
;login:
F A L L 2 0 1 8 V O L . 4 3 , N O . 3

Columns
Shared Objects in Python Packages
Peter Norton

GraphQL
David N. Blank-Edelman

LDAP in GoLang
Chris “Mac” McEniry

Perusing Data Lakes
Dave Josephsen

Numbers Are Where You Find Them
Dan Geer

& Capacity Prediction
Rick Boone

& BeyondCorp: Fleet Mangement
Hunter King, Michael Janosko, Betsy Beyer,
and Max Saltonstall

& Transactional File System
Yige Hu, Zhiting Zhu, Ian Neal, Youngjin Kwon,
Tianyu Cheng, Vijay Chidambaram, and
Emmett Witchel

& Serverless, Optimized Containers
 Edward Oakes, Leon Yang, Dennis Zhou, Kevin
Houck, Tyler Caraza-Harter, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau

UPCOMING EVENTS
SREcon18 Europe/Middle East/Africa

August 29–31, 2018, Dusseldorf, Germany
www.usenix.org/srecon18europe

OSDI ’18: 13th USENIX Symposium on Operating
Systems Design and Implementation

October 8–10, 2018, Carlsbad, CA, USA
Sponsored by USENIX in cooperation with ACM SIGOPS
www.usenix.org/osdi18

LISA18
October 29–31, 2018, Nashville, TN, USA
www.usenix.org/lisa18

Enigma 2019
January 28–30, 2019, Burlingame, CA, USA
www.usenix.org/enigma2019

FAST ’19: 17th USENIX Conference on File and
Storage Technologies

February 25–28, 2019, Boston, MA, USA
Co-located with NSDI ’19
Submissions due September 26, 2018
www.usenix.org/fast19

NSDI ’19: 16th USENIX Symposium on
Networked Systems Design and
Implementation

February 26–28, 2019, Boston, MA, USA
Co-located with FAST ’19
Paper titles and abstracts due September 13, 2018
(Fall deadline)
www.usenix.org/nsdi19

SREcon19 Americas
March 25–27, 2019, Brooklyn, NY, USA

2019 USENIX Annual Technical Conference
July 10–12, 2019, Renton, WA, USA

Co-located with USENIX ATC ’19
HotStorage ’19: 11th USENIX Workshop on Hot
Topics in Storage and File Systems
July 8–9, 2019

HotCloud ’19: 11th USENIX Workshop on Hot
Topics in Cloud Computing
July 8, 2019

HotEdge ’19: 2nd USENIX Workshop on Hot Topics
in Edge Computing
July 9, 2019

28th USENIX Security Symposium
August 14–16, 2019, Santa Clara, CA, USA

USENIX Open Access Policy
USENIX is the fi rst computing association to off er free and open access to all of our conference proceedings
and videos. We stand by our mission to foster excellence and innovation while supporting research with a
practical bias. Your membership fees play a major role in making this endeavor successful.

Please help us support open access. Renew your USENIX membership and ask your colleagues to join or
renew today!

www.usenix.org/membership

www.usenix.org/facebook

twitter.com/usenix

www.usenix.org/youtube

www.usenix.org/linkedin

www.usenix.org/gplus

E D I T O R
Rik Farrow
rik@usenix.org

M A N A G I N G E D I T O R
Michele Nelson
michele@usenix.org

C O P Y E D I T O R S
Steve Gilmartin
Amber Ankerholz

P R O D U C T I O N
Arnold Gatilao
Jasmine Murcia

T Y P E S E T T E R
Star Type
startype@comcast.net

U S E N I X A S S O C I AT I O N
2560 Ninth Street, Suite 215
Berkeley, California 94710
Phone: (510) 528-8649
FAX: (510) 548-5738

www.usenix.org

;login: is the official magazine of the USENIX
Association. ;login: (ISSN 1044-6397)
is published quarterly by the USENIX
Association, 2560 Ninth Street, Suite 215,
 Berkeley, CA 94710.

$90 of each member’s annual dues is for
a subscription to ;login:. Subscriptions for
non members are $90 per year. Periodicals
postage paid at Berkeley, CA, and additional
mailing offices.

POSTMASTER: Send address changes to
;login:, USENIX Association, 2560 Ninth Street,
Suite 215, Berkeley, CA 94710.

©2018 USENIX Association
USENIX is a registered trademark of the
USENIX Association. Many of the designa-
tions used by manufacturers and sellers
to distinguish their products are claimed
as trademarks. USENIX acknowledges all
trademarks herein. Where those desig-
nations appear in this publication and
USENIX is aware of a trademark claim,
the designations have been printed in caps
or initial caps.

FA L L 2 0 1 8 V O L . 4 3 , N O . 3

E D I T O R I A L
2 Musings Rik Farrow

O P I N I O N
6 Reflections on Post-Meltdown Trusted Computing:

A Case for Open Security Processors
Jan Tobias Mühlberg and Jo Van Bulck

S Y S T E M S
10 TxFS: Leveraging File-System Crash Consistency to Provide

ACID Transactions
Yige Hu, Zhiting Zhu, Ian Neal, Youngjin Kwon, Tianyu Cheng,
Vijay Chidambaram, and Emmett Witchel

17 SOCK: Serverless-Optimized Containers
Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck, Tyler Caraza-
Harter, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau

S E C U R I T Y
24 BeyondCorp: Building a Healthy Fleet

Hunter King, Michael Janosko, Betsy Beyer, and Max Saltonstall

31 Building an Internet Security Feeds Service John Kristoff

35 USENIX Security and AI Networking Conference: ScAINet 2018
Aleatha Parker-Wood

S R E / S Y S A D M I N
38 Capacity Engineering: An Interview with Rick Boone Rik Farrow

C O L U M N S
40 Python: Shared Libraries and Python Packaging, an Experiment

Peter Norton

44 Practical Perl Tools: GraphQL Is Pretty Good Anyway
David N. Blank-Edelman

48 Yes, Virginia, There Is Still LDAP Chris “Mac” McEniry

51 iVoyeur: Flow Dave Josephsen

54 For Good Measure: Numbers Are Where You Find Them Dan Geer

57 /dev/random: No Bots About It Robert G. Ferrell

B O O K S
59 Book Reviews Mark Lamourine and Rik Farrow

U S E N I X N O T E S
62 The Big Picture Liz Markel

63 Meet the Board: Amy Rich

2  FA L L 20 1 8 VO L . 4 3 , N O. 3 www.usenix.org

EDITORIALMusings
R I K F A R R O W

Rik is the editor of ;login:.
rik@usenix.org I have often mused about how the architecture of the CPUs we use influ-

ences the way our operating systems and applications are designed. A
book I reviewed in this issue on the history of computing managed to

cement those ideas in my head. Basically, we’ve been reprising time-sharing
systems since the mid-60s, whereas most systems serve very different pur-
poses today.

Along the way, I also encountered a couple of interesting data points, via pointers from
friends who have been influencing me. One was Halvar Flake’s CYCON 2018 talk [1], and
another was about a new OS project at Google. The opinion piece by Jan Mühlberg and Jo
Van Bulck that appears in this issue influenced me as well, as it describes a CPU feature that,
among other things, could block the use of gadgets in return-oriented programming (ROP).

Flake explained that much of our current problems with security have to do with cheap com-
plexity. Even though a device, like a microwave oven or intravenous drip-rate controller, only
requires a PIC (Programmable Interrupt Controller), it may instead have a full-blown CPU
running Windows or Linux inside it. CPUs are, by design, flexible enough to model any set of
states, making them much more complex than what is needed inside a fairly simple device.
Designers instead choose to use a full-blown CPU, usually with an OS not designed to be
embedded, to model the states required. Vendors do this because many more people under-
stand Windows or Linux programming than know how to program a PIC.

This isn’t just a problem for ovens or routers. Let’s not even discuss home routers, although
the arguments for using a real OS are at least stronger in the case of routers. Dan Farmer
published research, funded by DARPA, in 2013 about IPMI and BMC [2], the controllers
found on most server-class motherboards. These controllers provide an over-the-network
method of managing servers—e.g., rebooting them or installing updates. But the controllers
are full-blown Linux systems, burned into ROM, using very old versions of Linux and exploit-
able software. The controllers can read or write any system memory, as well as use either a
dedicated network interface or any network interface on the server, making them the obvious
point for an undetectable attack using an embedded system that does no logging and cannot
be patched. Ouch.

One of Flake’s concluding slides had this bullet point, one I particularly liked:

◆◆ CPU-architecture and programming models are in flux for the first time since the 1980s.

I’d argue that the date is wrong, as we didn’t get heavily into threaded programming until the
noughts; other than that, the CPU architecture has remained very similar in rough outline
to late ’60s mainframes. But ignore the date and ponder Flake’s implied suggestion: now is a
good time for some serious changes in architecture and programming models.

Another data point is currently much more obscure. Google has a project, an OS named Fuch-
sia powered by the Zircon microkernel [3], based on another Google project, a microkernel
named LK. Both appear to be focused for use in IoT and embedded systems. But Zircon has
been designed to work on modern devices with more powerful CPUs and lots more memory
than LK [4].

www.usenix.org FA L L 20 1 8 VO L . 4 3 , N O. 3 3

EDITORIAL
Musings

Zircon has a small kernel that manages processor time, memory,
I/O, interrupts, and waiting/signaling. Everything else gets
done in userspace, as processes. The enabling technologies that
make this work well are IOMMUs and ARM SMMUs. Both the
IOMMU and SMMU were designed to support virtual machines,
allowing a VM to have access to, for example, a network inter-
face queue. But these subsystems also mean that userspace pro-
grams can gain access to device memory and be able to copy data
between the devices and other memory, something that has been
a barrier to running system services in other microkernels.

While the Fuchsia project appears targeted at embedded
systems, likely including support for Android where message
passing is already used in the API, having a very small kernel
reduces the immense attack space provided by modern operat-
ing systems. I’ve skimmed the source code for Zircon enough to
see that it is a message passing system that does so by passing
ownership of memory between processes and has support for
both IOMMUs and SMMUs. Tinkering with the design of CPU
paging systems, so that context switches don’t require flushing
page caches, would make this an even faster system.

I believe that Fuchsia is still in such an early phase that not a
lot can be said about it, but I’m certainly excited by the concept.
There are other microkernels in very wide use, such as seL4 [5],
used on the radio side of hundreds of millions of cell phones. But
with the potential to support Android, I think that Zircon may
turn out to be something much more visible, and make devices
much more secure than the usual OS used in devices like tablets
and smartphones.

The Lineup
Jan Tobias Mühlberg and Jo Van Bulck sent me an opinion piece
about the trouble with closed and complex CPUs. They have been
working on hardware that will have an open design facilitating
public verification as well as security features that will cut-off
many exploit techniques. Bulck also had a paper about extracting
keys from Intel SGX at ScAINet ’18, part of the fallout from the
exploits known as Meltdown.

While there was lots of interesting research at Annual Tech
last summer, I asked two groups to write about their research
since I thought both projects might have some interesting future
impact, and both groups published their code.

Hu et al. write about their extension to ext4 that adds transac-
tions, TxFS. By building upon journaling, a feature of other file
systems types as well as ext4, they have added the ability to
start, commit, or cancel transactions with the addition of kernel
code (that is published) and a handful of function calls. I think
that TxFS stands for Transaction File System, but might also be
Texas File System, as the authors are at UT Austin.

Oakes et al. write about a lightweight container for use with
Lambdas. AWS introduced Lambdas for serverless computing,
but the problem with using these is the startup cost for loading
a container complete with the necessary libraries for the servlet
code. SOCK builds on previous work [6] and provides a much
lighter-weight container than Docker, for example, and this
article explains how and why that is done.

You can expect more articles about security in the Winter
issue, as the security papers deadline came too late for me to
ask authors to write for this issue. But we do have the sixth
BeyondCorp article. Google’s BeyondCorp focuses on securing
the clients that access resources within Google, and this article
reveals more about how the BC team has done this for their fleet
of clients. While not everyone can expect to be able to do what
Google has done, there are many useful pointers in the work they
have made public in this article and the ones that have come
before. For example, BC can whitelist software, something that
anyone can do using policy in Windows or Macs or with a com-
mercial product like Carbon Black (Bit9).

John Kristoff has written about his own project, a sensor net.
Kristoff explains how he has set up instances that listen for
probes and exploits on a handful of services, provides data via
his website on the attacks he sees, and describes how you can set
up your own sensor net. I found John’s approach practical and
interesting, and the cost is reasonable enough to be supported by
small grants.

Aleatha Parker-Wood has written an excellent summary of
the first Security and AI workshop, ScAINet. Applying AI
techniques to security data, such as logs, is a growing area but
one that is also fraught with issues that can make AI fail. The
workshop examines both the benefits and the issues with using
machine learning (ML).

I asked Rick Boone, an SRE at Uber, about the talk he gave dur-
ing SREcon18 Americas. Boone explains how Uber does capacity
prediction instead of capacity planning, using ML techniques that
I recognized after my foray into ML in the Summer 2018 issue.

We have a new Python columnist. Peter Norton, co-author of
several books and current SRE, takes us through his issues with
how poorly Python packages that rely on shared objects work and
how he’d like them to work. Norton crafts a new method for using
packages that allows loading of shared objects without leaving a
mess of files to clean up, relying on a relatively new Linux system
call, memfd_create().

David Blank-Edelman demonstrates GraphQL, an API query
tool created by Facebook. GraphQL has nothing to do with graph
databases, the topic of his Summer 2018 column, but instead
provides an interface that is a step deeper than REST, and can
return more results than REST with a single query.

4  FA L L 20 1 8 VO L . 4 3 , N O. 3 www.usenix.org

EDITORIAL
Musings

Chris “Mac” McEniry demonstrates using GoLang with LDAP.
Mac points out that while there are commandline tools for
LDAP, having a GoLang app allows encapsulation of site-
specific information.

Dave Josephsen waxes enthusiastic about data lakes. Data lakes
imply large amounts of unstructured data that you don’t want to
spend money adding indices to, but do want to be able to query.
Dave explains how this can be done using tools like Apache Parquet.

Dan Geer examines the numbers found in Mary Meeker’s (of
Kleiner Perkins) “Internet Trends 2018” presentation. Dan drills
down and exposes the portions of the slides he found particu-
larly interesting as representative of the types of data useful for
security metrics, as well as pointing out the use of AI in content
platforms.

Robert Ferrell explains that AI and bots are already in control of
our online lives, so we might as well get used to it.

We have three book reviews: Mark Lamourine covers the fifth
edition of the Nemeth classic and a book with proof that Agile
techniques work, while I review a wonderful illustrated book
covering the history of computing.

Changing CPU architecture is very hard, as companies have
spent many billions of dollars tweaking their designs to produce
the best performance. Flake points out that the same vendors
are quite willing to trade off reliability for performance, as seen
in Meltdown, an intersection between a trusted subsystem and
branch prediction. We do have problems with security, ones that
need to be dealt with, not only with changes to software tool-
chains but also to the underlying hardware. Let’s hope that this
is a direction that may prove fruitful soon, even if it’s unlikely to
prevent attacks on our critical infrastructure in the near term [7].

References
[1] T. Dullien, aka Halvar Flake, “Security, Moore’s Law, and
the Anomaly of Cheap Complexity,” CYCON 2018: https://goo
.gl/3HzQ1y.

[2] D. Farmer, “IPMI: Freight Train to Hell”: http://fish2.com
/ipmi/itrain.pdf.

[3] Zircon: https://fuchsia.googlesource.com/zircon/.

[4] S. De Simone, “An Early Look at Zircon, Google Fuchsia
New Microkernel,” InfoQ, April 15, 2018: https://www.infoq
.com/news/2018/04/google-fuchsia-zircon-early-look; M.
Bergan and M. Gurman, “Project ‘Fuchsia’: Google Is Quietly
Working on a Successor to Android,” Bloomberg, July 19,
2018: https://www.bloomberg.com/news/articles/2018-07
-19/google-team-is-said-to-plot-android-successor-draw
-skepticism.

[5] The seL4 Microkernel: https://sel4.systems/.

[6] S. Hendrickson, S. Sturdevant, E. Oakes, T. Harter, V.
 Venkataramani, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau, “Serverless Computation with OpenLambda,”
;login:, vol. 41, no. 4 (Winter 2016): https://www.usenix.org
/publications/login/winter2016/hendrickson.

[7] D. Sanger, “Pentagon Puts Cyberwarriers on the Offen-
sive, Increasing the Risk of Conflict,” New York Times, June
17, 2018: https://www.nytimes.com/2018/06/17/us/politics
/cyber-command-trump.html.

https://goo.gl/3HzQ1y
https://goo.gl/3HzQ1y
http://fish2.com/ipmi/itrain.pdf
http://fish2.com/ipmi/itrain.pdf
https://fuchsia.googlesource.com/zircon/
https://www.infoq.com/news/2018/04/google-fuchsia-zircon-early-look
https://www.infoq.com/news/2018/04/google-fuchsia-zircon-early-look
https://www.bloomberg.com/news/articles/2018-07-19/google-team-is-said-to-plot-android-successor-draw-skepticism
https://www.bloomberg.com/news/articles/2018-07-19/google-team-is-said-to-plot-android-successor-draw-skepticism
https://www.bloomberg.com/news/articles/2018-07-19/google-team-is-said-to-plot-android-successor-draw-skepticism
https://sel4.systems/
https://www.usenix.org/publications/login/winter2016/hendrickson
https://www.usenix.org/publications/login/winter2016/hendrickson
https://www.nytimes.com/2018/06/17/us/politics/cyber-command-trump.html
https://www.nytimes.com/2018/06/17/us/politics/cyber-command-trump.html

J A N 2 8 – 3 0 , 2 0 1 9
BUR LING A ME, C A , USA

A USENIX CONFERENCE

enigma.usenix.org

The full program and registration will be available in November.

SECURITY AND PRIVACY IDEAS THAT MATTER
Enigma centers on a single track of engaging talks covering a wide range of topics in security and
privacy. Our goal is to clearly explain emerging threats and defenses in the growing intersection

of society and technology, and to foster an intelligent and informed conversation within the
community and the world. We view diversity as a key enabler for this goal and actively work to

ensure that the Enigma community encourages and welcomes participation from all employment
sectors, racial and ethnic backgrounds, nationalities, and genders.

Enigma is committed to fostering an open, collaborative, and respectful environment.
Enigma and USENIX are also dedicated to open science and open conversations,

and all talk media is available to the public after the conference.

PROGR AM CO-CHAIRS

Franziska Roesner,
University of Washington

Ben Adida
Clever

6  FA L L 20 1 8 VO L . 4 3 , N O. 3 www.usenix.org

OPINIONReflections on Post-Meltdown Trusted
Computing
A Case for Open Security Processors

J A N T O B I A S M Ü H L B E R G A N D J O V A N B U L C K

Jan Tobias Mühlberg works
as a Research Manager for
embedded software security
at imec-DistriNet, KU Leuven
(BE). His research focuses

on protected module architectures such
as Sancus, software security, and formal
verification and validation of software systems.
Tobias is particularly interested in everything
safety-critical, IoT security, embedded control
systems, and low-level operating system
components. He obtained a PhD from the
University of York (UK) in 2009. jantobias.
muehlberg@cs.kuleuven.be

Jo Van Bulck works as a PhD
student at imec-DistriNet,
KU Leuven (BE). His research
explores hardware-based
trusted computing from an

integrated attack and defense perspective.
He is currently the lead developer of the
open-source Sancus architecture, where he
is looking into processor design, compiler
and operating system infrastructure, and
case-study applications. More recently, his
focus expanded to investigate architectural
limitations and side-channel vulnerabilities
in commodity Intel SGX x86 processors.
Ultimately, both lines of work come together
to establish a hardware-only root-of-trust.
jo.vanbulck@cs.kuleuven.be

The recent wave of microarchitectural vulnerabilities in commodity
hardware requires us to question our understanding of system secu-
rity. We deplore that even for processor architectures and research

prototypes with an explicit focus on security, open-source designs remain the
exception. This article and call for action briefly surveys ongoing community
efforts for developing a new generation of open security architectures, for
which we collectively have a clear understanding of execution semantics and
the resulting security implications. We advocate formal approaches to reason
about the security guarantees that these architectures can provide, including
the absence of microarchitectural bugs and side-channels. We consider such
a principled approach essential in an age where society increasingly relies on
interconnected and dependable control systems. Finally, we aim to inspire
strong industrial and academic collaboration in such an engineering effort,
which we believe is too monumental to be suitably addressed by a single
enterprise or research community.

The security community has traditionally assessed the trustworthiness of applications
at the software level by reasoning about source code as if it were executed on an idealized
abstract computing platform. With the advance of hardware-level trusted computing
solutions that embed a root-of-trust directly in the hardware, it even becomes possible to
abstract away the underlying operating system and supporting software. However, a recent
line of microarchitectural attack research, with Rowhammer, Meltdown, and Spectre being
prominent examples, revealed fundamental flaws in commodity hardware. These findings
range from plain design errors to intricate side-channels and triggered an array of follow-up
research, effectively rendering the search for exploitable bugs in commodity processors a
playground for researchers who “may have, either directly or indirectly, an economic interest
in the performance of the securities of the [affected] companies” (https://amdflaws.com/),
and who may or may not act in the public interest with respect to responsible disclosure
guidelines. The key lesson to be learned from this wave of microarchitectural vulnerabilities
and the tiresome patching process is that current processors exceed our levels of under-
standing and need to be subjected to independent review and assessment.

Now, having security vulnerabilities in components that are in virtually everyone’s computer
or phone, and components that are commonly relied upon to build critical infrastructure—
think of communications networks, data centers, and cloud systems up to the power grid
and hospital equipment—is certainly worrisome. Yet, considering that computing platforms
are designed by humans, we have to face that security vulnerabilities are to some extent
inevitable. As a community, we must therefore welcome research efforts that enhance our
understanding of the attack surface and the limitations of today’s commodity computing
infrastructure, and that responsibly handle security-related findings to swiftly patch exist-
ing systems and avoid introducing similar errors in the future.

www.usenix.org FA L L 20 1 8 VO L . 4 3 , N O. 3 7

OPINION
Reflections on Post-Meltdown Trusted Computing: A Case for Open Security Processors

Reverse Engineering Is Insufficient
Conducting this kind of research is far from easy, however, as
prevalent business models of the industry hamper such efforts.
That is, today’s computing platforms are not designed to be ana-
lyzed, and intellectual property concerns commonly restrict the
freedom of end users (i.e., companies, governments, researchers,
the general public) to access hardware design internals, let alone
source code. We deplore that even for processor architectures
and research prototypes with an explicit focus on security,
 open-source designs remain the exception [1]. This situation
leaves researchers at publicly funded institutions with no choice
but to invest enormous reverse-engineering efforts before being
able to fully understand the advertised security features, iden-
tify limitations and vulnerabilities, or formally prove security
properties.

Great examples of such efforts in third-party reverse engi-
neering include the Cambridge formal models [2] of the ARM
instruction set architecture, or the fact that the most insight-
ful security analysis of Intel’s SGX trusted computing platform
comes from MIT researchers [3]. Yet, much of these efforts
need to be repeated for every academic publication that models,
investigates, or reports on vulnerabilities in closed-source com-
mercial products.

Of course, we acknowledge the importance of intellectual prop-
erty protection for market shares and revenues in the commer-
cial sector. We also acknowledge the contributions of industry
initiatives that integrate strong security features in commodity
hardware. Important achievements include secure virtualiza-
tion extensions, TPM co-processors, and enclaved execution
environments such as Intel SGX, ARM TrustZone, and AMD
SEV. However, we strongly believe that it is close to impossible for
vendors and producers to guarantee the absence of certain classes
of critical vulnerabilities in their highly complex products [4].

Bridging the Trust Gap
We therefore argue that processors in a post-Meltdown world
can no longer be considered opaque black boxes that implement
an instruction set abstraction. Hardware vendors must not
attempt to hide microarchitectural execution semantics but
instead allow these details to become part of the specification,
so that compilers and operating systems can fully take them into
account. When looking at the development of open processors,
we welcome a number of such initiatives. For example, a range
of free and open-source CPU cores are listed on opencores.org.
The RISC-V ISA (https://riscv.org/) enables processor innova-
tion through open standard collaboration, with fully open and
industry-competitive RISC-V implementations available.

What we need beyond openness, however, are CPUs with real
support for security. We have not fundamentally reconsidered
the concepts of hierarchical protection rings and virtual mem-
ory since the introduction of the Multics mainframe operating
system in 1969. Only very recently have industry and academia
developed alternative trusted computing solutions to isolate
small software components without relying on privileged system
software. As a constructive next step to bridge the trust gap
between hardware and software, we envisage enhanced proces-
sor designs that allow applications to communicate fine-grained
security constraints into the underlying CPU architecture.
This would allow microarchitects to apply suitable optimiza-
tions while preventing unintended side-channel leakage across
protection domains.

Two state-of-the-art secure processor prototypes with an explicit
focus on openness are CHERI and Sancus. The CHERI [6]
research project explores MIPS extensions for a fine-grained
memory capability model. Our own Sancus [5] processor imple-
ments open-source (https://distrinet.cs.kuleuven.be/software
/sancus/) trusted computing primitives for lightweight embed-
ded applications, such as automotive control systems [7]. Figure

Figure 1: Fine-grained intra-address space isolation paradigms. Left: Sancus [5] uses the current value of the CPU’s program counter to distinguish a pro-
tected module (hatched) from untrusted code. The module’s data memory can only be accessed when executing in the corresponding text section, which
can only be entered from a single predefined entry point. Software attestation is realized through a protected hardware storage area for metadata and cryp-
tographic keys. Right: CHERI [6] relies on a dedicated CPU register file for unforgeable memory capabilities that provide read/write/execute permissions for
individual memory regions (hatched). Flexible application protection domains are defined by deriving more restrictive capabilities at runtime.

https://distrinet.cs.kuleuven.be/software/sancus/
https://distrinet.cs.kuleuven.be/software/sancus/

8  FA L L 20 1 8 VO L . 4 3 , N O. 3 www.usenix.org

OPINION
Reflections on Post-Meltdown Trusted Computing: A Case for Open Security Processors

1 compares the CHERI and Sancus approaches to intra-address
space isolation. Compared to the legacy Multics virtual memory
paradigm, both offer a richer architectural expression of protec-
tion domain boundaries. Regarding Spectre- and Meltdown-type
speculative execution vulnerabilities, we follow the argument
of the CHERI authors [8]. A more explicit architectural notion
of protection domains that can be propagated into the microar-
chitecture has the potential to enable true hardware-software
co-design, where the security requirements of the application
constrain microarchitectural optimizations.

Importantly, with open security architectures as a prerequi-
site, dependable hardware-software co-designs can be vetted
from a formal perspective. Promising research results include
machine-checkable proofs for both functional correctness and
high-level integrity and confidentiality security properties [9],
or the application of proven-correct analysis to verify the
absence of digital side-channels in low-level assembly code.
Enhanced hardware description languages such as SecVerilog
[10] enable static information flow analysis at hardware design
time, which leads to a notion of contractual execution seman-
tics that compilers and applications can rely upon. Using this
approach, performant processors can be built, for which the
absence of timing side-channels and other undesired informa-
tion leakage is statically proven. With such trustworthy CPUs
as a basis, an especially promising avenue is to apply estab-
lished techniques in the field of software engineering to develop
dependable and highly secure trusted execution environments.

A Call for Action
Overall, we observe that vulnerabilities in software persist,
but the research community has a good understanding of how
to address these with established software engineering meth-
ods, modern programming languages, and advanced security
features in modern processors. However, we also observe that
there is a new class of widespread vulnerabilities in commod-
ity hardware ranging from plain design errors to intricate
side-channels. These vulnerabilities hamper efforts to improve
security on all layers of a system’s hardware and software stack.
In today’s world, where advanced societies increasingly rely on
the security and reliability of critical infrastructure in domains
such as the power grid, communication, transportation, and
medical infrastructure, these vulnerabilities may have disas-
trous consequences for a great many people, whether exploited
through malicious intent or triggered by accident.

We outlined one way to address these threats by relying on open
designs and formal methods to develop a new class of secure and
dependable processors. As a security community, we will benefit
from such an effort by obtaining a shared and clear understand-
ing of the protection mechanisms provided by these processors
and of how software systems can be built to make proper use
of hardware-level security primitives. It would then become
unnecessary for researchers to painstakingly reverse-engineer
microarchitectural design details as a prerequisite for exploring
new attack techniques or alternative modeling approaches. By
reaching the required level of performance while also emphasiz-
ing maintainability and rigorous availability guarantees, the
envisaged class of processors would form an ideal basis for the
design of the networked safety-critical control systems of the
future. We believe that architectures such as RISC-V, CHERI,
and Sancus present promising starting points for this highly
necessary work, and we would like to inspire and invite collabo-
ration in this field.

Acknowledgments
This research is partially funded by the Research Fund KU
Leuven. Jo Van Bulck is supported by a doctoral grant of the
Research Foundation—Flanders (FWO).

www.usenix.org FA L L 20 1 8 VO L . 4 3 , N O. 3 9

OPINION
Reflections on Post-Meltdown Trusted Computing: A Case for Open Security Processors

References
[1] P. Maene, J. Götzfried, R. De Clercq, T. Müller, F. Freiling,
and I. Verbauwhede, “Hardware-Based Trusted Computing
Architectures for Isolation and Attestation,” IEEE Transactions
on Computers, vol. 67, no. 3 (March 2018), pp. 361–374: https://
www.esat.kuleuven.be/cosic/publications/article-2750.pdf.

[2] A. Fox and M. O. Myreen, “A Trustworthy Monadic Formal-
ization of the Armv7 Instruction Set Architecture,” in Inter-
national Conference on Interactive Theorem Proving (Springer,
2010), pp. 243–258: https://www.cl.cam.ac.uk/~mom22/itp10
-armv7.pdf.

[3] V. Costan and S. Devadas, Intel SGX Explained (IACR, 2016),
p. 86: https://eprint.iacr.org/2016/086.pdf.

[4] A. Baumann, “Hardware Is the New Software,” in Proceed-
ings of the 16th Workshop on Hot Topics in Operating Systems
(ACM, 2017), pp. 132–137: https://www.microsoft.com/en-us
/research/wp-content/uploads/2017/05/baumann-hotos17.pdf.

[5] J. Noorman, J. Van Bulck, J. T. Mühlberg, F. Piessens, P.
Maene, B. Preneel, I. Verbauwhede, J. Götzfried, T. Müller, and
F. Freiling, “Sancus 2.0: A Low-Cost Security Architecture
for IoT Devices,” ACM Transactions on Privacy and Security
(TOPS), vol. 20 (August 2017), pp. 1–33: http://www.beetzsee.de
/leuven/2016-acmtops-sancus/paper.pdf.

[6] J. Woodruff, R. N. Watson, D. Chisnall, S. W. Moore, J.
Anderson, B. Davis, B. Laurie, P. G. Neumann, R. Norton, and M.
Roe, “The CHERI Capability Model: Revisiting RISC in an Age
of Risk,” in ACM SIGARCH Computer Architecture News, vol.
42, no. 3 (June 2014), pp. 457–468: https://www.cl.cam.ac.uk
/research/security/ctsrd/pdfs/201406-isca2014-cheri.pdf.

[7] J. Van Bulck, J. T. Mühlberg, and F. Piessens, “VulCAN:
Efficient Component Authentication and Software Isolation
for Automotive Control Networks,” in Proceedings of the 33rd
Annual Computer Security Applications Conference (ACSAC
’17), ACM, 2017, pp. 225–237: https://distrinet.cs.kuleuven.be
/software/sancus/publications/acsac17.pdf.

[8] R. N. Watson, J. Woodruff, M. Roe, S. W. Moore, and P. G.
Neumann, “Capability Hardware Enhanced RISC Instructions
(CHERI): Notes on the Meltdown and Spectre Attacks,” Univer-
sity of Cambridge, Computer Laboratory, Technical Report no.
916, 2018: https://www.cl.cam.ac.uk/techreports/UCAM-CL
-TR-916.pdf.

[9] A. Ferraiuolo, A. Baumann, C. Hawblitzel, and B. Parno,
“Komodo: Using Verification to Disentangle Secure-Enclave
Hardware from Software,” in Proceedings of the 26th Sympo-
sium on Operating Systems Principles (SOSP ’17), ACM, 2017,
pp. 287–305: https://www.microsoft.com/en-us/research/wp
-content/uploads/2017/10/komodo.pdf.

[10] D. Zhang, Y. Wang, G. E. Suh, and A. C. Myers, “A Hard-
ware Design Language for Timing-Sensitive Information-
Flow Security,” ACM SIGPLAN Notices, vol. 50, no. 4 (May
2015), pp. 503–516: http://www.cse.psu.edu/~dbz5017/pub
/asplos15.pdf.

https://www.esat.kuleuven.be/cosic/publications/article-2750.pdf
https://www.esat.kuleuven.be/cosic/publications/article-2750.pdf
https://www.cl.cam.ac.uk/~mom22/itp10-armv7.pdf
https://www.cl.cam.ac.uk/~mom22/itp10-armv7.pdf
https://eprint.iacr.org/2016/086.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2017/05/baumann-hotos17.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2017/05/baumann-hotos17.pdf
http://www.beetzsee.de/leuven/2016-acmtops-sancus/paper.pdf
http://www.beetzsee.de/leuven/2016-acmtops-sancus/paper.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201406-isca2014-cheri.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201406-isca2014-cheri.pdf
https://distrinet.cs.kuleuven.be/software/sancus/publications/acsac17.pdf
https://distrinet.cs.kuleuven.be/software/sancus/publications/acsac17.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-916.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-916.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2017/10/komodo.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2017/10/komodo.pdf
http://www.cse.psu.edu/~dbz5017/pub/asplos15.pdf
http://www.cse.psu.edu/~dbz5017/pub/asplos15.pdf

10  FA L L 20 1 8 VO L . 4 3 , N O. 3 www.usenix.org

SYSTEMSTxFS
Leveraging File-System Crash Consistency to Provide ACID
Transactions

Y I G E H U , Z H I T I N G Z H U , I A N N E A L , Y O U N G J I N K W O N , T I A N Y U C H E N G , V I J A Y
C H I D A M B A R A M , A N D E M M E T T W I T C H E L

Yige Hu is a PhD student at
the University of Texas at
Austin, under the supervision
of Professor Emmett Witchel.
Her research interests include

operating systems, storage, and heterogeneous
architecture. yige@cs.utexas.edu

Zhiting Zhu is a PhD student
at the University of Texas at
Austin, working with Emmett
Witchel. He is interested in
operating systems and security.

zhitingz@cs.utexas.edu

Ian Neal received his computer
science and electrical
engineering degrees from the
University of Texas at Austin in
2018. His undergraduate honors

thesis was on transaction file systems, and he
has also worked on other storage systems in
non-volatile RAM. He will be starting his PhD
program in the fall of 2018 at the University of
Michigan at Ann Arbor.
 ian.glen.neal@utexas.edu

Youngjin Kwon is a PhD
candidate at the University
of Texas at Austin under the
supervision of Professors
Emmett Witchel and Simon

Peter. His research interests lie in operating
systems, including file systems, emerging
storage and memory technologies, system
support for security, and virtualization. His
research has been recognized by VMware, and
he contributed an initial version of his research
work to VMware commercial hypervisor.
yjkwon@cs.utexas.edu

We introduce TxFS, a novel transactional file system that builds
upon a file system’s atomic-update mechanism such as journal-
ing. Although prior work has explored a number of transactional

file systems, TxFS has a unique set of properties: a simple API, portability
across different hardware, high performance, low complexity (by building
on the journal), and full ACID transactions. We port SQLite and Git to use
TxFS, and experimentally show that TxFS provides strong crash consistency
while providing equal or better performance.

Modern applications store persistent state across multiple files. Some applications split
their state among embedded databases, key-value stores, and file systems. Such applications
need to ensure that their data is not corrupted or lost in the event of a crash. Unfortunately,
existing techniques for crash consistency, such as logging or using atomic rename, result in
complex protocols and subtle bugs.

Transactions present an intuitive way to atomically update persistent state. Unfortunately,
building transactional systems is complex and error-prone, leading us to develop a novel
approach to building a transactional file system. We take advantage of a mature, well-tested
piece of functionality in the operating system: the file-system journal, which is used to
ensure atomic updates to the internal state of the file system. We use the atomicity and dura-
bility provided by journal transactions and leverage it to build ACID transactions available to
userspace transactions. Our approach greatly reduces the development effort and complexity
for building a transactional file system.

We introduce TxFS [4], a transactional file system that builds on the ext4 file system’s journ-
aling mechanism. We designed TxFS to be practical to implement and easy to use. TxFS has
a unique set of properties. It has a small implementation (5200 lines of code) by building on
the journal. It provides high performance, unlike various solutions that built a transactional
file system over a userspace database [3, 12]. It has a simple API (just wrap code in fs_tx_

begin() and fs_tx_commit()) compared to solutions like Valor [10] or TxF [8], which require
multiple system calls per transaction and can require the developer to understand imple-
mentation details like logging. It provides all ACID guarantees, unlike solutions such as CFS
[5] and AdvFS [11], which only offer some of the guarantees, and it also provides transactions
at the file level instead of at the block level, unlike Isotope [9], making several optimizations
easier to implement. Finally, TxFS does not depend on specific properties of the underlying
storage, unlike solutions such as MARS [2] and TxFlash [7].

We find that file system transactions lead naturally to a number of seemingly unrelated
file-system optimizations. For example, one of the core techniques from our earlier work,
separating ordering from durability [1], is easily accomplished in TxFS. Similarly, we find
TxFS transactions allow us to identify and eliminate redundant application I/O where
temporary files or logs are used to atomically update a file; when the sequence is simply
enclosed in a transaction and without any other changes, TxFS atomically updates the file,
maintaining functionality while eliminating the I/O to logs or temporary files, provided that
the temporary files and logs are deleted inside the transaction. As a result, TxFS improves

www.usenix.org FA L L 20 1 8 VO L . 4 3 , N O. 3 11

Tianyu Cheng received an MS
in computer science with high
honors from the University of
Texas at Austin in 2017. He is
interested in a wide range of

topics, including computer architecture and
graphics. He is currently working on GPU
architecture validation with Apple Inc.
tianyu.cheng@utexas.edu

Vijay Chidambaram is an
Assistant Professor in the
Computer Science Department
at the University of Texas
Austin. He works on distributed

systems, operating systems, and storage.
His work has resulted in patent applications
by VMware, Samsung, and Microsoft. His
research has won the SIGOPS Dennis M.
Ritchie Dissertation Award in 2016, Best Paper
Awards at FAST 2017 and 2018, and a Best
Poster at ApSys 2017. He was awarded the
Microsoft Research Fellowship in 2014 and
the University of Wisconsin-Madison Alumni
Scholarship in 2009. vijay@cs.utexas.edu

Emmett Witchel is a Professor
in Computer Science at the
University of Texas at Austin.
He received his doctorate from
MIT in 2004. He and his group

are interested in operating systems, security,
performance, and concurrency.
witchel@cs.utexas.edu

performance while simultaneously providing better crash-consistency semantics: a crash
does not leave messy temporary files or logs that need to be cleaned up.

To demonstrate the power and ease of use of TxFS transactions, we modify SQLite and Git
to incorporate TxFS transactions. We show that when using TxFS transactions, SQLite
performance on the TPC-C benchmark improves by 1.6x, and a microbenchmark that mim-
ics Android Mail obtains 2.3x better throughput. Using TxFS transactions greatly simplifies
Git’s code while providing crash consistency without performance overhead. Thus, TxFS
transactions increase performance, reduce complexity, and provide crash consistency.

We make the following contributions:

◆◆ We present the design and implementation of TxFS, a transactional file system for modern
applications built by leveraging the file-system journal (see “TxFS Design and Implementa-
tion,” below). We have made TxFS publicly available at https://github.com/ut-osa/txfs.

◆◆ We show that existing file system optimizations, such as separating ordering from durabil-
ity, can be effectively implemented for TxFS transactions (see “Accelerating Programming
Idioms with TxFS,” below).

◆◆ We show that real applications can be easily modified to use TxFS, resulting in better crash
semantics and significantly increased performance (see “Evaluation,” below).

Why Use File-System Transactions?
We describe the complexity of current protocols used by applications to update persistent
state and discuss a few case studies. We then describe the optimizations enabled by file-
system transactions.

How Applications Update State Today
Given that applications today do not have access to transactions, how do they consistently
update state to multiple storage locations? Even if the system crashes or power fails, applica-
tions need to maintain invariants across state in different files (e.g., an image file should
match the thumbnail in a picture gallery). Applications achieve this by using ad hoc protocols
that are complex and error-prone [6].

SYSTEMS
TxFS: Leveraging File-System Crash Consistency to Provide ACID Transactions

Figure 1: Different protocols used by applications to make consistent updates to persistent data

12  FA L L 20 1 8 VO L . 4 3 , N O. 3 www.usenix.org

SYSTEMS
TxFS: Leveraging File-System Crash Consistency to Provide ACID Transactions

In this section, we show how difficult it is to implement seem-
ingly simple protocols for consistent updates to storage. There
are many details that are often overlooked, like the persistence
of directory contents. With current storage technologies, these
protocols must sacrifice performance to be correct because
there is no efficient way to order storage updates. Currently,
applications use the fsync() system call to order updates to
storage [1]; since fsync() forces data to be durable, the latency of
a fsync() call varies from a few milliseconds to several seconds.
As a result, applications do not call fsync() at all the places in the
update protocol where it is necessary, leading to severe data loss
and corruption [6].

We now describe two common techniques used by applications
to consistently update storage, illustrated in Figure 1.

Atomic rename. The atomic rename approach is widely used
by editors, such as Emacs and Vim, and by GNOME applications
that need to atomically update dot configuration files. Protocol
(a) illustrates the approach: the application writes new data to
a temporary file, persists it with an fsync() call, updates the
parent directory with another fsync() call, and then renames
the temporary file over the original file, effectively causing the
directory entry of the original file to point to the temporary
file instead. Finally, to ensure that the original file has been
unlinked and deleted properly, the application calls fsync() on
the parent directory.

Logging. Protocol (b) shows another popular technique for
atomic updates, logging. In the write-ahead version of logging,
the log file is written with new contents, and both the log file
and the parent directory (with the new pointer to the log file) are
persisted. The application then updates and persists the original
file; the parent directory does not change during this step.
Finally, the log is unlinked, and the parent directory is persisted.

The situation becomes more complex when applications store
state across multiple files. Protocol (c) illustrates how the
Android Mail application adds a new email with an attachment.
The attachment is stored on the file system, while the email
message (along with metadata) is stored in the database (which
for SQLite, also resides on the file system). Since the database
has a pointer to the attachment (i.e., a file name), the attachment
must be persisted first. Persisting the attachment requires two
fsync() calls (to the file and its containing directory) [6]. It then
follows a protocol similar to protocol (b). Android mail uses six
fsync() calls to persist a single email with an attachment.

Removing fsync() calls in any of the presented protocols will
lead to data loss or corruption. For instance, in protocol (b), if
the parent directory is not persisted with an fsync() call, the log
file may disappear after a crash. If the application crashes in the
middle of updating the original file, it will not be able to recover
using the log. Many application developers avoid fsync() calls

due to the resulting decrease in performance, leading to severe
bugs that cause loss of data.

In summary, safe update protocols for stable storage are complex
and low performance. System support for file-system transac-
tions will enable high performance for these applications.

Application Case Studies
We present two examples of applications (in addition to the
previously described Android Mail) that struggle to obtain
crash consistency using primitives available today. Several
applications store data across the file system, key-value stores,
and embedded databases such as SQLite. While all of this data
ultimately resides in the file system, their APIs and performance
constraints are different, and consistently updating state across
these systems is complex and error-prone.

Apple iWork and iLife. Analysis of the storage behavior of
Apple’s home-user desktop applications finds that applica-
tions use a combination of the file system, key-value stores,
and SQLite to store data. iTunes uses SQLite to store metadata
separately from songs similar to the Android Mail application.
Apple’s Pages application uses a combination of SQLite and
key-value stores for user preferences and other metadata (two
SQLite databases and 128 .plist key-value store files). Similar to
Android Mail, these applications use fsync() to order updates
correctly.

Version control systems. Git is a widely used version control
system. The git commit command requires two file-system
operations to be atomic: a file append (logs/HEAD) and a file
rename (to a lock file). Failure to achieve atomicity results in
data loss and a corrupted repository [6].

For these applications, transactional support would lead directly
to more understandable and more efficient idioms (rather than
approaches like atomic rename used today). It is difficult for a
user-level program to efficiently provide crash-consistent trans-
actional updates using the POSIX file-system interface.

Optimizations Enabled by File-System Transactions
A transactional file-system interface enables a number of inter-
esting file-system optimizations:

Eliminate temporary durable files. A number of applications
such as Vim, Emacs, Git, and LevelDB provide reasonable crash
semantics using the atomic rename approach. But these applica-
tions can simply enclose writes inside a transaction and avoid
making an entire copy of the file. For large files, the difference
in performance can be significant. Additionally, transactions
eliminate the clutter of temporary files orphaned by a crash.

Group commit. Transactions can buffer file-system updates
in memory and submit updates to storage as a batch. Batching

www.usenix.org FA L L 20 1 8 VO L . 4 3 , N O. 3 13

SYSTEMS
TxFS: Leveraging File-System Crash Consistency to Provide ACID Transactions

updates enables efficient allocation of file-system data struc-
tures and better device-level scheduling. Without user-provided
transaction boundaries, the file system provides uniform, best-
effort persistence for all updates.

Eliminate redundant I/O within transactions. Workloads
often contain redundancy; for example, files are often updated
several times at the same offset, or a file is created, written, read,
and unlinked. Because the entire transaction is visible to the file
system at commit time, it can eliminate redundant work.

Consolidate I/O across transactions. Transactions often
update data written by prior transactions. When a workload
anticipates data in its transaction will be updated by another
transaction shortly, it can prioritize throughput over latency.
Committing a transaction with a special flag allows the system
to delay a transaction commit, anticipating that the data will be
overwritten, and then it can be persisted once instead of twice.
Optimizing multiple transactions, especially from different
applications, is best done by the operating system, not by an
individual application.

Separate ordering from durability. When ending a trans-
action, the programmer can specify whether the transaction
should commit durably. If so, the call blocks until all updates
specified by the transaction have been written to a persistent
journal. If we commit non-durable transaction A and then
start non-durable transaction B, then A is ordered before B, but
neither is durable. A subsequent transaction (e.g., C) can specify
that it and all previous transactions should be made durable.
Thus, we can use transactions to gain the benefit of splitting
sync into ordering sync (osync) and durability sync (dsync) [1].

TxFS Design and Implementation
TxFS avoids the pitfalls from earlier transactional file systems.
It has a simple API, provides complete ACID guarantees, does
not depend on specific hardware, and takes advantage of the file-
system journal and how the kernel is implemented to achieve a
small implementation.

API
A simple API was one of the key goals of TxFS. Thus, TxFS
provides developers with only three system calls: fs_tx_begin(),
which begins a transaction; fs_tx_commit(), which ends a
transaction and attempts to commit it; and fs_tx_abort(),
which discards all file-system updates contained in the current
transaction. On commit, all file-system updates in the TxFS
transaction are persisted in an atomic fashion—after a crash,
users see all of the transaction updates or none of them. This
API significantly simplifies application code and provides clean
crash semantics, since temporary files or partially written logs
will not need to be cleaned up after a crash.

fs_tx_commit() returns a value indicating whether the transaction
was committed successfully, or if it failed, why it failed. A transac-
tion can fail for several reasons, including a conflict with another
transaction or not enough storage resources. Depending on the
error code, the application can choose to retry the transaction.

A user can surround any sequence of file-system-related system
calls with fs_tx_begin() and fs_tx_commit(), and the system will
execute those system calls in a single transaction. This interface is
easy for programmers to use and makes it simple to incrementally
deploy file-system transactions into existing applications. In con-
trast, some transactional file systems, such as Window’s TxF and
Valor, have far more complex, difficult-to-use interfaces.

Figure 2: TxFS relies on ext4’s own journal for atomic updates and maintains local copies of in-memory data structures, such as inodes, directory entries,
and pages, to provide isolation guarantees. At commit time, the local operations are made global and durable.

14  FA L L 20 1 8 VO L . 4 3 , N O. 3 www.usenix.org

SYSTEMS
TxFS: Leveraging File-System Crash Consistency to Provide ACID Transactions

TxFS isolates file-system updates only. The application is still
responsible for synchronizing access to its own user-level data
structures. A transactional file system is not intended to be
an application’s sole concurrency control mechanism; it only
coordinates file-system updates that are difficult to coordinate
without transactions.

Atomicity and Durability
Most modern Linux file systems have an internal mechanism for
atomically updating multiple blocks on storage. These mecha-
nisms are crucial for maintaining file-system crash consistency,
and thus have well-tested and mature implementations. TxFS
takes advantage of these mechanisms to obtain three of the
ACID properties: atomicity, consistency, and durability.

TxFS builds upon the ext4 file system’s journal. The journal
provides the guarantee that each journal transaction is applied
to the file system in an atomic fashion. TxFS can be built upon
any file system with a mechanism for atomic updates such as
copy-on-write. TxFS guarantees atomicity by ensuring that all
operations in a user transaction are added to a single local jour-
nal transaction, and it persists the journal transaction to ensure
durability.

Isolation and Conflict Detection
Although the ext4 journal provides atomicity and durability,
it does not provide isolation. To provide isolation, TxFS has to
ensure that all operations performed inside a transaction are not
visible to other transactions or the rest of the system until com-
mit time. Adding isolation for file-system data structures in the
Linux kernel is challenging because a large number of functions
all over the kernel modify file-system data structures without
using a common interface. In TxFS, we tailor our approach to
isolation for each data structure to simplify the implementation.

Split file-system functions. System calls such as write() and
open() execute file-system functions that often result in alloca-
tion of file-system resources such as data blocks and inodes.
TxFS splits such functions into two parts: file-system allocation
and in-memory structures. TxFS moves file-system allocation
to the commit point. In-memory changes execute as part of the
system call, and they are kept private to the transaction.

Transaction-private copies. TxFS makes transaction-private
copies of all kernel data structures modified during the trans-
action. File-system-related system calls inside a transaction
operate on these private copies, allowing transactions to read
their own writes. For example, directory entries updated by the
transaction are modified to point to a local inode that maintains
a local radix tree with locally modified pages. In case of abort,
these private copies are discarded; in case of commit, these
private copies are carefully applied to the global state of the file
system in an atomic fashion.

Two-phase commit. TxFS transactions are committed using
a two-phase commit protocol. TxFS first obtains a lock on all
relevant file-system data structures using a total order that fol-
lows the existing file-system conventions, so that deadlocks are
avoided.

Conflict detection. Conflict detection is a key part of providing
isolation. Since allocation-related structures such as bitmaps
are not modified until commit time, they cannot be modified by
multiple transactions at the same time and do not give rise to
conflicts; as a result, TxFS avoids false conflicts involving global
allocation structures.

Conflict detection is challenging because many file-system
data structures are modified all over the Linux kernel without a
standard interface. TxFS eagerly detects conflicts on data pages,
taking advantage of the structured kernel API for page manage-
ment. It lazily detects conflicts on directory entries and file
metadata structures, quickly detecting at commit time whether
these structures have been updated.

Summary. Figure 2 shows how TxFS uses ext4’s journal
for atomically updating operations inside a transaction and
maintaining local state to provide isolation guarantees. File
operations inside a TxFS transaction are redirected to the trans-
action’s locally copied data structures, hence they do not affect
the file system’s global state, while being observable by subse-
quent operations in the same transaction. Only after a TxFS
transaction finishes its commit (by calling fs_tx_commit()) will
its modifications be globally visible.

Limitations
TxFS has two main limitations. First, the maximum size of a
TxFS transaction is limited to one-fourth the size of the journal
(the maximum journal transaction size allowed by ext4). We
note that the journal can be configured to be as large as required.
Multi-gigabyte journals are common today. Second, although
parallel transactions can proceed with ACID guarantees, each
transaction can only contain operations from a single process.
Transactions spanning multiple processes are future work.

 Accelerating Programming Idioms with TxFS
We explore a number of programming idioms where a trans-
actional API can improve performance because transactions

Workload FS TX

Create/unlink/sync 37.35s 0.28s (133x)

Logging  5.09s 4.23s (1.20x)

Ordering work  2.86it/s 3.96it/s (1.38x)

Table 1: Programming idioms sped up by TxFS transactions. Performance
is measured in seconds (s) and iterations per second (it/s). Speedups for
the transaction case are reported in parentheses.

www.usenix.org FA L L 20 1 8 VO L . 4 3 , N O. 3 15

SYSTEMS
TxFS: Leveraging File-System Crash Consistency to Provide ACID Transactions

provide the file system a sequence of operations that can be
optimized as a group. Whole transaction optimization can result
in dramatic performance gains because the file system can
eliminate temporary durable writes (such as the creation, use,
and deletion of a log file). In some cases, we show that benefits
previously obtained by new interfaces (such as osync [1]) can be
obtained easily with transactions.

Eliminating File Creation
When an application creates a temporary file, syncs it, uses it,
and then unlinks it (e.g., logging shown in Figure 1b), enclosing
the entire sequence in a transaction allows the file system to
optimize out the file creation and all writes while maintaining
crash consistency.

The create/unlink/sync workload spawns six threads (one per
core) where each thread repeatedly creates a file, unlinks it,
and syncs the parent directory. Table 1 shows that placing the
operation within a transaction increases performance by 133x
because the transaction completely eliminates the workload’s
I/O. While this test is an extreme case, we next look at using
transactions to automatically convert a logging protocol into a
more efficient update protocol.

Eliminating Logging I/O
Figure 1b shows the logging idiom used by modern applications
to achieve crash consistency. Enclosing the entire protocol
within a transaction allows the file system to transparently
optimize this protocol into a more efficient direct modification.
During a TxFS transaction, all sync-family calls are functional
NOPs. Because the log file is created and deleted within the
transaction, it does not need to be made persistent on transac-
tion commit. Eliminating the persistence of the log file greatly
reduces the amount of user data but also file system metadata
(e.g., block and inode bitmaps) that must be persisted.

Table 1 shows execution time for a microbenchmark that writes
and syncs a log, and a version that encloses the entire protocol
in a single TxFS transaction. Enclosing the logging protocol
within a transaction increases performance by 20% and cuts the
amount of I/O performed in half because the log file is never per-
sisted. Rewriting the code increases performance by 55% (3.28
seconds, not shown in the table). In this case, getting the most

performance out of transactions requires rewriting the code
to eliminate work that transactions make redundant. But even
without a programmer rewrite, just adding two lines of code
to wrap a protocol in a transaction achieves 47% of the perfor-
mance of doing a complete rewrite.

Optimizing SQLite logging with TxFS. Just enclosing the
logging activity of SQLite in its default mode (Rollback) within a
transaction increases performance for updates by 14%. Modi-
fying the code to eliminate the logging work that transactions
make redundant increases the performance for updates to 31%,
in part by reducing the number of system calls 2.5x.

Separating Ordering and Durability
Table 1 shows throughput for a workload that creates three 10
MB files and then updates 10 MB of a separate 40 MB file. The
user would like to create the files first, then update the data file.
This type of ordering constraint often occurs in systems like Git
that create log files and other files that hold intermediate state.

The first version uses fsync() to order the operations, while the
second uses transactions that allow the first three file create
operations to execute in any order, but they are all serialized
behind the final data update transaction using flags to fs_tx_

begin() and fs_tx_commit(). The transactional approach has
38% higher throughput because the ordering constraints are
decoupled from the persistence constraints. Our previous work
that first distinguished ordering from persistence required
adding modified sync system calls [1], but TxFS can achieve the
same result with transactions.

Evaluation
We evaluate the performance and durability guarantees of
TxFS on a variety of microbenchmarks and real workloads. The
microbenchmarks help point out how TxFS achieves specific
design goals. The larger benchmarks validate that transactions
provide stronger crash semantics and improved performance
for a variety of large applications with minimal porting effort.
For example, we modified SQLite to use TxFS transactions
and measured its performance improvement. Table 2 presents
a summary of the different experiments used to evaluate TxFS
and the speedup obtained in each experiment. In the Git experi-
ment, TxFS provides strong crash-consistency guarantees (no
need for post-crash manual Git recovery) without degrading per-
formance. Note that if not explicitly mentioned, all our baselines
run on ext4 in its default ordered journaling mode. For more
details please refer to the original publication [4].

Conclusion
We present TxFS, a transactional file system built with lower
development effort than previous systems by leveraging the file-
system journal. TxFS is easy to develop, is easy to use, and does

Experiment TxFS Benefit Speed

Single-threaded SQLite Faster I/O path, less sync 1.31x

TPC-C Faster I/O path, less sync 1.61x

Android Mail Cross abstraction tx 2.31x

Git Better crash semantics 1.00x

Table 2: The table summarizes the micro- and macro-benchmarks used to
evaluate TxFS and the speedup obtained in each experiment.

16  FA L L 20 1 8 VO L . 4 3 , N O. 3 www.usenix.org

SYSTEMS
TxFS: Leveraging File-System Crash Consistency to Provide ACID Transactions

not have significant overhead for transactions. We show that
using TxFS transactions increases performance significantly
for a number of different workloads.

Transactional file systems have not been successful for a variety
of reasons. TxFS shows that it is possible to avoid the mistakes
of the past and build a transactional file system with low com-

plexity. We believe that file-system transactions, given their
power and flexibility, should be examined again by file-system
researchers and developers. Adopting a transactional interface
would allow us to borrow decades of research on optimizations
from the database community while greatly simplifying the
development of crash-consistent applications.

References
[1] V. Chidambaram, T. S. Pillai, A. C. Arpaci-Dusseau, and
R. H. Arpaci-Dusseau, “Optimistic Crash Consistency,” in
Proceedings of the 24th ACM Symposium on Operating Systems
Principles (SOSP ’13), pp. 228–243: http://research.cs.wisc.edu
/adsl/Publications/optfs-sosp13.pdf.

[2] J. Coburn, T. Bunker, M. Schwarz, R. Gupta, and S. Swan-
son, “From ARIES to MARS: Transaction Support for Next-
Generation, Solid-State Drives,” in Proceedings of the 24th ACM
Symposium on Operating Systems Principles (SOSP ’13), pp.
197–212: https://cseweb.ucsd.edu/~swanson/papers/SOSP2013
-MARS.pdf.

[3] N. H. Gehani, H. V. Jagadish, and W. D. Roome, “OdeFS:
A File System Interface to an Object-Oriented Database,” in
Proceedings of the 20th Very Large Databases Conference (VLDB
1994), pp. 249–260: http://www.vldb.org/conf/1994/P249.pdf.

[4] Y. Hu, Z. Zhu, I. Neal, Y. Kwon, T. Cheng, V. Chidambaram,
and E. Witchel, “TxFS: Leveraging File-System Crash Consis-
tency to Provide ACID Transactions,” 2018 USENIX Annual
Technical Conference (USENIX ATC ’18).

[5] C. Min, W.-H. Kang, T. Kim, S.-W. Lee, and Y. I. Eom, “Light-
weight Application-Level Crash Consistency on Transactional
Flash Storage,” in Proceedings of the 2015 USENIX Annual
Technical Conference (USENIX ATC ’15), pp. 221–234: https://
www.usenix.org/system/files/conference/atc15/atc15-paper
-min.pdf.

[6] T. S. Pillai, V. Chidambaram, R. Alagappan, S. Al-Kiswany,
A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “All File
Systems Are Not Created Equal: On the Complexity of Craft-
ing Crash-Consistent Applications,” in Proceedings of the 11th
Symposium on Operating Systems Design and Implementation

(OSDI ’14), pp. 433–448: https://www.usenix.org/system/files
/conference/osdi14/osdi14-paper-pillai.pdf.

[7] V. Prabhakaran, T. L. Rodeheffer, and L. Zhou, “Transac-
tional Flash,” in Proceedings of the 8th USENIX Symposium on
Operating Systems Design and Implementation (OSDI ’08), pp.
147–160: https://www.usenix.org/legacy/events/osdi08/tech
/full_papers/prabhakaran/prabhakaran.pdf.

[8] M. E. Russinovich, D. A. Solomon, and J. Allchin, Microsoft
Windows Internals: Microsoft Windows Server 2003, Windows
XP, and Windows 2000, 4th edition (Microsoft Press, 2005).

[9] J.-Y. Shin, M. Balakrishnan, T. Marian, and H. Weather-
spoon, “Isotope: Transactional Isolation for Block Storage,” in
Proceedings of the 14th USENIX Conference on File and Storage
Technologies (FAST ’16), pp. 23–37: https://www.usenix.org
/system/files/conference/fast16/fast16-papers-shin.pdf.

[10] R. P. Spillane, S. Gaikwad, M. Chinni, E. Zadok, and C. P.
Wright, “Enabling Transactional File Access via Lightweight
Kernel Extensions,” in Proceedings of the 7th USENIX Confer-
ence on File and Storage Technologies (FAST ’09), pp. 29–42:
https://www.usenix.org/legacy/event/fast09/tech/full_papers
/spillane/spillane.pdf.

[11] R. Verma, A. A. Mendez, S. Park, S. S. Mannarswamy, T.
Kelly, and C. B. Morrey III, “Failure-Atomic Updates of Applica-
tion Data in a Linux File System,” in Proceedings of the 13th
USENIX Conference on File and Storage Technologies (FAST ’15),
pp. 203–211: https://www.usenix.org/system/files/conference
/fast15/fast15-paper-verma.pdf.

[12] C. P. Wright, R. Spillane, G. Sivathanu, E. Zadok, “Extend-
ing ACID Semantics to the File System,” ACM Transactions on
Storage (TOS), vol. 3, no. 2 (May 2007), pp. 1–40: http://www.fsl
.cs.stonybrook.edu/docs/amino-tos06/amino.pdf.

http://research.cs.wisc.edu/adsl/Publications/optfs-sosp13.pdf
http://research.cs.wisc.edu/adsl/Publications/optfs-sosp13.pdf
https://cseweb.ucsd.edu/~swanson/papers/SOSP2013-MARS.pdf
https://cseweb.ucsd.edu/~swanson/papers/SOSP2013-MARS.pdf
http://www.vldb.org/conf/1994/P249.pdf
https://www.usenix.org/system/files/conference/atc15/atc15-paper-min.pdf
https://www.usenix.org/system/files/conference/atc15/atc15-paper-min.pdf
https://www.usenix.org/system/files/conference/atc15/atc15-paper-min.pdf
https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-pillai.pdf
https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-pillai.pdf
https://www.usenix.org/legacy/events/osdi08/tech/full_papers/prabhakaran/prabhakaran.pdf
https://www.usenix.org/legacy/events/osdi08/tech/full_papers/prabhakaran/prabhakaran.pdf
https://www.usenix.org/system/files/conference/fast16/fast16-papers-shin.pdf
https://www.usenix.org/system/files/conference/fast16/fast16-papers-shin.pdf
https://www.usenix.org/legacy/event/fast09/tech/full_papers/spillane/spillane.pdf
https://www.usenix.org/legacy/event/fast09/tech/full_papers/spillane/spillane.pdf
https://www.usenix.org/system/files/conference/fast15/fast15-paper-verma.pdf
https://www.usenix.org/system/files/conference/fast15/fast15-paper-verma.pdf
http://www.fsl.cs.stonybrook.edu/docs/amino-tos06/amino.pdf
http://www.fsl.cs.stonybrook.edu/docs/amino-tos06/amino.pdf

www.usenix.org FA L L 20 1 8 VO L . 4 3 , N O. 3 17

SYSTEMS

SOCK: Serverless-Optimized Containers
E D W A R D O A K E S , L E O N Y A N G , D E N N I S Z H O U , K E V I N H O U C K , T Y L E R C A R A Z A - H A R T E R ,
A N D R E A C . A R P A C I - D U S S E A U , A N D R E M Z I H . A R P A C I - D U S S E A U

Serverless computing is becoming increasingly popular as a way to
avoid paying for idle periods and gracefully handle load spikes. Server-
less platforms typically use containers to isolate lambda instances.

General-purpose container systems such as Docker, however, are not well
suited to serverless sandboxing and introduce unnecessary startup costs. In
this work, we analyze the tradeoffs offered by alternative containerization
primitives and use our findings to build a lean container system, SOCK, opti-
mized for serverless workloads. Replacing Docker with SOCK in the Open-
Lambda serverless platform results in an 18x speedup.

The effort to maximize developer velocity has greatly influenced the way programmers write
and run their code. Developers are writing code in higher-level languages, such as JavaScript
and Python, and reusing libraries when possible in order to avoid memory management
details and the re-implementation of common logic. Developers are also decomposing their
applications into cooperating microservices, easing maintenance burdens and making incre-
mental development simpler.

Containers are an increasingly popular way to deploy these microservices. Instead of virtual-
izing low-level resources (e.g., network interfaces), containers virtualize high-level resources
(e.g., port numbers). Containers thus serve as a lightweight alternative to virtual machines,
providing each microservice with a virtualized environment and eliminating the need to
provision a different operating system for each microservice.

Recently, serverless computation has emerged as a new style of cloud platform that integrates
a common development approach (application decomposition) with a popular deployment
strategy (auto-scaling containers). In various serverless offerings, such as AWS Lambda
[3], developers decompose their applications into handlers, called lambdas, that execute
in response to web requests or other events. Lambda instances execute inside sandboxes
(typically containers) and automatically scale up or down based on load. Leaving both the
runtime and autoscaling to the platform, developers no longer need to manage servers them-
selves, hence the name “serverless.” New instances are provisioned quickly (often in less
than a second), and tenants are only billed during the handling of events, making serverless
ideal for load bursts as well as cost savings during application idleness.

The Problem. While high-level languages, reusable libraries, containers, and serverless
platforms all improve developer velocity, these approaches also create new infrastructure
problems by making process cold-start more frequent and expensive. Languages like Python
and JavaScript require heavy runtimes, making startup over 10x slower than launching
an equivalent C program [1]. Reusing code introduces further startup latency from library
loading and initialization [4]. Running microservices in separate containers, rather than just
separate processes, introduces a variety of additional initialization overheads [7]. Server-
less computing multiplies these costs: if a monolithic application is decomposed to N lambda
handlers, startup frequency is similarly amplified.

Edward Oakes holds a BS from
the University of Wisconsin-
Madison in computer science
and is an incoming PhD student
at the University of California-

Berkeley. As an undergraduate, he was advised
by professors Andrea and Remzi Arpaci-
Dusseau and is a primary contributor to the
OpenLambda project. oakes@cs.wisc.edu

Leon Yang received his
bachelor’s degree from the
University of Wisconsin-
Madison, where he is currently
pursuing a master’s degree in

computer science. Professor Remzi Arpaci-
Dusseau is his adviser. He will be working as
a software engineering intern at Facebook
this summer and is a contributor to the
OpenLambda project. gyang48@wisc.edu

Dennis Zhou is a recent MS
graduate from the University of
Wisconsin-Madison. He was
advised by Andrea and Remzi
Arpaci-Dusseau and worked on

OpenLambda at the Microsoft Gray Systems
Lab. This summer, he is joining Facebook
as a Software Engineer working on Linux.
dennisszhou@gmail.com

Kevin Houck is a recent
Bachelor of Science graduate
in computer science at the
University of Wisconsin-
Madison. He was advised by

Professor Aditya Akella and has previously
contributed to OpenLambda. This summer
he will be continuing ongoing research in
serverless computing and this fall will join
Amazon as a Software Engineer.
houck@cs.wisc.edu

18  FA L L 20 1 8 VO L . 4 3 , N O. 3 www.usenix.org

SYSTEMS

Tyler Caraza-Harter completed
his PhD at the University of
Wisconsin-Madison in 2016,
where he was advised by
professors Andrea C. Arpaci-

Dusseau and Remzi H. Arpaci-Dusseau and
did research on containers and serverless
computing. After graduation, he worked on
Azure SQL at Microsoft Gray Systems Lab,
and is returning this fall to UW-Madison as
an instructor. Tyler is actively involved in two
open-source projects, the Pivot Libre project
for preferential voting (https://github.com/
pivot-libre) and the OpenLambda project
(https://github.com/open-lambda). 
tylerharter@gmail.com

Andrea Arpaci-Dusseau is a
Full Professor of Computer
Sciences at the University
of Wisconsin-Madison.
She is an expert in file and

storage systems, having published more
than 80 papers in this area, co-advised 24
PhD students, and received 11 best paper
awards; for her research contributions, she
was recently recognized with a UW-Madison
Vilas Mid-Career Investigator award. She also
created a service-learning course in which
UW-Madison students teach CS to more
than 200 elementary-school children each
semester. dusseau@cs.wisc.edu

Remzi Arpaci-Dusseau is a
Full Professor in the Computer
Sciences Department at the
University of Wisconsin-
Madison. He co-leads a

group with his wife, Professor Andrea
Arpaci-Dusseau. They have graduated 24
PhD students in their time at Wisconsin,
won 11 best-paper awards, and some of their
innovations now ship in commercial systems
and are used daily by millions of people. Remzi
has won the SACM Student Choice Professor
of the Year award four times, the Carolyn
Rosner “Excellent Educator” award, and the
UW-Madison Chancellor’s Distinguished
Teaching Award. Chapters from a freely
available OS book he and Andrea co-wrote,
found at http://www.ostep.org, have been
downloaded millions of times in the past few
years. remzi@cs.wisc.edu

Why, exactly, is it so slow to start containerized Python programs that have dependencies?

In order to answer that question, we embark on two performance analysis studies. First, we
take a look at Linux containers, which are typically based on Linux namespaces and other
abstractions. By instrumenting the kernel and isolating specific aspects of containerization
(e.g., container storage), we identify several bottlenecks. For example, network namespaces
are not scalable due to a single large lock in the kernel, leading to long latencies when many
containers are created concurrently. Second, we study how Python programs use libraries in
an analysis of 876K Python projects scraped from GitHub and 101K unique packages down-
loaded from the popular PyPI repository. We find that many popular packages take 100 ms to
import, and installing them can take seconds.

We leverage the findings from these two studies to build a new special-purpose container
system, SOCK (roughly for serverless optimized containers), that streamlines cold-start
initialization for Python code that has library dependencies. We integrate SOCK with the
OpenLambda serverless platform [5] to support modern development patterns, without
incurring excessive startup latencies. SOCK uses lightweight isolation primitives, avoid-
ing the performance bottlenecks identified in our Linux primitive study, to achieve an 18x
speedup over the general-purpose Docker container system. SOCK also provisions new
containers using a new approach that generalizes zygote initialization, a strategy introduced
by Android for Java processes.

In an image-resizing case study, these strategies help SOCK reduce cold-start platform over-
heads by 2.8x and 5.3x relative to the AWS Lambda and OpenWhisk serverless platforms,
respectively.

More results from our two performance studies and details about SOCK can be found in [9].

Breaking Down Container Performance
Namespaces are the key abstraction in Linux for logically isolating resources. Namespaces
virtualize resources by allowing different containers to use the same virtual name, mapped
to distinct physical resources on the host. For example, network namespaces allow different
containers to use the same virtual port number (e.g., 80), backed by different physical ports
on the host (e.g., 8080 and 8081). Similarly, mount namespaces give containers access to their
own virtual file system roots, backed by different physical directories in the host. Linux also
provides namespaces for UTS, IPC, PID, and other resources.

An unshare system call allows a process to create and switch to a new set of namespaces.
Arguments to unshare allow careful selection of which resources need new namespaces.
Namespaces are automatically reaped when the last process using them exits.

The flexibility of unshare allows us to study the performance and scalability of the various
namespaces, used independently or in conjunction. Combining the performance numbers
with measurements from kernel instrumentation revealed two scalability bottlenecks, in the
network and mount namespaces.

During creation of a network namespace, Linux iterates over all existing namespaces while
holding a global lock, searching for namespaces that should be notified of the configura-
tion change. Thus, costs increase proportionally as more namespaces are created. Network
namespaces are the primary bottleneck preventing high throughput of concurrent calls to
unshare.

Figure 1 shows the impact of network namespaces on overall creation/deletion through-
put (i.e., with five namespaces). With unmodified network namespaces, throughput peaks at
about 200 c/s (containers/second). With minor optimizations (disabling IPv6 and eliminating

SYSTEMS
SOCK: Serverless-Optimized Containers

www.usenix.org FA L L 20 1 8 VO L . 4 3 , N O. 3 19

SYSTEMS
SOCK: Serverless-Optimized Containers

the costly broadcast code), it is possible to churn over 400 c/s.
However, eliminating network namespaces entirely provides
throughput of 900 c/s.

In contrast to network namespaces, it is possible to concurrently
create many mount namespaces. However, mount namespaces
scale poorly with the number of preexisting mount points on
the host, as each new mount namespace starts as a copy of the
host’s mount points. Figure 2 illustrates this problem: if there
are few mount points on the host, we can create nearly 1500
mount namespaces per second. However, as the number of host
mounts grows large, the rate at which namespaces can be cloned
approaches zero.

Implications. The unshare system call provides significant
flexibility over which namespaces are used for containers.
Depending on the use case, not every namespace may be neces-
sary, so costly namespaces (e.g., those for the network and mount
points) should be avoided when possible. Network namespaces
are useful for servers that listen on a port, but are less appli-
cable for serverless lambdas that take input from the framework
and typically run behind a Network Address Translation layer.
Mount namespaces provide a flexible mechanism for exposing
specific host mount points inside a container, but in simpler
scenarios, the older chroot Linux system call may be a better
option for isolating the file system. Using chroot is essentially
free, with calls taking less than one microsecond.

The Cost of Reusing Code
Even if lambdas are executed in lightweight sandboxes, reusing
code by relying on various packages can make cold start slow,
because the libraries must be re-imported and initialized every
time lambda instances are rebalanced or scale up [10].

In order to understand these library-related costs, we scrape
and analyze 876K Python projects from GitHub. We expect that
few of these applications currently run as lambdas; however,

our goal is to identify potential obstacles that may prevent them
from being ported to lambdas in the future. We extract likely
dependencies in the projects on packages in the popular Python
Package Index (PyPI) repository, resolving naming ambiguity in
favor of more popular packages. We find that 36% of imports are
to just 20 popular packages, shown along the x-axis in Figure 3.

If one of these package is being used for the first time (by a
lambda instance or in some other scenario), it will be neces-
sary to download the package over the network (possibly from a
nearby mirror), install it to local storage, and import the library
to Python bytecode. Some of these steps may be skipped upon
subsequent execution, depending on the platform. Figure 3
shows these costs for each of the packages. Fully initializing a
package takes 1 to 13 seconds. Every part of the initialization is
expensive on average: downloading takes 1.6 seconds, installing
takes 2.3 seconds, and importing takes 107 ms.

Implications. Many modern applications, such as Gmail,
regularly experience request latency in the tens of milliseconds
(including Internet RTT) [5]. If such applications are ported to
serverless platforms, even the smallest library-initialization cost
(i.e., importing) will dominate, to say nothing of download and
install costs that could be necessary. Circumventing these over-
heads will be key to making serverless a viable option to such
latency-sensitive applications.

Serverless Containers
We now describe our design and implementation of SOCK, a con-
tainer system optimized for use in serverless platforms. SOCK
carefully avoids the bottlenecks identified in our analysis of con-
tainer performance. We integrate SOCK with the OpenLambda
serverless platform, replacing general-purpose Docker contain-
ers as the primary sandboxing mechanism for OpenLambda. We
use additional pools of SOCK containers to construct a caching
system that helps lambda instances avoid the startup latencies
identified in our study of Python libraries.

Figure 1: Network namespaces Figure 2: Mount namespaces

20  FA L L 20 1 8 VO L . 4 3 , N O. 3 www.usenix.org

SYSTEMS
SOCK: Serverless-Optimized Containers

Lean Containers
Figure 4 shows how SOCK efficiently and securely creates con-
tainers without requiring costly mount or network namespaces.
An init process (“P:init”) calls unshare to create the necessary
namespaces. A second helper process (“P:helper”) joins the
namespaces later and is responsible for forwarding events and
requests to the lambda handler.

Provisioning container storage involves first populating a
directory on the host to use as a container root. SOCK stitches
together a root directory using several bind mounts. A bind
mount efficiently makes a directory at one location in the host
file system appear at a second location. SOCK first bind mounts
a base directory (“F:base”) containing an Ubuntu installation
as read-only to serve as a container root; we can afford to back
this by a RAM disk as every handler is required to use the same
base. A directory used for package caching (“F:packages”) is then
mounted over the base, as described later. The same base and
packages are read-only shared in every container. SOCK finally
binds handler code (“F: λ code”) as read-only and a scratch
directory (“F:scratch”) as writable in every container.

The initial processes running in the container (i.e., “P:init” and
“P:helper” in Figure 4) call chroot to use the populated directory
as the container’s root file system. We do not require other host
mounts in the container, so SOCK avoids the costly creation of a
new mount namespace for the container.

The scratch-space mount of every SOCK container contains a
UNIX domain socket (the black pentagon in Figure 4) that is
used for communication between the OpenLambda manager
and processes inside the container. Event and request payloads
received by OpenLambda are forwarded over this channel. Thus,
lambda instances do not need to listen for input on network
ports, so we avoid using poor-scaling network namespaces.

 Generalized Zygotes
Zygote provisioning is a technique where new processes are
started as forks of an initial process, the zygote, that has already
pre-imported various libraries likely to be needed by applications.
Linux’s copy-on-write sharing reduces the memory consumption
of the forked child processes and saves them from all needing to
perform the same library initialization work. Zygotes were first
introduced on Android systems for Java applications [4].

We implement a more general zygote-provisioning strategy for
SOCK. Specifically, SOCK zygotes differ as follows: (1) the set
of pre-imported packages is determined at runtime based on
usage; (2) SOCK scales to very large package sets by maintaining
multiple zygotes with different pre-imported packages; (3) provi-
sioning is fully integrated with containers; and (4) processes are
not vulnerable to malicious packages they did not import.

The key challenge to using zygotes for SOCK is integration with
containers. We do not trust either lambda handler code, or the
package code that handlers may import, so both zygote pro-
cesses and handlers are containerized. Landing a forked child
process in a new container, distinct from the container housing
the zygote process, requires a non-trivial relocation protocol
described in detail in [9].

Serverless Caching
We use SOCK to build a three-tier caching system for Open-
Lambda, shown in Figure 5. First, a handler cache maintains idle
handler containers in a paused state; the same approach is taken
by AWS Lambda [3]. Paused containers cannot consume CPU,
and unpausing is faster than creating a new container; however,
paused containers consume memory, so SOCK limits total con-
sumption by evicting paused containers from the handler cache
on an LRU basis.

Figure 3: Package initialization costs Figure 4: Lean containers

www.usenix.org FA L L 20 1 8 VO L . 4 3 , N O. 3 21

SYSTEMS
SOCK: Serverless-Optimized Containers

Second, an install cache contains a large, static set of pre-
installed packages on disk. This installation is mapped read-
only into every container for safety. Some of the packages may
be malicious, but they do no harm unless a handler chooses to
import them.

Third, an import cache is used to manage zygotes. We have
already described a general mechanism for creating many
zygote containers, with varying sets of packages pre-imported.
However, zygotes consume memory, and package popularity
may shift over time, so SOCK decides the set of zygotes available
based on the import-cache policy.

In addition to deciding when to add or remove entries from the
cache, the import-cache policy needs to decide which zygote
to use as the parent from which to fork a child process to serve
as the lambda instance. In this regard, the SOCK cache is
fundamentally different from traditional caches. Lookup in a
traditional cache returns in a hit or miss. SOCK caches never
miss and always return one or more hits. Even in the worst case,
SOCK can provision a new process by forking a simple Python
interpreter with no libraries pre-imported. Or, in the more useful
case, there may be multiple zygotes, with varying subsets of the
necessary packages pre-imported.

In general, SOCK attempts to choose a zygote that pre-imports a
larger subset of the required libraries. This minimizes the num-
ber of libraries that a child must import after it is forked from the
parent zygote.

One tempting policy to improve performance when possible is to
choose zygotes that import a superset of the packages needed by
a handler. The child process would then need to import noth-
ing after it is forked. However, we assume the packages may be
malicious; pre-importing a library that a handler does not want
would expose the handler to a new threat. Thus, for safety, SOCK
only chooses zygotes that have imported subsets of the required
packages.

Performance Comparisons
We now evaluate the performance of SOCK’s lean containers
relative to Docker-based OpenLambda and other platforms.

SOCK avoids many of the expensive operations, such as network
namespaces, necessary to construct a general-purpose con-
tainer. In order to evaluate the benefit of lean containerization,
we concurrently invoke no-op lambdas on OpenLambda, using
either Docker or SOCK as the container engine. We disable all
SOCK caches and zygote preinitialization. We run this experi-
ment on two machines, a package mirror and an OpenLambda
worker. The machines have 8-core 2.0 GHz Xeon D-1548 proces-
sors and 64 GB of RAM. We allocate 5 GB of memory for the
handler cache and 25 GB for the import cache.

Figure 6 shows the request throughput and average latency as
we vary the number of concurrent outstanding requests. SOCK
is strictly faster on both metrics, regardless of concurrency. For
10 concurrent requests, SOCK has a throughput of 76 requests/
second (18x faster than Docker) with an average latency of 130
milliseconds (19x faster).

Some of the namespaces used by Docker rely heavily on RCU
synchronization, which provides a read-optimized locking
mechanism. RCU usage scales poorly with the number of cores
[8]. Figure 6 also shows Docker performance with only one logi-
cal core enabled: relative to using all cores, this reduces latency
by 44% for concurrency = 1, but throughput no longer scales with
concurrency.

In addition to streamlining the container-creation protocol,
SOCK provisions Python interpreters from zygotes with pre-
imported packages. We evaluate these mechanisms with a
real-world case study: on-demand image resizing [6]. We write a
lambda that reads an image from AWS S3, uses the Pillow pack-
age to resize it, and writes the output back to S3. For this experi-
ment, we compare SOCK to AWS Lambda [3] and OpenWhisk [2],

Figure 5: Serverless caching Figure 6: Docker vs. SOCK. Request throughput (x-axis) and latency
(y-axis) are shown for SOCK (without zygotes) and Docker for varying
concurrency.

22  FA L L 20 1 8 VO L . 4 3 , N O. 3 www.usenix.org

SYSTEMS
SOCK: Serverless-Optimized Containers

using 1 GB lambdas (for AWS Lambda) and a pair of m4.xlarge
AWS EC2 instances (for SOCK and OpenWhisk); one instance
services requests and the other hosts handler code.

For SOCK, we preinstall Pillow and the AWS SDK (for S3
access) to the install cache and specify these as handler depen-
dencies. For AWS Lambda and OpenWhisk, we bundle these
dependencies with the handler itself, inflating the handler size
from 4 KB to 8.3 MB. For each platform, we exercise cold-start
performance by measuring request latency after re-uploading
our code as a new handler. We instrument handler code to sepa-
rate compute and S3 latencies from platform latency.

The first three bars of Figure 7 show compute and platform
results for each platform. “SOCK cold” has a platform latency
of 365 ms, 2.8x faster than AWS Lambda and 5.3x faster than
OpenWhisk. “SOCK cold” compute time is also shorter than the
other compute times because all package initialization happens
after the handler starts running for the other platforms, but
SOCK performs package initialization work as part of the plat-
form. The “SOCK cold+” represents a scenario similar to “SOCK
cold,” where the handler is being run for the first time but a
different handler that also uses the Pillow package has recently
run. This scenario further reduces SOCK platform latency by 3x
to 120 ms.

Conclusion
Serverless platforms promise cost savings and extreme elas-
ticity to developers. Unfortunately, these platforms also make
initialization slower and more frequent, so many applications
and microservices may experience slowdowns if ported to the
lambda model. In this work, we identified container initial-
ization and package dependencies as common causes of slow
lambda startup. Based on our analysis, we built SOCK, a stream-
lined container system optimized for serverless workloads
that avoids major kernel bottlenecks. We further generalized
zygote provisioning and built a package-aware caching system.
Our hope is that this work, alongside other efforts to minimize
startup costs, will make serverless deployment viable for an
ever-growing class of applications.

Acknowledgments
Feedback from anonymous reviewers has significantly improved
this work. We also thank the members of ADSL and our col-
leagues at GSL for their valuable input.

This material was supported by funding from NSF grant CNS-
1421033, DOE grant DESC0014935, and student funding from
Microsoft. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the authors
and may not reflect the views of NSF, DOE, Microsoft, or other
institutions.

Figure 7: AWS Lambda and OpenWhisk. Platform and compute costs are
shown for cold requests to an image-resizing lambda. S3 latencies are
excluded to minimize noise.

www.usenix.org FA L L 20 1 8 VO L . 4 3 , N O. 3 23

SYSTEMS
SOCK: Serverless-Optimized Containers

References
[1] I. E. Akkus, R. Chen, I. Rimac, M. Stein, K. Satzke, A. Beck,
P. Aditya, and V. Hilt, “SAND: Towards High-Performance
Serverless Computing,” in 2018 USENIX Annual Technical
Conference (USENIX ATC ’18).

[2] Apache OpenWhisk: https://openwhisk.apache.org/.

[3] AWS Lambda: https://aws.amazon.com/lambda/.

[4] D. Bornstein, “Dalvik Virtual Machine Internals,” talk
at Google I/O, 2008: https://www.youtube.com/watch?v=
ptjedOZEXPM.

[5] S. Hendrickson, S. Sturdevant, T. Harter, V. Venkata-
ramani, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau,
“Serverless Computation with OpenLambda,” in Proceedings
of the 8th USENIX Workshop on Hot Topics in Cloud Com-
puting (HotCloud ’16): https://www.usenix.org/system/files
/conference/hotcloud16/hotcloud16_hendrickson.pdf.

[6] B. Liston, “Resize Images on the Fly with Amazon S3, AWS
Lambda, and Amazon API Gateway,” AWS Compute Blog:
https://aws.amazon.com/blogs/compute/resize-images-on-the
-fly-with-amazon-s3-aws-lambda-and-amazon-api-gateway,
January 2017.

[7] F. Manco, C. Lupu, F. Schmidt, J. Mendes, S. Kuenzer, S. Sati,
K. Yasukata, C. Raiciu, and F. Huici, “My VM Is Lighter (and
Safer) than Your Container,” in Proceedings of the 26th Sympo-
sium on Operating Systems Principles (SOSP ’17), pp. 218–233:
http://cnp.neclab.eu/projects/lightvm/lightvm.pdf.

[8] P. E. McKenney, “Introduction to RCU Concepts: Liberal
Application of Procrastination for Accommodation of the Laws of
Physics for More Than Two Decades!” LinuxCon Europe 2013.

[9] E. Oakes, L. Yang, D. Zhou, K. Houck, T. Harter, A. C. Arpaci-
Dusseau, R. H. Arpaci-Dusseau, “SOCK: Rapid Task Provision-
ing with Serverless-Optimized Containers,” 2018 USENIX
Annual Technical Conference (USENIX ATC ’18).

[10] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift,
“Peeking Behind the Curtains of Serverless Platforms,” 2018
USENIX Annual Technical Conference (USENIX ATC ’18).

USENIX Supporters

USENIX Patrons
Facebook • Google • Microsoft • NetApp • Private Internet Access

USENIX Benefactors
Amazon • Bloomberg • Oracle • Squarespace • VMware

USENIX Partners
Booking.com • CanStockPhoto • Cisco Meraki

DealsLands • Fotosearch • thebestvpn.com

Open Access Publishing Partner
PeerJ

https://openwhisk.apache.org/
https://aws.amazon.com/lambda/
https://www.youtube.com/watch?v=ptjedOZEXPM
https://www.youtube.com/watch?v=ptjedOZEXPM
https://www.usenix.org/system/files/conference/hotcloud16/hotcloud16_hendrickson.pdf
https://www.usenix.org/system/files/conference/hotcloud16/hotcloud16_hendrickson.pdf
https://aws.amazon.com/blogs/compute/resize-images-on-the-fly-with-amazon-s3-aws-lambda-and-amazon-api-gateway
https://aws.amazon.com/blogs/compute/resize-images-on-the-fly-with-amazon-s3-aws-lambda-and-amazon-api-gateway
http://cnp.neclab.eu/projects/lightvm/lightvm.pdf

24  FA L L 20 1 8 VO L . 4 3 , N O. 3 www.usenix.org

SECURITYBeyondCorp
Building a Healthy Fleet

H U N T E R K I N G , M I C H A E L J A N O S K O , B E T S Y B E Y E R , A N D M A X S A L T O N S T A L L

Hunter King is an Engineer on
the Security Operations team at
Google. Currently, he focuses on
endpoint integrity and identity.
Hunter has also been a Lead

Engineer in the BeyondCorp effort for the last
seven years. Prior to Google, he was a Security
Researcher at SecureWorks. He enjoys hiking,
tinkering, and making lights blink. Hunter holds
a bachelor’s degree in computer science from
Colgate University. hunterking@google.com

Michael Janosko is a Security
Engineer Manager in Google’s
Enterprise Infrastructure
Protection group, where he
helps secure the way Google

works. On weekends, he enjoys a good cup
of coffee while building forts with his son.
janosko@google.com

Betsy Beyer is a Technical
Writer for Google Site Reliability
Engineering in NYC, and
the editor of Site Reliability
Engineering: How Google Runs

Production Systems and the forthcoming Site
Reliability Workbook. She has previously written
documentation for Google Datacenter and
Hardware Operations teams.
bbeyer@google.com

Max Saltonstall is a Technical
Director in the Google Cloud
Office of the CTO in New
York. Since joining Google in
2011, he has worked on video

products, internal change management, IT
externalization, and coding puzzles. He has a
degree in computer science and psychology
from Yale. maxsaltonstall@google.com

A ny security capability is inherently only as secure as the other sys-
tems it trusts. The BeyondCorp project helped Google clearly define
and make access decisions around the platforms we trust, shifting

our security strategy from protecting services to protecting trusted plat-
forms. Previous BeyondCorp articles discussed the tooling Google uses to
confidently ascertain the provenance of a device, but we have not yet covered
the mechanics behind how we trust these devices.

Our focus on platform security is supported by a wealth of evidence [1] in the industry that
end users are the number one target of a wide range of attacks that also vary in sophistica-
tion. Attackers can devise quite advanced social engineering attacks as mechanisms to
deliver malicious code onto devices, where they can then exploit the large attack surface of
modern operating systems. Advanced attackers aim to reuse trust inherent in the device, the
credentials on the device, or the trust granted to the user to further exploit systems.

To successfully prevent compromise in environments with a constant mix of trusted (enter-
prise web apps, corporate credentials) and untrusted content (external software repos, social
media, personal email, etc.), the platforms themselves must have a layered and consistent set
of controls. As a result, the platforms that make up the fleet are the new perimeter.

Building upon Previous Work
The work we describe in this article builds upon the work described in the white paper “Fleet
Management at Scale” [2] and the previous five BeyondCorp articles [3]. Building on this
foundation, our team aimed to further strengthen the BeyondCorp model by:

1. Defining what a healthy fleet looks like from a common control perspective

2. Ensuring that these controls are consistently and comprehensively applied, measured,
and enforced

3. Using these measurements to drive continuous improvement in our control set

Defining the Threats against Your Environment
As with any defensive security effort, it’s important to first define the threats against the
environment you’re trying to protect. When creating this list of threats, it’s helpful to think
of classes of attacks instead of all the variants of a single attack. Attackers are constantly
discovering new variants of attacks, which makes defining the entire tactical threat envi-
ronment impossible. However, if you successfully mitigate a class of attacks, then variants
within that class should be less concerning [4].

At a very high level, some classes of threats to consider against your platforms include:

1. Unknown devices: sensitive systems accessed by unknown or unmanaged devices

2. Platform compromise: exploitation of a misconfigured operating system or software on
the platform

3. Security control bypass: system compromise through unused or misconfigured security
policy

www.usenix.org FA L L 20 1 8 VO L . 4 3 , N O. 3 25

SECURITY
BeyondCorp: Building a Healthy Fleet

 4. Privilege escalation: code execution resulting in privileged
system controls takeover and persistence on the system

 5. Software compromise: installation and persistence of
malware

 6. Attack persistence: prolonged persistence of attackers due
to lack of inspection

 7. Authentication bypass: compromise of the platform
through password theft or authentication bypass

 8. Data compromise: unauthorized access to sensitive data
on disk, memory, or in transit

 9. Attack concealment: prolonged persistence of attackers
due to lack of logging and monitoring

10. Attack repudiation: hampered investigations due to
attackers’ ability to cover their tracks

Addressing These Threats through Improved
Fleet Health
With these threats defined, you can better identify the classes of
controls you need to mitigate these threats. Then you can mea-
sure the state of these controls (their effectiveness, and whether
they are on or off) through device inspection at service access
time. Table 1 maps each of the categories of threats outlined
above to the qualities (“Control”) one would expect to see in an
ideal trusted platform.

Characteristics of a Healthy Device
A healthy fleet is composed of healthy devices supported by tool-
ing, processes, and teams to maintain fleet health. We consider a
device to be healthy if:

◆◆ It can withstand most attacks.
◆◆ It provides sufficient telemetry to contain a compromise when

one occurs.

Let’s take a deeper look into the reasons why each of the qualities
of an ideal trusted platform we enumerated above are important.

Fleet Inventory and Asset Management
Hardware is the foundation on which the OS and applications
run. Limiting hardware configuration variations allows you to
more effectively reason about the capabilities and limitations of
the devices in your fleet. An inventory system places an upper
bound on the number of devices able to connect to sensitive sys-
tems through device access provisioning.

OS and Software Configuration Management
Software management is a key component to maintaining
a healthy fleet. A centralized management infrastructure
should drive a consistent platform configuration to ensure that
instances of the trusted platform:

◆◆ Are secure by default, with minimal drift over time
◆◆ Continue to benefit from security improvements over time

The ability to patch the running OS, the sensitive software stack,
and protective agents is paramount to a healthy security posture.
It’s equally important to manage configurations (e.g., software
auto-update policy) in a central location.

Security Policy Enforcement
Trusted platforms should enforce security policies consistently,
and report and log any deviations from expected policy. Security
policy is often intertwined with the general OS management and
configuration policies mentioned above. However, security pol-
icy is unique because it’s a mandatory access control policy that
users cannot subvert. For example, consider minimally inclusive
login policies: this strategy lessens the threat of lateral move-
ment, and removing root privileges by default helps mitigate the
damage a rogue process can inflict.

Resilience against System Takeover and Persistence
The goal here is to layer defenses so that malware execution
doesn’t necessarily compromise the security of the system.
Ensure that hosts can report abnormal behavior before advanced
malware can silence a host’s logging subsystem.

Threats Control

1 Unknown devices
Fleet inventory and asset
management

2 Platform
compromise

OS & base software configuration
management

3 Security control
bypass

Security policy management &
enforcement

4 Privilege escalation
Resilience against system takeover
& persistence

5 Software
compromise

Software control and anti-malware

6 Attack persistence Remotely verifiable platform state

7 Authentication
bypass

Robust authentication of platform
and user

8 Data compromise Data protection

9 Attack concealment
Logging and log collection for
detection capability

10 Attack repudiation
Response capability on platform/
Detection & response

Table 1: Threat classes and potential mitigations

26  FA L L 20 1 8 VO L . 4 3 , N O. 3 www.usenix.org

SECURITY
BeyondCorp: Building a Healthy Fleet

Software Integrity and Control
You should be able to restrict unauthorized code execution on
the platform. Common strategies include either only allowing
known good software and explicitly blocking suspected bad soft-
ware. We generally prefer an allowed list strategy: it’s possible
to define the applications you need to accomplish your work,
but the potentially bad actors or software you need to block are
infinite.

Remotely Verifiable Platform State
The platform should have a cryptographically verifiable integ-
rity mechanism that provides guarantees on the underlying
platform—from the firmware up to and including the running
OS. Some examples include first-command-execution control [5],
secure boot, and remote attestation.

Robust Authentication of Platform and User
Wherever possible, credentials should be hardware-backed or
hardware-isolated on a system. Windows Defender Credential
Guard [6] is one example of this capability.

Data Protection
We assume that any user’s system has some sensitive data;
therefore, sensitive data should be encrypted both at rest and in
transit. To handle lost or stolen devices, devices should support
remote wipes that destroy any data stored on the system and any
long-term credentials.

Logging and Log Collection for Detecting Threats
To provide defense in depth, the platform threat model should
assume that attackers will bypass preventative controls and
that machines will be compromised. To mitigate this risk, your
platforms should be able to log such incidents. Logging should
include user- and device-attributable audit records for all sensi-
tive data accesses or modifications, including changes to the
platform’s security controls, state, and behavior. This informa-
tion should be streamed to a centralized logging facility. The
ideal logging strategy prevents unauthorized processes from
tampering with the logs.

Response Capability on Platform / Detection and Response
If a threat is detected, platform capabilities should facilitate
remote incident response by authorized intrusion analysts.
Tools like GRR can provide remote accessibility for performing
this analysis [7]. We prefer to keep device-in-hand forensics to
a minimum, as this strategy can’t scale to respond to a wide-
spread breach. Ideally, authorized analysts should be able to
create a forensically sound timeline of an incident and augment
the investigation with one-off pulls from the affected systems.
By re-creating an event, the Detection and Response team

can obtain a thorough picture of what happened and respond
accordingly.

Maintaining a Healthy Fleet
A group of client devices with the controls detailed above make
for a generally healthy and secure fleet. To reach that state, we
first needed to figure out how to bootstrap our platform trust.

Building Up Trust
Sensitive services should only be accessed by trusted devices.
We divide system trust into tiers. Devices can earn different
levels of trust based on their characteristics and behavior [8].

Unfortunately, this approach results in a chicken and egg prob-
lem: transitioning a device into a trustworthy state requires
access to a client software repository, yet a client software
repository is a sensitive system. To resolve this issue, we intro-
duce an Identified state in the journey from untrusted to trusted.
An identified device is one our inventory system believes to be in
good standing but is not trusted for some reason. These devices
can access a subset of our client software repository in order to
install remediation software. This software enables a machine
to report device state, download and apply required patches, and
take all necessary steps to fulfill the requirements of a trusted
platform.

As you work towards building a healthy fleet, you achieve a bet-
ter understanding of your environment. As a result, you’re in a
stronger position to grant access confidently. The next challenge
is maintaining that state as technology and your business con-
tinue to change. The following section discusses how to keep the
fleet in a good state of health as you evolve, and how to correct
quickly when health degrades.

Combating Device Entropy
Once in the hands of users, devices are prone to becoming less
secure as security guarantees atrophy over time. We’ve found a
few strategies useful in our fight against entropy.

The first and most powerful strategy is to integrate access
decisions with an inventory system. All machines should be
known and trusted before they’re granted access to internal
resources. At Google, we add every machine in our fleet to our
corporate inventory during the receiving and imaging process.
We promptly remove access from any devices reported as miss-
ing, stolen, or lost. To encourage timely reporting of lost or stolen
devices, we require users to self-report before they can receive a
replacement device.

It’s also important to have strong telemetry around the state of
any machine that accesses your environment. Facebook’s OS
Query [9] is an excellent open source telemetry tool for Linux, OS
X, and Windows: it allows you to measure device properties such

www.usenix.org FA L L 20 1 8 VO L . 4 3 , N O. 3 27

SECURITY
BeyondCorp: Building a Healthy Fleet

as a machine’s OS version, patch level of critical software, and
encryption status.

Finally, patch and configuration management tools [10] enable
you to change the security state of a machine—transitioning an
untrusted machine into a trustworthy one. BeyondCorp uses
access restriction to help drive user actions such as rebooting or
accepting updates.

Detecting Unhealthy Hosts
Throughout the lifecycle of a host, certain actions or inactions
might cause a device to transition to an unhealthy state. Our
trust inference system [11] detects state changes by perform-
ing continuous trust evaluations. When a device fails to meet
our trust criteria, we downgrade its trust level to Identified. We
notify the machine’s owner and provide instructions for remedi-
ating their device.

Our Detection and Response Team acts as an additional data-
source for trust decisions. This team can remove trust from any
machine that’s acting maliciously.

Providing Flexible Policies
At a quick glance, defining fleet healthiness is a straightforward
task. However, like most IT environments, the devil is in the
details (and the exceptions). When dealing with a plethora of dif-
ferent OSes and a wide variety of use cases, you encounter many
of these details.

As we roll out controls to the fleet, we always attempt to intro-
duce thresholds of policy compliance rather than institute abso-
lute requirements. This strategy allows users greater flexibility
to operate within a good state and avoids draconian rule sets that
break many of our users (causing them to seek out workarounds
or overrides). For example, if a user needs to apply a non-critical
patch, we give them a grace period before downgrading their
access.

We also believe it’s important to design preventative controls to
provide signal to your incident detection and response capabili-
ties. To that end, we work to integrate these controls into our
security information and event management pipeline so that
they can report and log relevant policy-related data. Captur-
ing data about when we allow access and when we block access
according to policy can aid in future forensics and incident
detection.

Rolling Out and Scaling These Principles
A typical development process and rollout by the Security Team
and its partners starts with the design and prototype phases,
followed by a period to gather feedback across the fleet and from
our users. Over time, we’ve arrived at a strategy of first roll-
ing out controls in monitor mode and crafting our dogfood [12]

populations to facilitate debugging. For instance, we might push
a new USB auditing agent to a subset of a hardware engineer-
ing organization, as this population often interacts with custom
USB components. As a result, we’ll uncover edge cases that
will likely crop up in a less concentrated form across a broader
sample size. Alternately, we might slice the dogfood geographi-
cally and prepare local support staff in advance of the change.

When rolling out new controls, clear communication helps build
understanding of the new policies and why they exist. Mapping
each control to the threats it addresses helps everyone under-
stand why the Security team has chosen a particular action.
High transparency and explicit explanations of our criteria have
increased understanding among our users and helped us build
consensus among stakeholders. When they saw we had no con-
cealed objectives or motives, we could bring them fully on board
with our vision of the future and our timeline to get there. Often,
teams tasked with making security-driven changes can benefit
from seeing the big picture goal, which increases the credibility
of the request and therefore also increases buy-in from partner
teams. This buy-in often leads to a virtuous cycle of feedback
about how you can make the fleet even more secure.

Platform Measurement and Control Parity
Once you define your baseline expected qualities, you’ll find
you can’t apply controls universally—capabilities vary (some-
times widely) among platforms, both in terms of the device itself
and in the management/policy layer. For example, Chome OS’s
Secure Access provides robust software control, but Linux has
no out-of-the-box capabilities that prevent malware. To ensure
consistency in security across our fleet, we needed to normalize
security evaluations. While it’s probably not appropriate to expect
100% parity across different platforms (as capabilities and threat
models differ), we aim to be consistent when classifying a control
as sufficient versus a security risk that requires action.

To accomplish normalized evaluations, we analyzed the current
state of all relevant platforms with respect to how well they met
our control ideal state. We then evaluated the gaps from ideal
in totality. We created an overall fleet health report for each
platform managed at Google—not a report card, but a shared
understanding of capabilities. For each platform, we evaluated
the following:

◆◆ Can the platform support the control?
◆◆ Is the control turned on by default?
◆◆ Can we measure the state of the control?
◆◆ Is the fleet in compliance?

To drive objective measurement and equivalencies, you might
consider:

◆◆ Anchoring these strategies in a shared measurement unit: time
since patch released, geo-location, count

28  FA L L 20 1 8 VO L . 4 3 , N O. 3 www.usenix.org

SECURITY
BeyondCorp: Building a Healthy Fleet

◆◆ Driving your measurements from a relative reference point:
versions from current, features supported vs. implemented

Setting these standard measurements is the hard part. Once you
have equivalency, your ability to discuss fleet health will greatly
improve.

Where preventative controls are lacking or only partially effec-
tive, you can look for other ways to mitigate risk—for instance,
higher monitoring/detection signal confidence or a compensat-
ing control that is more effective on a platform. You may find that
you’re relying on a subjective overall sense of robustness of the
platform against attack. Modern operating systems have very
complex attack surfaces, capabilities, and threat models; the best
way we’ve found to aggregate all this information still boils down
to manually comparing the desired characteristics of the device
versus its actual characteristics. This comparison allows us to
make high-level recommendations around projects to fill gaps
and to prioritize those projects. No matter the source of the data
driving these conclusions, it’s important to document the ratio-
nale for the conclusion or at least the process that generated it.
Doing so allows people beyond the immediate security engineers
to understand the fleet state.

Deviations from Ideal
Despite all the best efforts to define, roll out, measure, and
enforce controls, you may inevitably face the harsh reality that
100% uniform control deployment is a mythical state where
unicorns frolic unconcerned about malware and state-sponsored
attackers. You need to have a plan for deviations from the ideal
state, root cause analysis, and exception handling.

Many deviations are naturally occurring, resulting from broken
processes, faulty management tooling, flaky releases, and other
root causes. For instance, there are often delays in applying
patches on a system. It’s important to understand when it makes
sense to grandfather in exceptions fleetwide, and preventing the
growth of the exception group versus when you should instigate
hard corrections in control states. If you’re clear about the threat
model and user impact tradeoffs, you can drive good decisions here.

Exceptions should be measurable and time-based. We recom-
mend you classify root causes in a consistent fashion across the
fleet so that you can drive understanding around any gaps and
identify places where controls are not suited to the fleet or cer-
tain classes of users. If an exception is perpetually renewed (or
otherwise never expires), the control is not working. You should
redesign the control or revisit your assumptions about its role in
the fleet.

Getting Started
How do you start putting the BeyondCorp principles dis-
cussed in this article into practice on your own fleet? A general
approach involves four main steps:

1. Define the security controls you care about.

2. Find a way to measure those controls.

3. Determine where your fleet isn’t in compliance.

4. Fix workflows that don’t work with your defined security
stance or define exceptions.

The first essential step is defining the goals you want to achieve.
You shouldn’t create a set of desired security controls in a
vacuum–these controls should be specific responses to threats
you need to defend against. Explicitly enumerating threats pro-
vides you a heuristic to measure effectiveness and a framework
to reason about the priority of individual properties. Consult
partner teams (see “Lessons Learned,” below) when defining
and ranking desired qualities. As you clarify your threats and the
controls that will mitigate them, build in tests such as unit tests
or end-to-end red team assessments to evaluate how effective
those controls are. Then you can determine whether they actu-
ally meet your security goals in practice.

In order to ascertain a device’s security posture, you must be able
to measure its current state versus the ideal state. If you haven’t
already, you’ll need to roll out instrumentation software to your
fleet to collect relevant data. However, raw data is only half of
the story: you also need to define the ideal state your devices will
be measured against. As a large fleet guarantees variation, you
need to define multiple ideal states in order to cover all potential
valid use cases.

Once you can measure the security stance of your fleet, you can
start examining devices with deviations from the ideal. Some
deviations might pose no security risk (as they’re mitigated by
compensating controls), but other deviations will uncover gaps.
We focused our initial efforts on ensuring that new machines are
in compliance with a control from the first moment employees
use them. Once we knew that all new devices began their lives in
a known good state, we could turn our attention to the rest of the
machines in our fleet to improve overall fleet health.

Establishing an exception framework so you can create excep-
tions for the existing fleet when enforcing a new control is
equally important. The deviation in the fleet will thus remain
static, allowing you to remediate existing machines while keep-
ing new machines in compliance. Once you isolate the problem
to a grandfathered portion of the fleet, you can cluster failure
reasons. These clusters will uncover problems shared by entire
classes of devices or workflows. Tackling the largest and most
risky of these clusters first will provide the largest security win
for the smallest amount of effort. Repeat this clustering and

www.usenix.org FA L L 20 1 8 VO L . 4 3 , N O. 3 29

SECURITY
BeyondCorp: Building a Healthy Fleet

remediation process until you have resolved the main issues in
the fleet. One-off issues may need explicit exceptions if a user’s
workflow is explicitly not compatible with a desired security
property.

While this system requires a lot of collaboration and hard work
from many different teams, completing the effort gives you and
your organization a more resilient position in the face of con-
stant attack.

Lessons Learned
Instituting a coherent program for measuring and evaluating
trust and fleet health is not a short-term project. Fully achiev-
ing the goals outlined in this paper (and the more general goals
of BeyondCorp) requires significant resources. That being said,
some lessons we’ve learned over the past couple of years can save
you some time and headaches.

Set Milestones Early
Set key milestones sooner rather than later. Determine which
properties you care about and rank them (at least roughly). This
exercise helps you allocate resources efficiently and provides
the motivation to implement large-scale projects. Incorporating
data from a fleet management system into your authorization
decisions is an excellent initial milestone. This alone will keep
unknown devices from reaching your services and has the side
benefit of providing a known good device inventory.

Decide How to Handle Exceptions
Define your approach to exceptions early in the project. Every
fleet contains devices that cannot fully comply with the ideal
security stance. Determining the procedural and technical
implementation of exception management is key to a success-
ful rollout. Define the reasons an exception can be granted, how
to document those reasons, the maximum length of time an
exception can exist before it must be reexamined, and the review
process for existing exceptions.

Engage with Partner and Impacted Teams Early
A successful implementation of BeyondCorp requires work from
the entire IT organization. Engaging with partner and impacted
teams early in the process will dramatically streamline the
enforcement portion of a rollout. For example:

◆◆ The device procurement and onboarding teams will need to
ensure they keep the fleet management system up to date as
devices are added or retired from the fleet.

◆◆ Other security teams will provide valuable input while defin-
ing machine security properties and potential inputs into the
overall system.

◆◆ Traditional IT support teams will field the vast majority of
user escalations. It is essential they understand the goals of the
project and are able to help troubleshoot user issues.

You also need a way to communicate with the users who will be
directly impacted by this change. Ensuring that the average user
can actually follow and complete self-remediation steps reduces
the load on IT and time wasted on troubleshooting.

Conclusion
Securing your employees’ machines is a cornerstone to securing
the crucial information your company handles. To this end, we
thoroughly evaluate and regularly inspect all corporate devices
to validate their health. Only known healthy devices can access
critical internal systems and information.

Employees and their devices have already earned the attention
of malicious actors, and it’s up to you to defend employees while
keeping them productive. To do that, you need a strong sense of
fleet health, clear policies and measurements, and a process for
handling deviations from the goal state. With consistent controls
and enforcement, we believe every enterprise can simultane-
ously boost fleet health and security, improving resilience to an
ever-increasing variety of attacks and threats.

Acknowledgments
While this continues to be a large cross-functional effort across
Google and there are many contributors to this project, we want
to acknowledge Cyrus Vesuna for his work on defining common
trusted controls across our platforms.

30  FA L L 20 1 8 VO L . 4 3 , N O. 3 www.usenix.org

SECURITY
BeyondCorp: Building a Healthy Fleet

References
[1] See Verizon, “2018 Data Breach Investigations Report:
Executive Summary”: https://www.verizonenterprise.com
/resources/reports/rp_DBIR_2018_Report_execsummary_en
_xg.pdf; Mandiant, M-Trends 2018: https://www.fireeye.com
/content/dam/collateral/en/mtrends-2018.pdf.

[2] Google, “Fleet Management at Scale,” November 2017:
https://services.google.com/fh/files/misc/fleet_management
_at_scale_white_paper.pdf.

[3] https://cloud.google.com/beyondcorp/#researchPapers.

[4] New variants often stretch the common understanding of
classes of attacks, so you can’t ignore variants completely. For
instance, the industry thought we had a good grasp on micro-
architecture security up until 2018—see Jann Horn, Project
Zero (Google), “Reading Privileged Memory with a Side-Chan-
nel,” January 3, 2018: https://googleprojectzero.blogspot.com
/2018/01/reading-privileged-memory-with-side.html.

[5] Such as Intel’s Boot Guard: https://www.intel.com/content
/dam/www/public/us/en/documents/product-briefs/4th-gen
-core-family-mobile-brief.pdf.

[6] Microsoft’s Defender Credential Guard: https://docs
.microsoft.com/en-us/windows/security/identity-protection
/credential-guard/credential-guard.

[7] https://github.com/google/grr.

[8] For a description of trust levels and calculation, see B.
Osborn, J. McWilliams, B. Beyer, M. Saltonstall, “BeyondCorp:
Design to Deployment at Google”: https://ai.google/research
/pubs/pub44860.

[9] https://osquery.io/.

[10] For more on the tools we use at Google, see “Fleet Manage-
ment at Scale: How Google Manages a Quarter Million Com-
puters Securely and Efficiently”: https://ai.google/research
/pubs/pub46587.

[11] For more on the trust inference system and the other moving
parts of our BeyondCorp model, see B. Osborn, J. McWilliams,
B. Beyer, M. Saltonstall, “BeyondCorp: Design to Deployment at
Google”: https://ai.google/research/pubs/pub44860.

[12] Dogfood: early release of products to employees to get feed-
back and catch bugs before a wider release.

XKCD xkcd.com

https://www.verizonenterprise.com/resources/reports/rp_DBIR_2018_Report_execsummary_en_xg.pdf
https://www.verizonenterprise.com/resources/reports/rp_DBIR_2018_Report_execsummary_en_xg.pdf
https://www.verizonenterprise.com/resources/reports/rp_DBIR_2018_Report_execsummary_en_xg.pdf
https://www.fireeye.com/content/dam/collateral/en/mtrends-2018.pdf
https://www.fireeye.com/content/dam/collateral/en/mtrends-2018.pdf
https://services.google.com/fh/files/misc/fleet_management_at_scale_white_paper.pdf
https://services.google.com/fh/files/misc/fleet_management_at_scale_white_paper.pdf
https://cloud.google.com/beyondcorp/#researchPapers
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/4th-gen-core-family-mobile-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/4th-gen-core-family-mobile-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/4th-gen-core-family-mobile-brief.pdf
https://docs.microsoft.com/en-us/windows/security/identity-protection/credential-guard/credential-guard
https://docs.microsoft.com/en-us/windows/security/identity-protection/credential-guard/credential-guard
https://docs.microsoft.com/en-us/windows/security/identity-protection/credential-guard/credential-guard
https://github.com/google/grr
https://ai.google/research/pubs/pub44860
https://ai.google/research/pubs/pub44860
https://osquery.io/
https://ai.google/research/pubs/pub46587
https://ai.google/research/pubs/pub46587
https://ai.google/research/pubs/pub44860

www.usenix.org FA L L 20 1 8 VO L . 4 3 , N O. 3 31

SECURITY

Building an Internet Security Feeds Service
J O H N K R I S T O F F

I produce a set of threat intelligence security feeds compiled from
un solicited communications to a distributed network of Internet sys-
tems. The umbrella platform for the project has a home at DataPlane.

org where pipe-delimited text-based data feeds are freely available for non-
commercial use. Read on for a behind-the-scenes look at how a mix of open
source software, leased Internet hosts, and a dash of system administration
deliver security feed data to some well-known and widely relied upon secu-
rity projects and organizations.

Not long ago I proposed an antivirus programming-related idea for a class research project
as part of my graduate course work. My professor felt “virus checkers are [not] an effective
mechanism, because they are backward looking (at past history).” Presumably other types
of threat intelligence systems that construct lists from observed, malicious activity associ-
ated with IP addresses, URLs, and domain names would be summarily dismissed along a
consistent line of thinking.

My operational friends might mock a sneer and mouth “ivory tower, sheesh” under their
breath at the very suggestion of their ineffectiveness. While there is an appeal to the idea that
these sorts of approaches to security protection are discouragingly insufficient and futile,
the use of threat data learned from past events is relied upon by many as a part of their secu-
rity strategy. Whatever you believe about historical data for mitigation, threat intelligence in
the form of black lists is widely used and can fetch premium prices when the data is unique,
comprehensive, and reliable.

System Overview
The core components of the DataPlane.org security feeds are made up of three distinct
subsystems as depicted in Figure 1. A set of sensor nodes collect unsolicited communications
and relay logs of activity back to a central collection and processing system. The central col-
lector stores events in raw log files and extracts fields of interest for insertion into a master
database. Periodically, the database is scanned for recent suspicious activity seen by sensor
nodes, which is extracted and pushed to a website for public consumption.

Producing security feed data would be nothing without a source from which to derive insight.
How does one go about compiling source data? There are essentially three ways. One way
is to get it from someone else. This is surprisingly very common in the security community.
People and organizations share, sell, barter, and trade raw data all the time. If you ever com-
pare threat intelligence between providers, do not be surprised to see overlap. Sometimes
vendors produce the same intel independently, but when you see redundancy they are just as
likely if not more so to have obtained raw data from a common original source.

The second way to obtain threat intelligence data is to actively seek it out. This may come
from active monitoring, probing, data capture, crawling, and so forth. Obtaining data this
way is often how one threat intelligence provider differentiates itself from another, since

John is a Network Architect at
DePaul University’s Information
Services division and an adjunct
faculty member at DePaul’s
College of Computing and

Digital Media. He is also enrolled as a PhD
student in computer science at the University
of Illinois Chicago. John’s primary career
interests, experience, and expertise are in
Internet infrastructure, Internet measurement,
and internetwork security. John is or has been
associated with a number of organizations
and projects in associated fields of research
and technology, some of which include DNS-
OARC, IETF, FIRST, Internet2, NANOG, and
REN-ISAC. jtk@depaul.edu

32  FA L L 20 1 8 VO L . 4 3 , N O. 3 www.usenix.org

SECURITY
Building an Internet Security Feeds Service

these methods are often distinctly proprietary and unknown to
others. This can also be the most costly and least robust approach.
As targets of data collection activities change, move, react, or go
away, data gathering processes must adapt else the end product
may prove untrustworthy or absent of any insight at all.

The third way, a passive approach, is the easiest and cheapest,
but it is not without limitations. Passive data collection is when
you let the data come to you, from a honeypot or darknet monitor,
for instance. The security feeds from the DataPlane.org project
use a type of passive approach. DataPlane.org sensors mimic real
applications, but they never allow access beyond simple unau-
thenticated application requests nor allow access to the system
beyond an authentication phase.

I’ve had a fair amount of experience designing and compiling
security feeds for nonprofit and commercial use. A few years
ago I decided to run my own independent, free service for the
community. Why do I do it? I can afford it, but most importantly
because it pays dividends in subtle ways. For example, since I am
also a PhD student, I can leverage the DataPlane.org platform
for research ideas and data measurement experiments. Running
DataPlane.org also gives me a platform with which to remain in
the good graces of the security community. If nothing else, the
security community is largely built upon reputation and trust.
I’ve recently had offers of support and kudos from an array of
benefactors. There is some non-zero amount of street cred that
helps ingratiate myself with others I might not otherwise have
had a chance to please.

Sensors
One drawback to a sensor network as used by DataPlane.org
stems from what it does not or cannot see: targeted attacks,
for example. It will fail to see threats that simply never cross
its paths. My aim with the DataPlane.org project is to obtain a
reasonably broad, sampled view of undirected Internet threats
at diverse geographic locations (both from a physical location
and an Internet routing perspective). Passive monitoring is of
almost no value in IPv6 because of the sheer size of the address
space. I focus on IPv4 networks with all the limitations this
implies.

At recent count, the DataPlane.org project has approximately
100 sensor systems dispersed around the globe on six continents
and at least one IP address in roughly 1/3 of all routable IPv4 /8
prefixes. While this isn’t the world’s biggest, most diverse, dis-
tributed network of systems, it might be one of the larger ones
of this type run by a single individual.

This may lead to an obvious question. How much does this infra-
structure cost? Before answering, let’s just briefly consider how
the network is not constructed.

I’ve been involved in similar projects in the past where people
or organizations donate a sensor or threat intelligence data for
the good of the project. While this can be a source of tremendous
data, the reliability of the underlying source infrastructure is
frequently a problem. Processes mysteriously stop, systems go
down, or the friend at the organization who provided access to
the raw data has left the organization and now no one left knows
you or is motivated to fix a problem.

An approach used by many reasonably well-funded research
groups such as CAIDA and RIPE is to send hosting volunteers
a disposable system that can be plugged in, turned on, and then
remotely managed with minimal additional supervision from
host networks. These include the CAIDA Ark project (http://
www.caida.org/projects/ark/) and the RIPE Atlas project
(https://atlas.ripe.net/). These systems, too, can only gather data
to which they are exposed, but at least in this scenario the only
worry is the availability of power and connectivity. However,
acquiring, provisioning, and delivering more than a handful of
sensors to those who agree to host them may be cost-prohibitive
for anyone operating on a tight budget.

For the DataPlane.org sensor network, I’ve opted to lease Inter-
net nodes, usually from low-end virtual machine hosting provid-
ers. Two popular places to find low-cost hosting providers are
https://www.webhostingtalk.com and https://www.lowendtalk
.com. Prices vary but typically range from approximately $15
(US) to $60 per year for a minimally sized VM with one public
IPv4 address.

I’ve built the network perhaps a little larger than it really needs
to be with a little over 100 sensors, and my total cost is approxi-
mately $3000 per year. Luckily, the cost of running the Data-
Plane.org project is a luxury I can afford to fund myself. I plan to
continue to do so as long as I’m gainfully employed and as long
as it provides a value to myself and the community. More modest
sensor networks could be set up for significantly less money.

One of the biggest challenges for the DataPlane.org project isn’t
so technical. Hosting providers come, go, get bought out, and
change their infrastructure. Managing hosting provider dynamics
accounts for most of the time I spend on the project. If you’d like to

Figure 1: DataPlane.org security feeds system overview

http://www.caida.org/projects/ark/
http://www.caida.org/projects/ark/
https://atlas.ripe.net/
https://www.webhostingtalk.com
https://www.lowendtalk.com
https://www.lowendtalk.com

www.usenix.org FA L L 20 1 8 VO L . 4 3 , N O. 3 33

SECURITY
Building an Internet Security Feeds Service

build your own network of leased systems, I can offer you a handful
of tips, summarized below, having dealt with dozens of providers:

◆◆ Historicity: Consider the history of the provider. Beware of
fly-by-night operations.

◆◆ Reputation: Many low-cost providers have mixed reviews,
but the handful that consistently receive low marks probably
deserve them for a reason.

◆◆ Payment option: PayPal is generally the safest for the custom-
er. Do you really want to entrust your credit card information to
providers with such slim margins? On a related note, I recom-
mend avoiding any provider who wants a scan of government-
issued identification. They don’t need it, and you don’t want
them to have it.

◆◆ Support: You might not expect platinum service, but you
should expect to receive a response to an email within one or
two business days. An easy way to evaluate the liveliness of a
provider is to send them a low-priority inquiry and see how
they respond, if they do.

◆◆ Professionalism: This attribute applies to both the provider
and customer. Customers should want a provider who is cour-
teous in public and when interacting with customers. Likewise,
the customer should be mindful of low-cost provider limitations,
adjust expectations accordingly, and interact appropriately.

Setting up a DataPlane.org sensor consists of three basic steps:
installing the OS, deploying the sensor applications, and config-
uring logging. I standardize on a minimal Debian stable distro.
It is lightweight for low-powered VMs, easy to maintain, and
almost always an option with every provider. My sensors require
very little disk, memory, or network bandwidth. I can get away
with just 256 MB of RAM, and was running an older system with
just 64 MB not long ago. The DataPlane.org sensor configuration
places only modest demands on system resources.

A sensor build includes multiple common network application
listeners with which to produce threat intelligence data. These
include DNS, SIP, SSH, and VNC, for example. For some applica-
tions, such as DNS and SSH, I use slightly customized versions
of well-known implementations (e.g., BIND and OpenSSH,
respectively). The SIP and VNC listeners are custom daemons
specifically written for the DataPlane.org project rather than full
protocol implementations. The custom daemons support enough
of the base protocol to interpret unsolicited requests and log
application-specific detail. These daemons can be found in the
DataPlane.org GitHub repository (https://github.com/dataplane).

The final core capability of the sensor is to log all the desired
monitored applications with syslog. Sensor applications of inter-
est must log sufficient detail to be useful for threat intelligence
purposes. For sensor applications like DNS, SIP, SSH, and VNC,
this should include not only the source IP address responsible for

generating the event, but also an NTP-synchronized timestamp
set to UTC and a source port when transport protocols like TCP
or UDP are involved. A source port helps networks doing net-
work address translation correlate a specific event to an internal
IP address. The syslog daemon should forward events of interest
to a central collector. How DataPlane.org does this is detailed in
the next section.

Central Collector and Processor
Within many networks, syslog is used to send locally generated
logs from a host, daemon, or application to a remote collector
for safekeeping and later analysis. The DataPlane.org sensor
network is little more than a distributed set of syslog clients
and a syslog server. However, because sensors are distributed
globally on various types of hosting networks, I wanted to ensure
some amount of log message reliability and privacy. Therefore
all logs sent from sensors to the central collector are over a TLS
connection. The sensor is configured with the central collector
certificate, and likewise the central collector has a copy of the
sensor certificate, providing some assurance each end is known
to the other.

I prefer using syslog-ng as the syslog daemon at both the collec-
tor and sensor even though most modern Linux systems have
migrated to rsyslog by default. The open source version of sys-
log-ng is reliably robust and includes some features I’ve grown
accustomed to.

The central collector logs everything from each sensor system
to a daily log file based on the unique IP address of the sensor
system. The DataPlane.org project receives anywhere from a
few KB to a few MB per day per sensor depending on how many
public IPv4 addresses are active on the sensor.

I leverage two syslog-ng features to interpret received syslog
messages and extract desired insight from them for insertion
into a database. First, I make use of the pattern database. This
is essentially an elaborate regular expression capability applied
to syslog messages. Generally, syslog messages of interest have
some structure or pattern to them, even if they are essentially
text. When you know this structure, you can use the pattern
database feature of syslog-ng to capture fields in a log message
and then refer to them later in the processing chain as you might
with back references in many scripting languages. Working with
the pattern database feature requires close attention to detail
and will take some getting used to, but once mastered it can
prove quite powerful. The following is a very simple example to
match on an sshd log message capturing the incoming source IP
address:

<pattern>Connection closed by @IPvANY:SSH.SADDR@</pattern>

This pattern will match not only the connection formatting
shown, but will capture the IP address (IPv4 or IPv6) of the host

https://github.com/dataplane
IPvANY:SSH.SADDR@</pattern

34  FA L L 20 1 8 VO L . 4 3 , N O. 3 www.usenix.org

SECURITY
Building an Internet Security Feeds Service

hitting the sensor. syslog-ng will store the IP address value in a
variable named SSH.ADDR, which can be referenced later in the
syslog-ng configuration. I make extensive use of the pattern
database feature to capture various attributes of log messages,
including source IP addresses, source ports, and application-
specific detail. As log messages arrive and matches are made,
the second syslog-ng feature I leverage is the ability to insert a
processed version of a pattern-matched message into a database
table. Once the pattern matches are defined, it is simply a mat-
ter of associating a matching pattern with a syslog-ng database
destination. The following code block is an abbreviated syslog-ng
configuration to demonstrate this concept with a PostgreSQL
database:

parser p_patterndb {

 db_parser(file(”/etc/syslog−ng/patterndb.d/example.xml”));

};

destination db_ssh{

 sql(type (pgsql) host(”127.0.0.1”) port(”5432”)

 database(”example”) table(”ssh”) columns (”logaddr”,

 ”stamp”, ”saddr”,) values(”${SOURCEIP}”, ”${ISODATE}”,

 ”${SSH.SADDR}”)

);

};

filter f_ssh{

 match(

 ”0123456789abcdef” value(”.classifier. rule id”)

 type(”string”)

);

};

log{

 parser(p_patterndb); filter(f_ssh);

 destination(db_ssh);

};

Publication
The final core component of the security feeds system is to
publish the final output to the community. This is a two-step
process. The first step is to compile a feed from a data set in the
database. The second is to push the feed to the DataPlane.org
website for public dissemination. I’ve found an hourly update
of the data feeds is generally sufficient for most users. I extract
the most recent week’s worth of events per feed category and
generate a simple pipe-delimited text file that contains one event
entry per line as defined in the commented section of the feed
file. Intelligence threat providers or other interested parties
can periodically pull these text-based security feeds from my
website and process them further. I am currently in the process
of making the security feed data available in real-time to users
of the Security Information Exchange (SIE) platform run by
Farsight Security (https://www.farsightsecurity.com/solutions
/security-information-exchange/).

Conclusion
A number of open source projects, commercial providers, and
incident response organizations make use of the security feeds
DataPlane.org produces. I’ve been told that these security feeds
are among the best and most reliably robust public set of feeds
available. This seems somewhat surprising, because today I’m
only producing feeds for a handful of basic network services.
There are plenty more I could and want to do. The bad news is
that I have not spent much time producing more varied secu-
rity feeds for the past year since I started my PhD work. The
good news is that I haven’t had to actually do much to keep this
security feeds system running as it largely runs itself. Additional
detail about the implementation, including some source code
for how many parts of the system are set up, can be found at the
DataPlane.org GitHub project page. I invite you to take a look,
contribute, or adapt what I have done to your own projects.

Perhaps one day, decades from now, the early 21st century may
become known as the Internet’s gangster era, a heyday where
botnets, phishing emails, and DDoS attacks were commonplace.
Awaiting that day implies an optimism that suggests we are now
living in what will eventually be judged to be “simpler times.”
Whether or not this comes to bear, it seems plausible that, unlike
1920s America, the Internet do-gooders may be better remem-
bered in the coming story than those G-men of yesteryear.
Thanks to the proliferation of excellent, freely available soft-
ware, sharing of insight between people and organizations, and
the motivation to prevent the spread of malicious activity, few
misdeeds or criminals run rampant for long.

The story, our story, is currently in progress. This article
describes one modest approach to support a cast of characters
helping to limit the spread of abuse on the Internet through the
distillation and dissemination of security feeds. One day, we may
all consider it “backward” and not worth the effort. Until that
day comes, we hack.

https://www.farsightsecurity.com/solutions/security-information-exchange/
https://www.farsightsecurity.com/solutions/security-information-exchange/

www.usenix.org FA L L 20 1 8 VO L . 4 3 , N O. 3 35

SECURITY

USENIX Security and AI Networking Conference
ScAINet 2018

A L E A T H A P A R K E R - W O O D

The USENIX Security and AI Networking conference is a one-day
invited talk symposium new in 2018, with Symantec as founding
sponsor. It aims to bridge the academic and industry communities in

the nascent area of security machine learning and artificial intelligence (AI)
and provides a complementary venue to peer-reviewed research conferences
and workshops such as AISec and the IEEE S&P Deep Learning Workshop.
In the spirit of bridging the two worlds, it was co-chaired by an academic,
Polo Chau of the Georgia Institute of Technology, and an industry research
leader, Andrew B. Gardner, Head of AI/ML and the Center for Advanced
Machine Learning (CAML) at Symantec. It was held in Atlanta, GA, on
May 11th, with 122 attendees from many major security companies, as well
as students and faculty from Georgia Tech, Emory, UC Berkeley, and more.
Audience participation was lively, and there was a parallel discussion track
on Twitter at the #ScAINet18 hashtag.

In his opening remarks, Andrew Gardner said that it’s an exciting time to work at the
intersection of Security and AI/ML but that the challenges faced are significant. Security is
characterized by adversarial rare events. The data sets are complex, noisy, heavily imbal-
anced, and, for the most part, private. Unlike colleagues working on computer vision and
other computational perception tasks, this discipline still struggles with the basic represen-
tations required for learning on programs, graph dynamics, and the unique event streams
of security. He went on to note that “as communities, we have tended to work apart. It’s my
hope that with greater open and collaborative interaction we can define and frame the next
generation of grand problems to focus on, in the same way that self-driving cars have led to
huge leaps forward in vision.”

The first talk of the day was given by Elie Bursztein of Google, who spoke on abuse detection
at scale, and talked about the unique challenges faced by security AI. For example, training
data for security becomes obsolete quickly. A cat today is much like a cat from a hundred
years ago, but a phishing email is constantly evolving. He also noted that context is critical.
Two best friends might say, “I’m going to kill you!” while playing a video game, and it will
no doubt be benign, whereas the same phrase in a public argument between strangers at a
bar might be a huge problem. The model must account for culture, context, and setting to be
accurate. Security ML must balance error costs thoughtfully. An account take-over is very
dangerous, for instance, so you might choose to err on the side of false positives, locking
people out and offering an extensive manual review process to restore access. He suggested
relying on humans to adjudicate the long tail of hard cases wherever possible. Finally,
security AI has live adversaries. He suggested limiting the amount of feedback you give to
attackers in order to make the attack harder to improve, a theme that would later be reprised
by David Freeman of Facebook. Last but not least, he noted that if you have a user feedback
mechanism, it can and will be weaponized against you. He advised against blindly trusting
feedback and emphasized putting feedback into context, filtering, and rate limiting it. Elie’s

Aleatha Parker-Wood is a
Researcher/Manager in the
Center for Advanced Machine
Learning at Symantec and
leads a research team focused

on protecting users and their data through
advanced machine learning. She received
a PhD in computer science from University
of California, Santa Cruz, for her work on
scientific data management. Her work
currently focuses on differential privacy for ML
and using deep learning for code analysis, with
previous work in file system search, forensics,
and AI for Go. She has authored several books
and articles as well as numerous patent filings,
and most recently served as research co-chair
of MSST 2017 and on the PC of ScAINet18.
Aleatha_ParkerWood@symantec.com

36  FA L L 20 1 8 VO L . 4 3 , N O. 3 www.usenix.org

SECURITY
USENIX Security and AI Networking Conference: ScAINet 2018

talk was delivered as a video recording, so unfortunately there
was no audience discussion, but he encouraged watchers to
tweet any questions at him.

Next, Jason Polakis of the University of Illinois at Chicago dis-
cussed fighting CAPTCHA bots. The evolution of AI has made
distinguishing bots from real people increasingly difficult, and
impersonation is both easy and cost effective. Most of the tasks
that we rely on for CAPTCHAs, such as reading distorted text
or recognizing named objects in pictures, are tasks that can now
be done with human-level accuracy, using free or inexpensive
cloud APIs. He demonstrated how an attacker can use word2vec
in combination with Google’s image recognition APIs to break
image recognition CAPTCHAs at 66.6% success per attempt.
Adversarial techniques are not yet defeating off-the-shelf image
recognition, so those will not prevent bots. The net result is that
CAPTCHAs, in order to defeat bots, are increasingly difficult for
human users and pose a huge tax on productivity. He suggests
that these techniques will need to be replaced in the near future.

David Freeman from Facebook gave a talk on practical tech-
niques for fighting abuse at scale. In particular, he focused on
how to bootstrap labeling from a small data set of ground-truth
labels. He pointed out that users are both unreliable and too busy
to do all your labeling for you, and that a spam label may just
mean “I don’t want to see this.” But if you use those two sets of
labels together, create new features independent of them, and
avoid feedback loops, you can get much more reliable predictions.
To avoid feedback loops, he reminded the audience that you
can’t just A/B test new security models, because independence
assumptions are violated. If you test on a small set and then
deploy to everyone, you cannot be sure whether the adversary
gave up or iterated to avoid your classifier in the meantime.
Instead, he suggested running in shadow mode to not help the
spammers evolve, focusing on the spammer’s motives instead
of the content, as well as using data they don’t control, like the
social graph.

Sudhamsh Reddy from Kayak gave a talk on the various types of
e-commerce bots, both benign (search engines) and malicious
(DDoS, content scrapers, click bots, inventory lock-up bots, etc.).
He described how simple volume-based metrics, for example,
were effective at detecting the majority of bots seen by Kayak,
and how using cascading classifiers, from least to most expen-
sive, allowed them to constrain their computation costs. They
save costly techniques such as activity-based analysis for low
confidence samples and filter the majority into good or bad using
lightweight classifiers.

Alejandro Borgia from Symantec discussed the lifecycle of an
advanced persistent threat and how to automate the process of
doing attack forensics and attribution. Symantec has gone from
a highly manual process to a process that still uses analysts but

augments them to give them superpowers. Part of that starts
with the attack graph, a giant pile of hay to let them find the
needle they are looking for. The attack graph contains informa-
tion about files, machines, locations, and more. They sift the data
to learn generalities about attacks, and then look for clusters of
similar events. Rather than looking at one enterprise or event,
they look across a wide variety of enterprises and events to learn
these attack patterns. He mentioned that Symantec had used
this framework to discover Dragonfly 2.0, an advanced threat
targeting the energy sector, much faster than they would previ-
ously have been able to uncover it.

Yogesh Roy of Microsoft offered a talk on finding suspicious
user logins in Azure Cloud. They pool users using similarity and
use random walks on user locations. Similar users log in from
similar locations, and speed of travel can be used to give a reach-
ability score. The analytics aren’t that complex in theory, but in
practice, it’s hard to do at scale in real time. They use Redis as
a cache to partition and store model parameters and behavioral
data. They have built a graph of activities across many services—
with 22.5M nodes, 46M edges, and 245M security attributes—
and use that to model probabilities of attack chains (“kill chain
connectivity”). They make an inventory of known attack pat-
terns, match their occurrence in the graph, and then use the rest
of sub-graph for context, using the kill chain as a basic probabil-
ity model to constrain the edges and build out connections using
stochastic processes. A compute connectivity score is arrived at
using the random walk graph. Finally, they use random forests to
classify sub-graphs into scenarios. As a final interesting note, he
pointed out that anomalous behavior without attack indicators
seems to correlate with insider attackers. An audience member
asked how similarity was computed, and Roy said it was entirely
based on access patterns and their metadata. Additionally,
people had several concerns around geolocation in IPv6, which
Roy confessed was an open problem for them.

Le Song from Georgia Tech gave a talk on embedding spaces
for graphs. Structure2vec addresses a fundamental problem in
graphs—designing features for graphs based directly on data.
It leverages strengths of graphical models and deep learning
together, using an iterative update algorithm parameterized
similarly to a neural network to create an embedding space. First
it does an unsupervised pass using the features of each neigh-
bor, pooling, and non-linear updates. Then stronger parameters
can be learned downstream using supervision. He gave some
examples of how to use structure2vec, including comparing code
through control flow graphs and using temporal graph features
to find fraudulent accounts. The audience had questions about
how the update worked and whether it was unsupervised or
supervised. Le explained that the training had both a supervised
and unsupervised phase, where the unsupervised phase used a
naïve binary label as a placeholder.

www.usenix.org FA L L 20 1 8 VO L . 4 3 , N O. 3 37

SECURITY
USENIX Security and AI Networking Conference: ScAINet 2018

Brendan Saltaformaggio, also of Georgia Tech, gave a talk on
Retroscope, a system for extracting forensic data from RAM for
spatiotemporal data. They interleave execution between a live
Android environment with code and data from a memory image
to recreate the application’s behavior in the past. By reusing the
app’s own drawing and other internal routines, in conjunction
with in-memory data structures that have not been garbage
collected, they can re-render screens from the past, even if
the application has been closed and logged out of. Because the
memory image code knows how to handle the app’s data, it can
handle all the logistics of rendering the data, and so this method
doesn’t require deep custom code per application. Brendan dem-
onstrated recovering a deleted draft of a chat from Telegraph
after logging out of and closing the app. He’s looking at applying
this technique to forensics in cases of vehicle or drone-hacking
attacks. The talk sparked a lively discussion in the room and on
Twitter, as people debated the right way to solve this and the
performance implications, such as clearing memory completely
on application switch or shut down.

Bayan Bruss from Capital One was next up, talking about finan-
cial technology phishing attacks. One out of every 4500 emails
is phishing, and email is currently the number one attack vector.
Capital One was interested in a solution that would accelerate
their analysts and use them more efficiently. They built human-
in-the-loop machine learning systems to speed up their analysis
and improve defense. They still need MTA filters, which block
98% of attacks, but they couldn’t afford to not catch that last 2%.
Employees report emails quickly and get rapid feedback from
SOC analysts to train both the users and the machine learn-
ing. By doing pre-classification, they were able to reduce their
analyst workload by 70%. He regards it as empowering your tier
1 analysts by giving them better investigation tools. The goal
was not to replace them but to augment them. He emphasized
the importance of closing the loop with the analysts and get-
ting the true labels for later retraining. Finally, he talked on the
importance of engaging the whole enterprise more effectively.

He noted that 64% of phishing drills are recognized, but only 7%
of real phishing is, and suggested improving both the quality and
frequency of drills. In addition, he noted that it’s important to
engage users by making it easy to report phishing, giving early
feedback and updating the feedback after the analyst looks at it.

Flavio Villanustre from LexisNexus gave a talk on user-entity
behavioral analytics (UEBA). His talk was primarily a call to
action, covering open problems in UEBA, from dealing with
short time series to how to realistically do continuous authenti-
cation. He noted that biometric accuracy continues to be quite
low, but when used in conjunction with other independent meth-
ods, it can strengthen authentication.

Finally, the day closed with a panel session on ML in the world
of startups. The panel was composed of Adam Hunt, Chief Data
Scientist at RiskIQ; Sven Krasser, Chief Scientist at Crowd-
Strike; Sean Park, Senior Malware Scientist at Trend Micro; and
Kelly Shortridge, Product Manager at SecurityScorecard. Ale-
atha Parker-Wood moderated and guided the discussion to cover
communicating the value of machine learning in a business
context, striking a balance between cutting-edge technology
and tried-and-true techniques, and what emerging technolo-
gies each of them was most excited about. She then offered the
closing remarks, thanking the speakers and audience for making
ScAINet a success, and encouraging them to form new collabo-
rations and connections within the community.

The consensus from attendees and speakers was that this was
a superb lineup of speakers and open discussion, and that they
looked forward to larger attendance and more speakers next year.

Special thanks to Google for sponsoring lunch and to the Pro-
gram and Event committees (Polo Chau, Andrew B. Gardner,
Aleatha Parker-Wood, Alina Oprea, Nikolaos Vasiloglou, and
Anisha Mazumder) as well as USENIX and organizing staff,
including Casey Henderson, Sarah TerHune, and Jenn Hickey.

38  FA L L 20 1 8 VO L . 4 3 , N O. 3 www.usenix.org

SRE/SYSADMINCapacity Engineering
An Interview with Rick Boone

R I K F A R R O W

Rick Boone is currently
a Senior Engineer on the
Capacity Engineering team
at Uber, where he focuses
on modeling and forecasting

Uber’s capacity needs. He has been at Uber
for 3.5 years, where he primarily worked in
SRE (Site Reliability Engineering). Previously,
Rick worked at Facebook for three years as
a Production Engineer and, before that, at a
number of tech startups in Los Angeles. In his
free time, he loves traveling, swimming, and
gymnastics. boone@uber.com

Rik is the editor of ;login:. rik@
usenix.org

W hen I heard Rick Boone’s talk at SREcon18 Americas, I was
immediately struck by his approach. While capacity planning is
really an art, relying partially on past behavior but just as much

on intuition, Rick described uncovering the best metric for reliably predict-
ing capacity as needed.

Uber’s services run on their own hardware, and their goal is to always have sufficient capac-
ity without ever having either too much or a shortage that will hurt business. Rick’s approach
[1] used machine learning to help pick out the appropriate metric and mathematically predict
its impact on a service’s capacity needs. You can watch the video of his talk to learn the
approach used. In this interview, Rick discusses why Uber doesn’t use capacity planning and
instead relies on capacity engineering.

Rik Farrow: What’s wrong with capacity planning?

Rick Boone: For those who are concerned with availability and reliability of services or
platforms, service owners, Production Engineers, or SREs, capacity planning is typically one
of the fuzziest and least understood parts of their job. When we speak of capacity planning,
we’re aiming for a “just right” amount of resources allocated for a service, which will allow
that service to run both efficiently (i.e., “not using too many resources”) and reliably (i.e., “not
using too few resources”), even in the face of unexpected surges of traffic. This can be pretty
difficult to achieve for a multitude of reasons, especially in a fast-moving, complex environ-
ment with lots of interactions between hundreds or thousands of services.

Typically, capacity planning involves a fair amount of back-of-the-napkin math and fuzzy
methods that differ from service to service. Knowledge of what drives the service’s needs
and usage (i.e., “demand”) is required, as is knowledge of how that demand will grow and
change. Knowledge of the service’s dependencies and operational particulars is also needed
(e.g., “Does it speak to a database?”), along with an understanding of how those details affect
the service’s ability to serve its demand (and how it consumes resources). Once all of that
is known and understood, the planner then needs to determine the best way to calculate
expected demand in the future and then extrapolate expected needs from that.

All of these things tend to be very local and service-specific pieces of information, what I like
to call “Jedi” knowledge—intuition which service owners tend to gain over time—which dif-
fer wildly across an engineering ecosystem. For instance, a search service will grow at a very
different trajectory, and have very different resource needs, than a payment service.

You can start to see why traditional capacity planning can be so difficult across an engineer-
ing ecosystem. Its methods are typically not repeatable from one service to another, nor are
they scalable beyond one or two teams. If one person or team does manage to use a method
that is successful for their service, their skills and insight will not necessarily transfer.
Methodology and process becomes wildly inconsistent, leading to confusion and, typically,
overallocation and wastage of resources. As teams become less confident that they can capac-
ity plan effectively, they begin to simply “throw hardware” at the problem and move on to more
solvable things. Often, empirical data or mathematical reasoning is left out of the process,
leading to further lack of repeatability and understanding. And even when data and analysis/
mathematics are used, there is still a very worrying lack of confidence or certainty delivered

www.usenix.org FA L L 20 1 8 VO L . 4 3 , N O. 3 39

SRE/SYSADMIN
Capacity Engineering: An Interview with Rick Boone

with the results. If the “plan” is to go wrong, it is unknown by
how much it will go wrong. Either it will work or it won’t. This
leaves stakeholders and dependent services with an inability to
make informed decisions or tradeoffs concerning the service.

Beyond the issues of fuzzy methodology, there are also problems
that arise from the nature of software and infrastructure. At
Uber, like most large-scale engineering shops, we release a lot of
code and changes to a lot of services on a lot of servers through-
out the day. This all adds up to an ever-changing, complex, and
highly coupled environment, the entirety of which is difficult
for humans to consider when predicting future usage, especially
months in the future.

RF: How is capacity prediction different?

RB: With capacity prediction, we aim to remove all of the fuzzi-
ness and hand-waving from our understanding of capacity usage
and needs. We do this by applying statistical and mathematical
methods to large amounts of past usage data via machine learn-
ing, allowing us to create mathematically sound models of every
service, which we can then use to reliably predict each service’s
future capacity needs.

Each model takes in, as input, a value of Uber’s primary busi-
ness metrics, things like Trips Currently Online, and returns,
as output, the amount of hardware resources needed to handle
that particular volume of the metric. For example, for service
“FooBar,” the model might indicate that to handle 100K trips
online, the service will need 1000 CPU cores.

By providing a method based on a blackbox model of any and
every service, which takes in an input that is common across all
of Uber, we now have a repeatable, scalable, interpretable, and
simple way of both assessing capacity usage and predicting its
future values. We don’t need to know about a service’s dependen-
cies, its particulars, its architecture, how its software performs,
etc.—all of that is represented mathematically by the model,
and we can deal solely with representative numbers, instead of
human/jedi knowledge.

As is typical with statistically derived models, we are also able to
construct empirically derived measures of the model’s accuracy,
so that we can have a very precise idea of how much confidence
we can place in the model’s prediction. Whereas plans are often
and easily broken, predictions are made with an expectation of
success (along with an empirical measure of possible failure).

RF: How did you go about creating a method for capacity predic-
tion at Uber?

RB: The primary things needed for us to bring capacity predic-
tion to fruition were: (1) a consideration of the fundamental
thing(s) that drive resource consumption and (2) a way to repre-
sent these things via data and mathematical models.

At Uber, the demand for most services is driven by a few key
high-level metrics, such as the number of drivers online or the
number of trips occurring. Because of this, the levels of these
metrics typically have a close correlation with resource usage.
We started by building multivariate data sets comprising these
metrics and the CPU usage of a single service, at a granularity of
one hour. We typically use about two weeks of historical data to
ensure that we’re only analyzing the most recent representation
of the service, including its current software releases, dependen-
cies, clients, payloads, etc. Because we have multiple high-level
metrics that can drive a service’s usage, we perform correlation
analysis to mathematically determine which metric has the stron-
gest correlation with the service’s resource usage. Having deter-
mined the best metric, we then use machine learning methods to
build a quantile regression model, which is a variant of a linear
regression model, with the high-level metric as the feature/input
and the resource usage as the outcome/output. With a quantile
regression, we can retrieve 99% of all possible outputs, allowing us
to greatly minimize the possibility of underpredicting.

We repeat this process for every service at Uber and store the
resulting model in a database, with each model relying on one
of a few high-level metrics as its input. Because our high-level
metrics are key performance indicators for the entire company,
we have accurate forecasting for them, extending months into
the future. We simply pass these forecasts into our models and
are able to get a prediction for resource usage for each service for
the next few months.

Any service owner, SRE engineer, etc., can now query for their
service’s predicted resource needs for any week within the next
2–3 months and adjust their allocations accordingly.

RF: Is capacity prediction something unique for Uber or is it easy
for others to also do this?

RB: This is very doable anywhere! The toughest thing that others
might run into is acquiring both historical and forecasted high-
level business metric data. Once that is acquired, along with
service-level resource usage data (CPU, memory, etc.), you’ll
need machine-learning methods to apply to the data and train a
model. ML libraries are readily available in a number of librar-
ies, primarily in Python or R. Or you could also write your own
model trainer. Finally, you’ll need a place to store the models (we
use Cassandra) and a way to retrieve and apply them. We built a
light API in front of the Cassandra model store.

Reference
[1] Rick Boone, “‘Capacity Prediction’ instead of ‘Capac-
ity Planning’: How Uber Uses ML to Accurately Forecast
Resource Utilization”: https://www.usenix.org/conference
/srecon18americas/presentation/boone.

https://www.usenix.org/conference/srecon18americas/presentation/boone
https://www.usenix.org/conference/srecon18americas/presentation/boone

40  FA L L 20 1 8 VO L . 4 3 , N O. 3 www.usenix.org

COLUMNSPython
Shared Libraries and Python Packaging, an Experiment

P E T E R N O R T O N

I’ve been thinking about sharing some thoughts and experiments with
the weird science experiment that is memfd_create(). It’s a system call in
somewhat recent versions of the Linux kernel—3.17 and later.

First let’s take a trip back in time, and then we’ll return to this system call with what I think
is a really fun idea that could be used to explore and maybe improve an inconvenient aspect
of Python packaging.

Shared Libraries
To get started, I want to talk about shared libraries.

When I was first exposed to UNIX systems in college, there was a tremendous amount of
work being done to make the servers of the day more efficient. What computers of the day did
was to act as time-sharing systems, allowing shell, compilation, mail, gopher, talk, netnews,
and many other activities for multiple users. Like today, most users relied on software that
the system administrator either compiled or installed as a package, which would benefit
from the use of dynamically linked binaries.

These would help memory usage because by being dynamically linked, they were being
linked at runtime to shared libraries. “Shared” in this case had more than one meaning. It
meant both that they provide shared code—different programs could benefit from not having
to write the same functions over and over—but by a neat trick it also meant that the read-only
library codes that were used in N programs would all be mapped by the kernel into the same
real set of bytes of memory, so each mapping of the library into a program only required a
little memory overhead. This meant that even if 500 users loaded 100 KB of the same library
code, via logging in and running, e.g., pine (which was at one point a very common mail
reader), each instance of the program would see 100 KB of mappings getting linked in to its
local memory, but over 500 invocations. But instead of using 50 MB of memory, an impos-
sibly large amount at the time, all those invocations would use something more like 100 KB
total, which is pretty cool, via some clever kernel memory mapping.

The involvement of the kernel is very important to bear in mind here. The shared mappings
are done by the kernel and the dynamic linker (ld.so on Linux) working together to provide
shared mappings of the library routines into each process’s virtual memory space at an
address that is only known when it’s loaded. They are then “fixed-up” at runtime to point to
newly assigned addresses so the executable can find them. If you’ve ever wondered why your
Python extension modules are always compiled and linked with the -fpic or -fPIC flag, that’s
why. (See http://bottomupcs.sourceforge.net/csbu/c3673.htm for more about the mecha-
nisms that are involved here.)

Even back then, you could share actual routines without bringing shared libraries into the
picture by statically linking libraries. This is much simpler, but in the era where powerhouse
workstations had 8 MB of memory, they didn’t tell a good story about memory efficiency.

In modern systems, shared libraries aren’t often first and foremost thought of as ways of
saving memory by shared mappings between different processes. In fact they’re often seen as

Peter works on automating
cloud environments. He loves
using Python to solve problems.
He has contributed to books on
Linux and Python, helped with

the New York Linux Users Group, and helped
to organize past DevOpsDays NYC events.
Even though he is a native New Yorker, he is
currently living in and working from home in
the northeast of Brazil. In addition to Python,
Peter is slowly improving his knowledge of
Rust, Clojure, and maybe other fun things.
pcnorton@rbox.co.

www.usenix.org FA L L 20 1 8 VO L . 4 3 , N O. 3 41

COLUMNS
Python: Shared Libraries and Python Packaging, an Experiment

a waste of effort! With the recent abundance of memory avail-
able to systems, and the huge amount of data we’re processing
with that memory, the savings from the shared memory part of
shared libraries that I described above has become a bit of an
anachronism.

Especially when using Python, the “shared” part of shared
libraries has become more about sharing C code with the
Python runtime, making libraries able to be invoked from the
interpreter. The benefits of this are so common they’re almost a
running joke—most answers to questions about making Python
faster, for example, usually quickly bring up the answer, “Use
cython” or “Write it in C and load the faster implementation
from the shared library.” From a more practical standpoint, a
pillar of the Python community is the scientific Python stack
built on top of NumPy and SciPy, and it goes one step further
where FORTRAN code is built and linked so that it is compatible
with C calling conventions, and then Python loads the resulting
libraries for fast matrix math. Python obviously has to do more
than “just load the library” for this to work, but that’s where the
rubber meets the road, so to speak.

Packaging
Now, the more common of these libraries are usually packaged
up by the operating system maintainer—Debian, Red Hat, etc. if
you’re a fellow Linux user—or someone who fits into that job if
your *nix is a different *nix. But once it’s built, a shared lib can be
dynamically linked by a Python runtime, whether it’s packaged
by the operating system maintainer, built yourself, or obtained
from a third party like a scientific Python packager.

There was a time when GNU autoconf was pretty cutting-edge.
It is now considered quite unwieldy. Its heyday was in a world
with literally dozens of operating systems that were sort-of-but-
not-quite like a POSIX or BSD UNIX, and nothing built for one
would compile on any others without inhuman knowledge of
different CPU architectures, C compilers, and luck.

That was then, and the world is much simpler now (for UNIXes
at least), and that’s led to the current generation of popular
languages being able to do better than ./configure. Now instead
of just producing a runnable program and maybe making it
easy to copy the results to your local file system, modern build
toolchains will also package up your work, and often turn them
into a tidy single-file image that can just be executed. Golang is
arguably the king of this category, where one of its main sell-
ing points is that when building your program, you will create a
static binary—that’s it!

Since the modern lifecycle for programs involves multiple
deployments per day, there is a lot of appeal to the idea of being
able to bundle up a single artifact containing everything a

program needs. The prospect of having no external libraries to
depend on and no OS packages to install prior—just being able
to copy a file and being able to just run the program has become
the gold standard of new compiled languages, and once you’ve
done this, it’s pretty nice. Golang, Java, and Rust do a great job
with having their tooling provide this experience, and they set a
standard for other languages to shoot for.

Python has an interesting story in this respect. Python will open
a zip file that contains Python code, if the appropriate structure
is in place. This is described in PEP 273, and there is some more
info in PEP 441. This is the core of some cool stuff that you can
get from PyPI, including pre-packaged wheels, eggs, and, outside
of PyPI, other less geometrically named things like pexes and pars.

Having all of your dependencies in one place is pretty nice. You
don’t have to install anything special, you can just point the
appropriate Python interpreter at a built zip file and get a really
nice experience—both as a developer since the build process is
not complicated and as a sysadmin; as long as the version of the
Python interpreter is a good match for the application in the
archive, you have a pretty good chance at deploying and getting a
good night’s sleep, too. On the face of it, something as convenient
as, perhaps, Java jars. And just about the nicest thing about it is
that you simply don’t have to worry about installing OS packages
or other dependencies.

However, there is one major weak point in using zip archives
with Python. Specifically it has to do with shared libraries. If
you want to have a shared library in your package, the dynamic
linker on your platform, together with the kernel can’t map that
bit of the archive file into the running program!

That’s not the end of the story, though. There is a simple hack
that makes these zip archives work: the packaging tool that
works with zip files will unzip a shared object from the zip file,
write it out to disk, and then use the dynamic loader to make it
available to your programs.

Get that? It extracts the library from the zip archive to plant it
onto disk. The reason is that neither the Linux kernel nor other
UNIX kernels that I’m aware of have special magic to allow
portions of a zipfile to be used as a shared memory mapping for
a shared library. This means that when you have a zipped-up
Python archive for a project that uses common facilities that
are best used via shared libraries—like MySQL, gRPC, XML, or
what have you—and you want to include them in your bundled
artifact in order to guarantee that there aren’t dangling, unre-
solved dependencies, this zip-file format will need to do a few
things that you’d prefer not to do:

42  FA L L 20 1 8 VO L . 4 3 , N O. 3 www.usenix.org

COLUMNS
Python: Shared Libraries and Python Packaging, an Experiment

1. Use space on disk—at least temporarily

2. Use additional disk reads+writes

3. Use additional CPU time at startup and shutdown of the program

None of that seems prohibitive, but in my experience, it can be
really demoralizing when you find out that /tmp has filled up
with detritus from your project, or when you learn that the zip
file will get extracted into the running user’s home directory,
and that user isn’t supposed to write there. Or whatever other
difficulties your site may discover down in the weedy details of
the specific process.

Now, returning to that cool thing I mentioned at the beginning.
I heard about a pretty neat new feature in Linux a few months
back. It’s a system call, memfd_create(), that allows us to turn
a region in memory into a file in /proc/<pid>/fd/<the fd

number>. What’s really interesting is that it acts like a normal
file, which includes being able to be symlinked from other parts
of the file system.

So, wanting to reproduce an idea that I’d heard about from some
of the super tech companies, I thought it would be fascinating
to have the kernel be able to map sections of the zip files—the
shared libraries in particular—so that it could be used as a
shared library.

This system call doesn’t do exactly that, but it seems like it could
get us closer to the goal of all-in-one packaging without having
to extract to the file system. This works by consuming memory
instead of file system space and disk I/O. The question is whether
the presence of an appropriate mapping would prevent the
dynamic linker from trying to load a library from the system (it
should as long as the dependencies are resolved appropriately). If
this worked, it would allow libmysql.so, for example, to be pack-
aged up and shipped.

And it turns out that as a toy, this seems to work! The core of this
is some interesting syscall work that Python lets you do via the
ctypes library using the CDDL call, which maps in the library
via dlopen(). It’s pretty nifty—we can load up libc in order to get
a hold of the syscall we want, then map in the file we have in the
archive as bytes, creating the library in memory, and then use
CDDL again to load it up.

An outtake of the code, which you can find at https://github.com
/pcn/pymyxec, looks like this:

Need to get memfd_create(), which is now in the

syscall table at 319

Returns the FD number

def build_a_lib(lib_name, source_bytes):

 memfd_create = 319

 libc = CDLL(“libc.so.6”)

 print(“Lib name is {}”.format(lib_name))

 so_file_name = “{}.so”.format(lib_name)

 fd = libc.syscall(memfd_create, so_file_name, 0)

 for data in source_bytes:

 os.write(fd, data)

 CDLL(“/proc/self/fd/{}”.format(fd))

 return fd

I’m still smiling and happy at how this has worked. Running this
as documented in the README.adoc in the repo shows how:

spacey@masonjar:~/dvcs/pcn/pymyxec$ bazel build

 mysql_repl.par; bazel-bin/mysql_repl.par

INFO: Analysed target //:mysql_repl.par (1 packages loaded).

INFO: Found 1 target...

Target //:mysql_repl.par up-to-date:

 bazel-bin/mysql_repl.par

INFO: Elapsed time: 1.389s, Critical Path: 0.84s

INFO: 1 process, linux-sandbox.

INFO: Build completed successfully, 2 total actions

Python 2.7.15rc1 (default, Apr 15 2018, 21:51:34)

[GCC 7.3.0] on linux2

Type “help”, “copyright”, “credits” or “license”

 for more information.

(InteractiveConsole)

>>> clientinfo = entry(“libmysqlclient.so”, “__main__

/libmysqlclient.so”)

You got it

[u’bazel-bin/mysql_repl.par/pypi__certifi_2018_4_16’, u’bazel

-bin/mysql_repl.par/pypi__chardet_3_0_4’, u’bazel-bin/mysql

_repl.par/pypi__idna_2_7’, u’bazel-bin/mysql_repl.par/pypi

__urllib3_1_23’, u’bazel-bin/mysql_repl.par/pypi

__requests_2_19_1’, u’bazel-bin/mysql_repl.par/pypi

__docopt_0_6_2’, u’bazel-bin/mysql_repl.par/pypi__MySQL

_python_1_2_5’, ‘bazel-bin/mysql_repl.par’, u’bazel-bin/mysql

_repl.par/__main__’, ‘/usr/lib/python2.7’, ‘/usr/lib/python2.7

/plat-x86_64-linux-gnu’, ‘/usr/lib/python2.7/lib-tk’, ‘/usr/lib

/python2.7/lib-old’, ‘/usr/lib/python2.7/lib-dynload’, ‘/home

/spacey/.local/lib/python2.7/site-packages’, ‘/usr/local/lib

/python2.7/dist-packages’, ‘/usr/lib/python2.7/dist-packages’,

‘/usr/lib/python2.7/dist-packages/gtk-2.0’]

<zipfile.ZipExtFile object at 0x7ff59c934190>

Lib name is libmysqlclient.so

this pid is 14200, lib_fd is 14200

>>> modinfo = entry(“_mysql”,

“pypi__MySQL_python_1_2_5/_mysql.so”)

You got it

[u’bazel-bin/mysql_repl.par/pypi__certifi_2018_4_16’,

u’bazel-bin/mysql_repl.par/pypi__chardet_3_0_4’,

 ...

<zipfile.ZipExtFile object at 0x7ff59c9341d0>

Lib name is _mysql

this pid is 14200, lib_fd is 14200

>>> link_a_lib(“_mysql.so”, modinfo[0], modinfo[1])

>>> import MySQLdb

https://github.com/pcn/pymyxec
https://github.com/pcn/pymyxec

www.usenix.org FA L L 20 1 8 VO L . 4 3 , N O. 3 43

COLUMNS
Python: Shared Libraries and Python Packaging, an Experiment

At the end of that, we can validate that the process is using the
library that we’ve loaded, the shared library in the par file, and
not the shared library installed on the file system.

 (aws) spacey@masonjar:~/dvcs/pcn/pymyxec$ pmap 14200 |

 grep -i mysql

14200: python bazel-bin/mysql_repl.par

00007ff59b4d0000 40K r-x-- memfd:_mysql.so (deleted)

00007ff59b4da000 2044K ----- memfd:_mysql.so (deleted)

00007ff59b6d9000 4K r---- memfd:_mysql.so (deleted)

00007ff59b6da000 16K rw--- memfd:_mysql.so (deleted)

00007ff59bc84000 3656K r-x-- memfd:libmysqlclient.so.so

(deleted)

00007ff59c016000 2048K ----- memfd:libmysqlclient.so.so

(deleted)

00007ff59c216000 24K r---- memfd:libmysqlclient.so.so

(deleted)

00007ff59c21c000 456K rw--- memfd:libmysqlclient.so.so

(deleted)

This shows that the MySQL libraries that are mapped in are only
those that were mapped in via ctypes.CDLL, which is doing the
equivalent of a dlopen() call and mapping in the library. It also
shows that I should update the README on GitHub with one
less .so. The (deleted) is just pmap showing that it thinks the
underlying file used to create the mapping was deleted.

It would be nice if libmysql.so could be read without having to
symlink it into /tmp as in the previous example, but using an
existing module like this, with a compiled shim library, doesn’t
give me that flexibility—though someone smarter than I may
have an idea about how to do that. Pull requests are welcome!

As a closing thought, one remote possibility would be to see how
far we could go with this. For example, could it be possible to
store a subset of the required Python support files? Enough of
what an interpreter needs from lib/python<version>/ could
be included into the archive, ideally in a way that memfd_create
could be used to populate, say, a virtualenv with a bunch of sym-
links into /proc/self/fd/<various pids>, and that virtualenv
and the Python interpreter would be entirely spun from the zip
file. That way the appropriate Python binary, built and tested
as part of the package, would be bootstrapped by the system
Python.

I don’t know if anyone is interested in that, but if so maybe it’d be
a good incentive for me to try to do something with Python 3.

Cheers, and have a great day. I hope this helps you smile a bit.

44  FA L L 20 1 8 VO L . 4 3 , N O. 3 www.usenix.org

COLUMNS

Practical Perl Tools
GraphQL Is Pretty Good Anyway

D A V I D N . B L A N K - E D E L M A N

In a past column we had the pleasure of learning about graph databases
together. That particular column was a blast to write because it gave me
the opportunity to dig into graphs, something I’ve always found interest-

ing. In the process of researching that article, I ran into GraphQL. “Oh, goody,
more graphs!” I thought. Perhaps an SQL-esque language for graphs? The
bad news is GraphQL is nothing like these things or the graph databases we
talked about. Even though they both have “graph” in their name, I would be
hard-pressed to describe how they connect (truth be told, it isn’t immediately
apparent why GraphQL has “graph” in the name). The good news is GraphQL
is interesting in its own right, so today we are going to give it its own column.
And in keeping with my need for radical honesty, I just want to point out up
front that the majority of this column will be focused on GraphQL with the
Perl bits largely showing up at the end (and being straightforward-ish).

GraphQL Basics
GraphQL describes itself as “a query language for your API,” which is both true and perhaps
not as helpful as it could be. The official website continues with:

GraphQL is a query language for APIs and a runtime for fulfilling those queries
with your existing data. GraphQL provides a complete and understandable
description of the data in your API, gives clients the power to ask for exactly what
they need and nothing more, makes it easier to evolve APIs over time, and enables
powerful developer tools.

But I’m still not sure that helps enough. There are a few parts necessary to understanding
what’s behind GraphQL. To start, I think of it as being one door down from REST on the
client-server interaction hallway. To see what I mean, let’s use REST as the exemplar since it
has been mentioned countless times in this column.

With REST, the dance goes something like this:

- GET …/items/shoes the shoes we have

- GET …/items/shoe/id the details for a particular shoe

- GET …/items/shoe/id/laces the color laces it can come with

- GET …/stock/id?laces=brown the number of those shoes with the brown laces in stock

- GET …/stock/id?laces=black the number of the black-laced kind in stock

I’m exaggerating a little bit, but with REST the idea is you make a request, then you follow up
that request with additional requests for more specific information. Sometimes you do this
a bunch of times. This is great from a data architecture perspective (especially if the URLs
are legible). This is less great from a “network is slow and perhaps expensive” perspective:
for example, if the client was a mobile phone. That was exactly the use case Facebook had in

David has over 30 years of
experience in the systems
administration/DevOps/SRE
field in large multiplatform
environments and is the author

of the O’Reilly Otter book (new book on SRE
forthcoming!). He is one of the co-founders
of the now global set of SREcon conferences.
David is honored to serve on the USENIX
Board of Directors where he helps to organize
and engineer conferences like LISA and
SREcon.  dnb@usenix.org

www.usenix.org FA L L 20 1 8 VO L . 4 3 , N O. 3 45

COLUMNS
Practical Perl Tools: GraphQL Is Pretty Good Anyway

mind when it created GraphQL. GraphQL attempts to provide
a mechanism for saying, “Here’s the data I want” and getting it
back in a single interaction.

The second thing GraphQL attempts to do is to allow the client
to have a simple, clear understanding of just what data the server
holds and what the client can ask for. With REST, there’s nothing
about the interaction model that prevents the client from asking
for a piece of fruit from the shoe store or querying /those-brown-

things-that-go-on-your-feet/ instead of the /shoes/ endpoint.
In that example, the server would likely tell the client to take a
leap, but wouldn’t it be better if the client already had an under-
standing of what it and the server could correctly chat about?
With GraphQL, there is a schema (kinda like database schemas)
that is crystal clear about what data is in play, what form it takes,
and how it can be queried.

The GraphQL spec says:

GraphQL is a query language designed to build
client applications by providing an intuitive and
flexible syntax and system for describing their data
requirements and interactions.

That’s probably the easiest way to think about it.

Let’s Play
To get a handle on how this all works in practice (at least at a
very surface level), let’s look at some sample GraphQL. To give
you examples that will be easy for you to explore in greater depth
later, I’m going to use ones that resemble those in the official doc
on https://graphql.org.

Here’s one of the first pieces of GraphQL in the intro tutorial:

{

 hero {

 name

 }

}

This says to query the field “name” from the hero object. The
reply looks (intentionally) like the query:

{

 “data”: {

 “hero”: {

 “name”: “R2-D2”

 }

 }

}

Note, there’s something funky in the docs around this example;
more info on that in a moment.

We can add more fields and more objects as desired:

{

 hero {

 name

 appearsIn

 friends {

 name

 }

 }

}

Did you catch the interesting part? Objects can have both fields
and sub-objects (that can have fields). In this case, in addition to
asking for a new field, I’ve also asked for both the name fields in
the hero object and the name fields in the friends object in that
hero object. That would yield something like:

{

 “data”: {

 “hero”: {

 “name”: “R2-D2”,

 “appearsIn”: [

 “NEWHOPE”,

 “EMPIRE”,

 “JEDI”

],

 “friends”: [

 {

 “name”: “Luke Skywalker”

 },

 {

 “name”: “Han Solo”

 },

 {

 “name”: “Leia Organa”

 }

]

 }

 }

}

This example also shows that, if desired, objects can hold lists of
values fields, not just single strings.

If we want to query for a specific object, we can pass in
arguments:

{

 hero(episode:EMPIRE) {

 name

 }

}

and get just the results we need:

46  FA L L 20 1 8 VO L . 4 3 , N O. 3 www.usenix.org

COLUMNS
Practical Perl Tools: GraphQL Is Pretty Good Anyway

{

 “data”: {

 “hero”: {

 “name”: “Luke Skywalker”

 }

 }

}

Wait, what? If you are puzzled at this response given the mate-
rial we’ve seen before, don’t sweat it. I was, too. I could not figure
out why the initial “{hero {name} }” didn’t yield all of the possible
heroes. It took me a bunch of spelunking around in the source
for the documentation to find the reason, but when I found it, it
yielded an important truth. Let me explain.

The reason why we only saw R2-D2 when there wasn’t an
“episode” argument was this little piece of code called from the
source of the page:

/* Allows us to fetch the undisputed hero of

 the Star Wars trilogy, R2-D2.

 */

function getHero(episode) {

 if (episode === ‘EMPIRE’) {

 // Luke is the hero of Episode V.

 return humanData[‘1000’];

 }

 // Artoo is the hero otherwise.

 return droidData[‘2001’];

}

GraphQL isn’t a database. Remember, “GraphQL is a query
language designed to build client applications by providing an
intuitive and flexible syntax and system for describing their
data requirements and interactions.” How those interactions
take place are (1) language agnostic and (2) defined by the code
you do wire up to it. The code assigned for returning heroes (the
GraphQL “resolver” for hero) had its own opinion as to what it
should return. This particular lesson took me longer to grok than
I would have liked; hopefully, I’ve saved you a little time.

Want to see both heroes? For that, we would use a syntax
(aliases) that allows us to ask for two objects that share the same
field name, but with different arguments:

{

 empireHero: hero(episode: EMPIRE) {

 name

 }

 jediHero: hero(episode: JEDI) {

 name

 }

}

The result makes a bit more sense now:

{

 “data”: {

 “empireHero”: {

 “name”: “Luke Skywalker”

 },

 “jediHero”: {

 “name”: “R2-D2”

 }

 }

}

There are a number of syntactical sugar extensions to the
language including those that make it easier to repeat parts of
a query without writing it out repeatedly, ways to pass vari-
ables into the language, and ways to change the data (mutate it)
instead of just querying. There are also some spiffy introspec-
tion capabilities that allow a client to ask the server questions
about the schema.

In the interest of brevity, rather than diving into these things (or
schema construction itself), I recommend you take a look at the
tutorial at https://graphql.github.io/learn/. Instead, let’s actually
see how we can use GraphQL with Perl.

GraphQL and Perl
The heart of all (present day) support of GraphQL in Perl comes
from a port of the reference JavaScript implementation. Quick
warning: when you install the GraphQL Perl module, it has a
number of dependencies. Make that a large number of depen-
dencies (because the dependencies have dependencies). When I
installed it on a fresh Perl distribution, the count was 80. I used
“cpanm” (which we’ve talked about in a past column), so it was
only a matter of waiting, but I thought I’d give you fair warning.

For the client-server interaction aspect of GraphQL, the client
support is pretty trivial. Your client just needs to be able to spit
some GraphQL at the server. It could in theory do some more
interesting things like schema validation, but let’s leave that for
a moment. That is probably just by constructing and sending an
HTTP request with the right payload in it like we’ve done a ton
of times before in this column. The harder part is the server-side
support. That’s where the Perl module mostly comes into play.

In the past we’ve looked at a few Perl web frameworks with
the most emphasis on Mojolicious. We’ll use Mojolicious::Lite
to handle the server duties for this super quick example as
well. The key to using Mojolicious is the plugin module called
Mojolicious::Plugin::GraphQL, which is a separate dependency
you will need to install. Let’s take a look at a piece of sample code
from a Rosetta Stone-esque blog post here:

www.usenix.org FA L L 20 1 8 VO L . 4 3 , N O. 3 47

COLUMNS
Practical Perl Tools: GraphQL Is Pretty Good Anyway

http:// blogs .perl .org /users /ed _j/2017 /10 /graphql -perl ---graphql
-js -tutorial -translation -to -graphql -perl -and -mojoliciousplugin-
graphql .html.

I call this a Rosetta Stone because this blog post shows the Perl
equivalent code for one of the more well-known tutorials whose
examples are in JavaScript (https://graphql.org/graphql-js/).
Here’s one of the code samples from that blog post:

use Mojolicious::Lite;

use GraphQL::Schema;

my $schema = GraphQL::Schema->from_doc(<<’EOF’);

type Query {

 helloWorld: String

}

EOF

plugin GraphQL => {

 schema => $schema,

 root_value => { helloWorld =>

 ‘Hello, world!’ },

 graphiql => 1,

};

app->start;

The first part of the sample includes a definition of a GraphQL
schema (a very simple one). The second part loads the GraphQL
plugin and sets up the value that will be returned when {hel-

loWorld} gets queried. Then we start the Mojolicious event loop
and are off to the races.

The one fun part of this plugin shown in the code that I want to
highlight is this line:

 graphiql => 1,

GraphiQL is an in-browser IDE that is super spiffy. It allows you
to interactively play with GraphQL queries, find errors, see all of
the possible objects/fields from a schema, auto-complete them
when typing, and so on. When you include this in the plugin con-
figuration as above, it will automatically load GraphiQL for you.
So if we start up this code snippet with:

$ perl ./test2.pl daemon -l http://*:5000/graphql

[Mon Jun 25 10:43:11 2018] [info] Listening at

“http://*:5000/graphql”

Server available at http://127.0.0.1:5000/graphql

and browse to that URL, we see something like Figure 1.

I have opened up the Docs section and clicked through a bit, so
you can see that it stands at the ready to show you what’s avail-
able in the schema. I have also typed something into the left
window pane and executed the query, so you can get the full idea
from the screen shot.

With this little tip on how to play with GraphQL, I’m going to
wind the column down. GraphQL has a bit of a learning curve,
but it is some great stuff and there is strong support for it in the
community. I hope you’ll take a moment to play with it a bit. Take
care, and I’ll see you next time.

Figure 1: The GraphiQL interface

http://blogs.perl.org/users/ed_j/2017/10/graphql-perl---graphql-js-tutorial-translation-to-graphql-perl-and-mojoliciousplugingraphql.html
http://blogs.perl.org/users/ed_j/2017/10/graphql-perl---graphql-js-tutorial-translation-to-graphql-perl-and-mojoliciousplugingraphql.html
http://blogs.perl.org/users/ed_j/2017/10/graphql-perl---graphql-js-tutorial-translation-to-graphql-perl-and-mojoliciousplugingraphql.html

48  FA L L 20 1 8 VO L . 4 3 , N O. 3 www.usenix.org

COLUMNS

Yes, Virginia, There Is Still LDAP
C H R I S “ M A C ” M C E N I R Y

W ith the current trend of adapting web-based single-sign-on
 solutions, it is easy to forget about one of the most prominent
authentication and user information systems still in use: LDAP.

At its base, LDAP is a collection of objects that:
1. have a Distinguished Name to identify them,
2. have attributes that follow predetermined schema, and
3. are structured and related to each other as nodes on a branching tree.

The above properties affect how you identify and manipulate them.

Two of the most common implementations of LDAP are Microsoft’s Active Directory and
OpenLDAP. Microsoft’s Active Directory (AD) underpins many corporate infrastructures.
While you may not want to use it for all AD operations, AD provides LDAP as a first-class
way of searching and modifying objects inside of it. OpenLDAP is commonly found in many
open source shops and large cluster installations.

In this article, we will look at two common interactions with LDAP:

◆◆ How do you find a user in LDAP?

◆◆ How do you add a user to a group in LDAP?

Along with properly assigned group ownership, these two can be used to help users manage
their own groups.

To help us out, we’re going to focus on the go-ldap library (https://github.com/go-ldap/ldap).
In addition to that, we will use the Go Subrepository library for password handling (https://
golang.org/x/crypto/ssh/terminal).

Setup
The code for this is found in the useldap directory of the GitHub repository (https://github
.com/cmceniry/login). It includes Gopkg configurations to pull in dependencies. Both the
search and the group commands are expected to be run with a simple go run … command.

In addition to the code, you will need access to an LDAP server. If you are familiar with
LDAP, you can probably modify the examples as necessary for your situations.

If you are new to LDAP, one of the fastest ways to get up and running is to run OpenLDAP as
a docker container:

docker run --hostname ldap.example.com \
 --name ldap -d -p 389:389 -p 636:636 \
 osixia/openldap

Once up and running, you will want to load the included data.ldif file:

ldapadd -H ldap://localhost \
 -D “cn=admin,dc=example,dc=org” -w admin \
 -f ./data.ldif

Chris “Mac” McEniry is a
practicing sysadmin responsible
for running a large e-commerce
and gaming service. He’s been
working and developing in

an operational capacity for 15 years. In his
free time, he builds tools and thinks about
efficiency. cmceniry@mit.edu

https://golang.org/x/crypto/ssh/terminal
https://golang.org/x/crypto/ssh/terminal

www.usenix.org FA L L 20 1 8 VO L . 4 3 , N O. 3 49

COLUMNS
Yes, Virginia, There Is Still LDAP

While there are common conventions that appear between
LDAP installs, the specific locations and paths used for objects
can vary. In the examples here, we limit our users to the
ou=people,dc=example,dc=org subtree, and our groups to the
ou=groups,dc=example,dc=org subtree. If you are attempt-
ing the same thing against Active Directory, its structure will
depend entirely on your Forest, Domains, and Organizational
Unit structures. You may have to change the search filters widely
to find the appropriate objects there.

For the sake of brevity, we will ignore TLS in this example.
However, if you are using LDAP, you should be using it securely.
Luckily, the LDAP Go library referenced here has simple support
for TLS. Add the TLS configuration after the ldap.Dial calls:

 err = l.StartTLS(&tls.Config{
 ...
 })

Safely Reading Passwords
LDAP does not maintain a constant session across multiple
connections, but does require authentication, known as “bind-
ing” inside of LDAP. Our examples are simple command line
tools which will create new connections every time that they
are invoked. This means that we’re going to have to authenti-
cate every time as well. To do that, we’ll want a safe and cross-
platform way to obtain the user’s password. In this case, it is the
simple “admin” password, but we should still handle it safely.

passwd.go: GetPassword.

 func GetPassword() (string, error) {
 fmt.Printf(“Password: “)
 pw, err := terminal.ReadPassword(int(os.Stdin.Fd()))
 fmt.Println()
 if err != nil {
 return “”, err
 }
 return string(pw), nil
 }

We begin the above function by asking for a password via our
“Password:” prompt. We don’t end this Printf with a new line in
order to preserve it as a prompt. This doesn’t change the behavior
of it, but it is the common convention for the user interface. The
magic comes in the form of terminal.ReadPassword, which is
the cross-platform method of obtaining input without echoing it
back to the screen.

We finish the main prompting with the Println for two reasons.
First, since terminal.ReadPassword disables echo, any new line
entered by the user will not be echoed and so the next printed
characters will end up on this line. In addition, the Println state-
ment resets the echo state of the terminal. Any Print* would do,
but we are taking out two birds with one stone.

Finding a User
When doing group changes, the first step is to identify the users
to be added or removed from the group. Our first utility will
help us identify users. In the simple case, we’re going to accept a
command line option, the name of a user to find, and return the
distinguished name (DN) for that user.

We start by getting the admin password using our terminal.

ReadPassword wrapper. In this example, we’re going to panic if
anything goes wrong.

search/main.go: getpw.

 pw, err := useldap.GetPassword()
 if err != nil {
 panic(err)
 }

With password in hand, we open our connection to the LDAP
server. ldap.Dial follows the same form that any of the Dial func-
tions do: protocol and hostname:port. After checking for error,
we defer closing the connection so that it will properly shut that
down when we are finished (probably not needed in this case, but
good practice nonetheless).

search/main.go: connect.

 l, err := ldap.Dial(“tcp”, “localhost:389”)
 if err != nil {
 panic(err)
 }
 defer l.Close()

After connecting, we need to identify ourselves. In LDAP terms,
this is called binding. Binding takes a distinguished name and a
password. Our DN is the LDAP admin account.

search/main.go: bind.

 err = l.Bind(“cn=admin,dc=example,dc=org”, pw)
 if err != nil {
 panic(err)
 }

Once fully into the server, we can perform our search with
the Search method of our LDAP connection. Search takes one
argument, *SearchRequest which is constructed with the
general NewSearchRequest func. NewSearchRequest takes nine
arguments:

1. The base DN or section of the tree to search under
2. The scope or how deeply into the tree to search
3. The “Deref” flag to show if there are any objects pointed to
4. The limit on the number of resulting entries to get (this can

be further restricted by the server, so the response may not
always be the same)

5. The time limit to wait for a response
6. The “TypesOnly” flag to indicate whether to show attributes’

names only or names and values

50  FA L L 20 1 8 VO L . 4 3 , N O. 3 www.usenix.org

COLUMNS
Yes, Virginia, There Is Still LDAP

7. The filter to use to search what matches which attributes to
select one

8. The limit of the attributes to return
9. The controls that affect how a search is processed (e.g., to sup-

port paging of results)

Of these, the most common one to change is the search filter, or
what to search for (no. 7), and the second most commonly changed
is the base DN, or where to search for it (no. 1). For our example, we
want to look only under the ou=people,dc=example,dc=org part
of the tree and only for those entries where the common name, or
cn, attribute matches our command line options.

search/main.go: search.

 results, err := l.Search(ldap.NewSearchRequest(
 “ou=people,dc=example,dc=org”,
 ldap.ScopeWholeSubtree, ldap.NeverDerefAliases,
 0, 0, false,
 fmt.Sprintf(“(cn=%s)”, os.Args[1]),
 nil, nil,
))

Now we show the output with three loops. The results struct has
a primary field, Entries, which is an array of all of the returned
LDAP objects. We can iterate over the array of objects. Each
object has a DN and an array of attributes. By iterating over this
array, we can see that each attribute can have multiple values
(e.g., multiple member attributes for group membership), so we
finally iterate over those and display them.

search/main.go: show.
 for _, r := range results.Entries {
 fmt.Printf(“------- %s -------\n”, r.DN)
 for _, attr := range r.Attributes {
 for _, v := range attr.Values {
 fmt.Printf(“%s: %s\n”, attr.Name, v)
 }
 }
 }

Updating a Group
Once we have the reference to the user object, we can make sure
that that is a member of the group. In our second tool, group,
we’re going to accept a DN (note: not user cn or name) and
ensure that that exists on our mygroup group (i.e., add it if it
doesn’t exist, or just leave it there if it does).

We start by getting the password, connecting, and binding as we
did before:

group/main.go: getpw,connect,bind.

 pw, err := useldap.GetPassword()
 ...
 l, err := ldap.Dial(“tcp”, “localhost:389”)
 ...
 err = l.Bind(“cn=admin,dc=example,dc=org”, pw)

Modifying an LDAP object with something it already has results
in an error. So we first want to check that our user addition
doesn’t already exist on the group. We perform an LDAP search,
but this time on the group.

group/main.go: search.

 results, err := l.Search(ldap.NewSearchRequest(
 “ou=groups,dc=example,dc=org”,
 ldap.ScopeWholeSubtree, ldap.NeverDerefAliases,
 0, 0, false,
 “(cn=mygroup)”,
 nil, nil,
))

With this result, we iterate through the member values and exit
out successfully if the DN is already there.

group/main.go: exist.

 members := results.Entries[0].GetAttributeValues(“member”)
 for _, v := range members {
 if v == os.Args[1] {
 os.Exit(0)
 }
 }

Once we confirm the addition isn’t already there, we proceed
to update the group object. Similar to the NewSearchRequest,
we construct a NewModifyRequest that we can feed to Modify.
The main difference between using the two is that we create
the request struct and then add our modifications to it. In this
case, we Add our DN as a value for the member attribute. Again,
attributes can have multiple values, so we add the array (even if
it’s only one value).

group/main.go: modify.

 m := ldap.NewModifyRequest(
 “cn=mygroup,ou=groups,dc=example,dc=org”,
)
 m.Add(“member”, []string{os.Args[1]})
 err = l.Modify(m)
 if err != nil {
 panic(err)
 }

And with that, we’ve ensured that our user is on the group.

Conclusion
This example shows that Go has the chops to exercise even what
many forgot is a common protocol underlying a lot of infrastruc-
tures. The above could be done with the appropriate invocations
of ldapsearch and ldapmodify, but we can encode some of our
conventions (tree structure, attribute names) and simplify what
we must know to achieve our goals. Add to that that we can
distribute these tool binaries as single files, and we can provide
simple interfaces for our users and ourselves to manage our
resources. This is a very useful method to keep operations run-
ning smoothly in any organization.

www.usenix.org FA L L 20 1 8 VO L . 4 3 , N O. 3 51

COLUMNS

iVoyeur
Flow

D A V E J O S E P H S E N

Dave Josephsen is a book
author, code developer, and
monitoring expert who works
for Sparkpost. His continuing
mission: to help engineers

worldwide close the feedback loop.
dave-usenix@skeptech.org

Little Mission Creek roars and tumbles and thrashes against its banks,
along with, it seems, every watershed in all of western Montana. The
Clark Fork in Missoula, the Gallatin in Bozeman, the Great Missouri

River in Helena, and the Yellowstone River a dozen miles south from where
I sit—they’ve all crested their banks and tested their spillways in the last
several weeks.

But Little Mission Creek is my home, though I barely recognize the violent torrent it has
become this spring. Watching it churn impatiently about my legs, it’s easy to forget what an
arid place this is. The notion of water-rights and violent disputes over creeks like this one
have shaped the landscape here every bit as much as the flowing water itself.

I like to sit here at the bank and attempt to imagine how the water flowing past me now will,
in roughly 11 minutes, make its way to the head of our valley and join forces with Mission
Creek proper—itself busily running north out of the foothills. How in another 20 minutes the
water below me will spill crashing into the Yellowstone River and turn east, running for 150
miles into Billings before turning back north, and joining the Missouri just past the North
Dakota border.

That’s about the extent of my imagination. I can’t really wrap my head around the scope of
the journey these H2O molecules are about to make, but that doesn’t stop the water in Little
Mission Creek. On it flows, heedless of my cognition and indifferent to my doubts, winding
halfway across North Dakota before veering back down south to Kansas City, where it turns
east again to join the Mississippi in St. Louis before finally making a 700-mile beeline for the
Gulf of Mexico at New Orleans.

That’s just inconceivable to me. It seems mythical, otherworldly. Someday I’m going to drive
it. I’ll plan it carefully, taking small roads as necessary to remain as close to the water as
possible. Hopefully, I’ll get a tangible sense of it—a concrete understanding of what it means
to flow like the water in my creek. When I go, I will take some of my creek water with me in a
bottle. I’ll carry it to the Gulf like a riverbed on wheels and, like an orphan reunited, return it
to the Atlantic at the end of my own journey. I wonder if I’ll be giving it a head start or delay-
ing its arrival; or maybe it’s the journey that matters, not the destination. Maybe when I get
there I’ll understand.

Data Lake
At work I’m helping out on a project called “The Data Lake.” We’re all very excited about it.
For example, the other day I got a meeting invite whose description read (I promise I’m not
making this up): “Break out your data-paddles, because it’s time to go data-canoeing in the
data-lake.” That’s how excited we are. Just absolutely dancing-away-with-the-metaphor-in-
public excited.

What on earth is a data-lake?

52  FA L L 20 1 8 VO L . 4 3 , N O. 3 www.usenix.org

COLUMNS
iVoyeur: Flow

Great question, I’m glad you asked. The data-lake is just a color-
ful name for a series of S3 buckets. S3 buckets?! What’s so great
about a bunch of S3 buckets, you ask? Well, it’s not so much the
storage medium that’s cool as what’s stored there, how it’s stored,
and what we can do with it later by way of a few Python scripts
and AWS’s Athena service. Have you read about schema-on-read,
columnar data storage formats, and the rise of the SQL query
engines? If not, prepare yourself, because these are the substrate
into which the data-lake is carved.

For the entire length of the history of people interacting with
databases so far, we have been mapping our data to a schema at
write time. Like anal-retentive scriveners whose very nature
prevents us from just writing anything down all willy-nilly, we
take the raw data in one hand and a description of what the data
should look like in the other, and we combine the two, writing the
result to disk in a binary, pre-formatted way. Users can subse-
quently make queries against the data because we have it stored
in a schemafied, normalized, queryable format.

Schema-on-read systems, by comparison, map the schema to
raw data at query time. That is, the data is not preformatted—it
is not “queryable” in the database-sense. It’s just bytes sitting
somewhere on disk in its native format (JSON, newline-sepa-
rated lines of text, whatever…). The schema itself is stored as a
set of ETL-like (extract, transform, load) instructions (or even a
regular expression), which the query engine can use to map the
at-rest data into named fields on-demand. So really, there is no
“database” in a schema-on-read system. There is just some meta-
data linking the location of some at-rest data to a schema we can
use to parse it when we want to.

Bereft of a proper database to pamper and worship, users instead
interact with a query engine. When a user makes a query, the
query engine finds the data, maps it to the schema in memory,
executes the query on the resultant in-memory data blob, and
returns the result. When the query engine speaks SQL (most of
them speak a dialect of SQL like Presto (https://prestodb.io/)),
we call it, unimaginatively, an “SQL query engine.”

Why would you ever do that?

I know, if you want a database, use a database, right? Well, data-
bases have their own suite of problems, related mostly to getting
data into them. Engineers often turn to schema-on-read systems
to provide an SQL interface to some vast quantity of already
at-rest data that would otherwise be too onerous for a traditional
database to ingest.

Say, for example, that there’s an S3 bucket containing a yottabyte
of raw (un-summarized) monitoring check output for every
computer ever owned by some corporation since the beginning
of time, and you need to query it. You could spend the better part
of a month writing custom ETL and using it to get all that data

into MySQL, all just to run a couple of queries and then throw it
all away, or you could just point your Apache Drill (https://drill
.apache.org/) SQL query engine directly at the data.

This sort of ad hoc access to analyze ponderously huge data sets
stored across a widely distributed medium is the bread-and-
butter use-case for schema-on-read, but those of us who struggle
with a preponderance of monitoring data might also find a com-
pelling story herein.

Imagine that you could just flip a switch and enable SQL query-
ing of all of your organizational Nginx logs. What a treasure
trove it would suddenly become for managers, engineers, account
managers, support personnel…anyone able to formulate an SQL
query. A common, self-service interface for anyone with ques-
tions like, “What was the 99th percentile response time on the
/accounts endpoint this morning?” or “How many people signed
up last month?” And you can make it happen without any of the
headache of ETL, provisioning, scaling, and managing a proper
database or rolling an ELK-style log analysis system.

That’s pretty much the data-lake concept in a nutshell: a low-
maintenance, self-service SQL interface into timely operational
data that you just happen to have lying around anyway.

Keeping Things Low Cost
For the data-lake, our chosen SQL query engine is an AWS-hosted
service called Athena (https://aws.amazon.com/athena/). It’s
easy to use, wholly hosted, and it obviously works flawlessly with
data stored in S3. You only pay for the queries you make, but here’s
the rub: it costs $5 per terabyte of data scanned by each query.

How is THAT going to work?!

I know. You have a LOT of data (so do I). So the game becomes
a process of getting the answers you need from the data set
with the minimum amount of actual reading data. There are
two hacks that make our data-lake cheap enough that so far, we
aren’t worried about restricting access to it.

The first is data partitioning. It’s possible to write the data to S3
in chunks, labeling these in such a way that Athena can intuit the
chunk names. A very common partitioning scheme, which many
log-writers support without even knowing it, is partitioning by
year/month/day. Simply write the data to S3 using year/month/
day “directories” (there aren’t really any directories in S3), and
identify these to Athena as partitions. Then make queries like
this one, which I just used to count the number of API calls made
by a customer in the first 10 days of April:

SELECT COUNT(*) FROM “data-lake.nginx-json” where

“customer_id”=’1234’ AND “partition_0”=’2018’ AND

“partition_1”=’04’ AND “partition_2”

in(‘01’,’02’,’03’,’04’,’05’,’06’,’07’,’08’,’09’,’10’);

https://drill.apache.org/
https://drill.apache.org/

www.usenix.org FA L L 20 1 8 VO L . 4 3 , N O. 3 53

COLUMNS
iVoyeur: Flow

It seems stupid-obvious, but without partitioning you’ll too often
find yourself reading more data than you want. You can read
more about data-partitioning for Athena at the AWS support site
(https://docs.aws.amazon.com/athena/latest/ug/partitions.html).

The second hack to minimize the amount of data you scan is to
use a columnar data storage format. I know I said you didn’t need
to pre-format your data, and you don’t. But if you’re building a
semi-permanent log-query solution on Athena, like we are, and
want to save a considerable amount of money, I’d highly recom-
mend running your queries against a columnar-transformed
copy of your logs.

So what’s a columnar data store? Well, start by imagining a typical
database as a spreadsheet, where you have a row of headers fol-
lowed by rows of data records and where each column represents a
schema entry in that data record. You know what it looks like:

first, last, middle, num, street, state, pet

dave, josephsen, j, 11, may street, MT, cat

jill, gomez, f, 114, epic road, CA, goldfish

jose, cardona, r, 210, turbine ct, TX, hedgehog

A columnar data store is pretty much a broken spreadsheet. We
take all the column entries and store them on top of each other,
along with a small header which maps the line numbers of each
column. I’m simplifying things for instructional purposes but it
basically looks like this:

first 1, last 4, middle 7, num 10, street 13, state 16, pet 19

dave

jill

jose

josephsen

gomez

cardona,

j

f

r

11

114

210

may street

epic road

turbine ct

MT

CA

TX

cat

goldfish

hedgehog

Now imagine what happens when I make a query like

select * where middle=”j”

In a traditionally laid out record-per-line text file, the query
engine needs to traverse and parse essentially the entire file,
ingesting each record to search for the middle field, string com-
pare it against j, and then return the whole line if it matches.

With a columnar format, we can use index numbers to look
around rather than scanning the data itself. First, we parse
the header for the line-number of the middle field, and then we
simply seek directly down to line 7, comparing just the individual
bytes from each record’s middle column, and return the match-
ing records. The records we can also reconstruct from line-
number offsets without having to actually scan the data (e.g., the
offset between line 7 and the matching record (line 7) is 0. So we
reconstruct the entire record by walking the header and forming
the union of lines 1+0, 4+0, 7+0, and so on...).

This is a way more efficient means of querying data, which
translates to both faster responses and smaller Amazon bills.

Flows
Okay, so what have we learned?

◆◆ Schema-at-read query engines can effectively query at-rest
data using SQL-like syntax.

◆◆ Most watershed from western Montana winds up in the Gulf of
Mexico.

◆◆ You can roll your own query-engine with something like
Apache Drill or use a hosted one like Amazon Athena.

◆◆ You can query raw data but it’s expensive and slow.

◆◆ If you transform it into structured data and store it in a colum-
nar format like Parquet (https://parquet.apache.org/), things
get orders-of-magnitude faster and cheaper.

But how do we get our log data from text files on individual
server instances into Parquet-formatted data in the data-lake?
Well, a detailed description of our ingestion pipeline will have to
wait until next time, but the short answer is—rather obviously—
it flows there. Nginx to Rsyslogd to Fluentd to Kinesis to EMR,
like rivers winding, maybe our data-lake metaphor isn’t really as
absurd as it sounds at first. Deeper than a pond and yet perhaps
not so final a destination as an ocean, our humble Data Lake
is already solving pretty big observability conundrums for us
internally, so maybe our excited overuse of metaphor is similarly
justifiable. Anyway, grab your hip-waders, because next time
we’ll wade into the stream and measure the flow.

Take it easy.

54  FA L L 20 1 8 VO L . 4 3 , N O. 3 www.usenix.org

COLUMNS

It will come as no surprise that 50, or even 20, years ago inquisitive
minds were often at a loss for bodies of numbers upon which they could
rely. Putting aside the precise meaning of “rely” for the moment, a short-

age of numbers is less and less a reason for inaction in any domain. Just as
obvious as the sunrise, soon enough the issue will be too many numbers.
 Sensors, radios, and AI, oh my.

Security metrics study is possibly out in front of some other fields, but only so much and
likely not even that for much longer. The idea that managing a risk requires measuring that
risk or its precursors has long since become standard operational thinking in the security
game, yet we are living proof that while collecting numbers is necessary, it is not sufficient to
deliver security.

Some would argue that it isn’t our tools and our scorekeeping (with numbers) that is the
“thing” that is not sufficient—rather, it is incentives that are wrong. Whole conferences are
on this topic, and there is no way to summarize them in the context of this column, but study
of, and suggestions for, incentive structures, be they rewarding or punishing, are surely need-
ful. As an example, the organizers of the Code Conference (CodeCon) said, “[For] 2018, we
invited the people in charge of enforcing regulations, and those creating new ones.” That’s a
stab at incentive structures to be sure, but let’s specifically look at some numbers from Mary
Meeker’s “Internet Trends 2018” slide deck at CodeCon, beginning with Slide 99 [1].

For Good Measure
Numbers Are Where You Find Them

D A N G E E R

Dan Geer is the CISO for
In-Q-Tel and a security
researcher with a quantitative
bent. He has a long history
with the USENIX Association,

including officer positions, program
committees, etc. dan@geer.org

Content initiatives, Slide 99

Note the role of algorithms in the above, which, for the purpose of this column, we will take
as a form of security metrics even if the algorithms in question are not open for inspection.
Algorithms as censors is a worthy topic in its own right.

With Google/YouTube, that 81% were flagged by algorithms presumably means that the
average Content Moderator sees those algorithms as automated assistance to making faster

www.usenix.org FA L L 20 1 8 VO L . 4 3 , N O. 3 55

COLUMNS
For Good Measure: Numbers Are Where You Find Them

decisions. A month before Meeker’s speech, The Guardian [2]
said this about the algorithms, per se:

Those systems broadly work in one of three ways: some
use an algorithm to fingerprint inappropriate footage
and then match it to future uploads; others track
suspicious patterns of uploads, which is particularly
useful for spam detection. A third set of systems use
the company’s machine learning technology to identify
videos that breach guidelines based on their similarity
to previous videos. The machine learning system used
to identify violent extremist content, for instance, was
trained on 2 million hand-reviewed videos.

While machine learning catches many videos, YouTube
still lets individuals flag videos. Members of the
public can mark any video as breaching community
guidelines. There is also a group of individuals and
150 organisations who are “trusted flaggers”—experts
in various areas of contested content who are given
special tools to highlight problematic videos. Regular
users flag 95% of the videos that aren’t caught by the
automatic detection, while trusted flaggers provide
the other 5%. But the success rates are reversed, with
reports from trusted flaggers leading to 14% of the
removals on the site, and regular users just 5%.

Facebook’s use of algorithms is undoubtedly similar to that of
Google/YouTube.

But measurement is not a problem just for us here in security
metrics land; take something as important as economics. Every-
one knows something about the Consumer Price Index (CPI).
As Wikipedia puts it, “In most countries, the CPI, along with the
population census, is one of the most closely watched national
economic statistics.” Yet even the calculation of the CPI is hav-
ing trouble these days, as Slide 111 shows.

Think of the spread of things that the CPI is baked into, from
labor contracts to entitlements to financial instruments to you-
name-it. Surely the CPI is easier to measure than security, but
here we are.

Of course, everyone knows that the world is creating lots of data.
Defining “structured” data as “data that has been organized so
that it is easily searchable and includes metadata and machine-
to-machine (M2M) data,” we have (by way of the market intel-
ligence firm IDC) the curve you see in Slide 189.

For those of us working in data protection, the message is obvi-
ous—data protection must be automated; the algorithms have
to make the “kill decisions.” And other algorithms will have
to summarize things for us, summaries that will be ever more
distant from the raw numbers.

Putting aside the argument over whether security and privacy
are mutually supportive or fundamentally at odds, Slide 206 has
a few somewhat encouraging numbers that consumers are at
least thinking about it:

On the other hand, trading short-term gain for long-term risk is
still blithely popular, but, as measured by the German marketing
firm GfK, blitheness is culturally diverse—see Slide 223.

That one slide, Slide 223, probably says more than we know how
to evaluate both as to privacy (the question GfK actually inves-
tigated) and to security (as in risk/benefit tradeoffs generally).
Later on (Slide 266), the founder of Slack hits the nail on the
head: “When you want something really bad, you will put up with
a lot of flaws.” We, the global “we,” want our toys ever harder,
ever faster. There’ve been a lot of demonstrations of that phe-
nomenon, but let’s use The Economist ’s numbers in Table 1 [3].

To get adoption rates accelerating like that a lot of flaws must
be put up with, security flaws in particular, one might presume,

Online prices are falling, Slide 111 Projection of global information creation, Slide 189

56  FA L L 20 1 8 VO L . 4 3 , N O. 3 www.usenix.org

COLUMNS
For Good Measure: Numbers Are Where You Find Them

since security is so generally a feature worth adding only after
there is good consumer uptake.

So where does this get us? It is not as if anyone needs to be told
that things are changing faster than we understand. It is not
as if the present author’s selected numbers from the “Internet
Trends Report” are unbelievable individually, but collectively
they predict a world where prediction (as we humans under-
stand the term) is less and less possible because of the number
of moving parts, their opacity, their interdependence, their
cardinality, their specificity of purpose, their autonomy, their
speed. Clausewitz would no doubt call this a deepening fog of
war. Modern military doctrine trades off precision and certainty
for speed and agility, or, as Army Chief of Staff Gen. Mark Milley
says [4], “On the future battlefield, if you stay in one place longer
than two or three hours, you will be dead.” Is that not the future
of cybersecurity in a nutshell?

References
[1] M. Meeker, “Internet Trends 2018”: http://www.kpcb.com
/file/2018-internet-trends-report.

[2] A. Hern, “YouTube Reveals It Removed 8.3m Videos from
Site in Three Months,” The Guardian, April 23, 2018: https://
www.theguardian.com/technology/2018/apr/24/youtube
-reveals-it-removed-83m-videos-from-site-in-three-months.

[3] “Happy Birthday World Wide Web,” The Economist, March
12, 2014: https://www.economist.com/graphic-detail/2014/03
/12/happy-birthday-world-wide-web.

[4] S. Freedberg, Jr., “Miserable, Disobedient and Victorious:
Gen. Milley’s Future US Soldier,” Breaking Defense, October
5, 2016: https://breakingdefense.com/2016/10/miserable
-disobedient-victorious-gen-milleys-future-us-soldier/.

How consumers address data privacy concerns, Slide 206 Willingness to share data by country, Slide 223

Years until used by one-quarter of American
population

46 Electricity

35 Telephone

31 Radio

26 Television

16 Personal Computer

13 Mobile Phone

7 The Web

Table 1: Technology adoption

http://www.kpcb.com/file/2018-internet-trends-report
http://www.kpcb.com/file/2018-internet-trends-report
https://www.theguardian.com/technology/2018/apr/24/youtube-reveals-it-removed-83m-videos-from-site-in-three-months
https://www.theguardian.com/technology/2018/apr/24/youtube-reveals-it-removed-83m-videos-from-site-in-three-months
https://www.theguardian.com/technology/2018/apr/24/youtube-reveals-it-removed-83m-videos-from-site-in-three-months
https://www.economist.com/graphic-detail/2014/03/12/happy-birthday-world-wide-web
https://www.economist.com/graphic-detail/2014/03/12/happy-birthday-world-wide-web
https://breakingdefense.com/2016/10/miserable-disobedient-victorious-gen-milleys-future-us-soldier/
https://breakingdefense.com/2016/10/miserable-disobedient-victorious-gen-milleys-future-us-soldier/

www.usenix.org FA L L 20 1 8 VO L . 4 3 , N O. 3 57

COLUMNS

/dev/random
No Bots About It

R O B E R T G . F E R R E L L

The term “artificial intelligence” has been lobbed about in the seman-
tic tennis match we call the Internet so often over the past decade
that I don’t think it retains any real meaning for most of us. Our

TVs, watches, doorbells, thermostats, toasters, and cars are called “smart”
now, and “smart” is another word for “intelligent,” so “artificial intelligence”
means we can control the crispness of heated bread from the shower. Let us
not forget that one of the definitions of “artificial” is: pretended; assumed;
insincere. From that perspective, I would argue that much of the recent egre-
gious behavior of our government officials could be termed “artificial intel-
ligence,” although whether the “intelligence” part applies at all is debatable.
Maybe “artificial leadership” is more apropos.

I’ve written before (ad nauseum) on the somewhat irrational fear of technologists that the
machine singularity will automatically lead to the inevitable extinction of the human race
at the appendages of our cold, unfeeling robot overlords. No, if the machines do in fact take
over, it won’t be mechanoids or automatons or network-controlled front-end loaders with
unconstrained bloodlust that carry out the executions, it will be us. Humanity. We will off
ourselves, and we’ll do it because bots drove us to do it.

“Bots!” I hear you sneer, rolling your eyes. What kind of threat are bots? What are they going
to do, index your website without permission? Steal your CPU cycles to mine digital curren-
cies that may or may not have any actual value at any given moment? Inflate your popularity
on Instagram? I shake my head sadly at your naively myopic techno-worldview. There is so
much more bot-related ruckus to be raised, my friends.

Bots, not you, control what you see and do on the Internet. Really. Reactive content, for
example—that is, content generated based on current events and news items—is deeply
dependent on bot activity. If bots generate ten million views for some useless doodad and you
happen to fall in the fake demographic it was spoofing, ads for that doodad are going to get
displayed prominently on your social media account, even if nothing in your actual profile
suggests you’d have any interest in doodads. If you try turning them off, you’ll get a stern
warning that ads cannot be turned off without risking the complete collapse of all the world’s
economies. Do you really want that on your conscience? Just buy a stupid doodad, for Pete’s
sake. Then, of course, be prepared to see ads for the exact doodad you just bought for several
weeks because bots hate you.

Not only do bots determine what ads you’ll see or music you’ll listen to or videos you’ll watch,
there is research to suggest they may even control your basic perception of reality. “Emotion-
ally volatile users” (also known as “Everyone on the Internet”) are particularly susceptible
to manipulation by the malicious misapplication of personal data. Most people surrender
a ridiculous amount of information about themselves to social media sites, and then act all
surprised and betrayed when that data is used to target them. Boo hoo.

Robert G. Ferrell is a fourth-
generation Texan, literary
techno-geek, and finalist
for the 2011 Robert Benchley
Society Humor Writing

Award. rgferrell@gmail.com

58  FA L L 20 1 8 VO L . 4 3 , N O. 3 www.usenix.org

COLUMNS
/dev/random: No Bots About It

Why did you think they kept nagging you to fill out that profile,
patting your virtual head as positive reinforcement for every
scrap of privacy you gave up? Did you believe Facebook just
wanted to make sure to buy you the perfect birthday present?
Or that maybe you were in the running for Who’s Who among
Gullible Computer Users? Every time you accept the invitation
by some new application to make use of the “convenience” of
logging into it via a social media account, you’ve just stripped yet
another layer off the already pea-sized onion of your privacy.

“Live chat” bots are one of the more ironically named primary
growth industries in the bot landscape. Most observers clas-
sify them as “benign,” but benign tumors can still mess you up,
believe me. These chatbots’ ostensible purposes are to help you
find things on a website, place orders, or engage in some other
automatable customer service activity. Just remember that
anytime you interface with a bot, you have no real guarantees as
to what information that code might be collecting on you from
places like your browser history or various caches. Oh, you told
it not to look at any of those? Well, that’s all right, then: no piece
of software has ever been used to engage in duplicitous activity.
Crisis averted.

Even without that level of intrusion, the answers you give to its
questions will be used to flesh out your all-important market-
ing target profile. Some of them are subtler about this collection
process than others. If the live chat bot you’re talking to while
getting tickets to the theater starts asking you what kind of
socks you wear or whether you prefer stick to roll-on, you have
stumbled upon one of the less-subtle varieties.

It is poetic justice to me, then, that a lot of the information sup-
plied to potential advertisers by the various harvesting bots is
downright erroneous. Some studies have shown that as much as
60% of all reported ad traffic stems from click fraud perpetrated
by bots. Those 2.5 million views of your ad last month? Only six
of them were by actual living human beings. Sorry. Would you
like to file a complaint? We have a live chat bot for that. It’s a
good listener and hardly ever interrupts with profanity. And it
has 1.2 million likes.

All of this is well and good, you’re probably muttering to your-
self, but how does any of it contribute to the thesis that bots
will be responsible for our downfall as Earth’s dominant land-
based species? To answer this, let us turn once again to our old
 nemesis, social media. Is it a coincidence that the generation
on whose shoulders humanity’s hopes and dreams squarely
rest can’t bear to be parted from their social media for even one
moment or they experience full-on withdrawal? I say it is not. I
say the bots have positioned us, and themselves, right where they
want us. There’s a reason suicide rates have gone up, and it isn’t
fluoride in the water.

Mood swings, depression, hopelessness, frustration…what’s the
source of all this negative baggage? In my day it would have been
a combination of bills, bad news, academic/job disappointments,
errant romances, and possibly a car that doesn’t run. These
would have been woes of more or less discrete origin, however,
deriving largely from face-to-face imbroglios. Digital technology
has amalgamated the disparate elements of your misery today
and served them up as a homogeneous, quivering mass of shock
gelatin.

The genius inherent in this approach is that you can no longer
treat one of the symptoms to improve the disease, any more
than putting new tires on your car will make you more satisfied
with the job to which it conveys you every morning. The bots
who feed you your every emotion have seen to that. Do I sound
paranoid? It’s not me talking, it’s the schizobot who intercepts
my keystrokes.

You could, of course, avoid bots to some extent by skipping out on
the Internet altogether, but if that isn’t practical you can try my
tactic: fibbing shamelessly. I fill out every survey, answer each
and every question I am asked, with complete and utter fiction.
I suspect my data is probably archived by cryptozoologists and
alien hunters worldwide. After all, I’m a 262-year-old gender-
fluid goblin entomological proctologist named Mortallica Laz-
arkolun who enjoys heavy water sports and harbors a penchant
for deep-fried lymph nodes (with fat). Fantasy novelists: we have
our uses.

www.usenix.org FA L L 20 1 8 VO L . 4 3 , N O. 3 59

BOOKSBook Reviews
M A R K L A M O U R I N E A N D R I K F A R R O W

UNIX and Linux System Administration Handbook,
5th Ed.
Evi Nemeth, Garth Snyder, Trent R. Hein, Ben Whaley, and
Dan Mackin
Pearson Education, 2018, 1180 pages
ISBN 978-0134277554

Reviewed by Mark Lamourine

There are few books that I would recommend to every work-
ing sysadmin at every level of ability and at any point in their
career. This is one. I’m going to refer to it merely as [Nemeth5] to
avoid writing the whole title repeatedly. This is also a deliberate
tribute to Evi Nemeth, one of the original authors and a pioneer
of learning and teaching system administration as an art and
profession.

I’ve owned all five editions of [Nemeth] as soon as they were
released, and I’ve learned or re-learned something from each of
them. [Nemeth4] was the last one that Evi worked on. Evi was
crew on the Niña, a 50-foot sailing yacht that went missing in
the Tasman Sea in 2013. In [Nemeth5], the remaining co-authors
have maintained the range and quality of the previous editions.

From the first edition, [Nemeth] has been a handbook. Although
it’s big and has fine paper pages, it is meant to be kept close and
thumbed through often. A handbook doesn’t have the narrative
of a tutorial or the depth of a topical reference manual.

When the first edition appeared, the World Wide Web didn’t
exist. Today you can find everything in [Nemeth5] through a
search engine. The paper book has one often overlooked advan-
tage: compactness. By this I mean that all of the of the searching
and sorting and question refinement has been done for you, the
reader. All you need to do is flip to the table of contents or the
index to find what you need.

Each edition has been based on a set of four or five currently
popular vendors or distributions. For the 5th edition, the authors
chose FreeBSD and three flavors of Linux: Debian, Ubuntu, and
CentOS. This selection is broader than it seems because these
generalized distributions are commonly used as a base for more
targeted flavors. Users of these derivative distributions will
still find a lot of value here. The authors make note of another 10
distributions, including their strengths and their relationships
to the selected core set.

Nemeth et al. have never been shy about expressing an opinion,
and you’ll find a lot of it here still, though usually couched in
wry humor. For example, a paragraph comparing boot time init

systems is entitled “inits judged and assigned their proper pun-
ishments.” The authors address all of the options that a reader
is likely to encounter. Their goal is to assist the reader, but they
don’t feel the need to appear impartial in their evaluation of the
tools they’re describing.

I can’t possibly enumerate all of the sections and topics the
authors cram into this two-inch-thick tome. Instead, I’m just
going to note a few of the things that caught my attention as new
or interesting as I leafed through.

The first item that I came across was a scheduling-tool alterna-
tive to cron. I’ve worked with systemd since it was introduced in
Fedora, but I’ve never seen systemd timers before. It may or may
not replace cron, but it certainly presents an alternative, offers
much finer control, and allows explicit sequencing capabilities
with other systemd controlled events.

The section on scripting I would recommend to beginning
system administrators even over most books on the topic. The
authors give very good advice on style and approach. They
describe and provide examples for all of the most critical
language features and a number that are more obscure, useful,
and commonly overlooked. The chapter concludes with brief
introductions to both Python and Ruby. While it may be true that
one can be a good system administrator without programming,
I would claim that anyone would find the job easier with some
skill in scripting.

When the 4th edition was released in 2010, cloud computing was
in its infancy. Modern containers were introduced with Docker
in 2013. [Nemeth5] includes a complete chapter on commercial
cloud service concepts, providers, and a few examples. It includes
chapters on virtualization and containers. None of these are
deep, but they are broad and touch on all the important ideas.
The writing is clear, without any of the hyperbole or misplaced
enthusiasm that is common in dedicated books. Like most chap-
ters, these end with a list of external references and suggested
reading.

I don’t think I can express just how encyclopedic this book is. It
has one of the best technical introductions I’ve seen on DNS and
DNSSEC; a fairly complete examination of SMTP interactions;
reasonable default configurations of Sendmail, Exim, and Post-
fix; and good comparisons of recent CM tools such as Ansible
and Salt. Puppet and Chef get mentioned, but they’re not the
cool kids now, apparently. See: Opinions. The book closes with a
chapter on datacenter management that includes the merits of
various DC layouts, with example floor plans. I’ve left out nearly

60  FA L L 20 1 8 VO L . 4 3 , N O. 3 www.usenix.org

BOOKS

half of the topics in the book and haven’t touched on the obscure-
but-valuable little knowledge tidbits sprinkled in every section.

Throughout, [Nemeth5] is readable and accessible. It’s perfect
for either thumbing through or finding just the start you need on
any topic. It is an ongoing tribute to Evi and her lifetime of work.

Accelerate: Building and Scaling High Performing
Technology Organizations
Nicole Forsgren, PhD, Jez Humble, and Gene Kim
IT Revolution Press, 2018, 256 pages
ISBN 978-1-942788-33-1

Reviewed by Mark Lamourine

Finally, someone applies science to the Agile/DevOps practice.

For years the Agile/DevOps movement has had only hype, sur-
mise, and anecdote to support a counterintuitive idea: that giv-
ing individuals more agency in their work with less managerial
gatekeeping (along with the tools to detect and respond rapidly
to problems) leads to faster, better, more reliable software and
services. That’s not to say that there was no evidence. The anec-
dotes are many, and, when done well, numerous informal case
studies have made people confident that there’s something to the
ideas. Agile practice is derived from the Toyota Production Sys-
tem (TPS), first formally described in 1988 [1]. The advantages
of TPS are backed by strong commercial and academic research,
but TPS is designed for manufacturing production, and it is not
a given that it would translate trivially to software development.
Some additional confirmation is needed.

In Accelerate, Forsgren et al. have applied modern sociologi-
cal methods, first to define and then to measure the effective-
ness of Agile practices in software development and service
delivery. You won’t learn how to run a scrum stand-up or use a
Kanban board (unless you follow the references in the bibliog-
raphy). What you will find is the first real demonstration that
Agile practices, writ large, are effective, and specifically which
aspects have the most demonstrable benefit. They also show
proper recognition that there is more work to be done to design
and implement good practices and to keep learning how to mea-
sure and evaluate them.

Forsgren et al. provide the three elements you expect in a peer
reviewed paper, but in a narrative form that non-academic read-
ers will fine comfortable. Don’t let the form put you off. If you can
read a good technical reference, you can follow their exposition
and arguments. If you have read any RFCs, this will be a breeze.

The reason for the somewhat different presentation from most
other books in this arena is that Accelerate is based on the same
data set that the authors used for two peer reviewed papers [2, 3]
in 2016, and continue to use for more recent papers. You can find
references to the ongoing work on their website [4].

They begin by defining the question under study: What is meant
by “Agile practice”? What is meant by “effectiveness” and how do
you measure it? The first third of the book defines what her team
will try to measure and what they will not.

In the middle section, they lay out their findings so far. They
start by describing their data collection methods and briefly jus-
tify the use of sociological models before proceeding to explain
the data and what it means.

The final section is the most technical. Here the authors explain
the methodology and models that they chose to use when gather-
ing the data. They justify the selection and design of the models,
questions and data analysis in terms that will be familiar to
anyone in the social sciences. They go further, to explain briefly
the more technical terminology and offer references for those
who want to learn more about the details.

There’s nothing earth-shattering in the results. This is primarily
because that’s not what they were trying to do. The metrics they
chose for software delivery quality are deliberately constrained:
software delivery rate, delivery lead time, software failure rate,
and time to fix. Then they surveyed a broad range of people and
companies using varying degrees of Agile methods in their soft-
ware development. They hoped to test for correlations between
those who use Agile methods and those who achieve high marks
in their quality metrics.

In general, they find that “higher quality” as defined by their
metrics are associated with groups and companies that conform
to Agile tenets. A couple of things that raised an eyebrow: the
best performers commit directly to a master SCM branch and
have no or very short term development branches. The change
in lead times in the highest performers were measured in hours.
I’m not so much skeptical of these findings as I am wondering
whether the strict definitions required for a good metric are out
of line with my colloquial understandings of these terms.

What most worries me is the possibility that the metric defini-
tions are in some way forming a logical circle with the Agile
methods supposedly under test. The descriptions of the metrics
align fairly strongly with my understanding of the purpose and
goals behind Agile philosophy and methods design. Is it possible
that what is being measured is the effectiveness of the methods
used to achieve the stated behavioral goals, without ever evaluat-
ing whether those behaviors actually improve the software being
delivered? I’m inclined to view Agile methods as indeed effective
and beneficial. I’m not sure how to show something stronger
than “They do what they claim, and aim, to do.”

In every case, Forsgren et al. are careful to qualify any claims.
There are muddy and unanswered questions. There are anoma-
lies in the data that need explanation and resolution. Mostly, we
need more data and a longer history to work with. Over time the

www.usenix.org FA L L 20 1 8 VO L . 4 3 , N O. 3 61

BOOKS

metrics will, I hope, be broadened and refined. A larger longitu-
dinal data set will make trends more evident and the conclusions
more sound. This is what distinguishes research from advocacy.

This isn’t a book for the beginning coder. It’s not even for most
people who are already faithfully attempting to use Agile meth-
ods (or not). Accelerate is for the doubters who need evidence to
show that Agile methods aren’t merely a buzzword fad, and for
developers and managers who might need some talking points
when trying to pitch or improve the software development prac-
tices where they work.

There’s still a lot of work to be done to find the best ways to man-
age software development and delivery, but we have a foundation
on which to build.

The Computer Book: From the Abacus to Artificial
Intelligence, 250 Milestones in the History of
Computer Science (Sterling Milestones)
Simson L. Garfinkel and Rachel H. Grunspan
Sterling, 2018, 528 pages
ISBN 978-1454926214

Reviewed by Rik Farrow

I got to see a proof of this book, coming out November 2018, and
have to say I was pleasantly surprised. Not that I didn’t expect
Simson, both a friend and someone who has written many books,
to succeed at this task. But because in reading the book, I kept
saying to myself, “Damn, that’s how these events fit together.”

The authors chose 250 milestones, ranging from a clay tab-
let abacus to artificial general intelligence—not that we are
anywhere near that. The format of the book consists of a page
of text on the left with a color photo or illustration on the right.
The photos always add some real context to the page of history,
besides often being beautiful (the Babbage replica) or just plain
interesting. The writing is concise, as it must be to fit on a single
page, but always held my attention and was easy to read. Each
page ends with cross-references to other pages.

One of the benefits of reading this book is that I learned about
the origin of many of the technologies and the terms we use.
While some were obscure, like the meaning of “RS” in RS-232,
others were real eye-openers.

While this book won’t help you with programming or sysadmin,
it is a lot of fun to read. And I guarantee that you will find lots of
surprises, whether you read it cover-to-cover or just pick it up
and flip through the pages at random. And finally, for a book full
of photos, the price is very reasonable.

References
[1] T. Ohno, Toyota Production System: Beyond Large-Scale
Production, 1st Edition (Productivity Inc., 1988).

[2] N. Forsgren, A. Durcikova, P. F. Clay, and X. Wang, “The
Integrated User Satisfaction Model: Assessing Information
Quality and System Quality as Second-Order Constructs in
System Administration,” Communications of the Association
for Information Systems 38 (2016), pp. 803–839.

[3] N. Forsgren and J. Humble, “DevOps: Profiles in ITSM
Performance and Contributing Factors,” in Proceedings of
Western Decision Sciences Institute (WSDI) 2016.

[4] https://devops-research.com/research.html.

NOTES

62  FA L L 20 1 8 VO L . 4 3 , N O. 3 www.usenix.org

USENIX Member Benefits
Members of the USENIX Association
 receive the following benefits:

Free subscription to ;login:, the Associa-
tion’s quarterly magazine, featuring tech-
nical articles, tips and techniques, book
 reviews, and practical columns on such top-
ics as security, site reliability engineering,
Perl, and networks and operating systems

Access to ;login: online from December
1997 to the current issue: www.usenix.org
/publications/login/

Registration discounts on standard tech-
nical sessions registration fees for selected
USENIX-sponsored and co-sponsored
events

The right to vote for board of director can-
didates as well as other matters affecting
the Association.

For more information regarding member-
ship or benefits, please see www.usenix
.org/membership/, or contact us via email
 (membership@usenix.org) or telephone
 (+1 510.528.8649).

USENIX Board of Directors
Communicate directly with the USENIX
Board of Directors by writing to
board@usenix.org.

P R E S I D E N T

Carolyn Rowland, National Institute of
Standards and Technology
carolyn@usenix.org

V I C E P R E S I D E N T

Hakim Weatherspoon, Cornell University
hakim@usenix.org

S E C R E T A R Y

Michael Bailey, University of Illinois
at Urbana-Champaign
bailey@usenix.org

T R E A S U R E R

Kurt Opsahl, Electronic Frontier Foundation
kurt@usenix.org

D I R E C T O R S

Cat Allman, Google
cat@usenix.org

Kurt Andersen, LinkedIn
kurta@usenix.org

Angela Demke Brown, University
of Toronto
angela@usenix.org

Amy Rich, Nuna Inc.
arr@usenix.org

E X E C U T I V E D I R E C T O R

Casey Henderson
casey@usenix.org

The Big Picture
Liz Markel, Community
Engagement Manager

Summer and fall are my
favorite seasons, with my

current preference being determined by the
weather of the moment; both are equally
dazzling where I grew up in New England.
Consequently, I was thrilled to find myself
in Boston for USENIX ATC ’18.

Every visit to Boston as an adult is an op-
portunity to discover this city through fresh
eyes. My opinion about the city evolves with
the pursuit of activities I now enjoy, such as
bicycle rides along the Charles River. Par-
ticipating in ATC as a still-new USENIX em-
ployee whose background is not in computer
science also offered an additional perspec-
tive on a previously unfamiliar part of the
landscape: the advanced computing systems
research space and the tech industry in and
around Boston.

In addition to broadening my perspec-
tives on the constituencies that USENIX
serves, ATC was an opportunity to observe
the research side of USENIX following my
exposure to the practice-focused side at
SREcon18 Americas. I also met more of our
amazing volunteers, including the newly
elected Board of Directors, the multitude
of program committee members, and the
LISA18 organizing committee. Interact-
ing with these groups made me appreciate
the diversity of our leadership teams at
USENIX, who represent a wide variety of
sectors, genders, backgrounds, and experi-
ences. I saw this diversity reflected in our
conference attendees as well. It seems that
we are at the leading edge of the social and
community aspects of computer systems re-
search and engineering just as we are with
the technical content that comprises our
programs and talks. Furthermore, where

www.usenix.org FA L L 20 1 8 VO L . 4 3 , N O. 3 63

NOTES

we are and where we are headed—driven by
a thoughtful and strategic decision-making
process—is consistent with our values as an
organization, as well as my personal values
about equity, opportunity, and the value and
richness diversity brings to life.

All of this talk about the people at USENIX
conferences is a perfect segue to important
news about an upcoming survey that offers
you an opportunity to share valuable infor-
mation with us and express your opinion
about:

◆◆ How effectively you feel USENIX is
implementing its mission

◆◆ Your thoughts about trends in your field

◆◆ Your story: how your professional career
evolved, what role professional devel-
opment has played in that progression
and growth, and how USENIX has been
involved in both

◆◆ The ways you’re interested in engaging
with your peers and with USENIX

◆◆ What value USENIX membership offers
you

As a nonprofit organization, USENIX exists
to serve you and your colleagues across the
advanced computing systems profession.
The information you provide through your
survey responses will help us understand
the needs of both the broad computing
systems community and those of different
segments, such as different generations and
different genders. When we have a clear pic-
ture of your needs, we can better serve you
and more effectively fulfill our mission.

The questions in the survey are a blend
of data that we’ll gather year over year to
track trends as they’re in development, plus
questions that are pertinent to strategic and
operational decisions we’ll make within the
next 12 to 18 months. Many questions are
quick, but others are open-ended inquiries
that may require a few minutes to answer.
We hope that you’ll take the time to answer
all of these questions thoughtfully: your
investment in this survey will be met with
an equal investment on the part of USENIX
staff and volunteer leadership to convert
this data into actionable items.

Keep an eye on your inbox for a link to the
survey coming in late August. If you have
feedback or ideas beyond what’s asked in
the survey, I would love to hear from you at
liz@usenix.org. I’ve long believed that alone
we’ll go faster, but together we’ll go farther.
I am looking forward to traveling that road
with you.

Meet the Board
Meet Amy Rich, one of the new
members of the USENIX Board
of Directors. Liz Markel asked
Amy a few questions about her

professional activities, her personal inter-
ests, and her relationship with USENIX to
help you get to know her better.

Tell me about your current role and what
kinds of problems you’re working on
 solving.

I’m one of the engineering directors at
Nuna, Inc., a healthcare technology com-
pany in San Francisco that builds data
platforms and analytics solutions to help
healthcare industry decision-makers un-
derstand cost and quality trends. With the
insights we provide, they can make changes
that increase access to effective, affordable
care.

I lead the organization called Foundational
Engineering, which includes Infrastruc-
ture, Security, and IT. Together, those
three teams provide operational resilience
through continuous integration and deploy-
ment, security, developer productivity, and
system user support and support for the
entire company.

Each of these teams has a specific focus,
but the overall problem they’re all trying
to tackle revolves around transitioning
from a startup to a young company. We
walk the fine line between being agile
and fast enough to find a product fit in an
emerging market while still being secure
and not accumulating so much technical
debt that it significantly hampers our
progress. Because we’re a healthcare com-
pany that performs significant work for the
Medicaid and Medicare arm of the Federal
Government, we also have a number of

regulatory and compliance constraints to
add to the mix.

Are there any emerging trends you’re
observing in your field?

When it comes to US healthcare, one of the
most prominent trends over the last decade
has been the move toward payment delivery
models oriented towards value —that is,
rewarding healthcare providers when they
deliver high-quality, affordable care, instead
of paying the same for all care, regardless
of whether it was cost effective or achieved
the desired outcome. To do this right, the
government, and companies who provide
healthcare for their employees, need good
data platforms and analytics with which to
measure the cost, quality, and experience
of care, as well as to administer these new
payment models. Significant investments
have also been made to modernize the Med-
icaid program in its structure, policies, and
information systems. This year we finally
celebrated the final US state’s conversion
to submitting digitized healthcare claim
records to the Federal Government! The
emerging popularity of the fields of data sci-
ence and machine learning is a huge benefit
to programs like these and is one of the ways
we can create systems to change US health-
care for the better.

When it comes to infrastructure engineer-
ing and IT, most things are moving towards
the cloud, automated continuous integra-
tion and deployment, and serverless where
workloads permit. We won’t escape the need
to understand and run the infrastructure
anytime soon, but the ways in which we
do so are drastically changing. Cloud has
lowered the barrier to entry for a number of
small companies who don’t have dedicated
infrastructure/security/IT roles, but the
complexity of abstraction and scale almost
always results in needing those folks after
an initial minimum viable product phase.
DevOps and SRE have become hot topics
with different meanings, depending on who
you talk to, but we’ve come back around
in the cycle of trying to more closely align
the developers and operations people, if

64  FA L L 20 1 8 VO L . 4 3 , N O. 3 www.usenix.org

NOTES

not looking for both sets of skills in one
individual.

Regarding security, with the ubiquity of the
Internet and people being online on both
their work and personal devices 24x7 also
comes the ubiquity of personal and corpo-
rate information theft. Security is more
important than ever, and yet is neglected, as
businesses try to move fast and be disrup-
tive in creating the next big thing. Even
more so than DevOps and SRE, there are
few qualified people in the field, making
those with the skills extremely sought after.

How were you first introduced to
 USENIX?

As an undergraduate work-study student
in college, I had far more interest in system
administration than programming. I was
responsible for helping run the servers in
the Computer Science department and
also moonlighted in various other com-
puter labs on campus. As my senior thesis,
I chose to perform a risk analysis on our
CS department systems and write up the
results. I argued that attending the 1994
USENIX Summer Technical Conference
(conveniently held nearby) would provide
significant background and training in my
field, help with my degree and thesis, and
also directly benefit the department since I
could immediately apply the skills I learned.
I presented a good enough case that they
paid for a student ticket and subsidized my
hotel for half the week.

What involvement have you had with
USENIX?

For the most part, I’ve always preferred to
work behind the scenes than be a presence
on the stage. In the early days, I volunteered
with the registration desk to help offset
the cost of attendance to USENIX ATC
and LISA. After several years, I was well-
known and respected enough to be asked to
volunteer as a paper reviewer for the LISA
program committee. That eventually led to
being the LISA Invited Talks Co-Chair, the
LISA Program Co-Chair, and then a mem-
ber of the LISA Steering Committee and
conference liaison. At various points I’ve
also acted as an unofficial volunteer to help

publicize and solicit speakers/trainers (or
just carry around boxes) for LISA, ATC, and
SREcon. I’ve gotten on stage in front of the
crowd as part of a WiAC panel and also led a
number of BoF sessions over the years.

Why did you decide to pursue a seat on the
board?

USENIX had a profound impact on my life
and career. The USENIX ideals about re-
search, education, and OSS encouraged me
to focus my skills on projects that positively
impacted the world and shaped my career
progression from sysadmin to technology
director at mission-driven organizations.
At this point in my career, I hope to exert a
positive influence on the future focus and
direction of the organization to ensure its
continued relevance and ability to provide
similar exposure to technology, professional
networking, and peer support.

Why should someone consider becoming
involved in USENIX?

The rise of social media and availability of
online instructional content was a huge leap
forward for those trying to learn today’s
fast-moving skills that aren’t taught in
traditional classroom environments. USE-
NIX is a premier provider of such content
and also provides a venue for academics to
showcase their latest research. Beyond that,
USENIX conferences also provide ample
opportunity for professional networking,
something you still can’t obtain by watch-
ing an online video. The people you meet
at USENIX conferences may be your next
coworkers, co-authors, research partners, or
lifelong friends.

Aside from your work (and USENIX),
tell me about your passions and how you
spend your time.

Tangential to work, I’m passionate about
diversity and inclusion and building strong,
healthy leadership and management struc-
tures. I mentor folks from other companies
and participate in various slack workspaces
geared towards these topics. To unwind
from all the serious stuff, I occupy my mind
by reading fiction, playing games, solving
puzzles, and building LEGO.

Do you have one unique fact about your-
self you can share with us?

I’m an Adult Fan of LEGO (AFOL) and have
accumulated an extensive collection (spe-
cializing in Space, Star Wars, and Speed
Challenge sets) since becoming solvent.

In the spirit of the Board Game Night BoF,
what’s your favorite board game?

I’m an avid board and card gamer, so trying
to pick just one favorite might be the hard-
est question of this whole interview. I’m a
particular fan of “hidden traitor” mechan-
ics or “one against many” deduction games,
but I also enjoy a good brutal co-op game
that kicks your butt. After rolling 3D6 + 1D4
damage bonus, the randomized answer on
my lookup table is Dead of Winter. It’s the
other people, not the zombies, you really
need to guard against.

Tell me a bit about the region of the
country you live in: what you like about it,
the tech scene, and why someone might
consider visiting or relocating there.

I grew up in the country (hometown of 200
people), so I like having a perimeter of per-
sonal space, but I also like being relatively
close to the convenience of stores, culture,
and a major airport. This means I’m going
to live in the suburbs of a decently sized, but
not huge, city. I also like trees, hills, having
four seasons (yes, I love my snow), and being
on the ocean. All of those things together
mean that the northeast, and specifically
the coastal suburbs of Boston, are where I
make my home.

Boston has a number of very well-respected
universities with excellent STEM programs,
and therefore also has a burgeoning tech
scene. Visitors to the area come to satisfy
a wide array of interests including, but not
limited to, US history, animals and nature
(no matter the season), foodie lifestyle,
recreational or professional sports, liberal
ideals and politics, art, theater, science, and
craft beer.

Anything else you’d like to share?

I’m excited to join the other great members
of the Board and ready to do some work!

Register Now!

www.usenix.org/lisa18

October 29–31, 2018
Nashville, TN, USA

LISA: Where systems engineering and operations professionals
share real-world knowledge about designing, building, and

maintaining the critical systems of our interconnected world.

Featured Speakers

Janna
Brummel, ING

Nicholas
Hunt-Walker,

Starbucks

Edward
Hunter, Netflix

Jeri-Elayne
Smith, The

Citadel

Madhu Akula,
Appsecco

Jon Masters,
Red Hat

Jeffrey Snover,
Microsoft

Thomas
Limoncelli,

Stack
Overflow

Register by Monday, October 8 and save!

The full program and registration are now available.
Register by September 17 and save!

OSDI brings together professionals from academic and industrial backgrounds in what has become
a premier forum for discussing the design, implementation, and implications of systems software.
The OSDI Symposium emphasizes innovative research as well as quantifi ed or insightful experiences
in systems design and implementation.

13th USENIX Symposium on Operating
Systems Design and Implementation
October 8–10, 2018 • Carlsbad, CA, USA
Sponsored by USENIX in cooperation with ACM SIGOPS

18

Register Today!

www.usenix.org/osdi18

Program Co-Chairs

Andrea Arpaci-Dusseau
University of Wisconsin—Madison

Geoff Voelker
University of California, San Diego

USENIX Association
2560 Ninth Street, Suite 215
Berkeley, CA 94710

POSTMASTER
Send Address Changes to ;login:
2560 Ninth Street, Suite 215
Berkeley, CA 94710

PERIODICALS POSTAGE
PAID

AT BERKELEY, CALIFORNIA
AND ADDITIONAL OFFICES

	Musings
	Reflections on Post-Meltdown Trusted Computing: A Case for Open Security Processors
	TxFS: Leveraging File-System Crash Consistency to Provide
	SOCK: Serverless-Optimized Containers
	BeyondCorp: Building a Healthy Fleet
	Building an Internet Security Feeds Service
	USENIX Security and AI Networking Conference: ScAINet 2018
	Capacity Engineering: An Interview with Rick Boone
	Python: Shared Libraries and Python Packaging, an Experiment
	Practical Perl Tools: GraphQL Is Pretty Good Anyway
	Yes, Virginia, There Is Still LDAP
	iVoyeur: Flow
	For Good Measure
	/dev/random: No Bots About It
	Book Reviews
	USENIX Notes

