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EDITORIALMusings
R I K  F A R R O W

Rik is the editor of ;login:.  
rik@usenix.org Imagine you are charged with defending the security of one or more sys-

tems, yet must also allow other people to run the code of their choice on 
your systems. I could be talking about your web browsers, those sources 

of malware infections, but my focus is actually public clouds.

Public clouds offer customers the ability to run any software that is not openly hostile through 
behaviors like port scanning or launching denial-of-service attacks. That leaves a lot of 
leeway for various mischief on the hosts they run on, especially if those hosts are running 
containers or cloud functions—lambdas in AWS-speak.

The initial way of strengthening security for containers was to run each customer’s contain-
ers on top of a kernel running in a virtual machine (VM). VMs rely on hardware-based secu-
rity, and while Sun, HP, IBM, and SGI had hardware support for VMs on or before the 1990s, 
Intel and AMD support appeared in 2005. Hardware support placed guest operating systems 
in a privilege ring above the virtual machine monitor (VMM), meaning that the VMM had 
control over the hardware and its treasures: CPUs, memory, storage, and networking.

But running containers inside of VM guests means that cloud vendors lose a lot of what they 
wanted to gain from container technology. They can’t start up containers wherever they want 
to, as they are constrained by a customer’s VM instances. And VMs are slow to start, taking 
seconds, and require at least an order of magnitude more memory and other resources than 
lightweight containers. Thus began a quest for more efficient ways of hosting containers.

One early example was NEMU, a stripped down version of QEMU, the open source system 
emulator. NEMU runs as a process, like QEMU, but instead of having all of the capabilities of 
QEMU, NEMU dispenses with support for things you can’t use in the cloud, like USB, as well 
as most other devices and hardware emulation, making NEMU smaller and simpler than 
QEMU. Both QEMU and NEMU are type two hypervisors.

AWS and Google have created their own type two hypervisors, each with the goal of 
 dispensing with VMs for isolating containers and cloud functions/lambdas. Like NEMU, 
each solution catches accesses to the underlying system, and each limits access using 
 seccomp() to reduce the number of system calls that can be made to the host from the hyper-
visors. You can download the source code to both hypervisors from GitHub if you want to,  
as both are open source. But the way each has been designed is quite different.

You can read the Firecracker paper [1], presented at NSDI ’20, for more on motivation and the 
deeper details. I found myself fascinated that the paper’s authors talk about running more 
than 8,000 instances on a high-end server, so as to maximize the use of total physical memory, 
multiple CPUs, and NIC queues. 

Firecracker is written in Rust, and like NEMU, provides a limited, virtual system on top 
of Linux KVM. Firecracker uses seccomp to limit the number of system calls to 24 and 30 
ioctls. Firecracker, like Docker, also relies on some of the same features for isolation, such as 
namespaces, cgroups, and dropping of privileges. Firecracker provides support for the container 
or lambdas being run by including a stripped-down Linux kernel. Instead of taking seconds to 
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boot, all this support structure can be running in less than 200 
milliseconds. And Firecracker uses more than an order of magni-
tude less memory and storage than a VM-based approach.

Google programmers used Go, another language that provides 
strong typing and dynamically allocated and reclaimed memory, 
like Rust. The Google system, named gVisor, consists of two 
processes. The first, a hypervisor called Sentry, emulates a Linux 
system call interface sufficient to run most cloud functions or 
containers. Like Firecracker, Sentry needs to make system calls 
to the host, and uses a less severely restricted set at 68. Sentry 
has its own netstack to implement TCP/IP, unlike Firecracker, 
which uses its guest Linux kernel for the network stack. While 
Firecracker does away with access to the host file system, 
instead creating an image file like a VM, gVisor uses a helper 
application, called Gofer, to handle file system access.

The Firecracker paper doesn’t include performance comparisons 
to gVisor, but a paper by Anjali et al. [2] examines both perfor-
mance and a measure of security of LXC (native Linux contain-
ers), gVisor, and Firecracker. Anjali et al. use microbenchmarks 
to compare these three container solutions, along with Linux 
without containers. They report that the Firecracker has high 
network latency, while gVisor is slower at memory manage-
ment and network streaming. gVisor is also much slower when 
it comes to opening and writing files. For security, the paper 
authors look at code coverage in the Linux kernel including 
KVM, with the assumption that an isolation solution that relies  
on more lines of kernel code, running at the highest privilege 
level, is less likely to be secure due to the potential for kernel 
bugs. Firecracker does rely less on the underlying Linux kernel, 
but not by much, using 9.59% of the kernel’s 806,318 lines of code 
versus 11.31% for gVisor.

There are other approaches for isolating containers and cloud 
functions. Library OSes, also called unikernels, rely on build-
ing an application that includes the needed operating system 
support, and can run on bare metal or on top of a hypervisor like 
KVM. I ran across Nabla while reading [2] and discovered that 
Nabla is based upon MirageOS, a unikernel system written in 
OCaml. Using Nabla requires that the library OS be linked with 
the application, something I considered a roadblock back when 
I learned of unikernels [3, 4]. But Nabla was supposed to have a 
simple, three-step build process, and I tried the example for run-
ning “Hello, World!” The build failed at the second step, unable 
to find seccomp.h, even though there were copies of seccomp.h 
handy on my system, including one downloaded for the build.

AWS and Google know that many organizations prefer to build 
their apps using JavaScript and Python, and though that’s possible 
using unikernel approaches, Firecracker and gVisor are designed 
to just work, as if you were running within a VM running Linux.

The Lineup
We start out this issue with an article based on the FAST ’20 
paper on Optane performance. Intel Optane, previously known 
as 3D Xpoint, can be used as main memory or in SSDs, and in 
the article, Yang et al. use microbenchmarks to tease out the 
performance characteristics of a system endowed with Optane 
DIMMs alongside ordinary DRAM, with the hardware support 
for making data flushed from CPU caches persistent even if 
power is interrupted.

Zahn et al. wrote “How to Not Copy Files” for FAST ’20, and 
besides being curious about the paper title, I wondered just what 
was special about their approach—and what was wrong with 
how other file systems handle file copying. File copying is more 
important than ever in current systems, with copy-on-write 
(CoW) being used to speed up file cloning often used with con-
tainers. Zahn et al. demonstrate how BetrFS is better and faster 
at file cloning than any of the current Linux file system favorites 
while describing their modified B-epsilon trees.

I took advantage of my temporary access to Dick Sites, who wrote 
about his KUtrace tool in the Summer 2020 issue [5], to ask him 
some more questions. Honestly, there were a lot more I would 
have liked to have covered, as Sites has had an insider’s view of 
developments in compilers and CPU architecture since 1966, 
but at least we dealt with several areas and provided pointers to 
where you can learn more.

Zhu et al. had an interesting paper about superpages in the Linux 
kernel. I had heard that superpage support should be disabled, 
and wondered just what the problem was with something that 
should increase the performance of memory-hungry applica-
tions. It turns out that the answer is complicated, but Zhu and 
his co-authors do a very good job of explaining the issues while 
presenting their own solution to improving superpage problems 
on Linux.

I had wanted to get a couple of the authors of Firecracker and 
gVisor to write for this issue, but that didn’t work out. I did run 
across a fascinating technical report about cloud program-
ming, and interviewed one of the authors, Ion Stoica, about 
issues raised in that report. While the cloud does abstract the 
details of operations, programming in the cloud mostly means 
micro services today, something very different than what most 
programmers have been taught how to do.

Georg Link offered to write about open source health: for exam-
ple, how can you tell if an open source project is healthy enough 
to be around in five years? The answer to that isn’t easy to figure 
out, but Link provides good suggestions about what he and the 
Linux Foundation’s CHAOSS Project look for when determining 
health.
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Uta et al. add to the understanding of how large clusters work by 
contributing time-series data of a datacenter in the Netherlands. 
They call this data MRI-like because it does allow analysis in 
multiple dimensions. Their contribution, and that of their organi-
zation, differs from other contributed traces of large clusters 
because of the types of applications being run in their DC.

Gómez-Iglesias et al. explain how Intel CPU bugs with names 
like Meltdown and Spectre are actually likely to affect systems. 
The authors explain what it takes to carry off a successful attack, 
the various ways that systems can be patched, and the trade-
offs associated with the different mitigations, mainly loss of 
performance.

Anatoly Mikhaylov shares his experience in using tagging and 
OpenTrace to connect requests coming in to a service with data-
base performance issues. Associating a particular request with 
an unusually slow SQL query isn’t easy, because of the interme-
diate layers found in today’s software architecture. Mikhaylov, 
who works at Zendesk, explains how he and coworkers have 
worked out how to do this cleanly.

Laura Nolan, reacting to Black Lives Matter, writes about how 
SREs and other technologists can contribute to changing how 
people of color are treated. Nolan suggests actions that include 
changing technical language, being aware, and making changes 
that are within your sphere of action.

Cory Lueninghoener presents the first installment in his column 
named “Systems Notebook.” Lueninghoener describes how he 
and a group of coworkers avoided failure in the design of a new 
system management stack. Instead of plugging away in isola-
tion and later presenting their new system, his group decided 
to involve others at his site to avoid problems down the road 
with missing features and lack of acceptance because they had 
excluded interested parties.

Dave Josephsen continues with his examination of eBPF. 
Josephsen begins with mythical lovers, forced to communicate 
through a crack in a wall. He compares this to communications 
between BPF within the kernel and its Python stub in userspace, 
and describes three ways that this communication can occur. 

Terence Kelly, in his new column, “Programming Workbench,” 
focuses on a locking technique that often gets mentioned but has 
been poorly documented. Kelly explains hand-over-hand locking, 
an easy-to-understand method for protecting data structures, 
such as linked lists, on systems with multiple threads. Kelly 
plans to continue on this theme, providing code examples in C for 
interesting algorithms that deserve more exploration.

Simson Garfinkel launches his own column, “SIGINFO,” with 
some history involving his current place of work. Garfinkel 
begins with the story of how we wound up with 80-column ter-
minals, covers UNIX’s “everything is a file” concept, and winds 

up tying Multics segments to NVRAM. Garfinkel has a long his-
tory of writing, and he loves to get his research right as well.

Dan Geer, working solo this time, considers questions we should 
be asking about security in the time of the coronavirus. Geer, 
whose column focuses on metrics and measuring security, takes 
a deep look at how the pandemic has changed not just the way we 
work, but also the threats our computer systems and networks 
now face.

Robert Ferrell contrasts working from home with working 
remotely. He’s done both and suggests that one is definitely more 
comfortable and sensible than the other.

Mark Lamourine has reviewed three books this time, one about 
algorithms, another concerning skepticism, and the third about 
re-engineering legacy software. I review a book of stories about 
interesting things, often failures, that happened to IT architects 
and the resulting build outs.

I once asked a professor why there weren’t any papers about new 
operating systems at the SOSP we were attending. His answer 
was succinct: operating systems are hard. I think it is also hard to 
create ways to protect those operating systems from the software 
running above them, doing so in ways that are performant but 
also should remain secure. When I learned about Firecracker late 
in 2019, I started studying the current methods, from unikernels 
to system calls reimplemented in Go. Just as VMs and containers 
have their place in the clouds of today, so do cloud functions and 
lambdas, and for these to work efficiently they need to be secured 
with lightweight technology. 

I don’t think we have heard the last of developments in this area.
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R esearchers have been anticipating the arrival of commercially avail-
able, scalable non-volatile main memory technologies that provide 
“byte-addressable” storage that survives power outages. With the 

arrival of Intel’s Optane DC Persistent Memory Module, we can start to 
understand the real capabilities and characteristics of these memories and 
start designing systems to fully leverage them. We experimented with an 
Intel system complete with Optane and have learned how to get the most 
 performance out of this new technology. Our testing has helped us under-
stand the hidden complexities of Intel’s new devices.

Optane Memory Architecture
Intel’s Optane DC Persistent Memory Module (which we refer to as the Optane DIMM) is the 
first scalable, commercially available non-volatile DIMM (NVDIMM). Compared to existing 
storage devices, including Optane SSDs that connect to an external interface such as PCIe, 
the Optane DIMM has lower latency, higher read bandwidth, and presents a memory address-
based interface. Compared to DRAM, it has higher density and persistence. 

Like traditional DRAM DIMMs, the Optane DIMM sits on the memory bus, and connects to 
the processor’s integrated memory controller (iMC) (Figure 1a). Intel’s Cascade Lake proces-
sors are the first CPUs to support the Optane DIMM. Each processor die has two iMCs, and 
each iMC supports three channels. Therefore, in total, a processor die can support six Optane 
DIMMs across its two iMCs.

To ensure persistence, the iMC sits within the asynchronous DRAM refresh (ADR) domain—
Intel’s ADR feature ensures that CPU stores that reach the ADR domain will survive a power 
failure (i.e., will be flushed to the NVDIMM within the hold-up time) [4]. The iMC maintains 
read and write pending queues (RPQs and WPQs) for each of the Optane DIMMs (Figure 1b), 
and the ADR domain includes WPQs. Once data reaches the WPQs, the ADR ensures that it 
will survive power loss. The ADR domain does not include the processor caches, so stores are 
only persistent once they reach the WPQs. Stores are pulled from the WPQ and sent to the 
Optane DIMM in cache-line (64-byte) granularity.

Memory accesses to the NVDIMM (Figure 1b) arrive first at the on-DIMM controller (the 
Optane controller), which coordinates access to the Optane media. Similar to SSDs, the 
Optane DIMM performs an internal address translation and maintains an address indirec-
tion table (AIT) for this translation [1].

After address translation, the actual access to storage media occurs. As the Optane physi-
cal media access granularity is 256 bytes (an Optane block), the Optane controller translates 
smaller requests into larger 256-byte accesses, causing write amplification where small 
stores become read-modify-write operations. The Optane controller has a small buffer (the 
Optane buffer) to merge adjacent writes.
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Operation Modes
Optane DIMMs can operate in two modes (Figure 1a): Memory 
and App Direct.

Memory mode uses Optane to expand main memory capacity 
without persistence. It combines an Optane DIMM with a con-
ventional DRAM DIMM that serves as a cache for the NVDIMM. 
The CPU and operating system simply see the Optane DIMM as a 
larger (volatile) portion of main memory.

App Direct mode provides persistence and does not use a DRAM 
cache. The Optane DIMM appears as a separate, persistent 
memory device.

In both modes, Optane memory can be (optionally) interleaved 
across channels and DIMMs (Figure 1c). On our platform, the 
only supported interleaving size is 4 KB. With six DIMMs, an 
access larger than 24 KB will access all DIMMs.

Instruction Support
In App Direct mode, applications and file systems can access the 
Optane DIMMs with load and store instructions.  Applications 
modify the Optane DIMM’s content using store instructions, and 
those stores will eventually become persistent. The cache hier-
archy, however, can reorder stores, making recovery challeng-
ing [3]. The current Intel ISA provides clflush and clflushopt 
instructions to f lush cache lines back to memory, and clwb  
can write back (but not evict) cache lines. Alternatively, non-
temporal stores (ntstore) bypass the caches and write directly 
to memory. All these instructions are non-blocking, so a program 
must issue an sfence to ensure that a previous flush, write back, 
or non-temporal store is complete and persistent.

Performance Characterization
We find that Optane’s performance characteristics are surpris-
ing in many ways, and more complex than the common assump-
tion that Optane behaves like slightly slower DRAM.

LATTester
Characterizing Optane memory is challenging for two reasons. 
First, the underlying technology has major differences from 
DRAM but publicly available documentation is scarce. Secondly, 
existing tools measure memory performance primarily as a func-
tion of locality and access size, but we have found that Optane 
performance also depends strongly on memory interleaving and 
concurrency. 

Consequently, we built a microbenchmark toolkit, LATTester. 
To accurately measure the CPU cycle count and minimize the 
impact from the virtual memory system, LATTester runs as a 
dummy file system in the kernel and accesses pre-populated  
(i.e., no page-faults) kernel virtual addresses. LATTester also 
pins the kernel threads to fixed CPU cores and disables IRQ and 
cache prefetcher. In addition to latency and bandwidth measure-
ments, LATTester collects a large set of hardware counters from 
the CPU and NVDIMM.

Our investigation of Optane memory behavior proceeded in two 
phases. First, we performed a broad, systematic “sweep” over 
Optane configuration parameters, including access patterns 
(random vs. sequential), operations (loads, stores, fences, etc.), 
access size, stride size, power budget, NUMA configuration, and 
interleaving. Using this data, we designed targeted experiments 
to investigate anomalies. Across all our tests, we collected over 
ten thousand data points. The program and data set are available 
at https://github.com/NVSL/OptaneStudy, while the analysis 
was published as conference proceedings [5] and a longer techni-
cal report [2].

System Description
We performed our experiments on a dual-socket evaluation 
platform provided by Intel Corporation. The CPUs are 24-core 
Cascade Lake engineering samples with a similar spec as the 
previous-generation Xeon Platinum 8160. Each CPU has two 
iMCs and six memory channels (three channels per iMC). A 
32-GB Micron DDR4 DIMM and a 256-GB Intel Optane DIMM 

Figure 1: Overview of (a) Optane platform, (b) Optane DIMM, and (c) how Optane memories interleave. Optane DIMMs can either be a volatile far 
memory with a DRAM cache (Memory mode) or persistent memory (App Direct mode).
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are attached to each of the memory channels. Thus the system 
has 384 GB (2 socket × 6 channel × 32 GB/DIMM) of DRAM, and 
3 TB (2 socket × 6 channel × 256 GB/DIMM) of Optane memory. 
Our machine runs Fedora 27 with kernel version 4.13.0 built 
from source.

Experimental Configurations
As the Optane DIMM is both persistent and byte-addressable, 
it can fill the role of either a main memory device (i.e., replacing 
DRAM) or a persistent device (i.e., replacing disk). In our paper, 
we focus on the persistent usage.

Our baseline (referred to as Optane) exposes six Optane DIMMs 
from the same socket as a single interleaved namespace (leav-
ing the other CPU socket idle). In our experiments, we used local 
accesses (i.e., from the same NUMA node) as the baseline to 
compare with other configurations, such as access to Optane 
memory on the remote socket (Optane-Remote) or DRAM on the 
local or remote socket (DRAM and DRAM-Remote). To better 
understand the raw performance of Optane memory without 
interleaving, we also create a namespace consisting of a single 
Optane DIMM and denote it as Optane-NI.

Typical Latency 
Read and write latencies are key memory technology parameters. 
We measured read latency by timing the average latency for indi-
vidual 8-byte load instructions to sequential and random memory 
addresses. To eliminate caching and queueing effects, we empty 
the CPU pipeline and issue a memory fence (mfence) between 
measurements (mfence serves the purpose of serialization for 
reading timestamps). For writes, we load the cache line into the 
cache and then measure the latency of one of two instruction 
sequences: a 64-bit store, a clwb, and an mfence;  or an ntstore 
and an mfence.

Our results (Figure 2) show the read latency as seen by software 
for Optane is 2×–3× higher than DRAM. We believe most of this 
difference is due to Optane’s longer media latency. Optane mem-
ory is also more pattern-dependent than DRAM. The random-
vs-sequential gap is 20% for DRAM but 80% for Optane memory, 
and this gap is a consequence of the Optane buffer. For stores, the 
instructions commit once the data reaches the ADR at the iMC, 
so both DRAM and Optane show a similar latency.

Bandwidth 
Detailed bandwidth measurements are useful to application 
designers as they provide insight into how a memory technol-
ogy will impact overall system throughput. Figure 3 shows the 
bandwidth achieved at different thread counts for sequential 
accesses with 256-byte access granularity. We show loads and 

stores (Write(ntstore)), as well as cached writes with flushes 
(Write(clwb)). All experiments use AVX-512 instructions. The 
left-most graph plots performance for interleaved DRAM, 
while the center and right-most graphs plot performance for 
interleaved and non-interleaved Optane. In the non-interleaved 
measurements all accesses hit a single DIMM.

Figure 4 shows how performance varies with access size. The 
graphs plot aggregate bandwidth for random accesses of a given 
size. We use the best-performing thread count for each curve 
(given as “<load thread count> / <ntstore thread count> / <store 
+ clwb thread count>” in the figure). The data shows that DRAM 
bandwidth is both higher than Optane and scales predictably 
(and monotonically) with thread count until it saturates the 
DRAM’s bandwidth, which is mostly independent of access size.

The results for Optane are wildly different. First, for a single 
DIMM, the maximal read bandwidth is 2.9× the maximal write 
bandwidth (6.6 GB/s and 2.3 GB/s, respectively), where DRAM 
has a smaller gap (1.3×) between read and write bandwidth. 
Second, with the exception of interleaved reads, Optane perfor-
mance is non-monotonic with increasing thread count. For the 
non-interleaved (i.e., single-DIMM) cases, performance peaks 
at between one and four threads and then tails off. Interleaving 
pushes the peak to 12 threads for store + clwb. Third, Optane 
bandwidth for random accesses under 256 bytes is poor.

Interleaving (which spreads accesses across all six local DIMMs) 
adds further complexity: Figure 3 (center) and Figure 4 (center) 
measure bandwidth across six interleaved NVDIMMs. Inter-
leaving improves peak read and write bandwidth by 5.8× and 
5.6×, respectively. These speedups match the number of DIMMs 
in the system and highlight the per-DIMM bandwidth limita-
tions of Optane. The most striking feature of the graph is a dip in 
performance at 4 KB—this dip is an emergent effect caused by 
contention at the iMC, and it is maximized when threads perform 
random accesses close to the interleaving size. We return to this 
phenomenon later.

Figure 2: Typical latency. Random and sequential read latency, as well as 
write latency with clwb and ntstore instructions. Error bars show one 
standard deviation.

http://www.usenix.org
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Best Practices for Optane DIMMs 
There are many differences between Optane and conventional 
storage and memory. These differences mean that existing intu-
itions about optimizing software do not apply directly to Optane. 
We distill our experiments into a set of four principles for build-
ing Optane-based systems.

1. Avoid random accesses smaller than 256 bytes.

2. Use non-temporal stores when possible for large transfers,  
and control cache evictions.

3. Limit the number of concurrent threads accessing an Optane 
DIMM.

4. Avoid NUMA accesses (especially read-modify-write 
  sequences).

Avoid Small Random Accesses 
Internally, Optane DIMMs update Optane contents at a 256-byte 
granularity. This granularity means that smaller updates are 
inefficient since they incur write amplification. The less locality 
the accesses exhibit, the more severe the performance impact.

To characterize the impact of small stores, we performed two 
experiments. First, we quantify the inefficiency of small stores 
using a metric we have found useful in our study of Optane 
DIMMs. The Effective Write Ratio (EWR) is the ratio of bytes 
issued by the iMC divided by the number of bytes actually writ-
ten to the Optane media (as measured by the DIMM’s hardware 

counters). EWR is the inverse of write amplification. EWR 
values below one indicate the Optane DIMM is operating ineffi-
ciently since it is writing more data internally than the applica-
tion requested. Figure 5 plots the strong correlation between 
EWR and device bandwidth for a single DIMM for all measure-
ments in our sweep of Optane performance. Maximizing EWR  
is a good way to maximize bandwidth.

Notably, 256-byte updates are EWR efficient, even though the 
iMC breaks them into 64 byte (cache-line sized) accesses to the 
DIMM—the Optane buffer is responsible for buffering and com-
bining 64-byte accesses into 256-byte internal writes. As a con-
sequence, Optane DIMMs can efficiently handle small stores, if 
they exhibit sufficient locality. To understand how much locality 
is sufficient, we crafted an experiment to measure the size of the 
Optane buffer. First, we allocate a contiguous region of N Optane 
blocks. During each “round” of the experiment, we first update 
the first half (128 bytes) of each Optane block. Then we update 
the second half of each Optane block. We measured the EWR for 
each round. Figure 6 shows the results. Below N = 64 (a region 
size of 16 KB), the EWR is near unity, suggesting the accesses to 
the second halves are hitting in the Optane buffer. Above 16 KB, 
write amplification jumps, indicating a sharp rise in the miss 
rate, implying the Optane buffer is approximately 16 KB in size. 
Together these results provide specific guidance for maximizing 
Optane store efficiency: avoid small stores or, alternatively, limit 
the working set to 16 KB per Optane DIMM.

Figure 3: Bandwidth vs. thread count. Maximal bandwidth as thread count increases on local DRAM, non-interleaved, and interleaved Optane memory. All 
threads use a 256-byte access size.

Figure 4: Bandwidth over access size. Maximal bandwidth over different access sizes on local DRAM, interleaved, and non-interleaved Optane memory. 
Graph titles include the number of threads used in each experiment (Read/Write (ntstore) / Write (clwb)).

http://www.usenix.org
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Use Non-Temporal Stores for Large Writes
When writing to persistent memory, programmers have several 
options, each with performance implications. After a regular 
store, programmers can either evict (clflush, clflushopt) or 
write back (clwb) the cache line. Alternatively, an ntstore writes 
directly to memory, bypassing the cache hierarchy. For all these 
instructions, a subsequent sfence ensures their effects are 
persistent.

In Figure 7, we compare bandwidth (left) and latency (right) for 
sequential accesses using AVX-512 stores with three different 
instruction sequences: ntstore, store + clwb, and store all 
followed by a sfence. Our bandwidth test used six threads since 
it gives good results for all instructions. The data show that 
flushing after each 64-byte store improves the bandwidth for 
accesses larger than 64 bytes. Letting the cache naturally evict 
cache lines adds nondeterminism to the stream that reaches the 
Optane DIMM, whereas proactively cleaning the cache ensures 
that accesses remain sequential. The EWR correlates: adding 
flushes increases EWR from 0.26 to 0.98.

The data also shows that non-temporal stores have lower latency 
for accesses over 512 bytes, and the highest bandwidth for 
accesses over 256 bytes. Here, the performance is due to the fact 
that a store must load the cache line into the CPU’s local cache 
before execution, thereby using up some of the Optane DIMMs 
bandwidth. As ntstores bypass the cache, they avoid this extra-
neous read.

Limit the Number of Concurrent Threads Accessing  
an Optane DIMM 
Systems should minimize the number of threads targeting a 
single DIMM simultaneously. We have identified two distinct 
mechanisms that contribute to this effect.

Contention in the Optane Buffer
Contention among threads for space in the Optane buffer will 
lead to increased evictions, driving down EWR. For example, 
using eight threads issuing sequential non-temporal stores 

achieves an EWR of 0.62 and 69% bandwidth compared to a 
single thread, which has an EWR of 0.98. Figure 3 (right) shows 
this contention effect in action.

Contention in the iMC
The limited queue capacity in the iMC also hurts performance 
when multiple cores target a single DIMM. On our platform, 
the WPQ buffer queues up to 256-byte data issued from a single 
thread. Since Optane DIMMs are slow, they drain the WPQ 
slowly, which leads to head-of-line blocking effects. 

Figure 4 (center) shows an example of this phenomenon: Optane 
bandwidth falls drastically when doing random 4 KB accesses 
across interleaved Optane DIMMs. Due to the random access 
pattern, periodically all threads will end up colliding on a single 
DIMM, starving some threads. Thread starvation occurs more 
often as the access size grows, reaching maximum degradation 
at the interleaving size (4 KB). For accesses larger than the inter-
leaving size, each core starts spreading their accesses across 
multiple DIMMs, evening out the load. The write data also show 
small peaks at 24 KB and 48 KB where accesses are perfectly 
distributed across the six DIMMs. This degradation effect will 
occur whenever 4 KB accesses are distributed nonuniformly 
across the DIMMs.

Avoid Mixed or Multithreaded Accesses to Remote 
NUMA Nodes
NUMA effects for Optane are much larger than for DRAM, so 
designers should avoid cross-socket traffic. The cost is especially 
steep for accesses that mix loads and stores or include multiple 
threads. Between local and remote Optane memory, the read 
latency difference is 1.79× (sequential) and 1.20× (random). For 
writes, remote Optane’s latency is 2.53× (ntstore) and 1.68× 
higher compared to local. For bandwidth, remote Optane can 
achieve 59.2% and 61.7% of local read and write bandwidth at 
optimal thread count (16 for local read, 10 for remote read, and 4 
for local and remote write).

Figure 6: Optane buffer capacity. The Optane DIMM can use the Optane 
buffer to coalesce writes spread across 16 KB.

Figure 5: Relationship between EWR and throughput on a single DIMM. 
Each dot represents an experiment with different access size, thread count, 
and power budget configurations. Note the correlation between the metrics.
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The performance degradation ratio above is similar to remote 
DRAM to local DRAM. However, the bandwidth of Optane 
memory is drastically degraded when either the thread count 
increases or the workload is read/write mixed. Based on the 
results from our systematic sweep, the bandwidth gap between 
local and remote Optane memory for the same workload can be 
over 30×, while the gap between local and remote DRAM is, at 
max, only 3.3×.

Conclusion
Our guidelines provide a starting point for building and tuning 
Optane-based systems. By necessity, they reflect the idiosyn-
crasies of a particular implementation of a particular persistent 
memory technology, and it is natural to question how  applicable 
the guidelines will be both to other memory technologies and to 
future versions of Intel’s Optane memory. Ultimately, it is unclear 
how persistent memory will evolve. Several of our guidelines 
are the direct product of architectural characteristics of the 
current Optane incarnation. The size of the Optane buffer and 
iMC’s WPQ might change in future implementations, which 
would limit the importance of minimizing concurrent threads 
and reduce the importance of the write granularity. However, 
expanding these structures would increase the energy reserves 
required to drain the ADR during a power failure. 

The broadest contribution of our analysis and guidelines is that 
they provide a road map to potential performance problems 
that might arise in future persistent memories and the systems 
that use them. Our analysis shows how and why issues like inter-
leaving, buffering, instruction choice, concurrency, and cross-
core interference can affect performance. If future technologies 
are not subject to precisely the same performance pathologies as 
Optane, they may be subject to similar ones.
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Making logical copies, or clones, of files and directories is critical to 
many real-world applications and workflows, including backups, 
virtual machines, and containers. In this article, we explore the 

performance characteristics of an ideal cloning implementation; we show 
why copy-on-write induces a trade-off that prevents existing systems from 
achieving the ideal constellation of performance features; and we show how to 
achieve strong cloning performance in an experimental file system, BetrFS.

Many real-world workf lows rely on efficiently copying files and directories. Backup and 
snapshot utilities need to make copies of the entire file system on a regular schedule. Virtual-
machine servers create new virtual machine images by copying a pristine disk image. More 
recently, container infrastructures like Docker make heavy use of file and directory copying 
to package and deploy applications [5], and new container creation typically begins by making 
a copy of a reference directory tree.

Duplicating large objects is so prevalent that many file systems support logical copies of files 
or directory trees without making full physical copies. A physical copy is one where data 
blocks are duplicated, whereas a logical copy is one where data blocks may be shared. We call 
writable, logical copies clones.

Writes to a logical copy should not modify the original file and vice versa. A classic way to 
maintain the content of a file is copy-on-write (CoW), where shared blocks are physically 
copied as soon as they are modified. Initially, this approach is also space efficient because 
blocks or files need not be rewritten until they are modified.

Many logical volume managers support CoW snapshots, and some file systems support CoW 
file or directory clones via cp --reflink or other implementation-specific interfaces. Many 
implementations have functional limitations, such as only cloning files, special directories 
marked as “subvolumes,” or read-only clones. Nonetheless, we will refer to all these features 
as cloning.

Performance goal: nimble clones. An ideal clone implementation will have strong perfor-
mance along several dimensions. In particular, clones should:

 3 be fast to create;
 3 have excellent read locality, so that logically related files can be read at near-disk bandwidth, 
even after modification;
 3 have fast writes, both to the original and the clone; and
 3 conserve space, in that the write amplification and disk footprint are as small as possible, 
even after updates to the original or to the clone.

We call a clone with this constellation of performance features nimble.

Production clone implementations are not nimble. Nimble clones are the performance 
ideal, but CoW cloning does not yield nimble performance. This may seem surprising, espe-
cially given that CoW has been the de facto way to implement clones for decades.
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The Copy-on-Write Granularity Problem, or Why It’s Hard to Achieve 
Nimble Clones
We begin by describing a simple implementation of CoW cloning in an inode-based file sys-
tem. Although details will vary depending on the specifics of the file system, all existing pro-
duction file systems share the CoW granularity trade-off illustrated in our simplified design 
below. This trade-off prevents these file systems from implementing nimble clones.

To clone a file from a to b, the file system can set up b’s inode to point to all the same data 
blocks as a’s inode, and both inodes are modified to mark all blocks as copy-on-write. With 
this approach, clones are cheap to create. In fact, if the file system uses extent trees to manage 
file blocks, it can mark entire subtrees of the extent tree as copy-on-write. This means that, to 
create the clone, the file system needs only to set up the old and new inodes to point to the same 
extent tree using copy-on-write.

This approach is also space efficient at first and preserves the locality of blocks within the file. 
If the blocks of the original file were laid out sequentially, then so are the clone’s, so sequential 
reads from both will be fast. Note that this approach does not maintain inter-file locality: the 
blocks of clone b may be quite distant from the blocks of other files in b’s directory. 

The challenge is to maintain space efficiency and good read locality as the files are edited.

Whenever the file system performs a write to a shared block of either file, the file system 
must allocate a new block and redirect the modified file’s inode to point to the new data block.

This simple but representative implementation of CoW exhibits a trade-off among space 
conservation, read locality, and write throughput. The main tuning parameter for CoW is 
the copy granularity. Copy granularity is the size of the data block that is copied when a file is 
modified. At one extreme, the entire file can be copied, and at the other, the system might only 
copy a sector on the device—typically 512 bytes or 4 KiB.

File-granularity CoW can have poor write throughput and space efficiency. If one makes a 
small change to a large file, this small write will incur the cost of copying the entire file and 
miss a significant opportunity to share a large portion of identical contents. File-granularity 
CoW favors read locality, but even this goal isn’t quite met: if a small file is modified and cop-
ied, its placement in storage can cause inter-file fragmentation and, thus, low read through-
put for some workloads.

At the other extreme, fine-granularity CoW, say at block granularity, will struggle to conserve 
locality. Over time, the blocks of a file can scatter across the storage device as they are allo-
cated 4 KiB at a time. For example, consider a large file that is initially placed in a physically 
contiguous run of blocks, cloned, and then a series of small, random writes are issued to both 
files. As soon as one block in the middle of this run is modified, the block must be rewritten out-
of-place. This block is now far from its neighbors in either the original, the clone, or both. Many 
file systems have heuristics for placing logically related blocks near each other at allocation 
time, but, in practice, this is not enough to prevent aging over the lifetime of the file system [2].

Put differently, small, random writes force simple CoW schemes either (1) to choose perfor-
mance at write time and space efficiency (with fine-grained CoW) at the cost of read per-
formance in the future, or (2) to choose read locality in the future (with coarse-grained CoW) 
at a higher write and space overhead.

BetrFS overcomes this trade-off by (1) aggregating small random application-level writes 
into large sequential disk writes and (2) using large CoW blocks. By aggregating small 
random writes, BetrFS ensures that random writes are fast and space efficient. By using 
large CoW blocks, it ensures that locality is maintained even as sharing is broken. See section 
“Nimble Clones in BetrFS” for details.
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Cloning Performance in Real File Systems
In this section, we use a microbenchmark to demonstrate the 
CoW-granularity trade-off in real file systems, and to show that 
BetrFS overcomes this trade-off. We then demonstrate how 
nimble clones can be used to accelerate real applications, such  
as container instantiation.

Dookubench: A Cloning Microbenchmark
To demonstrate the challenges to cloning performance in pro-
duction file systems, we wrote a cloning microbenchmark, which 
we call Dookubench. Like its Star Wars namesake, it makes 
adversarial use of cloning. The benchmark begins by creating a 
directory hierarchy with eight directories, each containing eight 
4-MiB files. Dookubench then proceeds in rounds. In each round, 
it creates a new clone of the original directory hierarchy and 
measures the clone operation’s latency. It then writes 16 bytes to 
a 4 KiB-aligned offset in each newly cloned file—followed by a 
sync—in order to measure the impact of copy-on-write on writes. 
The benchmark then clears the file system caches and greps the 
newly copied directory to measure cloning’s impact on read time. 
Finally, the benchmark records the change in space consumption 
for the whole file system at each step.

We use Dookubench to evaluate cloning performance in Btrfs, 
XFS, ZFS, and BetrFS. All experimental results were collected 
on a Dell Optiplex 790 with a 4-core 3.40 GHz Intel Core i7 CPU, 
4 GiB RAM, and a 500 GB, 7200 RPM SATA disk, with a 4096-

byte block size. The system runs 64-bit Ubuntu 14.04.5. Note 
that only BetrFS supports clones of arbitrary files and directo-
ries. We deal with the limitations of other file systems as follows. 
In Btrfs and XFS, we copy the directory structure in each round 
and use cp --reflink to create clones of all the files. For ZFS, we 
configure the root of the benchmark directory as a sub-volume, 
and use ZFS’s volume snapshotting functionality to perform 
the clone.

The write-granularity trade-off is illustrated clearly in Table 1 
and Figure 1c. XFS uses relatively little space per round, suggest-
ing it is using a small CoW block size. As would be expected of 
a CoW system with a small block size, Figure 1c shows that the 
amount of time required to scan through all the contents of the 
cloned directory degrades with each round of the experiment—
after six clones, the grep time is nearly doubled. There appears to 
be some work that temporarily improves locality, but the degra-
dation trend resumes after more iterations (not shown). 

The Btrfs grep performance is much flatter, but this comes at the 
cost of much larger space usage per clone—Btrfs used an average 
of 176 KiB per clone, compared to 16.3 KiB for BetrFS and 32.6 
KiB for XFS. Furthermore, its performance is not completely 
flat: Btrfs degrades by about 20% during the experiment. After 
17 iterations (not presented for brevity), Btrfs read performance 
degrades by 50% with no indication of leveling off. ZFS is both 
space-inefficient, using 250 KiB per clone, and shows more 
than a 2× degradation in scan performance throughout the 
experiment.

Only BetrFS achieves low space per clone while maintaining 
locality, as shown by its flat performance on the grep benchmark. 
BetrFS uses 16 KiB per clone—half the space of the next-most-
space-efficient file system (XFS)—and its read performance is 
competitive with the much less space-efficient Btrfs.

BetrFS excels at clone creation (Figure 1a) and small random 
writes to clones (Figure 1b). BetrFS’s cloning time is around 60 
ms, which is 33% faster than the closest data point from another 

Table 1: Average change in space usage after each Dookubench round 
(a directory clone followed by small, 4 KiB-aligned modifications to each 
newly cloned file) 

Figure 1: Latency to clone, write, and read as a function of the number of times a directory tree has been cloned. Lower is better for all measures.

FS ∆ KiB/round

Btrfs 176

XFS    32.6

ZFS 250

BetrFS    16.3
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file system (the first clone on XFS) and an order of magnitude 
faster than the worst case for the competition. Furthermore, 
BetrFS ’s clone performance is essentially flat throughout the 
experiment. ZFS also has flat volume-cloning performance, 
but not as flat as BetrFS. Both Btrfs and XFS file-level clone 
latencies, on the other hand, degrade as a function of the number 
of prior clones; after eight iterations, clone latency is roughly 
doubled.

In terms of write costs, the cost to write to a cloned file or volume 
is flat for all file systems, although BetrFS can ingest writes 
8–10× faster. This derives from BetrFS’s write-optimized design.

In total, these results indicate that BetrFS supports a seemingly 
paradoxical combination of performance features: clones are fast 
and space-efficient, and random writes are fast, yet preserve good 
locality for sequential reads. No other file system in our bench-
marks demonstrated this combination of performance strengths, 
and some also showed significant performance declines with 
each additional clone.

Cloning Containers
Linux Containers (LXC) is one of several popular container 
infrastructures that has adopted a number of storage back ends 
in order to optimize container creation. The default back end 
(dir) does an rsync of the component directories into a single, 
chroot-style working directory. The ZFS and Btrfs back ends 
use subvolumes and clones to optimize this process. We wrote a 
BetrFS back end using directory cloning.

Table 2 shows the latency of cloning a default Ubuntu 14.04 con-
tainer using each back end. Container instantiation using clones 
on BetrFS is 3–4× faster than the other cloning back ends, and 
up to two orders of magnitude faster than the rsync-based back 
ends. Interestingly, BetrFS is also the fastest file system using 
the rsync-based back end, beating the next fastest file system 
(Btrfs) by more than 40%.

Nimble Clones in BetrFS
This section overviews the four key techniques BetrFS uses to 
realize nimble clones. The interested reader can find a detailed 
explanation, as well as related work, in our recent FAST ’20  
paper [4].

BetrFS [1, 3] is an in-kernel, local file system built on a key-value 
store (KVstore) substrate. A BetrFS instance keeps two KVstores. 
The metadata KVstore maps full paths (relative to the mount-
point, e.g., /foo/bar/baz) to struct stat structures, and the data 
KVstore maps {full path + block number} keys to 4 KiB blocks.

BetrFS is named for its KVstore data structure, the Bε-tree [1]. 
A Bε-tree is a write-optimized KVstore in the same family of 
data structures as LSM-trees (Log-Structured Merge-tree). 
Like B-tree variants, Bε-trees store key-value pairs in leaves. A 

key feature of the Bε-tree is that interior nodes buffer pending 
mutations to the leaf contents, encoded as messages. Messages 
are inserted into the root of the tree, and, when an interior node’s 
buffer fills with messages, messages are flushed in large batches 
to one or more children’s buffers. Eventually, messages reach the 
leaves and the updates are applied. As a consequence, random 
updates are inexpensive—the Bε-tree effectively logs updates at 
each node. Note that these buffers are bounded in size to a few 
MiB, and buffers are never allowed to grow so large that they 
suffer from common pathologies in a fully log-structured file sys-
tem. And since updates move down the tree in batches, the I/O 
savings grow with the batch size.

A key change needed to share data at rest is to convert the Bε-tree 
into a Bε-Directed Acyclic Graph (DAG). Nodes in the Bε-DAG 
can be shared among multiple paths from the root to a leaf; shar-
ing a sub-graph of the Bε-DAG yields space-efficient clones. So 
far, this is a standard approach to copy-on-write. A nimble design 
is realized with four additional techniques.

Technique 1: Write Optimization. In order to avoid the granu-
larity trade-off of CoW, we use buffers in a Bε-DAG to accumu-
late small writes to a cloned file or directory. The key feature of 
write-optimization that contributes to nimble clones is “pinning” 
messages above a shared node in the Bε-DAG. For example, if we 
clone a large file foo to bar and make a small modification to bar, 
that change is encoded in a message and written into the root of 
the tree, with destination bar. However, this message will not be 
flushed into a shared node in the Bε-DAG, or else it would “leak” 
the change into the original file foo. Holding a small “delta” in the 
parent node is more space efficient than making a full copy for 
a small change, or even copying one leaf node. Instead, we wait 
until enough changes for foo or bar accumulate so that little of 
the remaining content is shared, and then we break that sharing 
by creating two unique, unshared copies of a node and repacking 
the contents, potentially recovering locality. We call this tech-
nique Copy-on-Abundant-Write (CAW).

Back End File System lxc-clone (s)

Dir

ext4 19.514

Btrfs 14.822

ZFS 16.194

XFS 55.104

NILFS2 26.622

BetrFS  8.818 

ZFS ZFS  0.478

Btrfs Btrfs  0.396

BetrFS BetrFS  0.118

Table 2: Latency of cloning a container
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Technique 2: Full-Path Indices. BetrFS maintains inter-file 
locality and supports arbitrary file and directory clones by 
using full-path indexing. BetrFS indexes all files and blocks by 
their full path, and paths are sorted in DFS (depth first search) 
traversal order. This means that all the paths for a sub-tree of 
the directory hierarchy are contiguous in the key space. As a 
result, a DFS traversal of the directory hierarchy will correspond 
to a linear scan of the key-space, which will translate into large 
sequential I/Os, since the BetrFS Bε-tree uses 4 MiB nodes.

Furthermore, this means that cloning an entire sub-tree of the 
directory hierarchy corresponds to cloning a contiguous range  
of keys, all of which have a common prefix.

Technique 3: Lifting. As stated so far, key-value pairs encode 
full pathnames. So nodes or sub-graphs at rest will be shared 
but have incorrect, full-path keys along one of the shared paths. 
In our example above, nodes storing the key-value pairs backing 
bar will initially have foo keys. We observe that cloning a file or 
directory from a to b is essentially duplicating all the key-value 
pairs that start with a to new key-value pairs in which a has been 
replaced by b in each key.

Lifting removes a common prefix from the keys of a node and 
instead stores this prefix along with the pointer and pivot keys 
in the parent. For instance, if an entire Bε-DAG leaf stores key-
value pairs under directory /home/user, this common prefix 
would be removed from each key-value pair in that leaf, and 
instead the prefix is stored once in the parent, retaining only 
“short” pathnames in the child. With lifting, two parents with 
different directory prefixes can share a node, copy-on-write, and 
queries dynamically construct the full-path key based on the 
path taken through the graph to reach a given node.

Technique 4: Lazy Updates. In order to keep latency of a copy 
low, we must batch and amortize the cost of updates. First, we 
create GOTO messages that edit the Bε-DAG itself as they are 
flushed. This is new; previously, all write-optimized dictionaries 
only batched changes to the data, not the data structure itself. 
Specifically, a GOTO message encodes a pointer that adds an 
edge to the graph, redirecting searches for a cloned key range 
to the source of the copy. These messages are flushed down the 
graph in a batch, and eventually become regular edges once they 
reach a target height.

The discussion to this point assumes that a cloned file or direc-
tory happens to be within a proper sub-graph in the Bε-DAG; this 
may not be the case, as nodes in a Bε-DAG do not have the same 
structure as the file system directory tree. Nodes in a Bε-DAG 
pack as many keys (in key order) as needed to reach a target node 
size; thus a node may contain multiple small files packed into a 
4 MiB node or a single 4 MiB chunk of a large file. Rather than 
immediately removing data outside of the cloned range, and 

making a proper sub-graph with the source prefix removed, we 
instead add additional bookkeeping to delay these edits.

Specifically, we augment lifted pointers with translation prefixes, 
which can specify both a prefix substitution for data at rest that 
has not already been handled by lifting and, implicitly, a range of 
keys in a child to ignore. In the example of cloning foo, the root 
of the sub-graph storing foo may also include keys for fii and 
fuu; a filter on the path for bar would specify that any query that 
follows this path should ignore keys without prefix foo. Similarly, 
if the sub-graph for foo has not yet lifted foo out of the children, a 
translation prefix along the path to bar would indicate that, when 
looking in the foo sub-graph, any keys that start with foo should 
be translated to have prefix bar.

Conclusion
This article demonstrates that a variety of file systems opera-
tions are instances of a clone operation, and the available imple-
mentations share the same copy-on-write-induced trade-off. 
This trade-off can be avoided by using write-optimization to 
decouple writes from copies, rendering a cloning implementa-
tion in BetrFS with the nimble performance properties: efficient 
clones, efficient reads, efficient writes, and space efficiency. The 
latency of the clone itself, as well as subsequent writes, are kept 
low by inserting a message into the tree. By making the changes 
in large batches, BetrFS conserves space. As data is copied on 
abundant writes, read locality is preserved and recovered by 
using full-path indexing to repack logically contiguous data into 
large, physically contiguous nodes. This unlocks improvements 
for real applications, such as a 3–4× improvement in LXC con-
tainer cloning time compared to specialized back ends.
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Interview with Dick Sites
R I K  F A R R O W

Part of editing ;login: means reading the near-final page proofs. The 
authors have had their chance to correct mistakes that appeared after 
the production pipeline, and so I have a chance to read each article 

one last time prior to publication. While reading Dick Sites’s article about his 
kernel tracing tool [1] and his bio, I decided I had some more questions about 
his article.

I also got to ask Dick about things he’s done in his long career. In a three-hour interview at the 
Computer History Museum [3], Dick says that the summary of places he’s worked spans seven 
pages. He started college (MIT) early and immediately started working as a programmer for 
IBM. I wasn’t so much interested in Dick’s early years, although they are fascinating, as I was 
in other more recent topics, things we covered by phone.

Rik Farrow: As I read your article [1] again, I wondered how you came up with these examples. 
Were they the results of prior work, or perhaps a lot of experimentation?

Dick Sites: I have been working on and teaching about KUtrace for several years now, and 
looking at the output from literally hundreds of traces. 

As noted in the references to my article [1], Lars Nyland (Nvidia) did the initial scheduler 
comparison in the class I was teaching at the University of North Carolina in the fall of 2019.  
I redid it with a simpler program for this article.

Too-early mwait shows up in almost all Linux traces on Intel x86, which uses Intel-specific 
idle loop code, versus the less-aggressive generic code used for AMD chips. The idle loop 
is a kernel-mode process that does nothing but tries to do it slowly and with little power 
consumption.

I had seen unusually slow  IPC (instructions per cycle) now and then over the last couple of 
years. I added IPC tracking to KUtrace in late 2017, but I only added the frequency tracing in 
2020, which immediately revealed portions of code executing 5× too slowly. That explained 
the 5× drops in instructions per (constant) cycle, which really means instructions per 1/3.9 
nsec on a 3.9 GHz chip.

The original 1972 Cray-1 cycle counter incremented once per CPU cycle and could be read 
in one cycle. I carried this idea into the first DEC Alpha chip in 1992, and it appeared across 
the industry by 1994. The 2001 introduction of Intel SpeedStep meant that the CPU clock 
frequency varied, creating problems for code that used the cycle counter to track elapsed 
time. Thus the so-called “constant TSC” was introduced in 2005 with a very simple imple-
mentation. A CPU clock is created by multiplying up some base clock frequency of say 100 
MHz. Multiplying by 39 gives a 3.9 GHz clock; multiplying by eight gives an 800 MHz clock. 
SpeedStep and follow-ons just vary the multiplier. To produce a constant TSC on a chip 
advertised as 3.9 GHz, the chip always increments the cycle counter by 39 at a 100 MHz rate, 
independent of the actual CPU clock multiplier. The same chip advertised as 3.6 GHz would 
always increment by 36.

Richard L. Sites is a semi-retired 
computer architect and software 
engineer. He received his PhD 
from Stanford University several 
decades ago. He was co-

architect of the DEC Alpha computers and then 
worked on performance analysis of software 
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to build better tools for careful, nondistorting 
observation of complex live real-time software, 
from datacenters to embedded processors in 
vehicles and elsewhere. dick.sites@gmail.com

Rik is the editor of ;login:.  
rik@usenix.org 
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Page faults occur all over the place, usually in bursts, as shown 
in the Cost of Malloc section [1]. Even a trace on a vehicle board 
showed page fault bursts that were a complete surprise since no 
paging is done. 

I am working on a paper to submit that focuses on explaining 
the 30× range of response times from 200 absolutely identical 
in-memory key-value lookup RPCs on a client-server pair of 
x86 desktops. Some of the underlying reasons for variation are 
the same as here, but the target audience is different—applica-
tion programmers in response-time-constrained client-server 
environments.

RF: These days, eBPF, or just BPF, seems to be the favorite tool 
for profiling kernel events. I suspect that you wouldn’t still be 
working on KUtrace unless each tool fulfilled different roles. 
BPF queries kernel structures, from what I understand, while 
KUtrace seems more focused on capturing timings of kernel 
events or system calls.

DS: It is all about speed. eBPF takes a bytecode program and 
interprets it to decide what to do and what to trace. Newer ver-
sions have a just-in-time compiler, but that is off by default in 
Linux. The JIT has been a source of security exposures.

eBPF is useful for tracking less common events or less common 
packets. The fact that the “F” means “filter” is the clue—it is not 
designed to track all packets or, in its extended form (the “e”), to 
track all of anything else. eBPF is not designed to track all system 
calls, interrupts, faults and context switches at full speed in a 
real-time environment. KUtrace is designed to do that and essen-
tially nothing else, taking about 40 CPU cycles per transition. 

The other clue is in your use of the word “profile”—a set of counts 
of how often something happened, with no timeline relating 
them. Profiles are useless for understanding variance between 
execution times of nominally similar tasks, because profiles 
simply average together all instances. That is what drove me to 
design KUtrace.

RF: You seem to be focused on Intel architectures? Have you 
looked at other CPU architectures?

DS: During March 2020 I ported KUtrace to the Raspberry Pi-4B 
and now have some interesting traces from the low end of the 
computing spectrum. I will be revising my book proposal, intro-
duction, and some content to change the emphasis from just 
datacenter software to the entire span of datacenter to embedded 
computing.

RF: The article [1] you wrote for the Summer 2020 issue and your 
ACM Queue article [2] both feature some amazing graphs. Does 
KUtrace include tools to help produce such useful visualizations 
from the output of KUtrace?

DS: Yes, all the diagrams are produced by the KUtrace post-
processing programs, posted on GitHub. The rawtoevent pro-
gram turns raw binary trace files into text, eventtospan turns 
transitions into timespans expressed as a long JSON file, and 
makeself packages that and a JavaScript template (4200 non-
comment lines) into an HTML/SVG file. The article diagrams 
are high-resolution screenshots or SVG. I have spent more devel-
opment time on the diagrams than on the raw tracing.

References
[1] R. L. Sites, “Anomalies in Linux Processor Use,” ;login:, vol. 
45, no. 2 (Summer 2020): https://www.usenix.org/system 
/files/login/articles/login_summer20_05_sites.pdf. 

[2] R. L. Sites, “Benchmarking ‘Hello World’,” ACM Queue, vol. 
16, no. 5 (November 2018): https://queue.acm.org/detail.cfm 
?id=3291278.

[3] “Oral History of Dick Sites”: https://www.youtube.com 
/watch?v=A47a6Nqa2aM.

https://www.usenix.org/system/files/login/articles/login_summer20_05_sites.pdf
https://www.usenix.org/system/files/login/articles/login_summer20_05_sites.pdf
https://queue.acm.org/detail.cfm?id=3291278
https://queue.acm.org/detail.cfm?id=3291278
https://www.youtube.com/watch?v=A47a6Nqa2aM
https://www.youtube.com/watch?v=A47a6Nqa2aM


20   FA L L 2020  VO L .  45 ,  N O.  3  www.usenix.org

SYSTEMS

Understanding Transparent Superpage 
Management
W E I X I  Z H U ,  A L A N  L .  C O X ,  A N D  S C O T T  R I X N E R

Superpages (2 MB pages) can reduce the address translation overhead 
for large-memory workloads in modern computer systems. We clearly 
outline the sequence of events in the life of a superpage and explore 

the design space of when and how to trigger and respond to those events. We 
provide a framework that enables better understanding of superpage manage-
ment and the trade-offs involved in different design decisions. Quicksilver, 
our novel superpage management system, is designed based on the insights 
obtained by using this framework to improve superpage management. 

The memory capacity of modern machines continues to expand at a rapid pace. There is 
also a growing class of “large memory” data-oriented applications—including in-memory 
databases, data analysis tools, and scientific computation—that can productively utilize all 
available memory resources. These large memory applications can process data at scales of 
terabytes or even petabytes, which cannot fit in the memory. Therefore, they either use out-
of-core computation frameworks or build their own heuristics to efficiently cache disk data to 
avoid the unexpected performance impacts of swapping. As a result, these applications have 
very large memory footprints, which makes address translation performance critical.

The use of superpages, or “huge pages,” can reduce the cost of virtual-to-physical address 
translation. For example, the x86-64 architecture supports 2 MB superpages. Using these  
2 MB mappings eliminates one level of the page walk traversal and enables more efficient use of 
TLB (translation lookaside buffer) entries. Intel’s most recent processors can hold 1536 map-
pings in the TLB. The 2 MB superpages can therefore increase TLB coverage from around 
6 MB (0.009% of the memory in a system with 64 GB of DRAM) to 3 GB (4.7%). While this is 
still a small fraction of the total physical memory capacity of a large machine, it is far more 
likely to capture an application’s short-term working set.

The challenge, however, is for the operating system (OS) to transparently manage memory 
resources in order to maximize superpage use. Modern systems do not necessarily accom-
plish this well, which has led to many suggestions that transparent huge page (THP) support 
be turned off in Linux for performance-critical applications. A better solution, however, is to 
understand the benefits and limitations of existing superpage management policies in order 
to redesign and improve them.

We carefully explain and analyze the life cycle of a superpage and present several novel 
observations about the mechanisms used for superpage management. These observations 
motivate Quicksilver (https://github.com/rice-systems/quicksilver) [9], an innovative design 
for transparent superpage management based upon FreeBSD’s reservation-based  physical 
superpage allocator. The proposed design achieves the benefits of aggressive superpage 
allocation but mitigates the memory bloat and fragmentation issues that arise from under-
utilized superpages. The system is able to match or beat the performance of existing systems 
in both lightly and heavily fragmented scenarios. For example, when using synchronous page 
preparation, the system achieves 2× speedups over Linux on PageRank using GraphChi on a 
heavily fragmented system. On Redis, the system is able to maintain Redis throughput and 
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tail latency as fragmentation increases, whereas the throughput 
of other systems degrades and tail latency increases. Finally, 
the system is able to achieve these performance improvements 
without excessive memory bloat.

Transparent Superpage Management
Kernels manage superpages transparently via these five events:

1. Physical superpage allocation: acquisition of a free physical 
superpage

2. Physical superpage preparation: incremental or full preparation 
of the initial data for an allocated physical superpage

3. Superpage mapping creation: creation of a virtual superpage 
in a process’s address space and mapping it to a fully prepared 
physical superpage

4. Superpage mapping destruction: destruction of a virtual super-
page mapping

5. Physical superpage deallocation: partial or full deallocation of 
an allocated physical superpage

The five events follow an order that indicates their prerequisites. 
However, the triggers and handlers for each of these events are 
determined by the OS and vary across OSes. Figure 1 illustrates 
the lifetime of a superpage in terms of these five events. 

As shown in the figure, the first step in the process is physical 
superpage allocation. The OS can choose to allocate a physical 
superpage to back any 2 MB-aligned virtual memory region. A 
physical superpage could be allocated synchronously upon a page 
fault or asynchronously via a background task. In order to allo-
cate a physical superpage, the physical memory allocator must 
have an available, aligned 2 MB region. Under severe memory 
fragmentation, such regions may not be available.

The second step is to prepare the physical superpage with its 
initial data. A physical superpage can be prepared in one of three 
ways. First, if the virtual memory region is anonymous, that is, 
not backed by a file, then the superpage simply needs to be zeroed. 
Second, if the virtual memory region is a memory-mapped file, 
then the data must be read from the file. Finally, if the virtual 

memory region is currently mapped to independent 4 KB pages, 
then the contents of those existing pages must be copied into the 
physical superpage. In this case, the 4 KB pages within the super-
page that were not already mapped would need to be prepared 
appropriately, either via zeroing or reading from the backing file.

Physical superpages can be prepared all at once or incrementally. 
As each 4 KB page is prepared, it can also be temporarily mapped 
as a 4 KB page. At a minimum, on a page fault, the 4 KB page that 
triggered the fault must be prepared immediately in order to 
allow the application to resume. However, upon a page fault, the 
OS can choose to prepare the entire physical superpage, only pre-
pare the relevant 4 KB page, or prepare the relevant 4 KB page, 
allow the application to resume, and prepare the remaining pages 
later (either asynchronously or when they are accessed).

Once a physical superpage has been fully prepared, the third 
step is to map that superpage into a process’s virtual address 
space in order to achieve address translation benefits. Before the 
superpage is mapped, the physical memory can still be accessed 
via 4 KB mappings; afterwards, the OS loses the ability to track 
accesses and modifications at a 4 KB granularity. Therefore, an 
OS may delay the creation of a superpage mapping if only some of 
the constituent pages are dirty in order to avoid unnecessary I/O 
in the future.

Superpage mappings are often created upon a page fault, on 
either the initial fault to the memory region or a subsequent fault 
after the entire superpage has been prepared. However, if the 
physical superpage preparation is asynchronous, then its super-
page mapping can also be created asynchronously. Note that on 
some architectures—for example, ARM—any 4 KB mappings 
that were previously created must first be destroyed.

Fourth, superpage mappings can be destroyed at any time, but 
must be destroyed whenever any part of the virtual super page is 
freed or has its protection changed. After the superpage map-
ping is destroyed, 4 KB mappings must be recreated for any 
 constituent pages that have not been freed.

Figure 1: The five events in the life of a superpage (SP)



22   FA L L 2020  VO L .  45 ,  N O.  3  www.usenix.org

SYSTEMS
Understanding Transparent Superpage Management

Finally, a physical superpage is deallocated when an application 
frees some or all of the virtual superpage, when an application 
terminates, or when the OS needs to reclaim memory. If a super-
page mapping exists, it must be destroyed before the physical 
superpage can be deallocated. Then, either the entire 2 MB 
can be returned to the physical memory allocator or the physi-
cal superpage can be “broken” into 4 KB pages. If the physical 
superpage is broken into its constituent 4 KB pages, the OS can 
return a subset of those pages to the physical memory alloca-
tor. However, returning only a subset of the constituent pages 
increases memory fragmentation, decreasing the likelihood of 
future physical superpage allocations.

Superpage Management Designs
Table 1 presents a comparison of superpage management designs, 
showing how they handle the five events that occur in the life-
time of a superpage. The table shows two existing operating sys-
tems—Linux and FreeBSD—and three state-of-the-art research 
prototypes—Ingens, HawkEye, and Quicksilver.

Note that the primary differences among these systems are in 
how they allocate and prepare superpages. There are three key 
mechanisms that are used to allocate superpages: first-touch, 
reservations, and asynchronous daemons. The first-touch policy, 
used exclusively by Linux, allocates, prepares, and maps super-
pages on the first page fault to a 2 MB-aligned virtual memory 
region. Linux goes so far as to compact memory if a physical 
superpage is not currently available in order to attempt to obtain 
one. This maximizes address translation benefits, as memory is 
defragmented upon allocation and the superpage mapping is cre-
ated immediately. However, this also increases page fault latency. 
In contrast, the reservation-based policy used by FreeBSD and 
Quicksilver simply reserves a physical superpage on the first 
page fault to a 2 MB-aligned virtual memory region. A physical 
superpage is allocated for that region, but it is not immediately 
prepared and mapped. This leads to faster page fault handling, 
but does not immediately achieve address translation benefits. 
However, there are benefits to delaying preparation and mapping. 
If not all of the constituent pages are accessed, then they can be 

Linux [3] FreeBSD [6] Ingens [4] HawkEye [7] Quicksilver [9] 

Allocation On first page fault 
(defragmenting 
if necessary) and 
asynchronously for 
regions with one 4 
KB mapping

Created (“reserved”) 
on the first page 
fault

Asynchronously for 
regions with 460 
4 KB mappings, 
prioritizing 
processes with fewer 
superpages

Asynchronously 
for regions with 
one 4 KB mapping, 
prioritizing heavily 
utilized regions and 
processes with big 
memory usage and 
high TLB overheads

Created (“reserved”) 
on the first page 
fault 

Preparation Immediately 
prepares entire 
superpage by zeroing 
or migration

Incrementally 
prepares in-place 
4 KB pages on page 
faults

Immediately 
prepares entire 
superpage by zeroing 
and migration

Immediately 
prepares entire 
superpage by zeroing 
and migration

Incrementally 
prepares until a 
threshold is reached 
(e.g., 64 in-place 
4 KB pages), then 
prepares the 
remainder entirely

Mapping Immediately after 
allocation and full 
preparation

Upon the page fault 
that finishes all 
preparation

Immediately after 
allocation and full 
preparation

Immediately after 
allocation and full 
preparation

Upon the page fault 
that finishes all 
preparation

Unmapping When virtual 
memory is freed, 
or the mapping is 
changed, in whole or 
in part

When virtual 
memory is freed, 
or the mapping is 
changed, in whole or 
in part

When virtual 
memory is freed, 
or the mapping is 
changed, in whole or 
in part

When virtual 
memory is freed, 
or the mapping is 
changed, in whole or 
in part

When virtual 
memory is freed, 
or the mapping is 
changed, in whole or 
in part

Deallocation As soon as the 
superpage is 
unmapped

Defers as long as 
possible

As soon as the 
superpage is 
unmapped

As soon as the 
superpage is 
unmapped

Defers until the 
superpage is inactive

Table 1: Comparison of modern superpage management designs
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quickly reclaimed under memory pressure, and resources were 
not wasted on preparation for ultimately untouched pages.

Quicksilver strikes a balance between incremental and all-at-
once preparation. Reservations are initially prepared incre-
mentally. This minimizes the initial page fault latency, but loses 
immediate address translation benefits. Therefore, Quicksilver 
has an additional threshold, t. Once t 4 KB pages get prepared, it 
prepares the remainder of the superpage all-at-once, either syn-
chronously (Sync-t) or asynchronously (Async-t). This design 
choice reduces memory bloat, as will be discussed in Observation 
1 in the next section, because it does not immediately prepare and 
map the superpage. However, it enables address translation ben-
efits sooner than waiting for the entire superpage to be accessed.

Linux, Ingens, and HawkEye all utilize asynchronous daemons 
to allocate, prepare, and map superpages in the background. 

Linux’s khugepaged is indiscriminate as it scans memory and 
creates superpages for any aligned 2 MB anonymous virtual 
memory region that contains at least one dirty 4 KB mapping. 
As with Linux’s first-touch policy, if no free physical superpage 
exists, it will defragment memory in an attempt to create one. 
Ingens’ and HawkEye’s asynchronous daemons both improve 
upon Linux’s indiscriminate allocation policy.

To prevent excessive memory bloat, Ingens increases the thresh-
old of 4 KB pages used to trigger creation of a superpage from 
one single page to 90%, meaning there must be at least 460 4 KB 
mappings in a 2 MB region in order to create a superpage for that 
region. Ingens also prioritizes processes with fewer superpages 
in order to improve overall fairness. In addition, Ingens actively 
compacts non-referenced memory in the background.

HawkEye uses the same threshold as Linux: one dirty page. 
Under memory pressure, it scans mapped superpages and makes 
their zero-filled 4 KB pages copy-on-write to a canonical zero 
page to reclaim free memory. HawkEye also maintains a list of 
candidate 2 MB-aligned regions, but further weights them by 
the regions’ spatial and temporal utilization and the processes’ 
memory consumption and TLB overheads. HawkEye then cre-
ates a superpage mapping for the most heavily weighted region in 
an attempt to make the most profitable promotions first.

Analysis of Existing Designs
In this section, we analyze the designs for transparent superpage 
management described in the previous section and present sev-
eral novel observations about them. Details on the experimental 
setup can be found in [9].

Observation 1: Coupling physical allocation, preparation, 
and mapping of superpages leads to memory bloat and fewer 
superpage mappings. It also is not compatible with trans-
parent use of multiple superpage sizes.

Linux’s first-touch policy couples physical superpage alloca-
tion, preparation, and superpage mapping creation together. As 
a result, it enjoys two obvious benefits: it provides immediate 
address translation benefits, and it eliminates a large number of 
page faults. Therefore, it is usually the best policy when there is 
abundant contiguous free memory. 

However, this coupled policy has several drawbacks. First, it 
can bloat memory and waste time preparing underutilized 
superpages. In a microbenchmark that sparsely touches 30 GB 
of anonymous memory, Linux’s first-touch policy spends 1.4 
sec and consumes 30 GB compared to 0.06 sec and 0.2 GB when 
disabling transparent huge pages. While such a case is rare when 
applications use malloc to dynamically allocate memory, it may 
still happen in a long-running server (for example, Redis). Table 2 
shows Redis performance on two workloads: Del-70, which ran-
domly deletes 70% of objects after inserting them, and Range-
XL, which inserts randomly sized objects between 256 bytes 
and 1 MB. The table shows that Linux’s first-touch policy bloats 
memory by 78% compared to Linux with superpages disabled 
(Linux-4 KB) on the workload Range-XL.

Second, it misses chances to create superpage mappings when 
virtual memory grows. During a page fault, Linux cannot create 
a superpage mapping beyond the heap’s end, so it installs a 4 KB 
page, which later prevents creation of a superpage mapping when 
the heap grows. Figure 2 shows such behavior for gcc [2], which 

Workload Linux-4 KB Linux-
noKhugepaged Linux

Del-70 11.6 GB 11.7 GB 19.8 GB

Range-XL 14.4 GB 25.7 GB 30.7 GB

Table 2: Redis memory consumption. Linux-noKhugepaged disables 
khugepaged.

Figure 2: Linux’s first-touch policy fails to create superpages.
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includes three compilations. Linux’s first-touch policy creates 
a few superpage mappings early in each compilation but fails to 
create more as the heap grows. Instead, promotion-based policies 
can create more superpages, as seen with FreeBSD and Linux’s 
khugepaged.

Third, it cannot be extended to larger anonymous or file-backed 
superpages. Table 3 estimates the page-fault latency on both 1 GB 
anonymous superpages and 2 MB and 1 GB file-backed super-
pages. Faulting a 2 MB file-backed superpage on the NVMe disk 
costs 1.7 ms and faulting a 1 GB anonymous superpage takes 46 
ms. These numbers may cause latency spikes in server applica-
tions. Furthermore, it cannot easily determine which page size 
to use on first touch. This is arguably more of an immediate 
problem on ARM processors, which support both 64 KB and 2 MB 
superpages.

Observation 2: Asynchronous, out-of-place promotion 
alleviates latency spikes but delays physical superpage 
allocations.

Promotion-based policies can use 4 KB mappings and later 
replace them with a superpage mapping. This allows for poten-
tially better-informed decisions about superpage mapping 
creation and can easily be extended to support multiple sizes  
of superpages. Specifically, there are two kinds of promotion 
policies, named out-of-place promotion and in-place promotion. 
They differ in whether previously prepared 4 KB pages require 
migration when preparing a physical superpage.

Under out-of-place promotion, a physical superpage is not allo-
cated in advance; on a page fault, a 4 KB physical page is allocated 
that may neither be contiguous nor aligned with its neighbors. 
When the OS decides to create a superpage mapping, it must allo-
cate a physical superpage, migrate mapped 4 KB physical pages, 
and zero the remaining ones. At this time, previously created 4 
KB mappings are no longer valid.

Linux, Ingens, and HawkEye perform asynchronous, out-of-place 
promotion to hide the cost of page migration. As discussed in the 
previous section, Linux includes khugepaged as a supplement to 
create superpage mappings. The steady, slow increase of Linux’s 
superpages in Figure 2 is from khugepaged’s out-of-place promo-
tions. However, khugepaged can easily bloat memory. Table 2 
shows a memory bloat from 11.6 GB to 19.8 GB on workload Del-70. 
On workload Range-XL, it bloats memory from 25.7 GB to 30.7 GB.

Ingens and HawkEye disable Linux’s first-touch policy and 
instead improve the behavior and functionality of khugepaged. 
Under memory fragmentation, Linux tries to compact memory 
when it fails to allocate superpages, which blocks the ongoing 
page fault and leads to latency spikes. Ingens and HawkEye 
enhance khugepaged and use it as their primary superpage man-
agement mechanism.

However, out-of-place promotion delays physical superpage allo-
cations and, ultimately, superpage mapping creations, because 
the OS must scan page tables to find candidate 2 MB regions 
and schedule the background tasks to promote them. Table 
4 compares in-place promotion (FreeBSD) with out-of-place 
promotion (Ingens and HawkEye) on applications where super-
page creation speed is critical. Both PageRank using GraphChi 
(GraphChi-PR) [5] and BlockSVM [8] represent important real-
life  applications, using fast algorithms to process big data that 
cannot fit in memory. To better illustrate the problem, in Table 
4 Ingens* and HawkEye* were tuned to be more aggressive, so 
that all 2 MB regions containing at least one dirty 4 KB mapping 
are candidates for promotion. Specifically, Ingens* uses a 0% 
utilization threshold instead of 90%, and HawkEye* uses a 100% 
maximum CPU budget to promote superpages. However, Table 
4 shows that FreeBSD consistently outperforms both of them. 
In other words, the most conservative in-place promotion policy 
creates superpage mappings faster than the most aggressive out-
of-place promotion policy.

Observation 3: Reservation-based policies enable specula-
tive physical page allocation, which enables the use of mul-
tiple page sizes, in-place promotion, and obviates the need 
for asynchronous, out-of-place promotion.

In-place promotion does not require page migration. It creates 
a physical superpage on the first touch, then incrementally 
prepares and maps its constituent 4 KB pages without page 
allocation. Therefore, the allocation of a physical superpage is 
immediate, but its superpage mapping creation is delayed. To 
bypass 4 KB page allocations, it requires a bookkeeping system 
to track allocated physical superpages: for example, FreeBSD’s 
reservation system.

FreeBSD’s reservation system immediately allocates physical 
superpages but delays superpage mapping creation, sacrificing 
some address translation benefits. Navarro et al. reported neg-
ligible overheads from the reservation system [6]. Table 4 shows 
that Linux consistently outperforms FreeBSD when memory is 
unfragmented, though Linux and FreeBSD both created similar 
numbers of anonymous superpage mappings.

However, FreeBSD aggressively allocates physical super-
pages for anonymous memory. Upon a page fault of anonymous 
memory, it always speculatively allocates a physical superpage, 

Page Size Anonymous NVMe Disk Spinning Disk

2 MB 91 µs 1.7 ms 11 ms

1 GB 46 ms 0.9 sec 7.7 sec

Table 3: Page fault latency. Bold numbers are estimates.
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expecting the heap to grow. This eliminates one of the primary 
needs for khugepaged in Linux. In Figure 2, FreeBSD has most  
of the memory quickly mapped as superpages, because most 
speculatively allocated physical superpages end up as fully pre-
pared pages. 

Observation 4: Reservations and delaying partial dealloca-
tion of physical superpages fight fragmentation.

Superpages are easily fragmented on a long-running server. A 
few 4 KB pages can consume a physical superpage, which ben-
efits little if mapped as a superpage. Existing systems deal with 
memory fragmentation in three ways.

Linux compacts memory immediately when it fails to allocate 
a superpage. It tries to greedily use superpages but risks block-
ing a page fault. Table 5 evaluated the performance of Redis on a 
Cold workload, where an empty instance is populated with 16 GB 
of 4 KB objects. Under fragmentation (Frag-50), Linux obtains 
slightly higher throughput but much higher tail latency than 
Linux-4 KB.

FreeBSD delays the partial deallocation of a physical superpage 
to increase the likelihood of reclaiming a free physical super-
page. When individual 4 KB pages get freed sooner, they land in 
a lower-ordered buddy queue and are more likely to be quickly 
reallocated for other purposes. Therefore, performing partial 
deallocations only when necessary due to memory pressure 
decreases fragmentation. 

Ingens actively defragments memory in the background to avoid 
blocking page faults. It preferably migrates non-referenced 
memory, so that it minimizes the interference with running 
applications. As a result, Ingens generates fewer latency spikes 
compared with Linux [4]. These migrations, however, do con-
sume processor and memory resources.

Evaluation
This section provides a brief evaluation of several variants 
of Quicksilver (Sync-t and Async-t) against Linux, FreeBSD, 
Ingens, HawkEye, and their aggressively tuned variants. A  
more detailed evaluation can be found in [9].

Unfragmented Performance
Sync-1 uses the same superpage preparation and mapping policy 
for anonymous memory as Linux. With no fragmentation, they 
perform similarly. However, there are two notable differences. 
First, Sync-1 speculatively allocates superpages for growing 
heaps, which allows it to outperform Linux on canneal [1] and gcc 
[2]. Their similar speedups on reservation-based systems vali-
date Observation 3. Second, Sync-1 creates file-backed super-
pages and outperforms Linux on GraphChi-PR.

With no fragmentation, FreeBSD outperforms Ingens and 
HawkEye. This validates Observation 2, as the issue is that out-
of-place promotion is slower. Furthermore, on the Redis Cold 
workload, Ingens and HawkEye even show a degradation over 
Linux without using superpages.

Sync-64 typically outperforms Async-64 because Async-64 
zeros pages in the background, which can cause interference. 
The comparable performance of Sync-64 and Sync-1 shows that 
less aggressive preparation and mapping policies can achieve 
comparable results to immediately mapping superpages on  
first touch.

Performance under Fragmentation
Linux has a higher tail latency on a Redis Cold workload under 
fragmentation than Linux without superpages because its on-
allocation defragmentation significantly increases page fault 
latency. In contrast, FreeBSD does not actively defragment 
memory, so it generates no latency spikes. Ingens and HawkEye 
offload superpage allocation from page faults and compact mem-
ory in the background, so they reduce interference and generate 
few latency spikes on the Redis Cold workload. Furthermore, 
their speedup over Linux increases as fragmentation increases.

The four variants of Quicksilver all consistently perform well 
under fragmentation because their background defragmentation 
not only avoids increasing page fault latency, but also succeeds 
in recovering unfragmented performance. Specifically, on the 
Redis Cold workload with Frag-100, Sync-1 maintained the 

Workloads Ingens Ingens* HawkEye HawkEye* FreeBSD

GraphChi-PR 0.58 0.58 0.53 0.60 0.77

BlockSVM 0.81 0.79 0.73 0.81 0.96

Table 4: Speedup over Linux with unfragmented memory. All systems have worse performance than Linux. The Ingens* and HawkEye* versions are aggres-
sively tuned.

Linux-4 KB Linux

Frag-0 1.04 GB/s (5.6 ms) 1.34 GB/s (4.1 ms)

Frag-50 1.04 GB/s (5.7 ms) 0.92 GB/s (10.2 ms)

Table 5: Mean throughput and 95th latency of Redis Cold workload.  
Frag-X has X% fragmented memory.
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highest throughput (1.31 GB/s) while providing low (4.5 ms) tail 
latency. This outperforms Linux, the second best system, which 
only achieved 1.07 GB/s with 5.6 ms tail latency.

Table 6 shows some select results across the systems discussed in 
the paper in a fully fragmented system (DSjeng and XZ are from 
SPEC CPU2017 [2]). Note that Quicksilver outperforms the other 
systems under high fragmentation across a wide range of work-
loads, but these applications show some of the greatest benefits.

GraphChi-PR is an important real-world workload, and Sync-1  
is able to achieve a 2.18× speedup over Linux, far greater than 
any of the other systems. To better understand that speedup, con-
sider the other variants of Quicksilver on GraphChi-PR. First, 
in a fully fragmented system, Async-256 performs well because 
its preemptive and asynchronous superpage deallocation allows 
many more superpage allocations than the non-Quicksilver sys-
tems. Quicksilver is able to defragment memory more efficiently 
by identifying inactive fragmented superpages. Furthermore, the 
in-place promotions contribute to the 1.65 speedup of Async-256, 

which is already much higher than all of the other non-Quick-
silver systems. The more aggressive promotion threshold of 
Async-64 leads to a slightly higher 1.68 speedup.

Second, Sync-64 outperforms Async-64 with a speedup of 2.11. 
Again, the asynchronous deallocation is beneficial. However, in 
addition, the synchronous all-at-once preparation implemented 
by bulk zeroing in Sync-64 efficiently removes the delay of creat-
ing superpages. With the same number of superpages created, 
Sync-64 is able to reduce page walk pending cycles by 76%. Finally, 
Sync-1 obtains the highest speedup of 2.18 with a more aggressive 
promotion threshold. While the speedups on the other applications 
are not as dramatic, the underlying trends are the same. 

Conclusion
The solution to perceived performance issues with transparent 
superpages is not to disable them. Rather it is to carefully under-
stand how superpage management systems work so that they can 
be improved. The explicit enumeration of the five events involved 
in the life of a superpage provides a framework around which 
to compare and contrast superpage management policies. This 
framework and analysis yielded several key observations about 
superpage management that motivated Quicksilver’s innovative 
design. Quicksilver achieves the benefits of aggressive superpage 
allocation, while mitigating the memory bloat and fragmentation 
issues that arise from underutilized superpages. Both the Sync-1 
and Sync-64 variants of Quicksilver are able to match or beat 
the performance of existing systems in both lightly and heavily 
fragmented scenarios, in terms of application performance, tail 
latency, and memory bloat.

GraphChi-PR canneal DSjeng XZ

Ingens 1.13 1.00 1.01 1.02

HawkEye 1.11 1.01 0.97 1.02

FreeBSD 1.10 1.05 1.04 1.02

Sync-1 2.18 1.12 1.10 1.14

Sync-64 2.11 1.12 1.11 1.14

Async-64 1.68 1.12 1.11 1.13

Async-256 1.65 1.16 1.08 1.13

Table 6: Performance speedup over Linux in a fully fragmented system 
(Frag-100) 
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I came across “Cloud Programming Simplified: A Berkeley View on 
Serverless Computing” via The Morning Paper website and started 
 reading [2]. It turns out that this paper is a follow-up to a 2009 technical 

report on cloud computing [1]. I started asking people I knew in the authors’ list, 
and Ion Stoica agreed to answer some questions I had about the two reports.

Rik Farrow: Cloud computing brought real advantages, but it left some things essentially 
unchanged. Organizations no longer needed to buy and maintain hardware, and virtualiza-
tion meant that hardware could be better utilized. But system administrators still needed 
to manage their virtual systems, and networking had become more complex. The technical 
report written by a group at UC Berkeley in 2009 [1] covered these issues in great detail, along 
with conjectures about how things would evolve over time. How well did this group do with 
their future projections?

Ion Stoica: Cloud computing succeeded beyond our highest expectations. When we wrote 
the paper, cloud computing was still a curiosity. Outside of research groups and startups, 
few organizations bet on cloud. Fast-forward to today and almost every company either 
uses cloud or is planning to do so. Cloud evolved into a huge market. During the last quarter 
alone, Microsoft Azure’s revenue (including other as-a-service products) passed $11B, AWS 
exceeded $10B, and Google Cloud reached $2.8B. Even companies like Oracle, who were skepti-
cal of cloud computing at that time, are now putting the cloud at the center of their strategy.

In part, this happened because many of the challenges we listed in our paper were addressed or 
at least alleviated. Here are just a few examples. The availability of cloud services such as S3 
has increased dramatically from two 9s in 2008 (as we reported in our original paper) to four 
9s. The performance has increased considerably as well. Today the majority of instances use 
SSDs instead of HDDs, and there are instances that offer terabytes of RAM and up to 40-Gbps 
connections. These are at least one order of magnitude improvements over the last decade.

Cloud security made big strides. Today, every major cloud provider offers a myriad of security 
certifications (e.g., HIPAA, SOC 2, FedRAMP) and even supports new certifications such 
as GDPR, which were just research proposals a decade ago. Furthermore, cloud providers 
have started to provide support for hardware enclaves (e.g., Azure Confidential  Computing), 
as well as software enclaves (e.g., AWS Nitro). This allows developers to deploy security 
protocols and applications not possible before. As a result, virtually every industry is migrat-
ing to the cloud, including the ones with stringent security requirements, such as health care, 
financial services, and retail. 

Cloud providers have also improved the ability to scale quickly. In particular, with the advent 
of serverless computing, customers can instantiate new (function) instances in sub-seconds.

Finally, data locking is more of a mixed bag. On one hand, cloud providers have pushed 
for proprietary solutions to support data analytics (e.g., BigQuery, RedShift, CosmosDB), 
machine learning (e.g., SageMaker, Azure ML, Google AutoML), and resource orchestration 
and management (e.g., Cloud Formation, Azure Factory). On the other hand, virtually every 
cloud provider hosts virtually every major open source software system, including Hadoop, 
Spark, Kafka, Redis, Kubernetes, and many more. 
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Furthermore, a new generation of companies has been successful 
in providing multi-cloud services, such as Databricks,  Confluent, 
MongoDB, Snowf lake, and many more. Part of their success 
stems from the desire of many enterprises to avoid cloud provider 
lock-in. I am confident that this will accelerate the standardiza-
tion of the cloud.

RF: There wasn’t just a single step from cloud to serverless. 
Instead, large cloud providers had already started providing 
some API-based services, such as storage (S3) and Google App 
Engine. While these are still important today, except for back-
end-as-a-service (BaaS), they don’t seem to have become domi-
nant in the move to cloud functions. Do you see an increasing role 
for BaaS going forward, or have most niches already been filled?

IS: Yes, I expect an increasing role for BaaS. We are already see-
ing this. For example, Google’s Biquery and AWS’s Aurora and 
Athena are rapidly growing in popularity and are supporting 
more and more traditional database workloads. In addition, we 
are seeing an increase of BaaS offerings in machine learning, 
such as Amazon Elastic Inference and Google AutoML.

One reason I expect BaaS to grow in popularity is because the 
cloud providers have every incentive to push for such services,  
as they provide higher levels of functionality, which translates  
to higher revenue and increased “stickiness.”

RF: When cloud functions first appeared, cloud providers would 
provision containers within virtual machines for security pur-
poses. That appears to have shifted over the last several years, 
with the replacement of VMs with sandboxed container run-
times like gVisor and Firecracker. While these are lighter weight 
and faster to start up and shut down than VMs, they still appear 
heavyweight to me. Comments?

IS: Yes, it is true that these are more heavyweighted compared to 
a simple process or a container. At the same time, as you men-
tioned, they are significantly lighter and faster than VMs. And I 
am sure they will improve over time, as researchers and practi-
tioners are continuously optimizing these abstractions.

At the same time, when we are talking about the startup time, we 
need to look at the big picture. In many cases, the real startup over-
head is not to start these containers but to initialize them. For 
example, the Python environment (e.g., libraries) can easily take 
hundreds of MBs. Even assuming all data is local and stored on 
a fast SSD, it might take many seconds to load the libraries and 
initialize the environment. This can take significantly more time 
than starting a container. So at least from the startup time point 
of view, and at least for some applications, the existing sandboxed 
containers might be already good enough.

RF: Elasticity is one of the most important aspects of cloud func-
tions: both the automatic scaling of function containers as neces-
sary, as well as only having to pay for the resources used instead 

of reserving those speculatively. But you mention that there are 
still very real limitations to elasticity in the current support for 
cloud functions. What are those limitations and how might they 
be satisfied?

IS: The big challenge with elasticity is that it is at odds with 
virtually every requirement desired by developers. Each of these 
requirements adds constraints to where the cloud function can 
run, which fundamentally limits elasticity. In particular, users 
want specialized hardware support (e.g., GPUs), they want to run 
arbitrarily long cloud functions, they want better performance 
(e.g., co-location), they want fast startup times (e.g., run on nodes 
which cache the code), and they want security (e.g., do not share 
the same physical nodes with other tenants when running sensi-
tive code). 

Two approaches to address these challenges are (1) relaxing 
these constraints and (2) workload prediction. One example of 
relaxing these constraints is developing a low-latency high-
throughput shared storage system to store the cloud function’s 
code and environment. Such a system can obviate the need to run 
a cloud function on a node that has already cached the function’s 
environment. Such a storage system could also be used to effi-
ciently take checkpoints, preempt cloud functions, and restart 
them on a different node. This could allow cloud providers to 
relax the running time limits of the functions without hurting 
elasticity. 

Another example is improving the security of cloud functions, 
which could remove the need to avoid sharing nodes across dif-
ferent tenants running sensitive code.

The other approach to improve elasticity is predicting the 
workload or application requirements. For instance, if it takes 
more time to acquire the resources than the application affords, 
the natural solution is to predict when the application needs 
these resources and allocate them ahead of time. This will likely 
require a combination of the application itself providing some 
hints about its workloads, and machine learning algorithms 
accurately predicting the application’s workload and communi-
cation patterns.

RF: One of the biggest advantages of cloud functions is that they 
put programmers in control, turning operations largely over to 
the provider’s automation. The downside of cloud functions for 
programmers is that offerings differ widely from provider to 
provider: there is no standardization. That means customers get 
locked in to a particular provider, and migration means refactor-
ing entire services. Do you see a way forward here?

IS: This is an excellent point. Cloud providers have the natural 
incentive to provide differentiated serverless APIs, which can 
lead to locking. 
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However, we are starting to see early efforts to provide cross-
cloud open source serverless platforms, such as PyWren or Open 
Lambda, and Apache OpenWhisk. While a dominant open source 
platform has still to emerge, previous developments give us 
hope. In particular, at the lower layer of resource orchestration, 
Kubernetes has already become the de facto standard for con-
tainer orchestration, and all major cloud providers are support-
ing it (in addition to their own proprietary offerings). 

RF: Programmers must learn new programming paradigms 
for cloud functions. One function doesn’t call another. Instead, 
programmers must use RPCs, temporary storage, events/queue-
ing, all things that are likely unfamiliar to many programmers. 
Recently, companies have started to talk about No-code as a way 
of hiding even more lower-level details, making the use of cloud 
functions and BaaS even easier. I first heard of this idea around 
1989, as “Fifth Generation Programming Languages,” an idea 
that never went anywhere. What do you consider the best way to 
overcome the barriers to programming using cloud functions?

IS: This is an excellent question. I believe that we will see the 
emergence of new programming systems that will simplify 
distributed programming. One example is Ray, a system we have 
developed in RISELab at UC Berkeley over the past several years. 
Ray provides support not only for stateless functions, but also 
for stateful computations (i.e., actors) as well as an in-memory 
object store for efficient data sharing. In addition, there are many 
other research projects at Berkeley and elsewhere that aim to 
provide distributed shared memory abstractions for serverless: 
for example, Anna [3].

This being said, there are several hard challenges which we 
will need to address. These challenges stem from the physical 
characteristics of the underlying infrastructure: the latency of 
accessing data remotely can be orders of magnitude higher than 
accessing data locally; the throughput to access data on GPUs 
is 10× the throughput of local RAM, which is in turn >10× the 
throughput to a remote node. As a result, the overhead of execut-
ing a function remotely can be orders of magnitude higher than 
executing the function locally. Addressing these challenges calls 
for new research in compilers that can automatically decide 
whether a function should be executed locally or remotely and, if 
remotely, where.

Another challenge, and one of the holy grails of the programming 
languages, is automatically parallelizing a sequential program. 
This is a very hard problem which has not been fully solved 
despite decades of research. This being said, I expect the emer-
gence of serverless computing will spur new efforts that will 
push the state of the art. In the shorter term, I expect to see tools 
that target automatic parallelization of specialized workloads, 
such as big data and ML, as well as tools that assist developers 
with parallelizing their applications (instead of automatically 
parallelizing them).

RF: In section 3 of the 2019 paper, you cover five applications 
that serve to illustrate the current limitations to cloud functions. 
Summarizing Table 5, these are: object store latency too high, 
IOPS limits, network broadcast inefficient, lack of fast storage, 
and lack of shared memory. What, if anything, has changed since 
your report was written?

IS: It’s just a bit over one year since we published our report on 
serverless computing. Many challenges still remain, but we are 
already seeing some technologies being developed to alleviate 
these challenges. These developments are both in the serverless 
space and in adjacent areas (which I expect will likely impact the 
serverless space down the line). 

In the serverless space, one interesting announcement at the last 
AWS reinvent was “provision concurrency for lambdas.” In a nut-
shell, this enable users to predefine a number of instances (e.g., 
concurrency level) of lambdas that can start executing devel-
opers’ code within a few tens of milliseconds of being invoked. 
This can go a long way toward making the process of scaling up 
predictable. 

Outside serverless space, an exciting development is the Nitro 
enclave announced at the same event. This enclave provides both 
better security and better performance than existing instances. 
In particular, Nitro provides CPU and memory isolation for EC2 
instances, as well as integration with the AES Key Management 
system. This enables new applications to protect highly sensi-
tive data such as personally identifiable information (PII) and 
healthcare and financial data. In addition, they improved the 
bandwidth to EBS (Elastic Block Storage) by 36%, from 14 Gbps 
to 19 Gbps. Lambdas can already use EBS, and I expect some of 
the secure technologies in Nitro will later migrate to serverless.
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Open source project health describes the potential of projects to con-
tinue developing and maintaining quality software, an issue that has 
long been overlooked. Recently, open source software failures have 

negatively affected millions of people (e.g., OpenSSL, Equifax), raising the 
question about the health of open source projects that develop these critically 
important pieces of software. Measuring and determining the health of open 
source projects that develop and maintain open source software is a difficult 
task and has been hard to do well. In this article, I describe issues that make 
open source project health difficult to measure and what the CHAOSS project 
has been doing to help with measuring the health of open source projects.

Failures of Open Source Project Health
Software development is often done piecemeal, relying heavily on existing software libraries. 
For example, the OpenSSL library provides highly specialized encryption algorithms that 
require expert cryptography knowledge and makes these features available to any developer. 
This piecemeal approach to software development is fueled by open source software. Increas-
ingly, software libraries are made available through an open source license which encodes 
the rights for anyone to use, modify, and share the software for any purpose. This licensing 
model enables developers to collaborate in software production, avoiding duplicate work and 
improving the software for the benefit of everyone. But despite all the advantages that open 
source software brings, there are also challenges.

The challenge I explore in this article is in measuring and understanding the health of open 
source projects. The absence of traditional software project and market indicators makes 
understanding open source project health quite difficult. The health of proprietary software 
projects can be measured by revenue from sales that will support future development for the 
software. Sales figures are nonexistent, and open source licensing means that open source 
software can be distributed and used by anyone without paying a license fee. Open source 
project health needs different metrics. This challenge used to be an academic exercise, but 
today it has the attention of open source foundations, large corporations, and governments. 
This is because open source projects are a critical part of our digital infrastructure, empow-
ered by projects like OpenSSL, Linux, and Apache Web Server. Many governments, organiza-
tions, and individuals depend on open source projects.

Considering the widespread use of open source software, project health failures can have sig-
nificant impacts. For example, the Heartbleed vulnerability existed in the open source soft-
ware library OpenSSL [1]. OpenSSL was used by most web servers to secure Internet traffic. 
Heartbleed allowed a malicious user to get sensitive information from a server, endangering 
the data of millions of Internet users. This vulnerability was introduced in 2012 and publicly 
disclosed in 2014. The baffling part of this story is the mismatch between the widespread use 
of OpenSSL and its very small project community of a few unpaid developers. In hindsight, 
OpenSSL had poor open source project health, which should have served as a warning signal 
if only we had paid attention to it.
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Heartbleed was a wakeup call to organizations relying on open 
source software. The Ford Foundation research report Roads  
and Bridges: The Unseen Labor Behind Our Digital Infrastructure 
by Nadia Eghbal [2] was very influential in the following conver-
sations. Eghbal had interviewed open source project maintain-
ers and discovered that Heartbleed was merely a very visible 
open source project health failure while many more open source 
projects face similar challenges. Some maintainers of open 
source projects reported suffering burnout from the challenge 
of securing critical software with little help in their spare time 
while earning a living in an unrelated job. Several solutions were 
proposed in response to this realization. For example, the Linux 
Foundation established the Core Infrastructure Initiative to give 
money and developer resources to open source projects that were 
critical for the digital infrastructure but were lacking a healthy 
project community. Similarly, Mozilla has the Open Source Sup-
port (MOSS) program. However, open source project health is 
more complex than just a matter of lacking financial resources.

OpenSSL’s Heartbleed example highlights the need for open 
source project health to ensure the production of quality open 
source soft ware. This is not sufficient when users of open source 
software do not pay attention to changes in the health of open 
source projects. Equifax, for example, was using the open source 
software Apache Struts and failed to respond to an update 
announcement that a vulnerability (CVE-2017-5638) had been 
fixed in a new version of Struts. Two months after the fix was 
released, Equifax became subject to a data breach because it 
was still using a vulnerable and outdated version that hackers 
exploited [3], and 143 million US consumers were affected. This 
example highlights that users of open source software have to 
not only evaluate open source project health once but monitor it 
continuously and actively for all software and infrastructure 
components they rely on.

Long-time members of open source projects will tell you that 
they have developed a sense for open source project health and 
make decisions based on past experience. However, this sense 
may not scale to organizations without tools for automation. The 
open source ecosystem is growing rapidly as more first-time con-
tributors are participating in open source projects. A formalized 
understanding of how to measure open source project health can 
transfer this critical knowledge and allow it to be embedded in 
supporting software.

Measuring Open Source Project Health
Before we can assess open source project health, we need to have 
clarity on definitions and assumptions. Open source software is 
at the core of this discussion and is defined as software licensed 
under an open source license. The Open Source Initiative 
(https://opensource.org/) is the steward of the Open Source 
Definition and decides which software licenses are valid open 

source licenses. The production of open source software is orga-
nized in open source projects, which have a technical and a social 
component. The technical component includes the tools used in 
software production: source code repositories, issue trackers, 
mailing lists, CI/CD toolchains, and so on. The social component 
includes the people involved and how they organize their collabo-
ration: governance, leadership, membership, events, and working 
groups. Open source community refers to the people involved in 
an open source project. Just like most people have fingers but 
unique fingerprints, open source projects have common techni-
cal and social components but are not alike. The unique context 
of each open source project makes it difficult to measure open 
source project health in a standard and consistent way.

Open source project health is the potential that an open source 
community will continue developing and maintaining  quality 
software [4]. This assumes that an open source project has the 
goal of producing software and that the user of the software 
wants good quality. Because project health is forward looking, 
an assessment can only speak to the potential and not about a 
precise probability or likelihood that a community will continue 
to develop and maintain quality software. 

Open source project health can be assessed along three dimen-
sions [5]:

1. Community

2. Code

3. Resources

The community dimension captures the idea that open source 
projects rely on people to contribute. An assessment could look 
at the diversity of active community members, the size of the 
community—both contributors and users—and the governance of 
the community. The code dimension captures the idea that open 
source projects should produce and maintain quality software. 
An assessment could look at vulnerabilities, code quality, and 
activity in code review processes. The resources dimension 
captures the idea that open source projects can develop quality 
software using their own resources, including an infrastruc-
ture of specialized hardware, continuous integration systems, 
testing facilities, and financial resources. An assessment could 
look at the availability of resources, number of sources providing 
resources, and how resources are managed within a project. Each 
of these dimensions focuses on a different aspect of open source 
project health and can be understood through more metrics than 
are listed here.

There are two types of data for metrics about open source project 
health: qualitative and quantitative. Qualitative data can be 
collected through surveys and interviews with open source com-
munity members to understand their perception of a project’s 
health. These valid data collection methods are time-consuming 
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and are rarely done. Recent examples are the Apache  Community 
Survey 2020 and the OpenStack Gender Diversity Report 2018. 
Quantitative data is typically easier to process and can be auto-
matically collected. A great source of data about open source 
projects is the trace data that is created as community members 
collaborate in the creation of software using computer-mediated 
technology. This includes the Git log, the mailing list archive, and 
the issue tracker history. Easy-to-collect metrics include quan-
tifying events, such as the numbers of commits, emails, issues, 
comments, and functions or lines in the source code. While we 
know that some metrics are easier to obtain than others, the 
important question is which metrics are most indicative of open 
source project health.

To date, there is no canonical set of metrics that are most indicative 
of open source project health. Several studies analyzed historic 
metrics and correlated them with the continued existence and 
development of open source projects. In such a setup, a healthy 
project was one that was developing and maintaining software 
at the time of the study, and unhealthy projects had stopped 
development [6]. However, these studies have failed to determine 
metrics that will be useful. My work has explored these failures 
through many conversations with open source practitioners in 
open source projects, organizations, foundations, and govern-
ment. The unique ways in which each open source project works 
influence the interpretation of metrics and have so far thwarted 
all efforts to develop quality models and definitive open source 
project health metric guidelines.

Building Shared Understanding of Open Source 
Project Health
Despite the challenges, many open source communities, open 
source foundations, organizations, and researchers want to 
determine the health of open source projects. Many lessons have 
been learned but numerous attempts at measuring open source 
project health started from scratch because a common language 
and tool set was missing. The CHAOSS project is seeking to level 
the playing field and get everyone a head start for understand-
ing the importance of open source project health and how to 
determine it.

We founded the CHAOSS project, which is an acronym for 
Community Health Analytics Open Source Software, at the 
Linux Foundation in 2017. The mission of CHAOSS is to define 
metrics and software that can help everyone with measuring 
open source project health. CHAOSS focuses on the basics, such 
as describing data sources for collecting data about open source 
projects, defining metrics that can be calculated from that data, 
and developing a shared language for talking about open source 
project health. We provide a central location in the open source 
ecosystem where anyone who is interested in open source project 

health can come to learn more, discuss ideas, get feedback, and 
build on existing solutions.

The CHAOSS project has working groups that define related 
metrics. The five working groups are Diversity and Inclusion, 
Evolution, Risk, Value, and Common Metrics. To learn more 
about the metrics in each working group, visit https:// chaoss 
.community /metrics. The key point here is that these working 
groups think through a variety of issues related to measuring 
open source project health. For example, the Common Metrics 
working group describes lower-level metrics that can be used by 
other working groups for higher-level metrics. One such metric is 
Organizational Diversity, which can be used by the Risk work-
ing group to assess the risk of a single-vendor dependency or by 
the Evolution working group to assess the growth, maturity, or 
decline of organizational engagement. The metric Organiza-
tional Diversity describes core challenges around identifying 
which organizations contributors affiliate with, taking into 
account job changes, contributors using @gmail and not their 
work email addresses, or combining identities of contributors 
who use different usernames and email addresses across dif-
ferent collaboration tools. Through these metric definitions, 
CHAOSS provides a starting point for anyone interested in 
determining the health of an open source project.

Open source project health metrics can be divided into leading 
metrics that change rapidly and lagging metrics that are slower 
to change. On the one hand, we have a fair amount of influence 
on leading metrics, such as the number of commits or the time 
to close issues. Setting a goal to increase a leading metric can 
directly lead to behavior changes in the community. On the other 
hand, we cannot easily influence lagging metrics, such as the 
number of long-term contributors or active users of the software. 
We have so far not found a relationship between leading and 
lagging metrics that would allow us to say: if you want to improve 
open source project health as measured by lagging metric X, you 
need to focus community activities that change leading metric Y 
and Z. Maybe such a relationship cannot exist because when set-
ting goals for leading metrics, project members may change their 
behavior to “game” the metric. Gaming of metrics describes a 
situation in which behavior is targeted to improve a metric while 
possibly working against the original goals for which the metric 
was chosen. An example of this is the Number of Commits met-
ric, which measures developer contributions, but developers can 
easily split a commit into many smaller commits, creating more 
managerial overhead instead of producing more contributions. 
Nevertheless, leading metrics can be used in tactical decisions 
for improving the health of our projects while lagging metrics 
may be better for tracking long-term goals, of course, taking into 
account the context of the project.

The CHAOSS project stays neutral about the interpretation of 
metrics and what they mean in the determination of open source 
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project health. This approach to determining open source project 
health accommodates the fact that metrics are highly context-
sensitive, and open source projects have many different contexts. 
Projects use a different mix of technical and social components. 
Even when using the same collaboration tools, projects have 
different patterns of collaboration and expected behaviors. 
Whereas some projects are run by volunteers, others are run 
by organizational employees. Some projects have benevolent 
dictators who make many decisions, while others have com-
mittees or governing boards who collectively make decisions. 
Some projects have CI/CD pipelines and automated tests that 
facilitate feedback on code contributions, and others rely more 
on human reviewers. These are just examples of the large variety 
of contexts that open source projects create and that make it 
difficult to interpret the meaning of metrics. One approach to 
overcoming this challenge is to have an expert on an open source 
project interpret the metrics specific to that context and tell a 
story of the project’s health, informed and supported by metrics. 
Determining open source project health is therefore storytelling 
supported by metrics and evidence.

Improving Open Source Project Health
Having an honest assessment of open source project health can 
inform data-driven decisions. Following this idea, I discuss 
thoughts on how open source project health can inform different 
stakeholders. My opinion has been shaped by conversations in 
the CHAOSS project, the SustainOSS.org community, my PhD 
research, and my current job at Bitergia.

Open source communities can observe open source project 
health to learn about themselves. Since metrics are not absolute 
indicators of project health, changes over time can be helpful to 
identify when to take action. For example, when core contribu-
tors to a project are leaving, then the community may have a 
project health issue as indicated by a decline in issue tracker 
activity. Conversely, a spike in issue tracker activity may indicate 
that more users are asking questions about the software, and 
engaging them strategically can draw them in to grow the com-
munity. However, context matters because a spike in activity 
could be the result of outside factors. I recently experienced this 
in the  CHAOSS project when the number of issue comments 
tripled over the course of one month because of students inter-
ested in applying for the paid Google Summer of Code mentoring 
program. 

Organizations can observe open source project health to mitigate 
risk when relying on open source software in their operations 
and value creation. Project health can also inform organizations’ 
strategic decisions regarding which projects to engage in and 
how to maximize value extraction from open source software. 
For example, a decline of development activity in an open source 

project can be an early indicator of risk, and an organization can 
dedicate employee time to such a project to make sure it stays 
maintained and compatible with new technology developments, 
standards, and regulatory requirements. 

Open source foundations can observe open source project health 
to identify best practices and learn from open source projects 
that are doing very well to then help other projects achieve simi-
lar outcomes. Foundations can also use the same metrics to help 
themselves by observing, for example, who active members in the 
open source projects are and recruiting them as new foundation 
members, strengthening the relationships between open source 
project members and thereby improving project health. Founda-
tions are stewards of open source projects and need to have early 
indicators of changes in order to intervene when needed.

Contributors to open source projects can use open source project 
health to make decisions about which projects they want to be 
part of and how to have the most impact. Contributors prefer 
healthy open source projects because they are easier to engage in. 
For example, an increasing number of contributors pay attention 
to diversity and inclusion as an important aspect in the commu-
nity dimension of open source project health. Contributors can 
learn from healthy open source projects with high code-quality 
standards and improve their job market opportunities. 

Conclusion
Project health is an important topic for many open source 
stakeholders. Open source projects, organizations, founda-
tions, and contributors need to look for ways to better tell open 
source project health stories that will help stakeholders form 
an accurate picture of the health of an open source project. The 
CHAOSS project is an important collaboration for the creation of 
a shared understanding of open source project health. It provides 
many resources to understand open source project health and is 
a vibrant community where project health is discussed, defined, 
and measured. The CHAOSS project releases project health 
standards in the form of metrics definitions, creates tooling to 
measure metrics, and creates community reports to understand 
project health. CHAOSScast, the CHAOSS project podcast, is a 
great source of inspiration because the community shares use 
cases and experiences that are highly contextualized for specific 
open source projects. As a member of an open source community, 
ask yourself these two questions: (1) how healthy is my project? 
and (2) how can I tell my project health story? Join us in the 
CHAOSS project so we can help tell your story. 
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Real-world data is crucial in understanding and improving our world, 
from health care to datacenters. To help the computer systems com-
munity with data-driven decisions, we open-source a collection of 

fine-grained, low-level operational logs from the largest public-sector data-
center in the Netherlands (SURFsara). In this article, we describe the infra-
structure providing the data, give examples of some of this data, and perform 
thorough statistical analysis to indicate that this ongoing collection not only 
reflects the ground truth but will be useful to designers and maintainers of 
large clusters, and generally to computer systems practitioners.

Medical professionals employ MRI images to look inside our bodies, thus gaining a deeper 
understanding of the spread and effects of diseases. Open-source collections [1] of medi-
cal images enable building or improving analysis tools and training new professionals. In 
contrast, for computer systems, we do not yet fully benefit from MRI-like views on data centers. 
Open source operational traces are scarce and bereft of low-level metrics. Absent such met-
rics, large-scale systems experts and infrastructure developers are currently forced to design, 
implement, and test their systems using unverified, sometimes even  unrealistic, assump-
tions. The operational traces we propose help alleviate this problem. Moreover, low-level 
details of MRI images also offer clinicians predictive capabilities on the evolution of diseases. 
Similarly, our operational traces would allow for predictive analysis of systems behavior.

Real-world data can be instrumental in answering detailed questions: How do we know 
which assumptions regarding large-scale systems are realistic? How do we know that the 
systems we build are practical? How do we know which metrics are important to assess when 
analyzing performance? To answer such questions, we need to collect and share operational 
traces containing real-world, detailed data. The presence of low-level metrics is not only 
significant, but they also help researchers avoid biases through their variety. To address 
variety, there exist several types of archives, such as the Parallel Workloads Archive, the Grid 
Workloads Archive, and the Google or Microsoft logs (the Appendix gives a multi-decade 
overview). However, such traces mostly focus on higher-level scheduling decisions and high-
level, job-based resource utilization (e.g., consumed CPU and memory). Thus, they do not 
provide vital information to system administrators or researchers analyzing the full-stack or 
the OS-level operation of datacenters. 

The traces we are sharing have the finest granularity of all other open-source traces pub-
lished so far. In addition to scheduler-level logs, they contain over 100 low-level, server-based 
metrics, going to the granularity of page faults or bytes transferred through a NIC. The metrics 
presented in this article are gathered every 15 seconds from a GPU cluster at SURFsara, total-
ing over 300 servers. This cluster includes high-speed networks and storage devices, and it 
is being used for scientific research in the Netherlands in areas such as physics, chemistry, 
weather prediction, machine learning, and computer systems. 

This archive is a valuable resource for many professionals: software developers, system 
designers, infrastructure developers, machine learning practitioners, and policy-makers. 
During 2020, we will release monthly on Zenodo the trace data gathered in the previous 30 
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days, as FAIR (see https://www.go-fair.org/fair-principles/) open data. In this article, we 
provide a high-level overview of the metrics and data we gather, and a high-level character-
ization of the first three months of operation in 2020. 

Three Months in the Life of a Datacenter
The SURFsara datacenter is used mostly by researchers from the Netherlands, running 
workloads in areas such as physics, chemistry, weather forecasting, machine learning, and 
computer systems. Users run primarily HPC-like workloads and deep-learning training, 
using combinations of regular CPU-, and multi-GPU-servers. A minority of the workloads 
run on big-data-like systems. 

Figure 1 and Table 1 present a summary of several metrics computed over all the GPU servers 
in the LISA cluster over three months. The individual data points in Figure 1 represent the 
maximum value for a given hour over all servers, normalized to the maximum value of that 
metric for the whole period. Table 1 presents the range of values we encountered. We depict 
here only 10 metrics out of the 100+ collected. Even this high-level summary can be useful 
to datacenter engineers. For example, the alternation of the five colors for the metric GPU 
Fanspeed shows that the maximum fan speed for a GPU in the LISA cluster varies signifi-
cantly during the three months analyzed, suggesting that there are very different levels of 
load in the system over this period. Engineers have to be alert, especially when the load is 
extreme, either very high or very low. 

Our logs register all the interactions of user workloads with the datacenter itself. They also 
register maintenance events (e.g., adding or replacing servers—these are events which can be 
derived from the metrics), and unusual events (e.g. job failures, server failures, reboots). Last, 

Figure 1: Metric variety and server load variability of the GPU-enabled servers in the LISA cluster over three 
months (January 1–March 31, 2020). Each data point represents the maximum value a server has encoun-
tered for that metric, normalized to the highest encountered value for that metric. The online version of this 
article shows this heat-map in color.

Metric Min Max Median Mean CoV
Server Temperature (Celsius) 24 35 26 26 0.08

GPU Temperature (Celsius) 23 91 31 36 0.38

GPU Fanspeed (Percentage) 0 100 0 8 1.93

Network RX Packets (# packets x 16) 0.000003 18 0.460 1 1.73

Disk I/O Time (ms x 16) 0.0008 82 9 12 1.01

Host Free Memory (GB) 0.602 268 256 222 0.31

GPU Used Memory (GB) 0 12 0 1 1.96

Server Power Usage (Watt) 0 1400 312 401 0.59

Context Switches (# switches x 19) 0.0000052 216 12 23 1.2

CPU Load (Run-queue length) 0 7000 1 12 18.1

Table 1: Value range, median, mean, and coefficient of variation for each metric depicted in Figure 1.
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they capture phenomena, such as sudden drops in activity, or 
low system load. Figure 1 depicts such a phenomenon: at almost 
all times, the majority of the GPU-enabled servers have their 
host-CPU underutilized, but simultaneously their GPUs, their 
networking, and their I/O subsystems experience high utiliza-
tion. System designers could leverage this empirical observation.

Performing the analysis exemplified in Figure 1 shows that there 
is ample load variability inside the LISA system. Yet, explaining 
it is complex. This load variability stems from load imbalances 
due to varying user-demand, occasionally poor scheduling deci-
sions, and lacking load balancing over the entire set of servers. 
Only after understanding this complexity can we hope to tame 
the large design-space for resource management and scheduling 
decisions in modern datacenters. Moreover, Figure 1 depicts a 
recent trend we perceive in datacenter operations: GPU-servers 
are underutilized in terms of CPU load, so here it may be more 
cost-effective to equip the servers with less powerful (and 
cheaper) CPUs.

The SURF Archive
Datacenters already exhibit unprecedented scale and are 
becoming increasingly more complex. Moreover, such computer 
systems have begun having a significant impact on the environ-
ment: for example, training some machine learning models has 
sizable carbon footprints [2]. As our recent work on modern data-
center networks shows [3], low-level data is key to understanding 
full-stack operation, including high-level application behavior. 
We advocate it is time to start using such data more systemati-
cally, unlocking its potential in helping us understand how to 
make (datacenter) systems more efficient. We advocate that our 
data can contribute to a more holistic approach, looking at how 
the multitude of these systems work together in a large-scale 
datacenter. 

SURFsara operates several systems inside their datacenter. In 
this archive, we release operational data from two of SURFsara’s 
largest production clusters: LISA and Cartesius. The former is 
a 300+ server cluster containing more than 200 GPUs, inter-
connected with 40-Gbps and 10-Gbps networks. The latter 
is a 2000+ server cluster containing 132 GPUs and 18 Intel 
last-generation KNLs. The rest of the servers are a combination 
of thin (24 cores and 64 GB memory) and fat machines (32 cores 
and 256 GB memory). The total number of cores in Cartesius is 
roughly 47K, amounting to 1.8 PFLOPS double precision. Most 
servers are connected by an FDR InfiniBand network, ensuring 
56 Gbps peak bandwidth, with a subset (18 Intel KNL and 177 
Intel Broadwell) connected by an EDR InfiniBand network that 
enables 100 Gbps peak-bandwidth.  

We gather metrics, at 15-second intervals, from several data 
sources:

 3 Slurm: all job, task, and scheduler-related data, such as running 
time, queueing time, failures, servers involved in the execution, 
organization in partitions, and scheduling policies.
 3 NVIDIA NVML: per GPU, data such as power metrics, tem-
perature, fan speed, or used memory.
 3 IPMI: per server, data such as power metrics and temperature.
 3 OS-level: from either procfs, sockstat, or netstat data: low-
level OS metrics, regarding the state of each server, including 
CPU, disk, memory, network utilization, context switches, and 
interrupts. 

We also release other kinds of novel information, related to data-
center topology and organization.

The audience we envision using these metrics is composed of 
systems researchers, infrastructure developers and designers, 
system administrators, and software developers for large-scale 
infrastructure. The frequency of collecting data is uniquely high 
for open-source data, which could allow these experts unprec-
edented views into the operation of a real datacenter.

Our traces will benefit multidisciplinary teams in building bet-
ter schedulers, better co-locating workloads to improve resource 
utilization and minimize interference. Recently, systems experts 
started teaming up also with machine-learning experts to 
produce AI-enhanced systems such as learned database indexes 
(work done by Tim Kraska et al.). All these stakeholders could 
benefit from our many low-level server metrics, which uniquely 
complement scheduler logs. Uniquely, our traces could help 
experts to understand how specific workloads interact with the 

Figure 2: The schema for our collection of datacenter metrics. The figure 
highlights the novel components we propose, compared to state-of-the-art 
datacenter archives. 
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hardware, with each other, and where faults and performance 
issues originate.

Figure 2 presents a high-level view of the schema of the archive 
we propose. The structure resembles a snowflake schema, with 
the central fact table representing the low-level, high-resolution 
metrics we collect every 15 seconds from our datacenters. The 
dimension tables represent all other data that we can use to 
interpret and analyze the fact table. As SURFsara users run jobs, 
a data set of job-related metrics records scheduler logs (e.g., from 
Slurm). Simultaneously, many independent tools (e.g., Nvidia 
Management Layer (NVML)) gather data from each server and 
push them into the fact table. We keep a separate table contain-
ing the list of metrics we collect, enabling easy addition of met-
rics in the future. Moreover, we explicitly include in the data both 
server-level and topology information.

Our archive is online: https://doi.org/10.5281/zenodo.3878142.

What Our Archive Offers
There are many types of analyses one could do using the data we 
open source, such as the typical sysadmin dashboards exempli-
fied by Figure 3. From utilization-level metrics, sysadmins can 
identify interesting points or correlations that could be examined 
in more detail, thus improving the daily operation of the data-
center. Using the data in this figure, one could easily correlate 
temperature increases with, for example, data received over 
networks, increase in I/O time, and context switches. 

Other kinds of analyses are more complex, requiring data science 
techniques to delve deeper into possible meaning and correla-
tions in our time-series data. Time series in datacenters often 
display sequential dependencies, meaning the value of a data 
point is statistically dependent on a previous one. One of the 
possible steps in analyzing time series is performing  regression 

analysis, which assumes independence of observations. To 
ascertain the practical usefulness of our data, we perform some 
basic analytics.

We first investigate whether the time series is linearly corre-
lated to a lagged version of itself, using the Pearson correlation 
for two independent variables, or, in time series terminology, 
auto correlation. Figure 4 plots this autocorrelation to provide 
an insight into the possibility to reduce the amount of data [4]. 
We use the metric Server Power Usage averaged over the GPU-
enabled nodes. The confidence interval, depicted in light gray/
blue in the figure, lies between -0.2 and 0.2. The figure shows 
that high correlation values occur for small lags, which is reason-
able considering the 15 second sampling frequency.

To further assess the usefulness of the collected metrics, we 
evaluate a first-order autoregression model, a parametric 
technique for fitting the observations. As Figure 5 depicts, 

Figure 3: A dashboard to visualize 10 metrics for a single GPU-enabled server in the LISA datacenter. Each metric is normalized by the maximum value en-
countered during the three months recorded for this server. For all but the “Host Free Memory,” higher means more loaded.

Figure 4: Pearson autocorrelation plot for the server power usage metric. 
Each point represents a period of 15 seconds. The light gray/blue shaded 
area represents confidence intervals. The horizontal axis shows 15 second 
lags, the vertical axis shows correlation values.
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we measure the solution quality by computing the absolute 
distance between predictions and the ground truth. We chose 
518,918 points for fitting the model and tested on 5,242 values, 
normalized between 0 and 1, by subtracting from each value the 
minimum and then dividing the result by the difference between 
maximum and minimum. We did no additional filtering. The 
autoregression histogram in Figure 5 (left) suggests a reason-
able fit for the Server Power Usage metric. However, in Figure 
5 (right), we see a possible overfitting behavior when scatter-
plotting the predictions against the ground truth. It seems that 
this simple technique is only capable of predicting the limited 
interval between 0.6 and 0.8, which is close to the normalized 
average (0.57), with the whole range being 0.17, 1 for this metric. 
This is an example of how data scientists could start analyzing 
our data. More in-depth analyses are certainly possible. We leave 
this for future work and invite others to run their analyses on the 
data we open-source.

Conclusion
Realistic assumptions are at the core of building and operating 
computer systems. Ideally, experts derive these assumptions 
from data gathered long-term from datacenters in the wild, with 
the finest of granularities and at the deepest levels of system 
information. Unfortunately for the computer systems commu-
nity, only a few organizations currently have access to such data. 
Existing data sets and trace archives are bereft of such metrics, 
limiting their ability to support deeper insights.

We offer, as open-source and FAIR data, over 100 low-level 
metrics gathered at fine granularity from the largest public data-
center in the Netherlands, hosted by SURFsara. In this article, 
we gave examples and provided an initial analysis over a GPU-
enabled cluster inside this datacenter. We showed there are large 

amounts of variability and imbalances, and  correlations between 
several low-level metrics. Thus, there is value in performing 
data science analysis over our time-series data. We invite all 
researchers, practitioners, system designers, and datacenter 
operators to download and put to good use our open-source 
archive.
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Appendix—On the Elusive Pursuit of Sharing Trace Archives
This work follows in the footsteps of major achievements. 
The importance of tracing was becoming apparent to the 
broad systems community at least since the mid-1960s, when 
instrumentation for collecting operational traces was made 
available as part of OS/360. By the early 1970s, the systems 
community was already discussing the importance of using 
real traces in performance engineering, and by the beginning 
of the 1990s this practice had already become commonplace. 

Until the advent of the Internet, the sharing of traces seemed 
at best haphazard. The mid-1990s have witnessed the birth 
of trace archives, with the most prominent being the Internet 
Trace Archive (ITA, 1995). Focusing on the operation of the 
Internet, the ITA exhibits many modern features such as data 
collection and processing tools, and, most importantly, data 
shared with policies that today would be labeled as FAIR. 

Established in the late 1990s, the Parallel Workloads Archive 
(PWA) [1] is perhaps the most successful example of how 
shared traces can help shape a community. The PWA started 
with just a few traces but a good format for sharing, and today 

it shares traces collected from about 35 environments, mostly 
from parallel production supercomputers and clusters, but 
also from research and production grids. Since the mid-
2000s, sustained efforts have led to the creation of the Grid 
Workloads Archive [2] (2006), the Failure Trace Archive 
[3] (FTA, 2010), the Peer-to-Peer Trace Archive (2010), the 
Workflow Trace Archive [7] (2019), and the Computer Failure 
Data Repository, hosted by USENIX.

In the 2010s, the computing industry was transformed by the 
move to cloud services and by the advent of big data. Unsur-
prisingly, studies of how such systems operate have led to 
sharing of characteristics (notably, from Facebook, Yahoo, 
IBM, Taobao) and, rarely, of traces such as the multi-day trace 
from a large cluster at Google [4] or Microsoft [6]. Although 
sharing traces has been very useful for the community, 
the presence of only one or a few traces cannot account for 
the  tremendous diversity of traces present “in the wild” as 
reported periodically by analytical studies [5]. 
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Transient execution attack methods and their mitigations have been 
subject to much scrutiny in recent years. While new hardware plat-
form designs are built to mitigate these methods, existing systems 

may need to implement microcode or software mitigations. But due to the 
complexity and variety of these methods, system administrators may wonder 
what, when, and how to mitigate their systems. We examine common mitiga-
tion approaches for the Microarchitectural Data Sampling (MDS) and Trans-
actional Asynchronous Abort (TAA) methods, how these mitigations help 
prevent attackers from leaking data, how they work to prevent attackers from 
leaking data, and how sysadmins can configure the mitigations depending on 
the needs of their environment.

Hardware Vulnerabilities and Transient Execution Methods
In recent years, researchers have demonstrated a novel set of methods known as transient 
execution attacks (TEA, formerly termed speculative execution side channel), which target 
some of the hardware designs introduced in many modern processors, in particular specula-
tive execution. The leading researchers have detailed several variants of this new class of 
methods that target different hardware components and instructions that execute transiently 
under various conditions. The hardware industry has responded by issuing microcode updates 
for affected platforms, developing software techniques to mitigate affected instructions, 
and changing the designs of new processors. These efforts help ensure that by the time new 
variants are disclosed, users can protect their systems against potential implementations of 
these methods. This is a common process that the industry has used to mitigate other hardware 
issues and errata in the past [1].

Demystifying Microcode
Hardware manufacturers have been using microcode (μcode) since the mid-1990s, among 
other things to fix bugs found on existing processors. μcode is a way to modify the behavior 
of hardware without changing the silicon itself by changing how the CPU translates instruc-
tions into micro-operations (μops). For example, when a CPU executes x86 instructions, 
parts of the CPU decode each instruction into a sequence of machine-readable μops that 
defines what the instruction does. Microcode updates allow hardware manufacturers to 
modify how particular instructions translate into μops, thereby changing the instruction’s 
behavior.

Software Stack
As seen in Figure 1, there are many different elements in the software stack. Depending on 
the issue, different components of this stack might change to accommodate new optimiza-
tion, hardware functionality or to complement μcode changes with additional features. For 
example:
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 3 The operating system (OS) can include methods that make it more difficult for potential 
malicious actors to target other processes, other users, or the OS itself.
 3 Over the years, we have seen how some of these methods target some popular libraries, 
particularly cryptographic libraries. Popular and well-maintained cryptographic libraries are 
regularly updated to include programming techniques that make these attacks more difficult. 
For example, constant-time implementations of crypto algorithms increase their protection 
against timing methods.
 3 In certain cases, compilers have introduced changes so that the code generated includes 
constructs to increase the protection against potential malicious actors. For example, we saw 
how compilers like gcc included options to protect code against certain Spectre attacks [2].

But the list of software mitigations for these methods does not end here. Software developers 
regularly update virtual machine managers, web browsers, libraries, tools, and middleware to 
help mitigate issues originating in hardware [3].

Characteristics of Transient Execution Methods
We focus here on the recently disclosed Microarchitectural Data Sampling (MDS) [4] and 
Transactional Asynchronous Abort (TAA) [5] methods. In these transient execution attacks 
(TEA), both the victim (process, kernel, etc.) and the malicious actor must share some physi-
cal computing resources. This means that these methods have several inherent restrictions:

 3 Remote attacks are difficult or not possible. A malicious actor will typically require having 
local access to a system.
 3 Any data is accessed in read-only mode. Malicious actors cannot change or roll back a 
system’s data.
 3 There is no direct privilege escalation. A malicious process cannot give itself root access.
 3 In some methods, attackers have little or no control over what data they can access. Sophisti-
cated analysis techniques are required to parse secret data out of system noise.
 3 Both victim and attacker must run on the same physical core.
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Figure 1: Modern software stack
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In addition to these limitations, most TEA share the following 
procedure:

1. Access target data
2. Send data through a covert channel
3. Receive data from the covert channel
4. Analyze the data for secrets

To demonstrate, consider the following typical scenario: a mali-
cious actor wishes to extract data from a public cloud system 
where multiple users can access the same machine and run any 
type of code. In this type of system, an orchestrator or another 
piece of software will assign a user to a machine according to the 
user’s specified requirements, and the user has little to no control 
over which machine they are assigned to. The assigned system 
will typically also be running other users or processes that have 
been allocated in the same manner, which means a malicious 
actor has little to no control over which users or processes they 
can attack. Because these other users and processes can run 
arbitrary code, a malicious actor needs to work really hard to find 
a way to force a victim to run a workload that may be of interest 
to the attacker, and the attacker must also devise a way to infer 
what code the victim is running. Finally, if the attacker wishes to 
implement a data sampling method, the malicious process must 
share those key computational resources for an extended period 
of time with the victim process to establish certain data access 
patterns that the attacker can analyze to infer the data that the 
victim process was using.

Design and Implementation of Mitigations
While there is not a single recipe to follow when mitigating these 
issues, this section describes the general process used to mitigate 
MDS and TAA. The mitigations for both issues require changes 
at the μcode level and the software level and, therefore, are good 
case studies of the mitigation process for TEA.

Step 1: New Microcode
Let’s review an example of how μcode defines how instructions 
translate into μops executed by the CPU. The MDS and TAA 
methods try to leak stale data from small microarchitectural 
buffers inside the CPU, and the mitigations for these methods 
consist of clearing the affected buffers before their contents 
can be sent through a covert channel. This raises the question 
of when and how those buffers are flushed. We cannot clear the 
buffers in a disorganized fashion, since that could have undesir-
able effects, such as cross-thread attacks, stalls, or performance 
implications. One option we do have is to provide a mechanism so 
software elements higher up in the stack (such as the OS or appli-
cations) can decide when to clear the buffers. For that reason, 
Intel redefined an existing instruction (VERW, Verify Segment for 
Writing) that was deprecated and not in use. On affected sys-
tems, after the μcode update, VERW can be used to flush and clear 
the content of the buffers affected by MDS/TAA.

Step 2: How to Invoke the New Functionality Provided 
by the Microcode (if Required)
Now we have a tool (VERW) that software can invoke to clear those 
buffers. An example of a C function that calls this instruction in 
the Linux kernel is shown below:

static inline void mds_clear_cpu_buffers(void) {
        static const u16 ds = __KERNEL_DS;
        asm volatile(“verw %[ds]” : : [ds] “m” (ds) : “cc”);
}

Listing 1: Linux kernel function to invoke VERW

We mentioned the Linux kernel since the OS invokes this func-
tionality. The OS is the only component of the software stack that 
can protect different users from user-to-user attacks, as well 
as protect the kernel itself from potential attacks originating in 
userspace.

Step 3: Implementing the New Functionality
Now that we have a function like mds_clear_cpu_buffers(), the 
next step is to identify the right places to clear the buffers. The 
most appropriate location to flush the buffers is during a ring 
transition. Ring transitions occur when the system changes the 
privilege level at which code can execute. For example, if a user 
application performs a system call to the kernel, a ring transi-
tion from ring 3 (userspace) to ring 0 (kernel space) occurs. To 
mitigate these issues, the VERW instruction is invoked before the 
system call returns from kernel space back to userspace.

As another example, VERW should be invoked if there is a context 
switch between different processes, regardless of the owner of 
those processes. This prevents attacks on systems that disable 
simultaneous multithreading (SMT), since only one process 
can run on a physical core at any given time, and the buffers are 
cleared before another process runs in the same core.

Step 4: Options to Configure the Mitigation and Report 
Mitigation Status
The last step when it comes to reducing the severity of these 
security issues is to provide mitigation options so that those with 
the right privileges can configure them at boot time, as well as a 
mechanism to detect the status of those mitigations. Sysadmins 
can control mitigations from the kernel command line. A full list 
of available options based on the hardware vulnerability is avail-
able at kernel.org [6]. In most cases, because transient execution 
attacks require a malicious actor to be able to execute locally on 
a system, machines that run only known, controlled, and trusted 
software may be very difficult or even impossible to target with 
these methods. Also, due to the nature of the code and users they 
support, certain systems might not be the target of transient 
execution attacks and may not need the mitigations. For example, 
if after a detailed risk analysis where the usage of the system and 
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the characteristics of TEA are considered, the sysadmin decides 
that the risk of TEA is very low, they may choose to disable the 
mitigations.

In cases where all the userspace applications are trusted and 
don’t execute untrusted code, then mitigations can be disabled. 
System administrators may want to disable the mitigations on 
such systems, as different mitigation options can have perfor-
mance implications. In other cases, when programs have secret 
data that needs to be protected (for example, crypto keys), the 
kernel should provide a full mitigation for the same issue. Also, 
other components of the software stack, like compilers, might 
also put in place options to enable or disable the mitigations. 
System administrators should evaluate their environment and 
workloads and make an educated decision whether security 
mitigations are needed.

Sysadmins can use simple tools to check if a given system is miti-
gated against certain CPU vulnerabilities. In Linux, hardware 
security issues are associated with a report log, which resides in 
sysfs. The output of sysfs indicates if a system is affected by a 
specific method, and whether the system is mitigated or pres-
ently vulnerable.

To reflect recently disclosed vulnerabilities the OS needs to be 
up-to-date, either by updating the existing kernel or upgrad-
ing to the most current one. Updating the OS might seem like a 
daunting task that takes a significant amount of time. To ease 
the burden, security researchers created system vulnerability 
checkers, such as a tool for Linux and BSD available at GitHub [7] 
to detect whether a given machine is affected by TEA methods. 
Those tools provide detailed information about hardware sup-
port for mitigation techniques if a system is vulnerable to TEA, 
whether vulnerable systems can be mitigated with a μcode or OS 
update, or if software changes are required.

Other Techniques for Preventing Attacks
We have seen how these methods take advantage of hardware 
resources that are shared among different processes. It is pos-
sible to limit this resource sharing and thereby reduce the attack 
vector, with some caveats.

The first challenge here is system load. Some systems are 
configured to run many more processes at any given time than 
currently available physical cores on the system. In these cases, 
resource sharing is unavoidable. However, on systems where the 
total number of user processes doesn’t exceed the total number  
of physical cores, it is possible to schedule processes to always 
run on the same physical core and never share that core with 
other processes, thereby reducing the chances for a malicious 
actor to implement one of these methods. Linux tools like 
numactl and taskset can be used to set the affinity of processes 

and  implement this type of process scheduling. Also, cgroups can 
be an alternative to create process isolation.

The open source community is working on a Linux kernel sched-
uling technique to implement a similar solution. This technique, 
called core scheduler, allows system administrators to tag 
specific processes. Processes sharing a tag can run simultane-
ously on the same physical core (when SMT is enabled), while 
processes with different tags are prevented from running con-
currently on the same physical core. When one process stops 
running, either because the process is finished or because the  
OS schedules a different process, the hardware resources (such  
as buffers and branch predictors) are cleared before another 
process can use them. Other operating systems and virtualiza-
tion tools might also implement similar techniques.

The second caveat is interruptions. By default, interrupts can run 
on any core of the system as decided by the OS. So, if that is the 
case, then interrupts might be a target of a potential malicious 
actor. Particularly in systems with SMT on, a malicious actor 
may be able to target the data accessed by the interrupt while 
this interrupt is executing on the same core. However, system 
administrators can now choose to specify cores in the system to 
handle all system interrupts, preventing any user processes from 
running on those cores [8]. System administrators should care-
fully consider the implications of this approach (how it affects 
the overall throughput of the system, the number of system calls 
that are normally handled, etc.).

Conclusion
While transient execution methods have affected many modern 
CPUs, the industry has collaborated to ensure that mitigations 
for these methods are available by the public disclosure date. 
This requires understanding the implications of these methods 
and the optimum solution for mitigation. Since new hardware 
includes mitigations against these methods, an approach might 
be to update the hardware. However, because changing hardware 
takes time, is costly and challenging, other alternatives (like 
updating microcode and making changes to the software stack) 
are needed to mitigate existing vulnerabilities. It’s crucial for 
system administrators to understand that the technical mitiga-
tions are just one component of the security process. Enabling 
sysadmins to choose what mitigation approach works best for 
their environment and workloads is key. Providing alternatives, 
explaining how the different mitigation methods work, and out-
lining the factors to be considered for each mitigation approach, 
all help enable system administrators to choose the most appro-
priate actions.
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Using OpenTrace to Troubleshoot  
DB Performance
A N A T O L Y  M I K H A Y L O V

Y ou cannot fix any of the problems you cannot see. I will outline how 
the Zendesk SRE team monitors database performance and how 
you can apply it to your own observability challenges. Our approach 

considers low-level database performance data, proxy logs, and application 
performance monitoring (APM) in order to expose the meaningful context 
behind an individual slow SQL query.

Database performance is central to users’ experiences, so having excellent observability 
is critically important. Many of the observability tools that we build or buy are focused on 
ensuring optimal customer experience, or determining the extent of customer impact during 
outages and service degradations. These are challenges that many in the industry experience, 
and I hope that the work I have done at Zendesk will help you build your own observability 
dashboards. This approach leads to improved back-end performance and happier customers.

Ideally, what we want is a way to track just the single user request that resulted in bad perfor-
mance. Imagine being able to complete an incident’s root cause analysis that takes seconds 
rather than minutes or hours. API traffic from a large set of customers can not only be traced 
to relevant database internal performance metrics at a given time, but also be visualized 
and presented in a readable format. Why is a given SQL query fast in one case and slow in 
another? When does database performance degradation lead to an outage and when does it 
not? Is the query execution plan alone enough to understand and address performance issues? 

Over the past year we substantially improved database observability, and this improved over-
all stability and reliability of the system. We built tools to help engineers see and understand 
performance issues quicker. This has also helped to prevent outages.

I will go through key elements of the observability stack we have built to create meaning-
ful context around requests, linking SQL queries to APM distributed traces and even proxy 
log events. In this context the proxy event is the entry point, the time elapsed between when 
an individual request enters the system and once the response is ready to be sent back. SQL 
query analysis, proxy log event, and APM tracing are the three key elements. To support and 
enhance their integration we collect database internal information and link that to the rest of 
the system. We also collect data from information schema to have information about data-set 
size, which is very important for profiling SQL queries and understanding how data-set size 
impacts the overall performance. Each individual element provides information, and their 
integration helps to traverse from one to another using Open Tracing.

OpenTracing
OpenTracing is a vendor-neutral, cross-language standard for tracing distributed applica-
tions. Datadog offers OpenTracing implementations for many APM tracers, including the 
Ruby on Rails version we use for demo purposes. According to the official documentation 
(https://opentracing.io/docs/overview/spans/):
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The span is the primary building block of a distributed 
trace, representing an individual unit of work done in a 
distributed system. Each component of the distributed 
system contributes a span—a named, timed operation 
representing a piece of the workf low. Spans can (and 
generally do) contain References to other spans, which 
allows multiple Spans to be assembled into one complete 
Trace—a visualization of the life of a request as it moves 
through a distributed system.

A trace_id is the unique identifier we propagate from one service 
to another in order to keep the context. While it can be relatively 
easy to connect APM application requests with a proxy log event, 
it’s much more difficult to propagate a trace_id to other  services 
like the database process list; I will show how we use SQL com-
ments to do so. We can reuse this approach to connect a back-
ground cron task job with a relevant SQL query by generating 
trace_id outside of the HTTP request life cycle. Any service that 
communicates to a database can benefit by propagating the nec-
essary context with SQL query and tracing libraries that help to 
abstract complexity and use higher level objects: span and trace.

Database Observability
According to High Performance MySQL (https://www 
.highperfmysql.com):

Performance is response time. We measure perform-
ance by task and time, not by resource. Performance 
optimization is the practice of reducing response time as 
much as possible.

MySQL Performance Schema provides a way to inspect database 
performance and find out why a SQL query runtime takes longer. 
Or saying it another way: why an SQL query is slow. This level 
of instrumentation is critical to address performance issues. 
MySQL 5.6+ supports the sys schema (https://www.percona 
.com/blog/2014/11/20/sys-schema-mysql-5-6-5-7/), which is a 
set of objects that interprets data collected by the Performance 
Schema in a manageable format. I will describe how we take 
snapshots of relevant queries from the schema with 15-second 
resolution and learn how to use tracing to connect SQL queries, 
including trace_id, with the application traces and proxy logs. 
This tool will not only give you a great instrument to jump from 
slow query to proxy logs but will also filter out HTTP requests 
with high database runtime, and so we will focus on these.

According to High Performance MySQL:  

[A] common mistake is to observe a slow query, and then 
look at the whole server’s behavior to try to find what’s 
wrong. If the query is slow, then it’s best to measure the 
query, not the whole server….Because of Amdahl’s law, a 
query that consumes only 5% of total response time can 
contribute only 5% to overall speedup, no matter how 
much faster you make it.

According to Site Reliability Engineering (https://landing.google 
.com/sre/sre-book/chapters/monitoring-distributed-systems/):

Your monitoring system should address two ques tions: 
what’s broken, and why? The “what’s broken” indicates 
the symptom; the “why” indicates a (possibly inter-
mediate) cause….When pages occur too frequently, 
employees second-guess, skim, or even ignore incoming 
alerts, sometimes even ignoring a “real” page that’s 
masked by the noise.

“What” and “Why” have different meanings for DBA and for SRE.

 3 Relational storage and SRE observability worlds are somewhat 
disconnected. We have to close the gap between a slow HTTP 
request and what the DB was doing at that very moment.
 3 SRE teams view high-volume traffic that often has high cardi-
nality. High-cardinality monitoring tools allow connecting with 
APM/logs.
 3 DBA teams focus on database performance and the portion of 
inefficient SQL queries that make it to the DB slow query log.

Improving Observability with Database Signal
Four golden signals (saturation, latency, traffic, errors) make up a 
well-known approach in web service monitoring, but how can we 
apply these signals to database performance? Is there anything 
unique about database performance? 

According to High Performance MySQL: 

Threads_running tends to be very sensitive to problems, 
but pretty stable when nothing is wrong. A spike of 
unusual thread states in SHOW PROCESSLIST is 
another good indicator….If everything on the server is 
suffering, and then everything is okay again, then any 
given query that’s slow isn’t likely to be the problem…. 
Pileups typically result in a sudden drop of completions, 
until the culprit finishes and releases the resource that’s 
blocking the other queries. The other queries will then 
complete.

We will follow the advice from this book to pick the most impor-
tant performance metrics:

The essence of this technique is to capture…[it] at high 
frequency…and when the problem manifests, look for 
spikes or notches in counters such as Threads_running, 
Threads_connected, Questions and Queries.

Each of the key metrics carries the signal. For this purpose we 
choose very low thresholds as service level indicators: seven 
threads connected, five threads running, DB runtime below two 
seconds and queries/second (QPS) not higher than 20. When the 
threshold is exceeded it indicates a signal (1); otherwise, there’s 
absence of the signal (0). We will use the bitmask OR operation to 
calculate the resulting database signal (Table 1).

https://www.highperfmysql.com
https://www.highperfmysql.com
https://www.percona.com/blog/2014/11/20/sys-schema-mysql-5-6-5-7/
https://www.percona.com/blog/2014/11/20/sys-schema-mysql-5-6-5-7/
https://landing.google.com/sre/sre-book/chapters/monitoring-distributed-systems/
https://landing.google.com/sre/sre-book/chapters/monitoring-distributed-systems/
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Each individual SQL query will be instrumented with an SQL 
comment that contains a unique identifier trace_id—for example:

SELECT * from users /* 1541859401495831 */

For visualization purpose we use Datadog and its APM (https:// 
docs.datadoghq.com/tracing/connect_logs_and_traces/Logs 
_integration):

The correlation between Datadog APM and Datadog 
Log Management is improved by the injection of trace 
IDs, span IDs, env, service, and version as attributes in 
your logs. With these fields you can find the exact logs 
associated with a specific service and version, or all logs 
correlated to an observed trace (https://docs.datadoghq 
.com/tracing/visualization/#trace).

Full Circle Observability
Disclaimer: code snippets shared below are open source (MIT 
license) and are not used at Zendesk but are created exclusively 
for this article for the purpose of illustration.

A tracing library automatically generates a trace_id on the appli-
cation side. When the trace_id is generated we propagate context 
via the HTTP header to the downstream and upstream depen-
dencies, so when the two services communicate to each other, the 
HTTP header X-Trace-ID is the key element needed to bring the 
context up the stack, from the application to the proxy layer (see 
Figure 1). In the Ruby on Rails application, the simplified version 
of the middleware looks as follows:

class DdtraceMiddleware
  def call(env)
    result = @app.call(env)
    result[1]['X-Trace-Id'] 
                        Datadog.tracer.active_span.trace_
id.to_s
    result
  end
end

Then the trace_id can be part of Nginx proxy logs, application 
log, all dependent microservices and external services that were 
called to serve the original requests. For example, the Nginx 
access log may appear as follows:

log_format    json '{"dd":{"trace_id":"$upstream_http_x_
trace_id"}}'

We can bring more information from the application up to the 
proxy layer, store it in access_log for observability purposes, and 
then remove the service information from the HTTP response. 
For example, if we collect the information about DB runtime, 
connected and running threads, as well as QPS and calculated 
Database signal, then the proxy configuration will look as follows:

log_format    json '{'
  '"dd":{'
    '"trace_id":"$upstream_http_x_trace_id"'
  '},'
 '"http":{'
    '"performance":{'
      '"queueing_delay":$upstream_http_x_queueing_delay_
digits,'
      '"total_runtime":$upstream_http_x_total_runtime_
digits,'
      '"db_runtime":$upstream_http_x_db_runtime_digits,'
      '"db_signal":$upstream_http_x_db_signal_digits,'
      '"db_threads_running":
               $upstream_http_x_db_threads_running_digits,'
      '"db_threads_connected":
               $upstream_http_x_db_threads_connected_
digits,'
      '"db_qps":$upstream_http_x_db_qps_digits'
    '}'
  '}'
'}';

Database signal calculation can be another middleware layer 
with the following code:

def get_db_signal
  db_threads_connected_slo \
               = Thread.current[:db_threads_connected] > 7
  db_threads_running_slo   \
               = Thread.current[:db_threads_running] > 4
  db_runtime_slo         \
               = Thread.current[:db_runtime] > 2
  db_qps_slo               \
               = Thread.current[:db_qps] > 20

  db_threads_connected_bit = db_threads_connected_slo ? 1 : 
0

Bit Signal SLI

0001 Threads connected 7 sec

0010 Threads running 5 sec

0100 Database runtime 2 sec

1000 Database queries per second 20

Table 1: Bitmasks for signaling exceeded SLIs

Figure 1: The trace_id gets added by the application and pushed back 
upstream to the web proxy and downstream to the database.

https://docs.datadoghq.com/tracing/connect_logs_and_traces/Logs_integration
https://docs.datadoghq.com/tracing/connect_logs_and_traces/Logs_integration
https://docs.datadoghq.com/tracing/connect_logs_and_traces/Logs_integration
https://docs.datadoghq.com/tracing/visualization/#trace
https://docs.datadoghq.com/tracing/visualization/#trace
https://docs.datadoghq.com/tracing/visualization/#trace
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  db_threads_running_bit   = db_threads_running_slo ? 2 : 0
  db_runtime_bit           = db_runtime_slo ? 4 : 0
  db_qps_bit               = db_qps_slo ? 8 : 0

  (db_threads_connected_bit | db_threads_running_bit \
      | db_runtime_bit | db_qps_bit).to_s
end

Both the middleware layers and enhanced proxy log configura-
tion help to traverse and debug slow SQL queries in either direc-
tion: from proxy to the database process list data and also from 
process list up to the proxy log. Figure 2 shows a communication 
between an asynchronous process and the database to collect 
performance information. Step 1 polls the sys schema process 
list, extracts the individual SQL query, parses the SQL comment 
with trace_id, and constructs the JSON event with the dd.trace_
id identifier. This is a very important step to connect asynchro-
nous data collection with request/response events later on and in 
being able to create context around slow SQL queries.

Process list aggregation can be done via a bash script:

  function process_list_json() {
    trace_id=$(echo "$1" |grep -Eo '/\* [0-9]{16,20} \*/' \
       | awk '{print $2}')

    if [ -z "$trace_id" ]
    then
      echo "{\"mysql\": \"process_list\", \"process_list\":\ 
$1}" 
    else
      echo "{\"mysql\": \"process_list\", \"process_list\":\ 
$1, \
       \"dd\": {\"trace_id\": ${trace_id}}}"
    fi
  }

  function process_list() {
    /usr/bin/mysql -h127.0.0.1 -uroot -s -r -e "SELECT 
    JSON_OBJECT(
      'thd_id', thd_id,
      'conn_id', conn_id,
      'command', command,
      'state', state,

      'current_statement', current_statement,
      'statement_latency', statement_latency / 1000,
      'progress', progress,
      'lock_latency', lock_latency / 1000,
      'rows_examined', rows_examined, 
      'rows_sent', rows_sent,
      'rows_affected', rows_affected,
      'tmp_tables', tmp_tables, 
      'tmp_disk_tables', tmp_disk_tables,
      'full_scan', full_scan,
      'last_statement', last_statement,
      'last_statement_latency', last_statement_latency / 
1000
    )
    FROM sys.x\$processlist
    WHERE pid IS NOT NULL 
    AND db = 'db'
    LIMIT 25;"
  }

while true; do
    process_list | while read -r item; do
      process_list_json "$item" "$threads" > /proc/1/fd/1
    done
    sleep 1;
  done

This script contains two key functions: process_list() to collect 
SQL queries, and process_list_json() to extract trace_id from 
the SQL comment; it also contains a loop to keep these two func-
tions running once per minute. This script is running in a docker 
container; output gets redirected to STDOUT and is collected by 
the OpenTracing agent: in this case, the datadog-agent. 

An OpenTracing agent receives an APM event from the applica-
tion and a log event from the proxy and JSON log events. Log 
events get sent to the log intake endpoint separately. Note: Data-
dog is used for illustration purposes, but database performance 
monitoring can be done by any alternative OpenTracing provider.

Figure 2: A second way of using the trace_id is for the database connector 
to query sys schema.

Figure 3: Full observability circle. The unique identifier trace_id gets 
propagated from the application to database and proxy logs.
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Conclusion
With comprehensive instrumentation and distributed tracing, 
we created an observability basis to detect database perfor-
mance degradation and have the necessary context for further 
investigation. A database signal can help to address the following 
questions:

 3 How much time a database spent processing an SQL query for a 
given HTTP request
 3 How saturated the database resources have been during the 
time of request
 3 Where the database spent most of the time processing database 
requests
 3 How many customers are impacted and what their user experi-
ence was

DECEMBER 7–9, 2020 • VIRTUAL EVENT

www.usenix.org/srecon20americas

The full program and registration 
will be available soon. 
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Not yet at its midpoint, 2020 is already an unforgettable year. This 
article will appear in the fall edition of ;login: but was drafted in 
June, three weeks after the tragic death of George Floyd. The Black 

Lives Matter movement is at the forefront of current events, eclipsing even 
the ongoing pandemic. By the time you read this, the news cycle may have 
changed again (to what is anyone’s guess), but right now, Black Lives Matter is 
at the top of everyone’s mind, including mine. I sat down to write this column 
with the intention of drawing out often overlooked nuances of health- 
checking in distributed systems, but that will have to wait until a later col-
umn. There are more pressing matters at hand.

Black people are incredibly underrepresented in the technology industry, and the percentages 
have barely moved in the last several years [1]. Black technologists are even more under-
represented when you break out engineering staff from the rest of the business. I don’t have 
statistics, but based on my own experiences in this discipline, site reliability engineering as a 
sub-field includes very few Black people. None of this is OK. 

We have not welcomed Black people into our field, and too many are leaving, or choosing 
never to enter, because of that [2]. Avoiding use of offensive language such as “master/slave” 
(use “leader/follower” or “primary/replica”) and “whitelist/blacklist” (use “allowlist/denylist” 
or “blocklist”) is table stakes. We in senior roles also need to “give away our legos” [3] to mem-
bers of underrepresented groups by supporting them through projects that help them grow 
and by sponsoring them.

Big tech often speaks of diversity as a means to an end, and this is a problem. For example, 
training sessions intended to reduce unconscious bias usually tell us to value diverse teams 
because those teams are more effective and creative and therefore better for business. I 
have always viewed this approach as incredibly dehumanizing. The people who work for any 
organization, and indeed, those who might aspire to work there, are not commodities. They do 
not exist as a means to benefit your business or to increase your key performance indicators. 
People should be treated well (and fairly) simply because they are human beings and intrinsi-
cally valuable. It is our obligation and our duty to our Black colleagues. It is a matter of justice.

Justice is a complicated topic, and different thinkers have different approaches to it, but the 
twentieth-century American philosopher John Rawls’s contributions have been the most 
influential in recent times [3]. Rawls proposes a thought experiment: what if we designed the 
rules of society from behind a “veil of ignorance,” without knowledge of what our eventual 
social position would be? Rawls thinks that we’d choose two key principles for a just society: 
the first and overriding principle being civil liberties for all, such as freedom of speech and 
the right to equal treatment under the law; and the second principle being that the only social 
and economic equalities that exist should work to the advantage of the least well off—so, for 
example, a business owner can fairly make more income than average because that business 
provides affordable services and employment, lifting others.

Laura Nolan is an SRE and 
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She is a contributor to Site Reli-

ability Engineering: How Google Runs Production 
Systems and Seeking SRE, published by O’Reilly, 
and is a member of the USENIX SREcon Steer-
ing Committee. laura.nolan@gmail.com
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Black Lives Matter is a call for justice for Black people in their 
dealings with the police. It is also a matter of justice that Black 
people deserve to be able to work in the technology industry on an 
equal basis to anyone else, and to achieve their full career poten-
tial. Black people also deserve to have more voice and influence 
in tech than they currently do, and this is vital as technology now 
has significant bearing on political issues and on civil liberties.

An incomplete list of the places where justice currently meets 
technology includes:
 3 Predictive policing technologies
 3 Use of automated surveillance and facial recognition technology 
by authorities (including at protests)
 3 Targeted political advertising
 3 Software expert systems in the public realm, including in social 
welfare decision-making and criminal justice
 3 Collection, use, and sharing of personal information of all kinds
 3 Determining credit scores and conducting background checks

Black people in the United States (and in many other countries) 
have never truly had equal civil liberties in practice. This makes 
the dearth of Black representation in technology at a time when 
technology is impacting civil liberties in such profound ways 
deeply troubling. Shalini Kantayya’s new documentary, Coded 
Bias, about Joy Buolamwini’s research at the MIT Media Lab 
on racial bias in AI, discusses how flawed facial recognition 
technologies disproportionately impact Black people [5]. Cathy 
O’Neil’s Euler prize-winning book Weapons of Math Destruc-
tion describes many more examples, ranging from the impact 
of technology on workers’ rights to bias in predictive policing 
technology [6].

I am not suggesting that SRE (or operations-focused engineers 
in general) can solve all of these problems. However, I do think 
that we have valuable perspectives on the systems that we 
work with. For example, we tend to have a broad view of system 
architectures and a good understanding of what data exists in 
our systems and how it is managed. We ought to know how reli-
able and robust our systems are, and if they are fit for purpose. 
We know whether appropriate security and privacy measures 
are in place. We have access to metrics and logs. In short, we 

know a lot about our systems and are thus well positioned to spot 
many potential ethics concerns. For instance, it’s feasible that 
operations engineers at Facebook could have spotted Cambridge 
Analytica’s excessive API use to harvest personal information 
in order to influence voters ahead of the 2016 US elections and 
Brexit referendum.

In recent years we have seen many engineers and technologists 
speaking out about ethical concerns in the technology  industry. 
This is an important development—vigilant engineers can 
provide an essential counterbalance to the reduction in trans-
parency, oversight, and accountability that normally goes hand-
in-hand with the automation of any process. SREs and other 
kinds of production-focused engineers have a role to play here, 
and Black engineers and others from underrepresented groups 
ought to be part of that. 

What are the service level objectives (SLOs) and service level 
indicators (SLIs) for our democracies and civil liberties, and how 
do we do our part to uphold them as a profession? With our cur-
rent demographic makeup, there is no way we can justly answer 
these questions.
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C O R Y  L U E N I N G H O E N E R

I don’t know about the rest of you, but for me the last several months have 
been really weird. At the start of March, my daily routine stopped being 
one that involved getting up, riding my bike to my office, talking to my 

coworkers, and hopefully getting some technical work done. Instead, I started 
walking into my garage every morning, sitting at my workbench-become-desk, 
and interacting with all of my coworkers via WebEx, Skype, BlueJeans, Zoom, 
and just about any other online meeting package that’s ever been invented. 
While being socially distant has resulted in fewer interruptions, and I feel 
like I have gotten a lot more done each day, it’s also made it clear that projects 
frequently require socialization to make progress. It turns out that most tech-
nical projects benefit from some level of social closeness. 

Getting Stuff Done, Together
Let’s take a look at a project I have been recently working on, one that started back in the days 
when we could sit closer than two meters apart from each other. This project, which is still 
ongoing, is a long-term effort to replace the aging software stack we use to manage many of our 
scientific computing clusters with something more modern. To say the system management 
stack that we started with was outdated would be an understatement: one of the main tools we 
have been using for a long time last had a public release in 2012, and the domain name of the 
company that was founded to support it was recently for sale—$2999 (CHEAP) and it could 
be yours! But the stack, which also included Cfengine 2 and SVN, was solid and well known on 
our production teams, so despite its age making it a liability, there was reluctance to change.

Anybody who has worked in computing long enough has faced the same decision we had to 
make around a year ago: do we continue dragging our current software stack forward, hoping 
that it can continue to serve us for a few more generations of systems? Or do we start the long 
process of updating, knowing that we will face unexpected challenges and potentially intro-
duce instability during the process? While we have faced this question in the past and have 
always decided to wait a little longer, this time we decided to attack it head on.

Now, to be honest, our environment isn’t that complex, and this column isn’t going to be about 
the technical details of our solution. I will mention that it involves Git, Ansible, and a yet-to-
be-determined provisioning tool, but the work we are doing with them is pretty standard. 
Standard enough that a motivated team of three or four people could probably have replaced 
most of the aged components with about six months of solid work. But if those four people 
had hidden away in their offices for those six months, only eating cheese and pizza that we 
slid under their doors for them, and they emerged at the end of their metamorphosis with a 
beautiful new software stack that was perfect in every way, the project would have been a 
total failure. The problem we had was partly a technical one, but also a social one. We needed  
to move an entire organization of technical people from one software stack to another, and  
we needed to do it in a way that respected the fact that some teams wanted to be involved in 
the development, but a lot of the teams just wanted to be the end users of a stable product.
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Cha-cha-cha-cha-changes!
How do you introduce a big change to a big organization? It 
involves transparency, iteration, and building trust. It involves 
being social. This starts out all the way at the start of the project, 
when you need to sell the idea to your immediate coworkers, and 
continues through selling that same idea to members of other 
teams, managers, program managers, and everybody else who 
might be affected by the change. It involves sharing your code, 
whether that is actual code in Go, Python, or some other lan-
guage, or it is a set of YAML configuration files. And it involves 
two-way conversations: presenting your ideas and your code for 
review, and accepting feedback that others give in return.

We used that recipe to great effect with this project, and we 
started out small in the beginning. Our initial social circle was  
just a few of us who had been thinking about the project for a long 
time, and we started by merging our ideas into an initial project 
plan. But instead of acting on the plan, creating a new system 
management stack, and then trying to get others on board, we 
started out by talking about our plan with our managers and 
 fellow tech leads to make sure we wouldn’t create something 
that would be dead on arrival. Meanwhile, we started a proof 
of concept where we could try out ideas and incorporate feed-
back from our colleagues, developing it in an open way that built 
understanding and trust. Once we knew we had the backing of 
a sufficient number of stakeholders, we built a small develop-
ment team with motivated members from each of the teams that 
needed input, and we started working on the real project.

If you just read that and thought, “Wow, that must have taken 
a while,” then you are totally correct. But by doing a lot of the 
socialization work up front, we were saving time along the way 
and preventing failure at the end. As we started the technical 
work on the project, we knew we needed to find ways to keep the 
project collaborative. Since the development team was made 
up of representatives from a variety of other teams, we needed 
to build ourselves up as a meta-team that could work on this 
together. How did we do that?

Let’s Get Together
To start, we had meetings. No, really! A well-managed meeting 
is a very effective way to share information with multiple people 
at once. While we were still able to meet in person, we met once 
a week as a team. Around once a month, we used those meetings 
as “broadcast” meetings—making announcements, working 
through administrative details, and generally keeping everybody 
on the team up-to-date. The rest of the meetings were used for 
social coding activities: group code reviews, giving presentations 
on recent work, and triaging development tasks. Two impor-
tant aspects that made these meetings successful were having 
agendas and finishing on time. Both of these aspects are based on 

the same idea: respect others’ time. By ensuring we had agendas 
(and that we stuck to them!), we made it easier for team members 
to prioritize their time and be ready for the topics that would be 
discussed that day. By finishing on time, we kept our discussions 
bounded and didn’t steal time from other work.

This model hit a snag in the middle of March, when the world 
changed and we all started working remotely. No longer were we 
able to follow our normal routine of getting together weekly to 
talk about the details of an Ansible deployment. Since our meet-
ings were designed around in-person interaction, we decided to 
cancel them until things got better. However, as of late May, we 
recognized that we would likely be working under social distanc-
ing restrictions for a longer term than initially anticipated, and 
as I am writing this (June 2020) we are starting to spin the proj-
ect back up. Luckily, we had another way to work collaboratively 
at a distance waiting in the wings.

Enter GitLab
Very early in the process, we had started hosting our work on a 
local GitLab instance. While our existing system management 
stack was backed by SVN and we used a separate issue track-
ing system for our day-to-day work, we recognized early on that 
adopting an integrated repository browser, issue system, and 
code review system would provide a new level of insight into our 
initial coding project as well as the changes that were happening 
in our systems.

Git has spawned a variety of collaboration tools, from full-
featured services like GitHub to locally hosted tools like Gitea. 
In between is GitLab, which can be used as a remote service or 
hosted locally. All of these tools promote working on projects 
in the open, and all of them follow the same general concept 
of a “merge request” workflow: to make a change, you create a 
branch, make your changes, push the branch up for review, and 
then merge the results into the master code branch. These tools 
provide tight integration with an internal issue tracking system 
and a web-based front end, providing a great deal of transpar-
ency into a team’s development process. In our case, GitLab most 
closely met our needs, and we enthusiastically embraced its use.

As we have started spinning this project back up, we have begun 
using GitLab’s integrated features in earnest. Our weekly in-
person meetings have moved online, and we now use GitLab as 
the main driver of our meetings. Whereas we had previously used 
a separate meeting agenda to decide on discussion topics, we now 
use our existing tasks and issues to drive the meetings. While we 
have replaced the meeting room projector with a shared WebEx 
screen, more people tend to interact with GitLab on their laptops 
during the meetings than before. The tooling has stayed the same, 
but the way we use it to interact with our code and with each 
other has changed to meet our new needs.



56   FA L L 2020  VO L .  45 ,  N O.  3  www.usenix.org

COLUMNS
Systems Notebook: Socially Distant Projects

But Wait, There’s More!
One final note about the benefits of making a project that is 
strong both technically and socially: an unexpected outcome of 
this effort was finding other teams that were starting down the 
same path on similar projects at about the same time we were 
doing this. We had originally set out to build a repository that 
could manage scientific computing clusters, but as we socialized 
our plans, the core team working on this project started picking 
up members of other teams who wanted to build on our work. We 
took this into stride as a group, and used the opportunity to make 
our work more flexible and accessible to more teams.

To do this, we split our Ansible repository into two parts. Each 
individual team has their own Ansible inventory directory, which 
contains their team-specific host definitions, variable defini-
tions, and playbooks. Meanwhile, all teams share an Ansible 
roles directory, which contains reusable building blocks that 
install and configure things like NTP, rsyslog, and authentica-
tion in a standard way across our environment. Had we done this 
project in isolation, none of us would have recognized the utility 
in splitting the repository out like this until it was much too late 
to implement it. And by using GitLab as a central collaboration 
point, we have a very social roles repository that multiple teams 
can edit and review, but also the flexibility for each team to build 
their own team-specific work on top of that.

And the Beat Goes on
So where are we currently with this project? As I mentioned at 
the start, this is an ongoing project, and we are only partway 
through its implementation. I’m happy we started the project out 
socially, as it has benefited from that, especially when we had to 
start doing it remotely. We’ve begun to start the project up again 
after we paused it for a while, and as I am writing this, we’re 
just beginning to see how the project will work using text chat, 
WebEx sessions, and GitLab’s integrated tooling. So far, it is very 
promising. It was a large and sudden change to our workflow, and 
I don’t think it would have worked out as well had we not started 
out with a social and collaborative approach to this project. 

Being socially close despite being physically distant is important 
beyond this time of isolating ourselves for the sake of society. 
Most of the USENIX community spends some amount of time 
working remotely with colleagues, whether they are employees of 
the same company, salespeople who live in different cities, con-
tributors to open source projects, or any number of other people 
we benefit from working with without sharing physical space. 
And as we start migrating back to our normal office life, keeping 
projects social will help keep them running smoothly, especially 
when they involve large changes that we need to convince lots of 
people to make.

XKCD xkcd.com
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It is a little known fact [1] that as pre-teens Romeo and Juliet, both by 
nature predisposed to notions of impossible love and emo anti-parental 
overreaction, independently happened upon and fell in love with Ovid’s 

Metamorphoses, wherein is related the tale of the OG suicidal power couple, 
Pyramus and Thisbe.

Neighbors, whose dwellings were built upon a common center wall in the lovely city of Babylon, 
Pyramus and Thisbe were cruelly forced apart by their respective families, who shared not only 
a foundation wall, but also a bitter long-running feud. So close, and yet so far; the phrase itself 
might have been invented to literally describe their specific predicament, for although their love 
burned so bright the gods took notice, they might as well have been separated by an ocean.

Until one day, a crack formed low in the basement wall that separated their dwellings. Each 
noticing separately, and then by degrees stealing into the basement in the night to hear each 
other whisper their love through the crack in the wall, and to sometimes pass messages and 
precious tokens of love as opportunity allowed. Eventually they both stabbed themselves. A 
lion was somehow involved—the precise details escape me, but in probably humanity’s 
earliest example of negative media influence on youth [2], Romeo and Juliet followed in kind 
some 1500 years later.

Anyway, I know exactly what you’re thinking. The basement wall is a textbook perfect meta-
phor for the memory-enforced separation of kernel space and userspace in monolithic kernel 
architecture! I know, right? Each side yearning for and depending upon the other?! Each sharing 
a common heartbeat but never an embrace! Doomed forever to content themselves with whi s-
pered secrets and messages passed through cracks in the wall forever holding them apart. Sigh.

Passing Messages
In my last article [3], we took a first look at the biolatency.py source code and dove into the 
kernel source to get a basic understanding of the block I/O layer and what requests at that 
layer of Linux look like. In this article, as promised, we’re going to talk about message passing 
and the three mechanisms BPF gives us to whisper precious data through the wall between 
kernel space and our userspace Python runtime. I’ll briefly cover all three, though the third 
and final method is the one we really care about, as it’s the one used by biolatency itself.

The first method we have to send ourselves a message-in-a-bottle from kernel space is the 
bpf_trace_printk() function. For an example of its use, consider the BCC tools’ one-liner 
“Hello, World!” program [4]:

from bcc import BPF
BPF(text=’int kprobe__sys_clone(void *ctx) { bpf_trace_printk(“Hello, World!\\n”); 
return 0; }’).trace_print()

The C portion of this program attaches to the sys_clone()  system call and uses bpf_trace 
_printk() to print the string “Hello, World!” to the system “common trace pipe” (/sys/kernel 
/debug/tracing/trace_pipe) whenever a new process is created. On the Python side, we slurp 
it from the pipe with the trace_print() method, which opens the file  and prints whatever it 
finds within [5].
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This approach is straightforward and makes for easy one-liner 
style tool development, but it has a few problems that make it 
unusable for anything but light testing and one-off tools. Pri-
marily, it’s called the “common” trace pipe because it’s shared by 
every BPF filter that uses bpf_trace_printk().

Ignoring the other technical limitations for a moment, this mech-
anism doesn’t even work well with my diligently constructed 
metaphor—more akin to shouting our messages out the window 
than surreptitiously passing notes in the classroom; making 
bpf_trace_printk() not just a technical but, more importantly, a 
literary non-starter. I think you’ll agree, if Romeo and Juliet had 
to depend on world-readable sockets for message passing, their 
love would never have survived long enough to result in tragic 
mutual suicide.

Obviously, to write tasteful trace programs, we’ll need a way  
to get data from our probe without the pollution of a system-
common datapath.

Let’s therefore abandon printk and move on to the second means 
of data-transfer from a kernel-side probe: BPF_PERF_OUTPUT(). 
This is a ring-buffer of shared memory that contains a pointer 
to some data that you want to pass from kernel space into your 
Python program. A proper piece of shared memory, safe from 
prying eyes. Let’s take a look at how the C-side (kernel-side) code 
uses BPF_PERF_OUTPUT(); this snippet is from the hello_perf 
_output.py example in the BCC tools repo [6]:

// define output data structure in C
struct data_t {
    u32 pid;
    u64 ts;
    char comm[TASK_COMM_LEN];
};
BPF_PERF_OUTPUT(events);

int hello(struct pt_regs *ctx) {
    struct data_t data = {};

    data.pid = bpf_get_current_pid_tgid();
    data.ts = bpf_ktime_get_ns();
    bpf_get_current_comm(&data.comm, sizeof(data.comm));

    events.perf_submit(ctx, &data, sizeof(data));

    return 0;
} 

Now this is more like it. At the top of this probe, we define data_t, 
an arbitrary data structure whose contents are controlled by us. 
This is the envelope we will press through the crack in the wall 
between kernel and userspace. Its secret contents, completely our 
discretion. In this example, we have three bits of info: the PID of 
the process that triggered the probe (pid), the current system time 
in nanoseconds (ts), and the name of the current process (comm).

Each of these three tantalizing intimacies is retrieved by a 
bpf_get function and packed into an instance of data_t called, 

unimaginatively, data. There is a small number of these helper-
functions [7] available in BPF to retrieve various pieces of con-
text from the kernel at the time the probe was fired. bpf_ktime 
_get_ns() is an extremely common bit of passed data, given that 
we are almost always timing system calls, or system-call fre-
quency, with BPF. Once packed into our data envelope, we deliver 
our message with a method call on the BPF_PERF_OUTPUT ring 
buffer, which we’ve named events:

events.perf_submit(ctx, &data, sizeof(data));

I need to call a quick time out here, before we head back to the 
Python side, to more closely examine the call to BPF_PERF 
_OUTPUT(events); and talk about variable scope in your C-side 
probe code. BPF_PERF_OUTPUT(events); is the call that creates 
the ring-buffer we need to pass our data struct into userspace 
(and gives it the name events), and I want to explicitly point out 
where in the code it’s being called, namely, above our hello() 
function, making it a globally scoped variable within the context 
of our probe. That is, events persists between invocations of our 
hello() function, so every time the kernel calls sys_clone() and 
wakes up our probe, the new invocation of hello() will reuse the 
same BPF_PERF_OUTPUT instance.

Stated more explicitly, our hello() function will only be in scope 
for a single triggering of a sys_clone() system call. It fires and 
exits with each new process created by the kernel, and then it 
returns, its context sacrificed to the reallocation gods. This is 
fine if we just want to blurt a “hello” into the world per invoca-
tion, but what if we want to do something more stateful? Like, 
for example, counting the total number of sys_clone() calls 
throughout the lifetime of our probe’s invocation?

The globally scoped events ring buffer implies the answer. 
Because it’s scoped outside our hello() function, it remains in 
memory as long as our Python script is running. Hence, if BPF 
provided something more like a map than a ring buffer (spoiler 
alert; it does), we could use that map to store data between 
probe invocations and slurp it up on a timer, or when we catch a 
keyboard-interrupt on the Python side.

Speaking of the Python side, let’s return there now, where we use 
a blocking call to perf_buffer_poll() inside an unbounded loop 
to check for new data from our events ring buffer, like Pyramus 
constantly slipping downstairs to check for a message from his 
cherished neighbor. This polling method is called on the top-level 
BPF object, once we’ve explicitly opened the ring buffer with 
open_perf_buffer(), the first line of the blurb below:

b["events"].open_perf_buffer(print_event)
while 1:
    try:
        b.perf_buffer_poll()
    except KeyboardInterrupt:
        exit()
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There are two important things to note about this open_perf 
_buffer() call. The first is its argument, in this case print 
_event; this is a function pointer or “callback.” It tells perf 
_buffer_poll() where to send the love letters gleaned from the 
far side of the wall. The second and more important is how we’re 
dereferencing the events ring buffer itself, as a dictionary entry 
from the top-level BPF object b["events"].

This brings us to the third means we have of smuggling sweet 
nothings through the wall between our kernel space probe and 
our userspace Python script: Maps. As I implied above, BPF 
provides myriad Map-like data-structures [8] that you can use to 
capture stateful information like invocation counts and timings 
between the system calls captured by your probe. These data 
structures can all be accessed on the Python side as diction-
ary values attached to the top-level BPF object, in the same way 
we’re accessing the events ring buffer in the code blurb above: 
b["events"].

Let’s take a moment to think about biolatency.py’s require-
ments. From my last article, you’ll remember that we’re inserting 
not just one but two block I/O layer probes. The first (depend-
ing on whether we care about queue-time or not) fires on the 
blk_start_request() system call and invokes our probe’s 
trace_req_start() function. The second fires on the kernel’s 
blk_account_io_done() and invokes our trace_req_done() 
probe function. In other words, one probe fires when the block 
I/O event starts, and the other fires when it ends.

Here’s the code [9]: 

if args.queued:
    b.attach_kprobe(event="blk_account_io_start", \
       fn_name="trace_req_start")
else:
    if BPF.get_kprobe_functions(b'blk_start_request'):
        b.attach_kprobe(event="blk_start_request", \
           fn_name="trace_req_start")
    b.attach_kprobe(event="blk_mq_start_request", \
           fn_name="trace_req_start")
b.attach_kprobe(event="blk_account_io_done",
    fn_name="trace_req_done")

If you’ve inferred, without needing to look at the C-side trace-
req functions, that we’re going to be using bpf_ktime_get_ns() 
to capture the “start” system time, and again to capture the “end” 
system time, and then subtract them to derive an elapsed time 
from trace_req_start to trace_req_done, you are absolutely 
correct. We’ll use a globally scoped BPF_HASH data structure 
to store the start times until they can be matched up to their 
respective “done” events. The invocation to create the hash in the 
biolatency code looks like this:

BPF_HASH(start, struct request *);

The map structures provided by BPF are sort of reminiscent of 
Java generics in that you specify their type as arguments. The 
first argument in the call above is its name: start. The second 
argument specifies the type of the key value in the hash. Here, 
we’re specifying that the hash will be keyed by a struct pointer, 
literally a number that represents the memory address where a 
block I/O request struct is stored. This is a pretty clever value for 
a hash key because it’s terse and will always uniquely identify a 
given I/O request between the start syscall and done syscall. The 
third argument, which would define the value-type of the hash, is 
omitted here, so it defaults to a u64, which happens to be exactly 
the return type of bpf_ktime_get_ns().

This BPF_HASH structure is only used to hold the timestamps 
of each start probe firing. It doesn’t communicate anything to 
userspace since its values are set by the start probe and deref-
erenced by the done probe to compute an elapsed time for the 
I/O request. This means we need another structure to store the 
elapsed times and communicate these through the wall to the 
Python side.

You might remember from my first article on eBPF tools [10] that 
biolatency.py presents these values in the form of a histogram, 
keyed in various ways based on user-provided options (overall 
summary, per-disk, per I/O-type (read/write etc.)). The use of a 
histogram here makes a lot of sense because, as you can probably 
imagine, a busy box may produce a high cardinality of I/O request 
syscalls. If we tried to shove a note through the wall for every I/O 
request as we did in the previous examples, we might undermine 
the wall and send the house collapsing down on top of our heads.

Instead, biolatency keeps the data kernel-side, using globally 
scoped HISTOGRAM data-structure to collect the timings com-
puted by our probe’s done function, as a series of counters within 
a distributed series of “buckets” representing the range of their 
values. This is easy on kernel memory (since we’re merely storing 
64 counters) as well as on the userspace boundary (since we only 
need to transfer these values once, when we tear down the probe).

Unfortunately, things get a little muddled here since biolatency.py 
needs to use a few different storage back ends and techniques 
depending on end-user options. Rather than glossing over the 
interesting details in the space I have left, I will see you in the 
next issue, where we will take a brief tour of histogram theory, 
base-two logarithms and the “powers of two rule,” and decode 
biolatency.py’s series of substitution choices for the different 
kinds of block I/O histograms it can depict.

Take it easy.
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W elcome to “Programming Workbench,” a new column that will 
delve into interesting programming problems and solve them 
with working software. All code is available in machine-readable 

form at [7]. I welcome feedback from readers, the best of which I may discuss 
in future columns.

This first installment of “Programming Workbench” reviews a concurrent programming 
pattern that every developer should know: hand-over-hand locking. Over the past year, I’ve 
been surprised more than once to meet well-educated, experienced, proficient programmers 
who aren’t familiar with this versatile and powerful technique. After a bit of digging I began 
to understand why it’s underappreciated: hand-over-hand locking isn’t mentioned at all in 
numerous places where I’d expect a detailed treatment: for example, several Pthreads books 
and several other books on systems programming in my personal library. A few books men-
tion it without going into great detail [1, 8]. One magazine article discusses the technique at 
length without providing code [10]. I found only one source with both a detailed discussion 
and an implementation (in Java) [2].

Why should programmers care about concurrency control in general and hand-over-hand 
locking in particular? In a word, performance. Even in the bygone age of uniprocessors, multi-
threaded code made servers more efficient and made interactive software more responsive by 
overlapping computation with I/O. Today, well-designed concurrent software enjoys genuine 
parallel execution on ubiquitous multicore and multiprocessor hardware. Embarrassing par-
allelism, in which different threads don’t interact at all, remains “good work if you can find 
it”; most multithreaded software, however, isn’t so lucky and must orchestrate orderly access 
to shared memory. Mutex-based concurrency control is the most conventional way to do so, 
and hand-over-hand locking is a primordial pattern that embodies timeless principles—and 
sometimes outperforms the alternatives.

So let’s brush up on hand-over-hand locking. We’ll start with the simplest dynamic data 
structure, the singly linked list, and review several ways to arrange safe access to linked lists 
in multithreaded programs. We’ll consider hand-over-hand locking in detail, describing its 
advantages over the alternatives. We’ll walk through a working C program whose threads 
employ the hand-over-hand protocol to access a linked list. Finally, we’ll conclude with gen-
eralizations and extensions of the basic techniques that we’ve covered.

Concurrent Lists
A linked list is an easy way to implement the abstraction of an unordered, unindexed, dynamic 
collection of items. Lists support all of the operations that make sense for such collections: 
traversing the contents of a collection and inserting, reading, writing, and deleting items 
along the way. I’d use the word “set” rather than “collection” but in some contexts, e.g., the C++ 
Standard Template Library, <set> confusingly refers to an ordered container. Lists are useful 
in themselves and also as building blocks in more elaborate data structures, e.g., hash tables.

http://ai.eecs.umich.edu/~tpkelly/papers/
http://ai.eecs.umich.edu/~tpkelly/papers/
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If multiple threads access a collection concurrently, they must 
avoid data races, which lead to undefined behavior according 
to the C and C++ language standards. There are several ways to 
implement a concurrent list safely.

Transactional Memory
Arguably the easiest concurrency control mechanism from the 
programmer’s point of view is transactional memory (TM). TM 
allows a thread to execute a sequence of instructions atomi-
cally and in isolation, preventing other threads from observing 
intermediate states of the data that the instructions manipulate. 
A concurrent linked list based on TM avoids data races, and some 
TM research prototypes would allow genuine parallel access to a 
linked list, but mainstream TM implementations would effec-
tively serialize access to the list. In other words, for the present 
purpose, off-the-shelf industrial-strength TM-based concur-
rency control would combine the safety and simplicity of single-
threaded code with the performance of single-threaded code, 
defeating one of the main motives for multithreading.

Non-Blocking Approaches
At the opposite ends of the ergonomic and performance spectra 
lie non-blocking (lock-free, wait-free) techniques based on the 
careful use of atomic CPU instructions. The main attraction of 
non-blocking techniques is that the untimely suspension or death 
of one thread (due, for example, to a software bug or an unfor-
tunate CPU scheduling decision) doesn’t prevent other threads 
from doing useful work. That’s a major advantage compared 
with mutex-based isolation, which offers no similar guarantee. 
The main downsides of non-blocking techniques are that they’re 
rather esoteric, to put it mildly—every new contribution is a tour 
de force by experts—and sometimes they work best with auto-
matic garbage collection. See Michael [6] for a good example of a 
non-blocking list and Herlihy and Shavit [2] for a broad discus-
sion of non-blocking techniques.

Mutex-Based Isolation
Mutex-based isolation is well understood, and good implementa-
tions of POSIX-standardized mutexes have been available for 
decades. Protecting an entire linked list with a single mutex is 
easy, but such coarse-grained locking serializes access to the list 
and creates a potential performance bottleneck.

Fine-grained locking for a linked list means associating a mutex 
with each list node. Per-node locks allow multiple threads to 
access different parts of the list simultaneously, potentially 
improving performance. Fine-grained locking, however, isn’t 
guaranteed to be faster, and indeed it can be slower than coarse-
grained locking, depending on myriad details beyond the scope of 
this column. A more worrisome downside of fine-grained locking 
is that it’s just plain trickier than coarse-grained locking; oppor-
tunities abound for errors that can cause data races or deadlocks. 

It pays to study carefully the correct access discipline, hand-
over-hand locking. We’ll walk through an implementation, and 
then we’ll reflect on the protocol’s properties and benefits.

The Code
The C99/C11 program listed in this section is available at [7]. 
We’ll pore over everything but boilerplate like #includes. The 
purpose of the example program is to emphasize the locking 
protocol, so it avoids frills for the sake of clarity.

The following struct is the building block of our linked list. Each 
node on the list contains the mutex that protects it, a simple data 
field, and a pointer to the next node on the list.

typedef struct node { pthread_mutex_t m;
                      int data;
                      struct node *next; } node_t;

For brevity and simplicity we’ll just hard-wire a short list into 
the program. The list consists of a dummy head node followed by 
five “real” nodes, A through E, whose data fields are respectively 
initialized to values 1 through 5:

#define            PMI PTHREAD_MUTEX_INITIALIZER
static node_t E = {PMI, 5, NULL},
              D = {PMI, 4, &E},
              C = {PMI, 3, &D},
              B = {PMI, 2, &C},
              A = {PMI, 1, &B},
           head = {PMI, 0, &A};  // dummy node

For diagnostic printouts, it’s convenient to derive a human-
readable name from a pointer to a node. Since our quick-and-
dirty program uses a short hardwired list, we can get away with 
a static mapping of node pointers to name strings. Compared 
with the alternative of an if/else statement cascade, the ternary 
operator (?:) saves keystrokes and yields a pure expression:

A simple program isn’t well served by elaborate, verbose runtime 
checks, so we use a handful of succinct function-like macros 
to consolidate error checking. All of our function-like macros 
expand to expressions rather than statements because expres-
sions may appear in a wider range of contexts; later we’ll see one 
in the initialization part of a for loop.

If anything unexpected happens, the program falls on its sword 
via the DIE() macro below, which expands to a parenthesized 
expression that uses the comma operator to evaluate perror() 
and assert() for their side effects: perror() prints an interpre-

#define NAME(p)  (   &head == (p) ? "head"                  \
                   : &A    == (p) ? "A"                     \
                   : &B    == (p) ? "B"                     \
                   : &C    == (p) ? "C"                     \
                   : &D    == (p) ? "D"                     \
                   : &E    == (p) ? "E"                     \
                   : NULL  == (p) ? "NULL" : (assert(0), "?") )
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tation of errno; assert() prints the filename and line number 
where things went wrong and dumps a core file that we may 
autopsy with a debugger. DIE() appears in contexts like func() 
&& DIE(“func”), where func() returns nonzero to indicate fail-
ure. The short-circuit property of the && operator ensures that 
DIE() is evaluated if and only if func() fails.

There’s a lot to unpack in the PT() macro above, so we’ll walk 
through it slowly to see how it leverages several C preprocessor 
features. The problem PT() solves is that several Pthreads func-
tions we use don’t set the standard errno variable but instead 
return an error number; they return zero to indicate success. 
PT() allows us to call any of these functions, arranging for errno 
to be set and DIE() to be called if the function returns nonzero. 
The easiest way to understand how PT() does its job is to expand 
a typical use with the compiler’s preprocessor ("gcc -E"). For 
example, expanding PT(join, t[i], &tr); and formatting for 
clarity yields:

(
    (  errno = pthread_join (t[i], &tr)  )
    &&
    (  perror("join"), assert(0), 1      )
);

The token-pasting operator ## glues PT()’s first argument, join 
in the example above, to pthread_. All subsequent arguments to 
PT() correspond to the ellipsis parameter ("...") in the macro def-
inition, so they get dropped in where __VA_ARGS__ appears in the 
macro replacement list. In the example above, the last two PT() 
arguments t[i] and &tr end up as arguments to pthread_join(). 
The return value of pthread_join() is assigned to the standard 
errno variable; POSIX defines errno to be a per-thread variable, 
so there’s no data race if two threads call PT() concurrently. The 
&& operator ensures that control reaches the expanded DIE() 
macro if and only if pthread_join() returns nonzero to indi-
cate failure. Finally, notice in PT()’s definition that parameter 
f appears a second time in its replacement list, in “DIE(#f)”. A 
single # is the “stringification” operator: in the example above, 
PT() argument join corresponds to PT() parameter f, so DIE(#f) 
in PT()’s replacement list expands to DIE("join"), whose expan-
sion places the "join" in perror("join").

Given a pointer to a list node, the LOCK() and UNLK() macros 
below lock and unlock the mutex embedded in the node. UNLK() 
also sets the pointer to NULL, which helps to catch a common and 
insidious bug: dereferencing a pointer to a node after unlock-
ing the node. That would have been a silent data race, but we’ve 
turned it into a loud SIGSEGV.

The next macro isn’t strictly necessary, but it facilitates testing 
on my computer. The standard printf() function is thread-safe, 
but two race detectors that I use, Helgrind and DRD from the 
Valgrind family of tools, falsely attribute data races to printf(). 
Protecting printf() with a mutex squelches these false positives. 
The print mutex can’t cause a deadlock because we never try to 
lock any other mutex while holding it.

static pthread_mutex_t   pm = PMI;  // print mutex
#define printf(...)                                \
  do { PT(mutex_lock,   &pm); printf(__VA_ARGS__); \
       PT(mutex_unlock, &pm); } while (0)

Now we’re ready for the interesting part: function hoh() below 
traverses our linked list, observing the hand-over-hand locking 
protocol. hoh() will be the start routine passed to pthread_create(). 
Its lone argument will be an identifier string that prefixes each 
thread’s diagnostic printouts. These prefixes make it easy to 
separate out per-thread reports to see what each thread saw as it 
traversed our linked list.

The for loop of hoh() walks two pointers down the linked list: n 
(“next”) goes first, followed by p (“previous”). The loop initializa-
tion locks the dummy head node, and the loop body iterates once 
per non-dummy node. At comment A, node *p is a locked node 
whose successor node *n exists; *p might point to the dummy 
head node—it does on the first iteration—but n never points to the 
head.

Now comes the “hand-over-hand” aspect: We lock the next node 
*n while still holding a lock on its predecessor *p. At no point in 
the for loop is it safe to access *n’s successor (*n->next), which 
is unlocked, but after locking *n we may access pointer n->next, 

#define LOCK(p)         PT(mutex_lock,   (&((p)->m)))
#define UNLK(p)  ((void)PT(mutex_unlock, (&((p)->m))), (p)=NULL)

static void * hoh(void * ID) {
  char *id =     (char *)ID;
  node_t *p, *n;  // "previous" follows "next" down the list
  printf("%s: begin\n", id);
  for (p = &head, LOCK(p); NULL != (n = p->next); p = n) {
    // A:  *p locked & might be dummy head
    //     *n not yet locked & can't be head
    LOCK(n);
    // B:  we may remove *n here
    UNLK(p);
    // C:  best place to inspect *n or insert node after *n
    printf("%s: node %s @ %p data %d\n",
           id, NAME(n), (void *)n, n->data);
    n->data++;
  }
  // D
  sleep(1) && DIE("sleep");  // stall for "convoy" interleaving
  UNLK(p);
  printf("%s: end\n", id);
  return id;
}

#define DIE(s)      ( perror(s), assert(0), 1 )
#define PT(f, ...)  ( ( errno = pthread_ ## f (__VA_ARGS__)) \
                              && DIE(#f)                       )
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for example, to see if we’re at the end of the list by comparing 
it to NULL. Comment B, where both *p and *n are locked, is the 
right place to remove *n. We must lock two consecutive nodes 
to remove the one farther down the list, otherwise concurrent 
attempts by different threads to remove two adjacent nodes may 
interfere in such a way that only one node is removed [2].

After comment B we unlock *p. At comment C, node *n alone is 
locked; this is the best place for inspecting or modifying the con-
tents of *n alone because other nodes may access *p simultane-
ously. We can insert a node after *n here too, but first we should 
ask why we care where to place a new node if the list represents 
an unordered collection—why not simply insert at the head of the 
list? At comment C we no longer hold a lock on *p so it’s no longer 
safe to read or write *p; as noted above, the UNLK() macro sets *p 
to NULL to catch careless errors. Our example program prints the 
name and data field of node n and then increments the data field.

After the for loop terminates at the end of the list, at comment D 
we gratuitously sleep() while holding a lock on the last list node 
to produce an interesting “convoy” interleaving of threads. 

Inserting a node into the list doesn’t require anything like hoh(). 
Simply lock the head node and splice in the new node after it. If 
a list represents an unordered collection, there’s seldom a good 
reason to insert anywhere else. It’s possible to use a list to repre-
sent an ordered collection by inserting nodes into proper position 
according to some comparison criterion, but if the collection is 
large and we must frequently search it to find particular nodes, 
then a list will be inefficient compared with a search tree or skip 
list. If an ordered collection is not large it might be reasonable to 
store it as a list, but coarse-grained locking might outperform 
fine-grained locking.

The main() function below runs hoh() twice single-threaded 
then spawns several threads that concurrently traverse the list.

#define NTHREADS 4
int main(void) {
  pthread_t t[NTHREADS];  int i;  void *tr;
  char m1[] = "1st (serial) traversal",
       m2[] = "2nd (serial) traversal",
       id[NTHREADS][3] = {{"T0"},{"T1"},{"T2"},{"T3"}};
  hoh((void *)m1);
  hoh((void *)m2);
  printf("\nmain: going multi-threaded:\n\n");
  for (i = 0; i < NTHREADS; i++)
    PT(create, &t[i], NULL, hoh, (void *)id[i]);
  for (i = 0; i < NTHREADS; i++) {
    PT(join, t[i], &tr);
    printf("main: joined %s\n", (char *)tr);
  }
  printf("\nmain: all threads finished\n");
  return 0;
}

The example code tarball at [7] includes a README contain-
ing the commands that I use to compile and run the example 
program. When the program runs, the interleaving of individual 
thread outputs reflects the interleaving of the threads them-
selves as they walk down the list. In the typical output below, 
thread T1 zooms down the list, then stalls at the sleep(1) call 
while holding a lock on the last node, E. T2 then gets as far as D, 
T0 advances to C, and T3 makes it only to B. T1 wakes, releases 
its lock on E and exits, allowing T2, T0, and T3 to each take a step 
forward on the list in that order. When T2 exits, T0 and T3 each 
advance one hop forward. Thus the convoy of threads plods down 
the list in the manner of an inchworm.

T1: begin
T1: node A @ 0x557caa098120 data 3
T1: node B @ 0x557caa0980e0 data 4
T1: node C @ 0x557caa0980a0 data 5
T1: node D @ 0x557caa098060 data 6
T1: node E @ 0x557caa098020 data 7
T2: begin
T2: node A @ 0x557caa098120 data 4
T2: node B @ 0x557caa0980e0 data 5
T2: node C @ 0x557caa0980a0 data 6
T2: node D @ 0x557caa098060 data 7
T0: begin
T0: node A @ 0x557caa098120 data 5
T0: node B @ 0x557caa0980e0 data 6
T0: node C @ 0x557caa0980a0 data 7
T3: begin
T3: node A @ 0x557caa098120 data 6
T3: node B @ 0x557caa0980e0 data 7
T1: end
T2: node E @ 0x557caa098020 data 8
T0: node D @ 0x557caa098060 data 8
T3: node C @ 0x557caa0980a0 data 8
T2: end
T0: node E @ 0x557caa098020 data 9
T3: node D @ 0x557caa098060 data 9
T0: end
T3: node E @ 0x557caa098020 data 10
T3: end

Filtering the output (e.g., "./hoh | grep '̂ T0:'" for thread T0) 
makes it easier to see what individual threads encountered as 
they traversed the list:

T0: begin
T0: node A @ 0x557caa098120 data 5
T0: node B @ 0x557caa0980e0 data 6
T0: node C @ 0x557caa0980a0 data 7
T0: node D @ 0x557caa098060 data 8
T0: node E @ 0x557caa098020 data 9
T0: end

T1: begin
T1: node A @ 0x557caa098120 data 3
T1: node B @ 0x557caa0980e0 data 4
T1: node C @ 0x557caa0980a0 data 5
T1: node D @ 0x557caa098060 data 6
T1: node E @ 0x557caa098020 data 7
T1: end
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T2: begin
T2: node A @ 0x557caa098120 data 4
T2: node B @ 0x557caa0980e0 data 5
T2: node C @ 0x557caa0980a0 data 6
T2: node D @ 0x557caa098060 data 7
T2: node E @ 0x557caa098020 data 8
T2: end

T3: begin
T3: node A @ 0x557caa098120 data 6
T3: node B @ 0x557caa0980e0 data 7
T3: node C @ 0x557caa0980a0 data 8
T3: node D @ 0x557caa098060 data 9
T3: node E @ 0x557caa098020 data 10
T3: end

Each thread saw the list as previous threads left it, precisely as 
though the list were protected by a single mutex.

Properties and Benefits
That’s an important attraction of hand-over-hand locking: we 
get the parallelism of fine-grained locking with the simple, sane 
semantics of coarse-grained locking; the changes that one thread 
makes while traversing the list are, from the viewpoint of all 
other threads, atomic. As the list grows large, at some point fine-
grained locking usually begins to improve performance com-
pared with coarse locking, though exactly when depends on the 
details. Deadlock is impossible because all threads acquire locks 
in the same order, i.e., list order.

The major limitation of hand-over-hand locking is that threads 
must traverse the list in one direction only. One implication of 
this “don’t look back” rule is that a thread can’t atomically splice 
a node out of the middle of a long list and splice it back in at the 
head, which is a bummer, because move-to-front lists offer 
outstanding performance for some purposes [9]. More generally, 
hand-over-hand locking doesn’t allow us to arbitrarily rearrange 
a linked list. If we want to rearrange a list with per-node mutexes 
we can simply lock the head node and hold that lock while lock-
ing hand-over-hand to the end of the list, thus ensuring that no 
other threads are accessing any node; then we may alter the list 
arbitrarily, because effectively we’ll be holding a big lock on the 
entire list.

Generalizations and Extensions
Linked lists are a natural way to implement unordered, unin-
dexed collections. Hash tables implement unordered but indexed 
collections, and search trees implement ordered and indexed 
collections. The techniques we’ve discussed generalize beyond 
linked lists to hash tables and search trees: hash tables can 
represent hash buckets as linked lists, each of which may employ 
fine-grained locking, and search trees can employ hand-over-
hand locking directly.

Unfortunately, the fine-grained locking story for hash tables and 
search trees isn’t as tidy and compelling as that for linked lists. 
Hash tables invite medium-grained locking—one mutex per hash 
bucket—which makes more sense than fine-grained locking in 
the typical case where each bucket contains only a handful of 
items. Implementing hand-over-hand locking for balanced search 
trees is quite tricky [10].

Persistence
Making a linked list persistent is conceptually straightforward: 
we lay out the list in a file-backed memory mapping with help from 
a few simple persistent memory programming techniques [3, 4]. 
Supporting high concurrency in a persistent linked list using 
the techniques discussed above requires “persistence-friendly” 
mutexes suitable for embedding in persistent data structures, 
which ordinary pthread_mutex_ts aren’t. The design of persis-
tence-friendly mutexes is beyond the scope of this column; the 
main difficulty involves mutex initialization when a program 
restarts.

If a persistent and highly concurrent linked list must  tolerate 
crashes, for example, because we can’t guarantee that the pro-
gram accessing it will always enjoy an orderly shutdown, we’ll 
need a suitable crash tolerance mechanism. On conventional 
hardware the right crash tolerance mechanism for persistent 
memory programming is remarkably easy to implement by lever-
aging features present in certain file systems [4]. Crash tolerance 
imposes further requirements on persistence-friendly mutexes: 
post-crash recovery must quickly and conveniently restore all 
embedded mutexes to an unlocked as well as initialized state. 
The most onerous requirement on any program that purports to 
tolerate crashes is that it survive strenuous, realistic tests [5]. 
Documenting the design, implementation, and testing of persis-
tent, crashproof, and highly concurrent data structures is future 
work, perhaps for a future installment of this column.

Conclusion
Despite their well-known shortcomings, old-fashioned mutexes 
will be with us for a long time to come. Even today,  conventional 
mutual exclusion sometimes outshines the alternatives, and 
fine-grained locking is sometimes the best foundation for high- 
performance concurrent data structures. Hand-over-hand 
locking is a conceptually simple protocol for safe multithreaded 
access to data structures protected by fine-grained locks. The 
simplest context where fine-grained locking and hand-over-
hand traversal make sense is a linked list, and any serious 
student of concurrent programming should master this primor-
dial pattern.
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Readers who want to go further might conduct experiments to 
explore the tradeoffs in different designs. For a concurrent linked 
list, when is it faster to use a single mutex on the entire list versus 
per-node mutexes? Are spinlocks faster than pthread_mutex_ts? 
If a single lock protects the entire list, how much does the move-
to-front heuristic [9] help for realistic access patterns? Does it 
ever pay to maintain list items in sorted order? How do hand-
crafted concurrent lists compare to off-the-shelf library imple-
mentations of unordered unindexed collections? Please share 
your results with me!
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It’s commonly said that in UNIX, “everything is a file.” 
The meaning of this catchy aphorism is that most UNIX resources can be accessed 
using names in the file system with a small, consistent set of function calls. So not only 

can we open(), read(), and eventually close() regular files like /etc/motd and /bin/ls, we 
can read the contents of the hard drive (if you have suitable permissions) by opening /dev  
/disk0, the first physical disk on a Macintosh, and even /dev/mem, the Linux “device” that lets 
user processes read system memory. 

In this column I’ll look at the origins of files and file systems, and contrast the UNIX approach 
with a subtly different approach that was developed for the Multics operating system, in which 
files are actually named segments in a two-dimensional memory address space. On Multics, 
saving a “file” was really creating a named memory segment and then persisting it to long-
term storage. Finally, I’ll look at how the idea of named persistent memory segments backed 
by non-volatile memory is making a comeback and will likely be an important part of the stor-
age stack in the near future.

The Historical File
Back in the 1500s a fyle was a string or wire used to bind together paper documents, or so 
reports the Oxford English Dictionary: “Thapothecaries shall kepe the billis that they serue, 
vpon a fyle” (1525). Also spelled file, by 1600 the word was used variously to denote the docu-
ments in a legal proceeding; a catalog, list, or roll; or even the figurative thread of a person’s life. 

Put simply, English has had a difficult relationship with the word “file” since the beginning. 
Sometimes the word refers to the case or container for organizing physical embodiments of 
information, sometimes it refers to the objects put into that container, and sometimes it refers 
to the information itself.

Although these days most information that’s stored in files is video, when I think of a “file” on 
my computer, I typically think of a text file. That is, I think of a collection of lines, each some-
where between 1 and 80 characters long, separated by some kind of “end-of-line” character. 
And for this I have to thank Herman Hollerith and the company he created, The Tabulating 
Machine Company. 

Hollerith graduated from Columbia University in 1879 and took a job working for one of his 
professors, William P. Trowbridge, who had just taken a temporary assignment working 
on the 1880 Census in Washington, DC, where he was compiling statistics on power and 
machinery used in manufacturing. Looking back, this wasn’t very surprising: by all accounts 
Hollerith was a hard-working, brilliant, and ambitious fellow who frequently attracted the 
mentorship of his older colleagues. 

Once in Washington, DC, Hollerith met another future mentor, John Shaw Billings, a surgeon 
who had become the director of the Army Surgeon General’s library after serving in the Civil 
War. Billings was also working on the Census, where he was in charge of tabulating vital 
statistics.



68   FA L L 2020  VO L .  45 ,  N O.  3  www.usenix.org

COLUMNS
SIGINFO: Everything Is a Punch Card

The 1880 Census, also known as the 10th Census, was a massive 
information operation. Census employees collected data from all 
over the country and brought it to Washington, DC, where it was 
manually processed according to many different criteria—a pro-
cess called tabulating—and eventually published. You can think 
of this processing as a series of SQL SELECT statements with 
suitable GROUP BY and WHERE clauses. The 10th Census used 
computers as well, but they were all the human kind [1]. 

The Card File
Billings suggested that Hollerith create some kind of machine to 
mechanize the laborious tabulation process. Perhaps Hollerith 
could build a machine that counted notches on cards of paper, 
Billings suggested, with each card representing a single person’s 
demographic characteristics, like their age or sex? Hollerith 
found this idea fascinating and eventually transferred to work 
under Billings in the vital statistics division just to spend a few 
months learning the job. When the work on the 10th Census 
started winding down in 1881, Hollerith moved to Boston, where 
he had been offered a teaching position at the Massachusetts 
Institute of Technology.

When he wasn’t teaching, Hollerith experimented with ideas 
for the census machine. Inventing was far more interesting to 
 Hollerith than teaching—he couldn’t stand the thought of teach-
ing the same course a second time—so he quit the Institute and 
took a job back in Washington, DC as a patent examiner. But once 
he learned the ins-and-outs of the US patent system, he quit that 
job and became a full-time inventor, supporting himself by doing 
patent work for others. 

Hollerith’s first census machine patent application described a 
machine with a long tape of paper and rows of holes represent-
ing each person, but Hollerith eventually returned to an idea 
suggested by Billings. He built prototype machines and, with 
Billings’ help, used them in vital statistics projects in Baltimore 
and New York City. 

The 11th Census had a competition for a machine to assist in 
the tabulations: Hollerith’s machine was one of three tested. 
Hollerith won the contract, supplied the tabulating equipment 
for the 11th Census, and eventually incorporated The Tabulating 
Machine Company in 1896. The company merged with its com-
petitors in 1911 to form the Computing-Tabulating-Recording 
Company, which was renamed International Business Machines 
in 1924. 

The Hollerith cards used in the 1890 Census had 12 rows of 24 
columns and were sized 65/8" by 33/4" so that they fit perfectly 
inside boxes used to store paper money. When users needed 
more storage per card, the space between the rows was reduced, 
allowing the card to hold 45 columns. This still wasn’t enough 
storage, so in 1928 IBM standardized on a card of 73/8" by 31/4" 

with rectangular holes punched in 80 columns of 12 rows. That 
was the final standard, and it had lasting influence. The IBM 
3270 display terminal introduced in 1971 had an 80-character 
wide screen, as did the IBM PC introduced in 1981. Indeed, 
PEP 8—Style Guide for Python Code, last revised in August 2013, 
recommends that source code not exceed 79 characters because 
some editors wrap when the user tries to edit the last character 
on an 80-character line. 

Older readers may recall receiving punch card checks and utility 
bills imprinted with the words “do not fold, spindle or mutilate.” 
A spindle is a nasty spike pointed straight up and mounted on 
a weight for holding papers. That is, a spindle is a fyle, and you 
should avoid using a spindle to file your card file, because the 
extra hole will be read as an error.

Larger punch cards were used for voter ballots in various parts 
of the United States until the election of November 2000, after 
which they were largely replaced due to concerns over their 
usability and accuracy. 

The Circular File
Punch cards were all the rage in information processing for more 
than a half century. The US Social Security Administration had a 
master card file sorted by each person’s nine-digit social security 
number. It had another set of punch cards sorted according to 
the phonetic code of each person’s surname. Chrysler had punch 
cards for its inventory control system. Grades from standard-
ized exams were punched onto cards [2], making it easier for 
researchers to compute statistics. Really, almost every bit of 
information that was needed for later processing was stored on 
punch cards. Even though early computers had magnetic tape, 
data on tapes was frequently loaded using high-speed punch 
card readers, and put back onto cards for long-term storage after 
processing.

In 1956, IBM announced the IBM 305 RAMAC, the Random 
Access Memory Accounting System. The system’s breakthrough 
technology was the IBM 350, the world’s first commercial hard 
drive. There were 50 metal disks, each with 100 concentric 
tracks, and a moving read/write-head assembly. The whole 
thing could store five million 6-bit characters, or 3.75MB. The 
base system rented for $3,200/month, of which $650 was for 
the disk storage unit. IBM sold more than a thousand of these 
vacuum tube-based computers until 1961, when the line was 
discontinued. 

Programming the 305 was complicated: not only was there nothing 
resembling a modern file system, the program itself had to include 
pauses to allow the RAMAC’s disks to rotate into the appropriate 
position and for the head to complete any required seek operations. 
When I downloaded and read the 1957 manual [3], I was most 
surprised by the matter-of-fact way that IBM described the 305. 



www.usenix.org  FA L L 2020  VO L .  45 ,  N O.  3 69

COLUMNS
SIGINFO: Everything Is a Punch Card

It’s not a general-purpose computer that has a first-in-the-world 
megabyte-sized random access memory: it’s a system designed 
for the specific task of helping companies automate inventory, 
billing, and accounts receivable. That is, it’s an electronic punch 
card file! The big paradigm shift that the manual tries to convey 
to the reader is that idea that “files are located in the machine,” 
—emphasis in the original—rather than in some external box.

Old paradigms die hard.

On UNIX, Everything Is a File
Modern UNIX and Linux owes much of its flexibility to the 
way that the operating system handles files and file systems. 
While other operating systems maintain a different namespace 
for every physical device, UNIX puts everything into a single 
hierarchy, a single unified naming system for all files currently 
accessible. 

The second advantage of the “everything is a file” approach 
manifests when programs running on UNIX get a “file” to open 
and, lo, it’s actually the name of a device. Most UNIX programs 
will still work, provided that the calling process has the correct 
authorization to open the file. 

This ability to treat devices as files extends to pseudo-devices 
like /dev/stdin, /dev/stdout, and /dev/tty, which map to stdin, 
stdout, and the controlling terminal of the current process. For 
example, while some programs like wc will take their input from 
stdin if no input file is provided, other programs will only take 
their input from “files.” You can give these programs /dev/stdin 
as their input file and then put them into a shell pipeline, like a 
properly written UNIX program.

Recently, I had a program that decided what file type it was read-
ing by looking at the file’s extension. I wanted the program to 
read its input from a pipe. My solution was to create symbolic in  
/tmp with the appropriate extension, point the link at /dev/stdin, 
and give the program the link for its input. Convoluted, perhaps, 
but the hack worked the first time.

Another thing that is obviously not a file is memory. Yes, Linux 
systems have devices like /dev/mem and /dev/kmem that let 
programs access memory through the file system, but memory is 
not file. And although UNIX and Linux have the mmap() family of 
system calls to map files into memory or write blocks of memory 
out to disk, use of these calls is quite limited. That’s an unfor-
tunate result of the UNIX “f lat” memory model, in which the 
program’s code, data stack, and any “extra” information can all  
be accessed using the same pointers.

Because UNIX processes only have access to that single f lat 
address space, files mapped into memory might be mapped into 
a different location each time a program runs—and it certainly is 
mapped into different locations when run in different programs. 

This isn’t a problem when code is mapped into memory, as is the 
case with shared libraries, because most shared code is compiled 
as position independent code (PIC). 

Loading nondeterministically into different regions of memory 
is a big problem when loading data, however. After all, the whole 
reason to map a disk file into memory is speed. But if the program 
can’t guarantee where the file is going to land, then the program 
will need to resort to using indirect memory accesses and vari-
ous kinds of pointer arithmetic to find every data object. Such 
approaches are now so well-established that we accept them 
without much thought, but having to mediate practically every 
memory reference with pointer arithmetic can have a significant 
performance impact. 

The f lat memory space of modern operating systems also has 
security and reliability implications: many security problems 
of the last three decades ultimately result from the fact that a 
(char *) pointer in the C programming language can effectively 
reference any part of the executing program’s data, stack, or code.

Multics Files Are Segments 
Many of the ideas that make UNIX and Linux great were devel-
oped for Multics, the project started in 1965 by MIT’s Project 
MAC, Bell Telephone Laboratories, and General Electric Com-
pany’s Large Computer Products Division [4]. For example, the 
very idea of a single tree-structured, hierarchical file system 
holding all of the system’s programs and user files was invented 
for Multics. Also invented for Multics is the idea that the com-
mand processor—the Multics creators called it a shell—would 
be a normal user program, and that commands would be imple-
mented as programs sitting in the file system rather than making 
commands a privileged part of the operating system. 

Files certainly existed at the time that the Multics project 
started, as did virtual memory, which was invented in 1962 for 
the Atlas computer at the University of Manchester. But Multics 
unified files and memory in a way that was not widely adopted. 

On Multics, files are simply pieces of memory that are given 
names in the hierarchical file system. Multics uses the word 
 segments to describe these pieces of memory. 

A Multics process might have hundreds of segments mapped 
into memory at any given time. When segments are mapped 
into a process context—called loading—the segment’s symbolic 
file system name is mapped to a segment number. Pointers are 
confined within a segment. Corbató and Vyssotsky’s paper from 
the 1965 Fall Joint Computer Conference [5] describes this as 
“two-dimensional” addressing. Segments make it easy to provide 
for the secure sharing of code and data between users, because a 
single segment can be accessed concurrently by any number of 
processes, while the underlying hardware controls whether an 
individual process can read or write to each specific segment.
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Multics ran on the GE-645, a computer created for the purpose of 
running Multics. The actual hardware is somewhat odd by cur-
rent standards. The GE-645 had a 15-bit segment number and an 
18-bit offset to a word within the segment; the underlying system 
used 36-bit words, divided into four 9-bit “bytes.” This machine 
still runs today, albeit in emulation. You can log into a community 
Multics system and try it out at https://www.ban.ai/multics/. 

Segments neatly circumvent the problems of shared, persistent 
memory: with two-dimensional pointers (segment and offset), 
the offset of an individual datum doesn’t change when it is 
mapped out and mapped back in. This means that Multics didn’t 
need to use position independent code, didn’t need to relocate 
code when it was loaded into memory, and allowed code to be 
shared between executing programs, which meant that only a 
single copy of each library needed to be loaded into memory—
something that wasn’t widely available in the UNIX world until 
the 1990s.

Intel tried to implement segments on the iAPX 432 in 1975, but 
the project was overly ambitious and ran late. So instead, the 
company focused on the 8086, a 16-bit version of its successful 
8080 microprocessor. Launched in 1978, the 8086 has just four 
“segment” pointers—the code segment, the data segment, the 
stack segment, and the “extra” segment—and a 20-bit address is 
computed by taking a 16-bit segment number, shifting it to the 
left 4 bits, and adding the offset. That is, segments were a tool for 
extending memory from 64 KiB to 256 KiB, but not for managing 
data, shared libraries, or implementing memory protection. 

The modern x64 architecture still has these CS, DS, ES, and 
SS pointers, but they are all set to 0 (zero) to create a flat 64-bit 
memory space. Now 64 bits is a lot of addressable memory, and 
we could use some of them for some kind of virtual segment num-
ber, but on today’s hardware only 48 bits of the address pointers 
are used: take away 16 bits for a segment number, and that leaves 
only 32 bits for an offset within a segment. So it might be possible 
to implement something like Multics segments on modern hard-
ware, but it ultimately won’t deliver the same security properties 
that Multics did because Multics segment/offset pointers simply 
could not overflow into the next segment. Still, a segmented 
memory model might be an improvement over what we have 
today—provided that the segments were large enough. 

The Next File
The idea of saving memory in named segments may be com-
ing back into vogue with the advent of so-called storage-class 
memory (SCM). This memory is a lot like the magnetic core 
memory of the 1950s and ’60s in that it is directly addressable 
from the CPU and doesn’t forget its contents when it is turned 
off. It’s faster than disk and more expensive per byte than disk or 
flash, but slower and less expensive per byte than DRAM. 

One such memory system currently on the market is Optane, 
manufactured by Micron for Intel. You can buy Optane packaged 
on a DIMM module or as a PCIe card that looks like a SSD. Plug 
it into a DIMM slot, and Optane looks like slow memory that 
doesn’t get reset after restart—but be careful, because your sys-
tem’s power-on self-test (POST) might wipe it unless the POST 
is programmed not to do so. Plug Optane into a PCIe slot, and it 
looks like an incredibly fast, but small, SSD. 

SCM memory is here today, and it might open up a lot of pos-
sibilities if people would simply use it. For example, you can buy 
today a server with 24 DIMM slots and give it 12 2-TiB Optane 
modules, for 24 TiB of non-volatile memory, and 12 128-GiB 
DDR4 modules, for 1.5 TiB of main memory. You could use such 
a system to build a massive database server: keep the index and 
transaction log in the 24 TiB Optane storage, and you won’t need 
to flush the index to disk when the server shuts down and read 
it into memory when the server starts up. Bailey, Ceze, Gribble, 
and Levy explored other ideas for using SCM in their 2011 HotOS 
XIII paper, “Operating System Implications of Fast, Cheap, 
Non-Volatile Memory”[6]. Meanwhile, Yang, Kim, Hoseinzadeh, 
Izraelevitz, and Swanson explore the performance of Optane in 
their FAST ’20 paper, “An Empirical Guide to the Behavior and 
Use of Scalable Persistent Memory” [7].
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W riting a column sometimes requires an “at the time of writing” 
disclaimer if the situation being described is fluid, de novo, or 
both. So it is now, which is to say early June, 2020.

By a fluid and de novo situation, I mean the global pandemic known as COVID-19, which is a 
different beast depending on where you are and how you live. The view from my kitchen table 
includes a formerly tight lockdown looking soon to be relaxed, pervasive work-at-home for 
people in technology jobs, a burst of demand for supply chain data, debt burdens too substan-
tial to handle gracefully now or later, and so forth and so on. What might we imagine and, in 
turn, want to measure under the general topic of “cybersecurity metrics” given the situation? 
In so many words, here, as in so very much of life, the hard part is getting the questions right—
right in the sense of right-for-the-time and supportive of wise decisions. Good questions yield 
useful answers.

The attack surface comes to mind. I suspect that a material and quite measurable enlarge-
ment of the enterprise attack surface due to work at home is hardly a hypothesis. The two 
components of that expansion that come to my mind as most subtle are routing and sync. 
How might we measure that expansion, and are estimations on routing and sync the way to 
go (modeling complex pathways for attack in either case)? Is there a constant of proportion-
ality here and, if so, what might it be? Can its nature be determined by measurement or can 
measurement merely confirm the assertion of attack surface expansion? Does the fraction of 
the enterprise’s staff working at home reveal a kind of dose-response relationship (a curve of 
proportionality that demonstrates causality)?

Secondarily, should we expect the changes in the attack surface to show hysteresis? 
In hysteresis, the output of a system depends not only on its input, but also on its history 
of past inputs. Put differently, when the force of deformation is relaxed, does the surface 
spring back to its original position or is the deformation inelastic? Twitter’s “work at home 
forever” comes to mind, but I am thinking more of software installs and changes to standard 
operating procedure, such as for meetings—installs and changes that won’t be de-installed 
when a COVID-19 vaccine appears. This hysteresis would seem particularly acute in the 
cybersecurity arena since, as has long been observable, when security products are eclipsed, 
whether by new organization charts or by new products, existing security products are never 
de-installed.

The probability of small supplier business failure is surely up. This would imply that the 
fraction of unmaintained software has risen or will soon rise. Is that measurable? Does the 
idea of receivership for abandoned software products need measurement (and what kind), or 
is this just a matter of governmental will? Would measurement help buck up such government 
will [1]? We’ll have this running-but-unsupported situation soon enough once self-modifying 
code gains autonomy.

What is an “essential” activity and what is not essential is proving to be variously con-
tentious. There’s an interesting measure in that, for sure—what fraction of the economy is 
essential? Rank ordering countries by what fraction of their economy is essential is, likewise, 
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interesting, as would rank ordering cybersecurity functions by 
whether their operators are deemed essential accordingly. In 
2008, we learned a lot about essentialness in and around finance, 
resulting in an entirely new set of (US) rules for entities that are 
“too big to fail,” or, to be more precise, entities that are SIFIs—
systemically important financial institutions. Legalistically, a 
financial institution is a SIFI if it would pose a serious risk to 
the economy as a whole were it to collapse. Don’t we need that 
concept in cybersecurity by analogy? Don’t we need formal stress 
testing for computing entities that are not too big to fail but too 
interconnected to fail [2]? Doesn’t cybersecurity eventually, if 
not now, require such formality? Might we not start now think-
ing this through?

To the extent that organized opposition (attackers) have 
an interest in stockpiling 0wned machines, can we mea-
sure any uptick in stockpiling in a way that demonstrates 
causality related to the lockdown crisis? This might be 
closely related to the routing aspect of attack surface expansion, 
for example. Or is there a measure that says unequivocally that 
0wning a leaf node is nowadays so easy that stockpiling is fis-
cally irresponsible from the point of view of organized attackers 
operating as a straight-up business? Or is ransomware now the 
mechanism of 0wnership? Reported trends in ransomware beg 
for data on whether the opposition is getting better or the playing 
field easier to manipulate.

If permanent contraction of enterprises, whether profit or 
nonprofit, is inevitable, should the cybersecurity workforce 
enjoy some degree of protection from that contraction? Is 
there a measure, such as percentage of workforce or percentage 
of budget, that should be held constant as enterprises contract? 
(Or, if not that, held above some floor?) Is the skill set among 
cybersecurity workers a national resource, and do we have num-
bers to prove it? Is it far-fetched to compare pen-testers adrift 
in a cybersecurity job collapse to nuclear scientists adrift in the 
collapse of the USSR? Whatever we’ve been measuring needs to 
be re-measured so that trendlines can be established [3].

What about those individuals who were about to enter the 
cybersecurity workforce, such as recent graduates or those 
about to be discharged from relevant military service? 
Do we ensure they find work, or do we have a measure that 
proves they are unneeded? Are we understaffed with respect 
to the cybersecurity challenge, overstaffed with respect to the 
economically provable benefit of cybersecurity practitioners, 
both, or neither? In many industries, re-opening seems likely to 
involve replacing humans with algorithms, an ongoing process 
surely accelerated by the pandemic. Should that be the case in 
cybersecurity and, regardless of your answer, what might we be 
measuring here?

In public health, one of the great measurement innova-
tions was the introduction of “quality-adjusted life years” 
(QALY) as an outcome measure for public health interven-
tions. Do we have some sort of parallel to the QALY measure 
in cybersecurity? What would it take to have such a measure be 
defensible as a policy driver? Who should get to set the “adjust-
ment” schedule itself? Also in public health, analyses are often 
calibrated not just by quality-adjusted life years but also by 
disability-adjusted life years (DALY, as in disability averted). Is 
something like DALY more like what we should be measuring in 
cybersecurity? Or is measurement of either the QALY and DALY 
sorts built on assumptions that don’t actually obtain in cyber-
security? For that matter, where are the tails of distributions 
getting heavier—the prodromes of black swan events?

In military affairs and emergency management alike, it 
is all but mandatory that for any given operation or event 
there be a thorough and dispassionate “after action report” 
(AAR). Where these are done under a unified command struc-
ture such as the Federal Emergency Management Agency [4] 
or the Department of Homeland Security, their form and scope 
is itself set by policy. The spirit of the AAR exercise is that of 
learning lessons from what might realistically be called natural 
experiments, and formal, fixed output can help make up for the 
undesigned-ness of any natural experiment. All of which leads us 
to the question of what should we do in cybersecurity for measur-
ing (and documenting) our version of natural experiments? I 
would argue that down this path is where we find such things as 
responsible disclosure mechanisms, bug bounty programs, pur-
posefully opaque software updates, the intermittent appearance 
of truly novel attacks, and various research results on malware 
dwell times. Yet to the point here, with lots of cybersecurity 
AARs to be written in and for the age of pandemics, should we 
not be measuring and, if so, measuring what, exactly?

One can straightforwardly analogize the “lockdown” 
strategy as that of decreasing the societal and/or viral 
attack surface by fiat. I cannot recall as vigorous a purposive 
reduction in attack surface as the one we saw with COVID-19 
(and may, of course, see again should recurrence pick up). On the 
biologic side, the lockdown was supported by rather an explosion 
of creative modeling. Take just the one example of wearing a face 
mask; it protects others from your spew more than it protects 
you from others’. The benefit of wearing a mask is not transitive, 
but the risk of not wearing one is (transitive). That’s a bit like not 
allowing your computers to be part of a botnet; it doesn’t protect 
you from others but rather it protects others from you. We need a 
measure for how much your computing is a danger to others [5], 
though, of course, such a measure (and the policy it would sup-
port) is likely to be met with the same mix of hostile compliance 
that mandatory face masks exhibits. What should we measure? 
What should we model? How might we think quantitatively on 
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what sort of cyber pandemic would require turning off electronic 
commerce until a suite of not yet designed patches (vaccines) 
could be rolled out to machines young and old alike? Are those 
countries experimenting with disconnecting from the public 
Internet [6] on to something measurable?

Health policy and management is perfectly happy (and for 
good reason) with herd immunity; should we be [7]? What 
if the exposed fraction of Internet users is largely concentrated 
in one jurisdiction or among one class of users? Or, as described 
in the prior reference, how we measure would be correlated with 
what we conclude is our societal mandate—would we prefer to 
minimize harm (like reserving scarce vaccine for the young 
and the old) or would we prefer to minimize transmission (like 
reserving scarce vaccine for health care workers and undertak-
ers)? Don’t answer “both.”

In Summary
What I am trying to get at is that what actions we take, at least 
what considered actions we take, is as influenced by what we 
measure as it is by what those measurements show. Thinking it 
out in advance sure beats decision-making under the influence of 
adrenaline.

I close with a quote from John Foster Dulles, Secretary of State 
under President Eisenhower:

The measure of success is not whether you have a tough 
problem to deal with, but whether it is the same problem 
you had last year.
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I spent some time in medical school in the late 1980s. (They eventually 
caught me skulking around in the hall and threw me out.) I don’t remem-
ber coronaviruses—orthocoronavirinae, to virologists—being therein 

addressed as anything serious in terms of human pathology, other than maybe 
as one of the causes of the common cold. They were mostly associated with 
birds and bats. That abruptly changed in 2002 with the emergence of the SARS 
outbreak. Since then, it’s just been one bout of coronaviolence after another, 
culminating in the present day with the imaginatively named Covid-19. 
(Imagine if they’d named measles “Morbillivid-54.”) One consequence of this 
has been a dramatic increase in non-traditional work environments, espe-
cially working from home.

My own first foray into working remotely came in 1998. I did UNIX systems administration 
and information security, such as it existed then in the federal government, which was in 
name only. Early on I drove to a local office of another agency in the same department each 
day, but gradually slid into working from home full-time, doing mostly external penetration 
testing and incident response statistics for headquarters.

I’d like to emphasize that there is a considerable difference between working remotely and 
working from home (WFH). While WFH can be truly rewarding, working remotely is a fool’s 
paradise. It has all the drawbacks of going into the office with none of the advantages. You 
still have to dress appropriately, sit in a sterile office environment, and stock an additional 
refrigerator and coffee machine. You have to fight traffic while discovering just why it’s 
called a “remote site,” worry about other occupants who can’t be bothered to stay home when 
contagiously ill, and put up with bosses who, because they can’t observe you physically, drag 
you into endless teleconferences. They do this when you WFH too, admittedly, but being able 
to attend while your lower half is wearing only underwear or comfortable track suit pants 
attenuates the sting. 

In case you were trying to sneak in a little actual remote work during your day between incon-
venience and onerous oversight, the intrusive, arbitrary policies of the agency or company 
that manages the building will dash that hope against the rocks of reality. Remodeling, fire 
drills, inspections, noisy tenants, parking lot repaving, and the nearby cacophony of highway 
traffic (remote work facilities are almost always in some low-rent industrial park next to the 
freeway) will guarantee only limited concentration is possible. Ear buds can be a welcome 
panacea if you’re one of the happy few who can work with music going on, but alas I do not 
count myself among your number. My own brain demands silence in exchange for creativity.

In the late ’90s and early aughts, the Office of Personnel Management, that all-purpose HR 
department for the civilian aspects of the US federal government, began to encourage/cajole 
federal agencies to allow their employees to work remotely. Toward that end, they either 
established, or issued guidelines for establishing, remote federal work sites. These were sup-
posed to reduce fuel consumption, consolidate power/office supply costs, and ease the burden 
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of being a faceless bureaucratic cog in a ponderous gargantuan 
machine, if only by a smidgeon. Mostly, I think, remote work was 
intended to make it appear as though the federal government was 
moving toward being a bit more environmentally friendly. Green 
baby steps, as it were.

I appreciated this initiative at the time because without it, I 
would not have been able to perform my Reston, VA, duties from 
all the way down in San Antonio. Having said that, I still feel that 
the remote work concept was, among other things, an attempt to 
give employees the illusion of more flexibility while maintaining 
management’s feeling of control. As with the majority of compro-
mises, neither side was really satisfied. 

I made the transition to WFH rather seamlessly in the chaotic 
days following 9/11, because I spent a couple of weeks hanging 
around in various forums looking for suspicious chatter on behalf 
of a three-letter agency, and they did not want me coming in over 
a government network. When that temporary assignment was 
over, I just never went back to the “remote office,” saving myself 
a 90-mile daily round trip. By that point, my duties had been 
transferred from Reston to Denver. I’m not certain how long it 
took before my boss figured out I wasn’t reporting to the remote 
work facility any longer, but I suspect it was quite a while. By 
that time, I’d settled into my rather productive routines, and she 
probably figured as long as I was doing the job, the “where” didn’t 
much matter.

The thesis here, in case my long and winding rhetorical road 
has left you confused, is that working remotely is just another 
version of going into the office, unlike WFH. Although I can see 
that certain jobs do not lend themselves well to the WFH para-
digm—volcanologist, airline pilot, firefighter, thoracic surgeon, 
construction crane operator, and so on—WFH is a natural fit for 
those employed in the purely digital realm. I offer my sympathy 
and gratitude to people whose commitment to the hands-on life 
allows the rest of us to sit comfortably in our recliners with a 
spreadsheet open on one screen and cat videos on the other.

These days I’m a freelance author, admittedly, so for me WFH is 
more or less a given. I suppose I should call it “WFW,” or Working 
from Wherever (I happen to be). One problem with WFW is that 
it affords a great many options for entertaining myself in a man-
ner not conducive to, you know, actual writing. Sure, back when 
I worked in an office I could create paperclip sculptures or take-
out menu origami, but those pursuits require at least minimal 
physical participation on my part. Procrastination these days is 
just a mouse/PS4 controller click away. Write a paragraph, watch 
an episode or two. Rinse and repeat. I used to write at least 2,000 
words a day. Now I’m lucky if I write that much in a week. I can, 
however, rattle off the filmographies of a couple dozen actors on 
command. That’s got to count for something, right?
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Bad Choices: How Algorithms Can Help You Think 
Smarter and Live Happier 
Ali Almossawi
Penguin Random House LLC, 2017, 146 pages
ISBN 978-0-7352-2212-0

Reviewed by Mark Lamourine

In the Summer 2020 issue I reviewed Ali Almossawi’s first book, 
in its online and print editions, Bad Arguments. That was a book 
about logic and logical fallacies, a subject that is always timely. 
It led me to his second book, Bad Choices, about algorithms and 
how we can use them in daily life. This serves two purposes. The 
superficial goal is to show how algorithmic thinking can make 
ordinary tasks more efficient and effective. But the real goal, 
more subtle and subversive, is to show that the concepts of pro-
gramming and computation aren’t as abstract and alien as they 
seem when presented in the classroom. We use algorithms every 
day, and, with just a little attention paid, we can see how pretty 
much all computation matches problem-solving activities from 
everyday life.

Almossawi starts each chapter with a little anecdote about a 
character whose name is a bad pun and who has some task to 
accomplish. The tasks range from sorting socks to finding all 
the items on a grocery list while visiting the minimum number  
of different aisles. He presents each vignette with a statement of 
the objective and two or three methods of trying to accomplish 
the task, and then the fun begins.

The veneer of a picture book or a children’s story slips away pretty 
quickly. In the first chapter, he introduces the idea of algorithmic 
complexity based on the relationship between the size of the job 
and the time needed to complete the task. He doesn’t go deep into 
the math but presents the growth curves and the concepts of 
polynomial and logarithmic growth. These are sprinkled through 
the remaining chapters for comparison. Later chapters cover the 
ideas behind arrays, associative arrays, hash functions, quick 
sort, and binary trees, among others.

The first seven chapters of Bad Choices are online at https:// 
bookofbadchoices .com/. The first page is even read by Almos-
sawi’s son, I think. The presentation is very faithful to the book, 
down to the graphical page-turn transitions. If you’re trying to 
decide if you want to buy a hard copy for someone, it’s an excel-
lent facsimile.

The bad choices of the title are the obvious ways that we do small 
tasks. For the typical size of daily chores, things like bubble sort 
or exhaustive search of a clothes rack for the right shirt size pose 

no real problem. Almossawi uses them to present alternatives 
and introduce in an informal way the most common algorithms 
used in computer science. It won’t make anyone a program-
mer, and it won’t teach a software developer anything they don’t 
already know. But it might help demystify the idea of algorithms 
for someone who wants to get more comfortable with computa-
tion, and it might even help them sort socks or craft a clever tweet.

The Skeptics’ Guide to the Universe: How to Know 
What’s Really Real in a World Increasingly Full  
of Fake 
Steven Novella, with Bob Novella, Cara Santa Maria,  
Jay Novella, and Evan Bernstein
Grand Central Publishing, 2019, 528 pages
ISBN 978-1-5387-6052-9

Reviewed by Mark Lamourine

I think the authors of The Skeptics’ Guide must see the irony in 
the fact that their book is a self-help guide, though I don’t expect 
you’ll find it in that section of a book store. In a time of industrial-
scale misinformation, the skills needed to evaluate what you 
see and hear and read must be actively taught and learned. Even 
more important may be the knowledge of how we as humans can 
be deceived or deliberately deceive ourselves. You have to want 
to learn and be willing to let go of what you want to believe if you 
want to grow.

The Skeptics’ Guide to the Universe is the collected wisdom of 
the hosts of a podcast of the same name. They have been working 
together since 2005. They created and run the Northeast Confer-
ence on Science and Skepticism (NECSS). I have been listening 
to the podcast for several years, and I admit I am a fan.

The core of the book is the idea of scientific skepticism, which is 
not to be confused or dismissed as philosophical skepticism. The 
latter is the idea that nothing can be known or trusted. Scientific 
skepticism is an approach to understanding in which one accepts 
that learning is possible but that it is a matter of refinement. It is 
the idea that while one can never achieve certainty, it is possible 
to approach it in a way that allows one to act in the face of incom-
plete understanding. The ability to give up a cherished idea in the 
face of evidence is the most important tenet.

Each of the chapters in the book is fairly short, from two to ten 
pages at most. They are meant as an introduction to a topic and 
an invitation to learn more. Each chapter is backed by references 
that the reader can use to go into a topic in more depth.

https://bookofbadchoices.com/
https://bookofbadchoices.com/
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Curiously, there is almost nothing in the book telling the reader 
what to believe. In the main section of the book, Novella talks 
about the ways in which we as humans can mistake the world. 
First he discusses the realm of illusion and the failure of human 
intuition. Recent research into the malleability of memory and 
recall, the mind’s ability to see patterns where they don’t exist, 
the meanings attributed to dream and near dream experiences 
all can inform our response to seeing something strange or 
apparently inexplicable. It can lead us to question our certainty 
in our memories and experiences, at least enough to withhold 
judgment without confirmation.

Novella proceeds to talk about how to think about what we per-
ceive and how we interpret it. This process is known as meta-
cognition. It’s easy to dismiss the idea of metacognition as “navel 
gazing,” but that’s actually the point. Those who would dismiss it 
would cite what they call common sense. This section is a list of 
the ways in which “common sense” isn’t.

This isn’t a way in which “people are stupid.” The first chapter 
in this section is on the Dunning-Kruger effect, but if there’s 
any takeaway it’s that this applies to everyone, depending on the 
topic. A well-educated, intelligent person needs to always be on 
guard because it is easy for anyone to assume that, since they 
are expert in one field, they are qualified to evaluate and speak 
about another. The overriding message of this section is that one 
needs to be constantly aware of the possibility of being mistaken, 
especially when you are confident that you are not.

Additional chapters in this section cover motivated reasoning, 
formal logical fallacies, and some of the more common informal 
fallacies such as appeal to nature, misinterpreting statistics, or 
believing coincidence is more than coincidental. In each case, 
the purpose is to help the reader understand the human tendency 
toward misperception and how to recognize and correct for it.

In the remainder of this section, Novella covers recognizing the 
characteristics of pseudo-science and understanding a set of les-
sons from history. Both groupings contain examples of deliberate 
hoaxes, honest mistakes, and systemic failures.

The final two sections finally begin to talk about what a reader 
can do to address misinformation in the media and in life. Today 
we have access to far more information than we can possibly 
digest individually. We have to learn to evaluate the sources and 
our own responses to determine how to use what we get to form 
a view of the world. The point is never to arrive at certainty, but 
to create a level of understanding and confidence that allows us 
to act reasonably. This is always a provisional understanding, 
and it is assumed that we will continue to learn and refine this 
view, sometimes even rejecting previously held ideas if new data 
changes our understanding. Those familiar with Bayesian statis-
tics will be familiar with this idea. When our worldview changes, 
we can change our behavior to match.

Taken as a whole, The Skeptics’ Guide is a collection of things to 
note and to keep in mind when taking in the news of the world 
and trying to make sense of it for everyday life. It holds a number  
of cautionary tales, but the message is always one of optimism. 
It is possible to learn and to act reasonably in our society, but it 
takes some care and self-discipline. It’s also possible to recognize 
don’t care conditions, where you can let your guard down and 
relax. Not every topic needs skeptical scrutiny.

This book is not going to convert anyone from a closely held ideol-
ogy. The nature of human identity means that we don’t change 
who we are easily or quickly. For someone who is confused by the 
current torrent of input and wants some ideas about how to try to 
process it without becoming cynical or nihilistic, The Skeptics’ 
Guide to the Universe is a great start.

Re-Engineering Legacy Software
Chris Birchall
Manning Publications Co., 2016, 214 pages
ISBN 978-1-61729-250-7

Reviewed by Mark Lamourine

In my experience, software developers are prone to producing 
crap. It’s not all our fault. It’s a factor of the limitations on money, 
time, and sometimes attention and patience. Tasks like writ-
ing code and running tests repeatedly aren’t the most exciting 
aspects of coding. Regardless of the reason, there’s a lot of code 
out there that meets Birchall’s criteria for “legacy software.”

The title of the book belies the scope of Birchall’s ambitions. His 
focus is on refactoring the entire process of software develop-
ment. I’ve read and reviewed a number of books that go into depth 
on the facets of modern software engineering processes. There 
are books about revision control, automated testing and build 
processes, and agile planning methods. The Practice of System 
and Network Administration [1] and Refactoring [2] are classics, 
but the first is a general-purpose tome defining the ideals of 
the industry, and the second is a tightly focused exposition of a 
neglected facet of the software development process. Each has a 
place, and both can be daunting to someone looking for an over-
view that touches on all the needed topics but leaves the details 
and depth for another time. Re-Engineering Legacy Software 
tries to fill that gap.

In the first half of the book, Birchall does concentrate on the code 
base and he does start with basic refactoring, but he doesn’t stop 
there. In the next two chapters he expands to reworking software 
architecture and then again to the considerations of a complete 
rewrite. He doesn’t advocate for either method as a means to 
reach a more maintainable design. His approach is to look at the 
factors that would inf luence the decision to implement either 
an incremental or bulk replacement of an existing code base. He 
leaves it to readers to evaluate their own situations.
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It is in the second half that he moves on to the design of, not the 
software, but the software development environment and pro-
cesses. These are aspects that I think are often either neglected 
or that slavishly adhere to some ideology that may not take into 
account the specific needs of the team, the customer, or the proj-
ect. Birchall discusses the common modern techniques of auto-
mated testing, continuous development, and delivery, but with a 
view to adding them to a project where they are not currently in 
use. He clearly is an advocate of modern practices, and he brings 
an agile view to implementing them in existing environments. 
The focus is again on incremental improvement, not on wholesale 
replacement, though he does discuss times where that might be 
the best course.

The final section covers project management and software 
development culture. Here he echoes in brief the messages of 
The DevOps Handbook [3] and The Phoenix Project [4]. These are 
the classic works on modern software development process and 
culture. Birchall glosses over the types of cultural and personal 
pressures that can lead to wasting time on precious features, or 
alternatively, the mistaken avoidance of writing throwaway code 
to allow for incremental improvement.

Re-Engineering Legacy Software won’t replace any of the old 
favorites on my book shelf. On the other hand, I would recom-
mend it to someone entering software project management cold  
or approaching a legacy project for the first time. Birchall makes 
a subject that can be the focus of ideological wars and pet soft-
ware tools accessible without a lot of the hype and heat that have 
been present over the last decade or so. The flip side of “fail fast” 
is “one bite at a time,” and Birchall’s book is bite-sized.

IT Architect Series: Stories from the Field
Matthew Wood, John Yani Arrasjid, and Mark Gabryjelski
IT Architect Resource, LLC, 2020, 270 pages
ISBN: 978-0-9990929-1-0 

Reviewed by Rik Farrow

In the preface of this ebook, John Arrasjid writes that the stories 
are supposed to be both informative and entertaining. I can agree 
with John’s statement, as I learned things from reading about the 
misfortunes of others, but also found myself often entertained at 
the same time. 

Stories from the Field begins with a long preface, including a clas-
sification scheme for categorizing the stories, using terms like 
Analysis, Communication, Politics, Database, and Risk. As I just 
read straight through, the categories really didn’t make any dif-
ference to me, but at least hinted at what I’d soon be reading.

The stories themselves are written by 35 contributors, presum-
ably all IT architects. I wasn’t familiar with “IT architect” as a 
job description, but learned as I read that this person works with 
a team to design large scale distributed systems for some business 
purpose. Most of the team works for a company that does installa-
tions, often called a partner but what in the past might have been 
called a VAR. The team includes people who handle the business 
side of the project, but also technologists like programmers and 
network engineers working beside the IT architect.

The stories roughly follow a pattern where the project is described, 
and this is where I learned about the protocols for designing 
these projects as well as the systems and software used in cur-
rent IT departments. There are lots of references to VMware 
products, and the acronyms used for different types of offer-
ings, like virtual desktop infrastructure (VDI), cloud computing 
hypervisor (vSphere), and the VMware Enterprise hypervisor 
(ESXi) took some getting used to. Note that this is not a technical 
book and is not specific to VMware, but VMware products are 
often involved in the stories.

Each story ends with lessons learned, and after a while I became 
familiar with the patterns of failure. Most common were failures 
in communication that led to misunderstandings, but almost as 
common were mission creep, although sometimes the creep was 
more like a leap, as customers would suddenly decide on install-
ing the just-released version of a major release or have purchased 
different, and usually cheaper, equipment. There are things that 
an SRE would find more familiar, such as failure to determine all 
dependencies until a server fails, and turns out to be the keystone 
in an entire system.

Overall, I enjoyed reading Stories, as the stories themselves are 
short, informative, and generally fun to read. And, honestly, I 
felt glad that it was somebody else who had to live through the 
misadventures.
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We are looking for people with personal experience and 
 ex pertise who want to share their knowledge by writing. 
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published in ;login:, with the least effort on your part and on 
the part of the staff of ;login:, is to submit a proposal to  
login@usenix.org.

PROPOSALS
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ular writer.
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• What’s the topic of the article?

•  What type of article is it (case study, tutorial, editorial,  
article based on published paper, etc.)?

•  Who is the intended audience (syadmins, programmers, 
security wonks, network admins, etc.)?

• Why does this article need to be read?

•  What, if any, non-text elements (illustrations, code, 
diagrams, etc.) will be included?

• What is the approximate length of the article?

Start out by answering each of those six questions. In answer-
ing the question about length, the limit for articles is about 
3,000 words, and we avoid publishing articles longer than six 
pages. We suggest that you try to keep your article between 
two and five pages, as this matches the attention span of 
many people.

The answer to the question about why the article needs to be 
read is the place to wax enthusiastic. We do not want market-
ing, but your most eloquent explanation of why this article is 
important to the readership of ;login:, which is also the mem-
bership of USENIX.
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text/plain formatted documents for the proposal. Send pro-
posals to login@usenix.org.

The final version can be text/plain, text/html, text/markdown, 
LaTeX, or Microsoft Word/Libre Office. Illustrations should 
be PDF or EPS if possible. Raster formats (TIFF, PNG, or JPG) 
are also  acceptable, and should be a minimum of 1,200 pixels 
wide.

DEADLINES
For our publishing deadlines, including the time you can 
 ex pect to be asked to read proofs of your article, see the 
 online schedule at www.usenix.org/publications/login 
/publication_schedule.

COPYRIGHT
You own the copyright to your work and grant USENIX first 
publication rights. USENIX owns the copyright on the collec-
tion that is each issue of ;login:. You have control over who 
may reprint your text; financial negotiations are a private 
 matter between you and any reprinter.
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