
;login:
F A L L 2 0 1 9 V O L . 4 4 , N O . 3

Columns
Reliability by Design
Laura Nolan

Type-Checking in Python
Peter Norton

Anomaly Detection Using Prometheus
Dave Josephsen

Querying SQL Using Golang
Chris “Mac” McEniry

Cloud vs On-Premises: Which Is Safer?
Dan Geer and Wade Baker

& Outsourcing Everyday Jobs to
Thousands of Cloud Functions
Sadjad Fouladi, Francisco Romero, Dan Iter,
Qian Li, Alex Ozdemir, Shuvo Chatterjee,
Matei Zaharia, Christos Kozyrakis, and
Keith Winstein

& E3 —Easy Email Encryption
John S. Koh, Steven M. Bellovin, and Jason Nieh

& Interview with Periwinkle Doerfler
Rik Farrow

& Issues with Docker Storage
 Ali Anwar, Lukas Rupprecht, Dimitris Skourtis,
and Vasily Tarasov

UPCOMING EVENTS
SREcon19 Europe/Middle East/Africa

October 2–4, 2019, Dublin, Ireland
www.usenix.org/srecon19emea

LISA19
October 28–30, 2019, Portland, OR, USA
www.usenix.org/lisa19

Enigma 2020
January 27–29, 2020, San Francisco, CA, USA
www.usenix.org/enigma2020

FAST ’20: 18th USENIX Conference on File and
Storage Technologies

February 24–27, 2020, Santa Clara, CA, USA
Sponsored by USENIX in cooperation with
ACM SIGOPS
Co-located with NSDI ’20
Paper submissions due September 26, 2019
www.usenix.org/fast20

Vault ’20: 2020 Linux Storage and Filesystems
Conference

Feburary 24–25, 2020, Santa Clara, CA, USA
Co-located with FAST ’20

NSDI ’20: 17th USENIX Symposium on
Networked Systems Design and
Implementation

February 25–27, 2020, Santa Clara, CA, USA
Sponsored by USENIX in cooperation with
ACM SIGCOMM and ACM SIGOPS
Co-located with FAST ’20
Fall paper titles and abstracts due September 12, 2019
https://www.usenix.org/conference/nsdi20

SREcon20 Americas West
March 24–26, 2020, Santa Clara, CA, USA

HotEdge ’20: 3rd USENIX Workshop on Hot
Topics in Edge Computing

April 30, 2020, Santa Clara, CA, USA

OpML ’20: 2020 USENIX Conference on
Operational Machine Learning

May 1, 2020, Santa Clara, CA, USA

SREcon20 Asia/Pacific
June 15–17, 2020, Sydney, Australia

2020 USENIX Annual Technical Conference
July 15–17, 2020, Boston, MA, USA
Paper submissions due January 15, 2020
www.usenix.org/atc20

SOUPS 2020: Sixteenth Symposium on Usable
Privacy and Security

August 9–11, 2020, Boston, MA, USA
Co-located with USENIX Security ’20

29th USENIX Security Symposium
August 12–14, 2020, Boston, MA, USA
Fall Quarter paper submissions due
Friday, November 15, 2019
www.usenix.org/sec20

SREcon20 Europe/Middle East/Africa
September 27–29, 2020, Amsterdam, Netherlands

OSDI ’20: 14th USENIX Symposium on
Operating Systems Design and
Implementation

November 4–6, 2020, Banff, Alberta, Canada

LISA20
December 7–9, 2020, Boston, MA, USA

SREcon20 Americas East
December 7–9, 2020, Boston, MA, USA

USENIX Open Access Policy
USENIX is the fi rst computing association to off er free and open access to all of our conference
proceedings and videos. We stand by our mission to foster excellence and innovation while supporting
research with a practical bias. Please help us support open access by becoming a USENIX member and asking
your colleagues to do the same!

www.usenix.org/membership

www.usenix.org/facebook

twitter.com/usenix

www.usenix.org/youtube

www.usenix.org/linkedin

E D I T O R
Rik Farrow
rik@usenix.org

M A N A G I N G E D I T O R
Michele Nelson
michele@usenix.org

C O P Y E D I T O R S
Steve Gilmartin
Amber Ankerholz

P R O D U C T I O N
Arnold Gatilao
Ann Heron
Jasmine Murcia

T Y P E S E T T E R
Happenstance Type-O-Rama
happenstance.net

U S E N I X A S S O C I AT I O N
2560 Ninth Street, Suite 215
Berkeley, California 94710
Phone: (510) 528-8649
FAX: (510) 548-5738

www.usenix.org

;login: is the official magazine of the USENIX
Association. ;login: (ISSN 1044-6397)
is published quarterly by the USENIX
Association, 2560 Ninth Street, Suite 215,
 Berkeley, CA 94710.

$90 of each member’s annual dues is for
a subscription to ;login:. Subscriptions for
non members are $90 per year. Periodicals
postage paid at Berkeley, CA, and additional
mailing offices.

POSTMASTER: Send address changes to
;login:, USENIX Association, 2560 Ninth Street,
Suite 215, Berkeley, CA 94710.

©2019 USENIX Association
USENIX is a registered trademark of the
USENIX Association. Many of the designa-
tions used by manufacturers and sellers
to distinguish their products are claimed
as trademarks. USENIX acknowledges all
trademarks herein. Where those desig-
nations appear in this publication and
USENIX is aware of a trademark claim,
the designations have been printed in caps
or initial caps.

FA L L 2 0 1 9 V O L . 4 4 , N O . 3

E D I T O R I A L
2 Musings Rik Farrow

P R O G R A M M I N G
5 Outsourcing Everyday Jobs to Thousands of Cloud Functions

with gg
Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li, Alex Ozdemir,
Shuvo Chatterjee, Matei Zaharia, Christos Kozyrakis, and Keith
Winstein

12 Not So Fast: Analyzing the Performance of WebAssembly vs.
Native Code
Abhinav Jangda, Bobby Powers, Emery Berger, and Arjun Guha

S E C U R I T Y
19 Making It Easier to Encrypt Your Emails

John S. Koh, Steven M. Bellovin, and Jason Nieh

23 Interview with Periwinkle Doerfler Rik Farrow

26 Interview with Dave Dittrich Rik Farrow

S R E A N D S Y S A D M I N
32 Challenges in Storing Docker Images

Ali Anwar, Lukas Rupprecht, Dimitris Skourtis, and Vasily Tarasov

C O L U M N S
38 Reliable by Design: The Importance of Design Review in SRE

Laura Nolan

42 Python News Peter Norton

46 iVoyeur: Prometheus (Part Two) Dave Josephsen

49 Using SQL in Go Applications Chris “Mac” McEniry

53 For Good Measure: Is the Cloud Less Secure than On-Prem?
Dan Geer and Wade Baker

56 /dev/random: Layers Robert G. Ferrell

B O O K S
58 Book Reviews Mark Lamourine and Rik Farrow

U S E N I X N O T E S
60 2018 Constituent Survey Results Liz Markel

2  FA L L 20 19 VO L . 4 4 , N O. 3 www.usenix.org

EDITORIALMusings
R I K F A R R O W

Rik is the editor of ;login:. rik@
usenix.org W hen I decided to work with computers, I resolved to help make

computers easier for people to use. I had already witnessed
through my university classes just how difficult and actually

inscrutable computers were, and so I hoped that I could make things better.

I failed. I was waylaid by the usual factor: peer pressure. I wanted to be liked and admired by
my peer group, and they were programmers and engineers. We loved coming up with elegant
solutions, whether it was in the hidden underpinnings of products or in the user interface.

I wrote one of my first Musings about this in 1998 [1]. In that column, I describe the magic
of state machines, beloved of programmers and anathema for just about anybody else. My
friends and I would wonder why people couldn’t program VCRs or set digital watches when
we could figure them out without resorting to manuals!

Things today are different. Instead of state machines, we have graphical interfaces with
ever-changing sets of symbology. Three vertically arranged dots sometimes means, “Here’s
that menu you’ve been searching for!” but sometimes just leads you off on a wild goose chase
instead. You are supposed to learn how your new smartphone works from members of your
peer group. And by the time you’ve figured out how to answer your phone, the interface has
been updated and you no longer know how to answer your phone.

The desktop metaphor could be called the visual-spatial interface, as it builds on skills
familiar to our ancient ancestors. We locate the icon on the screen and manipulate it using a
pointing device. Apple made much out of this interface in the ’80s, with Microsoft embracing
it in the mid-’90s. Visual-spatial design works well because we are familiar with seeing and
pointing.

Consider the modern, touchscreen interface as a counter-example. Instead of pointing to
what we want others to notice, imagine that the number of fingers we used while pointing
was terribly significant, as was the direction we swiped our pointing fingers afterward. Yes,
the two-fingered swipe to the left means “Danger, lion!” Or was that just one finger, meaning,
“Food item, attack!” Somehow, I am not surprised that finger gestures never caught on with
our not very distant ancestors.

The Lineup
Keeping with my theme of making things easier, more efficient, and definitely cooler, we have
gg. Fouladi et al., from Stanford University, have created a suite of tools for converting tasks
such as large compilations, running tests, and video processing into thousands of cloud func-
tions. While even the concept of a lambda is certain to bewilder mere mortals, I believe this
project will prove a godsend to many of the people who read ;login:. For anyone using lambdas,
I strongly recommend you read Hellerstein et al., the fifth cite in this article.

Jangda et al. built Browsix, a browser extension that extends more complete access to the
operating system for applications written in WebAssembly (Wasm). Their purpose was to
be able to run standard benchmarking tools, and they have done that and noticed that the
performance they get from Wasm is not quite what was promised. Reading this article will

www.usenix.org FA L L 20 19 VO L . 4 4 , N O. 3 3

EDITORIAL
Musings

teach you more about Wasm, but don’t go installing Browsix on
the browser you use for everyday tasks.

John Koh, Jason Nieh, and Steve Bellovin created E3, a tool for
encrypting email while it is stored on mail servers. Instead of
relying on knowledge that Johnny doesn’t have and wouldn’t
understand anyway [2], they have built an interface for add-
ing public-private key pairs and transparently encrypting and
decrypting mail messages.

Periwinkle Doerfler is researching the intersection between our
apps, the device they run on, and our interpersonal relations.
She spoke on this at Enigma 2019 [3], where I met her at lunch
and decided I should dig deeper by interviewing her. It shouldn’t
surprise any of us that our inscrutable devices can be used to
further abuse by intimate partners, parents, coworkers, and even
others we barely know at all.

Dave Dittrich has been in the trenches, reverse engineering
malware and DDoS agents since the late 1990s. More recently,
Dave has ventured into policy realms as co-author of the Menlo
Report. I borrowed from one of Dave’s early projects, and basked
in my 15 minutes of fame, when I predicted attacks against the
Internet giants of the year 2000 days before the attack began.
Dave never stopped, creating, for example, the first Forensic
Challenge [4].

Anwar et al., from IBM at Almaden, explain why the manner in
which Docker creates containers is inefficient. Docker makes
creating container images easy—perhaps too easy, leading to
bloated images, wasted storage, and slower startup times with
much duplication between layers. They explain why and suggest
solutions.

Laura Nolan examined complexity in her previous SRE column
and takes on reliability this time. We all want our software to be
reliable, and Laura explains some of the key features for building
reliable software and provides a detailed checklist you can use to
help you and your team do so.

Peter Norton tells us that it’s past time to move on to Python 3.
Then Peter explains a way to add type checking to Python, both
why (if you don’t already know) and how it can be done in
Python 3.

Dave Josephsen shares some tricks he learned about anomaly
detection from Monitorama, and explains how you can use Pro-
metheus’s query language (PromQL) to do this yourselves.

Mac McEniry decided it was time for us to learn how to access
databases with SQL interfaces from within Go programs. As
usual, you can do this fairly simply by using preexisting Go mod-
ules, but you still need to understand SQL.

Dan Geer and Brian Wade consider the question: are your
 Internet-facing hosts more secure on-premises or in the cloud?
Using data acquired from a vendor, they provide an intriguing
answer.

Robert G. Ferrell considers layers. Applications are layered over
libraries and the operating system, and the network consists of
some number of layers—just how many and what you name them
depends on how you slice things.

Mark Lamourine has written reviews of an older book about
continuous delivery and two books on deep learning. I review
Neal Stephenson’s Fall.

I really don’t intend to come across like a Luddite. I just hope to
remind people who write user-interfacing code that your users
will likely not be members of your peer group. Instead, they may
be average people interested, even anxious, to partake in the
wonderful technology you have created. Perhaps now is the time
for a newer, more natural, interface metaphor, or your potential
users may be using just one middle finger with which to salute
your newest creation.

References
[1] R. Farrow, Musings, ;login:, vol. 24, no. 4, August 1998,
pp. 59–61: http://rikfarrow.com/farrow_aug98.pdf.

[2] A. Whitten and J. D. Tygar, “Why Johnny Can’t Encrypt:
A Usability Evaluation of PGP 5.0,” in Proceedings of the
8th USENIX Security Symposium (USENIX Security ’99),
 USENIX Association, pp. 169–184: https://people.eecs
.berkeley.edu/~tygar/papers/Why_Johnny_Cant_Encrypt
/USENIX.pdf.

[3] P. Doerf ler, “Something You Have and Someone You
Know—Designing for Interpersonal Security,” Engima
2019: https://www.usenix.org/conference/enigma2019
/presentation/doerfler.

[4] The Forensic Challenge: http://old.honeynet.org/challenge
/index.html.

http://rikfarrow.com/farrow_aug98.pdf
https://people.eecs.berkeley.edu/~tygar/papers/Why_Johnny_Cant_Encrypt/USENIX.pdf
https://people.eecs.berkeley.edu/~tygar/papers/Why_Johnny_Cant_Encrypt/USENIX.pdf
https://people.eecs.berkeley.edu/~tygar/papers/Why_Johnny_Cant_Encrypt/USENIX.pdf
https://www.usenix.org/conference/enigma2019/presentation/doerfler
https://www.usenix.org/conference/enigma2019/presentation/doerfler
http://old.honeynet.org/challenge/index.html
http://old.honeynet.org/challenge/index.html

Save the Dates!

18th USENIX Conference on
File and Storage Technologies

February 24–27, 2020 | Santa Clara, CA, USA
Sponsored by USENIX in cooperation with ACM SIGOPS
Co-located with NSDI ’20
www.usenix.org/fast20

The 18th USENIX Conference on File and Storage Technologies (FAST ’20) brings together stor-
age-system researchers and practitioners to explore new directions in the design, implemen-
tation, evaluation, and deployment of storage systems.

The program committee will interpret “storage systems” broadly; papers on low-level stor-
age devices, distributed storage systems, and information management are all of interest.
The conference will consist of technical presentations including refereed papers, Work-in-
Progress (WiP) reports, poster sessions, and tutorials. Paper submissions are due Thursday,
September 26, 2019.

The full program and registration will be available in December.

17th USENIX Symposium on
Networked Systems Design
and Implementation

February 25–27, 2020 | Santa Clara, CA, USA
Sponsored by USENIX in cooperation with ACM SIGCOMM and ACM SIGOPS
Co-located with FAST ’20
www.usenix.org/nsdi20

NSDI will focus on the design principles, implementation, and practical evaluation of net-
worked and distributed systems. Our goal is to bring together researchers from across the
networking and systems community to foster a broad approach to addressing overlapping
research challenges.

NSDI provides a high-quality, single-track forum for presenting results and discussing ideas
that further the knowledge and understanding of the networked systems community as a
whole, continue a significant research dialog, or push the architectural boundaries of net-
work services. Fall paper titles and abstracts are due Thursday, September 12, 2019.

www.usenix.org FA L L 20 19 VO L . 4 4 , N O. 3 5

PROGRAMMINGOutsourcing Everyday Jobs to Thousands
of Cloud Functions with gg
S A D J A D F O U L A D I , F R A N C I S C O R O M E R O , D A N I T E R , Q I A N L I , A L E X O Z D E M I R ,
S H U V O C H A T T E R J E E , M A T E I Z A H A R I A , C H R I S T O S K O Z Y R A K I S , A N D K E I T H W I N S T E I N

Sadjad Fouladi is a PhD
candidate in computer science
at Stanford University, working
with Keith Winstein on topics in
networking, video systems, and

distributed computing. His current projects
include general-purpose lambda computing
and massively parallel ray-tracing systems.
sadjad@cs.stanford.edu

Francisco Romero is a PhD
student in electrical engineering
at Stanford University. His
interests are in computer
architecture and computer

systems. He has recently worked on in-memory
database systems for emerging storage
technologies, serverless computing, machine
learning inference systems, and datacenter
resource scheduling. faromero@stanford.edu

Dan Iter is a PhD student
at Stanford University. He
is advised by Professor Dan
Jurafsky and is a member of
the NLP Group and AI Lab.

He is interested in generative models for text
representation, relation extraction, knowledge-
base construction, and mental health
applications. Previously, Dan also worked on
lambda computing and virtualized storage for
datacenters. daniter@stanford.edu

Qian Li is a PhD student in
computer science at Stanford
University, advised by Professor
Christos Kozyrakis. She has
broad interests in computer

systems and architecture. Her current research
focuses on efficient resource management and
scheduling for heterogeneous cloud computing
platforms. Before coming to Stanford, Qian
received her Bachelor of Science from Peking
University. qianli@cs.stanford.edu

We introduce gg, a framework that helps people execute everyday
applications—software compilation, unit tests, video encoding,
or object recognition—using thousands of parallel threads on a

“serverless” platform to achieve near-interactive completion times. We envi-
sion a future where instead of running these tasks on a laptop, or keeping a
warm cluster running in the cloud, users push a button that spawns 10,000
parallel cloud functions to execute a large job in a few seconds from start.
gg is designed to make this practical and easy.

A third of a century ago, interactive personal computing changed the way the computers
were used and markedly increased global productivity. Nevertheless, even today, many
applications remain far from interactive: compiling a large software package can take hours;
processing an hour of 4K video typically needs more than 30 CPU-hours; and a single frame
from the animated movie Monsters University takes 29 hours to render [8]. Users who wants
to explore or tinker and desire feedback in seconds need to harness thousands of cores in
parallel, far exceeding the available compute power in laptops and workstations and leading
users towards rented compute resources in large-scale datacenters—the cloud.

However, outsourcing a job to thousands of threads in the cloud presents its own challenges.
For one, maintaining a warm cluster of thousands of CPU cores in the form of VMs is not
cost-effective for occasional short-lived jobs. Provisioning and booting a cluster of VMs on
current commercial services can also take several minutes, leaving end users with no practi-
cal option to scale their resource footprint on demand in an efficient and scalable manner.

Meanwhile, a new category of cloud-computing resources has emerged that offers finer
granularity and lower latency than traditional VMs: cloud functions, also called serverless
computing. Amazon’s Lambda service will rent a Linux container for a minimum of 100
ms, with a startup time of less than a second and no charge when idle. Google, Microsoft,
 Alibaba, and IBM have similar offerings.

Cloud functions were intended for asynchronously invoked microservices, but their granu-
larity and scale sparked our interest for a different use: as a burstable supercomputer-on-
demand. As part of building our massively parallel, low-latency video-processing system,
ExCamera [4], we found that thousands of cloud functions can be invoked in a few seconds
with inter-function communication over TCP, effectively providing something like a rented
10,000-core computer billed by the second. ExCamera’s unorthodox use of a cloud-functions
service has been followed by several subsequent systems, including PyWren [6], Sprocket [2],
Cirrus, Serverless MapReduce, and Spark-on-Lambda. These systems all launch a burst-
parallel swarm of thousands of cloud functions, all working on the same job, to provide
results to an interactive user.

Challenges of Building Burst-Parallel Applications
Despite the above, building new burst-parallel applications on thousands of cloud functions
has remained a difficult task. Each application must overcome a number of challenges
endemic to this environment: (1) workers are stateless and may need to download large

6  FA L L 20 19 VO L . 4 4 , N O. 3 www.usenix.org

PROGRAMMING
Outsourcing Everyday Jobs to Thousands of Cloud Functions with gg

amounts of code and data on startup; (2) workers have limited runtime before they are killed;
(3) on-worker storage is limited but much faster than off-worker storage; (4) the number of
available cloud workers depends on the provider’s overall load and can’t be known precisely
upfront; (5) worker failures are more likely to occur when running at large scale; (6) libraries
and dependencies differ in a cloud function compared with a local machine; and (7) latency
to the cloud makes roundtrips costly.

In this article, we present gg, a general system designed to help application developers man-
age the challenges of creating burst-parallel cloud-function applications. Instead of directly
targeting a cloud-functions infrastructure, application developers express their jobs in gg’s
intermediate representation (gg IR), which abstracts the application logic from its placement,
schedule, and execution. This portable representation allows gg to run the same application
on a variety of compute and storage platforms, and provides runtime features that address
underlying challenges, such as dependency management, straggler mitigation, placement,
and memoization. Figure 1 illustrates the overall architecture of gg.

gg can containerize and execute existing programs, e.g., software compilation, unit tests,
video encoding, or searching a movie with an object-recognition kernel. gg does this with
thousands-way parallelism on short-lived cloud functions. In some cases, this yields consid-
erable benefits in terms of performance. For example, compiling the Inkscape graphics editor
on AWS Lambda using gg was almost 5x faster than an existing system (icecc) running on a
384-core cluster of warm VMs.

Alex Ozdemir is a PhD
student in computer science
at Stanford University. His
research interests span much
of theoretical computer

science and computer systems. aozdemir@
stanford.edu

Christos Kozyrakis is a
Professor in the Departments
of Electrical Engineering and
Computer Science at Stanford
University. His research

interests include resource-efficient cloud
computing, energy-efficient computing and
memory systems for emerging workloads, and
scalable operating systems. Kozyrakis has a
PhD in computer science from the University
of California, Berkeley. He is a Fellow of the
IEEE and ACM. kozyraki@stanford.edu

Shuvo Chatterjee currently
works at Google on account
security. Previously, he
worked at Square and Apple.
In between, he was a visiting

researcher at Stanford. His focus is primarily
on user security and privacy in large-scale
systems. He is a graduate of MIT. shuvo@
alum.mit.edu

Matei Zaharia is an Assistant
Professor of Computer Science
at Stanford University and Chief
Technologist at Databricks. He
works on computer systems for

data analysis, machine learning, and security
as part of the Stanford DAWN lab. Previously,
Matei started the Apache Spark project during
his PhD at UC Berkeley in 2009 and co-started
the Apache Mesos cluster manager. Matei’s
research work was recognized through the
2014 ACM Doctoral Dissertation Award for
the best PhD dissertation in computer science,
an NSF CAREER Award, the VMware Systems
Research Award, and best paper awards at
several conferences. matei@cs.stanford.edu

Figure 1: gg helps applications express their jobs in an intermediate representation that abstract the
 application logic from its placement, schedule, and execution, and provides back-end engines to execute
the job on different cloud-computing platforms.

Figure 2: An example thunk for preprocessing a C program, hello.c. The thunk is named by the hash of its
content, T0MEiRL. The hash starts with T to mark it as a thunk rather than a primitive value. Other thunks
can refer to its output by using this hash.

www.usenix.org FA L L 20 19 VO L . 4 4 , N O. 3 7

PROGRAMMING
Outsourcing Everyday Jobs to Thousands of Cloud Functions with gg

Keith Winstein is an Assistant
Professor of Computer Science
(and, by courtesy, of Electrical
Engineering) at Stanford
University. He and his students

and colleagues made the Mosh (mobile
shell) tool, the Mahimahi network emulator,
the Sprout and Remy systems for computer-
generated congestion control, the Lepton
functional-compression tool used at Dropbox,
the ExCamera, Salsify, and Puffer systems for
video coding and transmission, the Pantheon
of Congestion Control, and gg. keithw@
cs.stanford.edu

Thunks: Transient Functional Containers
The heart of gg IR is an abstraction that we call a thunk. In the functional-programming
literature, a thunk is a parameterless closure that captures a snapshot of its arguments and
environment for later evaluation. The process of evaluating the thunk—applying the function
to its arguments and saving the result—is called forcing it [1].

Building on this concept, gg represents a thunk with a description of a container that identi-
fies, in content-addressed manner, an x86-64 Linux executable and all of its input data
objects. The container is hermetically sealed and meant to be referentially transparent; it is
not allowed to use the network or access unlisted objects or files. The thunk also describes
the arguments and environment for the executable and a list of tagged output files that it will
generate—the results of forcing the thunk. Figure 2 shows an example thunk for preprocess-
ing a C source file. Since the thunk captures the full functional footprint of a function, it can
be executed in any environment capable of running an x86-64 Linux executable.

All the objects, including the input files, functions, and thunks are named by their hashes.
More precisely, the name of an object has four components: (1) whether the object is a primi-
tive value (hash starting with V) or refers to the result of forcing some other thunk (hash
starting with T), (2) a SHA-256 hash of the value’s or thunk’s content, (3) the length in bytes,
and (4) an optional tag that names an object or a thunk’s output.

Because the objects are content-addressed, they can be stored on any mechanism capable of
producing a blob that has the correct name: durable or ephemeral storage (e.g., S3, Redis, or
Bigtable), a network transfer from another node, or by finding the object already available in
RAM from a previous execution.

From our experiences of working with the system, we expect gg thunks to be simple to imple-
ment and reason about, straightforward to execute, and well matched to the statelessness
and unreliability of cloud functions.

gg IR: A Lazily Evaluated Lambda Expression
The structure of interdependent thunks—essentially a lambda expression—is what defines
the gg IR. This representation exposes the computation graph to the execution engine, along
with the identities and sizes of objects that need to be communicated between thunks. For
example, the IR representing the expression Assemble(Compile(Preprocess(hello.c))) con-
sists of three thunks, as depicted in Figure 3. Each stage refers to the previous stage’s output
by using the thunk’s hash.

Figure 3: An example of gg IR consisting of three thunks for building a “Hello, World!” program that rep-
resents the expression Assemble(Compile(Preprocess(hello.c))) → hello.o. To produce the final
output hello.o, thunks must be forced in order from left to right. Other thunks, such as the link operation,
can reference the last thunk’s output using its hash, T42hGtG. Hashes have been shortened for display.

8  FA L L 20 19 VO L . 4 4 , N O. 3 www.usenix.org

PROGRAMMING
Outsourcing Everyday Jobs to Thousands of Cloud Functions with gg

The IR allows gg to schedule jobs efficiently, mitigate the effect
of stragglers by invoking multiple concurrent thunks on the criti-
cal path, recover from failures by forcing a thunk a second time,
and memoize thunks to avoid repetitive work. This is achieved
in an application-agnostic, language-agnostic manner. Based on
the data exposed by the IR, back ends can schedule the forcing
of thunks, place thunks with similar data-dependencies or an
output-input relationship on the same physical infrastructure,
and manage the storage or transfer of intermediate results, with-
out roundtrips back to the user’s own computer.

Front-End Code Generators and Back-End
Execution Engines
Front ends are the programs that emit gg IR (Figure 1). Most
of the time, we expect the applications to write out thunks by
explicitly providing the executable and its dependencies. This
can be done through a command-line tool provided by gg (i.e., gg
create-thunk) or by using the C++ and Python SDKs that expose
a thunk abstraction and allow the developer to describe the
application in terms of thunks. For one application, software
compilation, we developed a technique called model substitution
that is designed to extract gg IR from an existing build system,
without actually compiling the software. In the next section, we
will describe the details of this technique.

The execution of gg IR is done by the back ends and requires
two components: an execution engine for forcing the individual
thunks, and a content-addressed storage engine for storing the
named blobs referenced or produced by the thunks. We imple-
mented five compute engines (a local machine, a cluster of warm
VMs, AWS Lambda, IBM Cloud Functions, and Google Cloud
Functions) and three storage engines (S3, Google Cloud Storage,
and Redis).

gg’s approach of abstracting front ends from back ends allows
the applications and the back-end engines to evolve and improve
independently. The developers can focus on building new appli-
cations on top of gg abstractions and, at the same time, benefit
from the improvements made to the execution back ends. More-
over, special-purpose execution engines can be built to match
the unique characteristics of a certain job without changing the
IR description of the application.

As an example, our default AWS Lambda/S3 back end invokes
a new Lambda for each thunk. Upon completion, a Lambda
uploads its outputs to S3 for other workers to download and
use. However, for applications like ExCamera that deal with
large input/output objects, the roundtrips to S3 can negatively
affect the performance. To improve the performance of such
applications, we made a “long-lived” AWS Lambda engine, where
each worker stays up until the whole job finishes and seeks out
new thunks to execute. The execution engine keeps an index
of objects present on each worker’s local storage and uses that
information to place thunks on workers with the most data avail-
able, in order to minimize the need to fetch dependencies from
the storage back end.

Software Compilation with gg
Software compilation has long been a prime example of non-
interactive computing. For instance, compiling the Chromium
Web browser, one of the largest open-source projects, takes more
than four hours on a 4-core laptop. Many solutions have been
developed to leverage warm machines in a local cluster or cloud
datacenter (e.g., distcc or icecc). We developed such an applica-
tion on top of gg that can outsource a compilation job to thou-
sands of cloud functions.

Build systems are often large and complicated. The application
developers have spent a considerable amount of time crafting
Makefiles, CMakeLists.txt files, and build.ninja files for their
projects, and manually converting them to gg IR is virtually
impossible. We developed a technique called model substitution
that can automatically extract a gg IR description from an exist-
ing build system.

We run the build system with a modified PATH so that each stage
is replaced with a stub: a model program that understands the
behavior of the underlying stage well enough so that when the
model is invoked in place of the real stage, it can write out a
thunk that captures the arguments and data that will be needed
in the future; forcing the thunk will then produce the exact
output that would have been produced during actual execution.
We used this technique to infer gg IR from the existing build
systems for several large open-source applications, including

Local (make) Distributed (icecc) Distributed (gg)
1 core 48 cores 48 cores AWS Lambda

FFmpeg 06m 9s 20s 01m 03s 44s±04s

GIMP 06m 48s 49s 02m 35s 01m 38s±03s

Inkscape 32m 34s 01m 40s 06m 51s 01m 27s ±07s

Chromium 15h 58m 20s 38m 11s 46m 01s 18m 55s ±10s

Table 1: Comparison of cold-cache build times in different scenarios. gg on AWS Lambda is competitive with or faster than using conventional outsourcing
(icecc) and, in the case of the largest programs, is 2–5 faster. This includes both the time required to generate gg IR from a given repository using model
substitution and the time needed to execute the IR.

www.usenix.org FA L L 20 19 VO L . 4 4 , N O. 3 9

PROGRAMMING
Outsourcing Everyday Jobs to Thousands of Cloud Functions with gg

OpenSSH, the FFmpeg video system, the GIMP image editor,
the Inkscape vector graphics editor, and the Chromium browser,
with no changes to the original build system or user interven-
tion. Table 1 shows a summary of the results for four open-
source projects. gg on AWS Lambda is about 2–5 faster than
a conventional tool (icecc) in building medium- and large-sized
software packages.

As an example, we will go through the steps of building the
FFmpeg video system with gg. First, the user clones the repo and
execute ./configure script to generate the Makefiles:

sadjad@˜$ git clone https://git.ffmpeg.org/ffmpeg.git

sadjad@˜$ [install ffmpeg build dependencies]

sadjad@˜$ cd ffmpeg

sadjad@ /̃ffmpeg$./configure --disable-doc --disable-x86asm

Next, the user runs gg init in the program’s root, which will cre-
ate a directory named gg. This directory will contain the gener-
ated thunks and local cache entries:

sadjad@ /̃ffmpeg$ gg init

To compile the project with gg, first we need to extract an IR
description from the build system, which is done by running the
normal build command (make in this case), prefixed by gg infer:

sadjad@ /̃ffmpeg$ gg infer *make -j$(nproc)*

This command will execute the underlying build system, but it
modifies the PATH so that each stage of the build is replaced with
a model program, which writes out a thunk for that stage. After
the IR generation is done, the build targets are created, but their
contents are not what we would normally expect:

sadjad@ /̃ffmpeg$ cat ffmpeg

#!/usr/bin/env gg-force-and-run

Te6aLo5FtpPyyGY.CsF8PHGY5WS61AlmbcUNGA1tG9Cs00000179

This is a placeholder, and it expresses that the actual ffmpeg
binary is the output of the thunk with the hash Te6aLo5F... (the
content of this thunk can be inspected by using the gg describe
utility). Running this script forces this thunk, replaces itself
with the output, and then executes it. The user can also manually
force this thunk by using the gg force utility:

sadjad@ /̃ffmpeg$ gg force --jobs *1500* --engine *lambda*

ffmpeg

* Loading the thunks... done (233 ms).

* Uploading 4663 files (81.8 MiB)... done (6985 ms).

 ...

* Downloading output file (16.7 MiB)... done (1131 ms).

This command specifies that the user wants to run this job with
1500-way parallelism on AWS Lambda. First, all the necessary
input files are uploaded to the storage engine in one shot. Then

the program forces all the necessary thunks recursively until
obtaining the final result. After the output is downloaded, the
ffmpeg binary can be executed, as if it were built on the local
machine:

sadjad@ /̃ffmpeg$./ffmpeg

ffmpeg version N-94028-gb8f1542dcb Copyright (c) 2000-2019

the FFmpeg developers

Unit Testing with gg
Software test suites are another set of applications that can ben-
efit from massive parallelism, as each test is typically a stand-
alone program that can be run in parallel with other tests, with
no inter-dependencies. Using gg’s C++ SDK, we implemented a
tool that can generate gg IR for unit tests written with Google
Test, a popular C++ test framework used by projects like LLVM,
OpenCV, Chromium, Protocol Buffers, and the VPX video codec
library.

For code bases with large numbers of test cases, this can yield
major improvements. For example, the VPX video codec library
contains more than 7,000 unit tests, which take more than 50
minutes to run on a 4-core machine. Using the massive parallel-
ism available, gg is able to execute all of these test cases in paral-
lel in less than four minutes, with 99% of the test cases finishing
within the first 30 seconds. From a developer’s point of view, this
improves turnaround time and translates into faster discovery
of bugs and regressions.

In addition to software compilation and unit testing, we ported
a number of other programs to emit gg IR, including an imple-
mentation of ExCamera on gg that, unlike the original imple-
mentation, supports memoization and failure recovery, an
object recognition task with TensorFlow, and a Fibonacci series
program that demonstrates gg abilities on handling dynamic
execution graphs. For the details of these applications, we refer
the reader to our USENIX ATC ’19 paper [3].

Figure 4: The distribution of achieved network throughputs between
pairs of workers at five different send rates on AWS Lambda. Each point
corresponds to a sender-receiver pair, and the lines are labeled with their
corresponding send rates.

10  FA L L 20 19 VO L . 4 4 , N O. 3 www.usenix.org

PROGRAMMING
Outsourcing Everyday Jobs to Thousands of Cloud Functions with gg

Next Steps: Direct Communication
between Workers
Many of the applications that can benefit from burst-parallel
execution are not embarrassingly parallel—they can have
complex dataflow graphs and require moving large amounts of
data between workers. It has generally been understood that
Lambdas cannot accept incoming network connections [5]. As
a result, Lambda-computing tools have retreated to exchanging
data between workers only indirectly. For example, ExCamera
achieves this through TCP connections brokered by a TURN
server (each Lambda worker makes an outgoing connection to
the server), while PyWren suggests that nodes write to and read
from S3, a network blob store. Some of us have developed stor-
age systems like Pocket [7] for ephemeral data storage between
workers. However, the latency and throughput limitations intro-
duced by indirect communication (and by mediating inter-node
communications through a network file system) are a disquali-
fier for many applications.

Our preliminary results suggest a more hopeful story for the
ability of swarms of cloud functions to tackle communication-
heavy workloads, even on current platforms. We have found
that on AWS Lambda, workers can establish direct connections
between one another, and have been able to communicate at up
to 600 Mbps using standard NAT-traversal techniques. Figure 4
shows a distribution of achieved network throughputs at five
different send rates. For each send rate, we started 600 workers
divided into 300 sender-receiver pairs, and each sender trans-
mits UDP datagrams to its pair at that rate for 30 seconds. To be
sure, these results indicate variable and unpredictable network
performance, but we believe that by designing appropriate
protocols and abstractions and failover strategies, direct worker
communication can enable a myriad of HPC applications on top
of cloud-function platforms.

Our main motivation for this investigation is to build a 3D ray-
tracing engine on gg, with the goal of rendering complex scenes
with low latency. Currently, the artists who work on 3D scenes
rely on high-end machines to iterate on their work—scenes that
require tens or sometimes hundreds of gigabytes of memory and
take hours to render. Often, the artists must limit the complex-
ity of these scenes (geometry and texture data) by the amount
of RAM it is feasible to put in one workstation. For rendering
the same scene on RAM-constrained cloud functions, the scene
data has to be spread over the workers, which in turn requires
low-latency, high-throughput communication between work-
ers to achieve the desired performance. Only further work will
tell whether this application can successfully be parallelized to
thousands of parallel cloud functions.

Conclusion
We have described gg, a framework that helps developers build
and execute burst-parallel applications. gg presents a light-
weight, portable abstraction: an intermediate representation
(IR) that captures the future execution of a job as a composition
of lightweight containers. This lets gg support new and existing
applications in various languages that are abstracted from the
compute and storage platform and from runtime features that
address underlying challenges: dependency management, strag-
gler mitigation, placement, and memoization.

We suspect that cloud functions, as a computing substrate, are
in a similar position to that of graphics processing units in the
2000s. At the time, GPUs were designed solely for 3D graphics,
but the community gradually recognized that they had become
programmable enough to execute some parallel algorithms
unrelated to graphics. Over time, this “general-purpose GPU”
(GPGPU) movement created systems-support technologies and
became a major use of GPUs, especially for physical simulations
and deep neural networks.

Cloud functions may tell a similar story. Although intended for
asynchronous microservices, we believe that with sufficient
effort by the community, the same infrastructure is capable of
broad and exciting new applications. Just as GPGPU comput-
ing did a decade ago, nontraditional “serverless” computing may
have far-reaching effects.

For more information on this project, including our research
paper, the code, and quick-start guides, please visit the gg web-
site at https://snr.stanford.edu/gg.

Acknowledgments
We thank the USENIX ATC reviewers and our shepherd, Ed
Nightingale, for their helpful comments and suggestions. We are
grateful to Geoffrey Voelker, George Porter, Anirudh Sivaraman,
Zakir Durumeric, Riad S. Wahby, Liz Izhikevich, and Deepti
Raghavan for comments on versions of our research paper. This
work was supported by NSF grant CNS-1528197, DARPA grant
HR0011-15-20047, and by Google, Huawei, VMware, Dropbox,
Facebook, and the Stanford Platform Lab.

www.usenix.org FA L L 20 19 VO L . 4 4 , N O. 3 11

PROGRAMMING
Outsourcing Everyday Jobs to Thousands of Cloud Functions with gg

References
[1] H. Abelson, G. J. Sussman, with J. Sussman, Structure and
Interpretation of Computer Programs, 2nd ed. (MIT Press, 1996).

[2] L. Ao, L. Izhikevich, G. M. Voelker, and G. Porter, “Sprocket:
A Serverless Video Processing Framework,” in Proceedings of
the ACM Symposium on Cloud Computing (SoCC ’18), ACM,
pp. 263–274.

[3] S. Fouladi, R. Romero, D. Iter, Q. Li, S. Chatterjee, C. Kozyra-
kis, M. Zaharia, and K. Winstein, “From Laptop to Lambda:
Outsourcing Everyday Jobs to Thousands of Transient Func-
tional Containers,” in Proceedings of the 2019 USENIX Annual
Technical Conference (USENIX ATC ’19), USENIX Association,
2019.

[4] S. Fouladi, R. S. Wahby, B. Shacklett, K.V. Balasubrama-
niam, W. Zeng, R. Bhalerao, A. Sivaraman, G. Porter, and K.
Winstein, “Encoding, Fast and Slow: Low-Latency Video Pro-
cessing Using Thousands of Tiny Threads,” in Proceedings of
the 14th USENIX Symposium on Networked Systems Design and
Implementation (NSDI ’17), USENIX Association, 2017,
pp. 363–376.

[5] J. M. Hellerstein, J. Faleiro, J. Gonzalez, J. Schleier-Smith,
V. Sreekanti, A. Tumanov, and C. Wu, “Serverless Computing:
One Step Forward, Two Steps Back,” in CIDR 2019, 9th Biennial
Conference on Innovative Data Systems Research, 2019.

[6] E. Jonas, S. Venkataraman, I. Stoica, and B. Recht, “Occupy
the Cloud: Distributed Computing for the 99%,” in Proceedings
of the 8th Symposium on Cloud Computing (SoCC 2017).

[7] A. Klimovic, Y. Wang, P. Stuedi, A. Trivedi, J. Pfefferle, and
C. Kozyrakis, “Pocket: Elastic Ephemeral Storage for Server-
less Analytics,” in Proceedings of the 13th USENIX Symposium
on Operating Systems Design and Implementation (OSDI ’18)
USENIX Association, 2018, pp. 427–444.

[8] D. Takahashi, “How Pixar Made Monsters University, Its
Latest Technological Marvel,” VentureBeat, December 2018:
https://venturebeat.com/2013/04/24/the-making-of-pixars
-latest-technological-marvel-monsters-university/.

https://venturebeat.com/2013/04/24/the-making-of-pixars-latest-technological-marvel-monsters-university
https://venturebeat.com/2013/04/24/the-making-of-pixars-latest-technological-marvel-monsters-university

12  FA L L 20 19 VO L . 4 4 , N O. 3 www.usenix.org

PROGRAMMING

Not So Fast
Analyzing the Performance of WebAssembly vs. Native Code

A B H I N A V J A N G D A , B O B B Y P O W E R S , E M E R Y B E R G E R , A N D A R J U N G U H A

W ebAssembly is a new low-level programming language, sup-
ported by all major browsers, that complements JavaScript and
is designed to provide performance parity with native code. We

developed Browsix-Wasm, a “UNIX kernel in a web page” that works on
unmodified browsers and supports programs compiled to WebAssembly.
Using Browsix-Wasm, we ran the SPEC CPU benchmarks in the browser and
investigated the performance of WebAssembly in detail.

Web browsers have become the most popular platform for running user-facing applications,
and, until recently, JavaScript was the only programming language supported by all major
web browsers. Beyond its many quirks and pitfalls from the perspective of programming
 language design, JavaScript is also notoriously difficult to execute efficiently. Programs
written in JavaScript typically run significantly slower than their native counterparts.

There have been several attempts at running native code in the browser instead of Java-
Script. ActiveX was the earliest technology to do so, but it was only supported in Inter-
net Explorer and required users to trust that ActiveX plugins were not malicious. Native
Client [2] and Portable Native Client [3] introduced a sandbox for native code and LLVM
bitcode, respectively, but were only supported in Chrome.

Recently, a group of browser vendors jointly developed the WebAssembly (Wasm) standard [4].
WebAssembly is a low-level, statically typed language that does not require garbage collection
and supports interoperability with JavaScript. WebAssembly’s goal is to serve as a portable
compiler target that can run in a browser. To this end, WebAssembly is designed not only to
sandbox untrusted code, but to be fast to compile, fast to run, and portable across browsers
and architectures.

WebAssembly is now supported by all major browsers and has been swiftly adopted as a
back end for several programming languages, including C, C++, Rust, Go, and several others.
A major goal of WebAssembly is to be faster than JavaScript. For example, initial results
showed that when C programs are compiled to WebAssembly instead of JavaScript, they
run 34% faster in Chrome [4]. Moreover, on a suite of 24 C program benchmarks that were
compiled to WebAssembly, seven were less than 10% slower than native code, and almost all
were less than twice as slow as native code. We recently re-ran these benchmarks and found
that WebAssembly’s performance had improved further: now 13 out of 24 benchmarks are
less than 10% slower than native code.

These results appear promising, but they beg the question: are these 24 benchmarks really
representative of WebAssembly’s intended use cases?

The Challenge of Benchmarking WebAssembly
The 24 aforementioned benchmarks are from the PolybenchC benchmark suite [5], which
is designed to measure the effect of polyhedral loop optimizations in compilers. Accord-
ingly, they constitute a suite of small scientific computing kernels rather than full-fledged

Abhinav Jangda is a PhD
student in the College of
Information and Computer
Sciences at the University of
Massachusetts Amherst. For

his research, Abhinav focuses on designing
programming languages and compilers. He
loves to write and optimize high performance
code in his leisure time.
aabhinav@cs.umass.edu

Bobby Powers is a PhD
candidate at the College of
Information and Computer
Sciences at the University
of Massachusetts Amherst

(in the PLASMA lab), and he is a Software
Engineer at Stripe. His research spans systems
and programming languages, with a focus
on making existing software more efficient,
more secure, and usable in new contexts.
bobbypowers@gmail.com

Emery Berger is a Professor
in the College of Information
and Computer Sciences at the
University of Massachusetts
Amherst, where he co-

directs the PLASMA lab (Programming
Languages and Systems at Massachusetts),
and he is a regular visiting researcher at
Microsoft Research, where he is currently
on sabbatical. His research interests span
programming languages and systems, with a
focus on systems that transparently increase
performance, security, and reliability.
emery@cs.umass.edu

www.usenix.org FA L L 20 19 VO L . 4 4 , N O. 3 13

PROGRAMMING
Not So Fast: Analyzing the Performance of WebAssembly vs. Native Code

Arjun Guha is an Assistant
Professor in the College of
Information and Computer
Sciences at the University
of Massachusetts Amherst,

where he co-directs the PLASMA lab
(Programming Languages and Systems
at Massachusetts). His research interests
include web programming, web security,
network configuration languages, and system
configuration languages.
arjunguha@umass.edu

applications. In fact, each benchmark is roughly 100 lines of C code. WebAssembly is meant
to accelerate scientific kernels, but it is explicitly designed for a wider variety of applications.
The WebAssembly documentation highlights several intended use cases, including scientific
kernels, image editing, video editing, image recognition, scientific visualization, simulations,
programming language interpreters, virtual machines, and POSIX applications. In other
words, WebAssembly’s solid performance on scientific kernels does not imply that it will also
perform well on other kinds of applications.

We believe that a more comprehensive evaluation of WebAssembly should use established
benchmarks with a diverse collection of large programs. The SPEC CPU benchmarks meet
this criterion, and several of the SPEC benchmarks fall under WebAssembly’s intended use
cases. For example, there are eight scientific applications, two image and video processing
applications, and all the benchmarks are POSIX applications.

Unfortunately, it is not always straightforward to compile a native program to WebAssembly.
Native programs, including the SPEC CPU benchmarks, require operating system services,
such as a file system, synchronous I/O, processes, and so on, which WebAssembly does not
itself provide.

Despite its name, WebAssembly is explicitly designed to run in a wide variety of environ-
ments, not just the web browser. To this end, the WebAssembly specification imposes very
few requirements on the execution environment. A WebAssembly module can import exter-
nally defined functions, including functions that are written in other languages (e.g., Java-
Script). However, the WebAssembly specification neither prescribes how such imports work,
nor prescribes a standard library that should be available to all WebAssembly programs.

There is a separate standard [7] that defines a JavaScript API to WebAssembly that is
supported by all major browsers. This API lets JavaScript load and run a Wasm module,
and allows JavaScript and Wasm functions to call each other. In fact, the only way to run
Web Assembly in the browser is via this API, so all WebAssembly programs require at least
a modicum of JavaScript to start. Using this API, a WebAssembly program can rely on Java-
Script for I/O operations, including drawing to the DOM, making networking requests, and
so on. However, this API also does not prescribe a standard library.

Emscripten [6] is the de facto standard toolchain for compiling C/C++ applications to
WebAssembly. The Emscripten runtime system, which is a combination of JavaScript
and WebAssembly, implements a handful of straightforward system calls, but it does not
scale up to larger applications. For example, the default Emscripten file system (MEMFS)
loads the entire file-system image in memory before execution. For the SPEC benchmarks,
the file system is too large to fit into memory. The SPEC benchmarking harness itself
requires a file system, a shell, the ability to spawn processes, and other UNIX facilities,
none of which Emscripten provides.

Most programmers overcome these limitations by modifying their code to avoid or mimic
missing operating system services. Modifying well-known benchmarks, such as SPEC CPU,
would not only be time-consuming but would also pose a serious threat to the validity of any
obtained results.

Our Contributions
To address these challenges, we developed Browsix-Wasm, which is a simulated UNIX-
compatible kernel for the browser. Browsix-Wasm is written in JavaScript (compiled from
TypeScript) and provides a range of operating system services to Wasm programs, including
processes, files, pipes, and blocking I/O. We have engineered Browsix-Wasm to be fast, which
is necessary both for usability and for benchmarking results to be valid [1].

14  FA L L 20 19 VO L . 4 4 , N O. 3 www.usenix.org

PROGRAMMING
Not So Fast: Analyzing the Performance of WebAssembly vs. Native Code

Using Browsix-Wasm, we conducted the first comprehensive
performance analysis of WebAssembly using the SPEC CPU
benchmark suite (both 2006 and 2017). This evaluation con-
firms that Wasm is faster than JavaScript (1.3 faster on aver-
age). However, contrary to prior work, we found a substantial gap
between WebAssembly and native performance. Code compiled
to Wasm ran on average 1.55 slower in Chrome and 1.45
slower in Firefox.

Digging deeper, we conducted a forensic analysis of these results
with the aid of CPU performance counters to identify the root
causes of this performance gap. For example, we found that
Wasm produced code with more loads and stores, more branches,
and more L1 cache misses than native code. It is clear that some
of the issues that we identified can be addressed with engi-
neering effort. However, we also identified more fundamental
performance problems that appeared to arise from the design
of WebAssembly, which will be harder to address. We provided
guidance to help WebAssembly implementers focus their opti-
mization efforts in order to close the performance gap between
WebAssembly and native code.

In the rest of this article, we present the design and implementa-
tion of Browsix-Wasm and give an overview of our experimental
results. This article is based on a conference paper that appeared
at the 2019 USENIX Annual Technical Conference, which pres-
ents Browsix-Wasm, our experiments, our analysis, and related
work in detail [1].

Overview of Browsix-Wasm
Browsix-Wasm mimics a UNIX kernel within a web page with no
changes or extensions needed to a browser. Browsix-Wasm sup-
ports multiple processes, pipes, and the file system. At a high-
level, the majority of the kernel, which is written in JavaScript,
runs on the main thread of the page, whereas each WebAssembly
process runs within a WebWorker, which runs concurrently with
the main thread. In addition, each WebWorker also runs a small
amount of JavaScript that is necessary to start the WebAssem-
bly process and to manage process-to-kernel communication for
system calls.

In an ordinary operating system, the kernel has direct access to
each process’s memory, which makes it straightforward to trans-
fer data to and from a process (e.g., to read and write files). Web
browsers allow a web page to share a block of memory between
the main thread and WebWorkers using the SharedArrayBuffer
API. In principle, a natural way to build Browsix-Wasm would be
to have each WebAssembly process share its memory with the
kernel as a SharedArrayBuffer.

Unfortunately, there are several issues with this approach.
First, a SharedArrayBuffer cannot be grown, which precludes
programs from growing the heap on demand. Second, browsers

impose hard memory limits on each JavaScript thread (2.2 GB in
Chrome), and thus the total memory available to Browsix-Wasm
would be 2.2 GB across all processes. Finally, the most funda-
mental problem is that WebAssembly programs cannot access
SharedArrayBuffer objects.

Instead, Browsix-Wasm adopts a different approach. Within
each WebWorker, Browsix-Wasm creates a small (64 MB)
Shared ArrayBuffer that it shares with the kernel. When a sys-
tem call references strings or buffers in the process’s heap (e.g.,
writev or stat), the runtime system copies data from the process
memory to the shared buffer and sends a message to the kernel
with locations of the copied data in auxiliary memory. Similarly,
when a system call writes data to the auxiliary buffer (e.g., read),
its runtime system copies the data from the shared buffer to the
process memory at the memory specified. Moreover, if a system
call specifies a buffer in process memory for the kernel to write
to (e.g., read), the runtime allocates a corresponding buffer in
auxiliary memory and passes it to the kernel. If a system call
must transfer more than 64 MB, Browsix-Wasm breaks it up into
several operations that only transfer 64 MB of data. The cost of
these memory copy operations is dwarfed by the overall cost of
the system call invocation, which involves sending a message
between process and kernel JavaScript contexts.

Using Browsix-Wasm, we are able to run the SPEC benchmarks
and the SPEC benchmarking harness unmodified within the
browser. The only portions of our toolchain that work outside
the browser are (1) capturing performance counter data, which
cannot be done within a browser, and (2) validating benchmark
results, which we do outside the browser to avoid errors.

Performance Evaluation
Browsix-Wasm provided what we needed to compile the SPEC
benchmarks to WebAssembly, run them in the browser, and
collect performance counter data. We ran all benchmarks on a
6-Core Intel Xeon E5-1650 v3 CPU with hyperthreading and 64
GB of RAM. We used Google Chrome 74.0 and Mozilla Firefox
66.0. Our ATC paper describes the experimental setup and
evaluation methodology in more detail.

Reproducing Results with PolybenchC
Although our goal was to conduct a performance evaluation with
the SPEC benchmarks, we also sought to reproduce the results
by Haas et al. [4] that used PolybenchC. We were able to run
these benchmarks (which do not make system calls): the most
recent implementations of WebAssembly are now faster than
they were two years ago.

Measuring the Cost of Browsix-Wasm
It is important to rule out the possibility that any slowdown
that we report is due to poor performance by the Browsix-Wasm

www.usenix.org FA L L 20 19 VO L . 4 4 , N O. 3 15

PROGRAMMING
Not So Fast: Analyzing the Performance of WebAssembly vs. Native Code

kernel. In particular, since Browsix-Wasm implements system
calls without modifying the browser, and system calls involve
copying data, there is a risk that a benchmark may spend the
majority of its time copying data in the kernel. Fortunately, our
measurements indicate that this is not the case. Figure 1 shows
the percentage of time spent in the kernel on Firefox when run-
ning the SPEC benchmarks. On average, each SPEC benchmark
only spends 0.2% of its time in the kernel (the maximum is 1.2%);
we conclude that the cost of Browsix-Wasm is negligible.

Measuring the Performance of WebAssembly
Using SPEC
Finally, we are ready to consider the performance of the SPEC
suite of benchmarks. Specifically, we used the C/C++ bench-
marks from SPEC CPU2006 and SPEC CPU2017 (the new C/
C++ benchmarks and the speed benchmarks). These benchmarks
use system calls extensively and do not run without the support
of Browsix-Wasm. We were forced to exclude four benchmarks
that either failed to compile with Emscripten or allocated more
memory than WebAssembly allows in the browser.

In Table 1 we show the absolute execution times of the SPEC
benchmarks when running in Chrome, Firefox, and natively. All
benchmarks are slower in WebAssembly, with the exception of
429.mcf and 433.milc, which actually run faster in the browser.
Our ATC paper presents a theory of why this is the case. None-
theless, most benchmarks are slower when compiled to Web-
Assembly: the median slowdown is nearly 1.5 in both Chrome
and Firefox, which is considerably slower than the median
slowdowns for PolybenchC. In our ATC paper, we also compare
the performance of WebAssembly and JavaScript (asm.js) using
these benchmarks, and confirm that WebAssembly is faster than
JavaScript.

Explaining Why the SPEC Benchmarks Are
Slower with WebAssembly
Using CPU performance counters, our ATC paper explores in
detail why the SPEC benchmarks are so much slower when com-
piled to WebAssembly. We summarize a few observations below.

Register pressure. For each benchmark and browser, Figure 2
shows the ratio of the number of load instructions retired by
WebAssembly over native code. On average, Chrome and Firefox
retire 2.02 and 1.92 as many load instructions as native
code, respectively. We find similar results for store instructions

Figure 1: Percentage of time spent (in %) in Browsix-Wasm calls in Firefox Figure 2: Ratio of the number of load instructions retired by WebAssembly
over native code

Table 1: Detailed breakdown of SPEC CPU benchmarks execution times
(of 5 runs) for native (Clang) and WebAssembly (Chrome and Firefox);
all times are in seconds.

Benchmark Native Google
Chrome

Mozilla
Firefox

401.bzip2 370 864 730
429.mcf 221 180 184
433.milc 375 369 378
444.namd 271 369 373
445.gobmk 352 537 549
450.soplex 179 265 238
453.povray 110 275 229
458.sjeng 358 602 580
462.libquantum 330 444 385
464.h264ref 389 807 733
470.lbm 209 248 249
473.astar 299 474 408
482.sphinx3 381 834 713
641.leela 466 825 717
644.nab_s 2476 3639 3829
Slowdown:geomean — 1.55x 1.45x
Slowdown:jmedian — 1.53x 1.54x

16  FA L L 20 19 VO L . 4 4 , N O. 3 www.usenix.org

PROGRAMMING
Not So Fast: Analyzing the Performance of WebAssembly vs. Native Code

retired. Our paper presents two reasons why this occurs. First,
we find that Clang’s register allocator is better than the register
allocator in Chrome and Firefox. However, Chrome and Firefox
have faster register allocators, which is an important tradeoff.
Second, JavaScript implementations in Chrome and Firefox
reserve a few registers for their own use, and these reserved
registers are not available for WebAssembly either.

Extra branch instructions. Figure 3 shows the ratio of the
number of conditional branch instructions retired by Web-
Assembly over native code. On average, both Chrome and
Firefox retire 1.7 more conditional branches. We find similar
results for the number of unconditional branches too. There are
several reasons why WebAssembly produces more branches
than native code, and some of them appear to be fundamental to
the way the language is designed. For example, a WebAssembly
implementation must dynamically ensure that programs do not
overflow the operating system stack. Implementing this check
requires a branch at the start of each function call. Similarly,
Web Assembly’s indirect function call instruction includes
the expected function type. For safety, a WebAssembly imple-
mentation must dynamically ensure that the actual type of the
function is the same as the expected type, which requires extra
branch instructions for each indirect function call.

More cache misses. Due to the factors listed above, and
several others, the native code produced by WebAssembly can
be considerably larger than equivalent native code produced
by Clang. This has several effects that we measured using
CPU performance counters. For example, Figure 4 shows that
WebAssembly suffers 2.83 and 2.04 more cache misses with
the L1 instruction cache. Since the instruction cache miss rate is
higher, the CPU requires more time to fetch and execute instruc-
tions, which we also measure in our paper.

Conclusion
We built Browsix-Wasm, a UNIX-compatible kernel that runs
in a web page with no changes to web browsers. Browsix-Wasm
supports multiple processes compiled to WebAssembly. Using
Browsix-Wasm, we built a benchmarking framework for Web-
Assembly, which we used to conduct the first comprehensive
performance analysis of WebAssembly using the SPEC CPU
benchmark suite (both 2006 and 2017). This evaluation con-
firms that Wasm is faster than JavaScript. However, we found
that WebAssembly can be significantly slower than native code.
We investigated why this performance gap exists and provided
guidance for future optimization efforts. Browsix-Wasm has
been integrated into Browsix; both Browsix and Browsix-SPEC
can be found at https://browsix.org.

Acknowledgments
Browsix-Wasm builds on earlier work by Powers, Vilk, and
Berger (Powers and Berger are co-authors of this article). That
work did not support WebAssembly and had performance issues
that Browsix-Wasm addresses. This work was partially sup-
ported by NSF grants 1439008 and 1413985.

Figure 3: Ratio of the number of conditional branch instructions retired by
WebAssembly over native code

Figure 4: Ratio of the number of L1 instruction cache misses by WebAs-
sembly over native code

www.usenix.org FA L L 20 19 VO L . 4 4 , N O. 3 17

PROGRAMMING
Not So Fast: Analyzing the Performance of WebAssembly vs. Native Code

References
[1] A. Jangda, B. Powers, E. D. Berger, and A. Guha, “Not So Fast:
Analyzing the Performance of WebAssembly vs. Native Code,”
in Proceedings of the 2018 USENIX Annual Technical Confer-
ence (USENIX ATC ’19): https://www.usenix.org/conference
/atc19/presentation/jangda.

[2] B. Yee, D. Sehr, G. Dardyk, B. Chen, R. Muth, T. Ormandy,
S. Okasaka, N. Narula, and N. Fullagar, “Native Client: A
Sandbox for Portable, Untrusted x86 Native Code,” 30th IEEE
Symposium on Security and Privacy (Oakland ’09), Communi-
cations of the ACM, vol. 53, no. 1, January 2010, pp. 91–99.

[3] A. Donovan, R. Muth, B. Chen, and D. Sehr, “PNaCl: Portable
Native Client Executables,” 2010: https://css.csail.mit.edu
/6.858/2012/readings/pnacl.pdf.

[4] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman,
D. Gohman, L. Wagner, A. Zakai, and J. F. Bastien, “Bringing the
Web Up to Speed with WebAssembly,” in Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI 2017), ACM, 2017, pp. 185–200.

[5] PolyBenchC: The Polyhedral Benchmark Suite, 2012: http://
web.cs.ucla.edu/~pouchet/software/polybench/.

[6] A. Zakai, “Emscripten: An LLVM-to-JavaScript Compiler,”
in Proceedings of the ACM International Conference Companion
on Object Oriented Programming Systems Languages and Appli-
cations Companion (OOPSLA ’11), ACM, 2011, pp. 301–312.

[7] WebAssembly JavaScript Interface, 2019: http://webassembly
.github.io/spec/js-api/index.html.

XKCD xkcd.com

https://www.usenix.org/conference/atc19/presentation/jangda
https://www.usenix.org/conference/atc19/presentation/jangda
https://css.csail.mit.edu/6.858/2012/readings/pnacl.pdf
https://css.csail.mit.edu/6.858/2012/readings/pnacl.pdf
http://web.cs.ucla.edu/~pouchet/software/polybench/
http://web.cs.ucla.edu/~pouchet/software/polybench/
http://webassembly.github.io/spec/js-api/index.html
http://webassembly.github.io/spec/js-api/index.html

J A N 2 7–2 9 , 2 0 2 0
SA N FR A NCISCO, C A , USA

A USENIX CONFERENCE

enigma.usenix.org

The full program and registration will be available in November.

SECURITY AND PRIVACY IDEAS THAT MATTER
Enigma centers on a single track of engaging talks covering a wide range of topics in security and
privacy. Our goal is to clearly explain emerging threats and defenses in the growing intersection

of society and technology, and to foster an intelligent and informed conversation within the
community and the world. We view diversity as a key enabler for this goal and actively work to

ensure that the Enigma community encourages and welcomes participation from all employment
sectors, racial and ethnic backgrounds, nationalities, and genders.

Enigma is committed to fostering an open, collaborative, and respectful environment.
Enigma and USENIX are also dedicated to open science and open conversations,

and all talk media is available to the public after the conference.

PROGR AM CO-CHAIRS

Daniela Oliveira
University of Florida

Ben Adida
VotingWorks

www.usenix.org FA L L 20 19 VO L . 4 4 , N O. 3 19

SECURITYMaking It Easier to Encrypt Your Emails
J O H N S . K O H , S T E V E N M . B E L L O V I N , A N D J A S O N N I E H

John S. Koh is a PhD candidate
in computer science at
Columbia University. John’s
interests lie in the intersection
of applied cryptography,

usability, and systems security with practicality
in mind. koh@cs.columbia.edu

Steven M. Bellovin is Professor
of Computer Science at
Columbia University and
affiliate faculty at its law school.
His research specializes in

security, privacy, and related legal and policy
issues. He co-authored Firewalls and Internet
Security, the first book on the subject. He
is a member of the National Academy of
Engineering and received the USENIX “Flame”
award for co-inventing Netnews.
smb@cs.columbia.edu

Jason Nieh is Professor
of Computer Science and
Co-Director of the Software
Systems Laboratory at
Columbia University. Professor

Nieh has made research contributions in
software systems across a broad range
of areas, including operating systems,
virtualization, thin-client computing, cloud
computing, mobile computing, multimedia,
web technologies, and performance evaluation.
nieh@cs.columbia.edu

W e’ve known for decades how difficult it is to encrypt email. We’ve
developed E3, a client-side system that encrypts email at rest on
mail servers to mitigate the most common cases of attacks today.

E3 also demonstrates techniques for making key management simple enough
for most users, including those who use email on multiple devices.

Email privacy is of crucial importance. Although email accounts and servers contain troves
of valuable private information dating back years, they are easy to compromise. This makes
them attractive targets for adversaries. Attackers often use methods such as spear-phishing,
password recovery and reset, and social engineering attacks to obtain a victim’s email
credentials. With login details in hand, attackers then simply authenticate to the appropriate
mail service like a normal user and siphon off all of the victim’s emails.

We have seen this situation repeatedly in the news such as with the John Podesta, Sarah
Palin, and John Brennan email hacks, among many more. Email encryption using a key
inaccessible to the email service provider would have mitigated all these attacks. But none
of these victims used encrypted email. If even prominent VIPs with access to top-notch
advice are failing to use any kind of encrypted email, then everyday non-technical users are
very unlikely to adopt email encryption. What makes this even worse is that a single breach
of this kind is enough to compromise the entire history of affected users’ emails. With the
explosive growth of cloud storage, it is easy to keep gigabytes of old emails at no cost forever.

Existing email encryption approaches are comprehensive and effective against attackers but
are seldom used due to their complexity and inconvenience. Examples include Pretty Good
Privacy (PGP) [1] and Secure/Multipurpose Internet Mail Extensions (S/MIME), which
are end-to-end encrypted email solutions. They are frankly too complicated to use, yet they
represent the state of the art for secure email. The current paradigm for secure email places
too much of a burden on its users, especially senders of email, who must correctly encrypt
emails, manage keys, understand public key cryptography, and coordinate with other poten-
tially non-technical users [5, 6]. The result is even technical users rarely encrypt their email.

End-to-end encrypted email is overkill for most users. Mail services are increasingly using
SSL/TLS for email in transit between SMTP and IMAP servers, and are forcing clients to
use SSL/TLS or STARTTLS. One example is Google’s Gmail service, which completely dis-
ables plain IMAP and therefore requires clients to use TLS connections. This makes a large
part of end-to-end encryption’s benefits redundant since emails are already being encrypted
in transit. What users are vulnerable to is an adversary who steals email account credentials,
such as via a database leak or a phishing attack, or who compromises entire mail servers,
such as when governments issue subpoenas for and seize entire servers belonging to mail
services. But end-to-end encryption for email protects against a vast array of rarely encoun-
tered attacks other than these. This comes at the cost of usability, creating a chasm between
end-to-end encryption’s absolute security, which almost nobody uses, and regular plaintext
email with no encryption, which everybody uses. There is thus room for change.

mailto:smb@cs.columbia.edu

20  FA L L 20 19 VO L . 4 4 , N O. 3 www.usenix.org

SECURITY
Making It Easier to Encrypt Your Emails

Designing for End Users
Any new secure email solution needs to be easy to use and also
platform independent to help make it as amenable as possible
to users. This has historically been a difficult problem. Vari-
ous approaches, both academic and commercial, have tried to
make it easier to use secure email but at the cost of sacrificing
platform independence. They only work within closed ecosys-
tems, such as Lavabit and Posteo, or with other people using the
same solution, such as with traditional end-to-end encrypted
email. But perhaps even more importantly, the more widely used
secure mail services often encrypt emails or users’ individual
private keys on their servers using master private keys acces-
sible to them.

What we need is a secure email solution that works on any mail
service (yes, even Gmail) and that uses a private key that is
inaccessible to the mail service but is accessible to all of a user’s
multiple devices for reading email. At the same time, users
shouldn’t need to know about key management concepts, public
key cryptography, and public key infrastructure (PKI). Just as
important is that this solution must work nearly identically to a
regular email client to minimize the learning curve.

We developed Easy Email Encryption (E3) [4] as the first step
to filling the void between unusable but secure email encryption
and usable but insecure plaintext email. E3 provides a client-
side encrypt-on-receipt mechanism that makes it easy for users
since they do not need to rely on PKI or coordinate with recipi-
ents. The onus is no longer on the sender to figure out how to use
PGP or S/MIME. Instead, email clients automatically encrypt
received email without user intervention. E3 protects all emails
received prior to any email account or server compromise for the
emails’ lifetime, using threat models similar to those of more
complex schemes such as PGP and S/MIME.

E3 is designed to be compatible with existing IMAP servers and
IMAP clients to ease adoption. No changes to any IMAP servers
are necessary. Users require only a single E3 client program to
perform the encryption, but multiple E3 clients are supported as
well. Existing mail clients do not need to be modified and can be
used as is alongside a separate E3 background app or add-on. If
desired, existing mail clients can be retrofitted with E3 instead
of relying on a separate app or on an add-on.

Users are free to use their existing, unmodified mail clients to
read E3-encrypted email if they support standard encrypted
email formats. The vast majority of email clients support
encrypted emails either natively or via add-ons. Other than the
added security benefits of encryption, all functionality looks and
feels the same as a typical email client, including spam filtering
and having robust client-side search capability.

Key management, including key recovery, is simplified by a
scheme we call per-device key (PDK) management, which

provides significant benefits for the common email use case of
having two or more devices for accessing email, e.g., desktop and
mobile device mail clients. Users with multiple devices leverage
PDK with no reliance on external services. Users who truly only
use a single device still benefit from PDK’s key configuration and
management capabilities but rely on free and reliable cloud stor-
age for recovery. E3 as a whole is a usable solution for encrypted
email that protects a user’s history of emails while also provid-
ing a simple platform-independent key management scheme.

Encrypt on Receipt
Encrypt on receipt can be described as follows: when a user’s E3
client detects that the mail server has received a new plaintext
email, it downloads it, encrypts it, and replaces the original
plaintext email with the encrypted version. In practice this is
implemented entirely on the client side through the use of sev-
eral existing IMAP commands, so E3 requires no modifications
to the IMAP server and protocol. The encryption format is either
standard PGP or S/MIME depending on implementation prefer-
ence. Encrypt on receipt confers many benefits for usability
while still retaining important security properties.

Self-generated, self-signed key pairs. Since the user isn’t
sending encrypted email but simply storing it for himself, the
key pairs used for encrypting, decrypting, and signing don’t need
to be trusted by others. The user doesn’t need to know about PKI
and complicated key exchanges with other confused users. Self-
generated and self-signed key pairs are also useful for E3’s key
management approach.

Support for all IMAP services. Encrypt on receipt is compat-
ible with any IMAP mail service with no server modifications,
including Gmail, Yahoo!, AOL, Yandex, and so on. It is also com-
patible with server-side spam filters, anti-virus scanners, and
even indexing for ad-based services since emails are encrypted
after they are received, giving the server a window of time to
process email before it is encrypted.

Client implementation and compatibility. Encrypt on receipt
requires only modest implementation changes for existing IMAP
mail clients. We implemented E3 on multiple platforms, includ-
ing on a popular open-source Android mail client, K-9 Mail,
to show this. Furthermore, since E3 uses standard encrypted
email formats, emails can be read on any unmodified mail client
that supports them. Examples for S/MIME include Apple Mail,
Mozilla Thunderbird, and Microsoft Outlook.

Secure against future compromises. Since all emails are
encrypted on receipt, they remain secure against any future
compromise of a user’s account or IMAP server. To the attacker,
all old emails would be encrypted and therefore unusable.
However, if the attacker retains access to the account, newly
arriving emails will be vulnerable. Encrypt on receipt therefore

www.usenix.org FA L L 20 19 VO L . 4 4 , N O. 3 21

SECURITY
Making It Easier to Encrypt Your Emails

represents a much better-than-nothing approach to security.
The current norm for email security is no security, so protecting
a user’s thousands of old emails is much better than protecting
absolutely none of her emails.

Security against wiretapping. Encrypt on receipt is not end-
to-end encryption, so email is not sent in encrypted form. This
is actually not an issue. These days, especially after the Snowden
revelations of widespread government surveillance of the Inter-
net, practically all mail services use TLS for both client-server
and server-server connections to protect email in transit.

Users don’t need to know crypto. The user doesn’t manually
encrypt email because the client handles all encryption and
decryption automatically. This is an issue observed in user stud-
ies, including our own—sometimes users can’t figure out that
they need to press the encrypt button when sending encrypted
email to others.

Crypto algorithms can be updated. Once in a blue moon, a
crypto algorithm or key length is discovered to have problems
or simply has become too weak. Re-encrypting E3 emails to a
newer crypto standard is simple: re-encrypt all emails using
the user’s new key. In contrast, this situation poses a problem
for traditional PGP and S/MIME because re-encrypting emails
received from other PGP or S/MIME users may not be possible.
Perhaps the original sender can no longer be reached to re-sign
the new copy, and thus his signature data would be lost. Even if
he were reachable, the process of asking someone else to sign
your old emails is a tedious task and also requires expert knowl-
edge from all participants of how end-to-end encryption works.

Per-Device Keys
E3 eliminates manual public key exchanges. This simplifies the
key management by removing half of it. What remains is the
problem of private keys when using multiple devices. Traditional

security best practices advise users to never transport private
keys because doing so is insecure. This advice is almost never
followed in practice because users often access email from mul-
tiple devices, all of which need the same private key when using
common secure email usage models.

E3 returns to the traditional security advice of never transport-
ing private keys. In contrast to most secure email schemes,
which assume a user has a single private key, E3 asserts that a
user should have a unique private key for every device. Then each
device makes its public key available to the others. We call this
the per-device key (PDK) scheme as depicted in Figure 1. PDK
provides numerous benefits compared to traditional end-to-end
encrypted email:

Complements self-generated, self-signed keys. One of the
strengths of encrypt on receipt is that it can leverage self-gen-
erated, self-signed keys because it does not need to worry about
third-party trust. PDK complements this scheme because each
of a user’s devices can generate its own self-signed key pair. This
also greatly simplifies the process of adding a new device to a
user’s E3 ecosystem since it can just generate its own key pair.

Avoids moving private keys around. As we mentioned,
traditional security best practices advise users to never move
private keys around. Not only is this insecure, but most users
have no concept of what a private key is and how it differs from
its public key. With PDK, users don’t need to know about these
concepts and only know that their devices are encrypting their
emails for them.

Eliminates manual public key exchanges. Instead of moving
private keys, each of the user’s E3 clients automatically makes
available its public key to his other devices. Then any E3 client
can encrypt the user’s emails using the public keys from all of his
devices. The principle is similar to when a traditional PGP or
S/MIME user encrypts an email to multiple people. The email is
not encrypted multiple times for each public key but is encrypted
only once using a symmetric key, which in turn is encrypted to
each public key. E3 takes this paradigm and applies it in a new
way by encrypting emails on receipt using every verified public
key belonging to the user. When a new key is added, clients re-
encrypt already-encrypted emails to the new keys.

Requires no secondary communication channel. E3 main-
tains its requirement for platform independence even for its
public-key exchanges. E3 clients upload their public keys to the
mailbox as ordinary emails with the keys as attachments. Other
E3 clients detect these key emails and store the public keys
locally. These key emails contain a number of metadata fields to
identify them but also to ensure security: for example, to support
a secure key verification process.

Figure 1: The per-device key (PDK) architecture

22  FA L L 20 19 VO L . 4 4 , N O. 3 www.usenix.org

SECURITY
Making It Easier to Encrypt Your Emails

Turns complicated key verification into simple device
verification. In traditional end-to-end encrypted email, users
must verify public keys, usually via trusted third parties. This
places a burden on non-technical users who don’t understand
PKI. PDK also asks users to verify keys, but since E3 has dif-
ferent trust requirements compared to traditional end-to-end
encrypted email, verifying PDK public keys is a much simpler
process. Verifying a PDK public key means checking whether
that key really belongs to one of the user’s devices. E3 presents
this as asking the user to verify whether she is adding a new
device. Ideally, the method to do this should be compatible with
any kind of device whether a desktop or mobile one. We therefore
developed a process, which we refer to as a two-way verification
process. A given client periodically scans for new keys, and when
a new key is detected, the user is prompted to perform the two-
way verification step.

The two-way verification process leverages a verification phrase
that is easy for humans to recognize and match. When a client
uploads its key for other devices to discover, it adds a randomly
generated verification phrase to the key email, which is promi-
nently displayed. The user then needs to confirm this verifica-
tion phrase on one of his existing E3 clients. Once he completes
the verification on any existing client, it will display a second
verification phrase. The user then needs to confirm this second
phrase on his new client to complete the two-way verification.

The catch is that when the user confirms a verification phrase, it
must be selected from among two randomly generated incorrect
phrases. The user must select the correct verification phrase
in order to verify the key. This multiple-choice confirmation
reduces the chances of a user accidentally accepting a key that
isn’t hers. The words in the phrases are selected from a curated
pool such as the PGP Word List [3]. As shown in [2], this tech-
nique is effective and usable for quickly authenticating identities
even with only three words.

Conclusion
Easy Email Encryption (E3) introduces new client-side encrypt-
on-receipt and per-device key (PDK) mechanisms compatible
with the existing IMAP standard and servers. E3 email clients
automatically encrypt received email without user interven-
tion, making it easy for users to protect the confidentiality of all
emails received prior to any email account or server compro-
mise. E3 uses keys that are self-generated and self-signed, and
PDK makes it easy to use them to access encrypted email across
multiple devices. Users no longer need to understand or rely on
public key infrastructure, coordinate with recipients, or figure
out how to use PGP or S/MIME.

E3 is also easy to implement, and we developed versions of it on
a variety of platforms, including Android, Windows, Linux, and
even Google Chrome. We also ensured that it works with popular

IMAP-based email services, including Gmail, Yahoo!, AOL,
and Yandex. Further, we conducted a user study to evaluate E3
usability, and results show that real users, even non-technical
ones, consider E3 easy to use even when compared to using regu-
lar unencrypted email clients and vastly easier to use over the
state of the art for PGP.

Twenty years ago, Whitten and Tygar’s “Why Johnny Can’t
Encrypt” introduced Johnny to the research community as a
representation of the average non-technical user who finds end-
to-end encrypted email impossibly difficult to use [6]. However,
we have seen an explosive growth of consumer-oriented technol-
ogy since then. Always-on, always-connected mobile devices
are ubiquitous, providing the necessary foundation for putting
a new and usable spin on the idea of receiver-controlled encryp-
tion. Johnny may have been unable to encrypt, but Joanie in the
modern age certainly can.

References
[1] J. Callas, L. Donnerhacke, H. Finney, D. Shaw, and R. Thayer,
OpenPGP Message Format, IETF, RFC 4880, November 2007:
http://www.rfc-editor.org/rfc/rfc4880.txt.

[2] M. Farb, Y.-H. Lin, T. H.-J. Kim, J. McCune, and A. Perrig,
“SafeSlinger: Easy-to-Use and Secure Public-Key Exchange,”
in Proceedings of the 19th Annual International Conference on
Mobile Computing & Networking (MobiCom ’13), ACM,
pp. 417–428: https://doi.org/10.1145/2500423.2500428.

[3] P. Juola and P. Zimmermann, “Whole-Word Phonetic
Distances and the PGPfone Alphabet,” in Proceedings of the
4th International Conference on Spoken Language Processing
(ICSLP ’96), vol. 1, IEEE, pp. 98–101: https://doi.org/10.1109
/ICSLP.1996.607046.

[4] J. S. Koh, S. M. Bellovin, and J. Nieh, “Why Joanie Can
Encrypt: Easy Email Encryption with Easy Key Manage ment,”
in Proceedings of the 14th EuroSys Conference 2019 (EuroSys ’19),
ACM, 2019, article no. 2: https://doi.org/10.1145/3302424.3303980.

[5] S. Ruoti, N. Kim, B. Burgon, T. Van Der Horst, and K.
Seamons, “Confused Johnny: When Automatic Encryption
Leads to Confusion and Mistakes,” in Proceedings of the 9th
Symposium on Usable Privacy and Security (SOUPS 2013),
ACM, article no. 5.

[6] A. Whitten and J. D. Tygar, “Why Johnny Can’t Encrypt:
A Usability Evaluation of PGP 5.0,” in Proceedings of the
8th USENIX Security Symposium (USENIX Security ’99),
 USENIX Association, pp. 169–184: https://people.eecs
.berkeley.edu/~tygar/papers/Why_Johnny_Cant_Encrypt
/USENIX.pdf.

http://www.rfc-editor.org/rfc/rfc4880.txt
https://doi.org/10.1145/2500423.2500428
https://doi.org/10.1109/ICSLP.1996.607046
https://doi.org/10.1109/ICSLP.1996.607046
https://doi.org/10.1145/3302424.3303980
https://people.eecs.berkeley.edu/~tygar/papers/Why_Johnny_Cant_Encrypt/USENIX
https://people.eecs.berkeley.edu/~tygar/papers/Why_Johnny_Cant_Encrypt/USENIX
https://people.eecs.berkeley.edu/~tygar/papers/Why_Johnny_Cant_Encrypt/USENIX

www.usenix.org FA L L 20 19 VO L . 4 4 , N O. 3 23

SECURITY

Interview with Periwinkle Doerfler
R I K F A R R O W

I met Peri Doerfler at Enigma 2019 during lunch and wanted to talk to her
right away. Peri would be giving the closing talk the next day about inter-
personal threats, a very different way of looking at security than any I

had considered. In my life, the threats were attacks on my mail or web serv-
ers, or disclosure of financial information while I was attending USENIX
conferences. Peri was taking on what sounded completely different, but also
very relevant to the types of technology people are regularly using today.

I also have a very personal interest in Peri’s research topic. All of the women I’d become close
to during my life had told me stories of sexual abuse. I don’t mean just verbal abuse, but actual
assaults or rape. I was and still am astonished and appalled. The current statistics, relying
on reported attacks, are one in three women and one in six men in the US have been sexually
assaulted [1].

Rik Farrow: To start out with, how did you get interested in the interpersonal threat area?
Reading online, I noticed that you interned at Google and worked on authentication issues.

Peri Doerfler: I’ve actually had a pretty varied set of research experiences that led me to this.
The first project I got involved in when I started my PhD involved looking at Bitcoin and
human trafficking, and as you noted, I interned at Google and worked on authentication. I
had a second internship at Google working on Android permissions.

In doing some work on spyware and domestic violence, I found that there is a whole set of
threats that people, but particularly women, are facing from the people they know. I have not
continued to be heavily involved with the work that group at Cornell Tech (in NYC) is doing
related to domestic violence, but they are doing great work, as are a few other groups, includ-
ing one at Google. I think where I went from caring about the specific work to more of this
vigilante attitude, if you will, is in attending conferences and hearing a lot of the community
dismiss these concerns. I’m always frustrated to hear the security and privacy community
talk about users as though they are stupid.

Further, I find that when you address what are, to be frank, more female concerns (not at
all because men don’t face the same technological concerns, but because men tend to have
less fear of physical violence), they are even more summarily dismissed. I have often heard
people express how “sad it is that that happens to some people” when discussing domestic
violence, without realizing that it is such a common problem (transcending socioeconomic
barriers, I must add) that it very likely affects someone they know well. So for me, I think that
the best way to help the users who are not aware of the risks they may be taking by sharing
their iPhone PIN (or similar) is to raise awareness in society at large, but also to try to get the
community that controls this technology and its default settings to think about these risks as
seriously as they think about risks from hackers and phishers.

RF: Speaking of which, how do you go about researching such sensitive areas? Do you rely
on mining public comments? Are you gaining a reputation in this area so that people seek
you out?

Periwinkle Doerfler is a
PhD candidate at New York
University’s Tandon School of
Engineering within the Center
for Cybersecurity, advised

by Professor Damon McCoy. Her research
focuses on the intersection of intimate
partner violence and technology. She looks
at this issue with regard to abusers and how
they come to use technology to perpetuate
violence, as well as with regard to survivors
and how technology can help or hinder escape
from abusive situations. Her past work has
also examined cryptocurrency as it relates to
human trafficking, doxing communities, and
authentication schemes.
periwinkleid@gmail.com

Rik is the editor of ;login:.
rik@usenix.org

24  FA L L 20 19 VO L . 4 4 , N O. 3 www.usenix.org

SECURITY
Interview with Periwinkle Doerfler

PD: When studying domestic violence specifically, a lot of good
work is already done in collaboration with various governmental
and nongovernmental agencies working with survivors. Most of
the research on survivors is done from interviews at shelters. In
my personal work in that space, I’ve focused more on studying
the abusers and trying to understand how they’re acquiring the
awareness and know-how to become abusive with smartphones.
That work relies on public information in reviews of apps, on
Reddit and 4chan, and on the websites and advertising of the
software makers.

In studying interpersonal privacy more generally, I think it will
be a combination of the two methods. There’s honestly not a lot
of data out there now about things like password sharing even
generally, and especially not specifically in relationships. I’m
definitely hoping to gather some in future work.

RF: Let’s stick with spyware for the moment. In March 2019, Eva
Galperin of the EFF said she was going to speak about “eradicat-
ing spyware” at a Kaspersky conference [2]. The story itself is
decent, and it relates to your work.

After the conference, Kaspersky Lab announced adding a
feature to their Android AV product that pops up warnings,
 “Privacy Alerts,” when it appears spyware is in use, allowing the
user to block the theft of information [3]. I would think that help-
ing the person delete the spyware app would be a better idea.

PD: Yes, the Wired story [2] does reference some of my work. I
think Eva’s coming from exactly the same place on this as I am,
which is wanting to help in every way possible and being frus-
trated when others aren’t as receptive as they could be. I liked
this quote from the article:

“…often because security researchers don’t count
spy tools that require full access to a device as ‘real’
hacking, despite domestic abusers in controlling
relationships having exactly that sort of physical
access to a partner’s phone.

I think she makes another really good point about threat model-
ing, and that for the average smartphone user, the major threats
the security industry tends to focus on don’t really hold up:

The Kaspersky users who worry about domestic abuser
spying are rarely the same ones concerned with Russian
intelligence. “It’s really about modeling your threat.
Most victims of domestic violence don’t work for the
NSA or the US government.”

With regards to whether Kaspersky’s move is enough, my
response is a resounding no. The fact of the matter is that for it
to help someone, they have to have Kaspersky antivirus on their
phone before the spyware is installed, then whoever installs
the spyware has to not know that it’s there or not know how to

tamper with the antivirus. Further, it appears from the Wired
article that this feature is going to operate off of a blacklist. A lot
of these apps have many, many versions with different hashes,
and a blacklist is likely to miss them.

It’s also not clear whether this blacklist will include dual-use
apps coming from the Play Store. Assuming this chain of events,
the victim gets this privacy notification, but the notification
isn’t as specific as it could be. It’s better than the previous “not a
virus” warning, but it doesn’t articulate the delicacy of the situ-
ation, that someone put this stuff on your phone, as opposed to it
being some awful adware bundled with something else. It doesn’t
clarify that the information being leaked could be your GPS data,
text messages, and recent calls.

And it certainly doesn’t do the most important thing in this con-
text, which would be to help the victim understand that if they
delete the offending application, the abuser may become aware
of that and escalate to physical violence. That’s the big problem I
could see happening: in the case it does catch something, people
are going to remove it without realizing what it was, and then
potentially face violence as a repercussion or lose any evidence
they may have had.

I will note, however, that Kaspersky has also reached out to me
to ask for thoughts/guidance on how to improve this feature,
and they have a whole team of people making a genuine effort to
address this. That’s incredibly reassuring to see, but it’s frus-
trating that the scope of the protection will be limited to their
customers. Hopefully, it puts pressure on other industry players
to do the same.

RF: In your Enigma talk, you tell the story of someone being
embarrassed after allowing someone access to the iPad to
play some music. While phones typically autolock, lots of other
devices, like iPads and laptops, don’t. To be honest, I think of my
home as my castle, but it’s really not. I have guests sometimes,
or workers, in the house. But in your area of interest, it’s not the
guests that are the problem, correct?

PD: In my research, guests and workers are part of the threat
model, though they are less likely to be the source of a threat
than a parent, coworker, or intimate partner. I’m generally
interested in studying the ways that people perceive their digital
privacy and security in relation to the people they know “IRL.”
Shared devices and accounts are increasingly ubiquitous, so I’m
interested in questions ranging from “Do people moderate their
viewing habits when sharing their parents’ Netflix account?” to
“To what extent do people share their devices with their part-
ners, and what are their expectations of their partners’ access to
their device?”

RF: What are your plans for future work?

www.usenix.org FA L L 20 19 VO L . 4 4 , N O. 3 25

SECURITY
Interview with Periwinkle Doerfler

PD: One of the next studies I want to do is with respect to online
dating, and asking a few questions inspired by true and very
creepy anecdotes. First, if you’re in a fairly self-contained com-
munity, like a college campus, how easily can you find someone
on a dating app if you’ve only seen them, say, in class? What risks
does this pose? Second, if you encounter someone on a dating
app, how easy is it to find them elsewhere online or IRL? How
does this change across apps, geographic density? Beyond study-
ing dating apps, I’m hoping to do a deeper dive on device sharing
and credential sharing in romantic relationships.

I’m also still working on some research related to doxing and
harassment, as well as trying to understand pieces of the incel/
pickup-artist space, and what the connection is between that
and domestic violence.

References
[1] National Sexual Violence Resource Center statistics:
https://www.nsvrc.org/node/4737.

[2] A. Greenberg, “Hacker Eva Galperin Has a Plan to Eradi-
cate Stalkerware,” Wired, April 2, 2019: https://www.wired
.com/story/eva-galperin-stalkerware-kaspersky-antivirus/.

[3] S. Lyngaas, “Kaspersky Lab Looks to Combat ‘Stalker-
ware’ with New Android Feature,” Cyberscoop, April 3, 2019:
https://www.cyberscoop.com/kaspersky-lab-looks-combat
-stalkerware-new-android-feature/.

https://www.nsvrc.org/node/4737
https://www.wired.com/story/eva-galperin-stalkerware-kaspersky-antivirus/
https://www.wired.com/story/eva-galperin-stalkerware-kaspersky-antivirus/
https://www.cyberscoop.com/kaspersky-lab-looks-combat-stalkerware-new-android-feature
https://www.cyberscoop.com/kaspersky-lab-looks-combat-stalkerware-new-android-feature

26  FA L L 20 19 VO L . 4 4 , N O. 3 www.usenix.org

SECURITY

Interview with Dave Dittrich
R I K F A R R O W

I first met Dave Dittrich at USENIX Security in 2000. Dave had been
working at University of Washington for many years by then and had
made a name for himself with his analysis of malware installed on

Internet-connected systems at the university.

I had learned about his work on distributed hacking tools, particularly the ones for carry-
ing out distributed denial of service (DDoS) attacks. Someone within the NSA had kindly
pointed me in that direction, and I had fortunately realized the potential impact and man-
aged to get an article published days before MafiaBoy set off his big attack.

Rik Farrow: When did you start working in DFIR (Digital Forensics and Incident Response)
at the University of Washington, and what was that like?

Dave Dittrich: My start in security came from the system administration side, out of necessity.

After working for a couple of years in the UW Chemistry Department, I took a position as
the frontline UNIX workstation support contact for faculty and staff on campus. At the time,
I think there was something like 20,000 UNIX workstations and maybe 3–4 times more
Windows systems. But Windows didn’t have a standard TCP/IP stack, so if a computer was
broken into over the Internet, it would be a UNIX system. There were BSD, SunOS 3 and 4,
System V, HP/UX, Irix, Digital UNIX, NeXT, and nascent Linux (Red Hat and Debian,
mostly). I had to support them all, being the first (and usually only) person that would
interface with the faculty and staff, relying on the University Computing Services system
administrators and engineers for their experience when I didn’t have it.

There would sometimes be dozens or hundreds of compromised systems at any given time,
and I tried to help everyone as efficiently as possible. I took everything I learned and put it
on my web page, and added it to the two-day R870 system administration course that I
inherited from someone who retired right after I came on board [1]. I got bit-image copies of
any interesting computer intrusion and got really efficient at forensic analysis using open
source tools like Coroner’s Toolkit by Dan Farmer and Wietse Venema, following public guide-
lines by the FBI and DoD, and developing my own investigative and reporting techniques.

RF: I think that UNIX strings was one of my favorite tools for a quick look at a suspicious
binary. Coroner’s Toolkit was amazing.

DD: Yeah, amazingly just using strings would be enough to get a pretty good idea from inter-
nal prompts, error messages, and system call identifiers of what a simple piece of malware
was supposed to do. A disassembly could then provide some more detail. For example, is it a
sniffer? A remote access trojan? A rootkit concealment tool? An exploit?

Another really basic technique, but one that I don’t see commonly used by forensic analysts,
is using file system Modify/Access/Create (MAC) timelines to develop situational aware-
ness about post-intrusion activity. Forensic analysts often search for “known bads” using
hash databases, or exclude programs based on “known goods” hash databases, or search
for known Windows Registry keys, etc. In other words, looking for things based on simple

Dave Dittrich is one of those
rare people who started
college declaring a major in
photography and graphic
arts but left with a computer

science degree and went on to be involved
in many “first in the world” cyber events.
His incident response experiences, often
involving personally identifiable information
of both innocents and suspected computer
criminals, led him to research the ethical
and legal bounds within which “white hat”
actors can justifiably act to respond to “black
hat” hackers and criminals. He has written
extensively on ethics and the “Active Response
Continuum,” served for six years on a
University of Washington Institutional Review
Board, and has recently been distilling this all
into curricular resources for teaching practical
ethical analysis. dave.dittrich@gmail.com

Rik is the editor of ;login:.
rik@usenix.org

mailto:dave.dittrich@gmail.com

www.usenix.org FA L L 20 19 VO L . 4 4 , N O. 3 27

SECURITY
Interview with Dave Dittrich

signatures (often signatures derived by others at different sites).
While this might work, it also might take hours of indexing to
come up with nothing, especially if the malware is polymorphic
or crafted specifically for that victim, meaning nobody else
would see the same binary in their generalized threat intelli-
gence telemetry. Or it might find several artifacts from different
unrelated intrusions over time, confusing the analyst. Just find-
ing a hash match or a file name match is the start of an analytic
process, not the end.

It is really hard to effectively wipe out all possible evidence of
compromise of the integrity of a computer system. I think it’s
safe to say that most intrusions up to the early 2000s had almost
no effort spent on advanced concealment and wiping of finger-
prints, so to speak. Rootkits were very common (both user level
and kernel level) but were usually pretty easy to defeat if you
know how the operating system, file system, and network con-
nections behave. But you need to be able to show your work and
prove it to a “preponderance of the evidence” in civil cases, and
“beyond a reasonable doubt” in a criminal case.

I have found it far quicker and more useful to leverage initial
facts (including time and date of suspected malicious activity) to
find the directory where malware was initially dropped or where
configuration files and/or log files are stored. In situations
where there is no enterprise endpoint protection agent in place,
a very common situation, you need to “live off the land” in terms
of evidence collection. To increase confidence, you then include
external sources of evidence to confirm/refute things like clock
skew, missing the year or time zone in system log lines, etc.

I developed a forensic analysis and reporting methodology using
the tools and techniques described by Farmer and Venema in the
notes from their 1999 IBM forensic training event. I described
this technique and how to use it in a guide I published later that
year, “Basic Steps in Forensic Analysis of UNIX Systems” [2].
I also used this technique in a two-hour “house call” on the Uni-
versity of Washington campus network to quickly get around a
kernel-level rootkit on a Linux server, which became the chapter
“Omerta” in Mike Schiffman’s book Hacker’s Challenge [3].

The owner of that system was 100% sure his system was not
compromised, since the kernel-level rootkit worked so well. I
hooked his computer and my laptop up to a hub and showed him
the IRC bot traffic coming from a process that wasn’t listed in
netstat, or ps output. I then had him run dd using netcat to pipe
the root partition to my laptop, where I used the Coroner’s Tool-
kit to get a MAC timeline and later to extract and analyze deleted
file space. Having obtained a bit-image copy of the root partition
to preserve any evidence, it only took a short time, while simulta-
neously copying the other partitions, to identify and disable the
rootkit. All of the malicious processes now showed up!

By the next day I had a full understanding of what had happened,
identified all of the other systems around the world being used
by the group from network traffic and internal log or rootkit
configuration files, and reported to all the other victim sites and
to CERT/CC.

Farmer and Venema, two of the voices of reason in the forensic
arena, published a much more detailed description of the under-
lying operating system behaviors and file-system functions that
preserve evidence in their book, Forensic Discovery [4]. They
showed in technical detail how, despite file deletions (or even
 re-installation of the operating system, if you look hard enough!),
you can do the same kind of analysis that geologists do to under-
stand the history of a specific location by examining the com-
position of soil layers, rock or shell inclusions, discontinuities in
soil layers, etc. With an understanding of how kernels running
programs affect MAC times in each type of file system in use,
you can not only make quantifiable conclusions based on inter-
pretation of MAC timelines, but you can demonstrate through
experiments using the same kernel and file system that you can
reproduce the results to show proof to back up your theory!

If your objective is to support criminal process, this is very
important in order to meet an evidentiary standard known as the
“Daubert Standard” (Daubert v. Merrell Dow Pharmaceuticals,
509 U.S. 579 (1993)): Federal Rules of Evidence 702 requires that
an expert witness should possess the kind of knowledge as found
in Farmer and Venema’s book, use that knowledge to help the
court understand the evidence or determine facts at issue, base
their testimony on sufficient facts or data that were the product
of reliable principles and methods, and reliably apply those prin-
ciples and methods to the facts of the case.

RF: Another thing I recall you were involved with was the Honey-
net Project (HP). I asked Lance Spitzner to write about the HP in
2002 [5]. How did you get involved in the HP?

DD: My publications and conference talks on sniffers, root-
kits, post-intrusion log alteration and concealment, and DDoS
handler/agent tools, pre-cursors to today’s “botnets,” got me an
invitation to the Honeynet Project. The first publications we
did referenced many of the whitepapers I published on my UW
home page.

People kept saying, “It’s great that you mention how to use tools
and how to analyze compromised systems, but I don’t have a
honeypot set up and want a bit image disk copy to work with.”
So Lance Spitzner asked me to organize the Forensic Chal-
lenge so that people could have a real-life compromised Linux
system to work with. I spent over a hundred hours in one month
doing the reference analysis, setting up the rules, organizing the
judges, and managing the judging process. It was the top most-
popular download on the HP web site for a few years running!

28  FA L L 20 19 VO L . 4 4 , N O. 3 www.usenix.org

SECURITY
Interview with Dave Dittrich

I also organized the Reverse Challenge, which turned out to be
yet-another-DDoS-bot!

RF: How did you get involved with working on the Menlo
Report? Is that something you and Erin Kenneally decided to
do on your own?

DD: Erin and I both came into our roles in the process from
previous DHS and ethics (and legal, in Erin’s case) work we
had done.

I had been working within the PREDICT project (a research data
repository project, now known as the Information Marketplace
for Policy and Analysis of Cyber-risk and Trust, or IMPACT)
at DHS for many years. Around 2006, I was trying to develop
honeypot images and related logs and network traffic for use in
research. This kind of sandbox processing of malware artifacts
is commonplace today, but not in the mid-2000s. One of the
larger such botnet-related dataset collections today is main-
tained by the Czech Technical University in Prague (https://
mcfp.felk.cvut.cz/publicDatasets/).

One of the botnets I had studied, known as “Nugache,” was writ-
ten up in USENIX ;login: in 2007 [6]. Nugache had some features
far in advance of the most visible botnet in the world at the time,
the “Storm botnet.” I was keeping a close eye on Storm and the
differences in Nugache that really had me worried due to the
level of apparent sophistication in that botnet (that wouldn’t be
publicly shown to have been surpassed until the Conficker.C
variant came out years later).

I saw the December 2008 CCC presentation “Stormfucker:
Owning the Storm Botnet” by researchers from the University
of Bonn, inspired by research from the University of Mannheim,
where they demonstrated a partially tested implementation
of software components necessary for constructing a “white
worm” that could be released to clean up Storm botnet-infected
nodes. Afterwards, I began writing on the ethics of cleaning
up botnets. This followed on the Active Response Continuum
research I had done, and my take on the ethics was very applied
and focused on the overlap of research and operations (includ-
ing law enforcement investigations), not just a pure academic
research perspective.

My first attempt at publication at the USENIX LEET ’09 work-
shop was rejected, but I was invited to participate on a panel
entitled “Ethics in Botnet Research” in April 2009 [7].

That initial rejected paper grew and became a technical report
co-authored with Michael Bailey (a PREDICT Principal Inves-
tigator) and Sven Dietrich (whom I had been working with on
Nugache). We released the technical report the same day as the
LEET panel [8].

I had several people I knew with ethical review experience
review the paper and case studies to see if they would even
require research ethical review. One was Katherine Carpenter,
with whom I’ve subsequently written several articles and papers.
The other two were Tanya Matthews and Shannon Sewards,
who worked at the University of Washington’s Institutional
Review Board (IRB). I also joined one of UW’s IRB committees
to learn how the process works from firsthand experience, serv-
ing on the committee for over six years.

Doug Maughan was at the LEET panel and invited me to speak
about this paper at the first workshop on ethics in ICT research
he was setting up for the next month (May 26-27, 2009). That
workshop led to formation of the Menlo Working Group. The
technical report I co-authored with Bailey and Dietrich was
provided to the Working Group and served as some of the back-
ground and case studies for the Companion to the Menlo Report.

RF: I believe you wrote about the process. It’s enough to say that
many people were involved, but you and Erin created the report
that got published in the Federal Record.

DD: The process was covered in an IEEE Security and Privacy
article [9].

We had a large Working Group, approximately two dozen people,
a similarly sized group of external reviewers, and a number of
official responses to the publication in the Federal Register that
had to be integrated and summarized in an official response in
the Federal Register. I learned a lot about the Federal Register
and its relationship to federal regulations!

Erin Kenneally was serving as legal counsel to CAIDA (another
PREDICT performer). Erin and I both had the capacity to
wrangle the report drafting and commenting/editing process.
We got closer to a final draft ready for submission to the Federal
Register and subsequent public response when Michael Bailey
joined us to help out with the final push (and to work with us to
start publishing and speaking about the Menlo Report as part of
the outreach process).

RF: What else were you doing at UW?

DD: A couple years after that, Mike Eisenberg (Dean of the Infor-
mation School) and David Notkin (chair of the Computer Science
and Engineering Department) bought out half of my time to
allow me to reach out to other universities and community col-
leges, get the UW accepted into the National Security Agency’s
Center of Academic Excellence in Information Assurance Edu-
cation (CAE IAE) program, help start up the Center for Informa-
tion Assurance and Cybersecurity (CIAC), and begin a career
as a staff research scientist with permission to be a Principal
Investigator on grants, despite only having a BS degree. I owe a
great deal to Mike Eisenberg.

https://mcfp.felk.cvut.cz/publicDatasets/
https://mcfp.felk.cvut.cz/publicDatasets/

www.usenix.org FA L L 20 19 VO L . 4 4 , N O. 3 29

SECURITY
Interview with Dave Dittrich

Over the next 10+ years, I brought in over $4 million in grants
and contracts and covered my salary and that of a few others at
various times. My first grant was from Cisco Systems Critical
Infrastructure Assurance Group to study active defense. I coined
the term Active Response Continuum (ARC) to make it clear this
is not a black/white situation by any means but, rather, a set of
ranges or levels (capacity to respond, aggressiveness, intrusive-
ness, risk, etc.). I collaborated with Kenneth Einar Himma to
write one of the early papers on the topic (http://ssrn.com
/abstract=790585) and presented first publicly at AusCERT 2005.

We came at the subject from the perspective of private-sector
response and framed it in terms of ethical principles, as opposed
to the military law of war context taken by most publications on
the topic to date. The concept of ethics in security operations
and research has remained a central part of my research and
publications since then. The bulk of the funding I secured at the
UW was from Doug Maughan (another person to whom I owe
a great deal) at DHS but also included grants or contracts from
NSF, DoD, the FTC, and industry.

Over that same period I had permission to work on outside
contracts and pro bono projects, including contract support to
criminal defense lawyers, federal public defenders, assisting a
few DDoS victims, assisting the Federal Trade Commission on
a fake-drug civil temporary restraining order (TRO) case, and
providing declarations to the court in two of Microsoft’s ex-parte
TROs in the Waledac and Rustock botnet cases.

RF: What are your plans for the future?

DD: I’ll be really honest: I’m figuring that out. Let me explain.

During my last major project as a Principal Investigator at the
UW, I worked so hard I was burning myself out. Physically, I
have a nerve impingement in my neck that began to cause pain,
tingling, and numbness in my back, shoulder, and arm. Emotion-
ally, I was taking on too much stress (which combined with the
physical issues to produce a negative feedback loop). My doctor,
friends and family were all telling me I had to cut back, change
my work habits, and take it easier to begin to recover.

I just read Arthur C. Brooks’ Atlantic piece, “Your Professional
Decline Is Coming (Much) Sooner Than You Think: Here’s How
to Make the Most of It” [10]. His article really spoke to me and
made me realize some things that have been in the back of my
mind lately.

I’ve recently been writing a history of the early days of the Honey-
net Project, going back over some of the things I did in the late
1990s and early 2000s. This August 19th is the 20th anniversary
of the first massive DDoS (handler/agent style) attack on the
University of Minnesota that lead me to write the first DDoS tool
analyses. It surprised me a little to realize just how much I did in
those days (all the DDoS tool analyses I wrote, computer security

incidents I investigated and reported on to CERT/CC and the
FBI, projects taking up hundreds of hours over a month or two,
trips and talks and publications, all on top of a 40+ hour work
week). As Brooks describes, I made my name and reputation in
this industry using fluid intelligence and a dedication to serving
the public through open source research, digital forensics, mal-
ware analysis and threat intelligence, and publication. But I am
learning (the hard way) how unsustainable that level of produc-
tivity really is. I feel confident I can still identify and solve novel
“cyber” problems, but physically I can’t put in 12+ hour days any
longer.

Over the last two years I’ve started shifting to, as Brooks puts
it, using crystallized intelligence—applying all the lessons I’ve
learned in information security over the decades, the recom-
mendations and predictions I’ve made, all that I have read
and researched, the linkages I’m capable of recognizing—as a
contract subject matter expert and an author. I have invested
thousands of hours in producing open source tools, document-
ing ways to solve some basic information security problems that
have persisted for decades (like default passwords and secrets
leaked through source code repositories), and combining case
studies and other material from papers I’ve written and the
Menlo Report effort to produce materials for a full-day applied
ethics tutorial/course. Ever since my UNIX workstation sup-
port days, I have tried to teach what I have learned by including
what-to-do and how-to-do-it information in my publications and
have given many talks and guest lectures. So perhaps teaching is
my future? After all, my father (before he passed away) and my
older brother today both taught college physics as professors for
decades each.

I’m excited for the next direction my professional and personal
life will take, similar to the way I used to feel in my 30s and 40s
when preparing to go on a multi-day backcountry ski trip. I know
how to navigate finding a route, the general direction I want to
go, and I’ve done all the preparation and accumulated the requi-
site knowledge. But I don’t know right now precisely what path I
will take, what kind of objective hazards I will have to overcome,
the amazing views from the summits, or what pleasures (and
discomforts) I will encounter on the way.

http://ssrn.com/abstract=790585
http://ssrn.com/abstract=790585

30  FA L L 20 19 VO L . 4 4 , N O. 3 www.usenix.org

SECURITY
Interview with Dave Dittrich

References
[1] “R870: UNIX System Administration—A Survival Course”:
https://www.washington.edu/R870/cover-page.html.

[2] D. Dittrich, “Basic Steps in Forensic Analysis of UNIX Sys-
tems”: https://staff.washington.edu/dittrich/misc/forensics/.

[3] M. Schiffman, Hacker’s Challenge (McGraw-Hill, 2002).

[4] D. Farmer, W. Venema, Forensic Discovery (Addison-Wesley
Professional, 2005).

[5] L. Spitzner, “HOSUS (Honeypot Surveillance System),”
;login:, vol. 27, no. 6 (USENIX, December 2002): https://www
.usenix.org/system/files/login/articles/1252-spitzner.pdf.

[6] S. Stover, D. Dittrich, J. Hernandez, and S. Dietrich, “Analy-
sis of the Storm and Nugache Trojans: P2P Is Here,” ;login:, vol.
32, no. 6 (USENIX, December 2007): https://www.usenix.org
/system/files/login/articles/526-stover.pdf.

[7] J. Brodkin, “The Legal Risks of Ethical Hacking,” Network
World, April 24, 2009: https://www.networkworld.com/article
/2268198/the-legal-risks-of-ethical-hacking.html.

[8] D. Dittrich, M. Bailey, S. Dietrich, “Towards Community
Standards for Ethical Behavior in Computer Security Research,”
Technical Report CS 2009-01, Stevens Institute of Technology,
April 2009: https://staff.washington.edu/dittrich/papers
/dbd2009tr1/dbd2009tr1.pdf.

[9] M. Bailey, D. Dittrich, E. Kenneally, and D. Maughan, “The
Menlo Report,” Security and Privacy, vol. 10, no. 2 (IEEE,
March/April 2012), pp. 71–75: http://www.caida.org/publications
/papers/2012/menlo_report/menlo_report.pdf.

[10] A. Brooks, “Your Professional Decline Is Coming (Much)
Sooner Than You Think: Here’s How to Make the Most of It,”
The Atlantic, July 2019: https://www.theatlantic.com
/magazine/archive/2019/07/work-peak-professional-decline
/590650/.

https://www.washington.edu/R870/cover-page.html
https://staff.washington.edu/dittrich/misc/forensics/
https://www.usenix.org/system/files/login/articles/1252-spitzner.pdf
https://www.usenix.org/system/files/login/articles/1252-spitzner.pdf
https://www.usenix.org/system/files/login/articles/526-stover.pdf
https://www.usenix.org/system/files/login/articles/526-stover.pdf
https://www.networkworld.com/article/2268198/the-legal-risks-of-ethical-hacking.html
https://www.networkworld.com/article/2268198/the-legal-risks-of-ethical-hacking.html
https://staff.washington.edu/dittrich/papers/dbd2009tr1/dbd2009tr1.pdf
https://staff.washington.edu/dittrich/papers/dbd2009tr1/dbd2009tr1.pdf
http://www.caida.org/publications/papers/2012/menlo_report/menlo_report.pdf
http://www.caida.org/publications/papers/2012/menlo_report/menlo_report.pdf
https://www.theatlantic.com/magazine/archive/2019/07/work-peak-professional-decline/590650/
https://www.theatlantic.com/magazine/archive/2019/07/work-peak-professional-decline/590650/
https://www.theatlantic.com/magazine/archive/2019/07/work-peak-professional-decline/590650/

Save the Dates!

August 12–14, 2020 • Boston, MA, USA
The 29th USENIX Security Symposium brings together researchers, practitioners, system
 administrators, system programmers, and others to share and explore the latest advances
in the security and privacy of computer systems and networks.

The Symposium will span three days, with a technical program including refereed papers, invited talks,
posters, panel discussions, and Birds-of-a-Feather sessions. Co-located workshops will precede the
Symposium on August 10 and 11.

www.usenix.org/sec20

Program Co-Chairs

Srdjan Capkun
ETH Zurich

Franziska Roesner
University of Washington

Sixteenth Symposium on
Usable Privacy and Security
Co-located with USENIX Security ’20
August 9–11, 2020 • Boston, MA, USA
The Sixteenth Symposium on Usable Privacy and Security
(SOUPS 2020) will bring together an interdisciplinary group of
researchers and practitioners in human computer interac-
tion, security, and privacy. The program will feature techni-
cal papers, including replication papers and systematization of
knowledge papers, workshops and tutorials, a poster session,
and lightning talks.

Symposium Organizers
General Chair

Heather Richter Lipford,
University of North Carolina at Charlotte

Technical Papers Co-Chairs
Michelle Mazurek, University of Maryland
Joe Calandrino, Federal Trade Commission

www.usenix.org/soups2020

Paper submission deadlines:
Fall Quarter: Friday, November 15, 2019
Winter Quarter: Saturday, February 15, 2020

Invited talk and panel proposals deadline:
Friday, February 14, 2020

32  FA L L 20 19 VO L . 4 4 , N O. 3 www.usenix.org

SRE AND SYSADMINChallenges in Storing Docker Images
A L I A N W A R , L U K A S R U P P R E C H T , D I M I T R I S S K O U R T I S , A N D V A S I L Y T A R A S O V

Ali Anwar is a research staff
member at IBM Research–
Almaden. He received his
PhD in computer science from
Virginia Tech. In his earlier

years he worked as a tools developer (GNU
GDB) at Mentor Graphics. Ali’s research
interests are in distributed computing systems,
cloud storage management, file and storage
systems, AI platforms, and the intersection of
systems and machine learning.
Ali.Anwar2@ibm.com

Lukas Rupprecht is a researcher
in the Storage Systems Group
at IBM Research–Almaden. His
research interests are broadly
related to distributed systems
for data management, including

scalability, performance, fault tolerance, and
manageability aspects. He received his PhD
from Imperial College London and holds MSc
and BSc degrees from Technical University
Munich. Lukas.Rupprecht@ibm.com

Dimitris Skourtis is a
Researcher at IBM Research–
Almaden. Prior to that
he worked on resource
management and scheduling

for ESXi at VMware. He has a PhD in computer
science from UC Santa Cruz and a masters
in mathematics from the University of St
Andrews. His interests include distributed
systems, data management, and QoS for
modern storage devices.
Dimitrios.Skourtis@ibm.com

In this article, we describe the structure of Docker images, how they are
managed by Docker clients, and how they are stored at Docker registries.
We then present several weaknesses in the current design that can cause

Docker images to consume excessive storage capacity, degrade container per-
formance, and create contention on the network and the underlying storage
infrastructure. We suggest several improvements to alleviate these problems.

At times it seems surprising that hardware virtualization, established virtual machines
(VMs), rather than software containers took precedence in the technology evolution. Indeed,
in so many practical use cases, one simply wants to run multiple isolated applications on top
of a single kernel instead of emulating an entire operating system. This lightweight approach
allows containers to start in a fraction of a second and, compared to VMs, consume much
less memory and storage, save CPU cycles, and require only a single OS license.

A number of OS-level virtualization technologies appeared in the early 2000s (e.g., Solaris
Zones, Linux-VServer, Virtuozzo), but it was only in 2013, with the advent of Docker, that
containerization started its conquest of datacenters, clouds, and human minds. By 2013, the
Linux kernel components required for containerization—cgroups and namespaces—were
already sufficiently mature to provide reliable resource control and boundary separation.
However, what was missing was a user-friendly, practical, and yet flexible way to create,
deploy, and manage containers. Docker provided this technology. At its heart are Docker
images, which form the basic abstraction for users to operate containers.

Container Images and Their Storage
Docker storage can be roughly split into two main parts: client-side storage of images and
image distribution via a central registry. In the following, we describe both of these aspects.

Docker Images and Client-Side Storage
In the majority of today’s systems, a running application expects its binaries, libraries, and
configuration and data files to be stored and accessed through a file system. Hence, the file
system tree is an integral part of an application runtime environment. A container image, at
its core, can be viewed as a file system tree containing all files required by an application to
operate. In a simple image implementation, one could copy the required file system tree to
a directory and run a containerized application on top of it. However, when a new instance
of the same application needs to be started, a new copy of the entire tree has to be created in
order to keep any file changes local to each application instance. This slows down container
startups significantly.

As a solution to this problem, Docker employs a copy-on-write (CoW) approach to speed up
file system creation for containers. Specifically, similar to the “gold images” concept in VMs,
Docker defines images as immutable entities. To create a fully functional—and, in particu-
lar, writable—root file system for a container, Docker makes use of technologies such as
OverlayFS [2]. OverlayFS can create a logical file system on top of two different directories,
also known as layers, one of which is designated as writable while the other one is read-only.
When Docker creates a new container, the writable layer is initially empty while the read-
only layer contains the file system tree of an immutable image.

www.usenix.org FA L L 20 19 VO L . 4 4 , N O. 3 33

SRE AND SYSADMIN
Challenges in Storing Docker Images

Vasily Tarasov is a Researcher
at IBM Research–Almaden.
His most recent studies
focus on new approaches
for providing storage as

a service in containerized environments.
His broad interests include system design,
implementation, and performance analysis.
vtarasov@us.ibm.com

A file in OverlayFS serves as a proxy to either a file in the image (read-only layer) or in the
writable layer. For example, reading of a file in OverlayFS is initially redirected to the cor-
responding file in the read-only layer. However, when an application tries to update a file,
OverlayFS seamlessly copies it to the writable layer and updates the file there. After that,
all I/O operations to the file go to the copy in the writable layer. In such a design, starting a
container is a breeze, as it only requires the creation of an empty writable layer and mounting
the OverlayFS. Data copying is performed later and only on demand (copy-on-write). Figure 1
schematically illustrates this setup.

So far, we assumed that immutable container images already exist. But how are they created
initially? The capability to easily build images is an important property that makes Docker
so attractive. It relies on the ability to convert writable layers to read-only layers and assemble
an immutable image from a collection of read-only layers. Figure 2 depicts this organization.
In Docker, an image is treated as a stack of read-only layers, where each layer contains the
changes, at file granularity, compared to the lower layer. The lowest layer in a stack contains
the changes compared to an empty file system. Therefore, every layer can be thought of as a
collection of files and directories, and layers belonging to the same image comprise its entire
file system tree. OverlayFS is capable of assembling a collection of read-only layers and one
writable layer into a single logical file system for a running container. Besides OverlayFS,
there are other approaches, which can support the above described storage model of Docker
images, e.g., AUFS, device-mapper, or Btrfs. Support for each of these storage back ends is
implemented through a graph driver.

To create a container image, one can start from an empty container, copy files to its writable
layer, and then use the docker commit command to convert the writable layer to a read-only
layer. As this is tedious, Docker provides the concept of a Dockerfile and the docker build
command for convenience. In this case, Docker creates a temporary build container, updates
its root file system using the instructions in the Dockerfile, and commits the writable layer
(i.e., converts it to read-only) after every instruction. Images can also be created from previ-
ously built images (e.g., an OS distribution). This results in different images sharing layers
(see Figure 2).

Registry-Side Storage
For ease of distribution, Docker images are kept in an online store called a registry. A reg-
istry, such as Docker Hub [1], acts as a storage and content delivery system, holding named
Docker images, available in different tagged versions. Figure 3 shows the basic structure of a
typical registry and how users interact with it. Users create repositories, holding images for a
particular application (e.g., Redis or WordPress) or a basic operating system (e.g., Ubuntu or
CentOS). Images in a repository can have different versions, identified by tags. The combi-
nation of a repository name (which typically also includes a user name) and a tag uniquely
defines the name of an image.

Figure 1: Two containers X and Y running the application A from the same image

34  FA L L 20 19 VO L . 4 4 , N O. 3 www.usenix.org

SRE AND SYSADMIN
Challenges in Storing Docker Images

Users can add new images or update existing ones by pushing to
the registry and retrieve images by pulling from the registry. The
information about which layers constitute a particular image is
kept in a metadata file called a manifest. The manifest includes
additional image settings such as target hardware architecture,
executable to start in a container, and environment variables.

Each layer is stored as a compressed tarball in the registry
and has a content-addressable identifier called a digest, which
uniquely identifies a layer. The digest is a collision-resistant
hash of the layer’s data (SHA-256 by default). The identifier
allows the user to efficiently check whether two layers are
identical, share identical layers across different images, and
transfer only the missing layers of an image between registries
and clients.

Clients communicate with the registry using a RESTful HTTP
API. To pull an image from the registry, a Docker client first
fetches the image manifest by issuing a GET request. Then the
client uses the manifest to identify individual layers unavailable
in local storage. Finally, the client GETs and extracts the miss-
ing layers. Pushing works in reverse order compared to pulling.

After creating the manifest locally, the client first PUTs all the
new layers that are not yet stored in the registry, and then PUTs
the manifest itself.

The existing Docker registry server is a single-node application.
To concurrently serve a high-request load, production deploy-
ments typically use a load balancer in front of several indepen-
dent registry instances. All instances store and retrieve images
from a shared backend storage. Currently, the Docker registry
supports multiple storage back ends such as in-memory for refer-
ence and testing purposes, file system for storing layers in a local
directory tree, and object storage for storing layers as objects in
popular object stores such as Amazon S3.

Challenges of Scale
The increasing popularity of containers and the shift in applica-
tion development towards cloud-native applications pose several
challenges for Docker storage on the client and registry sides.

High Redundancy
As of March 2019, Docker Hub contains more than 2 million
public images. Grossly underestimating, we found that those
images would utilize more than 1 PB of storage in raw format.
The utilization is likely several times higher as we have not
considered all images, e.g., we omitted the ones stored in private
repositories. Additionally, every day more than 1,500 new images
are added. This puts pressure on the storage infrastructure, and
it is important to understand the challenges in storing Docker
images in order to keep registries and client-side storage scalable.

As described above, Docker employs two mechanisms to reduce
image storage utilization: layering of images and compression.
However, even with these space optimizations, the storage utili-
zation is still significant. Looking at the individual contributions
of each mechanism on the 10,000 most popular images in Docker
Hub, we found that layering provides a reduction of 1.48, and
compression decreases the data set by an additional 2.38. Com-
bined, this results in a total reduction of 3.54. While this would
reduce the estimated 1 PB to approximately 290 TB, storing all

Figure 2: Two applications A and B running in two containers X and Y from two images that share two layers AB0 and AB1 between them

Figure 3: On the left: relationship between registry, users (Bob and Alice),
repositories (Redis, WordPress, CentOS), and tagged images (v2.8, latest,
v4.8, myOS, etc.). On the right: Docker image structure.

www.usenix.org FA L L 20 19 VO L . 4 4 , N O. 3 35

SRE AND SYSADMIN
Challenges in Storing Docker Images

images still requires a significant infrastructure budget. Using
AWS S3 standard storage, the resulting annual cost for storage
alone would be between $75,000 and $130,000 (depending on
the specific AWS region) plus any additional networking costs.
For companies that provide registries as a service, e.g., Docker
Hub, Jfrog, Artifactory, or Quay, this is particularly problematic.
However, even companies maintaining their own registries are
sensitive to the high cost of the required storage infrastructure.

To reduce storage utilization of Docker images, the primary goal
is to remove any existing redundancy in the stored data, as is
intended by the layering of images. However, we found that this
is ineffective in its current form [9]. In our sample data set of the
10,000 most popular Docker Hub images, 67,047 unique layers
still contain almost 80% duplicate files.

We believe that this is due to two main reasons. First, Docker
images must be self-contained, contrary to earlier approaches
for software packaging (e.g., RPM or DEB). As a result, com-
pletely unrelated images may rely on common components like
binaries or shared libraries. In our 10,000-image data set, we
found that libraries such as libslang, libstdc++, or libc are present
in over 1,000 images. Second, developers create their images
independently without exhaustively considering existing layers.
This leads to many “almost equal” layers, i.e., layers that share
a large number of, but not all, files with existing layers and as a
result are not identical and so must store separate copies. That is
not to blame developers; examining existing layers is not a task
to be performed manually, and further, one needs to have the
required incentives to even consider doing so.

On top of the registry storage redundancy, network traffic
and client-side storage are also affected. Suboptimal layering
means that duplicate data is unnecessarily transferred over the
network, potentially increasing expensive outbound network
traffic in a typical public cloud offering. Additional network
traffic can increase startup times, whereas “almost equal“
layers can increase storage space utilization on a single client
unnecessarily.

We proposed one approach for solving the redundancy problem
through layer restructuring that considers both storage and net-
work utilization [6]. The approach takes the existing layers in a
registry and constructs new layers out of the set of all files, such
that storage space and network redundancy are minimized. Pre-
liminary results on a small, 100-image data set show that we can
achieve storage space savings of up to 2.3. In the same paper,
we discussed the redundancy problem in more detail and explain
why file-level deduplication on the registry-side is insufficient.

Low Performance
While containers are, in most cases, much more performant in
terms of startup times compared to virtual machines, new use
cases such as serverless computing are demanding even lower

latencies. Those requirements put pressure on the storage infra-
structure, both at the registry and the client side.

As previous work has found, pulling can contribute as much as
76% to the overall container startup time [4]. Hence, the registry
is a critical component in the container infrastructure and needs
to be designed to minimize pull latencies and serve images as
fast as possible. One direction for improving registry perfor-
mance is to exploit workload characteristics and integrate work-
load-aware optimizations in a registry’s design or configuration.
We performed an in-depth analysis of production traces from
the IBM Cloud Container Registry to study common registry
workloads and drive potential optimizations [3, 5]. The analysis
revealed several important characteristics. First, there are often
hotspot layers, which are accessed more frequently than others,
leading to a skewed workload. For example, at one of the registry
sites, 59% of requests only went to 1% of the layers. Second, most
layers are small, with 65% being smaller than 1 MB while 80%
are smaller than 10 MB. Third, requests are correlated, i.e., if a
client requests an image manifest from a repository and the
repository has recently seen new layers being pushed, then these
new layers are likely to be pulled.

These observations encourage the use of layer caching and
prefetching optimizations to reduce registry load and pull laten-
cies. Using these lessons, we proposed a new registry design [3].
The design employs a two-tier registry cache and exploits the
correlation of push and manifest pull requests to preload layers
that are likely to be pulled into the cache. Each time a client
requests a manifest for an image in a repository that has seen
an update in the recent past (defined by a threshold parameter),
the layers from the manifest are prefetched into the cache. Our
evaluation revealed that having such an optimized backend stor-
age system for the registry can reduce the latency from 100 ms to
10 ms for layers smaller than 1 MB.

Besides the registry, client-side storage can also affect container
startup and runtime performance. This is particularly prob-
lematic in large-scale setups, where either many containers run
on a single host or the same image needs to be pulled by a large
number of nodes to run a parallel workload.

In the first case of many containers being started simultane-
ously on one host, the choice of storage driver can significantly
impact how fast containers start and complete [7]. The most
important property is the granularity at which the driver
performs copy-on-write, i.e., at file- or block-granularity. For
example, we found that for the OverlayFS driver, startup laten-
cies can reach hundreds of seconds for write-heavy workloads,
which trigger large copies of data due to copy-on-write. As a
result, the completion of those containers is also delayed signifi-
cantly. In contrast, drivers, which perform copy-on-write at block
granularity (e.g., Btrfs or ZFS), did not significantly affect startup
latencies.

36  FA L L 20 19 VO L . 4 4 , N O. 3 www.usenix.org

SRE AND SYSADMIN
Challenges in Storing Docker Images

However, other workloads draw a different picture. For example,
when running an Ubuntu dist-upgrade in 10 containers in
parallel, file-based drivers (both OverlayFS and AUFS) out-
performed block-based drivers significantly. This could be due
to the fact that block-based drivers are often based on native
file systems and, hence, benefit less from the Linux page cache,
which could slow down containers with mixed read/write work-
loads. However, we do not know the exact reason at this point.

In the case of large-scale parallel workloads, which require users
to pull the same image on many different nodes, additional prob-
lems arise. Most importantly, pulling the same image several
times (potentially hundreds or thousands of times depending
on the scale of the workload) wastes network bandwidth during
the pull and storage capacity on the individual Docker clients.
Therefore, it is desirable to enable individual clients to collabo-
rate when pulling an image, i.e., let different clients pull differ-
ent layers of the image and only store a single copy of the image
on shared storage such as an NFS file system. In environments
where no local storage is available, such as an HPC cluster, shar-
ing images is a necessity to enable containerized workloads.

To enable collaborative pulling and sharing of images, Docker
clients need to be synchronized. With Wharf, we have built such
a system [8]. As we assume the existence of a shared storage
system for the container images, we can use this shared storage
to store the global state for all clients, e.g., which images have
been pulled already, which images are currently pulled, and who
is pulling which layer. Wharf uses additional optimizations such
as minimizing lock contention by exploiting the layered struc-
ture of Docker images and writing image changes to local stor-
age, if available, to reduce overhead during pulling and running
an image. For large images pulled in parallel to an NFS share,
Wharf can improve pull latencies by up to 12 compared to a
naïve solution, in which each client pulls its images to a separate
location on the NFS share.

Conclusion
Containers are expected to form the backbone of prospective
computing platforms. However, even though individual con-
tainers are lightweight, providing and operating infrastructure
for millions of containers is a hard challenge. In this article, we
described how Docker stores container images and presented
the challenges that we discovered when operating large-scale
container deployments: high data redundancy across images,
inefficiencies in graph drivers, low-performing registries, the
inability to effectively use images on shared storage, and others.
We referenced some of the possible solutions and hope that this
article will nourish the discussion on this important topic.

Acknowledgments
We would like to thank our collaborators and co-authors from
academia, IBM Research, and other organizations: Ali Butt,
Yue Chang, Hannan Fayyaz, Zeshan Fayyaz, Dean Hildebrand,
Wenji Li, Michael Littley, Heiko Ludwig, Nagapramod Mandagere,
Nimrod Megiddo, Mohamed Mohamed, Raju Rangaswami,
Douglas Thain, Amit Warke, Ming Zhao, Nannan Zhao, and
Chao Zheng.

References
[1] Docker Hub: https://hub.docker.com/.

[2] OverlayFS: https://www.kernel.org/doc/Documentation
/filesystems/overlayfs.txt.

[3] A. Anwar, M. Mohamed, V. Tarasov, M. Littley, L. Rupprecht,
Y. Cheng, N. Zhao, D. Skourtis, A. S. Warke, H. Ludwig, D.
Hilde-brand, and A. R. Butt, “Improving Docker Registry
Design Based on Production Workload Analysis,” in Proceed-
ings of the 16th USENIX Conference on File and Storage
Technologies (FAST ’18), pp. 265–278.

[4] T. Harter, B. Salmon, R. Liu, A. C. Arpaci-Dusseau, and
R. H. Arpaci-Dusseau, “Slacker: Fast Distribution with Lazy
Docker Containers,” in Proceedings of the 14th USENIX
 Conference on File and Storage Technologies (FAST ’16),
pp. 181–195.

[5] M. Littley, A. Anwar, H. Fayyaz, Z. Fayyaz, V. Tarasov, L.
Rupprecht, D. Skourtis, M. Mohamed, H. Ludwig, Y. Cheng,
and A. R. Butt, “Bolt: Towards a Scalable Docker Registry
via Hyperconvergence,” in IEEE International Conference on
Cloud Computing (IEEE CLOUD 2019).

[6] D. Skourtis, L. Rupprecht, V. Tarasov, and N. Megiddo,
“Carving Perfect Layers Out of Docker Images,” in 11th
 USENIX Workshop on Hot Topics in Cloud Computing (Hot-
Cloud ’19), USENIX Association, 2019.

[7] V. Tarasov, L. Rupprecht, D. Skourtis, W. Li, R. Rangaswami,
and M. Zhao, “Evaluating Docker Storage Performance: From
Workloads to Graph Drivers,” Cluster Computing, Online
First, 2019.

[8] C. Zheng, L. Rupprecht, V. Tarasov, D. Thain, M. Mohamed,
D. Skourtis, A. S Warke, and D. Hildebrand, “Wharf: Sharing
Docker Images in a Distributed File System,” in Proceedings
of the 9th ACM Symposium on Cloud Computing (SoCC ’18),
pp. 174–185.

[9] N. Zhao, V. Tarasov, H. Albahar, A. Anwar, L. Rupprecht, D.
Skourtis, A. S. Warke, M. Mohamed, and A. R. Butt, “Large-
Scale Analysis of the Docker Hub Dataset,” in IEEE Interna-
tional Conference on Cluster Computing (IEEE Cluster 2019).

https://hub.docker.com/
https://www.kernel.org/doc/Documentation/filesystems/overlayfs.txt
https://www.kernel.org/doc/Documentation/filesystems/overlayfs.txt

SREcon is a gathering of engineers who care deeply about site reliability, systems engineering, and
working with complex distributed systems at scale. SREcon challenges both those new to the profes-
sion as well as those who have been involved in SRE or related endeavors for years. The conference
culture is based upon respectful collaboration amongst all participants in the community through
critical thought, deep technical insights, continuous improvement, and innovation.

SAVE THE DATES!

JUNE 15–17, 2020 • SYDNEY, AUSTRALIA
www.usenix.org/srecon20apac

OCTOBER 2–4, 2019 • DUBLIN, IRELAND
www.usenix.org/srecon19emea

MARCH 24–26, 2020 • SANTA CLARA, CA, USA
www.usenix.org/srecon20americaswest

Follow us at @SREcon

38  FA L L 20 19 VO L . 4 4 , N O. 3 www.usenix.org

COLUMNSReliable by Design
The Importance of Design Review in SRE

L A U R A N O L A N

Every organization has regrets about software that doesn’t scale,
that’s difficult to run, or hard to use, or where we just wish we’d done
something differently early on, when it would have been easier and

cheaper. Sometimes we need to execute fast and accrue technical debt, but
often the right thing would have been as easy and fast as the wrong thing—
and those are our failures as a profession.

In many organizations (especially larger ones), when a new system is being built or a major
change is planned for an existing system, a design (also often known as an RFC, or Request
for Comment) is written and reviewed by peer engineers. This is a document that describes
the planned change, including the reasons for making it, and alternatives to the proposed
design that were considered and rejected. The ideal level of detail is just enough that any
competent software engineer could implement the system from the design—in other words, it
should be significantly higher-level than code, while clearly describing requirements, system
architecture, dependencies, and tradeoffs.

Of course, not every change needs a design document, and people often aren’t sure where
to draw the line. My heuristic is that any project that is going to lead to the creation of new
monitoring or runbooks, or large revisions to existing ones, merits a written design. This
does not mean that failure to create required monitoring or runbooks excuses the need to
produce a design document.

I’m going to nail my colors to the mast here and say that if you’re not producing designs and
participating in design reviews with partner teams, then you’re not doing SRE but some
other flavor of operations. SRE is predicated on having agency and on teams having a voice in
decisions that affect the systems they are responsible for. Without designs and a review pro-
cess, teams don’t have the insight they need into the changes that others are planning in the
production environment, so having that voice in significant decisions becomes impossible.

Written designs have many advantages over informal discussion or presentations. As an
author, the written form pushes you to think through details that you might not otherwise
spend enough time on. As a reviewer, it gives you time to reflect on the proposed change. It
also works better for distributed teams, because feedback can be given and responded to in
an asynchronous manner. A long-term advantage of written designs is that they can provide
a history of major changes in your organization’s systems as well as the reasons behind them
and the decisions made. Over time, the reality of your systems will diverge from original
designs, but an archive of design documents will still be a valuable resource.

The design review process can be problematic in a few ways on a human level. One problem is
time: feedback on designs may drag on for several weeks if there are many interested review-
ers. I recommend setting a clear deadline for feedback (in the header of the document itself).
Around two or three weeks is ample. If there are unresolved discussions at this point, then
schedule meetings to discuss (either one meeting or multiple one-to-one meetings). This will
save time overall, and it is easier to resolve technical disagreements face to face.

Another big problem is the use of the design review process to show off, debate matters of
taste, or nitpick. This kind of behavior makes people reluctant to write and share designs,

Laura Nolan’s background is
in site reliability engineering,
software engineering,
distributed systems, and
computer science. She wrote

the “Managing Critical State” chapter in the
O’Reilly Site Reliability Engineering book and
was co-chair of SREcon18 Europe/Middle
East/Africa. Laura Nolan is a production
engineer at Slack. laura.nolan@gmail.com

www.usenix.org FA L L 20 19 VO L . 4 4 , N O. 3 39

COLUMNS
Reliable by Design: The Importance of Design Review in SRE

and the resulting failure to communicate leads to repeated
work, a lack of shared understanding, and failures to catch
major problems that colleagues would have noticed. Design
review comments should be well intentioned and solely about
the important points in the design rather than the color of the
proverbial bike shed. Think carefully before commenting. Many
large organizations develop norms and guidelines for technical
discussions, including pointing out and discouraging this kind of
“bike shedding.”

I’ve never seen much guidance on how to perform design reviews
as a peer engineer or as a technical lead. People tend to read the
document and apply their expertise in an ad hoc way. As some-
one who has reviewed a fair number of such designs, I’ve found
that it’s time-consuming, and I often worry that there’s some-
thing important I haven’t thought about. There’s no structured
way to approach the problem.

Atul Gawande’s book The Checklist Manifesto [1] may point
towards a solution. Gawande is a surgeon. He noticed that it was
very common to make errors in complex surgical procedures. He
distinguished between two kinds of errors: errors of ignorance,
where not knowing something causes a mistake, and errors of
ineptitude, where we don’t make proper use of what we know. In
the modern world, surgery is such a complex task that forgetting
steps, or failing to plan ahead for some eventuality, is almost
inevitable. Gawande looked at what other professionals do—in
professions like civil engineering and aviation—and it turns out
they use checklists to avoid errors of ineptitude.

Checklists may sound like a tedious process—and nobody really
likes more process—but bear with me. Surgical checklists are
not a substitute for professional expertise. In fact, they abso-
lutely require that expertise to execute them. They are not long
manuals that prescribe every detail of every step in a process but
instead are prompts, intended to make sure you don’t acciden-
tally leave out a key step in a complex task. Surgical checklists
are quite short, leaving minutiae to the judgment of those using
them; the WHO safe surgery checklist [2] fits on one page,
although it does refer to other checklists that may need to be
consulted under certain circumstances.

It turns out that well-crafted checklists make a big difference in
surgical outcomes—a 2009 study showed that the WHO check-
list reduced the incidence of post-surgical complications by a
third. In addition to making sure basic (but important) things
aren’t forgotten, they also encourage and empower all members
of a team to point out omissions or problems. They can make
teams work better.

I believe checklists can help us improve our system designs
too. There is a lot of wisdom in the SRE profession about how
to design operable, scalable, reliable, distributed systems. We
can add a lot of value at this stage of the process. But there’s no

checklist to help us do it. What might such a checklist look like?
Here’s my version [3]:

◆◆ What and why: do I understand the need for the change, the
design itself, and how the proposal relates to other systems?

◆◆ Who: are there affected teams that haven’t been asked to look
at this design? If there are privacy or security implications of
this system, are there appropriate reviewers?

◆◆ Alternatives considered: is building a new system the right
approach?

◆◆ Stickiness: what’s hard to change about the proposed system?
◆◆ Data: consider consistency, correctness, encryption, backup,

and restore strategies.
◆◆ Complexity: where is this design overly complex, and can that

complexity be reduced?
◆◆ Scale and performance: how does the design support the

scale and performance needed?
◆◆ Operability: how will the system support (or not) the humans

running it?
◆◆ Robustness: how does the design handle failures, and other

issues such as overload?

This high-level checklist is fairly terse, as a usable checklist
needs to be—remember, this is here to prompt your expertise,
not to replace it. For some designs, some sections of the check-
list may not apply—maybe the design in question is a piece of
automation that doesn’t need to scale, or a stateless service that
doesn’t need to deal with some of the data considerations. The
sections below give more detail for each item on the checklist
and, in some cases, further sub-checklists.

The what and why questions are first because they are the
most important. If you read a design and don’t understand it
and why it’s needed, then the design is missing information or
lacking in clarity. If you don’t understand it when you’re reviewing
the design document, you definitely won’t understand it when
you’re trying to respond to a production fire. The best way for-
ward here is to tell the author which parts you’re having trouble
with and ask them to update the document before proceeding.

Next, who:
◆◆ Is there a good reason that you’ve been asked to review this

 system? It’s good to understand whether the author is look-
ing for some particular expertise or perspective from you, and
make sure you’ve addressed that.

◆◆ It’s also useful to check who else has been asked to review and
that all the affected teams have been asked. Support or opera-
tions teams are often left out to the detriment of all involved.
Owners of systems that the new system will depend upon
should usually be asked to review new designs.

◆◆ Many changes should be reviewed specifically for privacy and
security.

40  FA L L 20 19 VO L . 4 4 , N O. 3 www.usenix.org

COLUMNS
Reliable by Design: The Importance of Design Review in SRE

Alternatives considered is a subject often neglected but
important:

◆◆ Is there an open-source tool, or a similar proprietary system at
this organization, that might work? If so, did the author of the
design talk to owners of those similar systems about this use-
case? Proliferation of systems is hugely costly. It takes time to
build and maintain them, and it complicates an organization’s
production environment.

Stickiness: give special consideration to thinking about which
aspects of a proposed system will be hard to change in the future.

◆◆ Imagine you’re trying to migrate all the users of the system
away from it to its replacement or that you’re planning a major
change of some sort. What aspects of the design will make that
easier or harder? For example, allowing users to extend your
code limits what you can do in the future and makes migrating
them to replacement systems much more difficult, and so does
tight coupling with other systems.

◆◆ What assumptions are baked into the architecture or the data
model that might change in the future?

Data:
◆◆ What is the flow of data through the system?
◆◆ What are the data consistency requirements, and how does

the design support them?
◆◆ Which data can be recomputed from other sources and

which cannot?
◆◆ Is there a data loss Service Level Objective (SLO)?
◆◆ How long does data need to be retained, and why?
◆◆ Does it need to be encrypted at rest? in transit?
◆◆ Are there multiple replicas of the data?
◆◆ How do we detect and deal with loss or corruption of data?
◆◆ How is data sharded, and how do we deal with growth and

resharding?
◆◆ How should data be backed up and restored?
◆◆ What are the access control and authentication strategies?
◆◆ Have relevant regulations such as GDPR and any data

 residency requirements been addressed?

Complexity:
◆◆ Does each component of the system have a clearly defined role

and a crisp interface?
◆◆ Can the number of moving parts be reduced?
◆◆ Is the design similar to existing systems at this organization?

Is it built using standard building blocks (K/V stores, queues,
caches, etc.) that engineers at this organization already under-
stand? Does it use the same kinds of plumbing such as RPC
mechanisms, logging, monitoring, and so on?

◆◆ Does the proposal introduce new dependencies (e.g., uses a
different type of message queue than other systems in the same
organization) and if so, is that really necessary?

Scale and performance:
◆◆ What are the bottlenecks in this system that will limit its

scale and throughput (not forgetting the impact of writes
and locking)?

◆◆ What’s the critical path of each type of request, and how do
requests fan out into multiple sub-requests?

◆◆ What is the expected peak load, and how does the system
support it?

◆◆ What is the required latency SLO, and how does the system
support it?

◆◆ How will we capacity plan and load test?
◆◆ What systems are we depending on, and what are their per-

formance limits and their documented SLOs?
◆◆ What will it cost to run financially?

Operability:
◆◆ How does the design support monitoring and observability?

For instance, systems involving queues may require extra care
in monitoring.

◆◆ Do all third-party system components provide appropriate
observability features?

◆◆ What tools will be available to operators to understand and
control the system’s behavior during production incidents?
How will these tools make clear to the operator what specific
actions they should take to avoid surprises?

◆◆ What routine work is going to be needed for this system? Which
team is expected to be responsible for it? How much of it can
and should be automated, and will that automation reduce the
operating team’s understanding of the system?

◆◆ How do we detect abusive users or requests, and what action
can we take in response?

◆◆ If the design involves relying on third parties (such as a cloud
provider, hardware or software vendor, or even an open-source
community), how responsive will vendors be to your feature
requests or problems?

◆○ Are all configurations stored in source control?

Robustness:
◆◆ How is the system designed to deal with failure in the various

physical failure domains (device, rack, cluster/AZ, datacenter)?
◆◆ How will it deal with a network partition or increased latency

anywhere in the system?
◆◆ Are there manual operations that will be required to recover

from common kinds of failure?
◆◆ How could an operator accidentally (or deliberately) break the

system?
◆◆ Is there isolation between users of the system?
◆◆ What are the smallest divisible units of work and data, and will

we likely see hotspotting or large shards?
◆◆ What are the hard dependencies of this system, and can we

degrade gracefully? How to ensure soft dependencies don’t
become hard dependencies?

www.usenix.org FA L L 20 19 VO L . 4 4 , N O. 3 41

COLUMNS
Reliable by Design: The Importance of Design Review in SRE

◆◆ How can we restart this system from scratch, and how long will
that take? Do we depend on anything that might depend on this
system? Don’t forget DNS and monitoring.

◆◆ How will this system deal with a large spike of load?
◆◆ Does the system use caching, and if so, will it be able to serve at

increased latency without the cache?
◆◆ Is the control plane fully separate from the data plane?
◆◆ Can I canary this design effectively (e.g., leader-elected designs

are hard to canary)?
◆◆ Can this system break its back ends by making excessive

requests?
◆◆ Can this system autonomously drain capacity, and how have

risks been managed, in particular with respect to human
 operators’ ability to understand and control the system?

◆◆ Can this system autonomously initiate resource-intensive
processes like large data-flows (perhaps for recovery purposes),
and how are those risks managed?

◆◆ Can this system create self-reinforcing phenomena (i.e.,
 vicious cycles)?

These are the things I think about when reviewing a design. No
two systems are the same, so not all of these questions make
sense for every type of system. As with the WHO surgical safety
checklist, local variations are very much encouraged. This is a
starting point [3].

All systems involve risk, and all systems make tradeoffs. Better
system design won’t eliminate all problems. We just can’t antici-
pate everything—errors of ignorance are inevitable. But errors of
ineptitude are avoidable, and part of maturing as a profession is
getting more systematic about reducing errors of ineptitude.

A good design helps us to understand tradeoffs and risks more
thoroughly and make reasoned, deliberate choices that make the
most sense for our organizations. Taking the time now to write a
design for your team’s next big project and get it reviewed by your
peers might be the most impactful work you can do.

References
[1] A. Gawande, The Checklist Manifesto: How to Get Things
Right (Metropolitan Books, 2009).

[2] WHO Safe Surgery Checklist: https://www.who.int
/patientsafety/safesurgery/checklist/en/.

[3] L. Nolan, SRE Reliable by Design checklist: https://www
.usenix.org/sites/default/files/fall19_sre_checklist.pdf.

https://www.who.int/patientsafety/safesurgery/checklist/en/
https://www.who.int/patientsafety/safesurgery/checklist/en/
https://www.usenix.org/sites/default/files/fall19_sre_checklist.pdf
https://www.usenix.org/sites/default/files/fall19_sre_checklist.pdf

42  FA L L 20 19 VO L . 4 4 , N O. 3 www.usenix.org

COLUMNS

Python News
P E T E R N O R T O N

In this column, I’m covering a bit of Python news, with some info about
type checking in more depth.

Time for Python 3
For years now it’s been made very clear that Python 2 is coming to the end of support—this
was put in writing in PEP 373 [1] . The original date was pushed back to 2020 to give every-
one some more time to move to Python 3. Most projects that are still actively maintained
have put in the effort to support Python 3, and Python 3 hasn’t been standing still. It’s adding
features like async support and syntax for supporting static type checking (more on this in a
moment) that makes it a more modern language than Python 2.

To put the cherry on top, now that it’s almost 2020, developers of some prominent Python
projects have announced that they’re going to discontinue support for Python 2 in future
release of their project. In case your projects could be affected by this, go take a look at the
projects listed at the Python 3 Statement website (https://python3statement.org/). Many
fundamental projects have decided that after performing the work to be compatible with
both Python 2 and Python 3 for some time (years and years in some cases), they want to
reduce their workload by just supporting Python 3. This seems only fair. Python 2 has had an
extraordinary lifetime, and now it’s time to retire it with grace. I encourage you to take a look
at python3statement.org and to understand if the projects you rely on directly or indirectly
will impact your work, and to plan accordingly.

Type Hints in Python 3
I’m in a situation shared by many of my peers where we’re still planning our transition to
Python 3 for most of our infrastructure code. As part of getting our stories together for
upgrading, I’m thinking about the fun stuff that has been created as Python 2 has gone stale.

So I’d like to take a look at one of these cool features I’m anxious to put to good use: static
type checking. Static type checking in Python makes it possible for a process that reads code
to check that all types passed into a function, and all return values from the function, are
appropriate, and alert the developer to deviations that would cause bugs. By using static type
checking, you can eliminate a lot of bugs without ever having to run the program. In the way
Python implements this, the static checker is an external process—it’s not Python itself that
checks it before running. So whether or not you use this feature, your code will still run.

Some languages have incorporated static type checking from the outset, but this is not how
Python was developed. Historically, Python is among the languages that is dynamically
runtime type-checked, which means that it’s common to have crashes when there is a severe
enough type mismatch. Because of the way that static type checking is being added to Python
late in its development, its power to catch problems has been limited by speed of development
of the type checking tools, and the rate of adoption and use of those tools. The tools are actu-
ally being developed at a really fantastic pace, but many libraries and other code bases can
only adopt type checking as they move to recent Python 3 versions.

Peter works on automating
cloud environments. He loves
using Python to solve problems.
He has contributed to books
on Linux and Python, helped

with the New York Linux Users Group, and
helped to organize past DevOpsDays NYC
events. In addition to Python, Peter is slowly
improving his knowledge of Rust, Clojure, and
maybe other fun things. Even though he is a
native New Yorker, he is currently living in and
working from home in the northeast of Brazil.
pcnorton@rbox.co.

www.usenix.org FA L L 20 19 VO L . 4 4 , N O. 3 43

COLUMNS
Python News

We’ll look at the basic idea of static type checking in Python and
at a cool feature that could be added. Unfortunately, this column
is not going to be able to cover Python type-checking features in
depth. For that there is a lot of excellent documentation written
on how static type checking can be used in recent versions of
Python when you’re ready to use it—the official documentation
is thorough and very deep. So that’s not what I’m going to write
about here.

The basic observation that makes static type checking attrac-
tive is that as a Python programmer you know that the following
code will run:

def badlen(container):

 return len(container)

but you also know that the built-in len() is only useful on certain
types. You probably also know that objects of those types have
the dunder (double underscore) method __len__() to provide
their length. And you also know that invoking the len() built-in
function on an inappropriate type causes a runtime TypeError:

>>> badlen(7)

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

 File "<stdin>", line 2, in badlen

TypeError: object of type 'int' has no len()

People who come from static (type-checking-wise) languages
often look at Python and its peers and ask why this is accept-
able, when clearly other languages can catch this sort of error
before they are ever run. The obvious answer is that part of what
Python provides is a very dynamic programming environment
where a lot of the knowledge required for static checking is not
possible. The success of Python makes it clear that static type
checking isn’t the most important feature to make the language
usable and productive.

Since compile-time type checking promises to reduce or elimi-
nate this class of error, it would make Python better to have it,
so a lot of work went into discussing what would be necessary to
add it without causing any extra work for people who won’t use it
while bringing benefits to people who do want it.

The guiding principle behind Python development has long been
that, to the extent possible, Python should try to advance with
backwards compatibility in mind. To this end, a bit of syntax
was created and specified which allowed function annotations
in PEP 3107 [2]. With that in place, PEP 484 was hashed out;
it introduced a standard for type “hints” using the PEP 3107
annotations. Although allowing us as developers to communi-
cate what the type is, the interpreter in effect completely ignores
all of this information at runtime. Instead, its purpose is to allow
tooling to be built to verify that annotated functions comply with

the types that are described. With these checkers in place, even
better tests can be created.

So with the introduction of PEP 484 and a common standard
for type hinting, tools can be built ensuring that functions are
using type hints to get the right input types and therefore are
returning the right output types.

This might seem like a small refinement of a very popular
language; after all, Python isn’t the only language that has suc-
ceeded by growing its user base without static type checking.
However, statically checkable, and therefore avoidable, type
errors are a very common source of bugs, so in the long term, opt-
ing into this is likely to be a huge benefit to those who use it.

So what do type hints look like? They can change the declaration
of a variable in a function call, for example, from variable_name
to variable_name: type, like this:

def betterlen(container: list):

 return len(container)

That tells the type checker that the function takes a list. Usually
lists are of a particular type, though, and we can ask the type
checker to check for an appropriate type of list, or we can make
it clear that we’re not concerned about the type of list. This is
normal Python behavior. To make this possible, there is the typ-

ing module, which provides definitions of objects that the type
checker can use to allow you to declare how thoroughly you want
to check your lists, dictionaries, or other container types.

To enable this, you include the typing module in your code and
import type specifications, which provide the specificity for
the structure and types of the things they contain. In this case,
we’re going to start with a specification of Any, which explicitly
says “accept that this list can contain elements of anything, it’s
fine.” But this could also be used to be more specific about only
particular built-in types or user-defined types. It looks like this:

from typing import Any, List

def goodlen(container: List[Any]):

 return len(container)

By invoking a static analyzer (mypy in this case) on a chunk of
code with a type mismatch, like this:

goodlen(7)

it can describe the problem it sees without actually running
the code:

$ mypy simply_doesnt_work.py

simply_doesnt_work.py:8: error: Argument 1 to "goodlen" has

incompatible type "int"; expected "List[Any]"

44  FA L L 20 19 VO L . 4 4 , N O. 3 www.usenix.org

COLUMNS
Python News

Whee! That was pretty easy. For a basic introduction, the next
step is to go one more step and specify the return value, which we
haven’t done yet. We want to specify the return type, too, because
the current state of the goodlen() function creates a dead-end
for the type checker. Because the return type isn’t declared, the
type checker graph bottoms out and can’t do further checking at
this point.

So to help the checker, you can add a return type simply by add-
ing a -> type. For a length, we’ll always be returning an integer; a
simple case looks like this:

def betterlen(container: List[Any]) -> int:

 return len(container)

The more annotations that are added to a code base, the more
automatically simple but critical mistakes can be avoided before
your code is ever run.

By itself, this has benefits for unit and integration tests. You
can just start adding harmless annotations, and start to check
whether your libraries, dependencies, etc. are doing the right
thing.

But there’s another very interesting thing that is possible, which,
hopefully, Python will adopt in the future. It’s presently available
in Rust, so let’s use that as the example.

You may have heard of Rust, the language, since it’s received a
lot of attention since it hit 1.0 in 2015. In case you haven’t had a
chance to look into it, I think it’s fair to say that its goal is to be
a language that can achieve the performance and control of C or
C++, while providing the memory safety of a garbage-collected
language like Java, Python, or Go. In addition, Rust also elimi-
nates other risks present in most other mainstream program-
ming languages.

As part of providing this attractive sounding set of goals, Rust
includes strong compile-time type checking as a fundamental
feature. Rust also incorporates a very interesting idea: exhaus-
tive checking of all possibilities in a match (as I understand it,
this originated in the ML languages). This is needed because a
lot of bugs are created when a series of conditional statements—
e.g., in Python an if... elif... else—is produced that due to
oversight, or changes in the set of possible choices, ends up not
covering all of the possibilities.

To make this work, Rust uses a clever trick. The implementation
of this clever trick is the match expression, which is like a case
or a switch in other languages. But instead of being just another
way of writing if...else if...else if...else, it makes sure that when a
match is invoked, it can identify that all possible matches have
been covered. So if the type being matched is an unsigned 32-bit
integer, then the compiler knows that if you haven’t specified
either all numbers from 0 to 232-1 or used a default match (Rust

does this with the underscore target in a match—this is the
equivalent of an else in Python), then you have left possible
values which haven’t been accounted for, and it will refuse to let
that code compile or run.

Another clever extension is combining this with enums, or an
enumerated set of possible values that are declared up-front.
With an enum, the compiler knows whether or not all possible
arms of the possible matches with enum values have been
checked, because the enum can only have a fixed number of pos-
sibilities. A quick example of what this could look like in Rust is:

enum BreadSpreads {

 Butter,

 Margarine,

 CreamCheese,

 Nutella

}

fn breakfast_bread(spread: BreadSpreads) {

 println!("Breakfast bread with {}",

 match spread {

 BreadSpreads::Butter => "butter",

 BreadSpreads::Margarine => "margarine",

 BreadSpreads::CreamCheese => "cream cheese",

 BreadSpreads::Nutella => "nutella"

 }

)

}

fn main() {

 let butter_spread = BreadSpreads::Butter;

 let margarine = BreadSpreads::Margarine;

 breakfast_bread(butter_spread);

 breakfast_bread(margarine);

}

This is very straightforward and not particularly noteworthy
when it is working. What is more interesting is that if you change
the breakfast_bread function by removing any of the arms of
the match (let’s use Margerine for this example), the compiler
will refuse to compile it. It will tell you that the code is broken
and save you from having to discover the problem in production:

$ cargo build

 Compiling breadspread v0.1.0 (/home/spacey/dvcs/pcn/login/

2019-6/breadspread)

error[E0004]: non-exhaustive patterns: 'Margerine' not covered

 --> src/main.rs:10:15

 |

1 | / enum BreadSpreads {

2 | | Butter,

3 | | Margerine,

 | | --------- not covered

www.usenix.org FA L L 20 19 VO L . 4 4 , N O. 3 45

COLUMNS
Python News

4 | | CreamCheese,

5 | | Nutella

6 | | }

 | |_- 'BreadSpreads' defined here

...

10 | match spread {

 | ^^^^^^ pattern 'Margerine' not covered

 |

 = help: ensure that all possible cases are being handled,

possibly by adding wildcards or more match arms

error: aborting due to previous error

For more information about this error, try 'rustc --explain

E0004'.

error: Could not compile 'breadspread'.

This feature of the Rust compiler works because the set of
possible enums can’t change once they’ve been declared. Of
course, being able to change that after runtime would break
guarantees that Rust provides with this little trick. So gener-
ally, the compiler looks at the match to make sure that you have
accommodated each possible variation that the enum could take,
because as an enum those possibilities are, well, enumerated in
the code. In addition, as with most case/switch/if...then...else
constructs, you have the equivalent of an else clause, so this need
for an exhaustive match doesn’t require you to write out a match
for every possible case individually. It just requires that you don’t
leave off the equivalent of the else clause and leave cases uncov-
ered. It doesn’t protect the programmer from every mistake, but
it prevents cases from being missed.

So it’s interesting to ask, would this be possible in Python and
how much would it help? And what would it look like if it was
being used? Until recently the nearest available data types to
structures and enums are dictionaries or sets (or possibly classes
built on these), however these are not static enough, so they can’t
be used for this kind of type checking. There is no mechanism for
the type checker to exhaustively test all of the possible varia-
tions with a dictionary, for instance, since the possibilities are
unknowable at check time.

So since there are are other motivations to want an enumeration
type, PEP 435 [4] was written and proposed, and an enumera-
tion type was added in Python 3.4. Since this piece is in place,
it seems likely that there will be a way in the near future to ask
Python type checkers to exhaustively check enums and to alert
to this common type of bug.

I expect that the static type checking features of Python 3 will
improve and provide better safety in the future. I think it’s
interesting to think about how the type checkers could influence
future programming practices in Python. It could become more
common for Python to develop recommended idioms that will
help to restrict the breadth of possible mistakes we make, simi-
lar to being able to check all branches of if/elif/else statements
to provide better information for a static type checker to feed
on. It will be interesting to see whether or not some of the ideas
of what’s Pythonic will change based on what’s best for modern
type checking.

References
[1] PEP 373: https://www.Python.org/dev/peps/pep-0373/.

[2] PEP 3107: https://www.Python.org/dev/peps/pep-3107/.

[3] PEP 484: https://www.Python.org/dev/peps/pep-0484/.

[4] PEP 435: https://www.Python.org/dev/peps/pep-0435/.

https://www.Python.org/dev/peps/pep-0373

46  FA L L 20 19 VO L . 4 4 , N O. 3 www.usenix.org

COLUMNS

iVoyeur
Prometheus (Part Two)

D A V E J O S E P H S E N

Dave Josephsen is a book
author, code developer, and
monitoring expert who works
for Fastly. His continuing
mission: to help engineers

worldwide close the feedback loop.
dave-usenix@skeptech.org

I’m writing to you from the warm afterglow of Monitorama PDX 2019, a
conference where we are invariably treated to at least one talk concern-
ing itself with the ever-noble cause of statistics for anomaly detection.

If that sounds a bit sarcastic, it probably is, but only a little bit. If giving talks with titles like
“statistics for sysadmin” is a crime, it’s one I myself am guilty of many times over, and I fully
admit that, like elk grazing their way across a hillside, no matter how many times I see it, it
never fails to fascinate.

The talk invariably begins the same way, with a baseline introduction of the normal distribu-
tion and an accompanying graphic depicting our old and steadfast friend the bell curve, along
with a rundown of some of our very favorite actors, like standard deviation from the mean,
z-score, and the like.

But the speaker has a secret that you can probably guess if you are a regular reader of this
column, which is this: system metrics are rarely normally distributed. So, really, there are
two paths this talk can walk.

In the first, the speaker has gotten lucky and found a use-case for which the input signal
happens to be normally distributed, and has therefore been able to apply straightforward
statistical analysis to achieve a successful predictive model. The speaker will subsequently
encounter a litany of follow-on problems that are sure to entertain us, including unexpected
seasonality like cyber-Monday and unpredictable aperiodic events such as labor-union
strikes and the like.

If the speaker’s problem is not easily represented by a normally distributed metrics signal,
things get interesting pretty quickly. This path descends into the land of custom models,
advanced math, and data science, which is always fun. But even if the speaker is ultimately
successful, the results are rarely directly applicable to our own peculiar set of problems, or
are nontrivial to implement if they are.

Well, that’s not exactly fair. It’s true that complex anomaly detection models are difficult
to implement, but that’s also true of simple techniques that work on normally distributed
signals. Aside from some commercial offerings like Circonus and SignalFx, and a handful
of rapidly aging, very basic tools like the Holt-Winters predictive analysis features built into
RRDTool, there haven’t really been any tools in the monitoring world you can pick up and use
to experiment with anomaly detection on time series.

That’s why I was delighted to see a pair of talks this year whose content could succinctly
be described as: “My Prometheus Queries: Let Me Show You Them!” One is a lightning talk
by Jack Neely called “Five Neat Prometheus Tricks” [1], and the other, a full-length talk by
Andrew Newdigate entitled “Practical Anomaly Detection Using Prometheus” [2].

As promised, Jack shows us some neat tricks, including overriding the avg() function to
express things that aren’t averages (like ratios), and he helpfully explains how to use opera-
tors creatively to craft up/down alerts that don’t fire if the host has only been up for five min-
utes, and measure metrics like memory usage as a function of things like OS or Go version.

www.usenix.org FA L L 20 19 VO L . 4 4 , N O. 3 47

COLUMNS
iVoyeur: Prometheus (Part Two)

Andrew meanwhile dives into the nitty-gritty of anomaly detec-
tion, showing us how to compute z-scores on moving averages of
Prometheus vectors. Both talks are well worth seeing, but what
has me excited is the more general pattern of using PromQL
to express an answer, or set of answers, to common monitor-
ing problems. This is especially true in the context of anomaly
detection, where we have seen so many talks on general prin-
ciples without being able to lay our hands on anything like a
functional language driving a visualization engine capable of
expressing anomaly detection primitives like the z-score.

In my last article, I detailed Prometheus’s data model and com-
mented that I was enamored of the tool’s ability to pull together
different types of engineers by providing a system-agnostic
monitoring signal that everyone could “get behind.” The simplic-
ity and ubiquity of Prometheus’s data model is a huge success,
which I believe likely to outgrow the tool itself.

Prometheus Query Language
Prometheus’s query language, PromQL, is another great success,
as evidenced by the fact that engineers are using it in confer-
ence talks as if it were a specification language to communi-
cate techniques and general solutions to common monitoring
problems. While the language is certainly more tightly coupled
to Prometheus itself than the data model, and has its limitations,
I think it was designed sufficiently well that it’s already doing a
pretty great job of scaling beyond the imagination of its creators.

The simplest Prometheus query is the literal name of a metric.
One metric that will probably be available in every Prometheus
install is “up.” The query syntax is very simple:

up

The up metric is built into every off-the-shelf Prometheus
exporter and displays a “1” if the exporter could be contacted by
the poller or “0” if it could not. The job label shows the name of
the exporter that generated each particular up metric.

We can filter the output of this query by label, by adding the label
name in braces. Node_exporter [3] is the de facto Prometheus
system agent, so its up metric is a pretty solid metric for host
availability in general. We could filter for only the up metrics
exported by node_exporter like so:

up{job="node_exporter"}

Internally, every query is actually implemented in this way,
with a comma-separated list of label-name equality-operator
and value surrounded by braces. Our first query was actually a
shortcut for:

{__name__="up"}

and our second query:

{__name__="up",job="node_exporter"}

Our equality operator doesn’t have to be =. In fact, PromQL sup-
ports the following range of equality operators:

◆◆ =: Select labels that are exactly equal to the provided string

◆◆ !=: Select labels that are not equal to the provided string

◆◆ =~: Select labels that regex-match the provided string

◆◆ !~: Select labels that do not regex-match the provided string

Regex in PromQL is RE2 [4] syntax, and generally every query
that uses a regex must either specify a name or at least one label
matcher that does not match the empty string. You can also
match the same label multiple times, so an admittedly convo-
luted way to match every up metric from node_, except those
from node_blarg could be:

up{job=~"node_.*", job!="node_blarg"}

What if, instead of the output of the latest poll, we wanted to see
the last five minutes of samples from the poller?

up{job="node_exporter"}[5m]

By adding a range duration in square brackets to our query, we
express to Prometheus that we want to see every sample within
the duration for every returned result. Prometheus refers to this
output (confusingly) as a “range vector,” as opposed to a single-
sample response or “instant vector.” In the example above, we’ve
expressed our desired duration in minutes, but you can use
seconds, minutes, hours, days, weeks, or years instead.

Durations and range-vector results give us the opportunity to
begin measuring aggregations of samples over time. For exam-
ple, to find hosts that have been unavailable any time in the last
hour, we can use a function to retrieve the minimum value of the
up metric over a duration of samples from the last hour (this will
return 0 for hosts who have been down any time in the duration):

min_over_time(up{job="node_exporter"}[1h])

PromQL supports the aggregations you’d expect as well as a few
you might not have predicted:

◆◆ avg_over_time(range-vector): the average value of all points in
the specified interval

◆◆ min_over_time(range-vector): the minimum value of all points
in the specified interval

◆◆ max_over_time(range-vector): the maximum value of all points
in the specified interval

◆◆ sum_over_time(range-vector): the sum of all values in the
specified interval

◆◆ count_over_time(range-vector): the count of all values in the
specified interval

◆◆ quantile_over_time(scalar, range-vector): the φ-quantile
(0 ≤ φ ≤ 1) of the values in the specified interval

48  FA L L 20 19 VO L . 4 4 , N O. 3 www.usenix.org

COLUMNS
iVoyeur: Prometheus (Part Two)

◆◆ stddev_over_time(range-vector): the population standard
deviation of the values in the specified interval

◆◆ stdvar_over_time(range-vector): the population standard vari-
ance of the values in the specified interval

PromQL also has first-class support for “offsets,” meaning
it’s easy to express, for a given query, that you want to see the
samples from last week or two hours ago instead of the current
samples.

up{job="node_exporter"} offset 1w

This would give you the instant-vector value of the node_export-
er’s up metric from exactly one week ago. The syntax works the
same for range-vector outputs like so:

up{job="node_exporter"}[5m] offset 1w

And for function invocations across range vectors:

min_over_time(up{job="node_exporter"}[1h] offset 1w)

Finally, myriad operators [5] are supported. These allow you
to perform mathematical operations and/or filter the results
by the return values themselves and enable a lot of other more
advanced functionality I won’t have space to get into here. If, for
example, we just wanted to see the hosts that had been down in
the last hour, rather than a complete list of hosts with 0s and 1s
to indicate their respective status, we could use a binary com-
parison operator to filter out the “OK” hosts like so:

min_over_time(up{job="node_exporter"}[1h]) < 1

That should get you started exploring Prometheus metrics with
PromQL, but there’s a lot more to learn. The aforementioned
talks are a great way to sample some of PromQL’s outer limits,
and of course the docs [6] are well written and expansive.

Take it easy.

References
[1] https://vimeo.com/341145117#t=24m17s.

[2] https://vimeo.com/341141334.

[3] Node_exporter: https://github.com/prometheus/node
_exporter.

[4] Syntax: https://github.com/google/re2/wiki/Syntax.

[5] Operators: https://prometheus.io/docs/prometheus/latest
/querying/operators/.

[6] Basics: https://prometheus.io/docs/prometheus/latest
/querying/basics/.

https://vimeo.com/341145117#t=24m17s
https://vimeo.com/341141334
https://github.com/prometheus/node_exporter
https://github.com/prometheus/node_exporter
https://github.com/google/re2/wiki/Syntax
https://prometheus.io/docs/prometheus/latest/querying/operators/
https://prometheus.io/docs/prometheus/latest/querying/operators/
https://prometheus.io/docs/prometheus/latest/querying/basics
https://prometheus.io/docs/prometheus/latest/querying/basics

www.usenix.org FA L L 20 19 VO L . 4 4 , N O. 3 49

COLUMNS

Using SQL in Go Applications
C H R I S “ M A C ” M C E N I R Y

Many applications work on some set of local data. Even some com-
mand line applications need to keep data across invocations. Flat
files in a columnar or JSON format work for many cases. However,

it can get to the point where a more structured approach can make life easier.
SQL databases are the typical next stopping point for a structured approach
to data.

Go has a generic interface around SQL with database/sql in the standard library. The inter-
face supports drivers which provide the backing to common database technologies. A list of
common drivers is available on the Go wiki: https://github.com/golang/go/wiki/SQLDrivers.
While most of these are dependent on an external data service, one, SQLite, is not.

SQLite is a self-contained SQL database engine. It stores its data in a file, which makes it
easy to embed in local applications. The underlying implementation is in C and has many
common language bindings, including several for Go. In Go, this does require cgo support
which should, in general, work. However, be aware that it may require additional C compiler
binaries to be installed, and cross compilation will require even more.

In this article, we’re going to work with the Go SQL interface, specifically the github.com
/mattn/go-sqlite3 driver.

The code for these examples can be found at https://github.com/cmceniry/login in the sql
directory. This code is using dep for dependency management, but this should work with Go
modules as well. After downloading the code, you can run each example directly from the
main package’s directory (login/sql) with go run EXAMPLE/main.go. The examples use the
same example database which will get created in the main package’s directory. If you change
directories out of that, it may get confused.

Note: As mentioned, you may also need to install SQLite development packages in your envi-
ronment to complete these examples.

The SQL Interface
The SQL interface provides a simple way to perform the most common SQL methods: open
and close a database, execute a Data Definition Language (DDL) or Data Manipulation
Language (DML) statement, and perform a query. SQL abstracts away much of the overhead
such as connecting to the database, handling connection pooling, and performing connection
cleanup.

Since it is an interface, the expectation is to interact with all databases the same way,
regardless of back-end driver.

Chris “Mac” McEniry is a
practicing sysadmin responsible
for running a large e-commerce
and gaming service. He’s been
working and developing in

an operational capacity for 15 years. In his
free time, he builds tools and thinks about
efficiency. cmceniry@mit.edu

50  FA L L 20 19 VO L . 4 4 , N O. 3 www.usenix.org

COLUMNS
Using SQL in Go Applications

Import
The database/sql driver mechanism relies on the blank identi-
fier, _, import. All of the examples use this import format.

 import (

 "database/sql"

 _ "github.com/mattn/go-sqlite3"

)

As normal, the blank identifier indicates to ignore an item. In
this case, it’s ignoring all of the exported identifiers from the
go-sqlite3 package. Our code will not be using any of the pos-
sible functions or variables from go-sqlite3 directly.

However, the normal import actions still happen. This includes
the variable definitions and initialization mechanisms. Inside
the go-sqlite module is an init function. On the first import of a
package, it runs this init function. In this case, it registers itself
with the database/sql drivers available and makes it available
as a back end.

github.com/mattn/go-sqlite/sqlite3.go.

 func init() {
 sql.Register("sqlite3", &SQLiteDriver{})
 }

Other libraries enhance the Go runtime using the blank identi-
fier. The standard HTTP profiling library, net/http/pprof, is
another example of a library that you do not call directly. This is
a practice that you can use for your code, but use it with caution.

Note: There is a common order to how the init functions (and
package-level variables) are run: imported packages and then
alphabetical by package file within a package. However, it is still
very easy to put yourself in a situation where you are attempting
to use them in a different order.

Creating a DB
In our first example, we will create a simple database. The data-
base will be defined with a simple schema:

create/main.go: schema.

 var schema = CREATE TABLE sample (
 i INTEGER,
 s TEXT,
 t DATETIME DEFAULT CURRENT_TIMESTAMP
)

With this schema in hand, we can start initializing our database.
We begin our main function with a call to open the database.
The arguments to Open tell the SQL interface which driver to
use with which options. The options are specific to the driver—
in this case, “read,” “write,” and “create.” We then rely on Go’s
defer mechanism to ensure that we close the database when
we’re done.

create/main.go: opencreate,close.

 func main() {

 db, err := sql.Open("sqlite3", "file:testdb?mode=rwc")

 ...

 defer db.Close()

With the open database, we now create our schema in it. We can
call the Exec function on the database and pass in the schema
string as the argument. Exec returns two values—a result and an
error. The result is meaningless for DDL statements, so the main
concern here is to receive the error. For the example, handling
the error is a simple panic.

create/main.go: exec.

 _, err = db.Exec(schema)

 if err != nil {

 panic(err)

 }

We will see this same Exec function in the next example and will
examine the result.

Insert
Once the database is initialized, we can start feeding data into
it. Since this is a new process, we need to reopen the database.
In this case, we don’t want to create it, so we will leave off the
 “create” option to open.

insert/main.go: open,close.

 func main() {

 db, err := sql.Open("sqlite3", "file:testdb?mode=rw")

 ...

 defer db.Close()

With the open database, we can add data to it like any other
SQL data addition—INSERT. As with the previous example, we
use the Exec function to perform the insert. The first argument
to Exec is the SQL statement to execute—in this case, a simple
insert into the sample table of an integer and a string. While
SQLite uses dynamic typing, we’re still using parameterized
bind variables, ?, instead of combining our values directly with
our SQL statement. This provides two large benefits: First, we
do not have to handle the type conversion into the statement.
(This type handling will show up again in the next example,
query.) Second, this form is much less susceptible to SQL injec-
tion attacks. The remaining arguments to Exec are bound to the
respective positional ?. Exec is variadic in that the number of
arguments is dependent on the SQL statement.

insert/main.go: query.

 res, err := db.Exec(

 "INSERT INTO sample (i, s) VALUES (?, ?)",

 2,

 "2",

)

www.usenix.org FA L L 20 19 VO L . 4 4 , N O. 3 51

COLUMNS
Using SQL in Go Applications

If there is a syntax or back-end issue, an error will be returned.
After checking the error, we also want to confirm how many
rows were inserted. For inserts, this may not matter as much,
but in other cases (SET) it can indicate an issue in data or logic.
We obtain the numbers of rows inserted with the RowsAffected
method of our result.

insert/main.go: rows.

 affected, err := res.RowsAffected()

With the value in hand, we can print it out and visually inspect it.

insert/main.go: print.

 fmt.Printf("%d row(s) inserted\n", affected)

The output of this should be fairly simple:

 $ go run insert/main.go

 1 row(s) inserted

RowsAffected is really the only indicator of the impact of your
SQL statement, and may or may not be interesting depending
on your situation. If you alter the insert statement to include
additional VALUES pairs, it will increase accordingly. It can also
be more than one for SET statements which affect multiple lines.
It can even be zero in the cases where no rows match, indicating
a logic or data error.

Query
In our final example, we’re going to pull previously inserted data
back out of the database. As in the previous insert example, we
will see inferred type conversion.

As before, we start the main function by opening the database.

query/main.go: open,close.

 func main() {

 db, err := sql.Open("sqlite3", "file:testdb?mode=rw")

 ...

 defer db.Close()

Next we use the Query function to submit our SQL statement.
Query behaves very similarly to Exec. It is variadic. The first
argument is our SQL query statement, which may contain bind
variables, ?, in the WHERE clause. Any additional arguments are
bound to their positionally respective bind variables. Yes, the
DATE(t) ⇐ DATE(?) is a bit superfluous but is included for demon-
strative purposes.

query/main.go: query.

 rows, err := db.Query(

 SELECT i, s, t FROM sample WHERE DATE(t)

<= DATE(?), time.NOW(),

)

If the query is successful, a result set is returned. Behind the
scenes, the SQLite package creates a cursor which holds the
location of the data—relative to both the query result processing
and its location in the database file. To avoid consistency issues,
this also locks the database until this query is complete. The
indicator that the query is complete is with a Close on the result
set. For this simple example, we can release the statement when
we finish the function, so we use Go’s defer mechanism.

query/main.go: stmtclose.

 defer rows.Close()

Now we can process the returned rows by iterating through the
rows. To move through the cursor, we call the Next function. The
Next function updates the underlying cursor information for the
next unprocessed row. The Query does not do this initially, so a
first call to Next is required to even begin to access data. This
also allows us to wrap it all in a for loop.

query/main.go: next.

 for rows.Next() {

With the cursor properly in place for our next row, we can pull
all of the values out of the row. We need a place to store the data
local to our code, so we start by defining some variables. We then
pass pointers for those variables into the Scan function, which
will set them as appropriate. In addition to providing a place for
the data, using pointers to our variables allows for Scan to cast
the row values into the appropriate type. Scan is also variadic,
and the position of arguments to it are the respective positions
for the fields in the SELECT statement.

query/main.go: scan.

 var i int64

 var s string

 var t time.Time

 err := rows.Scan(&i, &s, &t)

Now we can print the results out.

query/main.go: printout.

 fmt.Printf("%s: %d %s\n", t, i, s)

An example output of this looks like:

 2019-06-15 13:21:06 +0000 UTC: 1 1

 2019-06-15 13:21:11 +0000 UTC: 1 1

 2019-06-16 18:03:38 +0000 UTC: 1 1

 2019-06-17 04:44:27 +0000 UTC: 1 1

52  FA L L 20 19 VO L . 4 4 , N O. 3 www.usenix.org

COLUMNS
Using SQL in Go Applications

Conclusion
In these examples, we’ve explored the database/sql package and
an accompanying driver for it, the github.com/mattn/go-sqlite3
for SQLite. In addition to what has been demonstrated here,
the database/sql package and the various back ends provide
other features—interrogating the columns and arbitrary results,
handling timeouts with Context, direct creation of prepared SQL
statements, and many more. You can dig into the Go SQL inter-
face at http://go-database-sql.org.

USENIX Supporters

USENIX Patrons
Bloomberg • Facebook • Google • Microsoft • NetApp

USENIX Benefactors
Amazon • Oracle • Two Sigma • VMware

USENIX Partners
Cisco Meraki • ProPrivacy • Restore Privacy • Teradactyl • TheBestVPN.com

Open Access Publishing Partner
PeerJ

Sometimes data gets complex enough that writing flat file parsers
becomes tedious. Sometimes you have to interact with an exist-
ing application database. Go’s SQL interface provides a simple
way to interact with many different types of SQL databases. I
hope this has given you a good basis for using SQL when needed.
Good luck, and Happy Going.

www.usenix.org FA L L 20 19 VO L . 4 4 , N O. 3 53

COLUMNS

So you got to let me know,

Should I stay or should I go?

—The Clash

A ccording to Deloitte’s Chief Cloud Strategy Officer, “[2019] is the
year when workloads on cloud-based systems surpass 25 percent,
and when most enterprises are likely to hit the tipping point in terms

of dealing with the resulting complexity” [1]. Given the nature of For Good
Measure (this column), it may surprise you that it wasn’t the 25 percent sta-
tistic that caught our attention in Deloitte’s quote; it was reference to a “tip-
ping point” where “dealing with the resulting complexity” in the cloud begins
to negatively affect security. So we ask, do we see evidence that this is occur-
ring? Are the rate of security exposures in the cloud higher than on-prem?

Conducting such an analysis requires data on security exposures affecting both on-prem and
cloud-based hosts. RiskRecon [2] was kind enough to provide a sanitized data set derived
from their efforts to provide visibility into third-party cybersecurity risk. For each organiza-
tion analyzed, RiskRecon trains machine-learning algorithms to discover Internet-facing
systems, domains, and networks. For every asset discovered, RiskRecon analyzes the publicly
accessible content, code, and configurations to assess system security and the inherent risk
value of the system based on attributes such as observable data types collected and transac-
tion capabilities. The data set supplied by RiskRecon spans 18,000 organizations and over
five million hosts yielding 32 million security findings of varying severity. Digging in, what
can we determine about what organizations are seeing with respect to security complexities
in the cloud vs. on-prem?

Figure 1 offers a bird’s-eye view of our leading question. Each dot represents an organization
in our data set, with a sufficient number of hosts in both on-prem and cloud environments to
support this test. Their position on the grid is the intersection of the percentage of on-prem
(horizontal) and cloud-based (vertical) hosts that have high or critical security findings. So,
for example, the firm indicated by the arrow has an on-prem exposure rate of approximately
8% compared to a much lower 0.2% in the cloud. Organizations marked by blue dots (below
the line) indicate they have comparatively fewer security issues when in the cloud. Green
dots (above the line) represent firms that appear to be better off on-prem. Overall, there’s a
60/40 split between organizations that operate with fewer issues on-prem (60%) vs. in the
cloud (40%).

We infer from these results that the question of security destiny in the cloud is not predeter-
mined. If you go, there may indeed be trouble; if you stay it may or may not be double. And it
very well could be half.

Unfortunately, we do not have historical data available to determine whether those numbers
are trending toward or away from a 50/50 “tipping point,” but we were able to identify some

For Good Measure
Is the Cloud Less Secure than On-Prem?

D A N G E E R A N D W A D E B A K E R

Dan Geer is the CISO for
In-Q-Tel and a security
researcher with a quantitative
bent. He has a long history
with the USENIX Association,

including officer positions, program
committees, etc. dan@geer.org

Dr. Wade Baker is an Associate
Professor in Virginia Tech’s
College of Business, teaching
courses for the MBA and MS
of IT programs. He’s also a Co-
Founder of the Cyentia Institute,

which focuses on improving cybersecurity
knowledge and practice through data-driven
research. Prior to this, Wade held positions
as the VP of Strategy at ThreatConnect and
was the CTO of Security Solutions at Verizon,
where he had the great privilege of leading
Verizon’s annual Data Breach Investigations
Report (DBIR) for eight years. wbaker@vt.edu

54  FA L L 20 19 VO L . 4 4 , N O. 3 www.usenix.org

COLUMNS
For Good Measure: Is the Cloud Less Secure than On-Prem?

factors that affect a firm’s likelihood of landing on one side of
that line or the other. We discuss three of these factors below.

The Deloitte quote provides inspiration for the first factor we
wanted to investigate. There’s an implied statement that higher
cloud adoption leads to a tipping point where added complex-
ity affects security. Do we see evidence in the data that such a
tipping point exists? To test that, we compared the rate of high
and critical security findings in the cloud with the percentage
of all hosts in the cloud for each organization. The result was a
statistically significant but very low positive correlation (r=0.07)
between those two variables. In other words, security exposures
do increase as organizations put more and more hosts in the
cloud…but not by much and only gradually. Not exactly evidence
in favor of a tipping point.

The second factor is organization size as measured by annual
revenue. We’d like to more directly measure characteristics like
resources, IT complexity, and security capability, but size is the
best proxy we have for those things. The question in view here is
whether firm size (revenue) increases or decreases the likeli-
hood of severe security exposures in cloud and on-prem hosts.
Figure 2 constructs a regression model to test this correlation.

Let’s first observe the general trend of decreasing likelihood of
exposure as revenues grow for both on and off-prem hosts. This
may reflect increased resources and maturity but may simply be
an artifact of scale. It’s almost inevitable that the likelihood of
any single host being exposed declines as total population grows
in larger enterprises.

Beyond that general trend, Figure 2 reveals some interesting
“tipping points” between security in the cloud and on-prem.
According to the model, organizations with annual revenues
between $1M and ~$5B operate a little more safely in the cloud.
The opposite holds true for firms outside that range—the really
small and the really big. Might this imply that fast-growing

organizations will want to use the cloud preferentially, but not
small organizations and not giant, established players?

The third and final factor looks at the effect of consolidation
vs. diversification in the cloud. In other words, is it better from
a security perspective to consolidate hosts into one (or a small
number of) cloud provider(s) or to spread services across many
providers? Figure 3 reflects the data’s answer to that question.

The “bars” in Figure 3 are actually made up of “dots” represent-
ing the 18,000 firms in our sample. We visualized it this way to
emphasize the high degree of variation among organizations,
especially toward the left side. But our focus is on the trendline,
which turns out to be quite interesting. It suggests that the rate
of severe findings is at its highest when cloud diversity is at its
lowest. As organizations use more cloud providers, that rate
drops steadily...to a certain point. Firms with four clouds exhibit
one-quarter the exposure rate of those with just one cloud pro-
vider. Having eight clouds drops that rate in half again. Beyond
that, security issues level off and even begin to rise among
hyper-diversified cloud users. We can’t help but see a kind of
“tipping point” here: there’s a point where consolidation and
diversification find balance in the cloud, and that point varies
from firm to firm. Echoing Deloitte, is that balance where com-
plexity and the ability to manage it are themselves in balance?

One bit of caution regarding Figure 3: all kinds of factors are at
play here that we cannot consider in our analysis. For instance,
perhaps many of the firms with only one cloud provider are simply
experimenting. This may reflect various stages of cloud maturity
from left to right rather than the effects of consolidation vs.
diversi fication. Given what we learned from Figure 2, one may
hypothesize that this simply reflects the effects of organization
size on exposure rates (the assumption being larger enterprises
use more clouds). We included both variables in our analysis, but
the number of cloud providers alone was the significant one.

Figure 1: Comparison of hosts with severe findings in on-prem vs. cloud
environments. Dots above the line indicate firms that have comparatively
fewer security issues when on-premises.

Figure 2: Models comparing exposure rates on-prem vs. cloud by organi-
zation size (annual revenue in log scale)

www.usenix.org FA L L 20 19 VO L . 4 4 , N O. 3 55

COLUMNS
For Good Measure: Is the Cloud Less Secure than On-Prem?

Of course, not all clouds are the same, either, as illustrated by
Figure 4. Here we compare the prevalence of severe security
findings among the top cloud providers. “Top” here refers to
adoption. The clouds represented in Figure 4 accounted for over
90% of the cloud-based hosts in our data set. We also include
the comparable rate for internal (on-prem) hosts. To give some
sense of familiarity, only the three clouds with the lowest
exposure rates bear labels. The point is not whether Cloud A
is “better” than Cloud B, but rather that substantial variation
exists among them. We cannot explain why the provider at the
top of the list has an exposure rate 144 that of Oracle, but we
suspect it has a lot to do with the nature of those clouds and how
they’re used. Perhaps systems in Oracle’s cloud primarily host
major enterprise applications that are rigorously maintained by
their owners. Perhaps the unnamed cloud on top plays home to
a higher share of SMBs and/or test workloads. We simply don’t
know. But we can safely conclude that scattering your hosts
randomly across cloud providers is unlikely to achieve posi-
tive outcomes. If you do go, “where?” is the next—and equally
important—decision.

Figure 4: The spread in insecurity across major cloud providersFigure 3: Rate of security exposures among hosts by number of cloud
providers

References
[1] D. Linthicum, “Cloud Complexity Management (CCM): A
New Year, a New Problem”: https://www2.deloitte.com/us/en
/pages/consulting/articles/cloud-complexity-management
-a-new-year-a-new-problem.html.

[2] https://www.riskrecon.com/.

[3] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas,
A. Fogh, J Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom,
M. Hamburg, “Meltdown: Reading Kernel Memory from User
Space,” in Proceedings of the 27th USENIX Security Symposium
(USENIX Security ’18), pp. 973–990: https://www.usenix.org
/conference/usenixsecurity18/presentation/lipp.

[4] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg,
M. Lipp, S. Mangard, T. Prescher, M. Schwarz, Y. Yarom,
“Spectre Attacks: Exploiting Speculative Execution”: https://
arxiv.org /abs/1801.01203.

None of this discussion deals with common-mode failure among
cloud suppliers such as the Meltdown [3] and Spectre [4] issues
announced in January 2018. Rather, it asks a fuzzy question:
what is the causal relationship here? Is it size? Is it diversity? Is
it complexity in some other sense? Can the causal mechanism be
identified and sufficiently well understood to drive policy? What
more data would help (or would more data help)?

As with other budding romances, “Should I stay or should I go?
(Don’t you know which clothes clouds even fit me?)”

https://www2.deloitte.com/us/en/pages/consulting/articles/cloud-complexity-management-a-new-year-a-new-problem.html
https://www2.deloitte.com/us/en/pages/consulting/articles/cloud-complexity-management-a-new-year-a-new-problem.html
https://www2.deloitte.com/us/en/pages/consulting/articles/cloud-complexity-management-a-new-year-a-new-problem.html
https://www.riskrecon.com/
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://arxiv.org/search/cs?searchtype=author&query=Kocher%2C+P
https://arxiv.org/search/cs?searchtype=author&query=Genkin%2C+D
https://arxiv.org/search/cs?searchtype=author&query=Gruss%2C+D
https://arxiv.org/search/cs?searchtype=author&query=Haas%2C+W
https://arxiv.org/search/cs?searchtype=author&query=Hamburg%2C+M
https://arxiv.org/search/cs?searchtype=author&query=Lipp%2C+M
https://arxiv.org/search/cs?searchtype=author&query=Mangard%2C+S
https://arxiv.org/search/cs?searchtype=author&query=Prescher%2C+T
https://arxiv.org/search/cs?searchtype=author&query=Schwarz%2C+M
https://arxiv.org/search/cs?searchtype=author&query=Yarom%2C+Y
https://arxiv.org/abs/1801
https://arxiv.org/abs/1801

56  FA L L 20 19 VO L . 4 4 , FA L L 20 19 www.usenix.org

COLUMNS

/dev/random
Layers

R O B E R T G . F E R R E L L

Once upon a time, there was only one layer: the operating system.
It was your first and best means of exchanging ones and zeroes
with the processor, the mystical heart of your computer. You wrote

code, compiled it or fed it to an interpreter, and something interesting usu-
ally happened. Well, my code always made something interesting happen,
but my threshold for interesting includes power cycling and printers with a
pronounced tendency to spit out page after page of nonsense. I also evinced
a preternatural knack for triggering crash dumps that literally caused the
machine, not to mention any clued-in onlookers, to shudder.

As I’ve said (too) many times, my digital heyday came during a previous geological era
as reckoned in the accelerated chronology of computing. The code I hammered out looks
primitive and ragged now, much like my wardrobe and finances. Those were the days when
shareware came on floppies obtained at music-turned-discount-software stores in the mall,
before every new computer game release required the latest supercharged video card to
run at better than two frames per second. Those were the days when hacking was, at worst,
criminal mischief—not supervillainy.

The first incursion of layers was the graphic user interface, intended to make navigating
the operating system a little easier for people who hadn’t the patience to commit dozens
of program options and arguments to memory. This was in no way mandatory: those of us
who liked the cryptic nature of the command line beast could still accomplish whatever we
needed without getting our fingers GUI. But then, gradually, virtualization and emulation
and compartmentalization began to creep into our systems like vampires seeking refuge
from a clear summer’s afternoon. After a while it was no longer at all apparent what floor of
the computational skyscraper you were working on.

I retired some years ago from looking over the shoulders of system administrators to verify
that they’d implemented at least the minimal security measures mandated by government
standards. Toward the end of that intellect-numbing career, virtualization was already com-
plicating lives. Did certain security settings apply only to the underlying operating system,
for example, or did they need to be duplicated for every virtual machine instance? In those
situations where one operating system had significantly different mandated security param-
eters from another, but both were instantiated in virtual machines on the same box, which
one’s security settings took precedence?

The virtualization rabbit hole now goes much deeper from those comparatively halcyon
days. Today the concept of a single operating system directly supporting applications in the
enterprise seems as quaint and whimsical as a racoon coat in a rumble seat. Not all of these
layers are distinct operating system images; it’s true. Some of them, like Docker layers, are
just topological metaphors for processes being run as a suite within a lightweight container.
I think I just got a charley horse in my frontal lobe from typing “topological metaphors.” Ow.

Robert G. Ferrell, author of
The Tol Chronicles, spends
most of his time writing
humor, fantasy, and science
fiction. rgferrell@gmail.com

www.usenix.org FA L L 20 19 VO L . 4 4 , FA L L 20 19 57

COLUMNS
/dev/random: Layers

Anyway, this layering mania got me to wondering: just what are
these people running from? What is it about the base operating
system that makes them so uncomfortable? Are they embar-
rassed by the belief that people regard them as unsophisticated
because they only have a couple of layers going? Or is it just
that they were exposed to the OSI model during their formative
years and now feel that multiple layers are necessary for things
to work?

Speaking of network models, it seems to me that we’ll need to
reinforce the TCP/IP stack in order to bear the weight of all
these new layers. Maybe stick some rebar in there or something.
Come to think of it, perhaps it’s also time to establish an entirely
new nomenclature that reflects today’s puff pastry network-
ing reality. After all, continual change for change’s sake is what
technical advancement is really all about, right? No novelty,
no progress.

We’ll start at the bottom, because that’s where I’m most at home.
The current lowest level is the Physical layer (OSI Layer 1), so-
called because it deals with wires and adapters and those little
cylindrical doodads on some cables that you don’t know what
they do—physical objects, in other words. I propose we rename
this the Fiddly Bits layer, since one out of one columnist sur-
veyed declared this to be a lot more descriptive and accurate.

Next up is the Data link layer (OSI Layer 2). Data link sounds
like some rural ISP that set up shop using old satellite dishes
and routers they dug out of the dumpster behind Fry’s. I think
a better name for something that connects data paths is the
Drawbridge layer. Above the Drawbridge we come to the Network
layer (OSI Layer 3). Here the bits really hit the fan, what with
packets and frames buzzing around like flies over garbage. For
that reason, I think of it as the Landfill layer.

The Transport layer (OSI Layer 4) is where those bits get pack-
aged and shipped off to market, so I call it the Loading Dock
layer. The Session layer (OSI Layer 5) is mostly concerned with
keeping lines of communication open, so we’ll think of it as the
Switchboard layer. Layer 6, the OSI Presentation layer, is where
one format gets converted to another; I’ll call this the Thesaurus
layer. Finally, there is the Application layer (OSI Layer 7). This is
sort of a catchall area for everything else that needs to happen to
make software and user care about one another, so to me it is the
Kitchen Drawer layer.

There you have the layers of the RGF model: Fiddly Bits, Draw-
bridge, Landfill, Loading Dock, Switchboard, Thesaurus, and
Kitchen Drawer. The old “All People Seem to Need Data Process-
ing” mnemonic doesn’t work any longer, admittedly, but at least
these are layer names that evoke actual mental images, not those
sterile engineering labels your brain has to massage into real
language before they mean anything to you. I doubt my terminol-
ogy will make it into an RFC, unless it’s an April Fool’s submis-
sion, but that’s not my concern. I’m just the idea guy.

“Layer,” incidentally, can also refer to a hen that actively pro-
duces eggs. Eggs, like operating systems, have shells which both
protect and provide access to the underlying contents. Computer
science and animal husbandry: working hand in, um, talon for a
better tomorrow.

Cluck().

58  FA L L 20 19 VO L . 4 4 , N O. 3 www.usenix.org

BOOKSBook Reviews
M A R K L A M O U R I N E A N D R I K F A R R O W

Continuous Delivery
Jez Humble and David Farley
Pearson Publishing, 2011, 464 pages
ISBN 978-0-321-60191-2

Reviewed by Mark Lamourine

The ideas of continuous integration (CI) and continuous
delivery (CD) are fairly common, almost mainstream, today.
CI originated in Extreme Programming DevOps in the mid to
late 1990s, becoming more formalized over the following decade.
CD was for a long time an afterthought. Humble and Farley offer
what appears to be the first attempt to present CD as its own
discipline.

The authors lay out all of the moving parts of a CD system and
they explain why they are there and how they interact. Agile
methods were developed as a practical response to the failure
of earlier software management methods to account for human
psychology and the realities of business and life. A CD system
depends on the interactions and feedback from the components.
The authors give both the theory and practice for each compo-
nent so that the reader will understand how each is important to
the function of the whole.

In many ways Continuous Delivery compares with Limoncelli,
Hogan, and Chalup’s The Practice of System and Network Admin-
istration. Humble and Farley treat the entire ecosystem of a CD
system, from definition and implementation to maintenance and
life-cycle operations.

There are a few ways in which Continuous Delivery shows its
age. The authors list a number of tools that are no longer the first
choice. They discuss CVS and Subversion and explicitly mention
the need to disable mandatory locking for CI operations. When
Continuous Delivery was published in 2011, Git had only existed
for five years and GitHub for two, and neither had achieved
the acceptance that they have now. The authors still refer to
configuration management tools such as Cfengine, and there
is no mention of Ansible or Salt. Other than the fact that recent
configuration management tools are deemphasizing defining a
state model in favor of just reexecuting a set of operations and
the advent of software containers that replace long-lived hosts
and VMs, the concepts and solutions remain applicable.

Continuous Delivery provides all that a new developer needs in
order to understand the goals and motivations for a well-run
CD system. For the advanced reader, it fills in the gaps that are
the inevitable result of organic learning, providing context and
completeness. It does stand the test of time.

Deep Learning and the Game of Go
Max Pumperla, Kevin Ferguson
Manning, 2019, 531 pages
ISBN 978-1-617-29532-4

Reviewed by Mark Lamourine

“Deep learning” is a relatively new term, and it partially super-
sedes an older term I’m more familiar with: “neural networks.”
Today, neural network refers to a technology, a well-defined
software structure that takes some inputs and produces some
outputs. Deep learning is a technique for using neural networks
to do a set of tasks that are difficult, using conventional prescrip-
tive programming.

The term “deep learning” is strongly associated in the mind of
the general public with AlphaGo, the research project by Deep-
Mind (now part of Alphabet). The game of Go was long thought
to be intractable for AI because, when compared with chess, the
move-branching factor is orders of magnitude higher. IBM’s
Deep Blue managed to beat the reigning chess champion, Gary
Kasparov, in the late 1990s using primarily brute force branch
search and some clever hand-programmed move ranking and
pruning algorithms. Humans observed the play and tweaked the
search and pruning rules until the system’s ability exceeded the
best human’s.

In Deep Learning and the Game of Go, the authors use Go and
the model provided by AlphaGo to introduce the reader to deep
learning as a concept and a practice. AI research has long used
games as well-known problem spaces to explore learning tech-
niques. Games remove the messiness of the real world, and they
have well-defined goals, rules, and states. This makes for a nice
clean teaching/learning environment. The authors take advan-
tage of this as well.

Deep Learning and the Game of Go provides some foundational
context before jumping in but is light on theory and mathemat-
ics, saving those for the appendices. The approach is very practi-
cal, offering the reader examples and sample code from GitHub
to work and play with. The method is hands-on, so the reader
will build experience through contact.

This is also a weakness. At the end, the reader has only explored
a single deliberately clean problem space. As a beginning, it suits,
but readers must realize where they stand at the end of the book.
They can choose to stop or to continue into the complexities that
real-world deep learning entails. There are other books for that.

www.usenix.org FA L L 20 19 VO L . 4 4 , N O. 3 59

BOOKS

Deep Learning with Python
François Chollet
Manning Publications, 2018, 445 pages
ISBN 978-1-617-29443-3

Reviewed by Mark Lamourine

One of the leading pure AI fields is called “deep learning.” It
has revitalized the use of artificial “neural networks” (poorly
named). Neural networks were first created in the late 1990s
but languished from insufficient CPU power and imagination.
A lot has happened since then, and neural networks have seen a
revival. François Chollet wants to tell you all of it.

In Deep Learning with Python, Chollet tries to provide a working
knowledge and code samples to allow the reader to create and
verify a variety of deep learning experiments (as he calls them)
using modern AI techniques based on convolutional neural
networks.

After the too brief history, basically everything was new to
me. In some ways this book feels like a detailed syllabus for a
year-long graduate-level course in deep learning techniques and
software. The book is structured around the Keras deep learning
library. Python has a long history in scientific calculation and
numerical systems due to the ability to create compiled libraries.
The math and science communities have taken advantage of this
to provide high performance libraries of domain-specific func-
tions that can be used by a scripting language. This results in the
ability to fast prototype the work logic using established, stable
optimized algorithms.

Chollet does offer a bit of theory and context at the beginning,
but it becomes clear after the first few chapters that he is assum-
ing significant prior knowledge on the reader’s part. Each chap-
ter is more about the set of mathematical tools that the library
provides and how to use them than it is about how they work
and what the results mean. For someone first approaching deep
learning, this might be overwhelming. For a researcher familiar
with the math, but who just wants to use the tools to ask ques-
tions in their problem space, this is a breezy survey.

I did learn a lot despite being largely in over my head with the
jargon and algorithms. The fact that there are flavors of neu-
ral networks and even flavors of algorithms for each layer of a
network was new. I hadn’t considered the implications of simple
linear networks, with forward learning and feedback versus
more complex network topologies. I don’t expect to become an
AI researcher, but I now have a better chance of understanding
what they’ve achieved when I see it.

Fall, or Dodge in Hell
Neal Stephenson
Harper Collins, 2019, 800 pages
ISBN 978-0-062-45871-1

Reviewed by Rik Farrow

What might it be like to experience the Singularity, at least the
part where your personality lives on beyond your body? Stephen-
son takes on this challenge of eschatology, giving some charac-
ters from Reamde a second chance at novel life and death.

Stephenson gets some of the technology right: simulating a
single thought process will take enormous amounts of process-
ing power, networking, storage, and just plain power. Doing it
for everyone will involve taking over the earth. But the first in
are, of course, the billionaires and their friends and family, and
having the scions of industry involved affects everything. Their
memories of real life may be partial, but the personalities are as
overpowering as ever.

Halfway through the book, Stephenson gets a little biblical on us,
but don’t despair. His Jehovah is more like the one in the Book of
Job, and the second coming, leading to the Fall mentioned in the
title, is definitely twisted.

Stephenson has a knack for creating interesting, somewhat
wacky, but wholly believable characters. Sometimes he subtly
does things that I found disturbing without the cause being
blatantly obvious.

While I don’t expect to awaken in the cloud, Stephenson does a
good job of imagining what it might be like and is still thoroughly
entertaining—most of the time. Some of the world building does
get tedious, but it’s definitely a good read overall.

NOTES

60  FA L L 20 19 VO L . 4 4 , N O. 3 www.usenix.org

USENIX Member Benefits
Members of the USENIX Association
 receive the following benefits:

Free subscription to ;login:, the Associa-
tion’s quarterly magazine, featuring tech-
nical articles, tips and techniques, book
 reviews, and practical columns on such top-
ics as security, site reliability engineering,
Perl, and networks and operating systems

Access to ;login: online from December
1997 to the current issue: www.usenix.org
/publications/login/

Registration discounts on standard tech-
nical sessions registration fees for selected
USENIX-sponsored and co-sponsored
events

The right to vote for board of director can-
didates as well as other matters affecting
the Association.

For more information regarding member-
ship or benefits, please see www.usenix
.org/membership/, or contact us via email
 (membership@usenix.org) or telephone
 (+1 510.528.8649).

USENIX Board of Directors
Communicate directly with the USENIX
Board of Directors by writing to
board@usenix.org.

P R E S I D E N T

Carolyn Rowland, National Institute of
Standards and Technology
carolyn@usenix.org

V I C E P R E S I D E N T

Hakim Weatherspoon, Cornell University
hakim@usenix.org

S E C R E T A R Y

Michael Bailey, University of Illinois
at Urbana-Champaign
bailey@usenix.org

T R E A S U R E R

Kurt Opsahl, Electronic Frontier Foundation
kurt@usenix.org

D I R E C T O R S

Cat Allman, Google
cat@usenix.org

Kurt Andersen, LinkedIn
kurta@usenix.org

Angela Demke Brown, University
of Toronto
angela@usenix.org

Amy Rich, Nuna Inc.
arr@usenix.org

E X E C U T I V E D I R E C T O R

Casey Henderson
casey@usenix.org

2018 Constituent
Survey Results
Liz Markel, Community
Engagement Manager

Last year we reached out to
the many people we serve—our members,
our conference attendees, and those who
have expressed interest in our activities—
and asked you to take several minutes to
respond to our community survey—the first
of its kind in five years. More than 1,000 of
you responded, sharing information about
yourselves and your thoughts on a variety of
questions related to membership benefits,
the communities you participate in, how
well we’re doing with making our mission
a reality, and more topics relevant to our
mission.

With your responses we were able to:
◆◆ Create baseline measurements for key

metrics such as community demograph-
ics and USENIX’s perceived performance
with respect to its mission.

◆◆ Gather data to help inform upcoming de-
cisions by USENIX staff and leadership.

We appreciate everyone who took the time
to complete the survey! I’d like to share
some highlights from the survey results,
and also let you know about some changes
we’re implementing based on those results.

I also want to take this opportunity to
remind you that my inbox is always open for
conversations about these results, general
suggestions, or other topics that you might
like to chat about. You can reach me via
liz@usenix.org.

Demographics: Who Is USENIX?
Demographic questions served several
purposes within the context of this survey.
First, it provided a profile of our constitu-
ents in aggregate: who they are, where they
come from, and a brief but illuminating
glimpse into their professional lives.

http://www.usenix.org/publications/login/
http://www.usenix.org/publications/login/
http://www.usenix.org/membership/
http://www.usenix.org/membership/

www.usenix.org FA L L 20 19 VO L . 4 4 , N O. 3 61

NOTES

Second, demographic questions provided an important benchmark
for diversity and inclusion initiatives. Our overarching goal is to
maximize the accessibility and welcoming, inclusive environment
at our conferences and throughout other areas of our organization’s
work. Anecdotally, we feel we are generally successful in this area,
although there is always more work to be done, of course. However
we wanted statistics to back up those anecdotes. We also want to
track our progress in this area over time. In order to do this, we ask
questions about things such as race and gender, and only use that
data in aggregate.

Demographic questions are also a valuable tool for cross-referenc-
ing responses to other questions. Where differences exist, we can
explore the reasons for those differences, and consider if and how
we might address those differences. For example, if there were a sig-
nificant discrepancy between employers’ coverage of professional
development costs when comparing responses from self-identified
males with those from self-identified females and non-binary
gender, we would consider how this impacts our Diversity Grant
program. (On that subject, for respondents who said that their em-
ployers cover 100% of the costs of conference travel and participa-
tion, 52% of those respondents were male, and 44% were female.)
In order to conduct this analysis, we must ask questions about race
and gender. Results are, again, examined solely in aggregate.

While we value these metrics, we also recognize that specific demo-
graphic elements such as gender or race are complex. We are open to
dialogue around this topic that supports our goals to track our prog-
ress in a meaningful, metric-driven way, while also demonstrating
respect for all members of our community. If you have feedback
about our approach, including ideas of better ways to gather and
 assess this data, please let me know.

Here’s an overview of our demographic results:

Mission fulfillment and leadership
At the core of a nonprofit organization is its mission. The survey
provided an opportunity to gauge our performance on the four parts
of our mission to:

◆◆ Foster technical excellence and innovation
◆◆ Support and disseminate research with a practical bias
◆◆ Provide a neutral forum for discussion of technical issues
◆◆ Encourage computing outreach into the community at large

Age: The majority of respondents were between ages 25 and 44.

Gender Identity: Almost 16% of respondents identified as female or non-
binary. For the Non-Binary category, respondents could enter their own
response.

Geography: Respondents came primarily from North America and Europe.

Employed 73.12%

Student (Graduate-level Program) 18.42%

Self-Employed/Freelance 3.89%

Student (Undergraduate) 1.23%

Other 1.23%

Unemployed 1.04%

Retired 1.04%

Employment: The majority of respondents (73%) are employed; student
respondents comprised just under 20% of all respondents (18% graduate
students).

62  FA L L 20 19 VO L . 4 4 , N O. 3 www.usenix.org

NOTES

We asked respondents to rate our performance in these areas on a
scale of 1 to 4, where 1=needs significant improvement, and 4=we’re
doing amazing work. The weighted average for each of these was:

Weighted Average

Foster technical excellence and innovation 3.33

Support and disseminate research with a
practical bias

3.3

Provide a neutral forum for discussion of
technical issues

3.21

Encourage computing outreach into the
community at large

2.99

We were thrilled to see these results, and to have our hard work af-
firmed by you—the people for whom we’re doing the work. Of course,
there’s still room for improvement here. Those improvements
may come from our actual efforts, or they may come from greater
emphasis on the work we are currently doing. We’ll work on both of
these aspects and hope for even higher marks on the next survey. As
a reminder, you can always contact me directly with any questions
or suggestions.

Communities
When we think about the people who comprise USENIX’s broad
community of advanced computer systems professionals and their
related sub-communities, we tend to think of them in terms of our
conferences. However, we know that not everyone involved with
USENIX attends our conferences, and that you may think of your
professional identities differently than we do.

Consequently, we asked two questions on this survey pertaining to
community membership:

1. Respondents were asked to indicate which conferences they
had attended; they had the opportunity to indicate their af-
filiation with the conference community even if they had not
attended the conference.

2. On a separate question, respondents were asked to select
all of the professional communities to which they felt they
belonged, including file and storage systems researchers or
practitioners; system administrators or engineers; networked
systems researchers or practitioners; systems researchers or
practitioners, broadly defined; security, usability, and privacy
researchers or practitioners; site reliability engineers; secu-
rity researchers or practitioners.

A rough analysis of the overlaps that appeared in this second ques-
tion were surprising to us. For example, of those who selected “se-
curity researchers or practitioners” as a community to which they
belong, 51% also selected the community of “systems administra-
tors or engineers”. These particular overlaps were unexpected, and
required further exploration. Did respondents select both of these
answer choices because their roles straddle both of these areas, or
they are professionally adjacent to each other? Was our grouping of

types of roles too broad, such that a sysadmin who is responsible for
security as one of many aspects of a job role would thus identify as
a security practitioner for that reason? Are these fields more closely
related than we anticipated, and are there implications for confer-
ence content to better serve people who function across two of these
communities? We are also considering that the surprising results
may have to do with our survey design: could we have asked the
question in a different way?

We need your feedback! What do you think about these overlaps?
Do you have anecdotal observations that support these results?

Communications and Connections
We use many tools to broadcast information about USENIX activi-
ties. The survey asked respondents to select which ones they use
to learn about USENIX events, and to check all that apply. The top
responses were emails from USENIX, the USENIX website, and
friends/colleagues.

We need your feedback! I have spent time improving the content
and aesthetics of the email newsletter over the past year: what you
do you think about these improvements? I am also exploring your
responses to separate questions about why you visit the website and
what you think can be improved, and how we might implement some
of those updates.

We need your feedback! Is there something we can do to facilitate
sharing information about USENIX news and events between you
and your colleagues? I am open to your suggestions about how to
make this process easier for you.

Speaking of sharing, we also asked about your preferred method
of connecting with your professional colleagues, and to check all
that apply. Close to 90% of you said you prefer to connect in person.
Online chat and social media were popular choices, but nowhere
near as popular as in-person connections. This data backs up our
anecdotal evidence that attending our conferences and engaging
with others is a worthwhile investment.

We need your feedback! How can we support you and/or your col-
leagues to make conference attendance possible? We already offer
Student Grants and Diversity Grants to cover registration and travel
costs, help facilitate room sharing, and shift the locations of our
conferences to provide the opportunity for more convenient atten-
dance. I’m looking for outside-the-box ideas beyond these—perhaps
something you’ve seen at other conferences that has been success-
fully implemented and might align well with our existing processes.

Membership
Of those who responded to the survey, 41% are currently members,
with an additional 18% having been members previously. Both
members and non-members were asked about USENIX member-
ship benefits and pricing.

The most noteworthy outcome of this portion of the survey was the
high value respondents assigned to open access to papers, proceed-
ings, and video content from our conferences. It is important to

www.usenix.org FA L L 20 19 VO L . 4 4 , N O. 3 63

NOTES

note that open access has not been (and will not be) connected to
membership in any way; our content will continue to remain free
and open to the public. However, membership dues provide financial
support for the organization as a whole and thus help underwrite the
costs of producing and sharing these materials.

Based on these results, there are exciting changes to USENIX
membership in the works that will increase access to membership
and increase the value of membership for all levels of contributors.
We are working on the behind-the-scenes logistics of these changes,
and will announce the details once we are close to a launch date.

A Treasure Trove of Data
There’s much more data from the survey—too much to summarize
here—but it’s already been useful as a resource and guiding light for
all types of decisions. We are looking forward to continuing to use
this information moving forward, and to make surveys a regular
part of your opportunity to provide feedback and tell us how we’re
doing. If you didn’t have an opportunity to complete this survey, I
hope you’ll take the time to complete the next one! We’ll announce it
in the USENIX News email when it launches in 2020.

2019 USENIX Annual Technical Conference

2019 USENIX Flame Award winner Margo Seltzer
(left) and Awards Committee member Angela
Demke Brown.

USENIX ATC ’19 co-chairs Dahlia Malkhi and Dan
Tsafrir deliver their opening remarks.

USENIX ATC ’19 attendees take advantage of the
conference hotel’s outdoor spaces to engage in
conversation.

Some of the Student Grant and Diversity Grant
recipients who attended USENIX ATC ’19.

Remzi Arpaci-Dusseau, University of Wisconsin—
Madison, delivers his USENIX ATC ’19 keynote
address, “Measure, Then Build.”

We were fortunate to have slightly overcast skies
for the USENIX ATC ’19 Luncheon, creating the
perfect conditions for eating outdoors.

Poster sessions for USENIX ATC ’19 and its co-located events were lively opportunities to explore research and engage in conversation with the researchers.

64  FA L L 20 19 VO L . 4 4 , N O. 3 www.usenix.org

NOTES

Celebrating UNIX’s 50th Anniversary: UNIX Exhibit Preview &
Meetup at the Living Computer Museum + Lab
USENIX ATC ’19 attendees ventured to downtown Seattle for a sneak peek at the UNIX 50th anniversary exhibit at the Living Computer
Museum + Lab. Thanks to LCM+L for hosting—we highly recommend visiting them on your next trip to Seattle—and special thanks to the
LCM+L team for the event photos! Thanks to everyone who signed the birthday card for UNIX, too.

Save the Dates!

www.usenix.org/atc20

www.usenix.org/osdi20

Program Co-Chairs

Ada Gavrilovska
Georgia Institute of Technology

Erez Zadok
Stony Brook University

14th USENIX Symposium on Operating
Systems Design and Implementation

November 4–6, 2020 • Banff, Alberta, Canada
OSDI brings together professionals from academic and industrial backgrounds
in what has become a premier forum for discussing the design, implementation,
and implications of systems software. The OSDI Symposium emphasizes
innovative research as well as quantifi ed or insightful experiences in systems
design and implementation.

Program Co-Chairs:
Jon Howell, VMware Research
Shan Lu, University of Chicago

The Call for Papers will be available soon.

The 2020 USENIX Annual Technical Conference will bring together leading systems researchers for cutting-edge
systems research and the opportunity to gain insight into a wealth of must-know topics, including operating
systems; runtime systems; parallel and distributed systems; storage; networking; security and privacy; virtual-
ization; software-hardware interactions; performance evaluation and workload characterization; reliability,
availability, and scalability; energy/power management; bug-fi nding, tracing, analyzing, and troubleshooting.
Paper submissions are due Wednesday, January 15, 2020.

2020 USENIX Annual
Technical Conference
JULY 15–17, 2020 • BOSTON, MA, USA
www.usenix.org/atc20

USENIX Association
2560 Ninth Street, Suite 215
Berkeley, CA 94710

POSTMASTER
Send Address Changes to ;login:
2560 Ninth Street, Suite 215
Berkeley, CA 94710

PERIODICALS POSTAGE
PAID

AT BERKELEY, CALIFORNIA
AND ADDITIONAL OFFICES

October 28–30, 2019 | Portland, OR, USA
www.usenix.org/lisa19

LISA: Where systems engineering and operations professionals share
real-world knowledge about designing, building, and maintaining the
critical systems of our interconnected world.

Register by Monday, October 8, and save!

	Musings
	Outsourcing Everyday Jobs to Thousands of Cloud Functions with gg
	Not So Fast: Analyzing the Performance of WebAssembly vs. Native Code
	Making It Easier to Encrypt Your Emails
	Interview with Periwinkle Doerfler
	Interview with Dave Dittrich
	Challenges in Storing Docker Images
	Reliable by Design: The Importance of Design Review in SRE
	Python News
	iVoyeur: Prometheus (Part Two)
	Using SQL in Go Applications
	For Good Measure: Is the Cloud Less Secure than On-Prem?
	/dev/random: Layers
	Book Reviews
	USENIX Notes

