependencies . When a monitored
process executes an instruction that modifies a memory address, register, or CPU
flag, the taint set of each modified location is set to the union of the taint sets of the
values read by the instruction . For example, consider the instruction x = y + z where
the taint set of x becomes the union of taint sets of y and z . Intuitively, the value of
x might change if a configuration token were to cause y or z to change prior to the
execution of this instruction .

In traditional taint tracking for security purposes, control flow dependencies are
often ignored to improve performance because they are harder than data flow
dependencies for an attacker to exploit . With ConfAid, however, we have found that
tracking control flow dependencies is essential since they propagate the major-
ity of configuration-derived taint . A naive approach to tracking control flow is to
union the taint set of a branch conditional with a running control flow dependency
for the program . However, without mechanisms to remove control flow taint, the
taint grows without limit . This causes too many false positives in ConfAid’s root
cause list .

A more precise approach takes into account the basic block structure of a program .
Consider the example in Figure 2 . Assume a, b, c, and d were read from a con-
figuration file and have taint sets assigned to them . The value of c does not affect
whether the last two statements are executed, since they execute in all possible
paths (and therefore for all values of c) . Thus, the taint of c should be removed from
the control flow taint before executing z = d . When the program asserts, the control
flow taint should only include the taint of d to correctly indicate that changing the
value of d might fix the problem .

ConfAid also tracks implicit control flow dependencies . In Figure 2, the values of x
and y depend on c when the program asserts, since the occurrence of their assign-
ments to a and b depend on whether or not the branch is taken . Note that y is still
dependent on c even though the else path is not taken by the execution, since the
value of y might change if a configuration token is modified such that the condition
evaluates differently .

Articles_final.indd 30 1.18.11 3:06 PM

 ;login: FEBRUARy 2011 Automating Configuration Troubleshooting with ConfAid 31

When the program executes a branch with a tainted condition, ConfAid first deter-
mines the merge point (the point where the branch paths converge) by consulting
the control flow graph . Prior to dynamic analysis, ConfAid obtains the graph by
using IDA Pro [2] to statically analyze the executable and any libraries it uses (e .g .,
libc and libssl) . For each tainted branch, ConfAid next explores each alternate
path that leads to the merge point . We define an alternate path to be any path not
taken by the actual program execution that starts at a conditional branch instruc-
tion for which the branch condition is tainted by one or more configuration values .
ConfAid uses alternate path exploration to learn which variables would have been
assigned had the condition evaluated differently due to a modified configuration
value .

To evaluate an alternate path, ConfAid switches the condition outcome and forces
the program to execute the alternate path . ConfAid uses copy-on-write logging to
checkpoint and roll back application state . When a memory address is first altered
along an alternate path, ConfAid saves the previous value in an undo log . At the
end of the execution, application state is replaced with the previous values from
the log . Many branches need not be explored since their conditions are not tainted
by any configuration token . After exploring the alternate paths, ConfAid performs
a similar analysis for the path actually taken by the program . This is the actual
execution, so no undo log is needed .

ConfAid also uses alternate path exploration to learn which paths avoid erroneous
application behavior . An alternate path is considered to avoid the erroneous behav-
ior if the path leads to a successful termination of the program or if the merge point
of the branch occurs after the occurrence of the erroneous behavior in the program
(as determined by the static control flow graph) . ConfAid unions the taint sets of
all conditions that led to such alternate paths to derive its final result . This result
is the set of all configuration tokens which, if altered, could cause the program to
avoid the erroneous behavior .

Figure 3 shows four examples that illustrate how ConfAid detects alternate paths
that avoid the erroneous behavior . In case (a), the error occurs after the merge point
of the conditional branch . ConfAid determines that the branch does not contribute
to the error, because both paths lead to the same erroneous behavior . In case (b),
the alternate path avoids the erroneous behavior because the merge point occurs
after the error, and the alternate path itself does not exhibit any other error . In this
case, ConfAid considers tokens in the taint set of the branch condition as pos-
sible root causes of the error, since if the application had taken the alternate path,
it could have avoided the error . In case (c), the alternate path leads to a different
error (an assertion) . Therefore, ConfAid does not consider the taint of the branch
as a possible root cause, because the alternate path would not lead to a successful
termination . In case (d), there are two alternate paths, one of which leads to an
assertion and one that reaches the merge point . In this case, since there exists an
alternate path that avoids the erroneous behavior, configuration tokens in the taint
set of the branch condition are possible root causes .

Articles_final.indd 31 1.18.11 3:06 PM

 32 ;login: vOL. 36, NO. 1

Figure 3: Examples illustrating ConfAid path analysis

Heuristics for performance

ConfAid uses two heuristics to simplify control flow analysis . The first heuristic
is the bounded horizon heuristic . ConfAid only executes each alternate path for a
fixed number of instructions . By default, ConfAid uses a limit of 80 instructions .
All addresses and registers modified within the limit are used to calculate infor-
mation flow dependencies after the merge point . Locations modified after the limit
do not affect dependencies introduced at the merge point .

The second heuristic simplifies control flow analysis by assuming that the con-
figuration file contains only a single error—we refer to this as the single mistake
heuristic . This heuristic reduces the amount of taint in the application and the
number of alternative paths that need to be explored by restricting the number
of configuration values that can change . The single mistake heuristic may lead
to false negatives . Potentially, if ConfAid cannot find a root cause, we can relax
the single-mistake assumption by allowing ConfAid to assume that two or more
tokens are erroneous . In our experiments to date, this heuristic has yet to trigger a
false negative .

Heuristics for Reducing False positives

In our design as described so far, two configuration tokens are considered equal
taint sources even if one has a direct causal relationship to a location (e .g ., the
value in memory was read directly from the configuration file) and another has a
nebulous relationship (e .g ., the taint was propagated along a long chain of condi-
tional assignments deep along alternate paths) . Another problem we noticed was
that loops could cause a location to become a global source and sink for taint . For
instance, Apache reads its configuration values into a linked list structure and
then traverses the list in a loop to find the value of a particular configuration token .
During the traversal, the program control flow picks up taint from many configu-
ration options, and these taints are sometimes transferred to the configuration
variable that is the target of the search .

Articles_final.indd 32 1.18.11 3:06 PM

 ;login: FEBRUARy 2011 Automating Configuration Troubleshooting with ConfAid 33

We realized that both of these problems were caused by our implicit assumption
that all information flow relationships should be treated equally . Based on this
observation, we decided to modify our design to instead track taint as a floating-
point weight ranging in value between zero and one . When the error happens,
ConfAid can rank the possible root causes based on their weights with the option
with the highest weight being ranked first .

Our weights are based on two heuristics . First, data flow dependencies are
assumed to be more likely to lead to the root cause than control flow dependencies .
Second, control flow dependencies are assumed to be more likely to lead to the root
cause if they occur later in the execution (i .e ., closer to the erroneous behavior) .
Specifically, we assign taints introduced by control flow dependencies only half the
weight of taints introduced by data flow dependencies . Further, each nested con-
ditional branch reduces the weight of dependencies introduced by prior branches
in the nest by one half . We chose a weight of 0 .5 for speed: it can be implemented
efficiently with a vector bit shift .

Multi-process Causality Tracking

The most difficult configuration errors to troubleshoot involve multiple interact-
ing processes . Such processes may be on a single computer, or on multiple comput-
ers connected by a network . To troubleshoot such cases, ConfAid instruments
multiple processes at the same time and propagates taint information at per-byte
granularity along with the data sent when the processes communicate . ConfAid
supports processes that communicate using UNIX sockets, pipes, and TCP and
UDP sockets and files . Since these operations are performed by Pin instrumenta-
tion, the taint propagation is hidden from the application and no operating system
modifications are needed .

Evaluation

Our evaluation answers two questions:

How effective is ConfAid in identifying the root cause of configuration
problems?

How long does ConfAid take to find the root cause?

Experimental Setup

We evaluated ConfAid on three applications: the OpenSSH server version 5 .1, the
Apache HTTP server version 2 .2 .14, and the Postfix mail transfer agent version
2 .7 . All of our experiments were run on a Dell OptiPlex 980 desktop computer
with an Intel Core i5 Dual Core processor and 4GB of memory . The machine runs
Linux kernel version 2 .6 .21 . For Apache, ConfAid instruments a single process; for
OpenSSH, up to two processes; and for Postfix, up to six processes .

To evaluate ConfAid, we manually injected errors into correct configuration files .
Then we ran a test case that caused the error we injected to be exhibited . We used
ConfAid to instrument the process (or processes) for that application and obtained
the ordered list of root causes found by ConfAid . We use two metrics to evalu-
ate ConfAid’s effectiveness: the ranking of the actual root cause, i .e ., the injected
mistake, in the list returned by ConfAid and the time to execute the instrumented
application .

Articles_final.indd 33 1.18.11 3:06 PM

 34 ;login: vOL. 36, NO. 1

We used two different methods to generate configuration errors . First, we injected
18 real-world configuration errors that were reported in online forums, FAQ pages,
and application documentation . Second, we used the ConfErr tool [4] to inject
random errors into the configuration files of the three applications . ConfErr uses
human error models rooted in psychology and linguistics to generate realistic con-
figuration mistakes . We used ConfErr to produce 20 errors for each application .

Results

Application
Root causes
ranked first

Root causes
ranked first
with one tie

Root causes
ranked
second

Root causes
ranked

second with
one tie

Avg. time to
run

OpenSSH
(7 bugs)

2 2 2 1 52s

Apache
(6 bugs)

3 1 0 2 2m 48s

Postfix
(5 bugs)

5 0 0 0 57s

Table 1: Results for real-world configuration bugs

Table 1 summarizes our results for real-world misconfigurations . ConfAid ranks
the actual root cause first in 13 cases and second in the other 5 . Sometimes, when
the actual root cause is ranked second, the token ranked first provides a valuable
clue to help troubleshoot the problem . For instance, in Apache the actual error
usually occurs nested inside a section or directive command in the config file .
For the two Apache errors where the root cause is ranked second, the top-ranked
option is the section or directive containing the error .

ConfAid’s average execution time of 1:32 minutes is much faster and far less
frustrating than manual troubleshooting . For instance, one of the Apache
misconfigurations is taken from a thread in linuxforums .org [5] . After trying to fix
the misconfiguration for quite a while, the user went to the trouble of posting the
question in the forum and waited two days for an answer . ConfAid identified the
root cause in less than three minutes .

Application

Root
causes
ranked

first

Root
causes
ranked

first with
one tie

Root
causes
ranked
second

Root
causes
ranked
second

with one
tie

Avg.
time to

run

Avg.
time

to run

OpenSSH 17 (85%) 1 (5%) 1 (5%) 0 1 (5%) 7s

Apache 17 (85%) 1 (5%) 0 1 (5%) 1 (5%) 24s

Postfix 15 (75%) 0 2 (10%) 0 3 (15%) 38s

Table 2: Results for randomly generated bugs

Articles_final.indd 34 1.18.11 3:06 PM

 ;login: FEBRUARy 2011 Automating Configuration Troubleshooting with ConfAid 35

Table 2 summarizes the results for randomly generated configuration errors . For
OpenSSH, ConfAid ranked the root cause first or second for 95% of the bugs . For
the last bug, ConfAid could not run to completion due to unsupported system calls
used in the code path . We could remedy this by supporting more calls . ConfAid
also successfully diagnosed 95% of the Apache errors . For the remaining bug, the
correct root cause was ranked 9th due to our weighting heuristic . For Postfix,
ConfAid diagnosed 85% of the errors effectively . The remaining three errors were
due to missing configuration options . Currently, ConfAid only considers all tokens
present in the configuration file as possible sources of the root cause . If a default
value can be overridden by a token not actually in the file, then ConfAid will not
detect the missing token as a possible root cause . We plan to extend ConfAid to
also diagnose misconfigurations that are due to missing configuration tokens .

Conclusions and Future Work

Configuration errors are costly, time-consuming, and frustrating to troubleshoot .
ConfAid makes troubleshooting easier by pinpointing the specific token in a
configuration file that led to an erroneous behavior . Compared to prior approaches,
ConfAid distinguishes itself by analyzing causality within processes as they
execute without the need for application source code . It propagates causal
dependencies among multiple processes and outputs a ranked list of probable root
causes . Our results show that ConfAid usually lists the actual root cause as the
first or second entry in this list . Thus, ConfAid can substantially reduce total time
to recovery and perhaps make configuration problems a little less frustrating .

There are several possible directions for future work . First, ConfAid currently
only troubleshoots configuration problems that lead to crashes, assertion failures,
and incorrect output; it does not yet help diagnose misconfigurations that cause
poor performance . One approach to tackling performance problems that we are
investigating is to first use statistical sampling to associate use of a bottleneck
resource such as disk or CPU with specific points in the program execution .
Then,ConfAid-style analysis can determine which configuration tokens most
directly affect the frequency of execution of those points .

Second, ConfAid currently assumes that the configuration file contains only one
erroneous token . If fixing a particular error requires changing two tokens, then
ConfAid’s alternate path analysis may not identify both tokens . We therefore plan
to allow ConfAid to track sets of two or more misconfigured tokens and measure
the resulting performance overhead . Potentially, we can use an expanding search
technique in which ConfAid initially performs an analysis assuming only a single
mistake, and then performs a lengthier analysis allowing multiple mistakes if the
first analysis does not yield satisfactory results .

Finally, we believe that ConfAid can be best improved if it is used and tested by
many people . Therefore, we plan to release an open source version of ConfAid to
the public . This will require us to make ConfAid more robust in diverse computing
environments, and we will also need to use an open source static analysis tool to
generate a control flow graph .

acknowledgments

This research was supported by NSF award CNS-1017148 . The views and
conclusions contained in this document are those of the authors and should not

Articles_final.indd 35 1.18.11 3:06 PM

 36 ;login: vOL. 36, NO. 1

be interpreted as representing the official policies, either expressed or implied, of
NSF, the University of Michigan, or the U .S . government .

References

[1] M . Attariyan and J . Flinn, “Automating Configuration Troubleshooting with
Dynamic Information Flow Analysis,” Proceedings of the 9th Symposium on
Operating Systems Design and Implementation, October 2010 .

[2] IDA Pro disassembler: http://www .hex-rays .com/idapro .

[3] A . Kapoor, “Web-to-Host: Reducing Total Cost of Ownership,” Technical
Report 200503, The Tolly Group, May 2000 .

[4] L . Keller, P . Upadhyaya, and G . Candea, “ConfErr: A Tool for Assessing
Resilience to Human Configuration Errors,” in Proceedings of the International
Conference on Dependable Systems and Networks (DSN), June 2008, pp . 157–166 .

[5] http://www .linuxforums .org/forum/servers/125833-solved-apache-wont-
follow-symlinks .html .

[6] C .-K . Luk, R . Cohn, R . Muth, H . Patil, A . Klauser, G . Lowney, S . Wallace, V .J .
Reddi, and K . Hazelwood, “Pin: Building Customized Program Analysis Tools with
Dynamic Instrumentation,” in Proceedings of the 2005 ACM SIGPLAN Conference
on Programming Language Design and Implementation, June 2005, pp . 190–200 .

[7] J . Newsome and D . Song, “Dynamic Taint Analysis: Automatic Detection,
Analysis, and Signature Generation of Exploit Attacks on Commodity Software,”
Proceedings of the 12th Network and Distributed Systems Security Symposium,
February 2005 .

[8] Y .-Y . Su, M . Attariyan, and J . Flinn, “AutoBash: Improving Configuration
Management with Operating System Causality Analysis,” in Proceedings of the 21st
ACM Symposium on Operating Systems Principles, October 2007, pp . 237–250 .

Articles_final.indd 36 1.18.11 3:06 PM

 ;login: FEBRUARy 2011 37

Making System administration Easier by
Letting the Machines Do the Hard Work,
or, Becoming an agile Sysadmin
J o s h u a F i s k E

One of the challenges faced in the information technology field is the need to be
responsive to the needs of our customers . To a system administrator, this typi-
cally manifests itself in one of two ways: responding to reports of broken stuff and
responding to requests for new stuff . In this article we will focus mainly on doing
the latter by taking advantage of virtualization, automation, and patch manage-
ment .

In the days of yore, responding to a request for new stuff was a costly and time-
consuming process that went something like this: Quote and order new hardware .
Wait 30 days for hardware to arrive . Rack-mount hardware and install operating
system . Configure operating system and services the same way “all the others”
are . And don’t make a mistake lest we end up with a configuration that is different
from everything else in our environment . Heaven help you if you need to make a
change to a configuration or if you have a team of sysadmins who each have their
“own way” to do a task . Two months later, you might have the new service up and
running .

And where are users while you’re doing all this? They’re working on their own
to find a way to meet their need right now . By the time you’ve worked your way
through this process, they’ve found another tool or their needs have changed . All
because you weren’t able to be agile in responding to their request . But what’s the
alternative? Imagine being able to receive a request from a user and have a system
standing and ready to service their needs in the same day (or 15 minutes later)!
Here’s how I’ve been able to do just that .

The Solution

To solve this problem, we take a three-pronged approach: virtualization, automa-
tion, and patch management .

By now, most sysadmins are familiar with the advantages of virtualization . Com-
bining systems to run on common hardware ensures efficient use of resources,
improves disaster recovery posture, etc . And in this case, it also allows us to be
more agile in responding to requests for new systems or services . Because we have
a virtualized infrastructure, we generally have some “extra” capacity to stand up
new systems without needing to order hardware .

Once we have a virtualized system, we must install an operating system . This
process of installing the operating system and configuring services is the largest
opportunity for human error to affect the quality of our output, because each sys-

Joshua Fiske is the Manager

of User Services at Clarkson

University. In this role, he

tends the University’s fleet of

Linux and vMware servers, handles day-to-

day operations of the network, and manages a

team of professionals who provide direct end-

user support. He is passionate about the use of

open-source software in higher education.

 jfiske@clarkson.edu

Articles_final.indd 37 1.18.11 3:06 PM

 38 ;login: vOL. 36, NO. 1

admin has a slightly different way of building servers and configuring services . We
can fix this by leveraging tools like kickstart and Puppet to automate the process of
building systems and configuring services .

And then once you have deployed a large fleet of systems, it can be very helpful to
know which systems are in need of patching . A tool like Spacewalk can provide a
centralized reporting interface to track this information and to push out updates .

The Practical Solution

Knowing the theoretical solution is good, but I always find a practical example to
be much more helpful . So, I’ll walk you through the process of provisioning a new
server .

We have a pretty standard virtualization environment . In our shop we use VM -
ware ESX (and in some cases, ESXi) with a shared iSCSI storage environment . To
provision a new server, we just log in to a VM host with excess capacity and create
a new guest . We have a standardized disk size of 20GB for our Linux guests . If we
need more storage, we can attach another virtual drive and, through the magic of
LVM, we can make that space available to the OS . Once the system is defined, we
attach an ISO image and set it as the primary boot device . But don’t power on the
system just yet .

This is where the exciting stuff begins . We start by creating a kickstart file to
define the properties of the new system . Since we’ve done this before, we can just
copy an existing kickstart file and make a few tweaks to it, setting things like the
IP address and hostname . Then, we boot the system and respond with the follow-
ing at the Linux boot prompt:

boot: linux ks=http://shep.clarkson.edu/provisioning/newhost.ks

ip=128.153.5.60 netmask=255.255.255.0 gateway=128.153.5.1 dns=128.153.5.254,

128.153.0.254

A full copy of our standard kickstart file is available linked from www .usenix .org/
login/2011-02 . The most interesting bits of that file are in our postscript, which
is where we begin to automate the customizations that we generally perform at
our site . Of course, you’ll want to customize this to suit your environment . This is
an opportunity to be a creative sysadmin; think about the tasks that you generally
perform as part of your build process and think about scripting them here:

%post

#

Disable some services

/sbin/chkconfig --level 123456 cups off

/sbin/chkconfig --level 123456 yum-updatesd off

/sbin/chkconfig --level 123456 apmd off

Install Spacewalk

/bin/rpm -Uvh http://spacewalk.redhat.com/yum/1.0/RHEL/5/i386/spacewalk-

client-repo-1.0-2.el5.noarch.rpm

/usr/bin/yum -y install rhn-setup yum-rhn-plugin

/usr/sbin/rhnreg_ks --serverUrl=http://spacewalk.clarkson.edu/XMLRPC

--activationkey=<activation key here> --force

/bin/sed -i ‘/enabled=0/ d’ /etc/yum.repos.d/CentOS-Base.repo

/bin/sed -i ‘s/\(gpgcheck=.*\)/\1\nenabled=0/g’ /etc/yum.repos.d/CentOS-

Base.repo

Articles_final.indd 38 1.18.11 3:06 PM

 ;login: FEBRUARy 2011 Becoming an Agile Sysadmin 39

/bin/rpm --import http://mirror.clarkson.edu/rpmforge/RPM-GPG-KEY.dag.txt

/bin/rpm --import http://mirror.clarkson.edu/epel/RPM-GPG-KEY-EPEL

#

Install Puppet

/bin/rpm -Uvh http://shep.clarkson.edu/provisioning/software/puppet/

facter-1.3.7-1.el5.rf.i386.rpm

/bin/rpm -Uvh http://shep.clarkson.edu/provisioning/software/puppet/

puppet-0.22.4-1.el5.rf.i386.rpm

/bin/sed -i ‘s/#PUPPET_SERVER=.*/PUPPET_SERVER=shep.clarkson.edu/g’ /etc/

sysconfig/puppet

/bin/sed -i ‘s/#PUPPET_LOG/PUPPET_LOG/g’ /etc/sysconfig/puppet

/sbin/chkconfig --level 35 puppet on

Several things happen as part of our post-installation process . Reading through
this code, we see that it configures some system services, joins the system to our
Spacewalk server, and installs Puppet (and facter, which is a prerequisite for Pup-
pet) . Then the machine reboots and greets us with a login prompt .

As part of the Puppet setup, the client has generated a set of SSL keys and submit-
ted them to the Puppetmaster server for signing . To allow the Puppet client to
retrieve configurations and files from the Puppetmaster server, we need to sign
that request . This is done on the Puppetmaster server with these commands:

/usr/sbin/puppetca --list

/usr/sbin/puppetca --sign <fqdn>

Now that our Puppet client is approved, it looks to the Puppetmaster to see what
it should do . Our Puppetmaster directs the client to perform a number of actions,
including creating users, sudoers configuration, installation of Apache, and some
other settings .

Creating Users

We create a predefined set of administrative users on each host, ensure that these
users are members of the wheel group for sudo, and set an RSA key for SSH:

class users {

 user { “jfiske” :

 ensure => present,

 uid => 500,

 gid => “wheel”,

 managehome => true,

 }

 ssh_authorized_key { “jfiske-key” :

 require => User[‘jfiske’],

 ensure => present,

 key => “<rsa_key_here>”,

 type => “ssh-rsa”,

 user => “jfiske”,

 }

}

Articles_final.indd 39 1.18.11 3:06 PM

 40 ;login: vOL. 36, NO. 1

Sudoers Configuration

We can also push an entire configuration file to each host . In this case, we have
Puppet push the /etc/sudoers file to each system to ensure that the user we cre-
ated above also has sudo abilities . This is particularly useful if you have a team of
administrators who each need to have the same level of administrative access to
each system (without needing to distribute a system’s root password):

class sudo {

 file { “/etc/sudoers”:

 owner => “root”,

 group => “root”,

 mode => 440,

 source => “puppet://shep.clarkson.edu/configuration/sudoers”,

 }

}

installation of Apache

We can also install a software package and ensure that it is running . In this case,
we install a Web server:

class apache {

 package { httpd: ensure => installed }

 service { “httpd”:

 ensure => running,

 require => Package[“httpd”],

 }

}

Other Settings We push

We use Puppet to install packages, distribute configuration files, and ensure
that services are running . We can even combine these three functions with
dependencies to perform more complex tasks . In this example, we tell Puppet
which packages should be installed for SNMP, push the relevant configuration file
(/etc/snmp/snmpd .conf) and a binary file (/usr/local/sbin/ntp_check), and then
ensure that the SNMP service is running .

class snmpd {

 case $operatingsystem {

 CentOS: { $snmpd_packages = [“net-snmp”, “net-snmp-libs”] }

 }

 package { $snmpd_packages: ensure => installed }

 file { “/etc/snmp/snmpd.conf”:

 owner => “root”,

 group => “root”,

 mode => 644,

 source => “puppet://shep.clarkson.edu/configuration/snmpd.conf”,

 require => Package[“net-snmp”],

 }

 file { “/usr/local/sbin/ntp_check”:

 owner => “root”,

 group => “root”,

Articles_final.indd 40 1.18.11 3:06 PM

 ;login: FEBRUARy 2011 Becoming an Agile Sysadmin 41

 mode => 755,

 source => “puppet://shep.clarkson.edu/configuration/ntp_check”,

 require => Package[“net-snmp”],

 }

 service { snmpd:

 name => snmpd,

 enable => true,

 ensure => running

 }

}

Once we have our Puppetmaster configured to perform all of our post-installation
configuration steps, we can take the total system build time down to something
around 10 minutes . If we are just adding a new application server to an existing
pool, then we are done (because, of course, we’ve also Puppet’ed the install and
configuration of the app server software) . If we are deploying a new application,
then we have a platform on which to begin developing/installing . Reducing system
build time allows system administrators to begin to pull themselves up out of the
daily minutiae of building systems and instead focus on the more important and
interesting aspects of keeping their users happy .

Footnote: Improved Management abilities

Also, consider the benefits that are yet to be reaped with respect to patch and
configuration management . Because we’ve joined the system to our Spacewalk
instance, we will receive notifications when there are package updates that need
to be installed . And because we’ve pushed configurations using Puppet, when we
need to make global changes we can update one file and have it propagate to all of
our servers . We should also consider storing our Puppetmaster’s configuration
files in a revision control system, so that we have a solid history of what changes
were made when and by whom .

Resources

Installing Spacewalk on CentOS: http://wiki .centos .org/HowTos/
PackageManagement/Spacewalk .

James Turnbull, Pulling Strings with Puppet: http://apress .com/book/
view/1590599780 .

Articles_final.indd 41 1.18.11 3:06 PM

 42 ;login: vOL. 36, NO. 1

For daily sysadmin work you often need to do the same specific task to a lot of files/
users/hosts/tables . Very often it doesn’t matter which one is done first and it would
be fine to do them in parallel—but you do not want to run them all in parallel, as
that will slow your computer to a crawl . This is what GNU Parallel can help you do .

In this article you will see examples of uses of GNU Parallel . The examples are kept
simple to make it easy to understand the idea, but there’s nothing that prevents you
from using GNU Parallel for more complex tasks . More complex examples can be
found at http://www .gnu .org/software/parallel/man .html .

History of gNU Parallel

GNU Parallel started out as two separate programs: xxargs and parallel . The
purpose of xxargs was to work like xargs but deal nicely with space and quotes . The
purpose of parallel was simply to run jobs in parallel . Both programs originated
in 2001 . In 2005 the two programs were merged, since xxargs was very often used
with parallel, and thus the name xxargs was abandoned .

GNU Parallel therefore has two main objectives: replace xargs and run commands
in parallel .

In 2010 Parallel was adopted as an official GNU tool and the name was changed
to GNU Parallel . For a short video showing simple usage of the tool go to http://
nd .gd/0s .

Your First Parallel Job

GNU Parallel is available as a package for most UNIX distributions . See http://
www .gnu .org/s/parallel if it is not obvious how to install it on your system . After
installation find a bunch of files on your computer and gzip them in parallel:

parallel gzip ::: *

Here your shell expands * to the files, ::: tells GNU Parallel to read arguments from
the command line, and gzip is the command to run . The jobs are then run in paral-
lel . After you have gziped the files, you can recompress them with bzip2:

parallel “zcat {} | bzip2 >{.}.bz2” ::: *

Here {} is being replaced with the file name . The output from zcat is piped to bzip2,
which then compresses the output . The { .} is the file name with its extension
stripped (e .g ., foo .gz becomes foo), so the output from file .gz is stored in file .bz2 .

Ole Tange works in

bioinformatics in Copenhagen.

He is active in the free

software community and is

best known for his “patented Web shop” that

shows the dangers of software patents (http://

ole.tange.dk/swpat). He will be happy to go

to your conference to give a talk about GNU

Parallel.

ole@tange.dk

gNU Parallel: The Command-Line
Power Tool
o l E t a n g E

Articles_final.indd 42 1.18.11 3:06 PM

 ;login: FEBRUARy 2011 GNU Parallel: The Command-Line Power Tool 43

GNU Parallel tries to be very liberal in quoting, so the above could also be written:

parallel zcat {} “|” bzip2 “>”{.}.bz2 ::: *

Only the chars that have special meaning in shell need to be quoted .

Reading input

As we have seen, input can be given on the command line . Input can also be piped
into GNU Parallel:

find . -type f | parallel gzip

GNU Parallel uses newline as a record separator and deals correctly with file
names containing a word space or a dot . If you have normal users on your system,
you will have experienced file names like these . If your users are really mean and
write file names containing newlines, you can use NULL as a record separator:

find . -type f -print0 | parallel -0 gzip

You can read from a file using -a:

parallel -a filelist gzip

If you use more than one -a, a line from each input file will be available as {#}:

parallel -a sourcelist -a destlist gzip {1} “>”{2}

The same goes if you read a specific number of arguments at a time using -N:

cat filelist | parallel -N 3 diff {1} {2} “>” {3}

If your input is in columns you can split the columns using --colsep:

cat filelist.tsv | parallel --colsep ‘\t’ diff {1} {2} “>” {3}

--colsep is a regexp, so you can match more advanced column separators .

Building the Command to Run

Just like xargs, GNU Parallel can take multiple input lines and put those on the
same line . Compare these:

ls *.gz | parallel mv {} archive

ls *.gz | parallel -X mv {} archive

The first will run mv for every .gz file, whereas the second will fit as many files
into {} as possible before running .

The {} can be put anywhere in the command, but if it is part of a word, that word
will be repeated when using -X:

(echo 1; echo 2) | parallel -X echo foo bar{}baz quux

will repeat bar-baz and print:

foo bar1baz bar2baz quux

If you do not give a command to run, GNU Parallel will assume the input lines are
command lines and run those in parallel:

(echo ls; echo grep root /etc/passwd) | parallel

Articles_final.indd 43 1.18.11 3:06 PM

 44 ;login: vOL. 36, NO. 1

Controlling the Output

One of the problems with running jobs in parallel is making sure the output of the
running commands do not get mixed up . traceroute is a good example of this as it
prints out slowly and parallel traceroutes will get mixed up . Try:

traceroute foss.org.my & traceroute debian.org & traceroute freenetproject.

org & wait

and compare the output to:

parallel traceroute ::: foss.org.my debian.org freenetproject.org

As you can see, GNU Parallel only prints out when a job is done—thereby making
sure the output is never mixed with other jobs . If you insist, GNU Parallel can give
you the output immediately with -u, but output from different jobs may mix .

For some input, you want the output to come in the same order as the input . -k does
that for you:

parallel -k echo {}’;’ sleep {} ::: 3 2 1 4

This will run the four commands in parallel, but postpone the output of the two
middle commands until the first is finished .

Execution of the Jobs

GNU Parallel defaults to run one job per CPU core in parallel . You can change this
with -j . You can put an integer as the number of jobs (e .g ., -j 4 for four jobs in paral-
lel) or you can put a percentage of the number of CPU cores (e .g ., -j 200% to run two
jobs per CPU core):

parallel -j200% gzip ::: *

If you pass -j a file name, the parameter will be read from that file:

parallel -j /tmp/number_of_jobs_to_run gzip ::: *

The file will be read again after each job finishes . This way you can change the
number of jobs running during a parallel run . This is particularly useful if it is a
very long run and you need to prioritize other tasks on the computer .

To list the currently running jobs you need to send GNU Parallel SIGUSR1:

killall -USR1 parallel

GNU Parallel will then print the currently running jobs on STDERR .

If you regret starting a lot of jobs, you can simply break GNU Parallel, but if you
want to make sure you do not have half-completed jobs, you should send the signal
SIGTERM to GNU Parallel:

killall -TERM parallel

This will tell GNU Parallel not to start any new jobs but to wait until the currently
running jobs are finished before exiting .

When monitoring the progress on screen it is often nice to have the output pre-
pended with the command that was run . -v will do that for you:

parallel -v gzip ::: *

Articles_final.indd 44 1.18.11 3:06 PM

 ;login: FEBRUARy 2011 GNU Parallel: The Command-Line Power Tool 45

If you want to monitor the progress as it goes you can also use --progress and --eta:

parallel --progress gzip ::: *

parallel --eta gzip ::: *

This is especially useful for debugging when jobs run on remote computers .

Remote Computers

GNU Parallel can use the CPU power of remote computers to help do computa-
tions . As an example, we will recompress .gz files into .bz2 files, but you can just as
easily do other compute-intensive jobs such as video encoding or image transfor-
mation .

You will need to be able to log in to the remote host using ssh without entering a
password (ssh-agent may be handy for that) . To transfer files, rsync needs to be
installed, and to help GNU Parallel figure out how many CPU cores each computer
has, GNU Parallel should also be installed on the remote computers .

Try this simple example to see that your setup is working:

parallel --sshlogin yourserver.example.com hostname’;’ echo {} ::: 1 2 3

This should print out the hostname of your server three times, each followed by the
numbers 1 2 3 . --sshlogin can be shortened to -S . To use more than one server, do:

parallel -S yourserver.example.com,server2.example.net hostname’;’ echo {} :::

1 2 3

If you have a different login name, just prepend login@ to the server name—just as
you would with ssh . You can also give more than one -S instead of using a comma:

parallel -S yourserver.example.com -S mylogin@server2.example.net hostname’;’

echo {} ::: 1 2 3

The special sshlogin ‘:’ is your local computer:

parallel -S yourserver.example.com -S mylogin@server2.example.net -S :

hostname’;’ echo {} ::: 1 2 3

In this case you may see that GNU Parallel runs all three jobs on your local com-
puter ,because the jobs are so fast to run .

If you have a file containing a list of the sshlogins to use, you can tell GNU Parallel
to use that file:

parallel --sshloginfile mylistofsshlogins hostname’;’ echo {} ::: 1 2 3

The special sshlogin . . will read the sshloginfile ~/ .parallel/sshloginfile:

parallel -S .. hostname’;’ echo {} ::: 1 2 3

Transferring Files

If your servers are not sharing storage (using NFS or something similar), you often
need to transfer the files to be processed to the remote computers and the results
back to the local computer .

To transfer a file to a remote computer, you will use --transfer:

parallel -S .. --transfer gzip ‘< {} | wc -c’ ::: *.txt

Articles_final.indd 45 1.18.11 3:06 PM

 46 ;login: vOL. 36, NO. 1

Here we transfer each of the .txt files to the remote servers, compress them, and
count how many bytes they now take up .

After a transfer you often will want to remove the transferred file from the remote
computers . --cleanup does that for you:

parallel -S .. --transfer --cleanup gzip ‘< {} | wc -c’ ::: *.txt

When processing files the result is often a file that you want copied back, after
which the transferred and the result file should be removed from the remote com-
puters:

parallel -S .. --transfer --return {.}.bz2 --cleanup zcat ‘< {} | bzip2 >{.}.bz2’

::: *.gz

Here the .gz files will be transferred and then recompressed using zcat and
bzip2 . The resulting .bz2 file is transferred back, and the .gz and the .bz2 files
are removed from the remote computers . The combination --transfer --cleanup
--return foo is used so often that it has its own abbreviation: --trc foo .

You can specify multiple --trc if your command generates multiple result files .

GNU Parallel will try to detect the number of cores on remote computers and run
one job per CPU core even if the computers have different number of CPU cores:

parallel -S .. --trc {.}.bz2 zcat ‘< {} | bzip2 >{.}.bz2’ ::: *.gz

gNU Parallel as Part of a Script

The more you practice using GNU Parallel, the more places you will see it can be
useful . Every time you write a for loop or a while-read loop, consider if this could
be done in parallel . Often the for loop can completely be replaced with a single line
using GNU Parallel; if the jobs you want to run in parallel are very complex, you
may want to make a script and have GNU Parallel call that script . Occasionally
your for loop is so complex that neither of these is an option .

This is where parallel --semaphore can help you out . sem is the short alias for
parallel --semaphore .

for i in `ls *.log` ; do

 [... a lot of complex lines here ...]

 sem -j4 --id my_id do_work $i

done

sem --wait --id my_id

This will run do_work in the background until four jobs are running . Then sem
will wait until one of the four jobs has finished before starting another job . The last
line (sem --wait) pauses the script until all the jobs started by sem have finished .
my_id is a unique string used by sem to identify this script, since you may have
other sems running at the same time . If you only run sem from one script at a time,
--id my_id can be left out .

A special case is sem -j1, which works like a mutex and is useful if you only want
one program running at a time .

gNU Parallel as a Job Queue Manager

With a few lines of code, GNU Parallel can work as a job queue manager:

Articles_final.indd 46 1.18.11 3:06 PM

 ;login: FEBRUARy 2011 GNU Parallel: The Command-Line Power Tool 47

echo >jobqueue; tail -f jobqueue | parallel

To submit your jobs to the queue, do:

echo my_command my_arg >> jobqueue

You can, of course, use -S to distribute the jobs to remote computers:

echo >jobqueue; tail -f jobqueue | parallel -S ..

If you have a dir into which users drop files that need to be processed, you can do
this on GNU/Linux:

inotifywait -q -m -r -e CLOSE_WRITE --format %w%f my_dir | parallel -u echo

This will run the command echo on each file put into my_dir or subdirs of my_dir .
Here again you can use -S to distribute the jobs to remote computers:

inotifywait -q -m -r -e CLOSE_WRITE --format %w%f my_dir | parallel -S .. -u echo

See You on the Mailing List

I hope you have thought of situations where GNU Parallel can be of benefit to you .
If you like GNU Parallel please let others know about it through email lists, forums,
blogs, and social networks . If GNU Parallel saves you money, please donate to the
FSF https://my .fsf .org/donate . If you have questions about GNU Parallel, join the
mailing list at http://lists .gnu .org/mailman/listinfo/parallel .

Articles_final.indd 47 1.18.11 3:06 PM

 48 ;login: vOL. 36, NO. 1

cOlumns
Today’s column will be all about hither and yon . Actually, this column will be more
about moving files from hither to yon or perhaps yon to hither (not entirely sure
which; pity William Safire didn’t write more Perl modules while he was alive) . If
you’ve ever had to move data around, this will be the column for you .

Built-In Functions and Core Modules for File Copying/Moving

Let’s start close to home with the function and modules that ship with Perl . Perl
has a rename() function should you want to change the name of a file, perhaps
moving it in the process to a different place in the current file system . To copy data,
there’s always code like this:

open my $OLDFILE, ‘<’, ‘oldfilename’ or

 die “Can’t open oldfilename for reading:$!\n”;

open my $NEWCOPY, ‘>’, ‘newfilename’ or

 die “Can’t open newfilename for writing:$!\n”;

binmode() makes sure no end-of-line translation is

done on the OSes that make a distinction

between binary and non-binary files

binmode $OLDFILE;

binmode $NEWFILE;

while (<$OLDFILE>) { print {$NEWCOPY} $_; }

close $NEWCOPY;

but that is so gauche . Better would be to use the File::Copy module, helpfully
shipped with Perl since 5 .002 . Barring one twist, you’d be hard-pressed to find a
more straightforward syntax:

use File::Copy;

copy(‘oldfilename’,’newfilename’) or die “Copy failed: $!”;

What’s the twist? Sometimes you really want to write this instead:

use File::Copy ‘cp’;

cp(‘oldfilename’,’newfilename’) or die “Copy failed: $!”;

In the first sample, copy() creates a copy of the file and gives it the default permis-
sions (e .g ., from the active umask); in the second, cp() attempts to preserve the
source file’s permissions when creating the copy .

David N. Blank-Edelman is

the director of technology at

the Northeastern University

College of Computer and

Information Science and the author of the

O’Reilly book Automating System Administration

with Perl (the second edition of the Otter

book), available at purveyors of fine dead

trees everywhere. He has spent the past 24+

years as a system/network administrator in

large multi-platform environments, including

Brandeis University, Cambridge Technology

Group, and the MIT Media Laboratory. He was

the program chair of the LISA ’05 conference

and one of the LISA ’06 Invited Talks co-chairs.

David is honored to have been the recipient

of the 2009 SAGE Outstanding Achievement

Award and to serve on the USENIX Board of

Directors beginning in June of 2010.

dnb@ccs.neu.edu

Practical Perl Tools: Hither and Yon
d a v i d n . b l a n k - E d E l M a n

Articles_final.indd 48 1.18.11 3:06 PM

 ;login: FEBRUARy 2011 Practical Perl Tools: Hither and Yon 49

The File::Copy module also has a move() function that attempts to move the file in
the most efficient way possible . If it can just rename() the file it will; otherwise it
will attempt to copy the file and delete the source file .

One quick caveat about this and other similar modules: by default, it won’t copy
attributes that are specific to a particular file system/OS . For example, if you are
trying to copy a file on NTFS, File::Copy won’t copy the ACLs on the file by default .
The module provides a syscopy() function that can address this concern under cer-
tain conditions when the right external modules are present . See the documenta-
tion for more information if you think you will need to care about this sort of thing .

Extending File Copy Functionality

Once we have basic file copies down, we can start extending this idea using some
other non-core modules . Copying a single file is useful, but perhaps being able to
copy an entire tree of files/directories is even better . File::Copy::Recursive is made
to do just that . It offers a bit more control than you probably thought you needed,
by providing separate functions for recursively copying either all of the files in a
directory structure, all of the directories, or both . The syntax is equally easy to use:

use File::Copy::Recursive qw(fcopy dircopy rcopy fmove dirmove rmove);

fcopy($orig,$new) or die $!; # copy files

dircopy($orig,$new) or die $!; # copy directories

rcopy($orig,$new) or die $!; # copy either

fmove($orig,$new) or die $!;

dirmove($orig,$new) or die $!;

rmove($orig,$new) or die $!;

There are a number of option variables you can set to modify the behavior of these
functions; be sure to check out the documentation .

Perhaps a more interesting module is File::Copy::Vigilant, which describes
itself as “A module for when your files absolutely, positively have to get there .”
File::Copy::Vigilant code looks awfully similar:

use File::Copy::Vigilant;

copy_vigilant($source, $destination);

move_vigilant($source, $destination);

but what it does under the hood is even cooler . Before a copy or move takes place,
the module computes the MD5 digest for the source file . It similarly computes it for
the destination file after the operation takes place . If these two digests don’t match
up, File::Copy::Vigilant will retry the operation a configurable number of times .
If you think an MD5 digest comparison is problematic for some reason (e .g ., too
computationally intensive), you can change it so that it tests file sizes or even does
a byte-for-byte comparison of both files .

Bring on the Network Protocols: FTP

So far we’ve only discussed moving files around in cases where the source and the
destination were both directly accessible as a file system from the local machine .
But in this space age of plastics and Intergoogles, clearly that isn’t always going to
be the case . We need a way to automate the transfer of files between machines that
are more loosely connected .

Articles_final.indd 49 1.18.11 3:06 PM

 50 ;login: vOL. 36, NO. 1

The first protocol for doing this that comes to mind is FTP . After all, it is the File
Transfer Protocol . There are a number of modules to work with FTP, but we’re
not going to spend much time on the subject, largely because my sense is that FTP
usage has waned tremendously over the years . I’m not going to get all hyperbolic
and suggest it is a dying protocol, but the number of times I’ve fired up an FTP cli-
ent in the last year can be counted on one hand, give or take a margin of error of a
finger or two . Let’s look at the basics and then I’ll mention a few modules that could
come in handy if for some reason you find yourself having to do more FTP trans-
fers than you expect .

The seminal FTP-based module is Net::FTP . Net::FTP is shipped with Perl as part
of the equally seminal libnet package . Here’s the example from the documentation:

use Net::FTP;

$ftp = Net::FTP->new(“some.host.name”, Debug => 0)

 or die “Cannot connect to some.host.name: $@”;

$ftp->login(“anonymous”,’-anonymous@’)

 or die “Cannot login “, $ftp->message;

$ftp->cwd(“/pub”)

 or die “Cannot change working directory “, $ftp->message;

$ftp->get(“that.file”)

 or die “get failed “, $ftp->message;

$ftp->quit;

The code creates a new $ftp object using the FTP server name as an argument .
With this object, we can log in to the server (in this case anonymously), change the
working directory, get a file (and put one, though that’s not demonstrated above)
and then log out .

If we wanted to build on this basic functionality, we could use modules like:

 Net::FTP::Recursive—to put and get entire directory structures
Net::FTP::AutoReconnect—to reconnect on failure
Net::FTP::Throttle—to limit the bandwidth used during transfers
Net::FTP::Find—to walk directory trees on a remote FTP server

But as I mentioned, FTP is a bit passé . All the cool kids are most likely using some-
thing else . Let’s look at two of the alternatives .

Secure Shell (SSH/SCP/SFTP)

Moving files around in a secure fashion these days is commonly done either via
an SSH-based method or a SSL/TLS-based method . The latter will be discussed
in a future column, so let’s focus for the moment on SSH-based methods . The two
SSH-based methods that are almost always used are SCP and SFTP . If I had my
druthers I’d just show you how they are used from Perl without even bothering to
mention anything about the details of the SSH implementations they are based
on . But, alas, in order to understand which ones are appropriate under which
circumstances, we’re going to have to have a little chat about the types of Perl SSH
modules .

The trickiest thing about using SSH-based modules in Perl is deciding which one
of the several branches to use . Let’s meet the three contestants:

Articles_final.indd 50 1.18.11 3:06 PM

 ;login: FEBRUARy 2011 Practical Perl Tools: Hither and Yon 51

 1 . Perl-ish implementations—The best example of this type is Net::SSH::Perl,
which aims to provide a complete SSH1 and SSH2 implementation in Perl . I say
“Perl-ish” because in order to handle some of the more computationally intensive
work, Net::SSH::Perl depends on other modules that either call external libraries
or are partially implemented in C .

 2 . Thin veneer around the libssh2 (www .libssh2 .org) library—libssh2 describes
itself as a “client-side C library implementing the SSH2 protocol .” The module
Net::SSH2 lets you use all of its power from Perl .

 3 . Wrappers around existing SSH binaries—Modules like Net::OpenSSH provide
pleasant Perl interfaces to what essentially amounts to “shelling-out” to call the
appropriate SSH client binary . (This isn’t necessarily as bad as it initially sounds,
as we’ll see in a moment .)

So, how do you choose between them? It really depends on what is most important
to you . The first option is good if you don’t want to be concerned about installing
SSH client binaries or the libssh2 module . The minus of that option is it has quite
a few dependencies, some of which used to be a bear to get built and installed . I
haven’t tried installing it in a while, though, so perhaps this has improved some
over time .

The second option is good if you like the notion that there is a single library that
does all of the heavy lifting connected to relatively straightforward Perl code to
use it . Its drawback is that you have to trust that the library is solid, well tested,
and performant enough for your comfort level . The libssh2 team has made excel-
lent progress over the past year or so, so perhaps this is less of a concern .

Finally, the last option is good if you approve of the idea that the Perl code will be
depending on (e .g ., in the case of Net::OpenSSH) binaries that have undergone a
tremendous amount of scrutiny for security issues and are in active use by count-
less numbers of people every day as a crucial part of their work . The other plus of
these modules is that they reuse any existing SSH-related configuration (like con-
fig files and SSH keys) you already have in place . As I alluded to above, its minus
relates to having to spin up a separate secondary process each time work needs to
be done . Net::OpenSSH tries to mitigate that performance hit to a certain extent
by making use of OpenSSH-specific multiplexing . This lets you run multiple ssh
commands over the same session without having to spin up a new session for each .
That can be a big efficiency win in certain cases .

Now that we’ve discussed the plumbing underneath the SSH file transfer modules,
let’s talk about what’s available in that space . If you want to use SCP, the first file
transfer protocol available with SSH, there are two options which both come out
of category #3 above: Net::OpenSSH and Net::SCP . Here’s an example of using the
former to transfer a file:

use Net::OpenSSH;

my $ssh = Net::OpenSSH->new($host);

$ssh->error and

 die “Couldn’t establish SSH connection: “. $ssh->error;

$ssh->scp_put(“localfile”, “/remotedir”)

 or die “scp failed: “ . $ssh->error;

With the introduction of SSH version 2 came SFTP, an additional file trans-
fer protocol that mimicked FTP in its interface . There are a greater number of

Articles_final.indd 51 1.18.11 3:06 PM

 52 ;login: vOL. 36, NO. 1

Perl SFTP options than there are SCP . These include Net::SFTP (built on top of
Net::SSH::Perl), Net::OpenSSH (yup, it does both), Net::SSH2::SFTP (built on
Net::SSH2), and Net::SFTP::Foreign (which calls the already installed ssh bina-
ries) . At the moment, my module of choice in this space is Net::SFTP::Foreign,
because it is the most comprehensive of the bunch and relies on binaries I already
trust . Here’s some code that performs the same task as the previous sample:

use Net::SFTP::Foreign;

my $sftp = Net::SFTP::Foreign->new($host);

$sftp->error

 and die “Unable to establish SFTP connection: “ . $sftp->error;

$sftp->put(“localfile”, “/remotedir”)

 or die “put failed: “ . $sftp->error;

Net::SFTP::Foreign also has cool methods like find() to search the remote file sys-
tem, mget()/mput() to transfer multiple files based on wildcards, and readline() to
read a line at a time from a remote file .

As an aside before we move on, there are a few spiffy SSH-based modules we won’t
be able to cover here, like SSH::Batch and SSH::OpenSSH::Parallel, both for run-
ning commands on multiple hosts in parallel . Check them out on CPAN if you are
interested .

Rsync

I’ve often said that I think one of Andrew Tridgell’s greatest gifts to sysadmins
(and to others) is rsync, both the tool and the algorithm . (Note: I’m cheating a bit
by including this in a list of protocols, but bear with me .) At LISA ’10, I asked my
classes if anyone in the room hadn’t yet heard of rsync . I was pleased to see no
hands raised . If you happened to be hanging out with Plato in his cave and haven’t
heard of rsync, the one-sentence summary might be something like “rsync is a very
efficient file transfer utility based on an algorithm that lets it send just differences
between the source and the destination over the wire .” It can use other transports
(e .g ., SSH) for security if desired . More info can be found at rsync .samba .org .

The types of Perl rsync modules pretty closely mirror those we talked about for
SSH . The one difference is there really is no good option for #2 above (i .e ., using a
Perl wrapper around a library) because librsync itself (sourceforge .net/projects/
librsync/) is no longer actively maintained and hasn’t seen a new release in over
four years . What we do have is an all-Perl implementation called File::RsyncP and
a wrapper around the standard rsync client called File::Rsync . I think you’d have to
have a good and probably specialized reason to use the pure Perl version (e .g ., it was
originally written to be used as part of BackupPC), so here’s an example from the
File::Rsync docs:

use File::Rsync;

$obj = File::Rsync->new({ ‘archive’ => 1,

 ‘compress’ => 1,

 ‘rsh’ => ‘/usr/local/bin/ssh’,

 ‘rsync-path’ => ‘/usr/local/bin/rsync’ });

$obj->exec({ src => ‘localdir’, dest => ‘rhost:remdir’ })

 or warn “rsync failed\n”;

Articles_final.indd 52 1.18.11 3:06 PM

 ;login: FEBRUARy 2011 Practical Perl Tools: Hither and Yon 53

If it looks to you like we’re basically just writing out the standard options to the
rsync command using Perl syntax, that’s exactly right .

What about the Rest?

Oh dearie me . We’re about to run out of space and there are still tons of things we
haven’t talked about . For example, you probably heard of this newfangled protocol
for moving data around called HTTP . I predict it will be pretty big by the time you
read this . There’s probably going to be a whole other column in our future on just
that protocol .

I don’t know if this will mollify you until then, but let me end this column by hand-
ing you the keys to your very own nuclear device . If you want to have some fun, in a
Dr . Strangelove kind of way, you might want to check out Net::CascadeCopy . In this
column we’ve talked about moving files from one place to another, but largely in a
“onesies-twosies” approach . What if you want to move data to a kerjillion servers?
Net::CascadeCopy is designed to propagate files as fast as possible . Instead of a hub
and spoke arrangement (a server copies the files out to all of its clients), this mod-
ule turns every client into a server . As the doc says, “Once the file(s) are [sic] been
copied to a remote server, that server will be promoted to be used as source server
for copying to remaining servers . Thus, the rate of transfer increases exponentially
rather than linearly .” Important: Be careful with this thing . If you melt down your
entire network using this module, the Secretary and I will disavow any knowledge
of your actions .

Take care, and I’ll see you next time .

Articles_final.indd 53 1.18.11 3:06 PM

 54 ;login: vOL. 36, NO. 1

In our last episode, there was a battle royal comparing the general features of
Solaris, RHEL, and AIX . In my view, there was no clear winner . Each had pros and
cons, but they were all quite usable and feature-rich in the end . However, the battle
does not end there . One area, perhaps the most important differentiator, was left
for this, the final round .

Virtualization is extremely important to datacenter managers, providing a valu-
able tool to increase system use, reduce the number of systems, reduce costs, and
increase manageability . It’s also a complex topic, with technologies and features
varying greatly, and few clear “best” approaches . Further, software vendors are
increasing the importance of virtualization, in many cases limiting the licenses
needed for an application to only the CPUs within a virtual machine in which the
application runs . The Oracle Database, for example, running in a capped Solaris
Container, needs fewer licenses than if the container were uncapped, potentially
saving the datacenter quite a bit of money . Given its variations, complexity, and
importance, it makes sense to give the virtualization battle a column of its own .

Comparison

For a full description of why these three operating systems are included and others
are not, please see my December 2010 ;login: column, which also provides an over-
view of each operating system and potential reasons to run each . Fundamentally,
AIX 7 .1, Solaris 10 9/2010, and Red Hat Enterprise Linux 5 .5 are going to continue
to be important operating systems, each having a potentially bright future (even if
for different reasons) . The purpose of this two-part column is to help readers sort
through these operating system choices and provide a basis for comparison and
consideration for use .

Virtualization is certainly many things to many people, but included here is hard-
ware and operating system–provided virtualization . Certainly, Solaris and RHEL
can also be virtualized by other technologies, such as VMware ESX and Virtual-
Box, and those are valid choices . However, those are not features of the selected
operating systems and therefore are outside the scope of this column . Within
the scope, though, is hardware virtualization, and even if Solaris only has that
feature available on SPARC hardware, RHEL has no such feature, and AIX has
that feature on all implementations (as it runs only on the Power CPU and Power
has hardware virtualization) . Given those differences, why is hardware virtualiza-
tion “allowed” in this comparison? Fundamentally, most Solaris sites run Solaris
on SPARC hardware, and many of those use the hardware virtualization features .

Peter Baer Galvin is the chief

technologist for Corporate

Technologies, a premier

systems integrator and vAR

(www.cptech.com). Before that, Peter was

the systems manager for Brown University’s

Computer Science Department. He has written

articles and columns for many publications and

is co-author of the Operating Systems Concepts

and Applied Operating Systems Concepts

textbooks. As a consultant and trainer, Peter

teaches tutorials and gives talks on security

and system administration worldwide.

Peter blogs at http://www.galvin.info and

twitters as “PeterGalvin.” pbg@cptech.com.

Pete’s all Things Sun: Comparing Solaris
to RedHat Enterprise and aIX—
Virtualization Features
p E t E r b a E r g a l v i n

Articles_final.indd 54 1.18.11 3:06 PM

 ;login: FEBRUARy 2011 Pete’s All Things Sun: Comparing Solaris to RedHat and AIX Virtualization 55

Likewise, AIX shops make extensive use of the Power hardware virtualization
features . Hardware virtualization is an important tool available to administrators
of those systems, and therefore must be considered when looking at the complete
virtualization picture .

Virtualization

The gamut of virtualization technologies to consider is therefore hardware,
multiple-OS software, and single-OS software . Those three are further explored in
the next three sections .

Oracle/Sun Hardware Virtualization

In the Sun world, this is “Dynamic Domains” and “LDOMs” (now renamed by
Oracle to “Oracle VM Server for SPARC,” but called LDOMs here for brevity) . This
feature is implemented at the hypervisor level . By default, all hardware is seen in
one chunk (for lack of a better word) . The hypervisor allows the hardware, includ-
ing CPUs, memory, I/O controllers, and system disk drives, to be divvied up into
two or more chunks . Each chunk gets its own Solaris install and can run different
OS releases and patch levels, different applications, and so on . Only Solaris 10 and
Solaris 11 Express are supported on the M and T servers, however, so operating
system choice is somewhat limited . For almost all intents, the given server acts
like multiple servers that just share the same sheet metal .

LDOMs existing only on Sun “T” servers, and sharing the same motherboard,
can have single points of failure . Dynamic Domains existing on M servers do not
generally share single points of failure . Dynamic Domains and LDOMs are both
somewhat dynamic, in that some resources can be moved between the chunks
without downtime . The number of allowed Dynamic Domains varies based on the
M-server model, from zero on the M3000 through two on the M4000 (a minimum
of two CPUs per domain) to 24 on the M9000 . The number of LDOMS is limited
by the number of threads in the T-server box . A T3-1 has one socket containing 16
cores and 8 threads per core, for a total of 128 threads . LDOMs can be as small as
one thread, for a possible total of 128 in the T3-1 . Practically, one LDOM per core is
more reasonable and common than one LDOM per thread .

Each Dynamic Domain has its own I/O controllers and is independent of other
Dynamic Domains to perform its I/O . LDOMs need to have one or two “I/O
Domains” which include all of the I/O controllers and have all I/O routed through
them . If there are two I/O Domains, then they can be configured to provide redun-
dant paths to the devices for high availability .

iBM power Hardware Virtualization

IBM Power servers have LPARs (Logical PARtitions) . While Dynamic Domains
and LDOMs are included with the cost of the Oracle server, IBM frequently has
an additional cost for features such as virtualization . LPARs are more flexible
than LDOMs in that they can be configured to the single core increment, up to
a maximum of the number of cores in the system, as well as in micro-partitions .
Most Power servers have a “micro-partitions” feature in which an LPAR can be
split into up to 10 sub-chunks . There are some fixed limits: for example, currently
the IBM Power 790 can only have 256 partitions (a combined total of LPARs and
micro-partitions) . That is still a large number, though . And even the micro-parti-
tions are full hardware instances in that they have their own copy of AIX installed .

Articles_final.indd 55 1.18.11 3:06 PM

 56 ;login: vOL. 36, NO. 1

AIX versions 5 .2 and beyond are supported on most Power servers, as are RHEL
and SUSE, so a wide variety of operating systems can be running within the same
system .

LPARs can act like Dynamic Domains and have dedicated I/O, or have a “Virtual
I/O Server” partition which manages I/O and which other LPARs and micro-parti-
tions talk to to get I/O performed . It can also mix these two options . There does not
seem to be a way to make the Virtual I/O Server highly available, but a Virtual I/O
Server is running AIX and can be configured for multi-pathing within the LPAR .
As with Dynamic Domains, resources may be moved between LPARs . LPARs with
that feature enabled are known as Dynamic LPARs or DLPARs .

There are some features provided by IBM Power hardware virtualization that are
not found within Oracle’s Sun products . The most impressive and useful of these is
“Partition Mobility,” which can move an LPAR or micro-partition between Power
servers without disrupting service, taking a few seconds . Partition Mobility works
for all operating systems, including Linux . There is also an “inactive” version of
Partition Mobility that makes it easy to move a halted partition between servers .
Of course, all storage used by the partition (the boot disk as well as data disks)
must be able to be mounted on the target server, via FC SAN or iSCSI connectivity .
Also, all I/O must occur via the Virtual I/O Server .

Active Memory Sharing is another interesting feature, in which a pool of memory
is configured and that pool is made available to multiple partitions . This can be
simpler and more flexible than moving memory between partitions .

PowerVM Lx86 provides a supported solution for running Linux x86 binaries
within a Power partition . This solution involves a binary translator that converts
and then caches the x86 instructions into Power instructions . No modification of
the original Linux x86 binary is needed . Also translated are system calls from the
x86 versions to ones compatible with the native Linux operating system running
on the Power CPU within the partition . There is obviously a performance pen-
alty incurred by translation, but the fast Power CPU probably helps decrease the
impact of that translation on the performance of the x86 Linux application .

RHEL Hardware Virtualization

This section might be surprised to find itself here, but at least a bit needs to be
said about the possibility of using VMWare ESXi to “hardware virtualize” RHEL .
This solution to having hypervisor support running virtualized RHEL (and many
other OSes) is legitimate and functional . In fact, it provides the “vMotion” feature,
which enables the transfer of a running virtual machine from one VMware server
to another without service interruption . ESXi itself is free, but there is a mainte-
nance cost if desired, and features such as vMotion are only available for a price .
Perhaps the biggest difference between the ESXi solution and the others discussed
above is that ESXi comes from a third party and adds support complexity because
a problem resolution may require calls to two support desks rather than just one .
So, rather than crossing “hardware virtualization” off of the RHEL feature list,
consider this option .

Of course, this is one of many third-party virtualization options, which include
software solutions such as VMware ESX, Xen, and VirtualBox, and even host-
ing solutions such as Amazon EC2 and Joyent’s Cloud . Those are well worth

Articles_final.indd 56 1.18.11 3:06 PM

 ;login: FEBRUARy 2011 Pete’s All Things Sun: Comparing Solaris to RedHat and AIX Virtualization 57

understanding and evaluating as part of performing virtualization planning due
diligence .

Solaris Software Virtualization

Solaris includes “Containers,” also called “Zones,” as a core virtualization feature .
Given that Containers have been discussed at length elsewhere and in previous
issues of this column, only the basics are discussed here . Containers provide a
secure environment in which applications run . Those applications have no knowl-
edge of other applications in other Containers . Applications in one Container can
only communicate with other Containers over network protocols . Most impor-
tantly, Containers do not run their own kernel . Rather, one kernel is used to create
all Containers and all applications . There are Solaris 8 and Solaris 9 Containers,
allowing a Solaris 8 or Solaris 9 system to be converted from a physical instance
to a virtual instance (P to V) and run within a Container (at added cost) . Contain-
ers may not reside on NFS, but can reside on block storage such as DAS, SAN, and
iSCSI . Finally, Containers can be detached, and then attached to another server
that sees the same storage, and can be duplicated, but they cannot be moved with-
out service interruption .

AiX Software Virtualization

AIX has Workload Partitions, or “WPARs,” which are very, very similar to Con-
tainers . Again, there are no separate kernels, applications are protected from each
other, resources can be managed, and so forth . It is an AIX feature, unlike LPARs,
which are a Power CPU feature . Unlike Containers, WPARs can reside on NFS
storage . Also unlike Containers, WPARs can be moved without service inter-
ruption via the AIX Live Application Mobility feature . Such a move is much like
VMware’s vMotion .

RHEL Software Virtualization

Unlike AIX WPARs and Solaris Containers, RHEL KVM is very new, having been
released in 2009, and seemingly not very heavily used in production environments .
KVM replaces Xen, which was the chosen virtualization technology for RHEL
5 . KVM has some impressive features, including supporting 64 virtual CPUs per
guest with low overhead, as well as live migration, but the only supported guests
are RHEL versions 3 through 6 and Windows 2003, 2008, XP, and 7 .

KVM is included in RHEL, and also in a separate product from Red Hat named
“Enterprise Virtualization .” RHEV is a virtualization platform, in some ways simi-
lar to VMware ESX . It supports RHEL and Windows guests and provides virtual-
ization features such as live migration, high availability, power management, and
system scheduler (for scheduling activities) . Oddly, the RHEV manager only runs
on Windows . Apparently, RHEL and RHEV are in a transition period and only
time will tell how enterprise-worthy these components are . As is the case with
Linux in many areas, and one of its strongest benefits, there are many free choices
surrounding virtualization and virtualization management . Determining which, if
any, of them are production-ready can be a challenge, though .

Conclusions

If just the native, included-with-the-OS virtualization features are considered,
then Solaris has a distinct advantage over the other contenders via its Domains,

Articles_final.indd 57 1.18.11 3:06 PM

 58 ;login: vOL. 36, NO. 1

LDOMs, and Containers . However, expanding the possibilities to features available
for purchase from the vendors, IBM puts on an impressive show with features that
match all of Sun’s, and exceeds them with the ability to move partitions between
servers without service interruption . RHEL can only match these features when
adding third-party solutions such as VMware ESXi for hardware virtualization .
That is a valid choice, as long as the challenge of needing to involve another entity
in support issues is balanced against the benefits of the added feature set .

Finally, RHEL 6 .0 was just announced and promises to add new features to the
already sound offering . For more details on what is included see http://press
 .redhat .com/2010/11/10/red-hat-enterprise-linux-6-a-technical-look-at-red
-hats-defining-new-operating-platform/ .

Tidbits

Solaris 11 Express has finally been born, after a long pregnancy and even more
prolonged labor (of love?) . Certainly the waiting was the hardest part, and was
possibly extended by the purchase of Sun by Oracle . S11 Express has many of the
features of OpenSolaris, except that there is no source code available for it . It does
have advanced features such as ZFS encryption and a vastly better network func-
tionality code named “crossbow .” According to the FAQ (http://www .oracle
 .com/technetwork/server-storage/solaris11/overview/faqs-oraclesolaris11
express-185609 .pdf), S11E can be used for non-production use for free, but use in
production requires a support contract . It is available for download from http://
www .oracle .com/us/products/servers-storage/solaris/solaris-11-express-185123
 .html .

References

AIX 7: ftp://public .dhe .ibm .com/common/ssi/ecm/en/pod03054usen/
POD03054USEN .PDF .

IBM Power server features: https://www-304 .ibm .com/businesscenter/
fileserve?contentid=205264 .

AIX virtualization: http://www .ibm .com/developerworks/wikis/display/
virtualization/Virtual+IO+Server .

IBM Live Partition Mobility: http://www .redbooks .ibm .com/redbooks/pdfs/
sg247460 .pdf .

RHEV overview: http://www .redhat .com/rhev/ .

RHEL KVM: http://www .redhat .com/f/pdf/rhev/DOC-KVM .pdf .

Articles_final.indd 58 1.18.11 3:06 PM

 ;login: FEBRUARy 2011 59

Welcome to the second installment in my Ganglia series . In the last issue I prom-
ised (threatened?) to walk you through building a Ganglia data collection module
in C, and that’s exactly what we’re going to do .

Ganglia, as you’ll recall, is composed primarily of two daemons: gmond, which
runs on the client side, collecting metrics, and gmetad, which runs server-side
and polls the clients, pushing their data into RRDTool databases . Gmond, out of
the box, can collect a litany of interesting metrics from the system on which it is
installed and can be extended to collect user-defined metrics in three different
ways .

The first method to add new metrics to gmond is to collect the data yourself using
a shell script, or similar program, piping the resultant data to the Gexec daemon .
This method is simple and widely used, but adds overhead to a system carefully
designed to minimize it . The second and third methods are to write plug-ins for
gmond in Python or C . Writing gmond plug-ins in Python requires that Python be
installed and that gmond be compiled against the Python libs on every box where
you might want to use your module .

C modules interest me for a number of reasons . Ganglia is such a nifty design that
it “feels” wrong to me to burden the system with a bunch of /bin/sh instantiations,
to say nothing of the mess implied in the idea of maintaining and scheduling my
own shell scripts everywhere . Further, we take great care to minimize the package
count in our production environments, and I have no need for Python otherwise . C
modules on the other hand are lightweight, elegant, and more likely to make their
way into the corporate Git repository so that their versions can be tracked . Finally,
a well-written C module can be contributed back to the Ganglia maintainers, and
possibly merged into the project, which will benefit everyone who uses it in the
future .

How do we write one of these things? In terms of coding strategy, we can orga-
nize data collection modules into two types: those I’ll call “static” and those I’ll
call “dynamic .” Static modules collect a known series of data metrics . Consider a
memory data collector module . We know up front that we’re going to be collecting a
known series of metrics: free memory, used memory, free and used swap, etc .

Dynamic modules, on the other hand, are going to collect a user-defined series of
metrics . The dynamic module I’m going to share with you, for example, is a pro-
cess-counter module . It simply counts the number of named processes (like httpd)

Dave Josephsen is the

author of Building a

Monitoring Infrastructure

with Nagios (Prentice

Hall PTR, 2007) and is senior systems

engineer at DBG, Inc., where he maintains

a gaggle of geographically dispersed server

farms. He won LISA ’04’s Best Paper award for

his co-authored work on spam mitigation, and

he donates his spare time to the SourceMage

GNU Linux Project.

dave-usenix@skeptech.org

iVoyeur: More ganglia on the Brain
d a v E J o s E p h s E n

Articles_final.indd 59 1.18.11 3:06 PM

 60 ;login: vOL. 36, NO. 1

running on the client system . I’m referring to it as “dynamic” because the module
doesn’t know which specific processes you want to count beforehand .

Creating a gmond module mostly involves creating a struct of type “mmodule .”
This struct is made up of three function pointers and another struct containing
metric metadata . Because Ganglia relies on the Apache Portable Runtime Library,
many of the data structures involved are APR types, and digging more than a
couple of layers deep will land you squarely in the APR headers, which you may
find a bit vexing (I sure did) . The module writers were sensitive to this, and have
provided a few functions to insulate you from needing to know too much about the
underlying APR data structures . The problem is, to use these functions you need to
statically define the metric metadata up front . So the primary difference between
writing modules that I call “dynamic” and those I call “static” is how much you’ll
need to interact with APR . You’ll see what I mean as we continue .

Let’s take a look at the memory module that comes with the Ganglia distribution,
the full source of which is available in the gmond/modules/memory directory
of the Ganglia tarball or at http://www .usenix .org/publications/login/2011-02/
mod_mem .c . First, take a look at the very bottom of the file:

mmodule mem_module =

{

 STD_MMODULE_STUFF,

 mem_metric_init,

 mem_metric_cleanup,

 mem_metric_info,

 mem_metric_handler,

};

As you can see, aside from the global STD_MMODULE_STUFF, which is the same
for every module, the struct is made up of a pointer to a struct called mem_
metric_info, and three pointers to functions, called mem_metric_init, mem_
metric_cleanup, and mem_metric_handler . Your module needs to define all three
functions, but, as you’ll see below, the metric_info struct can be dynamically cre-
ated later if you’re writing a “dynamic” module . This happens to be a static module,
so the metric_info struct is statically defined:

static Ganglia_25metric mem_metric_info[] =

{ {0, “mem_total”, 1200, GANGLIA_VALUE_FLOAT, “KB”, “zero”, “%.0f”,

UDP_HEADER_SIZE+8, “Total amount of memory displayed in KBs”},

 {0, “mem_free”, 180, GANGLIA_VALUE_FLOAT, “KB”, “both”, “%.0f”, UDP_

HEADER_SIZE+8, “Amount of available memory”},

 {0, “mem_shared”, 180, GANGLIA_VALUE_FLOAT, “KB”, “both”, “%.0f”,

UDP_HEADER_SIZE+8, “Amount of shared memory”},

 {0, “mem_buffers”, 180, GANGLIA_VALUE_FLOAT, “KB”, “both”, “%.0f”,

UDP_HEADER_SIZE+8, “Amount of buffered memory”},

 {0, “mem_cached”, 180, GANGLIA_VALUE_FLOAT, “KB”, “both”, “%.0f”,

UDP_HEADER_SIZE+8, “Amount of cached memory”},

 {0, “swap_free”, 180, GANGLIA_VALUE_FLOAT, “KB”, “both”, “%.0f”, UDP_

HEADER_SIZE+8, “Amount of available swap memory”},

 {0, “swap_total”, 1200, GANGLIA_VALUE_FLOAT, “KB”, “zero”, “%.0f”,

UDP_HEADER_SIZE+8, “Total amount of swap space displayed in KBs”},

#if HPUX

 {0, “mem_arm”, 180, GANGLIA_VALUE_FLOAT, “KB”, “both”, “%.0f”, UDP_

HEADER_SIZE+8, “mem_arm”},

Articles_final.indd 60 1.18.11 3:06 PM

 ;login: FEBRUARy 2011 iVoyeur: More Ganglia on the Brain 61

 {0, “mem_rm”, 180, GANGLIA_VALUE_FLOAT, “KB”, “both”, “%.0f”, UDP_

HEADER_SIZE+8, “mem_rm”},

 {0, “mem_avm”, 180, GANGLIA_VALUE_FLOAT, “KB”, “both”, “%.0f”, UDP_

HEADER_SIZE+8, “mem_avm”},

 {0, “mem_vm”, 180, GANGLIA_VALUE_FLOAT, “KB”, “both”, “%.0f”, UDP_

HEADER_SIZE+8, “mem_vm”},

#endif

 {0, NULL} };

Ganglia_25metric is defined in lib/gm_protocol .h . The fields from left to right are:

int key I’m not sure what this is for, but setting it to zero
seems safe.

char *name the name of the metric, for the RRD
int tmax the maximium time in seconds between metric

collection calls
Ganglia_value_types type used by APR to create dynamic storage for the

metric, this can be one of: string, uint, float,
double or a Ganglia Global, like the ones above

char * units unit of your metric for the RRD
char *slope one of zero, positive, negative, or both
char *fmt A printf style format string for your metric

which MUST correspond to the type field
int msg_size UDP_HEADER_SIZE+8 is a sane default
char *desc A text description of the metric

Gmond will read the mmodule struct at the bottom of the file and then call the init
function contained therein . The init function in turn calls two other important
functions: MMETRIC_INIT_METADATA and MMETRIC_ADD_METADATA
for each element in the metric_info struct I pasted above . A few APR-related
things have been done for us, based on the fact that we defined that metric_info
struct, but we don’t need to worry about that now, because INIT_METADATA and
ADD_METADATA will interact with APR for us . So for each metric listed in our
metric_info struct, INIT_METADATA initializes a row of APR storage for our
metric and ADD_METADATA calls our handler, which causes data to be collected
and stored for our metric .

Examining the handler function, we find that it’s a simple switch-case, which is
using the index number from the metric_info struct we defined to decide what data
to go gather . If you look at any of these data-collection functions (e .g ., mem_total_
func();), you’ll find that they simply read the required information out of the proc
file system on Linux .

That’s pretty simple . The mmodule struct at the bottom calls init, which calls
MMETRIC_INIT_METADATA and MMETRIC_ADD_METADATA once for
each element defined in metric_info . MMETRIC_ADD_METADATA in turn calls
our handler function, which executes a different function depending on the current
index number of the metric_info array . That works for pretty much any physical
metric that one can imagine, such as memory, CPU, temperature, or network met-
rics . All of these metrics are understood up front and may be defined as such .

Things get a little more complicated when we can’t predict what the metric_info
struct will look like . In the case of my process counter (full source available at
http://www .usenix .org/publications/login/2011-02/mod_count_procs .c), an end

Articles_final.indd 61 1.18.11 3:06 PM

 62 ;login: vOL. 36, NO. 1

user is providing us with the names of one or more processes to be counted, so we
won’t know until runtime what the metadata in the metric_info struct will look
like . Thus, we need to programmatically (or dynamically) generate the metric_info
struct at runtime . My mmodule struct definition looks like this:

mmodule cp_module =

{

 STD_MMODULE_STUFF,

 cp_metric_init,

 cp_metric_cleanup,

 NULL, /* Dynamically defined in cp_metric_init() */

 cp_metric_handler,

};

Since we didn’t name the metric_info struct, we need to create it manually in
our init function . This requires a bit more interaction with APR . First, I globally
declare metric_info at the top of the file:

static apr_array_header_t *metric_info = NULL;

I also need a Ganglia_25metric pointer inside the scope of the init function, so that
I can modify the contents of individual array elements inside metric_info:

Ganglia_25metric *gmi;

Then I can create the struct using the apr_array_make function:

metric_info = apr_array_make(p, 1, sizeof(Ganglia_25metric));

p is the name of an APR memory pool that we’ve been passed from gmond . The
second argument is the initial size of the array, and the third argument tells APR
what kind of elements this data structure is going to store . It’s important that the
third element be defined clearly in this manner .

We set gmi to the next available slot in the metric_info stack by calling apr_array
_push:

gmi = apr_array_push(metric_info);

So the general strategy is to read a list of process names from user input and then
iterate across them, calling apr_array_push, and manually populating gmi with the
metric details we need .

Gmond .conf, the config file for gmond, allows the user to pass parameters to
modules with configuration entries such as this one:

module {

 name = “cp_module”

 path = “modcprocs.so”

 Param ProcessNames {

 Value = “httpd bash”

 }

}

My init function reads these user-supplied parameters using gmond-supplied
functions:

if (list_params) {

 params = (mmparam*) list_params->elts;

Articles_final.indd 62 1.18.11 3:06 PM

 ;login: FEBRUARy 2011 iVoyeur: More Ganglia on the Brain 63

 for(i=0; i< list_params->nelts; i++) {

 if (!strcasecmp(params[i].name, “ProcessNames”)) {

 processNames = params[i].value;

 }

 }

}

I use the infamous strtok() function to parse out the space-separated list of pro-
cess names and iterate through them, first getting a new spot on the metric_info
stack and then modifying its contents:

for(i=0; processName != NULL; i++) {

 gmi = apr_array_push(metric_info);

 gmi->name = apr_pstrdup (p, processName);

 gmi->tmax = 512;

 gmi->type = GANGLIA_VALUE_UNSIGNED_INT;

 gmi->units = apr_pstrdup(p, “count”);

 gmi->slope = apr_pstrdup(p, “both”);

 gmi->fmt = apr_pstrdup(p, “%u”);

 gmi->msg_size = UDP_HEADER_SIZE+8;

 gmi->desc = apr_pstrdup(p, “process count”);

Now that the element has been dynamically created, it can have INIT_
METADATA, and ADD_METADATA called against it, just like its static brethren:

MMETRIC_INIT_METADATA(gmi,p);

MMETRIC_ADD_METADATA(gmi,MGROUP,”cprocs”);

Once we’ve iterated across every process the user wants us to count, we put an
empty terminator on the metric_info array with one last call to apr_array_push,
and then we manually set our metric_info array to be the array used by the mmod-
ule struct down at the bottom of the file (the one we’d initially declared as void)
with this line:

cp_module.metrics_info = (Ganglia_25metric *)metric_info->elts;

Unlike the handler function in the memory module, which calls a different func-
tion for each metric in metric_info, my handler always does the same thing . That
is to say, it always counts how many of the named process are running . To do the
actual counting I’ve added a function called count_procs, which uses the procps
library and is beyond the scope of this article . I do want to point out that my han-
dler function is still using the same metric_index number that the memory module
uses, but instead of using it in a switchcase with a function per index number, it’s
simply using it to de-reference the process name from the metric_info array:

Ganglia_25metric *gmi = &(cp_module.metrics_info[metric_index]);

count_procs(gmi->name);

That about covers the workings of both types of modules . Once written, I compiled
my module on a Linux box from within the Ganglia tarball gmond/modules/cprocs
directory:

cc mod_count_procs.c -shared -I/usr/include/proc -I/usr/include/apr/

 -I../../../include/ -I../../../lib -lproc-3.2.7 -o modcprocs.so

I included /usr/include/proc for the count_procs() function, which uses procps .

Articles_final.indd 63 1.18.11 3:06 PM

 64 ;login: vOL. 36, NO. 1

In addition to the configuration I’ve already mentioned in gmond .conf which tells
gmond to execute the module and optionally passes parameters to it, gmond also
needs to be told to schedule polling for the metrics by adding metric parameters to
a collection group:

collection_group {

 collect_every = 80

 time_threshold = 950

 metric {

 name = “httpd”

 value_threshold = “80”

 title = “HTTPD Processes”

 }

 metric {

 name = “bash”

 value_threshold = “100”

 title = “BASH Processes”

 }

}

Once the module has been compiled and copied into the modules directory (/usr/
lib/ganglia/ by default) and the configuration file updated to use it, gmond will
report the new metric, and gmetad will create an RRD for it and display it on the
front-end . Speaking of front-ends, as I write this, the Ganglia devs are currently
going through a user interface rewrite which will update the UI with many of the
features I wished for in my last article, including the ability to modify graphs by
passing RRDTool options in a URL . The more I use Ganglia, the more I like it, and
I heartily recommend checking it out if you haven’t yet had the opportunity .

Take it easy .

Articles_final.indd 64 1.18.11 3:06 PM

 ;login: FEBRUARy 2011 65

Wading through all the ballyhoo about the Stuxnet worm being a “game-changer”
(what game would that be, exactly?) by dint of its very precise targeting, sophisti-
cated coding, and really rad fashion sense, my thoughts began to wander (the way
they always do) down the well-beaten path of baseless speculation . Apparently/
reportedly/allegedly Stuxnet was created to, among other things, mess with the
rotational speed of the specific centrifuges in use by the targeted nuclear fuel
processing facility in an unnamed country that rhymes with Tea Lawn . Leaving
aside the glaring question of why anyone would want to make centrifuges network-
accessible—and, for that matter, how they would go about it—I want to turn instead
to a fascinating (and I use that adjective because even in this enlightened day and
age we’re not allowed to print the more satisfying one) exploration of other applica-
tions of this, um, technology .

Before I proceed further, I would like to snatch yet another moment of your pre-
cious time to discuss the whole concept of computer worms, or, rather, the nomen-
clature thereto appertaining . Why a worm? Worms, or anyway the worms I’ve
encountered in my backyard with spade in hand and crabgrass demise in mind, can
wriggle and flop with the best of them but intimidation or propulsion-wise they’re
not on top of the game . I would think computer eel or computer adder or even com-
puter spirochete would be more descriptive and menacing than just plain ol’ worm .
I wasn’t there when that train left the station, though; I guess the fella what calls
the turn names the baby .

If some unidentified malware incubator can spit out a worm to take over centri-
fuges in a uranium-enrichment plant, that same coding acumen could be applied
to something more useful to the average Joe such as, say, getting better seats at the
ball game or lowering the price on that expensive flat-screen HD . What if you could
gain control over the local amusement park infrastructure long enough to change
the duration or max speed on your favorite roller coaster? SCADA systems are just
about ubiquitous these days, probably far more so than most people understand .
All sorts of big, important, dangerous doo-dads are connected to the Interwebs
now, including flood control gates, electrical grid routing substations, distillation/
cracking systems at refineries, chemical manufacturing equipment—just about
anything with a flow rate, liquid level, temperature, voltage, rotational velocity, or
other parameter that can be measured and controlled via feedback loops . Not to
mention your garage light, blender, microwave, and dog flap .

Throughout the history of American pop culture (it doesn’t officially become pop
culture until your pop no longer understands it), or at least the history of American

Robert G. Ferrell is an

information security geek

biding his time until that

genius grant finally comes

through.

rgferrell@gmail.com

/dev/random
r o b E r t g . F E r r E l l

Articles_final.indd 65 1.18.11 3:06 PM

 66 ;login: vOL. 36, NO. 1

pop culture from the early 20th century onward (and prior to that I don’t think
we had much, since pop culture requires widespread media access to propagate),
the litmus test for things that we as men feel powerless to deal with has been the
superhero (women resort to shopping) . Like canaries in a coal mine, the appear-
ance and sudden popularity of a Superman or Batman or Mighty Mouse (a nod to
Steinbeck; you figure it out) has heralded a conscious or unconscious collective
conclusion by the creative/imaginative segment of the populace that the Powers
That Be ain’t cuttin’ the mustard from a problem-solving perspective . Captain
America slew the Nazis for us, for example . Superman took care of all those pesky
urban criminal gangs and served as a sort of science fiction bellwether . Batman
explored our profound sense of moral ambiguity concerning violence perpetrated
in the name of justice . Plus, he wore really cool black outfits and had a fabulous
black car with big tail fins .

Now that I’ve segued so neatly from SCADA to Batman, I think it’s time that a cer-
tain sidekick finally came into his own . I must say I never understood the point of
Robin . What the heck kind of hero gets named after a migratory thrush, anyway?
(The North American robin is not related to the European one, FYI .) I mean, why
would a robin hang around with a bat in the first place? Robins aren’t nocturnal;
they’re birds, not mammals; they navigate by sight, not sound . What’s up with that
bizarre pairing, then?

I think I’ve uncovered the answer: Kane and Finger were prescient . That stuff they
put out at the time about Robin being named for Robin Hood (hence the pseudo-
Medieval Hollywood costume) was just a cover story . Robin really was named for
the bird because . . .and this is where genius rears its glittery head . . .they anticipated
the need one day for a superhero who eats worms .

That’s right, folks: remember, you heard it here first . Robin is the obvious super-
hero for the age of self-propelled malware . While Batman dukes it out with insane
circus clowns and fugitive animated store window manikins from “Polyester
Billy’s Short ‘n’ Waddly Men’s Wear,” the Boy Wonder takes on the latest poly-
morphic encrypted code monster . Even zero-days are no match for the (Es)caped
Crusader and his new protégé, Early Bird . Thrill as they dodge razor-sharp distrib-
uted denial of service packets . Gasp as our heroes narrowly avoid being ensnared
by the heinous Spearfisher . Perch on the edge of your chair, wring your hands, and
postpone going to the bathroom until your eyes cross repeatedly while the insidi-
ous Identity Thief works his oily wiles on the unsuspecting citizens of Webtropolis .
Don’t forget to visit our snack bar and bring your automobile title .

The pundits say that increasingly sophisticated worms are an inevitable conse-
quence of our interconnected world . A hero will rise to struggle against these vile
abominations in the name of goodness and low-calorie sweetener and that hero
will be clad in crimson vest, green tights, and antique gold satin tablecloth .

All hail the stalwart savior of SCADA, the worm’s nemesis: Robin the Avianator .

Articles_final.indd 66 1.18.11 3:06 PM

 ;login: FEBRUARy 2011 67

so that it’s a reasonable print size and still fits on the screen .
PDF doesn’t do that; it’s pictures of pages . For books that are
all text, this is perfect . It gets a little trickier with pictures
inserted; unless the book is actually redone for ePub, they’re
going to end up where they got put in the now irrelevant page
layout . It’s livable, and aside from the title, the book I read
appeared to be accurate .

Being geek
Michael Lopp
O’Reilly, 2010 . 309 pp .
ISBN 978-0-596-15540-7

This is the best book on career skills for high-tech people that
I’ve come across . Its prototypical reader would be a developer
on about his second job, but there’s plenty here for people
earlier and later in their careers, and it doesn’t require much
translation for people in support and/or operations . (And yes,
I did say “his” on purpose, but it’s actually reasonably unbi-
ased; the author is a man writing about a male-dominated
world, but he doesn’t omit women or treat them as a different
species .) It covers a wide range of topics, from interviewing
to deciding when to leave a job, and it includes managing both
up and down, and giving presentations .

This is a lot of area to cover . As a result, it’s a speedy and
opinionated ride . It’s in short pieces, not closely tied to each
other and easy to read separately . Most technical people will
find it both enjoyable and informative; some of the advice
won’t suit you, but that’s true of all advice books .

glitch
Jeff Papows
Pearson Education, 2010 . 198 pp .
ISBN 978-0-13-216063-6

This is a book for IT managers . It has a lot of good stories,
some good insight into trends, and some good advice, surpris-
ingly loosely linked together, and is totally centered on what
IT management can do to improve life . I find some of the

Lately, I have actually been asked the same questions repeat-
edly, so it seems like a good moment to provide a few answers;
you could call this a “FAQ” list if the term hadn’t been co-
opted by most Web sites to mean “questions we were hoping
you might ask frequently, or at least would read the answers
to if we put them near a title implying you would definitely be
interested in them .”

How do I read so many books? I’m afraid the answers are bor-
ing and not very useful; first, I read faster than most people,
and I always have, and second, I don’t own a television .

Why an iPad? Sadly, this answer is probably just as useless
for most people, because it isn’t a decision based on research
on eBook readers in general . I like the size, and the user inter-
face is familiar to me . I don’t expect it to be a whole computer,
but I like having more than just books available to me (when
sick, playing silly games is almost as soothing as reading
fiction, which explains my score at Heroes of Kalevala) . My
child is passionately fond of it, which is both an advantage
and a downside . It will also read pretty near every eBook
format ever, definitely an advantage .

Does this eBook stuff really work? It works for me . I’m
certainly helped out by the big screen, which means that
books in PDF format show up almost exactly as they would
on paper, but it’s still striking how fast you get used to paging
electronically . You don’t get the same cues about where you
are in the book, which makes it harder to find things again .
Different readers and different formats will have very differ-
ent effects, of course .

I tried one of this month’s books both in PDF and in ePub .
There are two big differences between the formats . PDF is a
familiar problem for publishers, and almost guaranteed to be
very close to the printed book, probably being produced in the
regular publishing flow . ePub is really only used for eBooks,
and the production process will be a separate one, which
often results in new errors (for instance, the book I read was
named “epub” in ePub format, but was correctly titled in both
the PDF readers I use) . But ePub is reformattable, which
means that if you have a small screen, the text can reflow,

bOOksBook Reviews
E l i z a b E t h z w i C k y , w i t h r i k F a r r o w a n d s a M s t o v E r

Articles_final.indd 67 1.18.11 3:06 PM

 68 ;login: vOL. 36, NO. 1

out what questions to ask . There’s some help with that, but
most of it is aimed at particular sorts of situations; appar-
ently the data analysis I mostly do (which can generally be
summarized as “something is wrong, here’s a pile of data”) is
relatively rare, because it’s not much like the situations most
discussed . I don’t blame the book for these omissions, which
are big complicated areas in their own right, but nonetheless,
there are going to be plenty of people who are still bewildered .

Building the Perfect PC, 3d Edition
Robert Bruce Thompson and Barbara Fritchman Thompson
O’Reilly, 2010 . 342 pp .
ISBN 978-1-449-38824-9

I like to build my own systems, so when O’Reilly announced
this book, I asked for a copy immediately .

Confession first: unlike Elizabeth, I don’t read that quickly
and so I only read the first two chapters (up to page 87), and
then skimmed later chapters . Having written that, I found
the Thompsons’ book the best I’ve read when it comes to
building PCs . They cover components in detail, offer rec-
ommendations (that I agree with no less) for best vendors,
and explain many things that I often wondered about . For
example, how big a power supply do you really need? I’ve
generally gone for the smallest power supply that seemed to
cover the requirements of my components, but they explain
that a power supply that is rated at 400 watts will often have
a maximum efficiency at 200 watts . I had thought I would be
wasting power with an “oversized” power supply, but I was
doing just the opposite: I was wasting power by operating
my power supply outside of its efficiency envelope . They also
point out that running a power supply near its maximum will
result in it failing sooner—sometimes much sooner .

The authors offer great advice about picking CPUs, with
explanations of different classes of CPUs, why paying a pre-
mium for 10% performance will not be satisfactory for most
builders, recommendations for sockets with an upgrade path,
and matching CPUs to the tasks you expect from them . They
cover all components in detail, and although they didn’t get
into the nitty-gritty details of memory (just one mention of
CAS), they don’t really need to, as your only option is to buy
memory that is supported by your motherboard . I’ve been bit-
ten by this, also by buying a CPU that would fit the mother-
board socket but not be supported by the motherboard’s BIOS
(grrrr), so this is important advice .

The Thompsons provides specs for building six types of
systems: budget PC, mainstream system, extreme system,
media center, appliance/nettop, and home server . They
include rationales for all of the component decisions, and all

takes on things odd . I believe the assertion that there is a lot
of COBOL code still in production, but ever fewer people able
to maintain it . I am dubious that the problem to be solved
here is a shortage of COBOL programmers rather than an
oversupply of COBOL code, and even more skeptical about
the prospects for bribing people to learn COBOL by also let-
ting them learn something new and flashy .

If there’s an IT manager in your life who needs to be scared
straight, this is the book to do it, full of moral tales about past
failures, suggestions about upcoming disasters, and virtu-
ous advice . It doesn’t have a lot of interest for a more general
audience .

Data analysis with open Source Tools
Philipp K . Janert
O’Reilly, 2010 . 498 pp .
ISBN 978-0-596-80235-6

I love this book a lot . Practical data analysis is not at all the
same thing as theoretical data analysis, and there are almost
no resources to help you with it . Even people who can do it
effectively are rare, most people being either unfamiliar with
the tools or far too enamored of sophisticated methods when
knife-fighting is called for . And this is a whole book that
devotes itself to truly practical data analysis, the sort of book
that will tell you how to figure out that it’s not worth optimiz-
ing a process, and then turn around and point out to you that
often nobody wants to hear that .

It includes a short introduction to various tools, including
R, and a number of Python packages for scientific program-
ming . It assumes that you’re capable of programming in
any old programming language (and provides appropriate
help with R, which is not any old programming language) . It
also has a lovely annotated bibliography at the end of each
chapter with suggestions of other resources, one of my favorite
features .

My first warning is that the introduction says you need to
be “not math-phobic .” In general, when books say this, they
mean they have numbers in them . In this case, it means that
calculus comes up every few pages, and there is an excursion
into eigenvalues (which you can skip) . There is an appendix
which explains calculus, but an appendix is not going to
help that much if you didn’t have any calculus to begin with,
which, I have to admit, I don’t . Nonetheless, I managed to get
a great deal of use out of this book .

My second warning is that if you’re not already doing data
analysis, you may be unable to figure out why I’m so enthusi-
astic . First, you’ve got to get the data into an analyzable state,
which it doesn’t help much with, and then you have to figure

Articles_final.indd 68 1.18.11 3:06 PM

 ;login: FEBRUARy 2011 Book Reviews 69

locksmith . That said, owning this book isn’t going to get
you into trouble, but practicing on locks that aren’t yours
certainly could, which is why I was glad to see an opening
section dealing with “Ethical Considerations .”

Chapter 1 discusses the how pin tumbler and wafer locks
work, and Chapter 2 explains the weaknesses inherent in
the locks which allow for picking . You have to love Chapter 3,
which is titled “Beginner training: How to get very good, very
fast” and delivers on that promise . The most common type
of lock is the pin tumbler, and most (decent) locks have four
or more stacks of pins . This chapter shows you how to set up
a practice lock with only one stack to start, then progress to
four (and beyond), with suggestions on how to make the pick-
ing easier or harder as you practice, practice, practice .

Chapter 4 goes one step further into advanced training and
more complex locks and tools . Chapter 5 discusses “Quick-
entry tricks” like shimming and bumping—and even shows
you how to make your own shims . Chapter 6 takes a look at
some other types of locks, such as tubular (the kind you see in
a soda machine), as well as two locks not seen much in North
America: Cruciform and Dimple locks .

The Appendix contains 20 pages of pictures and descrip-
tions of tools and tool sets . There is even a DVD with 1 .5G of
animations, figures, and videos . All of the figures in the book
are given in color, and the videos are from various presenta-
tions and examples (e .g ., shmoocon) . All in all, a fantastic
resource . The book is fairly short, as the important topics are
presented efficiently and with a dash of humor . As mentioned
before, the only real way to get better is to practice, and there
is a lot of attention given to providing ideas and methods
for everything from getting started all the way to designing
almost impossible scenarios . Unlike the “white and orange”
Syngress books of the past, the new “black and yellow” design
seems to indicate a new trend in quality . This book was
extremely well written and edited . 10 out of 10 .

—Sam Stover

the information you might need to assemble these systems
properly . On top of all of this, they use Linux (Ubuntu), so if
your plan is to install Linux instead of Windows 7, you know
you are working with people who have the same notion that
you do about operating systems . This includes recommenda-
tions for Linux media center software .

I plan to continue reading this book, as I build a system
almost every year . Last year it was an Atom appliance (that
I could buy a motherboard with a processor, video, sound,
and SATA support for $64 just astounded me), and this year
it will likely be a better desktop system . Robert’s bio says he
has built or repaired hundreds of PCs, and I believe him . The
details make this book worth the price of avoiding the many
problems you can run into when building your own PC . Oh,
and building your own PC will not cost you any more, and
you will usually wind up with better components than if you
bought a vendor-built system .

—Rik Farrow

Practical Lock Picking: a Physical Penetration
Tester’s Training guide
Deviant Ollam
Syngress, 2010 . 236 pp .
ISBN: 978-1-59749-611-7

Finally . No, I mean finally, a great lockpicking book . I had
high expectations when I ordered it, and it overdelivered . If
you want to learn how locks work, how to pick locks, and how
to actually get good at it, this is the book for you . Even if you
don’t have any interest or need to learn about physical pen-
etration testing, picking locks is a challenging hobby .

For the longest time, the resources available to aspiring
lockpickers were somewhat limited . There are a couple of
older books, and some trade schools offer distance-learning
locksmith courses, but a lot of the “juicy” info just wasn’t
available to the general public . In fact, in some states, posses-
sion of a lockpick set can be a crime, if you aren’t a licensed

Articles_final.indd 69 1.18.11 3:06 PM

 70 ;login: vOL. 36, NO. 1

Have You Seen the Latest USE-
NIX Short Topics in Sysadmin
Books?

Check out the latest titles:

>Best-seller! #21: Foundation for Cloud
Computing with VMware vSphere 4,
by John Arrasjid, Duncan Epping, and
Steve Kaplan

Virtualization is recognized as a founda-
tion for cloud computing . This book is an
overview of the VMware technologies
and how they can support the vari-
ous services and management pieces
required for cloud architecture . Without
diving overly deeply into specific design
patterns, it provides insight into the
tools to fit your design criteria .

>New! #22: Job Descriptions for System
Administrators, 3d Edition, by Tina
Darmohray

In 1993, SAGE, as the professional orga-
nization for system administrators, cre-
ated a set of appropriate job descriptions
for system administrators . Recently
brought up to date, this third edition of
Job Descriptions for System Administra-
tors includes a set of manaagement-level
descriptions . It includes everything
needed to write your job description or
hire a sysadmin: core job descriptions
rated by level, sets of check-off items,
and descriptions of alternative and
ancillary titles .

USENIX Board of Directors

Communicate directly with the USENIX
Board of Directors by writing to
board@usenix .org .

p r e s i d e n t

Clem Cole, Intel
clem@usenix.org

v i c e p r e s i d e n t

Margo Seltzer, Harvard University
margo@usenix.org

s e c r e t a r y

Alva Couch, Tufts University
alva@usenix.org

t r e a s u r e r

Brian Noble, University of Michigan
noble@usenix.org

d i r e c t o r s

John Arrasjid, VMware
johna@usenix.org

David Blank-Edelman, Northeastern
University
dnb@usenix.org

Matt Blaze, University of Pennsylvania
matt@usenix.org

Niels Provos, Google
niels@usenix.org

e x e c u t i v e d i r e c t o r

Ellie Young
ellie@usenix.org

USENIX Member Benefits

Members of the USENIX Association
 receive the following benefits:

Free subscription to ;login:, the
Association’s magazine, published six
times a year, featuring technical articles,
system administration articles, tips and
techniques, practical columns on such
topics as security, Perl, networks, and
operating systems, book reviews, and
reports of sessions at USENIX
conferences .

access to ;login: online from October
1997 to this month:
www .usenix .org/publications/login/

access to videos from USENIX events
in the first six months after the event:
www .usenix .org/publications/
multimedia/

Discounts on registration fees for all
 USENIX conferences .

Special discounts on a variety of prod-
ucts, books, software, and periodicals:
www .usenix .org/membership/
specialdisc .html .

The right to vote on matters affecting
the Association, its bylaws, and election
of its directors and officers .

For more information regarding
membership or benefits, please see
www .usenix .org/membership/
or contact office@usenix .org .
Phone: 510-528-8649

nOtes

Articles_final.indd 70 1.18.11 3:06 PM

SAGE members, don’t forget: Not only
can you view all of the books online in
PDF form, but during each year of your
membership you may also choose any
one book to be sent to you for free . In
addition, you may order additional print
books for the low member price of $12
per book . Nonmembers may order any
book for only $20 per copy, or join SAGE
today and save!

—Anne Dickison

>Coming this month! #24: Cloud Com-
puting with VMware vCloud Director, by
John Arrasjid, Ben Lin, Raman Veeram-
raju, Steve Kaplan, Duncan Epping, and
Michael Haines

This book augments book #21 and can
be considered volume 2 on VMware
cloud solutions . It covers the terms
used in cloud computing, the financial
considerations, the use cases, and the
VMware technologies that are part of
the VMware vCloud . As with book #21,
this book provides insight into the tools
you need . In some areas, such as vShield,
additional depth is provided to help
understand implementation details and
use cases .

The full list of Short Topic Books is
available at http://www .sage .org/pubs/
short_topics .html .

>New! #23: A Sysadmin’s Guide to
Navigating the Business World, by Mark
Burgess and Carolyn Rowland

Achieving business alignment should
be the desired end state both for system
administrators and for the business
for which they work . Getting there is a
challenge for sysadmins, because they
are often viewed as technicians, not
strategic advisers . They need to think
like business leaders, communicate their
value and impact in a way that business
leaders will understand, and establish
a consistent value-driven model for IT
within the organization . This is a book
about how system administrators can
better support the strategic goals of the
workplace . Aligning IT processes and
infrastructure with “business” is a topic
that has been largely ignored in the past .
The authors have set out to correct that,
offering lots of examples, principles, and
promises to help you navigate the waters
of business .

 ;login: FEBRUARy 2011 USENIX Notes 71

Articles_final.indd 71 1.18.11 3:06 PM

 72 ;login: Vol. 36, No. 1

conferences
9th USENIX Symposium on Operating Systems
Design and Implementation (OSDI ’10)

Vancouver, BC, Canada
October 4–6, 2010

Kernels: Past, Present, and Future

Summarized by Brendan Cully (brendan@cs.ubc.ca)

An Analysis of Linux Scalability to Many Cores
Silas Boyd-Wickizer, Austin T. Clements, Yandong Mao, Aleksey Pesterev,

M. Frans Kaashoek, Robert Morris, and Nickolai Zeldovich, MIT CSAIL

At the previous OSDI, Silas Boyd-Wickizer presented Corey,
a new many-core operating system motivated by the premise
that traditional OS design, as represented by Linux, faced
fundamental limitations to scalability. This talk, also given
by Boyd-Wickizer, refutes that premise. It does so by select-
ing several real applications with good parallel implementa-
tions that demonstrate kernel-based scalability problems and
exploring the root causes of the bottlenecks.

Boyd-Wickizer et al. did their examination on an off-the-
shelf 48-core Linux x86 server, running the applications on
a RAM disk to avoid disk bottlenecks and stress the kernel.
They found the bottlenecks, fixed them, and kept repeating
this until either scalability was linear or the bottleneck was
not in the kernel (i.e., it was in hardware or the application
itself). They were able to fix most of the kernel bottlenecks
with 16 patches and 3000 lines of code, demonstrating
that Linux can scale well up to at least 48 cores. Most of
the remainder of the talk consisted of walkthroughs of the
specific bottlenecks found and the fixes applied. All of the
fixes were straightforward applications of classic parallel
techniques, typically to reduce cache coherence and memory
bus contention by manually maintaining cache-local copies
of shared data structures.

Eric Van Hensbergen from IBM Research asked whether
the authors were attempting to integrate their changes into
upstream Linux. Boyd-Wickizer responded that they hadn’t
even attempted it, because the engineering effort required

In this issue:

9th USENIX Symposium on Operating Systems
Design and Implementation 72
Summarized by Katelin Bailey, Peter Bailis, Brendan Cully, Alan
Dunn, William Enck, Rik Farrow, John McCullough, Dutch Meyer,
Don Porter, Michael Roitzsch, Justin Seyster, Robert Soule, Nathan
Taylor, Kaushik Veeraraghavan, Shivaram Venkataraman, and
Edmund L. Wong

Workshop on Supporting Diversity in Systems
Research 101
Summarized by James Mickens

Workshop on Managing Systems via Log Analysis
and Machine Learning Techniques 104
Summarized by Ivan Beschastnikh, Peter Hornyack, and Raja
Sambasivan

Sixth Workshop on Hot Topics in System
Dependability 110
Summarized by Hussam Abu-Libdeh, Brendan Cully, and Mark
Spear

2010 Workshop on Power Aware Computing
and Systems 116
Summarized by Etienne Le Sueur, John McCullough, and Lucas
Wanner

Conference Reports

Reports_final.indd 72 1.18.11 3:26 PM

 ;login: FEbruary 2011 Conference Reports 73

question was from James Mickens (MSR), who noted that
more and more Web browser research seemed to be retask-
ing older core OS mechanisms, and wondered whether Tang
believed that there was anything fundamentally different
about Web browsers that made this reuse interesting. Tang
simply replied that since Web browsers were running more
general-purpose applications, we should be borrowing more
operating system techniques.

FlexSC: Flexible System Call Scheduling with Exception-
Less System Calls
Livio Soares and Michael Stumm, University of Toronto

System calls are expensive, both because of the time required
to switch into kernel mode and because of cache contention
while bouncing back and forth between user and kernel code.
The traditional interface to the kernel is synchronous system
calls, which make it impossible to amortize these costs. Livio
Soares proposed an alternative kernel interface, FlexSC,
which makes system calls asynchronous. This allows calls to
be batched and, as a side effect, makes it possible to run ker-
nel code on different cores from the user code it services. He
also proposed a wrapper for FlexSC, called FlexSC-Threads,
that hides the new system call style behind a traditional syn-
chronous, thread-based API to support legacy code without
major changes.

Soares demonstrated the degree to which system calls can
reduce application performance, by modifying an application
that makes very few system calls (Xalan from the SpecCPU
benchmark) so that it made a large number of null system
calls. In theory, the time excluding kernel processing to
complete the benchmark should be about the same, but in fact
the null system calls could halve performance, due to cache
and TLB evictions. His solution was to use shared memory
to queue system call requests. This not only allows batch-
ing of system calls, but can avoid context switches entirely
if a separate core is dedicated to kernel request processing.
Comparisons between MySQL and Apache using FlexSC
showed up to 115% improvement in the Apache benchmark
on four cores.

Van Hensbergen again asked whether Soares would attempt
to integrate his interface into Linux. He received the same
response given by Boyd-Wickizer at the first talk: it would
be a lot of work and Soares would prefer to spend the energy
on other things. Many others asked detailed questions about
overhead measurement. For example, Michael Vrable won-
dered if the authors had measured cache contention due to
userspace rescheduling when threads blocked. Soares had
not, and he believes that this could indeed be another source
of lost performance. Sasha Federova (SFU) noted that for
FlexSC-Threads to show benefits, you would require more

was better spent on other research. Most other questions
concerned the tension between this paper and the one on
Corey from the previous year. Margo Seltzer (Harvard) and
Eddie Kohler (UCLA) both asked variants of the question,
“If shared state is bad for scalability, is it better to remove it
at the points where it causes problems, or to avoid it gener-
ally, using it only at points where it is known not to cause
problems?” Hank Levy (UW) put it most succinctly, getting
a big laugh, when he asked, “Should we be designing new OS
architectures or not? In other words, could you have written
these papers in the opposite order?” Boyd-Wickizer carefully
replied that Linux did not appear to have scalability problems
up to 48 cores, but the possibility existed that it might after
that.

Trust and Protection in the Illinois Browser OS
Shuo Tang, Haohui Mai, and Samuel T. King, University of Illinois at

Urbana-Champaign

Shuo Tang presented the Illinois Browser OS (IBOS), an OS
built from scratch to run Web browsers. It was motivated by
two ideas: first, that vulnerabilities become more serious as
they get deeper into the application stack, from individual
Web application into the browser and finally the OS; and
second, that it is easier to secure a system if the security layer
has more semantic knowledge of what it is protecting.

Previous efforts like Google Chrome have used OS process
isolation to provide some protection between compromised
Web applications and the rest of the system, but IBOS takes
the next logical step: it runs each browser in its own virtual
machine with hardware-enforced isolation from the rest of
a user’s system. Its system call interfaces map to browser
semantics much better than an ordinary operating system’s
would. For instance, instead of providing disk and network
interfaces, it offers system calls for fetching URLs and
storing cookies. This allows security policy to specify more
precise invariants. By customizing the set of OS services to
a Web browser, IBOS is also able to dramatically reduce the
total TCB compared to an ordinary browser running on top
of Linux. Tang concluded the presentation by revealing that
his slides were served by a Web browser running on top of
IBOS.

Shriram Rajagopalan of UBC asked if IBOS allowed the full
set of services provided by modern browsers. Tang stated
that IBOS used WebKit and supported most current browser
features, including HTML 5. Etienne Le Sueur (NICTA)
asked whether IBOS prevented cross-site scripting attacks
and, if so, whether that broke beneficial uses such as Google
Web Toolkit applications. Tang maintained that IBOS pro-
vided an enforcement mechanism, but using it was depen-
dent on the user’s security policy. The most fundamental

Reports_final.indd 73 1.18.11 3:26 PM

 74 ;login: Vol. 36, No. 1

best done at the application level, well above Haystack. Vipul
Mathur from Network Appliance asked if migrating between
Haystacks would be useful for load balancing, but Vajgel
thought that RAID6’s poor support for mixed workloads
would limit such an approach, and he noted that the existing
load balancer seemed sufficient.

Availability in Globally Distributed Storage Systems
Daniel Ford, François Labelle, Florentina I. Popovici, Murray Stokely,

Van-Anh Truong, Luiz Barroso, Carrie Grimes, and Sean Quinlan, Google,

Inc.

Murray Stokely began by posing questions of data availabil-
ity, the causes of unavailability, and methods for tuning to the
observed environment. To find answers, the authors gathered
a year’s data from tens of Google’s clusters. They found that
most unavailability periods are transient with a median
length of 15 minutes. However, unavailability durations
differ significantly by cause. The median time to restart a
node’s storage software is 1 minute, but it is 10 minutes for a
planned reboot, and a few minutes longer for an unplanned
reboot. Interestingly, 37% of failures observed were corre-
lated in time to other failures. Larger-scale outages of this
type regularly share common causes: for example, software
bugs, shared hardware components, or supply chain issues.

Florentina Popovici then explained how these results
informed the development of analytical models to study
the availability of large distributed storage systems. This
approach led to several insights. For small to medium bursts
of failures and large encodings, when data is striped across
many nodes, rack-aware placement can increase the MTTF
by a factor of 3. Using a Markov model for analysis, another
insight was that improving data availability below the node
layer did little to help, although reducing node failure rates
has a significant effect on availability. She concluded by
stressing that a highly available distributed storage system
requires exploring beyond disk failure rates, and that cor-
related failures are important in understanding large-scale
storage availability.

Garth Gibson from CMU commented on graphs that
appeared to capture unavailability due to rolling updates. He
saw potential in making active decisions about how these
events occur. Stokely agreed, pointing to the possibility of
making additional replicas before a planned reboot. Mehul
Shah from HP Labs asked if Reed-Solomon encoding doesn’t
also offer cost savings and asked why that wasn’t used
initially. Popovici explained that there may be performance
impacts, such as parallelism in batch-oriented processing,
recovery bandwidth concerns, and the need for more servers
and CPUs. Philip Howard from PSU asked how expected
increases in CPU core density would affect correlated failure

threads than cores; she wondered whether this mode might
cause degradation for some workloads. Soares agreed that
the benefits would mostly be for server workloads and that
scientific applications that were 100% CPU-bound wouldn’t
need this.

Inside the Data Center, 1

Summarized by Dutch Meyer (dmeyer@cs.ubc.ca)

Finding a Needle in Haystack: Facebook’s Photo Storage
Doug Beaver, Sanjeev Kumar, Harry C. Li, Jason Sobel, and Peter Vajgel,

Facebook Inc.

Peter Vajgel explained that Haystack is a photo storage sys-
tem that addresses Facebook’s significant scalability needs.
Since April 2009, Facebook’s photo storage has grown from
15 billion to 64 billion images. The update rate has increased
similarly, from 220 million uploads per week to one billion
currently. Prior to Haystack, pictures were served from a
Content Distribution Network (CDN) that caches photos
from an NFS server. Eventually, Facebook’s working set grew
to become so large that the cache hit rate through the CDN’s
had declined to 80% and the system bottlenecked on meta-
data access. At this larger scale, each photo access required
10 IOPS, due to deep directory lookups and file fragmenta-
tion. Through caching and reducing the directory sizes, they
reduced this overhead to 2.5 IOPS. Haystack was developed
to further lower the overheads of accessing a file to a single
I/O operation, while maintaining a simple system based on
commodity hardware.

Logically, the system is built from Haystacks, which are
append-only object stores, and Needles, which are the photos
and their associated metadata. Haystacks are generally
100GB in size and are stored on 10TB XFS volumes in a
RAID6 configuration. The Haystack photo server builds
a compact index of these images. The indexes for 10TB of
images can be stored in 5GB, making the index less than 2%
of the size of inodes. The system also supports load balanc-
ing and caching, and it operates over HTTP. In closing, Vajgel
reiterated the goal of serving each request in a single opera-
tion and provided some hints at future work. The team plans
to consider other RAID configurations and to investigate the
use of flash-based storage.

Jason Flinn from the University of Michigan asked if
prefetching was possible. Vajgel replied that users often
select individual pictures from a page of thumbnails orga-
nized by some tag. This looks entirely random to Haystack.
Christopher Colohan from Google asked if social networking
could provide some clues to what photos would be accessed.
Vajgel said that this might be possible, but that it would be

Reports_final.indd 74 1.18.11 3:26 PM

 ;login: FEbruary 2011 Conference Reports 75

Security Technologies

Summarized by Nathan Taylor (tnathan@cs.ubc.ca)

Intrusion Recovery Using Selective Re-execution
Taesoo Kim, Xi Wang, Nickolai Zeldovich, and M. Frans Kaashoek, MIT

CSAIL

Software bugs, misconfigured security policies, and weak
passwords all routinely lead to compromised systems. When
a break-in is discovered, system administrators are caught
between simply rolling back to the latest backup and losing
users’ recent work, and spending an inordinate amount of
time on a manual recovery, with the chance of missing a
change caused by the adversary perpetually looming. To this
end, the authors present a tool for system recovery, dubbed
Retro, that can tease apart exploit-related changes from
benign changes made by legitimate users.

Zeldovich began by contrasting their work to two straw-men
arguments: the first involved a naive taint tracking scheme,
where all tainted files are restored from an earlier backup.
This exhibits the usual explosion problem common to taint
tracking. The second, in-VM replay, is too slow, and external
state changes, such as crypto keys, mean that benign replay
may go off the rails. Retro’s approach involves selective
execution, wherein execution data such as function calls and
syscall arguments are logged in a so-called action history
graph. This graph is used to roll time back to the compromise
of the system and replay all non-attack activity, while skip-
ping replay of operations the system has concluded were not
affected by the attacker. If the attack involved communica-
tion with the outside world, this activity cannot be resolved
by the system; the recovery will pause and prompt the sysad-
min for guidance.

Ten real-world and synthetic challenge attacks were used
to evaluate the tool; six were able to roll back automatically,
while the remaining four needed some form of user input to
handle legitimate network traffic or skip over the attacker’s
SSH login attempts. The amount of time needed to restore a
system was found to be a function of the number of objects
to track, and not the length of the log. The runtime overhead
varied depending on workload: a HotCRP server averaged
4GB/day with a 35% slowdown, while a continuous kernel
compilation averaged 150GB/day with a 127% slowdown.
However, pushing the logging to a spare core significantly
improved performance.

The presentation drew a lively Q&A session. Josh Triplett
of Portland State asked about recording fewer user actions
to pay a lower CPU/storage overhead. Zeldovich replied that
this is possible, at the expense of reconstructing more of the
dependency graph at repair time. Margo Seltzer of Harvard

rates. Stokely confirmed that this is a motivating question
for the work and that the cost per core per watt per year is the
determining factor. He also noted that the same questions
can be analyzed about the number of disks per server and
other parameters with this model.

Nectar: Automatic Management of Data and
Computation in Datacenters
Pradeep Kumar Gunda, Lenin Ravindranath, Chandramohan A. Thekkath,

Yuan Yu, and Li Zhuang, Microsoft Research Silicon Valley

Li Zhuang observed that a large fraction (20–40%) of com-
putation in their datacenters is redundant and that most
storage is occupied by datasets that are never accessed. The
two inefficiencies share a common problem—intermediate
data created as part of larger processing operations. Nectar
attempts to increase datacenter efficiency by tracking and
reusing these intermediate results, while also allowing them
to be deleted safely when the need arises.

Nectar is designed for datacenter applications written in the
dataflow language LINQ, which may involve multiple stages
of computation being stored persistently. As these interme-
diate files are created, Nectar records the task that created
them and its associated parameters. Since the environment
is deterministic, future attempts to run the same task are
replaced with much more efficient accesses of the cached
data. Under storage pressure, a mark and sweep garbage
collector identifies intermediate files that can be deleted and
regenerated on demand. Since usage information is tracked,
datasets that are old and infrequently accessed can be priori-
tized for deletion. Zhuang concluded by describing Nectar as
a promising approach that automates and unifies the man-
agement of data and computation in the datacenter.

Zhuang fielded several questions about Nectar’s design and
the DryadLINQ environment. In addition, David Schultz of
MIT observed that storage capacity sizes relative to through-
put seem to suggest that memory and I/O bandwidth are
more important than capacity. Zhuang stressed that over
time, it’s important that capacity and computation aren’t
wasted as well. Micah Brodsky of MIT asked if the higher-
level semantics and policies we have been adding to these
dataflow environments are leading us towards reinvention
of distributed databases, or if we are inventing something
new. Zhuang replied that while they learned from distributed
databases, there are significant differences that influence
design. Cited examples included the scale of operation and
the design of materialized views.

Reports_final.indd 75 1.18.11 3:26 PM

 76 ;login: Vol. 36, No. 1

Most of the Q&A session was concerned with writing policies
in practice. James Pendergrass (APL) asked if there is a way
to ensure that rules are consistent with each other; Chlipala
admitted that this is a tricky problem. Along the same lines,
Pendergrass asked whether UrFlow is amenable to growing
policies over time. Chlipala replied that it would be, since you
won’t be able to accidentally undo any previous policy. Joshua
Triplett asked whether the theorem prover could be improved
to provide hints about how the code could be changed to
guarantee security. Chlipala admitted that it’s tough to deter-
mine which fact in the rule base caused the prover to error
out, but that there might be ways to heuristically prune it.

Accountable Virtual Machines
Andreas Haeberlen, University of Pennsylvania; Paarijaat Aditya, Rodrigo

Rodrigues, and Peter Druschel, Max Planck Institute for Software Systems

(MPI-SWS)

Haeberlen presented a running scenario of a multiplayer
game where players would like to guarantee that no player
is using a cheat, and in this way they addressed the more
serious problem of knowing whether programs on a third-
party machine are executing as intended. A user should be
able to detect when a remote machine is “faulty” and provide
evidence of the fault to a third party without knowing the
internals of their software. The authors’ solution to this uses
so-called accountable virtual machines. AVMs use a log of
network traffic, signed with other players’ keys, as a secure
certificate of correct execution. Players may replay each
others’ logs in their own VM. If a player is running the game
with a cheat, such as the “infinite ammo” hack, control flow
will diverge from the log when the unhacked reference VM’s
game runs out of bullets. In so doing, strong accountability
for arbitrary binaries is offered, without needing to trust
other players or the AVM itself.

MPI-SWS built a prototype AVM atop VMware Workstation
and tested it on Counterstrike 1.6. Performance is reason-
able; on native hardware, the game averages 158FPS, and the
authors observed a 13% slowdown with the AVM, mainly due
to the overhead of the execution logging. The log size grows
at 8MB/min, but because each action is replayed, replaying
takes about as long as the game itself. A sample of 26 real-
world CS cheats were all detected. But Haeberlen wonders
whether cheaters could adapt their cheats. Re-engineering
hacks to evade AVM detection, cheaters would have to fill
in missing interrupts with the right branch counter value,
which, although very hard, is theoretically possible.

Neal Walfield (Johns Hopkins) wondered whether the AVM
itself could be hacked to fake the log. Haeberlen responded
that the authenticators sign the AVMs and invited Walfield
to discuss this offline. The subsequent questions involved

noted the similarities to providence and asked about what
constitutes “acceptable” nondeterministic execution at
repair time. Zeldovich argued that anything that the execu-
tion could have originally created was fair game. An audience
member wondered about trying to explode the repair space by
creating many false positives, to which Zeldovich pointed out
that activity that taints everything could itself be a symptom
of an attack. Lorenzo Cavallaro (Vrije Universiteit) asked
about porting to Windows. Zeldovich replied that the ideas
were applicable to Windows, but several more managers
would have to be written. They use SELinux to protect Retro,
and something would be needed to replace that as well.

Static Checking of Dynamically-Varying Security
Policies in Database-Backed Applications
Adam Chlipala, Impredicative LLC

Enforcing sensible security policies is a challenge if a vul-
nerability relies on semantic knowledge of the application,
such as a particularly crafted URL or a magic value within
a cookie. Developers need to find attack vectors and audit
them, but one can always be blindsided by a vector that one
had not considered. Chlipala argued that it’s far better to
isolate a resource and have a policy stating how said resource
may be accessed. He went on to present UrFlow, a SQL-like
policy language that exploits a common database query–like
idiom to define what parts of a program have access to a
sensitive resource. Chlipala argued that UrFlow has the best
of both static and dynamic checking: no source-level annota-
tions are required, and all codepaths can be checked without
incurring a runtime overhead.

UrFlow translates its policies into simple first-order logic
for modeling what the system should know to be true when
matching against policies; for instance, after reading a
cookie, UrFlow knows that the system will know a password.
Program paths are checked against its policies statically.
Each execution path is executed symbolically, and as each
progresses, the new logical clauses it has generated are sent
to the theorem prover.

UrFlow was tested against applications ranging from ~100
to ~500 lines of code with ~50 policies each. Static checks
are usually performed in well under a second. There were
some significant outliers in runtime, but Chlipala hoped that
applying traditional optimization tricks would smooth that
out. Chlipala finished his talk by highlighting a disconnect
of PLT researchers and programming practitioners: it’s hard
to sway developers away from imperative languages, but
most Webapps use SQL, a perfectly reasonable declarative
language anyway!

Reports_final.indd 76 1.18.11 3:26 PM

 ;login: FEbruary 2011 Conference Reports 77

adds less than 5% performance overhead. Wu also described
an alternate implementation using the Pin dynamic instru-
mentation tool, which introduced a 10x overhead. Wu demon-
strated that LOOM is also scalable—MySQL running with 32
threads experiences only a 12% performance overhead.

Richard Draves (Microsoft Research) was curious if the
evacuation algorithm makes the application susceptible to
deadlock. Wu responded that while an application could
deadlock, they did not come across any in their evaluation
of LOOM. Further, LOOM implements a mechanism to
uninstall the fix if a deadlock manifests. The next questioner
asked if Wu could use information collected at runtime to
fix the bug in the source code. Wu responded that users can
examine the application source code and can also write
execution filters targeted at specific file names/line numbers
to fix the bug.

Effective Data-Race Detection for the Kernel
John Erickson, Madanlal Musuvathi, Sebastian Burckhardt, and Kirk

Olynyk, Microsoft Research

John Erickson, a test lead on Microsoft’s Windows 7 team,
described the first data race in the Windows kernel he had
discovered using DataCollider: a developer had assumed that
certain bitwise operations were atomic without realizing
that the operations were actually read/write byte instruc-
tions. A rare write-write interleaving would overwrite a call-
back flag resulting in a system hang. As this race was timing
dependent, it was not caught prior to shipping Windows 7.
This example illustrates that data races are hard to detect
and debug.

The primary challenge in using existing happens-before
and lockset algorithms to detect data races in the kernel is
that both approaches need to be aware of all locking seman-
tics. To address this challenge, Erickson proposed DataCol-
lider, a data race detection tool for the kernel that is based
on two insights: (1) instead of inferring a data race, cause a
data race to actually manifest so there are no false positives;
(2) the overhead of instrumenting all memory accesses can
be significantly reduced by sampling a random subset of all
memory accesses. DataCollider works as follows: a code or
data breakpoint is set on a memory location being sampled. If
a thread accesses the sampled memory location, it is blocked
for a short time window. If a second thread tries to access the
same memory location within that window without grabbing
the appropriate lock, the breakpoint causes the second thread
to block too. By pausing both threads at the instance the race
occurs, DataCollider has access to both thread stacks, the
full register and global state of which can be logged to report
the race to the developer.

seeking clarification on what class of cheats the AVM can
detect. Haeberlen reiterated that the AVM is guaranteed
to find the attack unless the cheat is “plausible” input; for
instance, a better-aim cheat might not be detected. On the
other hand, because there’s no input that could drive the
program into such a state, the “infinite ammo” cheat is
detectable. Brad Chen was skeptical of the applicability of
the AVM to domains outside gaming, since the act of replay-
ing requires sharing a great deal of information. Haeberlen
admitted that the auditor has to be able to see everything,
but he pointed out that in a cloud computing scenario a cloud
owner ought to be able to audit his own VM.

Concurrency Bugs

Summarized by Kaushik Veeraraghavan (kaushikv@umich.edu)

Bypassing Races in Live Applications with Execution
Filters
Jingyue Wu, Heming Cui, and Junfeng Yang, Columbia University

Jingyue Wu described a use-after-free data race in Mozilla’s
JavaScript engine with a simple root cause that nonetheless
took developers a month to fix. Wu pointed out that a data
race bug in a critical Web service that remains unresolved
for weeks or months could be exploited by an attacker. As a
solution, Wu proposed LOOM, a tool that can work around
known race conditions in live programs before the developer
releases a fix. LOOM accomplishes this by using execution
filters, which are simple declarative statements that explic-
itly synchronize regions of application code.

LOOM combines static preparation with live updates. Spe-
cifically, a LOOM compiler plugin bundles the LOOM update
engine into an application binary. A user wishing to install
an execution filter on a live application invokes the LOOM
controller. The LOOM controller is responsible for translat-
ing the filter’s declarative statements into specific opera-
tions (e.g., mutual exclusion is translated into lock/unlock,
ordering requirements are translated into semaphores, etc.).
The controller passes the translated application code to
the LOOM update engine responsible for patching the live
application. To ensure that filters can be safely installed, Wu
described an algorithm termed evacuation that uses static
analysis to identify dangerous regions of code and ensures
that (1) threads wishing to enter a dangerous region are
paused at a safe location before the region, and (2) threads
already executing in the dangerous region exit the region
before the update is installed.

Wu described LOOM’s evaluation on nine data races in six
applications—in all cases, LOOM applied the live update in
a timely manner and bypassed the race. On average, LOOM

Reports_final.indd 77 1.18.11 3:26 PM

 78 ;login: Vol. 36, No. 1

for multi-threaded programs that use ad hoc synchroniza-
tion, as these tools do not understand the custom-locking
semantics employed in ad hoc synchronization.

The second contribution of Xiong’s work is SyncFinder, a tool
that automatically detects and annotates ad hoc synchro-
nization. The insight in SyncFinder is that every ad hoc
synchronization executes in a loop with an exit condition that
is controlled by a dependent variable. After applying several
pruning algorithms, SyncFinder identifies shared depen-
dent variables that control ad hoc sync loops and annotates
all instances where the variables are read or written to. An
evaluation of SyncFinder revealed that, on average, it detects
96% of all ad hoc synchronizations with a 6% false-positive
rate.

The first questioner wondered how many bugs normal syn-
chronization introduced in comparison to ad hoc synchro-
nization. Xiong responded that the percentage of bugs is
much higher in ad hoc synchronization. Bryan Ford (Yale)
wondered what the current synchronization primitives lack
that caused developers to turn to ad hoc synchronization.
Xiong responded that, from an analysis of program com-
ments, it appeared that developers just wanted a flexible and
simple synchronization primitive. Ford wondered what such
a synchronization primitive should offer, to which Xiong
responded that such a primitive already existed: conditional
waits. Dan Peek (Facebook) suspected that programmers
implementing ad hoc synchronization wished to avoid a
synchronous write on the system bus which hurts perfor-
mance, and wondered whether such synchronization was
always harmful. Xiong responded that while not always
harmful, ad hoc synchronization might not scale with the
underlying architecture, and also degenerates code main-
tainability. Dan Peek followed up by asking if lock-free data
structures should also be considered harmful. Rather than
commenting on lock-free data structures, Xiong offered that
developers should use well-known existing synchronization
primitives. Chris Hawblitzel (Microsoft Research) wondered
whether developers declaring synchronization variables as
volatile would help SyncFinder. Xiong responded that if C/
C++ adopted volatile as a standard it would help SyncFinder.
Josh Triplett (Portland State University) wondered how fast
SyncFinder runs. Xiong responded that the largest codebase
SyncFinder was executed on was MySQL, which has over 1
million lines of code and took about 2.5 hours. On the other
hand, OpenLDAP, much smaller but containing a lot of ad hoc
synchronization with significant data and control depen-
dency, also took 2.5 hours.

DataCollider allows users to control execution overhead by
explicitly selecting the sampling rate—a sampling rate of 0%
allows the code to execute at native speed. An evaluation of
DataCollider on Windows 7 revealed 113 races on booting to
the desktop. While the majority are benign, 25 are confirmed
bugs in Windows 7 that are fixed or will be fixed soon.

George Candea (EPFL) wondered about the difficulty in
categorizing races in real products as benign or malign.
Erickson responded that much of the bucketization was
manual and required source code analysis. Rik Farrow ques-
tioned whether breakpoints were truly randomly selected
or whether they were applied at carefully selected locations.
Erickson responded that all the memory accesses were
enumerated and breakpoints were set on a random sampling
without any knowledge of the actual memory accesses. The
only tuning factor is that users can specify how many break-
points they wish to execute per second. Michael Brodsky
(MIT) asked how dependent DataCollider is on having debug
symbols, since third-party driver manufacturers might not
provide these with their binaries. Erickson responded that
DataCollider requires debugging symbols, so breakpoints are
applied to actual memory locations. Peter Druschel (MPI-
SWS) wondered how the sampling time and detection rate
were related to the total number of races. Erickson answered
that while they do want to ensure that DataCollider is detect-
ing a uniform sampling of races and not just the easiest 20,
they cannot evaluate if this is the case, since no other data
race detectors operate within the kernel.

Ad Hoc Synchronization Considered Harmful
Weiwei Xiong, University of Illinois at Urbana-Champaign; Soyeon Park,

Jiaqi Zhang, and Yuanyuan Zhou, University of California, San Diego;

Zhiqiang Ma, Intel

Concurrent programs increasingly rely on synchronization to
guarantee correct execution. While many popular applica-
tions such as MySQL use standard synchronization libraries
(e.g., pthreads), others such as LDAP rely on ad hoc synchro-
nization, which is often harder to understand and debug.

The primary contribution of Xiong’s work is quantitative
evidence that ad hoc synchronization should be considered
harmful. Xiong and his co-authors spent three months docu-
menting every instance of ad hoc synchronization in 12 con-
current programs, including MySQL, Apache, and Mozilla.
While all of them implemented some form of ad hoc synchro-
nization, Xiong found that MySQL employed the most—83
instances. Next, Xiong analyzed bug patches uploaded to the
Bugzilla database and discovered that almost half of all ad
hoc synchronizations resulted in a concurrency bug. Unfor-
tunately, existing static analysis tools that detect deadlocks,
data races, and other concurrency bugs are rendered useless

Reports_final.indd 78 1.18.11 3:26 PM

 ;login: FEbruary 2011 Conference Reports 79

Using Program Analysis to Diagnose Configuration
Problems
Ariel Rabkin and Randy Katz, University of California, Berkeley

Java has a wide variety of configuration parameters. Deci-
phering which parameter might be responsible for a stack
trace can be challenging. This work uses static analysis to tie
error points in Java to the relevant configuration parameters.
Contact: asrabkin@eecs.berkeley.edu.

DCR: Replay Debugging for the Data Center
Gautam Altekar and Ion Stoica, University of California, Berkeley

Deterministic replay is very helpful in debugging distributed
systems but can have high overhead. Most distributed system
bugs arise from control plane errors. By logging only the con-
trol traffic, the total volume can be reduced by 99%. Thus, the
control traffic can be used to replay the overall behavior and
semantically equivalent data can be constructed using STP
techniques. Contact: galtekar@cs.berkeley.edu.

Reconfigurable Virtual Platform for Real Time Kernel
Dilip K. Prasad, Nanyang Technological University, Singapore; Krishna

Prasath, Coventry University, UK

Evaluating real-time applications across multiple platforms
can be very challenging. Prasad and Prasath have created a
platform that is easily reconfigurable for different operating
systems and that cleanly integrates into an IDE. Contact:
dilipprasad@pmail.ntu.edu.sg.

ErdOS: An Energy-Aware Social Operating System for
Mobile Handsets
Narseo Vallina-Rodriguez and Jon Crowcroft, University of Cambridge

ErdOS leverages social interactions to improve energy use
in mobile devices. For instance, if a power-hungry applica-
tion is redundant to a localized area, a single device can take
the measurement and gossip the results to those allowed by
social graph access controls. Contact: nv240@cam.ac.uk;
Web: http://www.cl.cam.ac.uk/~nv240/erdos.html.

Leviathan: Taming the #ifdef Beast in Linux et al.
Wanja Hofer, Christoph Elsner, Frank Blendinger, Wolfgang Schrîder-

Preikschat, and Daniel Lohmann, Friedrich-Alexander University

Erlangen-Nuremberg

Understanding ifdef-laden code can be very challenging in
many situations. The authors have created a pre-processing
FUSE plug-in that allows developers to operate on the
pre-processed code. Edits to either the view or the code are
automatically transferred back to the appropriate part of the
original. Contact: hofer@cs.fau.de.

Monster Poster Session

First set of posters summarized by John McCullough
(jmccullo@cs.ucsd.edu)

VSSIM: Virtual SSD Simulator
Joohyun Kim, Haesung Kim, Seongjin Lee, and Youjip Won, Hanyang

University, Seoul, Korea

VSSIM allows researchers to explore different configura-
tions of SSD hardware. The simulator emulates both page
and hybrid translation layers. The researchers have validated
the expected behavior of higher block usage overhead of
the hybrid translation layer as well as the effects of TRIM.
 Contact: james@ece.hanyang.ac.kr.

Energy Consumption Behavior of Modern SSD and Its
Architectural Implication
Balgeun Yoo and Youjip Won, Hanyang University, Seoul, Korea

Yoo and Won evaluate the energy use of an X-25M SSD. Using
writes of varying size, they find that energy use is propor-
tional to the number of channels that are activated as well
as the number of ways—chips within a single package—that
are active. Changes in power draw are bounded between
consumption for 8kB writes and 512kB writes. Contact:
 starthunter@ece.hanyang.ac.kr.

ABACUS: A Configurable Profiling Engine for Multicore
Processors
Sergey Blagodurov, Eric Matthews, Sergey Zhuravlev, Lesley Shannon,

and Alexandra Fedorova, Simon Fraser University

There are a number of hardware performance metrics that
are useful for multicore scheduling that are not commonly
available. ABACUS is a system that implements counters
such as instruction mix and pipelines stalls with no pro-
cessor time overhead on an FPGA-based processor core.
 Contact: sba70@cs.sfu.ca.

DoublePlay: Parallelizing Sequential Logging and Replay
Kaushik Veeraraghavan, Dongyoon Lee, Benjamin Wester, Peter M. Chen,

Jason Flinn, and Satish Narayanasamy, University of Michigan

DoublePlay employs multiple executions to detect data
races. The system uses a novel technique of dividing a
parallel execution into epochs, recording the high-level
thread execution schedule along with memory checkpoints.
By re-executing the parallel schedule in a serial manner,
the memory states can be compared to detect data races.
 Contact: kaushikv@umich.edu.

Reports_final.indd 79 1.18.11 3:26 PM

 80 ;login: Vol. 36, No. 1

Aggressive VM Consolidation with Post-Copy-based Live
Migration
Takahiro Hirofuchi, Hidemoto Nakada, Satoshi Itoh, and Satoshi

Sekiguchi, National Institute of Advanced Industrial Science and

Technology

There are two techniques for migrating live virtual
machines, pre-copy and post-copy. This work implements the
post-copy live virtual machines migration of KVM, which
performs significantly faster than previous pre-copy imple-
mentations.

Mnemosyne: Lightweight Persistent Memory
Haris Volos and Michael Swift, University of Wisconsin—Madison;

Andres Jaan Tack, Skype Limited

Storage class memory provides low-latency, persistent stor-
age. This work seeks to provide programmers with direct
access to storage class memory. Mnemosyne provides two
abstractions: one for allocating memory, and a second, called
durable memory transactions, for atomically modifying per-
sistently stored data structures.

Beacon: Guiding Data Placement with Application
Knowledge in Multi-Tiered Enterprise Storage System
Hyojun Kim, Georgia Institute of Technology; Sangeetha Seshadri, IBM

Almaden Research Center; Yi Xue, IBM Toronto; Lawrence Chiu, IBM

Almaden Research Center; Umakishore Ramachandran, Georgia Institute

of Technology

Enterprise storage systems contain both cheap but slow HDD
and fast but expensive SSD. This work tackles the problem
of deciding what data is stored in which storage system.
Current approaches use a reactive approach, which places
data after monitoring usage over time. In contrast, this work
modifies applications to provide hints about their spatial
(what files), temporal (duration), and priority requirements,
allowing for predictive placement of data.

Guest Transparent Dynamic Memory Balancing in
Virtual Machines
Changwoo Min, Inhyuk Kim, Taehyoung Kim, and Young Ik Eom,

Sungkyunkwan University

Multiple guest operating systems on a single host machine
compete for memory. This work seeks to solve those conflicts
by estimating the memory requirements of each guest oper-
ating system and pre-allocating that memory.

Joan: Shepherd Application Privacy with Virtualized
Special Purpose Memory
Mingyuan Xia, Miao Yu, Zhengwei Qi, and Haibing Guan, Shanghai Jiao

Tong University

Multiple network applications executing on the same
machine are not entirely safe from one another. The authors
explore a technique of per-application hypervisor protected
memory that can be selectively shared in either modifiable or
read-only form.

Configuration Bugs in Linux: The 10000 Feature
Challenge
Reinhard Tartler, Julio Sincero, Wolfgang Schrîder-Preikschat, and

Daniel Lohmann, Friedrich-Alexander University Erlangen-Nuremberg

The configuration specified in the Linux config file may
not be correctly embodied by the relevant ifdefs in the code.
Misspellings and contradictions from the combination of
ifdef conjunctions and feature dependencies can lead to dead
or misbehaving code. The authors have used code analysis
to identify many points of contradictory and dead code,
culminating in 123 patches with 64 acknowledged by kernel
authors. Contact: tartler@informatik.uni-erlangen.de.

Backup Metadata as Data: DPC-tolerance to Commodity
File System
Young Jin Yu, Dong In Shin, Hyeong Seog Kim, Hyeonsang Eom, and Heon

Young Yeom, Seoul National University

File system metadata is critical to the integrity of the actual
data stored on the file system, but it is ignored by typical
backup techniques. The authors extract the filesystem-level
pointers for use in a filesystem recovery mechanism that is
faster than traditional file system scans.

Second set of posters summarized by Robert Soule (soule@cs.nyu.edu)

Using Mobile Phones to Set Up Secure VNC Sessions on
Kiosks
Wooram Park, Sejin Park, Baegjae Sung, and Chanik Park, Pohang

University of Science and Technology

Many people use publicly available computers called kiosks
to access remote desktops. In order to prevent the leakage
of private data, this work proposes using a mobile phone to
establish a VNC session with the remote desktop. The kiosk
attests its identity to the remote desktop, using keys issued
by a remote key server, which are stored on the mobile phone.

Reports_final.indd 80 1.18.11 3:26 PM

 ;login: FEbruary 2011 Conference Reports 81

Making Tracks with Malware: Control Flow
Visualization and Analysis
Jennifer Baldwin, University of Victoria

This work presents a new tool for visualizing the control
flow of assembly programs. The tool provides better
visualizations than existing systems, and demonstrates the
clarity of its presentation by showing the control flow of a
malware application.

dBug: Systematic Evaluation of Distributed Systems
Randy Bryan, Garth Gibson, and Jiri Simsa, Carnegie Mellon University

dBug is a tool for finding bugs in distributed systems. It
introduces a thin interposition layer between the applica-
tion and the operating system, which hijacks system calls for
synchronization and shared memory. An arbiter scheduler
then systematically explores different execution paths to
discover bugs.

Dynamic Forwarding Table Management for High-speed
GPU-based Software Routers
Joongi Kim, Keon Jang, Sangjin Han, KyoungSoo Park, and Sue Moon,

KAIST

In prior work, the author implemented a software router in
a GPU. After using the system in practice, it became clear
that there was a need for dynamic updates to the forward-
ing tables. This work explores how to support these dynamic
table updates in the presence of bursty network traffic.

Preventing Memory-Allocation Failures Through
Anticipatory Memory Allocation
Swaminathan Sundararaman, Yupu Zhang, Sriram Subramanian,

Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau, University of

Wisconsin—Madison

Recovery code for memory allocation failures in file systems
is buggy. This work seeks to avoid executing that recovery
code at all. A utility performs static analysis on the file
system code to determine how much memory the software
will request. The system then pre-allocates the memory and
proxies all subsequent requests for memory, servicing the
requests from the pre-allocated pool.

Parallel Operating System Services in fos
David Wentzlaff, Charles Gruenwald III, Nathan Beckmann, Kevin

Modzelewski, Adam Belay, Harshad Kasture, Lamia Youseff, Jason Miller,

and Anant Agarwal, Massachusetts Institute of Technology

fos is an operating system for multicore systems that treats
operating system services like distributed Internet servers.
Each service is implemented as a set of spatially separated
server processes called a fleet. The servers’ processes in a
fleet collaborate to provide both high-level services and as
low-level services such as page allocation, scheduling, and
memory management.

S2E: A Platform for In-Vivo Multi-Path Analysis of
Software Systems
Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea, École

Polytechnique Fédérale de Lausanne (EPFL), Switzerland

S2E provides an automated path explorer and modular path
analyzers and is used for various tasks, including perfor-
mance profiling, reverse engineering software, and bug find-
ing in both kernel-mode and user-mode binaries. S2E scales
to larger real systems, such as a full Windows stack, better
than prior work.

Consistent and Durable Data Structures for Non-
Volatile Byte-Addressable Memory
Shivaram Venkataraman, University of Illinois; Niraj Tolia, HP Labs; Roy

H. Campbell, University of Illinois

Hardware manufacturers have developed new nonvolatile
memory devices. This work explores what are the best data
structures for storing data on these new devices. Rather than
using the traditional write-ahead logging approach, this work
keeps multiple copies of the data structures (for example, a
B-tree) and atomically moves between subsequent versions.

Tracking and Exploiting Renewable Energy in Grid-Tied
Datacenters
Nan Deng and Christopher Stewart, Ohio State University

Datacenters use a device called a grid-tie to combine energy
from renewable sources and energy supplied by a grid. When
placing these grid ties in the datacenter, engineers must
make a choice between placing a small number of high-
capacity grid-ties (which themselves consume energy), or a
large number of low-capacity grid-ties. This work seeks to
find the optimal placement strategy through simulation.

Reports_final.indd 81 1.18.11 3:26 PM

 82 ;login: Vol. 36, No. 1

The CONSCIOUS Virtual Machine Model: Transparently
Exploiting Probability Processors
Jonathan Appavoo, Dan Schatzberg, and Mark Reynolds, Boston

University; Amos Waterland, Harvard University

When collecting instruction pointer traces of a virtual
machine, the authors noticed recurring patterns in the trace.
They proposed the idea of collecting a repository of those
patterns and the results of the operations they represent. If
such a known pattern is recognized in the trace of a running
VM, the execution can fast-forward to the end of the pattern
and apply the canned result. This can save time and energy
by not repeating recurring operations. As a side effect, the
VM traces can be converted to audio files so you can actually
hear the patterns!

Tracking and Exploiting Renewable Energy in Grid-Tied
Datacenters
Nan Deng and Christopher Stewart, Ohio State University

Datacenters can be equipped with on-site renewable energy
generators such as wind turbines or solar collectors. How-
ever, the energy provided by those does not suffice to run the
datacenter, so energy from the traditional power grid needs
to be mixed in. This task is performed by a grid-tie compo-
nent which itself consumes energy and can fail, so the num-
ber and placement of these components poses an interesting
research challenge.

Dynamic Runtime Optimizations inside BT-based VMMs
Mehul Chadha and Sorav Bansal, Indian Institute of Technology Delhi

Traditional runtime optimization of an application is done
by tracing and just-in-time compilation of the application.
The presenter, Sorav Bansal (sbansal@cse.iitd.ernet.in),
proposes extending this idea to the entire system. Combining
a virtual machine monitor with binary translation and a just-
in-time compiler, runtime optimizations can be performed
throughout the system, even crossing protection boundaries.
The system can be enhanced with peephole and trace-based
optimizations in future work.

Can You Keep a Secret?
David Cock, NICTA and University of New South Wales

Covert timing channels are an increasingly relevant problem
for crypto systems, as the recent padding oracle attack on
ASP.NET-based Web sites has shown. The poster presenter,

Third set of posters summarized by Michael Roitzsch
(mroi@os.inf.tu-dresden.de)

Coerced Cache Eviction: Dealing with Misbehaving Disks
through Discreet-Mode Journalling
Abhishek Rajimwale, Vijay Chidambaram, Deepak Ramamurthi, Andrea C.

Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau, University of Wisconsin—

Madison

What if the controller of a magnetic hard drive or an SSD
does not fully honor cache flush requests for its internal
cache? If you run a workload that tries to enforce consistency
requirements by explicitly flushing the cache, a system crash
may lead to unexpected inconsistencies. The poster authors
suggest forcefully evicting everything from the cache by
sending a cache flush workload to the disk. They address the
problem of balancing the resulting overhead with the prob-
ability of achieving a full flush.

Testing Device Drivers without Hardware
Matthew J. Renzelmann, Asim Kadav, and Michael M. Swift, University of

Wisconsin—Madison

The authors want to simplify driver maintenance for kernel
developers without access to the device in question. This sit-
uation occurs when making changes to kernel interfaces that
lead to subsequent changes in other drivers. The proposed
solution consists of a symbolic execution engine for the driver
code, combined with a symbolic hardware representation.
This symbolic hardware is generic per device-class. KLEE is
used for the symbolic execution. To avoid symbolic execution
of startup code like kernel boot and device initialization, the
system uses device traces to fast-forward to the interesting
parts of the execution.

Spark: Cluster Computing with Working Sets
Matei Zaharia, Mosharaf Chowdhury, Justin Ma, Michael J. Franklin,

Scott Shenker, and Ion Stoica, University of California, Berkeley

A new programming model for applications processing large
amounts of data in a distributed environment was presented.
Whereas MapReduce and Dryad are well fitted for acyclic
data-flow algorithms, this model focuses on algorithms that
reuse a working set across operations. One target applica-
tion is interactive data mining. The programming paradigm
is constructed around the concept of a Resilient Distributed
Dataset (RDD). An RDD provides an abstraction for objects
that handles distribution and persistence. To achieve the
fault-tolerance of MapReduce, an RDD can be rebuilt if it is
lost due to failure.

Reports_final.indd 82 1.18.11 3:26 PM

 ;login: FEbruary 2011 Conference Reports 83

Multi-pipes are a generalization and extension of tradi-
tional UNIX pipes. Multiple readers and writers are handled
deterministically, including fan-in and fan-out scenarios.
Operations like broadcasts or reductions on the data travel-
ing through the multi-pipe are supported. As a bonus, shell
integration for multi-pipes is available.

Scaling Middleboxes through Network-Wide Flow
Partitioning
Norbert Egi, Lancaster University; Lucian Popa, University of California,

Berkeley; Laurent Mathy, Lancaster University; Sylvia Ratnasamy, Intel

Labs, Berkeley

Large network installations contain many routers and each
one contains a general-purpose processor. Turning those
routers into middleboxes lets them perform duties like
policing traffic, caching, or traffic encryption. However,
this functionality is not now in one central location like a
traditional firewall, but distributed throughout the network.
Traffic must be suitably partitioned to scale this distributed
middlebox system.

STEAMEngine: Driving the Provisioning of MapReduce
in the Cloud
Michael Cardosa, Piyush Narang, and Abhishek Chandra, University

of Minnesota; Himabindu Pucha and Aameek Singh, IBM Research—

Almaden

STEAMEngine is a runtime for assigning VMs to execute
MapReduce workloads. Given a set of VMs distributed over
multiple machines, pending MapReduce tasks are mapped to
a subset of those VMs. Individual jobs are profiled at runtime
to model their resource needs. The spatio-temporal assign-
ment of MapReduce jobs to VMs can then be tuned to meet
timeliness or energy goals.

KÁRMA: A Distributed Operating System for MicroUAV
Swarms
Peter Bailis, Karthik Dantu, Bryan Kate, Jason Waterman, and Matt

Welsh, Harvard University

Studies show the US bee population decreased by 30%. But
agriculture needs bees to pollinate the crops. The result-
ing gap is closed with the Robobees: minimal robotic bees
that include sensors and compute resources. The particular
aspect presented in this poster is the development of a dis-
tributed system that exhibits swarm intelligence. Combin-
ing a suitable swarm programming model, the necessary
hardware and artificial intelligence, Robobees can one day
actually fly and perform the pollination tasks of a real bee.

David Cock (david.cock@nicta.com.au) proposed using a
real-time scheduler on the seL4 microkernel to control com-
ponent response times. The cryptographic code of an applica-
tion, like the OpenSSL library, would be separated into an
isolated component with individual scheduling. Hooking into
seL4’s communication endpoints, the scheduler can delay
responses of a component and thus decouple the component’s
actual response time and the behavior observable from out-
side. Reducing the variation on observed response time, the
scheduler can reduce the bandwidth of the timing channel.

The Private Peer Sampling Service: The Ground for
Your Secret Society
Valerio Schiavoni, Etienne Rivière, and Pascal Felber, University of

Neuchâtel, Switzerland

The subject of this poster is group membership within a
larger peer-to-peer overlay network. The network is cryp-
tographically protected by the exchange of public keys. If
you want to form groups within this network, you want to
keep the group membership information private. The work
presented on the poster employs onion routing and attacks
the problems of firewalls, NATs, and the resulting challenges
regarding the visibility of nodes.

Gang scheduling isn’t worth it . . . yet.
Simon Peter, Andrew Baumann, and Timothy Roscoe, ETH Zurich

Andrew Baumann from the Barrelfish group (http://
www.barrelfish.org/) presented this poster. Looking
at opportunities for gang scheduling in the Barrelfish
multikernel, the team studied the merits of gang scheduling
for different workloads. Today’s commodity operating
systems typically do not employ gang scheduling. But this
usually does not hurt, because workloads on these systems
are dynamic, bursty, and interactive. Multiple parallel
applications with fine-grained synchronization would be
needed for the lack of gang scheduling to become a problem.
One situation where it would help are stop-the-world garbage
collectors.

Multi-pipes
Eric Van Hensbergen, IBM Research; Noah Evans, Alcatel Lucent Bell

Labs; Pravin Shinde, ETH Zurich

This poster presented one aspect of a larger project on oper-
ating systems and services for high performance computing
that scale to millions of cores. Specifically, it presented a data
flow abstraction developed for BlueGene supercomputers.

Reports_final.indd 83 1.18.11 3:26 PM

 84 ;login: Vol. 36, No. 1

that we are used to. In the case of the cloud, loosely defined
resource requirements map to “enough” CPU, memory, and
bandwidth to achieve a set response time for requests under
the current load.

In this kind of model, virtual machine resource limits vary
dynamically, which means it is neither efficient nor realistic
to statically allocate virtual machines to physical nodes.
VMs must migrate between nodes when a node becomes
over- or underutilized because VM resource constraints
changed.

Centralized VM allocation algorithms can produce a near-
optimal configuration, but they require far too many migra-
tions to be practical. The Multiple Criteria Decision Analysis
technique (or PROMETHEE method) presented in this
poster deals individually with problem nodes in order to limit
migrations.

The allocater migrates VMs whenever an anomaly—an
over- or underutilized node—becomes apparent. To deal with
overutilization, it migrates VMs away from the node until it
is correctly provisioned, and to deal with underutilization,
it evacuates the node so it can shut down. The resulting VM
allocations do not distribute resources as effectively as cen-
tralized provisioning, but they allow resource constraints to
vary without an impractical amount of VM migrations.

Remote Desktops Using Streaming VM Record/Replay
Nitesh Mor, Shikhar Agarwal, Sorav Bansal, and Huzur Saran, Indian

Institute of Technology Delhi

In traditional remote desktop systems, a lot of bandwidth is
dedicated to sending images of the remote system’s desktop
back to the client.

The system presented in this poster instead transfers virtual
machine replay information, which often requires substan-
tially less bandwidth than desktop graphics. The remote
machine runs on virtual machine software that supports
virtual record and replay. All the recorded replay informa-
tion (such as interrupt timings) is sent over the network to
a virtual machine running on the client. The client virtual
machine can replay the remote machine’s execution in real
time, as it receives the replay data.

The most dramatic speed improvement comes from the
bandwidth reduction when playing a DVD, which over a tra-
ditional remote desktop connection requires streaming the
DVD video itself. Streaming video is not necessary with VM
record/replay, but initial state of both VMs must be

Fourth set of posters summarized by Justin Seyster
(jseyster@cs.stonybrook.edu)

Diagnosing Performance Changes by Comparing System
Behaviours
Raja R. Sambasivan, Carnegie Mellon University; Alice X. Zheng,

Microsoft Research; Elie Krevat, Michael Stroucken, William Wang,

Lianghong Xu, and Gregory R. Ganger, Carnegie Mellon University

Sambasivan presented Spectroscope, a project that uses end-
to-end traces to diagnose distributed system performance
changes. Each trace represents the entire path of a request
through the system. Comparing traces from before and after
a performance change can help find the cause of the change.
A comparison can find structural changes, such as a request
being routed to a remote datacenter, and response-time
changes in individual components. Both kinds of change
are ranked by their contribution to the overall performance
change so that the developer can localize the source of the
problem. The authors used Spectroscope to diagnose several
real-world performance bottlenecks in Ursa Minor, a proto-
type distributed storage system.

The Anzere Personal Storage System
Oriana Riva, Qin Yin, Dejan Juric, Ercan Ucan, Robert Grandl, and

Timothy Roscoe, ETH Zurich

Oriana Riva described Anzere, which manages synchroniza-
tion of media, contacts, and other personal data across mul-
tiple personal devices and virtual cloud resources. Anzere
emphasizes the expressiveness of replication policies, which
are specified with a logic constraint language. For example,
the user can require that one-day-old music is accessible
to a cell phone with no more than 100ms delay. As another
example, the user can also set a limit on cloud storage usage
in terms of a maximum monthly fee. Although potentially
complex, these policies remain tractable.

Dynamic Resource Allocation in Computing Clouds
using Distributed Multiple Criteria Decision Analysis
Yagz Onat Yazr and Chris Matthews, University of Victoria; Roozbeh

Farahbod, Defense R&D Canada Valcartier; Stephen Neville, University of

Victoria; Adel Guitouni, Defense R&D Canada Valcartier; Sudhakar Ganti,

Yvonne Coady, and Burak Martonalt, University of Victoria

Yagiz Onat Yazir presented this poster about moving to a
model of provisioning virtual machines with loosely defined
resources instead of asking customers to specify a priori
CPU, memory, and bandwidth requirements. This would
make cloud computing services more like the public utilities

Reports_final.indd 84 1.18.11 3:26 PM

 ;login: FEbruary 2011 Conference Reports 85

Fifth set of posters summarized by Edmund L. Wong
(elwong@cs.utexas.edu)

A Replay-based Approach to Performance Analysis
Anton Burtsev, Eric Eide, and John Regehr, University of Utah

Anton Burtsev presented a novel way of approaching
performance analysis of complex software systems with
a full-system deterministic replay. Burtsev leveraged Xen
VMM to record the entire execution history of a system with
a constant overhead of several percent. An analysis algo-
rithm is invoked on a copy of the original execution, which is
recreated by means of replay mechanisms offline. Burtsev
argued that such an approach turns performance, a dynamic
property of a particular execution, into a static property
that can be analyzed separately from an actual instance of a
running system. To provide general support for replay-based
performance analyses, Burtsev suggested a general analysis
framework which combines traditional replay mechanisms
with a realistic performance model, and a semantic interface
to the behavior and the runtime state of the system.

Mitigating Risk in Green Cloud Computing
Sakshi Porwal, Muki Haklay, John Mitchell, Venus Shum, and Kyle

Jamieson, University College London

Sakshi Porwal and co-authors studied how power con-
sumption, an important consideration for cloud computing
providers, can be reduced. Porwal showed two models of
computing: the waterfall model, in which tasks are assigned
to an idle machine only after all other non-idle machines
were fully utilized, and the distributed model, in which tasks
are load-balanced across multiple machines. She showed
that the waterfall model reduces power consumption and
produces less CO2 as a result. Porwal also explored distribut-
ing tasks to sites which are located in geographically colder
areas and thus require less power for cooling mechanisms,
which represent approximately a third of power consumption
at datacenters.

It Wasn’t My Fault: Understanding OS Fault
Propagation Via Delta Execution
Cristiano Giuffrida, Lorenzo Cavallaro, and Andrew S. Tanenbaum, Vrije

Universiteit, Amsterdam

Cristiano Giuffrida proposed characterizing faults in OSes
by introducing faults into the system, isolating the faulty
execution, and comparing it to a fault-free execution to see
how the execution, state, and environment differed. By creat-
ing a catalog of faults and their effects, Giuffrida envisioned
that an OS can be developed that can recover from failures
and continue execution. This catalog could be used to remove

synchronized, meaning that the DVD’s contents are already
available at the client side. Because of the synchronization
requirement, which involves an initial disk transfer of the
VM, the technique is most suitable for a client making fre-
quent remote desktop sessions to the same remote VM, or to
multiple VMs which share similar disk images.

Porting File System Structures to Nameless Writes
Yiying Zhang, Leo Prasath Arulraj, Andrea C. Arpaci-Dusseau, and Remzi

H. Arpaci-Dusseau, University of Wisconsin—Madison

Commercial flash drives keep a mapping table from logical
block addresses to physical block addresses, which the drive
can use to dynamically remap blocks for the sake of wear
leveling. Yiying Zhang explained that these tables become
more wasteful as drives get bigger: a 2TB SSD would need
30GB of mapping tables for a page-level mapping using a
standard flash page size. Although mapping strategies exist
that can keep smaller mapping tables, they have a higher I/O
cost.

Zhang and co-authors show how device support for
“nameless writes” makes it possible to modify file systems
to operate efficiently without device remapping and without
modifying on-disk structures. A nameless write gives the
disk the task of choosing a free block to write to. Because
the disk chooses which blocks to write, it no longer needs to
remap blocks to effectively spread out writes. The nameless
write operation returns the physical block index to the file
system.

To handle blocks that must be relocated after wearing out,
the disk will also need to support a device callback, notifying
the file system that it has to update pointers to the relocated
block.

DiCE: Predicting Faults in Heterogeneous, Federated
Distributed Systems
Vojin Jovanović, Marco Canini, Gautam Kumar, Boris Spasojević, Olivier

Crameri and Dejan Kostić, EPFL, Switzerland

Marco Canini and Dejan Kostić presented DiCE, designed to
analyze heterogeneous, federated distributed systems such
as BGP, the Internet’s routing protocol. DiCE can take a com-
plete snapshot of all the nodes in the analyzed system and
then explore possible system behaviors from that snapshot
using “concolic” execution, a hybrid of symbolic and concrete
execution. In BGP, this approach can find configuration
errors that might allow prefix hijacking or policy conflicts.
Fuzz testing makes it practical to search for valid messages
that have the potential to harm the system.

Reports_final.indd 85 1.18.11 3:26 PM

 86 ;login: Vol. 36, No. 1

the disk. This scheduler is scalable from commodity servers
to enterprise cloud-based solutions.

SlapChop: Automatic Microkernels
Sara Dadizadeh, Jean-Sébastien Légaré, and Andrew Warfield, University

of British Columbia

Modern software is complex and monolithic. Sara Dadiza-
deh presented SlapChop, a system for decomposing a large
system into small, single-purpose source code libraries that
perform specialized tasks. SlapChop dynamically analyzes
a running system, collects traces, finds the parts that are
relevant to the task that is to be isolated, maps those instruc-
tions back to the original source, and generates specialized
libraries consisting of this source code. She showed an
example of SlapChop being performed on an OS kernel.

Benchmarking Online Storage Providers—Does
Bandwidth Matter?
Andi Bergen, University of Victoria; Rick McGeer, HP Labs; Justin

Cappos, University of Washington; Yvonne Coady, University of Victoria

Andi Bergen argued for the importance of benchmarking
online storage providers, which are becoming increasingly
popular. Because users are often bandwidth-limited in their
own connections, Bergen argued that such measurement
should be done in a distributed fashion, by having multiple
sites perform many operations on the storage providers. His
hope is to develop a tool that allows for customizable bench-
marking depending on what metrics users are interested in.

Measurements of Personally Identifiable Information
Exposure on the Web
Xiao Sophia Wang, University of Washington; Sam Burnett, Georgia

Tech; Ben Greenstein, Intel Labs Seattle; David Wetherall, University of

Washington

Personally identifiable information (PII), such as names,
addresses, and credit card numbers, are being used online as
a part of the Web, yet very little is known about how prevalent
PII exposures are in practice. Xiao (Sophia) Wang showed
that, although users would expect that PII is only sent to the
Web sites they are visiting, this information is often sent to
third-parties or easily gleaned by eavesdropping or through
cookies. Studying the top 100 Web sites in the US, Wang,
surprisingly, found that 35% send passwords in the clear, 26%
send some form of PII to third parties, and 54% store some
form of PII in cookies.

traces of faulty behavior without affecting correct parts of
the execution.

Fine-grained OS Behavior Characterization
Lorenzo Cavallaro, Cristiano Giuffrida, and Andrew S. Tanenbaum, Vrije

Universiteit, Amsterdam

Lorenzo Cavallaro proposed building a microkernel-based
OS with extremely focused and small components. The
behavior of these components could be automatically pro-
filed and characterized by using an IPC-based monitoring
scheme. These profiles could then be later used to detect
anomalous behavior and bugs in OS components. Cavallaro
argued that the overhead of such a system could be amelio-
rated by giving users the option to adjust the granularity and
accuracy of the monitoring infrastructure.

Resurrecting Static Analysis: Exploiting Virtualization
to Address Packing and Encrypted Malware
Christopher Benninger, Niko Rebenich, and Stephen W. Neville,

University of Victoria; Rick McGeer, HP Labs; Yvonne Coady, University

of Victoria

Christopher Benninger proposed a new technique for
detecting malware that may be “packed” (encrypted or
compressed). Instead of relying on static techniques alone,
which are difficult and often fail when malware is packed,
or dynamic techniques, which are not as successful as static
techniques before the advent of packing, Benninger argued
that malware can be more accurately detected by expos-
ing malware to static analysis after it has unpacked itself
and right before it attempts to execute. Toward this goal, he
developed an event-driven platform for identifying packed
malware running on a VM, an introspection tool for access-
ing an offending process’s memory space from a separate
VM, and an analysis tool for identifying and flagging mal-
ware variants.

Block-IO Scheduling for Guaranteed Scalable Storage
Performance
Bader Al Ahmad, Sriram Murali, and Sathish Gopalakrishnan, University

of British Columbia

Sriram Murali observed that many applications require
real-time interactivity, yet many of them run on cloud
environments consisting of virtual machines handling
multiple clients. Murali argued that disk I/O is the major
barrier to achieving guaranteed QoS for virtual machines;
thus, efficient disk utilization is critical to providing real-
time guarantees. Towards this goal, Murali implemented a
scheduler based on weighted fair-queuing in the block device
driver of the Xen hypervisor which offers hard and soft real-
time guarantees to the different virtual machines accessing

Reports_final.indd 86 1.18.11 3:26 PM

 ;login: FEbruary 2011 Conference Reports 87

use an interface that is semantically identical to the underly-
ing network interface. Thus, shims are completely transpar-
ent to the application, require no modification of the original
code, and may be composed together dynamically. Huang
demonstrated his technique by constructing a NAT traversal
shim that enables an unmodified server application to accept
incoming connections from behind a NAT device.

Reducing System Call Latency via Dedicated User and
Kernel CPUs
Josh Triplett, Philip W. Howard, Eric Wheeler, and Jonathan Walpole,

Portland State University

Systems have an increasing number of cores, allowing
tasks to often have their own CPUs. Josh Triplett observed,
however, that tasks still time-slice between user and kernel
modes. Triplett proposed leveraging the increasing num-
ber of cores by providing each application with a dedicated
syscall thread, which stays in-kernel. This thread has its own
CPU and performs the actual system calls, in order, on behalf
of application threads. Triplett argued that his approach
does not require modification of user code or existing kernel
syscalls and does not require a new type of thread or sched-
uler, while improving the performance of common syscalls in
Linux.

Sixth set of posters summarized by William Enck (enck@cse.psu.edu)

Deterministic Concurrency within the OpenMP
Framework
Amittai Aviram and Bryan Ford, Yale University

Available techniques to prevent shared-memory concurrency
bugs are insufficient; developers infrequently adopt new
languages, and deterministic thread schedulers make race
conditions repeatable without eliminating them. Amittai
Aviram (amittai.aviram@yale.edu) presented Determin-
istic OpenMP (DOMP), which simplifies the prevention of
race conditions by following a programming model resem-
bling document handling in version control systems. When
concurrent threads start executing at a fork, DOMP makes
a copy of the current shared program state for each thread.
Once the threads finish and rejoin their parent, DOMP
merges their writes into the parent’s state; if two threads
have written to the same memory location, DOMP signals
the race condition as an error. DOMP will implement most of
the core features of standard OpenMP, including the paral-
lel, for, and sections directives, as well the reduction clause,
thus making it easy to parallelize existing sequential code
in conventional languages deterministically by adding just a
few annotations.

Depot: Cloud Storage with Minimal Trust
Prince Mahajan, Srinath Setty, Sangmin Lee, Allen Clement, Lorenzo

Alvisi, Mike Dahlin, and Michael Walfish, University of Texas at Austin

Sangmin Lee and Srinath Setty presented Depot, a cloud
storage system that minimizes trust for safety and for live-
ness. Depot achieves this through a new consistency model,
fork-join-causal consistency, which guarantees causal
consistency in the absence of faults and handles forks by
reducing equivocation to concurrency. Despite its minimal
reliance on trust, Depot still provides useful properties:
safety properties include eventual consistency, fork-join-
causal consistency, bounded staleness, integrity, recoverabil-
ity, and eviction of faulty nodes. Liveness properties include
allowing nodes to always write, always exchange updates,
and read when correct nodes have the required objects. Lee
and Setty argued that Depot’s cost is low in terms of latency,
and its weighted dollar cost is modest.

Iodine: Interactive Program Partitioning
Nathan Taylor and Andrew Warfield, University of British Columbia

Clearly identifying important parts of modern software
is complicated but imperative for understanding whether
exploits or bugs may exist in the code. Nathan Taylor
described his system, Iodine, as a way to discover these com-
ponents through techniques inspired by MRI. Iodine outputs
a control-flow graph with edges representing control-flow
connections and colors representing how frequently a par-
ticular component is visited. These colors eventually fade if a
component is no longer visited, giving the user an interactive
idea regarding what code is being executed over time. The
system provides users with an interactive interface, allow-
ing users to poke into the code and explore the effects that
unvisited branches have on the graph.

Masking Network Heterogeneity with Shims
Danny Yuxing Huang, Williams College; Eric Kimbrel and Justin Cappos,

University of Washington; Jeannie Albrecht, Williams College

Danny Yuxing Huang tackled the problem of dealing with
heterogeneous network environments—those which contain
NATs, VPNs, firewalls, mobile devices, etc.—by developing a
new technique for building applications. A common solution
involves using libraries to virtualize network heterogeneity.
Huang argued that porting programs with these libraries to
deal with specific types of network heterogeneity is tedious
and error-prone; due to semantic differences, the programs
and/or the libraries must be modified to work together.
Instead, Huang proposed the use of formally verified wrap-
pers, or shims, that abstract away the details of providing
functionality such as NAT traversal or mobility support from
applications. Unlike the above-mentioned libraries, shims

Reports_final.indd 87 1.18.11 3:26 PM

 88 ;login: Vol. 36, No. 1

Compression of High Resolution Climate Data
Jian Yin and Karen Schuchardt, Pacific Northwest National Lab

Climate simulations consume and produce petabytes of data.
Traditional compression algorithms perform poorly on this
data and frequently require the entire archive to be decom-
pressed before being used by simulations and analysis tools.
Jian Yin (jian.yin@pnl.gov) and his co-authors developed a
compression algorithm based on properties of the climate
data that allows block-based decompression for use of sub-
sets of the overall dataset. They use heuristics to determine
where to break the compression blocks such that the decom-
pression and analysis can be pipelined. Additionally, the
decompressed blocks are cached to avoid redundant decom-
pression and speed analysis. Finally, they include prediction
algorithms to decompress data blocks so that new blocks are
immediately available.

Informed System Design through Exact Measurement
Daniel A. Freedman, Tudor Marian, Jennifer Lee, Ken Birman, Hakim

Weatherspoon, and Chris Xu, Cornell University

Daniel A. Freedman (dfreedman@cs.cornell.edu) considered
the application of a class of exact network measurements to
help inform system design, particularly for architectures that
involve the intersection of endpoint systems and network
links. He discussed the design of network instrumentation—
using physics test equipment, such as oscilloscopes, pattern
generators, lasers, etc.—for the exact capture of packets in
flight, and they demonstrate its application for a particular
deployed 10 Gigabit Ethernet wide-area network (WAN). In
fact, on such a WAN, they observe anomalous behavior that
contests several common assumptions about the relationship
between input and output traffic flows. Finally, the authors
connect their observations of emergent packet chains in the
network traffic with higher-level system effects—namely,
to explain previously observed anomalous packet loss on
receiver endpoints of such networks.

Accele Scheduler: Energy Efficient Virtual CPU
Scheduling for Modern Multicore CPUs
Tetsuya Yoshida and Hiroshi Yamada, Keio University; Hiroshi Sasaki,

University of Tokyo; Kenji Kono, Keio University; Hiroshi Nakamura,

University of Tokyo

CPU chips now frequently include multiple processing cores,
but not all of the cores always need to run at their highest
frequency. Dynamic voltage and frequency scaling (DVFS)
improves energy efficiency by scaling down voltage and fre-
quency when possible. On modern multicore chips, all cores
must use the same voltage, due to architectural limitations,
even if their frequencies are individually scaled. Tetsuya
Yoshida (tetsuyay@sslab.ics.keio.ac.jp) and his co-authors

Diagnosing Intermittent Faults Using Software
Techniques
Layali Rashid, Karthik Pattabiraman, and Sathish Gopalakrishnan,

University of British Columbia

Layali Rashid (lylrashid@gmail.com) explained that today’s
complex hardware chips are prone to intermittent errors.
When errors are detected, faulty components should be
disabled. Given the existence of an error, this work tracks
program dependencies to the instructions where the error
originated. Using the properties of the offending instruction,
the faulty logic unit is diagnosed and disabled to ensure that
future intermittent errors cannot affect program correctness.

NanoXen: Better Systems Through Rigorous
Containment and Active Modeling
Chris Matthews, University of Victoria; Justin Cappos, University of

Washington; Yvonne Coady, University of Victoria; John H. Hartman,

University of Arizona; Jonathan P Jacky, University of Washington; Rick

McGeer, HP Labs

Current systems lack robustness and security. This work,
presented by Chris Mathews (cmatthew@cs.uvic.ca),
proposes a new computational model based on “virtual
components.” In this model, applications execute as sets of
components. Components are primitive computational units
with well-defined semantics. The components execute inside
of either “native client” (NaCl) containers or virtual machine
(VM) containers, depending on isolation requirements.
While this work is at a very preliminary state, Matthews and
his co-authors aim to use these primitives to design a more
robust and secure operating system environment.

Namespace Composition for Virtual Desktops
Dutch Meyer, Mohammad Shamma, Jake Wires, Maria Ivanova, Norman

C. Hutchinson, and Andrew Warfield, University of British Columbia

Dutch Meyer (dmeyer@cs.ubc.ca) explained that many
enterprises are beginning to deploy PCs as thin clients
running virtual machines served from back-end servers.
These systems generally operate at the block level, which is
semantically poor and difficult to administer. Meyer and his
co-authors proposed a model that serves file namespaces
instead of raw block devices. The proposed system can
create namespaces for new VMs on the fly and can merge
namespaces from multiple clients to create new views of
the system helpful for collaboration and administration. By
focusing on file semantics, redundant storage and scanning
can be eliminated, and overall management complexity can
be reduced.

Reports_final.indd 88 1.18.11 3:27 PM

 ;login: FEbruary 2011 Conference Reports 89

the presentations offered interesting ideas, generated lively
discussion, and were well attended.

Epoch Parallelism: One Execution Is Not Enough
Jessica Ouyang, Kaushik Veeraraghavan, Dongyoon Lee, Peter M. Chen,

Jason Flinn, and Satish Narayanasamy, University of Michigan

Jessica Ouyang presented a new style of parallelism called
“Epoch Parallelism,” a novel approach to writing multi-
threaded programs. Since it is hard to write multi-threaded
programs that are fast and correct, Ouyang proposed that
programmers could write two programs: one which was
fast but buggy and another which was slower and correct.
Programs are then split into multiple epochs and the output
from the first epoch of the faster program can be used to
accelerate the execution of the following epochs in parallel.
If a checkpoint from the faster program does not match that
from the slower execution, the speculatively executed parts
of the program are rolled back.

Michael Vrable from UCSD asked how this execution pat-
tern could be used with I/O or network interactions. Ouyang
agreed that output can be externalized to the user only when
the slower process completed, but that different parts of
the application could internally proceed using the specula-
tive results. Emin Gün Sirer from Cornell inquired about
applications which could make use of the correctness-speed
tradeoff. Ouyang clarified that the faster executions in this
model were not entirely buggy and would mostly give the
correct answer. Examples for this included avoiding addi-
tional runtime assertion checks and optimistic concurrency
techniques such as lock elision.

Automated Software Reliability Services: Using
Reliability Tools Should Be as Easy as Webmail
George Candea, Stefan Bucur, Vitaly Chipounov, Vova Kuznetsov, and

Cristian Zamfir, École Polytechnique Fédérale de Lausanne (EPFL),

Switzerland

The second research vision proposed the creation of a
software certification service and was presented by George
Candea (EPFL). Although many tools are being developed to
help test, debug, and verify correctness of software, Candea
observed that these were not having much of an impact in the
real world. To make software reliability more effective, Can-
dea argued that reliable software should have an advantage
over competitors in the market.

He then presented a case study of how Underwriter Labs had
established a safety standard for electrical appliances early
in the twentieth century and how a similar certification ser-
vice could promote software reliability. This service would
use automated techniques to objectively measure the reliabil-

have developed a scheduling algorithm for virtual CPUs that
distributes the processing load to optimize energy consump-
tion in such an environment. They have already achieved an
energy delay product (EDP) of 23.6%, which is better than
Xen’s existing credit scheduler.

Redflag: Detailed Runtime Analysis of Kernel-Level
Concurrency
Justin Seyster, Abhinav Duggal, Prabakar Radhakrishnan, Scott D. Stoller,

and Erez Zadok, Stony Brook University

Justin Seyster (jseyster@cs.stonybrook.edu) explained that
large code bases, such as the Linux kernel, are difficult to
analyze for concurrency bugs. Seyster and his co-authors
have developed a runtime analysis system to focus on the
locking of any specific data structure. The tool provides
lockset and block-based analysis. When working with code as
large and complex as the Linux kernel, subtle complications
result. For example, occasionally variables contain bit-fields
to store system state. Therefore the tool must treat individual
bits in such variables as variables themselves. The tool is also
sensitive to the order in which locked blocks execute. Using
their tool, Redflag, they have identified one race condition in
their own file system code and independently discovered two
additional known-concurrency issues in Linux’s file system
code. The authors hope to apply the analysis to other data
structures within the Linux kernel.

Dynamic Voltage and Frequency Scaling: The Laws of
Diminishing Returns
Etienne Le Sueur and Gernot Heiser, University of New South Wales

Etienne Le Sueur (etienne.lesueur@nicta.com.au) and Ger-
not Heiser observed the power consumption of three multi-
core AMD Opteron systems over a seven-year period to study
the effectiveness of dynamic voltage and frequency scaling
(DVFS). They found four factors that cause DVFS to become
significantly less effective: (1) scaling in semiconductor
technology, (2) increased memory performance, (3) improved
sleep/idle modes, and (4) multicore processors. They believe
that in the future, cache management techniques such as
turning of parts of the L3 cache, which is as large as 8MB,
will be much more effective than DVFS at conserving energy.

Research Vision Session

Summarized by Shivaram Venkataraman (venkata4@illinois.edu)

The research vision session held at OSDI ’10 was similar in
spirit to the Wild and Crazy Ideas sessions at ASPLOS. It
consisted of four presentations on systems research ideas for
the future. Ice cream was served before the session began and

Reports_final.indd 89 1.18.11 3:27 PM

 90 ;login: Vol. 36, No. 1

inertia about changing instructions sets, especially x86 for
desktops, affected some of the problems pointed out earlier.
Mogul jokingly remarked that his terminal still runs on an
Alpha computer and that he felt managing the memory sys-
tem was a greater challenge than the instruction set. Rik Far-
row argued that CPU architecture features, such as the trap
into privileged mode, actually shape how operating systems
work, noting that there was a paper in this conference about
avoiding the penalties for making that context shift. Farrow
applauded the idea that the systems and architectures groups
would actually communicate, instead of systems researchers
just working around problems caused by architecture. Emin
Gün Sirer’s comment, that he could imagine a corresponding
talk at WWW about how the OS community had not provided
the database community with the right interface and had
forced them to write to raw disk, drew laughter and applause
from the audience.

Embrace Your Inner Virus
Michael F. Nowlan and Bryan Ford, Yale University

The final research vision presentation at OSDI ’10 was by
Michael Nowlan from Yale University, who proposed a sys-
tem design in which the OS expects applications to behave
like viruses. First, Nowlan noted that viruses were prevalent
and transferred easily across machines through the Internet
and other media like Bluetooth and USB. Instead of trying to
fight viruses, he proposed that the OS should be designed to
handle viral applications (vapps) using techniques like code
sandboxing and information flow control.

Nowlan presented several case studies of how vapps could be
useful. The first case study was about a contact application
which spread to all the users in a particular room. This could
be useful for users to get in touch with other attendees at a
conference. The second case study analyzed a photo upload-
ing vapp that could be used to disseminate photographs to
other machines as soon as they are taken. If the original
machine is lost, users can recover their photos by being “re-
infected” from other machines.

Nowlan also discussed various business models that could be
used to build such viral applications. Most interesting among
these was the “Quid Pro Quo” model where the user could
consume a service for free but had to submit a local resource
in exchange. For example, a weather application on a phone
could be used for free but the user would need to upload the
local temperature from the phone’s thermometer. Following
the presentation, Nowlan was asked if the bad vapps would
not affect the system. He replied that they were propos-
ing greater transparency into applications and the use of
techniques like information flow control in OS design which
could overcome such problems.

ity of binaries and would provide ratings similar to crash-test
ratings for cars. Candea listed the systems research problems
related to building such a service. These included automated
proof generation techniques and scalable testing of binaries
on massive clusters.

Peter Chen, University of Michigan, pointed out that there
were blogs which provided such ratings for antivirus soft-
ware today and that software was tuned to perform well
on these benchmarks. Candea replied that the certification
service would be based on concepts like model checking and
symbolic execution, which would make tuning the soft-
ware more difficult when compared to benchmarks. Ivan
Be schastnikh, University of Washington, asked if the certi-
fication service was applicable to all kinds of software. He
noted that comprehensive testing was already used in critical
software in embedded systems and that users might not care
much about the reliability of services like Facebook. Candea
replied that today, users chose software based on functional-
ity and that it could be possible that they would continue to
do the same. However, he hoped that presenting data about
reliability of software would help them make a better decision.

SIGOPS to SIGARCH: “Now it’s our turn to push you
around”
Jeffrey C. Mogul, HP Labs

Jeff Mogul from HP Labs presented his thoughts on how
operating systems were being ignored by the computer
architecture community and what the SIGOPS community
could do to change this. Mogul argued that OS designers used
commodity hardware to build their systems and had stopped
asking the architects for newer features like core-to-core
message passing primitives or interfaces for managing ther-
mal issues.

Analyzing the problem in detail, Mogul pointed out that
architects had no open-source simulator which could run
real operating systems, and the OS community could help
articulate and build such a simulator. Also, there was a need
for operating system benchmarks which could be run by
architects in simulators to evaluate how their changes affect
the OS. Finally, Jeff also argued that SIGARCH should be
encouraged to accept papers which focus on OS issues in
conferences like ASPLOS.

This was followed by a lively question-answer session. Margo
Seltzer from Harvard disagreed with the presentation and
argued that the best compliment for an OS designer was
for the user to not realize that the OS was running. Mogul
replied that it would be some time before we had a zero-
overhead operating system and that we need better coopera-
tion between the hardware and the OS community for that
to happen. David Lillethun from Georgia Tech asked how the

Reports_final.indd 90 1.18.11 3:27 PM

 ;login: FEbruary 2011 Conference Reports 91

systems had used specialized hardware or compiler-inserted
instrumentation to solve this problem, and that still other
approaches might be possible. Madan Musuvathi of Micro-
soft Research wondered whether nondeterminism was such
a bad thing and whether there might be tradeoffs between
degrees of nondeterminism and performance. This was a key
theme for this session, as the three different systems pre-
sented managed this tradeoff in different ways. Bergan said
that the notions of internal and external nondeterminism
were dOS’s way of handling this: in dOS, one can select the
processes that need to be deterministic, and thus influence
what portions of nondeterminism are internal and external.

Efficient System-Enforced Deterministic Parallelism
Amittai Aviram, Shu-Chun Weng, Sen Hu, and Bryan Ford, Yale

University

> Awarded Jay Lepreau Best Paper!

Bryan Ford presented Determinator, a microkernel designed
to eliminate data races, which was awarded one of two Jay
Lepreau Best Paper awards for OSDI ’10. There are currently
many systems devoted to helping programmers manage
existing data races that occur in conventional operating
systems. Ford said that despite all of this, it would be nice if
programmers didn’t have to worry about data races and were
not forced into using specific programming languages to
achieve this end. Determinator is an attempt to accomplish
this: it is a microkernel with a small set of system calls to
manage shared state. Facilities that would be present in mod-
ern monolithic UNIX systems, such as the C library, process
management, and file system API, are instead implemented
in user space and take advantage of these system calls to
eliminate data races.

The microkernel system calls are built on the paradigm of
“check-out/check-in” of state. When a kernel thread forks, it
creates a local copy of its parent’s address space. Any reads
and writes that this thread performs are then against its
local copy. When the thread joins its parent, its differences
from the parent are merged back to the parent’s state. Ford
described how this solves data race issues: read-write races
are eliminated, because writes will occur to a different local
state than reads, while write-write races are detected upon
join and can be trapped and then resolved.

Determinator was evaluated by comparing its speed on
benchmark programs to that of Linux. The primary factor
influencing benchmark speed was the granularity at which
the changes children made to shared state were found and
merged back into a parent, with finer granularity leading to
worse performance.

Deterministic Parallelism

Summarized by Alan Dunn (adunn@cs.utexas.edu)

Deterministic Process Groups in dOS
Tom Bergan, Nicholas Hunt, Luis Ceze, and Steven D. Gribble, University

of Washington

Tom Bergan presented dOS, a set of modifications to the
Linux kernel to allow groups of processes to run determinis-
tically. Nondeterminism in OS execution makes bugs harder
to reproduce and causes replicas in state machine replica-
tion-based fault-tolerance protocols to become unsynchro-
nized. To avoid these problems, dOS introduces the ability to
create a “deterministic box,” in which contained processes
execute in a deterministic manner. Bergan noted that dOS
guarantees a deterministic ordering of internal operations
(including inter-thread communication), but does not guar-
antee deterministic performance.

Deterministic execution is not a new problem, but the dOS
project improves over prior work both conceptually and in
practice. Bergan explained that dOS incorporates a distinc-
tion between “internal” and “external” nondeterminism. The
difference is that internal nondeterminism is controllable
by the operating system, while external nondeterminism
is caused by uncontrolled sources such as user input and
network packets. Internal nondeterminism can then be
controlled by use of algorithms that ensure deterministic
outputs, such as deterministic ordering of IPC operations
and process scheduling. Only external nondeterminism
needs to be logged and replayed to processes. Bergan pointed
to log sizes that were several orders of magnitude smaller
than a prior full-system determinism system as evidence for
the utility of the selective determinism approach.

The main pieces of dOS’s implementation are the DMP-O
deterministic scheduler and a “shim” for monitoring external
inputs and controlling their delivery. While DMP-O is from
prior work, dOS still needed a way to detect communication
between threads, which was accomplished by modifications
to system calls and page protections for shared memory.
Threads can then be run in parallel until communica-
tion occurs and communication events are serialized in a
deterministic order. Discussion of the shim included two
examples: deterministic record and replay, and replication of
a multi-threaded server.

Questions for the presentation ranged over topics from
technical comments on performance to high-level questions
about design motivation. Amittai Aviram (Yale University)
and Micah Brodsky (MIT) asked whether performance
issues incurred by fine-grained shared memory between pro-
cesses could be resolved. Bergan commented that previous

Reports_final.indd 91 1.18.11 3:27 PM

 92 ;login: Vol. 36, No. 1

Tern was evaluated based on its degree of schedule reuse,
stability in bug reproduction, and overhead. For several
real-world programs (Apache and MySQL), Tern was able to
use 100 or fewer schedules to cover significant stretches of
execution, corresponding to a 90% schedule reuse rate. Com-
putational overhead was often less than 10%.

Ding Yuan of the University of Illinois at Urbana-Champaign
claimed that Tern would not eliminate data races. Cui
pointed out that this is true, although this was a tradeoff
made to allow schedule reuse, thus increasing performance
and stability. An audience member asked about whether
constraint size and number could affect performance, and
Cui said that they have techniques for removing redun-
dant constraints and eliminating irrelevant constraints to
mitigate this issue. Bryan Ford of Yale asked whether Tern
memoizes schedules only at whole program granularity, and
whether other granularities would be useful. Cui responded
that currently only whole program granularity is supported,
but that others could be useful.

Systems Management

Summarized by Don Porter (porterde@cs.utexas.edu)

Enabling Configuration-Independent Automation by
Non-Expert Users
Nate Kushman and Dina Katabi, Massachusetts Institute of Technology

Nate Kushman presented KarDo, a tool for automating con-
figuration and other administrative tasks. The key problem
addressed is that users generally know what they want, but
do not know how to do it. There is no easy way to automate
fairly common tasks that require GUI manipulation. The
KarDo system improves on the state of the art by collecting a
few traces (generally two) of experts performing a given task,
and then distilling a generalized trace which can be replayed
on an end user’s computer. KarDo requires no kernel or appli-
cation modifications. Kushman presented details of how they
generalize their traces. KarDo uses a support vector machine
to classify GUI actions into three categories: update, commit,
and navigate. KarDo uniquely identifies GUI widgets by their
text, which is extracted from the accessibility interface. In
generalizing a trace, navigation is separated from the rest of
the trace; using all traces, the needed navigation steps are
generalized for a canonical trace. Kushman also presented
algorithms for removing needless actions and handling dif-
ferences in the GUI.

KarDo was evaluated using 57 tasks taken from the Micro-
soft Help and eHow Web sites. The authors collected traces
from a set of diversely configured virtual machines and then
tested them on a different set of virtual machines. Existing

There were a number of interesting questions after this
presentation. An audience member from Microsoft Research
asked about the relationship between Determinator’s
approach to shared state and transactions. Ford responded
that the two have similar isolation properties, but that trans-
actions generally do not provide determinism. Eric Eide of
the University of Utah asked about whether it might be better
to mandate use of a specific language for Determinator.
Ford said that while a single language might help by allow-
ing easier introduction of primitives to manage granularity
of shared state, it seemed advantageous to allow application
programmers greater language freedom. Jason Flinn of the
University of Michigan commented that experience with
systems like CODA showed that resolving write-write con-
flicts can be challenging, and he wondered how difficult this
was with Determinator. Ford said that his team did not have
enough experience writing applications for Determinator
to comment definitively, but that he believed there would be
some issues to explore with respect to when changes to state
are propagated.

Stable Deterministic Multithreading through Schedule
Memoization
Heming Cui, Jingyue Wu, Chia-che Tsai, and Junfeng Yang, Columbia

University

Heming Cui presented Tern, a system for improving system
determinism via capturing and reusing thread schedules.
Tern shares some of the motivation of other papers from
the Deterministic Parallelism session in that it also aims
to allow for easier testing and debugging through increased
determinism. However, Tern also targets a difficulty found
in other systems: often a small change in program inputs
causes radical changes in the schedules produced, which
eliminates some of the benefits of deterministic scheduling.
Cui described how Tern avoids this by representing sched-
ules as sequences of synchronization operations, which can
potentially be reused for multiple inputs. It calculates sets of
constraints that must be satisfied by an input to use a certain
schedule and caches schedules with their constraints.

Cui illustrated the use of Tern with example code from
PBZip2. To use code with Tern, it is necessary to first
annotate the variables that are important to scheduling. The
code is then instrumented at compile time to allow Tern to
record and control scheduling. For any given program run,
constraints on the annotated variables are created based
on the branches that the program takes. These constraints
are stored with the resultant schedule in a memoizer. The
constraints will be evaluated for subsequent program runs,
and the stored schedules will be used if their constraints are
satisfied.

Reports_final.indd 92 1.18.11 3:27 PM

 ;login: FEbruary 2011 Conference Reports 93

Someone asked whether ConfAid required an understand-
ing of configuration file syntax, Attariyan responded no.
Alice Zheng of Microsoft Research asked if all bugs the
authors dealt with were single-mistake bugs, and whether
they expected all bugs in the real world to be single-mistake.
The authors only looked at single-mistake bugs. ConfAid
would likely suggest both mistakes independently, but cannot
output that both configuration variables must be changed in
tandem. Regarding real-world configuration errors, it is hard
to say, but the test errors they used seemed quite common on
the forums.

Lunchtime Award Announcements

Summarized by Rik Farrow (rik@usenix.org)

Two awards were announced during the symposium
luncheon. Robert Morris of MIT received the Mark Weiser
award for an individual who has demonstrated creativity and
innovation in operating systems research. Roger Needham
and Michael Schroeder received the SIGOPS Hall of Fame
Award for their 1978 paper on authentication over a non-
trusted link (Needham-Schroeder protocol). Schroeder was
present to accept the award.

Inside the Data Center, 2

Summarized by Don Porter (porterde@cs.utexas.edu)

Large-scale Incremental Processing Using Distributed
Transactions and Notifications
Daniel Peng and Frank Dabek, Google, Inc.

Frank Dabek described the new Percolator indexing system
used at Google to reduce the delay between Web crawling
and re-indexing. Prior to Percolator, there was a delay of days
between crawling a new document and its incorporation into
the index, as the entire corpus of crawled documents was
reindexed. The solution described is incremental reindex-
ing, which introduces a number of new challenges, described
in the talk. In order to support incremental indexing, the
authors added distributed transactions to BigTable, which
provides snapshot isolation semantics, and added notifica-
tion support.

Among the challenges described was the problem of “Bus
Clumping,” the problem that the randomized scans for new
work tend to clump working on data that is time-consuming
to process, reducing parallelism and overloading servers.
The solution they adopt is trying to acquire a lightweight
scanner lock per row of BigTable. If the lock acquire fails,
the scanner jumps to a random point in the table to look for
new work—the equivalent of a city bus teleporting ahead in

automation techniques worked on only 18% of the test virtual
machines, whereas KarDo had an 84% success rate. Of the
16% of tests that failed, 4% were navigation errors, 5% had
missing steps, and 7% were classifier errors. More traces
should lower these error rates.

Adam Chlipala of Harvard asked why they didn’t just parse
configuration files, and Kushman said that they could go
quite a bit farther than just parsing files. Someone asked
whether a collected trace could reveal private information.
Kushman responded that the traces used for training can
include private data, but if any two traces have different
values, these are considered private and filtered out of the
canonical trace. Josh Triplett from Portland State University
asked whether the same tool could be applied to command-
line tasks. Kushman responded that a key challenge is text
processing, which would require additional insights to pro-
duce canonical traces of the same quality.

Automating Configuration Troubleshooting with
Dynamic Information Flow Analysis
Mona Attariyan and Jason Flinn, University of Michigan

Mona Attariyan presented ConfAid, a tool that automati-
cally identifies the root cause of a configuration error. The
motivating problem is that configuring software is difficult
and prone to user error. Currently, if a user can’t get a piece of
software to work, s/he must ask colleagues, search a manual,
or look at the code if it is available. Users need better tools to
troubleshoot these errors. The usage model of ConfAid is that
a user runs the misconfigured software under ConfAid and it
outputs a list of likely root causes.

ConfAid works by tracking dynamic information flow
through the application binaries. ConfAid does not require
source code or debugging symbols. Attariyan described
several technical details of how they use information flow
analysis of control and data flows to assess which configura-
tion variables influenced the program control flow that led
to the incorrect behavior. In this analysis, there is a funda-
mental tradeoff between the precision of the analysis and
performance; ConfAid uses imprecise analysis and intro-
duces three heuristics to improve performance and lower the
false-positive rate.

To evaluate ConfAid, the authors tested 18 real-world errors
from OpenSSH, Apache, and PostFix (collected from manu-
als, support forums, etc.), and 60 randomly generated errors.
For the real-world errors, ConfAid ranked the correct root
cause first for 72% of the errors and second for the rest.
Among the random errors, ConfAid ranked the correct root
cause first or second for 55/60 errors. The average execution
time of ConfAid was 1 minute, 32 seconds.

Reports_final.indd 93 1.18.11 3:27 PM

 94 ;login: Vol. 36, No. 1

Based on experience working with Mantri, Kandula recom-
mended three principles for managing MapReduce systems:
(1) predict to act early, (2) be aware of resource and oppor-
tunity cost of an action, and (3) act based on the cause. The
overall result of deployment in the Bing cluster is a median
32% reduction in job completion time and lower utilization.

Someone asked what Kandula would do if they had a non-
uniform cluster, say, with some machines that were faster
but handled fewer requests. Kandula answered that they
have a scheduling system that normalizes machine capabili-
ties to a slot abstraction, which are scheduled rather than
entire machines. Emin Gün Sirer from Cornell asked how the
authors might change the MapReduce interface to address
stragglers, given what they know from experience. Kandula
responded that they would have an interface to yield more
even partitions than simple hashing.

Transactional Consistency and Automatic Management
in an Application Data Cache
Dan R.K. Ports, Austin T. Clements, Irene Zhang, Samuel Madden, and

Barbara Liskov, MIT CSAIL

Dan Ports presented a system called TxCache, which pro-
vides transactional consistency for an in-memory database
cache such as memcached. The key problem this work
addresses is that modern Web applications face immense
scaling challenges, but existing caching techniques only offer
limited help. For instance, personalization on sites like Face-
book foils whole-page caching. Similarly, database caches are
of limited use, since Web applications require increased post-
processing of data in the application itself. Application layer
caches, such as memcached, provide a useful alternative. By
caching application objects, these caches can separate com-
mon and customized content and reduce overall server load.
The key challenge to this approach is that current applica-
tion-level caches do not provide transactional consistency,
leaving the application to address transient anomalies.

Ports then described the TxCache system, which provides a
simple interface to delineate transactions on cacheable data.
TxCache provides bounded staleness for transactions, allow-
ing read-only operations to improve performance by return-
ing slightly stale data where safe. Programmers can also
specify cacheable, side effect–free functions, allowing the
system to cache their results and avoid needless recomputa-
tion. Ports then described several key challenges, including
selection of timestamp intervals and maintaining coherence
through invalidations.

The system was evaluated using the RUBiS benchmark with
a single database server and nine front-end/cache servers.
The experiments showed that a larger cache yielded a higher

the route. Percolator also stressed certain new errors in the
Google cluster, including a set of failing CPUs that randomly
failed to XOR bits correctly, and an incorrect resistor value
that powered off a certain motherboard. Dabek concluded
with advice based on this experience: (1) push performance
debugging through all layers of the system and (2) expect
weirdness proportional to machine count.

The talk concluded with the assertion that Percolator is
an existence proof that distributed transactions can be
implemented at Web scale. This was reflected in a ques-
tion from David Cock of the University of New South Wales
regarding the novelty of the work; Dabek answered that the
novelty is the scale of the system, which the field had given
up on. Mehul Shah of HP Labs asked about the limits of the
system and how it handled stale locks left by clients. Dabek
responded that the largest problem with concurrency was
heavy write conflicts, which were addressed with a backoff
heuristic. The space required to store notifications in Big-
Table is not an issue, and stale locks were cleaned up lazily.
Margo Seltzer of Harvard University asked his thoughts on
the debate between MapReduce versus databases. Dabek
said that if you pretend MapReduce is a database, it is a bad
one, but that MapReduce is not dead and is still used heavily
within Google.

Reining in the Outliers in Map-Reduce Clusters using
Mantri
Ganesh Ananthanarayanan, Microsoft Research and UC Berkeley;

Srikanth Kandula and Albert Greenberg, Microsoft Research; Ion Stoica,

UC Berkeley; Yi Lu, Microsoft Research; Bikas Saha and Edward Harris,

Microsoft Bing

Srikanth Kandula presented the Mantri system, used in
production at Microsoft Bing. The goal of Mantri is reducing
outliers, which slow down MapReduce jobs; reducing outliers
improves productivity, gives cloud service providers more
predictable completion times, and better utilizes datacenter
resources, saving money.

One key cause of outliers is unavailable inputs at a compu-
tation node. To address this, Mantri replicates intermedi-
ate data and introduces heuristics to predict what data to
replicate where, weighted by the cost of recomputation. A
second key cause of outliers is variable network congestion,
which Mantri addresses by carefully placing reduce tasks
such that traffic on a link out of a rack is proportional to the
bandwidth. Although global coordination to load-balance
the network links across all jobs is difficult, having each job
balance its own traffic is a good approximation of the ideal.
A final cause of outliers is workload imbalance, often due to
contention at a given machine. There is a long tail (25%) of
miscellaneous causes for this.

Reports_final.indd 94 1.18.11 3:27 PM

 ;login: FEbruary 2011 Conference Reports 95

Josh Triplett asked what fall-back strategy they used for
non-commutative aggregate functions. Power answered that
these were relatively rare in their experience and that they
could use pairwise locking, but that locking was slow enough
to avoid at all costs. Daniel Greenway asked about check-
pointing and what they did if nodes fail. Power replied that
they roll all nodes back to the last checkpoint.

Cloud Storage

Summarized by Katelin Bailey (katelin@cs.washington.edu)

Depot: Cloud Storage with Minimal Trust
Prince Mahajan, Srinath Setty, Sangmin Lee, Allen Clement, Lorenzo

Alvisi, Mike Dahlin, and Michael Walfish, The University of Texas at

Austin

Prince Mahajan presented Depot, an attempt to remove trust
from cloud storage. This system was unable to completely
remove trust from the equation, but Mahajan argued that it
comes very close: for put availability, consistency and stale-
ness detection, the system requires no trust, while it mini-
mizes the trust necessary for get availability and durability
(reliant on one node).

Depot has multiple failover servers and can default to client-
to-client communication in the case of errors. As with other
work in the area, Depot uses both local state and metadata
added to commits to allow clients to check the history and
detect forks in the state. The system uses Fork-Join-Causal
consistency in the case of unreliable nodes, which allows
for taking a forked subset and reconciling it as if it were two
concurrent commits from “virtual nodes.” It also allows for
the eviction of a node that is consistently faulty or mali-
cious. Mahajan then covered implementation details and
performance evaluation for the Depot project and the related
“teapot” project implemented on Amazon’s S3, demonstrat-
ing almost unmodified server-side code. He claimed that the
performance overhead was modest and the implementation
practical for use.

There were a large number of questions following the talk.
Dave Koch of NICTA pointed out that CPU overheads on
clients were high. Mahajan conceded that one of the graphs
showed a 400% CPU overhead for one test, but argued that
CPU cycles are cheap enough to allow this overhead to
be modest nonetheless: throughput is the concern. David
Schultz pondered the correctness of clients during reads: for
example, a Byzantine client who had the only copy of some
data. Mahajan clarified that individual clients can have repli-
cation specifications or filters, such as only reading data that
is resident on four nodes. This would, however, reduce avail-
ability when only one node is online, as Schultz pointed out.

hit rate and better performance. Allowing stale results also
improves performance by as much as 3–5x, but the knee
of the performance curve was around 20–30 seconds. The
authors also measured the overhead of consistent caching
by allowing inconsistent reads; performance improved only
marginally, indicating that the costs are negligible.

Marcos Aguilera of Microsoft Research asked whether
TxCache provided serializability or snapshot isolation. Ports
answered that the system provides either, dictated by the
guarantees of the underlying database. Ports was also asked
whether they got performance wins on a single system, or
only across several nodes. He answered that the number of
nodes determines the size of the cache and the hit frequency.

Piccolo: Building Fast, Distributed Programs with
Partitioned Tables
Russell Power and Jinyang Li, New York University

Russell Power presented Piccolo, a framework for develop-
ing high-performance distributed applications. Problems
that can fit into memory in a cluster are a key motivation for
this work. Power structured the talk around page rank as a
representative example. Existing data flow models, such as
MapReduce, don’t expose global state, and models such as
MPI and RPC require explicit communication, making them
harder to write. The goal of Piccolo is to provide distributed,
in-memory state. The runtime system transparently handles
communication when the programmer requests reads and
writes.

Power described several technical challenges in developing
a page rank example application on Piccolo and challenges
in implementing Piccolo on a cluster. Throughout the talk,
he refined a pseudocode example that was both reasonably
detailed and simple enough to fit onto one slide. For instance,
Piccolo must add synchronization primitives for concur-
rent writes to a variable. Because many writes are actu-
ally accumulator functions, these can be used with release
consistency to improve concurrency. Power also explained
that storing state at nodes increases the complexity of load
balancing, as it is harder to start new jobs. Starting jobs at
remote nodes gives up locality and harms performance; mov-
ing is hard because the old site must still forward updates to
the new site.

The system was evaluated on a cluster of 12 nodes totaling 64
cores. Compared to Hadoop, calculating page rank on a 100M
page baseline, Piccolo was substantially faster. The iteration
time remained nearly flat as more workers were added to
match a larger input graph, indicating near-perfect scaling.
The Piccolo code is available at piccolo.news.cs.nyu.edu.

Reports_final.indd 95 1.18.11 3:27 PM

 96 ;login: Vol. 36, No. 1

SPORC: Group Collaboration using Untrusted Cloud
Resources
Ariel J. Feldman, William P. Zeller, Michael J. Freedman, and Edward W.

Felten, Princeton University

Ariel Feldman presented a system for building collaborative
projects on an untrusted server, motivated by the desire to
use cloud services without trusting the provider. The system
presented a single server with a number of clients, moving
the application state to the client, as well as a copy of state
stored client-side and all server storage being encrypted.
The system relies on the previously researched ideas of fork*
consistency and operational transformation (OT).

Feldman took the audience through a number of common
scenarios. He outlined how the fork* consistency is repre-
sented by a history hash embedded in each commit, includ-
ing sequence numbers and corresponding checks when an
update is pushed out to the clients. In addition, Feldman dem-
onstrated in detail how the OT transform functions can be
used to deal with merging forked groups, as well as handling
pending transactions and offline commits. Lastly, Feldman
talked about how access control works in SPORC: symmetric
keys (for efficiency) keep the commits encrypted in transit
and on the server. Access control list (ACL) changes are
performed with barriers to prevent conflicting changes; all
changes after a barrier are rejected until the change is fully
committed. Redistribution of AES keys is done via encryp-
tion as well, preserving a chain of encrypted keys for use by
members joining later. Feldman argues that at no point would
the server have to be trusted. Performance evaluations on a
local-area network indicate that SPORC would have usable
latency and throughput for moderate-sized groups.

Bryan Ford of Yale proposed a scenario where Alice attempts
to evict (malicious) Bob from the access list, but Bob adds
(equally malicious) Eve and Fred before he is evicted, and the
process cascades such that there are more and more mali-
cious members of the community. Feldman explained that
there are three levels of access possible in SPORC: admin-
istrators, editors, and readers, providing some assurance,
although a rogue administrator could cause substantial
problems. Josh Triplett probed the choice to use servers,
if they are simply used for ordering and storage. Feldman
replied that they allow for a more timely commit process
than a decentralized system. He also verified that the project
assumed a correct client. However, he pointed out that fork*
recovery allows for an undo option, if necessary.

Comet: An Active Distributed Key-Value Store
Roxana Geambasu, Amit A. Levy, Tadayoshi Kohno, Arvind

Krishnamurthy, and Henry M. Levy, University of Washington

Roxana Geambasu presented Comet, a variation on distrib-
uted hash tables (DHT), which allows applications to make
use of small bits of code inserted in the DHT. Motivated by
earlier work (Vanish, Geambasu 2009) which exposed the
frustrating nature of working with a one-size-fits-all DHT
serving many applications, the project produced a system
that is flexible, lightweight, and provides isolation of the
included code. The goal was to create an extensible DHT that
can offer different capabilities to the different applications.

The implementation of this project focused on a unit called
the Active Storage Object (ASO), which consists of data and
tiny snippets of code, written in a very restricted form of Lua.
The architecture of the system consists of an active runtime
over the standard DHT, which ASOs can access via hand-
lers and an ASO API. The ASO is sandboxed and has a very
limited interface to the outside world, enhancing the overall
security of the system. The sandbox allows the ASO to have
some knowledge of the host and the DHT in general, but
restricts actions to periodic tasks, interceptions of accesses,
and minimal DHT actions (put, get, lookup). Geambasu
demonstrated how even these limited ASOs can create pow-
erful capabilities for the application. Her examples include
an altered replication policy, a proximity tracker for closest
peers, and self-monitoring code. She pointed out that Comet
not only allows policies to differ between applications, but
opens up new opportunities for tracking and analyzing usage,
or even adding debugging or logging possibilities.

Pietros Maniatos of Intel Labs, Berkeley, wondered about
security. Geambasu noted that there were global restrictions
set on the ASOs such that they could not take over the host,
and clarified that the only classes of operations allowed in
the modified Lua code were math operations, string opera-
tions, and table manipulation. Additionally, there is a hard
limit on lines of code allowed. She also addressed the ques-
tion of replicas sharing data or being treated separately: the
replicas are indeed treated as separate copies, but they can
locate and even merge with each other, if desired. Dutch
Meyer asked about variance in performance, for example,
with a garbage collector, and Geambasu suggested they might
use another type of language. Ben Wester (U. Michigan, Ann
Arbor) asked if code gets run on every get, and Geambasu
replied that in a traditional DHT, things may fail, requests get
dropped, so some redundancy is a good thing.

Reports_final.indd 96 1.18.11 3:27 PM

 ;login: FEbruary 2011 Conference Reports 97

to a subset of instances. Onix can also aggregate data, reduc-
ing its fidelity before sharing. For example, when exporting
uptime data, Onix can present an average of the information
to other nodes instead of providing an exhaustive dataset.
Link failures are the application’s responsibility, but Onix
assumes a reliable management connectivity or uses a
multi-pathing protocol. Failures are handled using distrib-
uted coordination (via Zookeeper integration). Performance
details are available in the paper.

Jeremy stressed that Onix is a real, production program. A
prototype of over 150,000 lines of code is currently under
testing and expected to be deployed in future products in the
next few months or within the year.

Marco Canini from EPFL asked several questions about
the application of Onix. Jeremy explained that there is only
one kind of routing protocol per network, and that the Onix
“application” is a program that manipulates the NIB graph
to set up the routing the way that the application developer
requires. There are several protocols for exchanging mes-
sages, but one easy way is using the OpenFlow protocol.
Network bootstrapping depends on the particular configura-
tion. An attendee from UCSD asked how the Onix ARP cache
could be refreshed. Jeremy said that hosts sent out ARPs
periodically. Eddie Kohler from UCLA asked about Jeremy’s
favorite implementation trick in Onix. Jeremy likes the fact
that Onix provides a lot of the distributed mechanisms that
are hidden from the programmer, as well as the fact that
distributed storage can be swapped out transparently to the
programmer.

Can the Production Network Be the Testbed?
Rob Sherwood, Deutsche Telekom Inc. R&D Lab; Glen Gibb and Kok-

Kiong Yap, Stanford University; Guido Appenzeller, Big Switch Networks;

Martin Casado, Nicira Networks; Nick McKeown and Guru Parulkar,

Stanford University

Rob Sherwood described a new technique and prototype
implementation called FlowVisor which allows realistic
evaluation of new networking services within production
networks. It’s difficult to evaluate new services in practice.
Services may not be fully ready for production, but there’s a
need to test them. Rob described real networking as a black-
box system, with hundreds of thousands of devices, while no
one really knows realistic Internet topologies. Some test-
beds use software routers, but performance can suffer due
to limited hardware scale, artificial topologies, and limited
adoption, leading to the use of synthetic data. Subsequently,
the driving motivation for this technique is to allow produc-
tion networks to serve as testbeds while providing strong
isolation between production and testbed networking. Rob
believes that the production network can indeed be the testbed.

Production Networks

Summarized by Peter Bailis (pbailis@eecs.harvard.edu)

Onix: A Distributed Control Platform for Large-scale
Production Networks
Teemu Koponen, Martin Casado, Natasha Gude, and Jeremy Stribling,

Nicira Networks; Leon Poutievski, Min Zhu, and Rajiv Ramanathan,

Google; Yuichiro Iwata, Hiroaki Inoue, and Takayuki Hama, NEC; Scott

Shenker, International Computer Science Institute (ICSI) and UC

Berkeley

Jeremy Stribling presented Onix, a software system for
controlling large-scale networks. Onix is a cross-institution
effort designed for real-world production network deploy-
ments and is currently under quality-assurance testing.
Jeremy began by describing typical router architecture:
a fast-path forwarding plane determines where to send
packets, while a control plane inside the device can repro-
gram the forwarding plane and handle exceptions. Central-
izing the control plane as in Software-Defined Networking
(SDN) allows greater control over the network, but many of
the issues related to scalable rule propagation and device
reprogramming are difficult. Onix moves this centralized
control logic to a distributed infrastructure while providing a
high-level interface, solving state distribution problems and
abstracting low-level mechanisms. Onix has several goals,
including generality, scalability, reliability, simplicity, and
performance.

For generality, developers program against a network graph
called the Network Information Base (NIB) in which nodes
are physical entities like switches, hosts, and ports. The
NIB is the focal point of the system, and Onix takes care of
talking to other instances, importing external state changes
and exporting local state changes. Because different data has
different storage requirements, it can be stored in replicated
transactional storage (SQL) or in a one-hop in-memory DHT.
For an ARP server, for example, the switch topology would be
stored as hard state in the transactional storage, and the IP
and MAC soft state would be stored in the DHT. This storage
is specified pre-runtime, and at runtime the programmer
only interacts with the NIB.

Scalability and reliability concerns amount to distributed
state management problems. There are application-specific
tradeoffs involved in determining how to partition the net-
work. For example, in some networks Onix need not connect
to every switch, which is more scalable than connecting to
all of them. Traditional network scaling uses partitioning
(VLAN systems) and aggregation, which reduces fidelity.
Onix instead uses different instances to control different
parts of the network, and network equipment connects only

Reports_final.indd 97 1.18.11 3:27 PM

 98 ;login: Vol. 36, No. 1

Building Extensible Networks with Rule-Based
Forwarding
Lucian Popa, University of California, Berkeley, and ICSI, Berkeley;

Norbert Egi, Lancaster University; Sylvia Ratnasamy, Intel Labs, Berkeley;

Ion Stoica, University of California, Berkeley

Lucian Popa presented rule-based forwarding (RBF), a
technique for allowing flexible Internet packet forwarding.
The goal of this work was to allow more general forwarding
directions, which provide routers with information on how to
send their packets. This generality could provide the ability
to use middleboxes, source routes, or in-network packet pro-
cessing. Their thesis is that flexibility needs to be balanced
by providing policy-based access, and there is a balance
between flexibility and constrained access. The idea here is
that forwarding directives are carried inside packets; routers
only need to verify that the packet complies with the policies
of all involved parties and forward the packet. Lucian argued
that this allows the appropriate balance between flexibility
and policy enforcement.

Lucian presented a rule-based forwarding architecture.
Rules are leased from and certified by trusted third parties,
and all entities involved in the rule are certified. The RBF
control plane consists of both a distribution infrastruc-
ture and a certification infrastructure. RBF assumes an
anti-spoofing mechanism, the existence of rule-certifying
entities, and a DDoS-resistant rule distribution. Rules are
represented as a sequence of if-then-else statements that are
comparison operations on router state, along with several
actions (e.g., drop packet); however, rules cannot modify
router attributes. Thus, the rules are flexible (allowing many
policies), compliant (certified), and safe (cannot modify
state). In practice, rule forwarding incurs little size overhead
(between 60 and 140 bytes, or 13% on standard IP packet,
27% with RSA signatures) and limited runtime overhead.
They incur negligible overhead on a software router on a fast
path and a 10% slowdown on the slow path, when verifying
RSA signatures and using real traffic.

Michael Walfish from UT Austin asked about the feasibility
of determining if a particular inter-domain path was taken.
Lucian answered that cryptographic guarantees can solve
this problem. Michael also asked about unnamed stakehold-
ers in the network—how can we name rule entities in the
network a priori? Lucian claimed that if we treat rule-based
forwarding like an overlay network, this is not a problem;
after considerable discussion, this question was taken
offline. Andreas from AT&T Research asked about the effect
on latency, which is negligible in the current implementa-
tion. Helen Wang from Microsoft Research asked about the
deployability on today’s ISPs. Lucian answered that a partial
deployment is possible and might be able to detect whether

Rob described network slicing, a new technique for accom-
plishing this isolation. The network is partitioned into logical
copies called slices, each of which controls its own packet
forwarding. Users pick which slice controls their traffic, and
existing production services and testbed services can run
in separate slices. This enforces isolation, while allowing
the logical testbed to mirror the production network topol-
ogy. Network slicing can be accomplished by multiplexing
the data plane, a custom, high-performance ASIC within the
router that enforces rules between multiple control planes,
which compute forwarding rules and push them to the data
plane. The data plane is unmodified, allowing forwarding
without performance penalty, while the multiple slices share
the general-purpose CPU on the router.

Rob described FlowSpace and FlowVisor, an implementa-
tion of network slicing. FlowSpace maps packets to differ-
ent network slices according to twelve OpenFlow header
types, including IP address, MAC address, and TCP port.
This allows users to opt into slices at a fine granularity, like
HTTP, VoIP, or other network services. FlowVisor controls
the control plane using the OpenFlow protocol, allowing
external control. FlowVisor handles exceptions from the data
plane and forwards them to the slice controller, which checks
the policy and forwards it to the router. Handlers are cached
for scalability. To keep slices from monopolizing the CPU,
the system currently rate-limits rule insertions and uses
periodic drop-rules to throttle exceptions, although future
systems should have proper rate limiters. FlowVisor is cur-
rently deployed on or will be deployed on eight campuses and
with two ISPs.

Jeff Mogul from HP Labs noted that the CPU is a limited
resource and that this might limit the flow set-up rate, which
Rob acknowledged. An attendee from UBC asked about the
effect on latency. Rob showed that the average latency is
approximately half a millisecond but depends on the opera-
tion. Another attendee asked about the requirements for
forwarding memory. Rob agreed that the number of rules is a
scarce commodity on current routers, but hardware manu-
facturers are working on expanding this. Rob mentioned
that there are several techniques (e.g., caching) for operating
without a complete set of forwarding memory. Finally, Josh
Triplett from Portland State University asked whether the
authors had considered using some slices as control slices for
the system. Rob responded that in practice the experimental
slices use the production slice for the control plane.

Reports_final.indd 98 1.18.11 3:27 PM

 ;login: FEbruary 2011 Conference Reports 99

myr Kuznetsv from EPFL exclaimed that the work almost
made him throw away his mobile device! He encouraged the
authors to provide the tool as a Web site that can test applica-
tions uploaded by concerned users. In answering other ques-
tions, Enck clarified that TaintDroid identifies when private
data has left the phone, as opposed to detecting privacy
violations. He also explained that many instances of private
data leaking were non-malicious, so even as some application
writers may attempt to circumvent the system, it may still be
widely useful in the future.

StarTrack Next Generation: A Scalable Infrastructure
for Track-Based Applications
Maya Haridasan, Iqbal Mohomed, Doug Terry, Chandramohan A.

Thekkath, and Li Zhang, Microsoft Research Silicon Valley

Maya Haridasan presented her work on a service designed
to manage paths based on GPS location coordinates. Mobile
devices are now capable of recording their paths as a series of
location and time tuples, which Haridasan calls a track. Once
stored, these historical tracks can be a valuable source of
information for users. Among many other examples, Star-
Track could enable applications that provide personalized
driving directions that take into account routes the driver is
already familiar with. Using tracks from multiple users, ride-
sharing applications could be developed.

To reach these goals, Haridasan and her team created the
StarTrack service, designed to store and manage tracks and
to provide a track-based programming interface. However,
challenges arise in that tracks are error-prone, scalability is
difficult, and applications require a flexible API. To address
these concerns, Haridasan and her team developed a set of
novel algorithms and data structures to compactly store,
compare, join, and sort sets of tracks. After evaluating Star-
Track against several other potential implementations, she
closed by asking anyone interested in using the infrastruc-
ture to contact the authors.

Petros Maniatis from Intel Labs proposed a class of queries
where information from multiple clients must be aggregated
but not revealed. For example, the request “give me walking
directions that don’t intersect with my ex-partner” requires
some knowledge of another’s location, but ideally in a way
that doesn’t share private data. Haridasan and her team had
considered similar use cases, but haven’t found a solution
yet. Michael Nowlan of Yale asked if there was any intention
to associate intent or content with a track. Such a pairing
could be used to separate driving tracks from other modes
of transportation or to keep some paths private. Haridasan
explained that there was already metadata associated with
tracks, and ACLs could be used to preserve privacy, so such
designs should already be possible. Stefan Sariou of Micro-

some packets are or are not policy-compliant, but some pack-
ets would still be received. Rule-based forwarding enables
more services, Lucian claimed, so this is still a benefit for
ISPs.

Mobility

Summarized by Dutch Meyer (dmeyer@cs.ubc.ca)

TaintDroid: An Information-Flow Tracking System for
Realtime Privacy Monitoring on Smartphones
William Enck, The Pennsylvania State University; Peter Gilbert, Duke

University; Byung-gon Chun, Intel Labs; Landon P. Cox, Duke University;

Jaeyeon Jung, Intel Labs; Patrick McDaniel, The Pennsylvania State

University; Anmol N. Sheth, Intel Labs

William Enck explained how to balance fun and utility with
privacy. He detailed how applications downloaded to a smart-
phone have full access to potentially private information,
such as the GPS unit, microphone, camera, address book,
and the phone’s unique ID. Too often, users are surprised at
what information is transmitted from the phone. In one such
example, a popular wallpaper application was sending users’
phone numbers back to the developer. While this particular
example was found to be non-malicious, it serves as a warn-
ing that our software may be revealing information that
users are not comfortable disclosing.

TaintDroid is a VM-based taint tracking system for Android
phones. In order to determine when private information has
left the phone, the authors modified the Dalvik interpreter
to store and propagate taint tags for variables. This allows
private data to be tracked, for example, from its source in
the address book until it is released to the network. Despite
operating in a resource-constrained environment, Taint-
Droid runs in real time. It displays warnings during live use
of an application and was shown to have only a 14% overhead.
The authors evaluated the system on 30 applications ran-
domly selected from the 50 most popular applications in the
Android Marketplace. Ultimately, 105 connections transmit-
ted private data, while only 37 of those messages were clearly
legitimate. Of the 30 studied applications, 15 shared location
information with advertisement servers, and 7 shared device
identifiers with a remote server. In no cases were these
disclosures described in the EULA or evident from the user
interface.

Iqbal Mohomed from Microsoft Research asked about
implicit information flows, such as using timing per-
turbations to leak information to another process. Enck
acknowledged that this is an existing problem, one that can
be addressed with static analysis, although doing so intro-
duces trade-offs such as high false-positive rates. Volody-

Reports_final.indd 99 1.18.11 3:27 PM

 100 ;login: Vol. 36, No. 1

The most important take-away measurements were
approximately 10% CPU overhead per level of nesting, that
multi-dimensional paging can be a several hundred percent
performance win for page-fault heavy loads, and that multi-
level device assignment can obtain equal device perfor-
mance but at significant CPU cost. A significant portion
of the added cost for multi-level device assignment could
be removed if direct interrupt delivery to nested VMs was
supported. The code was mature and efficient enough to be
added to KVM.

An audience member from NICTA asked whether the perfor-
mance would continue to get 10% worse per level of nesting.
Ben-Yehuda responded that the exit multiplication effect
would get worse as the level of nesting increased, and thus
nesting performance would generally get worse by more than
10% per level with higher degrees of nesting. Nathan Taylor
of the University of British Columbia asked about the secu-
rity implications of this work, whether this would facilitate
VM-based rootkits and whether I/O would remain safe with
this implementation. Ben-Yehuda noted that OSes can easily
detect when they are being virtualized (via timing irregu-
larities, for example), so that VM-based rootkits are no less
detectable with this work. He also said that trusted comput-
ing technology could potentially be employed to ensure the
underlying hypervisor boots from a known safe environment.
Sorav Bansal of IIT Delhi asked whether binary translation
could help further reduce overhead, and Ben-Yehuda said this
was possible but difficult for nested virtualization, due to
lack of knowledge of hypervisor memory layout.

mClock: Handling Throughput Variability for
Hypervisor IO Scheduling
Ajay Gulati, VMware Inc.; Arif Merchant, HP Labs; Peter J. Varman, Rice

University

Ajay Gulati presented mClock, a new algorithm for schedul-
ing I/O requests from VMs. He pointed out that controls on
CPU allocation for VMs are fairly mature by now, but that
there aren’t equivalent controls for I/O requests (IOPS). In
particular, reservation and limit controls of a fixed number
of IOPS/time are not available, which is problematic in that
storage is often from a shared network device, causing vari-
able total capacity for all VMs on a host and making pure
proportional sharing inappropriate.

Scheduling algorithms for VMs are often phrased in terms
of time tags, in which the VM with the minimum time tag
is scheduled. Gulati explained that the key points of mClock
were real-time tags and separate time tags for reservations,
limits, and proportional shares of resources beyond reserva-
tions. Real-time tags are used to ensure that the procedure
can track actual rates of IOPS/time. Tags are prioritized so

soft Research asked about handling errors and incorrect
data. Haridasan replied that much of this was handled by the
GPS location canonicalization algorithm, which converts a
set of collected GPS samples into a path that goes through the
underlying road network.

Virtualization

Summarized by Alan Dunn (adunn@cs.utexas.edu)

The Turtles Project: Design and Implementation of
Nested Virtualization
Muli Ben-Yehuda, IBM Research—Haifa; Michael D. Day, IBM Linux

Technology Center; Zvi Dubitzky, Michael Factor, Nadav Har’El, and Abel

Gordon, IBM Research—Haifa; Anthony Liguori, IBM Linux Technology

Center; Orit Wasserman and Ben-Ami Yassour, IBM Research—Haifa

>Awarded Jay Lepreau Best Paper!

Muli Ben-Yehuda presented the Turtles Project, which was
awarded one of two Jay Lepreau Best Paper awards for OSDI
’10. The Turtles Project is an implementation of nested
virtualization support for the Intel x86 architecture, which
means it allows software written to use virtualization hard-
ware support to run inside a hypervisor that already uses
that hardware. Nested virtualization support allows for new
applications, like hardware virtualization support for OSes
that already are hypervisors (e.g., Windows 7 with XP mode)
and deployment of virtual machines in the cloud. The x86
architecture supports only one level of virtualization in hard-
ware natively, so multiplexing the virtualization hardware
is necessary. The difficulty is to perform this efficiently,
as changing the state used by the virtualization hardware
requires expensive VM exits, and multiplicatively more exits
per level of nesting.

Ben-Yehuda focused on MMU and I/O virtualization effi-
ciency improvements. For MMU virtualization, he described
three schemes in increasing order of efficiency. The key
problem is that even with extra Extended Page Table (EPT)
hardware support for more efficient translation, with any
nesting depth greater than one there will be more transla-
tions necessary than hardware can provide, so translations
must be compressed into fewer mappings. The most efficient
“multi-dimensional” paging scheme compresses EPT map-
pings, since they change less frequently. For I/O virtualiza-
tion efficiency, Ben-Yehuda described the most difficult case
they had to tackle: the direct assignment of devices to nested
VMs. Direct assignment requires an IOMMU for safety, but
for nesting there is added difficulty, since the IOMMU itself
must be emulated and requires analogous mapping compres-
sion.

Reports_final.indd 100 1.18.11 3:27 PM

 ;login: FEbruary 2011 Conference Reports 101

becomes easier in this design, since hardware counter values
can be converted into new system clock times merely by
using the calibration variables of Dom0 on the new machine
rather than transplanting feedback-related state calibrated
on one machine onto another whose counters have origins,
drift, and temperature environment that are completely dif-
ferent.

The RADclock-based design was tested against Xen’s current
and prior timekeeping mechanisms. Veitch said that the mea-
sured error in standard RADclock operation appears to be
low enough that the primary source appears to be air-condi-
tioning flow in the room. Also, migration caused inaccuracy
of the order of tens of microseconds in RADclock, as opposed
to several seconds with current Xen timekeeping.

David Cock of NICTA asked whether a dependent clock
design like RADclock could be used with feedback-based
mechanisms without compensating clocks, as in Xen’s cur-
rent timekeeping. Veitch claimed that this would be difficult.
Another audience member wanted clarification on what
accuracies are achievable with RADclock. Veitch said that
this depends primarily on characteristics of the connection
to a time server. He pointed to his prior work showing that
many kinds of load (e.g., high temperature) are not problem-
atic, and estimated maximal accuracy in the range of tens of
microseconds.

Workshop on Supporting Diversity in Systems
Research (Diversity ’10)

October 2–3, 2010
Vancouver, BC, Canada

Summarized by James Mickens (mickens@microsoft.com)

Research Agendas: Picking Good Ones and Publishing
Successfully
Dawn Song, University of California, Berkeley; Anthony Joseph, Intel and

University of California, Berkeley

Dawn Song, a professor at Berkeley, provided several pieces
of advice for students who were struggling to publish or
pick compelling project ideas. First, she observed that many
students only read papers in their particular subfield of
computer science. Song recommended that students read a
broad range of literature in computer science and beyond; by
doing so, they will learn about important problems and tech-
niques in other areas which may relate to their own subfield.
In a similar vein, Song advised students to communicate
frequently with professors and other students, both through
formal channels like reading groups and informal channels
like lunch meetings. Such face-to-face interaction provides

that VMs not making their reservations take precedence and
that VMs exceeding limits are not scheduled. The effective-
ness of mClock in maintaining limits and reservations was
demonstrated empirically with a graphical side-by-side
throughput comparison. A separate enhancement allowing
VMs to gain credit for being idle was made, which is impor-
tant as I/O traffic is often bursty. mClock is general enough
to be employed for other resources (such as network I/O) as
well.

Etienne Le Sueur from NICTA pointed out that it appeared
that the total IOPS/time dropped under mClock. Gulati said
that the workloads of VMs in their experiments have differ-
ent read-write ratios, degrees of randomness, and I/O sizes,
so that the degree of variance Le Sueur observed (several
hundred IOPS) was not unexpected. Gulati pointed to work-
load details on a backup slide that is reproduced in the paper.
Another audience member asked how mClock balances
latency and throughput tradeoffs. Gulati responded that
mClock is more about dividing IOPS among VMs with reser-
vation, limit, and share controls, but that prior VMWare work
(PARDA) in FAST ’09 dealt with latency control by throttling
hosts. He said that for stronger guarantees, ideally one would
have underlying hardware guarantees from vendors.

Virtualize Everything but Time
Timothy Broomhead, Laurence Cremean, Julien Ridoux, and Darryl

Veitch, Center for Ultra-Broadband Information Networks (CUBIN), The

University of Melbourne

Darryl Veitch presented an architecture for tracking time
more accurately in the Xen VMM. The motivation for this
work is that there are a number of applications—including
finance, network monitoring, and distributed gaming—that
require accurate timing information, but current timekeep-
ing methods produce inaccurate results in VMs. Factors like
clock drift combine with variable latency caused by other
VMs in ways that can cause feedback mechanisms in ntpd,
the current de facto standard for Linux timekeeping, to
become unstable. Additionally, it is difficult to preserve cor-
rect times during live migration of VMs.

Veitch described his group’s prior work with the Robust
Absolute and Difference (RAD) clock, and he explained why
it is a good fit for Xen. The key design point of RADclock is
that it is “feedforward”-based. This means that system clock
timestamps, which already have corrections applied, are
not used to timestamp timing packets. Instead, raw counter
values are used, and clock calibration is achieved through
variables that convert raw counters into real times. VM
clocks can then all read one hardware counter and calibra-
tion variables hosted in Dom0, which has hardware access;
this is referred to as a dependent clock design. VM migration

Reports_final.indd 101 1.18.11 3:27 PM

 102 ;login: Vol. 36, No. 1

is actually quite small, but that attending conferences will
never be fun until you know other people within the com-
munity. Thus, he encouraged students to network widely; for
students who are shy, Mickens recommended that they talk
to other students and build confidence before talking to more
senior members of the community.

Hot Topics in Systems Research
Monica Lam, Stanford University; James Mickens, Microsoft Research

Monica Lam gave the first of two purely technical presenta-
tions in the Diversity workshop. She began with an overview
of her research focuses, which have included compilers, soft-
ware bug detection, system management, and security. Lam
spent the rest of her talk describing her most recent research,
which focuses on devising social networking applications
that are decentralized, easy to use, and do not force all users
to entrust all of their data to a few large companies. Lam
observed that Facebook is headed towards a monopoly on
personal information similar to the monopoly that Microsoft
and Intel have over the desktop computing platform. The key
challenge in creating a privacy-preserving alternative for
social networking is that Facebook already has an enormous
user base, and these people will be loath to move to a new
privacy-preserving system, both for reasons of convenience
and because many users do not treat privacy leakage as a
first-order concern. Thus, Lam’s research goal is to allow
users to interact socially using an open, federated standard
that lacks a central authority.

Lam gave several concrete examples of this architecture.
In her Partyware project, people within immediate physi-
cal proximity share their profiles using their mobile phones,
creating an ad hoc social network only consisting of people in
a certain place at a certain time; individual users or support-
ive businesses like coffee shops run a lightweight rendez-
vous server that forwards traffic between phones or other
user devices. Lam also described how email can be used as
the transport protocol for decentralized social networking
applications. Email is an attractive medium for several rea-
sons. First, email providers typically provide much stronger
privacy policies than those provided by social networking
companies. Second, users can create new online personas
simply by creating new email addresses. Finally, since there
are multiple email providers (Google, Microsoft, Yahoo, etc.),
no one party can control the aggregate social graph.

James Mickens began the second technical presentation
by describing the fundamental insight behind his recent
research: using JavaScript, Web pages have sufficient com-
putational abilities to act as heavyweight participants in dis-
tributed systems. Mickens then described two projects that
leverage the power of Web pages running within unmodified

students with valuable networking opportunities and also
exposes them to a wider variety of perspectives on comput-
ing research. Finally, Song also advised students to not treat
class projects as busywork, but as opportunities to create
publishable research.

The next presenter was Anthony Joseph, a professor at
Berkeley and director of Intel Research Berkeley. Joseph
encouraged students to do industrial internships and gain
exposure to pressing real-world problems. However, Joseph
also advised students to avoid working on problems that are
too short-term or whose solutions only require an incre-
mental improvement to the current state of the art. Joseph
described his personal research methodology, explaining how
he decomposes large projects into separate, short projects
so as to get early results and quickly determine whether the
overarching goals are actually as interesting as they origi-
nally seemed. Joseph said that with the advent of utility
cloud infrastructures such as Amazon’s EC2, even graduate
students can evaluate their system’s behavior at a large scale.
Joseph recommended the use of these platforms to gener-
ate realistic evaluation results, and he encouraged students
to take a statistics class so that they can properly validate
their raw data. Joseph also emphasized that the research
community will count the number of projects you finish, not
the number you start. Thus, it is important to prefer simple
solutions to complex ones, gather external feedback during a
project’s life cycle, and be flexible in adapting a project’s goals
and scope.

Getting the Most from a Conference
Carla Ellis, Duke University; Yvonne Coady, University of Victoria

Carla Ellis and Yvonne Coady gave an interactive presenta-
tion which taught students how to derive the maximum ben-
efit from a conference. The presentation began with a skit in
which Ellis and Coady pretended to be shy graduate students
who were too intimidated to talk to a well-known researcher.
The pair used the skit as a launching point for a discus-
sion about how to successfully network. Ellis described the
importance of having an elevator pitch which succinctly
describes your research problem and your proposed solution.
Coady observed that most academics love to talk about their
own research, so students should not be afraid to initiate con-
versations with more established members of the commu-
nity. Throughout the presentation, audience members asked
questions or provided additional advice. Jonathan Appavoo,
a professor at Boston University, reminded students of the
importance of sincerity, and said that whether you talk to a
first-year graduate student or a senior professor, you should
always treat people with respect and kindness. James Mick-
ens of Microsoft Research said that the academic community

Reports_final.indd 102 1.18.11 3:27 PM

 ;login: FEbruary 2011 Conference Reports 103

tus. Younger professors are often more motivated to publish
frequently, but may micromanage. In contrast, tenured pro-
fessors may be more relaxed and more interested in deeper,
more impactful research, but they may not push students to
work as hard as they can, and students may feel uncomfort-
able betting the early part of their career on high-risk, high-
reward research.

The next presentation was given by Nalini Belaramani, who
graduated from the University of Texas at Austin in 2009
and now works as a software engineer at Google. Belaramani
emphasized the importance of communication skills, saying
that the ability to explain one’s work in a confident, articulate
manner is crucial for getting papers published and succeed-
ing in the job market. She encouraged students to practice
writing and presenting as often as possible. In particular,
Belaramani said that successful graduate students excel at
motivating their work to others, either through the introduc-
tion section of a paper or the first few minutes of a verbal
presentation. Seeking early feedback from professors or
other students may result in criticism, but it will ultimately
improve your research skills and your presentation abilities.
Belaramani also mentioned that students should not bet their
entire career on a single paper getting published in a specific
venue; instead, students should work on multiple projects and
multiple papers, and be willing to adapt the scope of projects
in reaction to paper reviews or newly discovered knowledge.

The final presentation was given by Susan Horwitz, who
received her PhD in 1985 and is now a professor at the Uni-
versity of Wisconsin—Madison. Horwitz told the student
attendees to expect occasional hardships during the PhD
process, but to take solace in the fact that everyone will expe-
rience challenges during graduate school. Horwitz encour-
aged students to be social and have fun during their graduate
studies, and to converse with other students and faculty
during the inevitable periods of feeling lost or unmotivated.
Horwitz also told the students that if they were considering
a job at a research university, they should prepare not just
to do research but to teach, write grants, and review papers.
Horwitz encouraged students to experience all of these tasks
while in school so that they could determine whether a job at
a research university would be a good career path for them.

Finishing the Dissertation: Techniques for Success
Anne Rogers, University of Chicago; Jinyang Li, New York University

The session began with a presentation from Anne Rogers,
a professor at the University of Chicago. Rogers’ talk was
grounded in her experience as the director of graduate stud-
ies for her school’s computer science department; this role
gave her unique insights into the pitfalls that students often
encounter as they try to complete their dissertations. Rogers

browsers. The first project, named Silo, exploits two insights
to reduce the load time for a Web page. First, a Silo Web
server aggressively inlines the textual objects in a Web page
(e.g., HTML, CSS, and JavaScript), reducing the number of
fetches a browser needs to collect the objects. Second, the
server and the Web page running on the client use JavaScript
and AJAX to engage in a custom delta-encoding protocol
similar to that of the LBFS distributed file system. Thus, the
inlining reduces the number of round trips needed to build
the page, and the delta-encoding allows the browser to cache
data for the inlined objects even though the page no longer
references them using explicit URLs. The resulting protocol
can reduce end-to-end load times for some Web pages by over
50%.

After describing Silo, Mickens provided an overview of Mug-
shot, a tool for recording and then replaying the execution
of JavaScript-based Web applications. Mugshot leverages
JavaScript’s extensive facilities for reflection to introspect
upon all of the nondeterminism within a Web page (e.g.,
GUI activity, the reception of AJAX data, random number
generation, etc.); this introspection works using standard
Java Script running on unmodified browsers. If the user
encounters a problem with a Web page, she can opt to send
her event log to a developer, who can then replay the events,
recreating the session and stopping the event flow at any
point to examine the page’s dynamic state in a debugger.

Mickens concluded his talk by posing several open-ended
questions about the future of Web research. First, he asked
whether the standard Web stack (HTTP, HTML, and Java-
Script) was becoming ossified like TCP/IP, and whether
this discouraged exciting yet disruptive research that would
break backwards compatibility. Mickens also asked whether
the same domain policy should be revamped, and what kinds
of fundamental programming abstractions are needed to
expose cloud servers to Web pages.

Graduate School: The Things I Wish I’d Known
Lakshmi Ganesh, Cornell University; Nalini Belaramani, Google; Susan

Horowitz, University of Wisconsin—Madison

This session contained presentations from three people at
different points in their careers. The first presenter was
Lakshmi Ganesh, a fifth-year graduate student at Cornell
University. She described a variety of factors to consider
when a student must pick an advisor. A good rapport is obvi-
ously critical, but Ganesh explained that a professor’s level
of funding is also important to consider, since working for
a professor with few grants may force a graduate student to
become a teaching assistant or a grader, resulting in less time
for research and a longer time to graduation. Ganesh also
advised students to consider a potential advisor’s tenure sta-

Reports_final.indd 103 1.18.11 3:27 PM

 104 ;login: Vol. 36, No. 1

ate education. Gray said that he loved working at such an
institution because it allowed him to form deep relationships
with students and have a direct impact on their intellectual
growth. However, Gray said that undergraduate-focused
institutions are not suitable for people who do not like to
teach, since these institutions require professors to teach
two, three, or sometimes four classes per semester. Gray
also mentioned that many teaching-focused institutions
are in smaller cities, which may or may not be an advantage,
depending on one’s affinity for the big-city lifestyle.

The session concluded with a talk from John Wilkes, an
industrial researcher who worked at HP Labs for 25 years
before moving to Google in 2008. Wilkes said he enjoyed
industrial research because it continually introduced him to
interesting real-world problems whose solutions could imme-
diately impact millions of people. Like the prior two speak-
ers, Wilkes emphasized the importance of being passionate
about what you do, and he encouraged the workshop’s student
attendees to think carefully about what really excited them.
Wilkes advised students to do industrial internships to gain
experience with the different workflow in that environment.
Wilkes also encouraged students to take on bold projects
during these internships, since impressing people during an
internship can lead to fruitful collaboration or even a future
job offer.

Workshop on Managing Systems via Log
Analysis and Machine Learning Techniques
(SLAML ’10)

October 3, 2010
Vancouver, BC, Canada

Invited Talk

Summarized by Raja Sambasivan (rajas@andrew.cmu.edu)

QPS,KW-hr,MTBF,ΔT,PUE,IOPS,DB/RH, . . . : A Day in
the Life of a Datacenter Infrastructure Architect
Kushagra Vaid, Microsoft

Kushagra Vaid, principal datacenter infrastructure architect
at Microsoft, presented this talk on challenges in datacenter
design. Data centers are complicated, and datacenter design
needs to take into account datacenter and server architec-
ture, platform architecture, and reliability analysis.

Challenges in datacenter architecture include finding ways
to optimize power distribution and cost efficiency. The met-
ric of interest for the former is power utilization efficiency
(PUE), computed as total facility power/IT equipment power.
Typical industry averages range between 1.5 and 2.0. One
common design choice that affects power distribution effi-

said that many students initially think of their dissertation
as a movie, but it should really be an excellent short story—
articulate and impactful, but no longer than necessary. Rog-
ers emphasized that continual dialog between a student and
her committee is crucial for ensuring that the dissertation
is finished on time and with minimal revisions. Rogers also
stressed the usefulness of communication with people out-
side the dissertation committee. By exchanging ideas with
other students, visiting researchers, or people in completely
unrelated fields, students can remain intellectually stimu-
lated and get crucial feedback on their thesis work.

Jinyang Li, a professor at New York University, advised
students not to worry too much about the thesis. Instead,
students should focus on devising good projects and publish-
ing papers about those projects. Once a student has two or
three strong papers, a thesis will often naturally emerge. Li
observed that individual publications will be read by your
peers much more often than your thesis, so students should
not agonize over creating a perfectly polished thesis. How-
ever, Li said that the thesis provides an excellent opportunity
for poor writers to focus on their prose. In particular, writing
the introduction for the thesis provides good practice in the
art of selling your work to the larger academic community, a
skill which is invaluable for writing grants and giving public
presentations.

Job Choices: Academia versus Industry
Jonathan Appavoo, Boston University; Cary Gray, Wheaton College; John

Wilkes, Google

Jonathan Appavoo described his personal career path from
graduate student at the University of Toronto, to researcher
at IBM Watson, to his current post as professor at Boston
University. Appavoo said that a key factor in deciding where
to work is the quality of the people who work there, not just
in terms of their intellectual caliber but in terms of whether
they create a friendly and productive workplace environ-
ment. Appavoo also emphasized that wherever you work, it
is extremely important to be passionate about what you do.
People who are energized by working with students may not
thrive in an industrial environment; similarly, people who
like to have impact on ready-to-ship projects may become
frustrated with a university job. Appavoo said that he
eventually transitioned from industry to academia because
he felt that he had more freedom to explore his research
agenda without regard to whether that research immediately
impacted a company’s revenue.

Cary Gray from Wheaton College provided another per-
spective from academia; however, in contrast to Appavoo,
who worked at a large research university, Gray worked at a
smaller academic institution which focused on undergradu-

Reports_final.indd 104 1.18.11 3:27 PM

 ;login: FEbruary 2011 Conference Reports 105

as, “Why does my HP printer driver always return error mes-
sage X?” users can pose their questions to the tool directly;
the tool returns a ranked list of possible answers by either
directly scraping IT Web forums or looking up the answer in
a pre-computed knowledge database. The tool is composed
of four distinct components—a search composer, a searcher,
a ranker, and a knowledge database. The search composer
simply creates progressively more generic search terms
from the user input. The searcher queries standard search
engines (e.g., Google) using the search terms and stops when
a pre-determined number of results have been returned. The
ranker is faced with the challenge of creating a better order-
ing than that returned by the search engine, by using domain
and content-specific information. The knowledge database
simply stores the results of previously stored queries.

The ranker uses three metrics to rank results: the source
rank, the quality of information of each result, and the rel-
evancy of each result. The source rank is simply computed by
Web domain—if a search query is about HP printers, results
from HP Web forums will be given a higher source rank than
those from IBM Web forums. The overall quality of informa-
tion (QOI) of each result is computed by combining several
indicators of QOI—whether or not the relevant forum thread
is marked as “question answered” or “not answered,” the
date the thread was last modified, the number of replies to
the original poster, etc. In computing the QOI, the authors of
the paper found that an important indicator of this value—
whether or not the thread is marked as answered—tends to
be noisy. That is, users often forget to update the label of a
thread containing a valid answer from “not answered” to
“answered.” To deal with this problem, the authors devel-
oped a method for learning whether a thread contains a valid
answer from the other QOI indicators. Finally, the relevancy
of a result is computed by simple distance measures (e.g.,
string-edit distance) that compute the closeness of the
search terms to words that appear in the result.

Barash concluded by saying that a prototype of the system
has been implemented. An audience member asked how the
tool’s ranked results compared with just raw results from
searching on Google. Barash stated that the ranks his tool
yielded were often better than Google’s results, because it
takes into account domain-specific information, such as
QOI scores. A concern raised was whether this conclusion
was based on just the snippet of information returned by
Google with each result, or whether it was based on looking
at the actual documents. Barash stated that they had looked
at the actual documents. Another audience member com-
mented that this tool seemed great as long as the nmber of
people using it were small compared to those creating data
by posting on Web forums. He then asked whether it was pos-
sible to extend the tool so that it could feed back information

ciency is whether to propagate AC all the way to individual
machines’ power supply units or to convert to DC at the entry
point to the data center. Vaid showed that DC configurations
are more efficient at low loads and that AC configs prevail
at higher loads, but that at highest efficiency both configu-
rations are within 1–2% of each other. With regard to cost
efficiency, Vaid showed how the scale of modularization has
increased over time within Microsoft’s data centers so as to
increase this metric.

There are several challenges in the platform architecture
area; for example, determining how to analyze workloads to
find their optimal CPU requirements (frequency, number
of cores, etc.) and determining whether it is worthwhile to
pursue new hardware technologies (e.g., replacing desktop
CPUs in datacenters with mobile CPUs or replacing hard
drives with SSDs). With regard to the latter, Vaid showed
that overall TCO for mobile processors, such as Atom, is 2.5x
worse than regular desktop CPUs for both performance per
dollar and performance per watt. Future Atom CPUs should
either provide much better performance or much lower power
in order to be considered feasible alternatives.

For reliability analysis, the main challenges involve deter-
mining how MTBF corresponds to environmental operating
ranges. For example, Vaid showed how hard drive failure
rates increase with temperature.

At the end the talk, Vaid made the case that finding an
optimal solution for all of the areas together is essentially a
multi-dimensional optimization problem, for which data-
mining techniques and machine learning are required. Erik
Riedel asked whether Vaid knew the distribution of hard
drive failure modes with temperature. Vaid replied that the
statistics collected were an aggregate and he did not know
the breakdown. Has Microsoft considered releasing data-
center traces to researchers, so that they can investigate
techniques for optimization? Microsoft already has released
traces of datacenter workloads. Is there anything that keeps
current ML tools from being useful for the problems pre-
sented by the author? Data formatting is a problem—the logs
that contain the information ML tools need aren’t in stan-
dard formats, making it difficult to use them.

Refereed Paper

Summarized by Raja Sambasivan (rajas@andrew.cmu.edu)

Creating the Knowledge about IT Events
Gilad Barash, Ira Cohen, Eli Mordechai, Carl Staelin, and Rafael Dakar,

HP-Labs Israel

Gilad Barash from HP Labs presented research about a tool
for answering user queries about IT events. Instead of spend-
ing time searching Web forums for answers to questions such

Reports_final.indd 105 1.18.11 3:27 PM

 106 ;login: Vol. 36, No. 1

leader election algorithm and reverse traceroute. For both, he
showed that BisimH yielded more accurate summaries than
kTail, a popular coarsening algorithm. He also showed that
BisimH was faster than coarsening with invariants.

An audience member asked Ivan to clarify the size of the
logs used in his study and the processing overhead. He used
only one machine for the case studies presented. He said that
runtime was exponential in log events, but then changed his
mind and said that it probably wasn’t exponential.

A Graphical Representation for Identifier Structure in
Logs
Ariel Rabkin and Wei Xu, University of California, Berkeley; Avani

Wildani, University of California, Santa Cruz; Armando Fox, David

Patterson, and Randy Katz, University of California at Berkeley

Summarized by Peter Hornyack (pjh@cs.washington.edu)

Ariel Rabkin presented a new system to uncover flaws in the
coverage and consistency of application console logs. This
work was motivated by the fact that while log messages are
a primary tool for debugging applications, analysis of these
logs is often hampered by missing, incorrect, or inconsistent
information. The goal of the system is to improve future log
analysis by visualizing the log message types and identifier
fields in a way that makes common flaws easily visible and
facilitates comparison across logs.

The system analyzes application logs offline and visualizes
several aspects of them in the form of a graph. The nodes in
the graph represent either message types or identifiers such
as transaction IDs. Edges in the graph indicate the identifiers
that appeared in messages of certain types; other informa-
tion, such as the relative frequency of message types, is also
visualized in the graph. Rabkin presented several example
visualizations and pointed out the flaws they reveal; for
example, missing identifier errors are easily seen as mes-
sages in the graph without edges to any identifiers. Another
example showed that inconsistency in the identifiers used
across multiple message types appears in the graph as an
identifier connected to only a single message. Finally, Rabkin
showed how the system can be used to identify logging errors
by visually comparing the resulting graphs of logs from pro-
duction systems.

One audience member noted that the example graphs were
for the most part planar, and wondered if the authors had
produced any graphs that were too messy to visualize easily.
Rabkin replied that for most programs, the set of identi-
fiers and message types is not that large and that manage-
able graphs usually result, and also emphasized that some
of the example graphs were from large real systems, such

about the most relevant results to the Web forums it scraped
for data. Barash said that such feedback is something that
they’re thinking about. For example, he said the tool could
add tags to “strengthen” specific posts that it has computed
are very useful. It could also automatically answer new ques-
tions.

Logging Design and Visualization

Synoptic: Summarizing System Logs with Refinement
Sigurd Schneider, Saarland University; Ivan Beschastnikh, University of

Washington; Slava Chernyak, Google, Inc.; Michael D. Ernst and Yuriy

Brun, University of Washington

Summarized by Raja Sambasivan (rajas@andrew.cmu.edu)

Ivan Beschastnikh, a student at the University of Washing-
ton, presented his research on algorithms for generating con-
cise graph-based summaries of system log information. Ivan
presented arguments for refining graphs of systems logs as
opposed to coarsening. The former is the process of starting
with a very coarse-grained graph in which related events are
merged into single nodes and iteratively splitting them until
a list of invariants is met. The latter is the process of starting
out with a fine-grained graph and merging nodes until some
invariant is violated. It is easier to satisfy important invari-
ants by refinement than by coarsening, but refinement can
create graphs that are too constrained. For such cases, com-
bining refinement with coarsening can yield less constrained
graphs that still satisfy all invariants.

The hybrid algorithm presented, called BisimH, starts by
creating a graph of system-log events based on invariants
specified by the user. Events that can be grouped together
without violating the invariants are merged into partitions
and depicted as nodes in the graph; edges depict dependen-
cies between partitions.

BisimH then mines the system logs for additional invariants
and uses them to generate examples that the current graph
allows, but which the invariants do not. It then iteratively
re-partitions the graph so as to satisfy the mined invariants.
The problem of finding the most general graph that satisfies
all of the invariants is NP-hard; as such, BisimH uses heu-
ristics to explore the search space, often resulting in graphs
that are too strict or too refined. As such, after each iterative
refinement of the graph BisimH uses coarsening algorithms
to determine whether a slightly coarser graph would satisfy
the same invariants.

Ivan concluded by presenting case studies in which the
BisimH algorithm, implemented in Synoptic, is used to
understand the behavior of two protocols: the Peterson

Reports_final.indd 106 1.18.11 3:27 PM

 ;login: FEbruary 2011 Conference Reports 107

CLF, there isn’t an open source equivalent in SIP to do the
same for a SIP CLF. Have the authors investigated how logs
in the proposed format could be transformed into graphs or
other useful structures for visualizing the log contents? So
far they have been concerned strictly with getting the syn-
tactic specification of the SIP CLF finished in the IETF, and
uses such as visualization tools, graphs, correlation engines,
and others will be much easier to develop with a canonical
format in place.

Applications of Log Analysis

Summarized by Peter Hornyack (pjh@cs.washington.edu)

Experience Mining Google’s Production Console Logs
Wei Xu, University of California at Berkeley; Ling Huang, Intel Labs

Berkeley; Armando Fox, David Patterson, and Michael Jordan, University

of California at Berkeley

Wei Xu presented early findings from his group’s inves-
tigation of console logs from Google production systems,
beginning with some of the challenges in using console logs
in large systems: they are usually stored with just best-effort
retention, log messages are often generated ad hoc using cus-
tom logging libraries, and new message types are constantly
introduced. The data set mined by the authors was produced
by systems consisting of thousands of nodes, with five orders
of magnitude more messages and many more message types
than they used in their previous work.

One problem that the authors focused on is using global
system state, rather than local node state, to detect problems
in the system. By applying machine learning techniques for
anomaly detection, the authors were able to find features
in the log messages that correlated with system alarms.
The authors also used sequence-based detection to identify
problems on single nodes in the system. Finally, Xu presented
techniques that the authors used for removing sensitive
information from data gathered on production systems, a
process termed “log sanitization.” The authors’ evaluation of
their log mining techniques demonstrates that the tech-
niques scale and apply to the extremely large production data
set.

Analyzing Web Logs to Detect User-Visible Failures
Wanchun Li, Georgia Institute of Technology; Ian Gorton, Pacific

Northwest National Laboratory

Most Web applications suffer from unreliability, which
causes downtime and transaction errors that directly impact
users. Wanchun Li pointed out that early failure detection
can mitigate later failures, but detection itself is difficult to

as production Hadoop clusters. Another audience member
asked how difficult it is to find the corresponding bug in the
code when a flaw is observed in the visualization. Rabkin
answered that the process is usually straightforward, since
the origin of each message type is usually easy to find in the
code, and noted that the time spent fixing these logging bugs
pays for itself by enabling better error detection and debug-
ging using the logs in the future.

SIP CLF: A Common Log Format (CLF) for the Session
Initiation Protocol (SIP)
Vijay K. Gurbani, Bell Laboratories/Alcatel-Lucent; Eric Burger,

Georgetown University; Carol Davids and Tricha Anjali, Illinois Institute

of Technology

Summarized by Peter Hornyack (pjh@cs.washington.edu)

Vijay Gurbani presented work on the development of a com-
mon log format for SIP. Most enterprises have SIP servers
and clients for IP telephony and other uses, but these are
often obtained from multiple vendors, each of which uses a
different log format today. The authors argue that a CLF for
SIP is needed to allow trend analysis and anomaly detection
across equipment from multiple vendors, and to encourage
the development of third-party tools for troubleshooting SIP.
The success of the HTTP CLF in these respects and some
recent publications on the complexity of SIP parsing were
presented as support for a SIP CLF.

Gurbani presented some background information on SIP,
then described the HTTP CLF and pointed out the myriad
differences between the SIP and HTTP protocols that make
defining a CLF for SIP more challenging than for HTTP.
For example, unlike HTTP, SIP is not a linear protocol with
exactly one reply for every request. The need for multiple
responses per request and the potential for long delays
between requests and responses in SIP increase the complex-
ity of the state that must be recorded in a SIP CLF. Gurbani
presented the work done to create a canonical record format,
with an emphasis on its extensibility and the ease with which
it can be parsed. He then showed some complex SIP flows
and demonstrated how simple grep commands could be used
to perform useful queries on logs in the canonical format.
The IETF is currently in the process of standardizing the SIP
CLF proposed by the authors.

Many audience members wondered why there isn’t already a
CLF for SIP, despite it being in use for many years. Gurbani
replied that this is not unexpected, since the primary focus
of the IETF has been to stabilize the protocol (SIP) itself and
reduce ambiguities in the specification, and accoutrements
such as logging are being looked at now. Furthermore, unlike
the dominance of Apache in HTTP which fostered an HTTP

Reports_final.indd 107 1.18.11 3:27 PM

 108 ;login: Vol. 36, No. 1

historical data from a variety of sources—for example, in an
IT infrastructure: logs, configurations, messages, traps and
alerts, scripts, custom code, and more. As Archana stated, “If
a machine can generate it, Splunk can eat it.”

Splunk’s design uses three tiers: (1) forwarders collect data
and send it to the indexers; (2) indexers denormalize the
data, attach keywords, and of course index the data; (3) a
search head provides a single query point to which users
can then submit queries. These queries are converted into
MapReduce jobs which run across the indexers. Because
co-temporality is crucial to many queries, Splunk uses a
modified MapReduce hashing function to map data from the
same time-window onto the same machine.

One of Splunk’s important features is its streaming indexing
system, which enables real-time search results. However,
possibly the most attractive feature in Splunk is its advanced
query language. Expressions in this language eventually
compile down to MapReduce jobs, but the user is relieved
from thinking about the map and reduce functions—the
conversion is entirely transparent. Because Splunk does not
use data schemas, the query language supports searches over
heterogeneous and constantly evolving formats. Combine
operators, which are essentially UNIX pipes, are used to
string multiple expressions into complex programs. Archana
gave detailed examples of uses of this query language for
outlier detection, clustering, and data munging (combining
data from multiple sources and with different formats).

In the Q&A, a few of the audience members wanted to gain
a more detailed understanding of how Splunk works. For
example, the presentation did not describe how the various
features of the language were realized in the MapReduce
framework. These questions were taken offline.

Bridging the Gaps: Joining Information Sources with
Splunk
Jon Stearley, Sophia Corwell, and Ken Lord, Sandia National Laboratories

The second presentation in the workshop’s industry track
was presented by Jon Stearley, who discussed his experi-
ences with using Splunk to make sense of supercomputer
logs. Jon set the stage by describing Sisyphus, a tool he devel-
oped to collate unstructured logs from across many systems.
The many features of Splunk, however, convinced Jon to try
the new system. In particular, he found Splunk to be robust
in dealing with logs lacking a well-defined schema, and that
Splunk’s built-in support for collaborative log exploration
made it easy to involve many people in the process and to
capture and share knowledge.

During the bulk of his presentation, Jon focused on a few
Splunk features. One of these is Splunk’s ability to treat
unstructured input logs as relational entities. This allows

perform in complex Web apps, and existing automated tech-
niques are often ineffective.

Li presented a system that detects failures that users experi-
ence when using Web applications. The authors’ approach to
detecting these failures is based on the principle that when
users experience failures, they will respond to the failure in
a way that breaks from the usual navigation paths in a Web
app. The system models a Web app as a graph with pages as
nodes and users’ navigation as edges, then uses a trained
Markov model to estimate the probability of a given naviga-
tion path. If the computed probability of a navigation path
is less than some threshold, then the system raises a failure
alarm, indicating that the anomalous path may have been
the result of the user experiencing some failure. The authors
evaluated the system using an access log of HTTP requests
from NASA’s Web site, and found that at the optimal bal-
ance point between detection rate and false-positive rate,
the system correctly detected 71% of failures with 26% false
positives.

One audience member asked if the system would have to con-
struct and train a completely new model when the Web appli-
cation is modified. Li replied that the graph is constructed
incrementally and can adapt to changes in the set of pages
and navigation paths. Since even the least popular pages on
large Web sites are visited regularly, would the system clas-
sify these visits to the least popular pages as failures? With
sufficient training data, the visits to even the least popular
pages and the typical navigation paths to them would be
captured by the model, and only navigations that don’t follow
some typical path would be marked as failures.

Industry Track—Experiences

Summarized by Ivan Beschastnikh (ivan@cs.washington.edu)

Optimizing Data Analysis with a Semi-structured Time
Series Database
Ledion Bitincka, Archana Ganapathi, Stephen Sorkin, and Steve Zhang,

Splunk Inc.

The workshop’s industry track featured two papers, both
of which focused on Splunk, a platform for collecting,
searching, and analyzing time series data from many sources
with possibly varying formats. Archana Ganapathi presented
the first paper, and gave an overview of how Splunk works.

Archana quoted Joe Hellerstein’s statement that we are in
the “industrial revolution of data.” Managing the growing
explosion of data is a key challenge, and one of the most
difficult aspects of big data is enabling efficient analysis.
After all, what’s the point of storing it all if there is no means
of extracting valuable insights? The Splunk platform enables
one to search, report, monitor, and analyze streaming and

Reports_final.indd 108 1.18.11 3:27 PM

 ;login: FEbruary 2011 Conference Reports 109

switch and follow the CEE standard. Eric replied that devel-
opers today re-invent logging, including timestamp genera-
tion, setting delimiters, escaping multi-word messages, etc.
CEE would help with all this, and in addition developers may
be incentivized to use CEE if customers prefer software that
generates logs in this format, as this would be an indicator of
software quality and log interoperability.

Greg Bronevetsky asked what makes a good log and which is
better, an informational or an activity-based logging strategy.
Eric replied that activity-based logs, in which the log cap-
tures a change in state, are the most useful for security appli-
cations. Others in the audience thought that an informational
logging strategy can also play an important role for debug-
ging insidious errors that may span multiple components.

Jon asked whether anyone knew of a good survey paper in the
field of log analysis. No one could name such a paper,
and Jon suggested that this field is ripe for survey papers.
Alice Zheng added that a survey paper focusing on diagnosis
would be particularly welcomed. Greg mentioned a forth-
coming survey paper by Felix Salfner et al. covering online
failure detection methods (http://portal.acm.org/citation
.cfm?id=1670680). Wei Xu also noted that his dissertation
includes a survey in Chapter 7 (http://www.eecs.berkeley
.edu/Pubs/TechRpts/2010/EECS-2010-112.pdf).

Raja Sambasivan asked the practitioners to imagine what
they might want to find in logs if they contained perfect data.
John Hammond responded with a description of supercom-
puting applications. Many of these were diagnostic—having
observed some event, one wants to know what and who might
have caused it. If there is uncertainty, a list of possibilities
ordered by their likelihood would be useful. Alice wondered
whether this is feasible if the data does not contain enough
labels. To this, John said that one can label things by hand,
as they have done with their own datasets. Ideally, however,
such labeled datasets would be widely available to the com-
munity to experiment with.

This discussion was broadened by Adam Oliner, who pointed
out that the log analysis field, if it is to be scientifically
rigorous, needs a freely accessible log repository and a set of
common metrics. Adam mentioned that he and Jon Stearley
have made available a large, tagged, unfiltered dataset and
that they encourage the community to make use of it (http://
cfdr.usenix.org/data.html#hpc4). More generally, Adam
pointed to the USENIX Common Failure Data Repository
(CFDR—http://cfdr.usenix.org/) as an example of how logs
can be made available to the broader research community.
Greg proposed the idea that the SLAML community can
organize around a few logs a year so that analyses reported
for the same data source may be compared.

one to, for example, compose queries that join logs across
log fields. Another feature is Splunk’s ability to associate
event types with those messages that satisfy at least one
query pattern in a set (or some other constraint) and to write
queries over event types. Yet another feature is subqueries,
which provide a powerful composition mechanism. On top
of a complex log analysis feature set, Splunk makes it easy to
document, save, and share queries. This captures communal
log knowledge and allows more people to participate in log
analysis tasks. As a summary of what Splunk is capable of,
Jon emphasized that Splunk “takes care of all the ugly pre-
processing” that log analysis typically involves.

In the Q&A an attendee asked how Splunk deals with logs
that have unsynchronized clocks. Jon hadn’t dealt with such
logs before and therefore couldn’t comment. Is Splunk diffi-
cult to learn? Splunk is simple, and many features of its query
language have UNIX command-line analogs. How well does
Splunk integrate external analysis tools? It is straightfor-
ward to plug other tools into Splunk.

Panel Discussion

Summarized by Ivan Beschastnikh (ivan@cs.washington.edu)

John Hammond, University of Texas at Austin; Jon Stearley, Sandia

National Laboratories; Eric Fitzgerald, Microsoft

The SLAML panel discussion revolved around many
outstanding issues in the log mining and analysis research
community. It also touched on how these issues relate to the
challenges faced by industry.

The first theme to generate interesting discussion was log
completeness. Eric Fitzgerald pointed to the incompleteness
and a lack of standardization of existing logging formats as a
major problem for log analysis and tool interoperability. Eric
described and advocated that the community pay attention to
the Common Event Expression (CEE) effort. This effort aims
to define a standard for event interoperability across a wide
range of logging sources and establishes which events must
be raised when, and what fields an event of a particular type
must include.

The CEE proposal generated heated debate. Ledion Bitincka
from Splunk responded that log mining software, such as
Splunk, offers the only practical solution to unifying the mul-
titude of existing logging formats. Moreover, the log line itself
cannot accurately report on what caused it to appear; a min-
ing tool to explore log patterns is therefore essential. Eric’s
response was that Splunk requires significant user exper-
tise—the language may be simple to learn, but in an unstruc-
tured log one must still know how to recognize an error (e.g.,
HTTP code 404). Another retort to CEE came from Jon
Stearley, who asked how a developer might be incentivized to

Reports_final.indd 109 1.18.11 3:27 PM

 110 ;login: Vol. 36, No. 1

by instrumenting their pages and monitoring the click-
through behavior of its many users. Vijay Gurbani noted that
the lack of labeled logs is primarily an issue with computer
science education—students are taught how to program,
but not how to properly organize their program’s log output
nor how to label and then study the output to understand
their programs. Also in response, Wei noted that labeling is
especially difficult, because the same log message may mean
different things to different people (e.g., a developer versus
a system administrator). Mitchell Blank raised the related
logging incentives challenge—developers will always opt for
an easier way, so one must provide an incentive for them to
produce meaningful and easy-to-analyze logs.

Sixth Workshop on Hot Topics in System
Dependability (HotDep ’10)

October 3, 2010
Vancouver, BC, Canada

Distributed Algorithms

Summarized by Hussam Abu-Libdeh (hussam@cs.cornell.edu)

Storyboard: Optimistic Deterministic Multithreading
Rüdiger Kapitza, Matthias Schunter, and Christian Cachin, IBM

Research— Zurich; Klaus Stengel and Tobias Distler, Friedrich-Alexander

University Erlangen-Nuremberg

Rüdiger Kapitza opened his talk by noting how nowadays
conventional infrastructure is replaced with network-based
services where redundancy via state machine replication is
used to balance load and achieve high availability. In a typical
deterministic state machine replication setting, clients talk
to the replicated service via agreement nodes that produce an
ordering among client requests, which are then forwarded to
execution nodes. As a consequence, we expect that every non-
faulty replica will produce the same non-faulty output for the
same sequence of client requests. Even though this sounds
simple, multi-threaded execution at the replicas complicates
things by introducing nondeterminism due to scheduling.

To solve this issue, Rüdiger introduced the Storyboard design
for lock prediction and controlled execution, where an oracle
is used to predict replica concurrency issues by represent-
ing execution paths as ordered lists of lock accesses, which
are then executed in a controlled multi-threaded fashion.
In the Storyboard design, clients talk to agreement nodes,
which then talk to predictor nodes that predict and forecast
locks usage, and finally a controlled execution is carried out
by the replica nodes which operate according to the forecast
Storyboard. In a controlled execution, threads are allowed to
execute at their own speed, but they are only allowed to enter
into the predicted list of critical sections and are not allowed

During the discussion of common analysis metrics, user
studies were pointed out as a rigorous means to evaluate
graphical log representations. To this Ari asked, what sorts
of user studies in particular would the SLAML community
trust and find useful? Adam responded that this is not
something the community has a standard for. Wanchun
Li noted that usability studies in security research face a
similar issue. Everyone knows that evaluating usability is
often an important aspect of the research, but there is little
progress on establishing common usability metrics.

Another challenge touched on by a few participants is that
the meaning of logged messages may change over time. This
can, for example, make log priority levels meaningless (what
used to be an error message is now an informational note).
This is in part because there is no incentive to remove a log
line after the error is fixed. Greg proposed fault injection as
a potential solution. With fault injection one can see which
messages correlate, and this reveals information about the
underlying dependency graph. After all, Greg asked, isn’t this
the only thing we can find out, namely that certain events
correlate, while others do not? Alice questioned whether
fault injection can be a complete solution. In particular, she
asked about how one translates information gained from
fault injection in a testing environment into a production
environment. Greg admitted that this is a limitation, but also
emphasized that by performing fault injection across differ-
ent configurations one can often glean important properties
of the system, such as its scalability. Raja also thought fault
injection to be impractical because it is difficult to trust
results gathered in an artificial setting. He pointed out that
interesting real-world bugs always seem to be much more
involved, and reproducing them in fault injection studies is a
research study in itself.

The mention of many limiting features of system logs led
Ivan Beschastnikh to ask whether the community should
instead consider bridging log analysis with program analy-
sis, as program source can offer logs analysis key contextual
clues. Ari Rabkin mentioned relevant work by Ben Liblit on
cooperative BUG isolation, which leverages large numbers
of execution observations (execution logs) for debugging. Ari
also indicated that Ivan’s proposal is impractical because
program analysis rarely scales to large software and that sys-
tem software analysis is especially difficult, as it may involve
tracing complex execution (e.g., across multiple bash scripts).
Alice pointed out that instrumenting real code has an over-
head and it’s difficult to tell which pieces are important to
instrument and which ones do not add much more value.

Alice mentioned that a key challenge in applying machine
learning to logs is the lack of labels. She suggested that crowd
sourcing (e.g., via Mechanical Turk) can be leveraged to
label existing logs. For example, Google improves its search

Reports_final.indd 110 1.18.11 3:27 PM

 ;login: FEbruary 2011 Conference Reports 111

to balance load, keep faults independent, exploit multicore,
and reduce bottlenecks. A preliminary evaluation was made
on Emulab with a micro-benchmark of reading/writing key-
value pairs from a hashtable. The evaluation demonstrated
the scalability of the ordering service by adding more nodes
to the configuration and achieving higher ordering through-
put. The scalability was measured in terms of adding more
clusters and more machines to a fixed set of clusters.

One attendee wondered whether it would make more sense
to consider correlation at the rack level rather than on a
per-core/process level, and Manos acknowledged that failure
correlation depends on the actual deployment environment
and the availability required of the service. Hakim Weather-
spoon from Cornell University asked about the performance
of a service in case of a failure, and Manos responded that a
machine’s failure will require reconfiguration and realloca-
tion of replicas to other machines. Finally, Atul Singh from
Princeton University questioned the usefulness of having a
single common ordering service for applications that do not
share data, as this extra service might not be all that crucial
to the applications. Manos answered that their motivation is
to allow scalability such that ordering is never an issue. An
added benefit of having an ordering service is that it is one
less thing for developers to worry about; just use “the order-
ing service” and you’re done.

Active Quorum Systems
Alysson Bessani, Paulo Sousa, and Miguel Correia, University of Lisbon,

Faculty of Sciences

Alysson argues that state machine replication is conceptu-
ally simple and it usually provides linearizability, which is
a stronger consistency model that is not required in many
applications. This makes it difficult to implement tasks like
housekeeping/cron jobs, asynchronous messaging, or multi-
threaded services. The current mantra is that strong consis-
tency should be avoided at all costs and that led us to embrace
eventual consistency. However, eventual consistency is not
always adequate and some applications just require strong
consistency.

The research question posed is, would it be possible to build
dependable and consistent services that rely on strong
synchrony only when it is absolutely necessary? To answer
this question, Alysson looked at high-level abstractions like
coordination services, and low-level abstractions like read/
write quorum systems, leader election, and barriers.

Along those lines, Alysson proposes Active Quorum Sys-
tems (AQS), which he describes as a Byzantine quorum
system with synchronization power. AQS breaks the system
state into small objects, where instead of having the entire
service as a replicated state machine, the service is viewed
as a set of replicated objects. AQS supports three types of

to overtake other threads into a critical section, and thus the
execution will follow the forecast “story.”

This was the main idea of Storyboard, and Kapitza proceeded
to talk about implementation issues such as handling mispre-
dictions and complex locking structures such as condition
variables to synchronize multiple threads, and nested locks.
Development is currently underway for a Storyboard pro-
totype, and preliminary results showed an analysis of lock
usage in CBASE-FS.

After the talk an audience member asked whether execu-
tion rolls back if a thread needs to take an unpredicted lock.
Kapitza answered that there is no need for rollbacks, since
the current system pauses the execution at the point where
an unpredicted lock is requested, and that will enforce
the new story across the different replicas. In response to
another question, the presenter acknowledged that the cur-
rent Storyboard design does not address situations with data
races, although that is a point for future work.

Scalable Agreement: Toward Ordering as a Service
Manos Kapritsos, UT Austin; Flavio P. Junqueira, Yahoo! Research

Common practice in reliable services is to deploy replicated
execution nodes that are preceded by ordering nodes that
order client requests so that replicas execute in the same
order. However, ordering is left for service developers to
deploy, which requires us to provision for nodes that do not do
computation and that can additionally become a bottleneck if
the core service becomes popular. With this setting, Manos
presented his vision for request ordering as a utility service.

A problem is that ordering uses agreement protocols which
do not scale, and in fact, generally, adding more machines to
agreement protocols increases complexity and not through-
put. This is because in most agreement protocols, clients con-
tact a primary node that proposes an order for the requests
and broadcasts it to replicas that do an all-to-all communica-
tion to agree on the order and finally execute.

Scalable ordering protocols are needed to enable Ordering-
as-a-Service, and here Manos proposes leveraging multiple
small ordering clusters to compute partial orders and using
virtual slot space to get the full order. In virtual slot space
each ordering cluster is assigned a color, and the full order is
composed by interleaving a slot from each color. For example,
given three ordering clusters—blue, red, green—a full order-
ing schedule can be obtained by executing the first request
from the blue cluster first, followed by the first request from
the red cluster, followed by the first from the green. Next
comes the second request from the blue cluster followed by
the second from the red, and so on.

After explaining the general idea, Manos described imple-
mentation details such as mapping clusters to physical nodes

Reports_final.indd 111 1.18.11 3:27 PM

 112 ;login: Vol. 36, No. 1

independent user-space processes, resulting in a multiserver
microkernel-based OS architecture. Each process follows an
event-driven model and is solely dedicated to carrying out a
specific task in a loop, termed the task loop. By design, the top
of the task loop is a local stable state. The task loop can gener-
ate idempotent messages throughout, and any non-idempo-
tent messages generated while handling a request are pushed
to the end of the loop. Lightweight recovery code is added
through instrumentation by LLVM and is used to revert to
the last stable state in the event of failure. A shadow state
region is used and memory allocations are tracked, as are
object state changes, etc. These changes are all committed at
the top of the event loop. When the system manager detects
a crash (e.g., in the Process Manager component), a replica of
the component has the last stable state transferred to it and
resumes operation as if nothing bad happened. The system
manager then cleans up the dead component. The authors
have prototyped the ideas described in the paper on top of the
MINIX 3 microkernel.

One audience member voiced concerns about several issues,
including multi-threaded servers, communication through
shared memory, and blocking on I/O. Cristiano responded by
saying that they are not aiming for backward compatibility
but, rather, designing a new system using the event-driven
model. This model would use asynchronous IPC instead. The
performance evaluation was questioned, as this system was
compared to unmodified MINIX 3 rather than Linux. Cris-
tiano called attention to the fact that the scalability graph
was normalized data, only showing relative performance/
overhead. How long did this work take? It was hard for Cris-
tiano to separate the time involved for different parts, but he
said that about one year was spent on implementation, with
previous work already having been done on the design.

Improved Device Driver Reliability Through
Verification Reuse
Leonid Ryzhyk, NICTA and University of New South Wales; John Keys,

Intel Corporation; Balachandra Mirla, NICTA and University of New

South Wales; Arun Raghunath and Mona Vij, Intel Corporation; Gernot

Heiser, NICTA and University of New South Wales

Leonid Ryzhyk observed that while hardware device verifica-
tion and device driver development have a remarkable degree
of similarity, the two processes are currently completely dis-
joint. Thus we are robbed of an opportunity for more reliable
driver development. Leonid’s presentation began in the same
fashion as the previous one, with a Blue Screen of Death, and
the audience continued to find this gag funny.

Current techniques for dealing with driver reliability
include runtime isolation, static analysis and model check-
ing, safe languages, etc. At the end of the day, drivers are
still much less reliable than we’d like, and Leonid proposes

low-level operations: read, write, and read-modify-write,
which updates the state of an object using its old value. Read
and write operations are implemented as in typical quorum-
based asynchronous protocols. The read-modify-write
operation is implemented as an extension to PBFT (Practical
Byzantine Fault Tolerance) where the primary acts locally on
a received request and then broadcasts the triple (start state,
command, result) to all the replicas. If the replicas approve,
then the change is committed; otherwise the most recent
copy of the state is sent back to the primary and the opera-
tion is repeated until consensus is achieved. A final design
principle of AQS is that the service specification is exploited
in order to find opportunity for optimization (so not based on
the environment, because it can change). An example of that
is determining the level of consistency by the service needs,
and the same goes for writer access control. Alysson argued
that the benefits of AQS are that it makes minimal assump-
tions, achieves communication optimality, and provides
stability for non-favorable executions.

In response to a question from the audience, Alysson noted
that unfortunately AQS adds complexity to building systems
for non-experienced users. Hakim Weatherspoon asked what
would happen if the service assumptions were violated. For
example, what would happen if the system were to evolve to
allow multiple writers? Alysson responded that the idea of
having multiple writers is not associated with contention but
with access control. They in fact encountered a case of evolv-
ing the system when working on LDAP but it has not been
completely worked out.

OS Reliability

Summarized by Mark Spear (mspear@cs.ubc.ca)

We Crashed, Now What?
Cristiano Giuffrida, Lorenzo Cavallaro, and Andrew S. Tanenbaum, Vrije

Universiteit, Amsterdam

Cristiano Giuffrida presented an operating system model
that addresses many problems involved in crash recovery.
He immediately brought laughs to the audience with a Blue
Screen of Death slide; in this particular BSOD, a device driver
bug brought down the entire operating system. Much of the
related work on crash recovery focuses on isolated subsys-
tems (e.g., device drivers, file systems). In these works, a
portion of the system is trusted to monitor the untrusted por-
tion (e.g., the driver). But when extending crash recovery to
the entire system, that model would require monitoring the
monitor, ad infinitum, “like a dog chasing its tail.”

Instead, Cristiano’s group elected to combine OS design
and lightweight instrumentation to scale crash recovery to
the entire OS. They break down the operating system into

Reports_final.indd 112 1.18.11 3:27 PM

 ;login: FEbruary 2011 Conference Reports 113

rare anymore. The reliability has to come from the software,
but even the big players get it wrong sometimes (e.g., Sidekick
data loss, Facebook photo loss). Thanh argues that current
testing of failure recovery is insufficient. In response to this
problem, his group has developed a pair of tools that work in
concert to explore failures. In the time since their paper was
submitted to HotDep, these tool, FTS (Failure Testing Ser-
vice) and DTS (Declarative Testing Specification), have been
renamed FATE and DESTINI, respectively.

FATE is a failure injection framework. It targets I/O points
and can exercise many combinations of failures. A “Failure
ID” is their representation of a failure: It contains a failure
point (the system/library call that performs disk or network
I/O), a failure type (crash, exception, etc.), a stack trace, and
some domain-specific information (e.g., source, destination,
message). The hash of a failure ID is used to log the failure
history when exploring the failure space. Aspect-oriented
programming (AspectJ) is used to instrument Java programs
with no changes required to the system under test. Multiple
failures are injected, including failures during recovery.
DESTINI is responsible for testing whether actual behavior
is consistent with what was expected. Violations are detected
through evaluation of Datalog style rules.

The authors applied their system to three cloud systems,
HDFS, ZooKeeper, and Cassandra, writing 74 recovery
specifications at an average length of 3 lines per specifica-
tion. Their system found 16 bugs and reproduced 74. The bugs
caused reduced availability and performance, data loss dur-
ing multiple failures, and errors in the recovery protocol.

The first questioner pointed out that one man’s bug is another
man’s feature: What do you do when you don’t have a precise
specification? Thanh noted that even without a precise speci-
fication, you should at least have a high-level expectation of
how the system works. If necessary, the specification could
be refined later, and there is no need to start at a low level.
Another questioner asked about one of the hardest situations
to test: arbitrary corruption. The framework supports vari-
ous kinds of corruption (e.g., network packets), but the full
answer about arbitrary state corruption was taken offline.
Finally, an audience member noted that when considering
multiple possible failures, the state space explodes. Thanh
mentioned that they were looking at heuristics for pruning
the failure space, prioritizing some failures, and focusing on
“interesting points,” and that some of that work was submit-
ted to NSDI.

a complementary approach for improving driver reliability.
He presented the observation that the most common class of
driver bug is device protocol violation (e.g., using an invalid
sequence of commands, wrong use of DMA descriptor, inter-
preting data incorrectly). Hardware designers communicate
to the driver developers through a datasheet, which often
contains inaccurate information. However, the hardware
verification engineers are privy to more details about the
device, and lots of effort is put into the verification testbench.
The testbench has several layers, including scenario, agent,
and the device under test, which have analogs in the OS I/O
stack. The scenario layer should be extended to be OS-based
and simulate how the OS uses a driver. The agent layer has
a similar role to that of a driver (translating a high-level
request to low-level operations, and changing state of the
device). Leonid suggests that an actual driver could replace
the agent layer, so that hardware and software are being co-
verified. In order to facilitate cross-platform use of the single
driver under test, Leonid proposes unified driver interfaces
(per device class), instead of naively emulating existing OS
interfaces in the testbench (which would lead to OS-specific
testing). The resulting driver could then be used without
modification in real operating systems.

This could result in several benefits, including a reduced dev
cycle and (naturally) fewer bugs in the end product. They
found a number of defects in USB and UART drivers, an Eth-
ernet hardware race condition, and several other bugs that
weren’t found using the conventional development method.

A number of questions involving different testing configu-
rations were asked. The first inquiry was about different
versions of a hardware device. That could require updated
testbenches in both the conventional and the proposed
model. The same questioner also asked about different ver-
sions of a driver. The response was that drivers would require
testing anyway, so now it would be done through the test-
bench. When an operating system changes, is it the job of the
hardware vendor to retest the driver? It would require work
if the testbench was emulating the OS, but instead a generic
interface is assumed, so that isn’t an issue.

Towards Automatically Checking Thousands of Failures
with Micro-specifications
Haryadi S. Gunawi, University of California, Berkeley; Thanh Do,

University of Wisconsin, Madison; Pallavi Joshi and Joseph M.

Hellerstein, University of California, Berkeley; Andrea C. Arpaci-Dusseau

and Remzi H. Arpaci-Dusseau, University of Wisconsin, Madison;

Koushik Sen, University of California, Berkeley

Thanh Do presented a mechanism for exploring complex
failures and error recovery scenarios. In the era of cloud com-
puting and using thousands of machines, failures are not so

Reports_final.indd 113 1.18.11 3:27 PM

 114 ;login: Vol. 36, No. 1

A Rising Tide Lifts All Boats: How Memory Error
Prediction and Prevention Can Help with Virtualized
System Longevity
Yuyang Du and Hongliang Yu, Tsinghua University; Yunhong Jiang and

Yaozu Dong, Intel Research and Development, Asia-Pacific; Weimin

Zheng, Tsinghua University

Yuyang Du began his talk with the surprising claim that
RAM errors cause the plurality of system failures (including
both software and hardware causes). While these could be
prevented with hardware fault tolerance or even simple ECC,
Du claimed that cost prevented widespread deployment of
these techniques. He further noted that in the increasingly
important cloud hosting economy, consumers don’t have
direct control over the hardware on which their applications
run. He also claimed that virtualization compounded the
problem of unreliable memory, because the physical hard-
ware was multiplexed across multiple servers.

Du noted that memory chips produced both correctable
(soft) and uncorrectable (hard) errors. He proposed that for
virtualized servers, a cost-effective approximation of ECC
could be achieved by using observed soft errors to predict
future hard errors and migrate virtual memory off the failing
physical RAM before they happened. He had not yet evalu-
ated his failure predictor or any gains in reliability versus
the cost of disabling physical RAM. He noted that this sort of
project was very slow to test, since it depended on waiting for
memory to fail.

The questioning focused on two topics: the accuracy of Du’s
hard memory error predictor, and on the idea of creating
graduated memory protection. Steve Hand (Cambridge)
asked about using ECC memory for the hypervisor but only
best-effort, predictive protection for virtual machines.
Karthik Pattabiraman (UBC) took the idea further, propos-
ing that individual applications might be able to make use
of memory of varying reliability. Du agreed that these were
interesting avenues of research.

A Design for Comprehensive Kernel Instrumentation
Peter Feiner, Angela Demke Brown, and Ashvin Goel, University of

Toronto

Peter Feiner and his co-authors would like to protect systems
from faulty device drivers, using techniques like Microsoft
Research’s Byte Granularity Isolation. The trouble is that
such techniques require source code, but often the source
for device drivers is unavailable. Applying this technique
to binary code requires a dynamic binary instrumentation
(DBI) framework (like Valgrind, DynamoRIO or Pin), but
Feiner claims that no such framework exists that can operate
on kernel code.

Management and Debugging

Summarized by Brendan Cully (brendan@cs.ubc.ca)

Focus Replay Debugging Effort on the Control Plane
Gautam Altekar and Ion Stoica, UC Berkeley

Gautam Altekar began his presentation with the observation
that debugging datacenter software is particularly difficult,
for three reasons: it is large-scale, data-intensive, and non-
deterministic. Altekar argued that static techniques do not
scale to the state space of these large systems, and so we need
a way to do deterministic recording and replay of production
systems in order to reproduce nondeterministic bugs. But
production systems will not tolerate a great deal of overhead
in either performance or logging data rate.

Altekar proposed that datacenter applications will typically
have two somewhat distinct components: a control plane for
managing data flow and maintaining replica consistency,
and a data plane of relatively simple data processing engines.
He then hypothesized that the control plane, being complex,
would have a much higher relative bug rate than the data
plane. At the same time, it would have a much lower data rate.
For reproducing bugs in the control plane, which he argued
were the most important and difficult, Altekar claimed that
it would suffice to maintain deterministic recordings of the
control plane.

To test this hypothesis, he chose three applications (Hyper-
table, KFS/CloudStore, and OpenSSH) and used taint track-
ing to classify code that accessed user data as data plane code
(this classification needed manual refinement because of the
high rate of false positives produced by taint tracking at the
CPU level, and because classification based on observed exe-
cution had poor coverage). Bearing in mind that the results
were not very scientific, his initial analysis appeared to jus-
tify his hypothesis: 99% of the bugs reported in these applica-
tions were in “control plane” code, but this code accessed only
1% of the data processed during execution. Altekar believed
that this result warranted further investigation.

There were a lot of questions about how cleanly control and
data plane code could be separated in practice. Derek Mur-
ray (Cambridge) wondered how this would work for systems
like Google Percolator, in which the results of the data plane
could affect the control plane. Dutch Meyer (UBC) asked
whether data traffic could be distinguished by directly exam-
ining the data. Altekar responded that the distinguishing
feature of data plane data was volume. Steve Hand (Cam-
bridge) noted that the chosen applications were application
frameworks and wondered how well the observed bug rates
would correspond with those for actual applications built on
the frameworks. Altekar intended to look into that.

Reports_final.indd 114 1.18.11 3:27 PM

 ;login: FEbruary 2011 Conference Reports 115

median distance for a given server is tested against a thresh-
old: The (per-server) threshold for “anomalous” is set via a
fault-free high-stress training phase, to find the maximum
deviation expected under normal conditions. This requires
training on each cluster/filesystem combination, but not
based on workload.

Examining the most anomalous metrics facilitates root-
cause analysis. Given an indicted node, and its feature vec-
tors over time compared to others, the system can present a
list of possible anomalies for manual inspection. Different
metrics are good at different kinds of faults. Disk faults are
best detected by the time metric, since blocking I/O calls
are used. Count metrics are good for detecting packet loss:
dropped packets cause more non-blocking reads, resulting in
a higher function call count. Sampling is useful for detect-
ing the “network hog” fault, as TCP retransmits increase the
CPU load.

Steve Hand (Cambridge) asked a question about how the
threshold was selected. It appeared to be a constant number;
why not set the threshold as a function of what is observed at
runtime (like a number of standard deviations)? Mike noted
that it is not really an absolute number, although the example
slide may have made it seem that way. Instead, it is a maxi-
mum degree of tolerable deviation.

What Consistency Does Your Key-Value Store Actually
Provide?
Eric Anderson, Xiaozhou Li, Mehul A. Shah, Joseph Tucek, and Jay J.

Wylie, Hewlett-Packard Laboratories

Xiaozhou (Steve) Li presented an analysis of key-value
stores. Service-level agreements for consistencies of key-
value stores are likely on the horizon. Most stores only prom-
ise eventual consistency, but for some workloads (depending
on the number of updates, how much contention there is), it
may perform better.

Key-value stores are commercial black boxes. What can
you do to analyze the consistency to see if you need a higher
level of service? Client machines can record sequences of
get/put requests and record the time that requests are sent
and replies are received. Based on the observed sequence,
one can attempt to analyze atomicity, regularity, and safety
(properties from Lamport’s work on register-based consis-
tency). The presentation focused on atomicity, and a graph
theoretical approach was offered. The vertices represent
operations and edges represent precedence. The sequence is
a “good” sequence if and only if it is a directed acyclic graph.
A cycle would imply that a vertex should happen before itself
(because edges are precedence). There are three types of
edges: time (if an operation precedes another entirely), data

The authors see two approaches to constructing a kernel-
level DBI framework: either port an existing tool like Pin
to an existing hypervisor, or build a minimal hypervisor
with just enough code to support DBI. Claiming that a port
would be difficult due to the amount of code that would need
changing, they instead investigated the features required
of a custom DBI hypervisor. Feiner spent the rest of his talk
enumerating many of the tricky issues involved in perform-
ing invisible code translation at the kernel level.

I was surprised both by the claim that a port approach was
more difficult, and that it hadn’t been done before. I asked
Feiner how his model compared to PinOS, which combined
Pin with Xen and was described in a VEE paper in 2007.
Feiner said that the disadvantage of PinOS was that the TCB
for the translation engine was much larger. Others asked
about overhead, and issues dealing with self-modifying code.
Feiner noted that his talk was about a proposed architecture
rather than an implemented system, and so discussions of
mechanics and performance were not yet relevant.

Storage and File Services

Summarized by Mark Spear (mspear@cs.ubc.ca)

Behavior-Based Problem Localization for Parallel File
Systems
Michael P. Kasick, Rajeev Gandhi, and Priya Narasimhan, Carnegie

Mellon University

Mike Kasick described a method of diagnosing problems
in parallel file systems by analyzing system behavior via
CPU instruction pointer sampling and function call trac-
ing. This work was motivated by real problems experienced
by the developers of PVFS (Parallel Virtual File System):
limping-but-alive servers that reported no errors, faulty and
overloaded switches, buggy RAID controllers, and a variety
of other problems that may pass their respective diagnostic
tests. Previous work has shown instances where perfor-
mance manifestations of problems were masked by normal
deviations. However, behavioral manifestations may be more
prominent than performance manifestations.

Fault-free peers have similar behavior: e.g., large I/O
requests are striped across all servers, and small I/O
requests, in aggregate, also equally load all servers. A system
exhibiting a fault (e.g., “Write-Network-Hog Fault”) will have
a behavioral manifestation (e.g., a gross discrepancy in calls
to the kernel tcp_v4_rcv function). Each server has a feature
vector of several metrics from a sliding window of time. The
features include samples, function call counts, and time. To
detect anomalous behavior, Manhattan distances between
feature vectors are computed pair-wise between servers. The

Reports_final.indd 115 1.18.11 3:27 PM

 116 ;login: Vol. 36, No. 1

If we can drop the voltage and frequency, then we can expect
a drop in power. In 1994 we saw 25–65% savings up through
2009, when work saw a 30% energy savings with a meager 4%
performance loss. Unfortunately, there is also a static power
component that includes leakage current, memory refresh
power, hard drive motors, etc. Thus, running more slowly can
potentially degrade the overall power.

The authors consider the mcf and gzip benchmarks and
observe that mcf gets the largest benefit from DVFS because
it is memory bound rather than CPU bound. Looking across
three different Opteron CPUs, they found that the older two
had a power-optimal point around 1.6GHz but that, with
a more modern processor, DVFS was ineffective at saving
power. One shortcoming of this technique is that it assumes
that the computer is not consuming any power after the
benchmark completes. To consider the idle power following
the experiment run, Etienne described their padding meth-
odology to measure the idle power up to the time of the long-
est running DVFS-scaled benchmark. Using this technique,
we start to see some reduction in energy, but we only see
improvements in energy delay if running on all system cores.

Moving forward, we can expect that shrinking feature sizes
and increasing cache size and memory bandwidth will make
improvements by scaling down via DVFS even less likely.
Surprisingly, however, features such as Intel’s Turbo-Boost
can actually reduce total power by scaling up the clock fre-
quency and racing to idle effectively.

An audience member asked how DVFS can impact embedded
platforms. Etienne observed that the CPU power can be very
low relative to the total system power and that DVFS won’t
be able to impact total power. Another audience member
observed that AMD has introduced DVFS on the cache and
memory controllers.

A Case for Opportunistic Embedded Sensing in Presence
of Hardware Power Variability
Lucas Wanner, Charwak Apte, Rahul Balani, Puneet Gupta, and Mani

Srivastava, University of California, Los Angeles

Puneet Gupta demonstrated how shrinking feature sizes
leads to immense variability in the physical manifestation of
hardware designs. For example, in an experimental 80-core
processor the performance spread across cores on a single die
was 80%. The degree of variability is not tied to the design
alone, as the same design sourced from different manufac-
turers can get different degrees of variability. Furthermore,
aging can cause wires to slow and reduce performance by
20–30%. Today, variability is masked by guard bands. Pro-
cessor manufacturers typically bin processors by functional
speed, with space for any aging effects. Unfortunately, scal-

(write 0->read 1; the value of the write should appear in the
value of the read), and “hybrid” edges (which enforce the
invariant that “all writes time-preceding a read should hap-
pen before the read’s dictating write”). Cycles are counted via
DFS, and the number of cycles detected is representative of
how severely inconsistent a trace is.

Measurements of the same sequence of operations from the
service provider’s side are necessarily shorter, because they
wouldn’t include network latency. Therefore, more time edges
would be added to the graph (from the service provider’s
perspective). Thus, a user detecting a violation (i.e., a cycle in
the graph) would imply that the service provider would also
know there was a violation. Some evaluation was done, and
it was noted that their key-value store, Pahoehoe (which is
eventually consistent), with sufficiently low contention, is
about atomic.

Steve agreed with an interesting possibility presented by an
audience member: With these commercial systems exposing
the same interface, if violations are noticed, one could take
action and switch to another provider. Another audience
member asked, if a service provider violation is detected, how
can you prove it? Steve noted the service provider, if running
this analysis, would also detect the violation, because they
would have more time edges (because of the apparent short-
ening of operations). But to actually “prove” the violation, you
would need to incorporate non-repudiation techniques to
convince a third party, using digital signatures and related
techniques. The final question was whether the algorithm
could be run in parallel if keys were in disjoint cliques, and
the answer was yes: it is straightforward, as if they are differ-
ent keyspaces.

2010 Workshop on Power Aware Computing
and Systems (HotPower ’10)

October 3, 2010
Vancouver, BC, Canada

Impact of Hardware Trends

Summarized by John McCullough (jmccullo@cs.ucsd.edu)

Dynamic Voltage and Frequency Scaling: The Laws of
Diminishing Returns
Etienne Le Sueur and Gernot Heiser, NICTA and University of New South

Wales

Etienne Le Sueur observed that dynamic voltage and fre-
quency scaling is a technique commonly used to reduce the
power of a running system. The dynamic power of a system
scales linearly with frequency and quadratically with voltage.

Reports_final.indd 116 1.18.11 3:27 PM

 ;login: FEbruary 2011 Conference Reports 117

energy-proportional computing has limited benefits. The
capital expense of servers accounts for the largest portion of
the total cost of ownership.

To minimize costs in provisioning, Microsoft is moving
towards modular data centers. A video showing the modules
is available at http://www.microsoft.com/showcase/en/us/
details/84f44749-1343-4467-8012-9c70ef77981c. The mod-
ules function using adiabatic cooling with outside air and
only using top-of-rack fans to adjust for cooling/heating as
appropriate. To reduce the cost of power, there are techniques
for eliminating conversion steps. Surprisingly, running AC to
the servers is not significantly different from DC in total con-
version efficiency. Right-sizing for density suggests a sweet
spot, with the lowest-voltage processor getting a surprising
performance/watt/cost benefit. Right-sizing storage can be
achieved by in-depth storage trace analysis to understand
workload patterns and dynamic range to pack better.

Overall, researchers need to be sure that they take a holistic
view. Current research areas are in optimal provisioning for
high dynamic range workloads, addressing energy propor-
tionality via system architecture innovations, power-aware
task scheduling on large clusters, and energy-conscious
programming using controlled approximation.

One audience member asked why their efficiency approaches
don’t work in all data centers. Kushagra responded that get-
ting all of the layers of UPSes and voltage conversion requires
control of the entire data center, which few have the scale to
accomplish. What are the implications of low-power CPUs in
data centers? For Bing workloads, Xeon systems are 2.3x bet-
ter in performance/watt/cost. Someone asked why they don’t
turn off servers. Kushagra replied that it can lead to response
time spikes, that turn-on time can be long, and that if you can
turn off servers, you brought too many online or you are doing
poorly at task scheduling.

Data Center I

Summarized by John McCullough (jmccullo@cs.ucsd.edu)

Analyzing Performance Asymmetric Multicore
Processors for Latency Sensitive Datacenter
Applications
Vishal Gupta, Georgia Institute of Technology; Ripal Nathuji, Microsoft

Research

Asymmetric multicore processors (AMPs) are being explored
in multiple dimensions, where cores are combined with dif-
ferent performance characteristics and deployed with differ-
ent functional characteristics. Vishal Gupta presented their
technique for understanding the impact that AMPs can have
on data centers with respect to power and throughput.

ing with the guard band is much worse than the nominally
achievable results.

Puneet advocates that exposing aspects of this variability to
software can allow improved functionality. Such exposure
could happen via active measurement or prior testing, but
it can have a significant impact. For instance, in sensing
applications the sleep power is dominant and can affect the
amount of data that can be acquired on a given power budget.
The authors found that for 10 off-the-shelf Cortex M3 pro-
cessors, the active power varied by 10%, but the sleep power
varied by 80%. Furthermore, the sleep and active power
vary with temperature. Using a power model calibrated to
temperature and sensors for power, Puneet demonstrated
that they can achieve more effective sensing by energy-aware
duty cycling. Thus, a node with lower sleep power can sample
1.8x more data than it would have if all nodes were timed to
the worst sleep power. Moving forward, one challenge is to
discover the right interface for exposing the variability and
sense data to software.

An audience member observed that this data is already inte-
grated in modern CPU power management units for manag-
ing the frequency within temperature and power bounds.
Puneet responded that it is important to actually expose
this information to the software layer, which most of these
techniques fail to do. Another audience member asked about
the overhead of these techniques. Puneet observed that the
information is already being collected for quality control but
it is not exposed to software. Finally, an audience member
asked about the difficulty managing other system compo-
nents. Puneet said that the complexity would depend on the
abstraction.

Invited Talk

Summarized by John McCullough (jmccullo@cs.ucsd.edu)

Datacenter Power Efficiency: Separating Fact from
Fiction
Kushagra Vaid, Microsoft Corporation

Kushagra Vaid posed the question of how to maximize power
efficiency at a large scale. A data center consists of a power
substation, chillers, batteries, an ops room, generators, fuel,
and computing equipment. The efficiency of a facility is often
measured by PUE, which is the facility power divided by the
IT equipment power. Common PUE values range around
1.5–2.0, but good deployments reach close to ideal at 1.05.

Kushagra observed that the cost of power is fairly low rela-
tive to the overall costs of the facility. Amortizing using a
three-year replacement model, power consumption con-
sists of 16% of the cost. Thus, reducing dynamic power and

Reports_final.indd 117 1.18.11 3:27 PM

 118 ;login: Vol. 36, No. 1

Data Center II

Summarized by Etienne Le Sueur (elesueur@cse.unsw.edu)

Energy Savings in Privacy-Preserving Computation
Offloading with Protection by Homomorphic Encryption
Jibang Liu and Yung-Hsiang Lu, Purdue University

Yung-Hsiang Lu presented this paper, which discusses the
issues that arise when compute-intensive tasks are offloaded
from mobile devices to a centralized server. The main issue
their work addresses is that of privacy, when sensitive data
needs to be transferred off the mobile device, using a public
network, to a server which may not be trusted.

Their work mitigates this privacy issue by protecting the data
using a homomorphic encryption algorithm. Homomorphic
encryption is unlike traditional encryption techniques in
that computations can be done on the cipher-text itself rather
than being decrypted first. This way, the server operating on
the data need not actually know what information the data
contains.

The use-case they describe in the paper deals with image-
matching—for example, when a user of a mobile phone takes
a photo and wants a remote server to do some analysis to try
and determine what objects the photo contains. They used an
iPad portable device and a server with a 2GHz CPU for pro-
cessing the images, with evaluation based on how many posi-
tive matches were made. Using their modified Gabor filter,
they were able to get a correct match approximately 80% of
the time when the analysis was performed on the cipher-text.

The work seems promising, and a future direction was
clearly given which will address the issues with noise in the
encryption system.

An audience member asked whether there were other classes
of functions where it makes sense to offload computation.
They haven’t reached a point where there’s a general rule for
when to apply the technique. How strong is the encryption
and can it easily be broken? The strength of the encryption
depends on the key length. The discussion was continued
offline.

Green Server Design: Beyond Operational Energy to
Sustainability
Jichuan Chang, Justin Meza, Parthasarathy Ranganathan, Cullen Bash,

and Amip Shah, Hewlett Packard Labs

Justin Meza presented this paper, which discusses a way to
quantify sustainability when designing data centers. The
usual motivations for the work were given: e.g., reduction of
carbon footprint, secondary costs (power and cooling), and
government regulation.

Vishal described two use cases: energy scaling and parallel
speedup. Energy scaling involves execution on a combination
of the small and large cores to achieve the same computation
within a deadline at lower power. Parallel speedup occurs
when a larger core on an AMP can execute serial sections
faster. To ascertain the effects of these use cases, Vishal
treats each processor as an M/M/1 queue, which models pro-
cessing times as an exponential distribution where the pro-
cessing time is parameterized in proportion to the chip area.
Overall completion time is parametrized by the paralelliz-
able fraction of the code. Using this model, Vishal finds that
for a higher fraction of parallelizable work, power savings
increase with AMP use. While there are practical consider-
ations, AMPs offer more potential for parallel speedup than
for energy speedup.

Energy Conservation in Multi-Tenant Networks through
Power Virtualization
Srini Seetharaman, Deutsche Telekom R&D Lab, Los Altos

Networks are typically power oblivious and it is hard for
network users to ascertain the impact. By packing flows into
fewer devices and turning off unused devices, the system
can turn off individual ports and even entire switches. Given
a multi-tenant data center, how can tenants be influenced
to reduce their system usage? Switching from a flat rate for
networking to a power-based price can incentivize power
savings.

Srini Seetharaman proposed the idea of virtual power.
Because network power is not proportional usage, the most
intuitive definition for virtual power is to split the power con-
sumption of a component over all sharing tenants. This has
the effect of penalizing a tenant for being the only occupant
and encourages reuse of pre-paid/pre-powered-on elements.
An implementation is in progress but there are no results yet.
The specific methods of billing and pricing can influence
the outcome; for instance, auctions might introduce differ-
ent behavior than allocations that degrade over time. In the
future, the question is how we can achieve good performance
while conserving power.

In the Q&A, Srini clarified that it makes more sense to
conserve in a reactive mode, turning on devices as neces-
sary. One audience member asked whether rate-based power
differences can affect power. Srini replied that the power
differences are typically small. The same person also asked
whether the placement of tenants in the data center could
penalize them in terms of the available pricing. Srini replied
that this was a concern.

Reports_final.indd 118 1.18.11 3:27 PM

 ;login: FEbruary 2011 Conference Reports 119

They claim that these techniques can save 26% of the energy
used in the cluster they were testing.

An audience member asked the presenter to clarify how they
were able to save 26% energy. A large number of the servers in
the “cold” zone were in fact never turned on during the three-
month simulation.

Myths, Modeling, and Measurement

Summarized by Lucas Wanner (wanner@ucla.edu)

Demystifying 802.11n Power Consumption
Daniel Halperin, University of Washington; Ben Greenstein and Anmol

Sheth, Intel Labs Seattle; David Wetherall, University of Washington and

Intel Labs Seattle

Anmol Sheth started by observing that WiFi is becoming
ubiquitous and that the increasing bandwidth demands of
networked applications are leading to the widespread adop-
tion of 802.11n, the latest version of the standard. In battery-
operated devices such as mobile phones, radio interfaces can
account for a significant portion of total power budget. There
is little data available to help designers operate 802.11n
devices in an energy-efficient way. This work presents mea-
surements of 802.11n in various configurations and modes of
operation.

802.11n devices may use multiple active RF chains. The
characterization study in this work found that power
increases sub-linearly with additional antennas, and
increase in signal processing power is negligible. Power
consumption is hence not a multiple of active RF chains and
is asymmetric for transmission and reception. Nevertheless,
the use of wider RF channels is more power-efficient than
multiple spatial streams.

Another source of energy efficiency for 802.11n communica-
tion is “racing to sleep,” i.e., transmitting data in high-rate
bursts and subsequently putting the card in sleep mode.
Because sleep mode may use approximately 10x less power
than simply leaving the card in reception mode all the time,
this may lead to significant savings.

The first question addressed the issue of energy-efficient
operation for bandwidth-intensive applications, such as
streaming video. In these cases, racing-to-sleep may be
impossible. A second question was about backward compat-
ibility between n and g devices in the same network. This can
potentially decrease energy efficiency, as devices must oper-
ate at the lowest common denominator. Finally, the test envi-
ronment was discussed: in the tests conducted in the study,
the hosts were in close proximity. Further work is required to
evaluate lower-quality links typical of homes and offices.

To measure sustainability, several costs need to be
addressed: extraction of materials, manufacture of systems,
operation and infrastructure, and recycling once end-of-life
is reached.

They use a metric called “exergy,” which basically constitutes
TCO (total cost of ownership) plus the energy required to
manufacture devices. Objects such as servers accumulate
“exergy” by breaking them down into components, such as
hard drives and processors, and trying to determine the cost
of the raw materials that go into making them.

Supply-chain information is included in the “exergy” calcula-
tions, which include cost of transportation. For an example
server, they find that the cost of manufacturing the server
was roughly 20%, 27% was infrastructure-based cost, and
53% was operational costs like power and cooling.

The next part of the talk discussed how using certain
techniques to alter energy-efficiency affected “exergy.” On
one hand, they looked at consolidating servers (reducing
total idleness) and on the other hand they looked at energy-
proportional computing techniques, such as reducing CPU
frequency when there is idleness. They found that if reduc-
ing total “exergy” is the goal, then consolidation is the best
approach, but if reducing operational “exergy” is the goal,
then energy-proportional computing techniques give better
results.

GreenHDFS: Towards an Energy-Conserving, Storage-
Efficient, Hybrid Hadoop Compute Cluster
Rini T. Kaushik, The University of Illinois at Urbana-Champaign and

Yahoo! Inc.; Milind Bhandarkar, Yahoo! Inc.

Rini T. Kaushik presented the authors’ attempt to leverage
the distributed nature of the Hadoop file system. The basic
premise is that the cluster of servers is divided into two sec-
tions: a hot section, which contains recently used data, and a
cold section, which contains data that has been untouched for
some time.

Initially, they did an analysis of the evolution of files in an
HDFS (Hadoop Distributed File System) cluster, by looking
at three months’ worth of traces from Yahoo. They found
that 90% of data is accessed within two days after a file is
first created. Additionally, they found that 40% of data lies
dormant for more than 20 days before it is deleted. This
essentially means that data is “hot” for a short period after
creation, and then “cold” for a much longer period.

Computation follows the ‘hot” zones, and the “cold” zones see
significant idleness and can be scaled down or turned off.
They determined the best division was 70% hot and 30% cold.

Reports_final.indd 119 1.18.11 3:27 PM

 120 ;login: Vol. 36, No. 1

Automatic Server to Circuit Mapping with the Red Pills
Jie Liu, Microsoft Research

The objective of this work is to map servers in a data center to
the circuit that powers them. Due to complex wiring setups,
it’s hard to identify which circuit powers each server. Having
this information would be beneficial for failover analysis,
accounting, power provisioning, and balancing.

The basic idea in this work is to manipulate a server’s
workload to generate a power signature that can be identi-
fied by circuit power measurements, using the power line as
a communication channel. A pure, single-frequency signal
would be ideal for this identification, but is hard to generate
by manipulating CPU utilization. Periodic square wave sig-
nals are easier to generate. In the Red Pill system, a manager
requests an identification signal from the server through
the network and detects this through the power measure-
ment connected to the manager. IDs with 64 samples can be
detected with high probability, even with fairly low amplitude
signals. Each signature with 64 samples would take about
16 minutes for detection. As the number of servers increases
beyond 20, detection likelihood decreases.

Is it hard to identify server-to-power circuit mapping in gen-
eral, or is this only a problem with “incorrect deployments?
Because of the dynamic nature of datacenter deployments,
this is a fairly common problem. How can correctness be
verified in the system? In the tests conducted for the paper,
the mapping (ground truth) was known. In deployment sys-
tems, metrics of confidence could be included, and repeated
measurements could be used to increase accuracy.

Chaotic Attractor Prediction for Server Run-time
Energy Consumption
Adam Lewis, Jim Simon, and Nian-Feng Tzeng, University of Louisiana

Full system power models are used to estimate energy
consumption in servers. This is accomplished by looking
at complete system energy and trying to approximate the
energy used by various components. Linear methods are
simple and have fairly average median error but potentially
very high maximum errors. Power traces for a series of
benchmarks suggest both correlation and chaotic behavior
between samples.

This work showed that models constructed from autoregres-
sive methods demonstrate behavior that makes them prob-
lematic for predicting server energy consumption. This work
proposed a Chaotic Attractor Predictor which overcomes the
limitations of the previous linear regression-based methods
by addressing the non-linear aspects of energy consumption
in time and captures the underlying chaotic behavior of the
system.

During the questions session, it was pointed out that only
single-threaded applications were used to predict power
consumption in the work. This may be one of the reasons for
the non-linear behavior found in power consumption, as the
power manager can put the CPU to sleep when it is idle.

Reports_final.indd 120 1.18.11 3:27 PM

usenix_login_feb11_covers.indd 3 1.18.11 3:06 PM

USENIX Association
2560 Ninth Street, Suite 215
Berkeley, CA 94710

POSTMASTER
Send Address Changes to ;login:
2560 Ninth Street, Suite 215
Berkeley, CA 94710

PERIODICALS POSTAGE
PAID

AT BERKELEY, CALIFORNIA
AND ADDITIONAL OFFICES

March 30–April 1, 2011, Boston, MA
Sponsored by USENIX in cooperation with ACM SIGCOMM and ACM SIGOPS

 Additional discounts available! http://www.usenix.org/nsdi11

8th USENIX Symposium on
Networked Systems Design
and Implementation

Register Now!

11
NSDI ’11 will focus on the design principles, implementation, and practical evaluation of large-
scale networked and distributed systems in a 3-day technical program including topics such as:

 • Data-intensive computing • Energy and storage
 • Debugging and correctness • Security and privacy
 • And more!

Take advantage of this opportunity to join researchers from across the networking and
systems community in fostering a broad approach to addressing common research challenges.

Register by Monday, March 7, and save!

usenix_login_feb11_covers.indd 4 1.18.11 3:06 PM

