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EDITORIALMusings
Theory of Mind

R I K  F A R R O W

Rik is the editor of ;login:.  
rik@usenix.org I am going to depart from the realm of computer science briefly, because 

I want to discuss a problem which is rampant in software design and 
papers. The problem involves the Theory of Mind (ToM), the “ability to 

attribute mental states—beliefs, intents, desires, pretending, knowledge—
to oneself and others” [1]. But while ToM generally refers to interpersonal 
relations or philosophy [2], I am going to focus on the part about attributing 
knowledge to the people who will use your software or read your papers.

I was talking to an old friend, who had been complaining about his son. My friend said that, 
unlike his son, he just decided one day that he would focus on work and become responsible.  
If he could do it, so could his son. 

I found myself suggesting that my friend look up Theory of Mind. Just because my friend could 
resolve to buckle down doesn’t mean that other people would, or could, behave just like he did.

I remembered ToM from college psychology classes from many years ago. Today, deficiencies 
in ToM are now associated with autism among other disorders. That really isn’t what I am 
referring to. Rather, thinking that because you did or know something, so should anyone else, 
just seemed a bit, well, not quite sane to me.

Theory of Mind and CS 
Where ToM and CS intersect is a bit different, having more to do with culture. As an editor, 
I am constantly running into this, as I read articles or papers where the authors assume that 
you have the same background and understand the same jargon that they do. After all, all the 
people they work with speak that jargon and have the same background information, right? 

I’ve written an editorial about the importance of being able to write clearly [3], and ignoring 
ToM can mean rejected papers. You really shouldn’t assume that people will just accept your 
brilliant research if you can’t articulate it clearly. 

I wrote a column about a software design issue many years ago [4] that dealt with ToM, but 
without saying so directly. I wrote that column because I had observed that most people had a 
difficult time with state machines. I found I could set friends’ digital watches for them, even 
though they couldn’t, because I understood the watches (and their two or three buttons) had 
different purposes depending on their current state. I’ve since discovered that clocks with 
four buttons, and no manuals, have so many states that even I have trouble setting them. 

Today we get devices, such as smartphones, complete with state machines implementing the 
user interface. There are no manuals—what you need to do is find someone who has already 
communicated with someone who knows how the damn things work. Of course, the next 
update means that what you learned no longer works, and you need to make another social 
connection to understand the new interface. And speaking of overloaded interfaces, the most 
popular smartphone uses a single button that has a multitude of different purposes, depend-
ing on the software’s current state. What an amazing design—for engineers. 
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Consider how this works in the place where the new interface 
gets developed. Someone comes up with some new UI widget 
and shows a coworker how to use it. The knowledge gets spread 
to others, and if the widget is compelling enough, it appears in 
the public version. But only insiders initially know how to make 
it work. It’s like building systems where every new feature is an 
Easter egg [5]. 

The Lineup 
We have many articles related to cloud in this issue. We lead 
off with an article explaining the design goals and implementa-
tion of VFP, Microsoft’s very different version of vswitch. I met 
Daniel Firestone during NSDI ’17, where he presented the only 
industry paper, one which provides more implementation details 
about VFP. 

Reid Priedhorsky and Tim Randles, of Los Alamos National Lab-
oratories, describe their open source solution, Charliecloud. They 
determined that a lighter-weight solution than Docker would 
work best for HPC. To help maintain a familiar interface, con-
tainers are still built using Docker but are run via Charliecloud. 
Their article also helped me understand more about containers. 

I interviewed James Bottomley. James has written about con-
tainers versus VMs for ;login: [6], and I wanted to probe his view-
points further now that he has changed jobs. James explains a 
lot more about the difference between containers and VMs, the 
Linux system calls used to set containers up, and why containers 
haven’t been embraced by many vendors. 

We have another article from NSDI ’17. “Knockoff,” by Dou, 
Chen, and Flinn, examines the tradeoff between recomputing 
data in the cloud and the cost of copying data. Hint: oftentimes, 
recomputing is both cheaper and faster. 

In the system administration and SRE section, we have two 
articles. Carata, Chick, and Sohan describe Resourceful, a tool 
they developed for use in OS research at Cambridge and have 
now open sourced. You use the Resourceful API to instrument 
apps, allowing you to produce performance data from the kernel 
about very specific activities relating just to portions of an app. 

Roy et al. explain how they instrumented servers and network 
hardware at Facebook and discovered how they could uncover 
subtle network problems faster than the current monitoring tools 
used. Their approach does rely on having a well-balanced work-
load to start with but should work in any well-tuned environment. 

In the security section, Escobedo et al. talk about how the 
BeyondCorp team at Google worked to make the transition from 
traditional VPNs to BC easier for both current users and new 
hires. They share key insights and techniques into how others 
might smooth the migration of users to a very different method 
of application and server access. 

Geoffroy Couprie and Pierre Chifflier reprise work they have 
done (and presented at the IEEE LangSec ’17 workshop) about 
making existing software more secure. Rather than attempt-
ing the Sisyphean task of rewriting software from scratch, the 
authors focus on input parsers, using Rust, with a compiler that 
fails to compile dangerous code by accident, and nom, a tool that 
makes building safe parsers easier. 

David Beazley tells us how surprised he was when he witnessed 
a Python programmer writing code concurrently with a testing 
framework. David explains how other Python programmers can 
take advantage of using a very simple technique to improve writ-
ing even very simple apps. 

David Blank-Edelman has another edition of his “Flying Perl” 
series. Having read about a programmer who had used Python to 
answer the question “Which airports are closest to each other?” 
David shows us how to perform the same task in Perl. 

Dave Josephsen wanted to show his coworkers the real value 
of being able to measure performance. Using Phaser.js for the 
visualization portion and Go for the server, Dave quickly threw 
together a tool (demonstrated with a YouTube video) that uncov-
ered bottlenecks caused by unbalanced load. 

Chris “Mac” McEniry has taken over the task of writing a Go 
column. Mac begins by adding TLS support to Kelsey High-
tower’s gls, something Kelsey had wanted to do when he wrote 
his column. But, as you will see, adding TLS, while easy in Go, 
deserves its own column. 

Margo Seltzer has contributed to what we hope will be a new 
column on education. Margo has converted her operating system 
course at Harvard to use flipping. Flipping involves swapping the 
usual way that material is taught, so students begin with self-
study, then work on classroom projects. Instead of lecture, which 
can leave many students lost, flipping means that students’ ques-
tions and problems become the focus. By the way, I invite other 
teachers to contribute to future versions of the education column. 

Dan Geer has written his annual column about the Index of 
Cyber Security. The ICS relies on polling security practitioners, 
and in turn these professionals get to see how the others in their 
field responded to questions about the same issues. Dan shares 
the answers about four different questions, including this issue’s 
favorite topic, the cloud. 

Robert Ferrell has hopped on the strike-back bandwagon. If your 
organization is under attack, why wait for government or profes-
sional assistance when you can launch attacks yourself against 
the presumed offender? Robert suggests a handful of attack tools 
that you can use. 
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Mark Lamourine has two book reviews this month. The first is 
about using CoreOS and the second about a short book on REST-
ful standards. 

While it was my friend that got me going about the Theory of 
Mind, I do believe that it is relevant to most people. Theory of 
Mind applies when giving directions: for example, “Turn right 
where the Sinclair gas station used to be” relies on local knowl-
edge about something that disappeared long ago. Where I live, 
you might still get instructions like “Turn left at the ‘Y’,” an 
intersection that is now a circle and hasn’t been a ‘Y’ for over  
25 years. 

In the worlds of our own specialties, we also have the problem of 
insiders’ knowledge. If we intend to communicate effectively, we 
can’t assume that our audience knows what we do. If that were 
true, why would we even be addressing them? ToM, or rather, the 
assumption that others have the same knowledge or beliefs that 
we do, is an all-too-easy trap to fall into. Do us all a favor and 
write for your audience, not for your own in-group. 
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A Virtual Switch Platform for Host SDN in the Public Cloud

D A N I E L  F I R E S T O N E

Daniel Firestone is the Tech 
Lead and Manager for the 
Azure Host Networking group 
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the Azure virtual switch, 
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virtual networks, as well as SmartNIC, the 
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The Virtual Filtering Platform (VFP) is a cloud-scale programmable 
virtual switch providing scalable SDN policy to one of the world’s 
largest clouds, Microsoft Azure. It was designed from the ground up 

to handle the programmability needs of Azure’s many SDN applications, the 
scalability needs of deployments of millions of servers, and to deliver the 
fastest virtual networks in the public cloud to Azure’s VMs through hard-
ware offloads.

We, the VFP team, describe here our goals and motivations in building VFP, 
VFP’s design, and lessons we learned from production deployments. We also 
compare our design with that of other popular host SDN technologies such 
as OpenFlow [2] and Open vSwitch (OVS) [3] to show how our constraints 
in the public cloud can differ from those of popular open source projects. We 
believe these lessons can benefit the SDN community at large. More details 
of our design can be found in our recent NSDI paper [1].

The rise of public cloud workloads, such as Amazon Web Services, Microsoft Azure, and 
Google Cloud Platform, has created a new scale of datacenter computing, with vendors regu-
larly reporting server counts in the millions. These vendors not only have to provide scale 
and high density of VMs to customers, but must provide rich network semantics, such as 
private virtual networks with customer supplied address spaces, scalable L4 load balancers, 
security groups and ACLs, virtual routing tables, bandwidth metering, QoS, and more. This 
policy is sufficiently complex that it isn’t feasible to implement at scale in traditional switch 
hardware.

Instead this is often implemented using Software-Defined Networking (SDN) on the VM 
hosts, in the virtual switch (vswitch) connecting VMs to the network, which scales well 
with the number of servers and allows the physical network to be simple, scalable, and very 
fast. As a large public cloud provider, Azure has built its cloud network on host-based SDN 
technologies. Much of the focus around SDN in recent years has been on building scalable 
and flexible network controllers and services—however, the design of the programmable 
vswitch is equally important. It has the dual and often conflicting requirements of a highly 
programmable dataplane, with high performance and low overhead. VFP is our solution to 
these problems.

Design Goals and Rationale
As a motivating example for VFP, we consider a simple scenario requiring four host policies 
used for O(1M) VM hosts in a cloud. Each policy is programmed by its own SDN control-
ler and requires both high performance and SR-IOV offload support: the first is virtual 
networking, allowing a customer to define their own private network with their own IP 
addresses, despite running on shared multi-tenant infrastructure. Our virtual networks 
(VNETs) are based on the design from VL2 [4]. Second is an L4 (TCP/UDP connection) 
load balancer based on Ananta [5], which scales by running the load balancing NAT in the 
vswitch on end hosts, leaving the in-network load balancers stateless and scalable. We also 
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include a stateful firewall and per-destination traffic metering 
for billing. 

Originally, we built independent networking drivers for each 
of these host functions. As host networking became our main 
tool for virtualization policy, we decided to create VFP in 2011 
because this model wasn’t scaling. Instead, we created a single 
platform based on the Match-Action Table (MAT) model popu-
larized by projects such as OpenFlow.

Original Goals
Our original goals for the VFP project were as follows:

1. Provide a programming model allowing for multiple simultane-
ous, independent network controllers to program network appli-
cations, minimizing cross-controller dependencies.

Implementations of OpenFlow and similar MAT models often 
assume a single distributed network controller that owns pro-
gramming the switch. Our experience is that this model doesn’t 
fit cloud development of SDN—instead, independent teams often 
build new network controllers and agents for those applications. 
This model reduces complex dependencies, scales better, and is 
more serviceable than adding logic to existing controllers. We 
needed a design that not only allows controllers to independently 
create and program flow tables, but enforces good layering and 
boundaries between them (e.g., disallows rules to have arbitrary 
GOTOs to other tables) so that new controllers can be developed 
to add functionality without old controllers needing to take their 
behavior into account.

2. Provide a MAT programming model capable of using connections 
as a base primitive, rather than just packets—stateful rules as 
first-class objects.

OpenFlow’s original MAT model derives historically from pro-
gramming switching or routing ASICs, and assumes that packet 
classification is stateless. However, we found our controllers 
required policies for connections, not just packets—for example, 
end users often found it more useful to secure their VMs using 
stateful access control lists (ACLs) (e.g., allowing outbound 
connections but not inbound ones) rather than stateless ACLs 
used in commercial switches. Controllers also needed NAT (e.g., 
Ananta) and other stateful policies. Stateful policy is more trac-
table in soft switches than in ASIC ones, and we believe a MAT 
model should take advantage of that.

3. Provide a programming model that allows controllers to define 
their own policy and actions, rather than implementing fixed sets 
of network policies for predefined scenarios.

Due to limitations of the MAT model provided by OpenFlow 
(historically, a limited set of actions, limited rule scalability, 
and no table typing), OpenFlow switches such as OVS have 
added virtualization functionality outside of the MAT model. 
For example, constructing virtual networks is accomplished 

via a virtual tunnel endpoint (VTEP) schema in OVSDB, rather 
than rules specifying which packets to encapsulate (encap) and 
decapsulate (decap) and how to do so.

We prefer instead to base all functionality on the MAT model, 
trying to push as much logic as possible into the controllers 
while leaving the core dataplane in the vswitch. For instance, 
rather than a schema that defines what a VNET is, a VNET can 
be implemented using programmable encap and decap rules 
matching appropriate conditions, leaving the definition of a 
VNET in the controller. We’ve found this greatly reduces the 
need to continuously extend the dataplane every time the defini-
tion of a VNET changes. 

Later Goals Based on Production Lessons
Based on lessons from initial deployments of VFP, we added the 
following goals for VFPv2, a major update in 2013-14, mostly 
around serviceability and performance:

1. Provide a serviceability model allowing for frequent deployments 
and updates without requiring reboots or interrupting VM con-
nectivity for stateful flows, and strong service monitoring.

As our scale grew dramatically to over O(1M) hosts, more con-
trollers built apps on top of VFP, more engineers joined us, and 
we found more demand than ever for frequent updates, both fea-
tures and bug fixes. In Infrastructure as a Service (IaaS) models, 
we also found customers were not tolerant of taking downtime 
for individual VMs for updates.

2. Provide very high packet rates, even with a large number of 
tables and rules, via extensive caching.

Over time we found more and more network controllers being 
built as the host SDN model became more popular, and soon 
we had deployments with large numbers of flow tables (10+), 
each with many rules, reducing performance as packets had to 
traverse each table. At the same time, VM density on hosts was 
increasing, pushing us from 1G to 10G to 40G and even faster 
NICs. We needed to find a way to scale to more policy without 
impacting performance and concluded we needed to perform 
compilation of flow actions across tables, and use extensive 
flow caching such that packets on existing flows would match 
precompiled actions without having to traverse tables.

3. Implement an efficient mechanism to offload flow policy to pro-
grammable NICs, without assuming complex rule processing.

As we scaled to 40G+ NICs, we wanted to offload policy to NICs 
themselves to support SR-IOV, which lets NICs indicate packets 
directly to VMs without going through the host. However, as 
controllers created more flow tables with more rules, we con-
cluded that directly offloading those tables would require pro-
hibitively expensive hardware resources for server-class NICs. 
Instead we wanted an offload model that would work well with 
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our precompiled exact-match flows, requiring hardware to only 
support a large table of cached flows in DRAM and our associ-
ated action language.

VFP Overview
Figure 1 shows a model of the VFP design, which is described in 
subsequent sections. VFP operates on top of Hyper-V’s exten-
sible switch as a packet filter. Its programming model is based 
on layers, MATs that support a multi-controller model. VFP’s 
packet processor includes a fastpath through Unified Flow 
Tables and a classifier used to match rules in the MAT layers.

The core VFP model assumes a switch with multiple ports that 
are connected to virtual NICs (VNICs). VFP filters traffic from 
a VNIC to the switch, and from the switch to a VNIC. All VFP 
policy is attached to a specific port. From the perspective of a 
VM with a VNIC attached to a port, ingress traffic to the switch 
is considered to be “outbound” traffic from the VM, and egress 
traffic from the switch is considered to be “inbound” traffic to 
the VM. VFP’s API and its policies are based on the inbound/
outbound model.

Programming Model
VFP’s core programming model is based on a hierarchy of VFP 
objects that controllers can create and program to specify their 
SDN policy, with ports containing layers of policy made up of 
groups of rules.

Layers
VFP divides a port’s policy into layers. Layers are the basic 
Match Action Tables that controllers use to specify their policy. 
They can be created and managed separately by different con-
trollers. Logically, packets into a VM go through each layer one 
by one, matching rules in each based on the state of the packet 
after the action performed in the previous layer, with returning 
packets coming back in the opposite direction. 

Figure 3 shows layers for our SDN deployment example. A VNET 
layer creates a customer address (CA) / physical address (PA) 
boundary by having encapsulation rules on the outbound path 
and decapsulation rules on the inbound path. In addition, an 
ACL layer for a stateful firewall sits above our Ananta NAT 
layer. The security controller, having placed it here with respect 
to those boundaries, knows that it can program policies match-
ing dynamic IP addresses (DIPs) of VMs in CA space. Finally, a 
metering layer used for billing sits at the top next to the VM, where 
it can meter traffic exactly as the customer in the VM sees it.

Figure 1: Overview of VFP design

Figure 2: VFP  objects: layers, groups, and rules

Figure 3: Example VFP layers with boundaries

Figure 4: A layer with a stateful flow
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Layering also gives us a good model on which to implement 
stateful policy. We keep flow state on a layer with a hash table 
tracking all TCP, UDP, or RDMA connections in either direction. 
When a stateful rule is matched, it creates both an inbound and 
outbound flow in the layer flow tables, with appropriate actions 
in each direction (e.g., NAT or ACL).

Rules
Rules are the entities that perform actions on matching packets 
in the MAT model. Per original goal 3, rules allow the controller 
to be as expressive as possible while minimizing fixed policy in 
the dataplane. Rules are made up of two parts: a condition list, 
specified via a list of conditions, and an action. Example condi-
tions and actions are listed in Figure 5.

Rules can be organized into groups for purposes of doing 
transactional update/replace operations, or to split a port into 
sub-interfaces (e.g., allow creation of independent policies for 
multiple Docker-style containers behind a single port).

Packet Processor and Flow Compiler
A primary innovation in VFPv2 was the introduction of a central 
packet processor. We took inspiration from a common design 
in network ASIC pipelines e.g.,—parse the relevant metadata 
from the packet and act on the metadata rather than on the 
packet, only touching the packet at the end of the pipeline once 
all decisions have been made. We compile and store flows as we 
see packets. Our just-in-time flow compiler includes a parser, an 
action language, an engine for manipulating parsed metadata 
and actions, and a flow cache.

Unified FlowIDs
VFP’s packet processor begins with parsing. One each of an L2/
L3/L4 header (as defined in Table 1) form a header group, and 
the relevant fields of a header group form a single FlowID. The 
tuple of all FlowIDs in a packet is a Unified FlowID (UFID)—the 
output of the parser.

Header Transpositions
Our action primitives, Header Transpositions (HTs), so called 
because they change or shift fields throughout a packet, are a list 
of paramaterizable header actions, one for each header. Actions 
(defined in Table 2) are to Push a header (add it to the header 
stack), Modify a header (change fields within a given header), Pop 
a header (remove it from the header stack), or Ignore a header 
(pass over it). Table 3 shows examples of a NAT HT used by 
Ananta, and encap/decap HTs used by VL2.

Figure 5: Example conditions and actions

Header Parameters

Ethernet (L2) Source MAC, Dest MAC

IP (L3)
Source IP, Dest IP, ToS 
(DSCP+ EC )

Encapsulation (L4)
Encapsulation Type Tenant 
ID, Entropy (Optional)

TCP/UDP (L4)
Source Port, Dest Port, TCP 
Flags (note: does not support 
Push/Pop)

Table 2: Header Transposition actions

Table 3: Example Header Transposition

Table 1: Valid parameters for each header type

Action Notes

Pop Remove this header.

Push
Push this header onto the packet. All header 
parameters for creating the new header are 
specified.

Modify
Modify this header. All header parameters 
needed are optional, but at least one is 
specified.

Ignore Leave this header as is.

Header NAT Encap Decap Encap+NAT

Outer 
Ethernet

Ignore
Push 

(SMAC, 
DMAC)

Pop
Push (SMAC, 

DMAC)

Outer IP
Modify 

(SIP, DIP)
Push (SIP, 

DIP)
Pop Push (SIP, DIP)

GRE
Not 

Present
Push 
(Key)

Pop Push (Key)

Inner 
Ethernet

Not 
Present

Modify 
(DMAC)

Ignore Modify (DMAC)

Inner IP
Not 

Present
Ignore Ignore

Modify (SIP, 
DIP)

TCP/
UDP

Modify 
(SPt, DPt)

Ignore Ignore
Modify (SPt, 

DPt)
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VFP creates an action for a UFID match by composing HTs from 
matched rules in each layer. For example, a packet passing the 
example Ananta NAT layer and the VL2 VNET encap layer may 
end up with the composite Encap+NAT transposition in Table 3.

Unified Flow Tables and Caching
The intuition behind our flow compiler is that the action for a 
UFID is relatively stable over the lifetime of a flow—so we can 
cache the UFID with the resulting HT from the engine. The 
resulting flow table where the compiler caches UFs is called the 
Unified Flow Table (UFT). 

With the UFT, we segment our datapath into a fastpath and a 
slowpath. On the first packet of a TCP flow, we take a slowpath, 
running the transposition engine and matching at each layer 
against rules. On subsequent packets, VFP takes a fastpath, 
matching a unified flow via UFID and applying a transposition 
directly. This operation is independent of the layers or rules in 
VFP.

Operationalizing VFP
As a production cloud service, VFP’s design must take into 
account serviceability, monitoring, and diagnostics. During 
update, we first pause the datapath, then detach VFP from the 
stack, uninstall VFP (which acts as a loadable kernel driver), 
install a new VFP, attach it to the stack, and restart the datapath. 
This operation looks like a brief connectivity blip to VMs, while 
the NIC stays up. To keep stateful flows alive across updates, we 
support serialization and deserialization for all policy and state 
in VFP on a port. VFP also supports live migration of VMs. Dur-
ing the blackout time of the migration, the port state is serialized 
out of the original host and deserialized on the new host.

VFP implements hundreds of performance counters and flow 
statistics, on per port, per layer, and per rule bases, as well as 
extensive flow statistics. This information is continuously 
uploaded to a central monitoring service, providing dashboards 
on which we can monitor flow utilization, drops, connection 

resets, and more, either on a VM or aggregated on a cluster/host/
VNET basis. VFP also supports remote debugging and tracing 
for rules and policies as part of its diagnostics suite.

Hardware Offloads and Performance
VFP has long used standard stateless offloads (VXLAN/
NVGRE encapsulation, QoS bandwidth caps, and reservations 
for ports, etc.) to achieve line rate with SDN policy. But to enable 
added goal 3 of full SR-IOV offload and host bypass, we built 
logic to directly offload our unified flows. These are exact-match 
flows representing each connection on the system, so they can 
be implemented in hardware via a large hash table, typically in 
inexpensive DRAM. In this model, the first packet of a new flow 
goes through software classification to determine the UF, which 
is then offloaded.

We’ve used this mechanism to enable SR-IOV in our datacenters 
with VFP policy offload on custom FPGA-based SmartNICs 
we’ve deployed on all new Azure servers. As a result we’ve seen 
bidirectional 32Gbps+ VNICs with near-zero host CPU and 
<25μs end-to-end TCP latencies inside a VNET. 

Experiences
We have deployed 22 major releases of VFP since 2012. VFP 
runs on all Azure servers, powering millions of VMs, petabits 
per second of traffic, and providing load balancing for exabytes 
of storage, in hundreds of datacenters in over 30 regions across 
the world. In addition, we are releasing VFP publicly as part of 
Windows Server 2016 for on-premises workloads, as we have 
seen it meet all of the major goals listed above in production.

Over six years of developing and supporting VFP, we learned a 
number of lessons of value:

◆◆ L4 flow caching is sufficient. We didn’t find a use for mul-
titiered flow caching such as OVS megaflows. The two main 
reasons: being entirely in the kernel allowed us to have a faster 
slowpath, and our use of a stateful NAT created an action for 
every L4 flow and reduced the usefulness of ternary flow cach-
ing.

◆◆ Design for statefulness from day 1. The above point is an 
example of a larger lesson: support for stateful connections as 
a first-class primitive in a MAT is fundamental and must be 
considered in every aspect of a MAT design. It should not be 
bolted on later.

◆◆ Layering is critical. Some of our policy could be implemented 
as a special case of OpenFlow tables with GOTOs chaining 
them together, with separate inbound and outbound tables. But 
we found that our controllers needed clear layering semantics 
or else they couldn’t reverse their policy correctly with respect 
to other controllers.

Figure 6: VFP Unified Flow Table
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◆◆ GOTO considered harmful. Controllers will implement 
policy in the simplest way needed to solve a problem, but that 
may not be compatible with future controllers adding policy. 
We needed to be vigilant in not only providing layering but 
enforcing it. We see this layering enforcement not as a limita-
tion compared to OpenFlow’s GOTO table model but, instead, 
as the key feature that made multi-controller designs work for 
multiple years running.

◆◆ IaaS cannot handle downtime. We found that customer IaaS 
workloads cared deeply about uptime for each VM, not just their 
service as a whole. We needed to design all updates to minimize 
downtime and provide guarantees for low blackout times.

◆◆ Design for serviceability. Serialization is another design 
point that turned out to pervade all of our logic—in order to 
regularly update VFP without impact to VMs, we needed to 
consider serviceability in any new VFP feature or action type.

◆◆ Decouple the wire protocol from the dataplane. We’ve 
seen enough controllers/agents implement wire protocols 
with different distributed systems models to support O(1M) 
scale that we believe our decision to separate VFP’s API from 
any wire protocol was a critical choice for VFP’s success. For 
example, bandwidth metering rules are pushed by a controller, 
but VNET required a VL2-style directory system (and an agent 
that understands that policy comes from a different controller 
than pulled mappings) to scale.

◆◆ Everything is an action. Modeling VL2-style encap/decap 
as actions rather than tunnel interfaces was a good choice. It 
enabled a single table lookup for all packets—no traversing a 
tunnel interface with tables before and after. The resulting HT 
language combining encap/decap with header modification 
enabled single-table hardware offload.

◆◆ Design for end-to-end monitoring. Determining network 
health of VMs despite not having direct access to them is a 
challenge. We found many uses for in-band monitoring with 
packet injectors and auto-responders implemented as VFP rule 
actions. We used these to build monitoring that traces the E2E 
path from the VM-host boundary. For example, we implement-
ed Pingmesh-like [6] monitoring for VL2 VNETs.

◆◆ Commercial NIC hardware isn’t ideal for SDN. Despite 
years of interest from NIC vendors about offloading SDN policy 
with SR-IOV, we have seen no success cases of NIC ASIC 
vendors supporting our policy as a direct offload. Instead, large 
multicore NPUs are often used. We used custom FPGA-based 
hardware to ship SR-IOV in Azure, which we found was lower 
latency and more efficient.

Conclusions and Future Work
We introduced the Virtual Filtering Platform (VFP), our cloud 
scale vswitch for host SDN policy in Microsoft Azure. We dis-
cussed how our design achieved our dual goals of programmabil-
ity and scalability. We discussed concerns around serviceability, 
monitoring, and diagnostics in production environments, and 
provided performance results, data, and lessons from real use. 
Future areas of investigation include new hardware models of 
SDN and extending VFP’s offload language.
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This article outlines options for user-defined software stacks from 
an HPC perspective. We argue that a lightweight approach based on 
Linux containers is most suitable for HPC centers because it provides 

the best balance between maximizing service of user needs and minimizing 
risks. We discuss how containers work and several implementations, includ-
ing Charliecloud, our own open-source solution developed at Los Alamos.

Innovating Faster in HPC
Users of high performance computing resources have always been asking for more, better, 
and different software environments to support their scientific codes. We’ve identified four 
reasons why:

◆◆ Software dependencies not provided by the center. Examples include libraries that are 
 numerous, unusual, or simply newer or older; configuration incompatibilities; and build-
time resources such as Internet access.

◆◆ Portability of environments between resources. For example, it is helpful to have the same 
environment across development and testing workstations, local compute servers for small 
production runs, and HPC resources for large runs.

◆◆ Consistency of environments to promote reproducibility. Examples include validated 
software stacks standardized by a field of inquiry and archival environments that remain 
consistent into the future.

◆◆ Usability and comprehensibility for meeting the above.

These needs for flexibility have been traditionally addressed by sysadmins installing various 
software upon user request; users can then choose what they want with commands such as 
module load. However, only software with high demand justifies the sysadmin effort for 
installation and maintenance. Thus, more unusual needs go unmet, whether innovative or 
crackpot—and it’s hard to tell which is which beforehand. This can create a chicken-and-egg 
problem: a package has low demand because it’s unavailable, and it’s unavailable because it 
has low demand.

This motivates empowerment of users with “bring your own software stack” functionality, 
which we call user-defined software stacks (UDSS). The basic notion is to let users install 
software of their choice, up to and including a complete Linux distribution, and run it on 
HPC resources.

Of course, this approach has drawbacks as well. We’ve identified three potential pitfalls:

◆◆ Security: By introducing very flexible new features, UDSS can expand a center’s attack 
surface, especially if they depend on privileged or trusted functionality.

◆◆ Missing functionality: Separation from the native software stack can interfere with 
features such as file systems, accelerator hardware, and high-speed interconnects that make 
HPC centers interesting and special.

◆◆ Performance: Implementations must take care to avoid introducing overhead that mean-
ingfully impacts performance.
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Options for User-Defined Software Stacks
We believe the needs and pitfalls above lead to three design goals 
for an HPC-focused UDSS implementation.

First, it should provide a standard and reproducible workflow. 
A standard workflow reduces training and development costs 
while enhancing the portability of staff skill sets; a reproducible 
workflow, in contrast with a “tinker ’til it’s ready, then freeze,” 
makes the creation of UDSS images simpler and more robust.

Second, it should run on existing, minimally modified HPC 
hardware and software resources. This is for two reasons. First, 
the pitfalls above are already well-controlled in HPC centers; 
smaller modifications add fewer risks than larger ones. Second, 
the challenges of orchestrating large parallel applications are 
well-addressed by HPC centers. We have good resource manag-
ers (Slurm, Moab, Torque, PBS, etc.), good high-performance 
parallel file systems (Lustre, Panasas), good high-speed net-
works (InfiniBand, OPA), and more. These solutions need not be 
reimplemented and reoptimized using novel technology.

Finally, it should be as simple as is practical while still deliver-
ing the necessary features. This is in keeping with the UNIX 
philosophy to “make each program do one thing well” [2].

We see three basic options for implementing UDSS: self-compile, 
virtual machines, and Linux containers.

Compile It Yourself
The traditional method for users to take care of themselves is 
to simply compile what they need in a home directory or other 
user area. This is available almost everywhere already, employs 
only unprivileged functionality, and yields direct access to all 
center resources. However, it is also tedious and error-prone, 
hard to update, and does not provide portability or consistency 
of environments. In principle, users can self-compile arbitrary 
software; in practice, its difficulty is very limiting.

Virtual Machines and Public/Private Cloud
A virtual machine (VM) is a program that emulates a physical 
computer. One then installs an operating system and applica-
tions into this emulator. This is appealing because it gives users 
ultimate flexibility and strong isolation; it is reasonable to let 
them install even non-UNIX operating systems and have full 
administrative privileges. Modern virtual machines perform 
excellently for things needed by industry, such as CPU-bound 
tasks and Ethernet networking.

However, the approach has challenges. Performance is often an 
issue for things uncommon in industry, such as HPC high-speed 
networks; this can sometimes be mitigated by compromising on 
isolation. Virtual machines must be provisioned with a complete 
OS, including kernel and system daemons, and the support infra-
structure such as virtual networking is complex.

There is a view that HPC should become more like cloud comput-
ing, which offers on-demand, loosely coupled virtual machines. 
However, this approach requires that either users or sysadmins 
reimplement and reoptimize much of the functionality that HPC 
centers already offer.

Our belief is that HPC centers should offer virtual machines 
only if credible UDSS require not only a custom user space but a 
custom kernel as well. Otherwise, its disadvantages dominate.

Linux Containers
A middle approach is containers, which share “the only” kernel 
with the native software stack, accomplishing isolation with 
Linux namespaces and related features. (For further reading, we 
recommend Michael Kerrisk’s series in Linux Weekly News [1]as 
well as namespaces(7) and related man pages.)

Note that container is a widely used term with varying defini-
tions. The view outlined here is the one we find most sensible.

Privileged Linux Namespaces
Linux has six namespaces that isolate different classes of kernel 
resources; processes in one namespace see a different view 
of system state than processes in another. Five namespaces 
are what we call privileged, needing root to create; the sixth, 
unprivileged one, is covered in the next section. The privileged 
namespaces are:

1. Mount: File-system tree and mounts

2. PID: Process IDs—a process in a PID namespace has a differ-
ent PID inside and outside the namespace

3. UTS: Host name and domain name (the name deriving from 
“UNIX time-sharing system”)

4. Network: All other network-related resources, including net-
work devices, ports, routing tables, and firewall rules

5. IPC: Inter-process communication, both System V and POSIX

The six namespaces can be mixed and matched, but there are 
quirks. For example, a mount namespace cannot create a new /
sys unless it is also a network namespace, because /sys includes 
files that can be used to manipulate the network configuration.

Namespaces are always active, i.e., all Linux processes have 
namespace IDs for all six namespaces (try ls -l /proc/self/ns). 
Namespaces form a tree, with parent/child relationships, and 
everything is owned by a namespace. For example, though it 
cannot create its own, a mount namespace can bind-mount its 
parent’s, to which the parent namespace controls access.

Namespaces are manipulated by three system calls: unshare(2) 
puts an existing process into new namespaces, clone(2) can put 
a new child process into new namespaces, and setns(2) joins an 
existing namespace.
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These features are useful for UDSS because they allow any 
directory to become the file-system root of a mount-namespaced 
process, and the other namespaces can be added for additional 
isolation as needed.

The Unprivileged User Namespace
The sixth namespace, user, was added starting in Linux 3.8. 
Its goal is to give unprivileged processes access to traditionally 
privileged functionality in specific contexts when doing so is 
safe. This is accomplished with namespace-specific capabilities 
and user/group IDs.

The first process in a new user namespace has all capabilities in 
the new namespace, but none in the parent user namespace, even 
if created by root.

The relationship between child and parent namespace UIDs is 
controlled by a one-to-one mapping defined during namespace 
setup. The situation with GIDs is analogous. A common use is to 
map one’s normal, unprivileged UID to 0 inside the namespace, 
thus appearing to be root inside the namespace.

If the namespace is created by an unprivileged user, the parent 
side of this map may only be the existing EUID. This limits 
access to things already accessible, because while any UID can 
be selected in the child namespace, it must map to the user’s 
existing, real UID. Also, all access using unmapped UIDs will 
be rejected. For example, setuid(2) cannot be used to access 
another user’s files, because the other user’s UID grants no access 
if unmapped and cannot be set on the parent side of the map.

This one-to-one mapping is used to translate UIDs in both 
directions. When a UID-based access decision is initiated inside 
the namespace, the map translates the in-container UID up 
through the namespace tree to its corresponding base UID, and 
the latter is used for access control. For example, bind-mounting 
any directory into the container is safe, because it is the user’s 
real, unprivileged IDs on the host, not the fictional ones in the 
user namespace that control access. In the opposite direction, 
for example, files owned by the user will be translated from the 
user’s real UID to the in-container UID. Thus, with the mapping 
to UID 0 described above, all of a user’s files will appear to be 
owned by root when listed inside the namespace.

Thus, processes and kernel resources inside the user namespace 
can be manipulated arbitrarily, but only in ways that do not 
affect the parent namespace—privilege is an illusion.

    #define _GNU_SOURCE

    #include <fcntl.h>

    #include <sched.h>

    #include <stdio.h>

    #include <sys/types.h>

    #include <unistd.h>

    int main(void)

    {

       uid_t euid = geteuid();

       int fd;

       printf(“outside userns, uid=%d\n”, euid);

       unshare(CLONE_NEWUSER);

       fd = open(“/proc/self/uid_map”, O_WRONLY);

       dprintf(fd, “0 %d 1\n”, euid);

       close(fd);

       printf(“in userns, uid=%d\n”, geteuid());

       execlp(“/bin/bash”, “bash”, NULL);

    }

Listing 1: Hello world implementation of a user namespace, available 
as examples/syscalls/userns.c in the Charliecloud source code. 
This program creates the namespace with unshare(2), maps within-
namespace UID 0 to the invoking user’s EUID by writing uid_map, and 
then starts the world’s most useless root shell.

Listing 1 illustrates a hello-world user namespace implementa-
tion. This is an unprivileged, untrusted, non-setuid program; 
given kernel support, any user can run it, or the more complete 
implementations in Charliecloud, with no sysadmin assistance.

User namespaces are a powerful tool for implementing container-
based UDSS tools because they let a normal, unprivileged user 
create an independent file-system tree and safely access host 
resources, even if he or she holds “privileges” inside the container, 
without depending on the container implementation for security.

Additional Components
Other Linux features commonly used in container implementa-
tions include:

◆◆ cgroups(7), which track and limit resource consumption of 
processes. This can be useful in multi-tenant settings to keep 
users from stomping on each other.

◆◆ prctl(2) with PR_SET_NO_NEW_PRIVS, which prevents 
 execve(2) from increasing privileges. This can protect against 
some privilege escalation bugs, e.g., in setuid binaries.

◆◆ seccomp(2) filters system calls, thus mitigating security issues 
in the excluded calls.

◆◆ SELinux and AppArmor have various features that can change 
what the processes may do.
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These features can be applied to processes in general, not just 
containers. For example, if a seccomp(2) filter increases the 
security of container jobs, why not apply it to all jobs? That said, 
it may be reasonable for container implementations to use these 
tools under a “belt and suspenders” philosophy, if the benefit 
outweighs the complexity gain.

Container Implementations
There are many container implementations. We divide them 
generally into two categories, full-featured and lightweight, 
which serve different use cases.

Full-Featured
Full-featured container implementations have (shockingly!) lots 
of features, for example some subset of:

◆◆ Image building
◆◆ Image management (e.g., storage, caching, tagging, signing)
◆◆ Images stored in custom formats
◆◆ Image sharing (repository/registry, search, Web site)
◆◆ Orchestration
◆◆ Storage management (overlay management, back-end drivers)
◆◆ Runtime setup (default command, start-up script, inetd-type 

functionality)
◆◆ Stateful containers that can be started and stopped
◆◆ Supervisor daemons, e.g., to proxy signals as required by PID 

namespace

Typically, these implementations comprise a security boundary.

Examples from industry include Docker/runC, rkt, and LXC, 
along with perhaps systemd-nspawn(1) and NsJail; examples 
from HPC include NERSC’s Shifter and LBNL’s Singularity.

These many features are implemented because they are use-
ful, but there are drawbacks. For example, access to the docker 
command is equivalent to root by design [4]. One could write 
a wrapper, but input sanitization is a perilously difficult problem.

All these features must be supported for configuration, security, 
and user support. For example, Docker comprises 133,000 lines 
of code, some of which are privileged, and Docker is written in 
Go, a language HPC centers tend to lack expertise in.

It can be done, of course, but it’s a major step for an HPC center 
and must be done with great care. We believe that deploying a 
lightweight solution is an easier path.

Lightweight
In contrast, lightweight implementations have few features. Most 
basically, given an image, they run a containerized process within 
that image. Typically, image building is delegated to other tools, 
whether designed for containers or not (e.g., debootstrap(8)).

Lightweight implementations minimize security responsibil-
ity, and they have fewer lines of code to evaluate, support, and 
secure. This makes deployment lower cost and easier for HPC 
centers to justify.

Examples from industry include unshare(1) from util-linux, 
along with perhaps systemd-nspawn(1) and NsJail. In HPC, we 
are aware of only our own Charliecloud, discussed below.

We believe that lightweight implementations are best for HPC 
centers. They bring the most important dimensions of cloud-
like flexibility without compromising the existing tools and 
strengths of HPC centers or demanding their reimplementation 
and reoptimization.

Charliecloud
Our basic design is motivated by two observations. First, full-
featured implementations are not a good fit for HPC centers. 
However, some of their features are really important: most 
importantly, image building and image sharing.

    $ cd charliecloud/examples/hello

    $ ch-build -t hello ../..

    Sending build context to Docker daemon 12.24 MB

    [...]

    Successfully built 2972e7281f75

    $ ch-docker2tar hello /var/tmp

    57M /var/tmp/hello.tar.gz

    $ ch-tar2dir /var/tmp/hello.tar.gz /var/tmp/hello

    /var/tmp/hello unpacked ok

    $ ch-run /var/tmp/hello -- echo “I’m in a container”

    I’m in a container

Listing 2: Building and running “hello world” in Charliecloud requires only 
a few simple commands. The tarball image created in Step 3 can be run on 
any host where the Charliecloud runtime is installed; Docker is no longer 
needed once the image is built.

Thus, our open-source, lightweight container implementation 
takes a dual approach. We put building and sharing in a sandbox 
that is separate from HPC center resources. This could be a user 
workstation or a virtual machine: somewhere safe to give the 
user root. In this sandbox, Charliecloud wraps Docker for image 
building, and the other Docker tools are also available, including 
sharing via pull/push to any Docker Hub repository.

Running images uses our own runtime that is unprivileged 
and independent of Docker. This can be on center resources or 
anywhere else with the Charliecloud runtime installed, such as 
the same sandbox for development and testing. Listing 2 is an 
example of this workflow.
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This brings us back to our three design goals:

1. A standard, reproducible workflow is accomplished by using 
Docker for image building. This enables use of Dockerfiles, 
an industry standard for reproducible builds. Working atop 
Docker for image management also integrates our solution 
into the robust Docker image ecosystem.

2. Running on existing HPC resources is accomplished with 
our ch-run runtime, which provides just enough isolation 
using the mount and user namespaces to run a container 
image. Similarly to time(1), which provides an environment 
that records resource usage, ch-run provides a container 
environment.

ch-run requires no privilege and depends on the Linux kernel 
for security, just like any other user process. Performance 
is the same as native in our tests, modulo noise, because 
minimal isolation yields direct access to all resources: 
compute, network, file systems, accelerators, and the rest. 
ch-run scales using standard HPC tools. For example, a large 
application can be started simply with mpirun -np $BIGNUM 

ch-run bigprog.

3. Simplicity: Charliecloud is a collection of five shell scripts 
and two C programs totaling roughly 900 lines of code. For 
comparison, NsJail is 4,000 lines, Singularity 11,000, Shifter 
19,000, and Docker 133,000.

We have recently deployed Charliecloud in production and are 
working with Los Alamos scientists on its use and performance 
for real-world science code. We look forward to sharing these 
results.

If you’d like to learn more, Charliecloud’s source code is avail-
able from GitHub (https://github.com/hpc/charliecloud), and its 
documentation is on the Web (https://hpc.github.io/charliecloud). 
Further technical detail is available in our forthcoming Super-
computing paper [3].
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Interview with James Bottomley
R I K  F A R R O W

I first met James Bottomley during a Linux File System and Storage 
workshop that took place before FAST in 2007. James’ focus has been 
on the SCSI subsystem of Linux. But, as the CTO of Parallels, James has 

also worked on containers. James and Pavel Emelyanor wrote an article com-
paring containerization to virtualization for ;login: back in 2014 [1]. 

While attending LISA ’16, I heard many conversations from people in the hallway that sug-
gested that they understood neither the purpose of containers nor how they were imple-
mented. And, it turns out, I didn’t understand how containers work under Linux either.

Rik Farrow: Looks like you may not be at Parallels anymore.

James Bottomley: That’s right…I’m at IBM Research now.

RF: My problem is that lots of people don’t consider container tech important.

JB: Heh, well, there’s a strong political reason for that: the main contenders vying to be 
the enterprise container power have no expertise in the core technology of containers (OS 
virtualization), so they’re anxious to concentrate on stuff they can control. Plus if you look 
at what industry is after with container technology, development process simplification and 
agility, although these are enabled by OS virtualization, they’re nowhere directly connected 
to virtualization.

RF: By “main contenders,” you mean Docker, Red Hat, Core, and some others I am not 
 thinking of?

JB: Yes: other orchestration companies like Mesos, Joyent, and now even VMware.

RF: You include VMware in the list of companies offering orchestration. Could you clear that 
up for me?

JB: Yes, VMware’s province is still very much hypervisors and thus hardware virtualization 
not OS virtualization. Admittedly, VMware does have a Linux kernel team, which gives them 
the capacity to get into the OS virtualization infrastructure in Linux very quickly unlike 
most of the other orchestration owners, but there’s little sign (from kernel commit logs) that 
they’re doing this.

RF: I think that industry wants what you suggest, simpler development and more agility, but 
they also appreciate having containers that are much lighter weight than VMs.

JB: Remember, I worked for Parallels, which was a container company before it was fash-
ionable. In 2004, Parallels tried to sell containers to the enterprise in place of VMs on the 
grounds that they were faster and more lightweight. Parallels failed primarily because that’s 
not what the enterprise wanted.

Enterprise CIOs have a problem they try to conceal with excess hardware capacity; some-
thing that uses capacity more efficiently is really an unwelcome technology.
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The first company to have a genuine need for lightweight virtu-
alization technology was Google in around 2006-2007 because 
they realized that to run a service at cloud scale you require this 
type of transactional efficiency—that’s when they adopted con-
tainers wholesale. Very few traditional enterprises are building 
out cloud-scale datacenters still.

RF: I’ve heard that you can run 10 times as many containers as 
VMs on the same hardware. And they can spin up containers 
much faster, too.

JB: Yes, that’s because there’s a single kernel doing all the 
resource management. Containers are essentially small groups 
of UNIX processes, so if you want to run 100 Apache servers, it’s 
far cheaper in resources to run 100 Apache processes each in a 
container than to run 100 VMs with a full OS complement.

Full operating systems are very complex and resource-intensive 
beasts. The person who just wants to run X applications really 
doesn’t care what the OS is doing and really doesn’t want to 
manage it, which is the Achilles’ heel of VMs. The world wants to 
move away from infrastructure, but a VM is anchored there.

RF: I attended a workshop (HotCloud ’14), where they broke up 
into groups discussing different topics. I attended the Container 
group, and one thing some Google person said stuck in my mind: 
we run associated containers within a VM, and we use VMs for 
security isolation. I thought about that a lot.

JB: Google has a particular problem: being the first adopters, 
they bent the technology to serve themselves. Google actually 
hired about everyone they could who was working on Linux 
cgroups in 2006. The Google datacenters grew to be container-
centric but supported Google written workloads. The Google 
cloud allowed you to bring your data but not your code in those 
days. If you write all the code, you can take a lot of shortcuts with 
security (which Google did).

Then when they wanted to offer a-bring-your-own-code service, 
Google App Engine, they had to turn to some external technol-
ogy to add security. This problem is unique to Google. But every 
former or current hypervisor company is trying to also smear 
container security because they fear it’s the only way they’ll 
stay in the game, so you hear this type of statement from a lot of 
sources.

The reality is, of course, that containers were being sold as 
hypervisor replacements to the hosting industry by Parallels 
from about 2001 on. With no need of any VM to provide security. 
The technology itself can be made secure enough on bare metal.

The key phrase is “can be made.” The problem with container 
technology is that it’s not all or nothing like VM technology. You 
can’t really emulate just some virtual hardware, so if you don’t 
turn on the OS virtualizations securely, you don’t get security. 

Most of the modern application packaging container technology, 
like Docker, doesn’t turn all the security features on.

RF: In the article you and Pavel wrote [1], you explained that con-
tainers are based on cgroups and namespaces. Cgroups (control-
groups) provide limits to resource usage, and namespaces limit 
access to, well, namespaces, such as files, directories, devices, 
and networks. Is that a good description of how containers work?

JB: Sort of. The problem is that the OS itself has no concept at 
all of a “container”: all the OS knows is that there are a group 
of processes for which certain OS virtualization features have 
been set up. So the way “containers” work is potentially hugely 
variable. For instance, the Kubernetes concept of a “pod” means 
a set of “containers” that share certain namespaces, like network 
or IPC (meaning they see each other’s network interface, and you 
can set up IPC message passing between them).

All container systems without exception use the core Linux APIs 
of namespaces and cgroups, but they can use them in very differ-
ent ways (so LXC is very different from, say, Docker in how it sets 
up what it thinks of as a container).

RF: There must also have been some API support added, so a 
root-EUID process could start up containers.

JB: Actually, the largest amount of work in Linux is going on in 
the realm of what are called unprivileged containers. This means 
OS virtualization that can be controlled by non-root users.

What you say above is currently true—most orchestration sys-
tems do run as root, but that causes security problems, so they’d 
actually also be interested in running unprivileged.

RF: I’m guessing that this is involved in orchestration schemes, 
but there must be more to orchestration than just firing up con-
tainers. You need a way to keep track of them, as well as methods 
for both connecting them as well as constraining them through 
the orchestration system.

JB: Right. Usually the way an orchestration system keeps track 
of containers to think of each container as being a collection 
of processes. Usually the container has some unique ID, and 
each process within the container carries it as either a mark or 
a mapping. Most often the way you can see this from outside is 
that each container is a separate PID namespace. So Docker uses 
UUIDs, and it keeps a runtime map of UUID<->PID namespace 
(which changes every time you start and stop a container) so that 
it can uniquely identify every process in a container by interro-
gating the PID namespace.

Now that I’ve told you the above, I have to confess that when I 
set up my architecture emulation containers, I don’t actually use 
a PID namespace, so the above isn’t universal (but realistically 
nothing in containers is).
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RF: That really helped me understand containers: that the 
UUIDs that Docker creates is just the Docker tool’s own way 
of identifying a group of processes. I found myself wondering 
whether there was a “create container” system call. Instead I 
discovered that most of the work is done by clone() by setting 
certain flags when creating a new process.

JB: Yes, there are essentially two namespace creation system 
calls, clone() and unshare(), and one namespace entry system 
call, setns(). Cgroups don’t have any system calls at all; it’s cur-
rently all done by manipulating files in the cgroup file systems, 
which are usually mounted under /sys/fs/cgroup.
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Knockoff
Cheap Versions in the Cloud

X I A N Z H E N G  D O U ,  P E T E R  M .  C H E N ,  A N D  J A S O N  F L I N N

Cloud-based storage provides reliability and ease-of-management. 
Unfortunately, it can also incur significant costs for both storing and 
communicating data. These costs increase when systems retain past 

versions of files for data recovery, auditing, and forensic troubleshooting. 
While techniques such as chunk-based deduplication and delta compres-
sion have proven very effective in reducing bytes stored and sent over the 
network, further optimizations to these techniques are yielding increasingly 
incremental benefits. We argue that it is time to consider additional strategies 
for reducing storage costs. In our current work, we are demonstrating that one 
such strategy, deterministic recomputation of data, can substantially reduce 
the cost of cloud storage. Our distributed file system, Knockoff, selectively 
substitutes nondeterministic inputs for file data. Our results show that this 
reduces the cost of sending files to the cloud without versioning by 21–24%; 
the relative benefit is substantially greater when past versions are retained. 

Deterministic Recomputation
Knockoff leverages an unconventional method for communicating and storing file data. In 
lieu of the actual data, it selectively represents a file as a log of the nondeterministic inputs 
needed to recompute the data (e.g., system call results, thread scheduling, and external 
data read by a process). With such a log, a cloud file server can deterministically replay the 
computation that originally produced the data to recreate the data. We call the observation 
that one can represent data generated by computation either by value or by the log of inputs 
needed to reproduce the computation the principle of equivalence (between values and com-
putation); the principle has been observed and used in many settings such as fault tolerance 
and state machine replication.

Representing data as a log of nondeterminism leads to several benefits for a distributed file 
system. First, it substitutes (re)computation for communication and storage, and this can 
reduce total cost because computation in cloud systems is less costly than communication 
and storage. Second, it can reduce the number of bytes sent over the network when the log 
of nondeterminism is smaller than the data produced by the recorded computation. For the 
same reason, it can reduce the number of bytes stored by the cloud storage provider. Finally, 
representing data as a log of nondeterminism can support a wider range of versioning fre-
quencies than prior methods.

Although similar ideas have been previously applied to distributed storage, the computa-
tion has either been assumed to be deterministic given its command line and file inputs [4] 
or given a specific sequence of user-interface events [1]. Unfortunately, neither a log of shell 
commands nor a log of user activity is sufficient to reproduce the computation of modern, 
general-purpose programs, especially due to the shift to multithreaded computation running 
on multiprocessors, as well as a growing diversity in execution environments and corre-
sponding dependencies on operating systems, libraries, and installed application versions.
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Knockoff uses deterministic record and replay to guarantee that 
data produced by all data-race free programs can be reproduced. 
Rather than capture a subset of nondeterministic inputs, it uses 
the Arnold [2] system to record all nondeterministic data enter-
ing each process that executes on a file system client, including 
the results of system calls (such as user and network input), the 
timing of signals, and real-time clock queries. Arnold enables 
deterministic replay of multithreaded programs by recording all 
synchronization operations (e.g., pthread_lock and atomic hard-
ware instructions). This recording has minimal overhead (8% or 
less in our experiments). Because it supplies recorded values on 
replay rather than re-executing system calls that interact with 
external dependencies, Arnold can trivially record an applica-
tion on one computer and replay it on another. The only require-
ments are that both computers run the Arnold kernel and have 
the same processor architecture (x86).

For example, consider a simple application that reads in a data 
file, computes a statistical transformation over that data, and 
writes a timestamped summary to an output file. The output 
data may be many megabytes in size. However, the program itself 
can be reproduced given a small log of determinism, as shown in 
Figure 1 (for clarity, the log has been simplified).

The log records the results of system calls (e.g., open) and syn-
chronization operation (e.g., pthread_lock). The first entry in 
Figure 1 records the file descriptor (rc=3) chosen by the operat-
ing system during the original execution. Parameters to the 
open call do not need to be logged since they will be reproduced 
during a deterministic re-execution. The second entry records 
the mapping of the executable; replaying this entry will cause the 
exact version used during recording to be mapped to the same 
place in the replaying process address space. Lines 4 and 5 read 
data from the input file, line 6 records the original timestamp, 
and lines 7 and 8 write the transformation to the output file. 
Data read from the file system is not in the log since Knockoff is 
a versioning file system that can reproduce the desired version 
on demand. Also, the data written to the output file need not be 
logged since it will be reproduced exactly as a result of replaying 
the execution.

With aggressive compression [2], a log for this sample applica-
tion can be only a few hundred bytes in size, as contrasted with 
the megabytes of data that the execution produces. The out-
put data is reproduced by starting from the same initial state, 
re-executing the computation, and supplying values from the 
log for each nondeterministic operation. Since the log contains 
references to executable and shared library versions, as well as 
all interactions with the operating system, the complex envi-
ronmental dependencies of an application are automatically 
resolved as part of the replay process. For instance, the replay 
starts from the same executable, loads the same versions of 

shared libraries, and sees the same results of IPC and network 
operations that were seen during recording.

Additionally, just as deduplication and compression of file 
data can reduce bytes stored and sent over the network for file 
data, we have found that applying these techniques to logs of 
nondeterminism can also provide similar savings by exploit-
ing similarities in computation across executions of the same 
application. In particular, Knockoff achieves an additional 42% 
reduction in bytes stored and communicated by using delta com-
pression on the logs of nondeterminism. 

Writing Data to the Cloud
To propagate modifications to the cloud, Knockoff first calcu-
lates the cost of sending and replaying the log of nondetermin-
ism given a pre-defined cost of communication (costcomm) and 
computation (costcomp):

costlog = sizelog ∗ costcomm + timereplay ∗ costcomp (1)

sizelog is determined by compressing the log of nondeterminism 
for the application that wrote the file and measuring its size 
directly. To estimate timereplay , Knockoff records the user CPU 
time consumed so far by the recorded application with each log 
entry that modifies file data. This is a very good estimate for the 
time needed to replay the log on the client [6]. To estimate server 
replay time, Arnold multiplies this value by a conversion factor 
to reflect the relative CPU speeds of the client and server.

Knockoff calculates the cost of sending file data as:

costdata = sizechunks ∗ costcomm (2)

Knockoff implements the chunk-based deduplication algorithm 
used by LBFS [5] to reduce the cost of transmitting file data. It 
breaks all modified files into chunks, hashes each chunk, and 
sends the hashes to the server. The server responds with the set of 
hashes it has stored. sizechunks is the size of any chunks unknown to 
the server that would need to be transmitted; Knockoff uses gzip 
compression to reduce bytes transmitted for such chunks.

Figure 1: Sample log of nondeterminism
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If costlog < costdata, Knockoff sends the log to the server. The server 
spawns a replay process that consumes the log and replays the 
application. When the replay process executes a system call that 
modifies a target file, it updates the current version, and poten-
tially retains the past version as described below.

Replay is guaranteed to produce the same data if the application 
being replayed is free of data races. Data-race freedom can be 
guaranteed for some programs (e.g., single-threaded ones) but 
not for complex applications. Knockoff therefore ships a SHA-
512 hash of each modified file to the server with the log. The 
Knockoff server verifies this hash. If verification fails, it asks the 
client to ship the file data. Such races are rare since the replay 
system itself acts as an efficient data-race detector. All subse-
quent replays are guaranteed to produce the same data as the 
first replay, so once Knockoff verifies that the replay produces 
the desired data, it need not do so again.

If costdata < costlog, then Knockoff could reduce the cost of the 
current transaction by sending the unique chunks to the server. 
However, for long-running applications, it may be the case that 
sending and replaying the log collected so far would help reduce 
the cost of future file modifications that have yet to be seen 
(because the cost of replaying from this point is less than replay-
ing from the beginning of the program). Knockoff predicts this 
by looking at a history of costdata / costlog ratios for the application. 
If sending logs has been historically beneficial and current appli-
cation behavior is similar (the ratios differ by less than 40%) to 
past executions, it sends the log. Otherwise, it sends the unique 
data chunks.

Storing Data in the Cloud
Knockoff may store file data on the server either by value (as 
normal file data) or by operation (as the log of nondeterminism 
required to recompute that data). If the log of nondeterminism 
is smaller than the file data it produces, then storing the file 
by operation saves space and money. However, storing files by 
operation delays future reads of that data, since Knockoff will 
need to replay the original computation that produced the data. 
In general, this implies that Knockoff should only store file data 
by operation if the data is very cold, i.e., if the probability of read-
ing the data in the future is low.

Knockoff currently stores the current version of all files by value 
so that its read performance for current file data is the same 
as that of a traditional file system. Knockoff may store past 
versions by operation if the storage requirements for storing 
the data by log are less than those of storing the data by value. 
However, Knockoff also has a configuration parameter that sets 
a maximum materialization delay, which is the time to recon-
struct any version stored by operation. The default materializa-
tion delay is 60 seconds.

When replaying a log to regenerate data, Knockoff may find 
that some of the input files for the computation being replayed 
are also stored by operation rather than by value. In this case, it 
recursively replays those logs to reproduce the input data needed 
to regenerate the target data. Knockoff tracks such recursive 
dependencies in a data structure called the version graph. When 
storing data, it ensures that any path of recomputation in this 
graph does not exceed the materialization delay, and this guar-
antees that the total time to reproduce any file is no greater than 
that bound.

Fine-Grained Versioning
Past file versions have many uses: recovery of lost or overwrit-
ten data, reproduction of the process by which data was created, 
auditing, and forensic troubleshooting. These benefits increase 
as versions are retained more frequently. For instance, if ver-
sions are retained every time a file is closed, the user may have 
a snapshot of file data with each save operation. However, many 
applications only close files on termination, so versioning on 
every file write may be required to provide snapshots of interme-
diary states. However, such a policy would not capture interme-
diary states from modifications to memory-mapped files.

When storing and communicating file data by value, more 
frequent versioning substantially increases costs due to a 
greater amount of data sent over the network and saved to disk. 
However, when Knockoff represents file data by operation, its 
deterministic recomputation can produce any version of file data 
written by that computation at no additional cost. This means 
that Knockoff has much lower costs for retaining past versions 
of file data than traditional storage systems.

Figure 2: Total bytes sent to the server across all user study participants. 
We compare Knockoff with two baselines across all relevant versioning 
policies.
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As a result, Knockoff currently supports four different version-
ing policies:

◆◆ No versioning: Knockoff retains only the current version of all 
files.

◆◆ Version on close: Knockoff retains all past versions at close 
granularity; for past versions, Knockoff may store the actual 
data or the logs required to regenerate the data.

◆◆ Version on write: Knockoff retains all past versions at write 
granularity.

◆◆ Eidetic: Knockoff retains all past versions at instruction 
granularity. It can reproduce versions of a memory-mapped file 
by replaying the computation up to a specified point and redo-
ing the individual store instructions that modified the file.

User Study Results
As part of a detailed evaluation of Knockoff [3], we recruited 
eight graduate students to use Knockoff for software develop-
ment tasks. We asked participants to write software to perform 
several simple tasks, e.g., converting a CSV file to a JSON file; 
each participant could spend up to an hour solving the problem. 
We did not dictate how the problem should be solved. Partici-
pants used various Linux utilities, text editors, IDEs, and pro-
gramming languages. They used Web browsers to visit different 
Web sites such as Google and StackOverflow, as well as sites 
unrelated to the assignment (e.g., Facebook and CNN News). 
Almost all files accessed during the study are stored in Knockoff 
(exceptions include the tmp directory and system configuration 
files), and almost all file modifications are therefore persisted in 
the cloud. One of the eight participants was unable to complete 
the programming assignment and quit right away. We show 
results for the seven participants who attempted the tasks; four 
of these finished successfully within the hour.

Figure 2 summarizes the results by aggregating the bytes sent to 
a cloud server by Knockoff and the baseline file systems across 
all seven users. Even without retaining past versions, Knockoff 
is surprisingly effective in reducing bytes sent over the network 
for non-versioning file systems. Compared to chunk-based 
deduplication, Knockoff reduces communication by 24%. Com-
pared to delta compression, it reduces communication by 32%. 
Note that these baselines are already very effective in reducing 
bandwidth; without compression, this workload requires 1.9 GB 
of communication, so delta compression alone achieves an 86% 
reduction in network bandwidth, and chunk-based deduplication 
achieves an 87% reduction.

The benefit of Knockoff increases substantially as past versions 
are maintained more frequently. For instance, Knockoff reduces 
bytes sent by 47% compared to chunk-based deduplication for a 
version on write policy. In fact, versioning on write with Knock-
off uses less bandwidth than the baselines without versioning. 

Figure 3: Bytes sent to the server for each individual user-study partici-
pant (A-G). We compare Knockoff with two baselines across all relevant 
versioning policies.

(a) No versioning

(b) Version on close

(c) Version on write
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At the limit, the eidetic policy, which can reproduce any past ver-
sion even for memory-mapped files, is completely infeasible with 
current storage systems that store data by value. Knockoff can 
support this granularity of versioning while sending only 41% 
more bytes to the cloud than chunk-based deduplication without 
versioning in the user study and storing only 134% more bytes in 
the cloud to retain this state in another longitudinal study (not 
shown).

A surprising result from this study was that the effectiveness of 
Knockoff varied tremendously across users, as shown in Figure 
3 (each individual study participant is labeled A-G in each 
graph). For participant C, Knockoff achieves a 97% reduction in 
bandwidth for the no versioning policy and a 95% reduction for 
the version on write policy compared to chunk-based dedupli-
cation. On the other hand, for participant F, the corresponding 
reductions are 2% and 17%. This shows the orthogonal nature of 
Knockoff’s cost savings. When the mix of tools and workloads 
is better for operation shipping than it is for deduplication or 
compression, Knockoff produces large savings. In cases where 
operation shipping is not economical, Knockoff can detect this 
and revert to more traditional forms of bandwidth and storage 
reduction.

Summary
Operation shipping has long been recognized as a promising 
technique for reducing the cost of distributed storage. How-
ever, using operation shipping in practice has required onerous 
restrictions about application determinism or standardization 
of computing platforms, and these assumptions make operation 
shipping unsuitable for general-purpose file systems. Knockoff 
leverages recent advances in deterministic record and replay to 
lift those restrictions. It can represent, communicate, and store 
file data as logs of nondeterminism. This saves network commu-
nication and reduces storage utilization, leading to cost savings.

In the future, we hope to extend the ideas in Knockoff to other 
uses; one promising target is reducing cross-datacenter commu-
nication. We are also investigating whether it is feasible to gen-
erate logs of nondeterminism from which data can be reproduced 
by observing only a portion of those nondeterministic inputs and 
synthesizing likely values for the rest. This could represent a 
promising middle ground between Knockoff and prior operation 
shipping systems in which one could still guarantee that data 
can always be reproduced once a successful recomputation has 
been generated, but such guarantees could be achieved without 
running a full-scale deterministic recording system such as 
Arnold on each client.
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Datacenters are characterized by their large scale, comprising a large 
number of network links and switches. However, these hardware 
components can develop intermittent faults, resulting in randomly 

occurring packet drops or delays that harm application performance—sev-
eral such faults occur daily in large production datacenters. Since the effects 
are intermittent, traditional detection techniques involving host and router 
statistics or active probe traffic can fall short in their ability to identify and 
locate these errors. In this article, we present our passive hybrid approach 
that combines network path information with host-based statistics to rapidly 
detect and pinpoint the location of datacenter network faults inside a produc-
tion Facebook datacenter.

Modern datacenters continue to increase in scale, speed, and complexity. Unfortunately, 
experience indicates that modern datacenters are rife with hardware and software failures—
indeed, they are designed to be robust to large numbers of such faults. The large scale of 
deployment both ensures a non-trivial fault incidence rate and complicates the localization 
of these faults. Recently, authors from Microsoft described [9] a rogue’s gallery of datacen-
ter faults: dusty fiber-optic connectors leading to corrupted packets, switch software bugs, 
hardware faults, incorrect ECMP load balancing, untrustworthy counters, and more. Con-
founding the issue is the fact that failures can be intermittent and partial: rather than failing 
completely, a link or switch fault might only affect a subset of traffic, complicating detection 
and diagnosis. To illustrate this difficulty, the authors of NetPilot [8] describe how a single 
link dropping a small percentage of packets, combined with cut-through routing, resulted in 
degraded application performance and a multiple-hour network goose chase to identify the 
faulty device.

We present our approach [5] to detect and localize such faults by providing greater visibil-
ity into the fate of application traffic once it is injected into the network—specifically, by 
exposing network path information for all datacenter traffic to the hosts. This allows us to 
correlate poor network performance observed at each host to the specific component in the 
network that is responsible passively, without any probe traffic overhead. Furthermore, we 
find that the vast amount of data available—we use TCP state machine data for every flow on 
every host—allows us to do so fairly rapidly.

Current Methods
Commonly deployed network monitoring approaches include host monitoring (e.g., RPC 
latency and TCP retransmits) and switch-based monitoring (e.g., drop counters and queue 
occupancies). However, such methods can fall short for troubleshooting datacenter-scale 
networks. Host monitoring alone lacks specificity in the presence of large numbers of alter-
native paths, which is characteristic of datacenter topologies [2, 7]. An application suffering 
from dropped packets or increased latency does not give any insight on where the fault is 
located, or whether a given set of performance anomalies are due to the same faults. Simi-
larly, if a switch drops a packet, the operator is unlikely to know which application’s traf-
fic was impacted or, more importantly, what is to blame. Even if a switch samples dropped 
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 packets, the operator might not have a clear idea of what traffic 
was impacted. Due to sampling bias favoring high volume flows, 
mouse flows experiencing loss might be missed. Switch-counter-
based approaches are further confounded by cut-through 
forwarding and unreliable hardware [8, 9]. Recent work [9] uses 
detailed path tracing of a subset of network traffic, combined 
with a modicum of active probe traffic, to debug where pack-
ets are dropped in the network and why. We argue that, for the 
highly regular topologies used by current datacenter networks, it 
should be possible to determine path information for all traffic. 
Luckily, common datacenter topologies are particularly ame-
nable to providing this functionality.

Getting Path Information Scalably
Facebook’s datacenters consist of thousands of hosts and hun-
dreds of switches grouped into a multi-rooted, multi-level tree 
topology [2]. Figure 1 describes a simplified view of this topology, 
focusing on one of the several identical “pods” in the network. 
Each pod consists of several tens of Top-of-Rack (ToR) switches, 
each responsible for a few tens of servers. Each pod also contains 
four aggregation switches (Aggs) that enable inter-rack commu-
nication; every ToR connects to every Agg in the pod. Pods are 
in turn interconnected by a layer of core switches; each Agg is 
connected to a disjoint subset of core switches. 

The network uses equal-cost multipath (ECMP) routing. When 
a host communicates with a host in another rack, a hash func-
tion at the ToR switch determines which ToR-to-Agg uplink the 
packets traverse based on fields such as source and destination 
IP addresses and network ports. Similarly, when a host com-
municates with a host in another pod, a hash function at the Agg 
switch determines which Agg-to-Core uplink is used. 

For cross-pod traffic, once a packet reaches the core layer, 
there is only one path leading to the destination server. Thus, 
if we know the start and end point of a packet (from the source 
and destination IP address) and the core switch it transits, the 
receiving host can learn the entire path traversed. Thus, we 
assign an ID to each core switch and install a rule on the core 
switch instructing it to stamp every packet it forwards with this 
ID (see Figure 2).

Pinpointing a Fault to a Link
Once we have full path information, we could theoretically 
associate packet loss with a particular network path. However, 
this doesn’t tell us which link along the path is responsible. An 
observation about the traffic engineering employed at Facebook 
aids us, however.

A significant amount of engineering effort has been targeted 
at calming hotspots at the application level to ensure that no 
particular server is overloaded by requests [4]. Specifically, for a 
front-end datacenter containing Web and cache servers (which 

cache user data stored by back-end databases), every Web server 
spreads its requests for user data across all the cache servers 
in the datacenter. Furthermore, these requests are individually 
quite small and evenly spread, but in aggregate constitute the 
bulk of traffic within the network. This application-level load 
balancing is in addition to normal network load balancing tech-
niques like ECMP routing.

Consequently, if we look at a level of the multirooted tree topol-
ogy (for example, every Agg to Core link in a pod, or every ToR 
to Agg link in a pod), every link in the group we examine has a 
very even load—both in terms of number of flows and number of 
bytes handled—on short timescales of just a few seconds. The 
aggregate performance of the flows for any given link is similar 
to that of the flows of any other link within the set—we call it an 
“equivalence set” of links.

On the flip side, if one of the links is faulty, it sticks out like a 
sore thumb—the aggregate flow performance diverges  compared 

Figure 1: Facebook datacenter topology

Figure 2: Determining flow network path
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to the other links in the set. Thus, if we pick a metric that is 
correlated with packet loss—for example, TCP retransmits or 
congestion window—we can compare the distributions of the 
metric across links and perform outlier analysis to pinpoint the 
faulty link. Figure 3 depicts the distributions for TCP congestion 
window for each ToR to Agg uplink traversed by traffic destined 
for a single cache server, where link 1 (out of four total) has a 
0.5% induced packet loss rate; note the significant skew to lower 
values present for the distribution corresponding to that link.

Outlier Analysis
While it is visually apparent that the distributions of perfor-
mance metrics across links are impacted by the presence of a 
fault, we need a way to automate the process of using this infor-
mation to generate a verdict for every combination of (host, link) 
to determine whether the link is faulty or not. Fundamentally, 
the question we are asking is: does a particular link have more 
retransmits (or say, smaller flow congestion windows) than the 
others? If so, maybe there is a fault at that link!

To answer this question, we use the Student’s t-test. The t-test 
determines whether a given distribution has a mean that is 
higher than another distribution. It is amenable to efficient 
streaming computation (a prototype implementation of our 
system uses approximately 0.5% of CPU on a production Web 
server) and runs on every host, with each host examining its own 
traffic. Note, however, that this raises the chance of false posi-
tives, where a link might temporarily have worse performance 
distributions, possibly due to effects like transient congestion. 
Given a large number of hosts, it is certain that some subset of 
them will incorrectly flag a link as faulty. We have to account for 
these false positives.

The observation we leverage is that false positives, in the 
absence of an actual fault, ought to be evenly distributed among 
links due to the high degree of load balancing. Thus, we aim to 
filter out the false positives by asking the question: are links 
being claimed as faulty roughly evenly, or is there a particular 
link (or group of links) that is (are) being accused more than the 
others? For that we use the chi-squared test, which is used to 
determine whether the frequency distribution of a set of events 
matches some theoretical distribution. The chi-squared test 
sees whether the claims that a link is faulty is evenly spread 
among all the links considered, or if a particular subset of links 
have a significantly higher percentage of hosts claiming fault. It 
outputs a p-value ranging from 0 to 1. If the outputted p-value is 
“close” to 0 (a common cutoff is 0.05), then the link with the most 
“faulty verdicts” is considered to actually be faulty. In the case 
of multiple errors, that link can be removed from the set consid-
ered, and the chi-squared test can be run again.

Putting It All Together
We combine the functional components described thus far into 
an always-active fault detection system. Our system involves 
functional components at all servers, a subset of switches, and 
a centralized aggregator, depicted step-by-step in Figure 4. 
Switches mark packets (1) to indicate network path as described 
before. Hosts then independently compare the performance of 
their own flows to generate a host-local decision (a “verdict”) 
about the health of all network components (2), performing out-
lier analysis using the Student’s t-test on metrics such as TCP 
retransmits. Specifically, every host will output a verdict for the 
ToR-to-Agg and Agg-to-Core links in its own pod once every 
10 seconds. These verdicts are sent (3) to a central aggrega-
tor, which filters false positives to arrive at a final set of faulty 
components using the chi-squared test (4), aggregating data 
and outputting a result once every 10 seconds (configurable to 
increase sensitivity as a tradeoff to reaction time) as well. We do 
not consider host-to-ToR uplinks in this system. 

Detecting Faults
To validate our approach, we deployed a prototype of our fault 
detection system inside a production Facebook front-end data-
center serving user Web traffic. For the sake of reproducible 
experiments, we primarily focus on injected synthetic failures, 
which we describe momentarily. We also discuss experience 
gained in tracking down naturally occurring partial faults.

Induced Faults
Within one of Facebook’s datacenters, we instrumented 86 Web 
servers spread across three racks with the monitoring infra-
structure described previously. Path markings are provided 
by a single Agg switch, which sets DSCP bits based on the core 
switch from which the packet arrived. To inject faults, we use 

Figure 3: TCP congestion window distribution per ToR uplink for cache 
server. The ToR to aggregation switch 1 link has 0.5% randomized packet 
loss, which has shifted the distribution towards smaller values.
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iptable rules installed at hosts to selectively drop inbound pack-
ets that traversed specific links (according to DSCP markings). 
For example, we can configure a host to drop 0.5% of all inbound 
packets that transited a particular core-to-Agg link.

First, for a single faulty core-to-Agg link, we depict the per-
centage of hosts that flag the faulty link as having an error as 
a function of the packet loss rate over consecutive 10-second 
intervals in Figure 5. For drop rates at 0.5% and higher, close to 
all of the hosts flag the link as faulty. For drop rates below 0.5%, 
we observe a linear drop off in the percentage of hosts that catch 
the fault.

Recall the aggregator, which gives us the overall verdict on 
per-link health, looks for a non-trivial difference in the number 
of hosts that claim that a link is faulty before marking it faulty. 
Thus, over a 10-second interval, it might not decide that the 
fraction of hosts marking a link as faulty is significant for the 
smaller magnitude errors. Note, however, that since a fault is 
likely to persist for longer periods of times, we can simply run the 
aggregator for longer to catch an error. Instead of processing N 
verdicts over 10 seconds, we could aggregate and operate on 3N 
verdicts over 30 seconds. We find that this allows us to reliably 
catch the smaller magnitude errors as well, without inducing 
false positives in the no-error case.

Figure 6 depicts the amount of time needed by the aggregator to 
catch errors ranging from 0.25% packet loss down to 0.1%. Recall 
that a chi-squared test outputs a p-value, where if the p-value is 
“close” to 0 (we arbitrarily use 0.05 as our cutoff for “close”) it 
means that the link with the most faulty verdicts from the hosts 
is likely to, in fact, be faulty. Thus, we depict the p5, p50, and p95 
for the p-values outputted by the aggregator for each packet loss 
rate. We see that a 20-second interval will reliably catch a 0.25% 
error—in other words, the aggregator almost always outputs 
a p-value of less than 0.05. However, a 0.15% packet loss rate 
requires 40 seconds, and we receive an intermittent signal for a 
0.1% error—at least some portion of the time the aggregator will 
find no fault.

Naturally Occurring Faults
To determine whether our system can successfully detect and 
localize network anomalies in the wild, we deployed our system 
on 30 Web servers for a two-week period in early 2017 without 
inducing any synthetic errors. On January 25, 2017, the soft-
ware agent managing a single switch linecard that our system 
was monitoring failed. The failure had no immediate impact on 
traffic, since the existing switch rule set installed by the agent 
remained in effect. Roughly a minute later, however, as the BGP 
peerings between the linecard and its neighbors began to time 
out, traffic was preemptively routed away from the impacted 
linecard.

Figure 4: High-level system overview (single pod depicted)

Figure 5: Single fault loss rate sensitivity

Figure 6: Controller interval required to find single fault vs. packet loss rate
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Our system observed that as traffic was routed away from the 
failed linecard, the distributions of TCP’s congestion window 
and slow start threshold metrics for the traffic remaining on the 
faulty linecard’s links rapidly diverged from those associated 
with non-faulty linecards (Figure 7). The deviations are imme-
diate and significant, with the mean congestion window for the 
faulty linecard dropping over 10% in the first interval after the 
majority of traffic is routed away, and continually diverging from 
the working links thereafter. Furthermore, the volume of mea-
sured flows at each host traversing the afflicted linecard rapidly 
drops from O(1000s) to O(10s) per link.

By contrast, one of Facebook’s monitoring systems, NetNORAD 
[1], took several minutes to detect the unresponsive linecard con-
trol plane and raise an alert. It is important to note that in this 
case, we did not catch the underlying software fault ourselves; 
that honor goes to BGP timeouts. However, we do observe a sud-
den shift in TCP statistics in real time as traffic is routed away, 
as our system was designed to do. Thus, this anecdote shows that 
our system can complement existing fault-detection systems 
and provide rapid notification of significant changes in network 
conditions on a per-link or per-device basis. 

Caveats
A couple of caveats apply to this methodology. First, it is con-
ceivable that for more complicated topologies, a single stamp on 
a packet might not be enough to uniquely resolve the path. Prior 
work [6] has explored marking multiple packets with partial 
path information, such that the overall network path can be 
recovered by examining enough packets. We leverage a similar 
technique to generalize our packet-stamping mechanism. Sup-
pose there is a maximum of H hops in the network between any 
pair of communicating servers. We provide every switch an ID 
instead of a select few. Suppose a flow has H or more packets. 

The first packet can be marked by the sender with some bits that 
instruct the first switch in the path to stamp the packet only—for 
example, we might use the IP TTL field to arrange this. The sec-
ond can be marked so the second switch in the path marks it, and 
so on until we send H packets to recover the full path.

Second, when it comes to applying per-switch stamps, we need 
to choose where in the packet we apply it. Our prototype stamps 
the packet DSCP field, but this is limited since it is only 6-bits 
wide and frequently has other uses—typically for choosing 
switch-queueing policies. A solution that could scale to much 
larger networks would be to write to the IPv6 flow label field 
in the packet header, which is 20-bits wide. We are necessarily 
limited to what switch ASICs support, though the capabilities of 
switch ASICs have been progressively improving.

Future Directions
While our existing prototype has leveraged some favorable 
characteristics of the Facebook datacenter environment—most 
notably, the heavily load balanced traffic distribution—we are 
optimistic that our approach can generalize to datacenters with 
different and more variable application traffic patterns, such as 
Hadoop cluster workloads. Additionally, we hope that our find-
ings incentivize router manufacturers to provide more options to 
allow packet header manipulation, perhaps through mechanisms 
such as P4 [3].

Figure 7: Mean cwnd per (host, link) during linecard fault
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Monitoring under the Microscope

L U C I A N  C A R A T A ,  O L I V E R  R .  A .  C H I C K ,  A N D  R I P D U M A N  S O H A N

Typically, monitoring systems record system-wide and application-
level metrics separately, with significant time and expertise being 
invested in understanding how one affects the other when diagnos-

ing complex issues. Resourceful, our open source project, bridges the gap 
between the two by allowing applications to record the system-level metric 
changes caused by each of their actions. For example, a Web server could 
record “the time spent in the TCP stack for servicing a request.” We discuss 
the ideas that support this approach and provide a number of use cases show-
ing how they can be useful in the real world.

The Usual Suspects
“Why is it slow?” (with the dreaded variant, “Why is it sometimes slow?”) is a question that 
sysadmins have been asking ever since computer systems grew complex enough to run soft-
ware. In response, common wisdom suggests deploying monitoring solutions such as Nagios 
and Munin to understand the status and evolution of production systems. More recently, 
open-source tools such as Prometheus, Heka, and Bosun have become popular by introducing 
ideas on tracking multi-dimensional time series that were battle-tested in companies with 
large computing infrastructures [6, 7]. They provide APIs with which software engineers 
can instrument their code to expose metrics for the monitoring system. The data ends up in 
customizable dashboards where it can be queried, used for alerts, or archived.

While there have been significant improvements in the number of available tools and low-
overhead introspection mechanisms (perf, SystemTap [5], DTrace [1], eBPF), easily tying 
together the resources used and code paths touched inside the kernel while an application 
performs arbitrarily defined activities (such as executing a db query and sending back a 
response) remains a challenge, one which Resourceful (rscfl) sets up to solve. This is not 
about “fixing everything without waking sysadmins up,” but exploring new design points and 
tradeoffs in the monitoring/debugging space that will make your life easier.

Key to this is programmability: we should start using tools that provide their results in ways 
that can be naturally consumed, either by dashboards, complex analysis tools, or by applica-
tions themselves, while placing everything they measure in context: in the context of what 
other applications/VMs are doing, competing workloads, and lack of perfect isolation. No 
metric should be recorded without tracking the circumstances and effect it has on other metrics 
within the same time period.

While at first sight simple, those initial ideas have led us to some less obvious design and 
implementation choices. By open-sourcing Resourceful, we hope both to start a wider dis-
cussion and to show the ability of solving some difficult real-world problems.

Resourceful: The Ideas
At its core, Resourceful allows applications to express interest in the measurement of fine-
grained kernel-side metrics in order to understand the side effects of userspace actions when 
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interacting with the OS: Where was most of the time spent? Was 
their execution interrupted by the scheduler, and for how long? 
How did the statistics of the TCP stack (retransmits, bytes sent) 
change during this time? This takes an application-centric view, 
like a monitoring API would, but the measurements are about 
the OS and its resource sharing and multiplexing.

Exposing this data in a monitoring context allows gaining 
insights about real-time application behavior. Consider the case 
of a simple Web server: how would you track per-request page 
cache misses, time spent in the TCP stack, time spent doing I/O, 
or interactions with the servicing of other requests?

Measurements in Context
One of the significant differences between OS-level debugging 
tools and application-monitoring frameworks is the amount 
of detail they have about the running application: a monitor-
ing framework may collect custom metrics specific to the 
application such as “number of client transactions per second,” 
“time taken to run database queries fetching the front page,” or 
“number of 404 errors per minute.” This data may be collected 
together with per-system global metrics such as “TCP traffic,” 
“I/O wait times,” and “CPU load” and be displayed on the same 
dashboard for at-a-glance sanity checking.

However, once problems appear, it becomes somebody’s (hope-
fully, somebody else’s) task to figure out how things went wrong. 
How useful are dashboards in figuring out the problem? If 
“system-wide I/O wait times have increased while the number of 
transactions per second have dropped,” do we have a better idea 
on where to look for what’s causing the issue? Likely so, but only 
with enough experience and intuition about where the problem 
might be. That or a lot of trial-and-error. This is the stuff sysad-
min “war stories” are made of.

We propose that it would be helpful to bridge the gap between 
application-specific and system-wide metrics. What if you 
could collect changes to system-wide metrics in the context of 
an application-specific one? What if you could have a metric of 
“I/O wait times for each request”? This is what rscfl is imple-
menting through its API: applications declare the boundaries of 
interesting actions (“the request”) and “announce” when they 
switch from one action to another, while an rscfl kernel mod-
ule measures their kernel side effects. This can also be framed 
as a way of understanding what system resources are used by 
application-specific actions.

Integration as a Monitoring Solution
Although closer in implementation and low-level mechanisms 
to existing tracing tools, rscfl integrates with applications as 
a monitoring system would: it provides an API for collection 
of fine-grained metrics and allows applications to instrument 
code paths implementing a high-level functionality or activity 

(i.e., a Web server declaring “this is code for processing a Web 
request”). The resulting data can be further exported to inher-
ently distributed monitoring systems such as Prometheus and 
be integrated in its larger monitoring infrastructure. Creating a 
root-cause diagnosis system like the one discussed by Ostrovski 
et al. [4] around this is definitely possible, and we have already 
built a prototype [8].

This position as the middle-man requires thought about pro-
grammability and efficiency: rscfl allows applications to access 
measurement results by sharing a region of memory between 
them and the kernel, giving direct access to results without 
extra copying or parsing of data. Do I hear you say, “That poses 
security issues”? We have looked at protecting the data as well: 
measurements are accessible as normal data structures within 
the application’s address space, but by default no other applica-
tions have access to it.

Targeting the Kernel
The point at which any application interacts with the world 
outside its own memory address space is through the OS kernel: 
whether it is performing I/O, being scheduled together with 
other applications, or dealing with hardware failure, the kernel 
is the one doing the management. Our experience has been 
that these kernel interactions are typically some of the hardest 
to understand: the kernel is usually part of the code base that 
developers and sysadmins would like to treat as a black box that 
“just works.” 

On the other hand, you might be forced to learn about details 
inside the box once an application is not behaving as expected, 
and you’re trying to find its bottlenecks. We propose solving this 
disconnect by explicitly exposing the notion of a kernel subsys-
tem when returning measurement data. It seems like the right 
level of abstraction to talk about the kernel from an application’s 
perspective: “It has spent this much time in the TCP subsys-
tem”; “The file was not cached, so reading from it used the block 
subsystem.”

In terms of actual measurements, the kernel remains the ideal 
place to understand the side effects of application actions: it is 
where resources (CPU, memory, disk) are being shared and time-
multiplexed among multiple processes. However, adding lots of 
instrumentation can be costly. In existing probing mechanisms, 
the time taken to execute some measurement also depends on 
the total number of probes that are active. This is why rscfl uses 
a new type of low-overhead probing, called a KAMprobe (Kernel 
Advanced Measurement probe). Its execution time only depends 
on the complexity of the code being run inside the probe, with 
no dependency on how many other probes are active. We’ve been 
running kernels with tens of thousands of active measurement 
points without a significant performance impact.
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Virtualization Awareness (Alpha)
Virtualization introduces new challenges in the picture, with 
multiple containers or VMs isolated to various degrees from 
each other on the same host, but introducing resource sharing 
(time, page cache, memory) that applications or OSes are not 
directly aware of. We have added hypervisor and containerized 
kernel support in Resourceful in order to be able to track those 
elements in the context of application actions: with this support, 
applications are aware (for example) of the time the VM was not 
scheduled in as part of the time added to the latency of particu-
lar actions. This introduces security considerations for cloud 
environments, but exploring this area for better understanding 
of workload co-location properties is very important.

Case Studies
Beyond the general configurable framework that allows anybody 
to extend Resourceful for tracking custom-defined kernel sub-
systems, we have investigated a number of use cases, generally 
connected to making our own systems research and problem 
troubleshooting easier. They are useful as examples of how the 
ideas presented above come together in a coherent manner.

Advanced Cache Monitoring
In a production system, caches are some of the key elements 
for maintaining good performance, yet keeping track of their 
behavior under complex workloads remains painful, with only 
coarse-grained summaries available at the OS-level. Collect-
ing fine-grained information is unpopular because nobody likes 
slow caches: any measurement performed on them is by defini-
tion on a hot code path, where every cycle spent counts.

What about measuring things in a test environment? That 
doesn’t often work since it’s impossible to know and replicate 
production cache behavior—especially for shared environments 
like the cloud. Thus, monitoring by getting periodic snapshots 
of metrics like hit/miss ratios and eviction rates is typically the 
only realistic option. Still, wouldn’t it be nice to be able to dig 
deeper and drive optimizations by having a map of what files 
were hit/missed in OS caches during different operations per-
formed by your application?

We thought the same and leveraged Resourceful’s low overhead 
probing mechanisms to define a PAGE_CACHE measurement 
subsystem. As the name implies, it tracks the OS-level page 
cache (normally used for file I/O,  mmap, or fs metadata). Devel-
opers can choose to monitor the full cache or restrict the parts of 
the cache that are tracked (not interested in mmaps? why pay the 
overhead?). On the application side, data collection for this sub-
system can be enabled through the API. When per-action aggre-
gations are needed, their boundaries will need to be marked by 
API calls as well (e.g., for a Web server, mark parts of the code 
servicing a request or switching between them). Table 1 shows a 
more detailed comparison with other available mechanisms.

The result allows an application to record per-file cache statis-
tics and give a better idea of when I/O latency degradation hap-
pens due to cache trashing. Knowing which files have incurred 
the most misses in the context of a particular action allows you 
to make informed compromises: does ensuring a particular file 
is cached make the code path you’re interested in faster?

We have used the same functionality to characterize slowdowns 
caused by workload transitioning from being fully served from 
the cache to requiring disk accesses. In such cases, bottlenecks 
can shift (e.g., network-bound operations becoming disk-bound) 
for just part of your application, making diagnosis hard.

We’re currently working to add visibility into evictors (who 
eliminated the cache entry that caused my process to miss?) and 
virtualized environments that hide shared caches (containers).

Hidden Work
The Linux kernel is able to run its own long-lived threads 
(kthreads) that are treated by the scheduler as any other process. 
They are used by the kernel to deal with long-running work (e.g., 
writing dirty page cache entries back to disk) or with work that 
cannot be completed immediately in regions where blocking is 
not allowed (such as interrupt service routines). In the latter 
case, the kernel provides a general mechanism that drivers can 
use to schedule delayed work: work queues.

However, work queues use a thread-pooling model where a 
number of long-lived kthreads wait for work to be enqueued from 
various subsystems and take on the execution of callback func-
tions doing the actual work as needed. Due to this multiplexing 
of work belonging to different kernel subsystems and drivers, 
and due to the inherent asynchronicity, it is quite challenging to 
get a high-level understanding of what work is being carried out 
by a given work queue/kthread at a given time and to deter-
mine what high-level userspace action might have required its 
triggering.

We have defined a custom rscfl subsystem named TRACK_
WORKQUEUE to help us in understanding why applications 
using an nvme device driver we extended were not achieving 
the expected throughput and latency figures. It has allowed us 
to monitor the creation and queuing of work inside kernel work 
queues as I/O requests from a benchmarking framework (fio) 
were issued.

This targeted investigation (monitoring the calls into the 
work-queue subsystem from within just a single application 
as opposed to system-wide) has allowed us to quickly deter-
mine that instead of using the inherent nvme parallelism, our 
modified driver was serializing block device requests through a 
single-threaded work queue. Having identified the bottleneck, it 
was an easy fix to increase the number of dedicated workers for 
that work queue, leading to significantly improved performance.
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Latency in Context
As a fully application-facing example, we have modified a non-
blocking Web server to use the rscfl API for tracking resources 
consumed while servicing each client request. The resulting 
data is both pushed into Prometheus as a time series and used 
by a monitoring dashboard in order to understand variations 
in latency on a per-request basis. We’ve called this “Latency 
Explorer,” a tool that dynamically allows us to compare high-
latency requests with low-latency ones and try to determine 
where the differences appear. This provides more visibility into 
one of the areas of high interest for understanding any high fan-
out architecture, where tail latency matters greatly [2].

In Figure 1, two views of the system are made available: a latency 
distribution and a per-request resource consumption breakdown 
based on Resourceful data. Each of the parallel axes in the bot-
tom graph identifies a consumed resource or metric specific to 
the application activity (here, responding to an HTTP request). 
A given request is thus represented on the graph as a line linking 
the corresponding measured values (the dashed line in Figure 1). 
An idea of visual analysis using this data is to allow the selection 
of different intervals in the latency histogram while coloring the 
corresponding requests differently in the resource consumption 
graph (Figure 2). Further filtering is available on each of the 
resource axes.

Using Resourceful
Until recently, Resourceful was developed at the University of 
Cambridge, and while we spoke openly about the tool, its imple-
mentation was considered too immature for release to the wider 
world. Realizing the buzz that Resourceful was building in aca-
demic circles, we have been hard at work for the past 18 months 
and are now in a position where we are open-sourcing Resource-
ful so it can be used to increase observability in production 
systems. Our project is available at github.com/lc525/rscfl, and 
we’re accepting both suggestions and contributions. If you have 
a monitoring problem where you believe the existing tooling is 
inadequate or might benefit from the ideas presented here, we 
would welcome your contributions.

Requirements
The core of Resourceful is a system that modifies your running 
kernel to insert instrumentation. In order to safely apply this 
instrumentation we require some capabilities that may not be 
accessible on some systems:

◆◆ Elevated access. Resourceful can be run on any Linux kernel 
without requiring a reboot or modification to the kernel as 
stored on disk. This is made possible by Resourceful scanning 
the running kernel, determining the parts of the running code 
that should be measured, and then applying itself to these 
regions. Doing that typically requires some form of elevated 
privileges. However, once rscfl is running it can be used by any 
application.

◆◆ Kernel debug symbols. Resourceful has an automated analy-
sis that determines boundaries in the kernel that should be 
measured. To enable us to perform this analysis, Resourceful 
requires access to the kernel’s debug symbols. In most Linux 
distributions these can be obtained as a separate package that 
does not modify the kernel that is running (i.e., the debug sym-
bols live in a separate file and do not affect the running kernel).

Installation
At present Resourceful must be built from Source, however we 
are considering packaging it for some distributions. We main-
tain and provide a full set of up-to-date instructions on running 
Resourceful on our GitHub page, but here we outline the sets 
required at the time of writing.

◆◆ Installation requires you have Git, Wget, and Python 2.7 in-
stalled. We expect these will be installed on most Linux boxes.

◆◆ Beyond that, it should be as simple as running make and make 

install.

Modifying Programs to Use Resourceful
Resourceful supplies a C/C++ API with which userspace 
programs specify where they start and stop processing a given 
activity. While this does mean that applications need to be 
modified in order to use Resourceful, the changes in practice are 
often trivial and can be added to commonly used remote proce-
dure call libraries in an elegant fashion. The context for mea-

Operation Selection Aggregation Metrics Breakdown

 rscfl • selective (on file read, write, mmap) 
• all

• per-app 
• per-app action  
(programmer defined)

• hit/miss ratio 
• eviction rate 
• dirty entries 
• cached size

• per-file 
• summary

OS non-selective (all) system-wide, per-cgroup summary

Tracing non-selective (all) system-wide, per-app custom summary

Table 1: Options offered by rscfl when monitoring caches, in comparison to default OS metrics and tracing mechanisms such as SystemTap, DTrace, or eBPF
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surements is being kept by communicating some opaque tags to 
the kernel. This is not unlike the strategy taken by other systems 
such as XTrace [3], but we are considering asynchronous behav-
ior in greater detail. When receiving a tag that is the same as one 
seen before, our kernel module knows that any metric changes 
should be accounted to the same activity, and it can perform the 
aggregation directly in kernel space.

The general steps for using the API would be as follows:

1. Initialize Resourceful in your program. This creates a Resource-
ful “handle,” which is much like a traditional file descriptor. It 
is passed to the other Resourceful functions and contains state 
about the innards of Resourceful.

rhdl_t rhdl = rscfl_init( ) ;

2. When your application starts a new activity (i.e., receives a user 
request), it can request a “token” for it and start accounting the 
resources it uses:

token_t token ;

rscfl_acct(rhdl, token, ACCT_START);

Figure 1: Latency Explorer, a visual analysis tool prototype 
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3. When the activity stops (i.e., the request has been sent), we can 
stop recording the resources used and read out the values:

rscfl_acct(rhdl, token, ACCT_STOP);

// Read the accounting information that we recorded.

rscfl_account_t rscfl_results;

rscfl_read_acct(rhdl, &rscfl_results);

rscfl_results is a structure from which you can read the kernel 
resources used in the processing of your request. This is a broken 
down per-kernel subsystem. For this example, we have measured 
a default list of performance measurement counters, however 
Resourceful also has APIs that can be used to measure spe-
cific resources. Resourceful also contains some magic higher-
order functions that let you perform advanced aggregation of 
resources used across many requests (map-fold-filter).

4. In modern systems, processing often takes place in asynchro-
nous event loops. This means the application activity might 
complete in stages. If this happens you can tell Resourceful to 
apply the resources used to a new activity by switching token:

rscfl_switch_token(rscfl_hdl, new_token);

The API also provides features for storing arbitrary application-
specific metrics together with the kernel-recorded measure-
ments, which is extremely useful when performing a detailed 
analysis.

Upcoming Features, Conclusion
Resourceful’s API is currently available for C and C++ only, but 
we hope to add wrappers for other popular languages soon. In 
particular, this presents a good opportunity for instrumenting 
runtimes that provide green threads. Those can be tricky to 
monitor at present, and by instrumenting at the runtime level we 
would also limit the amount of required changes to application 
code. Other planned features target the extension of our visibil-
ity into virtualized environments, and we already have promis-
ing research results in that area.

We’re not aiming to produce just another tool for debugging/
monitoring applications. Instead, we’re hoping to restart a dis-
cussion on what is needed to advance this area in ways that are 
helpful to practitioners. Download from github.com/lc525 
/rscfl and let us know what you think.

Figure 2: Latency Explorer, interactive filtering for comparing the latencies of requests selected in the Figure 1 histogram: tail latency (dotted) vs latencies 
between 95.6 and 140 ms (dashed). Each axis can be further filtered, and that in turn updates the histogram (how does the histogram of response times 
look for requests that spent a lot of time in the Networking layer?).
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Previous articles in the BeyondCorp series discuss aspects of the 
technical challenges we solved along the way [1–3]. Beyond its purely 
 technical features, the migration also had a human element: it was 

vital to keep our users constantly in mind throughout this process. Our goal 
was to keep the end user experience as seamless as possible. When things 
did go wrong, we wanted users to know exactly how to proceed and where to 
go for help. This article describes the experience of Google employees as they 
work within the BeyondCorp model, from onboarding new employees and 
setting up new devices, to what happens when users run into issues.

Enabling a Seamless New Hire Experience
For many new employees, the idea of a BeyondCorp model is quite foreign: they’re used to 
accessing the tools they need for their day-to-day work through VPNs, “corp wireless,” and 
other privileged environments. When we initially rolled out BeyondCorp, many new hires 
continued to request VPN access from our help desk team (internally known as Techstop). 
From past experiences, they assumed they needed to jump through a few IT hoops if they 
planned to work while away from the office. The architects of BeyondCorp mistakenly 
assumed that users would try to access internal resources while away from the office and 
notice that things “just worked”—no access requests from users and no support load for 
Techstop would be a win-win!—but old habits die hard.

New Hire Orientation
We clearly needed to reach users earlier in their IT journey at Google, so we began introduc-
ing BeyondCorp in new hire orientation. During orientation, we explicitly avoid explaining 
the technical aspects of the model and instead focus on the end user experience. We empha-
size that users don’t need VPNs and that they’re “automatically” granted remote access; they 
can work from the office, from their home, on a plane, or in a coffee shop without chang-
ing their workflows. During this short training, we show users the BeyondCorp Chrome 
extension—the most common user-facing expression of the BeyondCorp access model (for 
more details on the extension, see “The BeyondCorp Extension,” below)—and the icon that 
represents a “good” connection within BeyondCorp (see Figure 2). We explain that from a 
good connection, they can access the vast majority of the tools and resources they need from 
any network connection.

New Device Setup
When users log in to their corporate devices with their corporate credentials the first time, 
their access settings are automatically configured. To enable this seamless onboarding 
experience, inventory processes and platform management tools work behind the scenes to 
configure a new hire device for initial setup. As described in [1], we infer device trust based 
on a number of signals, some observed (last security scan, patch level, installed software, 
etc.) and some prescribed (assigned owner, VLAN, etc.). To handle this complexity, our 
inventory teams follow an automated provisioning process to ensure that new hire devices 
are correctly trusted at first login. Once the necessary user credentials are validated, 
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we automatically push our custom Chrome extension to the 
machine.

From the user’s perspective, as long as they see the green icon 
in the extension, they know they can access their corporate 
resources. By explaining the BeyondCorp Chrome extension in 
new hire training, we have virtually eliminated new hire confu-
sion and support requests relating to remote access.

VPN Reduction
Although new hires learn about BeyondCorp during orientation, 
their first few days at Google can be a somewhat overwhelming 
torrent of information. Because we don’t expect every person to 
recall every detail they learn that first day, we modified our VPN 
request processes and tools to emphasize the concepts intro-
duced in orientation. 

Since new hires aren’t given access to our VPN gateways by 
default, they must request VPN access through an online request 
portal. On this portal, we clearly remind users that BeyondCorp 
is automatically configured and that they should try to access 
the resources they need before requesting VPN access. 

As shown in the flowchart in Figure 1, if the user skips this 
warning, we also perform automated analysis on the services 
users access through the VPN tunnel. If a user hasn’t accessed 
a single corporate service not available within the Beyond-
Corp model within 45 days, we send them an email. The email 
explains that because all the corporate resources they’ve 
accessed are supported through BeyondCorp, their VPN access 
will expire in 30 days unless they access a service that isn’t 
supported by BeyondCorp. We send one more notification seven 
days before their VPN access expires, and then revoke permis-
sion to the VPN gateway at the end of the seventh day. This auto-
mated process allows us to proactively cull unnecessary usage of 
legacy access infrastructure, and will eventually allow us to turn 
down our VPN infrastructure entirely.

Loaners
As a side benefit of the automatic configuration implemented for 
BeyondCorp, we’ve also improved other technology experiences 
for our users. One of the most visible improvements is our loaner 
laptop program. Like many modern companies, our employ-
ees are quite mobile and freely work from their desks, meeting 
rooms, lounges, or their homes. Mobile devices—specifically, lap-
tops—are incredibly vital to their productivity. To handle cases 
of forgotten, misplaced, or stolen laptops, we have a self-service 
loaner laptop program that gets users up and running again as 
soon as possible.

Using custom-built Chromebook loaner stations deployed 
around the world, any user can temporarily assign a loaner 
laptop to themselves for a period of up to five days. Users benefit 
from the ability to simply pick up a laptop and get back to work 
within a matter of minutes. Techstop benefits from fewer 
requests for loaners, which frees up their time to work on other 
issues. When the user returns the device or the loaner period 
expires, the system automatically revokes the certificate and 
demotes the device’s trust, leaving it ready for the next user to 
reinitiate the loaner process.

The BeyondCorp Extension
By more or less eliminating the need for a VPN client, we can 
encapsulate almost all access needs—whether remote or onsite—
through one entry point, the BeyondCorp Chrome extension. The 
extension automatically manages a user’s Proxy Auto-Config 
(PAC) files that explicitly route special cases through the Access 
Proxy [2]. When a user connects to a network, the extension 
automatically downloads the most current PAC file and displays 
the good connection icon. Rules in the PAC file automatically 
route requests to corporate services through the Access Proxy. 
This allows our internal developers to deploy internal corporate 
Web services without explicitly configuring client access: they 

Figure 1: Automated analysis and revocation of employee VPN usage
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deploy a service that will have a CNAME DNS entry in the public 
address space that resolves to the Access Proxy. The Access 
Proxy then automatically handles the user authentication and 
authorization.

Since the BeyondCorp extension routes all traffic through our 
Access Proxy, users can’t communicate with devices that the 
Access Proxy can’t reach. Additionally, the extension must be 
able to download a correct PAC file in order to route their traffic 
appropriately. This setup causes issues with common technolo-
gies like captive portals or when users need to communicate 
with devices on private local networks without routing through 
the Access Proxy. We needed a way to explain these scenarios 
and remediation steps to users, ideally without increasing load 
on Techstop. The Chrome extension’s authentication state icons 
(shown in Figure 2) provide a gateway to further troubleshooting 
information.

When Things Go Wrong
What happens when things break or users run into complicated 
corner cases? By acknowledging that users will run into prob-
lems, we can identify the most common scenarios and develop 
plans to resolve them as smoothly as possible. Empowering our 
users to understand the problem and self-remediate when pos-
sible is our constant overarching goal.

Issues That Can Be Self-Remediated

Captive Portals
Because we’re a global company with many traveling employees, 
users commonly encounter captive portals when working from 
airports, hotels, and coffee shops. These portals are usually 
implemented on the default gateway of a private network. When 
a user connects to this network, the BeyondCorp Chrome exten-
sion attempts to download the PAC file, but the captive portal 
prevents a successful download. 

To resolve this issue, whenever the extension detects a network 
state change, we determine whether the device is behind a cap-
tive portal: we simply attempt to retrieve the Web page at http:// 
clients3.google.com/generate_204, which is an empty page that 

always returns an HTTP 204. If we receive anything other than 
an HTTP 204 (most commonly, an HTTP 302), we assume that 
the device is connected to a captive portal. We then fall back to a 
predefined PAC file that we store within the extension itself and 
alert the user. 

Users confronted with a captive portal can click on the Chrome 
extension icon, where we let them know that this issue is com-
mon when trying to authenticate to networks at airports or 
hotels. BeyondCorp is working as intended, and they just need to 
change the BeyondCorp setting to Off: Direct. Users can then 
complete the authentication through the captive portal, at which 
point the extension can successfully download the latest PAC 
file. This simple flow allows users to completely self-remediate 
with minimal downtime and no support load on our Techstop.

Local Network Devices
Users also frequently attempt to access devices on private 
address spaces. Many Google employees use their corporate 
laptops for tasks like configuring personal printers or other 
networking equipment. However, since we route all connections 
through the Access Proxy, access fails when the BeyondCorp 
extension is enabled. Similar to the captive portal use case, the 
solution is to change the BeyondCorp setting to Off: Direct. 
Unlike the previous case, we can’t easily detect this failure state. 
Typically, users in this scenario have an active and functioning 
Internet connection. From the extension’s point of view, every-
thing is working normally and the user can access all corporate 
resources, so there is no reason to raise an alert. 

To figure out how to effectively interface with users in this 
situation, we worked through a representative user journey: an 
engineer takes their corporate laptop home and wants to use it to 
change a setting on their home printer, which they connect to via 
its IP address. The user connects to their home network, and the 
BeyondCorp extension connects successfully, downloads the lat-
est PAC file, and configures the browser’s proxy. When the user 
enters the printer’s IP address in a new browser tab, the request 
is sent to our Access Proxy along with all other private address 
space traffic. The routing request fails and the user gets an error. 

Figure 2: Icons in Chrome extension that indicate authentication state 

http://clients3.google.com/generate_204
http://clients3.google.com/generate_204
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We came up with a solution to this user journey by focusing on 
the end result: an error page from the Access Proxy. We cre-
ated a custom HTTP 502 error message to insert into our error 
pages when certain conditions are met—specifically, whenever 
we return an HTTP 502 and the user was attempting to reach 
an RFC1918 or RFC6598 address. The error message explains 
to the user that if they were trying to access a local network 
device such as a home router or printer (the two most common 
cases we found), they need to switch the BeyondCorp extension 
to Off: Direct. In this way, we were able to use already existing 
infrastructure and processes to allow users to self-remediate the 
issue. 

Custom Proxy Settings
Our employees sometimes need to set custom proxies to test ads 
in foreign countries. If a user installs multiple extensions that 
each try to set the proxy, the extensions collide with each other, 
which can confuse users and break their access to corporate 
resources. 

We approached this use case with two solutions. First, we inte-
grated foreign country proxy settings directly into the Beyond-
Corp extension. When users have a business need to egress from 
a specific location, they can select that location from a dropdown 
of supported countries directly within the extension. This 
provides our users a single extension that manages their most 
common business proxy needs.

Additionally, when a user has a valid need to run a secondary 
proxy management extension, their BeyondCorp icon switches 
from green to red. We then give them an option to change their 
state to Off: System Alternative and explain when they want 
to use this setting. Again, this process allows the user to self-
remediate, increasing their productivity and reducing queries to 
our support teams.

Explaining Complicated Failures: The Portal
For simple cases, like those described above, we could empower 
users to self-remediate using quick customizations to our error 
pages or the Chrome extension. However, in cases of legitimate 
denials of access, we knew that users and support teams would 
want or need to know why they were denied. The complex, multi-
layered ACL logic in our back-end infrastructure can make 
understanding the logic behind a specific decision difficult for 
users and support teams alike. It might take even a seasoned 
SRE multiple minutes of querying many internal services to 
identify the cause of a single 403 error page. Given the volume 
of 403 error pages served by our Access Proxy daily (~12M for 
HTTP/S alone), human involvement in troubleshooting is uns-
calable and impractical. 

To facilitate diagnosing and troubleshooting more complicated 
BeyondCorp access issues, we designed a single portal to assist 
both users and support teams. Instead of just telling a user that 
they were denied access to a resource with a generic error code, 
we explain why they were denied and how to resolve the issue. 
The portal is standalone, rather than integrated directly in the 
Access Proxy, because it uses more granular ACLs that depend 
upon the end user’s current trust level. Since the Access Proxy 
is available publicly by design, we wanted to limit the amount of 
knowledge an attacker can gain from the 403 error pages. 

Architecture
The portal is roughly split into a front end and a back end, with 
an API that communicates between the two.

◆◆ The front end is an interactive Web service. It issues requests 
against the back-end API based upon input from the user. 

◆◆ The back end can query multiple infrastructure services in-
volved in access decisions. It deliberately omits various caching 
layers so users receive fresh information. 

◆◆ The API between the front end and back end is also exposed for 
other uses, like batch processing and analysis, or embedding 
the output in other tools.

Explanation Engine
Beyond querying and surfacing ACLs, the portal also needs to 
present this information to users in a useful way. We built an 
explanation engine to provide troubleshooting details in response 
to parameters of deny requests. It operates by recursively travers-
ing a tree of subsystems that provide authorization decisions. 

For example, the Access Proxy ACL might require a device to be 
fully trusted in order to access a particular URL. Upon retriev-
ing this ACL, the engine contacts our device inference pipeline 
to retrieve the conditions necessary to access the corporate 
resource. We then propagate this information to our front end 
and translate it into plain language, so the user can visit the 
portal to find out what’s wrong with their current state and how 
to fix the problem.

ACLing the ACLs
While the explanation engine provides users with helpful 
information, the data it exposes can be sensitive. It reveals the 
problematic ACLs of protected systems and discloses informa-
tion about the state of the user’s account and device—all useful 
information for potential attackers. Defining the ACL for this 
data is a tricky process, as we need to balance tool usability 
against the need to protect sensitive information. 

Depending on the user and device requesting troubleshooting 
information, we can replace sensitive nodes in the output with 



42   FA L L 20 17  VO L .  42 ,  N O.  3  www.usenix.org

SECURITY
BeyondCorp 5: The User Experience

less specific variants. In extreme cases, we replace a node with 
instructions to contact our Techstop. In such cases, our Tech-
stop and SREs can help users without disclosing sensitive infor-
mation by verifying the user’s identity and viewing the relevant 
information on their behalf.

Access Deny Landing Page
Once we developed the portal, we exposed it to users by integrat-
ing it into our Access Proxy error messages. When a user hits an 
HTTP 403 error, they see a button routing them to the portal, 
where we’ve automatically forwarded all relevant error details 
(see Figure 3). The portal then replays the access request against 
the back end and explains exactly what caused the issue. 

For example, if a resource requires membership in a specific 
group, the portal provides the group name and a handy link to 
our group management system so the user can request access. 
Behind the scenes, the portal queries our back-end ACL services 
to determine the authorization requirements of the resource 
in question, and compares that information against the user’s 
group memberships. The front end then converts the result of 
that comparison into a human-understandable statement (see 
Figure 4). This all happens in a matter of seconds, far faster  
than it would take the user to puzzle through group membership 
issues or reach out for assistance.

Integrating this flow directly into our error messaging allows 
users to complete this process seamlessly and—most impor-
tantly—completely via self-service.

Ad Hoc Troubleshooting
Although we expect most users to access the portal through an 
error page, we also provide a direct page for more ad hoc trouble-
shooting. This landing page on our portal front end is custom-
ized according to the identity of the user and device accessing it. 
It presents information about the user and all their devices, and 
highlights issues that can potentially result in denial of access. 
By allowing end users to proactively visit this tool to get a global 
view of all of their devices and potential future access issues, we 
equip them to remedy issues with any of their devices in one fell 
swoop. This feature is particularly handy for checking device 
trust before a trip or demo.

Empowering Support
This front end also empowers our Techstop team to perform 
detailed troubleshooting quickly by providing immediately 
actionable steps, which dramatically reduce time to resolution. 
For example, to explain a 403 error page, techs can use the portal 
landing page to query for a specific username or device identi-
fier. They can drill down into a specific device to determine 
whether it’s a fully trusted corporate device. If it’s not, we pres-
ent the exact reasons why the device is not trusted and how the 
tech can resolve the issue (see Figure 5).

Future Goals
Beyond its current functionality, the portal also presents 
avenues for further automation. In the future, we plan to con-
tinuously run checks for potential denial of access issues. We’ll 
notify users of any impending issues they can resolve on their 
own before those issues manifest in a detrimental way. Similarly, 
we’ll identify critical issues that can’t be self-remediated and 
automatically notify our Techstop with remediation steps. We 
also hope to expand the range of issues we can solve automati-
cally without human intervention.

Figure 3: An error page displayed when BeyondCorp blocks a request

Figure 4: Employee-facing guidance on troubleshooting an access denied 
error

Figure 5: Service desk-facing guidance on troubleshooting an access 
denied error
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Focus on the Experience
Although the migration to BeyondCorp was challenging on 
multiple technical fronts, it allowed us the freedom to reevalu-
ate our primary user support experience. By focusing on our 
users during and after the migration, we could deeply integrate 
processes and features that allow them to navigate the complex 
network model with ease. We designed our tools so that the user-
facing components are clear and easy to use. These interfaces 
were purpose-built to allow self-remediation whenever possible, 
freeing up both user time and support channels. When users do 
need extra help, we provide tools and information to make our 
Techstop maximally productive.

For the vast majority of users, BeyondCorp is completely invis-
ible. While Google employees worry about their own workflows, 
the model takes care of any and all access logistics. When users 
do have issues, we step in quickly and efficiently, giving them 
just the right information at just the right time to get them up 
and running again. Then we step back behind the scenes and let 
them focus on what they do best.
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Safe Parsers in Rust
Changing the World Step by Step

G E O F F R O Y  C O U P R I E  A N D  P I E R R E  C H I F F L I E R

Parsers are critical parts of applications, exposed to potentially mali-
cious data but also plagued by the same bugs over a period of years, 
like memory-related problems. Solutions exist but are often not 

adopted: many of them require rewriting entire software packages. We 
describe how to leverage Rust’s safety features and close integration with C, 
the strength of the nom [1] parser combinators library, along with a thorough 
methodology [2] to make existing software much more secure by rewrit-
ing critical parts. By surgically replacing functions, we intend to initiate a 
change towards robust and memory-safe parsers.

A large part of our infrastructure is built on a sand castle. We have been reusing the same 
code for decades, the same libraries written in the ’90s, the same applications, the same oper-
ating systems. We tried, and are still trying, to maintain them, patching bit by bit, mostly in 
reaction to published vulnerabilities, sometimes as a proactive effort. But all that old code is 
slowing us down.

And if that was not enough, to connect those pieces of code to each other, we have pages and 
pages of unclear, ambiguous specifications for file formats and network protocols. How can 
you be sure your implementation is correct when some remove features, some add features, 
others implement them incorrectly, and there are parts that are completely open to interpre-
tation. Let’s also mention that incorrect files generated by one broken application often end 
up supported by  everyone else.

Additionally, most of that software has been written in C (sometimes still written in K&R) 
and involves unsafe practices and insufficient testing.

One could say it is a miracle that all of this has worked this long, but there is no luck in that. It 
is the result of incremental work of thousands of developers patiently fixing bugs, and system 
administrators monitoring failing services. But we are losing the race now.

Attackers only get better: what was previously difficult gets simpler, and the tools only get 
smarter. More vulnerabilities are published every day, while we keep the same old code and 
the same development practices.

We Cannot Rewrite Everything
Whatever the quality of all that code, we cannot replace it. Software gets reused over and 
over, with each generation of developers building upon what the previous one built. There’s 
much more churn in hardware than software: hardware gets replaced, software stays. We 
can write new software with better solutions, but it would not fix the millions of devices 
currently in place, or the billions of applications actually running. Our only option is to 
strengthen the sand castle bit by bit until it can weather the storm.
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How can we achieve that? Even rewriting application by applica-
tion or library by library is a Sisyphean task. Most of those proj-
ects are written in C, containing 10k to 10m lines of code. Large 
parts of that are unmaintained, but there’s also a huge domain 
knowledge embedded in the code. Thousands of bug fixes, 
improvements, and experimentations with the specifications 
were done over the years. And the developers themselves carry 
most of this knowledge. Rewriting a project completely means 
losing that knowledge and hitting most of those bugs the old 
project solved. In addition, rewriting the project entirely creates 
political issues and requires teaching the new ways to develop-
ers, all while maintaining the old version. This is impossible to 
do in most cases.

Here is what we propose: there are specific parts of applications 
and libraries, weaker than the rest, that could be rewritten, 
while keeping all of the domain knowledge present in the rest of 
the code. Since file formats and protocols are the point of entry 
in most applications, we concentrate on the parsers and state 
machines, an often overlooked and vulnerable part of the code.

The LangSec approach is in changing the way we view software: 
we usually see our programs as some kind of engine or industrial 
machine that we set up and monitor but that, except for the occa-
sional button push, largely runs by itself. That vision is flawed: 
our computers, operating systems, and programs are designed to 
modify their behavior in complex ways depending on their input.

The data you feed to your code—be it network packets, files, sen-
sor data—drives your code, not the other way around. That spe-
cific bit at that specific address in the file determines whether 
your code goes into the if or the else of that specific branch. Your 
application is in fact a virtual machine, and its language is the 
input data. What can we do with this language? By modeling that 
input language correctly, or restricting it to a manageable subset, 
we can greatly reduce the attack surface of our applications in 
their most vulnerable elements.

If we replace the parsers and protocols in an existing application, 
we can better protect it from the attackers’ point of entry while 
keeping the most useful parts of the code running. To that end, 
we need languages and tools that can easily integrate themselves 
inside a C application.

Choosing the Tools
We decided to use Rust for various reasons: the language is 
designed to avoid memory vulnerabilities and development 
issues frequent in other languages. Rust does not use garbage 
collection; the compiler is smart enough to know when to 
allocate and deallocate memory. The compiler will complain 
if the code is unsafe. With this, the compiler can protect your 
code from common flaws like double free, use after free, adding 
bounds check to buffers, etc. Rust is even able to know which 

part of the code owns which part of the memory, and it warns 
you when your code manipulates data from multiple threads.

Rust has been available for years now (first stable release in May 
2015) and has been steadily improving. Because of the focus on 
the compiler, instead of fixing a memory safety issue in your 
code, you can improve the compiler so that nobody will ever get 
that issue again. Do not fix bugs, fix bug classes.

As you learn more Rust, you tend to rely more and more on the 
compiler to verify the code, instead of keeping track of dozens of 
pointers in your head, thus freeing you to think about the most 
valuable parts of the application.

Along with those features, Rust can work at the same level as C 
applications. There’s no runtime. There is no garbage collector 
(important in time-critical software). It can even work without 
an allocator. As an example, it can be used for embedded develop-
ment, from microcontrollers to larger CPUs. To that end, Rust 
code can easily import C functions and structures and use them 
natively, but the opposite works as well: you can expose func-
tions and structures to be used by C (or other language) applica-
tions. This is a crucial aspect of rewriting C code: sometimes, we 
have to expose and manipulate the exact same types the target 
application is using.

Writing parsers manually in Rust is not enough. We can still 
find bugs, although they are often less critical than the ones you 
would find in C applications [7]. Parsing software correctly is 
hard, and anybody can make mistakes.

So we use nom [1], a parser combinators library written in Rust. 
Parser combinators are an interesting way to handle data. You 
assemble small functions, like one that recognizes “hello,” or one 
that recognizes alphanumerical characters, and you combine 
them to make more complex parsers through the use of combina-
tors. There are combinators for lots of cases, like “terminated,” 
that would apply two parsers in a row, then return the result of 
the first if both are successful, or branching combinators that 
apply different parsers depending on the result of a first one.

Those parsers are always functions with the same signature, 
which means even complex parsers can be easily reused in other 
parsers. You end up writing a lot of small parsers, then you can 
test them separately, and reapply them in larger parsers as you 
see fit. An approach based on parsers generated from a gram-
mar, on the other hand, tends to lack flexibility and is harder to 
test. Such parsers are also quite restrictive in what you can allow 
from the format you are trying to pass. But since nom parsers 
are just functions, you can perform whatever complex, ambigu-
ous, dangerous tasks you need to, and as long as the interface is 
the same, you can plug that parser with other parsers. This is an 
important property, since most formats are badly designed and 
can require unsafe manipulations.
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The nom library leverages Rust features for performance and 
safety: since the compiler always knows which part of the code 
owns which part of the memory, and tracks references properly, 
nom can work on slices of the original data instead of copying 
bytes around. In most cases, the parser will only allocate on the 
stack and be zero-copy [3].

nom has been available for some time now and has been used 
extensively for various formats and protocols in production 
software.

Armed with a safe, low-level language, and a parser library, we 
can now start rewriting core parts of our infrastructure.

How to Replace Part of a C Application
Not all existing applications will easily support a rewrite of their 
parser. If that part of the code is highly coupled with the rest, it 
will be problematic. Thankfully, as said earlier, we do not need to 
rewrite everything. Find a restricted subset of the parser, isolate 
it, rewrite it, then expand to other parts of the application.

The key is in defining the interface correctly. Deterministic 
functions are the easiest to replace, and structures are usually 
the hardest, since multiple parts of the code might use directly 
internal members of that structure (accessors are not a com-
mon practice in C). But there are a lot of tricks one can use to 
help in the task. As an example, commenting out a member of a 
structure and launching a build can expose all of the uses of that 
member, which makes it easier to measure how much work is 
needed.

When performing a rewrite, you will often need to import C code 
and expose your Rust code to C. You can write the Rust defini-
tions and the C headers by hand, but Rust has tools to automate 
this. Rust-bindgen can import C structures and functions from 
C, and generate Rust bindings. While the generated code might 
be a bit complex at times, it is a great way to start a project and 
generate code that you can edit later. The opposite way works as 
well: you can employ rusty-cheddar to generate C headers.

The missing part for the integration is the linking phase: think 
of how you will link the Rust part to the C part. Do you make a 
static or dynamic library? Do you generate an object file that you 
feed to autotools? The Rust compiler can generate any of those, 
and they can then be handled by the build system, be it autotools 
and makefiles, CMake, scons, etc.

On the build-system side of things, Rust uses the cargo pack-
age manager to download libraries (called crates), build and 
link them, and publish new libraries and applications. That tool 
greatly increases the productivity of Rust developers. Unfor-
tunately, the package management part requires an Internet 
connection to download packages, which might not be an option 
(do you expect your makefile to make network calls?). Fortu-

nately, cargo is easy to extend with separate tooling. You can 
use cargo-vendor or cargo-local-registry to download crates in 
advance and store them in an archive somewhere. That way, you 
can freeze the dependency list of an application and make its 
compilation reproducible, while keeping a simple way to update 
dependencies when needed.

Start Integrating Some Rust
Once you have the build system set up, you can start actually 
writing Rust code. We would recommend that you develop the 
nom parser in a separate crate: that way, you can reuse it in other 
projects (Rust or other languages), and you can employ Rust’s 
unit testing and fuzzing facilities. Any fuzzing result can then be 
reused as a test case for your parser.

nom parsers work well on byte slices, a Rust type that contains 
a pointer and a length. You can easily transform any C buffer to 
this. They never modify their input, and they don’t even need to 
own it. This is important for integration in C applications: even 
if we know that Rust code could be stronger than the rest of the 
application, it is still a guest in someone else’s house. If possible, 
let the host code handle allocations, opening files, etc. This is a 
really good tip to apply, because libraries with reentrant, deter-
ministic functions without side effects are easy to integrate, and 
I/O is where most of the errors can happen. This is also a part that 
(hopefully) has been stabilized long ago in the host application.

The nom parser can return sub slices of the input without copy-
ing them and will guarantee that the data is within the bounds. 
In some cases, it does not even need to see the whole input. As 
an example, for media formats, you would read a block’s header, 
let nom decide which type of block it is, and the parser would tell 
you how many bytes of the block you need to send to the decoder.

Here is the code of the TLS 1.3 ServerHello structure definition 
and message parsing:

rust

pub struct TlsServerHelloV13Contents<’a> {

    pub version: u16,

    pub random: &’a[u8],

    pub cipher: u16,

    pub ext: Option<&’a[u8]>,

}

pub fn parse_tls_server_hello_tlsv13draft18(i:&[u8])

    -> IResult<&[u8],TlsMessageHandshake>

{

    do_parse!(i,

        hv:      be_u16 >>

        random:  take!(32) >>

        cipher:  be_u16 >>

        ext:     opt!(length_bytes!(be_u16)) >>

        (
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            TlsMessageHandshake::ServerHelloV13(

                 TlsServerHelloV13Contents::new(hv,random,cipher,

ext)

            )

        )

    )

}

This code generates a parser reading some simple fields, and an 
optional length-value field for the TLS extensions (not parsed in 
that example), and returns a structure. All error cases are prop-
erly handled, especially incomplete data.

One characteristic of TLS is that the parsing of messages is 
context-specific: the content of some messages cannot be 
decoded without having information about the previous mes-
sages. For example, the type of the Diffie-Hellman parameters, 
in the ServerKeyExchange message depends on the ciphersuite 
from the ServerHello message. Because of that, the context-
specific part is separated from the parsing. A state is used to 
store the variables, and a state machine is implemented to check 
that transitions are correct, and also to choose the next parsing 
function when needed.

The state machine is implemented using pattern matching on 
the previous state, and the parsed incoming message, to select 
the new state.

rust

match (old_state,msg) {

    // Server certificate

     (ClientHello,       &ServerHello(_))        => 

Ok(ServerHello),

     (ServerHello,       &Certificate(_))        => 

Ok(Certificate),

    // Server certificate, no client certificate requested

     (Certificate,       &ServerKeyExchange(_))  => 

Ok(ServerKeyExchange),

     (Certificate,       &CertificateStatus(_))  => 

Ok(CertificateSt),

     (CertificateSt,     &ServerKeyExchange(_))  => 

Ok(ServerKeyExchange),

     (ServerKeyExchange, &ServerDone(_))         => 

Ok(ServerHelloDone),

     (ServerHelloDone    , &ClientKeyExchange(_))  => 

Ok(ClientKeyExchange),

    // ...

    // All other transitions are considered invalid

    _ => Err(InvalidTransition),

In some cases, the next state depends not only on the message 
type but also on content. In that case, the packet content is also 
used in the pattern matching to select the new state.

Finally, the combinator features of nom are especially useful for 
protocols like TLS: TLS certificates are based on X.509, which 
uses the DER encoding format. This makes writing an indepen-
dent parser easier, as in the following code:

rust

use x509::parse_x509_certificate;

/// Read several certificates from the input buffer

/// and return them as a list.

pub fn parse_tls_certificate_list(i:&[u8])

    -> IResult<&[u8],Vec<X509Certificate>>

{

    many1!(i,parse_x509_certificate)

}

Parsing an X.509 certificate is done by combining the DER pars-
ing functions:

rust

pub fn x509_parser(i:&[u8]) -> IResult<&[u8],X509Certificate> {

    map!(i,

         parse_der_defined!(

             0x10,

             parse_tbs_certificate,

             parse_algorithm_identifier,

             parse_der_bitstring

         ),

         |(_hdr,o)| X509Certificate::new(o)

    )

}

Be wary of the high coupling that can appear between the parser 
and the rest of the code in some C applications. This is where 
most of the work can happen and is usually the result of years of 
hacks upon hacks to add a feature “quick and easy.”

We usually recommend that the parser has a clear interface with 
the rest of the code, in the form of a list of small, deterministic 
parsers and a reduced state machine above it: not a complete 
state machine intertwined with the parsing (as in this http 
parser [8]) since those are hard to debug and extend, nor a state 
machine informally implemented via calls from other parts of 
the code.

The state machine is the main interface for the rest of the code: 
you feed it data to parse, it decides which parser to apply depend-
ing on the current state, changes its state depending on the data 
that was parsed (if successful), then returns with info to drive 
the input consumption: how many bytes to consume (or how 
many more bytes are needed) or to stop consuming if there was 
an error. You can then query this state machine for the informa-
tion you want and for data to write back to the network (in the 
case of a network protocol).
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If the code is not highly coupled, you could even rewrite function 
by function, since the Rust code can expose C-compatible func-
tions. Beware, though: take the time to write a correct internal 
API for Rust code, since at some point, you might stop exporting 
those functions and call the underlying functionality directly 
from Rust.

You could spend a large part of the work making the new parser 
bug compatible with the old one. This is often a bad approach, 
since both parsers will probably not recognize the exact same 
set of files. You only need to worry about recognizing the same 
representative set of samples. Most C parsers are not even really 
tested regularly anyway. If you still want to get close results to 
the original parser, you could employ a smart fuzzer to do the 
work of testing the difference. Write a program that wraps both 
the C parser and the new nom one, and that panics if both pars-
ers do not return the same result.

Once the parser is written and in the source, be happy, for now 
the “interesting” part of the work will begin: getting it accepted 
in the tree and deciding how you will handle the software sud-
denly requiring a Rust compiler along with the old C toolchain.

Going Further
This approach of surgically rewriting parts of an application 
works well since it is designed to have a minimal impact on the 
original project. It can be used as a stepping stone to start replac-
ing larger parts of the application once all the details of build 
systems and developer training are handled.

But some projects could never handle that kind of precise touch. 
Some libraries, still in active use today, have highly coupled 
spaghetti code, relying heavily on GOTO or setjmp, and are basi-
cally untested and unmaintained. This is one of the rare cases 
where we’d recommend rewriting the whole project in Rust. This 
is a place where this language can shine; you could write a whole 
new library, completely API-compatible with the old one, that 
you could drop into package managers as an alternative.

Think of how many parts of our infrastructure we could replace 
like this, bit by bit. It’s a Herculean task, so we need to start now.

This work was presented in the 2017 LangSec Workshop [4], in the 
“Writing parsers like it is 2017” [2] paper. The parsers and tools 
are published in the Rusticata [5] and VLC module [6] GitHub 
projects.
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A small confession: when writing code, I don’t usually write tests first. 

There, I’ve said it. Hate me. I suspect I’m not alone among Python 
developers. Yes, yes, testing is important, and for my major projects, 

tests still get written. However, for a lot of small things like little scripts, 
utilities, and personal projects, I just don’t bother because I don’t want to 
think about all of the extra steps and tooling that’s usually involved. How-
ever, a recent conference experience may have changed some of my views. In 
this installment, I discuss a more lightweight approach to testing along with 
a brief introduction to some third-party testing libraries, including pytest [1] 
and Hypothesis [2].

A Revelation
Early this summer, I attended a talk by Aur Saraf at PyCon Israel in which he live-coded a 
simple interpreter from scratch in about 25 minutes [3]. Live coding in front of an audience is 
always a dicey affair, but what struck me about this particular talk is the fact that it was done 
entirely in a test-driven development style with no connection to any sort of testing tools, 
third-party libraries, or even standard library modules. I was both stunned and amazed. 

The gist of the idea is simple. If you’re going to write a function, you might as well first write 
an assertion or two for it. For example, suppose you were writing a function to split a URL 
into parts. You might start by writing this:

def split_url(url):

    pass

assert split_url(‘http://www.python.org’) == (‘http’, ‘www.python.org’)

The assert statement serves as a kind of expectation for what you want to happen. Naturally, 
the code is going to fail immediately as you haven’t actually written the function. However, 
the assertion gives you a target to aim for. So your next step is to implement the function and 
make the assertion pass.

def split_url(url):

    parts = url.split(‘://’)

    return (parts[0], parts[1])

assert split_url(‘http://www.python.org’) == (‘http’, ‘www.python.org’)

It passes. Very good. At first glance, this might seem too minimal and maybe even a bit crazy. 
However, there’s a certain genius to it. First, it doesn’t require any special knowledge of 
libraries or tools (e.g., the unittest standard library module): assert is a built-in statement 
of the core Python language. There are also no separate files to maintain or extra functions 
to write—the assert is just inlined right there in the code. It executes right after the function 
is defined. This means that the code won’t even run or import unless the test passes. Thus, if 
you’re working on some new thing and changing your code a lot, it can be useful to just leave 
it in there for the time being. It’s a minimal test that doesn’t require too much thought and 
doesn’t really interfere with what you’re doing. 
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Quick Testing
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Getting back to Aur’s talk for a moment, he proceeded to write 
his entire interpreter in this style. Assertions first and then 
functions. As I watched, I kept thinking, “I bet I could use some-
thing like this.” I also recognized that it could be a useful step-
ping stone to other more advanced testing tools. So let’s explore 
that further.

Putting It into Practice
In one of my current projects, I’m faced with the problem of 
implementing a priority queue. A standard technique for creat-
ing such a queue is to use a heap data structure. In fact, Python 
provides a heapq standard library module that can be used to do 
it. However, my specific problem has the extra requirement of 
supporting cancellation (i.e., the ability to remove/cancel items 
anywhere in the queue). Sadly, the standard heapq module has 
no support for that. In fact, efficiently removing items from a pri-
ority queue is a rather tricky algorithmic problem. Thus, it seems 
that I’m probably going to have to roll my own class for it.

Let’s start by sketching out a class:

class PriQueue:

    def __init__(self):

        pass

    def push(self, item):

        pass

    def pop(self):

        pass

    def remove(self, item):

        pass

It does nothing, but let’s write some assertions that encode our 
expectations of how it should work:

class PriQueue:

    ...

# Test code (put right after the class)

q = PriQueue()

q.push(4)

q.push(3)

q.push(7)

q.push(10)

q.remove(4)    

# Popping all items produces them in order

assert [ q.pop() for _ in range(3) ] == [ 3, 7, 10 ]

Running this code, it will fail because we haven’t implemented 
anything. However, we can now fill in some details of the 
implementation:

# pqueue.py

import heapq

class PriQueue:

    def __init__(self):

        self.heap = []

    def push(self, item):

        heapq.heappush(self.heap, item)

    def pop(self):

        return heapq.heappop(self.heap)

    def remove(self, item):

        self.heap.remove(item)

q = PriQueue()

q.push(4)

q.push(3)

q.push(7)

q.push(10)

q.remove(4)

assert [ q.pop() for _ in range(3) ] == [3, 7, 10]

If you run this code, it passes its simple test and we’re on our way.

From Asserts to Functions
Having assertions placed in the code is really only a starting 
point. As the code evolves, you can move the test into a more 
proper function. For example, maybe you do this:

# pqueue.py

...

def test_priqueue():

    q = PriQueue()

    q.push(4)

    q.push(3)

    q.push(7)

    q.push(10)

    q.remove(4)

    assert [ q.pop() for _ in range(3) ] == [3, 7, 10]

if __name__ == ‘__main__’:

    test_priqueue()

Writing a function is an easy step—you don’t even have to change 
your testing code (well, other than indenting it). However, if you 
do this, you’ll open the doors to incorporating your tests with 
other testing tools.

For example, this code can be executed under a testing tool like 
pytest [1]. One of the nice things about pytest is that it works 
using standard Python assert statements. Assuming that you 
have it installed, drop into the shell and type this:
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bash $ python3 -m pytest pqueue.py

================= test session starts ==================

platform darwin -- Python 3.6.1, pytest-3.0.2, py-1.4.31, 

pluggy-0.3.1

rootdir: /Users/beazley/Desktop/UsenixLogin/beazley_fall_17, 

inifile: 

plugins: hypothesis-3.11.6

collected 1 items 

pqueue.py .

=============== 1 passed in 0.00 seconds ===============

Excellent. Keep in mind it didn’t take much to get here. No spe-
cial imports or fooling around with the unittest module—just a 
function with an assert in it. Later on, you could move the test-
ing function over to a more dedicated testing file. For now, it’s 
fine where it is. After all, we’re still working.

From a Function to Hypothesis
One of the problems with our code is that the test is fairly mini-
mal. It tests just one case. How are we to know if our queue code 
actually works as intended across all inputs? We could generate 
more test cases by hand, but doing so is going to be rather painful 
and error-prone if it involves a bunch of cut-and-paste.

To better handle this, let’s change our testing function so that it 
is parameterized with some inputs:

def test_priqueue(items, remove_item):

    q = PriQueue()

    for item in items:

        q.push(item)

    # Remove the given item

    q.remove(remove_item)

    items.remove(remove_item)

    # Verify that items come out in the proper order

    assert [ q.pop() for _ in range(len(items)) ] == sorted(items)

This change allows us to feed different inputs into the function. 
For example, we can do this:

...

if __name__ == ‘__main__’:

    test_priqueue([4,3,7,10], 4)

    test_priqueue([9,2,1,8,5], 2)

    test_priqueue([4,1,6], 1)

Running this, you’ll find that the code still seems to pass for those 
three test cases. Our confidence is building. However, how do we 
really know that we’ve covered all of our bases? It’s hard to say. 

One of the more interesting tools on the Python testing front is 
Hypothesis [2]. In a nutshell, Hypothesis can randomly generate 
test cases for you as long as you are able to describe the param-
eters to the test. Take the above test function exactly as you’ve 
written it and decorate it as follows:

# pqueue.py

...

from hypothesis import given

from hypothesis.strategies import lists, integers

@given(lists(integers(min_value=0, max_value=9), 

                unique=True, min_size=10, max_size=10),

         integers(min_value=0, max_value=9))

def test_priqueue(items, remove_item):

    q = PriQueue()

    for item in items:

        q.push(item)

    # Remove the given item

    q.remove(remove_item)

    items.remove(remove_item)

    # Verify that items come out in the proper order

    assert [ q.pop() for _ in range(len(items)) ] == sorted(items)

if __name__ == ‘__main__’:

    test_priqueue()

At first glance, this looks a bit scary, but the @given decorator is 
used to describe the arguments to the test_priqueue() function. 
In this case, the first argument (items) is going to be a 10-ele-
ment list of unique integers with values in the range 0 to 9. The 
second argument (remove_item) is an integer with a value in the 
range 0 to 9.

Running the new code, you’ll now find that it fails. Your output 
might vary from this, but it will look roughly like this:

$ python3 pqueue.py

Falsifying example: test_priqueue(items=[1, 2, 3, 4, 0, 5, 6, 7, 

8, 9], remove_item=0)

Traceback (most recent call last):

  File “pqueue.py”, line 35, in &lt;module&gt;

    test_priqueue()

  ...

  File “pqueue.py”, line 32, in test_priqueue

    assert [ q.pop() for _ in range(len(items)) ] == sorted(items)

AssertionError

What’s happened here is that Hypothesis has automatically 
found a test-case that fails and is reporting it. To better see what 
happens, put a print statement in your test code:
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# pqueue.py

...

@given(lists(integers(min_value=0, max_value=9), 

               unique=True, min_size=10, max_size=10),

         integers(min_value=0, max_value=9))

def test_priqueue(items, remove_item):

    print(‘TRYING:’, items, remove_item)

    q = PriQueue()

    for item in items:

         q.push(item)

    # Remove the given item

    q.remove(remove_item)

    items.remove(remove_item)

    # Verify that items come out in the proper order

    assert [ q.pop() for _ in range(len(items)) ] == sorted(items)

Now, let’s clear the environment and try running again:

bash $ rm -rf .hypothesis

bash $ python3 pqueue.py

TRYING: [3, 0, 1, 9, 8, 6, 4, 5, 2, 7] 5

TRYING: [9, 6, 4, 8, 3, 2, 0, 7, 1, 5] 1

TRYING: [9, 6, 4, 8, 3, 2, 0, 7, 1, 5] 1

TRYING: [9, 6, 4, 8, 3, 7, 1, 0, 2, 5] 1

TRYING: [9, 6, 4, 8, 3, 7, 1, 0, 2, 5] 1

TRYING: [9, 6, 4, 8, 3, 2, 0, 7, 1, 5] 1

TRYING: [9, 6, 4, 8, 3, 2, 0, 7, 1, 5] 1

TRYING: [9, 6, 4, 8, 3, 2, 0, 7, 1, 5] 1

TRYING: [9, 6, 4, 8, 3, 7, 0, 2, 1, 5] 1

TRYING: [9, 6, 4, 8, 3, 2, 0, 7, 1, 5] 1

...

TRYING: [0, 3, 4, 6, 1, 2, 8, 5, 7, 9] 0

Falsifying example: test_priqueue(items=[0, 3, 4, 6, 1, 8, 2, 5, 

7, 9], remove_item=0)

TRYING: [0, 3, 4, 6, 1, 8, 2, 5, 7, 9] 0

Traceback (most recent call last):

  File “pqueue.py”, line 36, in &lt;module&gt;

    test_priqueue()

  ...

  File “pqueue.py”, line 33, in test_priqueue

    assert [ q.pop() for _ in range(len(items)) ] == sorted(items)

AssertionError

In this case, you’ll see the test function invoked repeatedly with 
all sorts of inputs. Basically, Hypothesis is trying random inputs 
searching for a failure. Since our code is buggy, it will eventu-
ally find one although it might take some searching. That’s 
pretty neat. It found a bad test case, and I really didn’t have to do 
much work. Our testing code is still pretty small—just a single 
function.

Fixing the Bug
In the case of my example, there is a bug in item removal. When 
the item is removed, the underlying heap structure is not pre-
served properly. This can be fixed with a minor change.

# pqueue.py

import heapq

class PriQueue:

    def  __init__(self):

         self.heap = []

    def  push(self, item):

         heapq.heappush(self.heap, item)

    def  pop(self):

         return heapq.heappop(self.heap)

    def  remove(self, item):

         self.heap.remove(item)

         heapq.heapify(self.heap)     # <- Add this line

...

If you run the program again, you’ll see Hypothesis fire 200 ran-
dom inputs at the test_priqueue() function, but they’ll all pass. 
In fact, each time you run the program, you’ll get a different set 
of inputs as it searches for failing test cases. Should a failure be 
found, it will be recorded for inclusion in further tests. For now, 
we’re safe though.

Final Thoughts
This whole approach to testing out new code and small libraries 
is interesting. When starting out, the inlined assertions provide 
a basic level of testing for implementing the initial code. Those 
tests can naturally evolve into a testing function that can be 
used with popular testing tools like pytest. Later, you can evolve 
that testing function into something for use with a package like 
Hypothesis, where hundreds of test cases can be generated for 
you automatically. The code is still small and it’s allowing me 
to focus on the actual problem I’m trying to solve. For example, 
with just that one testing function, I can start experimenting 
with different queue implementations and have a reasonable 
expectation of finding bugs if I break anything. It’s neat.
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I occasionally read Quora for fun. I recently stumbled upon the following 
question:

What are the two closest airports to each other in the world? 

The very first answer to the question I saw was from Kevin Lin who said: 

For fun, I wrote a Python script to do the following:

(1) Take the list of airports from http://www.airportcodes.org/ and remove all the 
airports listed as “Bus service” or “Rail service” or “Van service” or “All airports”.

(2) Plug the remaining airports into http://www.gpsvisualizer.com/geo...to get their 
GPS coordinates.

(3) Finally, compute the distances between pairs of airports by plugging their GPS 
coordinates into the haversine formula http://stackoverflow.com/questio...

You can find this question and answer here: https://www .quora .com /What -are -the -two 
-closest -airports -to -each -other -in -the -world /answer /Kevin -Lin.

Lin didn’t include his Python code, but I was intrigued by the problem and thought I would 
take a swipe at doing this in Perl using roughly his method to see how hard it would be. Turns 
out it isn’t that difficult, though there are a few tricky bits and some limitations we’ll discuss 
later on. Let’s take a walk through my implementation of Lin’s solution and see what we can 
learn.

Oh, the Modules You Will Go
I don’t know how hard Lin’s implementation leans on existing extensions to Python, but since 
the availability of modules to do almost anything is one of Perl’s strengths, I decided it would 
be fine to use them whenever they would make things easier for me. Here’s the collection in 
play:

use HTTP::Tiny;

use HTML::Strip;

use Geo::Coder::Google;

use Algorithm::Combinatorics qw(combinations);

use GIS::Distance;    #::Fast

The first two will be used to grab the airport list Web page and remove all of the HTML  
from it. The second will be used to geolocate all of the airports. Algorithm::Combinatorics 
will make it easy to come up with all of the distances we will need to compute, and 
GIS::Distance will perform that calculation for us. The comment on GIS::Distance is meant 
to be a reminder that it would be advantageous to us to also install GIS::Distance::Fast 
in addition to GIS::Distance. The Fast module implements the distance calculations in C 
(versus the pure Perl implementations that ship with the main module). These much faster 
implementations will get used by GIS::Distance automatically if the Fast module has been 
previously installed.
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Let’s Get the Airports
Here’s some code to fetch the contents of the page, strip off the 
HTML in the page, and then extract a list of all of the airports 
from the remaining text:

my $code_source = “http://www.airportcodes.org”;

my $reply = HTTP::Tiny->new->get($code_source); 

my $hs = HTML::Strip->new(); 

my @airports =

  grep ( /\w, [\w\s-]+\s?\(/,

    ( split( /\s?\n/, $hs->parse( $reply->{content} ) ) ) );

That last line is kinda gnarly (sorry), so let’s take it apart piece by 
piece, working from the inside out.

First off, we need the contents of the page as returned by the 
HTTP GET operation:

$reply->{content} 

Then we will want to strip out any of the HTML tags in the page:

$hs->parse( $reply->{content} )

Now that we have just the text, which largely consists of a string 
containing a bunch of lines (most of which contain an airport), 
we’ll want to split the text into a list of lines:

split( /\s?\n/, $hs->parse( $reply->{content} ) )

With me so far? 

As an aside, the use of \s in the split() takes care of an annoy-
ing property of the data where some of the airport listings have a 
trailing space. Mostly a cosmetic problem, but it was bugging me 
while I was writing the code. A few seconds ago I said “most of 
which contain an airport.” The use of grep() here makes sure we 
only collect the lines that appear to contain an airport listing:

  grep ( /\w, [\w\s-]+\s?\(/,

     ( split( /\s?\n/, $hs->parse( $reply->{content} ) ) ) ) );

I suspect there are more direct ways to extract only the airport 
data from this page using one of the HTML-parsing/extraction 
modules, but this method of tossing the HTML and grabbing 
only the lines we wanted seemed relatively straightforward.

Let’s Geocode
We’ve dived into Geocoding in previous columns a couple of 
times, so I won’t dwell too much on the process. One thing I do 
need to note is that in this example code, I’m using the Google 
Maps API Geocoding service, which is (after a certain number 
of calls) a paid service. More info on it here: https://developers 
.google.com/maps/documentation/geocoding/start (pricing can 
be found here: https://developers.google.com/maps/pricing-and 
-plans/).

Let’s look at the code:

my $geo =

  Geo::Coder::Google->new( “key” => “{YOUR API CODE HERE}”,

  );

my %airports;

foreach my $airport (@airports) {

    next if $airport =~ /[vV]an service/;

    next if $airport =~ /[bB]us service/;

    next if $airport =~ /[bB]us station/;

    next if $airport =~ /Park&Ride Bus/;

    next if $airport =~ /Van Galder Bus/;

    next if $airport =~ /[rR]ail service/;

    next if $airport =~ /[aA]ll airports/;

    next if $airport =~ /Heliport/;

    print STDERR “Locating $airport...”;

    my $location = $geo->geocode( ‘location’ => $airport );

    if ( !defined $location ) {

        print STDERR “not found.\n”;

        next;

    }

    $airports{$airport} = [

        $location->{geometry}{location}{lat},

        $location->{geometry}{location}{lng}

    ];

    print STDERR “done.\n”;

}

I think the process is pretty straightforward. Once we initialize 
the geocoded object with our API key (see the doc I mentioned 
earlier for how to get one), we walk through the list of airports we 
scraped and attempt to geocode each one. As per Lin’s solution, 
there are a number of bus and van service listings that aren’t real 
airports, so we attempt to skip them. 

As an aside, there’s another thing I would probably do in the next 
version of this program to clean the data that Lin doesn’t men-
tion. There are (by my count) 59 duplicates in the data where the 
same airport code is listed in two places with slightly different 
descriptions—for instance:

Biloxi/Gulfport, MS (GPT) & Gulfport, MS (GPT)

Endicott, NY (BGM) & Binghamton, NY (BGM)

Leon, Mexico (BJX) & Guanajuato, Mexico (BJX)

Canton/Akron, OH (CAK) & Akron/Canton, OH (CAK)

It would be very simple to extract the airport code from each 
airport and store it in a hash after you attempt to geocode an 
airport. Then, before geocoding the rest, just skip any airports 
you previously have a hash entry for already. I leave this (and any 
other data cleanup you want to do) as an exercise for the reader.

https://developers.google.com/maps/documentation/geocoding/start
https://developers.google.com/maps/documentation/geocoding/start
https://developers.google.com/maps/pricing-and-plans/
https://developers.google.com/maps/pricing-and-plans/
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Back to the action. For each airport, we store its latitude and lon-
gitude if the geocoder can find them. In my experience, it finds a 
very large percentage of the airports. If this were a setting where 
I really cared deeply about the results, I might choose to call 
a second geocoding service to attempt to find any that Google 
doesn’t have listed. 

The lookup (at least from my laptop and decent Internet connec-
tion) on average takes about a second or so to complete for each 
airport. If we wanted to speed this whole thing up, we could use 
one of the techniques we’ve discussed in past columns to make 
a number of queries in parallel. I have no doubt that Google can 
handle the multiple queries at once, so this would provide a 
dramatic speedup. 

And while we are discussing optimizations, an even better addi-
tion would be code that could avoid doing the geolocation at all. 
It would be best to cache previous results we get back and drop 
them into some sort of persistent store (even just to a flat file). 
When we ran the program again, we could skip a query if we’ve 
already made it. This would save time, save you money from API 
calls, and speed things up tremendously on future runs. Given 
how seldom airports move locations, this is probably a safe thing 
to do in almost all cases.

Go the Distance
Okay, time to calculate the distance between every possible pair 
of airports. This process consists of determining all of those 
pairs and then computing the distance for each. 

Figuring out the pairs is something we could do with some loops, 
but instead let’s use this opportunity to learn about two of the 
easier modules for this process: Algorithm::Combinatorics and 
Math::Combinatorics. Both have an easy way to ask for all of 
the combinations of list elements. I choose the former because 
it uses some C extensions for speed, but if you need a pure Perl 
solution, Math::Combinatorics will work as well. 

Algorithm::Combinatorics’ combinations() subroutine will 
hand us back an iterator. We just call next() on that iterator each 
time we want a new pair of airports (when it runs out of pairs, it 
returns undef):

my $pairs = combinations( [ keys %airports ], 2 );

my %distances;

my $gis = GIS::Distance->new();

while ( my $pair = $pairs->next ) {

    my $trip = $pair->[0] . ‘-’ . $pair->[1];

 Above we snuck in the initialization of the GIS::Distance object, 
so let’s talk about that next. There are a number of different ways 
to compute distance between two points, the most common is 
the haversine formula. So sayeth Wikipedia:

The haversine formula determines the great-circle 
distance between two points on a sphere given their 
longitudes and latitudes.

(Be sure to check out the Wiki page on this for some other inter-
esting trivia.)

By default, GIS::Distance uses this formula by default. Calculat-
ing the distance between the two airports becomes this easy:

    print STDERR “computing distance between $trip...\n”;

    $distances{$trip} = $gis->distance(

        $airports{ $pair->[0] }->[0],

        $airports{ $pair->[0] }->[1] => 

        $airports{ $pair->[1] }->[0],

        $airports{ $pair->[1] }->[1]

    )->{values}->{kilometre};

We just ask the module to compute the distance between the 
pair of airports by feeding in the latitude and longitude of 
the first airport followed by the same for the second airport. 
GIS::Distance wants to hand us back a Class::Measure object 
(which could be handy later if we wanted to do conversions), but 
we immediately look up the actual value in kilometers and store 
it in the %distances hash instead.

Show Me the Distances
The last piece of code prints out the results (all 5,016,528 of 
them) sorted from shortest distance to longest distance. This 
was, by the way, the moment I realized that there were duplicate 
entries in the data as mentioned above. Finding two airports 
with 0 distance between them seemed mighty suspicious. Here’s 
the code:

foreach my $trip ( 

   sort { $distances{$a} <=> $distances{$b} } keys %distances )

{

    print “$trip: $distances{$trip} kilometres\n”;

}

And the Answer Is…
If you run the code, you get an answer. I find interesting that I 
got a slightly different answer from the one mentioned in Quora 
(though Lin’s top answer is in the top five list). Here are the air-
ports with the shortest distance between them:

Comox, BC (YQQ)-Vancouver, BC (YVR): 1.30501111815652 

   kilometres

Vancouver, BC - Coal Harbour (CXH)-Comox, BC (YQQ):  

   1.37633222675128 kilometres

Vancouver, BC - Coal Harbour (CXH)-Vancouver, BC (YVR):  

   2.11243449299644 kilometres

Omsk, Russia (OMS)-Orsk, Russia (OSW): 2.28071127591897 

   kilometres
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Port Protection, AK (PPV)-Point Baker, AK (KPB): 

   2.68865415751707 kilometres

Lebanon, NH (LEB)-White River, VT (LEB): 2.80395259148673  

   kilometres

And just for the sake of completeness, here are the top five longest 
distances:

Rio Cuarto, CD, Argentina (RCU)-Fuyang, China (FUG):  

   19993.286433724 kilometres

Padang, Indonesia (PDG)-Esmeraldas, Ecuador (ESM):  

   19994.1381628879 kilometres

Ile Des Pins, New Caledonia (ILP)-Zouerate, Mauritania (OUZ): 

   20000.9443793096 kilometres

Long Lellang, Malaysia (LGL)-Tefe, AM, Brazil (TFF): 

   20002.7713227265 kilometres

Palembang, Indonesia (PLM)-Neiva, Colombia (NVA):  

   20011.325933595 kilometres

If you do happen to fly any of these distances, do write me, I’d 
love to hear about it. And with that, take care, and I’ll see you 
next time.
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I keep having this conversation with my coworkers. Honestly, it’s prob-
ably to be expected given my penchant for harping on about monitoring 
tools. Also, I was admittedly quite spoiled at my last job, Librato—a place 

whose singular mission in life is operational visibility, where everyone has 
unfettered access to a functionally infinite, free, world-class, metrics plat-
form—where things were, of course, different.

Anyway, the conversation I’m talking about usually starts off with me suggesting some tool that 
we could use to measure something. “Well how many foos per second are actually happening in 
real life?” I’ll ask, expecting a number rather than a shrug in response. Alas, no one will know, so 
I’ll suggest that we count them. “Do we have a graphite instance up anywhere?” I’ll ask. 

“No,” they’ll answer slightly annoyed, knowing full damn-well that I know full damn-well by 
now that there is no graphite instance, “we use Monitoring Tool X.”

“Ah hah,” I reply delighted, having successfully baited them into my personal little Platonic 
dialog. “But I’m not talking about monitoring, I’m talking about measuring.”

Yes, delight. It delights me every single time, which, I recognize maybe is a little pathetic, but 
I’m already too old to care. In fact, one of the things I’m genuinely enjoying about the aging 
process is a certain sort of selfish introspection. It’s great. You’ll be walking down the street 
and suddenly realize that you keep on offering to meet people for a beer when you don’t par-
ticularly like beer. And it just goes on like that, realization after realization that you’ve been 
engaging in all these behaviors that you kind of despise, and then, best of all, you just stop 
doing those things—like pretending to know what DevOps means, or living in Texas. 

Anyway, most people don’t really catch my meaning when I say I’m talking about measuring 
things as an activity distinct from monitoring things, so this portion of the conversation usu-
ally involves a lot of skeptical sideways glances and eye-rolling. And, honestly, I hear myself. 
I sound like a pompous windbag who swallowed a know-it-all jerk. The words emerging from 
my lips sound like something a televangelist might say if televangelists were really opinion-
ated on the subject of IT monitoring tools. Like, these sentences could only emerge from the 
lips of someone who doesn’t live here, in the bloody trenches with you and me. Someone who 
will soon jet back to the money-laden consulting partnership from which he oozed. I get that. 
I do. So the first thing I do is remind them what they have to go through to measure the num-
ber of foos traversing the wire with Monitoring Tool X.

First you need to know Monitoring Tool X itself: its YAML/XML/JSON/whatever configu-
ration DSL along with its questionable world-view and unique collection of pseudo-random 
assumptions that I’m sure totally made sense at the time. Then, these days, there’s usually 
a code promotion and review process, so you’ll have to traverse those as well as possibly 
a change control process. Those things only apply if you’re lucky enough to be allowed to 
actually change Monitoring Tool X. I don’t have numbers, but I’m willing to bet that most 
engineers in most places aren’t. Most engineers in 2017 still need to traverse a gatekeeper to 
affect Monitoring Tool X, which means filling out something akin to a trouble-ticket.
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And so nobody measures. 

Of course they don’t. What carpenter would measure if she had 
to submit paperwork in XML before she could use the tape mea-
sure? Maybe someone would, but I would not hire that person 
and neither should you. I mean, at this point I’ve been dealing 
with monitoring system configuration syntax for over 20 years, 
and I wouldn’t bother to measure if that alone was the bar to 
entry. I’d monitor, sure. But 10–15 minutes config time per new 
metric? I’d never measure.

But what’s the big deal? I mean, ultimately, what do I lose? Obvi-
ously, we can get by without measuring. We can make things 
that work. Yesterday I walked in to my living room and brushed 
against a stack of recently purchased books in want of a shelf, 
but I did not knock them over. They teetered off balance, and, 
eventually, they might fall over as a result of their imbalance, but 
for the time being that stack remained a stack rather than a pile. 

That stack is working. It’s getting by. Exactly like so many other 
well-monitored tech-stacks in the interclouds. And when they fall 
over…when the stack becomes a pile, our monitoring tells us so and 
we intervene. Like a fire-alarm. That’s how monitoring works. You 
don’t want the fire-alarm going off when stuff isn’t on fire, and so 
you restrict access to it, to make sure nobody messes it up.

That’s not measuring. Measuring is what we do when we want 
to understand the things we build. How many queries is my 
service actually putting on the wire? How many threads does it 
spawn with real-life users? What’s actually faster, the new pars-
ing function or the old? Is round-robin actually round-robining 
(Hint: No)? Measuring invites us to answer these questions for 
ourselves. No paperwork. No fuss. Like a tape measure in our 
pocket, this is self-service. Nobody is worried about you breaking 
your tape measure.

When we measure, we can communicate actual, real-life sys-
tems behavior to one another, rather than hunches and esti-
mates. Its output is truth. Not Warning, not Critical, just Truth. 
Measurement, therefore, gives us a common basis of under-
standing. It reaches across disciplines like application-develop-
ment and ops (or SRE or whathaveyou) and provides a common 
comprehension of operational reality. Measurement gives us the 
ability to have objective conversations about the best way to fix 
things, and as your operational visibility improves, you begin to 
formulate a tangible sense of normality, and inversely, abnormal-
ity. You move from alerting on problems to detecting imbalance. 
You stop saying holy shit and start saying huh, that’s weird, and 
seemingly overnight, you find yourself intervening before the 
stack falls over rather than scrambling to clean up piles.

Most importantly, measuring things changes you. It’s one thing 
to read about the process versus thread model in Web serv-
ers, but it’s quite another thing to see it for yourself. Measur-

ing things, it turns out, removes the political subtext from our 
technology discussions. You no longer have to invest belief in the 
solutions for which you advocate. You are free to question and to 
formulate hypotheses and test them. It’s habit forming, and it’s a 
really good habit for an engineer.

From Logs to Sprites
A few days ago I participated in my first Hackathon at Spark-
post, and since I kept having this conversation, I thought I’d 
try to make something that celebrated the act of measuring as 
opposed to monitoring. Coincidentally, I’ve also been playing 
around lately with Phaser.io [1], a videogame development frame-
work for HTML5-enabled browsers, so I thought I’d try to make 
a little traffic visualization toy. 

DNS and SMTP are the lifeblood of Sparkpost, yet no second-
scale metrics systems currently exist to visualize this traffic. 
Given this, I figured it would be impossible to render this traffic 
and not learn something in the process. I wanted to show every-
one what our mail flow actually looked like, so I settled on SMTP 
and got coding. 

Some 24ish hours later, Sparkviz was born, and I was super 
happy with how it came out. Here’s a video of it in action [2].

On the far left, you see two Amazon ELBs: one balances inbound 
REST traffic from our customers and the other SMTP. This 
traffic is represented by green balls. The next tier inwards is our 
MTA tier. These servers relay mail outward to various proxies 
(the third tier), which in turn deliver to the Internet (represented 
as a large orange ball on the right). You’ll notice the right-hand 
side of the screen is metered from 10 to 256. These obviously 
form a scale of first octets. Email successfully delivered appear 
as blue dots, which hit the far right-hand side of the screen at the 
point matching their destination IP’s first octet. 

The yellow balls represent transient bounces, and the red balls 
that impact the floor are permanent delivery errors. As the 
project took shape I noticed that heavy traffic often obscured 
patterns, so I used phaser’s “enableDrag()” method on each of 
the sprites to make them draggable, as you can see in the video. 
When this wasn’t quite enough I added a toggle to squelch out the 
errors entirely.

The project totaled 407 lines of code: 161 lines of JavaScript and 
246 lines of Go. Unfortunately, I can’t share it, but there’s no 
reason it couldn’t be open-sourced eventually. 

It’s implemented as a daemon designed to run on our internal 
log aggregation boxes. It listens on a UNIX domain socket for 
log-lines, which it parses and extracts into JSON blobs. You can 
see my highly technical architectural design document for the 
daemon in Figure 1.
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The daemon also listens on port 8000 for HTTP clients, to whom 
it delivers the phaser-based JavaScript UI. The UI, running in 
the browser on the client, turns around and creates a WebSocket 
connection back to the server. The daemon keeps a globally 
scoped slice of these connected WebSockets and broadcasts each 
parsed log line to every connected client as a JSON blob (using 
a millisecond sleep function inside each client’s broadcast go-
routine to throttle the outbound traffic to 1000 blobs per client 
per second).

Differentiation of traffic type happens client-side, where the 
JavaScript UI uses a series of handler functions to parse out the 
event-type from each inbound JSON blob, pushing them on to 
another queue with the appropriate sprite value for phaser to 
render and tween. The tl;dr is that I created a firehose between 
the MTA logs and the end-user’s browser. As always with hack-
day projects, there’s plenty of room for improvement, but as you 
can see, it gets the job done.

As I suspected, we all learned quite a bit from the exercise. It’s 
kind of impossible for humans to avoid pattern-parsing data like 
this, and you don’t need to look at it very long to recognize that 
we have a distribution imbalance in this environment. Certain 
MTAs clearly prefer certain proxies. Like the books in my living 
room, this stack works despite its imbalance. I, for one, am really 
looking forward to smugly pointing back to Sparkviz when I 
curmudgeonly lecture my contemporaries on the importance 
of operational telemetry, a process from which I’m sure I will 
extract far more than 407 lines of delight.

Take it easy.

References
[1] Phaser.io: http://phaser.io/.

[2] My traffic visualization tool in action: https://www.youtube 
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Figure 1: Highly technical architectural design document 
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C H R I S  M C E N I R Y

In this article, we’re going to extend Kelsey’s original work from Spring 
2016 ;login: on the gls service [1]. To recap, gls is a distributed ls tool, 
which calls out to a listening service to perform a directory listing. One 

of the open items left from that article is the concern around authentication 
and authorization. To extend that, we’re going to add secured authentica-
tion to both sides of the gls tool and with this we’re going to gain a minimal 
amount of authorization.

The ubiquitous Internet connection security protocol is currently Transport Layer Secu-
rity (TLS). TLS is used to encrypt, authenticate, and authorize (to a degree) connections. 
The defaults handle encryption for us well enough, so in this article, we’re going to exam-
ine authentication and authorization. Authentication is based on the names on exchanged 
certificates that have been signed by third party certificate authorities. Once identity has 
been established, the service can then incorporate a base level of authorization based on the 
names (e.g., parsing user=$username so it will get access to items specific to $username) on 
the certificates or on the certificate chain (e.g., this was signed by the “users” CA, so it will 
get access to common user items).

In our example, we want to ensure four items: encrypted communication, successful identi-
fication of the glsd server (that the one gls connects to is the proper one), successful identi-
fication of the gls client (that the one that connects to the glsd server is the proper one), and 
restricted access of the gls client as appropriate. To accomplish this, we’re going to add TLS 
between the client and the server, enable verification on both server and client, and compare 
the certificate identity to a good list. In order to support all of this, we need to first generate 
some private keys and certificates for gls and glsd to use.

NOTE: We’ve cut some corners to simplify the example in this article. Several additional areas 
should be considered in a full production PKI infrastructure, including, but not limited to, use 
of intermediate CAs, revocation lists, full subjects, selection of hash, key properties, private key 
encryption with a passphrase, etc.

Certificates
In terms of authentication, TLS is a form of public key cryptography. If you’re not familiar 
with it, you can read Radia Perlman’s ;login: article about Bitcoin [2]. The issue with plain 
public key cryptography is that you have to distribute the public keys. Instead of having to 
distribute every certificate for every service to every potential user of that service, TLS 
builds a chain of trust in the same way that a Web browser authenticates a Web site like a 
bank or hospital.

When I use a browser to connect to a Web site, the site sends my browser a certificate. This 
certificate has the Web site’s public key and a subject name that identifies the Web site, and 
it is signed by a trusted third party called the certificate authority (CA). My browser has a 
bundle of certificate authorities, and it looks for a match for the signature in that bundle. If 
there isn’t a match, the browser will alert about an untrusted certificate. With a matching 
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signature, the browser can verify that the Web site’s certificate 
has been issued by the CA, and so the browser trusts it. In this 
way, the browser doesn’t have to have the certificate for the Web 
site ahead of time but only needs to have a much smaller set of 
certificate authorities to use to verify.

After the chain of trust has been used to verify that the Web 
site’s certificate is valid, the browser does another check. This 
time, it takes the subject name on the certificate and compares 
that to the DNS name that the browser used to connect. If the 
certificate name does not match the DNS name, the browser will 
alert to a name mismatch. If it does match, the browser trusts 
the Web site and proceeds.

This chain of trust can be used to authenticate the client side 
as well, with one caveat. The Web server can require that my 
browser supplies a certificate as well, and it can compare the 
signature on that certificate to its bundle of trusted certificate 
authorities. In most cases, this is for an internal or private situ-
ation, so there’s only one certificate authority to check against, 
but uses can vary. However, a DNS check of the client is unlikely 
to work in many cases: multiple clients behind a Network 
Address Translation, residential networks, or networks behind 
dynamic addressing are all unlikely to be able to issue certifi-
cates appropriately to match the actual end client. Therefore, 
the server is very unlikely to check the name on the certificate in 
the same way as the client does to authenticate the server. The 
server uses the certificate in two ways: the name on the certifi-
cate can be used to identify the user or provide a group or role; 
and the fact that the certificate is signed is often used to provide 
a base level of authorization (“if it’s signed, it’s allowed in”).

Since this is a private service, we can consider that our certificate 
authority handling and chain handling is working together. That 
allows us to only produce three certificates: a common certificate 
authority, a server certificate, and a client certificate. The server 
certificate will get the localhost name since that is what is being 
used to connect to; and we’re going to encode a username, glss 
Client A into the client certificate to show a stronger authentica-
tion approach than just verifying the certificate.

Building on the gls Package with the glss Package
Before we start, we need a place to work that isn’t conflicting 
with previous work. We want to use the existing work of the RPC 
mechanisms in the gls package and only add the pieces that we 
need. We’re going to use the built-in package manager go get to 
pull in Hightower’s work, and augment this with our own work-
ing path. For article space, the full code is not in this article, but 
it is available on GitHub [3]. You can pull in the final source code 
for this exercise along with the original source code. If you want to 
assemble the code yourself, this article steps through that, but you 
will have to fill in some of the gaps. To get started down that path:

    $ go get github.com/kelseyhightower/gls

    $ mkdir -p $GOPATH/src/github.com/cmceniry/login-glss

    $ cd $GOPATH/src/github.com/cmceniry/login-glss

    $ mkdir -p certs server client

Otherwise, you can pull in the new code along with the original:

    $ go get github.com/kelseyhightower/gls

    $ go get github.com/cmceniry/login-glss

go get will place the gls package at $GOPATH/src/github.com 
/kelseyhightower/gls. We will be referencing it in our import 
statements much as we do for the standard library utilities:

    import (

        “fmt”

        “github.com/kelseyhightower/gls”

    )

Instead of using the utilities gls and glsd in the existing gls pack-
age, we’re going to create three new utilities in the login-glss 
package: client/main.go and server/main.go, to hold the service 
like before but with TLS encryption, and a new command, 
certs/main.go, which we’ll next use to generate our keys and 
certificates.

Generating Keys and Certificates
As a private service, we’re going to handle all of the certificate 
and certificate authority management internally. In a production 
case, this may work, or you may want to use a commercial vendor 
or Let’s Encrypt [4]—the process for obtaining certificates and 
keys is slightly different, but we’ll end up with the same resulting 
items. In addition, since this is again internal, we’re going to use 
one certificate authority for the client and the server certificate 
signing. Since this exercise is on Go, we’re going to generate 
these using Go itself. Let’s start this by opening a new file:

    certs/generate_certs.go

The Go standard crypto library has all of the functions needed to 
generate certificate/key pairs. We’ll want to import these librar-
ies and some other ones that we’ll be using into our file:

    package main

    import (

      “crypto/rand”

      “crypto/rsa”

      “crypto/x509”

      “crypto/x509/pkix”

      “encoding/pem”

      “io/ioutil”

      “math/big”

      “time”

    )
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Since we have three keys and certificates to generate, we’re going 
to wrap this process up into a single function, generateKeyAndCert. 
This function takes in a subject name and the certificate and key 
of a certificate authority. We can use the same function for our 
certificate authority, and in that case, nil can be passed for the 
signer and signerkey.

    func generateKeyAndCert(

      name string,

      signer *x509.Certificate,

      signerkey *rsa.PrivateKey,

    ) (

      *rsa.PrivateKey,

      *x509.Certificate,

    ) {

generateKeyAndCert’s body has four parts to it. First, we have 
to generate the private key/public key pair. As mentioned, a key 
is a set of cryptographic numbers, in this case represented as an 
rsa.PrivateKey [5] struct. The inputs to it are limited—a random 
number source, which we’re using as the default, and a key 
length. Later, we’ll be using one of the fields of the key, the paired 
PublicKey, to generate the certificate.

    key, _ := rsa.GenerateKey(rand.Reader, 2048)

Second, we must generate a template x509.Certificate [6]. It might 
be a bit confusing, but the template is of type x509.Certificate, 
which is the same type that we’ll receive at the end. The template 
is used by the standard library function to generate certificates 
for where to source all of the information that we’ll need. There 
are a few required fields: SerialNumber (unique distinguisher), 
Subject (which is where we’re going to push CommonName), 
NotBefore/NotAfter (which determine the lifetime of this certifi-
cate), and KeyUsage (the intended purpose of this certificate).

template := &x509.Certificate{

      SerialNumber: big.NewInt(1),

      Subject:      pkix.Name{CommonName: name},

      NotBefore:   time.Now().Truncate(24 * time.Hour),

      NotAfter:     time.Now().Truncate(24 * time.Hour).

        Add(365 * 24 * time.Hour),

      KeyUsage:    x509.KeyUsageKeyEncipherment |

        x509.KeyUsageDigitalSignature,

    }

Since this is a dual purpose function, we might be generating 
a certificate authority. In those cases, we need to set a couple 
of additional fields: IsCA must be true, and KeyUsage must be 
extended for this additional purpose. Additionally, we also need 
to set our currently nil-valued signer and signerkeys. As a root 
CA, we’re going to set these to themselves.

    if signer == nil || signerkey == nil {

      template.IsCA = true

      template.KeyUsage |= x509.KeyUsageCertSign

      signer = template

      signerkey = key

    }

Next, we’re ready to generate our certificate using the standard 
library function: x509.CreateCertificate. In addition to the 
default source for random numbers, it uses the template, the 
signer, our newly generated public key, and the signer’s private 
key to create a binary blob representing the signed certificate.

    der, _ := x509.CreateCertificate(

      rand.Reader,

      template,

      signer,

      &key.PublicKey,

      signerkey,

    )

And, finally, we need to make this binary blob useful. This 
binary blob is DER encoded [7]. While this is useful to functions 
handling binary data, we want to force the structure and type 
consistency of the language and turn this into a full certificate 
datatype.

    cert, _ := x509.ParseCertificate(der)

We now have the actual key and cert, so we can pass those back:

      return key, cert

    }

Once we generate these, we’ll need to be able to save them to disk 
to be used by our client and server utilities. The standard format 
for handling key and certificate files is called privacy-enhanced 
electronic mail (PEM; https://en.wikipedia.org/wiki/Privacy 
-enhanced_Electronic_Mail) encoding. The PEM is an ASCII 
form generated from the binary data, held as an array of bytes 
in Go, of the keys and certificates. Extracting the binary data 
is slightly different for keys and certificates, but both need to 
be converted over to this PEM format, and there are standard 
library functions available for this. Once we get the PEM form in 
memory, we can dump this to disk using the convenient ioutil.

WriteFile function.

    func saveKeyAndCert(

      prefix string,

      key *rsa.PrivateKey,

      cert *x509.Certificate,

    ) {

      keyBytes := x509.MarshalPKCS1PrivateKey(key)

      keyPem := pem.EncodeToMemory(

        &pem.Block{Type: “RSA PRIVATE KEY”, Bytes: keyBytes})

https://en.wikipedia.org/wiki/Privacy-enhanced_Electronic_Mail
https://en.wikipedia.org/wiki/Privacy-enhanced_Electronic_Mail
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      ioutil.WriteFile(prefix+”.key”, keyPem, 0444)

      certPem := pem.EncodeToMemory(

        &pem.Block{Type: “CERTIFICATE”, Bytes: cert.Raw})

      ioutil.WriteFile(prefix+”.crt”, certPem, 0444)

    }

With our wrapping and save-to-disk functions, we can put 
together our main function. Note the use of the CA keys and 
 certificates to generate the actual end keys and certificates:

    func main() {

      caKey, caCert := generateKeyAndCert(

        “glss Root CA”,

        nil, nil)

      saveKeyAndCert(

        “certs/CA”, caKey, caCert)

      serverKey, serverCert := generateKeyAndCert(

        “localhost”,

        caCert, caKey)

      saveKeyAndCert(

        “certs/server”, serverKey, serverCert)

      clientKey, clientCert := generateKeyAndCert(

        “glss Client A”,

        caCert, caKey)

      saveKeyAndCert(

        “certs/client”, clientKey, clientCert)

    }

With this utility written, we’re now ready to execute it. Since 
this is a one-time tool for this exercise, let’s just run it:

    $ go run certs/generate_certs.go

You should see several certificate and key files in the certs 
directory:

    CA.crt

    CA.key

    client.crt

    client.key

    server.crt

    server.key

Now that we have all of the certificates, we can proceed into 
encryption and authenticating our communications.

Server Changes
Part of what makes this powerful in Go is that we won’t have 
to change much code to wrap the calls in TLS. We can change 
some pieces of the setup to include TLS setup, and the rest of the 
application is unchanged. Part of this is because we’re able to 
swap out different types that satisfy the same Go interface—in 
particular net.Conn on the server side.

Start by copying the original server and client utilities from the 
gls package.

    $ cp \

      $GOPATH/src/github.com/kelseyhightower/gls/server/main 

      go \

      ./server/main.go

We’re going to start by updating the import list. We have to add 
specific crypto libraries that we’re going to be using as well as 
add back in the reference to the original gls library.

    import (

      ...

      “crypto/tls”

      “crypto/x509”

      “io/ioutil”

      “github.com/kelseyhightower/gls”

    )

Next, we need to initialize the TLS settings for the server. This 
involves three parts: loading the server key pair, loading the 
certificate authority certificate to verify against, and then using 
those to set the TLS configuration. To load the key pair, we will 
use the tls.LoadX509KeyPair function.

    func main() {

      cert, err := tls.LoadX509KeyPair(“certs/server.crt”,

        “certs/server.key”)

      if err != nil {

        log.Println(err)

        return

      }

TLS connections are verified against a CertPool, which is a list 
of certificate authorities used to check for signatures. In the case 
of verifying against a wide range of certificate authorities, like a 
browser would do, you can keep adding certificate authorities to 
the pool. In this case, we only have our internal certificate, so we 
can add only it to the CertPool. Since the certificate authority is 
a bare certificate (i.e., it doesn’t include a private key), we can’t 
use tls.LoadX509KeyPair to get the certificate; we have to load it 
separately and then add it bare to the CertPool.

    caCert, err := ioutil.ReadFile(“certs/CA.crt”)

    if err != nil {

      log.Fatal(err)

    }

    caCertPool := x509.NewCertPool()

    caCertPool.AppendCertsFromPEM(caCert)

Now with the server certificate and the certificate authority, we 
can set the TLS configuration. In addition to the certificates, we 
want to require that we authenticate the client using TLS.
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    config := &tls.Config{

      Certificates: []tls.Certificate{cer},

      ClientCAs:    caCertPool,

      ClientAuth:   tls.RequireAndVerifyClientCert,

    }

As we’ll see in the client, Go has a convenience function inside 
of TLS for connections; for the server, tls.Listen can replace 
net.Listen. However, we need to be able to access the peer infor-
mation, so we have to set up TLS directly and can’t use this. 
Luckily, this only requires a couple of lines (plus error checking): 
one to create the TLS connection object, and one to perform the 
TLS handshake.

    for {

      conn, err := l.Accept()

      if err != nil {

        log.Println(err)

      }

      tlsconn := tls.Server(conn, config)

      err = tlsconn.Handshake()

      if err != nil {

        log.Fatal(err)

      }

Once the TLS handshake is successful, we can inspect the con-
nection for the client information and confirm it is correct. Note 
that we may get multiple certificates on the connection. A client 
may send its full certificate chain or a partial certificate chain 
over the connection if it needs to connect intermediate certifi-
cates to a root. The key here is that first certificate (index 0) 
will be the leaf certificate for this client, so it will be the one we 
check against. In our particular case, we’re going to compare the 
subject’s CommonName, but other situations could use other fields 
of the certificate.

      tlsclient := tlsconn.ConnectionState().PeerCertificates[0]

      if tlsclient.Subject.CommonName != “glss Client A” {

        log.Fatal(“Invalid client”)

      }

      log.Printf(“user=\”%s\” connect”,

        tlsclient.Subject.CommonName)

Now that we’ve verified the certificate chain (via the ClientAuth 
setting on tls.Config) and checked that the CommonName is 
correct, we can proceed with the net/rpc call. Special Note: 
since this is providing a wrapper layer, we’re going to insert this 
between the Accepted connection and rpc.ServConn. Accept 
and tls.Server both return net.Conn, and rpc.ServConn takes 
in a net.Conn. rpc.ServConn isn’t aware that the data is being 
encrypted underneath it.

      rpc.ServConn(tlsconn)

      conn.Close()

    }

You can confirm everything by building the server the same as 
before:

    $ go build -o glssd server/main.go

At this point, we’ve added TLS to the server side without having 
to change any of the underlying net/rpc items. Now we need to 
do the same on the client side.

Client Changes
The client changes are the same as on the server side except that 
we don’t have to check anything additional on the certificate’s 
CommonName—this is handled by default when TLS authenti-
cates servers. As before, start by copying the existing gls client 
over to our new working directory:

    $ cp \

      $GOPATH/src/github.com/kelseyhightower/gls/client/main.

go \

      ./client/main.go

Then update the imports the same as before.

    import (

      ...

      “crypto/tls”

      “crypto/x509”

      “io/ioutil”

      “github.com/kelseyhightower/gls”

    )

Next, load the client certificate and private key, the certificate 
authority certificate, and configure TLS. The main differences 
are to flip from authentication of the clients to authentication 
of the server in the tls.Config: we’re not specifying ClientAuth, 
since that’s a server side optional setting, and we’re specifying 
the RootCAs instead of ClientCAs to indicate that we’re connect-
ing out and authenticating the server instead of being connected 
to and authenticating the client.

    cert, err := tls.LoadX509KeyPair(“certs/client.crt”,

      “certs/client.key”)

    if err != nil {

      log.Fatal(err)

    }

    caCert, err := ioutil.ReadFile(“certs/CA.crt”)

    if err != nil {

      log.Fatal(err)

    }

    caCertPool := x509.NewCertPool()

    caCertPool.AppendCertsFromPEM(caCert)

    conf := &tls.Config{

      Certificates: []tls.Certificate{cert},

      RootCAs:      caCertPool,

    }
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Next, we connect to the server with the convenience function 
tls.Dial, and pass the returned net.Conn to rpc.NewClient. In the 
same way as encryption and authentication are transparent on 
the server, this is transparent to net/rpc on the client.

    conn, err := tls.Dial(“tcp”, “localhost:8080”, conf)

    if err != nil {

      log.Fatal(err)

    }

    client := rpc.NewClient(conn)

Build the client, and you should now have a fully encrypted and 
authenticated gls client:

    $ go build -o glss client/main.go

Start up the server and, separately in another terminal, start up 
the client:

    $ ./glssd

    # In another terminal

    $ ./glss ~

Conclusion
At the end of this, we have protected the gls connection with 
mutual TLS authentication. In addition, we’ve relied on the 
power of the golang interface to only make minimal changes to 
the original program to enable secure communication.
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Flipping Out in Computer Science
M A R G O  S E L T Z E R

For a while, every conversation about education seemed to lead to the 
term MOOC (massive open online course). The hype around such 
courses seems to have died down to some extent, but MOOCs still 

exist and are largely good things, even if they have not fulfilled the promise 
of educating the world. However, there has been an unanticipated side effect 
to the (forgive me here) MOOC-ification of courses. We suddenly find our-
selves in possession of some really high-quality teaching materials. What 
else might we do with such assets? I’d like to make the point that the wealth 
of online material opens up the possibility that those of us in the education 
business can undertake experiments in education that lead to deeper learn-
ing. In this article, I’ll focus on the flipped classroom.

In 2013, I began revising all my undergraduate courses so that I could teach them in a 
flipped style (my graduate courses are typically research seminars, so in some sense, they 
are already flipped). But what is flipping? The high-level idea is that rather than spending 
class time absorbing information and then practicing use of the information at home, we 
flip those two activities around. Students use prepared materials at home for first exposure 
to new concepts and then come to class and work in small groups to practice applying those 
concepts.

I had been intrigued by the idea of flipping for a long time but hadn’t quite figured out how to 
apply it to my own courses. My problem sets are large monolithic projects, not something on 
which one can make meaningful progress in a class period. So while I could easily imagine 
preparing materials for them to review at home, what would I have them do in class?

By pondering that question, I realized that one of the biggest challenges students face in 
programming courses is connecting new concepts to the programming tasks we give them. 
Maybe I could use in-class time to more effectively connect conceptual material to program-
ming pragmatics, so students would not have to struggle with the question of how to get 
started.

My first experience flipping a course was with my (insanely time-consuming) operating sys-
tems course. Students report spending 30 hours per week completing the long but rewarding 
problem sets—students start with a simple operating system kernel and build user-level pro-
cesses, a virtual memory system, and a journaling file system. I blogged my first experience 
flipping it here: http://mis-misinformation.blogspot.com/2013/08/an-index-to-my-flipping 
-blog-postings.html.

I ended up using three different styles of in-class exercises: gaining familiarity with the 
course software, completing problems that demonstrate mastery of the material presented, 
and engaging with open-ended design problems. I’ll give short examples of each of these 
approaches. 
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Infrastructure
Traditionally, the first assignment in the course includes 
instructions on how students acquire the course software, 
install a virtual machine, configure and build a kernel, attach 
the debugger to a running kernel, etc. Small glitches in this pro-
cess can result in students wasting a lot of time without learn-
ing much. Instead, I had them get their hypervisor licenses and 
install the course VM as pre-class work and then used class time 
to let them config and build their first kernel and complete some 
debugging exercises. 

There were a number of positive outcomes from this structure. 
First, if students encountered any problems, we fixed them 
within a few minutes rather than having students beat their 
heads against the wall for hours. Second, it’s actually pretty 
exciting to build your first kernel and watch it run. We got to 
all experience that together, so by the end of class there was 
a shared sense of accomplishment. Third, while we always 
encourage students to read code (and we assign them code-read-
ing questions), as we wandered around the room interacting with 
the groups, we could ask questions that required that they look at 
code and could then gently walk them through how to approach a 
new code base.

Problem Solving with Virtual Memory
It’s pretty easy to assume that once you’ve explained the 
four-level page table structure of the x86, students would then 
understand how address translation works. You would, however, 
be wrong.

Historically, when I taught VM, I would have the class “play 
MMU” and perform address translation one step at a time, hav-
ing each student contribute something. This wasn’t bad, but a lot 
of things fall through the cracks. With flipping, after introduc-
ing students to the concept of virtual memory and the x86 VM 
system, it was easy to create short problems that let small groups 
of students “play MMU” and translate addresses, draw page 
tables, populate the page tables, deduce what page faults really 
are, experience a segmentation violation from the point of the 
MMU, etc. Instead of each student contributing a tiny piece (and 
sleeping through the rest of the discussion), every student was 
exposed to every operation; by the end of class it was pretty clear 
that there was a much more uniform and deep understanding of 
what was going on.

Design Exercises
As the semester progresses in my operating systems classes, 
more of the conceptual material involves helping students 
develop the intuition and skills to design software and make 
tradeoffs. Prior to flipping, I would always present alternatives 
and let the class come up with the advantages and disadvantages 
of the different approaches. Of course, the five students who 

knew exactly what was going on were the ones who would pretty 
much answer all the questions no matter how much I cajoled the 
rest of the class and tried not to call on the frequent contributors. 
I converted these to small design exercises, requiring groups of 
two, three, or four students to assess tradeoffs, and then we’d 
come together as a class to compare answers.

As a result, everyone felt they could contribute. Even if they 
hadn’t been entirely comfortable with the material, after 
discussing it with their peers for 10 or 15 minutes, they usually 
could effectively compare their conclusions with those of other 
groups. I’ve done a large variety of different activities around 
this theme ranging from peripatetic design reviews (when the 
class was small), to design debates, to collaborative analyses. 
One former student reports that she uses the skills learned in 
these exercises every day in her job.

I’m completely hooked on flipping at this point. I distilled the 
advantages I see in the approach into the following 10 bullet points:

1. It’s good for an old dog to learn new tricks. This is really about 
making sure your teaching doesn’t get stale. It’s way too easy to 
keep teaching the same thing over and over again. Whether you 
use new pedagogy, new technological breakthroughs, or just 
good self-discipline, it’s important to keep classes fresh.

2. Flipping lets me spend time with those students for whom the 
material is most challenging. This is so obvious in retrospect, 
but so exhilarating in practice. I have always run a relatively in-
teractive class, but for the most part, the students who ask and 
answer questions in class are the ones who need you least—
they are typically the most confident and are not struggling to 
understand the material. The silent ones, meanwhile, are fre-
quently struggling, and the time spent helping these students in 
small groups during class time is incredibly useful.

3. Learning takes place by doing, not by listening to me. There are 
a lot of different styles of hands-on learning, but I think this 
point cannot be emphasized enough. Learning is not just the 
process of transferring information from the teacher to stu-
dents; learning is about gaining new information and knowing 
how to use it, and the latter requires practice.

4. Teaching assistant engagement is critical. We call our teach-
ing assistants “teaching fellows,” or TFs for short. Flipping 
effectively requires a good staff that is comfortable engaging 
with students, walking them through problems, and posing the 
right questions. I am extraordinarily fortunate to have a truly 
amazing and dedicated teaching staff.

5. It takes a lot of effort to come up with effective in-class work. 
It’s important that the in-class exercises or problems relate 
both to the concepts the students are learning and to the 
homework or problem sets they will be doing. Designing these 
exercises so they can be completed in the time allotted and add 
real value to the course is demanding.
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6. Pre-class Web forms are AWESOME. They allow me to engage 
with students in an entirely different way and to gather lots of 
interesting data. This is perhaps the best surprise of all! I used 
Google Forms to have students submit answers to the pre-class 
questions. This created a mechanism I could use to obtain all 
sorts of useful information, including how things were going in 
partnerships, how much time people were spending on various 
parts of the assignment, what was working for students, what 
wasn’t working, etc. Once you have students regularly filling 
out forms, they will answer anything you put there, and you can 
use that to make the class better. Score!

7. My operating systems course, CS161, is even more time inten-
sive than I thought. I had been saying 20 hours per week for 
decades; when the going gets rough, students were regularly 
reporting 30-hour weeks. Oops.

8. It would be useful to help students learn what it really means to 
design something. Software design is really hard! We spend a 
lot of time in class doing small group design exercises—I could 
imagine developing an entire course around this idea.

9. Flipping is a great equalizer when students enter with different 
experience levels or exposure to different topics. It’s relatively 
easy to provide supplementary material as pre-class work, so 
that students who have gaps in their background can catch up.

10. Fully integrated and coordinated materials take real effort but 
pay off tremendously. This should be a no-brainer, but thinking 
deeply about the relationship between the videos I prepared, 
the exercises we completed in class, and the problem sets was 
time well spent.
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Obvious to all, the sea of data is rising. It’s a remarkable thing really. 
Even if all you can remember is 10 years back, the comparison of 
“then” with “now” is pretty startling. No, that does not qualify as 

news, but to reparse Orwell’s “Who controls the past, controls the future: 
who controls the present, controls the past,” the data “we” collect now is what 
will soon enough become the past for a data-driven world. If that data past 
comes to exert a force in some sort of proportion to its volume, is there, or will 
there be, any room for mere human opinion?

Cybersecurity has long had a measurement problem. Progress has certainly been made, both 
in the pages of this publication and elsewhere. Defenses now include mass data collection 
and tools whose main job is to reduce data volume to something that is straightforwardly 
actionable. In the Orwell sense, the algorithms that collect and reduce the instrumentation 
data are coming to control if not the present itself then our understanding of the present. 
In due course, the “actionable” becomes the automatically acted upon, that is to say that 
algorithms are trusted to do what we seem unable to do—to protect us from other algorithms. 
Such is progress.

Yet the nuance here is that the algorithms are, by and large, uninterrogatable—they cannot  
be meaningfully asked why they made such and such a decision. The outcome of action, not 
the reason for action, becomes the only check and balance that we humans have at all. This 
may be a tradeoff that is not just inevitable but welcome, welcome in the sense of freeing 
front-line cybersecurity staff from having to juggle a million balls all at once. At the same 
time, if you/we cannot examine the reasoning behind an automatic action but only react 
to the outcome of it, what then do we know about the present? What kind of past will the 
accumulating data create? Behaviorally oriented cybersecurity is entirely crafted along these 
lines, the line of learning enough about the recent past to be able to tell that the present is 
diverging from that past and, ipso facto, algorithmically control the future. What then is the 
role of the human in the loop?

The Index of Cyber Security (ICS) was created six years and a little more ago on the premise 
that we didn’t know enough about the details of cybersecurity to make prediction and plan-
ning really possible—that “the present” was (is) a bit of a miasma and, as such, the best and 
only trustable prediction of the future was to be found in the pooled opinions of front-line 
cybersecurity practitioners. As with the oft-noted “wisdom of crowds,” ours was not a search 
for the single smartest oracle but rather a pooling of opinion from a body of experts whose 
views were tempered by the heat of daily practice. Speaking for myself and my colleague 
in this project, we think that the need for pooled expert opinion is greater than ever, both 
between practitioners (as with the ICS) and inside each firm that is itself large or connected 
enough to be a constant target.

A developed muscle that is not exercised will atrophy. A developed skill that is not exercised 
will atrophy. If we humans are to remain the ultimate decision makers regarding our fate, 

For Good Measure
When Opinion Is Data
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then our ability to form strong opinions must not be left unex-
ercised, it must not be left to atrophy. The desire for automatic-
ity runs toward setting the stage for an atrophy of some skills; 
choosing what to let go may require the greatest of wisdom. 
Perhaps, then, the state of our wisdom is worth close attention. 
To illustrate that point, consider this ICS question:

Your organization is likely more reliant on the cloud than you 
think. According to Symantec’s Internet Security Threat Report, 
the average enterprise organization was using 928 cloud apps, 
up from 841 earlier in the year. However, most CIOs think their 
organization only uses around 30 or 40 cloud apps. Reliance on 
the cloud goes beyond the traditional infrastructure hosting 
arrangement. Unknown to IT, the “business” will often sign up 
for SAAS services on the cloud where data (or metadata at least) 
gets out on the cloud.

What is your assessment of your security organization’s handle 
on cloud engagement:

Figure 1

That question above and its answers by a pool of front-line 
cybersecurity people is illustrative—both of the spread of opin-
ion and its logic. That we can ask practitioners such a question is 
the interrogatability part. That some entities centralize control 
while others delegate responsibility is no real surprise but is 
still worth noting insofar as it says pretty clearly that no single 
“right” answer has come along.

Let’s try another:

After years of study, we still do not seem to be able to agree on 
the question of vulnerabilities and, in particular, matters of their 
discovery, use, retention, and disclosure. Policy constraints vary 
across countries like night and day. These are strategic issues or, 
should we say, Strategic Issues that fully prove that cybersecu-
rity and the future of humanity are conjoined now. Allowing for 
ambiguity, which of these directions should free-world govern-
ments favor:

Figure 2

As with the first example, the spread of opinion is valuable in 
and of itself. Does not the preponderance of the first option, to 
acquire vulnerabilities from wherever and share them with the 
relevant vendors post-haste reflect a strong prediction on the 
part of the respondents about what they expect the vulnerability 
situation to be in future? Would an algorithm fed by a sensor 
network come to the same conclusion?

Let’s try a third:

Newly discovered vulnerabilities create workload for defenders 
that is immediate—in the form of security updates and patches 
to apply—and workload that is deferred—as everything built 
and deployed from that point on has to be inoculated against 
the continuously accretive database of known weaknesses. Yet 
this work cannot be perfectly sufficient, as Mirai has shown; the 
capabilities of the attackers can increase even if the defense is 
doing everything right for their organization.

How have you been seeing your workload fluctuate over the past 
year:

Figure 3
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Here, the respondents’ opinions are certainly predictive about 
the future of their own practice, and, from that, one can make 
broader statements about the cybersecurity situation in general. 
This human judgment seems better than any sensor network-
driven machine learning could be expected to deliver. Of course, 
sometimes it is not a question of data but rather of the handling 
of data, such as this fourth example:

Information sharing with the government, even after large 
incidents, is an activity fraught with anxiety and stress. Differ-
ential reporting by the victim targets means the data that public 
authorities have is not useful for rational planning. Some target 
entities will report; some will not. Has the time come to have an 
escalation rule for sharing of information about attacks? 

We do this with different rationales in some contexts, such 
as when we require prompt and detailed attack information 
from defense contractors to Pentagon authorities, when state 
laws force disclosure if a customer’s credit card or other per-
sonal information is exposed, and when the SEC requires the 
announcement of security breaches that materially impair cor-
porate operations. Has the time come for a mandatory reporting 
regime for all events that are above some threshold of severity?

Figure 4

Collectively, these questions illustrate what shared, expert opin-
ion can mean, and it seems unlikely that algorithms would take 
over these areas of informed choice, but 10 years ago we would 
not have guessed what algorithms have taken over today either. 
While we can (and will) ask the ICS respondents about the role 
of automation in the near-term future, our imagination may 
not be up to the task of asking the right questions. By all means, 
make suggestions as to what questions we should ask. If you are, 
yourself, a front-line security practitioner, then please consider 
becoming one of our respondents (it will cost you 10 minutes a 
month, and you will see a lot of analysis that we reserve for our 
respondents—though we’ll happily provide a sample to help you 
make a decision).

Nevertheless, at the end of the day, the biggest question is 
whether a human in the loop is a failsafe or a liability. We favor 
the “failsafe” view, but to keep and maintain that a human in the 
loop is a failsafe, they have to actually be in the loop. Being an 
observer of algorithms that don’t ask (permission) and don’t tell 
(what it is they are doing) won’t keep the practitioner in fighting 
trim. There’s no such thing as a free lunch…
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/dev/random
Offensive Computing

R O B E R T  G .  F E R R E L L

Now that state-sponsored retaliatory computer operations are appar-
ently a thing, this seems like a great time to jump on that self-driv-
ing full-auto bandwagon. But forget boring stuff like reconnoitering 

port scans and penetration probes prior to attacking; let’s use the nuke option 
on those nefarious puppers from the get-go and move on with our lives, what 
do you say? I stock an entire arsenal of potent ordnance for taking down the 
cyber bad guys, be they corporate, governmental, or just private mercenaries 
with a yen for easy money. 

Most of the “best defense is a strong offense” proposals I’ve seen involve fighting fire with 
fire. Tedious and predictable, my young apprentice. The way to fight fire is to bury it under 
a deluge of sloppy wet stuff. As a longtime purveyor of same, here are some of my suggested 
tactical instruments of vengeance, both offensive and defensive, along with the philosophi-
cal statement you’ll be making with each. All are dedicated to the proposition that protecting 
one’s information assets can also count as entertainment.

Chaos in the Middle: intercept network traffic heading to and from your enemy and attach 
random headers and payloads derived from Pinterest or /r/SubredditSimulator. Then sit back 
and watch their logs fill up.

Message it sends: Hr r yr lulz.

Matrix Honeypot: divert hostile traffic into a honeypot universe where all of the attackers’ 
initial strategic goals seem to be met perfectly. Once they’re hooked, create increasingly more 
complex and comprehensive layers of alternate reality until they no longer have any objec-
tive means by which to differentiate that virtual world from the real one. They will now be 
trapped forever. Not recommended for teams on a budget, as the necessary pecuniary outlay 
can approach infinity over time.

Message it sends: Take two blue pills and WhatsApp me in the morning.

Grade School Playground: a bot that replies to every email, text message, or other enemy 
communication with, “I know you are, but what am I?” Attach optional raspberry.mp3, nyah-
nyah.mp3 to complete the experience.

Message it sends: It’s always recess somewhere.

Reverse Ransomware: threaten to break the enemy’s encryption with your supercomputer 
and supply the key to their victims for free unless the crooks pay half the ransoms to you. Not 
so much an attack as a business model.

Message it sends: Thank you for your patronage.

Mirror, Mirror: automatically reflect every packet sent by an attacker in FILO order. 
Essentially a variation on the Grade School Playground method (cf.). Economical because it 
only requires a modified network appliance. Will not make you popular with your upstream 
neighbors, though, and renders the node pretty much useless for getting any real work done.
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Message it sends: We’re sorry, the number you have reached is 
not in service.

Blast Phishing: Perform both passive and active phishing-based 
reconnaissance on the target to establish patterns, methods, and 
locations. Once all the necessary intelligence has been gathered, 
launch absolutely everything in your malware database simulta-
neously along all mapped hostile vectors. Messy, but effective if 
you don’t want any survivors. A healthy chunk of bandwidth is a 
must here.

Message it sends: Today is a good day to die().

Hydra Hail: Invest in sufficient infrastructure to spawn virtu-
ally endless numbers of cloned virtual machines on isolated 
VLANs. Every time the enemy attacks, take the affected virtual 
presence down instantly and plop another clone in its place. 
Rinse and repeat ad infinitum until the attacker gives up in frus-
tration. Have a beer to celebrate your victory.

Message it sends: Sticks and stones may break my bones, but I 
have a heck of a lot of bones.

Catatonia: Trace the IP address of the attacker and forward 
every known cat video to it, effectively purr-alyzing the hostile 
network under a dense blanket of furry cuteness.

Message it sends: Get some of this meow up in your grill, 
evildoer.

And finally,

Utter Acquiescence: powers down the entire network and reverts 
everyone to slide rules and typewriters. See also RFC 1149.

Message it sends: We have a constitutionally mandated Postal 
Service for a reason.

If you don’t know how to work a slide rule, I’ll be happy to teach 
you, although admittedly I mostly used mine as a straightedge 
for drawing castles on my notebooks. I still have my Pickett 
N902-ES from high school, along with my grad school-era 
Brother Professional CX-90 daisy wheel electric typewriter. 
They’ve never been compromised, although I did misplace my 
italic daisy wheel once.

As for me, I do all of my mission-critical computing on my trusty 
Osborne 1 these days and thus I’m not too vulnerable to attack 
unless you’re into crafting exploits for CP/M 2.2. And mailing 
them to me on a 5.25” disk.
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REST API Design Rulebook
Mark Massé
O’Reilly Media Inc., 2012, 94 pages
ISBN 978-1-449-31050-9

You would be right in assuming that any book with the word 
“rulebook” in the title would express an opinion. Massé certainly 
doesn’t hold back, but that seems to be a trait of REST advocates 
in general.

At under 100 pages, Massé’s book packs quite a lot into a little 
space. It is really presented as a list of one-line rule statements 
with a matching brief explanation. Each is meant to address 
one of the common questions raised when designing a REST 
protocol.

The first three sections treat the interactions between the client 
and the server, detailing how each uses the HTTP protocol fea-
tures to communicate and interpret the intent of the other. The 
fourth section describes how to add metadata that allows the 
self-discovery that is characteristic of REST protocols.

I was struck by how little the rules had to do with the formatting 
of the content. The only rules that deal directly with content are 
those that state that the payload must use a standard structured 
data format such as JSON or XML. The rest of the rules describe 
how to make use of the simple CRUD (Create, Read, Update, 
Delete) operations that HTTP offers to define the more complex 
interactions that a rich application protocol needs.

Massé notes that the contents of these first four sections are 
based largely on consensus reached over time among the devel-
oper community. In the final two sections, he discusses rules for 
data representation and for client-side concerns like authentica-
tion and applications with multi-origin data sources. The word-
ing of the rules here changes from “must” to “should.” Massé 
indicates that these are his answers to the questions that remain 
open, based on his experience.

This book was written in 2011, more than a decade after the pub-
lication of Roy Fielding’s PhD dissertation in 2000. Since then 
REST has come to be the preeminent model for client-server 
communications, replacing proprietary binary models and 
earlier Web standards like SOAP and XML-RPC. While many 
services claim to conform to the REST conventions, a close read 
of this book will show that few really meet the full criteria.

When thinking about REST, people often focus on representing 
the payload content using a structured data format. Many forget 
that a major tenet of REST is that the relationships between the 

different data objects must be included in the query responses. 
Links and relationships must be discoverable by the client 
without the need to code assumptions into the client-side logic. 
Defining and presenting these relationships in the metadata of 
a REST response requires a lot of thought and work on the part 
of the server writer. Many applications that claim to be RESTful 
take shortcuts on the protocol design, coding the relationships 
into the client.

Massé correctly focuses on how to define and present these rela-
tionships. He understands that simply representing the content 
as structured data is the easy part. He gives very little space 
to how to write the code, though he does include a simple app 
example in the final chapter.

In the end it may not matter if developers strictly adhere to the 
REST guidelines, so long as the code works, but I suspect much 
code could be improved after a few minutes spent with the 
Rulebook.

CoreOS in Action
Matt Bailey
Manning Publications Inc., 2017, 178 pages
ISBN 978-1-61729-374-0

In the grand migration to software containers, there is a largely 
overlooked component that I think deserves more attention: the 
container host. The conventional OS distribution design is based 
on old assumptions about how applications work and how they 
will use OS underneath. Container hosts are designed with the 
containerized application in mind: a minimal Linux install on a 
read-only file system.

CoreOS began as a kind of customizable single-application 
host distribution. Originally, CoreOS was designed for building 
an image for each service as if it were an embedded system or 
unikernel. The build system is based on Gentoo, and the code 
base began as a variant of ChromeOS.

CoreOS itself didn’t get much attention until the advent of 
Docker and the growth of containers. Creating custom images 
with embedded applications required skill and specialized 
knowledge, and there was little incentive for developers to 
focus on those skills. Docker changed that by creating an easy, 
consistent model for creating single-purpose images, with the 
advantage of portability and a distribution infrastructure, the 
container registry. Once CoreOS included the Docker runtime, it 
became an ideal place to create distributed container services.



www.usenix.org  FA L L 20 17  VO L .  42 ,  N O.  3 75

BOOKS

Bailey packs a lot of information and many examples into a 
slim book. In some ways this reflects what CoreOS is good at: 
minimizing complexity (at least in some realms). The whole idea 
of container hosts is that you don’t administer them in the same 
way that you would a conventional host: you can’t install pack-
ages. Persistent storage must come from a shared resource. This 
doesn’t mean that you don’t need to manage them or that your 
applications will magically appear and work. For a sysadmin, 
using container hosts means unlearning and relearning a lot.

The examples include short bits to create the container images, 
to deploy CoreOS itself, and to configure the services that bind 
the individual hosts into a cluster. I wish Bailey had spent a little 
more time on the theory and internals of these services: etcd, 
fleet, flannel. The code fragments and the callouts that explain 
these services are clear and well presented, but a bit more on 
how they work might make these samples easier to adapt to the 
reader’s own purposes.

Bailey asks a lot of his readers because adopting CoreOS requires 
thinking about applications in new ways. Only the first third of 
the book is given to actually installing the OS and configuring 
the clustering services. In the second section, Bailey shows how 
to build applications that will be suited to the container environ-
ment. He does address legacy applications, but leaves it implicit 
that they must be decomposed and migrated, not “forklifted” into 
containers.

In the final section, Bailey talks about aspects of using CoreOS 
in production. He shows a CoreOS deployment in AWS using 
Cloud formation to describe the configuration and topology. He 
closes with a brief discussion of what might be a taboo subject: 
a container designed to allow the sysadmin access to the tools 
they are used to having on a conventional host.

Container hosts are still in the shadows of the containers 
themselves, but I think they should be given more light. CoreOS 
in Action shines a light on the foundation. This might even be a 
good path for introducing containers themselves.

Thanks to Our
USENIX Supporters

USENIX Patrons
Facebook Google Microsoft  NetApp

USENIX Benefactors
Oracle VMware

USENIX Partners
Booking.com CanStockPhoto Cisco Meraki Fotosearch

Open Access Publishing Partner
PeerJ



AMERICAS
SANTA CLARA, CA, USA

MARCH 27–29, 2018

ASIA/AUSTRALIA
SINGAPORE

JUNE 6–8, 2018

EUROPE/MIDDLE EAST/AFRICA
DUSSELDORF, GERMANY

AUGUST 29–31, 2018

srecon.usenix.org

SAVE THE DATES! Announcement and Preliminary Call for Papers www.usenix.org/atc18/cfp

July 11–13, 2018 • Boston, MA, USA

2018 USENIX Annual Technical 
Conference 

Important Dates
• Complete paper submissions due:  Tuesday, February 6, 2018

• Notification to authors: Wednesday, April 18, 2018

• Final papers due: Thursday, May 31, 2018

Conference Organizers
Program Co-Chairs
Haryadi Gunawi, University of Chicago
Benjamin  Reed, Facebook

Program Committee
TBA

Overview
Authors are invited to submit original and innovative papers to the 
Refereed Papers Track of the 2018 USENIX Annual Technical Confer-
ence. We seek high-quality submissions that further the knowledge 
and under standing of modern computing systems with an emphasis 
on implementations and experimental results. We encourage papers 
that break new ground, present insightful results based on practical 
experience with computer systems, or are important, independent 
reproductions/refutations of the experimental results of prior work. 
USENIX ATC ‘18 has a broad scope, and specific areas of interest 
include (but are not limited to):

• Architectural interaction

• Big data infrastructure

• Cloud and edge computing

• Distributed and parallel systems

• Embedded systems

• Energy/power management

• File and storage systems

• Internet of Things

• Machine learning and systems interactions

• Mobile and wireless

• Networking (WAN, LAN, and datacenter) and network services

• Operating systems

• Reliability, availability, and scalability

• Security, privacy, and trust

• System and network management and troubleshooting

• Usage studies and workload characterization

• Virtualization

USENIX ATC ‘18 is especially interested in papers broadly focusing 
on practical techniques for building better software systems: ideas 
or approaches that provide practical solutions to significant issues 
facing practitioners. This includes all aspects of system development: 
techniques for developing systems software; analyzing programs and 
finding bugs; making systems more efficient, secure, and reliable; and 
deploying systems and auditing their security.

Reports of deployment experience and operations-oriented stud-
ies, as well as other work that studies software artifacts, introduces 
new data sets of practical interest, or impacts the implementation of 
software components in areas of active interest to the community are 
well-suited for the conference.

The conference seeks both long-format papers consisting of 11 
pages and short-format papers of 5 pages, including footnotes, appen-
dices, figures, and tables, but not including references. Short papers will 
be included in the proceedings and will be presented as normal but in 
sessions with slightly shorter time limits.

Best Paper Awards
Cash prizes will be awarded to the best papers at the conference. Please 
see the USENIX proceedings library for Best Paper winners from previ-
ous years at https://www.usenix.org/conferences/best-papers.

Best of the Rest Track
The USENIX Annual Technical Conference is the senior USENIX forum 
covering the full range of technical research in systems software. Over 
the past two decades, USENIX has added a range of more specialized 
conferences. ATC is proud of the content being published by its sibling 
USENIX conferences and will be bringing a track of encore presentations 
to ATC ‘18. This “Best of the Rest” track will allow attendees to sample 
the full range of systems software research in one forum, offering both 
novel ATC presentations and encore presentations from recent offerings 
of ATC’s sibling conferences.

Sponsored by USENIX, the Advanced Computing Systems Association

Continues on next page  ➛



Announcement and Preliminary Call for Papers www.usenix.org/atc18/cfp

July 11–13, 2018 • Boston, MA, USA

2018 USENIX Annual Technical 
Conference 

Important Dates
• Complete paper submissions due:  Tuesday, February 6, 2018

• Notification to authors: Wednesday, April 18, 2018

• Final papers due: Thursday, May 31, 2018

Conference Organizers
Program Co-Chairs
Haryadi Gunawi, University of Chicago
Benjamin  Reed, Facebook

Program Committee
TBA

Overview
Authors are invited to submit original and innovative papers to the 
Refereed Papers Track of the 2018 USENIX Annual Technical Confer-
ence. We seek high-quality submissions that further the knowledge 
and under standing of modern computing systems with an emphasis 
on implementations and experimental results. We encourage papers 
that break new ground, present insightful results based on practical 
experience with computer systems, or are important, independent 
reproductions/refutations of the experimental results of prior work. 
USENIX ATC ‘18 has a broad scope, and specific areas of interest 
include (but are not limited to):

• Architectural interaction

• Big data infrastructure

• Cloud and edge computing

• Distributed and parallel systems

• Embedded systems

• Energy/power management

• File and storage systems

• Internet of Things

• Machine learning and systems interactions

• Mobile and wireless

• Networking (WAN, LAN, and datacenter) and network services

• Operating systems

• Reliability, availability, and scalability

• Security, privacy, and trust

• System and network management and troubleshooting

• Usage studies and workload characterization

• Virtualization

USENIX ATC ‘18 is especially interested in papers broadly focusing 
on practical techniques for building better software systems: ideas 
or approaches that provide practical solutions to significant issues 
facing practitioners. This includes all aspects of system development: 
techniques for developing systems software; analyzing programs and 
finding bugs; making systems more efficient, secure, and reliable; and 
deploying systems and auditing their security.

Reports of deployment experience and operations-oriented stud-
ies, as well as other work that studies software artifacts, introduces 
new data sets of practical interest, or impacts the implementation of 
software components in areas of active interest to the community are 
well-suited for the conference.

The conference seeks both long-format papers consisting of 11 
pages and short-format papers of 5 pages, including footnotes, appen-
dices, figures, and tables, but not including references. Short papers will 
be included in the proceedings and will be presented as normal but in 
sessions with slightly shorter time limits.

Best Paper Awards
Cash prizes will be awarded to the best papers at the conference. Please 
see the USENIX proceedings library for Best Paper winners from previ-
ous years at https://www.usenix.org/conferences/best-papers.

Best of the Rest Track
The USENIX Annual Technical Conference is the senior USENIX forum 
covering the full range of technical research in systems software. Over 
the past two decades, USENIX has added a range of more specialized 
conferences. ATC is proud of the content being published by its sibling 
USENIX conferences and will be bringing a track of encore presentations 
to ATC ‘18. This “Best of the Rest” track will allow attendees to sample 
the full range of systems software research in one forum, offering both 
novel ATC presentations and encore presentations from recent offerings 
of ATC’s sibling conferences.

Sponsored by USENIX, the Advanced Computing Systems Association

Continues on next page  ➛



What to Submit   
Authors are required to submit full papers by the paper submission 
deadline. It is a hard deadline; no extensions will be given. All submissions 
for USENIX ATC ’18 will be electronic, in PDF format, via the Web submis-
sion form on the Call for Papers Web site, www.usenix.org/atc18/cfp.

USENIX ATC ’18 will accept two types of papers:
Full papers: Submitted papers must be no longer than 11 single-

spaced 8.5” x 11” pages, including figures and tables, but not includ-
ing references. You may include any number of pages for references. 
Papers should be formatted in 2 columns, using 10-point type on 
12-point leading, in a 6.5” x 9” text block. Figures and tables must be 
large enough to be legible when printed on 8.5” x 11” paper. Color 
may be used, but the paper should remain readable when printed in 
monochrome. The first page of the paper should include the paper 
title and author name(s); reviewing is single blind. Papers longer than 
11 pages including appendices, but excluding references, or violating 
formatting specifications will not be reviewed. In a good paper, the 
authors will have:

• Addressed a significant problem

• Devised an interesting and practical solution or provided an im-
portant, independent, and experimental reproduction/refutation 
of prior solutions

• Clearly described what they have and have not implemented

• Demonstrated the benefits of their solution

• Articulated the advances beyond previous work

• Drawn appropriate conclusions

Short papers: Authors with a contribution for which a full paper is not 
appropriate may submit short papers of at most 5 pages, not including 
references, with the same formatting guidelines as full papers. You may 
include any number of pages for references. Examples of short paper 
contributions include:

• Original or unconventional ideas at a preliminary stage of 
development

• The presentation of interesting results that do not require a full-
length paper, such as negative results or experimental validation

• Advocacy of a controversial position or fresh approach

For more details on the submission process and for templates to use 
with LaTeX and Word, authors should consult the detailed submission 
requirements at https://www.usenix.org/conference/atc18/requirements 
-authors. Specific questions about submissions may be sent to 
atc18chairs@usenix.org.

By default, all papers will be made available online to registered 
attendees before the conference. If your accepted paper should not be 
published prior to the event, please notify production@usenix.org. In 
any case, the papers will be available online to everyone beginning on 
the first day of the conference, July 11, 2018.

Papers accompanied by nondisclosure agreement forms will not be 
considered. Accepted submissions will be treated as confidential prior to 
publication on the USENIX ATC ’18 Web site; rejected submissions will be 
permanently treated as confidential.

Simultaneous submission of the same work to multiple venues, sub-
mission of previously published work, or plagiarism constitutes dishon-
esty or fraud. USENIX, like other scientific and technical con ferences and 
journals, prohibits these practices and may take action against authors 
who have committed them. See the USENIX Conference Submissions 
Policy at www.usenix.org/conferences/submissions-policy for details.

Note that the above does not preclude the submission of a regular 
full paper that overlaps with a previous short paper or workshop paper. 
However, any submission that derives from an earlier paper must pro-
vide a significant new contribution (for example, by providing a more 
complete evaluation), and must explicitly mention the contributions 
of the submission over the earlier paper. If you have questions, contact 
your program co-chairs, atc18chairs@usenix.org, or the USENIX office, 
submissionspolicy@usenix.org.

Authors will be notified of paper acceptance or rejection by April 21, 
2018. Acceptance will typically be conditional, subject to shepherding 
by a program committee member.

Poster Session
The poster session is an excellent forum to discuss ideas and get useful 
feedback from the community. Posters and demos for the poster ses-
sion will be selected from all the full paper and short paper submissions 
by the poster session chair. If you do not want your submissions to be 
considered for the poster session, please specify on the submission 
Web site.

Program and Registration Information
Complete program and registration information will be available in 
April 2018 on the conference Web site.

Rev. 7/6/17



What to Submit   
Authors are required to submit full papers by the paper submission 
deadline. It is a hard deadline; no extensions will be given. All submissions 
for USENIX ATC ’18 will be electronic, in PDF format, via the Web submis-
sion form on the Call for Papers Web site, www.usenix.org/atc18/cfp.

USENIX ATC ’18 will accept two types of papers:
Full papers: Submitted papers must be no longer than 11 single-

spaced 8.5” x 11” pages, including figures and tables, but not includ-
ing references. You may include any number of pages for references. 
Papers should be formatted in 2 columns, using 10-point type on 
12-point leading, in a 6.5” x 9” text block. Figures and tables must be 
large enough to be legible when printed on 8.5” x 11” paper. Color 
may be used, but the paper should remain readable when printed in 
monochrome. The first page of the paper should include the paper 
title and author name(s); reviewing is single blind. Papers longer than 
11 pages including appendices, but excluding references, or violating 
formatting specifications will not be reviewed. In a good paper, the 
authors will have:

• Addressed a significant problem

• Devised an interesting and practical solution or provided an im-
portant, independent, and experimental reproduction/refutation 
of prior solutions

• Clearly described what they have and have not implemented

• Demonstrated the benefits of their solution

• Articulated the advances beyond previous work

• Drawn appropriate conclusions

Short papers: Authors with a contribution for which a full paper is not 
appropriate may submit short papers of at most 5 pages, not including 
references, with the same formatting guidelines as full papers. You may 
include any number of pages for references. Examples of short paper 
contributions include:

• Original or unconventional ideas at a preliminary stage of 
development

• The presentation of interesting results that do not require a full-
length paper, such as negative results or experimental validation

• Advocacy of a controversial position or fresh approach

For more details on the submission process and for templates to use 
with LaTeX and Word, authors should consult the detailed submission 
requirements at https://www.usenix.org/conference/atc18/requirements 
-authors. Specific questions about submissions may be sent to 
atc18chairs@usenix.org.

By default, all papers will be made available online to registered 
attendees before the conference. If your accepted paper should not be 
published prior to the event, please notify production@usenix.org. In 
any case, the papers will be available online to everyone beginning on 
the first day of the conference, July 11, 2018.

Papers accompanied by nondisclosure agreement forms will not be 
considered. Accepted submissions will be treated as confidential prior to 
publication on the USENIX ATC ’18 Web site; rejected submissions will be 
permanently treated as confidential.

Simultaneous submission of the same work to multiple venues, sub-
mission of previously published work, or plagiarism constitutes dishon-
esty or fraud. USENIX, like other scientific and technical con ferences and 
journals, prohibits these practices and may take action against authors 
who have committed them. See the USENIX Conference Submissions 
Policy at www.usenix.org/conferences/submissions-policy for details.

Note that the above does not preclude the submission of a regular 
full paper that overlaps with a previous short paper or workshop paper. 
However, any submission that derives from an earlier paper must pro-
vide a significant new contribution (for example, by providing a more 
complete evaluation), and must explicitly mention the contributions 
of the submission over the earlier paper. If you have questions, contact 
your program co-chairs, atc18chairs@usenix.org, or the USENIX office, 
submissionspolicy@usenix.org.

Authors will be notified of paper acceptance or rejection by April 21, 
2018. Acceptance will typically be conditional, subject to shepherding 
by a program committee member.

Poster Session
The poster session is an excellent forum to discuss ideas and get useful 
feedback from the community. Posters and demos for the poster ses-
sion will be selected from all the full paper and short paper submissions 
by the poster session chair. If you do not want your submissions to be 
considered for the poster session, please specify on the submission 
Web site.

Program and Registration Information
Complete program and registration information will be available in 
April 2018 on the conference Web site.

Rev. 7/6/17

FAST ’18 brings together storage-system researchers and practitioners to explore new directions in the 

design, implementation, evaluation, and deployment of storage systems. The program committee will 

 interpret “storage systems” broadly; everything from low-level storage devices to information manage-

ment is of interest. The conference will consist of technical presentations, including refereed papers, 

Work-in-Progress (WiP) reports, poster sessions, and tutorials.

The full program and registration will be available in December 2017.

www.usenix.org/fast18

Save the Date!

February 12–15, 2018 • Oakland, CA, USA

16th USENIX Conference on 
File and Storage Technologies18

NSDI ’18 focuses on the design principles, implementation, and practical evaluation of networked and 

distributed systems. Our goal is to bring together researchers from across the networking and systems 

community to foster a broad approach to addressing overlapping research challenges.

The full program and registration will be available in January 2018.

www.usenix.org/nsdi18

April 9–11, 2018 • Renton, WA, USA

15th USENIX Symposium on Networked Systems
Design and Implementation18

Save the Date!



18 13th USENIX Symposium on Operating Systems 
Design and Implementation

October 8–10, 2018 • Carlsbad, CA, USA 
OSDI brings together professionals from academic and industrial backgrounds in what has become a 

premier forum for discussing the design, implementation, and implications of systems software. The 

OSDI Symposium emphasizes innovative research as well as quantifi ed or insightful experiences in 

systems design and implementation.

Program Co-Chairs:
Andrea Arpaci-Dusseau, University of Wisconsin—Madison

 and Geoff Voelker, University of California, San Diego

The Call for Papers will be available soon.

Save the Date!

www.usenix.org/osdi18

August 15–17, 2018 • Baltimore, MD, USA 

The USENIX Security Symposium brings together researchers, practitioners, system administrators, system 

programmers, and others interested in the latest advances in the security and privacy of computer 

systems and networks. 

Program Co-Chairs
William Enck, North Carolina State University,

and Adrienne Porter Felt, Google

Submissions due February 8, 2018

The Call for Papers will be available soon.

Save the Date!

www.usenix.org/sec18





Scaling the Future

Oct 29 – Nov 3, 2017
San Francisco

Register by October 9 and save!
usenix.org/lisa17

LISA is the premier IT operations conference where systems engineers, 
operations professionals, and academic researchers share real-world 
knowledge about designing, building, and maintaining the critical systems 
of our interconnected world. 

PLENARY SPEAKERS:

• Jamesha Fisher, GitHub
• Jess Frazelle, Google
• Jon Kuroda, University of California, Berkeley

The complete program is now available.

Sponsored by the USENIX Association

USENIX Association
2560 Ninth Street, Suite 215
Berkeley, CA 94710

POSTMASTER
Send Address Changes to ;login:
2560 Ninth Street, Suite 215
Berkeley, CA 94710

PERIODICALS POSTAGE
PAID

AT BERKELEY, CALIFORNIA
AND ADDITIONAL OFFICES


	Cover
	Contents
	Musings
	Theory of Mind
	Rik Farrow


	VFP
	A Virtual Switch Platform for Host SDN in the Public Cloud
	Daniel Firestone


	Linux Containers for Fun and Profit in HPC
	Reid Priedhorsky and Tim Randles

	Interview with James Bottomley
	Rik Farrow

	Knockoff
	Cheap Versions in the Cloud
	Xianzheng Dou, Peter M. Chen, and Jason Flinn


	Passive Realtime Datacenter Fault Detection and Localization
	Arjun Roy, Hongyi Zeng, Jasmeet Bagga, and Alex C. Snoeren

	Resourceful
	Monitoring under the Microscope
	Lucian Carata, Oliver R. A. Chick, and Ripduman Sohan


	BeyondCorp 5
	Safe Parsers in Rust
	Changing the World Step by Step
	Geoffroy Couprie and Pierre Chifflier


	Quick Testing
	David Beazley

	Practical Perl Tools
	Come Fly With Me
	David Blank-Edelman


	iVoyeur
	Stacks and Piles 
	Dave Josephsen


	Golang
	Creating and Using Certificates with TLS
	Chris McEniry


	Flipping Out in Computer Science
	Margo Seltzer

	For Good Measure
	When Opinion Is Data
	Dan Geer


	/dev/random
	Offensive Computing
	Robert G. Ferrell


	Book Reviews
	Mark Lamourine




