
;login:
F A L L 2 0 1 7 V O L . 4 2 , N O . 3

Columns
Using Testing While Writing Python Scripts
Dave Beazley

Finding Adjacent Airports Using Perl Modules
David N. Blank-Edelman

Sparkviz: A Quick Visualization Tool
Dave Josephsen

Adding TLS to Golang Programs
Chris McEniry

Using Flipping to Reach More Students
Margo Seltzer

Index of Cyber Security
Dan Geer

& CharlieCloud: Containers for HPC
Reid Priedhorsky and Tim Randles

& Resourceful: Kernel Measurements
within Applications
Lucian Carata, Oliver R. A. Chick, and
Ripduman Sohan

& Migrating Users to BeyondCorp
Victor Escobedo, Betsy Beyer, Max Saltonstall,
and Filip Żyźniewski

& Interview with James Bottomley

U P C O M I N G E V E N T S

USENIX Open Access Policy
USENIX is the fi rst computing association to off er free and open access to all of our conferences
proceedings and videos. We stand by our mission to foster excellence and innovation while
 supporting research with a practical bias. Your membership fees play a major role in making
this endeavor successful.

Please help us support open access. Renew your USENIX membership and ask your colleagues
to join or renew today!

www.usenix.org/membership

LISA17
October 29–November 3, 2017, San Francisco, CA, USA
www.usenix.org/lisa17

Enigma 2018
January 16–18, 2018, Santa Clara, CA, USA
www.usenix.org/enigma2018

FAST ’18: 16th USENIX Conference on File and
Storage Technologies

February 12–15, 2018, Oakland, CA, USA
Submissions due September 28, 2017
www.usenix.org/fast18

SREcon18 Americas
March 27–29, 2018, Santa Clara, CA, USA
www.usenix.org/srecon18americas

NSDI ’18: 15th USENIX Symposium on Networked
Systems Design and Implementation

April 9–11, 2018, Renton, WA, USA
Paper titles and abstracts due September 18, 2017
www.usenix.org/nsdi18

SREcon18 Asia/Australia
June 6–8, 2018, Singapore
www.usenix.org/srecon18asia

USENIX ATC ’18: 2018 USENIX Annual Technical
Conference

July 11–13, 2018, Boston, MA, USA
Submissions due: February 6, 2018
www.usenix.org/atc18

USENIX Security ’18: 27th USENIX Security
Symposium

August 15–17, 2018, Baltimore, MD, USA
Submissions due February 8, 2018

Co-located with USENIX Security ‘18
SOUPS 2018: Fourteenth Symposium on Usable
Privacy and Security
August 12–14, 2018

SREcon18 Europe/Middle East/Africa
August 29–31, 2018, Dusseldorf, Germany
www.usenix.org/srecon18europe

OSDI ’18: 13th USENIX Symposium on
Operating Systems Design and
Implementation

October 8–10, 2018, Carlsbad, CA, USA
www.usenix.org/osdi18

www.usenix.org/facebook

twitter.com/usenix

www.usenix.org/youtube

www.usenix.org/linkedin

www.usenix.org/gplus

E D I T O R
Rik Farrow
rik@usenix.org

M A N A G I N G E D I T O R
Michele Nelson
michele@usenix.org

C O P Y E D I T O R S
Steve Gilmartin
Amber Ankerholz

P R O D U C T I O N
Arnold Gatilao
Jasmine Murcia

T Y P E S E T T E R
Star Type
startype@comcast.net

U S E N I X A S S O C I AT I O N
2560 Ninth Street, Suite 215
Berkeley, California 94710
Phone: (510) 528-8649
FAX: (510) 548-5738

www.usenix.org

;login: is the official magazine of the USENIX
Association. ;login: (ISSN 1044-6397)
is published quarterly by the USENIX
Association, 2560 Ninth Street, Suite 215,
 Berkeley, CA 94710.

$90 of each member’s annual dues is for
a subscription to ;login:. Subscriptions for
non members are $90 per year. Periodicals
postage paid at Berkeley, CA, and additional
mailing offices.

POSTMASTER: Send address changes to
;login:, USENIX Association, 2560 Ninth Street,
Suite 215, Berkeley, CA 94710.

©2017 USENIX Association
USENIX is a registered trademark of the
USENIX Association. Many of the designa-
tions used by manufacturers and sellers
to distinguish their products are claimed
as trademarks. USENIX acknowledges all
trademarks herein. Where those desig-
nations appear in this publication and
USENIX is aware of a trademark claim,
the designations have been printed in caps
or initial caps.

FA L L 2 0 1 7 V O L . 4 2 , N O . 3

E D I T O R I A L
2 Musings: Theory of Mind Rik Farrow

C L O U D
6 VFP: A Virtual Switch Platform for Host SDN

in the Public Cloud Daniel Firestone

12 Linux Containers for Fun and Profit in HPC
Reid Priedhorsky and Tim Randles

17 Interview with James Bottomley Rik Farrow

20 Knockoff: Cheap Versions in the Cloud
Xianzheng Dou, Peter M. Chen, and Jason Flinn

S Y S A D M I N
25 Passive Realtime Datacenter Fault Detection and Localization

Arjun Roy, Hongyi Zeng, Jasmeet Bagga, and Alex C. Snoeren

31 Resourceful: Monitoring under the Microscope
Lucian Carata, Oliver R. A. Chick, and Ripduman Sohan

S E C U R I T Y
38 BeyondCorp 5: The User Experience

Victor Escobedo, Betsy Beyer, Max Saltonstall, and Filip Żyźniewski

44 Safe Parsers in Rust: Changing the World Step by Step
Geoffroy Couprie and Pierre Chifflier

C O L U M N S
49 Quick Testing David Beazley

53 Practical Perl Tools: Come Fly With Me David N. Blank-Edelman

57 iVoyeur: Stacks and Piles Dave Josephsen

60 Golang: Creating and Using Certificates with TLS Chris McEniry

66 Flipping Out in Computer Science Margo Seltzer

69 For Good Measure: When Opinion Is Data Dan Geer

72 /dev/random: Offensive Computing Robert G. Ferrell

B O O K S
74 Book Reviews Mark Lamourine

2  FA L L 20 17 VO L . 42 , N O. 3 www.usenix.org

EDITORIALMusings
Theory of Mind

R I K F A R R O W

Rik is the editor of ;login:.
rik@usenix.org I am going to depart from the realm of computer science briefly, because

I want to discuss a problem which is rampant in software design and
papers. The problem involves the Theory of Mind (ToM), the “ability to

attribute mental states—beliefs, intents, desires, pretending, knowledge—
to oneself and others” [1]. But while ToM generally refers to interpersonal
relations or philosophy [2], I am going to focus on the part about attributing
knowledge to the people who will use your software or read your papers.

I was talking to an old friend, who had been complaining about his son. My friend said that,
unlike his son, he just decided one day that he would focus on work and become responsible.
If he could do it, so could his son.

I found myself suggesting that my friend look up Theory of Mind. Just because my friend could
resolve to buckle down doesn’t mean that other people would, or could, behave just like he did.

I remembered ToM from college psychology classes from many years ago. Today, deficiencies
in ToM are now associated with autism among other disorders. That really isn’t what I am
referring to. Rather, thinking that because you did or know something, so should anyone else,
just seemed a bit, well, not quite sane to me.

Theory of Mind and CS
Where ToM and CS intersect is a bit different, having more to do with culture. As an editor,
I am constantly running into this, as I read articles or papers where the authors assume that
you have the same background and understand the same jargon that they do. After all, all the
people they work with speak that jargon and have the same background information, right?

I’ve written an editorial about the importance of being able to write clearly [3], and ignoring
ToM can mean rejected papers. You really shouldn’t assume that people will just accept your
brilliant research if you can’t articulate it clearly.

I wrote a column about a software design issue many years ago [4] that dealt with ToM, but
without saying so directly. I wrote that column because I had observed that most people had a
difficult time with state machines. I found I could set friends’ digital watches for them, even
though they couldn’t, because I understood the watches (and their two or three buttons) had
different purposes depending on their current state. I’ve since discovered that clocks with
four buttons, and no manuals, have so many states that even I have trouble setting them.

Today we get devices, such as smartphones, complete with state machines implementing the
user interface. There are no manuals—what you need to do is find someone who has already
communicated with someone who knows how the damn things work. Of course, the next
update means that what you learned no longer works, and you need to make another social
connection to understand the new interface. And speaking of overloaded interfaces, the most
popular smartphone uses a single button that has a multitude of different purposes, depend-
ing on the software’s current state. What an amazing design—for engineers.

www.usenix.org FA L L 20 17 VO L . 42 , N O. 3 3

EDITORIAL
Musings: Theory of Mind

Consider how this works in the place where the new interface
gets developed. Someone comes up with some new UI widget
and shows a coworker how to use it. The knowledge gets spread
to others, and if the widget is compelling enough, it appears in
the public version. But only insiders initially know how to make
it work. It’s like building systems where every new feature is an
Easter egg [5].

The Lineup
We have many articles related to cloud in this issue. We lead
off with an article explaining the design goals and implementa-
tion of VFP, Microsoft’s very different version of vswitch. I met
Daniel Firestone during NSDI ’17, where he presented the only
industry paper, one which provides more implementation details
about VFP.

Reid Priedhorsky and Tim Randles, of Los Alamos National Lab-
oratories, describe their open source solution, Charliecloud. They
determined that a lighter-weight solution than Docker would
work best for HPC. To help maintain a familiar interface, con-
tainers are still built using Docker but are run via Charliecloud.
Their article also helped me understand more about containers.

I interviewed James Bottomley. James has written about con-
tainers versus VMs for ;login: [6], and I wanted to probe his view-
points further now that he has changed jobs. James explains a
lot more about the difference between containers and VMs, the
Linux system calls used to set containers up, and why containers
haven’t been embraced by many vendors.

We have another article from NSDI ’17. “Knockoff,” by Dou,
Chen, and Flinn, examines the tradeoff between recomputing
data in the cloud and the cost of copying data. Hint: oftentimes,
recomputing is both cheaper and faster.

In the system administration and SRE section, we have two
articles. Carata, Chick, and Sohan describe Resourceful, a tool
they developed for use in OS research at Cambridge and have
now open sourced. You use the Resourceful API to instrument
apps, allowing you to produce performance data from the kernel
about very specific activities relating just to portions of an app.

Roy et al. explain how they instrumented servers and network
hardware at Facebook and discovered how they could uncover
subtle network problems faster than the current monitoring tools
used. Their approach does rely on having a well-balanced work-
load to start with but should work in any well-tuned environment.

In the security section, Escobedo et al. talk about how the
BeyondCorp team at Google worked to make the transition from
traditional VPNs to BC easier for both current users and new
hires. They share key insights and techniques into how others
might smooth the migration of users to a very different method
of application and server access.

Geoffroy Couprie and Pierre Chifflier reprise work they have
done (and presented at the IEEE LangSec ’17 workshop) about
making existing software more secure. Rather than attempt-
ing the Sisyphean task of rewriting software from scratch, the
authors focus on input parsers, using Rust, with a compiler that
fails to compile dangerous code by accident, and nom, a tool that
makes building safe parsers easier.

David Beazley tells us how surprised he was when he witnessed
a Python programmer writing code concurrently with a testing
framework. David explains how other Python programmers can
take advantage of using a very simple technique to improve writ-
ing even very simple apps.

David Blank-Edelman has another edition of his “Flying Perl”
series. Having read about a programmer who had used Python to
answer the question “Which airports are closest to each other?”
David shows us how to perform the same task in Perl.

Dave Josephsen wanted to show his coworkers the real value
of being able to measure performance. Using Phaser.js for the
visualization portion and Go for the server, Dave quickly threw
together a tool (demonstrated with a YouTube video) that uncov-
ered bottlenecks caused by unbalanced load.

Chris “Mac” McEniry has taken over the task of writing a Go
column. Mac begins by adding TLS support to Kelsey High-
tower’s gls, something Kelsey had wanted to do when he wrote
his column. But, as you will see, adding TLS, while easy in Go,
deserves its own column.

Margo Seltzer has contributed to what we hope will be a new
column on education. Margo has converted her operating system
course at Harvard to use flipping. Flipping involves swapping the
usual way that material is taught, so students begin with self-
study, then work on classroom projects. Instead of lecture, which
can leave many students lost, flipping means that students’ ques-
tions and problems become the focus. By the way, I invite other
teachers to contribute to future versions of the education column.

Dan Geer has written his annual column about the Index of
Cyber Security. The ICS relies on polling security practitioners,
and in turn these professionals get to see how the others in their
field responded to questions about the same issues. Dan shares
the answers about four different questions, including this issue’s
favorite topic, the cloud.

Robert Ferrell has hopped on the strike-back bandwagon. If your
organization is under attack, why wait for government or profes-
sional assistance when you can launch attacks yourself against
the presumed offender? Robert suggests a handful of attack tools
that you can use.

4  FA L L 20 17 VO L . 42 , N O. 3 www.usenix.org

EDITORIAL
Musings: Theory of Mind

Mark Lamourine has two book reviews this month. The first is
about using CoreOS and the second about a short book on REST-
ful standards.

While it was my friend that got me going about the Theory of
Mind, I do believe that it is relevant to most people. Theory of
Mind applies when giving directions: for example, “Turn right
where the Sinclair gas station used to be” relies on local knowl-
edge about something that disappeared long ago. Where I live,
you might still get instructions like “Turn left at the ‘Y’,” an
intersection that is now a circle and hasn’t been a ‘Y’ for over
25 years.

In the worlds of our own specialties, we also have the problem of
insiders’ knowledge. If we intend to communicate effectively, we
can’t assume that our audience knows what we do. If that were
true, why would we even be addressing them? ToM, or rather, the
assumption that others have the same knowledge or beliefs that
we do, is an all-too-easy trap to fall into. Do us all a favor and
write for your audience, not for your own in-group.

References
[1] Wikipedia, “Theory of Mind”: https://en.wikipedia.org/wiki
/Theory_of_mind.

[2] Philosophy and ToM: http://www.iep.utm.edu/theomind/.

[3] R. Farrow, “Musings,” ;login:, vol. 41, no. 2 (Summer 2016):
https://www.usenix.org/system/files/login/articles/login
_summer16_01_farrow.pdf.

[4] R. Farrow, “Musings,” ;login:, vol. 23, no. 5 (August 1998):
http://web.archive.org/web/20111110024139/http://www
.usenix.org/publications/login/1998-8/musings.html.

[5] Definition of Easter egg: http://www.webopedia.com
/TERM/E/easter_egg.html.

[6] J. Bottomley and P. Emelyanov, “Containers,” ;login, vol.
39, no. 5 (October 2014): https://www.usenix.org/system/files
/login/articles/login_1410_02-bottomley.pdf.

XKCD

xkcd.com

https://en.wikipedia.org/wiki/Theory_of_mind
https://en.wikipedia.org/wiki/Theory_of_mind
http://www.iep.utm.edu/theomind/
https://www.usenix.org/system/files/login/articles/login_summer16_01_farrow.pdf
https://www.usenix.org/system/files/login/articles/login_summer16_01_farrow.pdf
http://web.archive.org/web/20111110024139/http://www.usenix.org/publications/login/1998-8/musings.html
http://web.archive.org/web/20111110024139/http://www.usenix.org/publications/login/1998-8/musings.html
http://www.webopedia.com/TERM/E/easter_egg.html
http://www.webopedia.com/TERM/E/easter_egg.html
https://www.usenix.org/system/files/login/articles/login_1410_02-bottomley.pdf

J A N 1 6 –1 8 , 2 0 1 8
SA N TA CL A R A , C A , USA

A USENIX CONFERENCE

enigma.usenix.org

The full program and registration will be available in October.

SECURITY AND PRIVACY IDEAS THAT MATTER
Enigma centers on a single track of engaging talks covering a wide range of topics in

security and privacy. Our goal is to clearly explain emerging threats and defenses in the growing
intersection of society and technology, and to foster an intelligent and informed conversation

within the community and the world. We view diversity as a key enabler for this goal and actively
work to ensure that the Enigma community encourages and welcomes participation from all

employment sectors, racial and ethnic backgrounds, nationalities, and genders.

Enigma is committed to fostering an open, collaborative, and respectful environment.
Enigma and USENIX are also dedicated to open science and open

conversations, and will make all talk media freely available on the USENIX Web site.

PROGR AM CO-CHAIRS

Franziska Roesner,
University of Washington

Bryan Payne,
Netflix

https://www.usenix.org/enigma

6  FA L L 20 17 VO L . 42 , N O. 3 www.usenix.org

CLOUDVFP
A Virtual Switch Platform for Host SDN in the Public Cloud

D A N I E L F I R E S T O N E

Daniel Firestone is the Tech
Lead and Manager for the
Azure Host Networking group
at Microsoft. His team builds
the Azure virtual switch,

which serves as the datapath for Azure
virtual networks, as well as SmartNIC, the
Azure platform for offloading host network
functions to reconfigurable FPGA hardware
and Azure’s RDMA stack. Before Azure, Daniel
did his undergraduate studies at MIT. fstone@
microsoft.com

The Virtual Filtering Platform (VFP) is a cloud-scale programmable
virtual switch providing scalable SDN policy to one of the world’s
largest clouds, Microsoft Azure. It was designed from the ground up

to handle the programmability needs of Azure’s many SDN applications, the
scalability needs of deployments of millions of servers, and to deliver the
fastest virtual networks in the public cloud to Azure’s VMs through hard-
ware offloads.

We, the VFP team, describe here our goals and motivations in building VFP,
VFP’s design, and lessons we learned from production deployments. We also
compare our design with that of other popular host SDN technologies such
as OpenFlow [2] and Open vSwitch (OVS) [3] to show how our constraints
in the public cloud can differ from those of popular open source projects. We
believe these lessons can benefit the SDN community at large. More details
of our design can be found in our recent NSDI paper [1].

The rise of public cloud workloads, such as Amazon Web Services, Microsoft Azure, and
Google Cloud Platform, has created a new scale of datacenter computing, with vendors regu-
larly reporting server counts in the millions. These vendors not only have to provide scale
and high density of VMs to customers, but must provide rich network semantics, such as
private virtual networks with customer supplied address spaces, scalable L4 load balancers,
security groups and ACLs, virtual routing tables, bandwidth metering, QoS, and more. This
policy is sufficiently complex that it isn’t feasible to implement at scale in traditional switch
hardware.

Instead this is often implemented using Software-Defined Networking (SDN) on the VM
hosts, in the virtual switch (vswitch) connecting VMs to the network, which scales well
with the number of servers and allows the physical network to be simple, scalable, and very
fast. As a large public cloud provider, Azure has built its cloud network on host-based SDN
technologies. Much of the focus around SDN in recent years has been on building scalable
and flexible network controllers and services—however, the design of the programmable
vswitch is equally important. It has the dual and often conflicting requirements of a highly
programmable dataplane, with high performance and low overhead. VFP is our solution to
these problems.

Design Goals and Rationale
As a motivating example for VFP, we consider a simple scenario requiring four host policies
used for O(1M) VM hosts in a cloud. Each policy is programmed by its own SDN control-
ler and requires both high performance and SR-IOV offload support: the first is virtual
networking, allowing a customer to define their own private network with their own IP
addresses, despite running on shared multi-tenant infrastructure. Our virtual networks
(VNETs) are based on the design from VL2 [4]. Second is an L4 (TCP/UDP connection)
load balancer based on Ananta [5], which scales by running the load balancing NAT in the
vswitch on end hosts, leaving the in-network load balancers stateless and scalable. We also

www.usenix.org FA L L 20 17 VO L . 42 , N O. 3 7

CLOUD
VFP: A Virtual Switch Platform for Host SDN in the Public Cloud

include a stateful firewall and per-destination traffic metering
for billing.

Originally, we built independent networking drivers for each
of these host functions. As host networking became our main
tool for virtualization policy, we decided to create VFP in 2011
because this model wasn’t scaling. Instead, we created a single
platform based on the Match-Action Table (MAT) model popu-
larized by projects such as OpenFlow.

Original Goals
Our original goals for the VFP project were as follows:

1. Provide a programming model allowing for multiple simultane-
ous, independent network controllers to program network appli-
cations, minimizing cross-controller dependencies.

Implementations of OpenFlow and similar MAT models often
assume a single distributed network controller that owns pro-
gramming the switch. Our experience is that this model doesn’t
fit cloud development of SDN—instead, independent teams often
build new network controllers and agents for those applications.
This model reduces complex dependencies, scales better, and is
more serviceable than adding logic to existing controllers. We
needed a design that not only allows controllers to independently
create and program flow tables, but enforces good layering and
boundaries between them (e.g., disallows rules to have arbitrary
GOTOs to other tables) so that new controllers can be developed
to add functionality without old controllers needing to take their
behavior into account.

2. Provide a MAT programming model capable of using connections
as a base primitive, rather than just packets—stateful rules as
first-class objects.

OpenFlow’s original MAT model derives historically from pro-
gramming switching or routing ASICs, and assumes that packet
classification is stateless. However, we found our controllers
required policies for connections, not just packets—for example,
end users often found it more useful to secure their VMs using
stateful access control lists (ACLs) (e.g., allowing outbound
connections but not inbound ones) rather than stateless ACLs
used in commercial switches. Controllers also needed NAT (e.g.,
Ananta) and other stateful policies. Stateful policy is more trac-
table in soft switches than in ASIC ones, and we believe a MAT
model should take advantage of that.

3. Provide a programming model that allows controllers to define
their own policy and actions, rather than implementing fixed sets
of network policies for predefined scenarios.

Due to limitations of the MAT model provided by OpenFlow
(historically, a limited set of actions, limited rule scalability,
and no table typing), OpenFlow switches such as OVS have
added virtualization functionality outside of the MAT model.
For example, constructing virtual networks is accomplished

via a virtual tunnel endpoint (VTEP) schema in OVSDB, rather
than rules specifying which packets to encapsulate (encap) and
decapsulate (decap) and how to do so.

We prefer instead to base all functionality on the MAT model,
trying to push as much logic as possible into the controllers
while leaving the core dataplane in the vswitch. For instance,
rather than a schema that defines what a VNET is, a VNET can
be implemented using programmable encap and decap rules
matching appropriate conditions, leaving the definition of a
VNET in the controller. We’ve found this greatly reduces the
need to continuously extend the dataplane every time the defini-
tion of a VNET changes.

Later Goals Based on Production Lessons
Based on lessons from initial deployments of VFP, we added the
following goals for VFPv2, a major update in 2013-14, mostly
around serviceability and performance:

1. Provide a serviceability model allowing for frequent deployments
and updates without requiring reboots or interrupting VM con-
nectivity for stateful flows, and strong service monitoring.

As our scale grew dramatically to over O(1M) hosts, more con-
trollers built apps on top of VFP, more engineers joined us, and
we found more demand than ever for frequent updates, both fea-
tures and bug fixes. In Infrastructure as a Service (IaaS) models,
we also found customers were not tolerant of taking downtime
for individual VMs for updates.

2. Provide very high packet rates, even with a large number of
tables and rules, via extensive caching.

Over time we found more and more network controllers being
built as the host SDN model became more popular, and soon
we had deployments with large numbers of flow tables (10+),
each with many rules, reducing performance as packets had to
traverse each table. At the same time, VM density on hosts was
increasing, pushing us from 1G to 10G to 40G and even faster
NICs. We needed to find a way to scale to more policy without
impacting performance and concluded we needed to perform
compilation of flow actions across tables, and use extensive
flow caching such that packets on existing flows would match
precompiled actions without having to traverse tables.

3. Implement an efficient mechanism to offload flow policy to pro-
grammable NICs, without assuming complex rule processing.

As we scaled to 40G+ NICs, we wanted to offload policy to NICs
themselves to support SR-IOV, which lets NICs indicate packets
directly to VMs without going through the host. However, as
controllers created more flow tables with more rules, we con-
cluded that directly offloading those tables would require pro-
hibitively expensive hardware resources for server-class NICs.
Instead we wanted an offload model that would work well with

8  FA L L 20 17 VO L . 42 , N O. 3 www.usenix.org

CLOUD
VFP: A Virtual Switch Platform for Host SDN in the Public Cloud

our precompiled exact-match flows, requiring hardware to only
support a large table of cached flows in DRAM and our associ-
ated action language.

VFP Overview
Figure 1 shows a model of the VFP design, which is described in
subsequent sections. VFP operates on top of Hyper-V’s exten-
sible switch as a packet filter. Its programming model is based
on layers, MATs that support a multi-controller model. VFP’s
packet processor includes a fastpath through Unified Flow
Tables and a classifier used to match rules in the MAT layers.

The core VFP model assumes a switch with multiple ports that
are connected to virtual NICs (VNICs). VFP filters traffic from
a VNIC to the switch, and from the switch to a VNIC. All VFP
policy is attached to a specific port. From the perspective of a
VM with a VNIC attached to a port, ingress traffic to the switch
is considered to be “outbound” traffic from the VM, and egress
traffic from the switch is considered to be “inbound” traffic to
the VM. VFP’s API and its policies are based on the inbound/
outbound model.

Programming Model
VFP’s core programming model is based on a hierarchy of VFP
objects that controllers can create and program to specify their
SDN policy, with ports containing layers of policy made up of
groups of rules.

Layers
VFP divides a port’s policy into layers. Layers are the basic
Match Action Tables that controllers use to specify their policy.
They can be created and managed separately by different con-
trollers. Logically, packets into a VM go through each layer one
by one, matching rules in each based on the state of the packet
after the action performed in the previous layer, with returning
packets coming back in the opposite direction.

Figure 3 shows layers for our SDN deployment example. A VNET
layer creates a customer address (CA) / physical address (PA)
boundary by having encapsulation rules on the outbound path
and decapsulation rules on the inbound path. In addition, an
ACL layer for a stateful firewall sits above our Ananta NAT
layer. The security controller, having placed it here with respect
to those boundaries, knows that it can program policies match-
ing dynamic IP addresses (DIPs) of VMs in CA space. Finally, a
metering layer used for billing sits at the top next to the VM, where
it can meter traffic exactly as the customer in the VM sees it.

Figure 1: Overview of VFP design

Figure 2: VFP objects: layers, groups, and rules

Figure 3: Example VFP layers with boundaries

Figure 4: A layer with a stateful flow

www.usenix.org FA L L 20 17 VO L . 42 , N O. 3 9

CLOUD
VFP: A Virtual Switch Platform for Host SDN in the Public Cloud

Layering also gives us a good model on which to implement
stateful policy. We keep flow state on a layer with a hash table
tracking all TCP, UDP, or RDMA connections in either direction.
When a stateful rule is matched, it creates both an inbound and
outbound flow in the layer flow tables, with appropriate actions
in each direction (e.g., NAT or ACL).

Rules
Rules are the entities that perform actions on matching packets
in the MAT model. Per original goal 3, rules allow the controller
to be as expressive as possible while minimizing fixed policy in
the dataplane. Rules are made up of two parts: a condition list,
specified via a list of conditions, and an action. Example condi-
tions and actions are listed in Figure 5.

Rules can be organized into groups for purposes of doing
transactional update/replace operations, or to split a port into
sub-interfaces (e.g., allow creation of independent policies for
multiple Docker-style containers behind a single port).

Packet Processor and Flow Compiler
A primary innovation in VFPv2 was the introduction of a central
packet processor. We took inspiration from a common design
in network ASIC pipelines e.g.,—parse the relevant metadata
from the packet and act on the metadata rather than on the
packet, only touching the packet at the end of the pipeline once
all decisions have been made. We compile and store flows as we
see packets. Our just-in-time flow compiler includes a parser, an
action language, an engine for manipulating parsed metadata
and actions, and a flow cache.

Unified FlowIDs
VFP’s packet processor begins with parsing. One each of an L2/
L3/L4 header (as defined in Table 1) form a header group, and
the relevant fields of a header group form a single FlowID. The
tuple of all FlowIDs in a packet is a Unified FlowID (UFID)—the
output of the parser.

Header Transpositions
Our action primitives, Header Transpositions (HTs), so called
because they change or shift fields throughout a packet, are a list
of paramaterizable header actions, one for each header. Actions
(defined in Table 2) are to Push a header (add it to the header
stack), Modify a header (change fields within a given header), Pop
a header (remove it from the header stack), or Ignore a header
(pass over it). Table 3 shows examples of a NAT HT used by
Ananta, and encap/decap HTs used by VL2.

Figure 5: Example conditions and actions

Header Parameters

Ethernet (L2) Source MAC, Dest MAC

IP (L3)
Source IP, Dest IP, ToS
(DSCP+ EC)

Encapsulation (L4)
Encapsulation Type Tenant
ID, Entropy (Optional)

TCP/UDP (L4)
Source Port, Dest Port, TCP
Flags (note: does not support
Push/Pop)

Table 2: Header Transposition actions

Table 3: Example Header Transposition

Table 1: Valid parameters for each header type

Action Notes

Pop Remove this header.

Push
Push this header onto the packet. All header
parameters for creating the new header are
specified.

Modify
Modify this header. All header parameters
needed are optional, but at least one is
specified.

Ignore Leave this header as is.

Header NAT Encap Decap Encap+NAT

Outer
Ethernet

Ignore
Push

(SMAC,
DMAC)

Pop
Push (SMAC,

DMAC)

Outer IP
Modify

(SIP, DIP)
Push (SIP,

DIP)
Pop Push (SIP, DIP)

GRE
Not

Present
Push
(Key)

Pop Push (Key)

Inner
Ethernet

Not
Present

Modify
(DMAC)

Ignore Modify (DMAC)

Inner IP
Not

Present
Ignore Ignore

Modify (SIP,
DIP)

TCP/
UDP

Modify
(SPt, DPt)

Ignore Ignore
Modify (SPt,

DPt)

10  FA L L 20 17 VO L . 42 , N O. 3 www.usenix.org

CLOUD
VFP: A Virtual Switch Platform for Host SDN in the Public Cloud

VFP creates an action for a UFID match by composing HTs from
matched rules in each layer. For example, a packet passing the
example Ananta NAT layer and the VL2 VNET encap layer may
end up with the composite Encap+NAT transposition in Table 3.

Unified Flow Tables and Caching
The intuition behind our flow compiler is that the action for a
UFID is relatively stable over the lifetime of a flow—so we can
cache the UFID with the resulting HT from the engine. The
resulting flow table where the compiler caches UFs is called the
Unified Flow Table (UFT).

With the UFT, we segment our datapath into a fastpath and a
slowpath. On the first packet of a TCP flow, we take a slowpath,
running the transposition engine and matching at each layer
against rules. On subsequent packets, VFP takes a fastpath,
matching a unified flow via UFID and applying a transposition
directly. This operation is independent of the layers or rules in
VFP.

Operationalizing VFP
As a production cloud service, VFP’s design must take into
account serviceability, monitoring, and diagnostics. During
update, we first pause the datapath, then detach VFP from the
stack, uninstall VFP (which acts as a loadable kernel driver),
install a new VFP, attach it to the stack, and restart the datapath.
This operation looks like a brief connectivity blip to VMs, while
the NIC stays up. To keep stateful flows alive across updates, we
support serialization and deserialization for all policy and state
in VFP on a port. VFP also supports live migration of VMs. Dur-
ing the blackout time of the migration, the port state is serialized
out of the original host and deserialized on the new host.

VFP implements hundreds of performance counters and flow
statistics, on per port, per layer, and per rule bases, as well as
extensive flow statistics. This information is continuously
uploaded to a central monitoring service, providing dashboards
on which we can monitor flow utilization, drops, connection

resets, and more, either on a VM or aggregated on a cluster/host/
VNET basis. VFP also supports remote debugging and tracing
for rules and policies as part of its diagnostics suite.

Hardware Offloads and Performance
VFP has long used standard stateless offloads (VXLAN/
NVGRE encapsulation, QoS bandwidth caps, and reservations
for ports, etc.) to achieve line rate with SDN policy. But to enable
added goal 3 of full SR-IOV offload and host bypass, we built
logic to directly offload our unified flows. These are exact-match
flows representing each connection on the system, so they can
be implemented in hardware via a large hash table, typically in
inexpensive DRAM. In this model, the first packet of a new flow
goes through software classification to determine the UF, which
is then offloaded.

We’ve used this mechanism to enable SR-IOV in our datacenters
with VFP policy offload on custom FPGA-based SmartNICs
we’ve deployed on all new Azure servers. As a result we’ve seen
bidirectional 32Gbps+ VNICs with near-zero host CPU and
<25μs end-to-end TCP latencies inside a VNET.

Experiences
We have deployed 22 major releases of VFP since 2012. VFP
runs on all Azure servers, powering millions of VMs, petabits
per second of traffic, and providing load balancing for exabytes
of storage, in hundreds of datacenters in over 30 regions across
the world. In addition, we are releasing VFP publicly as part of
Windows Server 2016 for on-premises workloads, as we have
seen it meet all of the major goals listed above in production.

Over six years of developing and supporting VFP, we learned a
number of lessons of value:

◆◆ L4 flow caching is sufficient. We didn’t find a use for mul-
titiered flow caching such as OVS megaflows. The two main
reasons: being entirely in the kernel allowed us to have a faster
slowpath, and our use of a stateful NAT created an action for
every L4 flow and reduced the usefulness of ternary flow cach-
ing.

◆◆ Design for statefulness from day 1. The above point is an
example of a larger lesson: support for stateful connections as
a first-class primitive in a MAT is fundamental and must be
considered in every aspect of a MAT design. It should not be
bolted on later.

◆◆ Layering is critical. Some of our policy could be implemented
as a special case of OpenFlow tables with GOTOs chaining
them together, with separate inbound and outbound tables. But
we found that our controllers needed clear layering semantics
or else they couldn’t reverse their policy correctly with respect
to other controllers.

Figure 6: VFP Unified Flow Table

www.usenix.org FA L L 20 17 VO L . 42 , N O. 3 11

CLOUD
VFP: A Virtual Switch Platform for Host SDN in the Public Cloud

◆◆ GOTO considered harmful. Controllers will implement
policy in the simplest way needed to solve a problem, but that
may not be compatible with future controllers adding policy.
We needed to be vigilant in not only providing layering but
enforcing it. We see this layering enforcement not as a limita-
tion compared to OpenFlow’s GOTO table model but, instead,
as the key feature that made multi-controller designs work for
multiple years running.

◆◆ IaaS cannot handle downtime. We found that customer IaaS
workloads cared deeply about uptime for each VM, not just their
service as a whole. We needed to design all updates to minimize
downtime and provide guarantees for low blackout times.

◆◆ Design for serviceability. Serialization is another design
point that turned out to pervade all of our logic—in order to
regularly update VFP without impact to VMs, we needed to
consider serviceability in any new VFP feature or action type.

◆◆ Decouple the wire protocol from the dataplane. We’ve
seen enough controllers/agents implement wire protocols
with different distributed systems models to support O(1M)
scale that we believe our decision to separate VFP’s API from
any wire protocol was a critical choice for VFP’s success. For
example, bandwidth metering rules are pushed by a controller,
but VNET required a VL2-style directory system (and an agent
that understands that policy comes from a different controller
than pulled mappings) to scale.

◆◆ Everything is an action. Modeling VL2-style encap/decap
as actions rather than tunnel interfaces was a good choice. It
enabled a single table lookup for all packets—no traversing a
tunnel interface with tables before and after. The resulting HT
language combining encap/decap with header modification
enabled single-table hardware offload.

◆◆ Design for end-to-end monitoring. Determining network
health of VMs despite not having direct access to them is a
challenge. We found many uses for in-band monitoring with
packet injectors and auto-responders implemented as VFP rule
actions. We used these to build monitoring that traces the E2E
path from the VM-host boundary. For example, we implement-
ed Pingmesh-like [6] monitoring for VL2 VNETs.

◆◆ Commercial NIC hardware isn’t ideal for SDN. Despite
years of interest from NIC vendors about offloading SDN policy
with SR-IOV, we have seen no success cases of NIC ASIC
vendors supporting our policy as a direct offload. Instead, large
multicore NPUs are often used. We used custom FPGA-based
hardware to ship SR-IOV in Azure, which we found was lower
latency and more efficient.

Conclusions and Future Work
We introduced the Virtual Filtering Platform (VFP), our cloud
scale vswitch for host SDN policy in Microsoft Azure. We dis-
cussed how our design achieved our dual goals of programmabil-
ity and scalability. We discussed concerns around serviceability,
monitoring, and diagnostics in production environments, and
provided performance results, data, and lessons from real use.
Future areas of investigation include new hardware models of
SDN and extending VFP’s offload language.

References
[1] D. Firestone, “VFP: A Virtual Switch Platform for Host
SDN in the Public Cloud,” in Proceedings of the 14th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI ’17): https://www.usenix.org/system/files/conference
/nsdi17/nsdi17-firestone.pdf.

[2] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, J. Turner, “OpenFlow:
Enabling Innovation in Campus Networks,” ACM SIGCOMM
Computer Communication Review, vol. 38, no. 2 (April 2008):
http://ccr.sigcomm.org/online/files/p69-v38n2n-mckeown.pdf.

[3] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Raja-
halme, J. Gross, A. Wang, J. Stringer, P. Shelar, K. Amidon, M.
Casado, “The Design and Implementation of Open vSwitch,”
in Proceedings of the 12th USENIX Symposium on Networked
Systems Design and Implementation (NSDI ’15): https://www
.usenix.org/system/files/conference/nsdi15/nsdi15-paper
-pfaff.pdf.

[4] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim,
P. Lahiri, D. A. Maltz, P. Patel, S. Sengupta, “VL2: A Scalable
and Flexible Data Center Network,” in Proceedings of the ACM
Conference on Data Communication (SIGCOMM ’09), pp.
51–62: https://www.researchgate.net/publication/234805283
_VL2_A_Scalable_and_Flexible_Data_Center_Network.

[5] P. Patel, D. Bansal, L. Yuan, A. Murthy, A. Greenberg, D. A.
Maltz, R. Kern, H. Kumar, M. Zikos, H. Wu, C. Kim, N. Karri,
“Ananta: Cloud Scale Load Balancing,” in Proceedings of the
ACM Conference on Data Communication (SIGCOMM ’13),
pp. 207–218: http://conferences.sigcomm.org/sigcomm/2013
/papers/sigcomm/p207.pdf.

[6] C. Guo, L. Yuan, D. Xiang, Y. Dang, R. Huang, D. Maltz, Z.
Liu, V. Wang, B. Pang, H. Chen, Z. Lin, V. Kurien, “Pingmesh:
A Large-Scale System for Data Center Network Latency Mea-
surement and Analysis,” in Proceedings of the ACM Confer-
ence on Data Communication (SIGCOMM ’15): https://www
.microsoft.com/en-us/research/wp-content/uploads/2016/11
/pingmesh_sigcomm2015.pdf.

https://www.usenix.org/system/files/conference/nsdi17/nsdi17-firestone.pdf
https://www.usenix.org/system/files/conference/nsdi17/nsdi17-firestone.pdf
http://ccr.sigcomm.org/online/files/p69-v38n2n-mckeown.pdf
https://www.usenix.org/system/files/conference/nsdi15/nsdi15-paper-pfaff.pdf
https://www.usenix.org/system/files/conference/nsdi15/nsdi15-paper-pfaff.pdf
https://www.usenix.org/system/files/conference/nsdi15/nsdi15-paper-pfaff.pdf
https://www.researchgate.net/publication/234805283_VL2_A_Scalable_and_Flexible_Data_Center_Network
https://www.researchgate.net/publication/234805283_VL2_A_Scalable_and_Flexible_Data_Center_Network
http://conferences.sigcomm.org/sigcomm/2013/papers/sigcomm/p207.pdf
http://conferences.sigcomm.org/sigcomm/2013/papers/sigcomm/p207.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/11/pingmesh_sigcomm2015.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/11/pingmesh_sigcomm2015.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/11/pingmesh_sigcomm2015.pdf

12  FA L L 20 17 VO L . 42 , N O. 3 www.usenix.org

CLOUD

Linux Containers for Fun and Profit in HPC
R E I D P R I E D H O R S K Y A N D T I M R A N D L E S

This article outlines options for user-defined software stacks from
an HPC perspective. We argue that a lightweight approach based on
Linux containers is most suitable for HPC centers because it provides

the best balance between maximizing service of user needs and minimizing
risks. We discuss how containers work and several implementations, includ-
ing Charliecloud, our own open-source solution developed at Los Alamos.

Innovating Faster in HPC
Users of high performance computing resources have always been asking for more, better,
and different software environments to support their scientific codes. We’ve identified four
reasons why:

◆◆ Software dependencies not provided by the center. Examples include libraries that are
 numerous, unusual, or simply newer or older; configuration incompatibilities; and build-
time resources such as Internet access.

◆◆ Portability of environments between resources. For example, it is helpful to have the same
environment across development and testing workstations, local compute servers for small
production runs, and HPC resources for large runs.

◆◆ Consistency of environments to promote reproducibility. Examples include validated
software stacks standardized by a field of inquiry and archival environments that remain
consistent into the future.

◆◆ Usability and comprehensibility for meeting the above.

These needs for flexibility have been traditionally addressed by sysadmins installing various
software upon user request; users can then choose what they want with commands such as
module load. However, only software with high demand justifies the sysadmin effort for
installation and maintenance. Thus, more unusual needs go unmet, whether innovative or
crackpot—and it’s hard to tell which is which beforehand. This can create a chicken-and-egg
problem: a package has low demand because it’s unavailable, and it’s unavailable because it
has low demand.

This motivates empowerment of users with “bring your own software stack” functionality,
which we call user-defined software stacks (UDSS). The basic notion is to let users install
software of their choice, up to and including a complete Linux distribution, and run it on
HPC resources.

Of course, this approach has drawbacks as well. We’ve identified three potential pitfalls:

◆◆ Security: By introducing very flexible new features, UDSS can expand a center’s attack
surface, especially if they depend on privileged or trusted functionality.

◆◆ Missing functionality: Separation from the native software stack can interfere with
features such as file systems, accelerator hardware, and high-speed interconnects that make
HPC centers interesting and special.

◆◆ Performance: Implementations must take care to avoid introducing overhead that mean-
ingfully impacts performance.

Reid Priedhorsky is a Staff
Scientist at Los Alamos
National Laboratory. Prior
to Los Alamos, he was a
Research Staff member at IBM

Research. He holds a PhD in computer science
from the University of Minnesota and a BA,
also in computer science, from Macalester
College. His work focuses on large-scale data
analysis from both systems and applications
perspectives. Recent lines of research include
using social media and Web traffic to monitor
and forecast the spread of disease as well as
developing technology to bring data-intensive
computing and user-defined software stacks to
existing high-performance computing systems.
In his spare time, he enjoys reading, bicycling,
hiking (especially in the mountains and deserts
of the American West), tinkering with things,
photography, and hanging out with his wife and
son. reidpr@lanl.gov

Tim Randles has been working
in scientific, research, and
high-performance computing
for many years, first in the
Department of Physics at the

Ohio State University, then at the Maui High
Performance Computing Center, and most
recently as a member of the HPC Division at
Los Alamos National Laboratory. His current
work is focused on the convergence of the high
performance and cloud computing worlds.
When Tim isn’t working, he enjoys brewing
beer, cheesemaking, taking hikes, and working
on computer games. He lives in Santa Fe with
his wife and three cats. In an ideal world they’d
also have a few goats and some chickens.
trandles@lanl.gov

www.usenix.org FA L L 20 17 VO L . 42 , N O. 3 13

CLOUD
Linux Containers for Fun and Profit in HPC

Options for User-Defined Software Stacks
We believe the needs and pitfalls above lead to three design goals
for an HPC-focused UDSS implementation.

First, it should provide a standard and reproducible workflow.
A standard workflow reduces training and development costs
while enhancing the portability of staff skill sets; a reproducible
workflow, in contrast with a “tinker ’til it’s ready, then freeze,”
makes the creation of UDSS images simpler and more robust.

Second, it should run on existing, minimally modified HPC
hardware and software resources. This is for two reasons. First,
the pitfalls above are already well-controlled in HPC centers;
smaller modifications add fewer risks than larger ones. Second,
the challenges of orchestrating large parallel applications are
well-addressed by HPC centers. We have good resource manag-
ers (Slurm, Moab, Torque, PBS, etc.), good high-performance
parallel file systems (Lustre, Panasas), good high-speed net-
works (InfiniBand, OPA), and more. These solutions need not be
reimplemented and reoptimized using novel technology.

Finally, it should be as simple as is practical while still deliver-
ing the necessary features. This is in keeping with the UNIX
philosophy to “make each program do one thing well” [2].

We see three basic options for implementing UDSS: self-compile,
virtual machines, and Linux containers.

Compile It Yourself
The traditional method for users to take care of themselves is
to simply compile what they need in a home directory or other
user area. This is available almost everywhere already, employs
only unprivileged functionality, and yields direct access to all
center resources. However, it is also tedious and error-prone,
hard to update, and does not provide portability or consistency
of environments. In principle, users can self-compile arbitrary
software; in practice, its difficulty is very limiting.

Virtual Machines and Public/Private Cloud
A virtual machine (VM) is a program that emulates a physical
computer. One then installs an operating system and applica-
tions into this emulator. This is appealing because it gives users
ultimate flexibility and strong isolation; it is reasonable to let
them install even non-UNIX operating systems and have full
administrative privileges. Modern virtual machines perform
excellently for things needed by industry, such as CPU-bound
tasks and Ethernet networking.

However, the approach has challenges. Performance is often an
issue for things uncommon in industry, such as HPC high-speed
networks; this can sometimes be mitigated by compromising on
isolation. Virtual machines must be provisioned with a complete
OS, including kernel and system daemons, and the support infra-
structure such as virtual networking is complex.

There is a view that HPC should become more like cloud comput-
ing, which offers on-demand, loosely coupled virtual machines.
However, this approach requires that either users or sysadmins
reimplement and reoptimize much of the functionality that HPC
centers already offer.

Our belief is that HPC centers should offer virtual machines
only if credible UDSS require not only a custom user space but a
custom kernel as well. Otherwise, its disadvantages dominate.

Linux Containers
A middle approach is containers, which share “the only” kernel
with the native software stack, accomplishing isolation with
Linux namespaces and related features. (For further reading, we
recommend Michael Kerrisk’s series in Linux Weekly News [1]as
well as namespaces(7) and related man pages.)

Note that container is a widely used term with varying defini-
tions. The view outlined here is the one we find most sensible.

Privileged Linux Namespaces
Linux has six namespaces that isolate different classes of kernel
resources; processes in one namespace see a different view
of system state than processes in another. Five namespaces
are what we call privileged, needing root to create; the sixth,
unprivileged one, is covered in the next section. The privileged
namespaces are:

1. Mount: File-system tree and mounts

2. PID: Process IDs—a process in a PID namespace has a differ-
ent PID inside and outside the namespace

3. UTS: Host name and domain name (the name deriving from
“UNIX time-sharing system”)

4. Network: All other network-related resources, including net-
work devices, ports, routing tables, and firewall rules

5. IPC: Inter-process communication, both System V and POSIX

The six namespaces can be mixed and matched, but there are
quirks. For example, a mount namespace cannot create a new /
sys unless it is also a network namespace, because /sys includes
files that can be used to manipulate the network configuration.

Namespaces are always active, i.e., all Linux processes have
namespace IDs for all six namespaces (try ls -l /proc/self/ns).
Namespaces form a tree, with parent/child relationships, and
everything is owned by a namespace. For example, though it
cannot create its own, a mount namespace can bind-mount its
parent’s, to which the parent namespace controls access.

Namespaces are manipulated by three system calls: unshare(2)
puts an existing process into new namespaces, clone(2) can put
a new child process into new namespaces, and setns(2) joins an
existing namespace.

14  FA L L 20 17 VO L . 42 , N O. 3 www.usenix.org

CLOUD
Linux Containers for Fun and Profit in HPC

These features are useful for UDSS because they allow any
directory to become the file-system root of a mount-namespaced
process, and the other namespaces can be added for additional
isolation as needed.

The Unprivileged User Namespace
The sixth namespace, user, was added starting in Linux 3.8.
Its goal is to give unprivileged processes access to traditionally
privileged functionality in specific contexts when doing so is
safe. This is accomplished with namespace-specific capabilities
and user/group IDs.

The first process in a new user namespace has all capabilities in
the new namespace, but none in the parent user namespace, even
if created by root.

The relationship between child and parent namespace UIDs is
controlled by a one-to-one mapping defined during namespace
setup. The situation with GIDs is analogous. A common use is to
map one’s normal, unprivileged UID to 0 inside the namespace,
thus appearing to be root inside the namespace.

If the namespace is created by an unprivileged user, the parent
side of this map may only be the existing EUID. This limits
access to things already accessible, because while any UID can
be selected in the child namespace, it must map to the user’s
existing, real UID. Also, all access using unmapped UIDs will
be rejected. For example, setuid(2) cannot be used to access
another user’s files, because the other user’s UID grants no access
if unmapped and cannot be set on the parent side of the map.

This one-to-one mapping is used to translate UIDs in both
directions. When a UID-based access decision is initiated inside
the namespace, the map translates the in-container UID up
through the namespace tree to its corresponding base UID, and
the latter is used for access control. For example, bind-mounting
any directory into the container is safe, because it is the user’s
real, unprivileged IDs on the host, not the fictional ones in the
user namespace that control access. In the opposite direction,
for example, files owned by the user will be translated from the
user’s real UID to the in-container UID. Thus, with the mapping
to UID 0 described above, all of a user’s files will appear to be
owned by root when listed inside the namespace.

Thus, processes and kernel resources inside the user namespace
can be manipulated arbitrarily, but only in ways that do not
affect the parent namespace—privilege is an illusion.

 #define _GNU_SOURCE

 #include <fcntl.h>

 #include <sched.h>

 #include <stdio.h>

 #include <sys/types.h>

 #include <unistd.h>

 int main(void)

 {

 uid_t euid = geteuid();

 int fd;

 printf(“outside userns, uid=%d\n”, euid);

 unshare(CLONE_NEWUSER);

 fd = open(“/proc/self/uid_map”, O_WRONLY);

 dprintf(fd, “0 %d 1\n”, euid);

 close(fd);

 printf(“in userns, uid=%d\n”, geteuid());

 execlp(“/bin/bash”, “bash”, NULL);

 }

Listing 1: Hello world implementation of a user namespace, available
as examples/syscalls/userns.c in the Charliecloud source code.
This program creates the namespace with unshare(2), maps within-
namespace UID 0 to the invoking user’s EUID by writing uid_map, and
then starts the world’s most useless root shell.

Listing 1 illustrates a hello-world user namespace implementa-
tion. This is an unprivileged, untrusted, non-setuid program;
given kernel support, any user can run it, or the more complete
implementations in Charliecloud, with no sysadmin assistance.

User namespaces are a powerful tool for implementing container-
based UDSS tools because they let a normal, unprivileged user
create an independent file-system tree and safely access host
resources, even if he or she holds “privileges” inside the container,
without depending on the container implementation for security.

Additional Components
Other Linux features commonly used in container implementa-
tions include:

◆◆ cgroups(7), which track and limit resource consumption of
processes. This can be useful in multi-tenant settings to keep
users from stomping on each other.

◆◆ prctl(2) with PR_SET_NO_NEW_PRIVS, which prevents
 execve(2) from increasing privileges. This can protect against
some privilege escalation bugs, e.g., in setuid binaries.

◆◆ seccomp(2) filters system calls, thus mitigating security issues
in the excluded calls.

◆◆ SELinux and AppArmor have various features that can change
what the processes may do.

www.usenix.org FA L L 20 17 VO L . 42 , N O. 3 15

CLOUD
Linux Containers for Fun and Profit in HPC

These features can be applied to processes in general, not just
containers. For example, if a seccomp(2) filter increases the
security of container jobs, why not apply it to all jobs? That said,
it may be reasonable for container implementations to use these
tools under a “belt and suspenders” philosophy, if the benefit
outweighs the complexity gain.

Container Implementations
There are many container implementations. We divide them
generally into two categories, full-featured and lightweight,
which serve different use cases.

Full-Featured
Full-featured container implementations have (shockingly!) lots
of features, for example some subset of:

◆◆ Image building
◆◆ Image management (e.g., storage, caching, tagging, signing)
◆◆ Images stored in custom formats
◆◆ Image sharing (repository/registry, search, Web site)
◆◆ Orchestration
◆◆ Storage management (overlay management, back-end drivers)
◆◆ Runtime setup (default command, start-up script, inetd-type

functionality)
◆◆ Stateful containers that can be started and stopped
◆◆ Supervisor daemons, e.g., to proxy signals as required by PID

namespace

Typically, these implementations comprise a security boundary.

Examples from industry include Docker/runC, rkt, and LXC,
along with perhaps systemd-nspawn(1) and NsJail; examples
from HPC include NERSC’s Shifter and LBNL’s Singularity.

These many features are implemented because they are use-
ful, but there are drawbacks. For example, access to the docker
command is equivalent to root by design [4]. One could write
a wrapper, but input sanitization is a perilously difficult problem.

All these features must be supported for configuration, security,
and user support. For example, Docker comprises 133,000 lines
of code, some of which are privileged, and Docker is written in
Go, a language HPC centers tend to lack expertise in.

It can be done, of course, but it’s a major step for an HPC center
and must be done with great care. We believe that deploying a
lightweight solution is an easier path.

Lightweight
In contrast, lightweight implementations have few features. Most
basically, given an image, they run a containerized process within
that image. Typically, image building is delegated to other tools,
whether designed for containers or not (e.g., debootstrap(8)).

Lightweight implementations minimize security responsibil-
ity, and they have fewer lines of code to evaluate, support, and
secure. This makes deployment lower cost and easier for HPC
centers to justify.

Examples from industry include unshare(1) from util-linux,
along with perhaps systemd-nspawn(1) and NsJail. In HPC, we
are aware of only our own Charliecloud, discussed below.

We believe that lightweight implementations are best for HPC
centers. They bring the most important dimensions of cloud-
like flexibility without compromising the existing tools and
strengths of HPC centers or demanding their reimplementation
and reoptimization.

Charliecloud
Our basic design is motivated by two observations. First, full-
featured implementations are not a good fit for HPC centers.
However, some of their features are really important: most
importantly, image building and image sharing.

 $ cd charliecloud/examples/hello

 $ ch-build -t hello ../..

 Sending build context to Docker daemon 12.24 MB

 [...]

 Successfully built 2972e7281f75

 $ ch-docker2tar hello /var/tmp

 57M /var/tmp/hello.tar.gz

 $ ch-tar2dir /var/tmp/hello.tar.gz /var/tmp/hello

 /var/tmp/hello unpacked ok

 $ ch-run /var/tmp/hello -- echo “I’m in a container”

 I’m in a container

Listing 2: Building and running “hello world” in Charliecloud requires only
a few simple commands. The tarball image created in Step 3 can be run on
any host where the Charliecloud runtime is installed; Docker is no longer
needed once the image is built.

Thus, our open-source, lightweight container implementation
takes a dual approach. We put building and sharing in a sandbox
that is separate from HPC center resources. This could be a user
workstation or a virtual machine: somewhere safe to give the
user root. In this sandbox, Charliecloud wraps Docker for image
building, and the other Docker tools are also available, including
sharing via pull/push to any Docker Hub repository.

Running images uses our own runtime that is unprivileged
and independent of Docker. This can be on center resources or
anywhere else with the Charliecloud runtime installed, such as
the same sandbox for development and testing. Listing 2 is an
example of this workflow.

16  FA L L 20 17 VO L . 42 , N O. 3 www.usenix.org

CLOUD
Linux Containers for Fun and Profit in HPC

This brings us back to our three design goals:

1. A standard, reproducible workflow is accomplished by using
Docker for image building. This enables use of Dockerfiles,
an industry standard for reproducible builds. Working atop
Docker for image management also integrates our solution
into the robust Docker image ecosystem.

2. Running on existing HPC resources is accomplished with
our ch-run runtime, which provides just enough isolation
using the mount and user namespaces to run a container
image. Similarly to time(1), which provides an environment
that records resource usage, ch-run provides a container
environment.

ch-run requires no privilege and depends on the Linux kernel
for security, just like any other user process. Performance
is the same as native in our tests, modulo noise, because
minimal isolation yields direct access to all resources:
compute, network, file systems, accelerators, and the rest.
ch-run scales using standard HPC tools. For example, a large
application can be started simply with mpirun -np $BIGNUM

ch-run bigprog.

3. Simplicity: Charliecloud is a collection of five shell scripts
and two C programs totaling roughly 900 lines of code. For
comparison, NsJail is 4,000 lines, Singularity 11,000, Shifter
19,000, and Docker 133,000.

We have recently deployed Charliecloud in production and are
working with Los Alamos scientists on its use and performance
for real-world science code. We look forward to sharing these
results.

If you’d like to learn more, Charliecloud’s source code is avail-
able from GitHub (https://github.com/hpc/charliecloud), and its
documentation is on the Web (https://hpc.github.io/charliecloud).
Further technical detail is available in our forthcoming Super-
computing paper [3].

References
[1] Michael Kerrisk, “Namespaces in Operation, Part 1:
Namespaces Overview,” Linux Weekly News, January 4, 2013:
https://lwn.net/Articles/531114/.

[2] Doug McIlroy, E. N. Pinson, and B. A. Tague, “UNIX Time-
Sharing System,” Foreword, Bell System Technical Journal,
vol. 67, no. 6, 1978.

[3] Reid Priedhorsky and Tim Randles, “Charliecloud: Unpriv-
ileged Containers for User-Defined Software Stacks in HPC,”
in Supercomputing, 2017 (forthcoming).

[4] Reventlov’s Silly Hacks, “Using the Docker Command
to Root the Host (Totally Not a Security Issue),” April 2015:
http://reventlov.com/advisories/using-the-docker-command
-to-root-the-host.

https://lwn.net/Articles/531114/
http://reventlov.com/advisories/using-the-docker-command-to-root-the-host
http://reventlov.com/advisories/using-the-docker-command-to-root-the-host

www.usenix.org FA L L 20 17 VO L . 42 , N O. 3 17

CLOUD

Interview with James Bottomley
R I K F A R R O W

I first met James Bottomley during a Linux File System and Storage
workshop that took place before FAST in 2007. James’ focus has been
on the SCSI subsystem of Linux. But, as the CTO of Parallels, James has

also worked on containers. James and Pavel Emelyanor wrote an article com-
paring containerization to virtualization for ;login: back in 2014 [1].

While attending LISA ’16, I heard many conversations from people in the hallway that sug-
gested that they understood neither the purpose of containers nor how they were imple-
mented. And, it turns out, I didn’t understand how containers work under Linux either.

Rik Farrow: Looks like you may not be at Parallels anymore.

James Bottomley: That’s right…I’m at IBM Research now.

RF: My problem is that lots of people don’t consider container tech important.

JB: Heh, well, there’s a strong political reason for that: the main contenders vying to be
the enterprise container power have no expertise in the core technology of containers (OS
virtualization), so they’re anxious to concentrate on stuff they can control. Plus if you look
at what industry is after with container technology, development process simplification and
agility, although these are enabled by OS virtualization, they’re nowhere directly connected
to virtualization.

RF: By “main contenders,” you mean Docker, Red Hat, Core, and some others I am not
 thinking of?

JB: Yes: other orchestration companies like Mesos, Joyent, and now even VMware.

RF: You include VMware in the list of companies offering orchestration. Could you clear that
up for me?

JB: Yes, VMware’s province is still very much hypervisors and thus hardware virtualization
not OS virtualization. Admittedly, VMware does have a Linux kernel team, which gives them
the capacity to get into the OS virtualization infrastructure in Linux very quickly unlike
most of the other orchestration owners, but there’s little sign (from kernel commit logs) that
they’re doing this.

RF: I think that industry wants what you suggest, simpler development and more agility, but
they also appreciate having containers that are much lighter weight than VMs.

JB: Remember, I worked for Parallels, which was a container company before it was fash-
ionable. In 2004, Parallels tried to sell containers to the enterprise in place of VMs on the
grounds that they were faster and more lightweight. Parallels failed primarily because that’s
not what the enterprise wanted.

Enterprise CIOs have a problem they try to conceal with excess hardware capacity; some-
thing that uses capacity more efficiently is really an unwelcome technology.

James Bottomley is a
Distinguished Engineer at
IBM Research, where he
works on cloud and container
technology. He is also a Linux

kernel maintainer of the SCSI subsystem. He
has been a Director on the Board of the Linux
Foundation and Chair of its Technical Advisory
Board. He went to Cambridge University for
both his undergraduate and doctoral degrees
after which he joined AT&T Bell Labs to work
on distributed lock manager technology for
clustering. In 2000 he helped found SteelEye
Technology, a high availability company
for Linux and Windows, becoming Vice
President and CTO. He joined Novell in 2008
as a Distinguished Engineer at SUSE Labs,
Parallels (later Odin) in 2011 as CTO of server
virtualization, and IBM Research in 2016.
james.bottomley@hansenpartnership.com

Rik is the editor of ;login:. rik@
usenix.org

18  FA L L 20 17 VO L . 42 , N O. 3 www.usenix.org

CLOUD
Interview with James Bottomley

The first company to have a genuine need for lightweight virtu-
alization technology was Google in around 2006-2007 because
they realized that to run a service at cloud scale you require this
type of transactional efficiency—that’s when they adopted con-
tainers wholesale. Very few traditional enterprises are building
out cloud-scale datacenters still.

RF: I’ve heard that you can run 10 times as many containers as
VMs on the same hardware. And they can spin up containers
much faster, too.

JB: Yes, that’s because there’s a single kernel doing all the
resource management. Containers are essentially small groups
of UNIX processes, so if you want to run 100 Apache servers, it’s
far cheaper in resources to run 100 Apache processes each in a
container than to run 100 VMs with a full OS complement.

Full operating systems are very complex and resource-intensive
beasts. The person who just wants to run X applications really
doesn’t care what the OS is doing and really doesn’t want to
manage it, which is the Achilles’ heel of VMs. The world wants to
move away from infrastructure, but a VM is anchored there.

RF: I attended a workshop (HotCloud ’14), where they broke up
into groups discussing different topics. I attended the Container
group, and one thing some Google person said stuck in my mind:
we run associated containers within a VM, and we use VMs for
security isolation. I thought about that a lot.

JB: Google has a particular problem: being the first adopters,
they bent the technology to serve themselves. Google actually
hired about everyone they could who was working on Linux
cgroups in 2006. The Google datacenters grew to be container-
centric but supported Google written workloads. The Google
cloud allowed you to bring your data but not your code in those
days. If you write all the code, you can take a lot of shortcuts with
security (which Google did).

Then when they wanted to offer a-bring-your-own-code service,
Google App Engine, they had to turn to some external technol-
ogy to add security. This problem is unique to Google. But every
former or current hypervisor company is trying to also smear
container security because they fear it’s the only way they’ll
stay in the game, so you hear this type of statement from a lot of
sources.

The reality is, of course, that containers were being sold as
hypervisor replacements to the hosting industry by Parallels
from about 2001 on. With no need of any VM to provide security.
The technology itself can be made secure enough on bare metal.

The key phrase is “can be made.” The problem with container
technology is that it’s not all or nothing like VM technology. You
can’t really emulate just some virtual hardware, so if you don’t
turn on the OS virtualizations securely, you don’t get security.

Most of the modern application packaging container technology,
like Docker, doesn’t turn all the security features on.

RF: In the article you and Pavel wrote [1], you explained that con-
tainers are based on cgroups and namespaces. Cgroups (control-
groups) provide limits to resource usage, and namespaces limit
access to, well, namespaces, such as files, directories, devices,
and networks. Is that a good description of how containers work?

JB: Sort of. The problem is that the OS itself has no concept at
all of a “container”: all the OS knows is that there are a group
of processes for which certain OS virtualization features have
been set up. So the way “containers” work is potentially hugely
variable. For instance, the Kubernetes concept of a “pod” means
a set of “containers” that share certain namespaces, like network
or IPC (meaning they see each other’s network interface, and you
can set up IPC message passing between them).

All container systems without exception use the core Linux APIs
of namespaces and cgroups, but they can use them in very differ-
ent ways (so LXC is very different from, say, Docker in how it sets
up what it thinks of as a container).

RF: There must also have been some API support added, so a
root-EUID process could start up containers.

JB: Actually, the largest amount of work in Linux is going on in
the realm of what are called unprivileged containers. This means
OS virtualization that can be controlled by non-root users.

What you say above is currently true—most orchestration sys-
tems do run as root, but that causes security problems, so they’d
actually also be interested in running unprivileged.

RF: I’m guessing that this is involved in orchestration schemes,
but there must be more to orchestration than just firing up con-
tainers. You need a way to keep track of them, as well as methods
for both connecting them as well as constraining them through
the orchestration system.

JB: Right. Usually the way an orchestration system keeps track
of containers to think of each container as being a collection
of processes. Usually the container has some unique ID, and
each process within the container carries it as either a mark or
a mapping. Most often the way you can see this from outside is
that each container is a separate PID namespace. So Docker uses
UUIDs, and it keeps a runtime map of UUID<->PID namespace
(which changes every time you start and stop a container) so that
it can uniquely identify every process in a container by interro-
gating the PID namespace.

Now that I’ve told you the above, I have to confess that when I
set up my architecture emulation containers, I don’t actually use
a PID namespace, so the above isn’t universal (but realistically
nothing in containers is).

www.usenix.org FA L L 20 17 VO L . 42 , N O. 3 19

CLOUD
Interview with James Bottomley

RF: That really helped me understand containers: that the
UUIDs that Docker creates is just the Docker tool’s own way
of identifying a group of processes. I found myself wondering
whether there was a “create container” system call. Instead I
discovered that most of the work is done by clone() by setting
certain flags when creating a new process.

JB: Yes, there are essentially two namespace creation system
calls, clone() and unshare(), and one namespace entry system
call, setns(). Cgroups don’t have any system calls at all; it’s cur-
rently all done by manipulating files in the cgroup file systems,
which are usually mounted under /sys/fs/cgroup.

Reference
[1] James Bottomley and Pavel Emelyanov, “Containers,”
;login: , vol. 39, no. 5 (October 2014): https://www.usenix.org
/publications/login/october-2014-vol-39-no-5/containers.

We are looking for people with personal experience and ex pertise
who want to share their knowledge by writing. USENIX supports many
conferences and workshops, and articles about topics related to any
of these subject areas (system administration, programming, SRE, file
systems, storage, networking, distributed systems, operating systems,
and security) are welcome. We will also publish opinion articles that are
relevant to the computer sciences research community, as well as the
system adminstrator and SRE communities.

Writing is not easy for most of us. Having your writing rejected, for any
reason, is no fun at all. The way to get your articles published in ;login:,
with the least effort on your part and on the part of the staff of ;login:, is
to submit a proposal to login@usenix.org.

PROPOSALS
In the world of publishing, writing a proposal is nothing new. If you plan
on writing a book, you need to write one chapter, a proposed table
of contents, and the proposal itself and send the package to a book
publisher. Writing the entire book first is asking for rejection, unless you
are a well-known, popular writer.

;login: proposals are not like paper submission abstracts. We are not
asking you to write a draft of the article as the proposal, but instead to
describe the article you wish to write. There are some elements that
you will want to include in any proposal:

• What’s the topic of the article?

• What type of article is it (case study, tutorial, editorial,
article based on published paper, etc.)?

• Who is the intended audience (syadmins, programmers, security
wonks, network admins, etc.)?

• Why does this article need to be read?

• What, if any, non-text elements (illustrations, code, diagrams, etc.)
will be included?

• What is the approximate length of the article?

Start out by answering each of those six questions. In answering the
question about length, the limit for articles is about 3,000 words, and
we avoid publishing articles longer than six pages. We suggest that you
try to keep your article between two and five pages, as this matches
the attention span of many people.

The answer to the question about why the article needs to be read
is the place to wax enthusiastic. We do not want marketing, but your
most eloquent explanation of why this article is important to the read-
ership of ;login:, which is also the membership of USENIX.

UNACCEPTABLE ARTICLES
;login: will not publish certain articles. These include but are not
limited to:

• Previously published articles. A piece that has appeared on your
own Web server but has not been posted to USENET or slashdot
is not considered to have been published.

• Marketing pieces of any type. We don’t accept articles about
products. “Marketing” does not include being enthusiastic about
a new tool or software that you can download for free, and you
are encouraged to write case studies of hardware or software
that you helped install and configure, as long as you are not
affiliated with or paid by the company you are writing about.

• Personal attacks

FORMAT
The initial reading of your article will be done by people using UNIX sys-
tems. Later phases involve Macs, but please send us text/plain format-
ted documents for the proposal. Send pro posals to login@usenix.org.

The final version can be text/plain, text/html, text/markdown, LaTex,
or Microsoft Word/Libre Office. Illustrations should be EPS if possible.
Vector formats (TIFF, PNG, or JPG) are also acceptable, and should be a
minimum of 1,200 pixels wide.

DEADLINES
For our publishing deadlines, including the time you can expect to
be asked to read proofs of your article, see the online schedule at
www.usenix.org/publications/login/publication_schedule.

COPYRIGHT
You own the copyright to your work and grant USENIX first publication
rights. USENIX owns the copyright on the collection that is each issue
of ;login:. You have control over who may reprint your text; financial
negotiations are a private matter between you and any reprinter.

Writing for ;login:

https://www.usenix.org/publications/login/october-2014-vol-39-no-5/containers
https://www.usenix.org/publications/login/october-2014-vol-39-no-5/containers

20  FA L L 20 17 VO L . 42 , N O. 3 www.usenix.org

CLOUD

Knockoff
Cheap Versions in the Cloud

X I A N Z H E N G D O U , P E T E R M . C H E N , A N D J A S O N F L I N N

Cloud-based storage provides reliability and ease-of-management.
Unfortunately, it can also incur significant costs for both storing and
communicating data. These costs increase when systems retain past

versions of files for data recovery, auditing, and forensic troubleshooting.
While techniques such as chunk-based deduplication and delta compres-
sion have proven very effective in reducing bytes stored and sent over the
network, further optimizations to these techniques are yielding increasingly
incremental benefits. We argue that it is time to consider additional strategies
for reducing storage costs. In our current work, we are demonstrating that one
such strategy, deterministic recomputation of data, can substantially reduce
the cost of cloud storage. Our distributed file system, Knockoff, selectively
substitutes nondeterministic inputs for file data. Our results show that this
reduces the cost of sending files to the cloud without versioning by 21–24%;
the relative benefit is substantially greater when past versions are retained.

Deterministic Recomputation
Knockoff leverages an unconventional method for communicating and storing file data. In
lieu of the actual data, it selectively represents a file as a log of the nondeterministic inputs
needed to recompute the data (e.g., system call results, thread scheduling, and external
data read by a process). With such a log, a cloud file server can deterministically replay the
computation that originally produced the data to recreate the data. We call the observation
that one can represent data generated by computation either by value or by the log of inputs
needed to reproduce the computation the principle of equivalence (between values and com-
putation); the principle has been observed and used in many settings such as fault tolerance
and state machine replication.

Representing data as a log of nondeterminism leads to several benefits for a distributed file
system. First, it substitutes (re)computation for communication and storage, and this can
reduce total cost because computation in cloud systems is less costly than communication
and storage. Second, it can reduce the number of bytes sent over the network when the log
of nondeterminism is smaller than the data produced by the recorded computation. For the
same reason, it can reduce the number of bytes stored by the cloud storage provider. Finally,
representing data as a log of nondeterminism can support a wider range of versioning fre-
quencies than prior methods.

Although similar ideas have been previously applied to distributed storage, the computa-
tion has either been assumed to be deterministic given its command line and file inputs [4]
or given a specific sequence of user-interface events [1]. Unfortunately, neither a log of shell
commands nor a log of user activity is sufficient to reproduce the computation of modern,
general-purpose programs, especially due to the shift to multithreaded computation running
on multiprocessors, as well as a growing diversity in execution environments and corre-
sponding dependencies on operating systems, libraries, and installed application versions.

Xianzheng Dou is a PhD student
in computer science and
engineering at the University of
Michigan, Ann Arbor. In general,
his research interests include

file systems, operating systems, and distributed
file systems. More specifically, he has been
focusing on how to reduce communication
and storage costs for distributed file systems
and how to speed up computation via
memorization. xdou@umich.edu

Peter M. Chen is an Arthur
F. Thurnau Professor in the
Computer Science Division at
the University of Michigan.
He is an ACM and IEEE

Fellow and served as the Editor-in-Chief of
ACM Transactions on Computer Systems from
2009–2013. In 2007, he received the ACM
SIGOPS Mark Weiser Award “for creativity
and innovation in operating systems research.”
His research interests include operating
systems, computer security, and fault-tolerant
computing. He is currently investigating how
to improve software reliability for multicore
computers and how to integrate new types of
persistent memories into computer systems.
He regularly teaches a senior course on
operating systems and a first-year course on
computer engineering. pmchen@umich.edu

Jason Flinn is a Professor
of Computer Science and
Engineering and Director of the
Software Systems Laboratory
at the University of Michigan,

whose research interests include operating
systems, distributed systems, and mobile
computing. He is a fellow of the ACM, and
his research has been recognized with an NSF
CAREER award and eight Best Paper awards
at SOSP, OSDI, ASPLOS, FAST, and MobiSys.
jflinn@umich.edu

www.usenix.org FA L L 20 17 VO L . 42 , N O. 3 21

CLOUD
Knockoff: Cheap Versions in the Cloud

Knockoff uses deterministic record and replay to guarantee that
data produced by all data-race free programs can be reproduced.
Rather than capture a subset of nondeterministic inputs, it uses
the Arnold [2] system to record all nondeterministic data enter-
ing each process that executes on a file system client, including
the results of system calls (such as user and network input), the
timing of signals, and real-time clock queries. Arnold enables
deterministic replay of multithreaded programs by recording all
synchronization operations (e.g., pthread_lock and atomic hard-
ware instructions). This recording has minimal overhead (8% or
less in our experiments). Because it supplies recorded values on
replay rather than re-executing system calls that interact with
external dependencies, Arnold can trivially record an applica-
tion on one computer and replay it on another. The only require-
ments are that both computers run the Arnold kernel and have
the same processor architecture (x86).

For example, consider a simple application that reads in a data
file, computes a statistical transformation over that data, and
writes a timestamped summary to an output file. The output
data may be many megabytes in size. However, the program itself
can be reproduced given a small log of determinism, as shown in
Figure 1 (for clarity, the log has been simplified).

The log records the results of system calls (e.g., open) and syn-
chronization operation (e.g., pthread_lock). The first entry in
Figure 1 records the file descriptor (rc=3) chosen by the operat-
ing system during the original execution. Parameters to the
open call do not need to be logged since they will be reproduced
during a deterministic re-execution. The second entry records
the mapping of the executable; replaying this entry will cause the
exact version used during recording to be mapped to the same
place in the replaying process address space. Lines 4 and 5 read
data from the input file, line 6 records the original timestamp,
and lines 7 and 8 write the transformation to the output file.
Data read from the file system is not in the log since Knockoff is
a versioning file system that can reproduce the desired version
on demand. Also, the data written to the output file need not be
logged since it will be reproduced exactly as a result of replaying
the execution.

With aggressive compression [2], a log for this sample applica-
tion can be only a few hundred bytes in size, as contrasted with
the megabytes of data that the execution produces. The out-
put data is reproduced by starting from the same initial state,
re-executing the computation, and supplying values from the
log for each nondeterministic operation. Since the log contains
references to executable and shared library versions, as well as
all interactions with the operating system, the complex envi-
ronmental dependencies of an application are automatically
resolved as part of the replay process. For instance, the replay
starts from the same executable, loads the same versions of

shared libraries, and sees the same results of IPC and network
operations that were seen during recording.

Additionally, just as deduplication and compression of file
data can reduce bytes stored and sent over the network for file
data, we have found that applying these techniques to logs of
nondeterminism can also provide similar savings by exploit-
ing similarities in computation across executions of the same
application. In particular, Knockoff achieves an additional 42%
reduction in bytes stored and communicated by using delta com-
pression on the logs of nondeterminism.

Writing Data to the Cloud
To propagate modifications to the cloud, Knockoff first calcu-
lates the cost of sending and replaying the log of nondetermin-
ism given a pre-defined cost of communication (costcomm) and
computation (costcomp):

costlog = sizelog ∗ costcomm + timereplay ∗ costcomp (1)

sizelog is determined by compressing the log of nondeterminism
for the application that wrote the file and measuring its size
directly. To estimate timereplay , Knockoff records the user CPU
time consumed so far by the recorded application with each log
entry that modifies file data. This is a very good estimate for the
time needed to replay the log on the client [6]. To estimate server
replay time, Arnold multiplies this value by a conversion factor
to reflect the relative CPU speeds of the client and server.

Knockoff calculates the cost of sending file data as:

costdata = sizechunks ∗ costcomm (2)

Knockoff implements the chunk-based deduplication algorithm
used by LBFS [5] to reduce the cost of transmitting file data. It
breaks all modified files into chunks, hashes each chunk, and
sends the hashes to the server. The server responds with the set of
hashes it has stored. sizechunks is the size of any chunks unknown to
the server that would need to be transmitted; Knockoff uses gzip
compression to reduce bytes transmitted for such chunks.

Figure 1: Sample log of nondeterminism

22  FA L L 20 17 VO L . 42 , N O. 3 www.usenix.org

CLOUD
Knockoff: Cheap Versions in the Cloud

If costlog < costdata, Knockoff sends the log to the server. The server
spawns a replay process that consumes the log and replays the
application. When the replay process executes a system call that
modifies a target file, it updates the current version, and poten-
tially retains the past version as described below.

Replay is guaranteed to produce the same data if the application
being replayed is free of data races. Data-race freedom can be
guaranteed for some programs (e.g., single-threaded ones) but
not for complex applications. Knockoff therefore ships a SHA-
512 hash of each modified file to the server with the log. The
Knockoff server verifies this hash. If verification fails, it asks the
client to ship the file data. Such races are rare since the replay
system itself acts as an efficient data-race detector. All subse-
quent replays are guaranteed to produce the same data as the
first replay, so once Knockoff verifies that the replay produces
the desired data, it need not do so again.

If costdata < costlog, then Knockoff could reduce the cost of the
current transaction by sending the unique chunks to the server.
However, for long-running applications, it may be the case that
sending and replaying the log collected so far would help reduce
the cost of future file modifications that have yet to be seen
(because the cost of replaying from this point is less than replay-
ing from the beginning of the program). Knockoff predicts this
by looking at a history of costdata / costlog ratios for the application.
If sending logs has been historically beneficial and current appli-
cation behavior is similar (the ratios differ by less than 40%) to
past executions, it sends the log. Otherwise, it sends the unique
data chunks.

Storing Data in the Cloud
Knockoff may store file data on the server either by value (as
normal file data) or by operation (as the log of nondeterminism
required to recompute that data). If the log of nondeterminism
is smaller than the file data it produces, then storing the file
by operation saves space and money. However, storing files by
operation delays future reads of that data, since Knockoff will
need to replay the original computation that produced the data.
In general, this implies that Knockoff should only store file data
by operation if the data is very cold, i.e., if the probability of read-
ing the data in the future is low.

Knockoff currently stores the current version of all files by value
so that its read performance for current file data is the same
as that of a traditional file system. Knockoff may store past
versions by operation if the storage requirements for storing
the data by log are less than those of storing the data by value.
However, Knockoff also has a configuration parameter that sets
a maximum materialization delay, which is the time to recon-
struct any version stored by operation. The default materializa-
tion delay is 60 seconds.

When replaying a log to regenerate data, Knockoff may find
that some of the input files for the computation being replayed
are also stored by operation rather than by value. In this case, it
recursively replays those logs to reproduce the input data needed
to regenerate the target data. Knockoff tracks such recursive
dependencies in a data structure called the version graph. When
storing data, it ensures that any path of recomputation in this
graph does not exceed the materialization delay, and this guar-
antees that the total time to reproduce any file is no greater than
that bound.

Fine-Grained Versioning
Past file versions have many uses: recovery of lost or overwrit-
ten data, reproduction of the process by which data was created,
auditing, and forensic troubleshooting. These benefits increase
as versions are retained more frequently. For instance, if ver-
sions are retained every time a file is closed, the user may have
a snapshot of file data with each save operation. However, many
applications only close files on termination, so versioning on
every file write may be required to provide snapshots of interme-
diary states. However, such a policy would not capture interme-
diary states from modifications to memory-mapped files.

When storing and communicating file data by value, more
frequent versioning substantially increases costs due to a
greater amount of data sent over the network and saved to disk.
However, when Knockoff represents file data by operation, its
deterministic recomputation can produce any version of file data
written by that computation at no additional cost. This means
that Knockoff has much lower costs for retaining past versions
of file data than traditional storage systems.

Figure 2: Total bytes sent to the server across all user study participants.
We compare Knockoff with two baselines across all relevant versioning
policies.

www.usenix.org FA L L 20 17 VO L . 42 , N O. 3 23

CLOUD
Knockoff: Cheap Versions in the Cloud

As a result, Knockoff currently supports four different version-
ing policies:

◆◆ No versioning: Knockoff retains only the current version of all
files.

◆◆ Version on close: Knockoff retains all past versions at close
granularity; for past versions, Knockoff may store the actual
data or the logs required to regenerate the data.

◆◆ Version on write: Knockoff retains all past versions at write
granularity.

◆◆ Eidetic: Knockoff retains all past versions at instruction
granularity. It can reproduce versions of a memory-mapped file
by replaying the computation up to a specified point and redo-
ing the individual store instructions that modified the file.

User Study Results
As part of a detailed evaluation of Knockoff [3], we recruited
eight graduate students to use Knockoff for software develop-
ment tasks. We asked participants to write software to perform
several simple tasks, e.g., converting a CSV file to a JSON file;
each participant could spend up to an hour solving the problem.
We did not dictate how the problem should be solved. Partici-
pants used various Linux utilities, text editors, IDEs, and pro-
gramming languages. They used Web browsers to visit different
Web sites such as Google and StackOverflow, as well as sites
unrelated to the assignment (e.g., Facebook and CNN News).
Almost all files accessed during the study are stored in Knockoff
(exceptions include the tmp directory and system configuration
files), and almost all file modifications are therefore persisted in
the cloud. One of the eight participants was unable to complete
the programming assignment and quit right away. We show
results for the seven participants who attempted the tasks; four
of these finished successfully within the hour.

Figure 2 summarizes the results by aggregating the bytes sent to
a cloud server by Knockoff and the baseline file systems across
all seven users. Even without retaining past versions, Knockoff
is surprisingly effective in reducing bytes sent over the network
for non-versioning file systems. Compared to chunk-based
deduplication, Knockoff reduces communication by 24%. Com-
pared to delta compression, it reduces communication by 32%.
Note that these baselines are already very effective in reducing
bandwidth; without compression, this workload requires 1.9 GB
of communication, so delta compression alone achieves an 86%
reduction in network bandwidth, and chunk-based deduplication
achieves an 87% reduction.

The benefit of Knockoff increases substantially as past versions
are maintained more frequently. For instance, Knockoff reduces
bytes sent by 47% compared to chunk-based deduplication for a
version on write policy. In fact, versioning on write with Knock-
off uses less bandwidth than the baselines without versioning.

Figure 3: Bytes sent to the server for each individual user-study partici-
pant (A-G). We compare Knockoff with two baselines across all relevant
versioning policies.

(a) No versioning

(b) Version on close

(c) Version on write

24  FA L L 20 17 VO L . 42 , N O. 3 www.usenix.org

CLOUD
Knockoff: Cheap Versions in the Cloud

At the limit, the eidetic policy, which can reproduce any past ver-
sion even for memory-mapped files, is completely infeasible with
current storage systems that store data by value. Knockoff can
support this granularity of versioning while sending only 41%
more bytes to the cloud than chunk-based deduplication without
versioning in the user study and storing only 134% more bytes in
the cloud to retain this state in another longitudinal study (not
shown).

A surprising result from this study was that the effectiveness of
Knockoff varied tremendously across users, as shown in Figure
3 (each individual study participant is labeled A-G in each
graph). For participant C, Knockoff achieves a 97% reduction in
bandwidth for the no versioning policy and a 95% reduction for
the version on write policy compared to chunk-based dedupli-
cation. On the other hand, for participant F, the corresponding
reductions are 2% and 17%. This shows the orthogonal nature of
Knockoff’s cost savings. When the mix of tools and workloads
is better for operation shipping than it is for deduplication or
compression, Knockoff produces large savings. In cases where
operation shipping is not economical, Knockoff can detect this
and revert to more traditional forms of bandwidth and storage
reduction.

Summary
Operation shipping has long been recognized as a promising
technique for reducing the cost of distributed storage. How-
ever, using operation shipping in practice has required onerous
restrictions about application determinism or standardization
of computing platforms, and these assumptions make operation
shipping unsuitable for general-purpose file systems. Knockoff
leverages recent advances in deterministic record and replay to
lift those restrictions. It can represent, communicate, and store
file data as logs of nondeterminism. This saves network commu-
nication and reduces storage utilization, leading to cost savings.

In the future, we hope to extend the ideas in Knockoff to other
uses; one promising target is reducing cross-datacenter commu-
nication. We are also investigating whether it is feasible to gen-
erate logs of nondeterminism from which data can be reproduced
by observing only a portion of those nondeterministic inputs and
synthesizing likely values for the rest. This could represent a
promising middle ground between Knockoff and prior operation
shipping systems in which one could still guarantee that data
can always be reproduced once a successful recomputation has
been generated, but such guarantees could be achieved without
running a full-scale deterministic recording system such as
Arnold on each client.

Acknowledgments
This work has been supported by the National Science Founda-
tion under grants CNS-1513718 and CNS-1421441 and by a gift
from NetApp.

References
[1] T.-Y. Chang, A. Velayutham, and R. Sivakumar, “Mimic:
Raw Activity Shipping for File Synchronization in Mobile File
Systems,” in Proceedings of the 2nd International Conference
on Mobile Systems, Applications and Services (June 2004), pp.
165–176.

[2] D. Devecsery, M. Chow, X. Dou, J. Flinn, and P. M. Chen,
“Eidetic Systems,” in Proceedings of the 11th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI
’14) (October 2014): https://www.usenix.org/system/files
/conference/osdi14/osdi14-paper-devecsery.pdf.

[3] X. Dou, P. M. Chen, and J. Flinn, “Knockoff: Cheap Versions
in the Cloud,” in Proceedings of the 15th USENIX Conference
on File and Storage Technologies (FAST ’17) (February 2017):
https://www.usenix.org/system/files/conference/fast17
/fast17-dou.pdf.

[4] Y.-W. Lee, K.-S. Leung, and M. Satyanarayanan, “Opera-
tion Shipping for Mobile File Systems,” in IEEE Transactions
on Computers, vol. 51, no. 12 (December 2002), pp. 1410–1422.

[5] A. Muthitacharoen, B. Chen, and D. Mazières, “A Low-
Bandwidth Network File System,” in Proceedings of the 18th
ACM Symposium on Operating Systems Principles (October
2001), pp. 174–187: https://pdos.csail.mit.edu/papers/lbfs:
sosp01/lbfs.pdf.

[6] A. Quinn, D. Devecsery, P. M. Chen, and J. Flinn, “Jet-
Stream: Cluster-Scale Parallelization of Information Flow
Queries,” in Proceedings of the 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI ’16)
(November 2016): https://www.usenix.org/system/files
/conference/osdi16/osdi16-quinn.pdf.

https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-devecsery.pdf
https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-devecsery.pdf
https://www.usenix.org/system/files/conference/fast17/fast17-dou.pdf
https://www.usenix.org/system/files/conference/fast17/fast17-dou.pdf
https://pdos.csail.mit.edu/papers/lbfs:sosp01/lbfs.pdf
https://pdos.csail.mit.edu/papers/lbfs:sosp01/lbfs.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-quinn.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-quinn.pdf

www.usenix.org FA L L 20 17 VO L . 42 , N O. 3 25

SYSADMINPassive Realtime Datacenter Fault Detection
and Localization
A R J U N R O Y , H O N G Y I Z E N G , J A S M E E T B A G G A , A N D A L E X C . S N O E R E N

Arjun Roy is a graduate student
in the Computer Science and
Engineering Department at
the University of California,
San Diego, in the Systems and

Networking Research Group. His research
interests include datacenter networking,
particularly when it comes to fault detection,
localization, and mitigation. arroy@cs.ucsd.edu

Hongyi (James) Zeng is
an Engineering Manager
and Research Scientist on
the Facebook Net Systems
team. He works on intra- and

inter-DC network monitoring and analytics,
troubleshooting tools, and security tools. He
received his PhD from Stanford University,
co-advised by Professor Nick McKeown
and Professor George Varghese. His
current research interests include software-
defined networks, network verification, and
programmable hardware. zeng@fb.com

Jasmeet Bagga received his
master’s from the University
of Southern California in 2005
and then worked at an early-
stage startup building network

analytics software. Jasmeet is currently a
Software Engineer at Facebook, working on
Facebook’s in-house router/switch software
called FBOSS. jasmeetbagga@fb.com

Alex C. Snoeren is a Professor
in the Computer Science and
Engineering Department at the
University of California, San
Diego, where he is a member of

the Systems and Networking Research Group.
His research interests include oper-ating
systems, distributed computing, and mobile
and wide-area networking. snoeren@cs.ucsd.
edu

Datacenters are characterized by their large scale, comprising a large
number of network links and switches. However, these hardware
components can develop intermittent faults, resulting in randomly

occurring packet drops or delays that harm application performance—sev-
eral such faults occur daily in large production datacenters. Since the effects
are intermittent, traditional detection techniques involving host and router
statistics or active probe traffic can fall short in their ability to identify and
locate these errors. In this article, we present our passive hybrid approach
that combines network path information with host-based statistics to rapidly
detect and pinpoint the location of datacenter network faults inside a produc-
tion Facebook datacenter.

Modern datacenters continue to increase in scale, speed, and complexity. Unfortunately,
experience indicates that modern datacenters are rife with hardware and software failures—
indeed, they are designed to be robust to large numbers of such faults. The large scale of
deployment both ensures a non-trivial fault incidence rate and complicates the localization
of these faults. Recently, authors from Microsoft described [9] a rogue’s gallery of datacen-
ter faults: dusty fiber-optic connectors leading to corrupted packets, switch software bugs,
hardware faults, incorrect ECMP load balancing, untrustworthy counters, and more. Con-
founding the issue is the fact that failures can be intermittent and partial: rather than failing
completely, a link or switch fault might only affect a subset of traffic, complicating detection
and diagnosis. To illustrate this difficulty, the authors of NetPilot [8] describe how a single
link dropping a small percentage of packets, combined with cut-through routing, resulted in
degraded application performance and a multiple-hour network goose chase to identify the
faulty device.

We present our approach [5] to detect and localize such faults by providing greater visibil-
ity into the fate of application traffic once it is injected into the network—specifically, by
exposing network path information for all datacenter traffic to the hosts. This allows us to
correlate poor network performance observed at each host to the specific component in the
network that is responsible passively, without any probe traffic overhead. Furthermore, we
find that the vast amount of data available—we use TCP state machine data for every flow on
every host—allows us to do so fairly rapidly.

Current Methods
Commonly deployed network monitoring approaches include host monitoring (e.g., RPC
latency and TCP retransmits) and switch-based monitoring (e.g., drop counters and queue
occupancies). However, such methods can fall short for troubleshooting datacenter-scale
networks. Host monitoring alone lacks specificity in the presence of large numbers of alter-
native paths, which is characteristic of datacenter topologies [2, 7]. An application suffering
from dropped packets or increased latency does not give any insight on where the fault is
located, or whether a given set of performance anomalies are due to the same faults. Simi-
larly, if a switch drops a packet, the operator is unlikely to know which application’s traf-
fic was impacted or, more importantly, what is to blame. Even if a switch samples dropped

26  FA L L 20 17 VO L . 42 , N O. 3 www.usenix.org

SYSADMIN
Passive Realtime Datacenter Fault Detection and Localization

 packets, the operator might not have a clear idea of what traffic
was impacted. Due to sampling bias favoring high volume flows,
mouse flows experiencing loss might be missed. Switch-counter-
based approaches are further confounded by cut-through
forwarding and unreliable hardware [8, 9]. Recent work [9] uses
detailed path tracing of a subset of network traffic, combined
with a modicum of active probe traffic, to debug where pack-
ets are dropped in the network and why. We argue that, for the
highly regular topologies used by current datacenter networks, it
should be possible to determine path information for all traffic.
Luckily, common datacenter topologies are particularly ame-
nable to providing this functionality.

Getting Path Information Scalably
Facebook’s datacenters consist of thousands of hosts and hun-
dreds of switches grouped into a multi-rooted, multi-level tree
topology [2]. Figure 1 describes a simplified view of this topology,
focusing on one of the several identical “pods” in the network.
Each pod consists of several tens of Top-of-Rack (ToR) switches,
each responsible for a few tens of servers. Each pod also contains
four aggregation switches (Aggs) that enable inter-rack commu-
nication; every ToR connects to every Agg in the pod. Pods are
in turn interconnected by a layer of core switches; each Agg is
connected to a disjoint subset of core switches.

The network uses equal-cost multipath (ECMP) routing. When
a host communicates with a host in another rack, a hash func-
tion at the ToR switch determines which ToR-to-Agg uplink the
packets traverse based on fields such as source and destination
IP addresses and network ports. Similarly, when a host com-
municates with a host in another pod, a hash function at the Agg
switch determines which Agg-to-Core uplink is used.

For cross-pod traffic, once a packet reaches the core layer,
there is only one path leading to the destination server. Thus,
if we know the start and end point of a packet (from the source
and destination IP address) and the core switch it transits, the
receiving host can learn the entire path traversed. Thus, we
assign an ID to each core switch and install a rule on the core
switch instructing it to stamp every packet it forwards with this
ID (see Figure 2).

Pinpointing a Fault to a Link
Once we have full path information, we could theoretically
associate packet loss with a particular network path. However,
this doesn’t tell us which link along the path is responsible. An
observation about the traffic engineering employed at Facebook
aids us, however.

A significant amount of engineering effort has been targeted
at calming hotspots at the application level to ensure that no
particular server is overloaded by requests [4]. Specifically, for a
front-end datacenter containing Web and cache servers (which

cache user data stored by back-end databases), every Web server
spreads its requests for user data across all the cache servers
in the datacenter. Furthermore, these requests are individually
quite small and evenly spread, but in aggregate constitute the
bulk of traffic within the network. This application-level load
balancing is in addition to normal network load balancing tech-
niques like ECMP routing.

Consequently, if we look at a level of the multirooted tree topol-
ogy (for example, every Agg to Core link in a pod, or every ToR
to Agg link in a pod), every link in the group we examine has a
very even load—both in terms of number of flows and number of
bytes handled—on short timescales of just a few seconds. The
aggregate performance of the flows for any given link is similar
to that of the flows of any other link within the set—we call it an
“equivalence set” of links.

On the flip side, if one of the links is faulty, it sticks out like a
sore thumb—the aggregate flow performance diverges compared

Figure 1: Facebook datacenter topology

Figure 2: Determining flow network path

www.usenix.org FA L L 20 17 VO L . 42 , N O. 3 27

SYSADMIN
Passive Realtime Datacenter Fault Detection and Localization

to the other links in the set. Thus, if we pick a metric that is
correlated with packet loss—for example, TCP retransmits or
congestion window—we can compare the distributions of the
metric across links and perform outlier analysis to pinpoint the
faulty link. Figure 3 depicts the distributions for TCP congestion
window for each ToR to Agg uplink traversed by traffic destined
for a single cache server, where link 1 (out of four total) has a
0.5% induced packet loss rate; note the significant skew to lower
values present for the distribution corresponding to that link.

Outlier Analysis
While it is visually apparent that the distributions of perfor-
mance metrics across links are impacted by the presence of a
fault, we need a way to automate the process of using this infor-
mation to generate a verdict for every combination of (host, link)
to determine whether the link is faulty or not. Fundamentally,
the question we are asking is: does a particular link have more
retransmits (or say, smaller flow congestion windows) than the
others? If so, maybe there is a fault at that link!

To answer this question, we use the Student’s t-test. The t-test
determines whether a given distribution has a mean that is
higher than another distribution. It is amenable to efficient
streaming computation (a prototype implementation of our
system uses approximately 0.5% of CPU on a production Web
server) and runs on every host, with each host examining its own
traffic. Note, however, that this raises the chance of false posi-
tives, where a link might temporarily have worse performance
distributions, possibly due to effects like transient congestion.
Given a large number of hosts, it is certain that some subset of
them will incorrectly flag a link as faulty. We have to account for
these false positives.

The observation we leverage is that false positives, in the
absence of an actual fault, ought to be evenly distributed among
links due to the high degree of load balancing. Thus, we aim to
filter out the false positives by asking the question: are links
being claimed as faulty roughly evenly, or is there a particular
link (or group of links) that is (are) being accused more than the
others? For that we use the chi-squared test, which is used to
determine whether the frequency distribution of a set of events
matches some theoretical distribution. The chi-squared test
sees whether the claims that a link is faulty is evenly spread
among all the links considered, or if a particular subset of links
have a significantly higher percentage of hosts claiming fault. It
outputs a p-value ranging from 0 to 1. If the outputted p-value is
“close” to 0 (a common cutoff is 0.05), then the link with the most
“faulty verdicts” is considered to actually be faulty. In the case
of multiple errors, that link can be removed from the set consid-
ered, and the chi-squared test can be run again.

Putting It All Together
We combine the functional components described thus far into
an always-active fault detection system. Our system involves
functional components at all servers, a subset of switches, and
a centralized aggregator, depicted step-by-step in Figure 4.
Switches mark packets (1) to indicate network path as described
before. Hosts then independently compare the performance of
their own flows to generate a host-local decision (a “verdict”)
about the health of all network components (2), performing out-
lier analysis using the Student’s t-test on metrics such as TCP
retransmits. Specifically, every host will output a verdict for the
ToR-to-Agg and Agg-to-Core links in its own pod once every
10 seconds. These verdicts are sent (3) to a central aggrega-
tor, which filters false positives to arrive at a final set of faulty
components using the chi-squared test (4), aggregating data
and outputting a result once every 10 seconds (configurable to
increase sensitivity as a tradeoff to reaction time) as well. We do
not consider host-to-ToR uplinks in this system.

Detecting Faults
To validate our approach, we deployed a prototype of our fault
detection system inside a production Facebook front-end data-
center serving user Web traffic. For the sake of reproducible
experiments, we primarily focus on injected synthetic failures,
which we describe momentarily. We also discuss experience
gained in tracking down naturally occurring partial faults.

Induced Faults
Within one of Facebook’s datacenters, we instrumented 86 Web
servers spread across three racks with the monitoring infra-
structure described previously. Path markings are provided
by a single Agg switch, which sets DSCP bits based on the core
switch from which the packet arrived. To inject faults, we use

Figure 3: TCP congestion window distribution per ToR uplink for cache
server. The ToR to aggregation switch 1 link has 0.5% randomized packet
loss, which has shifted the distribution towards smaller values.

28  FA L L 20 17 VO L . 42 , N O. 3 www.usenix.org

SYSADMIN
Passive Realtime Datacenter Fault Detection and Localization

iptable rules installed at hosts to selectively drop inbound pack-
ets that traversed specific links (according to DSCP markings).
For example, we can configure a host to drop 0.5% of all inbound
packets that transited a particular core-to-Agg link.

First, for a single faulty core-to-Agg link, we depict the per-
centage of hosts that flag the faulty link as having an error as
a function of the packet loss rate over consecutive 10-second
intervals in Figure 5. For drop rates at 0.5% and higher, close to
all of the hosts flag the link as faulty. For drop rates below 0.5%,
we observe a linear drop off in the percentage of hosts that catch
the fault.

Recall the aggregator, which gives us the overall verdict on
per-link health, looks for a non-trivial difference in the number
of hosts that claim that a link is faulty before marking it faulty.
Thus, over a 10-second interval, it might not decide that the
fraction of hosts marking a link as faulty is significant for the
smaller magnitude errors. Note, however, that since a fault is
likely to persist for longer periods of times, we can simply run the
aggregator for longer to catch an error. Instead of processing N
verdicts over 10 seconds, we could aggregate and operate on 3N
verdicts over 30 seconds. We find that this allows us to reliably
catch the smaller magnitude errors as well, without inducing
false positives in the no-error case.

Figure 6 depicts the amount of time needed by the aggregator to
catch errors ranging from 0.25% packet loss down to 0.1%. Recall
that a chi-squared test outputs a p-value, where if the p-value is
“close” to 0 (we arbitrarily use 0.05 as our cutoff for “close”) it
means that the link with the most faulty verdicts from the hosts
is likely to, in fact, be faulty. Thus, we depict the p5, p50, and p95
for the p-values outputted by the aggregator for each packet loss
rate. We see that a 20-second interval will reliably catch a 0.25%
error—in other words, the aggregator almost always outputs
a p-value of less than 0.05. However, a 0.15% packet loss rate
requires 40 seconds, and we receive an intermittent signal for a
0.1% error—at least some portion of the time the aggregator will
find no fault.

Naturally Occurring Faults
To determine whether our system can successfully detect and
localize network anomalies in the wild, we deployed our system
on 30 Web servers for a two-week period in early 2017 without
inducing any synthetic errors. On January 25, 2017, the soft-
ware agent managing a single switch linecard that our system
was monitoring failed. The failure had no immediate impact on
traffic, since the existing switch rule set installed by the agent
remained in effect. Roughly a minute later, however, as the BGP
peerings between the linecard and its neighbors began to time
out, traffic was preemptively routed away from the impacted
linecard.

Figure 4: High-level system overview (single pod depicted)

Figure 5: Single fault loss rate sensitivity

Figure 6: Controller interval required to find single fault vs. packet loss rate

www.usenix.org FA L L 20 17 VO L . 42 , N O. 3 29

SYSADMIN
Passive Realtime Datacenter Fault Detection and Localization

Our system observed that as traffic was routed away from the
failed linecard, the distributions of TCP’s congestion window
and slow start threshold metrics for the traffic remaining on the
faulty linecard’s links rapidly diverged from those associated
with non-faulty linecards (Figure 7). The deviations are imme-
diate and significant, with the mean congestion window for the
faulty linecard dropping over 10% in the first interval after the
majority of traffic is routed away, and continually diverging from
the working links thereafter. Furthermore, the volume of mea-
sured flows at each host traversing the afflicted linecard rapidly
drops from O(1000s) to O(10s) per link.

By contrast, one of Facebook’s monitoring systems, NetNORAD
[1], took several minutes to detect the unresponsive linecard con-
trol plane and raise an alert. It is important to note that in this
case, we did not catch the underlying software fault ourselves;
that honor goes to BGP timeouts. However, we do observe a sud-
den shift in TCP statistics in real time as traffic is routed away,
as our system was designed to do. Thus, this anecdote shows that
our system can complement existing fault-detection systems
and provide rapid notification of significant changes in network
conditions on a per-link or per-device basis.

Caveats
A couple of caveats apply to this methodology. First, it is con-
ceivable that for more complicated topologies, a single stamp on
a packet might not be enough to uniquely resolve the path. Prior
work [6] has explored marking multiple packets with partial
path information, such that the overall network path can be
recovered by examining enough packets. We leverage a similar
technique to generalize our packet-stamping mechanism. Sup-
pose there is a maximum of H hops in the network between any
pair of communicating servers. We provide every switch an ID
instead of a select few. Suppose a flow has H or more packets.

The first packet can be marked by the sender with some bits that
instruct the first switch in the path to stamp the packet only—for
example, we might use the IP TTL field to arrange this. The sec-
ond can be marked so the second switch in the path marks it, and
so on until we send H packets to recover the full path.

Second, when it comes to applying per-switch stamps, we need
to choose where in the packet we apply it. Our prototype stamps
the packet DSCP field, but this is limited since it is only 6-bits
wide and frequently has other uses—typically for choosing
switch-queueing policies. A solution that could scale to much
larger networks would be to write to the IPv6 flow label field
in the packet header, which is 20-bits wide. We are necessarily
limited to what switch ASICs support, though the capabilities of
switch ASICs have been progressively improving.

Future Directions
While our existing prototype has leveraged some favorable
characteristics of the Facebook datacenter environment—most
notably, the heavily load balanced traffic distribution—we are
optimistic that our approach can generalize to datacenters with
different and more variable application traffic patterns, such as
Hadoop cluster workloads. Additionally, we hope that our find-
ings incentivize router manufacturers to provide more options to
allow packet header manipulation, perhaps through mechanisms
such as P4 [3].

Figure 7: Mean cwnd per (host, link) during linecard fault

30  FA L L 20 17 VO L . 42 , N O. 3 www.usenix.org

SYSADMIN
Passive Realtime Datacenter Fault Detection and Localization

References
[1] A. Adams, P. Lapukhov, and H. Zeng, “NetNORAD: Trouble-
shooting Networks via End-to-End Probing,” Facebook Code
blog, Feb. 18, 2016: https://code.facebook.com/posts
/1534350660228025/netnorad-troubleshooting-networks-via
-end-to-end-probing/.

[2] A. Andreyev, “Introducing Data Center Fabric, the Next-Gen-
eration Facebook Data Center Network,” Facebook Code blog,
Nov. 14, 2014: https://code.facebook.com/posts
/360346274145943.

[3] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J.
Rexford, C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and
D. Walker, “P4: Programming Protocol-Independent Packet
Processors,” ACM SIGCOMM Computer Communi-cation
Review, vol. 44, no. 3 (July 2014), pp. 87–95: http://www.sigcomm
.org/sites/default/files/ccr/papers/2014/July/0000000
-0000004.pdf.

[4] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside
the Social Network’s (Datacenter) Network,” in Proceedings of the
2015 ACM Conference on Special Interest Group on Data Commu-
nication (SIGCOMM ’15), pp. 123–137: http://cseweb.ucsd.edu/
~snoeren/papers/fb-sigcomm15.pdf.

[5] A. Roy, H. Zeng, J. Bagga, and A. C. Snoeren, “Passive Real-
time Datacenter Fault Detection and Localization,” in Proceed-
ings of the 14th USENIX Symposium on Networked Systems
Design and Implementation (NSDI ’17), pp. 595– 612: https://
www.usenix.org/system/files/conference/nsdi17/nsdi17-roy.pdf.

[6] S. Savage, D. Wetherall, A. Karlin, and T. Anderson, “Practical
Network Support for IP Traceback,” in Proceedings of the
Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communication (SIGCOMM ’00),
pp. 295–306: http://cseweb.ucsd.edu/~savage/papers
/Sigcomm00.pdf.

[7] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead,
R. Bannon, S. Boving, G. Desai, B. Felderman, P. Germano,
A. Kanagala, J. Provost, J. Simmons, E. Tanda, J. Wanderer,
U. Hölzle, S. Stuart, and A. Vahdat, “Jupiter Rising: A Decade of
Clos Topologies and Centralized Control in Google’s Datacenter
Network,” in Proceedings of the 2015 ACM Conference on Special
Interest Group on Data Communication (SIGCOMM ’15), pp.
183–197: http://conferences.sigcomm.org/sigcomm/2015/pdf
/papers/p183.pdf.

[8] X. Wu, D. Turner, C.-C. Chen, D. A. Maltz, X. Yang, L. Yuan,
and M. Zhang, “NetPilot: Automating Datacenter Network
Failure Mitigation,” in Proceedings of the ACM 2012 Conference
on Applications, Technologies, Architectures, and Protocols for
Computer Communication (SIGCOMM ’12), pp. 419–430: https://
www.microsoft.com/en-us/research/wp-content/uploads/2016
/02/netpilot.pdf.

[9] Y. Zhu, N. Kang, J. Cao, A. Greenberg, G. Lu, R. Mahajan, D.
Maltz, L. Yuan, M. Zhang, B. Y. Zhao, and H. Zheng, “Packet-
Level Telemetry in Large Datacenter Networks,” in Proceedings
of the 2015 ACM Conference on Special Interest Group on Data
Communication (SIGCOMM ’15), pp. 479–491:
https://www.cs.ucsb.edu/~ravenben/publications/pdf/everflow-
sigcomm15.pdf.

https://code.facebook.com/posts/1534350660228025/netnorad-troubleshooting-networks-via-end-to-end-probing/
https://code.facebook.com/posts/1534350660228025/netnorad-troubleshooting-networks-via-end-to-end-probing/
https://code.facebook.com/posts/1534350660228025/netnorad-troubleshooting-networks-via-end-to-end-probing/
https://code.facebook.com/posts/360346274145943
https://code.facebook.com/posts/360346274145943
http://www.sigcomm.org/sites/default/files/ccr/papers/2014/July/0000000-0000004.pdf
http://www.sigcomm.org/sites/default/files/ccr/papers/2014/July/0000000-0000004.pdf
http://www.sigcomm.org/sites/default/files/ccr/papers/2014/July/0000000-0000004.pdf
http://cseweb.ucsd.edu/~snoeren/papers/fb-sigcomm15.pdf
http://cseweb.ucsd.edu/~snoeren/papers/fb-sigcomm15.pdf
https://www.usenix.org/system/files/conference/nsdi17/nsdi17-roy.pdf
https://www.usenix.org/system/files/conference/nsdi17/nsdi17-roy.pdf
http://cseweb.ucsd.edu/~savage/papers/Sigcomm00.pdf
http://cseweb.ucsd.edu/~savage/papers/Sigcomm00.pdf
http://conferences.sigcomm.org/sigcomm/2015/pdf/papers/p183.pdf
http://conferences.sigcomm.org/sigcomm/2015/pdf/papers/p183.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/netpilot.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/netpilot.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/netpilot.pdf
https://www.cs.ucsb.edu/~ravenben/publications/pdf/everflowsigcomm15.pdf

www.usenix.org FA L L 20 17 VO L . 42 , N O. 3 31

SYSADMIN

Resourceful
Monitoring under the Microscope

L U C I A N C A R A T A , O L I V E R R . A . C H I C K , A N D R I P D U M A N S O H A N

Typically, monitoring systems record system-wide and application-
level metrics separately, with significant time and expertise being
invested in understanding how one affects the other when diagnos-

ing complex issues. Resourceful, our open source project, bridges the gap
between the two by allowing applications to record the system-level metric
changes caused by each of their actions. For example, a Web server could
record “the time spent in the TCP stack for servicing a request.” We discuss
the ideas that support this approach and provide a number of use cases show-
ing how they can be useful in the real world.

The Usual Suspects
“Why is it slow?” (with the dreaded variant, “Why is it sometimes slow?”) is a question that
sysadmins have been asking ever since computer systems grew complex enough to run soft-
ware. In response, common wisdom suggests deploying monitoring solutions such as Nagios
and Munin to understand the status and evolution of production systems. More recently,
open-source tools such as Prometheus, Heka, and Bosun have become popular by introducing
ideas on tracking multi-dimensional time series that were battle-tested in companies with
large computing infrastructures [6, 7]. They provide APIs with which software engineers
can instrument their code to expose metrics for the monitoring system. The data ends up in
customizable dashboards where it can be queried, used for alerts, or archived.

While there have been significant improvements in the number of available tools and low-
overhead introspection mechanisms (perf, SystemTap [5], DTrace [1], eBPF), easily tying
together the resources used and code paths touched inside the kernel while an application
performs arbitrarily defined activities (such as executing a db query and sending back a
response) remains a challenge, one which Resourceful (rscfl) sets up to solve. This is not
about “fixing everything without waking sysadmins up,” but exploring new design points and
tradeoffs in the monitoring/debugging space that will make your life easier.

Key to this is programmability: we should start using tools that provide their results in ways
that can be naturally consumed, either by dashboards, complex analysis tools, or by applica-
tions themselves, while placing everything they measure in context: in the context of what
other applications/VMs are doing, competing workloads, and lack of perfect isolation. No
metric should be recorded without tracking the circumstances and effect it has on other metrics
within the same time period.

While at first sight simple, those initial ideas have led us to some less obvious design and
implementation choices. By open-sourcing Resourceful, we hope both to start a wider dis-
cussion and to show the ability of solving some difficult real-world problems.

Resourceful: The Ideas
At its core, Resourceful allows applications to express interest in the measurement of fine-
grained kernel-side metrics in order to understand the side effects of userspace actions when

Lucian Carata is a Research
Associate at the Computer
Laboratory, University of
Cambridge. He has done work
in the area of provenance, root-

cause analysis, I/O performance, and system
measurement. lucian.carata@cl.cam.ac.uk

Oliver R.A. Chick is a passionate
hacker of all things, from
compilers to lower levels in
the software stack. He earned
his PhD from University of

Cambridge with a thesis on understanding
the impact of running complex workloads in
virtualized environments. In the process, he
devised new methods to achieve low-side-
effect tracing (shadow kernels).
oliver.chick@cl.cam.ac.uk

Ripduman Sohan is a Senior
Researcher in the systems area
at the Computer Laboratory,
University of Cambridge. He
has done work in the area of

storage, virtualization, end-host networking,
energy-efficient computing, provenance, and
instrumentation.
ripduman.sohan@cl.cam.ac.uk

32  FA L L 20 17 VO L . 42 , N O. 3 www.usenix.org

SYSADMIN
Resourceful: Monitoring under the Microscope

interacting with the OS: Where was most of the time spent? Was
their execution interrupted by the scheduler, and for how long?
How did the statistics of the TCP stack (retransmits, bytes sent)
change during this time? This takes an application-centric view,
like a monitoring API would, but the measurements are about
the OS and its resource sharing and multiplexing.

Exposing this data in a monitoring context allows gaining
insights about real-time application behavior. Consider the case
of a simple Web server: how would you track per-request page
cache misses, time spent in the TCP stack, time spent doing I/O,
or interactions with the servicing of other requests?

Measurements in Context
One of the significant differences between OS-level debugging
tools and application-monitoring frameworks is the amount
of detail they have about the running application: a monitor-
ing framework may collect custom metrics specific to the
application such as “number of client transactions per second,”
“time taken to run database queries fetching the front page,” or
“number of 404 errors per minute.” This data may be collected
together with per-system global metrics such as “TCP traffic,”
“I/O wait times,” and “CPU load” and be displayed on the same
dashboard for at-a-glance sanity checking.

However, once problems appear, it becomes somebody’s (hope-
fully, somebody else’s) task to figure out how things went wrong.
How useful are dashboards in figuring out the problem? If
“system-wide I/O wait times have increased while the number of
transactions per second have dropped,” do we have a better idea
on where to look for what’s causing the issue? Likely so, but only
with enough experience and intuition about where the problem
might be. That or a lot of trial-and-error. This is the stuff sysad-
min “war stories” are made of.

We propose that it would be helpful to bridge the gap between
application-specific and system-wide metrics. What if you
could collect changes to system-wide metrics in the context of
an application-specific one? What if you could have a metric of
“I/O wait times for each request”? This is what rscfl is imple-
menting through its API: applications declare the boundaries of
interesting actions (“the request”) and “announce” when they
switch from one action to another, while an rscfl kernel mod-
ule measures their kernel side effects. This can also be framed
as a way of understanding what system resources are used by
application-specific actions.

Integration as a Monitoring Solution
Although closer in implementation and low-level mechanisms
to existing tracing tools, rscfl integrates with applications as
a monitoring system would: it provides an API for collection
of fine-grained metrics and allows applications to instrument
code paths implementing a high-level functionality or activity

(i.e., a Web server declaring “this is code for processing a Web
request”). The resulting data can be further exported to inher-
ently distributed monitoring systems such as Prometheus and
be integrated in its larger monitoring infrastructure. Creating a
root-cause diagnosis system like the one discussed by Ostrovski
et al. [4] around this is definitely possible, and we have already
built a prototype [8].

This position as the middle-man requires thought about pro-
grammability and efficiency: rscfl allows applications to access
measurement results by sharing a region of memory between
them and the kernel, giving direct access to results without
extra copying or parsing of data. Do I hear you say, “That poses
security issues”? We have looked at protecting the data as well:
measurements are accessible as normal data structures within
the application’s address space, but by default no other applica-
tions have access to it.

Targeting the Kernel
The point at which any application interacts with the world
outside its own memory address space is through the OS kernel:
whether it is performing I/O, being scheduled together with
other applications, or dealing with hardware failure, the kernel
is the one doing the management. Our experience has been
that these kernel interactions are typically some of the hardest
to understand: the kernel is usually part of the code base that
developers and sysadmins would like to treat as a black box that
“just works.”

On the other hand, you might be forced to learn about details
inside the box once an application is not behaving as expected,
and you’re trying to find its bottlenecks. We propose solving this
disconnect by explicitly exposing the notion of a kernel subsys-
tem when returning measurement data. It seems like the right
level of abstraction to talk about the kernel from an application’s
perspective: “It has spent this much time in the TCP subsys-
tem”; “The file was not cached, so reading from it used the block
subsystem.”

In terms of actual measurements, the kernel remains the ideal
place to understand the side effects of application actions: it is
where resources (CPU, memory, disk) are being shared and time-
multiplexed among multiple processes. However, adding lots of
instrumentation can be costly. In existing probing mechanisms,
the time taken to execute some measurement also depends on
the total number of probes that are active. This is why rscfl uses
a new type of low-overhead probing, called a KAMprobe (Kernel
Advanced Measurement probe). Its execution time only depends
on the complexity of the code being run inside the probe, with
no dependency on how many other probes are active. We’ve been
running kernels with tens of thousands of active measurement
points without a significant performance impact.

www.usenix.org FA L L 20 17 VO L . 42 , N O. 3 33

SYSADMIN
Resourceful: Monitoring under the Microscope

Virtualization Awareness (Alpha)
Virtualization introduces new challenges in the picture, with
multiple containers or VMs isolated to various degrees from
each other on the same host, but introducing resource sharing
(time, page cache, memory) that applications or OSes are not
directly aware of. We have added hypervisor and containerized
kernel support in Resourceful in order to be able to track those
elements in the context of application actions: with this support,
applications are aware (for example) of the time the VM was not
scheduled in as part of the time added to the latency of particu-
lar actions. This introduces security considerations for cloud
environments, but exploring this area for better understanding
of workload co-location properties is very important.

Case Studies
Beyond the general configurable framework that allows anybody
to extend Resourceful for tracking custom-defined kernel sub-
systems, we have investigated a number of use cases, generally
connected to making our own systems research and problem
troubleshooting easier. They are useful as examples of how the
ideas presented above come together in a coherent manner.

Advanced Cache Monitoring
In a production system, caches are some of the key elements
for maintaining good performance, yet keeping track of their
behavior under complex workloads remains painful, with only
coarse-grained summaries available at the OS-level. Collect-
ing fine-grained information is unpopular because nobody likes
slow caches: any measurement performed on them is by defini-
tion on a hot code path, where every cycle spent counts.

What about measuring things in a test environment? That
doesn’t often work since it’s impossible to know and replicate
production cache behavior—especially for shared environments
like the cloud. Thus, monitoring by getting periodic snapshots
of metrics like hit/miss ratios and eviction rates is typically the
only realistic option. Still, wouldn’t it be nice to be able to dig
deeper and drive optimizations by having a map of what files
were hit/missed in OS caches during different operations per-
formed by your application?

We thought the same and leveraged Resourceful’s low overhead
probing mechanisms to define a PAGE_CACHE measurement
subsystem. As the name implies, it tracks the OS-level page
cache (normally used for file I/O, mmap, or fs metadata). Devel-
opers can choose to monitor the full cache or restrict the parts of
the cache that are tracked (not interested in mmaps? why pay the
overhead?). On the application side, data collection for this sub-
system can be enabled through the API. When per-action aggre-
gations are needed, their boundaries will need to be marked by
API calls as well (e.g., for a Web server, mark parts of the code
servicing a request or switching between them). Table 1 shows a
more detailed comparison with other available mechanisms.

The result allows an application to record per-file cache statis-
tics and give a better idea of when I/O latency degradation hap-
pens due to cache trashing. Knowing which files have incurred
the most misses in the context of a particular action allows you
to make informed compromises: does ensuring a particular file
is cached make the code path you’re interested in faster?

We have used the same functionality to characterize slowdowns
caused by workload transitioning from being fully served from
the cache to requiring disk accesses. In such cases, bottlenecks
can shift (e.g., network-bound operations becoming disk-bound)
for just part of your application, making diagnosis hard.

We’re currently working to add visibility into evictors (who
eliminated the cache entry that caused my process to miss?) and
virtualized environments that hide shared caches (containers).

Hidden Work
The Linux kernel is able to run its own long-lived threads
(kthreads) that are treated by the scheduler as any other process.
They are used by the kernel to deal with long-running work (e.g.,
writing dirty page cache entries back to disk) or with work that
cannot be completed immediately in regions where blocking is
not allowed (such as interrupt service routines). In the latter
case, the kernel provides a general mechanism that drivers can
use to schedule delayed work: work queues.

However, work queues use a thread-pooling model where a
number of long-lived kthreads wait for work to be enqueued from
various subsystems and take on the execution of callback func-
tions doing the actual work as needed. Due to this multiplexing
of work belonging to different kernel subsystems and drivers,
and due to the inherent asynchronicity, it is quite challenging to
get a high-level understanding of what work is being carried out
by a given work queue/kthread at a given time and to deter-
mine what high-level userspace action might have required its
triggering.

We have defined a custom rscfl subsystem named TRACK_
WORKQUEUE to help us in understanding why applications
using an nvme device driver we extended were not achieving
the expected throughput and latency figures. It has allowed us
to monitor the creation and queuing of work inside kernel work
queues as I/O requests from a benchmarking framework (fio)
were issued.

This targeted investigation (monitoring the calls into the
work-queue subsystem from within just a single application
as opposed to system-wide) has allowed us to quickly deter-
mine that instead of using the inherent nvme parallelism, our
modified driver was serializing block device requests through a
single-threaded work queue. Having identified the bottleneck, it
was an easy fix to increase the number of dedicated workers for
that work queue, leading to significantly improved performance.

34  FA L L 20 17 VO L . 42 , N O. 3 www.usenix.org

SYSADMIN
Resourceful: Monitoring under the Microscope

Latency in Context
As a fully application-facing example, we have modified a non-
blocking Web server to use the rscfl API for tracking resources
consumed while servicing each client request. The resulting
data is both pushed into Prometheus as a time series and used
by a monitoring dashboard in order to understand variations
in latency on a per-request basis. We’ve called this “Latency
Explorer,” a tool that dynamically allows us to compare high-
latency requests with low-latency ones and try to determine
where the differences appear. This provides more visibility into
one of the areas of high interest for understanding any high fan-
out architecture, where tail latency matters greatly [2].

In Figure 1, two views of the system are made available: a latency
distribution and a per-request resource consumption breakdown
based on Resourceful data. Each of the parallel axes in the bot-
tom graph identifies a consumed resource or metric specific to
the application activity (here, responding to an HTTP request).
A given request is thus represented on the graph as a line linking
the corresponding measured values (the dashed line in Figure 1).
An idea of visual analysis using this data is to allow the selection
of different intervals in the latency histogram while coloring the
corresponding requests differently in the resource consumption
graph (Figure 2). Further filtering is available on each of the
resource axes.

Using Resourceful
Until recently, Resourceful was developed at the University of
Cambridge, and while we spoke openly about the tool, its imple-
mentation was considered too immature for release to the wider
world. Realizing the buzz that Resourceful was building in aca-
demic circles, we have been hard at work for the past 18 months
and are now in a position where we are open-sourcing Resource-
ful so it can be used to increase observability in production
systems. Our project is available at github.com/lc525/rscfl, and
we’re accepting both suggestions and contributions. If you have
a monitoring problem where you believe the existing tooling is
inadequate or might benefit from the ideas presented here, we
would welcome your contributions.

Requirements
The core of Resourceful is a system that modifies your running
kernel to insert instrumentation. In order to safely apply this
instrumentation we require some capabilities that may not be
accessible on some systems:

◆◆ Elevated access. Resourceful can be run on any Linux kernel
without requiring a reboot or modification to the kernel as
stored on disk. This is made possible by Resourceful scanning
the running kernel, determining the parts of the running code
that should be measured, and then applying itself to these
regions. Doing that typically requires some form of elevated
privileges. However, once rscfl is running it can be used by any
application.

◆◆ Kernel debug symbols. Resourceful has an automated analy-
sis that determines boundaries in the kernel that should be
measured. To enable us to perform this analysis, Resourceful
requires access to the kernel’s debug symbols. In most Linux
distributions these can be obtained as a separate package that
does not modify the kernel that is running (i.e., the debug sym-
bols live in a separate file and do not affect the running kernel).

Installation
At present Resourceful must be built from Source, however we
are considering packaging it for some distributions. We main-
tain and provide a full set of up-to-date instructions on running
Resourceful on our GitHub page, but here we outline the sets
required at the time of writing.

◆◆ Installation requires you have Git, Wget, and Python 2.7 in-
stalled. We expect these will be installed on most Linux boxes.

◆◆ Beyond that, it should be as simple as running make and make

install.

Modifying Programs to Use Resourceful
Resourceful supplies a C/C++ API with which userspace
programs specify where they start and stop processing a given
activity. While this does mean that applications need to be
modified in order to use Resourceful, the changes in practice are
often trivial and can be added to commonly used remote proce-
dure call libraries in an elegant fashion. The context for mea-

Operation Selection Aggregation Metrics Breakdown

 rscfl • selective (on file read, write, mmap)
• all

• per-app
• per-app action
(programmer defined)

• hit/miss ratio
• eviction rate
• dirty entries
• cached size

• per-file
• summary

OS non-selective (all) system-wide, per-cgroup summary

Tracing non-selective (all) system-wide, per-app custom summary

Table 1: Options offered by rscfl when monitoring caches, in comparison to default OS metrics and tracing mechanisms such as SystemTap, DTrace, or eBPF

www.usenix.org FA L L 20 17 VO L . 42 , N O. 3 35

SYSADMIN
Resourceful: Monitoring under the Microscope

surements is being kept by communicating some opaque tags to
the kernel. This is not unlike the strategy taken by other systems
such as XTrace [3], but we are considering asynchronous behav-
ior in greater detail. When receiving a tag that is the same as one
seen before, our kernel module knows that any metric changes
should be accounted to the same activity, and it can perform the
aggregation directly in kernel space.

The general steps for using the API would be as follows:

1. Initialize Resourceful in your program. This creates a Resource-
ful “handle,” which is much like a traditional file descriptor. It
is passed to the other Resourceful functions and contains state
about the innards of Resourceful.

rhdl_t rhdl = rscfl_init() ;

2. When your application starts a new activity (i.e., receives a user
request), it can request a “token” for it and start accounting the
resources it uses:

token_t token ;

rscfl_acct(rhdl, token, ACCT_START);

Figure 1: Latency Explorer, a visual analysis tool prototype

36  FA L L 20 17 VO L . 42 , N O. 3 www.usenix.org

SYSADMIN
Resourceful: Monitoring under the Microscope

3. When the activity stops (i.e., the request has been sent), we can
stop recording the resources used and read out the values:

rscfl_acct(rhdl, token, ACCT_STOP);

// Read the accounting information that we recorded.

rscfl_account_t rscfl_results;

rscfl_read_acct(rhdl, &rscfl_results);

rscfl_results is a structure from which you can read the kernel
resources used in the processing of your request. This is a broken
down per-kernel subsystem. For this example, we have measured
a default list of performance measurement counters, however
Resourceful also has APIs that can be used to measure spe-
cific resources. Resourceful also contains some magic higher-
order functions that let you perform advanced aggregation of
resources used across many requests (map-fold-filter).

4. In modern systems, processing often takes place in asynchro-
nous event loops. This means the application activity might
complete in stages. If this happens you can tell Resourceful to
apply the resources used to a new activity by switching token:

rscfl_switch_token(rscfl_hdl, new_token);

The API also provides features for storing arbitrary application-
specific metrics together with the kernel-recorded measure-
ments, which is extremely useful when performing a detailed
analysis.

Upcoming Features, Conclusion
Resourceful’s API is currently available for C and C++ only, but
we hope to add wrappers for other popular languages soon. In
particular, this presents a good opportunity for instrumenting
runtimes that provide green threads. Those can be tricky to
monitor at present, and by instrumenting at the runtime level we
would also limit the amount of required changes to application
code. Other planned features target the extension of our visibil-
ity into virtualized environments, and we already have promis-
ing research results in that area.

We’re not aiming to produce just another tool for debugging/
monitoring applications. Instead, we’re hoping to restart a dis-
cussion on what is needed to advance this area in ways that are
helpful to practitioners. Download from github.com/lc525
/rscfl and let us know what you think.

Figure 2: Latency Explorer, interactive filtering for comparing the latencies of requests selected in the Figure 1 histogram: tail latency (dotted) vs latencies
between 95.6 and 140 ms (dashed). Each axis can be further filtered, and that in turn updates the histogram (how does the histogram of response times
look for requests that spent a lot of time in the Networking layer?).

www.usenix.org FA L L 20 17 VO L . 42 , N O. 3 37

SYSADMIN
Resourceful: Monitoring under the Microscope

References
[1] B. M. Cantrill, M. W. Shapiro, and A. H. Leventhal, “Dynamic
Instrumentation of Production Systems,” in Proceedings of
the USENIX Annual Technical Conference (ATC ’04), pp. 2–2:
https://www.usenix.org/legacy/event/usenix04/tech/general
/full_papers/cantrill/cantrill_html/.

[2] J. Dean and L. A. Barroso, “The Tail at Scale,” Communica-
tions of the ACM, vol. 56, no. 2 (February 2013), pp. 74–80.

[3] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and I. Stoica,
“X-Trace: A Pervasive Network Tracing Framework,” in Pro-
ceedings of the 4th USENIX Conference on Networked Systems
Design & Implementation (NSDI ’07), pp. 20–20: https://www
.usenix.org/legacy/events/nsdi07/tech/full_papers/fonseca
/fonseca.pdf.

[4] K. Ostrowski, G. Mann, and M. Sandler, “Diagnosing
Latency in Multi-Tier Black-Box Services,” in Proceedings of the
5th Workshop on Large Scale Distributed Systems and Middle-
ware (LADIS ’11): https://static.googleusercontent.com/media
/research.google.com/en//pubs/archive/37477.pdf.

[5] V. Prasad, W. Cohen, F. Eigler, M. Hunt, J. Keniston, and B.
Chen, “Locating System Problems Using Dynamic Instrumen-
tation,” in Proceedings of the 2005 Ottawa Linux Symposium
(OLS ’05), pp. 49–64: https://www.kernel.org/doc/ols/2005
/ols2005v2-pages-57-72.pdf.

[6] G. Ren, E. Tune, T. Moseley, Y. Shi, S. Rus, and R. Hundt,
“Google-Wide Profiling: A Continuous Profiling Infrastructure
for Data Centers,” IEEE Micro, vol. 30, no. 4 (July/August 2010),
pp. 65–79.

[7] B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson, M.
Plakal, D. Beaver, S. Jaspan, and C. Shanbhag, “Dapper, a Large-
Scale Distributed Systems Tracing Infrastructure,” Google
Technical Report, 2010: https://static.googleusercontent.com
/media/research.google.com/en//pubs/archive/36356.pdf.

[8] J. Snee, L. Carata, O. R. A. Chick, R. Sohan, R. M. Faragher,
A. Rice, and A. Hopper, “Soroban: Attributing Latency in
Virtu alized Environments,” in Proceedings of the 7th USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud ’15):
https://www.usenix.org/system/files/conference/hotcloud15
/hotcloud15-snee.pdf.

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/37477.pdf

38  FA L L 20 17 VO L . 42 , N O. 3 www.usenix.org

SECURITYBeyondCorp 5
The User Experience

V I C T O R E S C O B E D O , B E T S Y B E Y E R , M A X S A L T O N S T A L L ,
A N D F I L I P Ż Y Ź N I E W S K I

Victor Escobedo is a Corporate
Operations Engineer at Google
in Mountain View. Originally
joining Google in 2010 through
the ITRP Program, he now

focuses on change and impact management.
He holds a BS in computer science from CSU
Fullerton. victore@google.com

Betsy Beyer is a Technical
Writer for Google Site
Reliability Engineering in NYC.
She has previously provided
documentation for Google

Data Center and Hardware Operations
teams. Before moving to New York, Betsy
was a lecturer in technical writing at Stanford
University. She holds degrees from Stanford
and Tulane. bbeyer@google.com

Max Saltonstall is a Technical
Director in the Google Cloud
Office of the CTO in New
York. Since joining Google in
2011, he has worked on video

products, internal change management, IT
externalization, and coding puzzles. He has a
degree in computer science and psychology
from Yale. maxsaltonstall@google.com

Filip Żyźniewski is a Site
Reliability Engineer at Google
in Dublin and the lead of
BeyondCorp’s portal project.
He previously worked as a

Performance Engineer at Sabre Holdings. He
holds a master’s degree in computer science
from the University of Lodz.
zyzniewski@google.com

Previous articles in the BeyondCorp series discuss aspects of the
technical challenges we solved along the way [1–3]. Beyond its purely
 technical features, the migration also had a human element: it was

vital to keep our users constantly in mind throughout this process. Our goal
was to keep the end user experience as seamless as possible. When things
did go wrong, we wanted users to know exactly how to proceed and where to
go for help. This article describes the experience of Google employees as they
work within the BeyondCorp model, from onboarding new employees and
setting up new devices, to what happens when users run into issues.

Enabling a Seamless New Hire Experience
For many new employees, the idea of a BeyondCorp model is quite foreign: they’re used to
accessing the tools they need for their day-to-day work through VPNs, “corp wireless,” and
other privileged environments. When we initially rolled out BeyondCorp, many new hires
continued to request VPN access from our help desk team (internally known as Techstop).
From past experiences, they assumed they needed to jump through a few IT hoops if they
planned to work while away from the office. The architects of BeyondCorp mistakenly
assumed that users would try to access internal resources while away from the office and
notice that things “just worked”—no access requests from users and no support load for
Techstop would be a win-win!—but old habits die hard.

New Hire Orientation
We clearly needed to reach users earlier in their IT journey at Google, so we began introduc-
ing BeyondCorp in new hire orientation. During orientation, we explicitly avoid explaining
the technical aspects of the model and instead focus on the end user experience. We empha-
size that users don’t need VPNs and that they’re “automatically” granted remote access; they
can work from the office, from their home, on a plane, or in a coffee shop without chang-
ing their workflows. During this short training, we show users the BeyondCorp Chrome
extension—the most common user-facing expression of the BeyondCorp access model (for
more details on the extension, see “The BeyondCorp Extension,” below)—and the icon that
represents a “good” connection within BeyondCorp (see Figure 2). We explain that from a
good connection, they can access the vast majority of the tools and resources they need from
any network connection.

New Device Setup
When users log in to their corporate devices with their corporate credentials the first time,
their access settings are automatically configured. To enable this seamless onboarding
experience, inventory processes and platform management tools work behind the scenes to
configure a new hire device for initial setup. As described in [1], we infer device trust based
on a number of signals, some observed (last security scan, patch level, installed software,
etc.) and some prescribed (assigned owner, VLAN, etc.). To handle this complexity, our
inventory teams follow an automated provisioning process to ensure that new hire devices
are correctly trusted at first login. Once the necessary user credentials are validated,

www.usenix.org FA L L 20 17 VO L . 42 , N O. 3 39

SECURITY
BeyondCorp 5: The User Experience

we automatically push our custom Chrome extension to the
machine.

From the user’s perspective, as long as they see the green icon
in the extension, they know they can access their corporate
resources. By explaining the BeyondCorp Chrome extension in
new hire training, we have virtually eliminated new hire confu-
sion and support requests relating to remote access.

VPN Reduction
Although new hires learn about BeyondCorp during orientation,
their first few days at Google can be a somewhat overwhelming
torrent of information. Because we don’t expect every person to
recall every detail they learn that first day, we modified our VPN
request processes and tools to emphasize the concepts intro-
duced in orientation.

Since new hires aren’t given access to our VPN gateways by
default, they must request VPN access through an online request
portal. On this portal, we clearly remind users that BeyondCorp
is automatically configured and that they should try to access
the resources they need before requesting VPN access.

As shown in the flowchart in Figure 1, if the user skips this
warning, we also perform automated analysis on the services
users access through the VPN tunnel. If a user hasn’t accessed
a single corporate service not available within the Beyond-
Corp model within 45 days, we send them an email. The email
explains that because all the corporate resources they’ve
accessed are supported through BeyondCorp, their VPN access
will expire in 30 days unless they access a service that isn’t
supported by BeyondCorp. We send one more notification seven
days before their VPN access expires, and then revoke permis-
sion to the VPN gateway at the end of the seventh day. This auto-
mated process allows us to proactively cull unnecessary usage of
legacy access infrastructure, and will eventually allow us to turn
down our VPN infrastructure entirely.

Loaners
As a side benefit of the automatic configuration implemented for
BeyondCorp, we’ve also improved other technology experiences
for our users. One of the most visible improvements is our loaner
laptop program. Like many modern companies, our employ-
ees are quite mobile and freely work from their desks, meeting
rooms, lounges, or their homes. Mobile devices—specifically, lap-
tops—are incredibly vital to their productivity. To handle cases
of forgotten, misplaced, or stolen laptops, we have a self-service
loaner laptop program that gets users up and running again as
soon as possible.

Using custom-built Chromebook loaner stations deployed
around the world, any user can temporarily assign a loaner
laptop to themselves for a period of up to five days. Users benefit
from the ability to simply pick up a laptop and get back to work
within a matter of minutes. Techstop benefits from fewer
requests for loaners, which frees up their time to work on other
issues. When the user returns the device or the loaner period
expires, the system automatically revokes the certificate and
demotes the device’s trust, leaving it ready for the next user to
reinitiate the loaner process.

The BeyondCorp Extension
By more or less eliminating the need for a VPN client, we can
encapsulate almost all access needs—whether remote or onsite—
through one entry point, the BeyondCorp Chrome extension. The
extension automatically manages a user’s Proxy Auto-Config
(PAC) files that explicitly route special cases through the Access
Proxy [2]. When a user connects to a network, the extension
automatically downloads the most current PAC file and displays
the good connection icon. Rules in the PAC file automatically
route requests to corporate services through the Access Proxy.
This allows our internal developers to deploy internal corporate
Web services without explicitly configuring client access: they

Figure 1: Automated analysis and revocation of employee VPN usage

40  FA L L 20 17 VO L . 42 , N O. 3 www.usenix.org

SECURITY
BeyondCorp 5: The User Experience

deploy a service that will have a CNAME DNS entry in the public
address space that resolves to the Access Proxy. The Access
Proxy then automatically handles the user authentication and
authorization.

Since the BeyondCorp extension routes all traffic through our
Access Proxy, users can’t communicate with devices that the
Access Proxy can’t reach. Additionally, the extension must be
able to download a correct PAC file in order to route their traffic
appropriately. This setup causes issues with common technolo-
gies like captive portals or when users need to communicate
with devices on private local networks without routing through
the Access Proxy. We needed a way to explain these scenarios
and remediation steps to users, ideally without increasing load
on Techstop. The Chrome extension’s authentication state icons
(shown in Figure 2) provide a gateway to further troubleshooting
information.

When Things Go Wrong
What happens when things break or users run into complicated
corner cases? By acknowledging that users will run into prob-
lems, we can identify the most common scenarios and develop
plans to resolve them as smoothly as possible. Empowering our
users to understand the problem and self-remediate when pos-
sible is our constant overarching goal.

Issues That Can Be Self-Remediated

Captive Portals
Because we’re a global company with many traveling employees,
users commonly encounter captive portals when working from
airports, hotels, and coffee shops. These portals are usually
implemented on the default gateway of a private network. When
a user connects to this network, the BeyondCorp Chrome exten-
sion attempts to download the PAC file, but the captive portal
prevents a successful download.

To resolve this issue, whenever the extension detects a network
state change, we determine whether the device is behind a cap-
tive portal: we simply attempt to retrieve the Web page at http://
clients3.google.com/generate_204, which is an empty page that

always returns an HTTP 204. If we receive anything other than
an HTTP 204 (most commonly, an HTTP 302), we assume that
the device is connected to a captive portal. We then fall back to a
predefined PAC file that we store within the extension itself and
alert the user.

Users confronted with a captive portal can click on the Chrome
extension icon, where we let them know that this issue is com-
mon when trying to authenticate to networks at airports or
hotels. BeyondCorp is working as intended, and they just need to
change the BeyondCorp setting to Off: Direct. Users can then
complete the authentication through the captive portal, at which
point the extension can successfully download the latest PAC
file. This simple flow allows users to completely self-remediate
with minimal downtime and no support load on our Techstop.

Local Network Devices
Users also frequently attempt to access devices on private
address spaces. Many Google employees use their corporate
laptops for tasks like configuring personal printers or other
networking equipment. However, since we route all connections
through the Access Proxy, access fails when the BeyondCorp
extension is enabled. Similar to the captive portal use case, the
solution is to change the BeyondCorp setting to Off: Direct.
Unlike the previous case, we can’t easily detect this failure state.
Typically, users in this scenario have an active and functioning
Internet connection. From the extension’s point of view, every-
thing is working normally and the user can access all corporate
resources, so there is no reason to raise an alert.

To figure out how to effectively interface with users in this
situation, we worked through a representative user journey: an
engineer takes their corporate laptop home and wants to use it to
change a setting on their home printer, which they connect to via
its IP address. The user connects to their home network, and the
BeyondCorp extension connects successfully, downloads the lat-
est PAC file, and configures the browser’s proxy. When the user
enters the printer’s IP address in a new browser tab, the request
is sent to our Access Proxy along with all other private address
space traffic. The routing request fails and the user gets an error.

Figure 2: Icons in Chrome extension that indicate authentication state

http://clients3.google.com/generate_204
http://clients3.google.com/generate_204

www.usenix.org FA L L 20 17 VO L . 42 , N O. 3 41

SECURITY
BeyondCorp 5: The User Experience

We came up with a solution to this user journey by focusing on
the end result: an error page from the Access Proxy. We cre-
ated a custom HTTP 502 error message to insert into our error
pages when certain conditions are met—specifically, whenever
we return an HTTP 502 and the user was attempting to reach
an RFC1918 or RFC6598 address. The error message explains
to the user that if they were trying to access a local network
device such as a home router or printer (the two most common
cases we found), they need to switch the BeyondCorp extension
to Off: Direct. In this way, we were able to use already existing
infrastructure and processes to allow users to self-remediate the
issue.

Custom Proxy Settings
Our employees sometimes need to set custom proxies to test ads
in foreign countries. If a user installs multiple extensions that
each try to set the proxy, the extensions collide with each other,
which can confuse users and break their access to corporate
resources.

We approached this use case with two solutions. First, we inte-
grated foreign country proxy settings directly into the Beyond-
Corp extension. When users have a business need to egress from
a specific location, they can select that location from a dropdown
of supported countries directly within the extension. This
provides our users a single extension that manages their most
common business proxy needs.

Additionally, when a user has a valid need to run a secondary
proxy management extension, their BeyondCorp icon switches
from green to red. We then give them an option to change their
state to Off: System Alternative and explain when they want
to use this setting. Again, this process allows the user to self-
remediate, increasing their productivity and reducing queries to
our support teams.

Explaining Complicated Failures: The Portal
For simple cases, like those described above, we could empower
users to self-remediate using quick customizations to our error
pages or the Chrome extension. However, in cases of legitimate
denials of access, we knew that users and support teams would
want or need to know why they were denied. The complex, multi-
layered ACL logic in our back-end infrastructure can make
understanding the logic behind a specific decision difficult for
users and support teams alike. It might take even a seasoned
SRE multiple minutes of querying many internal services to
identify the cause of a single 403 error page. Given the volume
of 403 error pages served by our Access Proxy daily (~12M for
HTTP/S alone), human involvement in troubleshooting is uns-
calable and impractical.

To facilitate diagnosing and troubleshooting more complicated
BeyondCorp access issues, we designed a single portal to assist
both users and support teams. Instead of just telling a user that
they were denied access to a resource with a generic error code,
we explain why they were denied and how to resolve the issue.
The portal is standalone, rather than integrated directly in the
Access Proxy, because it uses more granular ACLs that depend
upon the end user’s current trust level. Since the Access Proxy
is available publicly by design, we wanted to limit the amount of
knowledge an attacker can gain from the 403 error pages.

Architecture
The portal is roughly split into a front end and a back end, with
an API that communicates between the two.

◆◆ The front end is an interactive Web service. It issues requests
against the back-end API based upon input from the user.

◆◆ The back end can query multiple infrastructure services in-
volved in access decisions. It deliberately omits various caching
layers so users receive fresh information.

◆◆ The API between the front end and back end is also exposed for
other uses, like batch processing and analysis, or embedding
the output in other tools.

Explanation Engine
Beyond querying and surfacing ACLs, the portal also needs to
present this information to users in a useful way. We built an
explanation engine to provide troubleshooting details in response
to parameters of deny requests. It operates by recursively travers-
ing a tree of subsystems that provide authorization decisions.

For example, the Access Proxy ACL might require a device to be
fully trusted in order to access a particular URL. Upon retriev-
ing this ACL, the engine contacts our device inference pipeline
to retrieve the conditions necessary to access the corporate
resource. We then propagate this information to our front end
and translate it into plain language, so the user can visit the
portal to find out what’s wrong with their current state and how
to fix the problem.

ACLing the ACLs
While the explanation engine provides users with helpful
information, the data it exposes can be sensitive. It reveals the
problematic ACLs of protected systems and discloses informa-
tion about the state of the user’s account and device—all useful
information for potential attackers. Defining the ACL for this
data is a tricky process, as we need to balance tool usability
against the need to protect sensitive information.

Depending on the user and device requesting troubleshooting
information, we can replace sensitive nodes in the output with

42  FA L L 20 17 VO L . 42 , N O. 3 www.usenix.org

SECURITY
BeyondCorp 5: The User Experience

less specific variants. In extreme cases, we replace a node with
instructions to contact our Techstop. In such cases, our Tech-
stop and SREs can help users without disclosing sensitive infor-
mation by verifying the user’s identity and viewing the relevant
information on their behalf.

Access Deny Landing Page
Once we developed the portal, we exposed it to users by integrat-
ing it into our Access Proxy error messages. When a user hits an
HTTP 403 error, they see a button routing them to the portal,
where we’ve automatically forwarded all relevant error details
(see Figure 3). The portal then replays the access request against
the back end and explains exactly what caused the issue.

For example, if a resource requires membership in a specific
group, the portal provides the group name and a handy link to
our group management system so the user can request access.
Behind the scenes, the portal queries our back-end ACL services
to determine the authorization requirements of the resource
in question, and compares that information against the user’s
group memberships. The front end then converts the result of
that comparison into a human-understandable statement (see
Figure 4). This all happens in a matter of seconds, far faster
than it would take the user to puzzle through group membership
issues or reach out for assistance.

Integrating this flow directly into our error messaging allows
users to complete this process seamlessly and—most impor-
tantly—completely via self-service.

Ad Hoc Troubleshooting
Although we expect most users to access the portal through an
error page, we also provide a direct page for more ad hoc trouble-
shooting. This landing page on our portal front end is custom-
ized according to the identity of the user and device accessing it.
It presents information about the user and all their devices, and
highlights issues that can potentially result in denial of access.
By allowing end users to proactively visit this tool to get a global
view of all of their devices and potential future access issues, we
equip them to remedy issues with any of their devices in one fell
swoop. This feature is particularly handy for checking device
trust before a trip or demo.

Empowering Support
This front end also empowers our Techstop team to perform
detailed troubleshooting quickly by providing immediately
actionable steps, which dramatically reduce time to resolution.
For example, to explain a 403 error page, techs can use the portal
landing page to query for a specific username or device identi-
fier. They can drill down into a specific device to determine
whether it’s a fully trusted corporate device. If it’s not, we pres-
ent the exact reasons why the device is not trusted and how the
tech can resolve the issue (see Figure 5).

Future Goals
Beyond its current functionality, the portal also presents
avenues for further automation. In the future, we plan to con-
tinuously run checks for potential denial of access issues. We’ll
notify users of any impending issues they can resolve on their
own before those issues manifest in a detrimental way. Similarly,
we’ll identify critical issues that can’t be self-remediated and
automatically notify our Techstop with remediation steps. We
also hope to expand the range of issues we can solve automati-
cally without human intervention.

Figure 3: An error page displayed when BeyondCorp blocks a request

Figure 4: Employee-facing guidance on troubleshooting an access denied
error

Figure 5: Service desk-facing guidance on troubleshooting an access
denied error

www.usenix.org FA L L 20 17 VO L . 42 , N O. 3 43

SECURITY
BeyondCorp 5: The User Experience

References
[1] B. Osborn, J. McWilliams, B. Beyer, and M. Saltonstall,
“BeyondCorp: Design to Deployment at Google,” ;login:, vol.
41, no. 1 (Spring 2016), pp. 28–35: https://www.usenix.org
/publications/login/spring2016/osborn.

[2] L. Cittadini, B. Spear, B. Beyer, and M. Saltonstall,
“ BeyondCorp Part III: The Access Proxy,” ;login:, vol. 41,
no. 4 (Winter 2016), pp. 28–33: https://www.usenix.org
/publications/login/winter2016/cittadini.

[3] J. Peck, B. Beyer, C. Beske, and M. Saltonstall, “Migrating
to BeyondCorp: Maintaining Productivity While Improv-
ing Security,” ;login:, vol. 42, no. 2 (Summer 2017), pp. 49–55:
https://www.usenix.org/publications/login/summer2017
/peck.

Focus on the Experience
Although the migration to BeyondCorp was challenging on
multiple technical fronts, it allowed us the freedom to reevalu-
ate our primary user support experience. By focusing on our
users during and after the migration, we could deeply integrate
processes and features that allow them to navigate the complex
network model with ease. We designed our tools so that the user-
facing components are clear and easy to use. These interfaces
were purpose-built to allow self-remediation whenever possible,
freeing up both user time and support channels. When users do
need extra help, we provide tools and information to make our
Techstop maximally productive.

For the vast majority of users, BeyondCorp is completely invis-
ible. While Google employees worry about their own workflows,
the model takes care of any and all access logistics. When users
do have issues, we step in quickly and efficiently, giving them
just the right information at just the right time to get them up
and running again. Then we step back behind the scenes and let
them focus on what they do best.

https://www.usenix.org/publications/login/spring2016/osborn
https://www.usenix.org/publications/login/spring2016/osborn
https://www.usenix.org/publications/login/winter2016/cittadini
https://www.usenix.org/publications/login/winter2016/cittadini
https://www.usenix.org/publications/login/summer2017/peck
https://www.usenix.org/publications/login/summer2017/peck

44  FA L L 20 17 VO L . 42 , N O. 3 www.usenix.org

SECURITY

Safe Parsers in Rust
Changing the World Step by Step

G E O F F R O Y C O U P R I E A N D P I E R R E C H I F F L I E R

Parsers are critical parts of applications, exposed to potentially mali-
cious data but also plagued by the same bugs over a period of years,
like memory-related problems. Solutions exist but are often not

adopted: many of them require rewriting entire software packages. We
describe how to leverage Rust’s safety features and close integration with C,
the strength of the nom [1] parser combinators library, along with a thorough
methodology [2] to make existing software much more secure by rewrit-
ing critical parts. By surgically replacing functions, we intend to initiate a
change towards robust and memory-safe parsers.

A large part of our infrastructure is built on a sand castle. We have been reusing the same
code for decades, the same libraries written in the ’90s, the same applications, the same oper-
ating systems. We tried, and are still trying, to maintain them, patching bit by bit, mostly in
reaction to published vulnerabilities, sometimes as a proactive effort. But all that old code is
slowing us down.

And if that was not enough, to connect those pieces of code to each other, we have pages and
pages of unclear, ambiguous specifications for file formats and network protocols. How can
you be sure your implementation is correct when some remove features, some add features,
others implement them incorrectly, and there are parts that are completely open to interpre-
tation. Let’s also mention that incorrect files generated by one broken application often end
up supported by everyone else.

Additionally, most of that software has been written in C (sometimes still written in K&R)
and involves unsafe practices and insufficient testing.

One could say it is a miracle that all of this has worked this long, but there is no luck in that. It
is the result of incremental work of thousands of developers patiently fixing bugs, and system
administrators monitoring failing services. But we are losing the race now.

Attackers only get better: what was previously difficult gets simpler, and the tools only get
smarter. More vulnerabilities are published every day, while we keep the same old code and
the same development practices.

We Cannot Rewrite Everything
Whatever the quality of all that code, we cannot replace it. Software gets reused over and
over, with each generation of developers building upon what the previous one built. There’s
much more churn in hardware than software: hardware gets replaced, software stays. We
can write new software with better solutions, but it would not fix the millions of devices
currently in place, or the billions of applications actually running. Our only option is to
strengthen the sand castle bit by bit until it can weather the storm.

Geoffroy Couprie handles
security and quality assurance
at Clever Cloud, develops in
Rust, and researches on parser
security at VideoLAN. He thinks

a lot about cryptography, protocol design, and
data management.
contact@geoffroycouprie.com

Pierre Chifflier is the head of the
intrusion detection lab (LED)
at ANSSI (French National
Information Security Agency).
He is interested in various

security topics such as operating systems,
boot sequence, compilers and languages,
and new intrusion detection methods, and
he is also trying to link all these topics by
improving detection tools, writing safe parsers,
and deploying tools in a secure architecture.
Pierre is also a Debian Developer and has
been involved in free software for a long time.
chifflier@wzdftpd.net

www.usenix.org FA L L 20 17 VO L . 42 , N O. 3 45

SECURITY
Safe Parsers in Rust: Changing the World Step by Step

How can we achieve that? Even rewriting application by applica-
tion or library by library is a Sisyphean task. Most of those proj-
ects are written in C, containing 10k to 10m lines of code. Large
parts of that are unmaintained, but there’s also a huge domain
knowledge embedded in the code. Thousands of bug fixes,
improvements, and experimentations with the specifications
were done over the years. And the developers themselves carry
most of this knowledge. Rewriting a project completely means
losing that knowledge and hitting most of those bugs the old
project solved. In addition, rewriting the project entirely creates
political issues and requires teaching the new ways to develop-
ers, all while maintaining the old version. This is impossible to
do in most cases.

Here is what we propose: there are specific parts of applications
and libraries, weaker than the rest, that could be rewritten,
while keeping all of the domain knowledge present in the rest of
the code. Since file formats and protocols are the point of entry
in most applications, we concentrate on the parsers and state
machines, an often overlooked and vulnerable part of the code.

The LangSec approach is in changing the way we view software:
we usually see our programs as some kind of engine or industrial
machine that we set up and monitor but that, except for the occa-
sional button push, largely runs by itself. That vision is flawed:
our computers, operating systems, and programs are designed to
modify their behavior in complex ways depending on their input.

The data you feed to your code—be it network packets, files, sen-
sor data—drives your code, not the other way around. That spe-
cific bit at that specific address in the file determines whether
your code goes into the if or the else of that specific branch. Your
application is in fact a virtual machine, and its language is the
input data. What can we do with this language? By modeling that
input language correctly, or restricting it to a manageable subset,
we can greatly reduce the attack surface of our applications in
their most vulnerable elements.

If we replace the parsers and protocols in an existing application,
we can better protect it from the attackers’ point of entry while
keeping the most useful parts of the code running. To that end,
we need languages and tools that can easily integrate themselves
inside a C application.

Choosing the Tools
We decided to use Rust for various reasons: the language is
designed to avoid memory vulnerabilities and development
issues frequent in other languages. Rust does not use garbage
collection; the compiler is smart enough to know when to
allocate and deallocate memory. The compiler will complain
if the code is unsafe. With this, the compiler can protect your
code from common flaws like double free, use after free, adding
bounds check to buffers, etc. Rust is even able to know which

part of the code owns which part of the memory, and it warns
you when your code manipulates data from multiple threads.

Rust has been available for years now (first stable release in May
2015) and has been steadily improving. Because of the focus on
the compiler, instead of fixing a memory safety issue in your
code, you can improve the compiler so that nobody will ever get
that issue again. Do not fix bugs, fix bug classes.

As you learn more Rust, you tend to rely more and more on the
compiler to verify the code, instead of keeping track of dozens of
pointers in your head, thus freeing you to think about the most
valuable parts of the application.

Along with those features, Rust can work at the same level as C
applications. There’s no runtime. There is no garbage collector
(important in time-critical software). It can even work without
an allocator. As an example, it can be used for embedded develop-
ment, from microcontrollers to larger CPUs. To that end, Rust
code can easily import C functions and structures and use them
natively, but the opposite works as well: you can expose func-
tions and structures to be used by C (or other language) applica-
tions. This is a crucial aspect of rewriting C code: sometimes, we
have to expose and manipulate the exact same types the target
application is using.

Writing parsers manually in Rust is not enough. We can still
find bugs, although they are often less critical than the ones you
would find in C applications [7]. Parsing software correctly is
hard, and anybody can make mistakes.

So we use nom [1], a parser combinators library written in Rust.
Parser combinators are an interesting way to handle data. You
assemble small functions, like one that recognizes “hello,” or one
that recognizes alphanumerical characters, and you combine
them to make more complex parsers through the use of combina-
tors. There are combinators for lots of cases, like “terminated,”
that would apply two parsers in a row, then return the result of
the first if both are successful, or branching combinators that
apply different parsers depending on the result of a first one.

Those parsers are always functions with the same signature,
which means even complex parsers can be easily reused in other
parsers. You end up writing a lot of small parsers, then you can
test them separately, and reapply them in larger parsers as you
see fit. An approach based on parsers generated from a gram-
mar, on the other hand, tends to lack flexibility and is harder to
test. Such parsers are also quite restrictive in what you can allow
from the format you are trying to pass. But since nom parsers
are just functions, you can perform whatever complex, ambigu-
ous, dangerous tasks you need to, and as long as the interface is
the same, you can plug that parser with other parsers. This is an
important property, since most formats are badly designed and
can require unsafe manipulations.

46  FA L L 20 17 VO L . 42 , N O. 3 www.usenix.org

SECURITY
Safe Parsers in Rust: Changing the World Step by Step

The nom library leverages Rust features for performance and
safety: since the compiler always knows which part of the code
owns which part of the memory, and tracks references properly,
nom can work on slices of the original data instead of copying
bytes around. In most cases, the parser will only allocate on the
stack and be zero-copy [3].

nom has been available for some time now and has been used
extensively for various formats and protocols in production
software.

Armed with a safe, low-level language, and a parser library, we
can now start rewriting core parts of our infrastructure.

How to Replace Part of a C Application
Not all existing applications will easily support a rewrite of their
parser. If that part of the code is highly coupled with the rest, it
will be problematic. Thankfully, as said earlier, we do not need to
rewrite everything. Find a restricted subset of the parser, isolate
it, rewrite it, then expand to other parts of the application.

The key is in defining the interface correctly. Deterministic
functions are the easiest to replace, and structures are usually
the hardest, since multiple parts of the code might use directly
internal members of that structure (accessors are not a com-
mon practice in C). But there are a lot of tricks one can use to
help in the task. As an example, commenting out a member of a
structure and launching a build can expose all of the uses of that
member, which makes it easier to measure how much work is
needed.

When performing a rewrite, you will often need to import C code
and expose your Rust code to C. You can write the Rust defini-
tions and the C headers by hand, but Rust has tools to automate
this. Rust-bindgen can import C structures and functions from
C, and generate Rust bindings. While the generated code might
be a bit complex at times, it is a great way to start a project and
generate code that you can edit later. The opposite way works as
well: you can employ rusty-cheddar to generate C headers.

The missing part for the integration is the linking phase: think
of how you will link the Rust part to the C part. Do you make a
static or dynamic library? Do you generate an object file that you
feed to autotools? The Rust compiler can generate any of those,
and they can then be handled by the build system, be it autotools
and makefiles, CMake, scons, etc.

On the build-system side of things, Rust uses the cargo pack-
age manager to download libraries (called crates), build and
link them, and publish new libraries and applications. That tool
greatly increases the productivity of Rust developers. Unfor-
tunately, the package management part requires an Internet
connection to download packages, which might not be an option
(do you expect your makefile to make network calls?). Fortu-

nately, cargo is easy to extend with separate tooling. You can
use cargo-vendor or cargo-local-registry to download crates in
advance and store them in an archive somewhere. That way, you
can freeze the dependency list of an application and make its
compilation reproducible, while keeping a simple way to update
dependencies when needed.

Start Integrating Some Rust
Once you have the build system set up, you can start actually
writing Rust code. We would recommend that you develop the
nom parser in a separate crate: that way, you can reuse it in other
projects (Rust or other languages), and you can employ Rust’s
unit testing and fuzzing facilities. Any fuzzing result can then be
reused as a test case for your parser.

nom parsers work well on byte slices, a Rust type that contains
a pointer and a length. You can easily transform any C buffer to
this. They never modify their input, and they don’t even need to
own it. This is important for integration in C applications: even
if we know that Rust code could be stronger than the rest of the
application, it is still a guest in someone else’s house. If possible,
let the host code handle allocations, opening files, etc. This is a
really good tip to apply, because libraries with reentrant, deter-
ministic functions without side effects are easy to integrate, and
I/O is where most of the errors can happen. This is also a part that
(hopefully) has been stabilized long ago in the host application.

The nom parser can return sub slices of the input without copy-
ing them and will guarantee that the data is within the bounds.
In some cases, it does not even need to see the whole input. As
an example, for media formats, you would read a block’s header,
let nom decide which type of block it is, and the parser would tell
you how many bytes of the block you need to send to the decoder.

Here is the code of the TLS 1.3 ServerHello structure definition
and message parsing:

rust

pub struct TlsServerHelloV13Contents<’a> {

 pub version: u16,

 pub random: &’a[u8],

 pub cipher: u16,

 pub ext: Option<&’a[u8]>,

}

pub fn parse_tls_server_hello_tlsv13draft18(i:&[u8])

 -> IResult<&[u8],TlsMessageHandshake>

{

 do_parse!(i,

 hv: be_u16 >>

 random: take!(32) >>

 cipher: be_u16 >>

 ext: opt!(length_bytes!(be_u16)) >>

 (

www.usenix.org FA L L 20 17 VO L . 42 , N O. 3 47

SECURITY
Safe Parsers in Rust: Changing the World Step by Step

 TlsMessageHandshake::ServerHelloV13(

 TlsServerHelloV13Contents::new(hv,random,cipher,

ext)

)

)

)

}

This code generates a parser reading some simple fields, and an
optional length-value field for the TLS extensions (not parsed in
that example), and returns a structure. All error cases are prop-
erly handled, especially incomplete data.

One characteristic of TLS is that the parsing of messages is
context-specific: the content of some messages cannot be
decoded without having information about the previous mes-
sages. For example, the type of the Diffie-Hellman parameters,
in the ServerKeyExchange message depends on the ciphersuite
from the ServerHello message. Because of that, the context-
specific part is separated from the parsing. A state is used to
store the variables, and a state machine is implemented to check
that transitions are correct, and also to choose the next parsing
function when needed.

The state machine is implemented using pattern matching on
the previous state, and the parsed incoming message, to select
the new state.

rust

match (old_state,msg) {

 // Server certificate

 (ClientHello, &ServerHello(_)) =>

Ok(ServerHello),

 (ServerHello, &Certificate(_)) =>

Ok(Certificate),

 // Server certificate, no client certificate requested

 (Certificate, &ServerKeyExchange(_)) =>

Ok(ServerKeyExchange),

 (Certificate, &CertificateStatus(_)) =>

Ok(CertificateSt),

 (CertificateSt, &ServerKeyExchange(_)) =>

Ok(ServerKeyExchange),

 (ServerKeyExchange, &ServerDone(_)) =>

Ok(ServerHelloDone),

 (ServerHelloDone , &ClientKeyExchange(_)) =>

Ok(ClientKeyExchange),

 // ...

 // All other transitions are considered invalid

 _ => Err(InvalidTransition),

In some cases, the next state depends not only on the message
type but also on content. In that case, the packet content is also
used in the pattern matching to select the new state.

Finally, the combinator features of nom are especially useful for
protocols like TLS: TLS certificates are based on X.509, which
uses the DER encoding format. This makes writing an indepen-
dent parser easier, as in the following code:

rust

use x509::parse_x509_certificate;

/// Read several certificates from the input buffer

/// and return them as a list.

pub fn parse_tls_certificate_list(i:&[u8])

 -> IResult<&[u8],Vec<X509Certificate>>

{

 many1!(i,parse_x509_certificate)

}

Parsing an X.509 certificate is done by combining the DER pars-
ing functions:

rust

pub fn x509_parser(i:&[u8]) -> IResult<&[u8],X509Certificate> {

 map!(i,

 parse_der_defined!(

 0x10,

 parse_tbs_certificate,

 parse_algorithm_identifier,

 parse_der_bitstring

),

 |(_hdr,o)| X509Certificate::new(o)

)

}

Be wary of the high coupling that can appear between the parser
and the rest of the code in some C applications. This is where
most of the work can happen and is usually the result of years of
hacks upon hacks to add a feature “quick and easy.”

We usually recommend that the parser has a clear interface with
the rest of the code, in the form of a list of small, deterministic
parsers and a reduced state machine above it: not a complete
state machine intertwined with the parsing (as in this http
parser [8]) since those are hard to debug and extend, nor a state
machine informally implemented via calls from other parts of
the code.

The state machine is the main interface for the rest of the code:
you feed it data to parse, it decides which parser to apply depend-
ing on the current state, changes its state depending on the data
that was parsed (if successful), then returns with info to drive
the input consumption: how many bytes to consume (or how
many more bytes are needed) or to stop consuming if there was
an error. You can then query this state machine for the informa-
tion you want and for data to write back to the network (in the
case of a network protocol).

48  FA L L 20 17 VO L . 42 , N O. 3 www.usenix.org

SECURITY
Safe Parsers in Rust: Changing the World Step by Step

If the code is not highly coupled, you could even rewrite function
by function, since the Rust code can expose C-compatible func-
tions. Beware, though: take the time to write a correct internal
API for Rust code, since at some point, you might stop exporting
those functions and call the underlying functionality directly
from Rust.

You could spend a large part of the work making the new parser
bug compatible with the old one. This is often a bad approach,
since both parsers will probably not recognize the exact same
set of files. You only need to worry about recognizing the same
representative set of samples. Most C parsers are not even really
tested regularly anyway. If you still want to get close results to
the original parser, you could employ a smart fuzzer to do the
work of testing the difference. Write a program that wraps both
the C parser and the new nom one, and that panics if both pars-
ers do not return the same result.

Once the parser is written and in the source, be happy, for now
the “interesting” part of the work will begin: getting it accepted
in the tree and deciding how you will handle the software sud-
denly requiring a Rust compiler along with the old C toolchain.

Going Further
This approach of surgically rewriting parts of an application
works well since it is designed to have a minimal impact on the
original project. It can be used as a stepping stone to start replac-
ing larger parts of the application once all the details of build
systems and developer training are handled.

But some projects could never handle that kind of precise touch.
Some libraries, still in active use today, have highly coupled
spaghetti code, relying heavily on GOTO or setjmp, and are basi-
cally untested and unmaintained. This is one of the rare cases
where we’d recommend rewriting the whole project in Rust. This
is a place where this language can shine; you could write a whole
new library, completely API-compatible with the old one, that
you could drop into package managers as an alternative.

Think of how many parts of our infrastructure we could replace
like this, bit by bit. It’s a Herculean task, so we need to start now.

This work was presented in the 2017 LangSec Workshop [4], in the
“Writing parsers like it is 2017” [2] paper. The parsers and tools
are published in the Rusticata [5] and VLC module [6] GitHub
projects.

References
[1] Rust parser combinator framework: https://github.com
/Geal/nom.

[2] P. Chifflier and G. Couprie, “Writing parsers like it is 2017,”
IEEE LangSec Workshop ’17: http://spw17.langsec.org/papers
/chifflier-parsing-in-2017.pdf.

[3] G. Couprie, “Nom, a Byte-Oriented, Streaming, Zero-Copy
Parser Combinators Library in Rust,” IEEE LangSec Work-
shop ’15: http://spw15.langsec.org/papers/couprie-nom.pdf.

[4] IEEE LangSec Workshop’17: http://spw17.langsec.org.

[5] Rusticata: Safe parsers community: https://github.com
/rusticata.

[6] Helper library to write VLC modules in Rust: https://github
.com/Geal/vlc_module.rs.

[7] List of Rust applications with bugs found by fuzzing:
https://github.com/rust-fuzz/trophy-case.

[8] Node.js http parser: https://github.com/nodejs/http-parser.

https://github.com/Geal/nom
https://github.com/Geal/nom
http://spw17.langsec.org/papers/chifflier-parsing-in-2017.pdf
http://spw17.langsec.org/papers/chifflier-parsing-in-2017.pdf
http://spw15.langsec.org/papers/couprie-nom.pdf
http://spw17.langsec.org
https://github.com/rusticata
https://github.com/rusticata
https://github.com/Geal/vlc_module.rs
https://github.com/Geal/vlc_module.rs
https://github.com/rust-fuzz/trophy-case
https://github.com/nodejs/http-par

www.usenix.org FA L L 20 17 VO L . 42 , N O. 3 49

COLUMNS
A small confession: when writing code, I don’t usually write tests first.

There, I’ve said it. Hate me. I suspect I’m not alone among Python
developers. Yes, yes, testing is important, and for my major projects,

tests still get written. However, for a lot of small things like little scripts,
utilities, and personal projects, I just don’t bother because I don’t want to
think about all of the extra steps and tooling that’s usually involved. How-
ever, a recent conference experience may have changed some of my views. In
this installment, I discuss a more lightweight approach to testing along with
a brief introduction to some third-party testing libraries, including pytest [1]
and Hypothesis [2].

A Revelation
Early this summer, I attended a talk by Aur Saraf at PyCon Israel in which he live-coded a
simple interpreter from scratch in about 25 minutes [3]. Live coding in front of an audience is
always a dicey affair, but what struck me about this particular talk is the fact that it was done
entirely in a test-driven development style with no connection to any sort of testing tools,
third-party libraries, or even standard library modules. I was both stunned and amazed.

The gist of the idea is simple. If you’re going to write a function, you might as well first write
an assertion or two for it. For example, suppose you were writing a function to split a URL
into parts. You might start by writing this:

def split_url(url):

 pass

assert split_url(‘http://www.python.org’) == (‘http’, ‘www.python.org’)

The assert statement serves as a kind of expectation for what you want to happen. Naturally,
the code is going to fail immediately as you haven’t actually written the function. However,
the assertion gives you a target to aim for. So your next step is to implement the function and
make the assertion pass.

def split_url(url):

 parts = url.split(‘://’)

 return (parts[0], parts[1])

assert split_url(‘http://www.python.org’) == (‘http’, ‘www.python.org’)

It passes. Very good. At first glance, this might seem too minimal and maybe even a bit crazy.
However, there’s a certain genius to it. First, it doesn’t require any special knowledge of
libraries or tools (e.g., the unittest standard library module): assert is a built-in statement
of the core Python language. There are also no separate files to maintain or extra functions
to write—the assert is just inlined right there in the code. It executes right after the function
is defined. This means that the code won’t even run or import unless the test passes. Thus, if
you’re working on some new thing and changing your code a lot, it can be useful to just leave
it in there for the time being. It’s a minimal test that doesn’t require too much thought and
doesn’t really interfere with what you’re doing.

David Beazley is an open
source developer and author of
the Python Essential Reference
(4th Edition, Addison-Wesley,
2009). He is also known as the

creator of Swig (http://www.swig.org) and
Python Lex-Yacc (http://www.dabeaz.com
/ply.html). Beazley is based in Chicago, where
he also teaches a variety of Python courses.
dave@dabeaz.com

Quick Testing
D A V I D B E A Z L E Y

50  FA L L 20 17 VO L . 42 , N O. 3 www.usenix.org

COLUMNS
Quick Testing

Getting back to Aur’s talk for a moment, he proceeded to write
his entire interpreter in this style. Assertions first and then
functions. As I watched, I kept thinking, “I bet I could use some-
thing like this.” I also recognized that it could be a useful step-
ping stone to other more advanced testing tools. So let’s explore
that further.

Putting It into Practice
In one of my current projects, I’m faced with the problem of
implementing a priority queue. A standard technique for creat-
ing such a queue is to use a heap data structure. In fact, Python
provides a heapq standard library module that can be used to do
it. However, my specific problem has the extra requirement of
supporting cancellation (i.e., the ability to remove/cancel items
anywhere in the queue). Sadly, the standard heapq module has
no support for that. In fact, efficiently removing items from a pri-
ority queue is a rather tricky algorithmic problem. Thus, it seems
that I’m probably going to have to roll my own class for it.

Let’s start by sketching out a class:

class PriQueue:

 def __init__(self):

 pass

 def push(self, item):

 pass

 def pop(self):

 pass

 def remove(self, item):

 pass

It does nothing, but let’s write some assertions that encode our
expectations of how it should work:

class PriQueue:

 ...

Test code (put right after the class)

q = PriQueue()

q.push(4)

q.push(3)

q.push(7)

q.push(10)

q.remove(4)

Popping all items produces them in order

assert [q.pop() for _ in range(3)] == [3, 7, 10]

Running this code, it will fail because we haven’t implemented
anything. However, we can now fill in some details of the
implementation:

pqueue.py

import heapq

class PriQueue:

 def __init__(self):

 self.heap = []

 def push(self, item):

 heapq.heappush(self.heap, item)

 def pop(self):

 return heapq.heappop(self.heap)

 def remove(self, item):

 self.heap.remove(item)

q = PriQueue()

q.push(4)

q.push(3)

q.push(7)

q.push(10)

q.remove(4)

assert [q.pop() for _ in range(3)] == [3, 7, 10]

If you run this code, it passes its simple test and we’re on our way.

From Asserts to Functions
Having assertions placed in the code is really only a starting
point. As the code evolves, you can move the test into a more
proper function. For example, maybe you do this:

pqueue.py

...

def test_priqueue():

 q = PriQueue()

 q.push(4)

 q.push(3)

 q.push(7)

 q.push(10)

 q.remove(4)

 assert [q.pop() for _ in range(3)] == [3, 7, 10]

if __name__ == ‘__main__’:

 test_priqueue()

Writing a function is an easy step—you don’t even have to change
your testing code (well, other than indenting it). However, if you
do this, you’ll open the doors to incorporating your tests with
other testing tools.

For example, this code can be executed under a testing tool like
pytest [1]. One of the nice things about pytest is that it works
using standard Python assert statements. Assuming that you
have it installed, drop into the shell and type this:

www.usenix.org FA L L 20 17 VO L . 42 , N O. 3 51

COLUMNS
Quick Testing

bash $ python3 -m pytest pqueue.py

================= test session starts ==================

platform darwin -- Python 3.6.1, pytest-3.0.2, py-1.4.31,

pluggy-0.3.1

rootdir: /Users/beazley/Desktop/UsenixLogin/beazley_fall_17,

inifile:

plugins: hypothesis-3.11.6

collected 1 items

pqueue.py .

=============== 1 passed in 0.00 seconds ===============

Excellent. Keep in mind it didn’t take much to get here. No spe-
cial imports or fooling around with the unittest module—just a
function with an assert in it. Later on, you could move the test-
ing function over to a more dedicated testing file. For now, it’s
fine where it is. After all, we’re still working.

From a Function to Hypothesis
One of the problems with our code is that the test is fairly mini-
mal. It tests just one case. How are we to know if our queue code
actually works as intended across all inputs? We could generate
more test cases by hand, but doing so is going to be rather painful
and error-prone if it involves a bunch of cut-and-paste.

To better handle this, let’s change our testing function so that it
is parameterized with some inputs:

def test_priqueue(items, remove_item):

 q = PriQueue()

 for item in items:

 q.push(item)

 # Remove the given item

 q.remove(remove_item)

 items.remove(remove_item)

 # Verify that items come out in the proper order

 assert [q.pop() for _ in range(len(items))] == sorted(items)

This change allows us to feed different inputs into the function.
For example, we can do this:

...

if __name__ == ‘__main__’:

 test_priqueue([4,3,7,10], 4)

 test_priqueue([9,2,1,8,5], 2)

 test_priqueue([4,1,6], 1)

Running this, you’ll find that the code still seems to pass for those
three test cases. Our confidence is building. However, how do we
really know that we’ve covered all of our bases? It’s hard to say.

One of the more interesting tools on the Python testing front is
Hypothesis [2]. In a nutshell, Hypothesis can randomly generate
test cases for you as long as you are able to describe the param-
eters to the test. Take the above test function exactly as you’ve
written it and decorate it as follows:

pqueue.py

...

from hypothesis import given

from hypothesis.strategies import lists, integers

@given(lists(integers(min_value=0, max_value=9),

 unique=True, min_size=10, max_size=10),

 integers(min_value=0, max_value=9))

def test_priqueue(items, remove_item):

 q = PriQueue()

 for item in items:

 q.push(item)

 # Remove the given item

 q.remove(remove_item)

 items.remove(remove_item)

 # Verify that items come out in the proper order

 assert [q.pop() for _ in range(len(items))] == sorted(items)

if __name__ == ‘__main__’:

 test_priqueue()

At first glance, this looks a bit scary, but the @given decorator is
used to describe the arguments to the test_priqueue() function.
In this case, the first argument (items) is going to be a 10-ele-
ment list of unique integers with values in the range 0 to 9. The
second argument (remove_item) is an integer with a value in the
range 0 to 9.

Running the new code, you’ll now find that it fails. Your output
might vary from this, but it will look roughly like this:

$ python3 pqueue.py

Falsifying example: test_priqueue(items=[1, 2, 3, 4, 0, 5, 6, 7,

8, 9], remove_item=0)

Traceback (most recent call last):

 File “pqueue.py”, line 35, in <module>

 test_priqueue()

 ...

 File “pqueue.py”, line 32, in test_priqueue

 assert [q.pop() for _ in range(len(items))] == sorted(items)

AssertionError

What’s happened here is that Hypothesis has automatically
found a test-case that fails and is reporting it. To better see what
happens, put a print statement in your test code:

52  FA L L 20 17 VO L . 42 , N O. 3 www.usenix.org

COLUMNS
Quick Testing

pqueue.py

...

@given(lists(integers(min_value=0, max_value=9),

 unique=True, min_size=10, max_size=10),

 integers(min_value=0, max_value=9))

def test_priqueue(items, remove_item):

 print(‘TRYING:’, items, remove_item)

 q = PriQueue()

 for item in items:

 q.push(item)

 # Remove the given item

 q.remove(remove_item)

 items.remove(remove_item)

 # Verify that items come out in the proper order

 assert [q.pop() for _ in range(len(items))] == sorted(items)

Now, let’s clear the environment and try running again:

bash $ rm -rf .hypothesis

bash $ python3 pqueue.py

TRYING: [3, 0, 1, 9, 8, 6, 4, 5, 2, 7] 5

TRYING: [9, 6, 4, 8, 3, 2, 0, 7, 1, 5] 1

TRYING: [9, 6, 4, 8, 3, 2, 0, 7, 1, 5] 1

TRYING: [9, 6, 4, 8, 3, 7, 1, 0, 2, 5] 1

TRYING: [9, 6, 4, 8, 3, 7, 1, 0, 2, 5] 1

TRYING: [9, 6, 4, 8, 3, 2, 0, 7, 1, 5] 1

TRYING: [9, 6, 4, 8, 3, 2, 0, 7, 1, 5] 1

TRYING: [9, 6, 4, 8, 3, 2, 0, 7, 1, 5] 1

TRYING: [9, 6, 4, 8, 3, 7, 0, 2, 1, 5] 1

TRYING: [9, 6, 4, 8, 3, 2, 0, 7, 1, 5] 1

...

TRYING: [0, 3, 4, 6, 1, 2, 8, 5, 7, 9] 0

Falsifying example: test_priqueue(items=[0, 3, 4, 6, 1, 8, 2, 5,

7, 9], remove_item=0)

TRYING: [0, 3, 4, 6, 1, 8, 2, 5, 7, 9] 0

Traceback (most recent call last):

 File “pqueue.py”, line 36, in <module>

 test_priqueue()

 ...

 File “pqueue.py”, line 33, in test_priqueue

 assert [q.pop() for _ in range(len(items))] == sorted(items)

AssertionError

In this case, you’ll see the test function invoked repeatedly with
all sorts of inputs. Basically, Hypothesis is trying random inputs
searching for a failure. Since our code is buggy, it will eventu-
ally find one although it might take some searching. That’s
pretty neat. It found a bad test case, and I really didn’t have to do
much work. Our testing code is still pretty small—just a single
function.

Fixing the Bug
In the case of my example, there is a bug in item removal. When
the item is removed, the underlying heap structure is not pre-
served properly. This can be fixed with a minor change.

pqueue.py

import heapq

class PriQueue:

 def __init__(self):

 self.heap = []

 def push(self, item):

 heapq.heappush(self.heap, item)

 def pop(self):

 return heapq.heappop(self.heap)

 def remove(self, item):

 self.heap.remove(item)

 heapq.heapify(self.heap) # <- Add this line

...

If you run the program again, you’ll see Hypothesis fire 200 ran-
dom inputs at the test_priqueue() function, but they’ll all pass.
In fact, each time you run the program, you’ll get a different set
of inputs as it searches for failing test cases. Should a failure be
found, it will be recorded for inclusion in further tests. For now,
we’re safe though.

Final Thoughts
This whole approach to testing out new code and small libraries
is interesting. When starting out, the inlined assertions provide
a basic level of testing for implementing the initial code. Those
tests can naturally evolve into a testing function that can be
used with popular testing tools like pytest. Later, you can evolve
that testing function into something for use with a package like
Hypothesis, where hundreds of test cases can be generated for
you automatically. The code is still small and it’s allowing me
to focus on the actual problem I’m trying to solve. For example,
with just that one testing function, I can start experimenting
with different queue implementations and have a reasonable
expectation of finding bugs if I break anything. It’s neat.

References
[1] pytest: http://pytest.org.

[2] Hypothesis: http://hypothesis.works.

[3] Aur Saraf, at PyCon, Israel: http://il.pycon.org/wwwpyconIL
/agenda/174.

http://pytest.org
http://hypothesis.works
http://il.pycon.org/wwwpyconIL/agenda/174
http://il.pycon.org/wwwpyconIL/agenda/174

www.usenix.org FA L L 20 17 VO L . 42 , N O. 3 53

COLUMNS

Practical Perl Tools
Come Fly With Me

D A V I D N . B L A N K - E D E L M A N

I occasionally read Quora for fun. I recently stumbled upon the following
question:

What are the two closest airports to each other in the world?

The very first answer to the question I saw was from Kevin Lin who said:

For fun, I wrote a Python script to do the following:

(1) Take the list of airports from http://www.airportcodes.org/ and remove all the
airports listed as “Bus service” or “Rail service” or “Van service” or “All airports”.

(2) Plug the remaining airports into http://www.gpsvisualizer.com/geo...to get their
GPS coordinates.

(3) Finally, compute the distances between pairs of airports by plugging their GPS
coordinates into the haversine formula http://stackoverflow.com/questio...

You can find this question and answer here: https://www .quora .com /What -are -the -two
-closest -airports -to -each -other -in -the -world /answer /Kevin -Lin.

Lin didn’t include his Python code, but I was intrigued by the problem and thought I would
take a swipe at doing this in Perl using roughly his method to see how hard it would be. Turns
out it isn’t that difficult, though there are a few tricky bits and some limitations we’ll discuss
later on. Let’s take a walk through my implementation of Lin’s solution and see what we can
learn.

Oh, the Modules You Will Go
I don’t know how hard Lin’s implementation leans on existing extensions to Python, but since
the availability of modules to do almost anything is one of Perl’s strengths, I decided it would
be fine to use them whenever they would make things easier for me. Here’s the collection in
play:

use HTTP::Tiny;

use HTML::Strip;

use Geo::Coder::Google;

use Algorithm::Combinatorics qw(combinations);

use GIS::Distance; #::Fast

The first two will be used to grab the airport list Web page and remove all of the HTML
from it. The second will be used to geolocate all of the airports. Algorithm::Combinatorics
will make it easy to come up with all of the distances we will need to compute, and
GIS::Distance will perform that calculation for us. The comment on GIS::Distance is meant
to be a reminder that it would be advantageous to us to also install GIS::Distance::Fast
in addition to GIS::Distance. The Fast module implements the distance calculations in C
(versus the pure Perl implementations that ship with the main module). These much faster
implementations will get used by GIS::Distance automatically if the Fast module has been
previously installed.

David Blank-Edelman is the
Technical Evangelist at Apcera
(the comments/views here
are David’s alone and do not
represent Apcera/Ericsson) .

He has spent close to 30 years in the systems
administration/DevOps/SRE field in large
multiplatform environments including Brandeis
University, Cambridge Technology Group,
MIT Media Laboratory, and Northeastern
University. He is the author of the O’Reilly
Otter book Automating System Administration
with Perl and is a frequent invited speaker/
organizer for conferences in the field. David
is honored to serve on the USENIX Board of
Directors. He prefers to pronounce Evangelist
with a hard ‘g’.  dnb@usenix.org

http://www.gpsvisualizer.com/geo
http://www.quora.com/What-are-the-two-closest-airports-to-each-other-in-the-world/answer/Kevin-Lin
http://www.quora.com/What-are-the-two-closest-airports-to-each-other-in-the-world/answer/Kevin-Lin

54  FA L L 20 17 VO L . 42 , N O. 3 www.usenix.org

COLUMNS
Practical Perl Tools: Come Fly With Me

Let’s Get the Airports
Here’s some code to fetch the contents of the page, strip off the
HTML in the page, and then extract a list of all of the airports
from the remaining text:

my $code_source = “http://www.airportcodes.org”;

my $reply = HTTP::Tiny->new->get($code_source);

my $hs = HTML::Strip->new();

my @airports =

 grep (/\w, [\w\s-]+\s?\(/,

 (split(/\s?\n/, $hs->parse($reply->{content}))));

That last line is kinda gnarly (sorry), so let’s take it apart piece by
piece, working from the inside out.

First off, we need the contents of the page as returned by the
HTTP GET operation:

$reply->{content}

Then we will want to strip out any of the HTML tags in the page:

$hs->parse($reply->{content})

Now that we have just the text, which largely consists of a string
containing a bunch of lines (most of which contain an airport),
we’ll want to split the text into a list of lines:

split(/\s?\n/, $hs->parse($reply->{content}))

With me so far?

As an aside, the use of \s in the split() takes care of an annoy-
ing property of the data where some of the airport listings have a
trailing space. Mostly a cosmetic problem, but it was bugging me
while I was writing the code. A few seconds ago I said “most of
which contain an airport.” The use of grep() here makes sure we
only collect the lines that appear to contain an airport listing:

 grep (/\w, [\w\s-]+\s?\(/,

 (split(/\s?\n/, $hs->parse($reply->{content})))));

I suspect there are more direct ways to extract only the airport
data from this page using one of the HTML-parsing/extraction
modules, but this method of tossing the HTML and grabbing
only the lines we wanted seemed relatively straightforward.

Let’s Geocode
We’ve dived into Geocoding in previous columns a couple of
times, so I won’t dwell too much on the process. One thing I do
need to note is that in this example code, I’m using the Google
Maps API Geocoding service, which is (after a certain number
of calls) a paid service. More info on it here: https://developers
.google.com/maps/documentation/geocoding/start (pricing can
be found here: https://developers.google.com/maps/pricing-and
-plans/).

Let’s look at the code:

my $geo =

 Geo::Coder::Google->new(“key” => “{YOUR API CODE HERE}”,

);

my %airports;

foreach my $airport (@airports) {

 next if $airport =~ /[vV]an service/;

 next if $airport =~ /[bB]us service/;

 next if $airport =~ /[bB]us station/;

 next if $airport =~ /Park&Ride Bus/;

 next if $airport =~ /Van Galder Bus/;

 next if $airport =~ /[rR]ail service/;

 next if $airport =~ /[aA]ll airports/;

 next if $airport =~ /Heliport/;

 print STDERR “Locating $airport...”;

 my $location = $geo->geocode(‘location’ => $airport);

 if (!defined $location) {

 print STDERR “not found.\n”;

 next;

 }

 $airports{$airport} = [

 $location->{geometry}{location}{lat},

 $location->{geometry}{location}{lng}

];

 print STDERR “done.\n”;

}

I think the process is pretty straightforward. Once we initialize
the geocoded object with our API key (see the doc I mentioned
earlier for how to get one), we walk through the list of airports we
scraped and attempt to geocode each one. As per Lin’s solution,
there are a number of bus and van service listings that aren’t real
airports, so we attempt to skip them.

As an aside, there’s another thing I would probably do in the next
version of this program to clean the data that Lin doesn’t men-
tion. There are (by my count) 59 duplicates in the data where the
same airport code is listed in two places with slightly different
descriptions—for instance:

Biloxi/Gulfport, MS (GPT) & Gulfport, MS (GPT)

Endicott, NY (BGM) & Binghamton, NY (BGM)

Leon, Mexico (BJX) & Guanajuato, Mexico (BJX)

Canton/Akron, OH (CAK) & Akron/Canton, OH (CAK)

It would be very simple to extract the airport code from each
airport and store it in a hash after you attempt to geocode an
airport. Then, before geocoding the rest, just skip any airports
you previously have a hash entry for already. I leave this (and any
other data cleanup you want to do) as an exercise for the reader.

https://developers.google.com/maps/documentation/geocoding/start
https://developers.google.com/maps/documentation/geocoding/start
https://developers.google.com/maps/pricing-and-plans/
https://developers.google.com/maps/pricing-and-plans/

www.usenix.org FA L L 20 17 VO L . 42 , N O. 3 55

COLUMNS
Practical Perl Tools: Come Fly With Me

Back to the action. For each airport, we store its latitude and lon-
gitude if the geocoder can find them. In my experience, it finds a
very large percentage of the airports. If this were a setting where
I really cared deeply about the results, I might choose to call
a second geocoding service to attempt to find any that Google
doesn’t have listed.

The lookup (at least from my laptop and decent Internet connec-
tion) on average takes about a second or so to complete for each
airport. If we wanted to speed this whole thing up, we could use
one of the techniques we’ve discussed in past columns to make
a number of queries in parallel. I have no doubt that Google can
handle the multiple queries at once, so this would provide a
dramatic speedup.

And while we are discussing optimizations, an even better addi-
tion would be code that could avoid doing the geolocation at all.
It would be best to cache previous results we get back and drop
them into some sort of persistent store (even just to a flat file).
When we ran the program again, we could skip a query if we’ve
already made it. This would save time, save you money from API
calls, and speed things up tremendously on future runs. Given
how seldom airports move locations, this is probably a safe thing
to do in almost all cases.

Go the Distance
Okay, time to calculate the distance between every possible pair
of airports. This process consists of determining all of those
pairs and then computing the distance for each.

Figuring out the pairs is something we could do with some loops,
but instead let’s use this opportunity to learn about two of the
easier modules for this process: Algorithm::Combinatorics and
Math::Combinatorics. Both have an easy way to ask for all of
the combinations of list elements. I choose the former because
it uses some C extensions for speed, but if you need a pure Perl
solution, Math::Combinatorics will work as well.

Algorithm::Combinatorics’ combinations() subroutine will
hand us back an iterator. We just call next() on that iterator each
time we want a new pair of airports (when it runs out of pairs, it
returns undef):

my $pairs = combinations([keys %airports], 2);

my %distances;

my $gis = GIS::Distance->new();

while (my $pair = $pairs->next) {

 my $trip = $pair->[0] . ‘-’ . $pair->[1];

 Above we snuck in the initialization of the GIS::Distance object,
so let’s talk about that next. There are a number of different ways
to compute distance between two points, the most common is
the haversine formula. So sayeth Wikipedia:

The haversine formula determines the great-circle
distance between two points on a sphere given their
longitudes and latitudes.

(Be sure to check out the Wiki page on this for some other inter-
esting trivia.)

By default, GIS::Distance uses this formula by default. Calculat-
ing the distance between the two airports becomes this easy:

 print STDERR “computing distance between $trip...\n”;

 $distances{$trip} = $gis->distance(

 $airports{ $pair->[0] }->[0],

 $airports{ $pair->[0] }->[1] =>

 $airports{ $pair->[1] }->[0],

 $airports{ $pair->[1] }->[1]

)->{values}->{kilometre};

We just ask the module to compute the distance between the
pair of airports by feeding in the latitude and longitude of
the first airport followed by the same for the second airport.
GIS::Distance wants to hand us back a Class::Measure object
(which could be handy later if we wanted to do conversions), but
we immediately look up the actual value in kilometers and store
it in the %distances hash instead.

Show Me the Distances
The last piece of code prints out the results (all 5,016,528 of
them) sorted from shortest distance to longest distance. This
was, by the way, the moment I realized that there were duplicate
entries in the data as mentioned above. Finding two airports
with 0 distance between them seemed mighty suspicious. Here’s
the code:

foreach my $trip (

 sort { $distances{$a} <=> $distances{$b} } keys %distances)

{

 print “$trip: $distances{$trip} kilometres\n”;

}

And the Answer Is…
If you run the code, you get an answer. I find interesting that I
got a slightly different answer from the one mentioned in Quora
(though Lin’s top answer is in the top five list). Here are the air-
ports with the shortest distance between them:

Comox, BC (YQQ)-Vancouver, BC (YVR): 1.30501111815652

 kilometres

Vancouver, BC - Coal Harbour (CXH)-Comox, BC (YQQ):

 1.37633222675128 kilometres

Vancouver, BC - Coal Harbour (CXH)-Vancouver, BC (YVR):

 2.11243449299644 kilometres

Omsk, Russia (OMS)-Orsk, Russia (OSW): 2.28071127591897

 kilometres

56  FA L L 20 17 VO L . 42 , N O. 3 www.usenix.org

COLUMNS
Practical Perl Tools: Come Fly With Me

Port Protection, AK (PPV)-Point Baker, AK (KPB):

 2.68865415751707 kilometres

Lebanon, NH (LEB)-White River, VT (LEB): 2.80395259148673

 kilometres

And just for the sake of completeness, here are the top five longest
distances:

Rio Cuarto, CD, Argentina (RCU)-Fuyang, China (FUG):

 19993.286433724 kilometres

Padang, Indonesia (PDG)-Esmeraldas, Ecuador (ESM):

 19994.1381628879 kilometres

Ile Des Pins, New Caledonia (ILP)-Zouerate, Mauritania (OUZ):

 20000.9443793096 kilometres

Long Lellang, Malaysia (LGL)-Tefe, AM, Brazil (TFF):

 20002.7713227265 kilometres

Palembang, Indonesia (PLM)-Neiva, Colombia (NVA):

 20011.325933595 kilometres

If you do happen to fly any of these distances, do write me, I’d
love to hear about it. And with that, take care, and I’ll see you
next time.

www.usenix.org FA L L 20 17 VO L . 42 , N O. 3 57

COLUMNS

iVoyeur
Stacks and Piles

D A V E J O S E P H S E N

Dave Josephsen is a book
author, code developer, and
monitoring expert who works
for Sparkpost. His continuing
mission: to help engineers

worldwide close the feedback loop.
dave-usenix@skeptech.org

I keep having this conversation with my coworkers. Honestly, it’s prob-
ably to be expected given my penchant for harping on about monitoring
tools. Also, I was admittedly quite spoiled at my last job, Librato—a place

whose singular mission in life is operational visibility, where everyone has
unfettered access to a functionally infinite, free, world-class, metrics plat-
form—where things were, of course, different.

Anyway, the conversation I’m talking about usually starts off with me suggesting some tool that
we could use to measure something. “Well how many foos per second are actually happening in
real life?” I’ll ask, expecting a number rather than a shrug in response. Alas, no one will know, so
I’ll suggest that we count them. “Do we have a graphite instance up anywhere?” I’ll ask.

“No,” they’ll answer slightly annoyed, knowing full damn-well that I know full damn-well by
now that there is no graphite instance, “we use Monitoring Tool X.”

“Ah hah,” I reply delighted, having successfully baited them into my personal little Platonic
dialog. “But I’m not talking about monitoring, I’m talking about measuring.”

Yes, delight. It delights me every single time, which, I recognize maybe is a little pathetic, but
I’m already too old to care. In fact, one of the things I’m genuinely enjoying about the aging
process is a certain sort of selfish introspection. It’s great. You’ll be walking down the street
and suddenly realize that you keep on offering to meet people for a beer when you don’t par-
ticularly like beer. And it just goes on like that, realization after realization that you’ve been
engaging in all these behaviors that you kind of despise, and then, best of all, you just stop
doing those things—like pretending to know what DevOps means, or living in Texas.

Anyway, most people don’t really catch my meaning when I say I’m talking about measuring
things as an activity distinct from monitoring things, so this portion of the conversation usu-
ally involves a lot of skeptical sideways glances and eye-rolling. And, honestly, I hear myself.
I sound like a pompous windbag who swallowed a know-it-all jerk. The words emerging from
my lips sound like something a televangelist might say if televangelists were really opinion-
ated on the subject of IT monitoring tools. Like, these sentences could only emerge from the
lips of someone who doesn’t live here, in the bloody trenches with you and me. Someone who
will soon jet back to the money-laden consulting partnership from which he oozed. I get that.
I do. So the first thing I do is remind them what they have to go through to measure the num-
ber of foos traversing the wire with Monitoring Tool X.

First you need to know Monitoring Tool X itself: its YAML/XML/JSON/whatever configu-
ration DSL along with its questionable world-view and unique collection of pseudo-random
assumptions that I’m sure totally made sense at the time. Then, these days, there’s usually
a code promotion and review process, so you’ll have to traverse those as well as possibly
a change control process. Those things only apply if you’re lucky enough to be allowed to
actually change Monitoring Tool X. I don’t have numbers, but I’m willing to bet that most
engineers in most places aren’t. Most engineers in 2017 still need to traverse a gatekeeper to
affect Monitoring Tool X, which means filling out something akin to a trouble-ticket.

58  FA L L 20 17 VO L . 42 , N O. 3 www.usenix.org

COLUMNS
iVoyeur: Stacks and Piles

And so nobody measures.

Of course they don’t. What carpenter would measure if she had
to submit paperwork in XML before she could use the tape mea-
sure? Maybe someone would, but I would not hire that person
and neither should you. I mean, at this point I’ve been dealing
with monitoring system configuration syntax for over 20 years,
and I wouldn’t bother to measure if that alone was the bar to
entry. I’d monitor, sure. But 10–15 minutes config time per new
metric? I’d never measure.

But what’s the big deal? I mean, ultimately, what do I lose? Obvi-
ously, we can get by without measuring. We can make things
that work. Yesterday I walked in to my living room and brushed
against a stack of recently purchased books in want of a shelf,
but I did not knock them over. They teetered off balance, and,
eventually, they might fall over as a result of their imbalance, but
for the time being that stack remained a stack rather than a pile.

That stack is working. It’s getting by. Exactly like so many other
well-monitored tech-stacks in the interclouds. And when they fall
over…when the stack becomes a pile, our monitoring tells us so and
we intervene. Like a fire-alarm. That’s how monitoring works. You
don’t want the fire-alarm going off when stuff isn’t on fire, and so
you restrict access to it, to make sure nobody messes it up.

That’s not measuring. Measuring is what we do when we want
to understand the things we build. How many queries is my
service actually putting on the wire? How many threads does it
spawn with real-life users? What’s actually faster, the new pars-
ing function or the old? Is round-robin actually round-robining
(Hint: No)? Measuring invites us to answer these questions for
ourselves. No paperwork. No fuss. Like a tape measure in our
pocket, this is self-service. Nobody is worried about you breaking
your tape measure.

When we measure, we can communicate actual, real-life sys-
tems behavior to one another, rather than hunches and esti-
mates. Its output is truth. Not Warning, not Critical, just Truth.
Measurement, therefore, gives us a common basis of under-
standing. It reaches across disciplines like application-develop-
ment and ops (or SRE or whathaveyou) and provides a common
comprehension of operational reality. Measurement gives us the
ability to have objective conversations about the best way to fix
things, and as your operational visibility improves, you begin to
formulate a tangible sense of normality, and inversely, abnormal-
ity. You move from alerting on problems to detecting imbalance.
You stop saying holy shit and start saying huh, that’s weird, and
seemingly overnight, you find yourself intervening before the
stack falls over rather than scrambling to clean up piles.

Most importantly, measuring things changes you. It’s one thing
to read about the process versus thread model in Web serv-
ers, but it’s quite another thing to see it for yourself. Measur-

ing things, it turns out, removes the political subtext from our
technology discussions. You no longer have to invest belief in the
solutions for which you advocate. You are free to question and to
formulate hypotheses and test them. It’s habit forming, and it’s a
really good habit for an engineer.

From Logs to Sprites
A few days ago I participated in my first Hackathon at Spark-
post, and since I kept having this conversation, I thought I’d
try to make something that celebrated the act of measuring as
opposed to monitoring. Coincidentally, I’ve also been playing
around lately with Phaser.io [1], a videogame development frame-
work for HTML5-enabled browsers, so I thought I’d try to make
a little traffic visualization toy.

DNS and SMTP are the lifeblood of Sparkpost, yet no second-
scale metrics systems currently exist to visualize this traffic.
Given this, I figured it would be impossible to render this traffic
and not learn something in the process. I wanted to show every-
one what our mail flow actually looked like, so I settled on SMTP
and got coding.

Some 24ish hours later, Sparkviz was born, and I was super
happy with how it came out. Here’s a video of it in action [2].

On the far left, you see two Amazon ELBs: one balances inbound
REST traffic from our customers and the other SMTP. This
traffic is represented by green balls. The next tier inwards is our
MTA tier. These servers relay mail outward to various proxies
(the third tier), which in turn deliver to the Internet (represented
as a large orange ball on the right). You’ll notice the right-hand
side of the screen is metered from 10 to 256. These obviously
form a scale of first octets. Email successfully delivered appear
as blue dots, which hit the far right-hand side of the screen at the
point matching their destination IP’s first octet.

The yellow balls represent transient bounces, and the red balls
that impact the floor are permanent delivery errors. As the
project took shape I noticed that heavy traffic often obscured
patterns, so I used phaser’s “enableDrag()” method on each of
the sprites to make them draggable, as you can see in the video.
When this wasn’t quite enough I added a toggle to squelch out the
errors entirely.

The project totaled 407 lines of code: 161 lines of JavaScript and
246 lines of Go. Unfortunately, I can’t share it, but there’s no
reason it couldn’t be open-sourced eventually.

It’s implemented as a daemon designed to run on our internal
log aggregation boxes. It listens on a UNIX domain socket for
log-lines, which it parses and extracts into JSON blobs. You can
see my highly technical architectural design document for the
daemon in Figure 1.

www.usenix.org FA L L 20 17 VO L . 42 , N O. 3 59

COLUMNS
iVoyeur: Stacks and Piles

The daemon also listens on port 8000 for HTTP clients, to whom
it delivers the phaser-based JavaScript UI. The UI, running in
the browser on the client, turns around and creates a WebSocket
connection back to the server. The daemon keeps a globally
scoped slice of these connected WebSockets and broadcasts each
parsed log line to every connected client as a JSON blob (using
a millisecond sleep function inside each client’s broadcast go-
routine to throttle the outbound traffic to 1000 blobs per client
per second).

Differentiation of traffic type happens client-side, where the
JavaScript UI uses a series of handler functions to parse out the
event-type from each inbound JSON blob, pushing them on to
another queue with the appropriate sprite value for phaser to
render and tween. The tl;dr is that I created a firehose between
the MTA logs and the end-user’s browser. As always with hack-
day projects, there’s plenty of room for improvement, but as you
can see, it gets the job done.

As I suspected, we all learned quite a bit from the exercise. It’s
kind of impossible for humans to avoid pattern-parsing data like
this, and you don’t need to look at it very long to recognize that
we have a distribution imbalance in this environment. Certain
MTAs clearly prefer certain proxies. Like the books in my living
room, this stack works despite its imbalance. I, for one, am really
looking forward to smugly pointing back to Sparkviz when I
curmudgeonly lecture my contemporaries on the importance
of operational telemetry, a process from which I’m sure I will
extract far more than 407 lines of delight.

Take it easy.

References
[1] Phaser.io: http://phaser.io/.

[2] My traffic visualization tool in action: https://www.youtube
.com/watch?v=htidm6DWq2s.

Figure 1: Highly technical architectural design document

http://phaser.io/
https://www.youtube.com/watch?v=htidm6DWq2s
https://www.youtube.com/watch?v=htidm6DWq2s

60  FA L L 20 17 VO L . 42 , N O. 3 www.usenix.org

COLUMNS

Golang
Creating and Using Certificates with TLS

C H R I S M C E N I R Y

In this article, we’re going to extend Kelsey’s original work from Spring
2016 ;login: on the gls service [1]. To recap, gls is a distributed ls tool,
which calls out to a listening service to perform a directory listing. One

of the open items left from that article is the concern around authentication
and authorization. To extend that, we’re going to add secured authentica-
tion to both sides of the gls tool and with this we’re going to gain a minimal
amount of authorization.

The ubiquitous Internet connection security protocol is currently Transport Layer Secu-
rity (TLS). TLS is used to encrypt, authenticate, and authorize (to a degree) connections.
The defaults handle encryption for us well enough, so in this article, we’re going to exam-
ine authentication and authorization. Authentication is based on the names on exchanged
certificates that have been signed by third party certificate authorities. Once identity has
been established, the service can then incorporate a base level of authorization based on the
names (e.g., parsing user=$username so it will get access to items specific to $username) on
the certificates or on the certificate chain (e.g., this was signed by the “users” CA, so it will
get access to common user items).

In our example, we want to ensure four items: encrypted communication, successful identi-
fication of the glsd server (that the one gls connects to is the proper one), successful identi-
fication of the gls client (that the one that connects to the glsd server is the proper one), and
restricted access of the gls client as appropriate. To accomplish this, we’re going to add TLS
between the client and the server, enable verification on both server and client, and compare
the certificate identity to a good list. In order to support all of this, we need to first generate
some private keys and certificates for gls and glsd to use.

NOTE: We’ve cut some corners to simplify the example in this article. Several additional areas
should be considered in a full production PKI infrastructure, including, but not limited to, use
of intermediate CAs, revocation lists, full subjects, selection of hash, key properties, private key
encryption with a passphrase, etc.

Certificates
In terms of authentication, TLS is a form of public key cryptography. If you’re not familiar
with it, you can read Radia Perlman’s ;login: article about Bitcoin [2]. The issue with plain
public key cryptography is that you have to distribute the public keys. Instead of having to
distribute every certificate for every service to every potential user of that service, TLS
builds a chain of trust in the same way that a Web browser authenticates a Web site like a
bank or hospital.

When I use a browser to connect to a Web site, the site sends my browser a certificate. This
certificate has the Web site’s public key and a subject name that identifies the Web site, and
it is signed by a trusted third party called the certificate authority (CA). My browser has a
bundle of certificate authorities, and it looks for a match for the signature in that bundle. If
there isn’t a match, the browser will alert about an untrusted certificate. With a matching

Chris “Mac” McEniry is a
practicing sysadmin responsible
for running a large e-commerce
and gaming service. He’s been
working and developing in

an operational capacity for 15 years. In his
free time, he builds tools and thinks about
efficiency. cmceniry@mit.edu

www.usenix.org FA L L 20 17 VO L . 42 , N O. 3 61

COLUMNS
Golang: Creating and Using Certificates with TLS

signature, the browser can verify that the Web site’s certificate
has been issued by the CA, and so the browser trusts it. In this
way, the browser doesn’t have to have the certificate for the Web
site ahead of time but only needs to have a much smaller set of
certificate authorities to use to verify.

After the chain of trust has been used to verify that the Web
site’s certificate is valid, the browser does another check. This
time, it takes the subject name on the certificate and compares
that to the DNS name that the browser used to connect. If the
certificate name does not match the DNS name, the browser will
alert to a name mismatch. If it does match, the browser trusts
the Web site and proceeds.

This chain of trust can be used to authenticate the client side
as well, with one caveat. The Web server can require that my
browser supplies a certificate as well, and it can compare the
signature on that certificate to its bundle of trusted certificate
authorities. In most cases, this is for an internal or private situ-
ation, so there’s only one certificate authority to check against,
but uses can vary. However, a DNS check of the client is unlikely
to work in many cases: multiple clients behind a Network
Address Translation, residential networks, or networks behind
dynamic addressing are all unlikely to be able to issue certifi-
cates appropriately to match the actual end client. Therefore,
the server is very unlikely to check the name on the certificate in
the same way as the client does to authenticate the server. The
server uses the certificate in two ways: the name on the certifi-
cate can be used to identify the user or provide a group or role;
and the fact that the certificate is signed is often used to provide
a base level of authorization (“if it’s signed, it’s allowed in”).

Since this is a private service, we can consider that our certificate
authority handling and chain handling is working together. That
allows us to only produce three certificates: a common certificate
authority, a server certificate, and a client certificate. The server
certificate will get the localhost name since that is what is being
used to connect to; and we’re going to encode a username, glss
Client A into the client certificate to show a stronger authentica-
tion approach than just verifying the certificate.

Building on the gls Package with the glss Package
Before we start, we need a place to work that isn’t conflicting
with previous work. We want to use the existing work of the RPC
mechanisms in the gls package and only add the pieces that we
need. We’re going to use the built-in package manager go get to
pull in Hightower’s work, and augment this with our own work-
ing path. For article space, the full code is not in this article, but
it is available on GitHub [3]. You can pull in the final source code
for this exercise along with the original source code. If you want to
assemble the code yourself, this article steps through that, but you
will have to fill in some of the gaps. To get started down that path:

 $ go get github.com/kelseyhightower/gls

 $ mkdir -p $GOPATH/src/github.com/cmceniry/login-glss

 $ cd $GOPATH/src/github.com/cmceniry/login-glss

 $ mkdir -p certs server client

Otherwise, you can pull in the new code along with the original:

 $ go get github.com/kelseyhightower/gls

 $ go get github.com/cmceniry/login-glss

go get will place the gls package at $GOPATH/src/github.com
/kelseyhightower/gls. We will be referencing it in our import
statements much as we do for the standard library utilities:

 import (

 “fmt”

 “github.com/kelseyhightower/gls”

)

Instead of using the utilities gls and glsd in the existing gls pack-
age, we’re going to create three new utilities in the login-glss
package: client/main.go and server/main.go, to hold the service
like before but with TLS encryption, and a new command,
certs/main.go, which we’ll next use to generate our keys and
certificates.

Generating Keys and Certificates
As a private service, we’re going to handle all of the certificate
and certificate authority management internally. In a production
case, this may work, or you may want to use a commercial vendor
or Let’s Encrypt [4]—the process for obtaining certificates and
keys is slightly different, but we’ll end up with the same resulting
items. In addition, since this is again internal, we’re going to use
one certificate authority for the client and the server certificate
signing. Since this exercise is on Go, we’re going to generate
these using Go itself. Let’s start this by opening a new file:

 certs/generate_certs.go

The Go standard crypto library has all of the functions needed to
generate certificate/key pairs. We’ll want to import these librar-
ies and some other ones that we’ll be using into our file:

 package main

 import (

 “crypto/rand”

 “crypto/rsa”

 “crypto/x509”

 “crypto/x509/pkix”

 “encoding/pem”

 “io/ioutil”

 “math/big”

 “time”

)

62  FA L L 20 17 VO L . 42 , N O. 3 www.usenix.org

COLUMNS
Golang: Creating and Using Certificates with TLS

Since we have three keys and certificates to generate, we’re going
to wrap this process up into a single function, generateKeyAndCert.
This function takes in a subject name and the certificate and key
of a certificate authority. We can use the same function for our
certificate authority, and in that case, nil can be passed for the
signer and signerkey.

 func generateKeyAndCert(

 name string,

 signer *x509.Certificate,

 signerkey *rsa.PrivateKey,

) (

 *rsa.PrivateKey,

 *x509.Certificate,

) {

generateKeyAndCert’s body has four parts to it. First, we have
to generate the private key/public key pair. As mentioned, a key
is a set of cryptographic numbers, in this case represented as an
rsa.PrivateKey [5] struct. The inputs to it are limited—a random
number source, which we’re using as the default, and a key
length. Later, we’ll be using one of the fields of the key, the paired
PublicKey, to generate the certificate.

 key, _ := rsa.GenerateKey(rand.Reader, 2048)

Second, we must generate a template x509.Certificate [6]. It might
be a bit confusing, but the template is of type x509.Certificate,
which is the same type that we’ll receive at the end. The template
is used by the standard library function to generate certificates
for where to source all of the information that we’ll need. There
are a few required fields: SerialNumber (unique distinguisher),
Subject (which is where we’re going to push CommonName),
NotBefore/NotAfter (which determine the lifetime of this certifi-
cate), and KeyUsage (the intended purpose of this certificate).

template := &x509.Certificate{

 SerialNumber: big.NewInt(1),

 Subject: pkix.Name{CommonName: name},

 NotBefore: time.Now().Truncate(24 * time.Hour),

 NotAfter: time.Now().Truncate(24 * time.Hour).

 Add(365 * 24 * time.Hour),

 KeyUsage: x509.KeyUsageKeyEncipherment |

 x509.KeyUsageDigitalSignature,

 }

Since this is a dual purpose function, we might be generating
a certificate authority. In those cases, we need to set a couple
of additional fields: IsCA must be true, and KeyUsage must be
extended for this additional purpose. Additionally, we also need
to set our currently nil-valued signer and signerkeys. As a root
CA, we’re going to set these to themselves.

 if signer == nil || signerkey == nil {

 template.IsCA = true

 template.KeyUsage |= x509.KeyUsageCertSign

 signer = template

 signerkey = key

 }

Next, we’re ready to generate our certificate using the standard
library function: x509.CreateCertificate. In addition to the
default source for random numbers, it uses the template, the
signer, our newly generated public key, and the signer’s private
key to create a binary blob representing the signed certificate.

 der, _ := x509.CreateCertificate(

 rand.Reader,

 template,

 signer,

 &key.PublicKey,

 signerkey,

)

And, finally, we need to make this binary blob useful. This
binary blob is DER encoded [7]. While this is useful to functions
handling binary data, we want to force the structure and type
consistency of the language and turn this into a full certificate
datatype.

 cert, _ := x509.ParseCertificate(der)

We now have the actual key and cert, so we can pass those back:

 return key, cert

 }

Once we generate these, we’ll need to be able to save them to disk
to be used by our client and server utilities. The standard format
for handling key and certificate files is called privacy-enhanced
electronic mail (PEM; https://en.wikipedia.org/wiki/Privacy
-enhanced_Electronic_Mail) encoding. The PEM is an ASCII
form generated from the binary data, held as an array of bytes
in Go, of the keys and certificates. Extracting the binary data
is slightly different for keys and certificates, but both need to
be converted over to this PEM format, and there are standard
library functions available for this. Once we get the PEM form in
memory, we can dump this to disk using the convenient ioutil.

WriteFile function.

 func saveKeyAndCert(

 prefix string,

 key *rsa.PrivateKey,

 cert *x509.Certificate,

) {

 keyBytes := x509.MarshalPKCS1PrivateKey(key)

 keyPem := pem.EncodeToMemory(

 &pem.Block{Type: “RSA PRIVATE KEY”, Bytes: keyBytes})

https://en.wikipedia.org/wiki/Privacy-enhanced_Electronic_Mail
https://en.wikipedia.org/wiki/Privacy-enhanced_Electronic_Mail

www.usenix.org FA L L 20 17 VO L . 42 , N O. 3 63

COLUMNS
Golang: Creating and Using Certificates with TLS

 ioutil.WriteFile(prefix+”.key”, keyPem, 0444)

 certPem := pem.EncodeToMemory(

 &pem.Block{Type: “CERTIFICATE”, Bytes: cert.Raw})

 ioutil.WriteFile(prefix+”.crt”, certPem, 0444)

 }

With our wrapping and save-to-disk functions, we can put
together our main function. Note the use of the CA keys and
 certificates to generate the actual end keys and certificates:

 func main() {

 caKey, caCert := generateKeyAndCert(

 “glss Root CA”,

 nil, nil)

 saveKeyAndCert(

 “certs/CA”, caKey, caCert)

 serverKey, serverCert := generateKeyAndCert(

 “localhost”,

 caCert, caKey)

 saveKeyAndCert(

 “certs/server”, serverKey, serverCert)

 clientKey, clientCert := generateKeyAndCert(

 “glss Client A”,

 caCert, caKey)

 saveKeyAndCert(

 “certs/client”, clientKey, clientCert)

 }

With this utility written, we’re now ready to execute it. Since
this is a one-time tool for this exercise, let’s just run it:

 $ go run certs/generate_certs.go

You should see several certificate and key files in the certs
directory:

 CA.crt

 CA.key

 client.crt

 client.key

 server.crt

 server.key

Now that we have all of the certificates, we can proceed into
encryption and authenticating our communications.

Server Changes
Part of what makes this powerful in Go is that we won’t have
to change much code to wrap the calls in TLS. We can change
some pieces of the setup to include TLS setup, and the rest of the
application is unchanged. Part of this is because we’re able to
swap out different types that satisfy the same Go interface—in
particular net.Conn on the server side.

Start by copying the original server and client utilities from the
gls package.

 $ cp \

 $GOPATH/src/github.com/kelseyhightower/gls/server/main

 go \

 ./server/main.go

We’re going to start by updating the import list. We have to add
specific crypto libraries that we’re going to be using as well as
add back in the reference to the original gls library.

 import (

 ...

 “crypto/tls”

 “crypto/x509”

 “io/ioutil”

 “github.com/kelseyhightower/gls”

)

Next, we need to initialize the TLS settings for the server. This
involves three parts: loading the server key pair, loading the
certificate authority certificate to verify against, and then using
those to set the TLS configuration. To load the key pair, we will
use the tls.LoadX509KeyPair function.

 func main() {

 cert, err := tls.LoadX509KeyPair(“certs/server.crt”,

 “certs/server.key”)

 if err != nil {

 log.Println(err)

 return

 }

TLS connections are verified against a CertPool, which is a list
of certificate authorities used to check for signatures. In the case
of verifying against a wide range of certificate authorities, like a
browser would do, you can keep adding certificate authorities to
the pool. In this case, we only have our internal certificate, so we
can add only it to the CertPool. Since the certificate authority is
a bare certificate (i.e., it doesn’t include a private key), we can’t
use tls.LoadX509KeyPair to get the certificate; we have to load it
separately and then add it bare to the CertPool.

 caCert, err := ioutil.ReadFile(“certs/CA.crt”)

 if err != nil {

 log.Fatal(err)

 }

 caCertPool := x509.NewCertPool()

 caCertPool.AppendCertsFromPEM(caCert)

Now with the server certificate and the certificate authority, we
can set the TLS configuration. In addition to the certificates, we
want to require that we authenticate the client using TLS.

64  FA L L 20 17 VO L . 42 , N O. 3 www.usenix.org

COLUMNS
Golang: Creating and Using Certificates with TLS

 config := &tls.Config{

 Certificates: []tls.Certificate{cer},

 ClientCAs: caCertPool,

 ClientAuth: tls.RequireAndVerifyClientCert,

 }

As we’ll see in the client, Go has a convenience function inside
of TLS for connections; for the server, tls.Listen can replace
net.Listen. However, we need to be able to access the peer infor-
mation, so we have to set up TLS directly and can’t use this.
Luckily, this only requires a couple of lines (plus error checking):
one to create the TLS connection object, and one to perform the
TLS handshake.

 for {

 conn, err := l.Accept()

 if err != nil {

 log.Println(err)

 }

 tlsconn := tls.Server(conn, config)

 err = tlsconn.Handshake()

 if err != nil {

 log.Fatal(err)

 }

Once the TLS handshake is successful, we can inspect the con-
nection for the client information and confirm it is correct. Note
that we may get multiple certificates on the connection. A client
may send its full certificate chain or a partial certificate chain
over the connection if it needs to connect intermediate certifi-
cates to a root. The key here is that first certificate (index 0)
will be the leaf certificate for this client, so it will be the one we
check against. In our particular case, we’re going to compare the
subject’s CommonName, but other situations could use other fields
of the certificate.

 tlsclient := tlsconn.ConnectionState().PeerCertificates[0]

 if tlsclient.Subject.CommonName != “glss Client A” {

 log.Fatal(“Invalid client”)

 }

 log.Printf(“user=\”%s\” connect”,

 tlsclient.Subject.CommonName)

Now that we’ve verified the certificate chain (via the ClientAuth
setting on tls.Config) and checked that the CommonName is
correct, we can proceed with the net/rpc call. Special Note:
since this is providing a wrapper layer, we’re going to insert this
between the Accepted connection and rpc.ServConn. Accept
and tls.Server both return net.Conn, and rpc.ServConn takes
in a net.Conn. rpc.ServConn isn’t aware that the data is being
encrypted underneath it.

 rpc.ServConn(tlsconn)

 conn.Close()

 }

You can confirm everything by building the server the same as
before:

 $ go build -o glssd server/main.go

At this point, we’ve added TLS to the server side without having
to change any of the underlying net/rpc items. Now we need to
do the same on the client side.

Client Changes
The client changes are the same as on the server side except that
we don’t have to check anything additional on the certificate’s
CommonName—this is handled by default when TLS authenti-
cates servers. As before, start by copying the existing gls client
over to our new working directory:

 $ cp \

 $GOPATH/src/github.com/kelseyhightower/gls/client/main.

go \

 ./client/main.go

Then update the imports the same as before.

 import (

 ...

 “crypto/tls”

 “crypto/x509”

 “io/ioutil”

 “github.com/kelseyhightower/gls”

)

Next, load the client certificate and private key, the certificate
authority certificate, and configure TLS. The main differences
are to flip from authentication of the clients to authentication
of the server in the tls.Config: we’re not specifying ClientAuth,
since that’s a server side optional setting, and we’re specifying
the RootCAs instead of ClientCAs to indicate that we’re connect-
ing out and authenticating the server instead of being connected
to and authenticating the client.

 cert, err := tls.LoadX509KeyPair(“certs/client.crt”,

 “certs/client.key”)

 if err != nil {

 log.Fatal(err)

 }

 caCert, err := ioutil.ReadFile(“certs/CA.crt”)

 if err != nil {

 log.Fatal(err)

 }

 caCertPool := x509.NewCertPool()

 caCertPool.AppendCertsFromPEM(caCert)

 conf := &tls.Config{

 Certificates: []tls.Certificate{cert},

 RootCAs: caCertPool,

 }

www.usenix.org FA L L 20 17 VO L . 42 , N O. 3 65

COLUMNS
Golang: Creating and Using Certificates with TLS

Next, we connect to the server with the convenience function
tls.Dial, and pass the returned net.Conn to rpc.NewClient. In the
same way as encryption and authentication are transparent on
the server, this is transparent to net/rpc on the client.

 conn, err := tls.Dial(“tcp”, “localhost:8080”, conf)

 if err != nil {

 log.Fatal(err)

 }

 client := rpc.NewClient(conn)

Build the client, and you should now have a fully encrypted and
authenticated gls client:

 $ go build -o glss client/main.go

Start up the server and, separately in another terminal, start up
the client:

 $./glssd

 # In another terminal

 $./glss ~

Conclusion
At the end of this, we have protected the gls connection with
mutual TLS authentication. In addition, we’ve relied on the
power of the golang interface to only make minimal changes to
the original program to enable secure communication.

References
[1] K. Hightower, “Modern System Administration with Go
and Remote Procedure Calls (RPC),” ;login:, vol. 41, no. 1
(Spring 2016), pp. 63–67: https://www.usenix.org/publications
/login/spring2016/hightower

[2] R. Perlman, “Blockchain: Hype or Hope?” ;login:, vol. 42, no.
2 (Summer 2017): https://www.usenix.org/publications/login
/summer2017/perlman.

[3] Source code for glss: https://github.com/cmceniry/login-glss.

[4] Let’s Encrypt: https://letsencrypt.org.

[5] Go Doc on PrivateKey: https://godoc.org/crypto/rsa
#PrivateKey.

[6] Go Doc on x509: https://godoc.org/crypto/x509#Certificate.

[7] DER encoding: https://en.wikipedia.org/wiki/X.690#DER
_encoding.

https://www.usenix.org/publications/login/spring2016/hightower
https://www.usenix.org/publications/login/spring2016/hightower
https://www.usenix.org/publications/login/summer2017/perlman
https://www.usenix.org/publications/login/summer2017/perlman
https://github.com/cmceniry/login-glss
https://letsencrypt.org
https://godoc.org/crypto/rsa#PrivateKey
https://godoc.org/crypto/rsa#PrivateKey
https://godoc.org/crypto/x509#Certificate
https://en.wikipedia.org/wiki/X.690#DER_encodi
https://en.wikipedia.org/wiki/X.690#DER_encodi

66  FA L L 20 17 VO L . 42 , N O. 3 www.usenix.org

COLUMNS

Flipping Out in Computer Science
M A R G O S E L T Z E R

For a while, every conversation about education seemed to lead to the
term MOOC (massive open online course). The hype around such
courses seems to have died down to some extent, but MOOCs still

exist and are largely good things, even if they have not fulfilled the promise
of educating the world. However, there has been an unanticipated side effect
to the (forgive me here) MOOC-ification of courses. We suddenly find our-
selves in possession of some really high-quality teaching materials. What
else might we do with such assets? I’d like to make the point that the wealth
of online material opens up the possibility that those of us in the education
business can undertake experiments in education that lead to deeper learn-
ing. In this article, I’ll focus on the flipped classroom.

In 2013, I began revising all my undergraduate courses so that I could teach them in a
flipped style (my graduate courses are typically research seminars, so in some sense, they
are already flipped). But what is flipping? The high-level idea is that rather than spending
class time absorbing information and then practicing use of the information at home, we
flip those two activities around. Students use prepared materials at home for first exposure
to new concepts and then come to class and work in small groups to practice applying those
concepts.

I had been intrigued by the idea of flipping for a long time but hadn’t quite figured out how to
apply it to my own courses. My problem sets are large monolithic projects, not something on
which one can make meaningful progress in a class period. So while I could easily imagine
preparing materials for them to review at home, what would I have them do in class?

By pondering that question, I realized that one of the biggest challenges students face in
programming courses is connecting new concepts to the programming tasks we give them.
Maybe I could use in-class time to more effectively connect conceptual material to program-
ming pragmatics, so students would not have to struggle with the question of how to get
started.

My first experience flipping a course was with my (insanely time-consuming) operating sys-
tems course. Students report spending 30 hours per week completing the long but rewarding
problem sets—students start with a simple operating system kernel and build user-level pro-
cesses, a virtual memory system, and a journaling file system. I blogged my first experience
flipping it here: http://mis-misinformation.blogspot.com/2013/08/an-index-to-my-flipping
-blog-postings.html.

I ended up using three different styles of in-class exercises: gaining familiarity with the
course software, completing problems that demonstrate mastery of the material presented,
and engaging with open-ended design problems. I’ll give short examples of each of these
approaches.

Margo Seltzer is the Herchel
Smith Professor of Computer
Science and the Faculty
Director for the Center for
Research on Computation and

Society in Harvard’s John A. Paulson School
of Engineering and Applied Sciences. Her
research interests are in systems, construed
quite broadly: systems for capturing and
accessing provenance, file systems, databases,
transaction processing systems, storage
and analysis of graph-structure data, new
architectures for parallelizing execution, and
systems that apply technology to problems in
health care. She was a co-founder and CTO of
Sleepycat Software, the makers of Berkeley DB,
and is now an Architect at Oracle Corporation.
She is a past President of the USENIX Board of
Directors. She is recognized as an outstanding
teacher and mentor, having received the
Phi Beta Kappa teaching award in 1996, the
Abrahmson Teaching Award in 1999, and
the Capers and Marion McDonald Award for
Excellence in Mentoring and Advising in 2010.
Dr. Seltzer received an AB degree in applied
mathematics from Harvard/Radcliffe College
in 1983 and a PhD in computer science from
the University of California, Berkeley, in 1992.
margo@eecs.harvard.edu

http://mis-misinformation.blogspot.com/2013/08/an-index-to-my-flipping-blog-postings.html
http://mis-misinformation.blogspot.com/2013/08/an-index-to-my-flipping-blog-postings.html

www.usenix.org FA L L 20 17 VO L . 42 , N O. 3 67

COLUMNS
Flipping Out in Computer Science

Infrastructure
Traditionally, the first assignment in the course includes
instructions on how students acquire the course software,
install a virtual machine, configure and build a kernel, attach
the debugger to a running kernel, etc. Small glitches in this pro-
cess can result in students wasting a lot of time without learn-
ing much. Instead, I had them get their hypervisor licenses and
install the course VM as pre-class work and then used class time
to let them config and build their first kernel and complete some
debugging exercises.

There were a number of positive outcomes from this structure.
First, if students encountered any problems, we fixed them
within a few minutes rather than having students beat their
heads against the wall for hours. Second, it’s actually pretty
exciting to build your first kernel and watch it run. We got to
all experience that together, so by the end of class there was
a shared sense of accomplishment. Third, while we always
encourage students to read code (and we assign them code-read-
ing questions), as we wandered around the room interacting with
the groups, we could ask questions that required that they look at
code and could then gently walk them through how to approach a
new code base.

Problem Solving with Virtual Memory
It’s pretty easy to assume that once you’ve explained the
four-level page table structure of the x86, students would then
understand how address translation works. You would, however,
be wrong.

Historically, when I taught VM, I would have the class “play
MMU” and perform address translation one step at a time, hav-
ing each student contribute something. This wasn’t bad, but a lot
of things fall through the cracks. With flipping, after introduc-
ing students to the concept of virtual memory and the x86 VM
system, it was easy to create short problems that let small groups
of students “play MMU” and translate addresses, draw page
tables, populate the page tables, deduce what page faults really
are, experience a segmentation violation from the point of the
MMU, etc. Instead of each student contributing a tiny piece (and
sleeping through the rest of the discussion), every student was
exposed to every operation; by the end of class it was pretty clear
that there was a much more uniform and deep understanding of
what was going on.

Design Exercises
As the semester progresses in my operating systems classes,
more of the conceptual material involves helping students
develop the intuition and skills to design software and make
tradeoffs. Prior to flipping, I would always present alternatives
and let the class come up with the advantages and disadvantages
of the different approaches. Of course, the five students who

knew exactly what was going on were the ones who would pretty
much answer all the questions no matter how much I cajoled the
rest of the class and tried not to call on the frequent contributors.
I converted these to small design exercises, requiring groups of
two, three, or four students to assess tradeoffs, and then we’d
come together as a class to compare answers.

As a result, everyone felt they could contribute. Even if they
hadn’t been entirely comfortable with the material, after
discussing it with their peers for 10 or 15 minutes, they usually
could effectively compare their conclusions with those of other
groups. I’ve done a large variety of different activities around
this theme ranging from peripatetic design reviews (when the
class was small), to design debates, to collaborative analyses.
One former student reports that she uses the skills learned in
these exercises every day in her job.

I’m completely hooked on flipping at this point. I distilled the
advantages I see in the approach into the following 10 bullet points:

1. It’s good for an old dog to learn new tricks. This is really about
making sure your teaching doesn’t get stale. It’s way too easy to
keep teaching the same thing over and over again. Whether you
use new pedagogy, new technological breakthroughs, or just
good self-discipline, it’s important to keep classes fresh.

2. Flipping lets me spend time with those students for whom the
material is most challenging. This is so obvious in retrospect,
but so exhilarating in practice. I have always run a relatively in-
teractive class, but for the most part, the students who ask and
answer questions in class are the ones who need you least—
they are typically the most confident and are not struggling to
understand the material. The silent ones, meanwhile, are fre-
quently struggling, and the time spent helping these students in
small groups during class time is incredibly useful.

3. Learning takes place by doing, not by listening to me. There are
a lot of different styles of hands-on learning, but I think this
point cannot be emphasized enough. Learning is not just the
process of transferring information from the teacher to stu-
dents; learning is about gaining new information and knowing
how to use it, and the latter requires practice.

4. Teaching assistant engagement is critical. We call our teach-
ing assistants “teaching fellows,” or TFs for short. Flipping
effectively requires a good staff that is comfortable engaging
with students, walking them through problems, and posing the
right questions. I am extraordinarily fortunate to have a truly
amazing and dedicated teaching staff.

5. It takes a lot of effort to come up with effective in-class work.
It’s important that the in-class exercises or problems relate
both to the concepts the students are learning and to the
homework or problem sets they will be doing. Designing these
exercises so they can be completed in the time allotted and add
real value to the course is demanding.

68  FA L L 20 17 VO L . 42 , N O. 3 www.usenix.org

COLUMNS
Flipping Out in Computer Science

6. Pre-class Web forms are AWESOME. They allow me to engage
with students in an entirely different way and to gather lots of
interesting data. This is perhaps the best surprise of all! I used
Google Forms to have students submit answers to the pre-class
questions. This created a mechanism I could use to obtain all
sorts of useful information, including how things were going in
partnerships, how much time people were spending on various
parts of the assignment, what was working for students, what
wasn’t working, etc. Once you have students regularly filling
out forms, they will answer anything you put there, and you can
use that to make the class better. Score!

7. My operating systems course, CS161, is even more time inten-
sive than I thought. I had been saying 20 hours per week for
decades; when the going gets rough, students were regularly
reporting 30-hour weeks. Oops.

8. It would be useful to help students learn what it really means to
design something. Software design is really hard! We spend a
lot of time in class doing small group design exercises—I could
imagine developing an entire course around this idea.

9. Flipping is a great equalizer when students enter with different
experience levels or exposure to different topics. It’s relatively
easy to provide supplementary material as pre-class work, so
that students who have gaps in their background can catch up.

10. Fully integrated and coordinated materials take real effort but
pay off tremendously. This should be a no-brainer, but thinking
deeply about the relationship between the videos I prepared,
the exercises we completed in class, and the problem sets was
time well spent.

www.usenix.org FA L L 20 17 VO L . 42 , N O. 3 69

COLUMNS

Obvious to all, the sea of data is rising. It’s a remarkable thing really.
Even if all you can remember is 10 years back, the comparison of
“then” with “now” is pretty startling. No, that does not qualify as

news, but to reparse Orwell’s “Who controls the past, controls the future:
who controls the present, controls the past,” the data “we” collect now is what
will soon enough become the past for a data-driven world. If that data past
comes to exert a force in some sort of proportion to its volume, is there, or will
there be, any room for mere human opinion?

Cybersecurity has long had a measurement problem. Progress has certainly been made, both
in the pages of this publication and elsewhere. Defenses now include mass data collection
and tools whose main job is to reduce data volume to something that is straightforwardly
actionable. In the Orwell sense, the algorithms that collect and reduce the instrumentation
data are coming to control if not the present itself then our understanding of the present.
In due course, the “actionable” becomes the automatically acted upon, that is to say that
algorithms are trusted to do what we seem unable to do—to protect us from other algorithms.
Such is progress.

Yet the nuance here is that the algorithms are, by and large, uninterrogatable—they cannot
be meaningfully asked why they made such and such a decision. The outcome of action, not
the reason for action, becomes the only check and balance that we humans have at all. This
may be a tradeoff that is not just inevitable but welcome, welcome in the sense of freeing
front-line cybersecurity staff from having to juggle a million balls all at once. At the same
time, if you/we cannot examine the reasoning behind an automatic action but only react
to the outcome of it, what then do we know about the present? What kind of past will the
accumulating data create? Behaviorally oriented cybersecurity is entirely crafted along these
lines, the line of learning enough about the recent past to be able to tell that the present is
diverging from that past and, ipso facto, algorithmically control the future. What then is the
role of the human in the loop?

The Index of Cyber Security (ICS) was created six years and a little more ago on the premise
that we didn’t know enough about the details of cybersecurity to make prediction and plan-
ning really possible—that “the present” was (is) a bit of a miasma and, as such, the best and
only trustable prediction of the future was to be found in the pooled opinions of front-line
cybersecurity practitioners. As with the oft-noted “wisdom of crowds,” ours was not a search
for the single smartest oracle but rather a pooling of opinion from a body of experts whose
views were tempered by the heat of daily practice. Speaking for myself and my colleague
in this project, we think that the need for pooled expert opinion is greater than ever, both
between practitioners (as with the ICS) and inside each firm that is itself large or connected
enough to be a constant target.

A developed muscle that is not exercised will atrophy. A developed skill that is not exercised
will atrophy. If we humans are to remain the ultimate decision makers regarding our fate,

For Good Measure
When Opinion Is Data

D A N G E E R

Dan Geer is the CISO for
In-Q-Tel and a security
researcher with a quantitative
bent. He has a long history
with the USENIX Association,

including officer positions, program
committees, etc. dan@geer.org

70  FA L L 20 17 VO L . 42 , N O. 3 www.usenix.org

COLUMNS
For Good Measure: When Opinion Is Data

then our ability to form strong opinions must not be left unex-
ercised, it must not be left to atrophy. The desire for automatic-
ity runs toward setting the stage for an atrophy of some skills;
choosing what to let go may require the greatest of wisdom.
Perhaps, then, the state of our wisdom is worth close attention.
To illustrate that point, consider this ICS question:

Your organization is likely more reliant on the cloud than you
think. According to Symantec’s Internet Security Threat Report,
the average enterprise organization was using 928 cloud apps,
up from 841 earlier in the year. However, most CIOs think their
organization only uses around 30 or 40 cloud apps. Reliance on
the cloud goes beyond the traditional infrastructure hosting
arrangement. Unknown to IT, the “business” will often sign up
for SAAS services on the cloud where data (or metadata at least)
gets out on the cloud.

What is your assessment of your security organization’s handle
on cloud engagement:

Figure 1

That question above and its answers by a pool of front-line
cybersecurity people is illustrative—both of the spread of opin-
ion and its logic. That we can ask practitioners such a question is
the interrogatability part. That some entities centralize control
while others delegate responsibility is no real surprise but is
still worth noting insofar as it says pretty clearly that no single
“right” answer has come along.

Let’s try another:

After years of study, we still do not seem to be able to agree on
the question of vulnerabilities and, in particular, matters of their
discovery, use, retention, and disclosure. Policy constraints vary
across countries like night and day. These are strategic issues or,
should we say, Strategic Issues that fully prove that cybersecu-
rity and the future of humanity are conjoined now. Allowing for
ambiguity, which of these directions should free-world govern-
ments favor:

Figure 2

As with the first example, the spread of opinion is valuable in
and of itself. Does not the preponderance of the first option, to
acquire vulnerabilities from wherever and share them with the
relevant vendors post-haste reflect a strong prediction on the
part of the respondents about what they expect the vulnerability
situation to be in future? Would an algorithm fed by a sensor
network come to the same conclusion?

Let’s try a third:

Newly discovered vulnerabilities create workload for defenders
that is immediate—in the form of security updates and patches
to apply—and workload that is deferred—as everything built
and deployed from that point on has to be inoculated against
the continuously accretive database of known weaknesses. Yet
this work cannot be perfectly sufficient, as Mirai has shown; the
capabilities of the attackers can increase even if the defense is
doing everything right for their organization.

How have you been seeing your workload fluctuate over the past
year:

Figure 3

www.usenix.org FA L L 20 17 VO L . 42 , N O. 3 71

COLUMNS
For Good Measure: When Opinion Is Data

Here, the respondents’ opinions are certainly predictive about
the future of their own practice, and, from that, one can make
broader statements about the cybersecurity situation in general.
This human judgment seems better than any sensor network-
driven machine learning could be expected to deliver. Of course,
sometimes it is not a question of data but rather of the handling
of data, such as this fourth example:

Information sharing with the government, even after large
incidents, is an activity fraught with anxiety and stress. Differ-
ential reporting by the victim targets means the data that public
authorities have is not useful for rational planning. Some target
entities will report; some will not. Has the time come to have an
escalation rule for sharing of information about attacks?

We do this with different rationales in some contexts, such
as when we require prompt and detailed attack information
from defense contractors to Pentagon authorities, when state
laws force disclosure if a customer’s credit card or other per-
sonal information is exposed, and when the SEC requires the
announcement of security breaches that materially impair cor-
porate operations. Has the time come for a mandatory reporting
regime for all events that are above some threshold of severity?

Figure 4

Collectively, these questions illustrate what shared, expert opin-
ion can mean, and it seems unlikely that algorithms would take
over these areas of informed choice, but 10 years ago we would
not have guessed what algorithms have taken over today either.
While we can (and will) ask the ICS respondents about the role
of automation in the near-term future, our imagination may
not be up to the task of asking the right questions. By all means,
make suggestions as to what questions we should ask. If you are,
yourself, a front-line security practitioner, then please consider
becoming one of our respondents (it will cost you 10 minutes a
month, and you will see a lot of analysis that we reserve for our
respondents—though we’ll happily provide a sample to help you
make a decision).

Nevertheless, at the end of the day, the biggest question is
whether a human in the loop is a failsafe or a liability. We favor
the “failsafe” view, but to keep and maintain that a human in the
loop is a failsafe, they have to actually be in the loop. Being an
observer of algorithms that don’t ask (permission) and don’t tell
(what it is they are doing) won’t keep the practitioner in fighting
trim. There’s no such thing as a free lunch…

72  FA L L 20 17 VO L . 42 , N O. 3 www.usenix.org

COLUMNS

/dev/random
Offensive Computing

R O B E R T G . F E R R E L L

Now that state-sponsored retaliatory computer operations are appar-
ently a thing, this seems like a great time to jump on that self-driv-
ing full-auto bandwagon. But forget boring stuff like reconnoitering

port scans and penetration probes prior to attacking; let’s use the nuke option
on those nefarious puppers from the get-go and move on with our lives, what
do you say? I stock an entire arsenal of potent ordnance for taking down the
cyber bad guys, be they corporate, governmental, or just private mercenaries
with a yen for easy money.

Most of the “best defense is a strong offense” proposals I’ve seen involve fighting fire with
fire. Tedious and predictable, my young apprentice. The way to fight fire is to bury it under
a deluge of sloppy wet stuff. As a longtime purveyor of same, here are some of my suggested
tactical instruments of vengeance, both offensive and defensive, along with the philosophi-
cal statement you’ll be making with each. All are dedicated to the proposition that protecting
one’s information assets can also count as entertainment.

Chaos in the Middle: intercept network traffic heading to and from your enemy and attach
random headers and payloads derived from Pinterest or /r/SubredditSimulator. Then sit back
and watch their logs fill up.

Message it sends: Hr r yr lulz.

Matrix Honeypot: divert hostile traffic into a honeypot universe where all of the attackers’
initial strategic goals seem to be met perfectly. Once they’re hooked, create increasingly more
complex and comprehensive layers of alternate reality until they no longer have any objec-
tive means by which to differentiate that virtual world from the real one. They will now be
trapped forever. Not recommended for teams on a budget, as the necessary pecuniary outlay
can approach infinity over time.

Message it sends: Take two blue pills and WhatsApp me in the morning.

Grade School Playground: a bot that replies to every email, text message, or other enemy
communication with, “I know you are, but what am I?” Attach optional raspberry.mp3, nyah-
nyah.mp3 to complete the experience.

Message it sends: It’s always recess somewhere.

Reverse Ransomware: threaten to break the enemy’s encryption with your supercomputer
and supply the key to their victims for free unless the crooks pay half the ransoms to you. Not
so much an attack as a business model.

Message it sends: Thank you for your patronage.

Mirror, Mirror: automatically reflect every packet sent by an attacker in FILO order.
Essentially a variation on the Grade School Playground method (cf.). Economical because it
only requires a modified network appliance. Will not make you popular with your upstream
neighbors, though, and renders the node pretty much useless for getting any real work done.

Robert G. Ferrell is a fourth-
generation Texan, literary
techno-geek, and finalist
for the 2011 Robert Benchley
Society Humor Writing

Award. rgferrell@gmail.com

www.usenix.org FA L L 20 17 VO L . 42 , N O. 3 73

COLUMNS
/dev/random: Offensive Computing

Message it sends: We’re sorry, the number you have reached is
not in service.

Blast Phishing: Perform both passive and active phishing-based
reconnaissance on the target to establish patterns, methods, and
locations. Once all the necessary intelligence has been gathered,
launch absolutely everything in your malware database simulta-
neously along all mapped hostile vectors. Messy, but effective if
you don’t want any survivors. A healthy chunk of bandwidth is a
must here.

Message it sends: Today is a good day to die().

Hydra Hail: Invest in sufficient infrastructure to spawn virtu-
ally endless numbers of cloned virtual machines on isolated
VLANs. Every time the enemy attacks, take the affected virtual
presence down instantly and plop another clone in its place.
Rinse and repeat ad infinitum until the attacker gives up in frus-
tration. Have a beer to celebrate your victory.

Message it sends: Sticks and stones may break my bones, but I
have a heck of a lot of bones.

Catatonia: Trace the IP address of the attacker and forward
every known cat video to it, effectively purr-alyzing the hostile
network under a dense blanket of furry cuteness.

Message it sends: Get some of this meow up in your grill,
evildoer.

And finally,

Utter Acquiescence: powers down the entire network and reverts
everyone to slide rules and typewriters. See also RFC 1149.

Message it sends: We have a constitutionally mandated Postal
Service for a reason.

If you don’t know how to work a slide rule, I’ll be happy to teach
you, although admittedly I mostly used mine as a straightedge
for drawing castles on my notebooks. I still have my Pickett
N902-ES from high school, along with my grad school-era
Brother Professional CX-90 daisy wheel electric typewriter.
They’ve never been compromised, although I did misplace my
italic daisy wheel once.

As for me, I do all of my mission-critical computing on my trusty
Osborne 1 these days and thus I’m not too vulnerable to attack
unless you’re into crafting exploits for CP/M 2.2. And mailing
them to me on a 5.25” disk.

74  FA L L 20 17 VO L . 42 , N O. 3 www.usenix.org

BOOKSBook Reviews
M A R K L A M O U R I N E

REST API Design Rulebook
Mark Massé
O’Reilly Media Inc., 2012, 94 pages
ISBN 978-1-449-31050-9

You would be right in assuming that any book with the word
“rulebook” in the title would express an opinion. Massé certainly
doesn’t hold back, but that seems to be a trait of REST advocates
in general.

At under 100 pages, Massé’s book packs quite a lot into a little
space. It is really presented as a list of one-line rule statements
with a matching brief explanation. Each is meant to address
one of the common questions raised when designing a REST
protocol.

The first three sections treat the interactions between the client
and the server, detailing how each uses the HTTP protocol fea-
tures to communicate and interpret the intent of the other. The
fourth section describes how to add metadata that allows the
self-discovery that is characteristic of REST protocols.

I was struck by how little the rules had to do with the formatting
of the content. The only rules that deal directly with content are
those that state that the payload must use a standard structured
data format such as JSON or XML. The rest of the rules describe
how to make use of the simple CRUD (Create, Read, Update,
Delete) operations that HTTP offers to define the more complex
interactions that a rich application protocol needs.

Massé notes that the contents of these first four sections are
based largely on consensus reached over time among the devel-
oper community. In the final two sections, he discusses rules for
data representation and for client-side concerns like authentica-
tion and applications with multi-origin data sources. The word-
ing of the rules here changes from “must” to “should.” Massé
indicates that these are his answers to the questions that remain
open, based on his experience.

This book was written in 2011, more than a decade after the pub-
lication of Roy Fielding’s PhD dissertation in 2000. Since then
REST has come to be the preeminent model for client-server
communications, replacing proprietary binary models and
earlier Web standards like SOAP and XML-RPC. While many
services claim to conform to the REST conventions, a close read
of this book will show that few really meet the full criteria.

When thinking about REST, people often focus on representing
the payload content using a structured data format. Many forget
that a major tenet of REST is that the relationships between the

different data objects must be included in the query responses.
Links and relationships must be discoverable by the client
without the need to code assumptions into the client-side logic.
Defining and presenting these relationships in the metadata of
a REST response requires a lot of thought and work on the part
of the server writer. Many applications that claim to be RESTful
take shortcuts on the protocol design, coding the relationships
into the client.

Massé correctly focuses on how to define and present these rela-
tionships. He understands that simply representing the content
as structured data is the easy part. He gives very little space
to how to write the code, though he does include a simple app
example in the final chapter.

In the end it may not matter if developers strictly adhere to the
REST guidelines, so long as the code works, but I suspect much
code could be improved after a few minutes spent with the
Rulebook.

CoreOS in Action
Matt Bailey
Manning Publications Inc., 2017, 178 pages
ISBN 978-1-61729-374-0

In the grand migration to software containers, there is a largely
overlooked component that I think deserves more attention: the
container host. The conventional OS distribution design is based
on old assumptions about how applications work and how they
will use OS underneath. Container hosts are designed with the
containerized application in mind: a minimal Linux install on a
read-only file system.

CoreOS began as a kind of customizable single-application
host distribution. Originally, CoreOS was designed for building
an image for each service as if it were an embedded system or
unikernel. The build system is based on Gentoo, and the code
base began as a variant of ChromeOS.

CoreOS itself didn’t get much attention until the advent of
Docker and the growth of containers. Creating custom images
with embedded applications required skill and specialized
knowledge, and there was little incentive for developers to
focus on those skills. Docker changed that by creating an easy,
consistent model for creating single-purpose images, with the
advantage of portability and a distribution infrastructure, the
container registry. Once CoreOS included the Docker runtime, it
became an ideal place to create distributed container services.

www.usenix.org FA L L 20 17 VO L . 42 , N O. 3 75

BOOKS

Bailey packs a lot of information and many examples into a
slim book. In some ways this reflects what CoreOS is good at:
minimizing complexity (at least in some realms). The whole idea
of container hosts is that you don’t administer them in the same
way that you would a conventional host: you can’t install pack-
ages. Persistent storage must come from a shared resource. This
doesn’t mean that you don’t need to manage them or that your
applications will magically appear and work. For a sysadmin,
using container hosts means unlearning and relearning a lot.

The examples include short bits to create the container images,
to deploy CoreOS itself, and to configure the services that bind
the individual hosts into a cluster. I wish Bailey had spent a little
more time on the theory and internals of these services: etcd,
fleet, flannel. The code fragments and the callouts that explain
these services are clear and well presented, but a bit more on
how they work might make these samples easier to adapt to the
reader’s own purposes.

Bailey asks a lot of his readers because adopting CoreOS requires
thinking about applications in new ways. Only the first third of
the book is given to actually installing the OS and configuring
the clustering services. In the second section, Bailey shows how
to build applications that will be suited to the container environ-
ment. He does address legacy applications, but leaves it implicit
that they must be decomposed and migrated, not “forklifted” into
containers.

In the final section, Bailey talks about aspects of using CoreOS
in production. He shows a CoreOS deployment in AWS using
Cloud formation to describe the configuration and topology. He
closes with a brief discussion of what might be a taboo subject:
a container designed to allow the sysadmin access to the tools
they are used to having on a conventional host.

Container hosts are still in the shadows of the containers
themselves, but I think they should be given more light. CoreOS
in Action shines a light on the foundation. This might even be a
good path for introducing containers themselves.

Thanks to Our
USENIX Supporters

USENIX Patrons
Facebook Google Microsoft NetApp

USENIX Benefactors
Oracle VMware

USENIX Partners
Booking.com CanStockPhoto Cisco Meraki Fotosearch

Open Access Publishing Partner
PeerJ

AMERICAS
SANTA CLARA, CA, USA

MARCH 27–29, 2018

ASIA/AUSTRALIA
SINGAPORE

JUNE 6–8, 2018

EUROPE/MIDDLE EAST/AFRICA
DUSSELDORF, GERMANY

AUGUST 29–31, 2018

srecon.usenix.org

SAVE THE DATES! Announcement and Preliminary Call for Papers www.usenix.org/atc18/cfp

July 11–13, 2018 • Boston, MA, USA

2018 USENIX Annual Technical
Conference

Important Dates
• Complete paper submissions due: Tuesday, February 6, 2018

• Notification to authors: Wednesday, April 18, 2018

• Final papers due: Thursday, May 31, 2018

Conference Organizers
Program Co-Chairs
Haryadi Gunawi, University of Chicago
Benjamin Reed, Facebook

Program Committee
TBA

Overview
Authors are invited to submit original and innovative papers to the
Refereed Papers Track of the 2018 USENIX Annual Technical Confer-
ence. We seek high-quality submissions that further the knowledge
and under standing of modern computing systems with an emphasis
on implementations and experimental results. We encourage papers
that break new ground, present insightful results based on practical
experience with computer systems, or are important, independent
reproductions/refutations of the experimental results of prior work.
USENIX ATC ‘18 has a broad scope, and specific areas of interest
include (but are not limited to):

• Architectural interaction

• Big data infrastructure

• Cloud and edge computing

• Distributed and parallel systems

• Embedded systems

• Energy/power management

• File and storage systems

• Internet of Things

• Machine learning and systems interactions

• Mobile and wireless

• Networking (WAN, LAN, and datacenter) and network services

• Operating systems

• Reliability, availability, and scalability

• Security, privacy, and trust

• System and network management and troubleshooting

• Usage studies and workload characterization

• Virtualization

USENIX ATC ‘18 is especially interested in papers broadly focusing
on practical techniques for building better software systems: ideas
or approaches that provide practical solutions to significant issues
facing practitioners. This includes all aspects of system development:
techniques for developing systems software; analyzing programs and
finding bugs; making systems more efficient, secure, and reliable; and
deploying systems and auditing their security.

Reports of deployment experience and operations-oriented stud-
ies, as well as other work that studies software artifacts, introduces
new data sets of practical interest, or impacts the implementation of
software components in areas of active interest to the community are
well-suited for the conference.

The conference seeks both long-format papers consisting of 11
pages and short-format papers of 5 pages, including footnotes, appen-
dices, figures, and tables, but not including references. Short papers will
be included in the proceedings and will be presented as normal but in
sessions with slightly shorter time limits.

Best Paper Awards
Cash prizes will be awarded to the best papers at the conference. Please
see the USENIX proceedings library for Best Paper winners from previ-
ous years at https://www.usenix.org/conferences/best-papers.

Best of the Rest Track
The USENIX Annual Technical Conference is the senior USENIX forum
covering the full range of technical research in systems software. Over
the past two decades, USENIX has added a range of more specialized
conferences. ATC is proud of the content being published by its sibling
USENIX conferences and will be bringing a track of encore presentations
to ATC ‘18. This “Best of the Rest” track will allow attendees to sample
the full range of systems software research in one forum, offering both
novel ATC presentations and encore presentations from recent offerings
of ATC’s sibling conferences.

Sponsored by USENIX, the Advanced Computing Systems Association

Continues on next page ➛

Announcement and Preliminary Call for Papers www.usenix.org/atc18/cfp

July 11–13, 2018 • Boston, MA, USA

2018 USENIX Annual Technical
Conference

Important Dates
• Complete paper submissions due: Tuesday, February 6, 2018

• Notification to authors: Wednesday, April 18, 2018

• Final papers due: Thursday, May 31, 2018

Conference Organizers
Program Co-Chairs
Haryadi Gunawi, University of Chicago
Benjamin Reed, Facebook

Program Committee
TBA

Overview
Authors are invited to submit original and innovative papers to the
Refereed Papers Track of the 2018 USENIX Annual Technical Confer-
ence. We seek high-quality submissions that further the knowledge
and under standing of modern computing systems with an emphasis
on implementations and experimental results. We encourage papers
that break new ground, present insightful results based on practical
experience with computer systems, or are important, independent
reproductions/refutations of the experimental results of prior work.
USENIX ATC ‘18 has a broad scope, and specific areas of interest
include (but are not limited to):

• Architectural interaction

• Big data infrastructure

• Cloud and edge computing

• Distributed and parallel systems

• Embedded systems

• Energy/power management

• File and storage systems

• Internet of Things

• Machine learning and systems interactions

• Mobile and wireless

• Networking (WAN, LAN, and datacenter) and network services

• Operating systems

• Reliability, availability, and scalability

• Security, privacy, and trust

• System and network management and troubleshooting

• Usage studies and workload characterization

• Virtualization

USENIX ATC ‘18 is especially interested in papers broadly focusing
on practical techniques for building better software systems: ideas
or approaches that provide practical solutions to significant issues
facing practitioners. This includes all aspects of system development:
techniques for developing systems software; analyzing programs and
finding bugs; making systems more efficient, secure, and reliable; and
deploying systems and auditing their security.

Reports of deployment experience and operations-oriented stud-
ies, as well as other work that studies software artifacts, introduces
new data sets of practical interest, or impacts the implementation of
software components in areas of active interest to the community are
well-suited for the conference.

The conference seeks both long-format papers consisting of 11
pages and short-format papers of 5 pages, including footnotes, appen-
dices, figures, and tables, but not including references. Short papers will
be included in the proceedings and will be presented as normal but in
sessions with slightly shorter time limits.

Best Paper Awards
Cash prizes will be awarded to the best papers at the conference. Please
see the USENIX proceedings library for Best Paper winners from previ-
ous years at https://www.usenix.org/conferences/best-papers.

Best of the Rest Track
The USENIX Annual Technical Conference is the senior USENIX forum
covering the full range of technical research in systems software. Over
the past two decades, USENIX has added a range of more specialized
conferences. ATC is proud of the content being published by its sibling
USENIX conferences and will be bringing a track of encore presentations
to ATC ‘18. This “Best of the Rest” track will allow attendees to sample
the full range of systems software research in one forum, offering both
novel ATC presentations and encore presentations from recent offerings
of ATC’s sibling conferences.

Sponsored by USENIX, the Advanced Computing Systems Association

Continues on next page ➛

What to Submit
Authors are required to submit full papers by the paper submission
deadline. It is a hard deadline; no extensions will be given. All submissions
for USENIX ATC ’18 will be electronic, in PDF format, via the Web submis-
sion form on the Call for Papers Web site, www.usenix.org/atc18/cfp.

USENIX ATC ’18 will accept two types of papers:
Full papers: Submitted papers must be no longer than 11 single-

spaced 8.5” x 11” pages, including figures and tables, but not includ-
ing references. You may include any number of pages for references.
Papers should be formatted in 2 columns, using 10-point type on
12-point leading, in a 6.5” x 9” text block. Figures and tables must be
large enough to be legible when printed on 8.5” x 11” paper. Color
may be used, but the paper should remain readable when printed in
monochrome. The first page of the paper should include the paper
title and author name(s); reviewing is single blind. Papers longer than
11 pages including appendices, but excluding references, or violating
formatting specifications will not be reviewed. In a good paper, the
authors will have:

• Addressed a significant problem

• Devised an interesting and practical solution or provided an im-
portant, independent, and experimental reproduction/refutation
of prior solutions

• Clearly described what they have and have not implemented

• Demonstrated the benefits of their solution

• Articulated the advances beyond previous work

• Drawn appropriate conclusions

Short papers: Authors with a contribution for which a full paper is not
appropriate may submit short papers of at most 5 pages, not including
references, with the same formatting guidelines as full papers. You may
include any number of pages for references. Examples of short paper
contributions include:

• Original or unconventional ideas at a preliminary stage of
development

• The presentation of interesting results that do not require a full-
length paper, such as negative results or experimental validation

• Advocacy of a controversial position or fresh approach

For more details on the submission process and for templates to use
with LaTeX and Word, authors should consult the detailed submission
requirements at https://www.usenix.org/conference/atc18/requirements
-authors. Specific questions about submissions may be sent to
atc18chairs@usenix.org.

By default, all papers will be made available online to registered
attendees before the conference. If your accepted paper should not be
published prior to the event, please notify production@usenix.org. In
any case, the papers will be available online to everyone beginning on
the first day of the conference, July 11, 2018.

Papers accompanied by nondisclosure agreement forms will not be
considered. Accepted submissions will be treated as confidential prior to
publication on the USENIX ATC ’18 Web site; rejected submissions will be
permanently treated as confidential.

Simultaneous submission of the same work to multiple venues, sub-
mission of previously published work, or plagiarism constitutes dishon-
esty or fraud. USENIX, like other scientific and technical con ferences and
journals, prohibits these practices and may take action against authors
who have committed them. See the USENIX Conference Submissions
Policy at www.usenix.org/conferences/submissions-policy for details.

Note that the above does not preclude the submission of a regular
full paper that overlaps with a previous short paper or workshop paper.
However, any submission that derives from an earlier paper must pro-
vide a significant new contribution (for example, by providing a more
complete evaluation), and must explicitly mention the contributions
of the submission over the earlier paper. If you have questions, contact
your program co-chairs, atc18chairs@usenix.org, or the USENIX office,
submissionspolicy@usenix.org.

Authors will be notified of paper acceptance or rejection by April 21,
2018. Acceptance will typically be conditional, subject to shepherding
by a program committee member.

Poster Session
The poster session is an excellent forum to discuss ideas and get useful
feedback from the community. Posters and demos for the poster ses-
sion will be selected from all the full paper and short paper submissions
by the poster session chair. If you do not want your submissions to be
considered for the poster session, please specify on the submission
Web site.

Program and Registration Information
Complete program and registration information will be available in
April 2018 on the conference Web site.

Rev. 7/6/17

What to Submit
Authors are required to submit full papers by the paper submission
deadline. It is a hard deadline; no extensions will be given. All submissions
for USENIX ATC ’18 will be electronic, in PDF format, via the Web submis-
sion form on the Call for Papers Web site, www.usenix.org/atc18/cfp.

USENIX ATC ’18 will accept two types of papers:
Full papers: Submitted papers must be no longer than 11 single-

spaced 8.5” x 11” pages, including figures and tables, but not includ-
ing references. You may include any number of pages for references.
Papers should be formatted in 2 columns, using 10-point type on
12-point leading, in a 6.5” x 9” text block. Figures and tables must be
large enough to be legible when printed on 8.5” x 11” paper. Color
may be used, but the paper should remain readable when printed in
monochrome. The first page of the paper should include the paper
title and author name(s); reviewing is single blind. Papers longer than
11 pages including appendices, but excluding references, or violating
formatting specifications will not be reviewed. In a good paper, the
authors will have:

• Addressed a significant problem

• Devised an interesting and practical solution or provided an im-
portant, independent, and experimental reproduction/refutation
of prior solutions

• Clearly described what they have and have not implemented

• Demonstrated the benefits of their solution

• Articulated the advances beyond previous work

• Drawn appropriate conclusions

Short papers: Authors with a contribution for which a full paper is not
appropriate may submit short papers of at most 5 pages, not including
references, with the same formatting guidelines as full papers. You may
include any number of pages for references. Examples of short paper
contributions include:

• Original or unconventional ideas at a preliminary stage of
development

• The presentation of interesting results that do not require a full-
length paper, such as negative results or experimental validation

• Advocacy of a controversial position or fresh approach

For more details on the submission process and for templates to use
with LaTeX and Word, authors should consult the detailed submission
requirements at https://www.usenix.org/conference/atc18/requirements
-authors. Specific questions about submissions may be sent to
atc18chairs@usenix.org.

By default, all papers will be made available online to registered
attendees before the conference. If your accepted paper should not be
published prior to the event, please notify production@usenix.org. In
any case, the papers will be available online to everyone beginning on
the first day of the conference, July 11, 2018.

Papers accompanied by nondisclosure agreement forms will not be
considered. Accepted submissions will be treated as confidential prior to
publication on the USENIX ATC ’18 Web site; rejected submissions will be
permanently treated as confidential.

Simultaneous submission of the same work to multiple venues, sub-
mission of previously published work, or plagiarism constitutes dishon-
esty or fraud. USENIX, like other scientific and technical con ferences and
journals, prohibits these practices and may take action against authors
who have committed them. See the USENIX Conference Submissions
Policy at www.usenix.org/conferences/submissions-policy for details.

Note that the above does not preclude the submission of a regular
full paper that overlaps with a previous short paper or workshop paper.
However, any submission that derives from an earlier paper must pro-
vide a significant new contribution (for example, by providing a more
complete evaluation), and must explicitly mention the contributions
of the submission over the earlier paper. If you have questions, contact
your program co-chairs, atc18chairs@usenix.org, or the USENIX office,
submissionspolicy@usenix.org.

Authors will be notified of paper acceptance or rejection by April 21,
2018. Acceptance will typically be conditional, subject to shepherding
by a program committee member.

Poster Session
The poster session is an excellent forum to discuss ideas and get useful
feedback from the community. Posters and demos for the poster ses-
sion will be selected from all the full paper and short paper submissions
by the poster session chair. If you do not want your submissions to be
considered for the poster session, please specify on the submission
Web site.

Program and Registration Information
Complete program and registration information will be available in
April 2018 on the conference Web site.

Rev. 7/6/17

FAST ’18 brings together storage-system researchers and practitioners to explore new directions in the

design, implementation, evaluation, and deployment of storage systems. The program committee will

 interpret “storage systems” broadly; everything from low-level storage devices to information manage-

ment is of interest. The conference will consist of technical presentations, including refereed papers,

Work-in-Progress (WiP) reports, poster sessions, and tutorials.

The full program and registration will be available in December 2017.

www.usenix.org/fast18

Save the Date!

February 12–15, 2018 • Oakland, CA, USA

16th USENIX Conference on
File and Storage Technologies18

NSDI ’18 focuses on the design principles, implementation, and practical evaluation of networked and

distributed systems. Our goal is to bring together researchers from across the networking and systems

community to foster a broad approach to addressing overlapping research challenges.

The full program and registration will be available in January 2018.

www.usenix.org/nsdi18

April 9–11, 2018 • Renton, WA, USA

15th USENIX Symposium on Networked Systems
Design and Implementation18

Save the Date!

18 13th USENIX Symposium on Operating Systems
Design and Implementation

October 8–10, 2018 • Carlsbad, CA, USA
OSDI brings together professionals from academic and industrial backgrounds in what has become a

premier forum for discussing the design, implementation, and implications of systems software. The

OSDI Symposium emphasizes innovative research as well as quantifi ed or insightful experiences in

systems design and implementation.

Program Co-Chairs:
Andrea Arpaci-Dusseau, University of Wisconsin—Madison

 and Geoff Voelker, University of California, San Diego

The Call for Papers will be available soon.

Save the Date!

www.usenix.org/osdi18

August 15–17, 2018 • Baltimore, MD, USA

The USENIX Security Symposium brings together researchers, practitioners, system administrators, system

programmers, and others interested in the latest advances in the security and privacy of computer

systems and networks.

Program Co-Chairs
William Enck, North Carolina State University,

and Adrienne Porter Felt, Google

Submissions due February 8, 2018

The Call for Papers will be available soon.

Save the Date!

www.usenix.org/sec18

Scaling the Future

Oct 29 – Nov 3, 2017
San Francisco

Register by October 9 and save!
usenix.org/lisa17

LISA is the premier IT operations conference where systems engineers,
operations professionals, and academic researchers share real-world
knowledge about designing, building, and maintaining the critical systems
of our interconnected world.

PLENARY SPEAKERS:

• Jamesha Fisher, GitHub
• Jess Frazelle, Google
• Jon Kuroda, University of California, Berkeley

The complete program is now available.

Sponsored by the USENIX Association

USENIX Association
2560 Ninth Street, Suite 215
Berkeley, CA 94710

POSTMASTER
Send Address Changes to ;login:
2560 Ninth Street, Suite 215
Berkeley, CA 94710

PERIODICALS POSTAGE
PAID

AT BERKELEY, CALIFORNIA
AND ADDITIONAL OFFICES

	Cover
	Contents
	Musings
	Theory of Mind
	Rik Farrow

	VFP
	A Virtual Switch Platform for Host SDN in the Public Cloud
	Daniel Firestone

	Linux Containers for Fun and Profit in HPC
	Reid Priedhorsky and Tim Randles

	Interview with James Bottomley
	Rik Farrow

	Knockoff
	Cheap Versions in the Cloud
	Xianzheng Dou, Peter M. Chen, and Jason Flinn

	Passive Realtime Datacenter Fault Detection and Localization
	Arjun Roy, Hongyi Zeng, Jasmeet Bagga, and Alex C. Snoeren

	Resourceful
	Monitoring under the Microscope
	Lucian Carata, Oliver R. A. Chick, and Ripduman Sohan

	BeyondCorp 5
	Safe Parsers in Rust
	Changing the World Step by Step
	Geoffroy Couprie and Pierre Chifflier

	Quick Testing
	David Beazley

	Practical Perl Tools
	Come Fly With Me
	David Blank-Edelman

	iVoyeur
	Stacks and Piles
	Dave Josephsen

	Golang
	Creating and Using Certificates with TLS
	Chris McEniry

	Flipping Out in Computer Science
	Margo Seltzer

	For Good Measure
	When Opinion Is Data
	Dan Geer

	/dev/random
	Offensive Computing
	Robert G. Ferrell

	Book Reviews
	Mark Lamourine

