
The Advanced Computing Systems Association

O P I N I O N Musings
R I K FA R ROW

Why Configuration Management Is Crucial
PAU L A N D E R S O N

Extreme Makeover
A L A I N H É N O N

S Y S A D M I N System Management Methodologies with Bcfg2
N A R AYA N D E SA I , R I C K B R A D S H AW, A N D
J O EY H AG E D O R N

Puppet: Next-Generation
Configuration Management
LU K E K A N I E S

Spam Filtering for the Enterprise
M A R C WA L L M A N

Delegating to the Web
TOM L I M O N C E L L I

Consulting for Fun and Profit
D U STI N P U RY E A R

Keeping Track of Time
TH O M A S S LUY TE R

C O L U M N S Practical Perl Tools: Configuration Files
DAV I D B L A N K- E D E L M A N

ISPadmin: Blocking Non-Email Spam
RO B E RT H A S K I N S

S E C U R I T Y Single Packet Authorization with Fwknop
M I C H A E L R A S H

Worm Propagation Strategies in an IPv6 Internet
STE V E N M . B E L LOV I N , B I L L C H E SW I C K , A N D
A N G E LO S D. K E RO MY TI S

T E C H N O L O G Y MythTV: Some Assembly Required . . . But
the Results Can Be Spectacular
DAV E B ROW N

B O O K R E V I E W S Book Reviews
E L I Z A B E TH Z W I C K Y E T A L .

U S E N I X N O T E S 2006 USENIX Nominating Committee Report
“Say Hello, Gracie.”“Hello, Gracie.”
STR ATA R . C H A LU P

Summary of USENIX Board of Directors Meetings
and Actions
TA R A M U L L I G A N A N D E L L I E YO U N G

T H E U S E N I X M A G A Z I N E

F E B R U A R Y 2 0 0 6 V O L U M E 3 1 N U M B E R 1

For a complete list of all USENIX & USENIX co-sponsored events,
see http://www.usenix.org/events

44TTHH IINNTTEERRNNAATTIIOONNAALL CCOONNFFEERREENNCCEE OONN MMOOBBIILLEE
SSYYSSTTEEMMSS,, AAPPPPLLIICCAATTIIOONNSS,, AANNDD SSEERRVVIICCEESS
((MMOOBBIISSYYSS 22000066))
Jointly sponsored by ACM SIGMOBILE and USENIX, in
cooperation with ACM SIGOPS

JJUUNNEE 1199––2222,, 22000066,, UUPPPPSSAALLAA,, SSWWEEDDEENN

hhttttpp::////wwwwww..ssiiggmmoobbiillee..oorrgg//mmoobbiissyyss//22000066

22NNDD SSTTEEPPSS TTOO RREEDDUUCCIINNGG UUNNWWAANNTTEEDD TTRRAAFFFFIICC OONN
TTHHEE IINNTTEERRNNEETT WWOORRKKSSHHOOPP ((SSRRUUTTII ’’0066))

JJUULLYY 66––77,, 22000066,, SSAANN JJOOSSEE,, CCAA,, UUSSAA
hhttttpp::////wwwwww..uusseenniixx..oorrgg//ssrruuttii0066
Paper submissions due: April 20, 2006

1155TTHH UUSSEENNIIXX SSEECCUURRIITTYY SSYYMMPPOOSSIIUUMM
((SSEECCUURRIITTYY ’’0066))

JJUULLYY 3311––AAUUGGUUSSTT 44,, 22000066,, VVAANNCCOOUUVVEERR,, BB..CC..,, CCAANNAADDAA

hhttttpp::////wwwwww..uusseenniixx..oorrgg//sseecc0066

77TTHH SSYYMMPPOOSSIIUUMM OONN OOPPEERRAATTIINNGG SSYYSSTTEEMMSS DDEESSIIGGNN
AANNDD IIMMPPLLEEMMEENNTTAATTIIOONN
Sponsored by USENIX, in cooperation with ACM SIGOPS

NNOOVVEEMMBBEERR 66––88,, 22000066,, SSEEAATTTTLLEE,, WWAA,, UUSSAA
hhttttpp::////wwwwww..uusseenniixx..oorrgg//oossddii0066
Paper submissions due: April 24, 2006

SSEECCOONNDD WWOORRKKSSHHOOPP OONN HHOOTT TTOOPPIICCSS IINN SSYYSSTTEEMM
DDEEPPEENNDDAABBIILLIITTYY ((HHOOTTDDEEPP ’’0066))

NNOOVVEEMMBBEERR 88,, 22000066,, SSEEAATTTTLLEE,, WWAA,, UUSSAA
hhttttpp::////wwwwww..uusseenniixx..oorrgg//uusseenniixx0066
Paper submissions due: July 15, 2006

2200TTHH LLAARRGGEE IINNSSTTAALLLLAATTIIOONN SSYYSSTTEEMM
AADDMMIINNIISSTTRRAATTIIOONN CCOONNFFEERREENNCCEE ((LLIISSAA ’’0066))

DDEECCEEMMBBEERR 33––88,, 22000066,, WWAASSHHIINNGGTTOONN,, DD..CC..,, UUSSAA
hhttttpp::////wwwwww..uusseenniixx..oorrgg//lliissaa0066
Paper submissions due: May 23, 2006

77TTHH IIEEEEEE WWOORRKKSSHHOOPP OONN MMOOBBIILLEE CCOOMMPPUUTTIINNGG
SSYYSSTTEEMMSS AANNDD AAPPPPLLIICCAATTIIOONNSS ((WWMMCCSSAA 22000066))
Sponsored by IEEE Computer Society in cooperation
with USENIX

AAPPRRIILL 66––77,, 22000066,, SSEEMMIIAAHHMMOOOO RREESSOORRTT,, WWAA,, UUSSAA
hhttttpp::////rreesseeaarrcchh..iihhoosstt..ccoomm//wwmmccssaa22000066

33RRDD SSYYMMPPOOSSIIUUMM OONN NNEETTWWOORRKKEEDD SSYYSSTTEEMMSS
DDEESSIIGGNN AANNDD IIMMPPLLEEMMEENNTTAATTIIOONN ((NNSSDDII ’’0066))
Sponsored by USENIX, in cooperation with ACM SIGCOMM
and ACM SIGOPS

MMAAYY 88––1100,, 22000066,, SSAANN JJOOSSEE,, CCAA,, UUSSAA
hhttttpp::////wwwwww..uusseenniixx..oorrgg//nnssddii0066

55TTHH SSYYSSTTEEMM AADDMMIINNIISSTTRRAATTIIOONN AANNDD NNEETTWWOORRKK
EENNGGIINNEEEERRIINNGG CCOONNFFEERREENNCCEE ((SSAANNEE 22000066))
Organized by Stichting SANE and co-sponsored by Stichting
NLnet, USENIX, and SURFnet

MMAAYY 1155––1199,, 22000066,, DDEELLFFTT,, TTHHEE NNEETTHHEERRLLAANNDDSS

hhttttpp::////wwwwww..ssaannee..nnll//ssaannee22000066

22000066 UUSSEENNIIXX AANNNNUUAALL TTEECCHHNNIICCAALL
CCOONNFFEERREENNCCEE ((UUSSEENNIIXX ’’0066))

MMAAYY 3300––JJUUNNEE 33,, 22000066,, BBOOSSTTOONN,, MMAA,, UUSSAA
hhttttpp::////wwwwww..uusseenniixx..oorrgg//uusseenniixx0066

FFIIRRSSTT WWOORRKKSSHHOOPP OONN HHOOTT TTOOPPIICCSS IINN
AAUUTTOONNOOMMIICC CCOOMMPPUUTTIINNGG ((HHOOTTAACC ’’0066))
Sponsored by IEEE Computer Society and USENIX

JJUUNNEE 1133,, 22000066,, DDUUBBLLIINN,, IIRREELLAANNDD

hhttttpp::////wwwwww..aaqquuaallaabb..ccss..nnoorrtthhwweesstteerrnn..eedduu//HHoottAACCII//
Paper submissions due: March 3, 2006

SSEECCOONNDD IINNTTEERRNNAATTIIOONNAALL CCOONNFFEERREENNCCEE OONN VVIIRRTTUUAALL
EEXXEECCUUTTIIOONN EENNVVIIRROONNMMEENNTTSS ((VVEEEE ’’0066))
Sponsored by ACM SIGPLAN in cooperation with USENIX

JJUUNNEE 1144––1166,, 22000066,, OOTTTTAAWWAA,, OONNTTAARRIIOO,, CCAANNAADDAA

hhttttpp::////wwwwww..vveeeeccoonnffeerreennccee..oorrgg//vveeee0066

Upcoming Events

contents

OPINION
2 Musings

R I K FA R ROW

5 Why Configuration Management Is Crucial
PAU L A N D E R S O N

9 Extreme Makeover
A L A I N H É N O N

SYSADMIN
11 System Management Methodologies with Bcfg2

N A R AYA N D E SA I , R I C K B R A D S H AW, A N D
J O EY H AG E D O R N

19 Puppet: Next-Generation Configuration
Management
LU K E K A N I E S

26 Spam Filtering for the Enterprise
M A RC WA L L M A N

35 Delegating to the Web
TOM L I M O N C E L L I

39 Consulting for Fun and Profit
D U STI N P U RY E A R

45 Keeping Track of Time
TH OM A S S LUY TE R

COLUMNS
50 Practical Perl Tools: Configuration Files

DAV I D B L A N K- E D E L M A N

59 ISPadmin: Blocking Non-Email Spam
RO B E RT H A S K I N S

SECURITY
63 Single Packet Authorization with Fwknop

M I C H A E L R A S H

70 Worm Propagation Strategies in an IPv6
Internet
STEV E N M . B E L LOV I N , B I L L C H E SW I C K , A N D
A N G E LO S D. K E ROMY TI S

TECHNOLOGY
77 MythTV: Some Assembly Required . . . But the

Results Can Be Spectacular
DAV E B ROW N

BOOK REVIEWS
84 Book Reviews

E L I Z A B E TH Z W I C K Y E T A L .

USENIX NOTES
90 2006 USENIX Nominating Committee Report
91 “Say Hello, Gracie.” “Hello, Gracie.”

STR ATA R . C H A LU P

91 Summary of USENIX Board of Directors
Meetings and Actions
TA R A M U L L I G A N A N D E L L I E YO U N G

V O L . 3 1 , # 1 , F E B R U A R Y 2 0 0 6

E D I TO R
Rik Farrow
rik@usenix.org

M A N AG I N G E D I TO R
Jane-Ellen Long
jel@usenix.org

CO P Y E D I TO R
Steve Gilmartin
proofshop@usenix.org

P R O D U C T I O N
Rob Carroll
Casey Henderson

T Y P E S E T T E R
Star Type
startype@comcast.net

U S E N I X A S S O C I AT I O N
2560 Ninth Street,
Suite 215, Berkeley,
California 94710
Phone: (510) 528-8649
FAX: (510) 548-5738

http://www.usenix.org
http://www.sage.org

;login: is the official
magazine of the
USENIX Association.

;login: (ISSN 1044-6397) is
published bi-monthly by the
USENIX Association, 2560
Ninth Street, Suite 215,
Berkeley, CA 94710.

$85 of each member’s annual
dues is for an annual sub-
scription to ;login:. Subscrip-
tions for nonmembers are
$115 per year.

Periodicals postage paid at
Berkeley, CA, and additional
offices.

POSTMASTER: Send address
changes to ;login:,
USENIX Association,
2560 Ninth Street,
Suite 215, Berkeley,
CA 94710.

©2006 USENIX Association.

USENIX is a registered trade-
mark of the USENIX Associa-
tion. Many of the designa-
tions used by manufacturers
and sellers to distinguish their
products are claimed as trade-
marks. USENIX acknowl-
edges all trademarks herein.
Where those designations
appear in this publication and
USENIX is aware of a trade-
mark claim, the designations
have been printed in caps or
initial caps.

R I K F A R R O W

musings
rik@usenix.org

One of the advantages of being disorderly
is that one is constantly making exciting
discoveries.—A.A. Milne

I A M N O T O N E O F T H O S E P E O P L E
whose desk is neat, or whose office belongs
in a house prepped in a manner that
makes real estate agents smile. Hardly. I
subscribe to the notion that such signs of
orderliness speak of rigidity of mind. This
extends to my writing and speaking, with
various degrees of success.

For writing papers, disorderliness makes the
process painful and slow. You want order when
you are writing papers. On the other hand, with
public speaking I have found that a certain lack of
order leads to more interesting presentations. I
was once tasked with presenting the same talk,
twice a day, in twelve cities over the space of sev-
eral weeks. I quickly found myself becoming
bored, and challenged myself to tailor each pres-
entation to the audience in front of me. And I suc-
ceeded, and was recognized by the sponsor of the
road trip for my creativity while still covering the
points outlined in the slides.

To be honest here, I decided that I could be a pub-
lic speaker and lecturer after watching Timothy
Leary perform in a bar in Berkeley. Professor
Leary used a slide projector as both a visual aid
and a crutch that kept him more or less on track.
I like to think I am better organized than Leary,
but not rigid, like a speaker reading from a
prompter.

Management

But there are situations where disorderliness is
anything but a creative solution. Anyone who has
ever attempted to manage a large number of sys-
tems which share few characteristics other than
the name of the operating system knows this for a
fact. A measure of orderliness and a means for
maintaining it become a life and sanity saver.

I became aware of configuration management in
three phases. In phase one, I had researched
patching solutions, reading through Proceedings
of past USENIX conferences, looking for common
threads in the many papers. I quickly spotted a
common thread, and it went something like this:
“We [the paper’s authors] spent some time [6–18]
months working to get all systems up to the same
patch level before we could start using X [their
solution].” Wow, that sounds like real pain,
enough to convince most people that it was not
even worth attempting the project.

2 ; L O G I N : V O L . 3 1 , N O . 1

What if you could avoid the pain of that half-year to eighteen months of
work? In the next phase, sysadmins created solutions for building systems
in standard ways. Instead of having a multitude of installs, you could have
several basic installs, depending on how the target system would be used:
desktop, Web server, mail server, file server, laptop, etc. Whether you use
NFS-mounted installation packages or a set of CDs, you have at least
solved one problem. And you can instigate a patching program that takes
advantage of the homogeneity of your classes of systems.

My awareness of the final phase jelled during a conversation with Adam
Moskowitz during LISA ’04. Adam tried to convince me of the importance
of configuration management, and that Paul Anderson should write a Short
Topics Booklet about this. I countered by saying that it seemed that Mark
Burgess’s cfengine was a fine solution to configuration management, but
Adam carefully explained that cfengine is one solution to configuration
management, but not the solution.

In this edition of ;login:, you can read three articles about configuration
management. The first is an Opinion piece by Paul Anderson, who has
written a Short Topics Booklet which will be published this spring. Paul
makes a strong case for better configuration management tools judged on
three criteria: reliability, security, and correctness. My personal favorite is
the second, security. I have long asserted that a well-maintained system is
also likely to be a secure system. If you wonder about that, just imagine
the security of a poorly maintained system for a moment. There is a very
real correlation.

Two articles which describe different configuration management solutions
are presented, not with the intent of promoting either solution, but in the
hope of making sysadmins aware that the configuration management tool
space continues to grow. The problem is nontrivial, and much research and
practice will be involved before we can come close to the solution that
Paul advocates. Narayan Desai and his co-authors discuss Bcfg2 and their
motivation for taking the time to set up a configuration management sys-
tem, while Luke Kanies describes Puppet, the configuration management
software he has been developing.

Onward

Marc Wallman provides a case study of implementing a campus-wide spam
handling system using open source software. Tom Limoncelli talks about
using external services as a method for delegating work, while Dustin
Puryear provides useful advice about becoming a sysadmin consultant,
based on his many years of experience. On a slightly different note,
Thomas Sluyter lectures us on managing our time better (more organiza-
tion).

Regular columns now have their own section, Columns, to make them
easy to find. David Blank-Edelman introduces his new column on Perl by
discussing (what a nice coincidence) handling of configuration files.
Robert Haskins takes a look at a different type of spam than you may be
used to dealing with.

In Technology, Dave Brown has boldly gone where others have also stum-
bled. Dave takes us through his adventures in using MythTV to build a
DVR (Digital Video Recorder). Dave’s journey reveals the travails of some-
one new to Linux (but not to programming and operating systems) as he

; LO G I N : F E B R UA RY 2 0 0 6 M U S I N G S 3

accomplishes this complicated task, while managing to educate and enter-
tain us at the same time.

In the Security section, we have a return engagement by Mike Rash. Mike
wrote about port-knocking in the 2004 Security issue, and has returned to
write about a new technique that provides authorization with only a single
packet before starting a service like SSH. And the trio of Bill Cheswick,
Steve Bellovin, and Angelos Keromytis take a deep look at how the vastly
larger IPv6 address space will affect future Internet worms. Their article
provides what is likely a prophetic view of a future Internet that will still
be plagued with cleverly spreading malware.

The Book Reviews section of this issue is larger than usual, partially
because there were no reviews in the December issue (note that some of
these book reviews do appear in the online version of the December 2005
;login:). The missing reviews represented an embarassing oversight, in that
the many eyes that read page proofs all failed to notice something that
wasn’t there. It has taught all of us a lesson about noticing what is not
there.

Organized

There! I managed to describe the entire issue. Well, almost. I left out
something near the beginning, where Alain Hénon, former managing edi-
tor of ;login:, provides advice about improving the image of computer sci-
ence practitioners. While image isn’t everything (I am a great fan of sub-
stance), we really cannot ignore the image we present to the world, as it
has a tremendous (and sometimes inadvertent) effect upon those we come
into contact with. Now, if I could just remember where I left my tie . . .

4 ; L O G I N : V O L . 3 1 , N O . 1

P A U L A N D E R S O N

why configuration
management is
crucial
Paul Anderson has a background in pure mathemat-
ics and over 20 years of experience in system admin-
istration. He is currently a principal computing offi-
cer with the School of Informatics at Edinburgh
University. He is the primary author of the LCFG con-
figuration system and the organizer of the LISA con-
figuration workshop series. His homepage is
http://www.homepages.inf.ed.ac.uk/dcspaul/

dcspaul@inf.ed.ac.uk

T H E P A S T F E W Y E A R S H A V E S E E N
an increasing interest in “Configuration
Management.” Some of us believe that the
lack of good tools and procedures in this
area is rapidly becoming the major barrier
to the deployment of reliable, secure, and
correct systems. I am going to try to define
the configuration problem more clearly and
to explore some possible reasons for these
difficulties. However, it is worth starting
with a few simple examples:

j Reliability—If we decommission a server, can we be

certain that nothing else depends on this server in any

way? Perhaps it might have been the only DHCP server

on some little-used subnet, and problems will only

become apparent when some host on that subnet fails

to boot.
j Security—Can we be certain that the configuration files

on a group of machines are set up so that there are no

unexpected trust relationships between the machines?

What if a supposedly secure machine installs new ver-

sions of an application from a remote file system on a

less-secure server?
j Correctness—Can we be certain that every compute

node in a cluster is running the required (new) version

of a particular library, before starting a critical job?

An ideal configuration management system would
prevent such problems by design. Current tools,
used with best practice, should at least make it
possible to identify and avoid them. However,
sites with less-developed configuration manage-
ment would even have difficulty in deciding
whether or not such problems existed! For exam-
ple, the information may only be available on the
remote nodes themselves, and a certain percentage
of these will always be unavailable at any one time.

Most sites have probably used some form of “con-
figuration management” tool as a way of coping
with large numbers of very similar “clients.” This
certainly addresses a whole class of configuration
problems, such as the last of the above examples.
However, modern computing installations form a
complex web of related services. Managing the
“servers” and the relationships they imply is much
more difficult—this is the root cause of the deeper
problems illustrated by the first two examples.
The increasing scale, and particularly the com-
plexity, of modern sites means that manual
approaches to configuration of these relationships
are no longer adequate; human system administra-

; LO G I N : F E B R UA RY 2 0 0 6 W H Y CO N F I G U R ATI O N M A N AG E M E NT I S C R U C I A L 5

tors simply cannot manage the complexity of the interactions, or foresee
the full consequences of individual configuration changes.

Achieving high reliability in complex systems also requires the capability
for fully automated reconfiguration. An autonomic system must have the
ability to reconfigure some other machine as replacement for a failed serv-
er. In a multi-tier Web service, for example, this is likely to involve exten-
sive reconfiguration of related services.

What Is “System Configuration”?

The basic system configuration problem is quite simple to describe:

j Starting with:
j A large number of varied machines with empty disks.
j A repository of all the necessary software packages and data files.
j A specification of the functions that the overall system is intended to perform.

j Load the software and configure the machines to provide the required functionality.

This usually involves a good deal of internal infrastructure, e.g., DNS, LDAP, DHCP,

NFS, NIS services.
j Reconfigure the machines whenever the required service specification changes.
j Reconfigure the machines to maintain conformance with the specification whenever

the environment changes—for example, when things break.

In practice, the task of “configuring the machines” probably involves edit-
ing configuration files (or perhaps supplying the configuration information
via some API or GUI). However, it is not the mechanics of this process that
is important; the real difficulty is in determining a suitable configuration
for each service on each host that will make the overall system behave
according to the specification.

To solve difficulties such as those in the first two examples, a configuration
system must have a model that can represent the relationships implied by
the configuration of the individual machines. Conceptually, we can think
of a configuration tool as a type of “compiler,” whose input is a set of
requirements for the entire system and whose output is a set of configura-
tion parameters for each service on each host in the system. Of course, a
real configuration tool involves a lot more practical details, such as format-
ting and distributing the configuration information, but these parts of the
process are comparatively straightforward.

Ultimately, we would like the input language for our configuration compil-
er to be at a very high level. For example, we might specify a Web service
with certain behavioral properties, and the compiler would generate the
appropriate configurations for all of the individual services, on all of the
participating hosts. Unlike most programming languages, these configura-
tion specifications need to be declarative—i.e., we want to specify the
required properties of the resulting configuration and have the tool auto-
matically work out the procedures for achieving the end result.

6 ; L O G I N : V O L . 3 1 , N O . 1

“Copy this disk image onto these machines”

⇓

“Put these files on these machines”

⇓

“Put this line in sendmail.cf on this machine”

⇓

“Configure machine X as a mail server”

⇓

“Configure machine X as a mail server for this cluster”
(and the clients will automatically be configured to match)

⇓

“Configure any suitable machine as a mail server for this cluster”
(and the clients will automatically be configured to match)

⇓

Configure enough mail servers to guarantee
an SMTP response time of X seconds

F I G U R E 1

Present-day technology is some way from being able to translate such
high-level specifications automatically; current best practice involves a
combination of manual procedures and automatic tools that provide a
smooth translation of the service requirements into implementable config-
uration details. Many factors, including the capabilities of the specific tool,
will affect the level of detail at which the configuration needs to be manu-
ally specified. Figure 1 shows some possibilities, starting with very low-
level tools which require all configuration decisions to be made manually,
to very high-level tools which accept more abstract service requirements.

The final example defines a required behavior, and this is ultimately the
type of specification that we would like to be able to make. However, this
requires dynamic monitoring of performance levels, and the ability to do
this in any general way is not yet part of any common configuration tool.

So What’s the Problem?

The current situation with system configuration tools has many similarities
with the early days of computer programming:

j Vendors sold mutually incompatible hardware. Changing platforms required a signifi-

cant investment of time and resources.
j It was not possible to share code between machines without rewriting.
j The basic principles of programming had not yet been developed. Programs were cre-

ated in unstructured ways that made them error-prone and difficult to verify or main-

tain.
j The low-level nature of the program code made it difficult to implement clear high-

level objectives.

It was only the advent of high-level languages, with their underlying theo-
ry and portable compilers, that enabled this situation to improve.

In the system configuration field, there is a real need for new tools, based
on sound theory and targeted at a much higher /level of configuration
description. Programming-language development required a new genera-

; LO G I N : F E B R UA RY 2 0 0 6 W H Y CO N F I G U R ATI O N M A N AG E M E NT I S C R U C I A L 7

tion of specialists to achieve a similar evolution, and it seems likely that
real progress with configuration tools is not possible without a comparable
development. This will require new specialists with a good understanding
of theory, software development, and system administration practice.

As with programming-language development, the resulting systems will
demand from working system administrators a significant change in
approach. Worrying about which physical host is running a particular ser-
vice should be as rare as worrying about which machine register is holding
a particular Java variable!

8 ; L O G I N : V O L . 3 1 , N O . 1

NEW!

;login: Surveys
To Help Us Meet Your Needs

;login: is the benefit you, the members of USENIX, have rated

most highly. Please help us make this magazine even better.

Every issue of ;login: online now offers a brief survey, for you to

provide feedback on the articles in ;login: . Have ideas about

authors we should—or shouldn’t—include, or topics you’d like to

see covered? Let us know. See

http://www.usenix.org/publications/login/2006-02/

or go directly to the survey at

https://db.usenix.org/cgi-bin/loginpolls/feb06login/survey.cgi

A L A I N H É N O N

extreme makeover
Alain Hénon was the managing editor of ;login: for a
while; he is now providing tactical support for the
chief executive of a major technical organization.

ah@usenix.org

T H E R E I S A C R Y H E A R D I N T H E L A N D
of the computer industry: where are all the
engineers-to-be? According to reports, stu-
dents in the United States and abroad are
shunning computer science courses in
favor of—well, no one seems to know. Bill
Gates complains that there are not enough
graduate engineers to fill the halls of
Microsoft. Other computer poobahs pro-
claim that graduate programs are going
begging for Ph.D. candidates. Even the
Chinese are concerned about the same
trend, we are told. Various organizations,
including USENIX, have been called upon to
provide a solution to the problem. Why is
the field not more appealing to young peo-
ple?

I do no doubt that this dismal news is true. But
somehow I am not surprised.

I believe that the general public has very mixed
impressions of what the computer industry is all
about. To begin with, the computer world has
managed to gain a terrible reputation among ordi-
nary people, including students and, more impor-
tant, their parents. (Reading some of the reports
mentioned above, you would think that students
make career decisions in a vacuum devoid of any
parental pressure.)

Put yourselves in the shoes of the average, non-
engineer, naive computer user (most people, in
other words). Their image of the people who
work in the computer industry is that of folks
who produce an appliance that is difficult to use;
is still unreliable years after its introduction;
becomes obsolete within three to five years;
requires frequent updates to its software, at some
considerable cost; has instruction manuals that
run to hundreds of pages, if they are available at
all other than online; is serviced by people who
are often just one chapter ahead of you in the
aforementioned manual or who are disdainful of
your inability to understand how the escape key
differs from the enter key; is susceptible to “inva-
sion” by “viruses” and “bugs” from which, once
again, you have to pay for protection. (Sounds
like some sort of Mafia arrangement: you buy my
gizmo or we’ll invade your machine.)

And aren’t they the same folks who shouted for all
to hear that a revolution was at hand, everybody

; LO G I N : F E B R UA RY 2 0 0 6 E XTR E M E M A K E OV E R 9

could start a business in their garage and make a million bucks, and why
didn’t you invest in their cleverly named new company which, any day
now, would produce—uh, we’re not sure what to call it right now, but it’ll
be great! And the whole thing collapsed and those guys walked away with
your money and any confidence you might have had that they knew what
they were doing.

But, you say, that’s not fair, that’s not what the industry is like. We’re seri-
ous engineers doing important, exciting work. Why don’t you join us?

Well, for one thing, there’s the media image of the typical computer engi-
neer. He (there are so few shes that it’s hard to be politically correct here)
is a nerd, a geek, a hacker, someone who will “crack” your computer and
make it “crash” and “corrupt” your data, “steal” all your private informa-
tion, and produce endless amounts of “spam.” In the average B-movie, he
is hirsute, ill-dressed, and typing madly on a keyboard in front of a flicker-
ing screen—you can almost smell him. Or else he is the nerdy high school
student, with thick glasses and no friends, who giggles as he breaks into
the FBI’s computers and endangers our safety. Here’s a quote from today’s
New York Times, talking about a “computer programmer”: “He was straight
out of central casting: nerdy-looking, glasses, pocket protector.” Just so.

Unfortunately, some of those images ring true. Wander in the halls at tech-
nical conferences (something I have often done) and you will see that the
media is actually on to something. I don’t mean to suggest that all comput-
er people should wear suits, but really, people, it is no longer 1968 and we
are not marching down Telegraph Avenue anymore.

In short, do you really think the proverbial mother who wishes her darling
daughter would marry a nice doctor, or perhaps an attorney, will wonder if
the nice geek from across the street could be induced to take darling Judy
out to the movies? Let alone that she will want little Judy to become a
geek herself.

The industry needs an extreme makeover, to coin a phrase. If you want
people to become like you, you first have to gain their respect. So I humbly
suggest that all those who wonder about why young people are not going
into this field get together and hire themselves the best public relations
company in the country and be prepared to spend a lot of money trying to
undo the damage. It probably can be done, but not by wringing your
hands and offering a few scholarships to students who would rather be
accountants. Not that I have anything against accountants.

10 ; L O G I N : V O L . 3 1 , N O . 1

N A R A Y A N D E S A I , R I C K B R A D S H A W , A N D
J O E Y H A G E D O R N

system management
methodologies with
Bcfg2

Narayan Desai is a programmer and system admin-
istrator in the Mathematics and Computer Science
Division of Argonne National Laboratory. His current
research interests include system management and
HPC system software issues.

desai@mcs.anl.gov

Rick Bradshaw is a system administrator in the
Mathematics and Computer Science Division of
Argonne National Laboratory. He helps to maintain
HPC resources, experimental computing resources,
and general UNIX infrastructure.

bradshaw@mcs.anl.gov

Joey Hagedorn is a student in Computer Science at
the University of Illinois at Urbana-Champaign.
When not studying, he spends time working on
several programming projects.

hagedorn@mcs.anl.gov

A S U N I X N E T W O R K S C O N T I N U E T O
grow in size and complexity, system man-
agement methods must evolve as well. In
this article we discuss a typical deployment
of Bcfg2 and describe its sophisticated con-
figuration management capabilities. We
present information about the environ-
ment at Argonne National Laboratory’s
Mathematics and Computer Science
Division and the common tasks we in the
systems group must perform, providing an
overview of the tools used in our imple-
mentation of Bcfg2. We then discuss the
procedural and qualitative impact that
Bcfg2 has had on the way we manage our
systems. Our aim is to describe what an
environment with a comprehensive config-
uration management infrastructure looks
like and to explain why one might want to
invest the time needed to set it up.

Background

Configuration management is an area of intense
interest in the system administration community.
Although this area has seen substantial effort
over the past 15 years, consensus on configura-
tion management methods has not yet been
reached. While a limited form of configuration
management is widespread, relatively few organi-
zations have adopted a comprehensive approach.
Similarly, few practical accounts of tool adoption
and results are available.

During the past year, the systems group in the
Mathematics and Computer Science Division of
Argonne National Laboratory redefined its meth-
ods for building, maintaining, and reconfiguring
UNIX machines. The deployment process was
quite involved, including substantial input from
all 12 members of the systems group, and it
altered the way many tasks are accomplished. Two
aspects of the process proved especially interest-
ing: the social aspects of tool adoption, and the
technical aspects resulting from changes in sys-
tems management. In a companion paper, pub-
lished at LISA this year (see Resources, below),
we discussed the social issues, focusing on the
nontechnical problems we faced. This article
focuses on the technical issues, particularly the
architecture we deployed, the changes we made in
our management process, and the tools we chose.

; LO G I N : F E B R UA RY 2 0 0 6 SYSTE M M A N AG E M E N T M E TH O D O LO G I E S W ITH B C FG 2 11

B C FG 2

Bcfg2 provides a declarative interface to system configuration. It was
designed and implemented in-house at Argonne but has matured to the
point that external sites have begun using it. Its configuration specifica-
tions describe a literal configuration goal state for clients. In this architec-
ture, the Bcfg2 client tool is responsible for determining what, if any, con-
figuration operations must occur and then performing those operations.
The client also uploads statistics and client configuration state information.

All complicated processing occurs on the Bcfg2 server. It uses an abstract,
aspect-based classing system to represent patterns in system configuration.
These abstract classes typically correspond to functional characteristics of
the configuration. For example, a class may contain a description of the
configuration needed to produce a Web server, a Samba server, or an ntp
client. Other, more abstract classes can also be created. These tend to be
more site-specific—for example, “desktop” or “user-login.” The configura-
tion needed to fulfill these goals will vary greatly from site to site. This
classing system allows administrators to employ a cookbook-style
approach to building new configuration profiles, once various classes are
built. Administrators can decide to include features on a profile-by-profile
basis.

The other main function of the Bcfg2 server is to provide a reporting sys-
tem that describes details about client execution. Several different types of
statistics are collected during each client execution. Also recorded are over-
all client configuration state and lists of configuration entries that were
either modified or remain incorrect. Timestamps are stored so that inactive
clients can be detected. The reporting system has a major impact on how
Bcfg2 can be used. It provides sufficient feedback for administrators that
they can solely use Bcfg2 for deploying changes on all machines.

E N V I RO N M E NT

In our division we have about 100 researchers, with large numbers of col-
laborators who frequently need access to our machines. During the sum-
mer, we have numerous temporary research aides and co-op students. The
requirements of these collaborators and visitors strongly affects our net-
work configuration:

j Many users access our resources from offsite. This access is vital for collaboration, but

it means we cannot depend solely on a firewall for security.
j Our desktop environment is constantly in a state of flux because of constant staffing

changes. Such changes are particularly pronounced at the beginning and end of the

summer, when students arrive and leave. For this reason, the machine build process

must be streamlined and easy.
j Our management system must continue to work and remain secure independently, in

order to allow system administrators to focus on more pressing issues.

All said, our environment is fairly typical of most academic and research
environments. The principal exception is that we have slightly more strin-
gent security requirements than many sites, because of our government
affiliation.

Deployment

12 ; L O G I N : V O L . 3 1 , N O . 1

Deploying Bcfg2 took substantial time and effort, including work by
nearly all members of our systems group. Adopting a new set of tools
and methodologies was a challenge, both technically and socially.

Most of the social issues had technical issues at their root, many of which
were tool-specific. Administrators were not comfortable that Bcfg2 would
do the right thing when reconfiguring systems. What followed was a six-
month process of identifying what the right thing was and ensuring that
Bcfg2 did it.

The other main task during deployment was the construction of a config-
uration specification that Bcfg2 could use to generate proper client specifi-
cations for our network. This task moved in jumps; some configuration
aspects were quickly transcribed, while other, more subtle ones took much
longer to get right.

TO O L R E Q U I R E M E NTS

During our group discussions about system management strategy, several
key issues emerged. Administrator confidence in Bcfg2 was the most
important issue. Administrators need to trust a tool, in terms of both gen-
erating proper configurations and performing correct reconfiguration oper-
ations on the client. Without such trust, administrators won’t use a tool for
anything important.

To address this issue, we chose to make Bcfg2’s behavior as observable as
possible. Specifically, we implemented a comprehensive dry-run mode in
the Bcfg2 client. This allowed our administrators to experiment with the
tool without undue pressure; once they were comfortable that the pending
changes were reasonable, they were willing to commit to adopting the tool.
Similarly, high levels of debug output were added, documenting all deci-
sions the client makes while determining what operations should be per-
formed. The availability of this information fostered confidence in the
client, because the administrator could watch the tool in operation and
understand why it performed the way it did.

Another issue we addressed was management of client configurations.
Bcfg2 had to be able to handle all aspects of client configuration and
reconfiguration without manual intervention. It also needed to be robust
in the face of manual client reconfiguration. (Who hasn’t made several
changes debugging a problem, only to cause a new problem later?) To this
end, we designed Bcfg2’s reporting system so that it can describe all aspects
of Bcfg2’s actions and can provide salient information about client configu-
ration. This reporting system gives administrators the ability to consider
client configurations in a class-based way, using the Bcfg2’s configuration
specification for all nodes. The reporting system then reports all deviations
from that specification. We augmented the Bcfg2 client to detect configura-
tion elements on the system that weren’t specified in its configuration.
These extra configuration elements are also reported back to the server.

The third issue we considered was convenience. We streamlined several
common tasks, including the machine build process, and we made the
configuration profile selectable from the boot disk menu. These small
measures typically reduced the interactive time substantially. Most impor-
tant, they were vital in convincing administrators that it was worthwhile to
spend time learning how Bcfg2 works.

CO N F I G U R ATI O N S P E C I F I C ATI O N

; LO G I N : F E B R UA RY 2 0 0 6 SYSTE M M A N AG E M E N T M E TH O D O LO G I E S W ITH B C FG 2 13

In parallel with our technical discussions, we devised a Bcfg2 configuration
specification that describes our network. We started with the desktop sys-
tem. This is, by far, the largest basic type of system in our division and
thus has the most uniform configuration. Building a specification for our
desktop systems consisted of identifying services and software on each
machine, recording these in the configuration specification, and then test-
ing this configuration in stages.

Next we turned to the servers. This process took much longer, for a
number of reasons. Server configurations varied much more than desktop
systems. Desktops had been managed in an organized way, while servers
were managed in an ad hoc fashion. Servers also had much more compli-
cated service definitions. Many of these systems had specific owners who
had performed manual modifications over time. Most important, these
machines provided a large number of user-visible services and represented
the infrastructure on which the entire division functioned. Servers were
one of the primary drivers for many of our technical discussions. Once
these issues were resolved, however, the specification process was quite
similar to that of the desktop process.

The basic procedure for incorporating new classes into the specification
comprises writing a description of all the interrelated configurations that
provide a service, and collecting relevant configuration information, such
as configuration file contents and permissions. This process can be expe-
dited by using the Bcfg2 client in dry-run mode. Once all configuration
information has been integrated, the Bcfg2 client can be used to detect
whether any reconfiguration on the system is needed.

Another Bcfg2 feature that allowed smooth migration was the ability to
incorporate information about unmanaged hosts. Bcfg2 stores statistics
about all aspects of a client configuration that do not match the configura-
tion specification. If the Bcfg2 client is run on a machine, statistics describ-
ing its configuration deviations are uploaded to the server and included in
system reports, even if no changes occurred. These reports can be used to
find areas where the configuration specification is incomplete.

R E P O RT- BA S E D CO N F I G U R ATI O N M O N ITO R I N G

Bcfg2 configuration reports provide an impedance-matching mechanism
between the configuration specification and the actual configuration state
of all clients. Discrepancies between the two cause a variety of latent man-
agement problems. Most important, if a service-providing machine has a
running state that does not match the configuration specification, it cannot
be rebuilt or duplicated. Its state also cannot be reasoned about by Bcfg2.

This system also allowed us to administrate our servers in a more interac-
tive fashion. We run the Bcfg2 client on each server in dry-run mode. The
client inventories the local machine state, determines what operations
should happen, and uploads this information to the server. Administrators
view the resulting reports daily, and can supervise the execution of the
Bcfg2 client on critical servers when it is needed.

The reporting system provides a bird’s-eye view of the overall configuration
state of all clients. This view exposes configuration specification problems,
allowing their repair before they cause problems. We now feel confident in
our understanding of all machines that are properly described in the con-
figuration specification, show a clean configuration state, and have no
extra configuration detected. All of our administrators now have a deep

14 ; L O G I N : V O L . 3 1 , N O . 1

understanding of all of our machines’ configurations, or clear indicators for
situations where they do not.

Impact on Administration

Rebuilding our management infrastructure had a dramatic effect on our
daily lives. Many everyday procedures were simplified, and powerful new
mechanisms for automation became available. Moreover, the system
administration process was changed in a qualitative way that transcends
particular tasks.

P RO C E D U R A L C H A N G E S

Our new management infrastructure enabled several categories of proce-
dural changes. Some tasks disappeared altogether. Many more changed in
basic character. The fundamental unit of automation in our old environ-
ment was the venerable shell script. Scripts are useful for a variety of pur-
poses but are lacking in one major way: scripting multi-machine processes
is fault-prone, and error handling is difficult. Moreover, these scripts gen-
erally have a lot of local topology information hardcoded inline. This
approach prevents them from being portable across sites.

Bcfg2’s model—specifically, the existence of a central, declarative configu-
ration specification that can be programmatically modified—makes simple

; LO G I N : F E B R UA RY 2 0 0 6 SYSTE M M A N AG E M E N T M E TH O D O LO G I E S W ITH B C FG 2 15

scripts considerably more powerful. Administrative applications need only
calculate final results and can leave all error handling to the Bcfg2 client.
These applications can be adapted to the Bcfg2 server plug-in interface,
which is called during client configuration generation. This plug-in inter-
face has access to add or alter configuration elements on any managed
client. We have adapted several administrative applications to use this
interface:

j Controlling user access to batch-scheduled nodes
j Managing SSH keys and creating a correct ssh_known_hosts file
j Balancing virtual hosts across several Web servers

In each of these cases, the plug-in logic needed encapsulated a near-literal
transcription of policies or configuration generation rules. The previous
implementations of each were uniformly complicated and non-portable. In
all cases, conversion to this API reduced the code volume by 75% or more.
This reduction occurred because much of the heavy lifting is now handled
by the Bcfg2 client.

Good experiences with basic automation have led us to attempt much
more complicated workflows. For example, we are adapting our IP/host
management application to directly feed Bcfg2 with DNS and DHCP
configurations. Once this system is integrated, it will be easy to correlate
with any effects from other plug-ins. We are confident that such efforts will
automate many of the remaining daily reconfiguration operations request-
ed by our users.

Q UA L ITATI V E C H A N G E S

More important than the procedural changes, several qualitative changes
affected the administration process overall. These transcended the per-
formance of particular tasks and changed the character of system adminis-
tration in our division.

The most striking change was that configuration management tasks
became a proactive part of the environment. At regular intervals, all clients
check against the central specification for configuration changes, and may
(depending on their settings) apply configuration changes. In any case,
statistics describing their current state are uploaded. Bcfg2 serves as a
steady-state deployment engine that can detect and correct configuration
inconsistencies.

This change in model allows administrators to focus on changing the
configuration specification and inspecting reports describing the results
without having to worry about deployment details. Having a compre-
hensive deployment engine also greatly reduces the cost of individual
reconfiguration operations. The availability of cheap reconfiguration opera-
tions expands the range of options open to administrators. We found that
our environment now has some daily churn of configuration changes.
Automated scripts can make changes based on external stimulus, such as
the release of software updates, and deploy appropriate configuration
changes across clients.

These changes resulted in an environment where we can make reasoned
judgments about how we want changes to propagate to our environment.
The time freed up by deployment automation allowed us to design a sys-
tem with a more measured approach to change management and testing.
Our changes now migrate to desktop machines first; on these systems we
value security more than anything, because of the large number of clients.

16 ; L O G I N : V O L . 3 1 , N O . 1

In contrast, we are willing to wait for administrators to run the Bcfg2 client
on servers, so that they can ensure that everything is still running properly.
This approach costs more than the one employed for desktop machines,
but we think that it is worthwhile for server machines. Most important, we
were able to make a local determination about how we wanted changes to
propagate and implement that exact system. This is a policy matter that
will vary greatly from site to site, and one size will never fit all.

Overall, these changes resulted in a much more deliberate system manage-
ment process in our environment. Administrators were freed from repeti-
tive tasks, and we were able to exploit the new tools to make the decisions
that only experts can make effectively.

Conclusions

Configuration management needs to be adopted globally. It can dramatical-
ly reduce the time spent performing repetitive tasks. Initial efficiency gains
can be fed back into improving configuration management capabilities.
The net effect is a large time savings for system administrators—time that
can always be used to improve services for users.

Bcfg2 provides a good framework for automating complex workflows. This
infrastructure offers an interface with simple and reliable reach throughout
your environment. This enables easy automation at a scale not previously
possible. Complex, network-wide policies can be implemented from a cen-
tral location. Moreover, the central configuration specification and statis-
tics can be mined for a variety of information.

This redesign of our infrastructure took a substantial amount of time and
effort. Nevertheless, we recommend that others attempt the same. The
long-term benefits far overshadow any short-term costs.

R E S O U R C E S

The Bcfg2 Web site: http://www.mcs.anl.gov/cobalt/bcfg2 (information
about Bcfg2, including a manual, mailing list archives, and sources).

Narayan Desai et al., “A Case Study in Configuration Management Tool
Deployment,” Proceedings of the Nineteenth System Administration
Conference (LISA ’05) (Berkeley, CA: USENIX Association, 2005). This
paper describes the social issues encountered by a large system administra-
tor group during the adoption of new tools and management procedures.
The paper provides the social counterpoint to the technical account of this
process provided here.

Paul Anderson, Configuration Management (Berkeley, CA: USENIX
Association, forthcoming). This book provides a primer in configuration
management, as both a practice and a research area.

The lssconf mailing list: http://homepages.informatics.ed.ac.uk/group/
lssconf/. This mailing list provides vigorous discussion of configuration
management tools and the techniques they employ. Many configuration
management tool developers subscribe to this list.

; LO G I N : F E B R UA RY 2 0 0 6 SYSTE M M A N AG E M E N T M E TH O D O LO G I E S W ITH B C FG 2 17

AC K N OW L E D G M E NTS

This work was supported by the Mathematical, Information, and
Computational Sciences Division subprogram of the Office of Advanced
Scientific Computing Research, Office of Science, U.S. Department of
Energy, under Contract W-31-109-ENG-38.

The submitted manuscript has been created by the University of Chicago
as Operator of Argonne National Laboratory (“Argonne”) under Contract
No. W-31-109-ENG-38 with the U.S. Department of Energy. The U.S.
Government retains for itself, and others acting on its behalf, a paid-up,
nonexclusive, irrevocable worldwide license in said article to reproduce,
prepare derivative works, distribute copies to the public, and perform pub-
licly and display publicly, by or on behalf of the Government.

18 ; L O G I N : V O L . 3 1 , N O . 1

; LO G I N : F E B R UA RY 2 0 0 6 P U P P E T: N E XT- G E N E R ATI O N CO N F I G U R ATI O N M A N AG E M E NT 19

L U K E K A N I E S

Puppet

N E X T - G E N E R AT I O N

C O N F I G U R AT I O N M A N A G E M E N T

Luke Kanies runs Reductive Labs, a startup producing
OSS software for centralized, automated server
administration (http://reductivelabs.com). He has
been a UNIX sysadmin for nine years and has pub-
lished multiple articles on UNIX tools and best prac-
tices.

luke@madstop.com

I N M Y D E C A D E - L O N G C A R E E R A S A
system administrator, I have always done
my best to use tools to lower my workload.
I like to think one of my goals is to be the
laziest person around, and great tools help
me to reach that goal by allowing me to
get more done with less effort.

I’ve spent the past few years as a consultant, integrat-
ing existing tools and developing new ones when the
need arose. I generally restricted my development to
smaller projects, because my revenue model did not
allow me to take years or even months off for long-
term development, which meant that I largely had to
rely on existing tools as the primary solutions I pro-
vided. Experimentation with different ways of getting
better tools, including contributing to existing proj-
ects and working within a larger organization, finally
led me to attempt to create the tool that I really
wanted to use to do my job. I call this tool “Puppet”; I
have released it under the GPL, and I am building a
company, Reductive Labs, around developing and
supporting it.

Puppet is being developed with two purposes in
mind. The first and most obvious purpose is to be the
best configuration management tool available, such
that I can build a company and community around
making sysadmins’ lives easier. Less obviously, I am
developing Puppet to be an operating system abstrac-
tion layer (OSAL), something that functions as a
cross-platform API into the features of the OS without
forcing you to delve into the messy details that come
with each separate distribution and release. I believe
that providing this OSAL is a required step in provid-
ing the best automation tool, and I hope that other
tools can also begin writing to this OSAL instead of
coming up with a new way of handling each OS’s
messy details.

To download Puppet or the Puppet source code, go to
http://reductivelabs.com. There you will also find
links to the blog I maintain about Puppet’s develop-
ment, mailing lists, and everything else you’ve come
to expect from open source projects.

A Low-Level Abstraction Layer

At some point all automation tools must isolate their
users from detail, else those tools would take more
effort than they saved. The point at which they hide
detail, though, varies widely among tools and has a
large impact on how those tools are used and devel-
oped. Tools like cfengine hide almost no detail at all,
enabling the user to choose exactly how to interact

with the system but requiring that the user know too much about each sup-
ported platform, such as where the crontab command is or what command to
use to add users. Conversely, tools like SmartFrog and LCFG use large, coarse-
grained modules responsible for large swathes of functionality; these hide
almost all detail, but they leave the user only as much room for customization as
the module developer thought appropriate.

Puppet could be said to be either lower- or higher-level than cfengine, depend-
ing on how you stack it. On the one hand, Puppet is designed to hide details
such as file locations and the differences between “useradd” and “adduser,”
which makes it higher-level than cfengine, but it also provides hooks to directly
modify a much larger range of detail on a given operating system, so it could be
said to be lower-level. I like to think of it as just being different: cfengine pro-
vides a simple API to the elements that the operating system cares about (files
and file contents, packages, processes, etc.), while Puppet exposes an API to the
elements that humans care about (users, groups, cron jobs, virtual hosts, etc.).
There is some crossover, such as humans sometimes caring about file permis-
sions, but more often than not two otherwise equivalently functional cfengine
and Puppet configurations will look quite different.

I have ambitious goals for Puppet’s OSAL. Package management systems could
write directly to it, instead of each pre- and post-install script having its own
idea of how to create a user or cron job. System administrators could use it to
replace unstable or outdated tools without affecting the core functionality, as
long as the OSAL could configure each tool equivalently. In the end, I hope that
Puppet’s OSAL will be the standard repository for all of the details necessary to
configure each of the different operating systems.

A Better Automation Tool

Puppet is more than an abstraction layer, though. It is a whole declarative con-
figuration management framework. In addition to altering the level and type of
detail that administrators must handle, Puppet also raises the bar in terms of
expressiveness and communication. It includes a simple but powerful language
(LISP taught us that language power often comes through simplicity rather than
complexity or variety) capable of expressing the relationships between the dif-
ferent elements of an operating system, along with a set of clients and servers
meant to make it easy to get information into and out of your network.

A L A N G UAG E BA S E D O N R E L ATI O N S H I P S

Puppet’s language is declarative, meaning that you specify the “what” (objects
and their values) but not the “how” (how to turn those objects into configura-
tion state). The OSAL library takes care of the “how” for us, so the language can
focus entirely on the objects, their values, and how they all relate.

Puppet’s language has only one goal: to get your network to provide the features
you need in the way you need them. Given an abstraction layer that handles all
the details of the different operating systems and applications, service provision
turns into a process of collecting the list of objects you need, marking how those
objects are related, and filling in the details. To provide an Apache service, you
need to collect the package, the content to provide, the configuration for the ser-
vice, the service itself, and maybe an IP address and a file system.

Puppet’s language provides a classing mechanism to indicate that this collection
of objects functions as an Apache service, and it goes one further by allowing
you to specify the relationships between these objects, such as the obvious fact
that the service can only actually be started when all of the other objects are cor-

20 ; L O G I N : V O L . 3 1 , N O . 1

rectly in place. It even allows you to go further still and specify whether the ser-
vice should be restarted if the package gets upgraded or the configuration gets
modified.

Puppet provides basic abstraction mechanisms in the language, so you can vary
individual details based on other details (e.g., different groups for different oper-
ating systems) or vary the work itself based on details (e.g., provide different
elements on different operating systems).

R E U S A B L E CO D E

There is nothing resembling a CPAN for system administration tools, because
we have never had tools that could separate these relationships that we care
about—the elements that make up a service, how those elements relate to each
other, and what details the elements should have—from the specifics of how to
implement those relationships on a given platform and in our environments.
The existence of an OSAL provides us the opportunity for that separation, so
Puppet’s language has been written with a focus on reusability. If you know
exactly what it takes to make a Solaris 10 server secure or to provide Apache
plus mod_perl, you can write a server class that does this and then share that
class. When I have development time, I plan on creating community space
online to facilitate this sharing, but I think Puppet’s simple language will
encourage it whether I facilitate or not.

COM M U N I C ATI O N I S TH E K EY

Every sysadmin knows that tools cannot be silos, meaning they cannot be cut off
from the rest of the tool fabric, yet for some reason most of our tools aren’t very
fond of talking to each other. Each tool seems to want its own user and host
database, and it is often prohibitively difficult to get data from one application to
another. This extra overhead usually just means that we hack up our own, sim-
pler tools that all talk to each other but are too specific (and too embarrassing)
to share, rather than using the well-known tools.

I will not let Puppet fall victim to that. I am building simple APIs into both the
client and the server, using XML-RPC over SSL, so if you want to write a query-
ing tool, you can, or if you want to replace some portion of Puppet with a much
better tool that responds to the same interface, you can. In addition, I am doing
everything I can to get data back out of Puppet—if you provide Puppet with
information, it will do everything it can to take advantage of it, and you should
certainly never have to tell Puppet the same thing twice.

I plan direct integration with the different tools in the sysadmin fabric, although
I have been so focused on the core functionality (which is now release-worthy)
that I have had little time to spend on this. Puppet will directly open tickets and
configure your monitoring and trending systems, rather than assuming that you
will just do that yourself, and when it does so it will provide everything it can to
make your job easier. You have already given Puppet enough information for it
to manage your network; it would be downright offensive if Puppet did not use
that information to provide context to the information it gives you back. Every
network has a somewhat constant stream of failures; the context of the failure,
such as the services it affects and the overall failure rate, is what determines
whether it is a critical failure or not, and Puppet will do everything it can to pro-
vide that context.

Puppet already has a built-in log centralization mechanism, for instance, and the
logs that Puppet produces include the configuration path to the specific element
that emitted the log, so you know whether a package installation failure is affect-

; LO G I N : F E B R UA RY 2 0 0 6 P U P P E T: N E XT- G E N E R ATI O N CO N F I G U R ATI O N M A N AG E M E NT 21

ing DNS or GDM, whether it’s on a workstation or server, and whether it is on
your main LAN or in your DMZ. You do not have to explain to the log server
where your LAN is versus the DMZ, because you already explained that to
Puppet, which just sends the information along.

By the way, Puppet does use SSL certificates for all authentication and encryp-
tion, but because of the inherent complexity in managing those certificates,
Puppet includes a simple certificate manager to help you. By default, the central
Puppet server creates a new certificate authority, each new client asks that
authority to sign its certificate request, and there is a simple command-line tool
you use to sign those requests.

The Syntax

Although there is a lot more to Puppet than its language, and it is expected that
mechanisms other than the language will eventually be supported for input, the
language is currently the only way to speak to the OSAL.

I have tried to keep Puppet’s language as simple as possible. It looks more like a
data dump than a language, and I plan on keeping it that way as long as I can. It
only supports a few statement types, mostly centered around describing and
aggregating objects, along with a few simple operator-like constructs for greater
abstraction.

VA R I A B L E S A N D A S S I G N M E NT

One of the statement types you will immediately recognize is assignment:

$variable = value

Simple words do not need to be quoted in Puppet (strictly speaking, words
which match /[-\w]+/ in Ruby do not need to be quoted). Variable scopes work
as one might expect (well, at least they work as I expect)—variables are visible
when defined in the current scope or any enclosing scope. The only twist is that,
in an attempt to be declarative, variables cannot have their values set more than
once in a given scope.

When retrieving its configuration, a Puppet client collects a configurable set of
facts about itself, and these facts are defined as variables in the top-level scope.
The most useful facts are things like $operatingsystem (usually the output of
uname -s), $ipaddress, $domain, and $hostname. These facts are all retrieved
using a separately maintained library imaginatively named Facter (which you
can get independently from http://reductivelabs.com), and Puppet converts
them all to lowercase.

E L E M E NT SY NTA X

Puppet’s elements can be thought of as a kind of named hash, or named associa-
tive array. Any specification of low-level elements requires the element type and
the element name, and all element types support a fixed list of arguments. When
applied appropriately, the following snippet will verify (and fix, if necessary) the
metadata of /etc/passwd and make sure that the latest version of the sudo package
is installed:

file { “/etc/passwd”:
owner => root, group => root, mode => 644

}
package { sudo: install => latest }

You could use the stand-alone puppet executable to apply this snippet, and it
would check that /etc/passwd is owned by user and group root, that its mode is

22 ; L O G I N : V O L . 3 1 , N O . 1

644, and that the sudo package is installed and is the latest version available (via
whatever mechanism is defined to retrieve packages). Puppet will automatically
fix any deviations it finds, although this can be set to just log deviations, rather
than fixing them.

The “package” statement is a bit special, because Puppet knows what the default
package type is for every platform on which it runs. For those platforms like
Debian and RedHat that support automated retrieval of packages and their
dependencies, this statement would be enough. For those platforms like Solaris
and AIX that do not, you would need to provide additional information (e.g., a
URL) on how to retrieve the package, but not how to install it or any of the
messy details of putting it into a /tmp and so on.

You can easily specify multiple objects at a time, either separating them with
semicolons or just using an array as the object name:

file {
“/etc/fstab”: owner => root, group => root, mode => 644;
“/etc/named.conf”: owner => root, group => named, mode => 644

}

This will check both of these files as though they had been specified in separate
file blocks. This type of syntax is useful for those cases where you have many
objects of the same type but with entirely different details.

file { [“/etc/shadow”, “/etc/sudoers”]:
owner => root, group => root, mode => 440

}

This will check that the two specified files have the exact same metadata. This is
obviously useful for those relatively rare cases where you have many objects of
the same type and with the same details.

You can, of course, combine them:

file {
[“/etc/shadow”, “/etc/sudoers”]:

owner => root, group => root, mode => 440;
“/etc/fstab”: owner => root, group => root, mode => 644;
“/etc/named.conf”: owner => root, group => named, mode => 644

}

This is just a combination of the other two snippets, in the tersest (and, thus,
not necessarily the most readable) form. Actually, you could get even more terse
if you desired, but you’ll have to see the documentation for how to do that.

White space does not matter, so any differences in it in this code are to help you,
not Puppet.

C L A S S I N G

Puppet supports three main encapsulation constructs: classes, components (cre-
ated using the define keyword), and nodes. All three constructs are just named
collections of objects, with some use-appropriate behaviors tacked on.

The simplest and most common construct is a basic class; it is useful for collect-
ing a set of related elements which all get applied to provide a certain service:

class apache {
package { apache: install => latest }
service { apache: running => true, requires => package[apache] }

}

include apache

This class contains two statements, one that makes sure that an Apache package
is installed and another that verifies that the Apache service is running (Puppet

; LO G I N : F E B R UA RY 2 0 0 6 P U P P E T: N E XT- G E N E R ATI O N CO N F I G U R ATI O N M A N AG E M E NT 23

defaults to using init scripts to start, stop, or check services) and also specifies
that the service depends on the package. Once this class is created, it can be
applied using the include keyword in any host’s configuration. Classes also sup-
port inheritance, although this is more useful for defining server classes than for
providing a specific service:

class base {
package { sudo: installed => latest }

}

class webserver inherits base {
package { apache: installed => latest }

}

class dnsserver inherits base {
package { named: installed => latest }

}

This defines three classes, each of which verifies that a package is installed.
Including any of these service classes also includes the base class, just as you’d
expect inheritance to work.

N O D E CO N F I G U R ATI O N

Puppet provides a class-like structure for specifying a given node’s configu-
ration:

node kirby {
include $operatingsystem, webserver

}

The include function can handle variables just fine, and kirby happens to be a
Solaris x86 server in my basement, so when kirby connects, the central Puppet
server will return a configuration containing all the work associated with the
sunos and webserver classes.

CO D E R E U S E

The last organizational structure in Puppet is analogous to a function in other
languages; I alternately call them components or definitions, and they are cre-
ated using the define keyword. You would use it to specify a chunk of work that
will be applied multiple times in the same configuration. For instance, I store
many of my configuration files on a central server, so I have created a remotefile
keyword that encapsulates all of the details that get repeated with each copy:

define remotefile(source, mode => 644) {
file { $name:

owner => root, group => root, mode => $mode,
source => “/nfs/files/$source”

}
}

remotefile { “/etc/sudoers”: mode => 440, source => “sudoers” }

This defines and then uses the component remotefile, which is just a wrapper
for a simple file statement. This file statement verifies that the local copy of the
specified file is the same as the remote copy of the same file (I have chosen to
use an nfs-mounted file, but Puppet supports some remote protocols, too) and
then verifies that the local file has all of the correct metadata.

Component prototypes define the arguments that they accept, just like other
functions, and Puppet components can have defaults. The only quirk in Puppet
is that the value before the colon in a Puppet statement (e.g., /etc/sudoers in the

24 ; L O G I N : V O L . 3 1 , N O . 1

example) is an implicit argument and is set as the $name variable inside the
component.

A B STR AC TI V E O P E R ATI O N S

Puppet only has one operator in the strict sense of the word, and it only has one
construct that resembles a control statement. The operator resembles a C-like
trinary operator, modified (some would say butchered) slightly to fit in a bit bet-
ter. It is useful for using one value to determine another value:

remember $operatingsystem is set by Puppet for you
$fstab = $operatingsystem ? {

sunos => “/etc/vfstab”,
default => “/etc/fstab”

}

Notice the use of the default value here as a fall-through option. These state-
ments can also be used inline anywhere a value is needed, and multiple, comma-
separated values can be provided for a given option. The other statement type
useful for abstraction is a switch-style statement like many others; see the docu-
mentation for details.

Conclusion

Puppet is an ambitious new open source configuration management framework.
It provides an extensible operating system abstraction layer (OSAL), along with
a language that writes to that language and a set of clients and servers for shar-
ing information such as configurations and file contents across the network.
Puppet is still in its early stages and does not yet handle the majority of the ele-
ments that you need to manage, but it is easy to extend and has a keen focus on
supporting and encouraging community involvement.

; LO G I N : F E B R UA RY 2 0 0 6 P U P P E T: N E XT- G E N E R ATI O N CO N F I G U R ATI O N M A N AG E M E NT 25

26 ; L O G I N : V O L . 3 1 , N O . 1

M A R C W A L L M A N

spam filtering for
the enterprise
Marc Wallman is Senior System Administrator at
North Dakota State University.

Marc.Wallman@ndsu.edu

T H E E V E R I N C R E A S I N G V O L U M E O F
spam causes ubiquitous frustration for end
users. In the spring of 2005, North Dakota
State University (NDSU) made a commit-
ment to do something about this problem
for its users. What follows is a presentation
of our response: a spam filtering system
combining existing open source software
and homegrown applications. The resulting
system was designed to have a minimal
impact on our existing mail system, to be
easily scalable, and to be modular enough
for us to be able to perform maintenance
on particular components without disrupt-
ing the others.

The spam filtering system presented here is not a
stand-alone system. It was assembled from existing
open source products and integrated using home-
grown connectors into an existing enterprise email
system. Because this is an integrated solution, the
spam filter and the mail portion of the system will
both be presented here. The email system, and to a
certain extent the spam component, developed organ-
ically along the lines of the spiral model of software
engineering (although much more informally). The
focus of this article will be on the design of the system
as a whole and the implementation of the spam filter.

Why create a spam filtering system when there are
hundreds of open source products that address the
problem of spam? Why not just pick one and use it?
Here’s why: there is no single open source product
that is appropriate in and of itself at the enterprise
level. Existing open source spam products are partial
rather than comprehensive in their approach. They
provide specific solutions to particular problems. For
instance, SpamAssassin [1] is a very effective tool, but
making it directly available to end users is not appro-
priate. System administrators may be comfortable
with Bayesian filtering, editing rule sets, and config-
uring delivery rules, but end users are not. Spam-
Assassin is useful, but incomplete without help from
other applications.

An important caveat exists here. Deploying solutions
like SpamAssassin may be possible in a straightfor-
ward way if end users do not need to be given a
choice of whether or not they use it or how it
behaves. Consider the case of EduTech, the state-
funded IT organization that provides email services
for K–12 institutions in the state of North Dakota.
Clearly, much of the spam that floats around the

Internet is inappropriate for minors to receive; there is no need to give them an
option about how the spam they receive is handled. EduTech system administra-
tors may decide what is spam and what is not spam. Anything that is determined
to be spam, they may delete. No flexibility is required on the part of the EduTech
system administrators.

NDSU hosts approximately 18,000 IMAP mail accounts for six schools in the
North Dakota University System plus the University System Office. It accepts
approximately 135,000 messages on a given weekday for approximately 210,000
recipients. A typical message takes 18 seconds or less from the time it is sent to
the time it is read by an actively checking recipient. A middleware solution
called Hurderos was developed in-house for integrating mail for the aforemen-
tioned institutions. Unfortunately, this middleware system is beyond the scope
of this article. Those who are interested may read more about the GPL-licensed
Hurderos at http://www.hurderos.org. For the sake of simplicity, the rest of this
article will treat this spam solution as a single-institution solution.

A Failed Attempt and Lessons Learned

This section will briefly describe a first attempt at a SpamAssassin-based spam
solution and some of the lessons learned. An attempt had been made to provide
a central solution several years prior. However, the implementation of a central-
ized SpamAssassin-based solution was largely ineffective, because insufficient
thought was given to maintainability and scalability. This opt-in service worked
by piping mail through SpamAssassin before final delivery on the IMAP mail
servers where users’ mailboxes resided. Two main problems existed with this
system. First, SpamAssassin was invoked once per piece of mail, resulting in lots
of expensive forking. Batch processing was not possible. Processing the bounces
from a bulk mailing to the entire campus would cause noticeable slowness on
the server that housed the sender’s mail account. Second, as SpamAssassin aged,
it became difficult to update. The solution was implemented using a 2.x release
of SpamAssassin, which required Perl 5.6. A little over a year later, SpamAssas-
sin 3.0 was released, which required Perl 5.8. The IMAP mail servers ran RedHat
Enterprise Linux 2.1, which provided only Perl 5.6. Suddenly, we were in a situ-
ation where we would have to maintain our own version of Perl and associated
modules if we wanted to keep SpamAssassin up to date. SpamAssassin requires
frequent updates and architectural changes to the system it runs on, while the
University of Washington IMAP daemon has the opposite requirements.

As the SpamAssassin-based solution aged and lost its effectiveness, some users
turned to the built-in spam filtering capabilities of their email clients. While
possibly effective on a case-by-case basis, this approach was never successful at
an enterprise level, for two main reasons. First, we did not have, and still do not
have, established mail client standards; therefore, our help desk ends up sup-
porting everything from Outlook to Eudora to Pegasus Mail. This is an unfortu-
nate situation, but one that many other higher-education institutions and ISPs
find themselves in. Client diversity presented a serious obstacle to providing
effective end-user support for client-side spam filtering. Further, client-side
spam filtering is not universally present in these various mail clients and is com-
plicated by users who use multiple mail clients (e.g., Thunderbird in the office
and a Webmail client on the road). Second, this strategy places the work of
catching spam on the end user. For at least some users, this is a difficult thing to
do. It is not uncommon for people to misconfigure their mail client to block
messages from everyone on campus.

; LO G I N : F E B R UA RY 2 0 0 6 S PA M F I LTE R I N G F O R TH E E NTE R P R I S E 27

System Requirements

The requirements for this system came from a committee of users led by NDSU’s
IT Security Officer (ITSO). This committee established general requirements for
this new spam filtering system. This non-technical component was critical to
the success of this project. The recommendations were just that—recommenda-
tions. No particular solution was specified (commercial or open source). The
recommendations were to be fulfilled insofar as was possible. The rest of this
section summarizes these recommendations.

Mail should be grouped into three categories: (1) obvious spam, (2) potential
spam, and (3) not spam. Identifying what is spam is not an exact science. The
intent of these three categories is to recognize this fact. Messages falling into the
category of obvious spam are those that are most clearly identifiable as spam and
most likely to be considered spam by everyone. Potential spam consists of those
messages that are probably spam. It is a more aggressive category than obvious
spam and thus encompasses a larger corpus of messages. The not spam category
is self-evident.

Using these categories, different levels of service were established. At all levels of
service, mail that is considered not to be spam is delivered to users’ inboxes.
Obvious and potential spam are handled differently, depending on the desired
level of service. A matrix summarizing the various levels of service is depicted in
Table 1.

Level Obvious Spam Potential Spam

Disabled Deliver Deliver

1 Quarantine Deliver

2 Quarantine Quarantine

3 Delete Quarantine

4 Delete Delete

T A B L E 1 : R E C O M M E N D A T I O N S F O R H A N D L I N G S P A M

By default, new users have the spam service disabled, making this an opt-in
solution. All mail is delivered to users’ inboxes, regardless of the category it falls
into. At level 1, obvious spam would be quarantined and potential spam would
be delivered to the user’s inbox. Ideally, the quarantine would appear as another
folder under the user’s mail account. Both potential spam and obvious spam are
quarantined at level 2. At level 3, obvious spam is simply deleted with potential
spam being quarantined. Finally, at level 4, all spam is deleted. In addition to
these varying levels of service, the committee asked that users be able to specify
lists of senders who were considered safe. Mail from addresses on this safe
sender list was always to be delivered. A corresponding list of senders to block
was also requested. Mail from addresses on this list was always to be deleted.

Open Source Spam Filtering

The open source solution deployed at NDSU was based on two products already
in use, MailScanner and SpamAssassin. This section will present the resulting
solution.

Spam filtering for the enterprise was developed within the context of a preexist-
ing open source email infrastructure. The mail system is an IMAP mail solution
built on Linux. Each of the components—sending, delivery, and retrieval—will
be briefly examined. It is illustrated below in Figure 1.

28 ; L O G I N : V O L . 3 1 , N O . 1

F I G U R E 1 : E X I S T I N G M A I L I N F R A S T R U C T U R E

All outgoing mail is handled by a single SMTP server running Sendmail on
Linux. This portion of the mail system was unchanged throughout this entire
process. To date, no spam, or even virus, filtering takes place on this server. All
such filtering occurs only on mail delivery. (This is all that is necessary to pro-
tect our own users from spam and viruses.) It is likely that this will change in
the future. Spam originating from our institution and other institutions within
the North Dakota University System has caused no end of headaches for campus
security officers who handle spam complaints and oversee the cleanup of com-
promised desktops, which are almost always the source of these problems.

The process of mail delivery begins with the mail routing servers that run Send-
mail and MailScanner [2]. Mail routers are depicted in Figure 1 in a stacked con-
figuration because, conceptually, there need only be one, but multiple configura-
tions may be used to distribute the processing load of the incoming mail. At
NDSU this is done by using multiple MX entries in our DNS [3]. One could also
accomplish this by using a load balancer, such as the Linux Virtual Server [4].

Routing information used by the routing servers is stored in an LDAP directory
using the standard Sendmail schema. MailScanner controls virus scanning and
spam tagging. The delivery process works as follows:

A Sendmail daemon running on the incoming mail servers receives a connection
from an MTA requesting that mail be delivered to a particular user or users.
Sendmail looks up the address(es) in the LDAP directory to determine where
the mail should be routed. Routing rules appear in the directory like this:

mailLocalAddress: Marc.Wallman@ndsu.edu
mailRoutingAddress: mwallman@imap3.ndsu.edu

Making a routing decision at the point of entry is very important. Spammers
routinely use brute force as a method of delivering spam. They will crawl
through a name dictionary constructing possible usernames with the hope of
finding one that will be accepted by the targeted domain. If the incoming mail
servers are relay only, they do not know what usernames are valid for hosts or
domain they serve and must blindly accept all messages for these hosts and
domains. Much of the spam coming from brute force ends up stuck in the
queues. The destination hosts reject all the messages for unknown users and the
spammers won’t take the bounces back. Queues become bloated with accumu-
lated bounces. When the server gives up on delivery for these bounces, new

; LO G I N : F E B R UA RY 2 0 0 6 S PA M F I LTE R I N G F O R TH E E NTE R P R I S E 29

ones quickly take their place in the queues. Initially we had our incoming mail
server set to relay and not route. It was not uncommon to have a total of 15,000
bounces stuck in our queues.

Messages that Sendmail accepts are delivered to a special queue directory that is
processed by MailScanner, which in turn controls virus scanning and spam flag-
ging. MailScanner is highly configurable and scalable. It uses one or more exter-
nal virus scanners (there are many to choose from—we use McAfee [5]) to catch
viruses and SpamAssassin to filter for spam). MailScanner is highly configurable
and very efficient. Virus scanning and spam filtering happen in batch mode, not
on a per-message basis. The system administrator may determine the batch size
and scan interval.

MailScanner may make a decision on how to handle mail based on a message’s
spam score as rated by SpamAssassin. The score is assigned based on the appli-
cation of many weighted spam tests. The point value of all tests that fail (e.g., a
forged sending IP address) are added up and the message is given a total score.
We chose to only tag mail with X headers. A decision about what to do with the
mail is not made at this level, because it cannot be made on a per-user basis.

Messages were tagged to match the recommendations of our user community.
Obvious and potential spam were each given their own tags:

X-NDUS-SpamFlag: Obvious Spam
X-NDUS-SpamFlag: Potential Spam

Mail given 8.0 or more points by SpamAssassin was tagged as obvious spam.
Mail assigned between 5.0 and 8.0 points was tagged as potential spam. Mail
scoring less than 5.0 was not tagged. The raw score is also embedded in the
header. Category tags are added at this level for later use in deciding how to
deliver mail based on an individual user’s chosen level of service. Using category
tags instead of a raw SpamAssassin score allows flexibility in how aggressive we
wish to be in categorizing mail. (A small contingent of GroupWise users exist at
NDSU. A special tag, X-SpamFlag: Yes, was also added to all messages that were
considered spam, i.e., both obvious and potential spam. GroupWise is able to
make use of this special tag with its client-side junk mail processing.)

Once MailScanner completes scanning and tagging, it re-queues the mail for
final delivery by Sendmail. The final delivery point is the routing address speci-
fied in the mailRoutingAddress attribute LDAP directory. We happen to allow
users to opt out of our mail solution altogether and have their mail routed to any
address they choose. Common destinations are hotmail.com, yahoo.com, and
gmail.com. Mail bound for these and other off-campus destinations is still
tagged. If they choose, users may do client-side filtering based on the headers we
add.

After going through the incoming mail router, messages are passed to their final
delivery point: a server running the University of Washington IMAP daemon
[6]. Here, procmail is invoked to look for the spam tags and make a delivery
decision. Four different templates exist, corresponding to the four levels of ser-
vice outlined above. When users select a level of service, the appropriate tem-
plate is installed in the user’s .procmailrc file in their home directory. Based on
the recipe in ~/.procmailrc and the categorization of the message (obvious spam,
potential spam, or not spam), incoming mail is either delivered, quarantined, or
deleted (i.e., delivered to /dev/null). The quarantine is simply an IMAP folder
that exists in the user’s email account. We have chosen to name this folder
SPAM-Quarantine. Safe-sender and block-sender lists as described above are
also encoded in procmail rule sets. The following is an example of a procmail
recipe for level 2 (quarantine/quarantine):

INCLUDERC=.SafeSenderList
INCLUDERC=.BlockSenderList

30 ; L O G I N : V O L . 3 1 , N O . 1

:0 W
* ^X-NDUS-SpamFlag: Potential Spam
|/usr/local/sbin/dmail +SPAM-Quarantine
:0 W
* ^X-NDUS-SpamFlag: Obvious Spam
|/usr/local/sbin/dmail +SPAM-Quarantine

As indicated in this recipe, the safe-sender and block-sender lists are stored in
separate recipe files. The following is an example of an entry from a block
sender list:

:0:
* ^From:.*foo@example.com
/dev/null

Readers may learn more about procmail at http://www.procmail.org. The dmail
mail delivery agent referenced above in the procmail recipes is bundled with the
University of Washington IMAP daemon. It is used instead of the native delivery
agent in procmail in order to allow us to use MBX-style indexed mailboxes. Doc-
umentation on dmail is included with the UW-IMAPd.

Mail retrieval is mediated by the Perdition Mail Retrieval Proxy [7]. Perdition
mediates all communication with the back-end IMAP servers (it also supports
POP, which we do not use). When a user initiates an IMAP login, Perdition takes
the supplied username and looks in LDAP to determine the server on which the
user’s mailbox resides. All subsequent communication from the client is simply
proxied over to the real mail server. Similarly, responses from the mail server are
proxied back to the client. In this way, many mail servers may be used to deliver
IMAP service, while the end user is blissfully unaware of this as they only con-
nect to the proxy. Perdition is not a resource-intense application. A single 2-CPU
Linux server with 1GB of RAM easily proxies all IMAP communication for our
system. Typical weekday traffic is over 110,000 logins from just under 9,000
unique users. If there were ever a need, this portion of the system could easily be
scaled by adding servers running Perdition in a load-balanced configuration.

The remaining portion of this system is the mechanism by which users
enable/disable their spam filter and populate their safe- and block-sender lists.
This was integrated with a preexisting Web application that allows users to
enroll for new services and do some limited management of services they are
subscribed to (e.g., users wishing to have their @ndsu.edu email forwarded to
their Hotmail account would use this site to do so). The design of the user inter-
face was taken almost verbatim from the recommendations of the user commu-
nity. The presentation of the form that allows users to enable the various levels
of spam filtering service described above is basically the same as what is shown
in Table 1. Simple Web-based lists allow the population, or depopulation, of the
safe and block lists. Submission of the spam filtering service level form or
safe/block sender lists triggers a program to execute on the mail server that hosts
the submitter’s mail account: the appropriate procmail template is placed in the
user’s home directory, the SPAM-Quarantine folder is created if it does not exist
and is added to the list of visible folders if it is not already there, and the
safe/block lists are recreated with the appropriate values. Since all of these items
represent files in the user’s home directory, they are all susceptible to being
deleted. The decision to have these Web forms recreate rather than update the
files was made so that repair of a broken spam filter was something the end user
could do. (The spam filter most commonly gets broken when users delete their
SPAM-Quarantine folder.) This strategy results in many fewer support tickets
being sent from help desk staff to system administrators.

; LO G I N : F E B R UA RY 2 0 0 6 S PA M F I LTE R I N G F O R TH E E NTE R P R I S E 31

Measures of Success

From the perspective of the system administrator, the successful implementa-
tion of this spam solution arises from two key sysadmin-friendly traits: main-
tainability and scalability.

The system’s maintainability derives from a number of factors. First, it is modu-
lar. The first attempt at implementing a spam filtering solution co-located the
mail accounts with the spam filter’s intelligence. This created a functional
dependency that impaired our ability to perform upgrades. SpamAssassin
required frequent upgrades, whereas the IMAP daemon required few. Now
these applications reside on separate systems and the use of the “potential”
and “obvious” tags further the insulation of these applications by establishing
a kind of API. The end result of the spam filtering system is only to assign cate-
gory tags to pieces of email. The mail servers process spam simply by examining
the tags contained within the email messages.

Second, the system is simple. The modularity not only removed functional
dependency, it also removed complexity. Upgrades to the mail server may now
be done largely without consideration for how spam is identified. Upgrades to
the spam solution may be done largely without consideration for how the mail
servers are configured. Another respect in which this system exhibits simplicity
is in its functionality. Only four levels of service exist (five if you count the dis-
abled state). All are clearly defined and sufficiently abstracted from the process
of categorization to allow a great deal of flexibility with regard to how this cate-
gorization is accomplished. This flexibility should also be of benefit as new tech-
niques become available to combat spam. There is a reasonable chance that the
MailScanner/SpamAssassin solution could be swapped out with another tech-
nology at some point in the future if the need arose.

Third, upgrades to the incoming mail servers which tag spam do not require
downtime. As previously mentioned, multiple mail routers may exist and they
are redundant. More may be added or existing systems may be removed. As long
as sufficient throughput exists to run in a degraded mode—that is, with at least
one routing server offline—it is possible to take systems out of production for
upgrade and place them back when the upgrade is complete. Being able to do
maintenance on production systems is a very good thing for system administra-
tors. There are enough other opportunities for work in the early morning hours
and on weekends.

In addition to maintainability, this system is also scalable. If the load processing
for incoming spam becomes too great for existing routing servers, just add more.
A side benefit is that more servers means not only increased throughput but
more redundancy. At NDSU, we currently have three mail routers in production.
We almost never see high load on all three servers simultaneously. In those rare
instances that we do get alerts about load across all systems, they have invariably
recovered by the time the situation is investigated. All other parts of this system
are scalable too. Perdition mail proxies and outgoing mail servers may be added
in a load-balanced configuration. IMAP mail servers may also be added, with the
caveat that user accounts must be migrated; methods exist, however, for doing
this with minimal disruption to the running systems. We have developed code
that automatically coordinates the transfer of users’ mail accounts between
back-end mail servers with the population of updated mail routing information
in our LDAP directory.

With all this said, how well do we do at catching spam? How well can we do?
Figure 2 shows the amount of spam identified per week as a percentage of our
total email.

32 ; L O G I N : V O L . 3 1 , N O . 1

F I G U R E 2 : I D E N T I F I E D S P A M B Y W E E K

The data depicted here is for the week beginning August 1, 2005 (week 31),
through the week beginning October 24, 2005 (week 43). The graph has been
aggregated by week in order to make it more readable. Legitimate mail decreases
over the weekend, while spam seems to remain constant. As the graph shows,
we routinely identify just over 50% of our incoming mail as spam. If measured
against some reports, the spam filter does not appear to be very effective.
Symantec recently reported that 61% of all email is spam [8]. Others have
reported the percentage of spam to be much higher. User feedback has been
quite positive (see below); so what might account for this apparent discrepancy
in the numbers? We may simply be below average in the amount of spam that
we receive, or the positive user response may be mainly due to the relative
improvement offered by the new system. They may be happy that they are get-
ting less spam, but we could be doing better. Third, the data sample shown in
Figure 2 shows a slight decrease in the effectiveness of our spam filter since the
beginning of August. SpamAssassin 3.1.0 was released on September 14, 2005,
and, as of this writing, has not been put into production here at NDSU. Spam-
Assassin’s effectiveness decreases with age. Spammers actively work to find ways
to get their messages through without being identified. This implies that the
numbers for September 2005 represent a low point of effectiveness. It is likely
that the effectiveness of this solution will continue to decrease until Spam-
Assassin is upgraded. Last, we have not been overly aggressive in our attempts
to tag spam. We have not used SpamAssassin’s rules du jour, attempted to
develop our own rule sets, or adjusted the thresholds at which we tag potential
and obvious spam. It is likely we could do far better, but our users have been
satisfied, so we have focused on other things.

During the summer of 2005 we had about 50 testers who used their accounts to
quarantine all mail tagged as obvious or potential spam. Feedback from this
group was VERY positive. All were extremely impressed at how well the system
functioned. Testers also reported that there were almost no pieces of legitimate
mail that were being tagged as spam, while a small amount of difficult-to-catch
spam did get through. We could be more aggressive in our filtering.

The system was officially launched on September 19, 2005, supported by a con-
siderable amount of PR. Oddly, far fewer people than expected signed up. Sub-
scription rates jumped to about 7% after the initial launch, with a very minor

; LO G I N : F E B R UA RY 2 0 0 6 S PA M F I LTE R I N G F O R TH E E NTE R P R I S E 33

growth trend. Feedback from the user community continues to be good. There
has been quite a bit of unsolicited praise, which is very unusual. Unsolicited
complaints or silence is more in line with the norm. Does most of our spam go
to a small portion of the user community, leaving the majority unaffected? Are
more people using client-side tools for addressing spam than we suspect? At this
point, we do not know.

Future Directions

Two main questions confront us with this system. The first has already been
mentioned: Why are there so few subscribers? The second is: Can we keep up
with the spammers? Spam filtering differs greatly from Web or calendar service,
for example, in that people are actively attempting to make spam filters obsolete.
I believe this system has been built with sufficient flexibility so that it will be
able to adapt, but that remains to be seen.

R E F E R E N C E S

[1] SpamAssassin, from the Apache Software Foundation: http://spamassas-
sin.apache.org/.

[2] http://www.sng.ecs.soton.ac.uk/mailscanner/.

[3] For more information on how MX records work, see section 5 of RFC
2821 (Simple Mail Transfer Protocol).

[4] http://www.linuxvirtualserver.org/.

[5] The North Dakota University System has a licensing agreement with
McAfee, which made this antivirus scanner an easy choice. ClamAV repre-
sents an open source alternative to commercial antivirus software:
http://www.clamav.net/.

[6] http://www.washington.edu/imap/.

[7] http://www.vergenet.net/linux/perdition/.

[8] “Symantec Internet Security Threat Report Identifies Shift Toward
Focused Attacks on Desktops,” September 16, 2005:
http://www.symantec.com/press/2005/n050919a.html.

34 ; L O G I N : V O L . 3 1 , N O . 1

; LO G I N : F E B R UA RY 2 0 0 6 D E L E G ATI N G TO TH E W E B 35

T O M L I M O N C E L L I

delegating
to the Web
Tom Limoncelli is the author of Time Management
for System Administrators from O’Reilly and is co-
author with Christine Hogan of The Practice of
System and Network Administration, which received
the 2005 SAGE Outstanding Achievement Award.

tallogin@everythingsysadmin.com

I W A S T O L D A B O O K O N T I M E M A N -
agement for system administrators was
impossible, since a lot of time manage-
ment is about delegation and “that’s
impossible for a system administrator.” Oh,
ye of little faith.

One of the problems with being a system adminis-
trator is that we enjoy our jobs so much that we
want to do everything ourselves. (It can’t possibly
be that we’re control freaks.) We want to do
everything our way. Because of this, we rarely
learn to delegate. It helps that there is rarely
someone to delegate to.

The kind of delegation we are capable of usually
consists of using pre-written software rather than
writing it ourselves. We find the right open source
or commercial package for the task at hand and
spend our time doing “integration and deploy-
ment” rather than writing code. It’s easier to buy
backup software than to write a new program
from scratch. Integration is more powerful than
invention.

Lately I’ve been using a lot of Web-based applica-
tions to make my life easier. There’s no software to
install—it’s all at their Web farm. Usually there is
a “dashboard” that I can log into to control and
configure the service I’m receiving. The data is all
kept on their servers, which brings up a huge
number of confidentiality, privacy, and reliability
problems. However, I have been happily surprised
to find that many of these services, though less
than my ideal, provide more security than I could
provide myself. So, they win.

The real difficulty for me has been control or fear
of letting go. It’s difficult to get out of the habit of
trying to do everything yourself. Looking back on
all the times I’ve moved to a hosted solution, I’ve
never regretted it.

Here are some examples.

Email and File Sharing

This first example came out of necessity rather
than planning. I run a lot of email lists (first
Majordomo, now Mailman) for nonprofits that I
work with. The burden on my server was getting
to be very heavy. It was a victim of its own suc-
cess. Soon they wanted more features, like a way
to share files. I was dealing with accounts, securi-
ty issues, training issues, and so on, and didn’t
have the time to handle all the requests. Then I

discovered Yahoo! Groups (http://www.yahoogroups.com). They give you a
free email list, which has an associated file storage area, calendar, and all
sorts of features. It was more efficient to spend my time training people
how to use those services rather than run them myself. Teaching someone
to use a Web form–based file upload is a lot easier than installing an FTP
client, no matter what OS you use. In addition, the training was leveraged
over many organizations. More and more people already know how to use
Yahoo! Groups, and once a person has used Yahoo! Groups for one non-
profit, they are able to use their knowledge with other organizations.

I found the following formula useful for most of the small nonprofits that I
volunteer with: Each organization usually needs two groups: one named
after their organization, which includes all their members, and another just
for their board members and/or volunteers. If the group is called “Save the
Foo,” we might have STF-announce@yahoogroups.com as the inclusive
group and STF-workers@yahoogroups.com as the private group. The two
file areas give the organization the ability to have private and public docu-
ments. “Organizational memory” is helped by the fact that documents are
stored in and accessed from a central location. No more reinventing a form
because the only copy is on the ex-president’s PC.

Obviously, there are privacy concerns. Two organizations that I help can’t
use Yahoo! because of the terms of service. However, it’s a trade-off. At
least there is a legally binding terms-of-service document that can be eval-
uated. The only assurances I could give people were, “It’s as private as it
can be” and “If I’m around, I’ll try to fix it.”

Sales Management

The next example is sales management (“customer relationship manage-
ment,” or CRM) software. After battling sales management products such
as ACT! and Goldmine for nearly a year, my then CEO proposed we look
at a hosted solution. I was shocked. How could we put important sales
tracking data on someone else’s server? In this case, it was off to the legal
department for analysis while the CEO and upper management evaluated
the risks. I was surprised when they decided to take the risk of a hosted
solution. Privately, however, I sighed with relief, because the IT team was
overcommitted with other projects. I couldn’t even imagine having the
time to set up the data backup/recovery system for a full-fledged CRM sys-
tem, let alone the software itself. It was great to see this entire class of
problems disappear from my plate. The sales group became self-support-
ing. I provided a Web browser; everything else was dependent on the abili-
ty to dial the vendor’s toll-free number. If this sounds appealing to you,
investigate Salesforce.com, Siebel’s CRM OnDemand, or the up-and-coming
SugarCRM. A Web search will turn up dozens more.

Email Security

In 2004 I realized that I was spending about four hours a week (half a day)
dealing with the anti-spam/antivirus solution(s) we were using, and yet
people didn’t have cool features like a private dashboard they could log
into to manage their quarantined emails. Beyond the usual daily issues, I
was constantly evaluating new software, taking the system down to do
upgrades (I’m sure this annoyed my users no end), and chasing RBL lists.
Being able to eliminate these tasks would save me 10% of my week. (I pon-
dered that if I could find nine more like it, I would never have to work
again.) There is a lot of competition in this area, so the hosted solutions

36 ; L O G I N : V O L . 3 1 , N O . 1

are very powerful and very feature-rich. There are many services that do
anti-spam/antivirus on email. You simply point your DNS MX records at
their servers and they do the work. Each user gets an account where they
can log in to review their quarantine. Spam is no longer my problem, and
the reduction in viruses has gained me a few hours each week, too. If we’re
ever unhappy, we can change to their competition very easily. Some prod-
ucts to look at include MessageLabs, Postini, and McAfee’s Secure
Messaging Service. The “enterprise” edition of these products usually
includes outbound email queueing, which means I was able to eliminate
most of the load of my outbound email queuing infrastructure. (Hosted
email security might have some of the most obvious privacy issues, though
if privacy is your concern, why are you using unencrypted email on the
Internet?)

Email

Speaking of email, like many USENIX members I have long struggled to
avoid MS Exchange. I now have an alternative answer to the new CEO
who arrives and asks what it would take to bring Exchange to the compa-
ny. I simply say, “$15 per user per month; I can have it set up for you in a
month.” That’s about the going rate for hosted MS Exchange. With the
huge competition in that area, hosted Exchange offers a very feature-rich
service, including calendars. Compared to the cost of sending me to
Exchange training, plus buying the hardware and data recovery costs, it’s a
bargain. A Web search for “hosted MS Exchange” returns so many results
it’s almost dizzying. DNS service providers like Register.com and NetSol
provide this service, but the one with the coolest name has got to be
ElephantOutlook. As a disclaimer, I should point out that I’ve never actual-
ly used any of these services. While $15 per user per month sounds like a
bargain to anyone who knows how difficult it is to run any kind of email
service, a CEO typically thinks that email is free as the wind. Hearing $15
per user per month scares them away from any future thoughts of switch-
ing out of our legacy system. Dance, puppet! Dance!

Antivirus

While most antivirus products for Windows include some kind of dash-
board application that lets you see who is out of date, this ties up a server.
McAfee’s Managed VirusScan provides the same service in a hosted prod-
uct. Since the software and signature updates come from their hosted ser-
vice, finally road warriors get updates on a timely basis.

DNS, Domains, and Web Sites

Running my own DNS servers was great when I was learning DNS. I must
have homed 30 domains just for friends. For external DNS servers (on the
public Internet), I now let my DNS register do it for small domains (the
more expensive DNS registrars do it “for free,” i.e., Register.com), or use
various hosted DNS secondary services like BackupDNS, Ultra DNS, or any
of the dozens that show up in a search engine. Their prices range from free
to extremely costly.

Running a Web server used to be exciting and new. Now for static Web
content you can get a lot better service for $10/month just about any-
where.

; LO G I N : F E B R UA RY 2 0 0 6 D E L E G ATI N G TO TH E W E B 37

Membership and Registration

Friends who run conventions asked me to set up a Web-based registra-
tion system. While getting ready to learn the PayPal APIs, I found that
Mollyguard had already built a better system than I would ever have time
to create. Best of all, it’s so easy to use that the nonprofits I used to help
with this kind of thing are now completely self-sufficient.

Nonprofits I work with also have huge membership database problems,
especially when one membership chair leaves and another comes on board.
Most can’t process online renewals or credit cards. Lately, I’ve been recom-
mending companies like 123Signup, which do all those functions for them.

Others

Using hosted applications is great but how far can this go? I’ve seen payroll
departments eliminate the need for servers by using Paychex. TriNet gives
you an entire Human Resources division, including benefits and payroll, all
from a Web browser.

There are plenty of hosted solutions for SLA monitoring, from simple ping
systems to systems that are commensurate with Nagios or BigBrother.
Other system administration tools, such as request tracking and wiki, are
products I look forward to.

Where is all this leading? Will I be out of a job? Obviously not. All of these
products simply help me leverage my time for more interesting pursuits,
such as directly interfacing with customers or helping my company
improve business processes through better uses of IT. While hosted solu-
tions work well for small to medium businesses, they are not yet appropri-
ate for large companies. I couldn’t imagine a giant like IBM or McDonald’s
trusting all their email to flow through someone else’s process farm or
being able to move their highly specialized sales processes to a hosted
provider.

When you outsource a function to another company, your job becomes
quality assurance. Moving to a hosted anti-spam solution doesn’t mean you
can forget about spam, it just means that you have to monitor the quality
of the service you are receiving. You need to maintain a relationship with
the vendor so they understand your changing needs. You need to make
sure they maintain the quality of service they promised during the sales
pitch.

Best of all, the more services I move to hosted solutions, the more time I
have to search for new hosted services! Joy!

38 ; L O G I N : V O L . 3 1 , N O . 1

; LO G I N : F E B R UA RY 2 0 0 6 CO N S U LTI N G F O R F U N A N D P RO F IT 39

D U S T I N P U R Y E A R

consulting for fun
and profit
Dustin Puryear works with businesses requiring
UNIX and Windows expertise to get the best return
from their technology investments. Corporate proj-
ects range from the design and management of
email solutions to integrating Directory servers and
applications. In addition, he is the author of
Integrate Linux Solutions into Your Windows Network
and Best Practices for UNIX and Linux Management.

dustin@puryear-it.com

T H E R E H A S B E E N A L O T O F TA L K
recently in various USENIX/SAGE venues on
how to become an independent consult-
ant. (Well, let’s be honest: when hasn’t
there been a lot of talk on this topic?) Most
of the questions are concerned not only
with the business side of consulting (e.g.,
taxes, whether to incorporate, insurance for
the self-employed), but also with the nuts
and bolts of how to make it as an inde-
pendent consultant.

So, to help prepare you, I’ll cover what I’ve learned in
my years as an independent consultant. Of course, it’s
reasonable to wonder how I’m qualified to offer
advice on this topic. My only credentials are that,
well, I’m successful. Outside of that, feel free to take
my advice with a grain of salt.

Keep in mind, though, that this is serious business.
There is a lot of money to be made in offering exper-
tise to those in need, but there is also a lot of
heartache and headache for those who don’t properly
prepare themselves, their families, and their bank
accounts for the adjustment. Take notes, keep your
chin up, and welcome to the world of consulting.

Consulting Defined, Kind Of

You’ll notice that I often say “independent consult-
ant” rather than simply saying “consultant.” So what
is the difference between the two?1

Generally speaking, a consultant works with a con-
sulting firm. These firms are commonly structured in
one of two ways. First, the firm is structured around
several or more partners, where each partner usually
has equal footing within the company. Second, a firm
may be more hierarchical in nature, where partners
are at the top of the pyramid, and the lower ranks are
filled with many relatively low-paid worker bees who
are billed out as “consultants.” There are many people
who happily work in both types of environments
because they enjoy the project-to-project lifestyle of a
consultant but crave the stability of working within a
firm.

Independent consultants are different. They work for
themselves. An independent consultant must organ-
ize his or her own business entity, find clients, decide
how accounting should be done, speak directly with
lawyers on business and contract issues, and, by and
large, be anything and everything that is needed.

1. Many people are also confused by the difference
between a contractor and a consultant. A contractor
almost always works on assignment through a
placement firm and is assigned a specific task in a
larger project, such as programming the interface
to a new program or maybe installing Linux
servers in a database roll-out project. Consultants
often work at a higher level (e.g., designing a new
network architecture and then implementing it),
but not always. Admittedly, the line between con-
sulting and contracting tends to blur at times.

Of the two types of consulting, independent consulting offers the greatest
amount of stress and the greatest reward. You can go very far if you are bright,
technically capable, and have good business sense. Or you can go bust.

Moonlighting

If you make the decision to take the leap into consulting, you need to time it
properly. In my opinion, the best way to start is with moonlighting. To “moon-
light” means that you work on outside projects after your day job. That is, you
have consulting clients, but you still have a part-time or full-time job with an
employer. This is an excellent way to learn the business. You have the stability of
being employed while learning the ins and outs of consulting, such as billing,
client relationships, and time management.

Moonlighting is no panacea, however. First, many employers have strict rules
against it. This is especially true if your employer is a consulting firm. Naturally,
they don’t want their employees competing with them for clients. So be sure to
read your employment agreement. Second, many clients don’t want a consultant
who is moonlighting, and this is understandable. When you moonlight you are
telling the client, “My first priority is my real job. I’ll work with you when I have
time.” But if you can swing it, by all means moonlight for at least a year or more
before taking the dive.

Another benefit of moonlighting is that it develops a client base for you to use
after you quit your day job. In most cases, if you don’t have a well-funded bank
account from the start, you are going to fail if you start your business without
clients. It takes years to build a stable, well-paying client list, so don’t expect to
become an overnight success.

Organizing Your Business

Whether moonlighting or going full-time, it’s important that you consider how
you want to organize your business. However, keep in mind this point: the busi-
ness of being in business is making money, not organizing or running your busi-
ness. Make a few key decisions early on, implement them, and get on with
building your client list and billing out hours.

With that said, let’s talk about an important decision: business type. Your state of
residence is going to define the various business types available to you, and you
must pick the one that has the most advantages for you. Generally, the types
available are the sole proprietorship, partnership (which we won’t discuss), cor-
poration, and LLC.

The “default” business type is the sole proprietorship. In the U.S., it’s very easy
to create a business. You say, “I’m in business,” you get an occupational license,
and then, basically, you automatically become a sole-proprietor. The advantages
of being a sole proprietor are that taxes are relatively easy to prepare, and there
is very little paperwork to maintain. The disadvantages are that you may be
missing out on some tax advantages of other business types and you maintain
full liability.

Corporations are more complex than sole proprietorships but have some advan-
tages. The main advantage is a transfer of liability from you to the corporation.
The main disadvantage is more complicated tax filings, much more onerous
requirements for record-keeping, and an overall increase in the complexity of
how you handle your business.

A Limited Liability Company (LLC) is often an excellent compromise between a
sole proprietorship and a corporation. An LLC that is structured as a “pass-

40 ; L O G I N : V O L . 3 1 , N O . 1

through” is basically a sole-proprietorship with limited liability. The taxes tend
to be the same, and there is very little additional paperwork. A more advanced
form of the LLC mimics a corporation, including the fact that you become an
employee of the LLC. A major advantage of this type of LLC is that you can
write off what is known as “self-employment tax.” With a sole proprietorship
and a “pass-through” LLC, you have to pay the full 15% Social Security tax,
instead of an employee’s 7.5% contribution. In the second form of an LLC, you
still pay the full 15%, but the LLC gets to write off its portion of the social secu-
rity payment, lowering overall tax liability. Quite often this write-off can justify
the additional bookkeeping required for the second form of the LLC.

I suggest that you begin your business as a “pass-through” LLC. After your busi-
ness has become successful, and you have a large enough income ($80,000 or
more is a good rough guess), convert it to the second form of an LLC. Naturally,
you’ll want to discuss this with both a lawyer and a CPA.

Speaking of lawyers and CPAs . . .

You Aren’t That Smart

I’m amazed by consultants who spend hours and hours working on their
accounting and trying to figure out contracts, when they should be spending
their time working on billable hours. The math is simple: for every hour that
you spend working on your business, you lose one hour of billable time. Add to
that the fact that you are less productive than a specialist (just as your clients
aren’t as productive doing the services that you offer, otherwise they wouldn’t
need you), and you have a no-win situation.

What I’ve found that works—and this seems to be the pattern of many success-
ful consultants that I know—is to maintain your own day-to-day bookkeeping
(e.g., putting receipts into your accounting system), but to leave major work to
the professionals. This includes quarterly and year-end taxes and all legal work.
Do not try to write your own contracts. Let a lawyer do it for you. It’s not cheap,
but then again neither is your time.

You Aren’t That Rich

Billing is critical to your success. Or, to be more accurate, cash flow. Every con-
sultant, especially when they first start, has cash flow problems. And normally it
has nothing to do with how much work you have. It’s a problem in billing. The
Golden Rule of billing is to bill early and to bill often.

By billing early, I mean that you should not wait until a project is complete to
send a bill. Let the client know that you will be billing either monthly (or per-
haps bi-weekly—this is the idea of “billing often”) or on a percentage-completed
basis. If nothing else, if you wait until the project is complete, the client has no
incentive to pay you on time.

As already mentioned, every consultant falls into the trap of not billing properly.
Time and again I have let my billable hours stack up until I finally get around to
sending invoices. And after sending invoices, those billable hours are merely
converted into Accounts Receivable (A/R), which is to say “virtual money.” Sure,
clients owe me money, but that doesn’t pay the lease on my office. After a few
years you develop a sixth sense for which clients will pay late, how far you can
let your accounts fall, and other billing-related issues. But the best bet is to take
no risk: bill regularly and monitor your cash flow. Remember, it doesn’t matter
what you have in your bank account today, it’s what you will have in 30, 60, and
90 days that matters.

; LO G I N : F E B R UA RY 2 0 0 6 CO N S U LTI N G F O R F U N A N D P RO F IT 41

Be Good, Do Good

Being an independent consultant is entirely and without question a reputation-
based occupation. I am entirely referral-based. You will be too, if you are good.
Prove to your clients that you are the best person for the job, and they will rec-
ommend you no end. That’s just how it works.

Now, this isn’t to say that you won’t have failed projects. This happens regardless
of whether you are a consultant, a project sponsor, or even a normal employee.
The difference between a good consultant and a bad consultant is that a good
consultant knows how to pick up the pieces, how to properly communicate
what happened, and, hopefully, how to maintain the client’s trust.

Also, keep in mind that other consultants are watching you. While being an
independent consultant means that you work by yourself, it doesn’t mean you
live in a self-contained microcosm. Consultants working for your clients will
notice the work that you do and how you communicate with them and with the
client. If you earn the respect of other consultants, they will refer work to you. If
you earn their ire, then they will (rightfully) warn potential clients about you.

Network, Network, Network

Keeping in mind that other consultants are watching you, also keep an eye out
for other consultants. Small consulting companies almost never compete with
one another. We help each other out. It’s kind of weird and cool at the same
time. I can’t tell you how many projects I’ve worked on that were brought to me
by another consultant. You need to establish expertise and a good relationship
for this to really kick in. For example, I haven’t worked with many people in
USENIX/SAGE and sage-members@sage.org, but I know who is out there and
we say hi off-list every now and then. One day I’ll see a project and forward it to
someone. One day someone may do the same for me. That’s the business.

This brings us to the larger issue of networking. Networking is absolutely cru-
cial to a consultant. It’s how you develop a lot of new business. Having a Web
site won’t do it, and neither will a billboard or, heaven forbid, the yellow pages.
Your success depends almost exclusively on handshakes and the respect of your
peers and clients. So, be sure to meet fellow consultants and prospects at events
such as user group meetings, technical mailing lists, and conferences, as well as
at client sites. Smile, have a business card ready, be prepared to describe your
business in only a few seconds, and follow up with new contacts with an email
or letter a few days afterwards. (Of course, don’t badger people, either.)

Identify Your Expertise

Become an expert in one or two areas. In other words, don’t try to be a jack-of-
all-trades. The reason is simple: being an expert means that you can charge pre-
mium rates. Being a jack-of-all-trades works at first, and chances are that you
won’t have much of a choice when you first start your business, but being a jack-
of-all-trades will keep your billing rate low. So, try to specialize.

On the other hand, even I still do jack-of-all-trades work at times, if for no other
reason than that it leads to more specialized projects with clients. There is no
right or wrong way to figure this out. Over time you will develop a feel for the
exact kind of work at which you excel and for which you get paid the most. As
you identify these areas, start to hone those skills and present yourself to clients
as a specialist in that area.

Obviously, you should never oversell yourself. If you are not an expert in a given
area, don’t claim to be one. The client will eventually find out the truth. That’s a

42 ; L O G I N : V O L . 3 1 , N O . 1

given. If you don’t present yourself as an expert and the client still takes you on
as a consultant, consider tht an opportunity to increase your skills in that area
and to prove to the client that they made the right choice. (Alternatively, refer
the work to an associate who is an expert, and so establish a relationship that
may lead to referrals for you later on.)

On a side note, once you become expert and are well established, begin charging
premium rates in your area. If you bill average rates, then, by golly, you must be
an average consultant.

Identify Your Clients

At first you are going to take whatever clients you can. No matter what you say,
every consultant does this. After a year or two, though, you are going to learn
that some clients are just not good for you or you for them. Over time you will
let certain clients go (consultants can “fire” clients if the relationship is bad
enough, but you should focus on recommending consultants with whom those
clients will, you feel, have a successful working relationship). But the better
solution is to learn how to avoid clients who aren’t right for you. It’s hard to say
“thanks, but no thanks” at first, but over time you will learn that it’s the right
course of action in many situations.

Learn from every relationship. Even when you have a great relationship with a
client, there will be bumps in the road. Learn from these situations.

Learn How to Communicate

Finally, learn how to communicate with people. All too often, technically adept
people have shortcomings when it comes to communicating effectively with
nontechnical clients. But a lot of the work that you get will be commissioned by
upper management, and these people do not tend to be technically savvy. If you
can’t describe your solution to them, then don’t expect to get the project.

Furthermore, it’s important to be an effective communicator throughout a proj-
ect. A little-known career-saver is being able to convey why a project is having
problems or delayed, and to work out a solution with the client. Do not try to
hide important information from a client. They will find out eventually.

As a consultant, you must be a better communicator than a typical employee or
even a contractor usually is. It’s your job to describe both problems and solu-
tions. Additionally, documentation is going to be very important to how clients
view your work.

To improve your communication skills, try to write for industry journals (e.g.,
;login:), present at local user groups, and speak at conferences. This will not
only improve how you share concepts, but it will also increase your exposure as
a consultant. Remember, you need to establish yourself as an expert.

Conclusion

I hope these tips will prove useful to you. This article addressed a wide range of
issues that affect independent consultants, but, as always, there is more informa-
tion out there. Be sure to find these other resources and learn what you can,
because running your own business, while fun and exciting, comes with its own
set of headaches. In the end, however, most people find those headaches well
worth it.

And, finally, smile. Life is short. Don’t get too caught up in work.

; LO G I N : F E B R UA RY 2 0 0 6 CO N S U LTI N G F O R F U N A N D P RO F IT 43

Addison-Wesley Professional/
Prentice Hall Professional

AMD

Asian Development Bank

Cambridge Computer Services, Inc.

EAGLE Software, Inc.

Electronic Frontier Foundation

Eli Research

FOTO SEARCH Stock Footage and
Stock Photography

GroundWork Open Source Solutions

Hewlett-Packard

IBM

Intel

Interhack

The Measurement Factory

Microsoft Research

MSB Associates

NetApp

Oracle

OSDL

Perfect Order

Raytheon

Ripe NCC

Sendmail, Inc.

Splunk

Sun Microsystems, Inc.

Taos

Tellme Networks

UUNET Technologies, Inc.

It is with the generous financial support of our supporting members that USENIX is able to fulfill its mission to:

• Foster technical excellence and innovation
• Support and disseminate research with a practical bias
• Provide a neutral forum for discussion of technical issues
• Encourage computing outreach into the community at large

We encourage your organization to become a supporting member. Send email to Catherine Allman, Sales Director,
sales@usenix.org, or phone her at 510-528-8649 extension 32. For more information about memberships, see
http://www.usenix.org/membership/classes.html.

Thanks to USENIX & SAGE Supporting Members

; LO G I N : F E B R UA RY 2 0 0 6 K E E P I N G TR AC K O F T I M E 45

T H O M A S S L U Y T E R

keeping track
of time
In daily life Thomas (a.k.a. Cailin) works for Snow, a
UNIX consultancy bureau in the Netherlands. He
took his first steps as a junior UNIX sysadmin in
the year 2000. Thomas part-times as an Apple
Macintosh evangelist and as a board member of
the Dutch J-Pop Foundation.

tsluyter@kilala.nl

W AY B A C K I N 1 9 9 9 , W H E N I S TA R T E D
my second internship, I was told to do
something I had never done before: create
and maintain a plan of my activities.

At the time this seemed like a horribly complex
thing to do, but my supervisor was adamant. He
did not want me to shift one bit of work before I
had taken a stab at a rough plan. So I twiddled in
Word and I fumbled in Excel and finally, an hour
or two later, I had finished my first project plan
ever. And there was much rejoicing! Well, not
really, but I felt that a Monty Python reference
would be welcome right about now.

So now it’s six years later and I still benefit from
the teachings of my past mentor. However, I see
people around me who appear to have trouble
keeping track of all of their work. Which is exact-
ly why I was originally asked to write this article.

I have always worked in large corporate environ-
ments with several layers of management between
the deities and me, which always seems to obfus-
cate matters needlessly. However, the ideas out-
lined in the next few paragraphs will be applicable
to anyone in any situation.

Juggling Egg Shells

“They [hackers] tend to be careful and orderly in
their intellectual lives and chaotic elsewhere. Their
code will be beautiful, even if their desks are buried
in 3 feet of crap.”

—The New Hacker’s Dictionary

I realize that keeping a plan is definitely not one
of the favorite activities for most people in IT;
they seem to abhor the whole task, or fail to see
its importance. Also, most are of the opinion that
they don’t have enough time as it is and that there
is absolutely no way that they can fit in the
upkeep of a personal plan.

Now here’s a little secret: the one thing that can
help you keep your workload in check is a plan.
By keeping a record of all of your projects and
other activities, you can show management how
heavily you’re loaded and when you will be avail-
able for additional duties. By providing manage-
ment with these details, you are allowing them to
make decisions like lowering your workload or
adding more people to the workforce.

Personal Time vs. Project Time

A personal plan is what dictates your day-to-day activities. You use it to
keep track of meetings, miscellaneous smaller tasks, and time slots that
you have reserved for projects. You could say that it’s your daily calendar,
and most people will actually use one (a calendar, that is) for this task. In
daily life your colleagues and supervisor can use your personal plan to see
when you’re available for new tasks.

A project plan, on the other hand, is an elaborate schedule that dictates the
flow of a large project. Each detail will be described meticulously and will
receive its own time slot. Depending on the structure of your organization,
such a plan will be drafted either by you or by project managers who have
been specifically hired for that task.

Tools of the Trade

“Life is what happens to you when you’re making other plans.”
—John Lennon

K E E P I N G YO U R P E R S O N A L C A L E N DA R

I think it’s safe to assume that everyone has the basic tools that are needed
to keep track of their personal plan. Just about every workstation comes
with at least some form of calendar software, which will be more or less
suitable.

Microsoft Outlook and Exchange come with both a pretty elaborate calen-
dar and a To Do list. These can share information transparently, so you can
easily assign a task a slot in your personal plan. Each event in your calen-
dar can be opened up to add very detailed information regarding each task.
And you and your colleagues can give each other access to your calendars
if your organization has a central Exchange server at its disposal.

One of the downsides to Exchange is that it isn’t very easy to keep track of
your spent hours in a transparent manner. It allows you to create a second
calendar in a separate window, but that doesn’t make for easy comparison.
You could also try to double-book your whole calendar for this purpose,
but that would get downright messy.

Looking at the other camp, all Apple Macintosh systems come supplied
with the iCal application. It is not as comprehensive as the calendar func-
tions of Exchange, but it is definitely workable. iCal comes with most of
the features you would expect, like a To Do list and the possibility of shar-
ing your calendar with your colleagues. However, this requires that you set
up either a .Mac account or a local WEBDAV server.

One of the nice things about iCal is that it allows you to keep multiple cal-
endars in one window, thus making it easier to keep track of time spent on
projects. I use a green iCal calendar to contain all the events I schedule
and a purple one to show how I really spent my time.

Finally, I am told that Mozilla’s Sunbird software also comes with a satisfac-
tory calendar. So that could be a nice alternative for those wishing to stick
to Linux, or who just have a dislike of the previously mentioned applica-
tions.

46 ; L O G I N : V O L . 3 1 , N O . 1

K E E P I N G TR AC K O F S P E NT TI M E

It’s one thing to enter all of your planned activities into your calendar and
another thing entirely to keep track of how you actually spent your time.
Keeping tabs on how you spend your days gives you the following advan-
tages:

n A way to report your progress to management
n A clear view of which activities are slipping in your schedule
n A clear view of which work needs to get rescheduled or even reassigned to somebody

else

For some reason, however, there aren’t any tools available that focus on
this task, or at least I haven’t been able to find them. Of course there are
CRM tools that allow a person to keep track of time spent on different cus-
tomers, but invariably these tools don’t combine this functionality with the
planning possibilities I described earlier.

As mentioned, it’s perfectly possible to cram the time you spend on tasks
into the calendar used for your personal plan, but that usually gets a bit
messy (unless you use iCal). Also, I haven’t found any way to create
reports from these calendar tools that allow you to compare time planned
against time spent. So for now the best way to create a management-friend-
ly report is still to muck about in your favorite spreadsheet program.

R E G A R D I N G P ROJ E C T P L A N N I N G TO O LS

Most projects are of a much grander scale than your average work week.
There are multiple people to keep track of, and each person gets assigned a
number of tasks (which, in turn, get divided into subtasks, and so on). You
can imagine that a simple personal calendar will not do.

That’s why there is specialized software like Microsoft Project for Windows
or PMX for OS X. Tools like these allow you to divide a project into atomic
tasks. You can assign multiple resources to each task, and all tasks can be
interlinked to form dependencies and such. Most tools provide profession-
al functions like Gantt and PERT charts.

Making Guesstimates

In the next few sections I will ask you to estimate the time a certain task
will take. Often sysadmins will be much too optimistic in their estimates,
figuring that “it will take a few hours of tinkering.” And it’s just that kind
of mindset that is detrimental to a good plan.

When making a guesstimate regarding such a time frame, clearly visualize
all the steps that come with the task at hand. Imagine how much time you
would spend on each step, in real life. Keep in mind that computers may
choose not to cooperate, that colleagues may be unavailable at times, and
that you may actually run into some difficulty while performing each step.

Do you have a good idea of how long the task will take? Good! Now dou-
ble that amount and put that figure up in your plan. Seriously. One col-
league recounts people who multiply their original estimates by pi and still
find that their guesstimates are wrong.

One simple rule applies: it is better to arrange for a lot of additional time
than it is to scramble to make ends meet.

; LO G I N : F E B R UA RY 2 0 0 6 K E E P I N G TR AC K O F T I M E 47

Taking the Plunge

“It must be Thursday. . . . I never could get the hang of Thursdays.”
—Douglas Adams, The Hitchhiker’s Guide to the Galaxy

Every beginning is difficult, and this one will be no exception. Your first
task will be to gather all the little tidbits that make up your day and then
to bring order to the chaos. Here are the steps you will be going through.

Make a list of everything you have been doing, are doing right now, and
will need to do soon. Keep things on a general level.

Divide your list into two categories: projects and tasks. In most cases the
difference will be that projects are things that need to be tackled in a struc-
tural manner that will take a few weeks to finish, whereas tasks can be
handled quite easily.

Take your list of tasks and break them down into “genres.” Exemplary gen-
res from my plan are “security,” “server improvements,” and “monitoring
wish list.” The categorized list you’ve made will be your To Do list. Enter it
into your calendar software.

For each task decide when it needs to be done and make a guesstimate of
the required time. Start assigning time slots in your calendar to the execu-
tion of these activities. I usually divide my days into two parts, each of
which gets completely dedicated to one activity. Be sure that you leave
plenty of room in your calendar for your projects. Also leave some empty
spots to allow for unforeseen circumstances.

Now proceed with the next paragraph to sort out your projects.

The Big Stuff: Handling Projects

“Once I broke my problems into small pieces I was able to carry them, just like
those acorns: one at a time. . . . Be like the squirrel!”

—The White Stripes, “Little Acorns”

For each of your projects go through the following loop:

n Write a short project overview. What is it that needs to be done? When does it need to

be done? Who are you doing it for? Who is helping you out?
n Make a basic timeline that tells you which milestones need to be reached in order to

attain your goal (Fig. 1.1). For example, if the goal is to have all your servers backed

up to tape, exemplary milestones could be: “Select appropriate software/hardware

solution,” “Acquire software/hardware solution,” “Build basic infrastructure,” and

“Implement backup solution.” For each milestone, decide when it needs to be

reached.
n Work out each defined milestone (Fig. 1.2): which granular tasks are parts of the

greater whole? For instance, the phase “Select appropriate software/hardware solu-

tion” will include tasks such as “Inventory of available software/hardware,” “Initial

selection of solution,” “Testing of initially selected solution,” and so on.
n Decide how much time will be needed to perform each of these atomic tasks (Fig.

1.3). Use the tips regarding guesstimates to decide on the proper figures.
n Put all the tasks into the timeline. Put them in chronological order and include the

time you’ve estimated for each task (Fig. 1.4–5). You’ve now built a basic Gantt chart.

48 ; L O G I N : V O L . 3 1 , N O . 1

F I G U R E 1 : S T E P S I N S E T T I N G U P A P R O J E C T P L A N

Once you are done, go over the whole project plan and verify that, given
the estimated time for each task, you can still make it on time. Discuss
your findings with your management so that they know what you are up
to and what they can expect from the project in the future.

Inevitable, Like Taxes and Death

“Hackers are often monumentally disorganized and sloppy about dealing
with the physical world. . . . [Thus] minor maintenance tasks get deferred
indefinitely.”

—The New Hacker’s Dictionary

One of the vitally important facts about planning is that it’s not a goal, but
an ongoing process. Now that you have made your initial plan, you’re
going to have to perform upkeep. Ad infinitum. The point is that things
change, and there’s no changing that!

Projects fall behind schedule for many different reasons. Vendors may not
deliver on time, colleagues may fail to keep their promises, and even you
yourself may err at times. Maybe your original plan was too tight, or maybe
a task is a lot more complicated than it seemed at first. All in all, your plan
will need to be shifted. Depending on the project, it is wise to revisit your
plan at least once a week. Mark any finished tasks as such and note any
delays. Not only will this help you in your daily work, but it will also give
management a good idea about the overall progress of your projects.

The same goes for your personal time. Projects need rescheduling, you
may need to take some unexpected sick leave, or J. Random Manager
might decide that doing an inventory of mouse mats really does need pri-
ority above your projects. It is best to revisit your calendar on a daily basis
so you can keep an eye on your week. What will you be doing during the
next few days? What should you have done during the past few days? Are
you on track when it comes to your To Do list?

Final Thoughts

You may think that all of this planning business seems like an awful lot of
work. I would be the first to agree with you. However, as I mentioned at
the start of this article, it will be well worth your time. Not only will you
be spending your time in a more ordered fashion, but it will also make you
look good in the eyes of management.

As it says in the Hitchhiker’s Guide to the Galaxy, you will be the “really
hoopy frood, who really knows where his towel is,” because when things
get messy you will still be organized.

; LO G I N : F E B R UA RY 2 0 0 6 K E E P I N G TR AC K O F T I M E 49

D A V I D B L A N K - E D E L M A N

practical Perl tools

C O N F I G U R AT I O N F I L E S

David N. Blank-Edelman is the director of technology
at the Northeastern University College of Computer
and Information Science and the author of Perl for
System Administration (O’Reilly). He has spent the
past 20 years as a system/network administrator in
large multi-platform environments, including
Brandeis University, Cambridge Technology Group,
and the MIT Media Laboratory. He was the chair of
the LISA 2005 conference.

dnb@ccs.neu.edu

L E T M E P U T D O W N T H E “ U N D E R N E W
management” sign for a moment and wel-
come you to the first article in a slightly dif-
ferent column than you are used to seeing
in this spot. It would be very difficult to
step into Adam Turoff’s shoes, especially
given his multiple years of great articles, so
I’ll be taking this column in a different
direction.

It is most auspicious that the theme of this issue
of ;login: is “system administration” because that’s
my particular bent as well (having proudly been
in the biz for about 20 years). As a sysadmin I’ve
been interested in Perl for many of those years
because it has been a good tool for lots of practi-
cal uses: hence the new column title. (To get the
heresy out of the way early in my tenure: I don’t
think Perl is always the best tool. You should
always use the best tool for the job.) So that’s
enough meta-yammering about the column; let’s
get on to the actual subject of today’s article.

Let us consider the lowly config file. For better or
worse, config files are omnipresent not just for a
sysadmin but for anyone who has ever had to
configure software before using it. Yes, GUI and
Web-based point-and-click festivals are becoming
more prevalent for configuration, but even in
those cases there’s often some piece of configura-
tion information somewhere in a file that has to
be twiddled before you can even get to that point
in the setup of new software.

From the Perl programmer’s point of view (ours),
the evolutionary stages of a program usually go as
follows.

First, the roughest, simplest of scripts (this stage
may be skipped by senior programmers):

use strict; # assume this line for all of our exam-
ples

open my $DATA_FILE_H, ‘<’, “/var/adm/data”
or die “unable to open datafile: $!\n”;

open my $OUTPUT_FILE_H, ‘>’, “/var/adm/out-
put”

or die “unable to write to outputfile: $!\n”;

while (my $dataline = <$DATA_FILE_H>) {
chomp($dataline);
if ($dataline =~ /hostname: /) {

$dataline .= “.example.edu”;
}
print {$OUTPUT_FILE} $dataline . “\n”;

}
close $DATA_FILE_H;

50 ; L O G I N : V O L . 3 1 , N O . 1

use strict; # assume this line for all of our examples

open my $DATA_FILE_H, ‘<’, “/var/adm/data”
or die “unable to open datafile: $!\n”;

open my $OUTPUT_FILE_H, ‘>’, “/var/adm/output”
or die “unable to write to outputfile: $!\n”;

while (my $dataline = <$DATA_FILE_H>) {
chomp($dataline);
if ($dataline =~ /hostname: /) {

$dataline .= “.example.edu”;
}
print {$OUTPUT_FILE} $dataline . “\n”;

}
close $DATA_FILE_H;
close $OUTPUT_FILE_H;

That’s quickly replaced by the next stage, the arrival of variables:

my $datafile = ‘/var/adm/data’; # input data file name
my $outputfile = ‘/var/adm/output’; # output data file name
my $change_tag = ‘hostname: ‘; # append data to these lines
my $fdqn = ‘.example.edu’; # domain we’ ll be appending

open my $DATA_FILE_H, ‘<’, $datafile
or die “unable to open $datafile: $!\n”;

open my $OUTPUT_FILE_H, ‘>’, $outputfile
or die “unable to write to $outputfile: $!\n”;

while (my $dataline = <$DATA_FILE_H>) {
chomp($dataline);
if ($dataline =~ /$change_tag/) {

$dataline .= $fdqn;
}
print {$OUTPUT_FILE} $dataline . “\n”;

}
close $DATA_FILE_H;
close $OUTPUT_FILE_H;

Many Perl programs happily remain at this stage for the duration of their
lifespan. However, more experienced Perl programmers recognize that
code like this is fraught with potential peril when development continues
and the program gets bigger and bigger, perhaps being handed off to other
people to maintain. This peril manifests the first time someone naïvely
adds code deep within the program that modifies $change_tag or $fdqn. All
of a sudden the output of the program changes in an unexpected and
unwanted way. In a small code snippet it is easy to spot the connection
between $change_tag or $fdqn and the desired results, but it can be much
trickier to find something like this in a program that scrolls by for many
screensful.

One approach to fixing this problem would be to rename variables like
$fdqn to something more obscure such as $dont_change_this_value_
yesiree_bob, but that’s a bad idea. Besides consuming far too many of the
finite number of keystrokes you are going to be able to type in your life-
time, it wreaks havoc on code readability. There are a number of data-hid-
ing tricks we could play instead (closures, symbol table manipulation,
etc.), but they don’t help with readability either and are more complex
than is necessary. The best idea is to use something similar to the “use con-
stants” pragma to make the variables read-only:1

use Readonly;

we’ve uppercased the constants so they stick out
note: this is the Perl 5.8.x syntax; see the Readonly docs for using
Readonly with versions of Perl older than 5.8
Readonly my $DATAFILE => ‘/var/adm/data’; # input data file name
Readonly my $OUTPUTFILE => ‘/var/adm/output’; # output data file
name
Readonly my $CHANGE_TAG => ‘hostname: ‘; # append data to
these lines
Readonly my $FDQN => ‘.example.edu’; # domain we’ll be append-
ing

open my $DATA_FILE_H, ‘<’, $DATAFILE
or die “unable to open $DATAFILE: $!\n”;

open my $OUTPUT_FILE_H, ‘>’, $OUTPUTFILE
or die “unable to write to $OUTPUTFILE: $!\n”;

while (my $dataline = <$DATA_FILE_H>) {

; LO G I N : F E B R UA RY 2 0 0 6 P R AC TI C A L P E R L TO O LS : CO N F I G U R ATI O N F I L E S 51

use Readonly;

we’ve uppercased the constants so they stick out
note: this is the Perl 5.8.x syntax; see the Readonly docs for using
Readonly with versions of Perl older than 5.8
Readonly my $DATAFILE => ‘/var/adm/data’; # input data file name
Readonly my $OUTPUTFILE => ‘/var/adm/output’; # output data file name
Readonly my $CHANGE_TAG => ‘hostname: ‘; # append data to these lines
Readonly my $FDQN => ‘.example.edu’; # domain we’ll be appending

open my $DATA_FILE_H, ‘<’, $DATAFILE
or die “unable to open $DATAFILE: $!\n”;

open my $OUTPUT_FILE_H, ‘>’, $OUTPUTFILE
or die “unable to write to $OUTPUTFILE: $!\n”;

while (my $dataline = <$DATA_FILE_H>) {
chomp($dataline);
if ($dataline =~ /$CHANGE_TAG/) {

$dataline .= $FDQN;
}

my $datafile = ‘/var/adm/data’; # input data file name
my $outputfile = ‘/var/adm/output’; # output data file name
my $change_tag = ‘hostname: ‘; # append data to these lines
my $fdqn = ‘.example.edu’; # domain we’ ll be appending

open my $DATA_FILE_H, ‘<’, $datafile
or die “unable to open $datafile: $!\n”;

open my $OUTPUT_FILE_H, ‘>’, $outputfile
or die “unable to write to $outputfile: $!\n”;

while (my $dataline = <$DATA_FILE_H>) {
chomp($dataline);
if ($dataline =~ /$change_tag/) {

$dataline .= $fdqn;
}
print {$OUTPUT_FILE} $dataline . “\n”;

}
close $DATA_FILE_H;
close $OUTPUT_FILE_H;

1. Why not actually “use constants”
instead? The Readonly module documen-
tation points out a number of reasons. The
three most compelling are: the ability to
interpolate Readonly variables into strings
(e.g., print “Constant set to
$CONSTANT\n”); the ability to lexically
scope the read-only variable (e.g.,
Readonly my $constant => “fred”) so they
can be present in only the scope you
desire; and unlike “use constant,” attempts
to redefine a Readonly variable are
rebuffed.

chomp($dataline);
if ($dataline =~ /$CHANGE_TAG/) {
print {$OUTPUT_FILE} $dataline . “\n”;

}
close $DATA_FILE_H;
Now that we’ve seen the ne plus ultra of storing configuration information
within the script,2 we’ve hit a wall: what happens when we decide to write
a second or third script that needs similar configuration information? Any
readers who reached for the cut/copy function in their editor as an answer
to that question are fired. Simple duplication of the same information into
a second script may seem harmless, but it is the first step on to the road
away from Oz and toward an unpleasant encounter with the flying mon-
keys and an unhappy lady with a broomstick. Don’t do it.

The right answer may well be some sort of config file.3 Once you’ve decid-
ed to use a config file, the next question is, What format?

Answering that question is similar to the old joke “The wonderful thing
about standards is there are so many to choose from!” Discussions of
which formats are best usually become some mishmash of religion, poli-
tics, and personal aesthetic taste. Because I’m a flaming pluralist, we’re
going to take a look at how to deal with several of the most common for-
mats and leave you to choose the best one for your application. I’ll try to
give you my humble opinion about each to help with that process.

Config File Formats

B I N A RY

The first kind of configuration file we’re going to look at is my least
favorite, so let’s get it out of the way quickly. Some people choose to store
their configuration data on disk as basically a serialized memory dump of
their Perl data structures. There are several ways to write this data struc-
ture to disk, including the old warhorse Storable:

use Storable;

write the config file data structure out to $CONFIG_FILE
store \%config, $CONFIG_FILE; # use nstore() for platform-independent
file

my $config = retrieve($CONFIG_FILE);

I’ve also become fond of the module DBM::Deep, which has the benefit of
producing data files that aren’t platform-specific by default (though
Storable’s nstore method can help with that). For a pure Perl module, it is
pretty spiffy.

use DBM::Deep;

my $configdb = new DBM::Deep “config.db”;

store some host config info to that db
$configdb->{hosts} = {

‘agatha’ => ‘192.168.0.4’,
‘gilgamesh’ => ‘192.168.0.5’,
‘tarsus’ => ‘192.168.0.6’,

};

(later) retrieve the name of the hosts we’ve stored
print join(“ “, keys %{ $configdb->{hosts} }) . “\n”;

52 ; L O G I N : V O L . 3 1 , N O . 1

use Storable;

write the config file data structure out to $CONFIG_FILE
store \%config, $CONFIG_FILE; # use nstore() for platform-independent file

later (perhaps in another program), read it back in for use
my $config = retrieve($CONFIG_FILE);

use DBM::Deep;

my $configdb = new DBM::Deep “config.db”;

store some host config info to that db
$configdb->{hosts} = {

‘agatha’ => ‘192.168.0.4’,
‘gilgamesh’ => ‘192.168.0.5’,
‘tarsus’ => ‘192.168.0.6’,

};

(later) retrieve the name of the hosts we’ve stored
print join(“ “, keys %{ $configdb->{hosts} }) . “\n”;

print {$OUTPUT_FILE} $dataline . “\n”;
}
close $DATA_FILE_H;
close $OUTPUT_FILE_H;

2. There are some games we could play with
the __DATA__ token, but, in general, keeping
the configuration information at the beginning
of the script is better form.

3. If your thoughts sped ahead to more sophis-
ticated solutions, hold on—we’ll mention
them at the end of this article.

Files in this format are typically really fast to read, which can be quite
helpful if performance is a concern. Similarly, there’s something elegant
about having the information stay close to the native format (i.e., a Perl
data structure you’re going to traverse in memory) for its entire lifespan
versus transcoding it back and forth from another representation through a
myriad of parsing/slicing/dicing steps.

So why is this my least favorite kind of config file? First, and least palat-
able to me, is the binary nature of the files created. I’d much prefer to have
my config files human-readable wherever possible. I don’t want to have to
rely on a special program to decode the information (or to encode it, when
the data gets written). Besides the visceral reaction, it also means I can’t
operate on the data using other standard tools such as grep. Luckily, if you
are looking for speed, there are other alternatives we’ll be discussing in a
moment.

N A K E D D E L I M ITE D DATA

Also in the category of formats I tend to dislike are those that are simply a
set of data in fields delimited by some character. The /etc directory on a
UNIX box is lousy with them: passwd, group, and so on. Comma or
Character Separated Value files (CSV, take your pick of expansions) are in
the same category.

Reading them in Perl is pretty easy because of the built-in split() operator:

use Readonly;

Readonly my $DELIMITER => ‘:’;
Readonly my $NUMFIELDS => 4 ;

open and read in a line from your config file here

now parse the data
my ($field1, $field2, $field3, $field4, $excess) =

split $DELIMITER, $line_of_config, $NUMFIELDS;

For CSV files, there are a number of helpful modules to handle tricky situ-
ations like escaped characters (i.e., using commas in the data itself, not
anything from a prison break). Text::CSV::Simple, a wrapper around
Text::CSV_XS, works well:

use Text::CSV::Simple;

my $csv_parser = Text::CSV::Simple->new;

@data will then contain a list of lists, one entry per line of file
my @data = $csv_parser->read_file($datafile);

This data format is also on my “least-favored” list. Unlike the previous for-
mat, it has the benefit of being human-readable and standard tool-
parseable. However, it also has the drawback of being easily human-misun-
derstandable and mangleable. Without a good memory or external docu-
mentation, it is often impossible to understand the contents of the file
(“What was the 7th field again?”). This leaves it susceptible to fumble-fin-
gering and subtle typos. It is field-order fragile.

K EY/ VA LU E PA I R S

The most common format around is the “key {something} value” style,
where {something} is usually whitespace, a colon, or an equals sign.
Besides the separator difference, there are often other twists like .ini “[sec-
tions]” names or configuration scopes (à la Apache’s configuration file).

; LO G I N : F E B R UA RY 2 0 0 6 P R AC TI C A L P E R L TO O LS : CO N F I G U R ATI O N F I L E S 53

use Readonly;

Readonly my $DELIMITER => ‘:’;
Readonly my $NUMFIELDS => 4 ;

open and read in a line from your config file here

now parse the data
my ($field1, $field2, $field3, $field4, $excess) =

split $DELIMITER, $line_of_config, $NUMFIELDS;

use Text::CSV::Simple;

my $csv_parser = Text::CSV::Simple->new;

@data will then contain a list of lists, one entry per line of file
my @data = $csv_parser->read_file($datafile);

Dealing with formats like this using Perl modules turns out to be initially
hard because there are too many choices.4 No, really! In my survey of
CPAN for config modules for this article, I encountered at least 26 modules
of interest that fall into this category. To winnow this down, there are a
number of decision forks:

1. How complex do you want the configuration file to be: Will simple .ini files
work for you? More complex .ini files? Apache style? Extended Apache
style? Do you need sections? Do you need scoped directives? Want to write
your own grammar representing the format?

2. How would you like to interact with the configuration information: Want to
be handed back a simple data structure? an object representing the informa-
tion? Prefer to treat things like magical tied hashes or Perl constants? Does
the information you get back have to come back in the same order as it is
listed in the config file? Would you be happy if the module figured out the
config file format for you?

3. What else is important to you: Do you care how quickly the configuration is
parsed or how much memory the parsing process takes? Should it handle
caching of the config for fast reload? Do you want to be able to cascade the
configs (i.e., have a global config with other configs for more specific infor-
mation)? Should the config be validated on parse?

The answer to each of these questions will point at a different module or
set of modules available for your use. We can’t dive into all of the modules
out there, so let’s look at three you may not have seen:

Config::Std is Damian Conway’s config parsing module. He’s a smart guy
and so his module in this space attempts to be the same. Unlike most con-
figuration modules, his module lets you read and then update the configu-
ration file while preserving the section order and the comments. The file
format it uses looks much like .ini files, so it should be pretty easy for
most people to understand on first sight. Here’s an example of the module
in action. Note: The examples in this section will be really boring because
the modules are all designed to make the process of dealing with config
files simple (boring).

use Config::Std;

read_config ‘config.cfg’ => my %config;

now work with $config{Section}{key}...

and write the config file back out again

write_config %config;

In Conway’s book Perl Best Practices, he suggests that if you need some-
thing more sophisticated than his simple Config::Std format can provide,
Config::General can oblige. It handles files in the Apache config file family
and has a much richer syntax. Actual use of the module isn’t any more
complex than Config::Std:

use Config::General;

my %config = ParseConfig(-ConfigFile => ‘rcfile’);

now work with the contents of %config...

and write the config file back out again
SaveConfig(‘configdb’, \%config);

Config::Scoped gives you still more bells and whistles. It parses a similarly
complex format that includes scoped directives (essentially the one used
by BIND or the ISC DHCP server), can check the data being parsed, will
check the permissions of the config file itself, and includes caching func-

54 ; L O G I N : V O L . 3 1 , N O . 1

4. For more information on this, Barry
Schwartz’s book The Paradox of Choice: Why
More Is Less is recommended.

use Config::Std;

read_config ‘config.cfg’ => my %config;

now work with $config{Section}{key}...

and write the config file back out again

write_config %config;

use Config::General;

my %config = ParseConfig(-ConfigFile => ‘rcfile’);

now work with the contents of %config...

and write the config file back out again
SaveConfig(‘configdb’, \%config);

tionality. This caching functionality allows your program to parse the more
complex format once and then quickly load in a binary representation of
the format on subsequent loads if the original file hasn’t changed. This
gives us the speed we coveted from the first kind of file we looked at and
the readability of the file formats discussed in this section. It doesn’t, how-
ever, offer an easy way to programmatically update an existing configura-
tion file like some of the other modules we’ve seen. Here’s a small snippet
for how to use the caching functionality:

use Config::Scoped;
my $parser= Config::Scoped->new(file => ‘config.cfg’);
my $config = $parser->parse;

store the cached version on disk for later use
$parser->store_cache(cache => ‘config.cfg.cache’);

(later, in another program...)
$cfg = Config::Scoped->new(file => ‘foo.cfg’)->retrieve_cache;

If you are the type of person who likes to smelt your own bits, then there
are also a number of other modules like Config::Grammar which allow you
to define your own grammar to represent the configuration file format. I
tend not to like creating custom formats, if I can help it, for reasons of
maintainability, but if this suits your purposes these modules can oblige.

M A R KU P L A N G UAG E S

The last format type we’ll be looking at is becoming increasingly common
as XML continues to pervade more and more of the IT space (largely due
to its shininess). And the use of a markup language like XML to describe
configuration information is becoming more and more prevalent.5 Market-
ing potential aside, XML does have a few nice properties when used for
config files. When kept simple (because a complex/convoluted XML docu-
ment is as inscrutable as one in any other format), XML config files can be
nearly self-documenting. The freedom to define almost arbitrary tags lets it
be as descriptive as you’d like. If I write a simple XML file like this, you
can probably understand the gist of it without needing a separate manual
page:

<config>
<host>

<name> agatha </name>
<addr> 192.168.0.4 </addr>

</host>
...

</config>

Another plus of this format is the well-defined syntax and optional valida-
tion mechanisms which are part and parcel of XML. At the very least, this
means that all of your XML config files can share the same parser and vali-
dation mechanism independent of their actual content.

The easiest way to read an XML config file from Perl is the XML::Simple
module. It allows you to write simple code like this to slurp an XML file
into Perl data structure:

use XML::Simple;

my $config = XMLin(‘config.xml’);

work with $config->{stuff}

Turning that data structure back into XML for writing after you’ve made a
change to it is just as easy:

; LO G I N : F E B R UA RY 2 0 0 6 P R AC TI C A L P E R L TO O LS : CO N F I G U R ATI O N F I L E S 55

5. There are in fact XML dialects such as
DCML, NetML, and SAML which are gunning
for parts of the configuration management
space.

use Config::Scoped;
my $parser= Config::Scoped->new(file => ‘config.cfg’);
my $config = $parser->parse;

store the cached version on disk for later use
$parser->store_cache(cache => ‘config.cfg.cache’);

(later, in another program...)
$cfg = Config::Scoped->new(file => ‘foo.cfg’)->retrieve_cache;

<config>
<host>

<name> agatha </name>
<addr> 192.168.0.4 </addr>

</host>
...

</config>

use XML::Simple;

my $config = XMLin(‘config.xml’);

work with $config->{stuff}

... (data structure already in place)
open my $CONFIG_FILE_H, ‘>’, $configfile

or die “Can’t write to $configfile:$!\n”;

print {$CONFIG_FILE_H} XMLout($config);

close $CONFIG_FILE_H;

Now, some people aren’t swayed by the sparkly nature of XML. They think
that there’s too much markup for each piece of content and would prefer
something with fewer angle brackets. For these people there is a lighter-
weight format called YAML (which stands for YAML Ain’t Markup
Language). YAML tries to strike a balance between structure and concision,
and so it looks a little cleaner to the average eye:

name: agatha
address: 192.168.0.4

name: mr-tock
address:

- 192.168.0.10
- 192.168.0.11
- 192.168.0.12

The Perl module to parse YAML
6

is called, strangely enough, YAML and is
used like this:

use YAML;

my @config = YAML::LoadFile(‘config.yml’);

@config now contains a list of references to hashes, one per record
we now can use $config[N]->{address}

(later...) dump the config back out to a file
YAML::DumpFile(‘config.yml’ , @config);

If you’d prefer a more object-oriented way of working with YAML,
Config::YAML can provide it.

There are an infinite number of possible formats for config files, but at
least now we’ve hit the highlights.

All-in-One Modules

If all of this talk about picking the right module for config parsing has
made your brain hurt, let me ease us toward the end of this article with a
quick look at a set of modules which can help sidestep the choice.

Config::Context is a wrapper around the Config::General, XML::Simple, and
Config::Scoped modules that allows you to use a single module for each of
the formats those modules handle. On top of this, it also adds contexts à la
Apache so you can use <Location> </Location> tags in those file formats.

If you crave a module with a larger menu of config file formats supported,
Config::Auto can handle colon/space/equals-separated key/value pairs, XML
formats, Perl code, .ini formats, BIND9 style, and irssi config file formats.
Not only that, it will (by default) guess the format it is parsing for you
without further specification. If that’s too magical for you, a format can be
specified.

56 ; L O G I N : V O L . 3 1 , N O . 1

6. One nice property of YAML is it is lan-
guage-independent. There are YAML parsers
and emitters for Ruby, Python, PHP, Java,
OCaml, and even Javascript.

... (data structure already in place)
open my $CONFIG_FILE_H, ‘>’, $configfile

or die “Can’t write to $configfile:$!\n”;

print {$CONFIG_FILE_H} XMLout($config);

close $CONFIG_FILE_H;

name: agatha
address: 192.168.0.4

name: mr-tock
address:

- 192.168.0.10
- 192.168.0.11
- 192.168.0.12

use YAML;

my @config = YAML::LoadFile(‘config.yml’);

@config now contains a list of references to hashes, one per record
we now can use $config[N]->{address}

(later...) dump the config back out to a file
YAML::DumpFile(‘config.yml’ , @config);

Epilogue
If you are sick of talking about config files at this point (I don’t blame
you), let’s end with a brief mention of some of the more advanced alterna-
tives. There are a number of other reasonable places to stash config infor-
mation.7 Shared memory segments can work well when performance is the
key criterion. Many systems are now keeping their configuration in data-
bases. Others have a specific network server to distribute configuration
information.

These are all interesting directions to explore, but I’m afraid we’re out of
time. Take care, and I’ll see you next column.

; LO G I N : F E B R UA RY 2 0 0 6 P R AC TI C A L P E R L TO O LS : CO N F I G U R ATI O N F I L E S 57

7. There are also a number of other unreason-
able places—for example, hidden in image
files using Acme::Steganography::Image::Png
or in a play via Acme::Playwright.

Join us in Boston for 5 days of groundbreaking
research and cutting-edge practices in a wide
variety of technologies and environments.
Don’t miss out on:
• Extensive Training Program featuring

expert-led tutorials
• New! Systems Practice & Experience Track

(formerly the General Session Refereed
Papers Track)

• Invited Talks by industry leaders
• And more
Please note: USENIX ’06 runs Tuesday–Saturday.

Check out
the Web site

for more information!
www.usenix.org/usenix06

Attention, Members:
Are You Getting the Most Out of Your Membership?

Become an active member of the Association. This is your community: get involved!

We are proud of our 30-year history of offering services to the advanced computing systems community. The support
and participation of our members make us able to offer some of the most highly respected conferences and publications
in the industry.

We have recently added the benefit of a Jobs Board for all USENIX and SAGE members, as well as additional benefits for
our SAGE, Educational, Corporate, and Supporting members. We encourage you either to upgrade your membership or
to talk to your employer about an institutional membership with USENIX.

In addition to the great benefits you already enjoy, we are offering these new benefits:

STA N DA R D U S E N I X M E M B E R S H I P: I N D I V I D UA L ($ 1 1 5 P E R Y E A R) A N D ST U D E NT ($ 4 0 P E R Y E A R)

• The USENIX Jobs Board: Looking for a new job? USENIX members have direct access to offerings from top-notch
potential employers. Members can also post resumes. For information on how to post, see http://www.usenix.org
/jobs/.

S AG E M E M B E R S H I P: I N D I V I D UA L ($ 4 0 P E R Y E A R) A N D ST U D E NT ($ 2 5 P E R Y E A R)

• Resume posting service

• The latest Short Topics in System Administration booklet for every member

U S E N I X E D U C ATI O N A L M E M B E R S H I P ($ 2 5 0 P E R Y E A R)

• The USENIX Jobs Board (see above)

• Up to two additional copies of ;login: per issue (email office@usenix.org with your request)

U S E N I X CO R P O R ATE M E M B E R S H I P ($ 4 6 0 P E R Y E A R)

• The USENIX Jobs Board (see above)

• Up to four additional copies of ;login: per issue (email office@usenix.org with your request)

• Up to five conference registrations at the USENIX member price for your staff (email conference@usenix.org for a
discount code to use in registering)

• Your company name listed on our Corporate Members Web page, http://www.usenix.org/membership/corporate.html.

U S E N I X S U P P O RTI N G M E M B E R S H I P ($ 2 5 0 0 P E R Y E A R)

• The USENIX Jobs Board (see above)

• Up to four additional copies of ;login: per issue (email office@usenix.org with your request)

• Tarballs of any USENIX conference Proceedings from the year before your membership term begins (email
office@usenix.org with your request)

For a full listing of all benefits or to join online, please see http://www.usenix.org/membership.

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

; LO G I N : F E B R UA RY 2 0 0 6 I S PA DM I N : B LO C K I N G N O N - E M A I L S PA M 59

R O B E R T H A S K I N S

ISPadmin

B L O C K I N G N O N - E M A I L S P A M

Robert Haskins has been a UNIX system administra-
tor since graduating from the University of Maine
with a B.A. in computer science. Robert is employed
by Shentel, a fast-growing network services provider
based in Edinburg, Virginia. He is lead author of
Slamming Spam: A Guide for System Administrators
(Addison-Wesley, 2005).

rhaskins@usenix.org

S P A M H A S B E E N A R O U N D F O R M A N Y
years, since (at least) the infamous Canter
and Siegel green card Usenet message in
1994. The bad news is that the problem of
unsolicited commercial messages entered
the SMS (mobile/cell phone), Web log
(blog), and instant message (IM) space
some time ago. However, the good news is
that spam activity in these more modern
forms of communication is currently much
lower than traditional email spam.

Background

Before getting into what can be done about block-
ing these newer forms of spam, I’ll briefly intro-
duce the problem of these spamming methods. In
most of these cases, existing anti-email spam
methods can be and are applied by the provider
and/or the end user to battle the new forms of
spam. However, these traditional methods are
much more dependent on the precise server and
client software tools used by the provider.

The lack of a centralized, open source messaging
server as there is in the email space (e.g.,
Sendmail) makes addressing the problem of non-
email spam much more difficult. Another piece of
bad news is that the available tools and tech-
niques for addressing non-email spam messaging
are in their infancy. However, as the perpetrators
adjust their spamming techniques, this will
undoubtedly change, as it did in the email spam
area.

SM S (C E L L P H O N E) S PA M

In the case of cell phone spam, the perpetrators
often guess the cell phone numbers of the lucky
recipients. SMS spammers send their junk to
unwitting subscribers using the publicly available
email-to-SMS gateways provided by the cell phone
service providers. It’s a relatively easy and cheap
way for the spammers to get their message out to
lots of users in an immediate fashion.

The regularity of cell phone numbers (at least for
most U.S. carriers) makes guessing recipients triv-
ial. By using publicly available information for the
area code and local exchange for the provider in
question, the cell phone spammer must simply
guess the last four digits for the subscriber.

Directory harvest attacks (where the spammer
guesses the email address of the subscriber’s

phone) can be effective for identifying potential recipients for the SMS
spammer. However, if the service provider has any sort of rate limiting in
effect on the SMS-to-email gateway, it can be used to identify a spammer
who exceeds preset message sending thresholds (either successful or
unsuccessful attempts).

B LO G S PA M

Blog spam (also called link spam or comment spam) is defined by
Wikipedia as “any web application that displays hyperlinks submitted by
visitors or the referring URLs of web visitors” [1]. The target of the spam-
mers can be any page that accepts comments from the general public,
including wikis, blogs, and Web-based discussion boards. (For the purpos-
es of this article, the term “blog spam” is used to denote any discussion-
based spam mechanism.) The goal of the spammer is often to increase
search engine rankings by increasing the number of link counts to the
spammer’s target site.

The solutions to the problem of blog spam are closely tied to the software
packages used to implement the discussion boards themselves. Without a
centralized exchange point (as exists with email spam), it is difficult to
generalize a solution for blog spam.

I N STA NT M E S S AG E

Instant messaging spam (a.k.a. spim) is defined for the purposes of this
article as commercial messages received via AOL Instant Message, ICQ, or
any similar real-time messaging channel. The advent of protocols like
Jabber [2] holds a lot of promise for controlling spim, but much work
needs to be done, as the tools are still not very sophisticated.

Solutions

So what can be done about these new forms of spam? In general, the infor-
mation sent in email spam is similar to the information sent by spammers
in other forms. For example, spammers will send a URL or telephone
number as part of their message. If the anti-spam solution uses content
analysis, then the same information used to filter email spam can be used
to filter other types of spam. However, content analysis in the form of
header information is not possible, as user-identifiable headers don’t exist
for most non-email-type communication channels.

CO NTRO L L I N G SM S S PA M : P ROV I D E R S I D E

Regarding cell phone spam, the place to catch SMS spam is before (or
at) the email-to-SMS gateway. Traditional content-based email anti-spam
methods can be useful to the provider prior to the message entering the
provider’s SMS system. These methods are well documented elsewhere and
are not covered here.

CO NTRO L L I N G SM S S PA M : S U B S C R I B E R S I D E

Some cell phone providers (e.g., Verizon Wireless) give their subscribers
the ability to change the external email address used for sending text mes-
sages to the subscriber’s cell phone. This change can be made to obfuscate

60 ; L O G I N : V O L . 3 1 , N O . 1

the subscriber’s email address, making it harder for spammers to “guess”
potential recipients. Other capabilities may be present in SMS provider net-
works, such as restricting senders (whitelisting/blacklisting).

CO NTRO L L I N G B LO G S PA M

Spam to blogs and similar discussion groups is most often handled by the
software that implements the blog itself. This is because there is not much
in the way of protocol or other clearinghouse mechanisms with blogs (as
there is with email spam in the form of message servers like Sendmail).
Some methods used by blog/wiki software to limit spam include:

n Periodically scanning blogs and removing messages associated with known spammer

URLs
n Using a CAPTCHA (Turing test) to force the poster to prove that they are a human and

not a spammer
n Using whitelists/blacklists of IP addresses posting allowed/disallowed

Blog spam is a difficult problem to solve, as the usual email spam issues
such as false positives and what to do with posts identified as spam still
apply. How do you allow the moderator to reinstate a blog posting incor-
rectly classified as spam?

CO NTRO L L I N G S P I M : S E RV E R S I D E

The ability to control instant message spam is arguably the most advanced
of the three types of non-email spam handling covered here. One example
of the maturity is the simple fact that there is a commercial product in this
space, namely, Perimeter Manager for IM [3] from Postini. This service uti-
lizes Postini’s email spam processing network to identify IM messages that
are potentially spam messages.

On the open source side, there isn’t really a solution currently available.
While AIM and similar protocols have proxy capability, this author is
aware of no firewalls that enable end users to filter instant messages in
any way.

Jabber is an open source instant messaging protocol which may improve
open source IM spam filtering. There is currently an experimental Jabber
standard titled “SPIM-Blocking Control” which enables some level of spim
filtering [4]. This is targeted at the large “zombie networks” of machines
that often send IM spam (as well as other undesirable messages). Some of
the techniques used to control spim include:

j Whitelisting/blacklisting functionality

j Automatically exchanging lists of IDs that have sent spim to users or that don’t

answer specific challenges to prove the ID is a real person

Unfortunately, existing techniques are simple and don’t include complex
content analysis such as URL-checking and similar content-filtering
capabilities.

CO NTRO L L I N G S P I M : C L I E NT S I D E

On the IM client side, the controls available are directly dependent upon
the IM client that is used. Most allow whitelists and blacklists, but beyond
that not much is available.

; LO G I N : F E B R UA RY 2 0 0 6 I S PA DM I N : B LO C K I N G N O N - E M A I L S PA M 61

Conclusion

SMS spam, blog spam, and spim are here to stay and are only going to get
worse. The good news is that these forms of spamming are not too widely
used, and basic whitelisting/blacklisting techniques can be utilized to filter
most of this junk from your daily life. In the case of blog spam, methods
exist and are used to help reduce the problem. However, there is a tight
integration between the anti-spam blog software and the blog application
itself, so stand-alone methods don’t exist.

Although there is a commercial solution to the problem of spim and limit-
ed anti-spam standards are being developed for the Jabber IM protocol, no
open source solution currently exists for spim.

I’d like to thank Todd Underwood of Renesys and Scott Petry of Postini for
their input into this article.

R E F E R E N C E S

[1] http://en.wikipedia.org/wiki/Blog_spam

[2] http://www.jabber.org/

[3] http://www.postini.com/postini_solutions/im_security.php

[4] http://www.jabber.org/jeps/jep-0159.html

Wikipedia page for SMS spam: http://en.wikipedia.org/wiki
/Mobile_phone_spam

62 ; L O G I N : V O L . 3 1 , N O . 1

; LO G I N : F E B R UA RY 2 0 0 6 S I N G L E PAC K E T AUTH O R I Z ATI O N W ITH F W K N O P 63

M I C H A E L R A S H

single packet
authorization
with fwknop
Michael Rash holds a master’s degree in Applied
Mathematics and works as a security research engi-
neer for Enterasys Networks, Inc. He is the lead devel-
oper of the cipherdyne.org suite of open source
security tools, including PSAD and FWSnort, and is
co-author of the book Snort-2.1 Intrusion Detection,
published by Syngress.

mbr@cipherdyne.org

O N E Y E A R A G O , I N T H E D E C E M B E R
2004 issue of ;login:, in the article entitled
“Combining Port Knocking and Passive OS
Fingerprinting with Fwknop,” I described a
technique for combining passive OS finger-
printing with a method of authorization
called port knocking Since that time I have
implemented a new method of securing IP-
based communications called Single Packet
Authorization (SPA) [1], which draws on
some of the strengths of port knocking and
fixes some of its weaknesses. Fwknop
retains the ability to generate encrypted
port knock sequences and incorporate
additional criteria on the OS required to
honor such sequences, but the default
authorization method has been switched
to SPA due to the benefits this strategy has
over traditional port knocking.

This article discusses Single Packet Authorization as imple-

mented by fwknop, suggests why you would want to use it,

and provides an example of using fwknop to provide an addi-

tional layer of security for OpenSSH. Fwknop is free software

released under the GNU Public License (GPL) and can be

downloaded from http://www.cipherdyne.org/

projects/fwknop/.

The Chief Innovations of Port Knocking

When the concept of port knocking [2] was
announced in 2003, many competing implemen-
tations were rapidly developed. At last count,
portknocking.org lists nearly 30 different software
projects dedicated to the specific visions of port
knocking promoted by their respective authors.
Some of these projects are more complete than
others, but in general they stay true to port
knocking’s chief innovation, the communication
of information across sequences of connections to
closed ports. The port numbers themselves,
instead of the application payload portion of TCP
segments or UDP datagrams, transmits the infor-
mation as it is sent from the port knocking client
to the server. Of course, the term “server” only
applies to the portion of the port knocking
scheme that is designed to passively receive pack-
ets; there is no traditional server that listens via
the Berkeley sockets interface. The information
typically sent in a port knock sequence communi-
cates desired access through a packet filter that is

protecting a particular service or set of services. The knock server gathers
the knock sequence via a passive monitoring mechanism such as firewall-
log monitoring or using libpcap to monitor packets as they fly by on the
wire. This allows a kernel-level packet filter (such as Netfilter in the Linux
kernel) to be configured in a default drop stance so that the only connec-
tions to a protected service that are allowed to be established are those that
have first been associated with a valid port knock sequence. This is a pow-
erful concept, because the end result is that code paths available to a
would-be attacker are minimized. Even if an attacker possesses an exploit
(0-day or otherwise) for a service that is actually deployed on a system, it
is rendered useless, since a connection cannot even be established without
first issuing a valid knock sequence. When an attacker uses the venerable
Nmap with all of its sophisticated machinery to enumerate all instances of
a vulnerable service accessible throughout a network, services protected in
such a manner will not appear in the list.

Single Packet Authorization vs. Port Knocking

So far we have discussed the two most important ways that port knocking
is used to enhance security: the passive communication of authentication
information, and the server-side use of a packet filter to intercept all
attempts to connect with a real server that are not associated with a knock
sequence. These two features are also used in Single Packet Authorization
to increase security, but this is where the similarities between port knock-
ing and SPA abruptly end.

In port knocking schemes, the communication of information within pack-
et headers, as opposed to the packet payload, severely limits the amount of
data that can stilll be transferred effectively. The port fields of the TCP and
UDP headers are 16 bits wide, so only two bytes of information can be
transferred per packet in a traditional port knock sequence. This assumes
that other fields within the packet header are not also made significant in
terms of the knock sequence, but any conceivable implementation would
be able to transmit much less information than a protocol that makes use
of payload data. If two bytes of information were all that were required to
communicate the desired access to a knock server, this would not be a sig-
nificant issue, but it is not enough to simply create a mapping between a
knock sequence (however short) and opening a port. We also want our
messages to resist decoding by an attacker who may be in the enviable
position of being able to monitor every packet emanating from the knock
client. This requirement can be satisfied by using an encryption algorithm,
but even a symmetric block cipher with a reasonable key size of, say, 128
bits forces at least eight packets to be sent at two bytes per packet.

As soon as multiple packets become involved, we need to try to ensure
that the packets arrive in order. This implies that a time delay is added
between each successive packet in the knock sequence. Simply blasting the
packets onto the network as quickly as possible might result in out-of-
order delivery by the time the packets reach their intended target. Because
the knock server is strictly passively monitoring packets and consequently
has no notion of a packet acknowledgment scheme, a reasonable time
delay is on the order of about a half-second. Given a minimum of eight
packets to send, we are up to four seconds just to communicate the knock
sequence. In addition, if there were ever a need to send more information,
say on the order of 100 bytes, the time to send such a message is longer
than most people would be willing to wait. Single Packet Authorization
has no such limitation, because the application payload portion of packets

64 ; L O G I N : V O L . 3 1 , N O . 1

is used to send authentication data. The result is that up to the minimum
MTU number of bytes of all networks between the client and server can be
sent in a single message, and no cumbersome time delays need to be intro-
duced. Fwknop uses this relatively large data size to communicate not only
detailed access requirements in SPA messages, but also entire commands to
be executed by the fwknop SPA server. Of course, all SPA messages are
encrypted, and the algorithm currently supported by fwknop is the sym-
metric Rijndael cipher, but the upcoming 0.9.6 release will also support
asymmetric encryption via GPG key rings and associated asymmetric
cipher(s).

An additional consequence of sending multiple packets in a slow sequence
is that it becomes trivial for an attacker to break any sequence as it is being
sent by the port knocking client. All the attacker needs to do is spoof a
duplicate packet from the source address of the client during a knock
sequence. This duplicate packet would be interpreted by the knock server
as part of the sequence, hence breaking the original sequence. Programs
like hping (see http://www.hping.org) make it exceedingly easy to spoof IP
packets from arbitrary IP addresses. Single Packet Authorization does not
suffer from this type of easy injection attack.

In addition to making it difficult for an attacker to decode our messages,
we also require that it not be possible for the attacker to replay captured
messages against the knock server. A mechanism should be in place that
makes it easy for the server to know which messages have been sent before
and not to honor those that are duplicates of previous messages. It is not
enough just to encrypt knock sequences even if the IP address to which
the server grants access is buried within the encrypted sequence; consider
the case where a knock client is behind a NAT device and the attacker is
on the same subnet. If a knock sequence is sent to an external knock serv-
er, then the IP address that must be put within the encrypted sequence is
the external NAT address. Because the attacker is on the same subnet, any
connection originating from the attacker’s system to the external knock
server will come from the same IP as the legitimate connection. Hence the
attacker need only replay a captured knock sequence from the client in
order to be granted exactly the same access.

In the world of traditional port knocking there are ways to prevent replay
attacks, such as altering knock sequences based upon time, iterating a
hashing function as in the S/KEY system [3], or even manually changing
the agreed upon encryption key for each successful knock sequence.
However, each of these methods requires keeping state at both the client
and the server and does not scale well once lots of users become involved.
It turns out that Single Packet Authorization facilitates a more elegant
solution to the replay problem. By having the SPA client include 16 bytes
of random data in every message and then tracking the MD5 (or other
hashing function) sum of every valid SPA message, it becomes trivial for
the server to not take any action for duplicate messages. The ability to
send more than just a few bytes of data within an SPA message is the
essential innovation that really makes this possible. Fwknop implements
exactly this strategy, which will be demonstrated in the example below.

Port knocking schemes generally use the port number within the TCP or
UDP header to transmit information from the knock client to the knock
server. However, there are lots of IP protocols, such as ICMP and GRE,
that have space reserved for application-layer data but have no correspond-
ing notion of a “port.” Theoretically, SPA messages can be sent over any IP
protocol, not just those that provide a port over which data is communi-

; LO G I N : F E B R UA RY 2 0 0 6 S I N G L E PAC K E T AUTH O R I Z ATI O N W ITH F W K N O P 65

cated. One such protocol currently supported by fwknop is ICMP.

Finally, to an observer of network traffic, a port knock sequence is indistin-
guishable from a port scan— that is, it is a series of connections to various
port numbers from a single IP address. Many network intrusion detection
systems have the capability of detecting port scans, and have no way to
know that a port knock sequence is not an attempt to enumerate the set of
services that are accessible from the IP address of the client system. Hence,
any intermediate IDS that has its port scan thresholds set low enough (i.e.,
the number of packets associated with a port knock sequence exceeds the
thresholds within a given period of time) will generate port scan alerts for
each port knocking sequence. Although this by itself does not create a
problem for port knocking implementations in terms of the port knocking
protocol, it can draw undue attention to anyone actually using port knock-
ing on a network that is monitored by an IDS. By contrast, Single Packet
Authorization does not create a significant enough network footprint to
generate an IDS port scan alert.

Fwknop Single Packet Authorization Message Format

In order for an fwknop SPA client to authenticate and allow application of
the subsequent authorization criteria [4], several pieces of information
must be securely communicated to the knock server. An fwknop client
transmits the following within each SPA message:

j 16 bytes of random data
j local username
j local timestamp
j fwknop version
j mode (access or command)
j desired access (or command string)
j MD5 sum

The 16 bytes of random data ensures that each SPA message has an ex-
tremely high probability of being unique and hence allows the fwknop
server to maintain a cache of previously seen messages in order to thwart
replay attacks. The local username enables the fwknop server to distin-
guish between individual users so that different levels of access can be
granted on a per-username basis. The version number allows the fwknop
message format to be extended while preserving backwards compatibility
for older versions of the software. The mode value instructs the server that
the client either wishes to gain access to a service or run a command, each
of which is specified in the next field. The MD5 sum is calculated over the
entire message and is then used by the server to verify message integrity
after a successful message decrypt. All the above values are concatenated
with “:” characters (with base64 encoding applied where necessary so as
not to break the field separation convention), and the entire message is
then encrypted with the Rijndael symmetric block cipher. A symmetric key
up to 128 bits long is shared between the fwknop SPA client and the SPA
server.

Fwknop in Action

Now let us turn to a practical example: we will illustrate how fwknop is
used in the default Single Packet Authorization mode to protect and gain
access to the OpenSSH daemon. First, we configure the fwknop server to
allow access to TCP port 22 by the “mbr” username once a valid SPA mes-

66 ; L O G I N : V O L . 3 1 , N O . 1

sage is monitored. This is accomplished by adding the following lines to
the file /etc/fwknop/access.conf:

SOURCE: ANY;
OPEN_PORTS: tcp/22;
KEY: <encrypt_key>;
FW_ACCESS_TIMEOUT: 10;
REQUIRE_USERNAME: mbr;
DATA_COLLECT_MODE: ULOG_PCAP;

In server mode, fwknop can acquire packet data by using libpcap to sniff
packets directly off the wire or out of a file that is written to by a separate
sniffer process, or by using the Netfilter ulogd pcap writer [5]. In this case
the configuration keyword DATA_COLLECT_MODE instructs the server to
respect SPA messages that are collected via the ulogd pcap writer. For this
example, let us assume that the IP address on the server system is
192.168.10.1, that fwknop is running in server mode, and that Netfilter
has been configured to drop all packets destined for TCP port 22 by
default.

Now, on the client (which has IP 192.168.20.2), we first verify that we
cannot establish a TCP connection with sshd:

[client]$ nc -v 192.168.10.1 22

So far, so good. The netcat process appears to hang because we fail to even
receive a reset packet back from the TCP stack on the server; Netfilter has
dropped our SYN packet on the floor before it can hit the TCP stack.
Having a completely inaccessible server is not of much use, of course, so
now we execute the following to gain access to sshd:

[client]$ fwknop -A tcp/22 -w -k 192.168.10.1
[+] Starting fwknop in client mode.
[+] Enter an encryption key. This key must match a key in the file
/etc/fwknop/access.conf on the remote system.

Encryption Key:

[+] Building encrypted single-packet authorization (SPA) message...
[+] Packet fields:

Random data: 5628557594764037
Username: mbr
Timestamp: 1132121405
Version: 0.9.5
Action: 1 (access mode)
Access: 192.168.20.2,tcp/22
MD5 sum: q8vIpYY6q3qEflaFtU3Jag

[+] Sending 128 byte message to 192.168.10.1 over udp/62201...

Sure enough, we are now able to establish a TCP connection with port 22:

[client]$ nc -v 192.168.10.1 22
192.168.10.1 22 (ssh) open
SSH-2.0-OpenSSH_3.9p1

Fwknop running on the server has reconfigured Netfilter to allow the
client IP address to talk to sshd. Even though fwknop will expire under the
access rule after 10 seconds, by using the Netfilter connection-tracking
capability to accept packets that are part of established TCP connections
before packets are dropped, the SSH session remains active for as long as
we need it.

Finally, to illustrate the ability of fwknop to detect and stop replay attacks,
suppose that an attacker were able to sniff the SPA message above as it was
sent from the client to the server (by default, fwknop sends SPA messages

; LO G I N : F E B R UA RY 2 0 0 6 S I N G L E PAC K E T AUTH O R I Z ATI O N W ITH F W K N O P 67

over UDP port 62201, but this can be changed via the -p command line
argument):

[attacker]# tcpdump -i eth0 -c 1 -s 0 -l -nn -X udp port 62201
tcpdump: verbose output suppressed, use -v or -vv for full protocol
decode
listening on eth1, link-type EN10MB (Ethernet), capture size 65535
bytes
01:44:12.170787 IP 192.168.20.2.32781 > 192.168.10.1.62201: UDP,
length: 128

0x0000: 4500 009c 246a 4000 4011 768f c0a8 1406 E...$j@.@.v.....
0x0010: c0a8 0a01 800d f2f9 0088 9fc3 6736 576a g6Wj
0x0020: 5234 7374 4941 4358 3935 4152 6541 4778

R4stIACX95AReAGx
0x0030: 3342 7848 7569 7776 786e 557a 3531 5131 3BxHui-

wvxnUz51Q1
0x0040: 5532 3976 4872 7144 6e69 3330 514f 4d72

U29vHrqDni30QOMr
0x0050: 6661 5a48 4845 304c 3631 4767 636a 6e37

faZHHE0L61Ggcjn7
0x0060: 6a64 7a6e 787a 726c 4f53 314c 5051 6877

jdznxzrlOS1LPQhw
0x0070: 394b 424f 3963 6b61 5232 2b6f 5474 736c

9KBO9ckaR2+oTtsl
0x0080: 574d 484c 574f 7736 7468 4161 7a58 3976

WMHLWOw6thAazX9v
0x0090: 2b65 6746 6352 2f2f 6776 4352 +egFcR//gvCR

1 packets captured
2 packets received by filter
0 packets dropped by kernel

Now the attacker can replay the encrypted SPA message on the network as
follows in an effort to gain the same access as the original message [6]:

[attacker]$ echo
“g6WjR4stIACX95AReAGx3BxHuiwvxnUz51Q1U29vHrqDni30QOMrfaZ
HHE0L61Ggcjn7jdznxzrlOS1LPQhw9KBO9ckaR2+oTtslWMHLWOw6th
AazX9v+egFcR//gvCR”
|nc -u 192.168.10.1 62201

On the server, this results in the following syslog message, indicating that
fwknop monitored the message replay and took no further action:

Nov 16 01:50:11 server fwknop: attempted message replay from:
192.168.20.6

Conclusion

Single Packet Authorization has several characteristics that make it more
powerful and flexible than port knocking for protecting network services.
Its data transmission capabilities, coupled with its clean strategy for pre-
venting replay attacks, make it an ideal candidate for expanding the config-
uration of packet filters to drop all connections to some critical services by
default. This makes the exploitation of vulnerabilities within such services
much more difficult, because an arbitrary IP address cannot enumerate or
interact with these services until a valid SPA message is generated.

R E F E R E N C E S

68 ; L O G I N : V O L . 3 1 , N O . 1

[1] MadHat was the first person to coin the term “Single Packet Authoriza-
tion” at the BlackHat Briefings in July of 2005. However, the first available
implementation of SPA was in the 0.9.0 release of fwknop in May of 2005
(with SPA code available via the http://www.cipherdyne.org/ CVS repository
dating back to March of 2005; see http://www.cipherdyne.org/cgi/
viewcvs.cgi/fwknop/fwknop).

[2] M. Krzywinski, “Port Knocking: Network Authentication Across Closed
Ports,” SysAdmin Magazine 12 (2003): 12–17.

[3] RFC 1760: The S/KEY One-Time Password System.

[4] The terms “authentication” and “authorization” in this context are com-
monly construed to mean the same thing. However, authentication refers to
the verification that a communication from one party to another actually
came from the first party, whereas authorization essentially refers to the
process of verifying whether one party is allowed to communicate with a
second party at all.

[5] See the Netfilter ulogd project: http://www.gnumonks.org/projects/
ulogd/.

[6] Even if the replay were successful, access would only be granted for the
IP address of the client, which is encrypted within the SPA message and
hence not available to the attacker. If, however, the client is behind a NAT
address, this may not matter because the external address would be the
same, so it is important to stop replay attacks regardless of whether the
client address is encrypted within the SPA message.

; LO G I N : F E B R UA RY 2 0 0 6 S I N G L E PAC K E T AUTH O R I Z ATI O N W ITH F W K N O P 69

70 ; L O G I N : V O L . 3 1 , N O . 1

S T E V E N M . B E L L O V I N , B I L L C H E S W I C K ,
A N D A N G E L O S D . K E R O M Y T I S

worm propagation
strategies in an
IPv6 Internet
Steve Bellovin, a member of the National Academy of
Engineering, is a professor of Computer Science at
Columbia University. He is one of the creators of
Netnews, a long-time researcher on network securi-
ty, and co-author of the first book on firewalls.

smb@cs.columbia.edu

Bill Cheswick is Chief Scientist at Lumeta, a company
he co-founded to explore commercial intranets and
the Internet. Ches did early work on firewalls and
proxies and is co-author of the first book on fire-
walls.

ches@cheswick.com

Angelos Keromytis received his Ph.D. in computer
science from the University of Pennsylvania in 2001.
Currently he is an associate professor of computer
science at Columbia University. His research interests
include self-healing software, system reliability,
design and analysis of network and cryptographic
protocols, and denial-of-service protection.

angelos@cs.columbia.edu

I N R E C E N T Y E A R S , T H E I N T E R N E T H A S
been plagued by a number of worms. One
popular mechanism that worms use to
detect vulnerable targets is random IP
address-space probing. This is feasible in
the current Internet due to the use of 32-bit
addresses, which allow fast-operating
worms to scan the entire address space in a
matter of a few hours. The question has
arisen whether or not their spread will be
affected by the deployment of IPv6. In par-
ticular, it has been suggested that the 128-
bit IPv6 address space (relative to the cur-
rent 32-bit IPv4 address space) will make
life harder for the worm writers: assuming
that the total number of hosts on the
Internet does not suddenly increase by a
similar factor, the work factor for finding a
target in an IPv6 Internet will increase by
approximately 296, rendering random scan-
ning seemingly prohibitively expensive.

Some worms, such as Melissa, spread by email.
These worms will not be affected by the adoption
of IPv6; though the space of possible email
addresses is vast, these worms typically consult
databases such as Microsoft Outlook’s address
book.

On the other hand, life will indeed be harder for
address-space scanners, such as Code Red and
Slammer. Clever heuristics can cut the search
space dramatically. More specifically, multi-level
searching and spreading techniques can negate the
defender’s advantage. However, the code size
required for worms will increase, which may help
prevent Slammer-like attacks. This has created the
impression that an IPv6 Internet would be imper-
vious to similar kinds of worms.

In the past, there have been two forms of address-
space scans. Some worms use a uniformly distrib-
uted random number generator to select new tar-
get addresses. This strategy is indeed unlikely to
succeed in an IPv6 world. Other worms preferen-
tially spread locally, by biasing the search space
toward addresses within the same network or sub-
net. This will be a more successful strategy,
though at first glance the 80-bit local space (near-
ly twice Avogadro’s number!) would seem to be a

formidable obstacle. We observe that certain strategies can improve the
attacker’s odds. In particular, by taking advantage of local knowledge and
patterns in address-space assignment, the attack program can cut the
search space considerably.

We discuss a number of strategies worms could use in an IPv6-based
Internet to find new targets. We separate these into two categories, wide-
area and local-area searches, somewhat mirroring the IPv6 address archi-
tecture. We argue that worms will use different types of information
sources to first determine existing networks and establish a presence there,
and then spread locally inside an organization. We hope to illustrate that
simple reliance on the IPv6 address space for protection against scanning
worms is not a wise defensive strategy, and we suggest areas where
research could assist in detecting and limiting future worm propagation.

The IPv6 Addressing Architecture

Addresses in the IPv6 addressing architecture, defined in RFC 3513, come
in a number of different flavors. Those of interest to us are link-local ad-
dresses, unique local addresses, global addresses, and multicast addresses.

All forms of unicast address are conceptually divided into two pieces, a
network section and a host section. Roughly speaking, the network section
identifies the particular LAN; the host section identifies the particular node
on the LAN. In fact, both sections have internal structure. Furthermore,
the address is generally divided into two 64-bit halves. (There are sub-
tleties that lie outside the scope of this article.)

In the network section of the address, the first 10 bits denote the scope of
the address. The next 38 bits identify the site and (implicitly) the ISP, as
explained in RFC 3177. In order to promote hierarchical addressing, only
the largest ISPs have their own address allocations; smaller ISPs are
assigned space by their upstream provider. Identifying the set of all ISPs
considerably reduces the search space for the attacker.

The next 16 bits in the network section of the address identify the subnet
within each site. No site will have 216 subnets, though identifying the allo-
cated subnets could pose a challenge for the attacker.

There are several possible formats for the host identifier (the last 64 bits of
the address). Clients will often generate their own addresses via stateless
auto-configuration, as described in RFC 2460.

Sources of Information

As we already mentioned, IPv6 worms can spread by using a two-level
strategy. Here we present several information sources, divided into local
and wide-area sections. We do not claim that this list is exhaustive; howev-
er, the list we do present is probably sufficient and is undoubtedly indica-
tive of a much larger class of information sources that could be exploited.

; LO G I N : F E B R UA RY 2 0 0 6 WO R M P R O PAG ATI O N STR ATE G I E S I N A N I P V 6 I NTE R N E T 71

LO C A L I N F O R M ATI O N S O U RC E S

N E I G H B O R D I S COV E RY

F I G U R E 1 : N E I G H B O R D I S C O V E R Y T A B L E S O N A N I P V 6 H O S T .

In IPv6, Neighbor Discovery as described in RFC 2461 is used to map IP
addresses to local network addresses (e.g., Ethernet addresses), similar to the way

ARP is used in today’s IPv4 networks. As such, it can be a rich source of infor-
mation about machines on the LAN. A sample listing of a Neighbor
Discovery table is shown in Figure 1. A worm that has infected a node in
the LAN can thus determine the addresses of other existing nodes in the
same LAN.

RO UTI N G TA B L E S A N D P ROTO CO LS

Typically, host routing tables only contain entries for other local hosts plus
a default route entry for all traffic outside the LAN. Many organizations,
however, internally run routing protocols such as OSPF or RIP. The few
IPv6 networks we are familiar with actually use RIPng (an adaptation of
RIP for IPv6 networks, described in RFC 2080), and in the future may run
OSPFv6 or IS-IS. In such an environment, a worm would be able to either
directly consult the host routing tables (e.g., using the UNIX netstat com-
mand) or participate in a routing protocol, if only as a passive listener. In
either case, the worm would be able to determine other valid subnets with-
in the organization and subsequently target those [1].

I NTE R FAC E I D E NTI F I E R S

The Neighbor Discovery tables provide another useful hint: a list of some
locally used network cards. If stateless autoconfiguration is used, the high-
order 32 bits of the low-order (host section) 64 bits of the IPv6 address
identify the manufacturer of the card. In many organizations, common
purchasing patterns mean that LAN cards in use will largely be from a
small set of manufacturers. (We informally sampled two large, heteroge-
neous LANs, one educational and one corporate. In each case, there was a
reduction to about 40 different card types, from 161 and 227 hosts, respec-
tively.) For each such manufacturer identifier, there are at most 224 possi-
ble addresses. This is a search space comparable to what is successfully
exploited by today’s IPv4 worms.

M U LTI C A ST P I N G

Multicast is a fundamental part of IPv6 design, which unfortunately
can be abused for target discovery by worms. RFC 3513 notes that
FF0E:0:0:0:0:0:0:101 addresses “all NTP servers in the Internet.” An NTP
query to that address might locate many victims. While such a packet is

72 ; L O G I N : V O L . 3 1 , N O . 1

unlikely to traverse the entire Internet, FF05:0:0:0:0:0:0:2 would find all
routers at a site, and FF02:0:0:0:0:0:0:1 would send to all hosts on the local
link. Fortunately, FF05:0:0:0:0:0:0:1, the larger-scope analog to send to all
hosts at a site, is not defined.

A related IPv6 concept is that of “anycast” addresses, defined in RFC 2526,
which can be used to locate the “closest” instance of a service. A worm can
exploit this and other service-location mechanisms such as SLP, DHCP,
DNS, and LDAP to locate local targets for attack. Service-location mecha-
nisms are likely to be increasingly used in an IPv6 Internet, both because
of increased host mobility and due to the difficult-to-memorize addresses.

H O ST CO N F I G U R ATI O N A N D LO G F I L E S

Computers are generally configured with the addresses of other important
local computers, such as email gateways, local file servers, Web proxy
servers, local DNS servers, the /etc/hosts file in UNIX, SSH known_hosts files,
etc. A sufficiently versatile worm could examine likely places for such con-
figuration files—the registry on Windows machines is one such location—
to discover other attack targets. Furthermore, although a worm may use a
non-email infection vector (e.g., a buffer overflow for a popular service), it
can still use archived user email to find new targets (hostnames).

D N S ZO N E TR A N S F E R S

Typical DNS servers are configured such that they do not allow zone trans-
fers from hosts other than the authorized secondary servers. However,
some organizations have a mixed record on restricting zone transfers from
hosts inside that organization. Thus, it may be possible for a worm to
acquire a complete list of all hosts in a domain, once a host inside that
domain has been infected; this list would include all hosts with static
addresses as well as those using Dynamic DNS Updates.

PA S S I V E E AV E S D RO P P I N G

Although most local area networks are switched, wireless networks offer
the potential for discovering new targets on the local network simply by
monitoring traffic. Furthermore, random-address flooding can be used in
networks such as Ethernet to force a switch to effectively broadcast all
local traffic and incoming external traffic.

W I D E - A R E A I N F O R M ATI O N S O U RC E S

Wide-area information sources can be used to determine valid IPv6 prefix-
es (networks) to target. Often, they also provide the addresses of valid
hosts (typically servers) in that domain. Even when they do not, however,
they can be used as a starting point for scanning. Although we do not have
sufficient data, an informal poll of network operators suggested that
servers would be assigned addresses statically, and that these addresses
would be located in the low end of the subnet address range, significantly
easing the task of a scanning worm.

RO UTI N G P ROTO CO LS

Routing protocols provide information on address prefixes that are in use.
These can be used both locally and across the Internet.

; LO G I N : F E B R UA RY 2 0 0 6 WO R M P R O PAG ATI O N STR ATE G I E S I N A N I P V 6 I NTE R N E T 73

Local use is easy: the attack program just listens to local routing traffic.
This may require joining the “all routers” multicast group, but there are no
access controls that would prevent that from happening.

Remote use is more interesting, but perhaps more problematic. There are
no inherent IPv6 features that would permit easy capture of BGP routing
information by an ordinary host. On the other hand, there are public
archives of routing data, such as the one available at www.routeviews.org. If
this data is available for IPv6—and it is a valuable operational and research
resource—a worm could use it for propagation purposes.

S E RV E R LO G S

Web, DNS, and incoming email servers are typically contacted by client
machines from many different places. The log files of such contacts offer a
good mechanism for wide-area spread. A more ambitious worm could kill
off the legitimate server and grab its port number, thus collecting new
addresses in real time.

S E RV E R A D D R E S S E S

Anecdotal evidence suggests that IPv6 servers tend to have low-numbered
addresses. The prefix alone is hard to remember; administrators tend to
select easily memorizable values for the low-order bits. This human ten-
dency can be exploited by worms.

S U BV E RTI N G N E I G H B O R D I S COV E RY

A worm-infected host could impersonate the LAN router using Neighbor
Discovery and divert all traffic to/from external hosts to itself. Such attacks
are known and exploited in the current IPv4 Internet (e.g., the dsniff tool-
kit); while they are more difficult in an IPv6 environment, they are still
possible. Using this attack, a worm would be able to find valid IPv6 ad-
dresses outside the local area network (whether in remote organizations or
other LANs within the same organization). Passive eavesdropping can be
equally fruitful in determining remote IP addresses (by capturing incoming
packets), as discussed previously.

S E A R C H E N G I N E S A N D D N S

Web search engines are a particularly attractive source of information on
potential targets, especially if the worm is targeting Web servers, as was the
case with Code Red. Although such engines typically only point to Web
servers, they can be used to identify valid prefixes by determining the host-
name of a Web server and resolving its IPv6 address through DNS.
Likewise, DNS itself can be used as a search engine for valid hostnames, by
exhaustively searching for all words (and combinations of words) from a
dictionary. In [2], we showed that a DNS worm in IPv6 could spread as
fast as an IPv4 address-scanning worm.

P E E R-TO - P E E R P ROTO CO LS

The most intriguing form of wide-area data is peer-to-peer networks. By
participating in topology maintenance, watching queries and responses,
and sending out occasional queries of its own, a worm could learn the
addresses of many different hosts. File-swapping networks such as
Morpheus, Kazaa, and Gnutella offer particularly attractive targets, as do
more “traditional” presence protocols such as IRC, Jabber, and others.

74 ; L O G I N : V O L . 3 1 , N O . 1

Strategies for Spreading

Based on our discussion of information sources in the previous section, we
believe that scanning worms in an IPv6 Internet will use a two-phase
approach for discovering and infecting targets:

j Discover valid IPv6 prefixes using search engines, server logs, routing table
information, etc. These sources may indicate specific targets within those
prefixes (e.g., a Web server listed on a search result, or a host participating in
a peer-to-peer network), or simply the valid prefix (as may be the case with
getting a copy of a BGP table). In the second case, targeted address scanning
may be needed, but by starting at the low end of the range a worm will maxi-
mize its chances of finding a server.

j Once inside an organization’s network, use local information sources to
determine the identity (address or hostname) of other nodes to infect. The
repertoire of the worm is significantly richer here, and we believe that vul-
nerable nodes will be infected fairly quickly once the worm has established a
presence.

This two-phase approach can also be extended to propagation. Intuitively,
propagation across organizations calls for an approach distinct from that
used for spreading within organizations. We believe that multi-partite
worms such as Nimda will appear more frequently: email or Web-down-
loadable executable content (e.g., Java or Javascript embedded in every
page served by a Web server) is particularly useful in propagating across
administrative domains, as it appears to be difficult to intercept at the fire-
wall [3]. A worm that manages to infect a popular Web server will be able
to propagate widely and quickly to many different networks, potentially
without raising suspicion for some time (pull model); email worms (push
model) can exploit the social and professional interactions between indi-
viduals and organizations to spread.

More generally, client/server worms can operate efficiently in two different
modes. In client mode, they search for and infect servers of some type.
Once they’ve penetrated a server, they use a different technique to attack
clients that connect to it.

Once a worm has managed to penetrate a new environment, it can switch
to something more akin to traditional address scanning, using the infor-
mation gathered using the techniques described in “Local Information
Sources,” above, as hints to direct the scanning process.

Discussion

The problem of locating hosts is not limited to the authors of malware.
Network administrators and security officers responsible for intranets have
a keen interest in the population of hosts found on their networks. They
generally have extensive tools for auditing and updating such hosts to keep
them up to date. Network management companies are often paid according
to the number of hosts they manage. And, of course, unknown and unreg-
istered hosts that appear on an intranet can be a concern, possibly violat-
ing perimeter security or network connection policy.

On traditional IPv4 intranets, the various techniques described above,
along with simple or multi-protocol network probes, are used for host dis-
covery. A computer inventory, especially including MAC address informa-
tion, can be quite useful for tracking hosts. On IPv4 networks, MAC infor-
mation is obtained, via SNMP, of ARP caches in routers. This incomplete
information is about the best we can do.

; LO G I N : F E B R UA RY 2 0 0 6 WO R M P R O PAG ATI O N STR ATE G I E S I N A N I P V 6 I NTE R N E T 75

In principle, the Ethernet addresses can be monitored as part of the IPv6
addresses as traffic travels through company checkpoints: the bottom 48
bits of an IPv6 address are supposed to be the MAC address. Whether this
is the MAC address or a small integer, as we have seen, or even a crypto-
graphically derived address as proposed in RFC 3972, well-placed flow
monitors can collect census information. Similar information is already
available from routers on a read-only basis using SNMP version 1 or 2,
which has a sniffable community string. SNMPv3 is not widely used, but
should be—as we have seen, network population information is going to
become more sensitive.

A census of local IPv6 addresses could be kept in each router, up to a
point. These could be collected and consolidated by authorized network
administrators, but should be protected better than current router con-
tents. Network discovery would proceed in two stages: first, discover the
routers, perhaps with traceroute-style Internet mapping techniques, then
gain administrative access to the router and dump the flow history infor-
mation.

In any case, network administrators will be in the same game as the virus
and worm writers, but with the home-field advantage. They need new
tools for IPv6 networks to collect this data, with better protection of the
acquired data from access by malware.

Conclusion

We have outlined a number of techniques that scanning worms can use in
an IPv6 Internet to locate potential targets. These techniques are equally
applicable to the current IPv4 Internet, albeit not as efficient as random
scanning. Although “conventional” address-space scanning is prohibitively
expensive in that environment, we believe that the diversity of sources we
discussed (which is by no means exhaustive) guarantees a rich target set
for worms.

The implication is that we cannot afford to rest on the assumption of
inherent protection in the IPv6 addressing scheme; further research in
worm detection and containment is needed. For our future work, we plan
to investigate how much “coverage” our techniques can give us in the cur-
rent Internet (as a measure of the effectiveness of the approach), as well as
determine ways of monitoring requests to these information sources that
could reveal worm-scanning activity.

R E F E R E N C E S

[1] C.C. Zou, D. Towsley, W. Gong, and S. Cai, “Routing Worm: A Fast
Selective Attack Worm Based on IP Address,” in Proceedings of the Workshop
on Principles of Advanced and Distributed Simulation (PADS), June 2005.

[2] A. Kamra, H. Feng, V. Misra, and A.D. Keromytis, “The Effect of DNS
Delays on Worm Propagation in an IPv6 Internet,” in Proceedings of IEEE
INFOCOM, March 2005.

[3] D.M. Martin, S. Rajagopalan, and A.D. Rubin, “Blocking Java Applets at
the Firewall,” in Proceedings of the Symposium on Network and Distributed
System Security, February 1997.

76 ; L O G I N : V O L . 3 1 , N O . 1

; LO G I N : F E B R UA RY 2 0 0 6 MY THT V: S OM E A S S E M B LY R E Q U I R E D 77

D A V E B R O W N

MythTV: some
assembly required

. . . B U T T H E R E S U LT S C A N B E

S P E C TA C U L A R

Dave Brown holds a bachelor’s degree in
Programming and Operating Systems from
University of Phoenix. He works for PalmSource, Inc.,
and has worked for Be and Apple.

dbrown@smurfless.com

W H E N I F I R S T H E A R D A B O U T M Y T H T V
I was impressed, but I figured it was pretty
“out there.” I guessed someone had set up a
super-customized Linux build with custom
hardware and then posted the code. A
Linux-based personal video recorder (PVR)
that played music and most normal com-
puter video clips, and that was free, was too
good to believe. TiVo, still going strong at
the time, wanted some hundreds of dollars
to get the box and a promise of $15 a
month to keep it going, and ReplayTV was
similar; there were no other options worth
considering. You couldn’t take video off
either TiVo or ReplayTV, lawyers were cir-
cling the companies like vultures, and I only
paid $15 a month for cable. So I couldn’t
justify getting MythTV, but I kept reading.
Before long I realized that this was a pretty
standard bit of hardware, and the software
didn’t look all that scary. I was fascinated.

This is where I should probably mention my ner-
vous twitch. I almost always have to be doing
something. Often two or more things. I can’t stand
to wait on a build. I have to have something sit-
ting open on the side to switch back to. You might
say I have a preemptive nervous system. You
might also say I’m slightly neurotic.

Some of the features I was looking for I simply
could not find in commercial packages. This is
because when money changes hands, lawyers
know they can get a slice. Faceless projects have
the advantage of being allowed to do many things
that companies can’t, at least not in the long term.
Things like commercial detection and skipping,
semi-automatic conversions to DVD or MPEG-4,
and all sorts of things that lawyers and their own-
ers really don’t want you to do unless you’re pay-
ing them each time you do it.

But as I realized how expensive commercial DVRs
were over time and how ultimately nerfed they
were, I started looking harder at the other options.
When I looked at the mounting pile of unused
hardware in the corners of my house, I decided it
was worth a shot. I was newish to Linux, having
come recently from a BeOS background, and was
looking for a reason to get out of Windows-land.
Ultimately, I was tired of finding my movies and
CDs lying around the house because someone,

and I’m not saying who, couldn’t be bothered to find the jacket. If I could
get something able to play back videos and CDs without damaging the
originals, so much the better.

About the Project

The project itself allows a pretty flexible combination of hardware. The
suggested hardware list is much beefier than what you can actually get
away with, but I have to admit that using something in the suggested
range would make most of the setup considerably easier and faster. I won’t
repost their suggested hardware list, but as generalities you need:

n A video and audio input
n A tuner. I separate this because you can use an external tuner instead of an in-com-

puter tuner
n A window manager
n A way to see: VGA-enabled TVs seem to be favorites, but I use a plain ’80s-era TV
n A way to interact with your system: Most people will want to use a remote control, but

you can use a keyboard and mouse
n A network connection
n Linux flavor of the month, preferably with a 2.6 kernel

The suggested range of hardware at the time I was working was a 1.2GHz
processor, an nVidia-based video card and a 2.6 kernel; the rest was flexi-
ble. Some of these were “suggested hardware” as described by documenta-
tion, and some of it was required-because-nobody-is-going-to-help-you-
with-anything-else. Honestly, this is still a really good base setup. If you
want to do hardware-compressed encoding, most people are using ivtv
driver–compatible cards from Hauppauge.

If you want only—and I mean only—hardware-assisted MPEG-2 encoding
and playback, you could go with a slower processor. I actually do this at
home right now.

If you want to use the DVD ripper/converter/player, you will need a DVD-
ROM and, I strongly suggest, a processor over 1.5GHz.

If you plan on doing commercial detection, second the processor upgrade.

If you want to do general video playback (e.g., MPEG-4), second the
processor upgrade again.

Pseudo-Log

I think the most useful thing to others would be my view of building my
various MythTV boxes and the problems and impressions I had of each try.
I’ll try to keep things factual, although opinion and impression have a lot
to do with the experience. Please keep in mind that while communities as
a whole may be good, I’m recording impressions of a specific implementa-
tion as experienced by a new-to-Linux user.

First Try: RedHat Linux 9

My first attempt to install MythTV was on RedHat Linux 9.1. I was not
looking to subscribe to anything, but I had used RedHat 7.x before and
was familiar with the conventions. I had to compile MythTV by hand,
which was not difficult. However, what was difficult was gathering the var-
ious prerequisites, requiring a couple of days full of bad links, out-of-date
mirrors, etc. Once the prerequisites were installed, things compiled cleanly.

78 ; L O G I N : V O L . 3 1 , N O . 1

I found a very good walk-through of someone else’s install to help me. Base
MythTV worked on a monitor. I remember clearly thinking, “This is what I
have wanted a computer to do for years.” Others online had most of the
subpackages working as well (MythWeather, MythDVD, MythMusic, etc.),
but I was stuck on getting TV-Out to work on the Hauppauge 350 video
card. Display on a SVGA monitor was quite good, but in my house it was
hardly a usable solution. I also could not get past a compiler error in one
of the codecs required for the transcode daemon (to convert DVDs to
MPEG-4). On the MythTV forums I met a stunned silence. Eventually I
found there were version conflicts between the base RedHat libraries and
what was expected by the codecs, so I had to chase down the source and
compile the modules (with lots of optional flags—must always have lots of
optional flags).

By the end of this attempt I was turned off by constantly having to update
random unconnected bits of the RedHat system to suit the current bug
fixes. I would not be surprised if someone has had better luck than me. I
know at the time I was a Linux newbie. But I was willing to try the hype of
Gentoo, whose instructions on the MythTV site, “emerge mythtv,” seemed
alluring.

Second Try: Gentoo 2004.1

The second attempt was based on numerous reports of the Gentoo Linux
distro, 2004.1 at the time. For the out-of-the-box experience, this went far
better. First of all, Gentoo for the layman is just wonderful. No more wan-
dering from search to bad link to bad link looking for where to get package
xyzzy. You just tell it what item you really want, and it does it. Having an
BeOS background, I’d rather just tell it “put this on and don’t be dumb
about it.” My first trip through Gentoo was a learning experience in the
nuts and bolts of the Linux world—the first time really building my own
kernel and truly understanding some of the lower services of Linux.

I was still using my dual P3-500 system with my MPEG-2 encoder card. I
blanked the hard drives with a cheer, followed the very friendly documen-
tation on the gentoo.org site, and was on my way. I can’t praise this docu-
mentation enough. It probably taught me more about the basics of Linux
as a kernel than anything else I’ve done. I won’t bore you with the details
of how I got from hardware and kernel to command line, but I did, and
that’s where I started working on the MythTV install.

I was able to get MythTV’s base features working with the magic incanta-
tion “emerge mythtv” and about 20 minutes of configuration. But it took
28 hours to compile on my relic. Had I but known, there was a binary
package CD I could have used to get everything up to the X11 install pre-
built, but I didn’t notice it at the time. At the end of the compile, I fol-
lowed the Gentoo X11 configuration guide for my monitor and the basic
setup guide for MythTV. The drivers for the Hauppauge card were available
with another simple command (“emerge ivtv”), and in no time I could cap-
ture precompressed video. I finished the MythTV setup, and, bang, I was
up and running on my monitor, pausing live TV, saving videos to my hard
drive. I was extremely happy with this. And, even on this old hardware, it
was very, very usable.

It was also very rough. I had to start X manually each time, which I later
fixed. I had to unmute ALSA every time, which I never quite solved. There
was a lot of configuration left to do. I also wanted MythVideo and
MythDVD to work. So I started on these extra functions, and this is where

; LO G I N : F E B R UA RY 2 0 0 6 MY THT V: S OM E A S S E M B LY R E Q U I R E D 79

I got hung up in the end. MythWeather worked in one shot. MythDVD
was particular, but far easier to fix than in RedHat. Some minor searches
on the Internet provided me with the required configuration settings, and I
was able to get it working, for the most part, in a few hours. But now I was
hitting hardware limits. After all, I was using hardware that was current in
1999 or 2000, not 2004. MPEG-4 playback was impossible, and back-
ground processes like ripping or converting video took up all the processor
time far too easily. I was also unhappy with the unbelievable amount of
noise generated by the six different fans in the case.

A Sidebar on Hardware

This also marked my first real attempt at TV-Out. I was using a low-end
nVidia AGP card at the time that included a TV-Out. Before I get jumped
over this, let me say that I have good friends at nVidia who really, truly
know their stuff. But I’m also telling you, if I ever try to use an on-card TV-
Out again, I will poke my eyes out. It’s awful. The same is true of my ATI
cards. I don’t know the hardware specifics of why, but it is. But as I was
having trouble with the configuration that would pipe the video correctly
to the TV-Out of the Hauppauge PVR-350 card, I stuck with the nVidia
TV-Out. Please note that MythTV’s support for the Hauppauge card has
improved greatly since this time.

At this point I’m going to digress into the wild and wooly topic of hard-
ware in the living room. This is a matter that people vary on greatly, from
the silence zealous to the power zealous. I’m going to try to give you an
abbreviated version based on my experience, simply so that you can see
how it might affect you. First of all, my system was far too loud. Vacuum
cleaner decibels. Unwatchably loud. The images were on the screen, but
you couldn’t hear over the system until your stereo was Far Too Loud.
After about three days, I just yanked the plug and the house as a whole
gave a cry of relief for the lack of noise. In two weeks I had substituted a
Zalman ultra-quiet power supply and (from the junk bin) a quieter hard
drive, and was far happier. But it was still a four-year-old system doing
things that were over its head, and the video quality was really starting to
wear on us. To compensate, I got the remote control working. This is when
my wife first started showing signs of interest.

Concerning hardware as a whole, though, I was able to find many near-
silent PCs designed for the living room, ranging from $100 “quiet kits” to
$1500 complete silent systems. I was still being a cheapskate, so I watched
and bought nothing. What killed this system was the unmute-by-hand
problem between ALSA and the 2.4 kernel. By this time a 2.6 kernel ver-
sion of Gentoo was out, and the audio problem and video quality were the
system’s deathblow.

Attempt 2.5: SageTV

Honestly, I’m glad I tried SageTV. SageTV is a commercial product that uses
the same hardware, only it runs Windows. I converted my Gentoo box to
Windows 2000 and installed SageTV. To their credit, in about an hour the
thing ran. But it never ran for more than a day. Blame it on whatever you
want: hardware, OS issues, driver issues, or anything else, but the stability
problems were formidable. I eventually set it up to reboot every day at 3
a.m. to try to keep it going. It would still occasionally lock up and destroy
a show or two. I have no idea what the real causes were, but the instability
of the hardware and software in combination killed this configuration.

80 ; L O G I N : V O L . 3 1 , N O . 1

What I did love about this solution, however, was that the shows were
stored as MPEG-2 and were easily shared to a PC with a DVD burner, and
the files had nice obvious names. With some basic DVD authoring soft-
ware, I was able to burn DVDs of my kids’ favorite shows at broadcast
quality.

I must also mention that this was the first time the PVR-350 TV-Out
worked. And let me tell you, it is a beautiful thing. It’s not double-inter-
laced, it’s not desaturated, it’s . . . right. It looks like it comes out of my
VCR instead of an overhead projector. This alone is what kept me plugging
away at SageTV for almost two months.

Then MythTV added the ability to detect and flag commercials, and auto-
matically skip them. Between SageTV not having all the things I wanted
and the stability problem, I stopped trying. SageTV is a base PVR that
worked with little configuration and used very little CPU time, and I’m
glad I saw that it is possible. But I wanted the rest of the checkpoints on
my list. Also note that SageTV now has a DVD and video player built in.

Third Try: KnoppMyth 5.1

A number of people were talking about how easy it was to slap a system
together with KnoppMyth. So I downloaded and burned KnoppMyth 5.1,
which included MythTV 0.18 (iirc), which was just out and included all
the features on my list.

By now, I realized I was going to have to break down and get some dedicat-
ed hardware for this adventure if I wanted everything. I settled on a VIA
Epia M-10000 system and a quiet case with an integrated low-noise power
supply. As far as decibels go, this combination is great. The hard drive is
still the loudest part of the system, but the total cash investment was $400
including RAM.

KnoppMyth is a dream to install when it works. It does a very competent
job of detecting your hardware and bringing up the default configuration.
But it took three tries to get the KnoppMyth installer to finish correctly.
This may have been an anomaly, but it made me skeptical. I was pleasantly
surprised to find that the KnoppMyth distribution included a Nehemiah
kernel. It even included the ivtv capture driver. If you look hard enough,
there are instructions that show how to put video out the PVR-350 card as
well.

After the base install and 20 minutes of configuration, I was again able
to watch live TV on the monitor, as well as use most of the other base
functions. As long as I was satisfied with just MythTV, MythVideo, Myth-
Weather, and had a monitor or TV with VGA to work with, the system had
almost zero bring-up time and was truly a delight.

But it was fraught with other bugs that made it harder and harder to finish
and polish. I could not watch or rip DVDs (later fixed). Configuration of
the TV-Out of the PVR-350 took me much too far from the “click and go”
configuration I was after. I rapidly ended up in the same swarm of one-off
versioning problems I had with RedHat, plus some bugs peculiar to
KnoppMyth, having to retrieve and hand-install everything. The mire
deepened, and I moved back to . . .

Fourth Try: Gentoo 2005.1

; LO G I N : F E B R UA RY 2 0 0 6 MY THT V: S OM E A S S E M B LY R E Q U I R E D 81

This one was by far the most successful install. I decided to stage the sys-
tem on a full AMD Athlon 1GHz system with 1GB of RAM—an otherwise
quiet system that I had used as my Windows machine for two years. The
base install of Gentoo had changed while I was away, but not by much.
This time through I used the binary install for most basic packages, proba-
bly saving me a full day of compiling.

After the magic “emerge mythtv,” I left for about an hour and came back to
find everything compiled and waiting. Then I unzipped my old configura-
tion files and copied the relevant parts onto the new system. Before long I
was able to get to a full KDE 3.4, MythTV 0.18, MythDVD, MythWeather,
MythVideo, TV-Out on the Hauppauge PVR-350, and all associated hard-
ware acceleration. Everything I wanted to work was working; I couldn’t
believe the day had come. The sound was set correctly at boot time, the
video hardware acceleration was fine, and I was able to watch MPEG-4s
flawlessly. I was a happy camper. So I packed it into the trunk and hauled
it off to show a friend. On the drive home, the extra-super-quiet-all-copper
heatsync cracked the stinking processor. Needless to say, I was miffed. I
just didn’t feel like dealing with trying to find a three-year-old processor
for my generic brand motherboard. I took the hard drive out, placed it in
the Nehemiah system, and started reconfiguring.

Fifth Try: Gentoo 2005.1 Again (Success!)

After recompiling the kernel, changing a couple of drivers, and recompil-
ing mplayer, almost everything was working again. Setting X to use the
Hauppauge PVR-350 meant that I didn’t have to reconfigure xorg or video
drivers. The basic features are currently working, and it is far more stable.
It goes a week or more before needing to relaunch MythFrontend. I sus-
pect this is because the front end crashes and I don’t have a way to kill it
with the remote. Because of the difference in true processor speed, I’m not
able to get full speed out of most MPEG-4s.

Now that the basics are working, I’ve started working on other attached
projects. I have become OS-agnostic over time, and have a pair of Mac OS
X systems in the house. Someone has a precompiled MythFrontend for OS
X that was able to connect to my master system, read the program guide,
and play video (once I ran 100bT to the front room). I was very, very
impressed. There is also the opportunity to set up secondary Linux front
ends so you can have the master system do recording (headless if you like)
in one room and have other systems watch throughout the house, net-
works and bus bandwidth permitting.

One thing happened very recently that brought me to a standing halt:
Digital Cable. My wife accepted some special or another from the cable
company, and they came out and installed one of those vile digital channel
changer boxes. MythTV does have support for external channel changers,
but I don’t have the external IR broadcaster cable. A friend of mine has
built one, but says that they are wily beasts to set up. We immediately
switched back to “Standard Standard Cable,” and things have been fine
since. Some people have great success in using such changers, but if I can
get away without one, I will.

Results and Overall Reaction

If I weren’t so stubborn about the other requirements on my checklist

82 ; L O G I N : V O L . 3 1 , N O . 1

(skipping commercials, DVD caching, etc.), I would probably be better off
with a commercial player and their service. But as TV is not the prevailing
entertainment in my life, I am happy to set up my own recorder, play with
the internals, get it working, and often end up with shows and videos I am
interested in when I want them and with fewer ads per hour.

What I see as the biggest threat to this type of system is the difficulty in
getting show listings. Since I started working with MythTV, there have
been three separate systems for getting show listings. The first required
nothing but was slow. The second required a signup and then a survey
every three months to keep it going. The third is a cheap subscription with
proceeds going back into the MythTV development community. There is
no permanent answer here that I can see.

While I’m glad I set it up, I realize this system is not for everyone. But I
have been thoroughly impressed with the results. I don’t want to sound
preachy or prophetic, but I feel that this is one of the things that has excit-
ed people about computers for years—the possibility that all these func-
tions could be combined into one box. I hold with the conclusion of one
of our local reporters: “The time of Appointment TV is fading.” But as long
as I have some control over what features I get to use, I’ll be glad to go out
of my way to get them.

I N STR U C TI O N A L A N D OTH E R R E S O U R C E S

MythTV and subprojects: http://www.mythtv.org/

Wiki: http://www.mythtv.info/

Mailing list archive: http://www.gossamer-threads.com/lists/mythtv/users/

ivtv (hardware driver for MPEG encoders): http://ivtvdriver.org/index.php/
Main_Page

nuv2disc (burning directly from MythTV): http://extras.mythtvtalk.com/
install_htm.html

One extremely complete install guide: http://wilsonet.com/mythtv/

; LO G I N : F E B R UA RY 2 0 0 6 MY THT V: S OM E A S S E M B LY R E Q U I R E D 83

book reviews
E L I Z A B E T H Z W I C K Y

zwicky@greatcircle.com

with Richard Johnson, Sam
Stover, Steve Manzuik, Ben
Rockwood, and Ming Y.
Chow

TH E U N O F F I C I A L L E G O B U I L D E R ’ S

G U I D E

Allan Bedford
No Starch Press, 2005. 319 pp.
1-59327-054-2

The process of selecting books to
review is, to put it politely, organ-
ic; it involves complex variables
such as my level of interest in the
topic, my level of knowledge about
the topic, my estimation of read-
ers’ levels of interest, the other
books in the stack, and whether or
not I think a book is cool. Which
is all by way of saying, no, Lego
does not have much to do with ad-
vanced computing systems, but I
think it’s cool, and I’m betting a
fair number of you do, too.

This book is cool. It’s not rocket
science, although there is a nice
walk-through of how to design a
space shuttle model. It would be a
great Christmas gift for the person
on your list with the big Lego col-
lection and no very focused idea of
what to do with it. You might be
more reluctant to give it to any-
body in your own household, as
the storage suggestions may result
in the reader developing entirely
new ideas of the scale of a “big”
Lego collection, and wanting clos-
ets-full. If you already have closets
full of Lego, this book will give
you the graph paper and the ideas
to turn it into Lego cities, or what-
ever. It’s suitable for older kids and
young-at-heart adults. And you
can feel good about giving it to

kids, because it teaches some nice
mathematics about ratios, making
it genuinely educational.

I learned some neat stuff (the thin
Legos are exactly 1/3 the size of
normal-height ones), and it’s my
18-month-old’s second-favorite of
the books I’ve reviewed, because it
led me to build things she likes
out of her Duplo. (Her favorite is a
hardback with a penguin on it. She
likes the penguin and finds it an
especially intriguing size, for some
unknown baby reason.)

TH E L I N UX E NTE R P R I S E C LU STE R :

B U I L D A H I G H LY AVA I L A B L E C LU STE R

W ITH COM M O D IT Y H A R DWA R E A N D

F R E E S O F T WA R E

Karl Kopper
No Starch Press, 2005. 430 pp.
1-59327-036-4

Suppose you know not very much
about Linux, and less about clus-
ters, and somebody comes to you
and says, “Hey, here’s a pile of
computers; build a cluster out of
them, and, oh, by the way, we
want to run business-critical soft-
ware on it.” If you sit down with
this book and follow it through, at
the end, I am convinced, you will
have a reasonable solution to that
problem. I don’t know that it will
be the best possible solution; this
book walks through one particular
set of tools, which undoubtedly
won’t be the best for every situa-
tion. I’m sure that serious Linux
cluster aficionados will argue pas-
sionately about the author’s choic-
es. But there’s no avoiding that
problem if you want to explain the
nuts and bolts of using a particular
solution, which the author does
very nicely.

The authors take an unusual but
effective approach: they walk you
through detailed recipes for setting
up, not the production environ-
ment, but a test environment
where you learn how all the parts
work and how you can customize
them for your purposes. This
makes a nice balance between de-

tailed, hand-holding exposition
and getting the concepts you need
to be able to extend the recipes
into your environment.

If you already know something
about clusters and Linux (or gen-
eral UNIX system administration),
go straight to chapter 5, bypassing
the very general discussion of
what a cluster is and a lot of back-
ground on kernel builds, SSH in-
stallation, rsync, and the like.

W E B M A P P I N G I L LU STR ATE D

Tyler Mitchell
O’Reilly, 2005. 349 pp. 0-596-00865-1

Here’s another one I think is cool.
(Though it’s about maps on the
Web, not maps of the Web, which
might have been even cooler.) I
like maps, and this book made me
want to run right out and add gra-
tuitous maps to my Web site. Bet-
ter yet, it made me think that the
next time I’m on a project where
the right thing is to put up an in-
teractive map on a Web server, I
will have an answer that doesn’t
involve all the Web programmers
saying glumly, “Gee, that sounds
really hard.” (That’s what hap-
pened the last two times, and I
didn’t get my interactive maps.)
True, it wouldn’t take 349 pages to
explain it if it were really easy, but
Web Mapping Illustrated tells you
how to get and use open source
tools to do powerful things with
maps, with some basic informa-
tion on getting and generating the
data to go along with the tools. It’s
enough information to get people
past the fear of the unknown.

One caution: it’s meant for people
who understand maps and want to
put them on the Web. It gives
some basic background for people
who understand the Web but don’t
know much about maps, but it’s
probably only enough to make
somebody like me able to make
real mapmakers writhe in pain. If
you want respectable maps, you’re
going to need either to be very
conservative or to get somebody

84 ; L O G I N : V O L . 3 1 , N O . 1

who knows a lot about maps. This
book will take you past the edge of
your mapmaking competence and
induce the map equivalent of the
ransom-note typography that was
so popular when word processors
first let amateurs play around with
fonts. But hey, it’s fun to do, even if
it’s not always fun to watch.

H P- UX 1 1 I V E R S I O N 2 SYSTE M

A DM I N I STR ATI O N : H P I NTE G R IT Y

A N D H P 9 0 0 0 S E RV E R S

Marty Poniatowski
Prentice Hall, 2005. 643 pp.
0-13-192759-0

If you are an experienced adminis-
trator looking for information
about HP-UX commands, particu-
larly those specific to HP hard-
ware, you may find some informa-
tion of interest here. However, the
book does not go into enough
depth for my taste (it talks about
how to use HP’s remote install
process but not about its under-
pinnings) and doesn’t have enough
detail for an inexperienced admin-
istrator (it says the author usually
modifies the default partition lay-
outs, but doesn’t talk about how or
why). It is also security-naive;
while the author does make some
gestures toward security, suggest-
ing that hosts.equiv and .rhosts be
used cautiously, he doesn’t warn
administrators that 6 characters is
not a reasonable current minimum
password length, that scanning
your own network is liable to
annoy not just the network admin-
istrators but also the security peo-
ple, that remote SNMP system
management has security implica-
tions, or that giving nonprivileged
users backup and restore privi-
leges has security implications. On
the whole, I can’t recommend this
book. In most situations, you’d be
better off with a good, general sys-
tem administration book and HP’s
documentation.

P R AC TI C A L D EV E LO PM E NT

E N V I RO N M E NTS

Matthew B. Doar
O’Reilly, 2005. 297 pages.
ISBN 0-596-00796-5

Most books that I review will
eventually find their way to more
appropriate homes. A few I keep a
good tight grasp on. This is one of
those few. I’ve put up with a wide
range of development environ-
ments, and I understand varying
parts of them to varying extents.
But I don’t understand them in the
same way that I understand the ins
and outs of a data center, for in-
stance. This is a structured over-
view of all the parts that go into a
development environment, with
specific examples, comparisons of
the good and bad points of com-
mon tools, and questions to apply
to your own environment. In other
words, it’s exactly what I need to
help me get to the point where I
understand development environ-
ments as well as I do the system
administration environments I’ve
built from the ground up.

It covers software configuration
management, build tools, bug
tracking, testing, documentation,
release, and maintenance, and it
gives equal weight to commercial
and open source solutions. Its ad-
vice is consistent with my experi-
ence; yeah, those common prob-
lems really are common.

This book will be most useful if
you are building a development
environment, or if you want to be
a toolsmith (somebody who sup-
ports programmers directly, work-
ing on the tools that let them do
development). But if you’re just
entering the wild and woolly
world of programming and you
want a scorecard so you can tell
the players apart, it’ll help you too.
And I strongly recommend it for
system administrators who sup-
port programming teams.

B E H I N D C LO S E D D O O R S : S E C R E TS

O F G R E AT M A N AG E M E NT

Johanna Rothman and
Esther Derby
The Pragmatic Bookshelf, 2005.
167 pages. ISBN 0-9766940-2-6

This is a nice, small book on how
to be a good manager, aimed at
people working in large develop-
ment environments. Its advice is
entirely sensible (that is to say, I
agree with it). There is nothing
earth-shattering here, but there
shouldn’t be; good management
books agree with each other and
say mostly commonsense things
that are easy to read and hard to
implement. Its most radical move
is a good, easy-to-swallow presen-
tation of communication issues:
how and, most important, why to
say nice things about other people.
I think this is an important issue
for technical people, who tend to
think “communication skills” is a
management buzz phrase for
“talks nonsense and wears a nice
tie,” whereas it’s actually a man-
agement buzz phrase for “not tor-
ture to be around.”

One of this book’s strengths is that
it gives nice, concrete examples.
This is going to be most useful for
people who’re working in the sort
of corporate product development
environment that their examples
are drawn from. The concepts are
useful anywhere, but if you need
the examples, you may find that
these don’t work as well for you if
you’re in a different environment.

If you are moving into manage-
ment and want a short introduc-
tion to important management
skills that respects technical peo-
ple and explains things under-
standably without condescension,
this is a nice place to start. You’ll
probably find yourself consulting
some of its many references as you
go forward, but just following its
advice will go a long way toward
making you a productive, useful
manager.

; LO G I N : F E B R UA RY 2 0 0 6 B O O K R EV I E WS 85

A M B I E NT F I N DA B I L IT Y

Peter Morville
O’Reilly, 2005. 188 pages.
ISBN 0-596-00765-5

If the title didn’t suggest to you
that something was odd about this
one, the cover would; the animal
on it is in color, but it’s otherwise a
traditional O’Reilly cover. It’s not a
traditional O’Reilly book. No, you
have not missed the release of a
new programming tool called
“Ambient” or “Findability.” This is
a book about the ways in which
the ability to find things is chang-
ing the world.

It’s an amusing and interesting
book, and it convinced me that,
yes, findability is really important.
There’s lots of inspiration here for
designers of all kinds. At the same
time, I found it ultimately frustrat-
ing. It feels like there ought to be a
deep structure and some funda-
mental insights, but all I got was a
bunch of neat stuff.

This book is definitely a good
time, and it should be particularly
enlightening to people just outside
the world of the Web, or just en-
tering it. It’s full of pretty pictures
and clever ideas; if you know
somebody intelligent who doesn’t
understand why the Web really, re-
ally matters, this book should get
the point across.

DATA P ROTE C TI O N A N D I N F O R M A -

TI O N L I F E CYC L E M A N AG E M E NT

Tom Petrocelli
Prentice Hall, 2005. 256 pages.
ISBN 0-13-192757-4

This book covers data protection,
starting from the types of data
storage (everything from good ol’
disks flung in a server through
SAN and NAS, with explanations
of SCSI and ATA and all of their
cousins), through backup and re-
store, data replication, security,
policies, and, finally, a brief flour-
ish about managing not just data
but information. That’s a lot of
stuff to try to get into 256 pages,

and, in the end, I don’t feel that it
all fit well enough.

Most topics are covered only at a
high, abstract level, which makes
them hard to understand and ap-
ply. Furthermore, there are some
odd omissions. For instance, in
the chapter on backups, a number
of failure modes are mentioned,
but there’s no mention of backup
verification or testing, which is an
obvious and important part of data
protection. In the chapter on stor-
age systems, there’s no mention of
RAID 4. In other places, you could
be led to dangerously wrong con-
clusions: on-disk data encryption
is not a panacea, and being able to
back up open files is useful only if
you have some reason to believe
they’re consistent enough to be us-
able when you restore them.

H O ST I NTE G R IT Y M O N ITO R I N G W ITH

O S I R I S A N D SA M H A I N

Brian Wotring and Bruce Potter
(technical editor)
Syngress, 2005. 420 pages.
ISBN 1-597490-18-0

R E V I E W E D B Y
R I C H A R D J O H N S O N

rjohnson@ucar.edu

The title of this book might lead
you to expect a how-to manual for
building and operating Osiris and
Samhain. It does indeed contain
such, but the book is far more use-
ful than that. It’s also intended as
a “why” manual which starts by
helping you answer the very basic
question of whether you, on your
particular machines, even need or
want to use host integrity moni-
toring. Beginning with the why
portion, the first four chapters
concisely but not too choppily
define integrity monitoring, de-
scribe what typically needs to be
watched, cover typical attacks and
the changes they’ll produce (with
examples of automated worms),
and delve into the planning crucial
for setting and meeting your spe-
cific monitoring goals. The next
three chapters get into the how-to

of installing and operating host in-
tegrity monitoring software, with a
chapter each dedicated to Osiris
and Samhain. Finally, the book
covers stepping beyond the simple
change notification facilities built
into each of the systems, respond-
ing to incidents detected by the
system, and more advanced coun-
termeasures or pitfalls. The book
flows well from chapter to chapter,
particularly with the summaries at
the end of each, which, somewhat
amusingly, turned out to mirror
my personal notes. I found it easy
to read with comprehension from
cover to cover.

Although the book’s target audi-
ence consists of experienced sys-
tem and security administrators
(call it SAGE II+), the first half is
also useful for technically inclined
managers. It’s a nice design, as it
gives those of us in charge of the
implementation a solid hook for
bringing our superiors up to
speed. Also in this portion, the dis-
cussion of what to monitor was
particularly valuable. Even with 19
years of experience as a sysadmin,
I gained new insight from the dis-
cussion of where (possibly mali-
cious) changes can hide in various
OSes. More important, the founda-
tion here makes extrapolation to
OS features that weren’t in use be-
fore the book was written (e.g.,
Mac OS 10.4’s new use of arbitrary
file metadata in HFS+, which can
be used to hide data) almost in-
evitable for a technical reader.

The build chapters don’t rehash
the man pages or release docu-
mentation for Osiris or Samhain.
Instead, they evenly cover the
strengths and weaknesses of each
package, followed by build and in-
stallation tutorials with a clear eye
to avoiding later management
problems and mitigating security
risks. Even picking a system that I
don’t normally deal with—build-
ing and installing an Osiris client
on MS Windows—I found it easy
to follow the instructions. Further-

86 ; L O G I N : V O L . 3 1 , N O . 1

more, the Samhain build chapter
was met with, “Nice, I didn’t know
that before, I’ll have to add that,”
from a fairly experienced Samhain
user.

A minor downside was that PGP
signature verification instructions
for the source code distributions in
each of the build chapters were re-
dundant. Particular advice for set-
ting ultimate trust on a PGP key in
Chapter 6, which left me feeling
uneasy, was later qualified with a
caveat in Chapter 7, but otherwise
the sections might better have
been consolidated. Somewhat
more annoyingly (even though I
understand why it is this way; it’s
another book’s worth of material
in itself), it would have been nice
to see more advanced material on
log monitoring, focusing on addi-
tional tools that can help us intelli-
gently aggregate and process the
tagged syslog output or database
entries, specifically from Osiris
and Samhain.

In the end, the book carries read-
ers along, educating them and
leaving them wanting more (with
an idea of where to go to get that
more). If you’re thinking of trying
host integrity monitoring, though
without the noise and maintain-
ability problems common to such
systems in the 1990s, this book
will serve you well. More impor-
tant, this book will help you figure
out why you want to monitor host
integrity in the first place, and
then tune what you monitor to
meet your goals.

F I L E SYSTE M F O R E N S I C A N A LYS I S

Brian Carrier
Addison Wesley, 2005. 569 pages.
ISBN 0-321-26817-2

R E V I E W E D B Y S A M S T O V E R

sam.stover@gmail.com

I think this book is hands-down
the best resource for file systems
(FAT, NTFS, EXT2/3, and UFS1/2)
and partition types (DOS, Apple,
BSD, GPT, and Solaris Slices) I’ve

read. It is not, however, designed
as an introductory guide for a
novice forensic analyst. The au-
thor does not focus on walking the
reader through evidence handling,
chain of custody, etc., nor does he
focus on tutoring the reader in the
use of common forensics tools
such as EnCase. The goal of this
book is to provide a foundation for
a forensics investigator to work
from, and I think it achieves that
goal. And, as mentioned, it serves
as a great reference for anyone
doing any kind of file system
and/or partition work.

A lot of the information in this
book is available in other forms
such as RFCs, vendor standards,
etc., but this book brings every-
thing together in one place. The
book starts by giving a brief
overview of the principles in-
volved in digital forensics investi-
gation, but then moves quickly
into a low-level discussion of the
different types of partitions used.
From there, the aforementioned
file systems are examined in inti-
mate detail.

Prior to reading this book, I felt
that I had a pretty good grasp of
the different file systems and how
they are put together. After going
through the NTFS chapters, I soon
realized how much I didn’t know,
and I suspect that a lot of forensic
investigators fall into the same
trap. Current forensic tools do a
lot of the heavy lifting with respect
to file system analysis, and thus
they make it too easy to conduct
an investigation without complete-
ly understanding everything from
the ground up.

In the way that W. Richard Stevens
has provided us with an invaluable
reference for the TCP/IP protocol
stack, Carrier has given us an anal-
ogous reference for partitions and
file systems. To further the analo-
gy, some of the material in this
book is very complex and could
require a fair bit of effort from the

reader to fully grok the file system
or partition in question.

One last comment is that the au-
thor’s toolkit, called The Sleuth Kit
(TSK), is used throughout the
book to demonstrate the exam-
ples. I stated earlier that it was not
a goal of this book to tutor a user
on a particular forensic tool, and I
stand by that. This book does not
teach you how to use TSK, but
there is a seven-page appendix that
gives you the basics so that you
can use the tool yourself to emu-
late what’s happening in the book.

Overall, this book is definitely a
“must have” for anyone who
wants to learn how file systems
work—whether that is to be ap-
plied to forensic analysis or other-
wise. It will occupy a space on my
bookshelf right next to TCP/IP
Illustrated, and will probably be
referenced just as frequently.

RO OTK ITS : S U BV E RTI N G TH E

W I N D OWS K E R N E L

Jamie Butler and Greg Hoglund
Addison-Wesley, 2006. 324 pages.
ISBN 0-321-29431-9

R E V I E W E D B Y
S T E V E M A N Z U I K

hellnbak@gmail.com

As someone who has been called a
Windows security expert, I always
find it a pleasure to come across a
technical book that covers subject
matter that is perhaps a little less
known than your standard Win-
dows security concepts. It is even
a greater pleasure to find that same
book is able to teach even an expe-
rienced security geek such as my-
self a few new tricks.

Most people, and when I say most
people I am referring to myself,
use technical books as a way to
cure insomnia, while occasionally
learning something along the way.
Although Rootkits: Subverting the
Windows Kernel is high on techni-
cal content, I found myself doing
more learning than sleeping.
When I first sat down to read

; LO G I N : F E B R UA RY 2 0 0 6 B O O K R EV I E WS 87

Rootkits, it was 2 a.m. and I was
ready for something to put me to
sleep. Instead, I found myself hop-
ping out of bed to grab my laptop
and make note of some of the
techniques taught in the book.

The concept of a rootkit has been
around for a very long time, espe-
cially in the *NIX world. Over the
years we have seen them evolve
from lame hacker tricks to more
in-depth, harder-to-detect subver-
sion methods. I have had many
different roles in my career, but be-
fore landing in the eEye Digital Se-
curity Research Department I was
an independent security consult-
ant. I performed many incident re-
sponse engagements for clients,
which usually involved some sort
of Linux rootkit installed on com-
promised systems. Butler and
Hoglund have taken the concepts
of the “old school” rootkits and
applied them to the “new
school”—Microsoft Windows. So
if you are a Windows person, or
interested in the Windows kernel,
this is a book for you. Be sure to
also check out the accompanying
Web site (http://www.rootkit
.com): you will find all kinds of
samples used in the books and a
great discussion forum where you
can exchange ideas with the au-
thors as well as with other security
geeks.

Butler and Hoglund take the read-
er through the technical details of
Windows rootkits, sparing noth-
ing. This book is filled with useful
information that will help reader
understand exactly what a rootkit
is, how they are used, and how to
create your own rootkits that can
subvert various detection routines.
Of course, this book would not be
complete without information on
how to build a good host-based in-
trusion prevention system to resist
such attacks.

Whether you are a junior security
person or one of the old-timers in
the industry, I highly recommend
this book to you. I have spent a lit-

tle over a decade in the IT and IT
security industry, and I found this
book complete enough to leave
some new knowledge in my brain.

Oh, and if you are having trouble
sleeping, fire me off an email and I
can give you a list of the books in
my library that actually do help
put one to sleep.

O R AC L E P L / S Q L F O R D BA S

Arup Nanda and
Steven Feuerstein
O’Reilly, 2005. 429 pages.
ISBN 0-596-00587-3

R E V I E W E D B Y
B E N R O C K W O O D

benr@cuddletech.com

Oracle PL/SQL for DBAs is
O’Reilly’s latest addition to its ever
growing series of Oracle PL/SQL
books, most of which are written
by or co-authored with guru
Steven Feuerstein. Unlike previous
titles, such as Learning Oracle
PL/SQL or Oracle PL/SQL Program-
ming, this book is squarely aimed
at experienced DBAs looking to
better leverage capabilities of the
database through PL/SQL inter-
faces. For the sake of complete-
ness, the first chapter contains a
whirlwind tour of PL/SQL from
the ground up, but readers new to
PL/SQL will find themselves lost
in the dust.

The book focuses on three main
topics: security, performance, and
scheduling. In the performance
category is in-depth discussion of
cursors and table functions. Both
chapters are chockfull of solutions
and ways to better craft your
queries and write your procedures,
but little in the way of theory is of-
fered. Security is covered by dis-
cussion of encryption within the
database, auditing, row-level secu-
rity, and a great chapter on gener-
ating random values. Scheduling is
handled in a single chapter but
supplies a great deal of insight on
the topic.

Again, this is a book for experi-
enced DBAs. It answers the ques-
tion “How?” but not the question
“Why?” Almost no background on
cursors is given, for instance, mak-
ing you reach for Google or your
favorite DBAs reference. And the
introduction to encryption is good
for a laugh but little more. Clearly
the authors have a talent for
demonstrating functionality but
have left background explanations
for other, more suitable guides.

Perhaps the book’s most redeem-
ing value is the sense it provides of
just how much can be done from
within Oracle itself. The schedul-
ing chapter, for instance, would be
of great use to DBAs who have be-
come too reliant on cron. While
DBAs and sysadmins won’t need
every feature outlined in this
book, there is clearly value in real-
izing what’s available and using
that information to better leverage
your existing deployments.

P R I VACY: W H AT D EV E LO P E R S A N D

IT P RO F E S S I O N A LS S H O U L D K N OW

J.C. Cannon
Addison-Wesley, 2005. 347 pages.
ISBN 0-321-22409-4

R E V I E W E D B Y
M I N G Y . C H O W

mchow@eecs.tufts.edu

Cannon delves into all facets of
privacy, low-level and high-level.
As indicated by the subtitle, the
book targets developers and IT
professionals, but I would recom-
mend it for end users and man-
agers as well. The first half pro-
vides a very comprehensive
overview of privacy. Privacy-En-
hancing Technologies (PETs) and
Privacy-Aware Technologies
(PATs) are presented, with numer-
ous examples and features. Can-
non also discusses privacy frame-
works and legislation, including
the Health Insurance Portability
and Accountability Act (HIPPA),
the Gramm-Leach-Bliley Act
(GLBA), and even the Digital Mil-
lennium Copyright Act (DMCA).

88 ; L O G I N : V O L . 3 1 , N O . 1

; LO G I N : F E B R UA RY 2 0 0 6 B O O K R EV I E WS 89

The privacy issues with spam and
emerging technologies (e.g., RFID
tags), including solutions to miti-
gate privacy risks, are discussed in
perceptive detail.

For developers, Cannon provides
rich insights and effective tech-
niques for incorporating privacy
into both the development process
and the products themselves, in-
cluding discussions of privacy
analysis, privacy specification,
dataflow diagramming, and data-
base protection. He presents a

large-scale example of develop-
ment from top to bottom. There
are even checklists and templates
that managers and developers can
use immediately.

The public’s growing concern
about privacy is well founded, and
they are demanding that govern-
ment, business, and developers
step up their efforts to preserve
privacy. Cannon does a tremen-
dous job of stressing the impor-
tance and value of integrating pri-
vacy into products and in business

and, more important, in explain-
ing how to do so. Throughout the
book, he emphasizes trust, incor-
porating privacy into the develop-
ment process early, and enabling
users to control their own privacy.
It is a huge and important chal-
lenge today to give end users secu-
rity they can understand and pri-
vacy they can control. I
recommend this book without
reservation to those who want a
competitive edge in this dire field.

USENIX Membership Updates
Membership renewal information, notices, and receipts are now being sent to you electronically.

Remember to print your electronic receipt, if you need one, when you receive the confirmation email.

You can update your record and change your mailing preferences online at any time.

See http://www.usenix.org/membership.

You are welcome to print your membership card online as well.

The online cards have a new design with updated logos—all you have to do is print!

USENIX
notes

U S E N I X B OA R D O F D I R E C TO R S

Communicate directly with the
USENIX Board of Directors by
writing to board@usenix.org.

P R E S I D E NT

Michael B. Jones,
mike@usenix.org

V I C E P R E S I D E NT

Clem Cole,
clem@usenix.org

S E C R E TA RY

Alva Couch,
alva@usenix.org

TR E A S U R E R

Theodore Ts’o,
ted@usenix.org

D I R E C TO R S

Matt Blaze,
matt@usenix.org

Jon “maddog” Hall,
maddog@usenix.org

Geoff Halprin,
geoff@usenix.org

Marshall Kirk McKusick,
kirk@usenix.org

E X E C UTI V E D I R E C TO R

Ellie Young,
ellie@usenix.org

2 0 0 6 U S E N I X N OM I N ATI N G

COM M IT TE E R E P O RT.

M A R S H A L L K I R K
M C K U S I C K

Chair, Nominating Committee

The USENIX Association is gov-
erned by its Bylaws and by its
Board of Directors. Elections are
held every two years, and all eight
Board members are elected at the
same time. Four of them serve as at
large and four also serve as statuto-
ry officers—President, Vice-Presi-
dent, Secretary, and Treasurer.

Per Article 7.1 of the Bylaws of the
USENIX Association, a Nominat-
ing Committee proposes a slate of
Board members for the member-
ship's consideration. As a practical
matter, the purpose of a Nominat-
ing Committee is to balance conti-
nuity and capability so as to ensure
that the incoming Board is com-
posed of persons shown by their
actions to be both dedicated to the
Association and prepared to lead it
forward.

The USENIX Nominating Commit-
tee is pleased to announce the list
of candidates for the upcoming
USENIX Board of Directors elec-
tion:

President: Michael B. Jones, Mi-
crosoft

Vice-President: Clem Cole

Secretary: Alva Couch, Tufts Uni-
versity

Treasurer: Theodore Ts’o, IBM

At Large:

Matt Blaze, University of Pennsyl-
vania

Gerald Carter, Samba.org/Centeris

Rémy Evard, Argonne National
Laboratory

Niels Provos, Google

Margo Seltzer, Harvard University

The committee is very pleased that
all of these individuals have agreed
to commit their time to serving the
USENIX Association.

90 ; L O G I N : V O L . 3 1 , N O . 1

U S E N I X M E M B E R B E N E F ITS

Members of the USENIX Associa-
tion receive the following benefits:

F R E E S U B S C R I P T I O N to ;login:, the Associ-
ation’s magazine, published six times
a year, featuring technical articles,
system administration articles, tips
and techniques, practical columns on
such topics as Perl and ISPadmin,
book reviews, and summaries of ses-
sions at USENIX conferences.

A C C E S S T O ; L O G I N : online from October
1997 to this month: www.usenix.org/
publications/login/.

A C C E S S T O P A P E R S from USENIX confer-
ences online: www.usenix.org/
publications/ library/proceedings/

O N L I N E J O B S B O A R D for those who are
looking for work or are looking to
hire: http://www.usenix.org/jobs/

T H E R I G H T T O V O T E on matters affecting
the Association, its bylaws, and elec-
tion of its directors and officers.

D I S C O U N T S on registration fees for all
USENIX conferences.

D I S C O U N T S on the purchase of proceed-
ings and CD-ROMs from USENIX
conferences.

S P E C I A L D I S C O U N T S on a variety of prod-
ucts, books, software, and periodi-
cals. For details, see www.usenix.org/
membership/specialdisc.html.

F O R M O R E I N F O R M AT I O N regarding
membership or benefits, please see
www.usenix.org/membership/
or contact office@usenix.org.
Phone: 510-528-8649

“ SAY H E L LO, G R AC I E .”

“ H E L LO, G R AC I E .”.

Memo to sage-members mailing list
from SAGE’s new leader, sent on De-
cember 30, 2005

S T R A T A R .
C H A L U P

strata@sage.org

Hi folks,

As you’ve probably heard, I’ve now
been the SAGE Programs Manager
for USENIX for an entire week. . . .

I’ve got two working mantras in
this job:

1) It’s a community, not a contest.

2) What have we done for you
lately?

I squirreled away a lot of ideas
from the old SAGE Exec brain-
storming sessions we had way
back when I was a SAGE Exec. I’m
in the process of going over those
so I can ask y’all, the [SAGE]
members, what are priorities for
you. I’ve heard some opinions on
that already, but more doesn’t hurt.
Some things people want seem to
be competently underway by
LOPSA [the League of Professional
System Administrators]. Some still
make sense for SAGE to imple-
ment as a convenience for its
members, and others might not.
There are lots of opportunities for
cooperation, and I’ll be talking to
Tom Perrine and other LOPSA
Board folks about this in 2006. . . .

cheers,
Strata
BayLISA member since 1996
USENIX and SAGE member since
1997

LOPSA member since Dec. 2005

[Please let us know what you’d
like to see USENIX provide for
system administrators. Send your
comments and suggestions con-
cerning benefits/programs/direc-
tion to ideas@sage.org.]

S U M M A RY O F U S E N I X

B OA R D O F D I R E C TO R S

M E E TI N G S A N D AC TI O N S

T A R A M U L L I G A N A N D
E L L I E Y O U N G

The following is a summary of
the actions taken by the USENIX
Board of Directors from October
21, 2005, to December 20, 2005.

N EW CO N F E R E N C E S

First USENIX Security-Verified
Electronic Voting Workshop: This
event will be held in conjunction
with the USENIX Security Sympo-
sium in August 2006. The work-
shop will focus on issues sur-
rounding functionality and
security of electronic voting. Ron
Rivest will serve as program chair.

HotAC: USENIX will co-sponsor,
with IEEE, the First Workshop on
Hot Topics in Autonomic Comput-
ing (HotAC ’06), which will focus
on the complexity of large-scale
systems (http://www.aqualab.cs
.northwestern.edu/HotACI/). Alva
Couch will serve as board liaison.

F I N A N C E S

The Board approved the first draft
budget for 2006. It does not in-
clude any raises in member dues
or conference registration fees.
The following requests for funds
were approved:

n Sponsorship of the Comput-
ing Research Association’s
Snowbird Conference at the
$3,500 level.

n John Lions Endowed Chair
in Computer Science: This
endowment has been estab-
lished at the University of
New South Wales, Australia,
to honor a pioneer in UNIX
and computer science. The
endowment is presently
funded for twenty years. In
order to assist with funding
that will make it permanent,
USENIX will match funds
donated by members up to a
total of $250,000 during
2006. Members and the

community at large will be
asked to donate.

n Standards Activities:
$54,000 will be allocated in
2006 to support the devel-
opment of international
standards in computing.
Specific projects planned in
the upcoming year include a
C++ POSIX binding project,
new library interfaces, and
continuing Linux Standards
Base work.

n The USA Computing
Olympiad (USACO) sup-
ports pre-college students
who have shown an interest
in and promise for careers in
computer science. USENIX
will continue its support
with a $15,000 grant.

SAG E

In 2005, despite a lengthy negotia-
tion that consumed hundreds of
volunteer and staff hours from
representatives of both USENIX
and the SAGE Inc. organization,
now called The League of Profes-
sional System Administrators
(LOPSA), about possible terms for
having the new group become
SAGE, no workable agreement
emerged. Therefore the USENIX
Board feels that it is in the best in-
terests of USENIX and LOPSA to
focus our respective efforts on
building our own organizations for
the good of our members. We do
not believe that any continued ne-
gotiations on funding of LOPSA by
USENIX under the present frame-
work would be worthwhile, and
any new proposal must ensure that
it addresses the issues regarding
asset transfer and funding previ-
ously raised by the Board. It is gen-
erally felt that any new proposal
would have to be substantially dif-
ferent in order to satisfactorily ad-
dress these issues.

The USENIX Board welcomes pro-
posals for cooperation between
LOPSA and USENIX where it
makes sense to both organizations.

; LO G I N : F E B R UA RY 2 0 0 6 U S E N I X N OTE S 91

USENIX continues to be commit-
ted to serving its SAGE members
and the system administration
community both now and in the
future. The USENIX Board will be
actively looking at ways to refine
our services for all our members,
and your input to us is an impor-
tant part of this process.

Members wanting to give the
Board guidance about shaping fu-
ture programs for system adminis-
trators should send their sugges-
tions to suggestions@sage.org.

The USENIX Board formally
thanked Rob Kolstad for his dedi-

cated service to USENIX and
SAGE over the years. (He resigned
from his part-time role in SAGE in
December 2005.) Strata R. Chalup
has accepted the position of SAGE
Programs Manager. See her intro-
ductory message on p. 91.

COM M IT TE E S

The SAGE Committee—Couch
(chair), Jones, McKusick, Young—
will oversee new services and ben-
efits for SAGE members. The
Audit Committee—McKusick,
Ts’o, Geer, Young—will oversee
the activities of the CPA firm that

has been engaged to conduct the
annual audit of USENIX financial
statements in the spring of 2006,
mandated by new legislation by
the state of California.

N EXT M E E TI N G S

The USENIX Board agreed to hold
several strategic meetings in 2006
to seek new topics for conferences
and ideas for expanding member
services. It will meet on April 1 in
Berkeley, CA, on May 8 in San
Jose, CA, and on May 31 in
Boston, MA.

92 ; L O G I N : V O L . 3 1 , N O . 1

NEW!

;login: Surveys
To Help Us Meet Your Needs

;login: is the benefit you, the members of USENIX, have rated

most highly. Please help us make this magazine even better.

Every issue of ;login: online now offers a brief survey, for you to

provide feedback on the articles in ;login: . Have ideas about au-

thors we should—or shouldn’t—include, or topics you’d like to

see covered? Let us know. See

http://www.usenix.org/publications/login/2006-02/

or go directly to the survey at

https://db.usenix.org/cgi-bin/loginpolls/feb06login/survey.cgi

Important Dates
Submissions due: Thursday, April 20, 2006, 0400 UTC
Notification of acceptance: Thursday, May 18, 2006
Final papers due: Tuesday, June 6, 2006

Conference Organizers
Program Chair
Steven M. Bellovin, Columbia University

Program Committee
Harald Alvestrand, Cisco
Dan Boneh, Stanford University
Jon Crowcroft, Cambridge University
Anja Feldmann, Technische Universität München
John Ioannidis, Columbia University
Balachander Krishnamurthy, AT&T Labs—Research
Chris Morrow, UUnet
Vern Paxson, ICIR/ICSI
Niels Provos, Google
Eric Rescorla, Network Resonance
Tara Whalen, Dalhousie University

Steering Committee
Clem Cole, Ammasso, USENIX liaison
Dina Katabi, Massachusetts Institute of Technology
Balachander Krishnamurthy, AT&T Labs—Research
Ellie Young, USENIX

Overview
The Internet is under increasing attack, with unwanted
traffic in the form of spam, distributed denial of service,
viruses, worms, etc. Unwanted traffic on the Internet
has manifested itself as attacks via many protocols (IP,
TCP, DNS, BGP, and HTTP) and popular applications
(e.g., email, Web). Often these attacks have a direct eco-
nomic motivation. SRUTI seeks research on the
unwanted traffic problem that looks across the protocol
stack, examines attack commonalities, and investigates
how various solutions interact and whether they can
be combined to increase security. Original research,
promising ideas, and steps toward practical solutions at

all levels are sought. We look for ideas in networking
and systems, and insights from other areas such as data-
bases, data mining, and economics. SRUTI aims to
bring academic and industrial research communities
together with those who face the problems at the opera-
tional level. SRUTI is a one-and-a-half-day event. Each
session chair will play the role of a discussant, pre-
senting a summary of the papers in the session and a
state-of-the-art synopsis of the topic. The workshop will
be highly interactive, with substantial time devoted to
questions and answers. Submissions must contribute to
improving the current understanding of unwanted traffic
and/or suggestions for reducing it. All submissions to
SRUTI ’06 will be via the Web submission form, com-
ing soon to http://www.usenix.org/sruti06/cfp. The Pro-
ceedings of the workshop will be published. To ensure a
productive workshop environment, attendance will be
by invitation and/or acceptance of paper submission.

Topics
Relevant topics include:

uu Architectural solutions to the unwanted traffic
problem

uu Scientific assessment of the spread and danger of
the attacks

uu Practical countermeasures to various aspects of
unwanted traffic (spam, DoS, worms, etc.)

uu Cross-layer solutions and solutions to combination
attacks

uu Attacks on emerging technologies (e.g., sensors,
VOIP, PDAs) and their countermeasures

uu Privacy and anonymity
uu Intrusion avoidance, detection, and response
uu Viruses, worms, and other malicious code
uu Analysis of protocols and systems vulnerabilities
uu Handling errors/misconfigurations that might lead to

unwanted traffic
uu Attacks on specific distributed systems (e.g., P2P)

or network technologies (e.g., wireless networks)
uu Data mining with application to unwanted traffic
uu New types of solutions: incentive-based, economic,

statistical, collaborative, etc.

July 6–7, 2006 San Jose, CA, USA

Announcement and Call for Papers

2nd Workshop on Steps to Reducing Unwanted
Traffic on the Internet (SRUTI ’06)
Sponsored by the USENIX Association

http://www.usenix.org/sruti06/cfp

Paper Submissions
All submissions must be in English and must include a
title and the authors’ names and affiliations. Submis-
sions should be no more than six (6) 8.5" x 11" pages
long and must be formatted in 2 columns, using 10
point Times Roman type on 12 point leading, in a text
block of 6.5" by 9". Papers should be submitted in PDF
or Postscript only.

PDF users should use “Type 1” fonts instead of
“Type 3,” and should embed and subset all fonts. You
can find instructions on how to do this at https://
www.fastlane.nsf.gov/documents/pdf_create/pdfcreate_
01.jsp and http://ismir2005.ismir.net/pdf.html.

Each submission should have a contact author who
should provide full contact information (email, phone,
fax, mailing address). One author of each accepted
paper will be required to present the work at the work-
shop.

Authors must submit their papers by 0400 UTC,
Thursday, April 20, 2006. This is a hard deadline—no
extensions will be given. Final papers are due on Tues-
day, June 6, 2006, to be included in the workshop Pro-
ceedings.

Simultaneous submission of the same work to mul-
tiple venues, submission of previously published work,
and plagiarism constitute dishonesty or fraud. USENIX,
like other scientific and technical conferences and jour-
nals, prohibits these practices and may, on the recom-
mendation of a program chair, take action against
authors who have committed them. In some cases, pro-
gram committees may share information about sub-
mitted papers with other conference chairs and journal

editors to ensure the integrity of papers under consider-
ation. If a violation of these principles is found, sanc-
tions may include, but are not limited to, barring the
authors from submitting to or participating in USENIX
conferences for a set period, contacting the authors’
institutions, and publicizing the details of the case.

Authors uncertain whether their submission meets
USENIX’s guidelines should contact the program chair
at sruti06chair@usenix.org or the USENIX office,
submissionspolicy@usenix.org.

Accepted material may not be published in other
conferences or journals for one year from the date of
acceptance by USENIX. Papers accompanied by
nondisclosure agreement forms will not be read or
reviewed. All submissions will be held in confidence
prior to publication of the technical program, both as a
matter of policy and in accordance with the U.S. Copy-
right Act of 1976.

How to Submit
Authors are required to submit papers by 0400 UTC,
Thursday, April 20, 2006. This is a hard deadline—no
extensions will be given. All submissions to SRUTI ’06
must be electronic, in PDF or PostScript, via a Web
form, which will be available at http://www.usenix.org
/sruti06/cfp/.

Authors will be notified of acceptance decisions via
email by Thursday, May 18, 2006. If you do not
receive notification by that date, contact the program
chair at sruti06chair@usenix.org.

Last Updated: 1/9/06

Important Dates
Paper submissions due: April 24, 2006
Submissions acknowledged: April 28, 2006
Notification of acceptance: June 30, 2006
Papers due for shepherding: Mid-August 2006
Final papers due: September 5, 2006

Conference Organizers
Program Co-Chairs
Brian Bershad, University of Washington
Jeff Mogul, Hewlett-Packard Labs

Program Committee
Martín Abadi, University of California, Santa Cruz
Brad Calder, University of California, San Diego
Brad Chen, Intel Corporation
Peter Druschel, Max Planck Institute for Software

Systems
Garth Gibson, Carnegie Mellon University and Panasas
Derek McAuley, Intel Corporation
Rob Pike, Google Inc.
Mema Roussopoulos, Harvard University
Dawn Song, Carnegie Mellon University
Chandu Thekkath, Microsoft Research
Robbert van Renesse, Cornell University
Jim Waldo, Sun Microsystems, Inc.
Bill Weihl

Steering Committee
Eric Brewer, University of California, Berkeley
Peter Chen, University of Michigan, Ann Arbor
Mike Jones, Microsoft
Ellie Young, USENIX

Overview
The seventh OSDI seeks to present innovative, exciting
work in the systems area. OSDI brings together profes-
sionals from academic and industrial backgrounds in

what has become a premier forum for discussing the
design, implementation, and implications of systems
software.

The OSDI Symposium emphasizes both innovative
research and quantified or illuminating experience.
OSDI takes a broad view of the systems area and
solicits contributions from many fields of systems
practice, including, but not limited to, operating sys-
tems, file and storage systems, distributed systems,
mobile systems, secure systems, embedded systems,
networking as it relates to operating systems, and the
interaction of hardware and software development. We
particularly encourage contributions containing highly
original ideas, new approaches, and/or groundbreaking
results.

Submissions that are deemed too far from these
topics may be rejected without a full review.

Submitting a Paper
A good paper will demonstrate that the authors:

uu are attacking a significant problem,
uu have devised an interesting, compelling solution,
uu have demonstrated the practicality and benefits of

the solution,
uu have drawn appropriate conclusions,
uu have clearly described what they have done, and
uu have clearly articulated the advances beyond pre-

vious work.
Submissions will be judged on originality, signifi-

cance, interest, clarity, relevance, and correctness.
Accepted papers will be shepherded through an editorial
review process by a member of the program committee.

Papers accompanied by nondisclosure agreement
forms are not acceptable and will be returned to the
author(s) unread. All submissions are held in the highest
confidentiality prior to publication in the Proceedings,
both as a matter of policy and in accord with the U.S.
Copyright Act of 1976.

November 6–8, 2006 Seattle, WA, USA

Announcement and Call for Papers

7th Symposium on Operating Systems Design and
Implementation (OSDI ’06)
Sponsored by USENIX, in cooperation with ACM SIGOPS

http://www.usenix.org/osdi06

In addition to citing relevant, published work,
authors should relate their OSDI submissions to rele-
vant submissions of their own that are simultaneously
under review for other venues.

Simultaneous submission of the same work to mul-
tiple venues, submission of previously published work,
and plagiarism constitute dishonesty or fraud. USENIX,
like other scientific and technical conferences and jour-
nals, prohibits these practices and may, on the recom-
mendation of a program chair, take action against
authors who have committed them. In some cases, pro-
gram committees may share information about sub-
mitted papers with other conference chairs and journal
editors to ensure the integrity of papers under consider-
ation. If a violation of these principles is found, sanc-
tions may include, but are not limited to, barring the
authors from submitting to or participating in USENIX
conferences for a set period, contacting the authors’
institutions, and publicizing the details of the case.

Authors uncertain whether their submission meets
USENIX’s guidelines should contact the program
chairs, osdi06chairs@usenix.org, or the USENIX
office, submissionspolicy@usenix.org.

Authors of accepted papers will be expected to pro-
vide both PDF and HTML versions of their paper, for
inclusion in the Web and CD-ROM versions of the Pro-
ceedings. Authors of accepted papers will also be
expected to sign a Consent Form, agreeing not to pub-
lish their papers elsewhere within 12 months of accep-
tance, except for electronic access as permitted in the
Consent Form. One author per paper will receive a reg-
istration discount of $200. USENIX will offer a com-
plimentary registration upon request.

Deadline and Submission Instructions
Authors are required to submit full papers by 9:00 p.m.
PDT on April 24, 2006. This is a hard deadline—no
extensions will be given.

Submitted papers must be no longer than 14 single-
spaced 8.5" x 11" pages, including figures, tables, and
references, using 10 point type on 12 point (single-
spaced) leading, within a text block 6.5" wide x 9"
deep. Papers not meeting these criteria will be rejected
without review, and no deadline extensions will be
granted for reformatting. Pages should be numbered,
and figures and tables should be legible in black and
white, without requiring magnification. Papers so short

as to be considered “extended abstracts” will not
receive full consideration.

Papers must be in PDF format and must be sub-
mitted via the Web submission form, which will be
available on the Call for Papers Web site, http://www.
usenix.org/osdi06/cfp.

The title and author name(s) should appear on the
first page of the submitted paper. (Reviewing is not
blind.)

For more details on the submission process, authors
should consult the detailed online submission guide-
lines at http://www.usenix.org/events/osdi06/cfp
/guidelines.html.

All submissions will be acknowledged by April 28,
2006. If your submission is not acknowledged by this
date, please contact the program chairs promptly at
osdi06chairs@usenix.org.

Outstanding Paper Awards
The program committee will, at its discretion, give out
awards for outstanding papers. Papers of particular
merit will be forwarded to ACM Transactions on Com-
puter Systems for possible publication in a special
issue.

Work-in-Progress Reports
Are you doing new, interesting work that has not been
previously presented and that is still in too early a
phase for publication? The OSDI attendees could pro-
vide valuable feedback to you. We are particularly
interested in the presentation of student work. Details
on submitting Work-in-Progress session proposals will
be made available on the Symposium Web site by July
2006.

Poster Session
We plan to hold a poster session in conjunction with a
social event at the Symposium. Details on submitting
posters for review will be made available on the Sym-
posium Web site by July 2006.

Registration Materials
Complete program and registration information will be
available in August 2006 on the conference Web site.
The information will be in both HTML and a printable
PDF file. If you would like to receive the latest
USENIX conference information, please join our
mailing list: http://www.usenix.org/about/mailing.html.

Rev. 9/19/05

Save the Date!

3rd Symposium on Networked Systems Design & Implementation
May 8–10, 2006, San Jose, CA

http://www.usenix.org/events/nsdi06

The NSDI symposium focuses on the design principles of large-scale networks and distrib-
uted systems. Join researchers from across the networking and systems community—
including computer networking, distributed systems, and operating systems—in fostering
cross-disciplinary approaches and addressing shared research challenges.

Save the Date!
15th USENIX Security Symposium

July 31–August 4, 2006, Vancouver, B.C., Canada
http://www.usenix.org/events/sec06

Join us in Vancouver, B.C., Canada, July 31–August 4, 2006, for the 15th USENIX Security
Symposium. The USENIX Security Symposium brings together researchers, practitioners,
system administrators, system programmers, and others interested in the latest advances
in the security of computer systems and networks.

USENIX Association
2560 Ninth Street, Suite 215
Berkeley, CA 94710

POSTMASTER
Send Address Changes to ;login:
2560 Ninth Street, Suite 215
Berkeley, CA 94710

PERIODICALS POSTAGE
PAID

AT BERKELEY, CALIFORNIA
AND ADDITIONAL OFFICES

Join us in Boston for 5 days of groundbreaking
research and cutting-edge practices in a wide
variety of technologies and environments.
Don’t miss out on:
• Extensive Training Program featuring

expert-led tutorials
• New! Systems Practice & Experience Track

(formerly the General Session Refereed
Papers Track)

• Invited Talks by industry leaders
• And more
Please note: USENIX ’06 runs Tuesday–Saturday.

Check out
the Web site

for more information!
www.usenix.org/usenix06

www.usenix.org/usenix06

