

Happy New Year!

I know, you’re thinking: but the year is already a month old. I’m writing this, however,
on January 2, so as they say on ABC: “It’s new to me.”

First, a word from a sponsor. ;login: has a short new column: “USENIX Needs You” (see
page 86). This column lists a myriad of volunteer (and remunerated) opportunities
within the USENIX Association. Too often these opportunities are passed by word of
mouth to “insiders” who then volunteer – while those who are waiting to “increase their
visibility” never get a chance to join the elite set of USENIX volunteers. Check out the
listings and see if any of the options appeals to you!

The year looks to be shaping up to be an interesting one:

■ Digital music sharing (and its peer-to-peer cousin) should shake out this year. I’ll
be interested to see how that all turns out. I fear that each record label thinks there’s
enough internet bandwidth to send real-time music (which can not be saved to
disk) to its “customers.” I’m not sure there’s enough bandwidth given the current
cost-structure for the end-users.

■ Intel’s new architecture (the IA-64, aka Itanium) should be ready for consumer use.
Some of the trade magazines are expressing concern already. If things were not to
work out, the new architecture would surely prove to be one of the larger R&D
losses (although the Iridium satellite telephone project didn’t yield the hoped-for
returns, either).

■ Maybe this will be the year of Java. Or Artificial Intelligence. Or video-on-demand.
Or WINE. Maybe not.

■ What will happen in the arena of security? I fear that things will continue to get
worse in an ever-escalating war between crackers and site-owners where the penalty
for crackers failing is relatively low (for them) and the penalty for crackers succeed-
ing is very high for those who are penetrated/denied/etc. How will the war be
brought to a close?

■ I don’t see the bottom dropping of out high-tech employment as some pundits pre-
dict. Competent purveyors of our technologies should always be able to find good
employment (though potentially not as a 7% shareholder in a multi-billion dollar
startup).

■ What are we going to do with all the storage? I believe everyone’s disk capacity will
increase by 1.5-2.0x this year. Backups will be more challenging than ever (as will all
the implications of having so much data available for mining).

■ Will corporate computing ever re-centralize? Managing millions of non-standard-
ized desktops in organizations is proving to be ever more expensive; many institu-
tions are requiring total standardization on the desktop. Thin clients, “timesharing,”
and application servers haven’t hit really big yet (I think). When will every-day
users tire of administering their own systems?

Finally, I am going to take on a quest this year. I’m going to try to get people to say “no”
when they mean “no.” I spend way too much time listening to correspondents, friends,
subordinates, superiors, etc. trying to find new ways to let me down gently. “I’d really
like to work on that and it’s a really great project and I’ve thought about it for years and
it’s something that seems really important, but . . .” I am all for courtesy, and I even buy
into the social lubrication that is implied by certain aspects of “political correctness.”
But when hearing “no” takes a significant amount of time compared to the actual per-
formance of a project, the negative reply starts to feel fairly expensive.

I hope the New Year brings you tidings of happiness, peace, and prosperity. Despite the
article on Slashdot about all the great inventions appearing in the first half of the 20th
century, our technology continues to march along rather quickly and thus be, near as I
can tell, one of the most exciting places to work in all of our human endeavors.

motd

2

by Rob Kolstad

Dr. Rob Kolstad has long

served as editor of

;login:. He is also head

coach of the USENIX-

sponsored USA Comput-

ing Olympiad.

<kolstad@usenix.org>

Vol. 26, No. 1 ;login:

3February 2001 ;login:

Beware of What You Wish For
I was first introduced to networking as a student at UC Berkeley. I vividly remember sit-
ting in the terminal room on the west end of campus complaining out loud that I’d like
to be able to get help from my CS TA up on the east corner of campus. The person next
to me suggested I try “talk”ing to my TA. I could tell by the inflection in his voice that he
didn’t mean a face-face conversation, but I wondered what other mode of communica-
tion he was suggesting. He proceeded to walk me through using the UNIX who com-
mand to see if my TA was online and then the talk command to initiate an electronic
conversation. I was amazed. Of course, I did the typical newbie-thing and assumed my
TA was just as thrilled with this “new” method of communication as I was. After a half
dozen questions via talk he suggested I come see him and gave me the “over and out”
salutation. It didn’t matter that I had been disconnected by the TA; I had been intro-
duced to a whole new world of communication possibilities, and just like with elec-
tronic mail, I was hooked.

As I began my career in computers, I remained as enthusiastic about electronic commu-
nication as I was that day I discovered talk. I evangelized about the fledgling Internet to
family members and friends, told all how neat I thought it was. I was convinced that
everyone would think it was as great as I did. I always celebrated an addition to my list
of email-capable friends since, from my perspective, electronic mail is often the most
efficient form of communication as it virtually eliminates telephone tag. For example,
since my brother lives overseas, having him online was particularly convenient. It didn’t
take my parents long to recognize that email was far easier and more consistently reli-
able than their traditional options of telephone, telegraph, or paper mail.

Professionally, as well as personally, I wanted to see the Internet grow. I was always eager
to meet others who also loved the technology that made it easier to “talk.” I sought out
organizations that encouraged information exchange. The free exchange of technical
knowledge among professionals increased my love of networking. I envisioned a day
when “everyone” would be connected and there would be huge innovations in informa-
tion sharing as well as personal communication. The advent of the World Wide Web
and e-commerce, which served as the catalyst for getting folks online, brought about my
wildest dreams. It seems everyone is on the Net now. I keep in touch via the Internet
with people who have no professional association with computers. My kids all have
accounts, I meet people I share hobbies with, I purchase items – why, even my parents
got online this year!

Sadly, the online craze may have ushered in greater personal communications, but
increasingly I’ve seen an unwillingness to share professional information. Often when I
approach colleagues to write about their organization for ;login: they are restricted from
sharing that information, citing how it could somehow reveal trade secrets. This has
been the case with Computer Use and Security policies for years. No one wants to rein-
vent the wheel in this area, but it seems it’s next to impossible to get organizations to
share these. It’s hard for me to imagine Computer Use policies revealing the corporate
jewels. This information blackout even seems to impair peer relationships that could
help organizations. I know of more than one prominent Internet company that refused
to compare notes with their peers, even when they were under attack by the same crack-
ers. Seems counter-productive to me.

Communication and information sharing is at the heart of why I like computers, or
more specifically, why I like networks. Now that it’s gone mainstream, however, some of
the information exchange that it fostered seems to have gone with it. Beware of what
you wish for.

ED
IT

O
RI

A
LS

apropos
by Tina
Darmohray

Tina Darmohray, co-

editor of ;login:, is a

computer security and

networking consultant.

She was a founding

member of SAGE.

<tmd@sage.org>

letters to the editor

Vol. 26, No. 1 ;login:

EDITORIAL STAFF

EDITORS

Tina Darmohray <tmd@sage.org>
Rob Kolstad <kolstad@usenix.org>

STANDARDS REPORT EDITOR

David Blackwood <dave@usenix.org>

MANAGING EDITOR

Alain Hénon <ah@usenix.org>

COPY EDITOR

Steve Gilmartin

TYPESETTER

Festina Lente

PROOFREADER

Annelise Zamula

MEMBERSHIP, PUBLICATIONS, AND

CONFERENCES

USENIX Association

2560 Ninth Street, Suite 215

Berkeley, CA 94710

Phone: +1 510 528 8649

FAX: +1 510 548 5738

Email: <office@usenix.org>

<conference@usenix.org>

<login@usenix.org>

WWW: <http://www.usenix.org>

4

ABOUT MASHEY’S FILESYSTEM TALK

From Toby Everett
<tua@everettak.org>
Someone else may have caught this
already, but I believe the XFS throughput
record is 7GB/second for reading from a
single file.

From John Mashey:

In ;login Vol. 15, No. 6, page 14, Kevin E.
Fu did a nice job of summarizing SGI’s
XFS talk, but I did notice one typo, where
Kevin wrote: “This allows XFS to achieve
a throughput of 7MB/second when read-
ing from a single file on an SGI Origin
2000 system.”

Of course, the real number of 7GB/sec is
a bit more noteworthy, albeit insufficient
for some customers, of which at least one
needed about 15GB/sec. This is hard
work.

Editor’s Reply: Yes, I erroneously fixed
this in editing. My apologies to all who
thought 7MB/second was not impressive.
7GB/sec certainly is!

RK

5February 2001 ;login:

This issue’s reports are on the 4th
Annual Showcase & Conference,
(ALS 2000).

OUR THANKS TO THE SUMMARIZERS:

FOR ALS:

Peter Salus
Vikram V. Asrani
Laurel Fan
Thomas Naughton
Zhedong Yu

conference reports
Coar’s description of the HTTP project
was more illuminating, involving XML
and Djakarta (=Apache-Java).

Last year there was an interesting ALS
session on Beowulf, so, on Friday, I trot-
ted along to hear Jim Reese (of Google)
talk about Linux clustering. He referred
to his talk as “Scaling the Web: An
Overview of Google, A Linux Cluster for
Fun and Profit.”

Google has waxed tremendously. In June
1999 they had 500 CPU and half a mil-

lion hits daily.
In October
2000 (16
months later)
it was 6000
CPU and 50M
hits/day.

Google uses
cheap, off-the-
shelf, PC hard-

ware in which they replicate everything
on there of Exodus’ sites: Santa Clara and
Sunnyvale (which are connected by
OC12 lines) and Herndon, VA (which is
connected by 2Gb lines to the West
Coast. They run 80 machine clusters with
four 1Gb uplinks per cluster. All 100%
Linux.

They get 100 queries/sec.; have 500TB of
storage; and tens of GB/sec of I/O.

Google runs redundancy like crazy. I
wrote down lots more, but it was very
impressive.

4th Annual Linux Showcase
& Conference, Atlanta
ATLANTA, GEORGIA, USA
OCTOBER 10–14, 2000
GOODBYE, ATLANTA
by Peter H. Salus

<peter@matrix.net>

The Atlanta Linux Showcase was founded
in 1996 by the Atlanta Linux Enthusiasts,
which had been founded in December
1994. It grew too fast and this past Octo-
ber was run by the USENIX Association,
rather than by the amateurs that had
made it such a success in 1997, 1998, and
1999.

I was the dinner entertainment in 1998
and in 1999, so I guess I can get away
with that rather dour beginning.

I enjoyed myself at ALS 4, but it wasn’t
the same. And it will be yet further trans-
formed in 2001, when it moves from
Atlanta to Oakland. ALS 4, in fact, was
the Annual Linux Showcase, no longer
Atlanta. . . . Sic transit gloria mundi.

The show floor, as expected, was bigger
and better. There were plenty of really
fine folks to talk to. Several of the invited
talks (which I’ll get to in a paragraph or
so) were very interesting. But the tone
was different and it will be more different
in Oakland.

USENIX for nearly a decade was an ama-
teur organization. It has changed. But
even though I can generate nostalgia, the
change and professionalization have been
good.

Ken Coar, Director and VP of the Apache
Software Foundation, spoke about life,
Apache, and Open Source development
on Thursday, 12 October. His descrip-
tions of how Apache development works,
what’s hot right now, and software licens-
ing were interesting, but somehow just
didn’t fire up the audience (nor me). It
may have been the general “preaching to
the choir” aspect. He did remark that the
Apache license was “BSD-ish.”

Ken Coar

Jim Reese

HACK LINUX TRACK

REFEREED PAPERS

SESSION: KERNEL PERFORMANCE

Summarized by Laurel Fan

ANALYZING THE OVERLOAD BEHAVIOR OF A

SIMPLE WEB SERVER

Niels Provos, University of Michigan;

Chuck Lever, AOL-Netscape; Stephen

Tweedie, Red Hat

Niels Provos analyzed phhttpd, a static
Web server using a few different signal
handling techniques.

Signal-driven I/O is traditionally done
with the signal SIGIO, which is raised
when I/O events (such as data received,
data sent, connection closed) occur. With
the siginfo_t struct and sigwaitinfo()
syscall, information about what type of
event occurred causes the signal. How-
ever, this doesn’t work well with servers
with multiple connections, since there is
no information about which socket was
involved.

POSIX Real-Time signals (RT signals) are
an improvement over SIGIO in many
ways. First, they allow a signal to be asso-
ciated with a file descriptor. Second, sig-
nals are queued in the kernel, allowing
true event-driven applications. However,
the queue is fixed size and can overflow,
in which case it falls back to SIGIO until
the application clears the queue. The fall-
back is invoked by a SIGIO signal; the
recovery process, however, uses poll() or
select().

phhttpd is a static content Web server that
uses RT signals. It is multi-threaded, with
multiple threads that each use sigwaitinfo
to process events one at a time. Load bal-
ancing is done by reassigning the listener
socket to the next thread every time a
connection is accepted. (This is possible
because threads in Linux have unique
pids.)

The authors implemented a new system
call, sigtimedwait4(), which allows more

6 Vol. 26, No. 1 ;login:

than one RT signal to be sent at a time,
similar to poll(). This can increase perfor-
mance by decreasing the number of sys-
tem calls and the number of passes
through the RT signal queue.

To test the performance of sigtimedwait4,
phhttpd was modified to use this and
compared to the unmodified phhttpd.
The overload behavior, the behavior of
the server under the load of a large num-
ber of clients, was examined.

After a certain request rate, the perfor-
mance of phhttpd, as measured by the
reply rate, decreases dramatically. They
found that merely switching to sigtimed-
wait4() gave only a small improvement,
showing that the system call and signal
handling are only a small part of the
problem.

Another benefit of sigtimedwait4() is the
additional information available. When a
server is overloaded, it is too busy accept-
ing new requests to take care of the old
ones. With sigtimedwait4(), the server can
detect when it is being overloaded and
drop new connections in favor of com-
pleting old requests.

With this new enhancement, the reply
rate no longer showed the steep decline
when in overload. Instead, the reply rate
leveled off and then decreased slowly.
Another interesting result was that drop-
ping connections actually decreased the
error rate.

Further information is available at
<http://www.citi.umich.edu/projects/linux-scalability>.

LINUX KERNEL HASH TABLE BEHAVIOR:
ANALYSIS AND IMPROVEMENTS

Chuck Lever, AOL Netscape

Chuck Lever started work on this project
while working on the Linux Scalability
Project. Hash tables are a commonly used
data structure in the Linux kernel
because of their fast average insertion
and look-up times, compared with lists
and trees. Performance of the kernel
depends on the performance of these

hash tables. Lever wanted to know how
the performance of these hash tables
scales when moving from smaller mem-
ory systems to machines with large physi-
cal memory. He cited an example in
which a particular hash function unex-
pectedly broke down (placed all items in
only a few buckets) when adding a large
number of items to the table.

Can one increase the size of a given hash
table and expect the hash function to
continue to work as designed? Lever
examined the performance of hash tables
used by the page cache, buffer cache,
directory entry cache, and inode cache in
the Linux 2.2.5 kernel. Using kernel
instrumentation and the SPEC SDM
benchmark, he was able to measure hash
table behavior while controlling the
offered load on the test system.

Experimental results showed that the
hash function works well in the page,
inode, and dentry caches, and scales well
as hash table sizes increase. The buffer
cache hash function was not sufficient to
randomize the key, and long hash chains
resulted. All hash tables in the 2.2.5 ker-
nel were too small for large memory sys-
tems. The inode hash table was so small
that the hash chains averaged more than
200 entries each.

Later versions of the Linux kernel imple-
ment a dynamic hash table size for these
caches, based on the size of a machine’s
physical memory. Lever believes that in
most situations, the table size generated
by the Linux kernel is appropriate for
good performance.

Lever then spoke about different hash
function types. Modulus hash functions
are generally expensive because they
require a division operation. Table-driven
hash functions are not practical because
memory operations to read the tables are
more expensive than computation on
modern CPUs. Shift-add functions suf-
fice in most cases but should be checked
with real data prior to use. Multiplicative
hash functions are mostly a reasonable

http://www.citi.umich.edu/projects/linux-scalability

●

C

O
N

FE
RE

N
C

E
RE

PO
RT

Schoice because they require only a few
instructions, and are generally as good as
modulus hash functions at randomizing
the input data.

In conclusion, Lever mentioned that
dynamic cache sizes provide good scala-
bility. Keeping cache size small and rele-
vant helps. Performance of hash
functions depends on the input data set.

Further information is available at
<http://www.citi.umich.edu/projects/linux-scalability>.

DYNAMIC BUFFER CACHE MANAGEMENT

SCHEME BASED ON SIMPLE AND AGGRESSIVE

PREFETCHING

H. Seok Jeon and Sam H. Noh, Hong-Ik

University

In this presentation, H. Seok Jeon
described his proposed dynamic buffer
cache management scheme to reduce I/O
latency while incorporating prefetching
into the replacement policy. As an
overview, Jeon spoke about the various
replacement policies described in the lit-
erature. He mentioned the three groups
of policies which incorporated prefetch-
ing: a reference history-based approach, a
hint-based approach, and a simple-
minded approach using a one block look
ahead. The LRU-OBL (one block look
ahead) policy is simple and effective and
can improve performance by up to 80%.
However, its deficiency is that 60% of the
blocks prefetched might never be used.
Jeon then proposed splitting the cache
into two partitions: a weighing room and
a waiting room. All referenced blocks are
to be placed in the weighing room, while
the waiting room is used for the
prefetched blocks. Since cache sizes are
small, partitioning the cache could possi-
bly result in a deteriorated performance
due to the smaller cache size holding ref-
erenced blocks. Thus, it is essential to
keep the size of the waiting room mini-
mal. Jeon’s solution to this was to use a
self-adjusted room-size scheme. In the
SA-WWR scheme the size of the two par-
titions is adjusted dynamically, based
either on the reference interval for blocks

7February 2001 ;login:

or on the cache miss statistics. Enumerat-
ing the cases, Jeon explained how the
sizes of the two partitions are modified
depending on the positions of blocks i-1,i
and i+1.

Jeon then spoke about the implementa-
tion in which he modified the bread()
function in Linux to use the SA-WWR
replacement policy and in which he
added a FIFO wait queue. Experimental
results by Jeon show that the SA-WWR
scheme provided an improved perfor-
mance as compared to both the Linux
replacement policy and the LRU-OBL
policy for replacement. He also consid-
ered multiple performances with CPU-
bound processes before concluding that
SA-WWR does provide an improved
performance.

At the end, there was a question by
Stephen Tweedie, expressing his surprise
at the improved performance obtained
by the experimental results, explaining
that the bread() function was not the
function used for sequential file access.

For more information, contact the pre-
senter at <hsjeon@cs.hongik.ac.kr>.

SESSION: XFREE86

Summarized by Zhedong Yu

TRANSLUCENT WINDOWS IN X

Keith Packard, Xfree86 Core Team, SuSE

Inc.

In X Window System, the core protocol
defines which portions of each window
are visible and which are not when over-
lapping happens. But the overlapping
windows are always completely opaque.
There are many techniques to simulate
the non-opaque windows in controlled
environments. But they could not be
used in a general way to deal with
translucency. Keith Packard talked about
a general way to solve the problem by
assigning alpha values for pixels in
occluding windows. Thus the occluded
region and the occluding region can be
blended. This window-level composting

extension will be greatly helpful for
application development.

DEVELOPING DRIVERS AND EXTENSIONS FOR

XFREE86-4.X

Dirk Hohndel, SuSE Linus AG; Robin

Cutshaw, Intercore

Since XFree86 is the standard implemen-
tation of X Window System for PC UNIX
systems, it’s very important to be familiar
with it and know how to develop drivers
and extensions for XFree86.

In their paper, Dirk Hohndel and Robin
Cutshaw analyzed the problems of previ-
ous XFree86 design: lack of a real design
document; the device-dependent X (ddx)
part was largely untouched and undocu-
mented; the problematic assumption that
the video card of PC should be VGA-
compatible; and the logistical problem of
one driver binary for one OS Device

Then, “Module Loading Architecture”
was introduced to make XFree86 more
extensible, allowing just the modified/
new driver (or extension) module to be
provided instead of the full X server.
Thus all the OSs on the same hardware
architecture can share the same type of
modules as well.

Since XFree86-4.x is well documented, it
is straightforward to implement a driver.

More information can be obtained from
the XFree86 project at
<http://www.XFree86.org>.

SESSION: KERNEL PORTS

Summarized by Laurel Fan

LINUX ON THE SYSTEM/390

Adam Thornton, Sine Nomine

Associates

The System/390 is IBM’s largest main-
frame. Its strength is in I/O, rather than
CPU power, making it suited for tasks
such as Web serving. Running Linux on it
would allow users with UNIX expertise
to use the reliability and I/O power of the

4TH ANNUAL LINUX SHOWCASE & CONFERENCE ●

http://www.citi.umich.edu/projects/linux-scalability
http://www.XFree86.org

S/390 without dealing with its less desir-
able characteristics, such as EBCDIC.

One interesting feature is VM, Virtual
Machine. This allows a single S/390 to
run multiple virtual S/390s, each running
any OS, such as Linux. Using VM and
Linux S/390, a large virtual server farm
can be implemented on a single machine.
41,400 simultaneous copies of Linux
have been run in a test environment, and
3,700 copies have been run in produc-
tion.

This has many practical purposes. Multi-
ple different versions of Linux can be run
for testing or academic purposes, without
the hassle or expense of multiple
machines. ISPs or other service providers
can give each of their customers their
own virtual Linux server, without worry-
ing about customers affecting each other.
A single S/390 can have a lower total cost
of ownership than the equivalent num-
ber of stand-alone servers.

Porting to the S/390 presented several
unique issues, both because of the num-
ber of virtual machines and because of
the S/390’s unique architecture. One
issue was the timer interrupt. In Linux, a
timer interrupt fires 100 times every sec-
ond by default. This can decrease perfor-
mance significantly with many virtual
machines. Their current solution is to
decrease the frequency of the interrupt,
which has the unfortunate effect of
decreasing the responsiveness of interac-
tive applications. A good solution to this
would be for a virtual kernel to disable
timer interrupts when idle, and later
restore its time from the host kernels.

For more information, see
<http://www.linux390.com/>.

A USER-MODE PORT OF THE LINUX KERNEL

Jeff Dike

User-mode Linux is a port of the Linux
kernel that itself runs on Linux. It is a full
Linux kernel, but instead of running on
hardware, it runs on a host kernel.

8 Vol. 26, No. 1 ;login:

All devices are virtual, and most are
implemented in terms of user-level
objects. For example, disks are imple-
mented as files, and terminals are imple-
mented as xterms or ptys. The virtual
processor is implemented with the ker-
nel’s arch interface.

Processes in user-mode Linux run as
user-mode processes in the host kernel.
Syscalls are implemented using a tracing
thread which intercepts system calls and
redirects them to the user mode kernel.

A port to user mode presents many chal-
lenges and design problems, which Jeff
Dike addressed in his talk, such as con-
text switching and virtual memory.

A user-mode kernel has many applica-
tions. For example, it can be used as a
sandbox for untrusted code, debugging,
and as a Linux binary compatibility layer
for othere OSes.

While user-mode Linux is quite func-
tional, supporting kernel modules, X
clients, and networking, some work still
needs to be done, such as SMP support,
privileged instruction emulation, and
nesting.

For more information, see
<http:/user-mode-linux.sourceforge.net/>.

SESSION: POTPOURRI

Summarized by Laurel Fan

GCC 3.0: THE STATE OF THE SOURCE

Mark Mitchell and Alexander Samuel,

CodeSourcery, LLC

GCC, the GNU Compiler Collection, is
the primary compiler for GNU/Linux
and an important part of the system.
The next major release, GCC 3.0, will
include many improvements, and will
have a more rigorous quality assurance
process.

One major improvement is a standard-
ized C++. ABIGCC 3.0, the next major
release of the GNU Compiler Collection,
will include a standardized C++ ABI, a

major improvement. The ABI, applica-
tion binary interface, defines how the
object code is laid out. Because the C++
ABI has changed between GCC releases
in the past, libraries built with different
versions of GCC are incompatible. A sta-
ble ABI for 3.0 and subsequent releases
will make distribution of both free and
proprietary C++ libraries easier.

Many other C++ improvements have
also been made. Mangled names, espe-
cially for complex templates, are much
shorter, resulting in smaller object files.
Virtual bases are handled more effi-
ciently. A new, more standards-compliant
C++ standard library will be included.

The infrastructure of the compiler itself
has also been worked on. Better internal
memory management allows GCC to use
less memory. Many improvements, such
as creating a parse tree for a whole func-
tion and using flow graphs to allow
global optimization, will enable better
optimization techniques.

For more information, see
<http://gcc.gnu.org/>.

SMP SCALABILITY COMPARISONS OF LINUX

KERNELS 2.2.14 AND 2.3.99

Ray Bryant, Bill Hartner, Qi He, and

Ganesh Venkitachalam, IBM Linux Tech-

nology Center

This study compared the SMP scalability
(the performance gain from adding more
processors) of Linux kernel versions
2.2.14 and 2.3.99. At the time of the
study, these were, respectively, the newest
stable version and the newest develop-
ment version, which should have similar
performance characteristics to the 2.4
series.

Four benchmarks were used: Volano-
mark, Netperf, FSCache, and SPEC-
web99. Volanomark is a chat-room server
and client written in Java that makes
extensive use of threads and measures
scheduler and TCP/IP stack perfor-
mance. Netperf measures network
performance. FSCache measures the

http://www.linux390.com/
http://gcc.gnu.org/

●

C

O
N

FE
RE

N
C

E
RE

PO
RT

Sperformance of the file system cache.
SPECweb99 is a benchmark designed to
test a Web server by simulating clients
accessing static and dynamic content.

On all of these benchmarks, the 2.3.99
kernels showed a significant increase in
SMP scalability. Consequently, the
upcoming 2.4 kernels should have better
SMP performance than the 2.2 kernels.

SESSION: SECURITY

Summarized by Laurel Fan

ENHANCEMENTS TO THE LINUX KERNEL FOR

BLOCKING BUFFER-OVERFLOW-BASED

ATTACKS

Massimo Bernaschi, Istituto Applicazioni

del Calcolo, Italy; Emanuele Gabrielli

and Luigi V. Mancini, Universita di

Roma “La Sapienza,” Italy

Subverting privileged applications using
a buffer overflow or similar attack is a
major security problem on Linux and
other operating systems. Existing solu-
tions, such as adding bounds checking
and using a non-executable stack, require
modification of application code, break
legitimate applications, or can be
bypassed.

The objective of this approach was to
create a solution that has minimal impact
on the kernel – requiring no change or
recompilation of applications and mini-
mal performance penalty – and is easy to
set up.

The technique described here involves
making a check on an Access Control
Database (ACD) when a controlled sys-
tem call is invoked by a privileged
process. Controlled system calls, such as
open, execve, and chmod, are those that
an attacker could use to gain control of
the system.

When a system call is invoked, the ACD
entry for that particular system call is
examined. The information contained in
the ACD varies with each controlled sys-
tem call. For example, the ACD entry for

9February 2001 ;login:

execve contains information about
which executable files each privileged
process is permitted to execve, and
stored information (such as last modified
date and size) about the executable files.
A call to execve fails if either the process
does not have permission to execute the
file, or the target file has been modified
since the ACD entry was created.

This feature is implemented with a small
kernel patch, a new command to manage
the ACD, and a change to chmod. The
performance impact is limited because
the new functionality is not accessed
often: only for the controlled system calls
and never in user mode. This approach
has been shown to protect against several
buffer-overflow-based attacks.

For more information, see
<http://www.iac.rm.cnr.it/newweb/tecno/indexsecurity.htm>.

DOMAIN AND TYPE ENFORCEMENT FOR LINUX

Serge E. Hallyn and Phil Kearns, College

of William and Mary

Domain and Type Enforcement is a
method of access control for protecting
the system from a trusted user. Processes
belong to “domains,” and files belong to
“types.”

Access is controlled from domains to
types (processes of read/write/execute
/etc. files) and between domains (sending
signals and changing domains). A process
can change domains explicitly or auto-
matically by executing a file defined as an
entry point.

For example, an ftp daemon can be pre-
vented from giving up a root shell by
making the ftpd binary an entry point
into a domain that does not have permis-
sion to execute system binaries or change
domains.

Hallyn talked about his implementation
of DTE for Linux kernel 2.3.38. The DTE
policy is contained in a file which is read
read on bootup, and which contains
information about domains, types, and
permissions. This information is stored

in memory, and when a process attempts
to access a type (by calling open), access a
domain (by calling signal), or change
domains (with execve), a DTE check is
done.

There is a slight performance impact
with adding DTE to the kernel. Adding
DTE to the kernel slows performance
slightly, but for normal workloads, in
which executing files is rare, this should
be relatively insignificant.

For more information, see
<http://www.cs.wm.edu/~hallyn/dte>.

PIRANHA AUDIT: KERNEL ENHANCEMENTS AND

UTILITIES TO IMPROVE AUDIT/LOGGING

Vincenzo Cutello, Emilio Mastriani, and

Francesco Pappalardo, University of

Catania, Italy

Auditing and logging is an important
part of system security. If you can detect
an attack when it’s happening, you might
be able to stop it. Even if the attack suc-
ceeds, audit data can help you decide
what to do to prevent it from happening
in the future. Auditing is described in
TCSEC, a set of criteria for secure sys-
tems. Piranha Audit is an attempt to
meet those requirements.

One problem with existing logging sys-
tems is that in a root compromise situa-
tion, the logs can be altered to hide the
intrusion. Piranha Audit’s solution to this
is to take steps to protect the logging sys-
tem in the kernel. With Piranha, some
tasks, such as signaling the monitoring
task or editing such important files, such
as the audit log and the Piranha binaries,
would require both root access and an
additional password.

Another problem is that the audit log can
become too long and contain too much
unimportant information for a human to
read through. Piranha’s solution to this is
to provide intrusion detection tools to
analyze the logs and find attacks, either
to alert an administrator or to take action
itself.

4TH ANNUAL LINUX SHOWCASE & CONFERENCE ●

http://www.iac.rm.cnr.it/newweb/tecno/indexsecurity.htm
http://www.cs.wm.edu/~hallyn/dte

Testing has shown that Piranha Audit can
detect and prevent attacks, and does not
cause excessive performance degradation.

SESSION: KERNEL PERFORMANCE II

LOCKMETER: HIGHLY INFORMATIVE INSTRU-
MENTATION FOR SPIN LOCKS IN THE LINUX

KERNEL

Ray Bryant, IBM Linux Technology

Center; John Hawkes, SGI

Summarized by Vikram V. Asrani

Ray Bryant introduced spin locks as the
low-level synchronization primitives in
the SMP (symmetric multiprocessing)
system. The two types of spin locks are
spinlock_t and rwlock_t, the latter sup-
porting multiple read/write access. These
locks are operated upon using macros.
Bryant believes that the primary reason
for the use of Linux in the market is so
that it can be used as a server operating
system. However, vendor systems in the
variants of UNIX provide a better perfor-
mance for SMP. Thus there is a need to
improve Linux SMP performance.

Bryant described path length and lock
contention as the two main issues deter-
mining SMP performance. Path length
can be examined using profiling tools.
However, measuring lock contention was
a harder task.

The reasons are as follows: Linux has a
fast implementation for locks. Gathering
statistical information can potentially
increase the overheads, and one wants to
keep this overhead minimal. Since the
lock structures have been specifically
designed to optimize their performance
in the presence of a cache, one cannot
increase the size of the lock structure.

One way to reduce the overhead of lock
instrumentation is to store all lock statis-
tics in per-CPU data structures. This has
the advantage of not introducing addi-
tional cache traffic between processors
that would occur if there were a single
lock statistics structure shared among
CPUs. Additionally, there is no need to

10 Vol. 26, No. 1 ;login:

lock the statistics structure, since it is
only updated by one CPU.

In short, Bryant believes that the instru-
mented code should study the original
problem and not deviate to examining
the instrumented problem.

Bryant then described their solution: the
Lockmeter, which is a set of instru-
mented spin-lock routines providing cer-
tain lock usage statistics on a per call
basis. He described the implementation
of both spin locks as well as the rwlocks
using the idea of saving a hash index in
some field in the lock structure. Bryant
showed a large set of useful statistics pro-
vided by the Lockmeter. In addition, the
authors had also examined the overheads
introduced by this instrumentation. This
instrumentation increased system time
up to 20% and system throughput up to
14% (because of the larger set of instruc-
tions to be executed). Bryant mentioned
that they have examined the problem and
have gotten some results. They now need
to use the results in order to examine
why the SMP performance does not
scale; they will be continuing work on
this. The current version of Lockmeter
is available from
<http://oss.sgi.com/lockmeter>. An
updated version of the Lockmeter paper
can be found at
<http://oss.sgi.com/projects/lockmeter> or
<http://oss.software.ibm.com/developerworks/opensource/linux>.

EXTREME LINUX TRACK

SESSION: POTPOURRI

Summarized by Thomas Naughton

THE LINUX BIOS

Ronald G. Minnich, James Hendricks,

and Dale Webster, Los Alamos National

Laboratories

The session chair, Donald Becker, intro-
duced Ron Minnich and mentioned that
he was working with clusters when they
(Becker, et al.) began the Beowulf project
at CESDIS in the early 1990s. Minnich
briefly introduced several of the clusters

they currently are working with, making
note of the various manufacturers as well
as multiple BIOSes. These included Pan-
cake: 36 Compaq Photon nodes, Rock-
hopper: 128 Intel L440 GX+ SMP, and
Sarnoff: 161 various types. He explained
the current quandary regarding BIOS
and the lack of a sufficient standard. The
major vendors like Intel, DEC, Compaq,
Dell, all have different BIOSes and the
availability of specifications also varies.

Since no standard is present he discussed
a few options, one being to use a free
BIOS, but these currently lack the neces-
sary maturity to make this a realistic
option. Minnich also noted that the pro-
posed Intel standard PXE leaves much to
be desired (or reduced, given the over-
sized technical docs). In light of these
issues he asked the question, “Can we get
out of the BIOS mess?” Can Linux cold
boot Linux? As it turns out, the answer is
yes. They can build a 32K hardware
startup program and then unzip the ker-
nel. They can thus gain control of the
machine from power on instead of hav-
ing to deal with intermediate software.

The key question for LinuxBIOS was –
Why? The ability to gain control over
previously BIOS-managed matters offers
several attractive options, such as allow-
ing log buffers to survive for diagnostic
information where they usually get
zeroed out by default. Possibly the most
stunning point was his demonstration of
booting to a single user in 3 to 5 seconds
and approximately 10 seconds to reboot
SMP. Also impressive was the fact that
there is no proprietary license and no
more hangs for hit <F1>, etc. And on a
purely geeky note, they are able to one-
up the DEC BIOS’s “tinky Yellow Rose of
Texas” by being able to play an MP3 –
from the BIOS!

The LinuxBIOS is working on select
Intel, SiS, and VIA boards. It is not cur-
rently working on Acer and RCC
(Dell/Compaq use this), mainly due to a
lack of available details from RCC. But

http://oss.sgi.com/lockmeter>.An
http://oss.sgi.com/projects/lockmeter
http://oss.software.ibm.com/developerworks/opensource/linux

●

C

O
N

FE
RE

N
C

E
RE

PO
RT

SDell and Compaq are trying to help with
information.

The closing summary mentioned the fol-
lowing: own node from startup; no
Band-Aids for BIOS defects; node behav-
ior like you want; don’t need working
floppy, CD-ROM, or disk; and every
node, regardless of vendor, will boot the
same way.

The first question from the audience was
aptly, “How many boards have you
toasted?” Minnich’s response, “Five . . . all
Intels.” He also confirmed that Linux
BIOS could be used for embedded
devices. Currently there is no support for
Power Management. He noted that they
might possibly go the route used by a
FreeBSD venture to move this to the ker-
nel. The issue of security between reboots
for multi-user environments was briefly
mentioned and noted as something that
could easily be handled by possibly zero-
ing memory upon reboot when desirable.
Another point that was mentioned was
the difficulty in maintaining support for
the ever-growing number of mainboards
from vendors. Minnich explained that
they are targeting clusters, and hence
support of a subset of boards should be
reasonable. Also, their end goal is to have
manufacturers participate in support as
has been the case with the code contribu-
tions for the SiS port.

Further information about LinuxBIOS
can be obtained from
<http://www.acl.lanl.gov/linuxbios/>.

KLAT2’S FLAT NEIGHBORHOOD NETWORK

Hank Dietz and Tim Mattox, University

of Kentucky

The new cluster at the University of Ken-
tucky, KLAT2 (Kentucky Linux Athlon
Testbed 2), offers some very interesting
results. The presentation discussed the
new network architecture they have
developed for use with this cluster. The
costs for connecting the 64 nodes of the
cluster using other popular topologies
caused them to investigate this new

11February 2001 ;login:

architecture. The infeasibility of connect-
ing all the nodes on a single inexpensive
switch prompted the development of the
Flat Neighborhood Network (FNN)
topology. This allows multiple NICs per
node to be used to attach the nodes to
several switches for full connectivity
while still maintaining low cost and high
performance.

The difficulty in configuring many nodes
with multiple NICs and switches
prompted them to make use of a Genetic
Algorithm (GA) to assist with the config-
uration and construction of the intercon-
nection network. The GA is used to
optimize the network so that the routing
and wiring can be produced automati-
cally. The output from the GA is a color-
coded wiring diagram as well as the
routing tables that are used for each
node. The GA is also used to optimize
the networks so that a minimum number

of NICs are used (not all nodes need the
same number of NICs). The GA can
optimize for a specific program’s con-
straints, however the default properties of
FNNs appear to be sufficient for most
cases.

The total cost for the 64-node KLAT2
network was ~$8,100. Dietz and Mattox
have seen significant price-to-perfor-
mance results from KLAT2 with the
FNN. They are currently a finalist for a
Gordon Bell Price/Performance award
for their results on a full CFD (Computa-
tional Fluid Dynamics) code. (They
obtained $2.75/MFLOPS and

$1.86/MFLOPS price/performance for
double and single precision, respectively.)

Mattox’s concluding remarks pointed out
that FNNs offer a substantial perfor-
mance increase as well as a significant
price reduction for a sound interconnec-
tion network. They offer several tools at
their Web site for working with FNNs,
including a CGI that can be used to
demonstrate the GA that is used for con-
figuration/design.

A member of the audience raised the
issue of increasing the number of NICs
per PC; the response was that there is not
much payoff other than connectivity,
which they already manage. Also, using
more than four or five NICs at once
would exceed the current PCI bandwidth
of most commodity PCs. Another audi-
ence member commented that some of
the switch has been moved to the node,
and this appears to be a cost tradeoff.
The response was that the routing and
NICs are already there; why not make use
of it? A question regarding IP addresses/
NICs was asked, and Mattox explained
that currently each NIC has a different IP
and the switch is acting as a “subnet.” He
also mentioned that there are issues with
exceeding arp cache if they try to get to
all nodes. A question about cabling
elicited the interesting point that often
they do not have to recable but rather do
the rerouting through software (from the
GA). They can recable everything if
needed in a reasonably small amount of
time, but it’s not something you want to
do every week. A final question about
locating faulty network cables was asked,
and Mattox said they generally use ping
and ifconfig to locate faulty network
hardware.

Further information about FNN can be
obtained at <http://aggregate.org/FNN/>
with other related information at the
root of the site.

Keynote Speaker Larry Wall
and Theodore Ts’o

4TH ANNUAL LINUX SHOWCASE & CONFERENCE ●

http://www.acl.lanl.gov/linuxbios/
http://aggregate.org/FNN/

SESSION: SYSTEMS

THE PORTABLE BATCH SCHEDULER AND THE

MAUI SCHEDULER ON LINUX CLUSTERS

Brett Bode, David M. Halstead, Ricky

Kendall, and Zhou Lei, Ames Labora-

tory; David Jackson, Maui High Perfor-

mance Computing Center

Summarized by Vikram V. Asrani

At the start of this talk, Brett Bode intro-
duced batch systems. He spoke about the
two classes of parallel aware schedulers:
namely, cycle stealers and dedicated sys-
tem schedulers. The Portable Batch
Scheduler (PBS) is one example of a ded-
icated system scheduler. Schedulers must
be stable, portable, and should provide
efficient resource management. In his
opinion, PBS is probably the most com-
monly used and probably the best solu-
tion available. The Maui scheduler was
originally used on HP systems and per-
formed well. The PBS scheduler is a
FIFO-like scheduler, scheduling jobs in a
FIFO order, except when the first task in
the FIFO queue is blocked by another
task. The PBS system prevents starvation
using a starving job mechanism.

Bode then provided an overview of the
Maui scheduler on Linux clusters. It is
fully parallel aware, as it knows about the
attributes, memory, and utilization of
each node. It is a time-based reservation
system, and idle nodes are back-filled
with small jobs. Bode then described the
scheduler test for the PBS and Maui
scheduler on a 64-node cluster of Pen-
tium Pros. The simulation profile con-
sisted of large, medium, and small debug
and failed tasks. The results with backfill
turned off showed that the Maui sched-
uler provides a better processor usage.
The Maui scheduler required five hours
less to complete the tasks for which a
sequential execution processor took
between 90 to 100 hours.

In response to a question on what hap-
pens when a node fails, Bode informed
us that PBS does not restart the node and

12 Vol. 26, No. 1 ;login:

that this was indeed a problem. The
server daemon simply hangs and other
mechanisms need to be used to restart.
Another person from the audience asked
about the ability to perform progress
migration on clusters. Bode responded
that no such mechanism existed on PBS.
To a question on what happens when the
user’s processor utilization time has
reached the allotted amount, he
answered jobs are killed. In addition, PBS
generates a signal five minutes before the
deadline. On PBS, users can also alter job
request times.

PANEL: HAS CLUSTER

ADMINISTRATION BEEN SOLVED?
Moderator: Rémy Evard

Participants: Susan Coghlan, Turbo

Linux; Richard Ferri, IBM; Brian Finley,

VA Linux; Greg Lindahl, HPTi; John-Paul

Navarro, Argonne National Laboratory;

Lee Ward, Sandia National Laboratory;

and Stephen Scor, Oak Ridge National

Laboratory

Summarized by Vikram V. Asrani

The organizations represented on this
panel are working on clusters of various
sizes ranging up to 1,500 node clusters.

The first question posed by moderator
Evard to the panelists was, “Why does
everyone have their own cluster solu-
tions? Will we ever reach a state when a
single common solution will exist?” Greg
Lindahl responded that since people have
different specific requirements, they
develop specific solutions. Another pan-
elist concurred, adding that clusters with
more than 64 nodes had specific require-
ments and, hence, vendors developed
their own solutions. One of the panelists
thought that it was essential to come up
with a common solution. Susan Coghlan
provided an analogy for this problem
with enterprise management. She said
that one required flexible tools to meet
everybody’s needs. However, the present-
day tools did not even do all that they
were supposed to.

Evard then asked the panelists, “Is the
cluster architecture dependent on the
computing model in the system adminis-
tration solution? If yes, how should it be
changed?” One of the panelists answered
that it was a matter of getting the tools to
work with the clusters, and the tools
(rather than the clusters) needed to be
tweaked. Another panelist asked whether
the same set of tools could be used for
clusters with 32 nodes and clusters with
more than 32 nodes. The same set of
APIs should exist, was the opinion of one
panel member. Coghlan mentioned that
the tools required to manage small and
large clusters are bound to be different
since the complexity lies essentially in the
tools. Lindahl found out from the audi-
ence that only ~20% of the audience ran
clusters with more than 64 nodes.

Evard posed the next set of questions:
“What are the biggest scaling issues in
system administration? What scaling
problems have the panelists run into?
Why do the panelists consider clusters
with more than 64 nodes large? Where
do large clusters stress the existing tools?”
Answering the question on scalability,
Lindahl clarified that the use of a data-
base for cluster administration was a
gross mistake. Brian Finley pointed out
that tools to automate tasks was one of
the main scaling issues.

The next question to the panelists was,
“What is the right community approach
for cluster administration? Should the
plan be to (a) depend on vendors to pro-
vide solutions (which may be proprietary
or otherwise)? (b) converge on a set of
tools that everyone else uses (presumably
open source)? (c) try to maintain a good
mix of solutions, keeping them environ-
ment-rich in competitive variability? or
(d) continue to build their own solu-
tions?” As before, one panel member sug-
gested the development of a standard API
set. However, some of the panel members
were in favor of the open source set of
tools licensed under GPL. Finley sug-
gested that if a tool breaks in a particular

●

C

O
N

FE
RE

N
C

E
RE

PO
RT

Susers environment, then, with the open
source, one can fix it and everybody ben-
efits. Lindahl suggested that currently
there is no market for cluster vendors to
provide specific tools. Finley suggested
that this market will soon exist. His opin-
ion was supported by the audience, who
cited this as something to work toward in
the future.

The final question put to the panel mem-
bers was, “What do you wish you could
do with the existing sysadmin tools that
you cannot do?” One panel member sug-
gested active diagnostic management.
However, Finley said that it all depends
on how much money you are willing to
spend, how much your customer wants,
and what your customer says. Tool con-
struction is heavily customer dependent.

13February 2001 ;login:

Valerie Cox and Ve Martin of ALS

Illiad signing his book for
his fans

Video game room in action

Ted T'so giving Best Paper Award to
Robert Ross

There are Old Farts even at ALS . . .

4TH ANNUAL LINUX SHOWCASE & CONFERENCE ●

5February 2001 ;login:

This issue’s reports is on the First
Workshop on Industrial Experiences
with Systems Software
(WIESS 2000).

OUR THANKS TO THE SUMMARIZER:

Alan Messer

conference reports
features that never made it from C, such
as enumerated types, not to mention
many new APIs for particular domains
such as real-time.

Those features which require actual lan-
guage extensions present a problem,
especially if they also require changes to
the underlying virtual machine. Thank-
fully, the virtual machine has managed to
stay mostly the same, ensuring compati-
bility at the interface level, and important
features slowly make it, when necessary,
into the language itself.

REFEREED PAPERS

SESSION: SYSTEM ARCHITECTURE

OPERATIONAL INFORMATION SYSTEMS:
AN EXAMPLE FROM THE AIRLINE INDUSTRY

Van Oleson, Delta Airlines; Karsten

Schwan, Greg Eisenhouer, Beth Plale,

and Carlton Pu, Georgia Institute of

Technology; and Dick Amin, Delta

Airlines

Van Oleson spoke on Delta Airlines’
experiences in cooperation with Georgia
Tech in adding enhanced information
systems to Delta’s operational informa-
tion system.

The project started as a skunkworks proj-
ect in Delta after a previous project failed
to bring the required additional infra-
structure to support next-generation air-
line information services (e.g., gate
information).

Existing infrastructure is antiquated at
best and large scale (cluster of IBM
S/390s), with WAN links (up to ATM) to
outlying airports serving 10,000+ flight
displays across the country. Adding an
order-of-magnitude more displays and
enhanced services (connection direc-
tions), at low cost, to an operational sys-
tem presents a challenging task.

This project took the approach of tap-
ping the existing system and deriving
event notifications from the existing
infrastructure. This enabled them to pro-
vide the enhanced services required plus

First Workshop on Industrial
Experiences with Systems
Software (WIESS 2000)
OCTOBER 22, 2000
SAN DIEGO, CALIFORNIA, USA
Summarized by Alan Messer

KEYNOTE ADDRESS
James Gosling, Sun Microsystems

James Gosling presented the keynote
address on his experiences with getting
the design principles behind creating the
Java language out into the real world.

Despite its fairly recent rise to fame, the
project which led to Java was begun 10
years ago. Several consumer electronic
companies were trying to define software
models for their future products to solve
portability, interface, and programmabil-
ity problems. Instead of trying to tackle
each of these problems head on, the proj-
ect looked for a simple, overarching solu-
tion.

Despite its aims for a Write Once, Run
Anywhere paradigm, today Java is mostly
a Learn Once, Work Anywhere language
due to the proliferation of different Java
versions and profiles adapted to particu-
lar environments.

In Java’s progression from research proj-
ect to commercial language, many fea-
tures got dropped (bad ideas, deadlines,
etc.). However, in this process most of
the really good ideas managed to stay,
along with a few “features.” Of those that
stayed, the garbage collector is probably
one of the nicest features for developers
to use on a day-to-day basis, along with
features like array subscript checking.

But even today there are many requests
for new features to be added to the lan-
guage. A fairly elegant proposal to incor-
porate generics (type polymorphism) has
been made. There are also proposals to
adapt good features from other lan-
guages, such as function invariants (Eif-
fel) and assertions (C, C++). And there
are always requests for some of those

tackle the scalability and availability
issues of the existing system.

Using the tapping approach, a secondary
piggyback system provides support for
the enhanced services and uses modern
techniques such as weak multicast and
fail-over UNIX clusters to meet the scala-
bility and high availability requirements
of the system. To make use of existing
network infrastructure in the presence of
a large quantity of data, just-in-time
XML transcoding was used to compress
and translate data from the servers to the
flight displays.

This project not only presents many
interesting problems similar to those
solved by distributed middlewares, but
also shows how real-world problems
require both integration with existing
systems and mind-sets able to meet new
requirements in operational systems.

Question: Is Delta collaborating with
other airlines on this project?
Answer: This is looked on as a business
advantage by Delta, so at this stage there
is no interaction with other airlines.

EXPERIENCES IN MEASURING THE RELIABILITY

OF A CACHE-BASED STORAGE SYSTEM

Dan Lambright, EMC

Dan Lambright described work at EMC
in measuring the software reliability,
maintainability, and availability of a disk
cache. What happens when one of the
cache lines fails or a software error causes
a line to be unreliable?

The problem with such questions is that
the limitations in existing tools make fail-
ures hard to detect. With this lack of
good detection tools, such failures are
also typically slow to fix. While this may
be less of a problem for small systems,
large systems these days have large quan-
tities of cache which can account for up
to 32Gb of space. Clearly, with so much
caching, availability is a key concern, but
how do you measure, detect, and under-
stand it?

6 Vol. 26, No. 1 ;login:

This project took the approach of using
software fault injection tools to help
determine the effect of errors on the sys-
tem’s availability, maintainability, and
performance. Errors were injected into
the cache maintenance data structures to
discover the consequences of those errors
and the ability to detect those errors.

This work found that typical existing
diagnostic tools were fairly ineffective,
since they stopped at the first error
detected. Also, existing QA were initially
resistant to fault injection techniques.
Lastly, they discovered that several errors
lead to system unresponsiveness rather
than to errors affecting maintainability.

Question: Did you consider data errors
too?
Answer: No, this was not considered for
this study.

Question: Since programmers always
think tests are error free, is coverage lim-
ited with programmer-designed tests?
Answer: Yes. Developers are good, but
development-group-based tests (testing
each other) are better. Also, developers
get feedback (pagers) on software/test
problems.

HP SCALABLE COMPUTING ARCHITECTURE

Arun Kumar and Randy Wright, HP

Arun Kumar presented his experiences in
moving computer architecture from its
embodiment at the Convex Exemplar to
the HP V-class when they were acquired
by HP. The HP Scalable Computer Archi-
tecture was proposed to extend the scala-
bility of the V-class through a cross-bar
to link four V-class nodes together in a
large SMP machine. The V-class presents
both local private memory (e.g., kernel)
and a shared global memory (e.g., user
applications).

Moving to and integrating with this
complex architecture presented many
problems, including existing hardwired
hardware paths in the system configura-
tion, lack of MP safety in existing

semaphores, clock synchronization, TLB
purging problems, cache coherency prob-
lems, and scalability.

Each problem had to be resolved without
disturbing the existing architecture (soft-
ware and hardware) too much, in order
to integrate with existing solutions. For
example, paths are used to reference
resources in the HP-UX configuration.
Previous configurations didn’t include
node IDs. While it is simple enough to
add these, it is also important to still
function when there is only one node. To
solve the real-world system software
engineering problem, relative paths were
introduced, allowing existing node ID-
less paths to function with node ID
paths.

Similar solutions were used for other
problems: software RPC to provide
global TLB purge; clock drift software
monitoring; limiting access to disallow
simultaneous write and execute permis-
sions on a page. Combined, these solu-
tions allowed the architecture to meet
existing product software requirements
while forging ahead with hardware archi-
tectural enhancements.

Question: Have there been scalability
studies of the system?
Answer: Yes, for aspects like locking gran-
ularity issues. We now have a much bet-
ter understanding.

Question: How do HP-UX and Mach
compare in performance, since Exemplar
hardware is similar to V-class?
Answer: Mach was more scalable initially.

Question: What sort of applications is
this system aimed at?
Answer: Best scalability is for scientific
workloads; commercial workloads have
less scalability right now.

●

C

O
N

FE
RE

N
C

E
RE

PO
RT

SSESSION: PERFORMANCE

STUB-CODE PERFORMANCE IS BECOMING

IMPORTANT

Andreas Haeberlen and Jochen Liedtke,

Karlsruhe University; Yoonho Park, IBM

Watson; Lars Reuther, Dresden Univer-

sity; and Volkmar Uhlig, Karlsruhe Uni-

versity

Andreas Haeberlen and Jochen Liedtke
presented research into the performance
of stub code generated by the Flick com-
piler from the L4 IDL interfaces. Since
the IDL compiler uses conservative
knowledge of the interfaces, the stubs
generated can have similar performance
to cross-domain calls that must pass
through the optimized L4 kernel.

To overcome these problems the com-
piler was modified to copy the stack
directly and to use indirect string refer-
ences (since the same address space is
known). Doing so increases performance
significantly and halves the size of the
stub code (less marshaling).

The aim of this work is to feed back into
the Flick compiler to support enhance-
ments in more IDL primitives and to
produce an order-of-magnitude
improvement in intra-domain calling
performance.

Question: Could I use the OS to make an
addressing alias to avoid copying?
Answer: Yes, you can do this with L4, but
this is not Linux semantics.

HP CALIPER: AN ARCHITECTURE FOR

PERFORMANCE ANALYSIS TOOLS

Robert Hundt, HP

This work presented the Caliper perfor-
mance analysis tool, which is being devel-
oped for upcoming IA-64 architecture
systems such as Itanium. Caliper presents
a comprehensive performance analysis
tool to replace the limited tools being
phased out and to support the complex
functionality of the IA-64 architecture.

One of the biggest problems with exist-
ing tools is the need to recompile source
code and relink or insert intrusive moni-

7February 2001 ;login:

toring sequences. By this intrusion in the
compilation or run-time process, such
tools are used sparingly in large projects.

Caliper aims to overcome this by using
support from the IA-64 processor to
dynamically insert instrumentation (or
in fact other types of program control/
monitoring) callbacks into executing
applications. These callbacks then call
into a shared library to pass information
to the front end. Doing so reduces the
intrusion and improve performance,
since monitoring code is only executed/
added when needed.

The IA-64 architecture presents many
complexities for such a tool. Currently
the IA-64 implementation only supports
a 25-bit branch, with 64-bit branch emu-
lated, so callbacks have to be carefully
integrated in order to overcome the emu-
lation performance hit. Likewise, excep-
tions are complex in IA-64 (see the talk
“C++ Exception Handling for IA-64,”
below), which makes tracing C++ com-
plex.

As a result of this approach, since only
12–40% of functions are reached, good
performance can be had of between 1%
and 80% overhead depending on work-
load. Performance monitoring, however,
is only one of the possible uses of the
tool; the hope is to extend its uses with
support for pthreads, debugging, mem-
ory checking, and software fault injec-
tion.

Question: Do you need to stop threads
for instruction/write updates on a bun-
dle?
Answer: Currently yes, but we plan on
developing an enhanced approach using
templates to place breakpoints at the
start of the bundle.

Question: IA-64 is very sensitive to code
performance. How does this tool help?
Answer: Yes, compilers aren’t perfect, but
they have improved over time. The out-
put of Caliper can be used by the opti-
mizer to improve performance.

Question: What is the effect on debug-
ging tools?
Answer: We control the whole machine
and effect execution. We want to add
debugging facilities to our system to
allow enhanced debugging too.

Question: How does this compare to
DEC’s Atom?
Answer: I believe that was only static, not
dynamic.

INVITED TALK

INTERACTION WITH TV IN 2003

Simon Gibbs, SONY Distributed Systems

Lab

This talk and demonstration investigated
the possibility for interactive television
by the year 2003. Simon initially outlined
the kind of system support we might
have in 2003 to enable interactive TV
services. In addition to the multi-channel
content, such systems will have data con-
nections in both directions. Return chan-
nels will use modems or broadband
connections, depending on client cost.

With this environment, what form of
interactive services might we see? A lot of
services are enhancements to existing
production facilities with multiple video
feeds or data, such as sporting events,
quizzes, news, etc. In such situations,
existing data can be leveraged rather than
making custom interactive TV produc-
tions.

During the talk the following potential
service ideas were demonstrated in the
context of a motor sport event:

■ statistics that follow the cars’ posi-
tions, velocities, etc., and the ability
to view a statistic of choice rather
than being force-fed

■ multiple-player interactive sport
quizzes

■ use of real car data to offer real com-
petition in motor sport racing games

■ superimposed racing of a computer-
ized car against the real video
footage, allowing competitive inter-

action and correct, realistic race car
graphic integration

The promise of interactive TV has been
with us for a while. This talk outlined the
possible infrastructure and interaction
ideas that may well find their way into
your living room soon, if they can appeal
to enough consumers.

REFEREED PAPERS: TOOLS

INCREMENTAL LINKING ON HP-UX

Dmitry Mikulin, Murali Vijayasundaram,

and Loreena Wong, HP

This work covered a team’s experience
with providing incremental linking on
HP-UX to improve link times in the
development cycle of large applications.
Incremental linking works by initially
linking the application together and then
being able to relink changes without
completely relinking the binary.

Incremental linking has several prob-
lems. First, the padding areas must be
correctly sized and placed to allow the
best use of space for relinking. There may
also be many symbols which are defined
in several places and contexts (weak and
strong symbols). Finally, changes
required by the relink must be integrated
and relocated as appropriate.

The approach taken in this work is to pad
on a per function basis, with two copies
(old and new) kept when relinking sym-
bols to help resolve multiple symbols.
The result is a linker capable of linking to
produce a 3–11x performance increase,
with a slightly slower initial link phase.

Question: Have you considered padding
functions rather than object code
padding?
Answer: Yes, HP-UX already puts func-
tions in separate sections. It is a balance
between padding and time saved, ulti-
mately.

Question: What are the performance
penalties of the approach?
Answer: Slower due to size increase and
therefore increased cache misses, etc. But

8 Vol. 26, No. 1 ;login:

this is only used for development/debug-
ging cycles.

AUTOMATIC PRECOMPILED HEADERS:
SPEEDING UP C++ APPLICATION BUILD TIMES

Tara Krishnaswamy, HP

Tara Krishnaswamy introduced interest-
ing work on the correct precompilation
headers needed to speed up application
time, since typically 50–95% of compila-
tion time involves header processing in
nightly builds. Some compilers
(Microsoft) perform caching already, but
they work on a per function basis, caus-
ing problems if dependence changes are
made to avoid the header inclusion.

This work tries to overcome these prob-
lems by attempting to identify the initial
part of each source file which is responsi-
ble for C preprocessor definitions. It then
takes this region and precompiles it into
a separate file. At build time, a checksum
is used to determine whether the file has
been updated. With no update the pre-
compiled information is loaded into the
compiler directly.

Problems exist in identifying this pre-
compile region, since the C preprocessor
has global scoping, and compilation flags
can affect preprocessing too. These are
overcome by identifying the configura-
tion when precompiling and comparing
configuration as well as checksums.

The result of this approach is a 20–80%
speedup over normal compilation, at the
cost of wasted space on processing dupli-
cate inclusions. You must be careful when
using version control systems, however,
since the caches should not be shared
and thus should not be in the control
system.

Question: Can you use this to compile all
sources?
Answer: Yes. We have a means to over-
ride, if needed. We haven’t had any prob-
lems.

Question: Can you determine when a
header is not needed?

Answer: No, you’d need a feedback-
driven system.

C++ EXCEPTION HANDLING FOR IA-64

Christophe de Dinechin, HP

This talk covered the problems of imple-
menting C++ exception handling for IA-
64 architecture processors. C++
exceptions present several problems to
solve in order to get good performance.

First, it is possible to throw any type,
leaving the compiler to find the right
implementation. Second, exceptions can
be rethrown at runtime. Last, exception
lifetimes aren’t attached to the object
scope. While these problems apply to all
C++ compilers on IA-64, compiler opti-
mization of these problems is important,
since there is a 20x performance
difference between -O0 and -O2 opti-
mizations. Problems which the compiler
must consider are: explicit parallelism,
speculation (with alias problems), predi-
cation, register stack manipulations,
memory state ordering, and register
selection constraints. However, with
exception processing, execution flow can
take any code anywhere.

All told there is too much complexity to
track all exception possibilities, so instead
the compensation code is generated to
give the compiler more freedom restor-
ing visible state, copying registers, updat-
ing memos, etc., along with providing
cleanup code to tidy up after exceptions.

The result is an exception implementa-
tion with little speed penalty, but with
around a 30% overhead from cleanup
and compensation code. This compares
favorably to the PA-RISC implementa-
tion, but without the size overhead.

●

C

O
N

FE
RE

N
C

E
RE

PO
RT

SPANEL SESSION: SYSTEMS SOFTWARE

RESEARCH AND TECHNOLOGY

TRANSFER
Andrew Tanenbaum, Vrije Universiteit,

Amsterdam; Rob Pike, Bell Laboratories;

Marshall Kirk McKusick, author &

consultant; and Rob Gingell, Sun

Microsystems

Each panelist was asked to give his opin-
ion on the subject.

RobG: Does it work? Yes and no. Social
problems make it fail in the transfer step.
Cooperation is difficult, research dies in
the transfer. It is important to match tim-
ing and problem constraints and then be
willing for it to take a long time.

Kirk: Open source is good for technology
transfer, but the problem is money. There
are many ways, not only the RedHat ser-
vices approach. IBM, for example, seems
to manage it well. In addition to transfer
it can bring the costs down by an order of
magnitude.

RobP: It’s a catch-22 situation we have
seen several times with Blit, UNIX, and
Inferno. Success depends on being differ-
ent from and the same as the market. You
need to communicate, since colleagues
will know more about work in compa-
nies other than your own. So you must
use buzzwords to get attention and be
prepared to transfer outside the company
to get it back into the company again.
Also, interns are a good way to transfer
research.

Andy: Experience with Amoeba was not
good – despite a book and a deal with a
UNIX company, the product was expen-
sive and no free trial was available. The
UNIX company blamed the failure on
giving it away. Given this experience the
only way that seems to work is to transfer
from research through students to com-
panies.

Question: How to avoid research not
looking too far out?

Andy: You should do what is innovative
and see what comes out.

9February 2001 ;login:

Kirk: Transfer takes a long time, so you
should look far enough ahead.

Question: Are startups a good, quick
path?

RobP: Companies don’t understand how
to keep employees from startups.

Question: Don’t universities lack tech-
nology transfers?

Andy: Not necessarily true. A lot of uni-
versities are doing good transfers, plus
patents. But for some the tie is too close
(e.g., UC Berkeley).
RobP: MIT gets a lot of their money
from old patents.

Question: Is a good mechanism for
transfer between companies to buy them?

RobP: Yes, but some are successful, or
not. There are two reasons to buy: either
to better the company or to stop the
other company. The culture shift on
acquisition is the biggest problem.

Question: Would Amoeba have trans-
ferred better if it had been given away?

Kirk: Yes.
Andy: I don’t believe there is a future in
free software. There’s no free hardware or
free books.

Question: Is shareware better?

Andy: I think this is just a marketing
technique.
Kirk: Free software isn’t really free. Inte-
gration is the key motivation too.

Question: We know what doesn’t work.
What does?

Andy: If you stay with the idea, e.g.,
Ethernet.
RobP: I agree, staying with the idea seems
to work, e.g., C++. Luck is very impor-
tant, or pigheadedness, but it takes a long
time.
Kirk: You need a destination for the idea.
The software development community
(open source) is one such destination.

Question: How important is getting
source into people’s hands?

RobP: Very important. We get lots of
UNIX folks these days. But UNIX wasn’t
free, it came from the community.

Question: Why are free UNIXes doing
better at fracturing than commercial?

Andy: There are many free UNIXes!
Linux is one man and nobody has tried
to fracture it yet.
RobG: Linux is i386 and there was no
other real i386 UNIX. The real test will
come when new ideas are needed and
seeing how they coordinate.

Question: Any good counter examples to
go with?

RobP: Internal startups seem to work.
Most transfer failures are the result of
social problems.
RobG: They can work when research and
ideas are not disruptive, but they need
effort to transfer.

Question: If you could do a transfer
again, what would you do?

Andy: Give Amoeba away.
RobP: Kill lawyers.
RobG: Help Rob Pike.

Conclusion

Andy: It seems that transfer from univer-
sities works best only when you can
transfer it through students.

RobP: I agree with Andy; ideas move best
with people and there must be a drive to
succeed.

WIESS in session

Kirk: Open source does work, but not in
all areas.

RobG: Transfer can work depending on
the disruption caused. Big ideas cause
problems. Have realistic time frames.

INVITED TALK

SURFING TECHNOLOGY CURVES

Steve Kleiman, Network Appliance, Inc.

In this talk, Steve gave an overview of the
technology “waves” which Network
Appliance saw and used, in order to fur-
ther their business. Steve identified five
particular waves:

■ Filers – commodity storage appli-
ances became possible. Standard
components and protocols used in
devices to achieve a small subset of
reliable functions.

■ Memory-to-memory interconnec-
tion and fail-over – commodity high
availability support using dual
ported disks and memory-to-mem-
ory interconnect to provide seamless
fail-over.

■ The Internet – cache appliances to
move services to edge. Again, the
aim of providing a simple set of reli-
able functions (Web and stream
caching) in a server appliance.

■ SnapMirror – traditional backup
storage became too small or too slow
for modern needs. But by using high
density backup disks and fast data
channels, good availability could be
achieved.

■ Local file sharing – direct access to
storage through the VI Architecture
using Fibre Channel, Infiniband, and
the like. This enabled storage to be
dissociated from machines, increas-
ing scalability.

Each wave came as the possibilities of
software and hardware brought new ways
of looking at traditional problems, such
as the move to appliances rather than
monolithic systems.

10 Vol. 26, No. 1 ;login:

In order to respond to these changes the
structure of the system software needed
to compensate. For example, no longer
were general-purpose operating systems
the slow choice. Instead, in order to get
really good performance, specialized or
refined system software – e.g., the
DataOnTap architecture – is much more
appropriate.

This led to the use of a small-message-
passing operating system with no pre-
emptive scheduling in Network
Appliance. This allowed for low latency,
high bandwidth operations with applica-
tion-controlled resource allocation.

Question: Are there any problems com-
ing up when we have a 10 Gigabit Ether-
net?
Answer: No, there will be many small
disks to distribute the load. I don’t think
it will really affect the architecture of
storage servers.

Question: Are disks going to run out?
Answer: No. This has been a prophecy for
ages. I don’t think it will happen.

Question: Does memory speed scale?
Answer: It seems bandwidth is okay, but
perhaps latency will be a problem.

20 Vol. 26, No. 1 ;login:

by Avi Rubin

Avi Rubin is a
USENIX director. In
his spare time, he is a
researcher at AT&T
labs.

<rubin@research.att.com>

security
considerations for
remote electronic
voting over the
internet
Introduction
The right of individuals to vote for our government representatives is at the

heart of the democracy that we enjoy. Historically, great effort and care has

been taken to ensure that elections are conducted in a fair manner such that

the candidate who should win the election based on the vote count actually

does. Of equal importance is that public confidence in the election process

remain strong. In the past, changes to the election process have proceeded

deliberately and judiciously, often entailing lengthy debates over even the

minutest of details. These changes are approached so sensitively because a

discrepancy in the election system threatens the very principles that make

our society free, which, in turn, affects every aspect of the way we live.

Times are changing. We now live in the Internet era, where decisions cannot be made
quickly enough, and there is a perception that anyone who does not jump on the tech-
nology bandwagon is going to be left far behind. Businesses are moving online at
astonishing speed. The growth of online interaction and presence can be witnessed by
the exponential increase in the number of people with home computers and Internet
access. There is a prevailing sentiment that any organization that continues in the old
ways is obsolete. So, despite the natural inclination to treat our election process as the
precious, delicate, and fragile process that it is, the question of using the new advances
in technology to improve our elections is natural.

The feasibility of remote electronic voting in public elections is currently being studied
by the National Science Foundation by request of the President of the United States
(see <http://www.netvoting.org/>). Remote electronic voting refers to an election
process whereby people can cast their votes over the Internet, most likely through a
Web browser, from the comfort of their home, or possibly any other location where
they can get Internet access. There are many aspects of elections besides security that
bring this type of voting into question. The primary ones are:

■ Coercibility: the danger that outside of a public polling place, a voter could be
coerced into voting for a particular candidate.

■ Vote selling: the opportunity for voters to sell their vote.
■ Vote solicitation: the danger that outside of a public polling place, it is much more

difficult to control vote solicitation by political parties at the time of voting.
■ Registration: the issue of whether or not to allow online registration, and if so,

how to control the level of fraud.
The possibility of widely distributed locations where votes can be cast changes many
aspects of our carefully controlled elections as we know them. The relevant issues are of

http://www.netvoting.org/

great importance, and could very well influence whether or not such election processes
are desirable. However, in this paper, we focus solely on the security considerations as
they relate to conducting online public elections. In particular, we look at remote
online voting, as opposed to online voter registration, which is a separate but impor-
tant and difficult problem. We also focus solely on public elections, as opposed to pri-
vate elections, where the threats are not as great, and the environment can be more
controlled.

The importance of security in elections cannot be overstated. The future of our coun-
try, and the free world for that matter, rests on public confidence that the people have
the power to elect their own government. Any process that has the potential to threaten
the integrity of the system, or even the perceived integrity of the system, should be
treated with the utmost caution and suspicion.

The Voting Platform
The type of remote electronic voting that we discuss in this paper involves regular
Internet users with personal computers and standard operating systems and software.
For the sake of the discussion, we focus on Intel machines running Microsoft operating
systems with Microsoft or Netscape browsers, and voters participating from home,
communicating over a TCP/IP network attached to the Internet. While this is a simpli-
fication, it is representative of the vast majority of users under consideration. In this
discussion, we refer to the voting platform simply as a host.

Threats to hosts can be described as a malicious payload (the software or configuration
information designed to do harm) and its delivery mechanism. Both of these have
advanced in sophistication and automation in the past couple of years. The attacks are
more sophisticated in the sense that they can do more damage, are more likely to suc-
ceed, and disguise themselves better than before. They are more automated in that
more and more toolkits have been developed to enable unsophisticated computer users
to launch the attacks.

Malicious Payload
There are literally hundreds of attack programs that we could discuss in this section.
One only need visit the Web site of any number of security software vendors to see the
long lists of exploits that affect hosts to various degrees. The fact of the matter is that
on the platforms currently in the most widespread use, once a malicious payload reach-
es a host, there is virtually no limit to the damage it can cause. With today’s hardware
and software architectures, a malicious payload on a voting client can actually change
the voter’s vote, without the voter or anyone else noticing, regardless of the kind of
encryption or voter authentication in place. This is because the malicious code can do
its damage before the encryption and authentication are applied to the data. The mali-
cious module can then erase itself after doing its damage so that there is no evidence to
correct, or even detect the fraud. To illustrate, we focus the discussion on two particular
malicious payloads that each exemplify the level of vulnerability faced by hosts.

The first program we describe, Backorifice 2000 (BO2K), is packaged and distributed as
a legitimate network administration toolkit. In fact, it is very useful as a tool for
enhancing security. It is freely available, fully open source, extensible, and stealthy
(defined below). (The package is available at <http://www.bo2k.com/>.) BO2K contains
a remote control server that when installed on a machine, enables a remote administra-
tor (or attacker) to view and control every aspect of that machine, as though the person
were actually sitting at the console. This is similar in functionality to a commercial

21February 2001 ;login: ELECTRONIC VOTING OVER THE INTERNET ●

The importance of security

in elections cannot be

overstated. ●

C

O
M

PU
TI

N
G

http://www.bo2k.com/

product called PCAnywhere. The main differences are that BO2K is available in full
source-code form and it runs in stealth mode.

The open source nature of BO2K means that an attacker can modify the code and
recompile such that the program can evade detection by security defense software
(virus and intrusion detection) that look for known signatures of programs. A signature
is a pattern that identifies a particular known malicious program. The current state of
the art in widely deployed systems for detecting malicious code does not go much
beyond comparing a program against a list of attack signatures. In fact, most personal
computers in people’s houses have no detection software on them. BO2K is said to run
in stealth mode because it was carefully designed to be very difficult to detect. The pro-
gram does not appear in the Task Menu of running processes, and it was designed so
that even an experienced administrator would have a difficult time discovering that it
was on a computer. The program is difficult to detect even while it is running.

There can be no expectation that an average Internet user participating in an online
election from home could have any hope of detecting the existence of BO2K on his
computer. At the same time, this program enables an attacker to watch every aspect of
the voting procedure, intercept and potentially modify any action of the user without
the user’s knowledge, and further install any other program the attackers desire, even
ones written by the attacker, on the voting user’s machine. The package also monitors
every keystroke typed on the machine and has an option to remotely lock the keyboard
and mouse. It is difficult, and most likely impossible, to conceive of a Web application
(or any other) that could prevent an attacker who installs BO2K on a user’s machine
from being able to view and/or change a user’s vote.

The second malicious payload that is worth mentioning is the CIH virus, also known as
the Chernobyl virus. There are two reasons why we choose this example over the many
other possible ones. The first is that the malicious functionality of this virus is triggered
to activate on a particular day. April 26, 1999, was a disastrous day in Asia, where the
virus had not been that well known, and thousands of computers were affected. This
raises concern because election dates are known far in advance. The second reason for
choosing this example is that the damage that it caused was so severe that it often
required physically taking the computer to the shop for repair. The code modified the
BIOS of the system in such a way that it could not boot. The BIOS is the part of the
computer that initializes and manages the relationships and data flow between the sys-
tem devices, including the hard drive, serial and parallel ports, and the keyboard. A
widespread activation of such a virus on the day of an election, or on a day leading up
to an election, could potentially disenfranchise many voters since their hosts would not
be usable. This threat is increased by the possibility that the spread of the virus could
be orchestrated to target a particular demographic group, thus having a direct effect on
the election and bringing the integrity of the entire process into question.

It does not take a very sophisticated malicious payload to disrupt an election. A simple
attack illustrates how easy it is to thwart a Web application such as voting. Netscape
and Internet Explorer, the two most common browsers, have an option setting that
indicates that all Web communication should take place via a proxy. A proxy is a pro-
gram that is interposed between the client and the server. It has the ability to complete-
ly control all Internet traffic between the two. Proxies are useful for many Internet
applications and for sites that run certain kinds of firewalls. The user sets a proxy by
making a change in the preferences menu. The browser then adds a couple of lines to a
configuration file. For example, in Netscape, the existence of the following lines in the

22 Vol. 26, No. 1 ;login:

It does not take a very

sophisticated malicious

payload to disrupt an

election.

file c:\program_files\netscape\prefs.js delivers all Web content to and from the user’s
machine to a program listening on port 1799 on the machine www.badguy.com.

user_pref("network.proxy.http", "www.badguy.com");
user_pref("network.proxy.http_port", 1799);

If an attacker can add these two lines (substituting his hostname for www.badguy.com)
to the preferences file on somebody’s machine, he can control every aspect of the Web
experience of that user. There also are ways of doing this without leaving a trail that
leads directly to the attacker. While proxies cannot be used to read information in a
secure connection, they can be used to spoof a user into a secure connection with the
attacker, instead of the actual voting server, without the user realizing it. The next sec-
tion explains various ways that an attacker could effect changes on a voter’s computer.

Delivery Mechanism
The previous section gave three examples of what an attacker could do to disrupt an
election if the attacker could install code of his choosing on people’s computers. This
section deals with how this installation could happen.

The first, and most obvious mechanism, is physical installation. Most people do not
keep their computers in a carefully controlled, locked environment. Imagine someone
who develops an application to attack the voting system, such as the two described
above, prepares a floppy disk with the code on it, and then installs it on as many
machines as possible. This could be accomplished by breaking into houses, by accessing
machines in someone’s house when visiting, by installing the program on public
machines in the library, etc. The bottom line is that many people can obtain physical
access to many other people’s computers at some point leading up to an election. Then,
malicious code can be delivered that can trigger any action at a later date, enable future
access (as in the case of BO2K), or disrupt normal operation at any time. Considering
that many of the attack programs that we are seeing these days run in stealth mode,
malicious code could be installed such that average computer users cannot detect its
presence.

While the physical delivery of malicious code is a serious problem, it is nowhere near as
effective as remote automated delivery. By now, most people have heard of the Melissa
virus and the I Love You bug. These are the better-known ones, but many such attacks
happen all the time. In fact, the most widespread of the email viruses, Happy99, has
received very little media attention. Typically, these attacks cause temporary disruption
in service, and perform some annoying action. In most of the cases, the attacks spread
wider and faster than their creators ever imagined. One thing that all of these attacks
have in common is that they install some code on the PCs that are infected. There is a
widespread misconception that users must open an attachment in order to activate a
virus. In fact, one virus called Bubbleboy was triggered as soon as a message was pre-
viewed in the Outlook mailer, requiring no action on the part of the user. Any one of
these email viruses could deliver the attack code described in the previous section.

It is naïve to think that we have seen the worst of the Internet viruses, worms, and
bugs. In the last several months, the incidence of new attacks has grown much faster
than our ability to cope with them. This is a trend that is likely to continue.

Email viruses are not the only way that malicious code can be delivered to hosts. The
computers in most people’s houses are running operating systems with tens of thou-
sands of lines of code. These systems are known to be full of operational bugs as well as
security flaws. On top of these platforms, users are typically running many applications

23February 2001 ;login:

It is naïve to think that we

have seen the worst of the

Internet viruses, worms, and

bugs.

ELECTRONIC VOTING OVER THE INTERNET ●

●

C

O
M

PU
TI

N
G

with security problems. These security flaws can be exploited remotely to install mali-
cious code on them. The most common example of such a flaw is a buffer overflow. A
buffer overflow occurs when a process assigns more data to a memory location than
was expected by the programmer. The consequence is that that attacker can manipulate
the computer’s memory to cause arbitrary malicious code to run. There are ways to
check for and prevent this in a program, and yet buffer overflows are the most common
form of security flaw in deployed systems today.

Perhaps the most likely candidate for delivering a widespread attack against an election
is an ActiveX control, downloaded automatically and unknowingly from a Web server,
which installs a Trojan horse (hidden program) that later interferes with voting. Several
documented attacks against Windows systems operated exactly this way. In fact, any
application that users are lured into downloading can do the same. This includes
browser plug-ins, screen savers, calendars, and any other program that is obtained over
the Internet. Another danger is that the application itself may be clean, but the installer
might install a dynamically linked library (DLL) or other malicious module, or over-
write operating system modules. The number of ways is legion, and most users are not
aware of the dangers when they add software to their computers. As long as there are
people out there who download and install software over the Internet onto today’s per-
sonal computers running today’s operating systems, it will be easy for attackers to deliv-
er code that changes their votes.

Users who open attachments and download software from the network are not the only
ones putting their votes at risk. AOL, for instance, is in a position to control a large
fraction of the total votes, because all of their users run AOL’s proprietary software.
There are dozens of software vendors whose products run on many people’s home
machines. For example, there are millions of personal computers running Microsoft
Office, Adobe Acrobat, RealPlayer, WinZip, Solitaire – and the list goes on. These ven-
dors are in a position to modify any configuration file and install any malicious code
on their customers’ machines, as are the computer manufacturers and the computer
vendors. Even if the company is not interested in subverting an election, all it takes is
one rogue programmer who works for any of these companies. Most of the software
packages require an installation procedure where the system registry is modified,
libraries are installed, and the computer must reboot. During any stage of that process,
the installation program has complete control of all of the software on that machine. In
current public elections, the polling site undergoes careful scrutiny. Any change to the
process is audited carefully, and on election day, representatives from all of the major
parties are present to make sure that the integrity of the process is maintained. This is
in sharp contrast to holding an election that allows people to cast their votes from a
computer full of insecure software that is under the direct control of several dozen soft-
ware and hardware vendors and run by users who download programs from the Inter-
net, over a network that is known to be vulnerable to total shutdown at any moment.

The Communications Infrastructure
A network connection consists of two endpoints and the communication between
them. The previous section dealt with one of the endpoints, the user’s host. The other
endpoint is the elections server. While it is in no way trivial, the technology exists to
provide reasonable protection on the servers. This section deals with the communica-
tion between the two endpoints.

Cryptography can be used to protect the communication between the user’s browser
and the elections server. This technology is mature and can be relied upon to ensure

24 Vol. 26, No. 1 ;login:

As long as there are people

out there who download and

install software over the

Internet onto today’s personal

computers running today’s

operating systems, it will be

easy for attackers to deliver

code that changes their votes.

the integrity and confidentiality of the network traffic. This section does not deal with
the classic security properties of the communications infrastructure; rather, we look at
the availability of the Internet service, as required by remote electronic voting over the
Internet.

Most people are aware of the massive distributed denial of service (DDoS) attack that
brought down many of the main portals on the Internet in February 2000. While these
attacks brought the vulnerability of the Internet to denial of service attacks to the
mainstream public consciousness, the security community has long been aware of this;
in fact, this attack was nothing compared to what a dedicated and determined adver-
sary could do. The February attack consisted of the installation and execution of pub-
licly available attack scripts. Very little skill was required to launch the attack, and mini-
mal skill was required to install the attack.

The way DDoS works is that a program called a daemon is installed on many machines.
Any of the delivery mechanisms described above can be used. One other program,
called the master, is installed anywhere on the Internet, so that there are many unwit-
ting accomplices to the attack, and the real attacker cannot be traced. The system lies
dormant until the attacker decides that it is time to strike. At that point, the attacker
sends a signal to the master, using a publicly available tool, indicating a target to attack.
The master conveys this information to all of the daemons, who simultaneously flood
the target with more Internet traffic than it can handle. The effect is that the target
machine is completely disabled.

We experimented in the lab with one of the well known DDoS programs, called Tribe
Flood Network (TFN), and discovered that the attack is so potent that even one dae-
mon attacking a UNIX workstation disabled it to the point where it had to be rebooted.
The target computer was so overwhelmed that we could not even move the cursor with
the mouse.

There are tools that can be easily found by anyone with access to the Web that auto-
mate the process of installing daemons, masters, and the attack signal. People who
attack systems with such tools are known as script kiddies, and represent a growing
number of people. In an election, the adversary is more likely to be someone at least as
knowledgeable as the writers of the script kiddy tools, and possibly with the resources
of a foreign government.

There are many other ways to target a machine and make it unusable, and it is not too
difficult to target a particular set of users, given domain-name information that can
easily be obtained from the online registries such as Register.com and Network Solu-
tions, or directly from the whois database. The list of examples of attacks goes on and
on. A simple one is the ping of death, in which a packet can be constructed and split
into two fragments. When the target computer assembles the fragments, the result is a
message that is too big for the operating system to handle, and the machine crashes.
This has been demonstrated in the lab and in the wild, and script kiddy tools exist to
launch it.

The danger to Internet voting is that it is possible that during an election, communica-
tion on the Internet will stop because attackers cause routers to crash, election servers
to get flooded by DDoS, or a large set of hosts, possibly targeted demographically, to
cease to function. In some close elections, even an untargeted attack that changes the
vote by one percentage point could sway the outcome.

25February 2001 ;login:

In some close elections, even

an untargeted attack that

changes the vote by one

percentage point could sway

the outcome.

ELECTRONIC VOTING OVER THE INTERNET ●

●

C

O
M

PU
TI

N
G

Social Engineering
Social engineering is the term used to describe attacks that involve fooling people into
compromising their security. Talking with election officials, one discovers that one of
the issues that they grapple with is the inability of many people to follow simple direc-
tions. It is surprising to learn that, for example, when instructed to circle a candidate’s
name, people will often underline it. While computers would seem to offer the oppor-
tunity to provide an interface that is tightly controlled and thus less subject to error,
this is counter to the typical experience most users have with computers. For people
with little or no computing experience, computers are often intimidating. User inter-
faces are often poor and create confusion, rather than simplifying processes.

A remote voting scheme will have some interface. The actual design of that interface is
not the subject of this paper, but it is clear that there will be some interface. For the sys-
tem to be secure, there must be some way for voters to know that they are communi-
cating with the election server. The infrastructure does exist right now for computer
security specialists, who are suspicious that they could be communicating with an
imposter, to verify that their browser is communicating with a valid election server. The
SSL protocol and server-side certificates can be used for this. While this process has its
own risks and pitfalls, even if we assume that it is flawless, it is unreasonable to assume
that average Internet users who want to vote on their computers can be expected to
understand the concept of a server certificate, to verify the authenticity of the certifi-
cate, and to check the active ciphersuites to ensure that strong encryption is used. In
fact, most users would probably not distinguish between a page from an SSL connec-
tion to the legitimate server and a non-SSL page from a malicious server that had the
exact same look as the real page.

There are several ways that an attacker could spoof the legitimate voting site. One way
would be to send an email message to a user telling that user to click on a link, which
would then bring up the fake voting site. The adversary could then collect the user’s
credentials and, in a sense, steal the vote. An attacker could also set up a connection to
the legitimate server and feed the user a fake Web page, and act as a middleman, trans-
ferring information between the user and the Web server, with all of the traffic under
the attacker’s control. This is probably enough to change a user’s vote, regardless of
how the application is implemented.

A more serious attack is possible by targeting the Internet’s Domain Name Service
(DNS). The DNS is used to maintain a mapping from IP addresses, which computers
use to reference each other (e.g., 135.207.18.199), to domain names, which people use
to reference computers (e.g., www.research.att.com). The DNS is known to be vulnera-
ble to attacks, such as cache poisoning, which change the information available to hosts
about the IP addresses of computers. This is serious because a DNS cache poisoning
attack, along with many other known attacks against DNS, could be used to direct a
user to the wrong Web server when the user types in the name of the election server in
the browser. Thus, a user could follow the instructions for voting and yet receive a page
that, though looking exactly like it is supposed to, is actually entirely controlled by the
adversary. Detailed instructions about checking certificate validity are not likely to be
understood nor followed by a substantial number of users.

Another problem along these lines is that any computer under the control of an adver-
sary can be made to simulate a valid connection to an election server, without actually
connecting to anything. So, for example, a malicious librarian or cyber café operator
could set up public computers that appear to accept votes, but actually do nothing with

26 Vol. 26, No. 1 ;login:

Talking with election officials,

one discovers that one of the

issues that they grapple with

is the inability of many people

to follow simple directions.

the votes. This could even work if the computers were not connected to the Internet,
since no messages need to be sent or received to fool a user into believing that their
vote was cast. Setting up such machines in districts known to vote a certain way could
influence the outcome of an election.

Specialized Devices
One potential enabler at our disposal is the existence of tamper-resistant devices, such
as smart cards. Cryptographic keys can be generated and stored on these devices, and
they can perform computations such that proper credentials can be exchanged between
a client and a voting server. However, there are some limitations to the utility of such
devices. The first is that there is not a deployed base of smart card readers on people’s
personal computers. Any system that involves financial investment on the part of indi-
viduals in order to vote is unacceptable. Some people are more limited in their ability
to spend, and it is unfair to decrease the likelihood that such people vote. It would, in
effect, be a poll tax. This issue is often referred to as the digital divide.

Even if everybody did have smart card readers on their computers, there are security
concerns. The smart card does not interact directly with the election server. The com-
munication goes through the computer. Malicious code installed on the computer
could misuse the smart card. At the very least, the code could prevent the vote from
actually being cast, while fooling the user into believing that it was. At worst, it could
change the vote.

Other specialized devices, such as a cell phone with no general-purpose processor,
equipped with a smart card, offer more promise of solving the technical security prob-
lems. However, they introduce even greater digital divide issues. In addition, the user
interface issues, which are fundamental to a fair election, are much more difficult. This
is due to the more limited displays and input devices. Finally, while computers offer
some hope of improving the accessibility of voting for the disabled, specialized devices
are even more limiting in that respect.

Is There Hope?
Given the current state of insecurity of hosts and the vulnerability of the Internet to
manipulation and denial of service attacks, there is no way that a public election of any
significance involving remote electronic voting could be carried out securely. So, is
there any hope that this will change?

For this to happen, the next generation of personal computers that are widely adopted
must have hardware support to enable a trusted path between the user and the election
server. There must be no way for malicious code to be able to interfere with the normal
operation of applications. Efforts such as the Trusted Computing Platform Alliance
(TCPA) (see <http://www.trustedpc.org/home/home.htm>) must be endorsed. The chal-
lenge is great because to enable secure remote electronic voting, the vast majority of
computer systems need to have the kind of high assurance aspired to by the TCPA. It is
not clear whether the majority of PC manufacturers will buy into the concept. The
market will decide. While it is unlikely that remote electronic voting will be the driving
force for the design of future personal computers, the potential for eliminating the haz-
ards of online electronic commerce could potentially fill that role.

One reason that remote electronic voting presents such a security challenge is that any
successful attack would be very high profile, a factor that motivates much of the hack-
ing activity to date. Even scarier is that the most serious attacks would come from

27February 2001 ;login:

Given the current state of

insecurity of hosts and the

vulnerability of the Internet to

manipulation and denial of

service attacks, there is no

way that a public election of

any significance involving

remote electronic voting

could be carried out securely.

ELECTRONIC VOTING OVER THE INTERNET ●

●

C

O
M

PU
TI

N
G

http://www.trustedpc.org/home/home.htm

someone motivated by the ability to change the outcome without anyone noticing. The
adversaries to an election system are not teenagers in garages but foreign governments
and powerful interests at home and abroad. Never before have the stakes been so high.

Conclusions
A certain amount of fraud exists in the current offline election system. It is tolerated
because there is no alternative. The system is localized so that it is very unlikely that a
successful fraud could propagate beyond a particular district. Public perception is that
the system works, although there may be a few kinks in it here and there. There is no
doubt that the introduction of something like remote electronic voting will, and
should, come under careful scrutiny, and in fact, the system may be held up to a higher
standard. Given the current state of widely deployed computers in people’s homes, the
vulnerability of the Internet to denial of service attacks, and the unreliability of the
Domain Name Service, we believe that the technology does not yet exist to enable
remote electronic voting in public elections.

Acknowledgments
We thank all of the participants of the Internet Policy Institute e-voting workshop for a
wonderful exchange of ideas. Special thanks go to Lorrie Cranor, Andrew Hume, and
David Jefferson for valuable input.

28 Vol. 26, No. 1 ;login:

We believe that the

technology does not yet exist

to enable remote electronic

voting in public elections.

29February 2001 ;login: NEEDLES IN THE CRAYSTACK ●

Part 2: A Kind of Magic
In the 1960s science writer Arthur C. Clarke came up with a maxim – actual-

ly he called it a ”law.” He said that any sufficiently advanced technology

would appear to us to be indistinguishable from magic. Back in the 1960s, if

one identified with that line of thought at all (which usually meant being a

fan of science fiction), one could smile wistfully and admire the wisdom of

Clarke’s acuity. Today, though, it is almost a platitude. The pace of techno-

logical change is so great that what was, for most people, a distant and

speculative remark has been transformed into a mundane truism, at least in

the developed world. The magic of our own technology is revealed to us on

a daily basis.

The magnitude of our accomplishments, however, is overwhelming: the years of
research and discovery, the gradual refinement of small things, the putting together of
many small accomplishments into larger accomplishments. Standing on the shoulders
of earlier giants, we are able to reach even higher to build taller giants, and each genera-
tion of this evolution carries us forward, as we take for granted the technology of the
last generation to build something new. Each step seems small, each advance trivial. It
is only when we step back and view the whole coherent effort, from beginning to end,
that the process seems overwhelming.

Locked in this web of innovation are the answers to many pertinent questions about
the present and future of our information systems. For that reason, it is worth explor-
ing the process of development which brought us here. I am not a historian by nature,
but history is nothing if not a data-structure charting the structure of data, or patterns
of stuff which brought us to where we are today. Patterns recur and problems manifest
themselves repeatedly; our history is a catalog of only a few common themes.

To really appreciate the nature of our development, we have to allow ourselves to be
impressed by commonplace things. Take something as simple as a window. Try looking
at it, instead of through it, and you will see that a window is a perfect example of the
advanced technology which we take for granted. The word “window” originates from
the Scandinavian vind-auga, meaning “eye for the wind.” Windows were originally just
knocked-out holes, used to ventilate and perhaps illuminate shelters (this was a pre-
IKEA design). This illustrates the fact that even technologies as evolved and perfected
as the window can have humble beginnings.

The window has been around for centuries in different forms, but it has also gone
through enormous technological changes: the invention of glass; the technology to
make large, smooth, flat plates of it; the extraction of the raw materials; the generation
of temperatures required to melt those materials; the containers to hold them while
hot; the metal in the frames and the handles; sun reflective technology; heat insulating
technology; sound insulating technology; the molding of the parts. The list is long. All
this does not just apply to windows, of course, but to tables and toasters and CD play-
ers and televisions, books, buildings, and computers.

needles in the
craystack: when
machines get sick

by Mark Burgess

Mark is an associate
professor at Oslo
College, and is the
program chair for
LISA 2001.

<Mark.Burgess@iu.hioslo.no>

●

C

O
M

PU
TI

N
G

We switch off feelings of awe and take things for granted most of the time. Without
that emotional shield we might be cowering in front of household appliances, perhaps
not worshipping them, but perhaps not far from it. But is this what we want? The more
we feign the triviality of it all, the more we are in danger of losing control and becom-
ing dependent. This process of technological dependency is well under way.

Computers from Soup
Computers are information systems. We are also information processing systems. We
are orders of magnitude more complex, but by looking at our own problems, we are
peering into the future of our computer systems. The biological program is the sim-
plest of all imaginable programs (copy thyself); there are nonetheless important paral-
lels. Our computers are simply a by-product of our own evolution. Their sicknesses
emerge from the same principles that ours do. The fact that humans are the vector by
which computer sickness is instigated is neither here nor there: the deeper reason, that
sickness can occur at all, is independent of the medium.

In one sense, familiar to Darwinists, all our technology assembled itself. It is the final
leg of the well-known process of the evolution of structure. According to the best avail-
able evidence, we were once nothing more than chance molecular formations, in a
microscopic region of a large puddle: the so-called primeval soup. No one really knows
how, but presumably conditions became favorable for some molecules to clump togeth-
er and replicate, and gradually the statistics of this replication led to inevitable muta-
tion. Mutation is always provided by a complex and unpredictable environment mess-
ing with the replication program. Errors occur because the environment intervenes at
random in the replicator’s task, and these errors get propagated onward in the chain. To
cut a long story short, these molecules end up being something like RNA, then later
DNA, which have the remarkable property of extremely high-fidelity reproduction.

DNA is only a compressed code for protein manufacture. The real information in bio-
logical systems lies in the finished proteins. These fold into complex three-dimensional
structures. In fact, DNA is unstable and only ever reproduces inside the protective bub-
ble of cells. No one can be completely sure how cells first formed, but once a single cell
had been formed, it allowed for greater refinement of a delicate procedure. Thereafter,
DNA copied itself by copying and dividing cells.

The replication game chanced upon increasingly bizarre and intricate multicellular
structures: plants and animals. Fortune favored our development into intelligent mech-
anisms (just replicators nonetheless) capable of understanding, abstracting, and manip-
ulating the world to our own advantage. Our motivations changed from mere replica-
tion of biological information to the replication of abstract information: art, science,
imagination, belief, and other culture. Much of “intelligent” human behavior can be
understood in a framework of copying ideas and themes from person to person. These
are called memes (“mind genes”). Successful ideas are not necessarily good ideas, but
simply those which copy themselves most perniciously: the awful songs that get stuck
in our heads, the images which are most seductive. The whole notion of jingles and
catchphrases is based upon this idea: involuntary replication inside human minds.
Drive us crazy, but survive at any cost. From this billion year evolutionary process come
humans and all the rest of it, including our technology. It is a kind of meme, not a kind
of magic.

The evolution of the human body and mind is perhaps the most complex “technology”
ever to arise on the planet; the most bizarre and wondrous stalactite, deposited and

30 Vol. 26, No. 1 ;login:

Much of “intelligent” human

behavior can be understood

in a framework of copying

ideas and themes from person

to person.

mutated by the drip of time, sculpted and refined by the whittling away erosion of nat-
ural selection. Tracking this complexity through all its mindless jiggling is so far beyond
our comprehension that some still prefer to believe in a supernatural explanation for
our emergence, but the principles are clear, if not the details. By comparison, today’s
information systems are almost trivial, yet still so complex that it is difficult to compre-
hend them in every detail. Probably it is only the blatant smoking gun that convinces
us that humans made computers and that no supernatural explanation is required to
explain them.

Biology is about complex chemical machinery which often fails to live up to expecta-
tions. We observe and accept its diseases from bitter experience, and invest great effort
into researching solutions. Computer systems are about electronic machinery, of lesser
but still formidable complexity. Our attitudes toward them are mixed, but seldom con-
sistent. There are users and there are menders, and whichever side we are on, we need
to understand the price that complexity brings.

The Sheep Look Up
We take our windows for granted. Technology is treated as a kind of magic to which we
are entitled, but which many do not feel obliged to understand, or forgive. Some feel
that, if only things were made better, they would not go wrong. The reality might well
be that, as things become more complex and more refined, the wrongs only change in
character. They do not go away, because that all-important interaction with the envi-
ronment remains.

The declining interest in technology-related subjects at colleges and universities is no
accident. Technology has never been more used or more passé than it is today. The
mystery is gone, the vision of a better future, which technology used to symbolize, has
been diluted by its perceived triviality. It is just another home comfort, which we can
buy in the safe abstraction of a shopping mall, another step into the air-conditioned
virtual reality of our contemporary Western theme park. Only computer and mobile
communication technologies remain interesting on a wide scale. This seems to be
mainly due to the social freedoms and multimedia glamour which they offer, rather
than the technical challenges they represent.

But how does society hope to better technologies, or even maintain existing ones, if
new generations are not inspired to learn something about them? Sure enough, there
will always be a few who remain interested (those of you reading this, I expect), but a
situation of dependency on a few figures in a society, no matter how well intentioned
they might be, is a dangerous position to place oneself in. Power corrupts. It is a sober-
ing fact that the true driving force behind technological development has not been
curiosity, or sense of adventure, but the quest for supremacy.

The evidence of our complacency toward technology is everywhere. It began with the
best of intentions: to simplify technology for everyday use. Take the development of
windowing systems for computers as an example. Windowing systems offer the possi-
bility of no-knowledge execution of a handful of tasks by pushing big buttons. As a
form of communication, icons are trivial and hold only limited meaning. There is no
grammar for combining primitives into more complex actions, and thus icon users are
locked into a rigid framework from which they cannot escape. It is like holding a con-
versation by semaphore: it is difficult to order a medium-rare steak or complain about
the wine with only the flags provided.

31February 2001 ;login:

It is a sobering fact that the

true driving force behind

technological development

has not been curiosity, or

sense of adventure, but the

quest for supremacy.

NEEDLES IN THE CRAYSTACK ●

●

C

O
M

PU
TI

N
G

Command line interfaces represent the “user-unfriendly” side of computing, but they
are grammatical languages within which users can express their precise wishes. This is
seldom articulated. Even computer science students will press buttons at random for
hours rather than taking a few moments to express their wishes in textual form. In
other words, they prefer to hit buttons at random, like rats in an experiment, than
invest time in learning a form of expression which would empower them on a whole
new level. Whether commendable or not, this must be human nature. We should prob-
ably fight it.

These are symptoms of a more general malaise: the convenience society. We began a
cycle of making things easier for non-experts. This is a downward spiral which ends up
in system designers underestimating user abilities. The BBC news service recently had a
serious discussion about whether to follow suit in “dumbing down the news” to bring it
more into line with other world news stations. In Norway, the process has already
begun. Flaunting the attitude that expertise is not for normal folks is disturbing. Nor-
mal folks don’t waste their time with that kind of expert nonsense.

Information is power, as they say. Security is the opposite of convenience. Since com-
puters are ever more likely to hold the keys to power in our future, computer designers
and managers need to be aware of this problem and counteract it. If computer systems
are to be protected from users, while giving users what they need, the issues are not
only about simplifying things and making everything as easy as possible. They must be
understood.

Why do computers get sick? One answer is abuse, neglect, and even ignorance. They
will only get sicker if we do not invest a steady effort in researching their weaknesses.
Before the existence of medical research, we were slaves to our limited immune sys-
tems. Before the discovery of antibiotics, open wounds would often be fatal, broken
bones would lead to disability. The story with our computers will be the same, unless
we have our wits about us. Fixed defenses might serve in routine cases, but if one
stands still, the enemy will gain an advantage. Keeping complex systems in a stable state
is an arms race. Nature will find a way.

32 Vol. 26, No. 1 ;login:

Keeping complex systems in a

stable state is an arms race.

Nature will find a way.

33February 2001 ;login: TCP TUNING GUIDE ●

1.0 Introduction
Obtaining good TCP throughput across a wide area network usually requires

some tuning. This is especially true in high-speed “next generation Inter-

net”-like networks, where, even though there is no congestion, an applica-

tion may see only a small percentage of the total available bandwidth. This

document describes several techniques required to obtain good throughput,

and describes tools for diagnosing problems. This is a printer-friendly version

of the Web document: <http://www-didc.lbl.gov/tcp-wan.html>. Check the

Web page for updates. URLs for all tools mentioned in this document are

listed in section 5.

This document is aimed mainly at software developers. All too often software develop-
ers blame the network for poor performance, when in fact the problem is un-tuned
software. However, there are times when the network (or the operating system, as
shown in section 4) really is the problem. This document explains some tools that can
give software developers the evidence needed to make network engineers take them
seriously.

2.0 TCP Buffer Sizes
TCP uses what it calls the “congestion window,” or CWND, to determine how many
packets can be sent at one time. The larger the congestion window size, the higher the
throughput. The TCP “slow start” and “congestion avoidance” algorithms determine the
size of the congestion window. The maximum congestion window is related to the
amount of buffer space that the kernel allocates for each socket. For each socket, there
is a default value for the buffer size, which can be changed by the program using a sys-
tem library call just before opening the socket. There is also a kernel enforced maxi-
mum buffer size. The buffer size can be adjusted for both the send and receive ends of
the socket.

To achieve maximal throughput it is critical to use optimal TCP send and receive socket
buffer sizes for the link you are using. If the buffers are too small, the TCP congestion
window will never fully open up. If the buffers are too large, the sender can overrun the
receiver, and the TCP window will shut down. For more information, see the references
on page 38.

Users often wonder why, on a network where the slowest hop from site A to site B is
100 Mbps (about 12 MB/sec), using ftp they can only get a throughput of 500 KB/sec.
The answer is obvious if you consider the following: typical latency across the US is
about 25 ms, and many operating systems use a default TCP buffer size of either 24 or
32 KB (Linux is only 8 KB). Assuming a default TCP buffer of 24KB, the maximum uti-
lization of the pipe will only be 24/300 = 8% (.96 MB/sec), even under ideal condi-
tions. In fact, the buffer size typically needs to be double the TCP congestion window
size to keep the pipe full, so in reality only about 4% utilization of the network is

by Brian L.
Tierney

Brian L. Tierney is a
Staff Scientist and
group leader of the
Data Intensive Dis-
tributed Computing
Group at Lawrence
Berkeley National
Laboratory.

<bltierney@lbl.gov>

TCP tuning guide
for distributed
application on wide
area networks

●
N

ET
W

O
RK

IN
G

| C
O

M
PU

TI
N

G

achieved, or about 500 KB/sec. Therefore if you are using untuned TCP buffers you’ll
often get less than 5% of the possible bandwidth across a high-speed WAN path. This is
why it is essential to tune the TCP buffers to the optimal value.

The optimal buffer size is twice the bandwidth * delay product of the link:

buffer size = 2 * bandwidth * delay

The ping program can be used to get the delay, and pipechar or pchar, described below,
can be used to get the bandwidth of the slowest hop in your path. Since ping gives the
round-trip time (RTT), this formula can be used instead of the previous one:

buffer size = bandwidth * RTT

For example, if your ping time is 50 ms, and the end-to-end network consists of all
100BT Ethernet and OC3 (155 Mbps), the TCP buffers should be 0.05 sec * 10 MB/sec
= 500 KB. If you are connected via a T1 line (1 Mbps) or less, the default buffers are
fine, but if you are using a network faster than that, you will almost certainly benefit
from some buffer tuning.

Two TCP settings need to be considered: the default TCP send and receive buffer size
and the maximum TCP send and receive buffer size. Note that most of today’s UNIX
OSes by default have a maximum TCP buffer size of only 256 KB (and the default max-
imum for Linux is only 64 KB!). For instructions on how to increase the maximum
TCP buffer, see Appendix A. Setting the default TCP buffer size greater than 128 KB
will adversely affect LAN performance. Instead, the UNIX setsockopt call should be
used in your sender and receiver to set the optimal buffer size for the link you are
using. Use of setsockopt is described in Appendix B.

It is not necessary to set both the send and receive buffer to the optimal value, as the
socket will use the smaller of the two values. However, it is necessary to make sure both
are large enough. A common technique is to set the buffer in the server quite large
(e.g., 512 KB) and then let the client determine and set the correct “optimal” value.

3.0 Other Techniques
Other useful techniques to improve performance over wide area networks include:

■ Using large data block sizes. For example, most ftp implementations send data in 8
KB blocks. Use around 64 KB instead, since disk reads, memory copies, and net-
work transfers are usually faster with large data blocks. However, be careful on
QoS-enabled paths, since large blocks are more likely to overflow router buffers.
32K might be better on these networks.

■ Sending lots of data at a time. If there is not enough data sent to keep the pipe full,
the TCP window will never fully open up. In general, 0.5 MB or greater is a good
amount to send at a time.

■ Using multiple sockets. For example, to transfer a large file, send 25% of the file on
each of 4 sockets in parallel. On a congested network, this often provides linear
speedup! This only helps for large read/writes. Typically 4 sockets per host is a
good number to use; with more than 4 the sockets will interfere with each other.
The psockets library from the University of Illinois at Chicago makes it easy to add
this ability to your applications. However, be careful using this technique with
Gigabit Ethernet (1000BT) and a relatively underpowered receiver host. For exam-
ple, a 500 MHz Pentium needs about 90% of the CPU just to read a single socket
using Gigabit Ethernet, and sending data on 2 sockets instead of just 1 will
decrease throughput dramatically.

34 Vol. 26, No. 1 ;login:

If you are using untuned TCP

buffers you’ll often get less

than 5% of the possible

bandwidth across a high-

speed WAN path.

■ Using asynchronous I/O, a thread pool, or a select/poll mechanism. There is usual-
ly something else the application can be doing while it is blocked waiting for data.
For example, use one thread to read data from the network, and a separate thread
to write the data to disk. If reading is from multiple sockets, using a thread pool to
handle multiple sockets in parallel can also help, especially on multi-CPU hosts.

■ Avoiding unnecessary memory copies. Try to read the data straight into the memo-
ry location that will later need it. For example, if the data will be displayed by an X
Window application, read it directly into the X pixmap structure. Do not read it
into a read buffer and then copy it to the X buffer.

4.0 Network Problems
If you still have trouble getting high throughput, the problem may well be in the net-
work. First, use netstat -s to see if there are a lot of TCP retransmissions. TCP retrans-
mits usually indicate network congestion, but can also happen with bad network hard-
ware, or misconfigured networks. You may also see some TCP retransmissions if the
sending host is much faster than the receiving host, but TCP flow control should make
the number of retransmits relatively low. Also look at the number of errors reported by
netstat, as a large number of errors may also indicate a network problem.

4.1 USE pipechar AND pchar
The pchar tool does a pretty good job of giving hop-by-hop performance. If one of the
hops is much slower than expected, this may indicate a network problem, and you
might think about contacting your network administrator. Note that pchar often gives
wrong or even negative results on very high speed links. It’s most reliable on links that
are OC3 (155 Mbps) or slower.

pipechar is a new tool, developed at LBNL, that will also find your bottleneck hop and
seems to give more accurate results than pchar. While pchar attempts to accurately
report the bandwidth and loss characteristics of every hop in the path, pipechar only
accurately reports the slowest hop; results for all segments beyond the slowest segment
will not be accurate. For example, if the first hop is the slowest, pipechar results for all
other segments will be meaningless. Another significant difference between the tools is
the time to run them. For a typical WAN path of eight hops, pipechar takes about one
or two minutes, but pchar may take up to one hour.

If you are trying to determine the optimal TCP window size, the bottleneck hop is the
only thing you are interested in. Therefore pipechar is clearly the better tool, since it
takes much less time to identify the slowest hop. However, pchar is still a useful debug-
ging tool.

4.2 CHECK THE DUPLEX MODE
A common source of LAN trouble with 100BT networks is that the host is set to full
duplex, but the Ethernet switch is set to half duplex, or vice versa. Most newer hard-
ware will auto-negotiate this, but with some older hardware, auto-negotiation will
sometimes fail, with the result being a working but very slow network (typically only
1–2 Mbps). It’s best for both to be in full duplex if possible, but some older 100BT
equipment only supports half duplex. See Appendix C for some ways to check what
your systems are set to.

4.3 USE tcpdump/tcptrace
You can also use tcpdump to try to see exactly what TCP is doing. tcptrace is a very nice
tool for formatting tcpdump output, and then xplot is used to view the results.

35February 2001 ;login:

If you still have trouble

getting high throughput, the

problem may well be in the

network.

TCP TUNING GUIDE ●

●
N

ET
W

O
RK

IN
G

| C
O

M
PU

TI
N

G

For example:

tcpdump -s 100 -w /tmp/tcpdump.out host myhost
tcptrace -Sl/tmp/tcpdump.out
xplot /tmp/a2b_tsg.xpl

NLANR’s TCP Testrig is a nice wrapper for all of these tools, and includes information
on how to make sense out of the results. An example of tcptrace results is shown in
Figure 1, which shows the TCP slow start algorithm opening up the TCP congestion
windows at the beginning of a data transmission.

36

Figure 2. tcptrace showing Linux TCP bug
Linux to Linux Linux to Solaris

Figure 1. tcptrace results showing TCP slow-start

Vol. 26, No. 1 ;login:

I recently used these tools to help identify a rather severe TCP bug in Linux. On a par-
ticular wide area network path I was getting a consistent 20 Mbps throughput with
Solaris or FreeBSD sending to Solaris, Linux, or FreeBSD, but only 0.5 Mbps with
Linux to Solaris or FreeBSD (Linux to Linux was also fine). Using
tcpdump/tcptrace/xplot, I got the following plots. You have to be a serious TCP expert
to really understand these plots (which I am not), but it’s pretty clear that something
strange is going on in the Linux sender. Using this data in Figure 2 as evidence, I was
quickly able to convince the Linux TCP developers that there was a bug here, and the
Linux 2.2.18 and the Linux 2.4.0-test12 kernels now include a fix for this problem.1

5.0 Tools
Here is the list of tools mentioned in this document, and a few others you may find
useful:

■ iperf: currently the best tool for measuring end-to-end TCP/UDP performance—
<http://dast.nlanr.net/Projects/Iperf/index.html>

■ NetTune: a library to increase the socket buffer size via an environment variable—
<http://www.ncne.nlanr.net/tools/application.html>

■ pipechar: hop-by-hop bottleneck analysis tool—
<http://www-didc.lbl.gov/pipechar/>

■ pchar: hop-by-hop performance measurement tool—
<http://www.employees.org/~bmah/Software/pchar/>

■ psockets: easy to use parallel sockets library—
<http://www.ncdm.uic.edu/html/psockets.html>

■ tcpdump: dumps all TCP header information for a specified source/destination—
<ftp://ftp.ee.lbl.gov/>

■ tcptrace: formats tcpdump output for analysis using xplot—
<http://jarok.cs.ohiou.edu/software/tcptrace/>

■ NLANR TCP Testrig: Nice wrapper for tcpdump and tcptrace tools—
<http://www.ncne.nlanr.net/TCP/testrig/>

■ traceroute: lists all routers from current host to remote host—
<ftp://ftp.ee.lbl.gov/>

Many other tools are listed at the NLANR Engineering Tools Repository at
<http://www.ncne.nlanr.net/tools/>.

6.0 Other Useful Links
■ Solaris 2.6 SACK patch: <ftp://play-ground.sun.com/pub/sack/tcp.sack.tar.Z> (SACK

is part of Solaris >= 2.7 and Linux >= 2.2)
■ Pittsburgh Supercomputer Center Tuning Guide:

<http://www.psc.edu/networking/perf_tune.html>

7.0 Updates
The goal is to continually update this document. Please send additions and corrections
to <bltierney@lbl.gov>. Note that the Web-based version at
<http://www-didc.lbl.gov/tcp-wan.html> may be more up-to-date.

8.0 Acknowledgments
The work described in this paper is supported by the US Dept. of Energy, Office of Sci-
ence, Office of Computational and Technology Research, Mathematical, Information,
and Computational Sciences Division
(<http://www.er.doe.gov/production/octr/mics/index.html>), under contract DE-AC03-
76SF00098 with the University of California. This is report no. LBNL-45261.

37February 2001 ;login: TCP TUNING GUIDE ●

●
N

ET
W

O
RK

IN
G

| C
O

M
PU

TI
N

G

1. This Linux sender bug only occurs on net-
works with at least a 25 ms RTT and an end-to-
end network path of at least 10 Mbps, and must
have at least some congestion. The bug has
something to do with the computation of the
TCP RTO timer. If you are running a Linux
server in this sort of network environment, I
strongly encourage you to upgrade your kernel
for find and install patch. For more informa-
tion, see <http://www-didc.lbl.gov/Linux-tcp-bug.html>.

http://dast.nlanr.net/Projects/Iperf/index.html
http://www.ncne.nlanr.net/tools/application.html
http://www-didc.lbl.gov/pipechar/
http://www.employees.org/~bmah/Software/pchar/
http://www.ncdm.uic.edu/html/psockets.html
ftp://ftp.ee.lbl.gov/
http://jarok.cs.ohiou.edu/software/tcptrace/
http://www.ncne.nlanr.net/TCP/testrig/
ftp://ftp.ee.lbl.gov/
http://www.ncne.nlanr.net/tools/
ftp://play-ground.sun.com/pub/sack/tcp.sack.tar.Z
http://www.psc.edu/networking/perf_tune.html
http://www-didc.lbl.gov/tcp-wan.html
http://www.er.doe.gov/production/octr/mics/index.html
http://www-didc.lbl.gov/Linux-tcp-bug.html>.

9.0 References
1. V. Jacobson, “Congestion Avoidance and Control,” Proceedings of ACM SIGCOMM

’88, August 1988.

2. J. Semke, M. Mathis Mahdavi, “Automatic TCP Buffer Tuning,” Computer Communi-
cation Review, ACM SIGCOMM, vol. 28, no. 4, October 1998.

3. B. Tierney, J. Lee, B. Crowley, M. Holding, J. Hylton, F. Drake, “A Network-Aware Dis-
tributed Storage Cache for Data Intensive Environments,” Proceeding of IEEE High
Performance Distributed Computing Conference (HPDC-8), August 1999, LBNL-
42896.

Appendix A: Changing TCP System Default Values
On Linux, add something like the following to one of your boot scripts. On our sys-
tems, we add the following to /etc/rc.d/rc.local to increase the maximum buffers to 8
MB and the default to 64 KB.

echo 8388608 > /proc/sys/net/core/wmem_max
echo 8388608 > /proc/sys/net/core/rmem_max
echo 65536 > /proc/sys/net/core/rmem_default
echo 65536 > /proc/sys/net/core/wmem_default

For Solaris, create a boot script similar to this (e.g., /etc./rc2.d/S99ndd):

#!/bin/sh
increase max tcp window
Rule-of-thumb: max_buf = 2 x cwnd_max (congestion window)
ndd -set /dev/tcp tcp_max_buf 4194304
ndd -set /dev/tcp tcp_cwnd_max 2097152
increase DEFAULT tcp window size
ndd -set /dev/tcp tcp_xmit_hiwat 65536
ndd -set /dev/tcp tcp_recv_hiwat 65536

osver=̀ uname -r̀
Turn on Selective Acks (SACK)
if [$osver = "5.7"]; then

SACK is on in "passive" mode by default in Solaris.
This will set it to "active" mode
ndd -set /dev/tcp tcp_sack_permitted 2

fi

Note that SACK comes as part of Solaris >= 2.7, but for Solaris 2.6, you must install the
SACK patch, available from <ftp://playground.sun.com/pub/sack/tcp.sack.tar.Z>

For Irix (6.4, 6.5), the maximum TCP buffer doesn’t appear to be setable, and is fixed at
4 MB. To modify the default buffer size, edit the file: /var/sysgen/master.d/bsd, and set:

tcp_sendspace=65536
tcp_recvspace=65536

See the PSC TCP Performance Tuning guide
(<http://www.psc.edu/networking/perf_tune.html>) for information on setting TCP
parameters for other operating systems.

Appendix B: C Code to Set the TCP Buffer Size
Here is how to use the setsockopt call to set TCP buffer sizes within your application
using C:

38 Vol. 26, No. 1 ;login:

ftp://playground.sun.com/pub/sack/tcp.sack.tar.Z
http://www.psc.edu/networking/perf_tune.html

int skt, int sndsize;
err = setsockopt(skt, SOL_SOCKET, SO_SNDBUF, (char *)&sndsize,

(int)sizeof(sndsize));

or

int skt, int sndsize;
err = setsockopt(skt, SOL_SOCKET, SO_RCVBUF, (char *)&sndsize,

(int)sizeof(sndsize));

Here is sample C code for checking what the buffer size is currently set to:

int sockbufsize = 0; int size = sizeof(int);
err = getsockopt(skt, SOL_SOCKET, SO_RCVBUF, (char *)&sockbufsize,&size);

Note: It is a good idea to always call getsockopt after setting the buffer size, to make
sure that the OS supports buffers of that size. The best place to check it is after the serv-
er listen() or client connect(). Some OSes seem to modify the TCP window size to their
max or default at that time. Also note that Linux mysteriously doubles whatever value
you pass to the setsockopt call, so when you do a getsockopt you will see double what
you asked for. Don’t worry, as this is “normal” for Linux.

Appendix C: Checking for Full vs. Half Duplex Mode
Have your network administrator check what duplex your switch or hub is set to, and
then check your hosts.

On Solaris, here is the command to check the duplex:

ndd /dev/hme link_mode

where a return value of 0 = half duplex, and 1 = full duplex.

To force to full duplex:

ndd -sec /dev/hme adv_100fdx_cap ndd -set /dev/hme adv_autoneg_cap 0

To force to half duplex:

ndd -sec /dev/hme adv_100hdx_cap ndd -set /dev/hme adv_autoneg_cap 0

Please send info on other operating systems to <bltierney@lbl.gov>, and I’ll add them to
the version of this document on my Web site.

39February 2001 ;login: TCP TUNING GUIDE ●

●
N

ET
W

O
RK

IN
G

| C
O

M
PU

TI
N

G

40 Vol. 26, No. 1 ;login:

Recycling Objects
If you’ve ever looked at trying to optimize dynamic storage allocation (using

malloc/free functions in C), one of the issues that comes up is object recy-

cling. The idea is to somehow keep a list of freed objects around as part of

your application, so that you don’t incur the overhead of malloc/free, and

can instead reuse objects.

The Java language uses a different model of storage allocation than C, with a “new”
operator for allocating objects, and garbage collection for reclaiming them. But the
same idea of object recycling can potentially be applied, and it’s worth considering an
example and some of the trade-offs with such an approach.

An Example
The example we’ll use for this discussion is one that inserts nodes in a binary tree:

import java.util.Random;

public class Tree {
// true if should recycle tree nodes
static boolean recycle_flag;
// class for tree nodes
static class Node {

int key;
Node left;
Node right;
static Node freelist;

}
// root of binary tree
private Node root;
// insert into tree
private Node insert2(Node p, int k) {

if (p == null) {
if (Node.freelist != null) {

p = Node.freelist;
Node.freelist = Node.freelist.left;
p.left = null;
p.right = null;

}
else {

p = new Node();
}
p.key = k;

}
else if (k < p.key) {

p.left = insert2(p.left, k);
}
else if (k > p.key) {

p.right = insert2(p.right, k);
}
return p;

}
public void insertKey(int k) {

root = insert2(root, k);
}

java performance
by Glen
McCluskey

Glen McCluskey is a
consultant with 15
years of experience
and has focused on
programming lan-
guages since 1988.
He specializes in Java
and C++ perfor-
mance, testing, and
technical documenta-
tion areas.

<glenm@glenmccl.com>

41February 2001 ;login: JAVA PERFORMANCE ●

// look up a key

public boolean findKey(int k) {
Node curr = root;
while (curr != null) {

if (k == curr.key)
return true;

if (k < curr.key)
curr = curr.left;

else
curr = curr.right;

}

return false;
}

// delete the tree and recycle nodes

private void delete2(Node p) {
if (p == null)

return;

delete2(p.left);
delete2(p.right);

p.left = Node.freelist;
Node.freelist = p;

}

public void deleteTree() {
if (recycle_flag)

delete2(root);

root = null;
}

// driver

public static void main(String args[]) {
Random rn = new Random(0);

recycle_flag = true;

Tree t = new Tree();

long start = System.currentTimeMillis();

for (int i = 1; i <= 500; i++) {
int n = (int)(rn.nextFloat() * 25000);
for (int j = 1; j <= n; j++) {

int r = rn.nextInt();
t.insertKey(r);
if (!t.findKey(r))

System.err.println(“error: “ + r);
}
t.deleteTree();

}

long elapsed = System.currentTimeMillis() - start;

System.out.println(elapsed);

}
}

●
PR

O
G

RA
M

M
IN

G
| N

ET
W

O
RK

IN
G

| C
O

M
PU

TI
N

G

The program does 500 iterations, with 0–25000 random nodes inserted at each itera-
tion.

At the end of an iteration, tree nodes are freed. If recycle_flag is false, then freeing con-
sists simply of saying:

root = null;

which makes all the tree nodes unreachable, and subject to garbage collection. If
instead we want to recycle nodes, the tree must be traversed and all the nodes added to
a free list, a list whose head is represented as a static field (a single copy across all Node
objects) in Node. The free list is consulted in the insert2() method, and a reclaimed
Node object is used if possible.

Performance
When recycle_flag is set to true, the demo program runs about 20% faster than the
standard approach, using a couple of different Java compilers for timing.

In this particular application, it’s expensive to walk the binary tree and reclaim all the
nodes, and some other simpler use of nodes might result in a greater speedup. For
example, you might have a linked list, and you can reclaim the whole list of nodes at
fixed cost, by manipulating a few links.

Discussion
Suppose that you use recycling in your program, and it does give you enough of a
speed increase to be worth the more complex logic. What are the issues with this
approach, other than performance?

One issue is constructors. In Java programming, an object is typically initialized by a
constructor, used to set the initial object state. In the example above, however, this issue
is sidestepped. For example, in insert2(), when an object is reclaimed from the free list,
the “left” and “right” fields must be set to null, which normally would be done as part of
default object initialization or by a constructor.

Another point concerns thread-safe programming. If multiple threads are executing the
code above, with multiple tree structures active, then there’s a big issue with locking
while updating the free list. Our demo program doesn’t do this, and would need to use
synchronized statements to implement such locks. Locking comes at a price, which
works against the 20% advantage we claimed earlier.

A third issue is that the program may hold a lot of memory on its free list, which
means that the memory is unavailable to the rest of the application.

Is recycling useful? Yes, but perhaps only if you have simple data structures like linked
lists, where you can free up all the nodes quickly, and the nodes themselves have obvi-
ous initialization semantics. If these requirements are not met, then the costs of recy-
cling seem to outweigh the advantages.

42 Vol. 26, No. 1 ;login:

43February 2001 ;login: USING CORBA WITH JAVA ●

A Mini Napster
Part I
Introduction
The need to understand middleware technologies such as CORBA, DCOM,

and RMI has been hastened in recent years partially because they have all

matured to the point that they are all capable of being deployed in scalable

and evolvable distributed applications.

In this article I present a code example that I call a “mini napster.” In this example the
client and server communicate using the Object Request Broker (ORB) that is available
with the JDK1.2 release. The example itself is a simple Java program, but it is adequate
for the purposes of demonstrating the capabilities of CORBA.

A Brief History of CORBA and DCOM
The CORBA movement was largely a response to the pioneering effort by Microsoft in
the development of their component object model (COM). In both cases these software
capabilities (also known as middleware) made it possible to write powerful distributed
applications with more ease. I am not suggesting that writing distributed applications
using DCOM and CORBA are trivial but that they are much easier than programming
at the remote procedure call (RPC) layer.

In fact one of the stated goals of the Object Management Group (OMG) that devel-
oped the specification for CORBA was to make programming-distributed applications
as simple as writing non-distributed applications. The salient steps are:

1. Create an object
2. Make it distributable
3. Make it distributed

This approach is predicated heavily on the deployment of sound object-oriented soft-
ware engineering design and analysis. In our example we will assume that this is the
case.

The main difference between DCOM and CORBA is that CORBA has been proven to
run on various flavors of UNIX as well as Windows; DCOM clearly runs best on
Microsoft platforms, and although the marketing literature suggests that it is supported
on UNIX (Bristol and MainSoft are examples of companies making these claims), it is
likely that the performance will be unacceptable for most practical purposes.

The CORBA Interface Definition Language (IDL)
The CORBA IDL is a purely declarative language designed for specifying program-
ming-language-independent operational interfaces for distributed applications. The
OMG specifies a mapping from IDL to several different programming languages
including C, C++, Java, ADA, COBOL and SmallTalk. For each statement in the IDL
there is a mapping to a corresponding statement in the programming language. For
instance, all the primitive types in Java are supported. There is also provision to define
new types such as structures.

One of the main features of the CORBA IDL is that it is intended to capture the design
of the server. In other words, the IDL is a language-independent representation of the
server and therefore promotes an important concept of “design portability”; conse-

using CORBA
with java

by Prithvi Rao

Prithvi Rao is the co-
founder of KiwiLabs,
which specializes in
software engineering
methodology and
Java/CORBA training.
He has also worked on
the development of
the MACH OS and a
real-time version of
MACH. He is an
adjunct faculty at
Carnegie Mellon and teaches in the Heinz
School of Public Policy and Management.

<prithvi+@ux4.sp.cs.cmu.edu>

●
PR

O
G

RA
M

M
IN

G
| N

ET
W

O
RK

IN
G

| C
O

M
PU

TI
N

G

44 Vol. 26, No. 1 ;login:

quently it is possible to write the client in one language and the server in another (by
using IDL compilers for both languages) and thus promote inter-operability as well.

Napster Server
The Napster server permits a client application to register the name of an artist and
album and perform operations on this data. Specifically the operations are:

■ Add an item
■ Delete an item
■ Find an item
■ Update an item

Napster also requires that this information be available as a record structure, so it is
necessary to define a data type which is a “struct.”

The Napster IDL
The Napster IDL file called “Napster.idl” is a text file that has the following entries:

module Napster
{

struct Record
{

long version;
string artist_name;
string album_name;
string owner_name;

};

interface NapsterServerI
{

Record findItemInServer(in string albumName);
string addRecordInServer(in Record desiredRecord);
boolean deleteItemInServer(in Record desiredRecord);
boolean updateRecordInServer(in Record desiredRecord,
in string newOwner);

};
};

Mapping the IDL to Java
In this section we will compile the Napster.idl file and examine the output. The idltojava
compiler takes an IDL file as an input and generates the required Java files as follows:

idltojava Napster.idl (or idltojava -fno-cpp Napster.idl)

The “module” translates to a Java package name. When this file is compiled using the
idl2java compiler it will create a directory called “Napster” into which it adds the client
stubs and server skeleton code for use by the client and server.

The “interface” translates to a Java interface that must be “implemented” (recall that
you extend classes and implement interfaces). The methods that are defined in this
interface are commensurately translated to Java methods in the Java interface.

Making Sense of the Output of IdltoJava
In this section we examine the files that are generated by the idltojava compiler.

NapsterServerIImplBase.java

This abstract class is the server skeleton that provides basic CORBA functionality for
the server. It implements the NapsterServerI.java interface. The server class NapsterServant

45February 2001 ;login:

The level of difficulty in

writing distributed

applications is significantly

ameliorated with the advent

of middleware such as

CORBA.

extends _NapsterImplBase.

NapsterStub.java

This class is the client stub providing CORBA functionality for the client. It imple-
ments the NapsterServerI.java interface.

NapsterServerI.java

This interface contains the Java version of the IDL interface. It contains the four meth-
ods defined:

package Napster;
public interface NapsterServerI

extends org.omg.CORBA.Object, org.omg.CORBA.portable.IDLEntity {
Napster.Record findItemInServer(String albumName)

;
String addRecordInServer(Napster.Record desiredRecord)

;
boolean deleteItemInServer(Napster.Record desiredRecord)

;
boolean updateRecordInServer(Napster.Record desiredRecord,
String newOwner)

;
}

NapsterServerIHelper.java

This final class provides auxiliary functionality and, in specific, the “narrow” method
required to cast CORBA object references to their proper types.

NapsterServerIHolder.java

This final class holds a public instance member of type NapsterServerI. It provides
operations for “out” and “inout” arguments that CORBA has but which do not map
easily to Java semantics.

When you write the IDL interface, you are really doing all the programming that is
required to generate all the files mentioned to support the distributed application. The
only additional work required is the actual implementation of the client and server
classes.

In the next article I will present the client and server code for the Napster example and
provide instructions on how to run this application. We will observe that the structure
of a CORBA server and client code written in Java are identical to most Java applica-
tions as described below:

■ Import the required library packages
■ Declare the server class
■ Define a main method
■ Handle exceptions

Conclusion
The level of difficulty in writing distributed applications is significantly ameliorated
with the advent of middleware such as CORBA. Consider that writing the Napster
example using RPC not only requires advanced knowledge of networks and how they
work but also promotes embedding network-related code in the application, generally
considered bad software engineering practice.

It is true to say that CORBA presents its own challenges and there is a finite learning
curve that must be addressed in order to feel confident with this technology. It has been
my experience, however, that once the concepts are understood, CORBA will not pres-
ent any mystery to practitioners.

USING CORBA WITH JAVA ●

●
PR

O
G

RA
M

M
IN

G
| N

ET
W

O
RK

IN
G

| C
O

M
PU

TI
N

G

46 Vol. 26, No. 1 ;login:

It is surprising how frequently I need to use random numbers in my pro-

grams. First, I like to write games of chance involving dice or cards. Second,

I am often hired to write Monte Carlo simulation models, which make heavy

use of random numbers to select values from probability distributions.

What’s more, I often find random numbers useful for testing my code.

When I first started using random numbers, I wondered, how could a number generat-
ed by a deterministic computer program be considered “random” in any sense of the
word? Wouldn’t numbers generated by a computer program show some obvious
pattern?

Well, yes and no.

Some Random History
In 1946, John Von Neumann suggested generating random numbers by squaring the
previous number (usually called the “seed”) and extracting its middle digits. After some
research, it was discovered that this “middle-square method” cycled (produced the
same run of numbers) fairly quickly and that the longest period (the length of values
between repeated numbers) was 142 [Knuth, The Art of Computer Programming, vol. 2,
p. 4].

Knuth [p. 5] demonstrates that “random” algorithms don’t necessarily generate random
numbers. A 13-step “Super-random” generator invented by Knuth cycled when it hit a
number that was “magically” transformed into itself by the algorithm.

Knuth concludes, “random numbers should not be generated with a method chosen at
random.”

Linear Congruential Generators
The most common way to generate random numbers today is by using a linear congru-
ential generator (LCG). LCGs are of the form

(a * seed + c) % modulus

where seed refers to the last number generated. If the modulus is the word size of the
machine and the calculation is done as an unsigned integer, we can reduce this to

a * seed + c

A particular LCG produces a set sequence of numbers. That is, a specific pair of a and c
values generates the same set of numbers in the same order every time. What makes
this useful is that if you choose a and c carefully, the sequence is long, exhibits “ran-
dom” characteristics, and is repeatable (something a truly random phenomenon isn’t!).
LCGs also generate their results quickly.

In summary, the rules for selecting a and c as to maximize the LCG’s period are:

1. if the modulus is a power of 2, pick a so that a % 8 = 5;
2. a should be between 0.01 * modulus and 0.99 * modulus;
3. the value of c must have no factor in common with the modulus.

[Knuth, p. 184]

by Ray Swartz

Ray Swartz has been
fascinated with com-
puter simulation since
learning about it in
graduate school.
Since then, Ray has
created computer
models of copper
mine development,
ink-jet printers, finan-
cial planning, and
betting strategies.

<ray@trainingonline.net>

a new twist on
random number
generators

Note that LCGs with a maximum period are not necessarily “random.” Consider the
sequence: 1, 2, 3, 4, 5, ... (e.g., a = 1 and c = 1). This sequence has a maximum period
but exhibits very little randomness!

A Few Random Comments
In choosing values for a and c, how can we distinguish a “good” (i.e., random) LCG
from a “bad” one (i.e., 1, 2, 3, 4, 5, ...)? Therein lies the rub! What makes a sequence of
numbers random enough?

Over time, several tests have been devised to check the randomness of the generated
numbers. Many tests are statistical in nature like the chi-squared test (which determines
the likelihood of an observed result compared to an expected result) and the mean test
(checking the mean of generated numbers between 0 and 1 – it should be very close to
0.5).

The most important randomness test for LCGs is the spectral test, which tests
sequences of numbers for patterns in n-dimensional space. Knuth values the spectral
test: “Not only do all good generators pass this test, all generators now known to be bad
actually fail it” [p. 93]. He also provides a table of results for the spectral test of 29
LCGs [p. 106]. A rigorous suite of tests, known as the “Die Hard” tests, was written by
Professor Marsaglia of Florida State University. Professor Marsaglia can be reached at
<geo@stat.fsu.edu>.

Why should you care about how random numbers are generated? Why not just use
whatever the rand() function gives you? The answers are: (1) system random number
generators have proven to be unreliable in the past and (2) supplied random number
generators may be slow or have too small a period for the task at hand.

My first experience with computer simulation was using the random function built
into a PDP-11. For 1,000 coin flips, my program reported that heads came up 65% of
the time! More coin flips didn’t change the outcome. Since then, I have always written
my own (well, actually, it was one recommended by Knuth) LCGs to generate random
numbers for my programs.

This is not to say that all random number generators supplied by rand() functions are
bad, only that you should be wary of using any random number generator for serious
work without first learning its pedigree and effectiveness.

Generating Limits
One problem that arises when using LCGs is that even the best ones cycle, this being
the very nature of LCGs. Knuth recommends pulling no more than modulus/1,000 val-
ues from an LCG. This isn’t a problem if you are testing a program that requires only a
few thousand random data points. However, a large, complex simulation might require
a million random numbers or more to produce meaningful results.

Recently, I faced precisely this problem. I was hired to create a detailed model for a
piece of computer hardware – a model with a huge appetite for random numbers.
What’s more, the client wanted to be able to run the model on standard PCs (whose
word sizes are 32 bits).

If your modulus is 32 bits long (as is the case with most PC and UNIX random num-
ber generators), then modulus/1,000 is only about 4 million random numbers, not
nearly enough! Not only would my model run up against this limit, but after a few

47February 2001 ;login: RANDOM NUMBER GENERATORS ●

You should be wary of using

any random number

generator for serious work

without first learning its

pedigree and effectiveness.

●
PR

O
G

RA
M

M
IN

G
| N

ET
W

O
RK

IN
G

| C
O

M
PU

TI
N

G

runs, I might have to trash my trusted LCG and find another one. Picking good LCGs
is not all that simple and a bad one often produces meaningless results.

The newer random() generators from Earl T. Cohen (which are not LCGs), with their
dramatically larger state space and non-linear additive feedback methods, can give a
long enough sequence (2**69), but they are only available on UNIX systems.

What was I going to do? Moving the model to a machine with a bigger word size was
not an option, in this case.

Random Numbers with a Twist
I discovered a completely different solution: a Web search pointed me to the home page
of the Mersenne Twister (MT), a random number generator developed by Makoto
Matsumoto and Takuji Nishimura of Keio University in Japan.

The basic idea is quite simple. Instead of generating numbers by manipulating a single
seed, the MT generates numbers by “twisting” the bits in 623 seeds.

Here is how it works: first, using a traditional LCG, generate 623 values. When these
have been used up, create a new set of 623 values by mixing the bits of two consecutive
numbers. When this new set has been used, repeat the mixing procedure to get another
623.

Here is a simplified example in base 10 using three numbers. First, we generate three
random numbers:

123
221
332

To create a new set of values in this example, take the first digit of one value and com-
bine it with the last two digits of the next value. This results in:

121
232
323

where “next” for the final value means “wrap back to the first number.”

Matsumoto and Nishimura have proven that the period of the MT is 2(19937)-1, which
is around 106,000 (The generator is named for the length of its cycle, which is a
Mersenne prime.) The period of MT is so large that it can’t be fully generated by
today’s computers (there are approximately 280 microseconds in 10 billion years)!

The MT is relatively new (1998) but has been in general use since it was unveiled. The
MT has been extensively tested and passed all current tests, including the spectral test
and the Die Hard suite. For more information, see the MT home page (<http://www.
math.keio.ac.jp/~matumoto/emt.html>), which contains links to MT implementations
in many programming languages, scientific papers, and other news. The MT code is
freely available. Dr. Matsumoto only asks that you send him email if you choose to use
the MT.

I’ve been using the MT for all my random number needs for the past six months and
can say that it runs fast, passes every test I’ve tried on it, and frees me from worrying
about the number of values I pull from it. If you have a need for a reliable random
number generator, I highly recommend you check out the Mersenne Twister.

48 Vol. 26, No. 1 ;login:

If you have a need for a

reliable random number

generator, I highly

recommend you check out

the Mersenne Twister.

http://www

49February 2001 ;login: THE TCLSH SPOT ●

The previous Tclsh Spot article described how to use the Tcl socket command

to build a simple client-server-based system monitor to watch disk space

usage.

This article will expand on that idea to create a network activity monitor with a graphi-
cal display looking something like this:

The server in the previous article looked like this:

socket -server initializeSocket 55555

proc initializeSocket {channel addr port} {
after 1000 sendDiskInfo $channel

}

proc sendDiskInfo {channel} {
set info [exec df]
puts $channel $info
flush $channel
after 2000 sendDiskInfo $channel

}

vwait done

This simple server has a few serious shortcomings. It throws an error when a client
closes a connection, and it doesn’t do any validity checks to confirm that a client is
entitled to the information it’s getting.

The error condition occurs when the server tries to flush the data out of a socket that
was closed by the client. The simplest way to test if a channel is open is to try to send
data, and see if it fails. Which is how the server generates those ugly error messages. If
there were a way to run a command and find out if it worked without throwing an
error, this would be perfect.

The catch command evaluates a script and returns the success or failure status without
invoking the Tcl error handlers. The value that would otherwise be returned by the
script is saved in an optional second variable.

Syntax: catch script ?varName?

catch Catch an error condition and return the status and results rather
than aborting the script.

the tclsh spot
by Clif Flynt

Clif Flynt has been a
professional pro-
grammer for almost
twenty years, and a
Tcl advocate for the
past four. He consults
on Tcl/Tk and Inter-
net applications.

<clif@cflynt.com>

●
PR

O
G

RA
M

M
IN

G
| N

ET
W

O
RK

IN
G

| C
O

M
PU

TI
N

G

script The Tcl script to evaluate.
varName Variable to receive the results of the script.

These two lines produce equivalent results, but the second one won’t fail if x contains a
non-numeric value:

set x2 [expr $x * 2]
set fail [catch {expr $x * 2} x2]

Deal with the error
if {$fail} {puts "$x is not a number"}

One of the simplest validation checks is to confirm that the IP address a client is con-
necting from is on the list of allowed sites. Since the Tcl interpreter gives us the address
of the client as one of the arguments to our initializeSocket procedure, it’s easy to add
this style of validation to the server. We could simply search a list of allowed IP address-
es for this client address and close the channel if the search failed.

Unfortunately, while Tcl will search a list for patterns with wildcards, it won’t search a
list where some list elements have wildcards for a match to a specific string. So, if we
wanted to use lsearch to search our string, we’d have to put each allowed address into
the list. If you want to allow access to everyone on your class A subnet, this would get
ugly.

However, the string match command will let us match a wildcard pattern against a fixed
string, and we can use that to check for matches within a much smaller list.

Syntax: string match pattern string

string match Returns 1 if pattern matches string, else returns 0.
pattern The glob pattern to compare to string.
string The string to match against the pattern.

This code compares the client IP address with patterns in a list, and only allows clients
that match one of the patterns. A second set of patterns, and similar code, could check
for addresses on a “forbidden” list.

set Server(allowed) {192.168.9.* 127.0.0.1}
...
proc initializeSocket {channel addr port} {

global Server

set reject 1
foreach ip $Server(allowed) {

if {[string match $ip $addr]} {
set reject 0
break;

}
}
if {$reject} {

close $channel
return

}
...

The previous server handles one type of service. It reports disk usage. Traditionally, we
build a different server for each application, since most servers are complicated pro-
grams performing complicated tasks.

50 Vol. 26, No. 1 ;login:

51February 2001 ;login:

However, the system monitor server is pretty simpleminded. It leaves all the fancy
analysis to the clients. So, rather than run multiple servers on this already overloaded
machine, we can use a single server that listens on multiple ports and reports different
information depending on which port was accessed.

The syntax for the socket command is:

socket -server command ?options? port

The command argument is generally thought of as the name of a procedure to invoke,
but it’s actually a script to which Tcl will append the three arguments and evaluate. You
could have something as simple as the name of the procedure to evaluate, as we did in
the previous server, or an arbitrarily complex command script.

In this case, we can pass a new argument to the initializeSocket procedure and have the
initializeSocket procedure parse that value to decide which data reporting procedure to
evaluate. That value could be some flag (1 for disk, 2 for network activity), but it’s sim-
pler to let the Tcl interpreter do the parsing for us by passing the name of the proce-
dure to call to send data to the initializeSocket procedure like this:

socket -server {initializeSocket sendDiskInfo} 55555
socket -server {initializeSocket sendNetInfo} 55556

proc initializeSocket {proc channel addr port} {

Check validity.
after 1000 $proc $channel

}

The sendNetInfo procedure looks a lot like the sendDiskInfo command, except that we
collect some network statistics instead of disk usage.

On a Linux system, I can get a report of the number of bytes that have been transferred
by reading the file /proc/net/dev. On a BSD system, you can get this information with
the ifconfig command.

Here’s the sendNetInfo procedure for a Linux system:

proc sendNetInfo {channel} {
set if [open /proc/net/dev "r"]
set data [read $if]
close $if
puts $channel $data
set fail [catch {flush $channel}]

if {$fail} {
close $channel

} else {
after 2000 sendNetInfo $channel

}
}

Meanwhile, on the client end, we need to read that data.

The previous client looped on gets and hung until a line of data was available. This
works fine for a simple client, but is a rather inelegant way of dealing with I/O.

Tcl supports both the linear type of program flow that we used in that block-until-
data-is-ready model, and an event driven flow in which the interpreter waits in an
event loop until something happens.

THE TCLSH SPOT ●

●
PR

O
G

RA
M

M
IN

G
| N

ET
W

O
RK

IN
G

| C
O

M
PU

TI
N

G

The fileevent command defines a script to evaluate when data becomes available. This
guarantees that data will be available to read when the script is called, thus the applica-
tion never blocks.

Syntax: fileevent channel direction ?script?

fileevent Defines a script to evaluate when a channel readable or writable
event occurs.

channel The channel identifier returned by open or socket.
direction Defines whether the script should be evaluated when data becomes

available (readable) or when the channel can accept data (writable).
?script? If provided, this is the script to evaluate when the channel event

occurs. If this argument is not present, Tcl returns any previously
defined script for this file event.

The lines in our client to implement this look like this:

set input [socket $Client(ip) $Client(port)]
fileevent $input readable "getNetInfo $input"

Once we’ve read a line of data we need to figure out if this line has any useful informa-
tion in it. The output of /proc/net/dev includes two lines of column headers and some
trailing blank lines that have no useful information (for this procedure).

The first word of the data lines from /proc/net/dev is the name of the device, but the
second word will always be a number in the lines with data to process. The client can
check to see if the second word is really a number, and if it’s not go on to the next line.

The newer versions of Tcl have a string is command that will let you figure out if a
string contains alphabetic, numeric, control characters, etc.

For older versions, we can use the catch and expr commands to figure out if a value is
numeric.

If a value is numeric, you can multiply it. If the string has non-numeric characters in it,
the exec command will fail, and catch will return an error.

Here’s code to check that the second word in a line of data is numeric, and return
immediately if it isn’t.

if {[catch {expr [lindex $line 1] * 2}]} {return}

Once we strip out the headers and blank lines, we are still getting a lot of numeric data,
and we need to do something with it. This looks like another great application for the
BLT widgets. The set of articles about the stock robots discussed using the BLT graph
widget. This article will describe a bit about the BLT barchart widget.

You create a BLT barchart very much as you’d create a graph (or any other Tk widget).

Syntax: barchart name ?option value?

name A name for this barchart widget, using the standard Tcl window-
naming conventions.

?option value? Option and value pairs to fine-tune the appearance of the barchart.
The available options include:
-background The color for the barchart background.
-height The height of the barchart widget.
-title A title for this barchart.

52 Vol. 26, No. 1 ;login:

-width The width of the barchart widget.
-barwidth The width of each bar on the barchart.

This command will create a simple barchart, and save the widget name in an associative
array variable. Note that the BLT widget commands exist within the ::blt:: namespace.
The widgets created by these commands are created in the current namespace.

package require BLT
set Client(barChart) [::blt::barchart .bcht -width 600 -title "Network Activity"]

Like the graph widget, the barchart widget supports several options for configuring the
axes. Two that we’ll use in this application are:

-logscale boolean Set the axis to use a logarithmic scale instead of linear.
-command script Defines a script to invoke to get a value to use as a tic label.

The log scaling is particularly important with something like this network activity
monitor. If the network is approaching saturation, we’ll have a huge disparity between
the number of bytes moved in two seconds and the number of collisions that occurred,
but seeing the collision bar is what’s important. If they get close enough to the same
size that we can see the height of the collision bar on a linear scale, we’ve already lost.

Along with the graph and barchart widgets, BLT introduces a new primitive data type
to Tcl – the vector.

From the script viewpoint, a BLT vector is an array of floating point values with the
constraint that the indices must be integers within the range defined when you create
the vector.

A vector can be created with the vector command like this:

::blt::vector myvector($size)

In this case, $size is a variable that contains the number of slots to allocate in this vec-
tor.

You can think of creating a BLT vector as a float myvector[size]; declaration, if it helps.

One neat thing about vectors is that you can use a vector to hold the X or Y data for a
barchart element, and whenever a data value changes, the chart changes to reflect this
without your code needing to do a redraw. For an application like this network activity
barchart, where the height of the bars is constantly changing, this is very useful.

Barchart elements are created with the element create subcommand, just as graph ele-
ments are created. Like the graph element create command, we can supply several
options to the element create command.

Useful options in a chart like this, where there are several sets of data, are the -fore-
ground, -background, and -stipple options that let you control the color and texture of
the bars to make them easily identified.

Which brings up the question of how to decide what color to make which bar. If we
know the devices we’ll have on a system, we could define a look-up table to convert
from device name to color. However, this would mean a code rewrite when we change
or add adapters.

Another thing we can do is initialize the client with a list of colors, and whenever a new
device is seen, we create a new bar with the next color, and increment a pointer to the
next color.

53February 2001 ;login: THE TCLSH SPOT ●

●
PR

O
G

RA
M

M
IN

G
| N

ET
W

O
RK

IN
G

| C
O

M
PU

TI
N

G

set Client(count) 0
set Client(colors) {red green blue purple orange}

...
If new device name, create new bar
if {![info exists DataVector_x_${name}]} {

vector DataVector_x_${name}(5)
vector DataVector_y_${name}(5)

$Client(barChart) element create $name -label "$name" \
-foreground [lindex $Client(colors) $Client(count)] \
-xdata DataVector_x_${name} -ydata DataVector_y_${name}

incr Client(count)
}

Note that we can use the info exists command to check if a vector has been defined,
just as we’d use it to check for any other primitive Tcl data type like an array or a list.

The names used for the vectors in this code snippet look strange. The reason for this is
that I’m playing some games with the variable names to create a common set of base
identifiers for the vectors.

The vector is a linear structure, so we can’t use the usual Tcl trick of making a multidi-
mensional array with a naming convention for the index. However, we can create as
many uniquely named vectors as we need, and can embed the name of the device in the
name of the vector.

Playing games with variable names is not usually good style. Your code will be cleaner
and easier to work with if you use an associative array. It’s a bit too easy to confuse
yourself with what parts of a variable name are being substituted, and what parts are
the constant part of the name.

For example, you might write this code thinking you were creating two variables
eth0_Bytes and eth0_Errors.

set id eth0

set $id_Bytes $byteCount
set $id_Errors $errorCount

The Tcl interpreter doesn’t know that you intend to just use the characters $id as a vari-
able substitution. The syntax rules say that a variable name is terminated by special
character (usually a space). So, the Tcl interpreter throws an error that the variable
id_Bytes hasn’t been assigned.

The curly braces can be used to group a part of variable name into a single substitution
unit. Thus, we could rewrite the above example like this to make it work.

set id eth0

set ${id}_Bytes $byteCount
set ${id}_Errors $errorCount

This works, but it’s not pretty code. The better solution (when you can use the associa-
tive array) is:

set id eth0

set Bytes($id) $byteCount
set Errors($id) $errorCount

54 Vol. 26, No. 1 ;login:

Playing games with variable

names is not usually good

style.

A clever way to design this client is to have it build bar elements as they are found to be
needed, rather than starting out by building N sets of bar elements. After all, the client
doesn’t know (unless you put some hardcoded values into the code) how many devices
are on the server until it starts to analyze the data the server sends. Letting the client
configure itself to the environment makes it adaptable without the need to update
code.

The BLT barchart widget supports a configure subcommand, and like other Tk widgets
you can modify the appearance and behavior of an existing widget with this command.

Configuring the -barwidth option lets us make the bars narrower as we need more data
sets, rather than expanding the widget until it scrolls off the screen.

We can fine-tune the location of the bars by changing the bar positions in the DataVec-
tor_x_* vectors, but that means we need to know the names of the DataVector_x_* vec-
tors. We could save the names as we create the vectors, but Tcl has already saved all the
names, so why duplicate the effort?

The Tcl info command can list the variables that have been defined in a local or a glob-
al scope. You can get a list of all the variables defined, or just the variables that match a
particular glob pattern.

This is why I used the strange naming convention for the vector names, rather than
simply defining them as:

vector $name(5)

The syntax for the info globals command is:

Syntax: info globals pattern

info globals Returns a list of global variables that match the pattern.
pattern A glob pattern to attempt to match.

So, putting these pieces together and wrapping it into a procedure, we get something
like this to create a new element. Each element is the set of bars showing the number of
bytes transferred, errors, and collisions.

proc makeNewBarSet {name} {
global Client

$Client(barChart) element create $name -label "$name" \
-foreground [lindex $Client(colors) $Client(count)] \
-xdata DataVector_x_${name} -ydata DataVector_y_${name}

incr Client(count)

Make the bars 1/(n+1) wide -
this creates a one bar-width space
between the sets of data

$Client(barChart) configure -barwidth \
[expr 1.0 / ($Client(count) + 1)]

The DataVector_x_* vector holds the location
for the bars.

Tic’s are marked on integer boundaries, so start at
-.5 to get tic labels centered on the data sets

set item 0
foreach v [info globals DataVector_x_*] {

55February 2001 ;login:

Letting the client configure

itself to the environment

makes it adaptable without

the need to update code.

THE TCLSH SPOT ●

●
PR

O
G

RA
M

M
IN

G
| N

ET
W

O
RK

IN
G

| C
O

M
PU

TI
N

G

global $v
for {set i 0} {$i < [llength $Client(tics)]} {incr i} {

set ${v}($i) [expr $i + $item / ($Client(count) + 1.0) -.5]
}
incr item

}
}

Which gets us to parsing the data the server sends us. The output from /proc/net/dev is
sets of lines that look like this:

eth0: 1535 429 0 0 0 0 0 0 320353952 956185 0 0 0 108688 0 0

The first field is the name of the device, then the number of bytes received, the number
of packets received, errors received, etc. The BSD ifconfig output follows a similar pat-
tern, except that it reports the quantities since the last invocation of ifconfig, rather
than quantities since the system was booted.

We can treat each line as a list. The values we are interested in will always be at particu-
lar locations in the list. Thus, we can write some generic code to parse the list, and
drive it with a pair of lists that describe the locations of the data we want, and a label
for that data:

set Client(tics) {{rcv bytes} {xmt bytes} {rcv errs} {xmt errs} {colls}}
set Client(pos) {1 9 3 11 14}

We need to save the values from the previous server report in order to calculate the
number of bytes transferred. Which means we need to be able to find that data again
when we need it.

This is another good place to simulate a 2-dimensional array with the Tcl associative
array and a naming convention. Since we get the name of the device in position 0 of
the list, and we know the positions of the fields we are collecting, we can parse the list
with code that loops through the lists of positions and labels to collect and calculate the
data. The results of the calculation are put into the DataVector_y_* vectors to cause the
barchart to reflect the new values.

Again, we can use the Tcl info exists command to determine if a variable has had a
value assigned to it yet. If the variable has had a value assigned to it, we can calculate a
difference.

This code will grab values from the line of data, check to see if we’ve already saved one
of them, and calculate the difference if we have.

set vectorPos 0
foreach pos $Client(pos) label $Client(tics) {

set val [lindex $line $pos]
if {[info exists Client($name.$label)]} {

set DataVector_y_${name}($vectorPos) \
[expr $val - $Client($name.$label)]

incr vectorPos
}

set Client($name.$label) $val
}

}

This gives us a nice little snapshot monitor. But, as they say, those who don’t remember
history are doomed for some ugly shocks.

56 Vol. 26, No. 1 ;login:

57February 2001 ;login:

In the next Tclsh Spot article I’ll look at ways to save and present some historical data
on the network activity.

Here’s the complete code for this client/server pair. This code is also available at
<http://www.noucorp.com>.

server.tcl
socket -server {initializeSocket sendDiskInfo} 55555
socket -server {initializeSocket sendNetInfo} 55556

set Server(allowed) {192.168.9.* 127.0.0.1}

proc bgerror {args} {
global errorInfo
puts "ERROR: $args"
puts "$errorInfo"

}

proc initializeSocket {proc channel addr port} {
global Server

set reject 1
foreach ip $Server(allowed) {

if {[string match $ip $addr]} {
set reject 0

}
}
if {$reject} {

close $channel
return

}
after 1000 $proc $channel

}

proc sendDiskInfo {channel} {
set info [exec df]
puts $channel $info
set fail [catch {flush $channel} out]
if {$fail} {

close $channel
} else {

after 2000 sendDiskInfo $channel
}

}

proc sendNetInfo {channel} {
set if [open /proc/net/dev "r"]
set data [read $if]
close $if
puts $channel $data
set fail [catch {flush $channel} out

if {$fail} {
close $channel

} else {
after 2000 sendNetInfo $channel

}
}

vwait done

THE TCLSH SPOT ●

●
PR

O
G

RA
M

M
IN

G
| N

ET
W

O
RK

IN
G

| C
O

M
PU

TI
N

G

http://www.noucorp.com

client.tcl
package require BLT

Some defaults and constants
set Client(count) 0
set Client(colors) {red green blue purple orange}
set Client(tics) {{rcv bytes} {xmt bytes} {rcv errs} {xmt errs} {colls}}
set Client(pos) {1 9 3 11 14}

set Client(ip) 192.168.9.1
set Client(port) 55556

##
proc getNetInfo {channel}—
Retrieves a set of network information from the socket
Parses the info, and creates a set of 'diff' index arrays
that are the difference between this value and the previous
value for a field.
#
Arguments
channel The channel to read data from
#
Results
Modifies the Client array.
Invokes processData to update the bar

proc getNetInfo {channel} {
global Client

gets $channel line

The first element is the name, but the second should
be a number. If it isn't (this is a line of column headers.)
We'll skip out and wait for the next line of data.

if {[catch {expr [lindex $line 1] * 2}]} {
return

}

Long integers may run into the ":" in the line label
This gives us a space to parse on.
regsub ":" $line " " line

The first entry is the device name.
set name [lindex $line 0]

global DataVector_x_${name}
global DataVector_y_${name}
if {![info exists DataVector_x_${name}]} {

::blt::vector DataVector_x_${name}(5)
::blt::vector DataVector_y_${name}(5)

makeNewBarSet $name
}

The DataVector_y vector holds the heights of the bars
for a given data set.

set vectorPos 0
foreach pos $Client(pos) label $Client(tics) {

58 Vol. 26, No. 1 ;login:

59February 2001 ;login:

set val [lindex $line $pos]
if {[info exists Client($name.$label)]} {

set DataVector_y_${name}($vectorPos) \
[expr $val - $Client($name.$label)]

incr vectorPos
}

set Client($name.$label) $val
}
set Client(update) "Last Update: [clock format [clock seconds]\

-format %H:%M:%S]"
}

##
proc makeNewBarSet {name}—
Creates a new set of bars, and reconfigures the barchart to hold them.
#
Arguments
name The name of the data associated with this set
#
Results
Creates a new DataVector global.
Modifies the barchart and existing DataVector_x_* data.

proc makeNewBarSet {name} {
global Client
$Client(barChart) element create $name -label "$name" \

-foreground [lindex $Client(colors) $Client(count)] \
-xdata DataVector_x_${name} \
-ydata DataVector_y_${name}

incr Client(count)

Make the bars 1/(n+1) wide -
this creates a one bar-width space
between the sets of data

$Client(barChart) configure -barwidth [expr 1.0 / ($Client(count) + 1)]

The DataVector_x_* vector holds the location
for the bars.

Tic’s are marked on integer boundaries, so start at
-.5 to get tic labels centered on the data sets

set item 0
foreach v [info globals DataVector_x_*] {

global $v
for {set i 0} {$i < [llength $Client(tics)]} {incr i} {

set ${v}($i) [expr $i + $item / ($Client(count) + 1.0) -.5]
}
incr item

}
}

##
proc getTicLabel {chart tic}—
Returns a textual label for the barchart
Arguments
chart The chart associated with this request
tic The position of the tic being requested.

●
PR

O
G

RA
M

M
IN

G
| N

ET
W

O
RK

IN
G

| C
O

M
PU

TI
N

G

THE TCLSH SPOT ●

proc getTicLabel {chart tic} {
global Client
return [lindex $Client(tics) $tic]

}

Make a quit button
button .b -text "Quit" -command "exit"
grid .b -row 0 -column 0

And the update time label
label .l -textvar Client(update)
grid .l -row 0 -column 1

Build a barchart
set Client(barChart) [::blt::barchart .bcht -width 600 -title\

“Network Activity”]
$Client(barChart) axis configure x -command getTicLabel
$Client(barChart) axis configure y -logscale 1

grid $Client(barChart) -row 2 -column 0 -columnspan 3

Open a client socket on the local system
(for testing purposes.)
set input [socket $Client(ip) $Client(port)]

When data is available to be read, call getNetInfo
fileevent $input readable "getNetInfo $input"

And wait for the fireworks to start.

60 Vol. 26, No. 1 ;login:

61February 2001 ;login: ADVANCED ENCRYPTION STANDARD ●

by Edgar Danielyan

Edgar Danielyan CCDP,
CCNP(Security) is a UNIX and
internetworking consultant. His
interests include Internet security,
privacy, and their social and legal
aspects.

<edd@danielyan.com>

Much has changed since introduction of the Data Encryption Standard (DES)

in 1977. Hardware is faster and cheaper, memory is plentiful and cheap, and

use of computer networks in all areas of human activity is increasing. This is

the good news; the bad news is that it all comes at a cost – in many cases

the cost is security.

Widely used DES has been proven, on several occasions, to be inadequate for many
applications – especially those involving transmission of sensitive information over
public networks such as the Internet, where the entire transmission may be intercepted
and cryptoanalyzed. Specialized hardware has been built which can determine a 56-bit
DES key in a few hours. All these considerations signaled that a new standard algorithm
and longer keys were necessary.

Fortunately, in January 1997, the National Institute of Standards and Technology
(NIST) realized that it was time for a new encryption standard – Advanced Encryption
Standard – and issued a call for candidate algorithm nominations in September 1997.
The deadline for submissions was June 1998, and a total of 15 algorithms were submit-
ted for consideration. What follows is the timeline of events and a brief non-mathe-
matical description of the Rijndael algorithm, which was chosen as the proposed
Advanced Encryption Standard (AES) in October 2000.

Below is a timeline of the process, followed by a summary of the final technique chosen
for encryption in the 21st century.

Timeline
April 1997
NIST organizes a workshop to consider criteria and submission guidelines of candidate
algorithms.

September 1997
An official call for nominations is published in the Federal Register.

June 1998
By June 1998, 15 algorithms have been submitted to the NIST for consideration:

■ CAST-256 (Entrust Technologies)
■ CRYPTON (Future Systems)
■ DEAL (Richard Outerbridge, Lars Knudsen)
■ DFC (National Centre for Scientific Research, France)
■ E2 (NTT)
■ FROG (TecApro Internacional)
■ HPC (Rich Schroeppel)
■ LOKI97 (Lawrie Brown, Josef Pieprzyk, Jennifer Seberry)
■ MAGENTA (Deutsche Telekom)
■ Mars (IBM)
■ RC6 (RSA)
■ Rijndael (Joan Daemen, Vincent Rijmen)
■ Safer+ (Cylink)
■ Serpent (Ross Anderson, Eli Biham, Lars Knudsen)

AES: advanced
encryption standard
is coming

●
SE

C
U

RI
TY

| P
RO

G
RA

M
M

IN
G

| N
ET

W
O

RK
IN

G
| C

O
M

PU
TI

N
G

■ Twofish (Bruce Schneier, John Kelsey, Doug Whiting, David Wagner, Chris Hall,
Niels Ferguson)

August 1998
First AES candidate conference is held in California.

September 1998
NIST asks for public comment on the 15 submitted algorithms and sets the date for the
second AES candidate conference.

March 1999
Second AES conference is held in Rome, Italy, to consider comments and analyses of
the 15 candidate algorithms. Additionally, the candidate algorithms are tested from
both cryptographical and performance viewpoints. One of the original NIST require-
ments for the algorithm was that it had to be efficient both in software and hardware
implementations. Java and C reference implementations are used for performance
analysis of the algorithms.

August 1999
NIST press release announces the selection of five out of 15 algorithms which survived
rigorous testing and cryptoanalysis. The selected algorithms are Mars, RC6, Rijndael,
Serpent, and Twofish. These algorithms are accepted as cryptographically strong and
flexible, as well as able to be efficiently implemented in software and hardware.

September 1999
Call for public comments on the finalist candidates is published in the Federal Register.

April 2000
Third AES conference held in NYC.

August 2000
National Security Agency develops and publishes VHDL model for algorithm’s per-
formance testing when implemented in hardware.

October 2000
NIST press release announces the selection of Rijndael as the proposed Advanced
Encryption Standard.

Rijndael
Rijndael (pronounced, according to the authors, as either “Reign Dahl,” “Rain Doll,” or
“Rhine Dahl”) was designed by Joan Daemen, Ph.D. (Proton World International, Bel-
gium) and Dr. Vincent Rijmen (Catholic University of Leuven, Belgium). Both authors
are internationally known cryptographers. Rijndael is an efficient, symmetric block
cipher. It supports key and block sizes of 128, 192, and 256 bits. Main design goals for
the algorithm were simplicity, performance, and strength (i.e., resistance against cryp-
toanalysis). When used in CBC MAC mode, Rijndael can be used as a MAC algorithm;
it also may be used as a hash function and as a pseudo random number generator. In
their specification of the algorithm, the authors specifically state the strength of Rijn-
dael against differential, truncated differential, linear, interpolation, and Square attacks.
While Rijndael is not based on Square, some ideas from Square design are used in Rijn-
dael. Of course, the length of the key used is also very important, especially since the
most efficient known attack against Rijndael is exhaustive key searching. It would take
2255 runs of Rijndael to find a key 256 bits long. To the credit of the authors, Rijndael
does not use “parts” or tables from other algorithms, which makes it easy to implement
alone (especially in hardware, such as smart cards). Rijndael also fully satisfies the

62 Vol. 26, No. 1 ;login:

requirement for an algorithm which may be efficiently and easily implemented in both
hardware and software.

Summary
It is expected that AES will be officially published as a Federal Information Processing
Standard (FIPS) in April–June 2001, and implementations of AES in various security
systems probably will pop up shortly thereafter. In the meantime authoritative infor-
mation on AES developments may be found on NIST’s Web site at
<http://csrc.nist.gov/encryption/aes/>. The full mathematical specification of the algo-
rithm and reference implementations in C and Java are also available from the same
Web site.

63February 2001 ;login: ADVANCED ENCRYPTION STANDARD ●

●
SE

C
U

RI
TY

| P
RO

G
RA

M
M

IN
G

| N
ET

W
O

RK
IN

G
| C

O
M

PU
TI

N
G

64 Vol. 26, No. 1 ;login:

Thinking outside the box. That is how security exploits get created, and

what software writers most often forget about. Several months ago, tracer-

oute, a set-user-id root program, was exploited by calling the source route

option flag twice. Who would have thought that anyone would use the same

command line option twice? Certainly not the author of traceroute, who was

really concerned about creating a tool that could show the route to a desti-

nation, or where the route prematurely ended.

Thinking outside the box doesn’t have to be particularly deep thinking. Web sites that
include the purchase price of items in the URL make it easy to change the price, simply
by editing the URL (almost point-and-click). Also exploitable are firewalls that include
a backdoor for vendor support and use sniffable passwords for root access. No one was
supposed to know about port 3000, and besides, popular password sniffers only lis-
tened to low-numbered ports. This particular hole was fixed many years ago – it just
still amazes me that a well-known (at the time) firewall vendor would do such a thing.

Another way of thinking outside the box is through “misuses” of networking protocols.
Now, really, there is no such thing as a misuse of a protocol. Protocols are conventions
that permit communication, usually between consenting clients and servers. For exam-
ple, when you use a Web browser, it obeys the conventions found in either RFC 1945 or
RFC 2068 to communicate with the Web server (HTTP versions 1 and 1.1). Essentially,
the Web browser sends a request that includes a simple header to the server, and the
server sends back a simple header that includes as its first item a result code, and possi-
bly the requested item.

You can do more than request Web pages. You can execute code on the Web server
through CGI, ASP, server-side includes, and other mechanisms, like Java servlets. But
let’s think outside the box for just a minute. Most organizations that have firewalls per-
mit their users to roam the Web. In some instances, certain sites are blocked based on
their names (and because these sites contain information not pertinent to work or in
compliance with accepted morals at the organization). We can assume that with the
exception of these cases, you can use a Web browser to connect to remote Web servers.

Well, then you can also use HTTP to tunnel through your firewall. For example, sup-
pose your firewall does not permit you to telnet to your home computer. You could
then download the HTTPTunnel (<http://www.nocrew.org/software/httptunnel.html>),
forward the remote end to port 23, where your telnetd is listening, and use the client
side of this tunnel (htc) to forward a local telnet connection through the tunnel. The
data will be formatted as valid HTTP PUT requests and responses, and your firewall
will happily let you use telnet – as long as it is embedded within the HTTPTunnel.

Before Checkpoint changed their defaults (with version 4.1), a fun thing to do was to
set up a server listening at port 53, such as netcat that executed a shell, and connect to
it through the firewall. Although port 53/TCP is supposed to be used for DNS, most
firewalls do nothing to enforce the actual use of DNS, so you can connect to a shell,
enter commands, and have the results sent back. This is almost too trivial. Only appli-
cation gateways (sometimes called proxy servers, or, in the case of Checkpoint, security
servers) actually check to see if the appropriate protocol is being used on a particular
port. The HTTPTunnel will pass most application gateways, as it conforms to protocol
specs in the RFCs for HTTP headers.

musings
by Rik Farrow

Rik Farrow provides
UNIX and Internet
security consulting
and training. He is
the author of UNIX
System Security and
System Administrator’s
Guide to System V.

<rik@spirit.com>

http://www.nocrew.org/software/httptunnel.html>

There is an even cuter trick someone wrote. You can use DNS requests to tunnel com-
mands to a remote server. A posting on Slashdot describes a “new protocol” NSTX
(Nameserver Transport) that permits you to use a special client to send compliant
nameserver requests to a special server that can then execute commands and send back
the results as if they were actual DNS replies (<http://slashdot.org/articles/00/09/10/2230242.shtml>
and <http://nstx.dereference.de/> for the code). Unlike HTTPTunnel, NSTX is no longer
under development.

Of course, the Web trick that has a lot of people upset these days comes from
Microsoft. I think what caused the uproar was a paper on an MS Web server that
described SOAP (Simple Object Access Protocol) as “a way to slip through firewalls.”
Unlike HTTPTunnel, SOAP is less a way to slip through firewalls, and more a new pro-
tocol for supporting remote procedure calls. SOAP requires a new header in the HTTP
request line, SOAPMethodName, that includes as its argument a URN (Universal
Resource Name). The name found here must also match the first sub-item found in the
XML (Extensible Markup Language) sent as the body of the request. In SOAP, XML is
used for data representation.

And, if anything has annoyed me more lately, it is XML. Such a squirrelly language, it
can morph into anything the designer wants, while appearing to be harmless. Someday
we will begin seeing XML exploits, but not yet. The day is closer, however, as Microsoft
and VeriSign have announced PKI extensions for XML, XKMS.

If you really want to understand more about SOAP, you can read “A Young Person’s
Guide to XML” at <http://msdn.microsoft.com/msdnmag/issues/0300/soap/soap.asp>.

And if you ever have occasion to read Bugtraq these days (<http://www.securityfocus.com>,
Forums), you will have heard of Ofir Arkin. Ofir has been studying the small differ-
ences in the ways that vendors implement ICMP, and has written a paper describing his
researches (<http://www.sys-security.com>). Ofir has been digging at this for over a year
now, and has forced the security community to pay more attention to ICMP. His rec-
ommendation is to block all ICMP packets at your firewall (presuming you have one),
something that members of the IETF might shudder thinking about. Read his paper
and you will begin to understand why.

Not just because of the ping of death, either, or the floods generated by smurf DoS
attacks. Ofir has discovered ways of fingerprinting hosts even if you block ICMP pack-
ets going to those hosts (you must permit other IP packets to the target host). ICMP
Time Exceeded errors can be used to identify certain operating systems by sending only
one part of a fragmented packet.

But there is another reason why you might want to block ICMP – if you are paranoid
enough. After all, people can use HTTP to tunnel out through your firewall, so why
worry about ICMP? Because ICMP has also been used to tunnel information through
firewalls.

I first encountered an ICMP tunnel through the gift of a friend who works at a univer-
sity. The tools were called pinsh and ponsh, one a client, the other a server, and both
communicated using ICMP ECHO_REPLIES (what you would normally receive in
response to an ECHO_REQUEST, as generated by ping). ICMP ECHO packets may
include an optional payload, and pinsh/ponsh used this payload to carry commands
and the output of the commands back and forth.

65February 2001 ;login: MUSINGS ●

You can use DNS requests to

tunnel commands to a remote

server.

●
SE

C
U

R
IT

Y
| P

RO
G

RA
M

M
IN

G
| N

ET
W

O
RK

IN
G

| C
O

M
PU

TI
N

G

http://slashdot.org/articles/00/09/10/2230242.shtml
http://nstx.dereference.de/
http://msdn.microsoft.com/msdnmag/issues/0300/soap/soap.asp
http://www.securityfocus.com
http://www.sys-security.com

This idea was not new, as daemon9 had already written about it in Phrack issue 49.
Loki v2 (<http://www.2600.com/phrack/p51-06.html>) adds encryption and digital sig-
natures to further disguise the tunneled data and to authenticate the requests (wouldn’t
want the wrong people using our tunnel). The code found here only works with Linux
systems, and has not been maintained. But you get the idea.

That is, if you permit any communications at all between your network and other net-
works, your network can leak data like a sieve. Note that this usually requires the active
participation of some internal user – unless you are using Windows. In that case, you
might fall victim to a virus-installed Trojan, such as Subseven, that provides a simple
way to remote control your Windows NT box. As most firewalls block all incoming
connections, some Windows Trojans make an outgoing connection to an IRC server,
join a particular channel, and wait for commands. This technique has also appeared in
agents for DDoS attacks (Trinity, which you can read about in Sven Dietrich’s paper in
the LISA 2000 proceedings). At the very least, block outgoing connections to port 139
(used by SMB and Samba), because Microsoft OSes consider shared files as part of the
trusted security context. In other words, an attacker can provide code that your system
will run on a remote file share, and it will be trusted. You can prevent this by updating
IE (often), and by blocking port 139/TCP outgoing.

Holy networks! Is there no end to this? Actually, I’d like to mention a very old hack by
Marcus Ranum, performed to illustrate the leakiness of networks in general. Marcus
tunneled NFS over UUCP (using email) just to make a point about leakiness of net-
works. If you really want to prevent data leaking from networks, you can neither con-
nect them to any other network nor permit anyone to use modems. Oh, and you might
also want to include a degaussing magnet, à la Neal Stephenson’s Cryptonomicon,
although you’ll want to warn people using pacemakers, and wipe clean magnetic media
as it leaves your site. Anyone have a writable CD handy?

66 Vol. 26, No. 1 ;login:

If you permit any

communications at all

between your network and

other networks, your network

can leak data like a sieve.

http://www.2600.com/phrack/p51-06.html

67February 2001 ;login: ISPADMIN ●

Mail Architecture
INTRODUCTION
In this column, I will cover various topics that are in some way unique to the

Service Provider (SP) industry. Before working in the ISP industry, I often

wondered how SPs handled problems like high-volume mail or news, Web

hosting, etc. I will attempt to illustrate how many SPs engineer various serv-

ices for this often high-volume, high-expectation industry. The following

topics may be covered (in no particular order) in future columns:

■ RADIUS
■ LDAP
■ Provisioning/billing
■ DNS
■ News
■ Security
■ Web caching
■ Web hosting
■ Network monitoring/SLAs

I will use the various Service Providers I have worked for in the past as the primary
case studies, including Time Warner Cable of Maine and Ziplink, Inc. I will also
attempt to cover alternate case studies as well, where appropriate.

The Problem of Mail at a Service Provider
In this installment, I will look at how mail solutions are architected. At any SP, imple-
menting a robust mail architecture is different from a typical enterprise for the follow-
ing reasons:

■ High volume of mail
■ Many customers utilizing mail
■ High expectations, as this is sometimes a pay-for service

Now, that is not to say that some enterprise mail systems can’t have the above charac-
teristics; they certainly can. It’s just that these characteristics define any SP’s mail archi-
tecture.

I would be willing to bet that the reason most people obtain Internet access is first and
foremost to read and send email. Sure, they want to surf the Web, but ask most sub-
scribers what’s the most important application they use when online and I’m sure
they’d answer “email.” This popularity translates into lots of email going to and from
many subscribers. The proliferation of email-based greeting cards, jokes, hoaxes, spam,
etc., only serves to put additional pressure on SP’s mail infrastructure. Let’s start by
examining how an enterprise might engineer their mail system.

A SIMPLE EXAMPLE
A small- to medium-sized enterprise has different goals than an ISP when it comes to
designing a mail infrastructure. However, it is still worthwhile to compare how most
other enterprises’ mail setup compares to an SP mail infrastructure. I will assume that
this imaginary enterprise is behind a firewall for security purposes. Their mail system
might be set up like the diagram in Figure 1.

by Robert Haskins

Robert Haskins is
currently employed
by WorldNET, an ISP
based in Norwood,
MA. After many
years of saying he
wouldn't work for a
telephone company,
he is now affiliated
with one.

<rhaskins@usenix.org>

ISPadmin

●
SY

SA
D

M
IN

| S
EC

U
RI

TY
| P

RO
G

RA
M

M
IN

G
| N

ET
W

O
RK

IN
G

| C
O

M
PU

TI
N

G

In most of the enterprises I am familiar with, the firewall only accepts outbound mail
connections from the internal mail server on the secure interface to limit exposure to
potential security problems. However, one could easily set up the firewall to accept out-
bound connections from any internal client originating on the secure interface. The
firewall must always accept inbound mail from anyone (except perhaps those servers
listed in the Mail Abuse Prevention System’s [MAPS] or similar anti-spam “black hole”
lists if the site chooses to subscribe to such a service) coming in on the insecure inter-
face on port 25. In any case, the firewall must function as inbound and outbound mail
relays would work in an SP environment, while the single mail server machine handles
all other mail functionality. This single mail server machine ends up being a major bot-
tleneck in an SP environment. To address this shortcoming, the problem of mail is
decomposed into its smaller pieces, which is the topic of the next section.

BREAKING DOWN THE PROBLEM OF INBOUND MAIL
The way mail is engineered at SPs is to decompose the process into smaller, scalable
pieces. Mail functionality can be broken down into these categories:

■ Relaying
■ Storing/end user retrieval of messages
■ Forwarding mail
■ Mailing lists
■ Bouncing mail for unknown users

68 Vol. 26, No. 1 ;login:

Figure 1

Figure 2

Figure 2 demonstrates how a relatively large ISP might engineer an inbound mail solu-
tion. It requires a bit of explanation prior to going into detail on each particular part.
The arrows in Figure 2 illustrate the flow of inbound mail messages. The ellipses indi-
cate that the functionality is scaled depending upon the load; for example, there is no
need to have the same number of relay machines as store/forward machines. Each func-
tion is scaled depending upon the requirements of that particular service. Mailing-list
maintenance and bounce functionality loading is relatively light and, as a result, would
most likely be the last machine functions to require scaling. It is important to note that
within a particular class of machine (relay, for example), the servers are essentially
clones of one another, and can be brought up and down at will (ensuring appropriate
queues get processed, of course). The message store is usually designed to access a
shared file system (NFS, SAN, etc.) for the messages. This system is engineered with an
appropriate level of redundancy within the file system in order to alleviate any possible
single point of failure.

INBOUND MAIL RELAYING

Most ISPs have one or more machines dedicated to mail relaying. In fact, most very
large ISPs split inbound and outbound mail relays and have multiple machines dedicat-
ed to each type of functionality spread across their network. In this context, inbound
mail refers to mail coming from other places (i.e., Internet or other WAN) destined for
an end customer of that ISP. Outbound refers to mail originating on the ISP’s network
destined for another network.

In Figure 2, mail from the Internet at large would hit a series of dedicated inbound
mail relays. These inbound mail relays might perform some sort of basic anti-spam
checking (for example, check for the originating network to be listed in Mail Abuse
Prevention Project’s MAPS’ Real time Black hole List, a.k.a. MAPS RBL, or the relays
might run Blackmail software for domain and other message/header validation). Once
these basic checks are performed, the mail is forwarded.

Typically the server software for relay functionality is Sendmail, although other mail
server software can be, and is, used. The setup of such inbound mail relays is relatively
straightforward, as it is a relatively simple problem to send mail from point “A” to point
“B.” The mail relay servers would need to know what domains it is accepting mail for
(these would be hosted domains, of course) and forward the message to the appropri-
ate mailbox. Typically, this is done through a UNIX db file and Sendmail setup. Howev-
er, with the advent of directories, LDAP is a much easier and scalable way of solving
what domain mail goes where.

STORE/FORWARD (AND A WORD ABOUT PROVISIONING)

The mail relays would then pass messages to a series of store/forward machines, which
accept and deliver mail locally for legitimate users and forward mail for customers who
choose to retrieve their mail from some other server. This is a relatively easy problem to
solve for a small network. However, when the number of mail accounts exceeds several
thousand or so users, the directory lookups can take so much time that an alternate
scheme for storing messages must be deployed. The discussion here is centered upon a
POP3 solution; the topic of IMAP will not be addressed.

In the past, the method used to address scaling of services as it pertains to mail storage
was to exploit POP3 proxy functionality and forward the request to the appropriate
machine by using some sort of a database updated by the provisioning process. I must

69February 2001 ;login:

Most very large ISPs split

inbound and outbound mail

relays and have multiple

machines dedicated to each

type of functionality spread

across their network.

ISPADMIN ●

●
SY

SA
D

M
IN

| S
EC

U
RI

TY
| P

RO
G

RA
M

M
IN

G
| N

ET
W

O
RK

IN
G

| C
O

M
PU

TI
N

G

70 Vol. 26, No. 1 ;login:

digress here and explain a little about what provisioning is. Provisioning is simply set-
ting up subscriber accounts. It usually means performing the following steps:

■ Creating a UNIX account with an invalid shell on a mail machine for mail retrieval
by customer

■ Setting up a UNIX account on an FTP server so a customer can update his/her
Web site

■ Configuring an Apache Web server home directory for the customer
■ Etc. . . .

A full discussion of provisioning is out of the scope of this article. I will speak to this
topic in a future column.

Besides utilizing the POP3 proxy functionality mentioned above, a more recent devel-
opment in the area of scalability would be to use LDAP to determine exactly what
machine the customer’s mail resides on. The advent of the Pluggable Authentication
Module, or PAM, makes utilizing LDAP a much easier proposition than it was before
PAM arrived on the scene. Once again, a full discussion of PAM and LDAP deserves its
own column and is beyond the scope of this discussion. The references section contains
some links to resources on integrating Sendmail with LDAP and PAM.

A typical mail store would run Sendmail to receive mail and Qpopper to allow POP3
access by end subscribers. These machines need to be controlled by the provisioning
process so they know which subscribers are active and which to bounce. They would
also utilize some sort of a shared file system (SAN, NFS, etc.) so that the load on the
message stores can be scaled easily.

MAILING LISTS/BOUNCING MAIL

The final step would be to have the mail-store machines forward mail destined for
unknown recipients to a machine or set of machines dedicated to list processing, and to
bounce any message that wasn’t addressed to a hosted list. Typically, this is a machine
running vanilla Sendmail and Majordomo list processing software. If the message is a
hosted list, the list is expanded and sent to the mail store and outbound mail relays for
final delivery. If the message is not a hosted list, then the message is bounced back to
the sender, since it is undeliverable.

Typically, this functionality doesn’t take a lot of resources, so this would be the last
machine to require scaling. Also, it is relatively straightforward to configure. It does not
require access to the provisioning process, and can easily scale without a need for a
shared file store or other such complications.

OUTBOUND MAIL RELAYING

Outbound mail refers to clients sending mail to the outside world. Inbound and out-
bound mail relays can be the same machine. The only additional functionality per-
formed by an outbound mail relay is an address range check to ensure that only end
subscribers of the SP can relay mail through the machine. If this check were not made,
any arbitrary user could send mail through the relay, which is known as an “open relay”
and is a “Very Bad Thing.”

MAIL SERVER SOFTWARE BESIDES SENDMAIL

As I have previously mentioned, most SP installations utilize Sendmail. I think the rea-
son for this is a testament to how robust and flexible Sendmail has proven over the

years. However, there are other solutions out there, in use by SPs. Freeware mail server
software would include:

■ Qmail
■ Postfix
■ Exim

Commercial solutions include:

■ Intermail Post.Office from Openwave Systems, Inc. (formerly software.com)
■ PMDF from Sun/Netscape Alliance (formerly Innosoft, Inc., now supported/

developed by Process Software, Inc.)
■ CommuniGate Pro from Stalker Software, Inc.

While I have no direct experience with any of the above solutions (either freeware or
commercial), I am certain they all can be made to work in SP environments.

SPAM
No discussion of SP mail solutions would be complete without including the topic of
spam. The problem of spam can be broken down into two parts: inbound and out-
bound. Most if not all available solutions today address the problem of inbound spam;
I am aware of no commercially available solution that tackles the specific problem of
outbound spam.

There is some anti-spam support within recent versions of Sendmail. Here is a list of
some of the features within Sendmail 8.10:

■ Anti-spam rule sets
■ Content-based filtering
■ Built-in SMTP authentication
■ RFC2505 support
■ RFC2476 (Mail Submission Agent specification)
■ Specific senders/recipients can be allowed or disallowed Sender/recipient-based

filtering

However, the Sendmail anti-spam functionality does not go far enough for most ISPs,
so additional pieces must be added. Some available third-party freeware available
includes:

■ Blackmail (implements many of the recommendations in RFC2505)
■ Spamshield (counts log file entries for users sending large amounts of mail and

can stop them in real time if desired)

Another methodology for blocking spam is to utilize a service such as Brightmail. The
Brightmail Logistical Operations Center has spam forwarded to it from “mail probes”
located at SPs around the world. Their staff generates rule sets for their spam-blocking
software that works in conjunction with an ISP’s mail infrastructure. These rule sets
identify specific pieces of “Unsolicited Commercial Email” and “sideline” them for later
perusal by the end subscriber. This service can be a very effective method of blocking
inbound spam. Note that Brightmail also offers a free service which blocks mail via
POP3 proxy. You can find more information under the “Brightmail Individual” heading
on the Brightmail Web site.

71February 2001 ;login:

I am aware of no

commercially available

solution that tackles the

specific problem of outbound

spam.

●
SY

SA
D

M
IN

| S
EC

U
RI

TY
| P

RO
G

RA
M

M
IN

G
| N

ET
W

O
RK

IN
G

| C
O

M
PU

TI
N

G

ISPADMIN ●

DEALING WITH LARGE AMOUNTS OF MAIL
One of the problems faced by both enterprise and SP system administrators alike is
how to deal with large volumes of mail. In an SP environment, the abuse mailbox can
easily run into the thousands of messages per day. This doesn’t include the mail that
system accounts such as “root” generate on a typical day. (Of course, ISPs typically have
a Network Operations Center or other support personnel who (are supposed to)
respond to abuse complaints in a timely fashion.) I have used two methodologies when
dealing with system (non-abuse) mail, neither with much success:

1. Forward all mail to a central location and read it from there.
2. Read all mail locally.

The issue with 1 is that under certain conditions, the volume of messages can easily
bring down even the most robust mail system. The issue with 2 is how to read system
mail on 200 servers each day and get some productive work accomplished. If anyone
has any thoughts on methods to deal with this topic, I’d love to hear from you.

CONCLUSION
A Service Provider’s mail infrastructure must be designed for robustness and scalability.
Robustness is handled by utilizing time-proven hardware, software, and designs. Scala-
bility is achieved by decomposing the problem of handling mail down into its compo-
nent problems: relay, storage, bounce, etc.

Next time I’ll cover the little known topic (outside of the ISP industry) of Remote
Authentication Dial-In User Services, or RADIUS. In the meantime, please send your
questions or comments on this column, UNIX systems administration, or any other
related topic to me! I’d love to hear from you.

72 Vol. 26, No. 1 ;login:

REFERENCES

Mail Abuse Prevention System:
<http://www.mail-abuse.org>

Sendmail.net (articles on using Sendmail):
<http://www.sendmail.net>

Sendmail Consortium (freeware):
<http://www.sendmail.org>

Blackmail: <http://bitgate.com/spam>

LDAP man (articles on configuring LDAP):
<http://www.ldapman.org>

Linux-PAM:
http://www.lyre-mit-edu.lkams.kernel.org/pub/linux/libs/pam/

Qpopper: <http://www.eudora.com/qpopper/>

Majordomo:
<http://www.greatcircle.com/majordomo/>

Qmail: <http://www.qmail.org/>

Postfix: <http://www.postfix.org/>

Exim: <http://www.exim.org>

Intermail Post.Office:
<http://www.openwave.com/index.html>

PMDF: <http://www.innosoft.com/>

CommuniGate Pro: <http://www.stalker.com/>

IETF RFC tool: <http://www.ietf.org/rfc.html>

Blackmail: <http://bitgate.com/spam>

Spamshield: <http://spamshield.conti.nu>

Brightmail: <http://www.brightmail.com/>

http://www.mail-abuse.org
http://www.sendmail.net
http://www.sendmail.org
http://bitgate.com/spam
http://www.ldapman.org
http://www.lyre-mit-edu.lkams.kernel.org/pub/linux/libs/pam/
http://www.eudora.com/qpopper/
http://www.greatcircle.com/majordomo/
http://www.qmail.org/
http://www.postfix.org/
http://www.exim.org
http://www.openwave.com/index.html
http://www.innosoft.com/
http://www.stalker.com/
http://www.ietf.org/rfc.html
http://bitgate.com/spam
http://spamshield.conti.nu
http://www.brightmail.com/>

73February 2001 ;login: JOBS VS. PEOPLE ●

In this column, we put forth a heretical point of view, at least in manage-

ment circles: We don’t like job descriptions.

Many managers, particularly in bigger companies, are awash in job descriptions. Fre-
quently they must provide a job description before anyone can be hired. Salary and
performance evaluations depend on these job descriptions. If an employee is in trouble,
their performance is measured against the job description. So what’s not to like?

First off, there are circumstances where job descriptions are appropriate – for “com-
modity” jobs, where you expect that any one of a reasonably large pool of workers
could do the job, for example. Job descriptions in this case protect the workers and may
also be required for anti-discrimination reasons.

For the kind of high-tech programming and systems administration jobs that USENIX
managers are likely to have, however, job descriptions have a lot of problems.

For starters, they are static. So you write a description for a job. On a new hire’s first
day they probably can’t do the job at all, and for a period of many weeks, or even
months, they probably can’t do all of the job, or can’t do it very well. Then one day,
they can do the job described in the job description. Bravo! Now what?

Do you want them to stop growing?

If they don’t continue to grow in the job, how can you justify the large raise I’m sure
they would like to get at the next salary adjustment?

And how about the rapid change in technology – if you write a job description for a
C++ programmer, does this mean you can’t ask them to write Perl or Java? If your
company begins to roll out a wireless network, does this mean that you need to rewrite
the job descriptions of all your systems administrators?

And then there is the hiring problem. You write the description for the ideal candidate
– a master’s in computer science, five years’ experience, two years of Perl, and familiari-
ty with Windows NT. So somebody comes in with a PhD in history, a recent master’s in
computer engineering, knowing Java but not Perl, and experience with Millennium but
not NT. Do you refuse to look at them? Not in today’s job market you don’t! You weigh
the time and cost of training against the skills needed, throw in a large dash of uncer-
tainty about future plans, and sign them up in a heartbeat.

Do you really need to revise the job description? Maybe the job can be done as well or
better in Java than in Perl. The bottom line here is that it is much easier to change a job
than to change a person. If you get a smart, motivated person in your sights, you are
probably better off hiring them and hammering the job description into something
they can do and that meets the company’s needs.

Now, many of us live in bureaucracies where job descriptions rule. In this case, you
may be able to use a simple strategy to fill your position and end up with a stronger
organization, too.

Rather than hiring somebody from outside to get the neat new job, find someone
inside the company who wants to do something new. Then write a job description for
their existing job and recruit for that. Since the job is currently being done, it is easy to
write the job description and easy to assess a candidate against the current demands of
the job. When the new person arrives, the current job holder trains the newcomer and
then goes off to do the new project. You get cross training, the current employee gets
some experience managing and mentoring a new employee, and you keep your current
staff happier and the bureaucracy off your back. Just don’t tell anybody we told you.

jobs vs. people
by Steve Johnson

Steve Johnson has
been a technical
manager on and off
for nearly two de-
cades. At AT&T, he’s
best known for
writing Yacc, Lint,
and the Portable
Compiler.

<scj@transmeta.com>

and Dusty White

Dusty White works
as a management
consultant in Silicon
Valley, where she acts
as a trainer, coach,
and troubleshooter
for technical compa-
nies.

<dustywhite@earthlink.net>

●
TH

E
W

O
R

K
P

LA
C

E
| S

YS
A

D
M

IN
| S

EC
U

RI
TY

| P
RO

G
RA

M
M

IN
G

| N
ET

W
O

RK
IN

G
| C

O
M

PU
TI

N
G

74 Vol. 26, No. 1 ;login:

the bookworm
by Peter H. Salus

Peter H. Salus is a
member of the ACM,
the Early English Text
Society, and the Trol-
lope Society, and is a
life member of the
American Oriental
Society. He is Editor-
ial Director at
Matrix.net. He owns
neither a dog nor a
cat.

<peter@matrix.net>

EMBRACING INSANITY: OPEN SOURCE

SOFTWARE DEVELOPMENT

RUSSELL C. PAVLICEK

Indianapolis, IN: SAMS, 2000. Pp. 177.

ISBN 0-672-31989-6.

INSTALL, CONFIGURE, AND

CUSTOMIZE SLACKWARE LINUX

JOE BROCKMEIER ET AL.

Roseville, CA: Prisma Tech, 2000.

Pp. 446+CD-ROM. ISBN 0-7615-2616-1.

THINK UNIX

JON LASSER

n.p.: Que, 2000. Pp. 291. ISBN 0-7897-2376-X.

RETHINKING PUBLIC KEY INFRASTRUC-

TURES AND DIGITAL CERTIFICATES

STEFAN A. BRANDS

Cambridge, MA: MIT Press, 2000. Pp. 314.

ISBN 0-262-02491-8.

REAL WORLD LINUX SECURITY

BOB TOXEN

Upper Saddle River, NJ: Prentice Hall, 2001.

Pp. 700+CD-ROM. ISBN 0-13-028187-5.

TELECOMMUNICATIONS

CLIVE TOMLINSON

Harlow, Essex, UK: Addison-Wesley, 2000.

Pp. 317. ISBN 0-201-67473-4.

BOOKS REVIEWED IN THIS COLUMN

One of the problems of reading a lot is
that you end up carping a lot. I pack a
bunch of books to go (for example) to
Atlanta for a few days, and I get fed up
with them, and read something else, or
actually get distracted by other books.

So, I flew to Atlanta from Austin. The
first day at the ALS, Russell Pavlicek gave
me a copy of his Embracing Insanity. The
next day, Zonker (=Joe Brockmeier) gave
me his book on Slackware Linux. Each
was better than the volumes I had begun
en route.

Open Stuff
Embracing Insanity is a first-rate book on
open source development. If you’re read-
ing this, you most likely don’t need it; but
your manager or someone like your
manager most likely does.

I get questions, serious questions, as to
how anyone can actually “make money”
out of open source (usually referred to as
“free software”) at least three or four
times a week. Along with that comes a
query as to why anyone would work on
stuff and “just give it away.”

The second question is easy for me to
answer: while some may not get paid
directly for writing the software, they get
rewarded in a wonderful way: by their
peers. Readers of my 20 or 30 years ago
pieces will know that Mike Lesk wrote
uucp; that Bill Joy wrote vi; that Linus
Torvalds, Miguel de Icaza, Larry Wall all
wrote stuff we use. The authors aren’t a

part of a great anonymous turb in Red-
mond, WA.

Dollars are different from kudos and
recognition.

Pavlicek does a great job. In well under
200 pages he makes the movement com-
prehensible and understandable.

Install, Configure, and Customize Slack-
ware Linux is a very different sort of
book. Mount the CD-ROM, read a few
pages, and you’re off.

I don’t run Slackware. I’m writing this on
a Dell running Red Hat 7.0. But each
chapter in this book is by a real expert.
Brian Proffitt’s chapter 3 (on installing
Slackware) is quite fine. Jacek Artymiak’s
on configuring X is very good. William
Schaffer’s on compiling the kernel (“ker-
nal” on p. 199) is splendid. I consider
Zonker’s own Appendix A (“Linux
Primer”) a brilliant 45-page introduc-
tion.

Beginning UNIX
Lasser’s small book is a different sort of
introduction. It is an attempt at demysti-
fying UNIX for those who have been
computer users for years and who are
convinced that UNIX is both difficult
and (to use Steve Jobs’ phrase) “user hos-
tile.”

Lasser has introduced UNIX through its
philosophy, leading the reader through a
set of problem-solving basics. As most of
the job candidates I interview have lots of
skills, but typically don’t have UNIX
experience, I believe that Lasser’s book
will come in very handy. I intend to order
a half-dozen copies for my next set of
recruits. You’ll find it useful, too.

Tough Stuff
Privacy and encryption are important
topics. My review of Schneier last
November should have made my
thoughts clear.

If you also take this stuff seriously, and
are willing to try to dredge up your
unused algebra, Brands’ book is for you.
Brands’ first 40 and final 14 pages are
really interesting; the intervening 215 are
really tough. I admit to “reading in”
Brand for five weeks.

But I now comprehend the building
blocks which underly digital certificates
and public keys. Or at least, I understand
them as well as a non-professional math-
ematician or cryptographer is going to.

(Most likely friends like Matt Bishop and
Dan Geer will laugh at this, recognizing
how little I actually know.)

I found Brands tough slogging yet very
rewarding.

Safe Linux
By and large, I found Bob Toxen’s book
very good. It is the first really full treat-
ment of Linux security. But therein lies
one of its flaws: it’s very long. Over 700
pages. Nearly 100 of them made up of
appendices. But it’s solid; and the topic is
an important one. (Perhaps I’ve said that
too often.)

Toxen has organized the tome well, and
he writes well enough that I wasn’t in
agony at any time. The 20 pages of Chap-
ter 5 (“Common Attacks”); Chapters 10
and 11 (“Case Studies” and “Recent
Break-ins”); and the 40 pages on Intru-
sion Detection (Part III) are exception-
ally fine.

The appendix on references is good, but
confusingly organized. Too many non-
Prentice-Hall books (especially those
published by Addison-Wesley and
O’Reilly) are missing.

Telcos and Their Friends
Tomlinson’s brief volume is the perfect
introduction to telecommunications for
the non-techie parts of your company. I
found it enjoyable, but a bit light. The
bibliography omits far more than it
includes. The list of acronyms is remark-
able.

Book Reviewers Needed
;login: (more specifically, Peter Salus) is
looking for reviewers for books that
deserve greater coverage than can be
afforded within the Bookworm format. If
you are interested, contact <peter@
matrix.net>; feel free to suggest what top-
ics you are interested in, and which book
or books you might like to review.

75February 2001 ;login:

●

TH

E
BO

O
K

W
O

RM

THE BOOKWORM ●

79February 2001 ;login:

news

●

SA
G

E
N

EW
S

SAGE CERTIFICATION COMMITTEE ●

Report on the
SAGE Certification
Committee

This could be really dry stuff. Details,
details, details, and we are just at the
beginning. But it wasn’t a dry meeting,
and the latest session of the SAGE Certi-
fication Policy Committee made signifi-
cant strides toward establishing a plan to
institute a certification program. (Special
thanks to Gale Berkowitz who not only
took over the convening of our meeting
when a last-minute family crisis pre-
vented J. K. Chapman from attending –
she also took excellent minutes.) Lois
Bennett, Gale Berkowitz, Stephen Berry,
Barb Dijker, Bradley Donison, Tim Gas-
saway, Mark Langston, Phil Scarr, Mark
Stingley, John Stoffel, and Leeland G. Artra
were at the meeting in San Diego,
October 21, the day before the WIESS
and OSDI conferences. Our goals were to
review the business plan, review the lead-
ership, and establish a plan for imple-
mentation. Some important decisions
were reached and people made commit-
ments to take the various tasks in hand.
The business plan was developed by
Michael Hamm & Associates based on
information from the August meeting of
the committee. It is a 20-page document
that touches on marketing and financial
plans, governance and management deci-
sions, and key first year developm ental
activities, among other things.

SUBCOMMITTEES

Obviously the question of what needs to
be done in the first year to get this whole
scheme off the ground is crucial, so that
was the main focus of our discussion.
The critical first steps include things like

writing test questions, developing poli-
cies and procedures, coming up with a
logo, and many more. We reorganized the
business plan in order to establish sub-
committees and assign tasks. We formed
six new subcommittees and added some
tasks to the existing Test Development
Subcommittee.

THE SUBCOMMITTEES

Marketing/Branding/Promotion/Public
Relations
Lois Bennett, co-chair
Bradley Donison, co-chair

Test Development
John Stoffel, co-chair
Lois Bennett, co-chair
Tim Gassaway
Leeland G. Artra, liaison

Certification Architecture
Mark Langston, co-chair
Stephen Berry, co-chair
Tim Gassaway

Ethics and Discipline
Phil Scarr
Mark Langston
Stephen Berry

Certification Administration and Proce-
dure
John Stoffel, co-chair
Bradley Donison, co-chair
Lois Bennett
Phil Scarr

Funding/Patronage
Leeland G. Artra, co-chair
Mark Stingley, co-chair
Lois Bennett
Mark Langston

Leadership, Governance, and Management
Barbara Dijker
Tim Gassaway
J. K. Chapman

Accreditation and Education
Phil Scarr
Leeland G. Artra

Some of the subcommittees’ tasks are
clear by the titles; others need some

explanation. The Certification Architec-
ture Subcommittee will be addressing
issues like exam prerequisites, eligibility
requirements, examination format, and
continuing certification requirements.
The Certification Administration and
Procedure Subcommittee will focus on
applications, appeals of scores and eligi-
bility, reinstatement of lapsed certifi-
cants, legal compliance (e.g., ADA
provisions for testing accommodations),
examination delivery (i.e., scoring, sched-
ules, test sites, vendors), and certification
acknowledgment and operations mainte-
nance. The Accreditation and Education
Subcommittee will address education
sources, accreditation of educators, edu-
cation partners, identification of training
vendors, syllabus development, and
occupational analysis.

TEST DEVELOPMENT

The Test Writing Subcommittee an-
nounced the successful enlistment of a
team to write questions for the beta test.
Twelve SAGE members along with three
members of the Policy Committee gath-
ered December 9th and 10th to receive
training in writing test questions and test
answers. After the workshop all will go
off and write lots of questions, then
gather again to review and critique what
has been written. In all we will be coming
up with at least 450 questions, enough
for two tests and some extra questions as
well.

NAMING

Then there was the question of what we
should call the certification itself.
Because the first level of certification in
the SAGE job description booklet is Level
II, we decided that numbered levels
would be confusing: would our levels run
parallel, starting with Level II, or would
we start with Level I, more intuitive, but
a divergence from SAGE practice? So we
decided the first degree of certification
would simply be called Certified System
Administrator, or CSA. The plan is even-
tually to offer more levels of certification,

by Lois Bennett

Member, SAGE Certification
Committee

<lois@deas.harvard.edu>

80 Vol. 26, No. 1 ;login:

and several options for the higher-level
designations were discussed but no deci-
sion reached. The naming will be deter-
mined as the advanced certification
standards are developed. The program
itself is called the SAGE Certification
Program, or SAGECertPro. The umbrella
term for the whole effort – the Policy
Committee (for which this is a report),
the question writers, and any others who
may become involved – is the

C
S A G E

R
T E A M

BUDGET AND PATRONAGE

Budget and patronage took up a large
portion of our discussions. There were
several suggested changes for the budget
figures we had received from Hamm,
mostly raising the figures for reality’s
sake. The bulk of discussion was around
patronage policy and benefits: how do we
get people to fund this wonderful pro-
gram and which sources of funding
should we pursue? (Leeland G. Artra has
revised and updated the Web page
describing the SAGE Certification
Patronage Program to reflect the deci-
sions we made at the meeting: <http://
www.usenix.org/sage/cert/patrons.html>.)

SAGE hosted a hospitality suite for ven-
dors to promote the patron program at
the LISA conference. All of the vendors at
LISA were invited. Leeland and other
committee members made a presentation
and answered questions about the certifi-
cation program and our future plans.
Everyone on the committee has been
asked to talk with people they know
about patronage and develop contacts
that the Patronage Subcommittee can
approach. Founding patrons will receive
special benefits; all patrons who make
contributions before May 2001 will be
considered found-
ing patrons.
Startup funds for
this project are
especially impor-
tant since the busi-
ness plan shows
the program, as
conceived, will not
be self-supporting
until its third year.

LEADERSHIP AND

ORGANIZATION

In the discussions
on leadership it
was decided that
there should be a
governing board,
with a representa-

tive of the SAGE Executive Committee
serving as a liaison. The governing board
needs to be representative of the popula-
tion we are targeting: sysadmins, SAGE
members, employers/HR departments,
academia and professional trainers, ven-
dors and government. We are comfort-
able maintaining governance of the
program as a policy committee for the
time being, at least until an executive
director is hired and a corporate entity is
established.

In the long term it may be desirable for
the certification authority to become a

Jon “maddog” Hall presenting a check to,
John Stoffel, and Gale Berkowitz from the SAGE Certification
Team. Hall became the first individual Patron for the SAGE
Certification project.

SAGE, the System Administrators Guild, is a

Special Technical Group within USENIX. It is

organized to advance the status of computer

system administration as a profession, establish

standards of professional excellence and recog-

nize those who attain them, develop guidelines

for improving the technical and managerial

capabilities of members of the profession, and

promote activities that advance the state of the

art or the community.

All system administrators benefit from the

advancement and growing credibility of the

profession. Joining SAGE allows individuals and

organizations to contribute to the community of

system administrators and the profession as a

whole.

SAGE membership includes USENIX member-

ship. SAGE members receive all USENIX member

benefits plus others exclusive to SAGE.

SAGE members save when registering for

USENIX conferences and conferences co-spon-

sored by SAGE.

SAGE publishes a series of practical booklets.

SAGE members receive a free copy of each

booklet published during their membership

term.

SAGE sponsors an annual survey of sysadmin

salaries collated with job responsibilities. Results

are available to members online.

The SAGE Web site offers a members-only Jobs-

Offered and Positions-Sought Job Center.

SAGE MEMBERSHIP

<office@sage.org>

SAGE ONLINE SERVICES

list server: <majordomo@sage.org>

Web: <http://www.usenix.org/sage/>

http://
Lisa Camp de Avalos
Text Box
Leeland G. Artra

legally independent body. But although
some on the committee feel strongly
enough about the need for certification
of this type that they would want to go
ahead with or without SAGE, the consen-
sus was that this needs to be a SAGE
project and should always maintain close
ties to SAGE. A future organizational
chart may look like this:

SAGE

SAGE Executive Committee

Certification Governing Board

Certification Committees

Certification Executive Director

Certification Staff

We got a lot done at this meeting. There
is a lot of work still to do. We will be
meeting again at LISA. We encourage
members of USENIX to discuss certifica-
tion of system administrators with their
colleagues and let us know what those
discussions turn up. We’d be glad to have
your input.

81February 2001 ;login:

International SAGE
Code of Ethics

Since 1998 SAGE has been working on a
new Code of Ethics that could be
adopted by all the existing SAGE groups
across the globe. This would create one
common international SAGE Code of
Ethics. The ethics commitee has been
working diligently on this effort and pro-
posed a Code as published here. In addi-
tion to the proposed Code, the ethics
committee recommended a procedure
for reviewing and adopting the code
internationally.

At its meeting in December, the SAGE
executive committee accepted the recom-
mendations of the ethics committee. As a
result, the following procedure will be
used for international review and poten-
tial adoption:

■ An international ethics committee
will be established. It will consist of
two voting representatives from each
of the four existing regional SAGE
organizations and non-voting repre-
sentatives from countries or regions

in the process of forming SAGE
organizations. The SAGE exec
appointed Lee Damon as one of the
two US representatives. The second
US representative will be appointed
by the newly elected SAGE executive
committee in February 2001. Each of
the regional SAGE organizations will
appoint their own representatives.

■ The international ethics committee
will review the Code item by item
and coordinate revisions as neces-
sary to meet internationalization
needs.

■ The committee will then recom-
mend the resulting revised Code for
adoption individually by each
regional SAGE organization.

■ Each regional SAGE organization
will then establish and follow a pro-
cedure for formal member review
and adoption as they see fit. SAGE
(US) will publish and publicize the
Code as proposed by the interna-
tional committee and then conduct
formal open member comment and
response periods. After the conclu-
sion of the comment and response
periods, the SAGE (US) executive
committee will vote on whether to
adopt the Code. That vote must pass
by 2/3rds for the Code to be
accepted and adopted by SAGE
(US).

●

SG
A

E
N

EW
S

INTERNATIONAL SAGE CODE OF ETHICS ●

by Barbara Dijker

President, SAGE STG Executive

Committee

<barb@sage.org>

SAGE STG Executive Committee

President:

Barb Dijker <barb@sage.org>

Vice-President:

Xev Gittler <xev@sage.org>

Secretary:

David Parter <parter@sage.org>

Treasurer:

Peg Schafer <peg@sage.org>

Members:

Geoff Halprin <geoff@sage.org>

Hal Miller <hal@sage.org>

Bruce Alan Wynn <wynn@sage.org>

SAGE SUPPORTING MEMBERS

Certainty Solutions

Collective Technologies

Electric Lightwave, Inc.

ESM Services, Inc.

Mentor Graphics Corp.

Microsoft Research

Motorola Australia Software Centre

New Riders Press

O’Reilly & Associates Inc.

Raytheon Company

Remedy Corporation

RIPE NCC

SAMS Publishing

SysAdmin Magazine

Taos: The Sys Admin Company

Unix Guru Universe

82 Vol. 26, No. 1 ;login:

SAGE CODE OF ETHICS

(INTERNATIONAL DRAFT AS OF

8/24/00)

As a member of the international com-
munity of systems administrators, I will
be guided by the following principles:

1. Fair Treatment – I will treat everyone
fairly. I will not discriminate against any-
one on grounds such as age, disability,
gender, sexual orientation, religion, race,
national origin, or any other non-busi-
ness related issue.

2. Privacy – I will only access private
information on computer systems when
it is necessary in the course of my duties.
I will maintain and protect the confiden-
tiality of any information to which I may
have access, regardless of the method by
which I came into knowledge of it. I
acknowledge and will follow all relevant
laws governing information privacy.

3. Communication – I will keep users
informed about computing matters that
may affect them – such as conditions of
acceptable use, sharing of common
resources, maintenance of security,
occurrence of system monitoring, and
any relevant legal obligations.

4. System Integrity – I will strive to
ensure the integrity of the systems for
which I have responsibility, using all
appropriate means – such as regularly
maintaining software and hardware; ana-
lyzing levels of system performance and
activity; and, as far as possible, prevent-
ing unauthorized use or access.

5. Cooperation – I will cooperate with
and support my fellow computing pro-
fessionals. I acknowledge the community
responsibility that is fundamental to the
integrity of local, national, and interna-
tional network and computing resources.

6. Honesty – I will be honest about my
competence and will seek help when nec-
essary. When my professional advice is
sought, I will be impartial. I will avoid
conflicts of interest; if they do arise I will

declare them and recuse myself if neces-
sary.

7. Education – I will continue to update
and enhance my technical knowledge
and other work-related skills through
training, study, and the sharing of infor-
mation and experiences with my fellow
professionals. I will help others improve
their skills and understanding where my
skills and experience allow me to do so.

8. Social Responsibility – I will continue
to enlarge my understanding of the social
and legal issues relating to computing
environments. When appropriate, I will
communicate that understanding to oth-
ers and encourage the writing and adop-
tion of policies and laws about computer
systems consistent with these ethical
principles.

9. Quality – I will be honest about the
occurrence and impact of mistakes, and
where possible and appropriate I will
attempt to correct them.

I will strive to achieve and maintain a
safe, healthy, and productive workplace.

10. Ethical Responsibility – I will lead by
example, maintaining a consistently high
ethical standard and degree of profes-
sionalism in the performance of all my
duties.

2000 SAGE
Outstanding
Achievement
Award
The 2000 SAGE Outstanding Achieve-
ment Award was presented to Celeste
Stokely at this year's LISA in New
Orleans. This annual award goes to
someone whose professional contribu-
tions to the system administration com-
munity over a number of years merit
special recognition.

Celeste Stokely was selected for her pio-
neering achievements in distributing sys-

tems management information. Once the
world migrated to include the WWW, she
was one of the first collectors and
providers of Systems Administration help
pages, long before those of Freshmeat
and even UGU. Many have benefited
from the resources that Celeste has
shared.

She has learned from the usual school of
on-the-job experience, and continues to
share and teach ways to have good proj-
ect management, planning, and other
requirements of being a professional in
the Systems Administration arena.

Congratulations, Celeste!

Celeste Stokely

83February 2001 ;login:

news

●

U
SE

N
IX

N
EW

S

FROM THE PRESIDENT ●

From the President

This is turning out to be an interesting
time to be president of USENIX and it
does not (yet) feel like a curse.

■ Finding a new structure for realizing
all that SAGE can be is a triumph
even if there are bumps down the
road – organizational progress is
way, way too easy to let slide for
another day, another time, some-
body else’s watch. And the trade-offs
almost always involve short-term
pain for long-term gain.

■ Society’s interest in massive, secure,
distributed, accountable computer
systems has never been more intense
– I, of course, mean e-voting in one
form or another. It is inevitable. It is
scary. If we are lucky, it is people like
us who will design it and who will
run it.

■ The shortage of people like us is not
doing any of us any harm, financially
speaking, but USENIX needs to get
on the ball and figure out how to
increase the supply, sufficiently at
least that we can continue covering
enough fronts to remain the undis-
puted leader in technical deploy-
ment of systems that actually work.
The surest way to become irrelevant
is to be “right” but “too small to
matter.”

■ Everything we know about scale, and
this is a USENIX specialty, is going
to be put to the test as never before.
When interconnectable devices are

cheap enough to be consumer dis-
posables, our challenges will be to
secure, to manage, even to under-
stand clouds of devices that will
never be visited by people like us
after they roll off the assembly line,
that will be managed in aggregate,
not individually.

■ If the much vaunted technical
leapfrogging of the less developed
world over the more really does
become like a startup nimbly out-
maneuvering some bureaucracy,
USENIX itself will have the chal-
lenge we’ve always had, “moving
information from where it is to
where it isn’t,” in spades. Where do
we belong in distance learning?
Speak up, I can’t hear you.

■ Read Christiansen’s The Innovators’
Dilemma, Gladwell’s The Tipping
Point, and Varian & Shapiro’s Infor-
mation Rules in one sitting. And tell
me if you can stay sitting after that.

■ Thought leaders, and that is what
USENIX members so often are or
are intent on becoming, anticipate.
They learn more from mistakes than
from successes. They don’t take “no”
or even “good enough” for an
answer. USENIX has to mimic that,
or should I say, tap that. This means
growing USENIX activists at every
opportunity.

■ The hardest job in any organization
is not knowing what it is the organi-
zation knows, it is knowing what it is
the organization doesn’t know. But
will need to. Tomorrow.

Come on in, the water’s fine.

by Daniel Geer

President, USENIX
Board of Directors

<geer@usenix.org>

USENIX MEMBER BENEFITS

As a member of the USENIX Association,
you receive the following benefits:

FREE SUBSCRIPTION TO ;login:, the Association’s

magazine, published eight times a year, fea-

turing technical articles, system administra-

tion articles, tips and techniques, practical

columns on security, Tcl, Perl, Java, and

operating systems, book and software

reviews, summaries of sessions at USENIX

conferences, and reports on various stan-

dards activities.

ACCESS TO ;login: online from October 1997

to last month <www.usenix.org/

publications/login/login.html>.

ACCESS TO PAPERS from the USENIX Confer-

ences online starting with 1993

<www.usenix.org/publications/library/

index.html>.

THE RIGHT TO VOTE on matters affecting the

Association, its bylaws, election of its direc-

tors and officers.

OPTIONAL MEMBERSHIP in SAGE, the System

Administrators Guild.

DISCOUNTS on registration fees for all

USENIX conferences.

DISCOUNTS on the purchase of proceedings

and CD-ROMs from USENIX conferences.

SPECIAL DISCOUNTS on a variety of products,

books, software, and periodicals. See

<http://www.usenix.org/membership/specialdisc.html> for

details.

FOR MORE INFORMATION

REGARDING MEMBERSHIP OR

BENEFITS, PLEASE SEE

http://www.usenix.org/membership/membership.html

OR CONTACT

<office@usenix.org>

Phone: 510 528 8649

FOR INFORMATION ABOUT

CONFERENCES, PLEASE SEE

<http://www.usenix.org/events/events.html>

OR CONTACT

<conference@usenix.org>

Phone: 510 528 8649

84 Vol. 26, No. 1 ;login:

USENIX BOARD OF DIRECTORS

Communicate directly with the USENIX Board
of Directors by writing to: <board@usenix.org>.

PRESIDENT:

Daniel Geer <geer@usenix.org>

VICE PRESIDENT:

Andrew Hume <andrew@usenix.org>

SECRETARY:

Michael B. Jones <mike@usenix.org>

TREASURER:

Peter Honeyman <honey@usenix.org>

DIRECTORS:

John Gilmore <john@usenix.org>
Jon “maddog” Hall <maddog@usenix.org>
Marshall Kirk McKusick <kirk@usenix.org>
Avi Rubin <avi@usenix.org>

EXECUTIVE DIRECTOR:

Ellie Young <ellie@usenix.org>

In Memoriam:
Mike Muuss

Mike Muuss was killed in an automobile
accident just before Thanksgiving.

Among other things, Mike was the
author of “ping.”

An early user of both UNIX and TCP,
Mike graduated from Johns Hopkins
University in 1979 and went to work for
the Ballistics Research Lab.

While at Johns Hopkins, Mike was one of
the students to run DEC’s Resource Shar-
ing Timesharing System under UNIX –
in late 1975. In September 1979, Mike
implemented the prototype BRLNET
high-speed local network (he had
designed it earlier that year under a U.S.
Army contract). It was a 16Mbps LAN,
but it required homogeneity. In early
1980, Mike extended the protocols to
deal with heterogeneity and led a team to
port the University of Illinois NCP capa-
bility to PDP-11 UNIX. (The team
installed an 11/34.)

Mike also obtained a copy of SEARCH, a
multi-user war game, and modified it for
use on the PDP-11/70 at BRL.

In late 1981, Mike began implementing
the experimental TCP/IP suite for
JHU/BRL UNIX on the PDP-11, rather
than extending BRLNET. Perhaps more
important, Mike began an electronic [!]
publication called TCP/IP Digest, with a
circulation of over 700 subscribers on
USENET and ARPANET. Most of this
work was incorporated into MILNET
standards 1777 and 1778.

Nearly every current TCP/IP implemen-
tation includes protocol software devel-
oped by Mike Muuss at BRL or directly
derived from it.

Mike’s TCP/IP protocols went to both
BBN and to Berkeley.

While I was working on Quarter-Century
of UNIX, Mike was a continual source of
anecdotes. On one occasion, he told me
about and then took me to the BRL to see
parts of ENIAC on display.

Mike was a fixture at USENIX meetings
for two decades. I’ll miss him in Boston
next June.

[The following is the newspaper account
of the accident.]

I-95 ACCIDENT CLAIMS LIFE

Churchville, Md – (AP)

A double accident Monday night on
Interstate 95 in Harford County killed a
Havre de Grace man. State police say 42-
year-old Michael Muuss died when his
car hit a vehicle left partially in the road
after the first crash. Muuss’ car then spun
into the path of a tractor-trailer, which
pushed him into a vehicle stopped on the
right shoulder to help victims of the ear-
lier crash. The truck driver was taken to
Harford Memorial Hospital. The acci-
dents occurred about 9:30 pm on the
northbound side of the highway in
Churchville. The first involved two cars
and a tractor-trailer. A driver in that
crash was treated at Harford Memorial
and released. Police say it’s not clear why
either accident occurred. No one has
been charged, but the investigation is
continuing. Traffic was able to get by for
most of the night, but it took until 2 am
before all lanes were opened.

[Editorial note:

A memorial scholarship at Mike’s alma
mater, Johns Hopkins University, for a
student in the field of computer science
has been proposed.

Some significant sums of money have
come in, but the arrangements have not
been finalized. The best contact for spe-
cific information is, in all probability,
Joseph C. Pistritto, at <jcp@jcphome.com>.]

by Peter H. Salus

<peter@matrix.net>

IOI 2000 ●

IOI 2000
Beijing, China

I remember as a young boy sitting in a
sandbox being told, “If you dig long and
deep enough you can dig a hole to
China.” I finally did make it to Beijing by
plane on the occasion of the 12th Inter-
national Olympiad in Informatics, the
first IOI to be held on the continent of
Asia. The week-long event, September
23–30, 2000, was packed with excursions,
entertainment, competitions, friendship,
awards, and, of course, abundant Chinese
food.

Our delegation arrived in Beijing from all
parts of the United States. Team leader
Rob Kolstad from Colorado Springs, Hal
Burch from Pittsburgh, Greg Galperin
from Boston, and myself from Wiscon-
sin. Team members Percy Liang and John
Danaher interrupted their freshman year
at MIT for the trip. Gregory Price from
Thomas Jefferson HS of Science and
Technology in Alexandria, Virginia, and
Reid Barton from Arlington, Massachu-
setts, rounded out the USA team of four.

On the second evening, the delegation
leaders met to choose the problems for
the first competition day. The problems
were presented by the Scientific Commit-
tee and accepted unanimously on the
first vote. This happens so infrequently
that the General Assembly gave the Sci-
entific Committee a round of applause. It
is not easy to get approval on the first try
from all countries.

Early the next morning, the contestants
began the first of two five-hour competi-
tions. Using an automated system, the
work of grading the contestants’ pro-
grams was dramatically reduced. Differ-
ences in program performance were
detected by running a series of test cases
against each program and checking for
speed and accuracy. After all the pro-
grams were tested, the results were made
available to each contestant, along with
the test cases. This gave the contestants
the opportunity to double-check the
grading process using their own comput-
ers. Our team was pleased with the first
day’s results.

The second competition day was pretty
much a carbon copy of the first, with the
exception that the problems presented
were a bit harder. All in all it appeared
that the creation of the International Sci-
entific Committee had been a good idea,
since their work was very helpful to the
Chinese Scientific Committee in selecting

and testing out the competition prob-
lems.

The final distribution of scores in the
competition also confirmed that the
problems were at the proper level of diffi-
culty for a good distribution of scores.
Now the guessing game began by the del-
egations as they wondered if their scores
were high enough to get bronze, silver, or
gold medals.

Following the last day of competition, we
headed out in buses to the Great Wall of
China. After we had walked and climbed
about as far as our tired legs could carry
us, we returned to an outpost tower on
the Wall for a fully catered banquet.
Chairs and tables had been hand-carried
onto the Wall along with all of the dishes,
glasses, and food for this spectacular
occasion. As we sat together eating our
meal, watching the sun set in the west
and the lights come on illuminating the
Great Wall, it was hard to believe this was
really happening.

The closing ceremony began with video
highlights of the week’s activities, featur-
ing scenes projected on large overhead
screens within the convention hall. Offi-
cial dignitaries from China occupied a
special position in the first row. After a
series of elaborate stage performances
and speeches, it was time for the medals
to be awarded. As is customary, half of

USENIX SUPPORTING MEMBERS

Addison-Wesley
Kit Cosper
Earthlink Network
Edgix
Interhack Corporation
Interliant
Lucent Technologies
Microsoft Research
Motorola Australia Software Centre
Nimrod AS

O’Reilly & Associates Inc.
Raytheon Company
Sams Publishing
Sendmail, Inc.
Smart Storage, Inc.
Sun Microsystems, Inc.
Sybase, Inc.
Syntax, Inc.
Taos: The Sys Admin Company
UUNET Technologies, Inc.

by Don Piele

USACO Director

<piele@cs.uwp.edu>

85

●

U
SE

N
IX

N
EW

S

February 2001 ;login:

86 Vol. 26, No. 1 ;login:

the participating students were awarded
medals.

Sixty-nine bronze medals were handed
out individually to the winners. Gregory
Price from our team received one of the
69 bronze medals handed out. Forty-
seven silver medals were awarded, and
two of them went to team members
Percy Liang and John Danaher. The cov-
eted gold medal was reserved for the top
twenty-three participants, and Reid Bar-
ton got one of them. This was the second
gold medal this year for Reid at an Inter-
national Olympiad. He was awarded a
gold medal at the Mathematics Olympiad
held in Korea earlier in July.

Special recognition went to Jing Xu of
China for being the best female contes-
tant at the Olympiad. Only six of the 276
participants were women. A perfect score
was recorded by one contestant, Mikhail
Baoutine, from the Russian Federation.
All three of his teammates also won gold
medals, making this the first time in IOI
history that one country has won four
gold medals.

New Environments
Starting in 2001, the computing environ-
ment will include Linux with the GNU
C/C++ and the Free Pascal compilers.
This will allow for more interesting prob-
lems and really speed up the grading
process. This was adopted by the General
Assembly on the recommendation made
by our head coach, Rob Kolstad, in a
presentation to the group that culmi-
nated several years of lobbying and
testing.

After such an elaborate IOI in China, our
delegation agreed that we had underesti-
mated the amount of work that it takes
to put on an event of this magnitude.
This is a concern, because we are hosting
the IOI in 2003.

Post Script
See a myriad of digital photographs at
<http://www.zing.com>. When you reach

Zing.com, search under Albums for IOI
2000. Find a longer description of our
trip, together with many photographs, at
<http://www.uwp.edu/academic/
mathematics/usaco/2000/ioi/report.htm>

USACO is supported by a grant from
USENIX.

Changing of the
Guard

On Tuesday, November 29, 150–200 peo-
ple met at Bell Labs to wish Ken Thomp-
son a fond farewell on his retirement
from Bell Labs after 34 years of service.
Ken and his wife Bonnie are moving to
Campbell, California. Unofficially, the
occasion also marked Brian Kernighan’s
retirement; although the transition will
not be as sharp as Ken’s: Brian will be
teaching full-time at Princeton.

After much eating and drinking, the
crowd settled down for the inevitable
speeches. Rob Pike, assisted by Dave Pre-
sotto, led the proceedings. Reminiscences
from various people, a few gag gifts (ani-
mal control apparatus and a fake rock!),
and a very nice gift. Rob read letters from
Al Aho, and Doug McIlroy (who had just
broken his arm). Apart from a stream of
stories about flying (for the record, whilst
flying, Ken has killed none of his students
and only one deer), most centered on

Ken’s technical excellence, his breadth of
work, and his very important role as
mentor to a generation of researchers,
including Rob Pike, Dave Presotto,
Howard Trickey, Sean Dorward, and
myself. It would be hard to overstate how
important Ken and Brian have been to
me professionally, both in their knowl-
edge (and communicating that knowl-
edge), and in their quiet demonstration
of how to be a researcher. They will be
sorely missed.

by Andrew Hume

Vice-President, USENIX Board of
Directors

<andrew@usenix.org>

Berk
Tague,
Dennis
Ritchie,
and Brian
Kernighan

Ken and Bonnie
Thompson

Berk Tague, Dennis Ritchie, Rob Pike,
Bruce Ellis, Ken Thompson, and Sape
Mullender

Years ago in UNIX

At the end of 2000, I felt quite old.

Readers of these pages may recall my
remarks on the deaths of John Lions and
Jon Postel. The last quarter of 2000 saw
the deaths of Bill Munson and Mike
Muuss. (My elegiac remarks on Mike are
elsewhere in this issue.)

I’m older than any of them. A full 20
years older than Mike.

Without Bill Munson, we would most
likely never have had DEC Unix. Bill was
Armando Stettner’s manager when Bill
Joy took 4.1cBSD to New Hampshire.

Mike Muuss was the chief author of BRL
Unix. He wrote one of the basic versions
of TCP/IP. He wrote ping.

Ave atque vale.

The January 1981 USENIX meeting was
held at the Jack Tar Hotel in San Fran-
cisco, chaired by Tom Ferrin.

4BSD had been released in October 1980,
and was the prime topic of conversation
in SF. 4BSD, among other things, con-
tained a faster file system to use with vir-
tual memory, job control, delivermail
(hooray for Eric Allman!), and the Franz
Lisp system.

There were about 1,200 attendees. That’s
right: 1,200.

15 YEARS AGO

In February 1986 I flew to Oakland, CA,
to visit Lou Katz, old friend and found-
ing president of USENIX. In retrospect, I
should never forgive him.

He introduced me to Debbie Scherrer.
She and Tom Ferrin took me to lunch. A
month later (I was involved in a writing

gig in Santa Clara), I had a chat with
Steve Johnson.

The net result was that I became Execu-
tive Director of the Association. And I’m
still involved.

Lou, Tom, Debbie, and Steve have a lot to
answer for.

USENIX Needs You

People often ask how they can contribute
to the USENIX organization. This new
column lists needs that USENIX has in
hopes of identifying volunteers (some
contributions reap not only the rewards
of fame and the good feeling of having
helped but also a slight honorarium).
Each issue we hope to have a list of open-
ings and opportunities.

■ USENIX needs a simple, restricted
set of TeX macros to enable authors
to contribute LISA papers that are
easily translated into other text for-
matting languages (including
HTML). Contact Rob Kolstad, <kol-
stad@usenix.org>.

■ The ;login: staff seeks good writers
(and readers!) who would like to
write reviews of books on topics of
interest to our membership. Write to
<peter@matrix.net>.

■ The ;login: editors seek interesting
individuals for interviews.
Please submit your ideas to
<login@usenix.org>.

■ ;login: is seeking attendees of non-
USENIX conferences who can write
lucid conference summaries.
Contact Tina Darmohray,
<tmd@usenix.org> for eligibility and
remuneration info. Conferences of
interest include (but are not limited

to): Interop, Internet World,
Comdex, CES, SOSP, Linux World,
O’Reilly Perl Conference, Blackhat
(multiple venues), SANS, and IEEE
networking conferences among oth-
ers. Financial assistance to cover
expenses may be available. Contact
<login@usenix.org>.

■ The ;login: staff seeks columnists for:
■ Large site issues (Giga-LISA),
■ Hardware technology (e.g., the

future of rotating storage),
■ General technology (e.g., the new

triple-wide plasma screens, quan-
tum computing, printing, portable
computing),

■ Paradigms that work for you
(PDAs, RCS vs. CVS, using laptops
during commutes, how you store
voluminous mail, file organization,
policies of all sorts),

■ Comics/cartoons (need to find
them, not necessarily draw them).

Contact <login@usenix.org>.

■ The ;login: staff seeks an editor for
the July 2001 “special topic” issue.
Please contact Rob Kolstad,
<kolstad@usenix.org>. This is a paid
position.

by Peter H. Salus

USENIX Historian

<peter@Matrix.Net>

by Rob Kolstad

Editor

<kolstad@usenix.org>

●

U
SE

N
IX

N
EW

S

YEARS AGO IN UNIX ● 87February 2001 ;login:

	motd
	apropos
	letters
	1406-linuxconf
	1407-wiessconf
	rubin
	burgess
	tierney
	mccluskey
	1412-usingjava26
	swartz
	flynt
	danielyan
	farrow
	haskins
	johnson
	bookworm
	sagenews
	usenixnews
	Blank Page
	Blank Page
	Blank Page

