

2 ; L O G I N : V O L . 2 9 , N O . 6

letters to
the editor

D E A R E D ITO R ,

Rik Farrow writes in the August
;login: that “the downside of
[offshoring] is that real com-
munication between software
developers and program man-
agers will get even worse.” This
presumes a model where devel-
opers only communicate with
managers, not directly with
users. My advice for how to be-
come offshoring-proof is to edu-
cate yourself in contextual de-
sign (or any of the other meth-
odologies that likewise pre-
sumes extensive contact be-
tween developers and users),
and to complement your com-
puting skills with a liberal-arts
education, which will develop
your communication skills and
your ability to understand non-
computing perspectives.

M A X H A I L P E R I N

max@gustavus.edu

http://www.gustavus.edu/+max/

Wireless Security:
A Discussion

Note from Rob Kolstad: This article
summarizes an email discussion
between Marcus Ranum and Bill
Cheswick after Marcus had an
“interesting experience” at the
USENIX Security Conference.
Thanks to both of them for allow-
ing us to share it publicly in order
to foster discussion.

M A RC U S R A N U M :

I had an interesting experience at
the USENIX Security Conference,
and I’d like to share it here for dis-
cussion. Like many conference
attendees, I took advantage of the
wireless network so I could check
my email, update my Web site, etc.
At virtually every USENIX confer-
ence, someone sets up dsniff and
collects passwords as they cross the
wireless, and this latest conference
was no exception. For the past few
years I’ve basically chosen to ignore
the snoopers because, frankly, I
hoped they’d grow up and go away.
This year I finally got sick and tired
of it, and confronted one of the
snoopers who had emailed me my
own password.

What bothered me most about this
experience was that the folks who
do the snooping are security practi-
tioners. When I raised the issue,
the immediate response was sur-
prising. Basically, I got the exact
same set of excuses that crackers
have been using for years: “I wasn’t
abusing the information,” “it was
for my own research/curiosity,” etc.
I’m afraid I lost my temper quite
badly in the face of what seemed to
me to be a lack of clarity on the
part of the security community
regarding basic issues such as
whether or not we’re justified in
doing exactly the same things as
the “bad guys” as long as we’re the
“good guys.” I think the whole sit-
uation was further exacerbated by
the fact that the whole issue was
not in my opinion taken adequately

seriously by the USENIX Board
members at the conference.

So I think the whole incident
becomes a microcosm of today’s
security experience. It motivates
me to ask questions like:

What is the difference between the
good guys and the bad guys if their
actions are largely the same?

Why do we place the onus of self-
defense on the victim, instead of
demanding ethical behavior from
the perpetrator?

I felt that my privacy was being vio-
lated, and, more to the point, I was
going to be forced to waste time
installing security measures
because of someone’s “harmless
curiosity.” Indeed, I find it ironic (if
not outright contradictory) that
USENIX, which is normally a
haven for privacy advocates, would
tolerate this behavior over a
lengthy period of time.

B I L L C H E SW I C K :

I just returned from the San Diego
USENIX Security Conference, reli-
ably one of the top security confer-
ences of the year; this year’s was no
exception. The keynote in particu-
lar was one of the best security
talks I have heard in years (and I
hear a lot of security talks); there
were several excellent papers; and
most of the hall track meetings
alone were worth the trip.

I had several things to accomplish
at this conference, including prepa-
ration for an invited talk I was
asked to give at the last moment.
These activities were curtailed
when I was accused of being legally
and ethically on the wrong side
concerning the use of the dsniff
program.

The incident precipitated swirls of
hallway conversations about the
legalities and ethics of using dsniff.
This is not your average crowd of I-
am-not-a-lawyer-buts as they
debated the ethics and legalities of
password sniffing. Not only has
this crowd assisted in numerous

law enforcement cases, many have
advised lawyers, courts, and the US
Congress on such matters.

Much of what many of us have
done is “ahead of the law” (to
quote one lawyer), and since
Leviticus (and Numbers, adds Dan
Geer) and the New Testament
appear to be mute on the topic, we
have traditionally had to grope our
own way towards personal and
societal rules for using the Internet.
Concerning the legality of using
dsniff, the IANALBs appeared to
cover the spectrum from “illegal’’ to
“not covered.’’ Several laws appear
to be involved, and it looks like a
courtroom toss-up to me.

I have given a lot of thought to the
ethics of various Internet experi-
ments and practices I have adopted
over the years. I believe that this is
an especially important thing to do,
given this novel medium and the
nascent state of case law. I have
used sniffed passwords to make an
important point in a number of my
talks in the past. I am still satisfied
with the ethics of doing so, despite
the lecture I received, but the point
is not important enough to fight
for. I have agreed not to display
sniffed passwords publicly, for any
reason, in the future, and did not
do so at the invited talk.

I think USENIX’s response was
measured and proper. They asked
us nicely not to sniff the network,
and I, for one, complied. That is
about all they can do without clos-
ing the network or implementing
extremely invasive procedures. I
expect that future conferences will
include similar requests.

Marcus raises several specific
issues. Some are matters of basic
law; the rest deal with our commu-
nity’s position on the forefront of a
new technology.

Marcus asks, “Are individuals justi-
fied in doing exactly the same
things as the ‘bad guys’ as long as
we’re the ‘good guys’?” The prob-
lem here is in the question. We are
not doing “the same things as the

“bad guys.” The bad guys break
into systems, compromise their
integrity, modify their software, etc.

Marcus asks, “What is the differ-
ence between the good guys and
the bad guys if their actions are
largely the same?” I think “largely
the same” is neither ethically nor
morally “the same.” The crackers
who justify their actions in court
with “I wasn’t abusing the informa-
tion” and “it was for my own
research/curiosity” aren’t in court
because they ran dsniff.

Even though this was an upsetting
experience for me, the hallway
track continues to provide deep,
thoughtful discussions on the cut-
ting-edge issues of our industry
and society.

M A RC U S R A N U M :

Bill observes that many security
practitioners are “ahead of the law,”
but I feel that professional conduct,
and what is tolerated by an organi-
zation like USENIX, should be
about “right and wrong.” Hiding
behind legalisms is not leadership.
USENIX is an organization full of
privacy advocates, an organization
that cares enough about its mem-
bers’ privacy that it protects
attendee email addresses and the
like. By consistently turning a blind
eye to people sniffing the confer-
ence network, USENIX has implic-
itly encouraged the kind of “any-
thing goes” attitude that is more
appropriate at DEFCON than at a
respected conference concerned
with its attendees’ privacy. As an
organization of thought leaders in
the computing arena, I think
USENIX should pay attention to
the leadership shown by confer-
ences like SANS, which will eject
attendees for sniffing the confer-
ence WAN or any other hacking-
type activity. If we are, indeed,
“ahead of the law,” then it’s more
important that our behavior be, lit-
erally, exemplary.

I’m a fairly open person, and I’ve
always been interested in helping

; LO G I N : D E C E M B E R 2 0 0 4 L E T TE R S TO TH E E D ITO R 3

other practitioners with their
research. If Bill had wanted to
know how often I change my pass-
word, he could have just asked.
Instead, he stole what would have
been gladly given, and was amused
by the fact that he was able to. It’s
almost a USENIX tradition that
some wiseacre posts passwords on
the bulletin board with a sign say-
ing “CHANGE THESE” at every
conference. This whole issue would
never have surfaced if Bill had
asked for, and gotten, permission
from USENIX to sniff the network
before doing so. That opens the
broader question of whether such
permission would have been
granted. I doubt it—but it would
have been easy to find out. I sus-
pect we’re dealing with a case of
“better to ask forgiveness than per-
mission.” I’ve already forgiven Bill,

and I hope he’s forgiven me for
screaming at him in public; I think
it’s good that this issue has been
aired before USENIX has to deal
with an incident involving less for-
giving people.

B I L L C H E SW I C K :

As for asking permission, that’s
quite true, and I have done so at
other conferences, with the explicit
purpose of reporting the penetra-
tion of secure protocols into the
common packet stream. Of course,
I never cared about the particular
passwords that were sniffable, Mar-
cus’s or any others, and I only for-
warded his results to him as a
friendly nudge. Some previous
nudges had resulted in the discov-
ery of a non-functioning encrypted
tunnel, and I have been thanked for
my efforts on those occasions.

Would permission have been
granted? I never thought that
deeply about this in this particular
venue: I skipped the step in my
rush to deal with other pressing
things at the conference. I should
not have.

I have also let bygones be bygones.
I’m glad we got this out in the
open.

U S E N I X R E S P O N D S :

This has been an instructive experi-
ence for all of us. Future confer-
ence directories will indeed attempt
to give a more explicit description
both of acceptable behavior and of
the risks inherent in use of the
wireless network. We thank both
Marcus and Bill for their mature
and measured discussion of these
issues.

4 ; L O G I N : V O L . 2 9 , N O . 6

R I K F A R R O W

editor’s thoughts
(a.k.a. musings)

Rik Farrow provides UNIX and Internet security
consulting and training. He is the author of UNIX
System Security and System Administrator’s Guide
to System V.

rik@spirit.com

W E L C O M E T O T H E S I X T H S E C U R I T Y
edition of ;login:. Like past editions, this one
contains articles about security topics that I
consider to be among the most important
current issues. I want to thank the authors
who wrote for this edition. It is the authors
who provide the content. All I do is find
them and cajole them into writing.

This issue also includes the summaries of the 13th
USENIX Security Symposium.

The Security Symposium started out with what some
people considered a depressing keynote. Earl Boebert,
of Sandia National Laboratories, and one of the
authors of Multics, provided a rather pessimistic look
at operating system security. I tend to agree with a lot
of Boebert’s assertions, and you can read them for
yourself in the summaries.

You can also read Jonathan Shapiro’s response to the
keynote. Shapiro points out that there were some very
good reasons why Multics did not succeed in the mar-
ketplace, outside of the “crap in a hurry” that Boebert
mentioned in his keynote speech. Again, you can read
Shapiro’s thoughts on this topic for yourself.

I have often written about the failures of operating sys-
tems in my Musings columns. Largely based on the
goals of Multics, operating systems were, at least in
theory, supposed to protect a system against poorly
written software—that is, logic or programming faults
in software should never compromise the security of a
system. The operating system should encapsulate the
faulty process and prevent software flaws from chang-
ing the overall state of the system. As we all know, this
is not how operating systems work.

Instead, what we see are systems that are exploited via
a process that displays email for a user,or ones that
permit a non-privileged user to become a privileged
one, and totally compromise the security of a system.

I believe there really are two questions to ask about the
future security of our operating systems. First, is it
possible to build an operating system that is really
secure and can be used by anyone? Second, do we have
the will to end the current fiasco, and actually begin
using secure operating systems?

Some people might argue that today’s operating sys-
tems are secure. The Linux Security Module in the 2.6
series of kernels does provide hooks for adding much
more comprehensive access controls than exist with-
out the LSM. LSM does provide support for more con-
trol, but at the cost of complexity. These same hooks
appear in FreeBSD 5, and come with the same level of

; LO G I N : D E C E M B E R 2 0 0 4 S E C U R IT Y: E D ITO R ’ S TH O U G HTS 5

complexity. OpenBSD takes a different approach, based
on profiling processes and systrace.

All BSD versions support the jail() system call for
isolating processes in a changed root environment that
includes process isolation and some control over the
network environment as well. But a proper jail setup
also means proper firewall configuration. The jail only
becomes reliable at the network level in cooperation
with configuration that is external to the jail. The jail
also does not prevent against CPU DoS attacks, be-
cause it does nothing about process scheduling (read
Kirk McKusick’s article in the August 2004 issue of
;login: for more about BSD jails). Memory can also be
depleted from within a jail.

Sun has borrowed from the FreeBSD jail concept to
create zones in Solaris 10. Each zone shares the same
operating system, similar to the FreeBSD jail. But Sun’s
implementation goes a bit further, by allowing separate
resource allocation for each zone. Using resource man-
agement, CPU scheduling and memory usage can be
limited for each non-global zone (every zone except
the default, first zone is non-global and unable to see
other zones). Sun has apparently solved the resource
depletion problem found in the jail approach. I’ve
heard that AIX and HP-UX use logical partitions to do
something similar.

All of these approaches represent attempts to retrofit
security on existing operating systems so that they can
transparently support existing software. All the sysad-
min has to do is leap through a few hoops, carefully
and without making any egregious errors, and things
will work. Hopefully.

Microsoft’s current security model is so broken it
deserves mention. There are way too many privileged
processes running. And putting IE and its related
HTML-rendering engine (used when reading email) on
every system means that compromise is just an email
message away. If ever an application screamed out to
be put in a really effective jail, Internet Explorer is that
application. Take IE, add default Administrator privi-
leges for the first user account on every XP system, and
IE becomes a root compromise, even when patched
during Microsoft’s (mostly) monthly patch
announcement.

Now I invite you to follow along as I imagine a differ-
ent world, a world where the operating system actually
did prevent software, and even bad configuration, from
creating root compromises. Let’s start out with the type
of system that Bill Cheswick alluded to in his invited
talk, “My Dad’s Computer.” Cheswick’s dad’s computer
had become like a lot of other Windows systems—so
loaded with viruses, adware, spyware, and plain old
cruft that it was barely usable. I’ve heard of other peo-
ple buying a new Windows system and not connecting
it to the Internet just so they could use a wordproces-

sor or spreadsheet without being interrupted by
obscene popups every minute or so.

Most people need a simple desktop system that can do
three things securely: play games, do Internet stuff,
and handle simple office tasks. I mention playing
games first because games have been driving the PC
industries’ quest for ever greater graphics performance,
and because most of the people I see using laptops on
airplanes are playing Solitaire. Games must be impor-
tant. The fantasy OS must allow users to play games
without affecting the overall state of the system (other
than the DoS and heat discharge caused by pegging the
CPU and graphics systems while displaying millions of
3-D polygons per second as sub-woofers shake the
room).

The Internet stuff is much more of a problem. This is
in which the operating system must maintain a lock-
box where Web browsers, mail readers, and various IM
tools can wreak all the havoc they want to without
impacting the rest of the system. Of course, if users can
continue to install software and plugins, even the lock-
box will become so infested as to become unusable. So
the user will get a button labeled “Clean up Internet”
which cleans his own Internet lockbox, restoring it to a
usable condition. Remember that I am waving a magic
wand here, so I don’t have to concern myself about
cleaning up the cookies file, and preserving the state
that the user actually cares about.

Some vendors like to use Web browsers as the mecha-
nism for installing patches. If one can trust the operat-
ing system, signed patches can still be installed—by
some service running outside the lockbox, after verify-
ing signatures on the patches. Ideally, no patches
would be required. But reality sometimes intrudes into
even the wildest fantasies.

The final lockbox contains the user, her files, desktop,
and office applications. These applications are sadly
lacking in the ability to execute macros that might be
included in documents or spreadsheets. The Internet
lockbox can leave email and files in a directory where
the user can access them. But no file stored anywhere
in the user’s file space can ever be executed.

If desktop systems were actually designed to function
as business machines, things would be a lot simpler in
this fantasy. The desktops could be diskless worksta-
tions where the user could never install any software,
including viruses, spyware, adware, or games (sorry
about that). Imagine centralized backup, identity man-
agement, software updates, and no more touching
desktop systems. Sun’s SunRay comes close to this.

Servers are headless. No fancy GUI software, nothing
but command-line interfaces run using SSH. For the
weak in sysadmin skills, fancy GUIs can be installed
on desktop systems to issue the command lines used to
configure and maintain the servers. No users except

6 ; L O G I N : V O L . 2 9 , N O . 6

; LO G I N : D E C E M B E R 2 0 0 4 S E C U R IT Y: E D ITO R ’ S TH O U G HTS 7

the administrator ever log in to the server. There are no
accounts for them. The server does not include any
software other than what is required for the operation
and maintenance of installed services.

The server applications run in their own lockboxes,
again preventing them from inadvertently damaging
the systems they are hosted upon. The lockbox
includes resource management controlling how the
service behaves. For example, Web and SQL servers
only accept connections; they never make outgoing
connections. DNS servers send and receive packets on
port 53. None of these services ever execs a shell. Ser-
vices get allotted a reasonable fraction of total CPU,
memory, and disk resources. While similar to a jail,
this lockbox also includes resource allocation and lim-
its on network activities. To make it easy to jump
through configuration hoops, services come with con-
figuration templates so that allocating resources is
dead simple.

The fantasy OS would have to be tiny, so that it can
be verified. We have seen more than enough kernel

exploits in the last several years to convince people (at
least me) that small is beautiful.

Frankly, the fantasy OS would permit us to get a lot
more work done, as we would spend a lot less time
dealing with broken systems.

I know I have left out a lot of necessary features, such
as secure authentication that supports login and other
services. You can read other people’s ideas about single
sign-on (Scher’s article) and managing identification
(Lear’s article) in this issue. And just to balance things
out, you can read about reverse engineering of code
(Wysopal), slicker Windows rootkits (Butler and
Sparks), defending against buffer overflows (Alexan-
der), port knocking that unlocks SSH (Rash), and
improvements to honeynets (Forte et al.). Jennifer
Granick provides words of advice about the legality
(or, rather, the lack thereof) of spyware. And Goel and
Bush consider biological models for computer immune
systems, because security will never be perfect.

Even in an imaginary world.

J A M E S B U T L E R A N D S H E R R I S P A R K S

spyware and
rootkits
T H E F U T U R E C O N V E R G E N C E

Jamie Butler is the director of engineering at HBGary,
Inc. and is co-author of the upcoming book Rootkits:
The Day After. He is also a frequent speaker at com-
puter security conferences, presenting his research on
kernel reverse engineering, host-based intrusion pre-
vention, and rootkits.

james.butler@hbgary.com

Sherri Sparks is a Ph.D. student of Computer Science
at the University of Central Florida. Her current
research interests are in software security, reverse
engineering, and intrusion detection.

ssparks@longwood.cs.ucf.edu

A L L O F A S U D D E N Y O U R P E N T I U M 4 ,
3.2GHz desktop with 3GB of memory takes
half an hour to boot into Windows. What’s
more, you can’t seem to open Internet
Explorer without being escorted to a home
page you’d rather die than let your mother
see. Of course, that is to say nothing of the
unsolicited pop-up advertisements bom-
barding you at every click. And if all of that
wasn’t indication enough, you know there’s
a problem when your machine starts com-
plaining about being “out of memory”…and
the only program running is Notepad!
Welcome, dear reader, to the modern world-
wide scourge: spyware.

Understanding the Threat

W H AT I S S P Y WA R E ?

The term “spyware” encompasses a large class of
software capable of covertly monitoring a system
and transmitting collected data to third parties.
Such data may range from visited URLs to pass-
words and other confidential information. As of the
2003 publication of Emerging Internet Threats
Survey,1 one-third of companies have been affected
by spyware-infected systems, and that number is
growing. The implications are alarming on both
commercial and private fronts. Of primary concern
are the violations to personal privacy and the pro-
tection of intellectual property. Secondary issues
relate to the degradation of system performance,
network bandwidth, and utilization of IT personnel
as they are forced to deal with application conflicts
and system instability.

I N F E C TI O N V E C TO R S

A spyware infection is most often unintentional;
however, there are cases where the software is pur-
posely installed on someone’s system to gather per-
sonal information or to monitor their Internet
browsing habits. Commercial key loggers and
parental control software both fall into this category.
Unintentional infection may result from the
exploitation of unpatched browser vulnerabilities
and social engineering. It is not uncommon for
unsuspecting users to be tricked into downloading
and installing software they believe to be something
else. Spyware may also piggy-back on the installa-

8 ; L O G I N : V O L . 2 9 , N O . 6

; LO G I N : D E C E M B E R 2 0 0 4 S E C U R IT Y: S PY WA R E A N D RO OTK ITS 9

tion of another seemingly legitimate application. For instance, peer-to-peer
networking software such as Kazaa and Bear Share, most of which contains
embedded spyware, is proliferating. It goes without saying that the popular-
ity of these programs ensures a continuing supply of infected hosts.

S P Y WA R E C H A R AC TE R I STI C S

We can divide spyware characteristics into primary and secondary traits,
where primary traits relate to actively spying on the target system and sec-
ondary traits relate to concealing the spyware presence from the system’s
users. Primary traits include taking screenshots or logging keystrokes, run-
ning applications, and capturing URLs of visited Web pages. Sending logged
information to a third party could also be considered a primary characteris-
tic. In contrast, functionality for hiding registry entries, files, and running
processes would be considered secondary traits. Behaviors that make the
application difficult to remove also fall into this category. These types of
behaviors include loading during the boot process, disabling detection pro-
grams, and reinstallation after removal.

Current-generation spyware is defined by a vast number of primary charac-
teristics, but except for specific “hacker tools” (e.g., trojans), secondary
characteristics have been either nonexistent or relatively primitive up to this
point. In other words, most of this spyware is very efficient at spying but not
very efficient at hiding. Consequently, it has, for the most part, been
detectable with simple file- and registry-scanning techniques. Nonetheless,
information security is a co-evolutionary process, and spyware develop-
ment/detection is no exception. A few leading-edge spyware developers
such as CoolWebSearch2 are adapting and forcing us to an essential junc-
ture. We note that the primary traits of spyware fundamentally describe a
software trojan, while the secondary traits essentially define a rootkit. And
we ask ourselves, What is the next generation in spyware? . . . Trojan meets
Rootkit?

The Next Generation of Spyware: Trojan Meets Rootkit?

The functional requirements of a successful spyware application and a suc-
cessful trojan or rootkit are remarkably similar. First, spyware programs,
like rootkits and trojans, need to intercept user data such as keystrokes and
network communications. Secondly, they must hide their presence from the
user and/or make uninstallation difficult. Currently lacking sophistication
in this second area, it is reasonable to expect that primitive spyware applica-
tions will continue to evolve their ability to conceal themselves. Rootkits
have already mastered this ability. By understanding the application of
advanced rootkit techniques to spyware, we may be better prepared to deal
with the threat of an impending spyware epidemic.

Regardless of the goal, whether it be hiding presence or intercepting com-
munication, spyware and rootkits must both wedge themselves between the
legitimate calling program, such as Internet Explorer, and the end commu-
nication point, either another node on the network or the underlying oper-
ating system. This involves altering normal program control flow. In order to
accomplish this, rootkits use two primary technologies: hooks and layers.
Once these technologies are in place, the spyware or rootkit can capture
keystrokes as someone logs into her/his online bank account, or they can
hide the presence of a particular process or network port from appearing on
the local machine. In the remainder of this section we give an overview of
rootkit techniques that are applicable to current and future spyware

10 ; L O G I N : V O L . 2 9 , N O . 6

developments.

U S E R M O D E TE C H N I Q U E S (I M P O RT H O O K I N G A N D B ROWS E R H E L P E R O BJ E C TS)

Without a doubt, techniques such as import address table (IAT) hooking
and browser helper objects (BHOs) are the most common methods of pro-
gram subversion used by rootkits and trojans. Unfortunately, the Windows
architecture makes these types of attacks accessible to even the lowest, most
humble user mode applications. This is due to the fact that user programs
and upper-level operating system components coexist at the same privilege
level. Ultimately, spyware and rootkits have complete control over an appli-
cation because they run with the same rights as the application they are
hijacking. Some forms of spyware, such as key loggers and browser hijack-
ers, already employ these techniques. Nevertheless, we expect to see an
increase in their utilization as primitive spyware applications take on more
rootkit-like characteristics to evade detection and removal.

In user mode, an attacker generally targets the APIs a program uses. This
makes sense when you consider that user applications must rely upon the
operating system to provide valuable functions such as opening files and
writing to the registry. For example, if a spyware program is able to intercept
a user mode scanner application’s effort to open its files, it can return errors
indicating those files don’t exist. Subsequently, the scanner will falsely
report that the system is uninfected. Windows APIs are implemented as
dynamically linked libraries (DLLs) and are the basis of IAT hooking
attacks.

The design of DLLs facilitates the attack. When an application uses an API
function exported from a DLL such as InternetConnect in Wininet.dll, the
compiler creates an IMAGE_IMPORT_DESCRIPTOR data structure in the
application’s binary file. The IMAGE_IMPORT_DESCRIPTOR contains the
name of the DLL from which the function is exported and a pointer to a
table containing all of the functions exported by the DLL that are used by
the application. Each member of this table is an IMAGE_THUNK_DATA struc-
ture which is filled in at load time, by the Windows loader, with the memory
address of the desired function. We can summarize the flow of execution as
follows. Suppose an application makes a call to InternetConnect. First, the
program code calls into the Import Address Table (IAT). From there, the IAT
contains a jump that is taken to the destination address of the real function.
It is easy to see that the IAT is a likely target for a rootkit or spyware. By
changing a single function pointer, the attacker can re-route program execu-
tion through his/her own code, thereby capturing data, altering data, or even
hiding the attacker’s presence (see Figure 1). A more comprehensive expla-
nation of the Windows portable executable (PE) format and IAT structure
can be found in Matt Pietrek’s “Inside Windows.”3

Figure 1. Normal execution path vs. hooked execution path for an IAT hook

; LO G I N : D E C E M B E R 2 0 0 4 S E C U R IT Y: S PY WA R E A N D RO OTK ITS 11

Browser Helper Objects (BHOs) demonstrate another DLL-based userland
attack technique. While BHOs are specifically designed to customize and
extend Internet Explorer, many browsers provide similar features that can
be maliciously exploited by spyware applications. A BHO is suspect if a user
suddenly notices that his home page has been redirected, “new” toolbars
have suddenly appeared in his browser, or his list of “favorites” has been
modified. The risk of BHOs, however, extends beyond the mere inconven-
ience of having one’s homepage hijacked. By definition, BHOs are in-process
Component Object Model (COM) DLLs which Internet Explorer loads on
startup. The result is that a BHO has complete access to Explorer’s process
address space. In practical terms, this means a BHO can intercept all of the
events occurring in the user’s browser. For example, the BEFORENAVIGATE2
event is triggered before Internet Explorer navigates to a Web page. This
means that a BHO has access to the URL before the page is even down-
loaded. More alarming is the fact that BHOs are not limited to acting on
browser events. Really, anything is possible within the constraints of the
permissions of the user who launched Internet Explorer. This includes cre-
ating or deleting files, executing programs, reading email, and recording and
sending private Internet banking information. What makes BHOs particu-
larly troubling is that it is not obvious that they are running. Since they run
as a DLL within Internet Explorer, it is almost impossible to distinguish a
malicious BHO from a completely benign one.

K E R N E L M O D E TE C H N I Q U E S (C A L L TA B L E H O O K I N G A N D F I LTE R D R I V E R S)

In our discussion of user mode we noted that user applications coexist with
some portions of the operating system. We now extend that statement to
kernel mode. At this highest of privilege levels, drivers coexist with the
Windows kernel itself. This means that a malicious driver has the power to
usurp complete control of the operating system environment. Indeed, mod-
ern rootkits have reached an alarming degree of sophistication in their
employment of kernel mode hooking techniques. Fortunately, writing a ker-
nel driver is something of a “black art,” so that, with the exception of a very
few advanced key loggers, most spyware developers haven’t caught up to the
rootkit developers yet. Nevertheless, as spyware continues to evolve in com-
plexity and stealth, these techniques may become a very real threat to infor-
mation security. In the following discussion we cover three of the most com-
mon kernel hooking techniques: system call table hooking, filter drivers,
and IRP table hooking.

The system call table (SCT) is one of the simplest, most effective places to
hook in the kernel. It provides the gateway into the kernel through which
all user mode API calls must pass. In most operating systems the SCT is
implemented as a table of pointers to the functions the kernel exports to
user mode applications. The Windows system call mechanism is also based
on this concept. Calls to the Kernel32.dll and Ntdll.dll API functions pass
through the kernel function called KiSystemService, which does some sanity
checking on the function parameters and then calls the referenced SCT
function. By modifying the function pointer in the table to point to attack
code, an attacker has total control over the operation of the function (see
Figure 2). Spyware and rootkits can use this trick to filter information they
do not want the user or system administrator to see. For example, by hook-
ing NtQuerySystemInformation in the SCT and filtering its response, the
attacker can hide any file or directory in Windows. Although the idea of
modifying a table of function pointers is reminiscent of userland IAT hook-
ing, kernel SCT hooking is a much more powerful technique. Where IAT

Figure 2. Normal execution path vs. hooked execution path for an SCT hook

Figure 3. Windows has a layered driver architecture

hooking is local to the application process being hooked, an SCT hook will
globally intercept functions across all processes, including the operating
system itself.

In Windows, the drivers for a system’s hardware devices are layered into a
hierarchal “device stack.” Furthermore, a given hardware device may have
one or more drivers associated with it, which we can visualize as a vertical
stack of layered components (see Figure 3). These drivers communicate
with each other and the operating system by means of I/O request packets
(IRPs). Filter drivers and IRP hooking techniques exploit the layered nature
of Windows’ driver architecture. Unlike normal drivers, filter drivers are
transparently inserted on top of or in between existing drivers in the stack,
using the kernel API, IoAttachDevice. Although they are sometimes legiti-
mately used to add functionality to an existing lower-level driver, an
attacker will typically use them to either modify or intercept data. Key log-
gers and network sniffers typically use them to capture user passwords and
other sensitive information.

By design, layered filter drivers require a lot of code to implement. Further-
more, they may be more easily detected than a driver that does direct IRP
hooking. Instead of installing a filter, an attacker can directly hook the func-
tions exported by a target device driver in its IRP major function table. The
IRP major function table is simply an array of 28 function pointers to han-
dler functions in response to notifications and requests which the driver
receives from either a client application or the operating system. An applica-
tion typically sends an IRP to a driver to request a specific service. For
example, IRP_MJ_DIRECTORY_CONTROL is sent to file system drivers to

12 ; L O G I N : V O L . 2 9 , N O . 6

; LO G I N : D E C E M B E R 2 0 0 4 S E C U R IT Y: S PY WA R E A N D RO OTK ITS 13

request the list of directories and files. By intercepting and altering different
I/O requests, spyware can easily hide on the file system or eavesdrop on net-
work communications. Some commercial software such as ZoneAlarm4

even uses this technique to intercept and regulate network traffic. It is not
difficult for an attacker to find a particular driver object in memory. Win-
dows’ kernel provides the function called IoGetDeviceObjectPointer which
spyware or a rootkit can call to get a pointer to the named device object.
This device object contains a pointer to its corresponding driver object
which the attacker can use to reference the target’s IRP function table. Fig-
ure 4 shows the relationship among these objects in memory.

Figure 4. Illustration of hooking a driver’s IRP table

H Y B R I D TE C H N I Q U E S (I N L I N E F U N C TI O N H O O K I N G)

Inline function hooking can be considered a hybrid technique, since it can
be applied either to a user mode application or to the kernel. This technique
is a bit more advanced and harder to detect than the methods previously
mentioned. Rather than simply replacing a pointer in a table, an inline hook
alters the target function itself. Normally this is done by replacing the first
few bytes of the function with an unconditional jump to the rootkit or spy-
ware code. Before this overwrite occurs, the attacker saves the bytes being
replaced, so the semantics of the original function are maintained. The trick
here is in the fact that instructions are variable length on an X86 processor.
Therefore, although an unconditional jump is only five bytes on a 32-bit
architecture, the instructions being overwritten may have a different length.
Inline function hooking becomes extremely difficult to detect if the jump is
embedded deeply in the target function. Complicating matters further, the
destination of the jump may be nondeterministic except at the moment of
execution. A clever piece of spyware has the full breadth of the assembly lan-
guage and all of its potential permutations within which to hide.

Managing the Threat: Spyware Detection

There are a number of commercial and freeware spyware detection tools
available. Like most things free, some of them are better than others. We
found BHO Demon very useful in detecting and disabling BHOs in Internet
Explorer.5 It installs a service on the local machine to watch for future
attempts to inject BHOs into Internet Explorer. Spybot Search & Destroy
was also very useful during our research.6 It not only detects BHOs, but
additionally detects and removes other forms of spyware and adware.

14 ; L O G I N : V O L . 2 9 , N O . 6

S P Y WA R E D E TE C TI O N C H A L L E N G E S

Current spyware detection tools are primarily based upon signature scan-
ning techniques. Signature scans have been used heavily by antivirus (AV)
engines and are quite reliable for detecting known strains of spyware. Unfor-
tunately, they are ineffective against unknown strains, which must first be
caught, analyzed, and sampled for a usable signature. With new spyware
variants emerging almost daily, it is difficult for detection engines to keep
pace. Indeed, there are even a handful of spyware applications which utilize
a rudimentary form of polymorphism to randomize their file names and reg-
istry keys, so that every infected machine contains a slightly different ver-
sion of the program. This makes it more difficult for a detection program to
obtain a consistent signature for the application. Some detectors have
turned to heuristics to deal with these issues. A further problem with cur-
rent detections lies in the fact that many of them run in user mode right
alongside the spyware applications they are attempting to apprehend. Using
the aforementioned hooking techniques, a malicious spyware application is
capable of intercepting the function calls of a user mode detection engine as
easily as it hijacks the user’s Internet browser. In this manner, clever spyware
may trick the detector into believing the machine is uninfected. A detection
engine implemented in kernel mode will provide defense against this attack
as long as spyware remains a mostly user mode phenomenon.

V I C E

VICE is a freeware tool designed to detect hooks.7 It is based upon heuristic
analysis of hooking behaviors rather than exact signatures. The benefit of
this approach is that VICE is capable of pinpointing suspicious activity
related to previously unknown rootkits or spyware. It is implemented as a
stand-alone program capable of analyzing both user mode applications and
the operating system. VICE checks the address space of every application
looking for IAT hooks in every DLL that those applications use. It also
checks the kernel SCT for function pointers that do not resolve to
ntoskrnl.exe and the IRP major function tables for a list of user defined driv-
ers. A user can add devices to this list by editing the driver.ini file. Inline
function hooks are detected in DLL functions imported by applications, as
well as in the kernel SCT functions themselves. When possible, VICE will
display the full path on the file system of the DLL or device driver doing the
hooking, so that a system administrator can examine and remove the mali-
cious software. It should be noted, however, that VICE is not an end-user
spyware detection and removal tool. Some legitimate applications such as
firewalls and antivirus products also use these techniques to filter and exam-
ine data, so an operator of VICE will need to have experience enough to rec-
ognize those cases. As stated previously, many current spyware applications
are immature and do not utilize advanced hooking techniques. Neverthe-
less, as spyware evolves, VICE stands to become an increasingly useful tool,
as it has proved to be in the battle against Windows rootkits. Today, VICE
will detect most publicly known Windows rootkits and any spyware that
currently uses these more intrusive hooking technologies. To run VICE, the
host machine must have the Microsoft .NET Framework installed, which is
free for download.

Conclusion

We hope to advance VICE as rootkit and spyware techniques continue to
evolve. The sophistication of the disassembly engine logic can be improved

; LO G I N : D E C E M B E R 2 0 0 4 S E C U R IT Y: S PY WA R E A N D RO OTK ITS 15

to identify more complex and/or deeply embedded inline function hooks. In
future versions, VICE will become more of an active forensics tool, with
enhanced capabilities for detecting anomalous registry accesses, file
accesses, and network communications on systems suspected of being com-
promised. Although it is still an open-ended topic of research, host-based
systems tend to have a better understanding of their environment than do
Network Intrusion Detection Systems (NIDS). This translates into an advan-
tage for heuristic systems like VICE that rely on their ability to differentiate
between “normal” and “abnormal” behaviors.

Spyware has become a threat to corporate and personal information security.
With the combined goals of data interception and stealth, a spyware applica-
tion is well suited to leverage both trojan and rootkit technologies. Although
current spyware lacks the sophistication of modern rootkits for hiding its
presence on a system, we can expect that to change with the advent of more
advanced detection and removal tools. In the next generation of spyware we
expect to see more complex hooking, polymorphic techniques, and kernel
mode components. By understanding the potential application of rootkit
stealth techniques to spyware, hopefully we will be better prepared to meet
the coming challenges in detection and removal.

R E F E R E N C E S
1. Websense, “Emerging Internet Threats Survey 2003”: http://www.websense.com/com-
pany/news/research/Emerging_Threats_2003_EMEA.pdf.

2. CoolWebSearch: http://www.coolwebsearch.com.

3. Matt Pietrek, “Inside Windows: An In-Depth Look into the Win32 Portable Executable
File Format.” MSDN Magazine, vol. 17, no. 2 (February 2002).

4. ZoneAlarm Pro: http://www.zonelabs.com.

5. BHO Demon: http://www.definitivesolutions.com/.

6. Spybot Search & Destroy, by Patrick M. Kolla: http://www.safer-networking.org/.

7. VICE, by James Butler, HBGary Inc.: http://www.rootkit.com/vault/fuzen_op/vice.zip.

C H R I S W Y S O P A L

putting trust in
software code
Chris Wysopal is director of development at Symantec
Corporation, where he leads research on how to build
and test software for security vulnerabilities.

chris_wysopal@symantec.com

T W E N T Y Y E A R S A G O , K E N T H O M P S O N ,
the co-father of UNIX, wrote a paper about
the quandary of not being able to trust code
that you didn’t create yourself. The paper,
“Reflections on Trusting Trust,”1 details a
novel approach to attacking a system.
Thompson inserts a back door into the UNIX
login program when it is compiled and
shows how the compiler can do this in a
way that can’t be detected by auditing the
compiler source code. He writes:

“You can’t trust code that you did not totally create
yourself. No amount of source-level verification or
scrutiny will protect you from using untrusted code. In
demonstrating the possibility of this kind of attack, I
picked on the C compiler. I could have picked on any
program-handling program such as an assembler, a
loader, or even hardware microcode.”

Twenty years after Thompson’s seminal paper was
published, developments in the field of automated
binary analysis of executable code are tackling the
problem of trusting code you didn’t write. Binary
analysis can take on a range of techniques, from build-
ing call trees and looking for external function calls to
full decompilation and modeling of a program’s control
flow and data flow. The latter, which I call deep binary
analysis, works by reading the executable machine
code and building a language-neutral representation of
the program’s behavior.

This model can be traversed by automated scans to
find security vulnerabilities caused by coding errors
and to find many simple back doors. A source code
emitter can then take the model and generate a
human-readable source code representation of the pro-
gram’s behavior. This enables manual code auditing for
design-level security issues and subtle back doors that
will typically escape automated scans.

The steps of the decompilation process are as follows:

1. Front end decodes binary to intermediate language.
2. Data flow transformer reconstructs variable life-

times and type information.
3. Control flow transformer reconstructs loops, condi-

tionals, and exceptions.
4. Back end performs language-specific transformation

and exports high-level code.

To be useful the model must have a query engine that
can answer questions for security scanning scripts:

16 ; L O G I N : V O L . 2 9 , N O . 6

; LO G I N : D E C E M B E R 2 0 0 4 S E C U R IT Y: P UT TI N G TR U ST I N S O F T WA R E CO D E 17

■ What is the range of a variable?
■ Under what conditions is some code reachable? Any path, all paths?
■ What dangerous actions does this program perform?

Security scanning scripts can then ask questions such as:

■ Can the source string buffer size of a particular unbounded string copy be
larger than the destination buffer size?

■ Was the return value from a security-critical function call tested for success
before acting on the results of the function call?

■ Is untrusted user input used to create the file name passed to a create-file
function?

By building meaning from the individual instructions that are executed by the
CPU, deep binary analysis understands program behavior that is inserted by the
compiler. Thompson’s back-door code can’t hide from the CPU, and it can’t hide
from deep binary analysis. More important for real-world software security is
that vulnerabilities and back doors can’t hide in the static and dynamic libraries
that a program links to and for which source code is not always available.

The programmer productivity benefits of using off-the-shelf software compo-
nents are well known, but not much is said about the risks of using binary com-
ponents, which are common on closed source operating systems. When devel-
oping enterprise applications, programmers frequently concentrate on writing
business logic and leave presentation, parsing, transaction processing, encryp-
tion, and much more to commercial libraries for which they often have no
source code. These libraries typically come from OS vendors, database vendors,
transaction-processing vendors, and development framework vendors. Often
the programmers dutifully audit the 20% of the application they wrote and
ignore the 80% they cannot audit. Yet it is the entire program that is exposing
the organization running it to risk.

Deep binary analysis can follow the data flows between the main program and
the libraries in use to find issues that arise from the interaction between the
main program and a library function. Often any security vulnerabilities discov-
ered can be worked around by putting additional constraints on the data passed
to the library function. Sometimes, however, the function call will need to be
replaced. Using the tools we have developed at @stake (now Symantec), we have
found buffer overflows in the string functions of a popular C++ class library and
poor randomness being used in a cryptolibrary function. The cryptolibrary
function was using a random number generated by rand(), and srand() was
seeded with zero. No doubt there was a comment in the C code stating that the
random number generation needed to be replaced in the future, but this being
binary analysis we couldn’t tell.

An interesting use of binary analysis is the differential analysis of two binaries
that have small differences between them. Perhaps you are engaged in incident
response and have discovered an altered binary on the system for which the
attacker has not left any source code behind. Differential binary analysis can be
used to see what behavior has been added or removed from the binary. A use
that has important security implications is to reverse engineer the details of a
vulnerability by determining the differences between a vulnerable program and
one that has a vendor security patch applied. If black hats can easily determine
the cause of a vulnerability simply by looking at the patch, then there is little to
be gained from vendors withholding vulnerability details, and there is increased
urgency to patch vulnerable systems quickly.

Halvar Flake has developed tools for binary diffing and gave a presentation on
his techniques at Black Hat Windows 2004.2 Todd Sabin has developed different
techniques for differential binary analysis which he calls “Comparing Binaries
with Graph Isomorphisms.”3 The field is rapidly evolving, so as with so many

18 ; L O G I N : V O L . 2 9 , N O . 6

topics in the security arena, defenders are urged to stay apprised of develop-
ments, because attackers surely will.

I am hopeful that the field of binary analysis will evolve to a point where third-
party testing labs will be able to perform repeatable, consistent security testing
on closed source software products without the cooperation of software ven-
dors. Much as Consumer Reports is able to verify automobile vendor claims of
performance and carry out their own safety testing, a software testing lab would
be able to quantify the number of buffer overflows, race conditions, script injec-
tions, and other issues in a program under automated test. A security quality
score could be generated from the raw test results. It will undoubtedly be imper-
fect—there will always be issues missed and some false positives—but on a
coarse scale, say, ranking program security from A to F, it would be very useful
to consumers.

Today there is little useful information by which to rate software security quality
except for a particular product’s security patch record. This record is somewhat
useful but typically only exists for the most popular products, which garner the
bulk of the attention of security researchers. Another source of security informa-
tion is common criteria evaluations. But with products that have received com-
mon criteria EAL 4 certification still being subject to monthly patches of critical
severity, there is clearly a need for additional ways of rating security quality.

Deep binary analysis stands to revolutionize the software security space not only
for developers and businesses but for consumers, too. It’s an exciting future, one
in which we don’t have to trust the compiler manufacturers, third-party driver
and library providers, or application and operating system vendors. Software
developers can use binary analysis tools to discover and remediate the vulnera-
bilities in their own software, and consumers can verify that their vendors have
performed due diligence and are not delivering shoddy code.

R E F E R E N C E S
1. Ken Thompson, “Reflections on Trusting Trust,” Communications of the ACM,
vol. 27, no. 8 (August 1984), reprinted at http://www.acm.org/classics/sep95.

2. Halvar Flake, “Automated Binary Reverse Engineering”: http://www.blackhat.com/
presentations/win-usa-04/bh-win-04-flake.pdf.

3. Todd Sabin, “Comparing Binaries with Graph Isomorphisms”:
http://www.bindview.com/Support/RAZOR/Papers/2004/comparing_binaries.cfm.

M I C H A E L R A S H

combining port
knocking and passive
OS fingerprinting with
fwknop
Michael Rash holds a master’s degree in applied
mathematics and works as a security research
engineer for Enterasys Networks, Inc. He is the lead
developer of the cipherdyne.org suite of open source
security tools, including PSAD and FWSnort, and is
co-author of the book Snort-2.1 Intrusion Detection
published by Syngress.

mbr@cipherdyne.org

I T WA S A R O U N D 2 : 4 5 A . M . O N E S U M M E R
night in 2002 and I had finally finished. My
shiny new Linux system was fully installed
and connected to my broadband cable
modem connection in my apartment. All
unnecessary services had been turned off, a
restrictive iptables policy had been deployed,
and a tripwire filesystem snapshot had been
taken, all before connecting the system to
the network.

Reasoning that the only servers I needed to have acces-
sible from arbitrary IP addresses around the Net were
Apache and OpenSSH, iptables could be configured to
log and drop almost all connection attempts. After
connecting the system to the network and scanning it
from a shell account on a different external network, I
saw that only TCP ports 22, 80, and 443 were accessi-
ble, so I was satisfied that my system was fit to remain
connected.

It was late, though, and I forgot one important detail. I
neglected to check the version of OpenSSH that came
bundled with the Linux distribution. Back then Red-
Hat 7.3 was my Linux distribution of choice even
though more recent versions of RedHat (and other
Linux distributions) were available. After getting some
well-deserved sleep, I woke the next morning only to
find that, sure enough, my system had been compro-
mised. Luckily, I had no important data on the box yet,
but it could have been a lot worse.

It became clear that in addition to upgrading to the lat-
est version of sshd, it would also be desirable to protect
sshd as much as possible with iptables. Yet at the same
time, the ability to log in remotely and administer the
system from anywhere was highly desirable. Unfortu-
nately, these two goals are fundamentally at odds. Sure,
sshd does not allow just anyone to log in or execute
commands; users must have the proper authentication
credentials for at least one type of authentication
method supported by sshd (username/password, RSA,
Kerberos, etc.), but all of this may not help if there is a
buffer overflow vulnerability (as in my case) buried
within a section of the sshd code that is accessible over
the network.

An attacker may only need the capability of connecting
to sshd in order to be in a position to exploit such a
vulnerability. Being able to connect means the attacker
can send packets up through the server’s IP stack,
establish a TCP session with the transport layer, and,
finally, talk directly to sshd. Alternatively, if iptables
does not allow the attacker’s IP to connect to sshd,
then any packets sent from the attacker are blocked by

; LO G I N : D E C E M B E R 2 0 0 4 S E C U R IT Y: COM B I N I N G P O RT K N O C K I N G W ITH O S F I N G E R P R I NTI N G 19

20 ; L O G I N : V O L . 2 9 , N O . 6

iptables before they even make it into the IP stack in the Linux kernel, let alone
to the SSH daemon itself.

Clearly, the most desirable way to protect an arbitrary service is with iptables.
However, since not all IP addresses that should be allowed to connect to sshd
can be enumerated a priori, I would need to add an additional authentication
layer to iptables. Port knocking provides a simple but effective solution to this
problem.

Port Knocking

Port knocking1 provides a method of encoding information within sequences of
connection attempts to closed (or open) ports. The most common application of
such information (which can include IP addresses, port numbers, protocols,
usernames, etc.) is the modification of firewall policies or router ACLs in
response to monitored valid port knock sequences. In essence, port knocking
provides a means of network authentication that only requires the ability to
send packets that contain transport layer headers.

Knock clients do not need to actually talk to a server-side application or even
have a TCP session established; the knock server can behave completely pas-
sively as far as network traffic is concerned. On the server side, knock sequences
can either be monitored via firewall log messages or with a packet capture
library such as libpcap, in the same way an IDS watches traffic on a network.
Although using a packet capture library would provide the ability to encode
information such as a password at the application layer, a full-featured port
knock implementation is completely feasible without using any packet data
above the transport layer—hence firewall logs are ideally suited for this applica-
tion. Implementing a port knocking scheme around firewall logs has the added
bonus of helping to ensure the firewall is configured correctly, or at least that it
is logging packets.

Protecting Against Replay Attacks

It should be noted that many port knocking techniques are susceptible to replay
attacks if an attacker is in a position privileged enough to be able to sniff traffic
between the port knock client and server. An attacker need only replicate a
knock sequence for the server to grant the same level of access that would be
granted to a legitimate client. Hence some would argue that port knocking suf-
fers from the standard arguments against “security through obscurity.” However,
port knocking is not designed to act as the only security mechanism for secure
communications; encryption implemented by sshd serves as the main line of
defense. Port knocking provides an additional layer of security on top of the
secure communications already implemented by sshd. The argument against
“security through obscurity” is only valid if security is completely dependent on
obscurity.2 In addition, there are several techniques for raising the bar for the
attacker even if the entire sequence has been observed on the wire. Let us exam-
ine four such techniques:

1. Relative timings between sequence packets can be made significant. For
example, the knock server may require that the minimum time delay
between successive knock sequence packets is at least three seconds, but not
longer than six seconds.

2. Multiple protocols (TCP, UDP, and ICMP3) can be used within the knock
sequence. If an attacker has restricted the view of a sniffer to just, say, the
TCP protocol, then some portion of such a sequence will be missed and
hence cannot be replayed on the network.

; LO G I N : D E C E M B E R 2 0 0 4 S E C U R IT Y: COM B I N I N G P O RT K N O C K I N G W ITH O S F I N G E R P R I NTI N G 21

3. Encryption can be used. Due to the fact that an IP address, a protocol num-
ber, and a port number together only require seven bytes of information to
represent, it is easy to use a symmetric block cipher (such as the Rijndael
algorithm) to encrypt port knock sequences before they are sent across a
network. Encrypting an IP address within a knock sequence allows a knock
client to instruct a knock server to allow access for a third-party IP address
that cannot be guessed by anyone observing the knock sequence. As usual,
use of a symmetric encryption algorithm requires a shared key that is known
to both the knock client and the knock server. There are also fancier meth-
ods of using encryption, such as one-time passwords,4 that genuinely make
replay attacks infeasible.

4. Requirements can be made on the type of operating system that generates a
knock sequence. Additional fields in the IP and TCP headers—TTL values,
fragment bits, overall packet size, TCP options, TCP window size, etc.—can
be made significant. If a knock sequence is monitored between a client and
server, then any duplicated sequence will not be honored by the server
unless the OS of the duplicate sequence exactly matches that of the original
client. For example, if a knock sequence between two Linux machines is
sniffed off the wire and an attacker replays the sequence from a MacOS X
machine, the duplicate sequence will be ignored. Of course, OS characteris-
tics can be spoofed by the attacker, but this may not be worth the trouble
(again, although this is not unbreakable, port knocking adds an additional
layer of security).

Fwknop

This article discusses a tool called fwknop (Firewall Knock Operator), which
supports both shared and encrypted port knock sequences along with all four of
the obfuscation techniques mentioned above. fwknop exclusively uses iptables
log messages to monitor both shared and encrypted knock sequences instead of
appealing to a packet capture library. In addition, due to the completeness of the
iptables logging format, fwknop is able to passively fingerprint operating sys-
tems from which connection attempts originate. fwknop uses this capability to
add an additional layer of security on top of the standard knock sequences by
requiring that the TCP stack that generates a knock sequence conform to a spe-
cific OS. This makes it possible to allow, say, only Linux systems to issue a valid
knock sequence against the fwknop knock server. I develop and release fwknop
as free and open source software under the GNU Public License (GPL); fwknop
can be downloaded from http://www.cipherdyne.org/fwknop/.

I M P L E M E NTATI O N

Firewall logs, especially those created by iptables, can provide a wealth of infor-
mation about port scans, connection attempts to back door, DDoS programs,
and attempts by automated worms to establish connections to vulnerable soft-
ware. One of the most important characteristics of firewall logs is that packets
can be logged completely passively; the firewall is under no obligation to allow
the target TCP/IP stack to generate any return traffic in response to a TCP con-
nection attempt. Yet, at the same time, all sorts of juicy bits of information can
be logged from a connection attempt, such as TTL and IP ID values, source and
destination port numbers, TCP flags, TCP options, and more. (Note that UDP
and ICMP packets will generate iptables log messages that contain information
appropriate to those protocols.)

fwknop parses iptables log messages that are sent to syslog as iptables intercepts
packets that traverse the firewall interfaces. By default, iptables logs packets via
the syslog kern facility at a priority of info. Such messages are usually sent to

22 ; L O G I N : V O L . 2 9 , N O . 6

the file /var/log/messages, but fwknop reconfigures syslog to also send kern.info
messages to a named pipe, where they are read by fwknop. Let us examine an
iptables log message generated by the following iptables rule:

iptables -A INPUT -p tcp -i eth0 -j LOG —log-tcp-options

A TCP syn packet to port 60000 on the eth0 interface will result in the following
log message logged via syslog to /var/log/messages:

Iptables does a good job of decoding packet information before sending it to sys-
log. Clearly displayed (among other things) are source and destination IP
addresses, packet length and TTL values, source and destination ports, TCP
window size, and TCP flags. The TCP options portion of the TCP header is also
visible, but because decoding it would place an undue burden on the kernel,
only the raw options data is logged. In an effort to passively fingerprint the
operating system that generated the above log message, fwknop uses a strategy
similar to p0f,5 which is one of the best passive OS fingerprinters available. Since
matching a p0f signature against the packet above requires the examination of
specific TCP option values, fwknop must decode the options string. A quick
examination of RFC 793 informs us that there are two formats for TCP options:
three 8-bit-wide fields denoting the option type, length, and value, or a single 8-
bit-wide field denoting the option type. Interpreting these two formats along
with the appropriate TCP option definitions with an eye toward what is required
by p0f, fwknop decodes the options string in the packet above,

020405B40402080A06551B7A0000000001030300,

as the following:

Hence, the packet log message above is matched by the following p0f signature:

S4:64:1:60:M*,S,T,N,W0 Linux:2.4::Linux 2.4/2.6

Now let’s turn to some concrete port knocking examples. The following two
knock sequence examples will involve the execution of fwknop from the com-
mand line in client mode from the source IP 192.168.10.2 to the destination
machine 10.3.2.1, where fwknop is running in server mode. (RFC 1918
addresses were chosen for illustration purposes so as not to step on the toes of
any real networks out there.) In both sequence examples iptables is configured
to block access to sshd on the knock server, but after receiving a valid port
knock sequence, fwknop will reconfigure iptables to allow access to sshd. In
order to indicate clearly how access is modified, connection attempts to sshd on
the knock server will be made from the knock client system before and after
sending the knock sequences. As fwknop receives and parses knock sequences
and modifies access controls, it writes information to syslog, and these messages
will also be displayed below. All command-line invocations of fwknop below
take place on the client system.

S H A R E D S E Q U E N C E

First let’s examine a shared sequence that involves multiple protocols. Fwknop
supports the use of TCP, UDP, and ICMP echo requests within shared knock
sequences. Shared sequences must be defined in two places: the file ~/.fwknoprc
on the client system, and the file /etc/fwknop/access.conf on the server system.
Hence, our first knock sequence is defined as follows on the server:

Aug 7 17:22:57 orthanc kernel: IN=eth0 OUT=

MAC=00:0c:41:24:68:ef:00:0c:41:24:56:37:08:00 SRC=192.168.10.2 DST=10.3.2.1 LEN=60

TOS=0x10 PREC=0x00 TTL=64 ID=56686 DF PROTO=TCP SPT=32811 DPT=60000 WINDOW=5840 RES=0x00

SYN URGP=0 OPT (020405B40402080A06551B7A0000000001030300)

- Maximum segment size = 5840 - Selective acknowledgment is permitted - The timestamp

is set - NOP - Window scale = 0

; LO G I N : D E C E M B E R 2 0 0 4 S E C U R IT Y: COM B I N I N G P O RT K N O C K I N G W ITH O S F I N G E R P R I NTI N G 23

[server]# cat /etc/fwknop/access.conf

SOURCE: ANY;

SHARED_SEQUENCE: tcp/50053, udp/6020, icmp, icmp,

tcp/24034, udp/9680;

OPEN_PORTS: tcp/22;

FW_ACCESS_TIMEOUT: 30;

REQUIRE_OS_REGEX: linux;

The SOURCE keyword defines from which IP address or network a knock
sequence will be accepted (with the special value ANY accepting knock
sequences from any source IP). The SHARED_SEQUENCE keyword defines the
specific port numbers and protocols that constitute a valid sequence. The
OPEN_PORTS keyword defines the set of ports and corresponding protocols to
which the source address should be allowed to connect. Fwknop will reconfig-
ure iptables on the underlying Linux system only upon receiving a valid knock
sequence. The FW_ACCESS_TIMEOUT specifies the length of time (in seconds)
the underlying iptables policy will be configured to accept connections from an
IP address that has issued a valid knock sequence. The REQUIRE_OS_REGEX
variable instructs fwknop to accept a knock sequence if and only if the p0f sig-
nature derived from the originating operating system contains the specified
string (the match is performed case-insensitively).

In the file ~/.fwknoprc on the client system, a similar block of text defines the
same sequence for the fwknop client. Note the specific IP address of the fwknop
server is listed immediately preceding the sequence definition:

[client]$ cat ~/.fwknoprc

10.3.2.1: tcp/50053, udp/6020, icmp, icmp, tcp/24034,

udp/9680

Now for the actual execution of fwknop. First, connectivity to sshd is tested
from the client, then the port knock sequence is sent across the network to the
server, and, finally, an additional connection attempt shows that access has
indeed been granted:

[client]$ telnet 10.3.2.1 22

Trying 10.3.2.1...

[client]$ fwknop -k 10.3.2.1

[+] Sending port knocking sequence to knock server:

10.3.2.1

[+] tcp/50053 -> 10.3.2.1

[+] udp/6020 -> 10.3.2.1

[+] icmp echo request -> 10.3.2.1

[+] icmp echo request -> 10.3.2.1

[+] tcp/24034 -> 10.3.2.1

[+] udp/9680 -> 10.3.2.1

[+] Finished knock sequence.

[client]$ telnet 10.3.2.1 22

Trying 10.3.2.1...

Connected to 10.3.2.1.

Escape character is ‘^]’.

SSH-2.0-OpenSSH_3.8.1p1

On the server the following messages are written to syslog by fwknop as it moni-
tors the port knock sequence in the iptables log:

Aug 8 13:17:46 orthanc fwknop: port knock access sequence matched for 192.168.10.2

Aug 8 13:17:46 orthanc fwknop: OS guess: Linux:2.4::Linux 2.4/2.6 matched for

192.168.10.2

Aug 8 13:17:46 orthanc fwknop: adding INPUT ACCEPT rule for source: 192.168.10.2 to con-

nect to tcp/22

Aug 8 13:18:18 orthanc fwknop: removed iptables INPUT ACCEPT rule for 192.168.10.2 to

tcp/22, 30 second timeout exceeded

24 ; L O G I N : V O L . 2 9 , N O . 6

The log shows that the fwknop server added a rule in the iptables INPUT chain for
a total of 30 seconds to accept connections from 192.168.10.2 over tcp/22.
Although the 30-second timeout seems a bit short, if the iptables policy on the
underlying system is written so that packets that are part of established sessions
are accepted first before remaining packets are dropped, then any SSH session that
was established within the 30-second window will not be killed when the ACCEPT
rule is removed. Note that the port number for which the fwknop server permitted
access never appears in the knock sequence itself; it is defined in
/etc/fwknop/access.conf, so the client has to know to which port(s) it has access
after sending the sequence. This characteristic holds true for all shared sequences.

E N C RY P TE D S E Q U E N C E

Now let’s take a look at an encrypted knock sequence. This time the sequence
itself will change depending on the key used to encrypt the source IP address,
protocol, port number, and local username that fwknop is being executed as.
Thus, encrypted sequences are not defined within any configuration file on the
server or client systems. Sequences are monitored on the server; if successfully
decrypted then such a sequence is valid and access controls will be modified.
The fwknop server must still be configured with the appropriate encryption key
and port(s) to open, and as usual this information is contained in the
/etc/fwknop/access.conf file on the fwknop server:

[server]# cat /etc/fwknop/access.conf

SOURCE: ANY;

ENCRYPT_SEQUENCE;

KEY: 3ncryptk3y;

OPEN_PORTS: tcp/22;

FW_ACCESS_TIMEOUT: 30;

REQUIRE_OS_REGEX: linux;

The SOURCE, OPEN_PORTS, FW_ACCESS_TIMEOUT, and REQUIRE_OS
_REGEX keywords are used as before, but two additional keywords,
ENCRYPT_SEQUENCE and KEY, are defined to instruct fwknop to accept a port
knock sequence encrypted with the subsequent key. Now for our encrypted port
knocking example:

[client]$ telnet 10.3.2.1 22

Trying 10.3.2.1 . . .

[client]$ fwknop -e -a 192.168.10.2 -P tcp -p 22 -r -k

10.3.2.1

[+] Enter an encryption key (must be as least 8 chars, but

less than 16

chars). This key must match the key in the file

/etc/fwknop/access.conf

on the remote system.

[+] Encryption Key:

[+] clear text sequence: 192 168 10 2 0 22 6 28 109 98 114

0 0 0 0

[+] cipher text sequence: 182 246 253 35 195 76 157 229 86

13 152 30 120 172 58 140

[+] Sending port knocking sequence to knock server:

10.3.2.1

[+] tcp/61182 -> 10.3.2.1

[+] udp/61246 -> 10.3.2.1

[+] tcp/61253 -> 10.3.2.1

[+] udp/61035 -> 10.3.2.1

[+] tcp/61195 -> 10.3.2.1

. . .

; LO G I N : D E C E M B E R 2 0 0 4 S E C U R IT Y: COM B I N I N G P O RT K N O C K I N G W ITH O S F I N G E R P R I NTI N G 25

[+] Finished knock sequence.

[client]$ telnet 10.3.2.1 22

Trying 10.3.2.1 . . .

Connected to 10.3.2.1.

Escape character is ‘^]’.

SSH-2.0-OpenSSH_3.8.1p1

On the server the following messages are written to syslog by fwknop:

Note that fwknop has allowed the real source through the firewall since this is
the source address that was encrypted in the sequence with the -a option. Any
other third-party IP address could have been specified here. Also notice that as
with the previous shared sequence, fwknop passively fingerprinted the client
operating system and the required Linux OS was found. Finally, note that the
encrypted sequence is rotated through the TCP and UDP protocols. More infor-
mation about fwknop, including a detailed description of all configuration
directives, can be found at http://www.cipherdyne.org/fwknop/.

Conclusion

Port knocking adds an additional layer of security for arbitrary services that are
accessible over a network. A client system must send a specific sequence of con-
nection attempts to the knock server before access is granted to any protected
service through a firewall or other access control device. Port knocking is useful
for enhancing security because anyone who casually scans the target system will
not be able to tell that there is any server listening on the ports protected by the
knock server. Port knocking is not designed to provide bullet-proof security,
and, indeed, replay attacks can easily be leveraged against a port knock server in
an effort to masquerade as a legitimate client. However, there are several tech-
niques for obfuscating port knock sequences through timing requirements, mul-
tiple protocols, passive fingerprinting of knock client operating systems, and
encryption in order to make knock sequences more resistant to replay attacks.
Fwknop is a complete port knocking implementation based around iptables,
and supports multi-protocol knock sequences (shared or encrypted) along with
passive OS fingerprints derived from p0f.

R E F E R E N C E S
1. M. Krzywinski, “Port Knocking: Network Authentication Across Closed Ports,”
SysAdmin Magazine, vol. 12, no. 6 (J une 2003).

2. J. Beale, “‘Security Through Obscurity’ Ain’t What They Think It Is” (2000):
http://www.bastille-linux.org.

3. ICMP is implemented strictly as a network layer protocol and hence has no concept of
a transport layer port number. However, the mere presence of ICMP echo requests can be
made significant in terms of what a knock server expects to see, and thus adds an addi-
tional dimension to a port knock sequence.

4. See David Worth, “Cryptographic One-Time Knocking: Port Knocking Done Better”:
http://www.hexi-dump.org/bytes.html.

5. The original p0f was developed by Michal Zalewski and is available for download from
http://lcamtuf.coredump.cx/p0f.shtml.

Aug 8 13:00:28 orthanc fwknop: decrypting knock sequence for 192.168.10.2

Aug 8 13:00:28 orthanc fwknop: OS guess: Linux:2.4::Linux 2.4/2.6 matched for

192.168.10.2

Aug 8 13:00:28 orthanc fwknop: username mbr match

Aug 8 13:00:28 orthanc fwknop: adding INPUT ACCEPT rule for source: 192.168.10.2 to con-

nect to tcp/22

Aug 8 13:01:00 orthanc fwknop: removed iptables INPUT ACCEPT rule for 192.168.10.2 to

tcp/22, 30 second timeout exceeded

S T E V E N A L E X A N D E R

improving security
with homebrew
system
modifications
Steven is a programmer at Merced College. He has
been using FreeBSD since version 2.2.6 and still loves
it.

alexander.s@mccd.edu

I N T H I S A R T I C L E I D I S C U S S T H R E E
modifications I’ve developed for FreeBSD.
The first modification is a variant of the
MD5-crypt mechanism, which uses an
increased number of iterations in the inter-
nal loop of the crypt function. It also hashes
in a constant string during the first iteration
of the core loop. Increasing the number of
iterations causes password hashing to re-
quire more computation time. This should
not significantly impact most systems be-
cause they don’t spend much of their time
authenticating users. An attacker, on the
other hand, wants to be able to guess mil-
lions of possible passwords per second. The
attacker’s efforts can be severely impacted.
The constant string helps to prevent the use
of standard password-cracking tools.

Another modification that I’ve developed is for the gcc
compiler (version 2.9.5) as distributed with FreeBSD
4.8–4.10. This modification should work on other
operating systems. The change I’ve made adds two new
compile-time options to gcc. One option randomly
adds up to 1 megabyte to the stack size of the function
main(). The other option adds up to 16KB to the stack
size of all functions. The first option is enabled by
default. The second option is disabled by default and
should be used very sparingly as it can have severe
consequences in the way of wasted memory. Changing
the stack layout of a program can defeat many buffer
overflow exploits. This technique was introduced by
researchers at the University of New Mexico.1 An
attacker who can tailor tools for your system will be
able to defeat this defense.

More advanced randomization techniques than those
used by Forrest et al. have been developed.2 Run-time
randomization of a program’s memory layout is
stronger but can have negative performance conse-
quences. Load-time stack randomization is also
stronger, since it is dynamic, and is currently available
in RedHat Linux, OpenBSD, and PaX. I’ve included a
patch, below, to add load-time stack randomization to
FreeBSD.

For more information on buffer overflows and protec-
tion mechanisms, see the SmashGuard buffer overflow
page at Purdue University.3 More advanced memory
randomization and protection measures are available
with PaX and OpenBSD.4

The crypt modification provides hard security in that
the increase in difficulty for an attacker to mount an

26 ; L O G I N : V O L . 2 9 , N O . 6

; LO G I N : D E C E M B E R 2 0 0 4 S E C U R IT Y: I M P ROV I N G S E C U R IT Y W ITH H OM E B R E W M O D I F I C ATI O N S 27

offline password guessing attack is absolute as long as no serious cryptanalytic
breakthrough is achieved against MD5-crypt. It also provides a soft measure of
security through obfuscation. The modified crypt mechanism will be incompati-
ble with other systems and standard password-cracking tools. A knowledgeable
attacker can modify his or her tools to suit your system and try an offline attack,
even though, because of the increased computation time, it will be less likely to
succeed. Attackers who do not understand the need to modify their tools or are
unable to do so will have no chance of success.

The security provided by load-time stack randomization is much more solid
than that provided by compile-time randomization. In the latter case, an exploit
simply needs to be tailored to a given system to work on that system. The reason
it is useful is that many attackers don’t have the skills or access to a particular
target system needed to tailor an exploit to that system. On the other hand, load-
time randomization introduces the property that many exploits will not work
except by brute force, even if the attacker has access to the compiled program.

Most attackers are not expert programmers or security gurus, but tend to be kids
or disgruntled employees (current or former). These attackers depend on tools
that are developed by more skilled programmers. The programmers who write
these tools make assumptions about the conditions of the target system. If these
conditions do not hold, the tools will fail. This enables us to use both diversity
and randomization for positive gain.

Randomizing Stack Sizes (Compile-Time)

In order to make gcc add a small random buffer to the top of a function’s stack, I
read in a 32-bit number from arc4random() and mask it to get the size I want.
I then modify the frame offset in init_function_start by that many bytes
and use two new compiler flags that control whether to modify main() and/or
all other functions. The flags can be invoked using -f[no-]randomize-
stack-main and -f[no-]randomize-stack-all. The latter is disabled by
default. Several machines have been rebuilt with this patch in place and have
been running without any problems for several months. I’m also running ProPo-
lice/SSP on some of these machines and have not had any problems.5 Use ProPo-
lice (or StackGuard)—you’ll be happier for it. If I’ve done anything taboo, I
hope some of the gcc experts out there will clue me in. The gcc source lives in
/usr/contrib/gcc .

function.c

In function.c, init_function_start requires modification. Changes are
shown in bold.

. . .

void

init_function_start (subr, filename, line)

tree subr;

char *filename;

int line;

{

int random_dword = 0;
. . .

/* We haven’t had a need to make a save area for ap yet.

*/

arg_pointer_save_area = 0;

/* No stack slots allocated yet. */

28 ; L O G I N : V O L . 2 9 , N O . 6

if(flag_randomize_stack_all ||
(flag_randomize_stack_main && \

(strcmp(current_function_name,”main”)==0)))
{

random_dword = arc4random();
if(strcmp(current_function_name,”main”)==0)

random_dword = random_dword & 0x000ffffc;
else

random_dword = random_dword & 0x00003ffc;
#ifdef FRAME_GROWS_DOWNWARD

frame_offset = -random_dword;
#else

frame_offset=random_dword;
#endif

}
else /* no randomization */
{

frame_offset = 0; /* Original code. If you
keep an extra frame_offset = 0,
the code won’t work. */

}

flags.h

The following entries must be added to the end of flags.h:

. . .
/* Nonzero means use stack randomization for main() */
extern int flag_randomize_stack_main;
/* Nonzero means use stack randomization for all functions */
extern int flag_randomize_stack_all;

toplev.c

These flags are then defined and set in toplev.c:

. . .

int flag_no_ident = 0;

/* Nonzero means randomly increase the stack space used
by main by up to 1 megabyte */

int flag_randomize_stack_main = 1;
/* Nonzero means randomly increase the stack space used

by all functions */
int flag_randomize_stack_all = 0;

. . .

{“ident”, &flag_no_ident, 0,
“Process #ident directives”} ,

{“randomize-stack-main”, &flag_randomize_stack_main, 1,
“Enable stack randomization for main” },

{“randomize-stack-all”, &flag_randomize_stack_all, 1,
“Enable stack randomization for all functions” }

};

To rebuild gcc you should:

1. cd /usr/src/gnu/usr.bin/cc
2. make obj
3. make depend
4. make all install

; LO G I N : D E C E M B E R 2 0 0 4 S E C U R IT Y: I M P ROV I N G S E C U R IT Y W ITH H OM E B R E W M O D I F I C ATI O N S 29

Afterwards, gcc will pad the stack for main() on all newly compiled programs by
default. This can be turned off by using the option -fno-randomize-stack-main.
Optionally, padding can be used on all functions by specifying -frandomize-
stack-all. This flag can impose a very large overhead, particularly on programs
that use recursive functions. Enable it at your own risk.

The entire system can be recompiled using stack padding (for main() only) by:

1. cd /usr/src
2. make buildworld
3. make buildkernel
4. make installkernel
5. reboot
6. make installworld
7. reboot

Randomizing Stack Sizes (Load-Time)

I have also implemented load-time stack randomization by modifying
/usr/src/sys/kern/kern_exec.c. The changes are minor and similar to those used
in the gcc patch. In exec_copyout_strings, the vectp pointer, which
becomes our stack base, is modified. This modification has been tested on
FreeBSD 4.8–4.10 and 5.2.1.

This feature can be defeated by brute force or possibly in conjunction with a for-
mat string attack. In the case of brute force, the process is noisy and the attack
can be stymied using techniques such as those in SegvGuard for Linux.6 Unfor-
tunately, such a tool is not currently available for FreeBSD. Still, load-time ran-
domization is more difficult to defeat than compile-time randomization, as it is
dynamic and an attacker must brute-force the stack addresses rather than simply
analyzing the binary. Format strings can be used to defeat this technique but
only under particular circumstances.

. . .

#include <sys/libkern.h>
. . .

register_t *

exec_copyout_strings(imgp)

struct image_params *imgp;

{

. . .

/* local variables */

. . .

int random_offset;
. . .

/*

* The ‘+ 2’ is for the null pointers at the end of each

of the arg and env vector sets

*/

vectp = (char **)

(destp - (imgp->argc + imgp->envc + 2) *

sizeof(char*));

random_offset = arc4random();
random_offset = random_offset & 0xffffc;
vectp-=random_offset;

The kernel needs to be rebuilt to use the new changes:

1. cd /usr/src
2. make buildkernel

30 ; L O G I N : V O L . 2 9 , N O . 6

3. make installkernel
4. reboot

Creating a New Crypt Mechanism

A few months ago, I was re-reading parts of Practical UNIX and Internet Security7

and noted the authors’ suggestion that system administrators modify the crypt
routine on their UNIX systems to loop more than the standard 25 times, in order
to prevent attackers from using a standard password cracker. I decided to imple-
ment this on some of my systems. This modification works on FreeBSD 4.8–4.10
and 5.2.1. The existing source code for 5.2.1 looks slightly different, but the
changes are the same.

If I were simply to change the existing source code and recompile, all the ac-
counts on my systems would stop working. That is why FreeBSD allows new
crypt mechanisms to be added without replacing the original mechanisms. All
new passwords are hashed using the mechanism that is configured in login.conf.

Rather than modify the old DES-based crypt mechanism, I modified a copy of
the MD5-based crypt mechanism, which is much stronger. MD5-crypt was
designed by Poul-Henning Kamp and uses Ron Rivest’s MD5 hash algorithm.8 I
do not suggest arbitrarily modifying the crypt mechanisms unless you have real
cryptographic expertise, as you may inadvertently weaken the algorithm. I have
only increased the number of iterations of the algorithm and hashed in a con-
stant value; everything else is intact.

Passwords that are hashed on your system using the new crypt mechanism will
not be breakable with an unmodified password cracker. To make the job of an
attacker more difficult, back up and remove the libcrypt source code from your
servers after the new libcrypt has been installed. An attacker can still analyze the
binary code to find out how it was modified, but many attackers do not have
these skills. If an attacker is unable, or unknowingly neglects, to do this, his or
her offline attack will not succeed.

On FreeBSD and many other systems, non-root users are not able to see the
stored password hashes. These hashes are still valuable to an attacker. Many
attackers copy the password file after a break-in so that the passwords can be
tried on related systems to which the attacker does not have access or reused on
the same system if the hole the attacker used to break in is patched.

Adding a new crypt mechanism to FreeBSD turns out to be pretty easy. The
source for libcrypt is located at /usr/src/lib/libcrypt. Three files need to be
changed to create a new mechanism: crypt.c, crypt.h, and Makefile. A file must
also be created that contains your new mechanism.

crypt.h

The header file crypt.h contains the prototypes for the different crypt mecha-
nisms. You can name your new mechanism whatever you like; mine looks like
this:

. . .

char *crypt_md5_local(const char *pw, const char *salt);

. . .

crypt.c

crypt.c contains a data structure named crypt_types that contains the name
of the mechanism, the function to call to use the mechanism, and the magic
value that is prepended to passwords that use this mechanism. My entry to the
list looks like:

. . .

; LO G I N : D E C E M B E R 2 0 0 4 S E C U R IT Y: I M P ROV I N G S E C U R IT Y W ITH H OM E B R E W M O D I F I C ATI O N S 31

{

“md5local”,

crypt_md5_local,

“4”

},

{

NULL,

NULL

}

. . .

crypt-md5-local.c

In order to create a new crypt mechanism, I copied the file crypt-md5.c to crypt-
md5-local.c. You must modify the new file slightly. Rename the function
crypt-md5 to crypt-md5-local. Near the beginning of the function, the
magic value should be changed from 1 to 4. The magic string 3 is not
used in FreeBSD 4.x but is used in FreeBSD 5.x for the NT hash algorithm. Your
changes should look like this:

. . .

char *

crypt_md5_local(pw, salt)
const char *pw;

const char *salt;

{
static char*magic = “4”; /*

* This string is magic for
* this algorithm. Having
* it this way, we can get
* better later on.
*/

. . .

Further down in the code, a for loop iterates 1000 times to form the core of the
MD5-crypt mechanism. You can replace the value 1000 with anything you like.
Increasing the number significantly will make password cracking very difficult;
however, increasing it too much could slow the system unnecessarily. If, for
some reason, you need password database information to be interoperable on
multiple systems, each system will need to use the same value in its modified
crypt mechanism. Here, I have changed the number to 8000. I also have hashed
in the constant string mercedcollege; this prevents an attacker from perform-
ing an offline password cracking attack without modifying his or her tools to
suit. Modify this string to something of your own choosing.

. . .

for(i=0;i<8000;i++) {
MD5Init(&ctx1);

if(i==0)
MD5Update(&ctx1,”mercedcollege”,strlen(“mercedcol-

lege”));
if(i & 1)

MD5Update(&ctx1,pw,strlen(pw));

. . .

32 ; L O G I N : V O L . 2 9 , N O . 6

Makefile
The name of the file that contains your new crypt mechanism must be included
in Makefile:

SRCS= crypt.c crypt-md5.c crypt-md5-local.c md5c.c
misc.c

/etc/login.conf

After these changes are made be sure to make and make install.
/etc/login.conf can be modified to use this new method as the default. The entry
should look like:

:passwd_format=md5local:\

Afterwards, you must run cap_mkdb /etc/login.conf.

To install the new libcrypt:

1. cd /usr/src/lib/libcrypt
2. make
3. make install
4. reboot

R E F E R E N C E S
1. S. Forrest, A. Somayaji, and D. Ackley, “Building Diverse Computer Systems,” Proceed-
ings of the 6th Workshop on Hot Topics in Operating Systems (1996): http://www.cs.unm
.edu/~immsec/publications/hotos-97.pdf.

2. Monica Chew and Dawn Song, “Mitigating Buffer Overflows by Operating System
Randomization,” Tech Report CMU-CS-02-197 (December 2002); PaX, http://pax
.grsecurity.net/.

3. See https://engineering.purdue.edu/ ResearchGroups/SmashGuard .

4. See http://pax.grsecurity.net/, http://www.openbsd.org.

5. Hiroaki Etoh, “ProPolice: GCC Extension for Protecting Applications from Stack-
Smashing Attacks,” IBM (April 2003): http://www.trl.ibm.com/projects/security/ssp/.

6. Nergal, “The Advanced return-into-lib(c) Exploits: PaX Case Study”:
http://www.phrack.org/phrack/58/p58-0x04.

7. Simson Garfinkel and Gene Spafford, Practical UNIX and Internet Security (Sebastopol,
CA: O’Reilly, 1996).

8. Ron Rivest, “The MD5 Message-Digest Algorithm,” RFC 1321 (April 1992).

D A R I O F O R T E , D A V I D E B E R T O L E T T I ,
C R I S T I A N O M A R U T I , A N D
M I C H E L E Z A M B E L L I

Sebek Web “ITA”
interface

A N A LT E R N AT I V E A P P R O A C H

Dario Forte, CISM, CFE, is adjunct professor of incident
response and forensics at the University of Milano,
Crema Campus. He is also the founder of the Incident
Response Italy Project and the coordinator of the
Italian Honeynet Project and is the president of the
European Chapter of the HTCIA.

dario.forte@acm.org

Davide Bertoletti, Cristiano Maruti, and Michele
Zambelli are graduate students at the University of
Milano at Crema and are part of the Incident
Response Italy team and the Italian Honeynet Project.
Their research interests focus on security and incident
response.

I N 2 0 0 3 , A G R O U P O F T E A C H E R S A N D
undergraduates at the University of Milano
at Crema started a project called Incident
Response Italy (IRItaly), whose aim was to
provide guidelines for incident response and
forensics. After five months, the same group
founded the Italian Honeynet Project (IHP),
which became part of the Honeynet
Research Alliance. Since then the IHP has
worked on many tasks, like the beta and
national deployment of the Honeynet
Security Console (from Jeff Dell). The IHP is
now working on the development side as
well, by contributing to the Sebek Project.

Sebek, a tool created by Ed Balas of Indiana University,
is basically a piece of code that lives entirely in kernel
space and records either some or all of the data
accessed by users on the system. It has the ability to
record keystrokes from a session that is using encryp-
tion, recover files copied with SCP, capture passwords
used to log in to a remote system, recover passwords
used to enable Burneye-protected binaries, and accom-
plish many other forensics-related tasks. You will find
more information on the tool in the papers mentioned
in the bibliography. In this article we’ll discuss our
approach to the Web interface.

Our Work

Although the current version (0.8) of the Sebek Web
Interface is stable and complete, we have added some
additional features that make it even more useful and
applicable in a broader variety of situations. The new
features are the following:

■ XML output

■ WAP interface

■ Dump database

■ Paging

X M L O UTP UT

We have written a Web application that displays infor-
mation collected by Sebek. The application is written
entirely in PHP and returns the information as an XML
document. We rewrote the tool to output data in XML
because it is more flexible than the HTML format pre-
viously used. We have also added capabilities to view
the status of monitored hosts via cellular phone or
WAP-enabled device. We have chosen an XML, Web-
based application for a number of reasons:

; LO G I N : D E C E M B E R 2 0 0 4 S E C U R IT Y: S E B E K W E B “ ITA” I NTE R FAC E 33

■ XML is becoming the database language for the Web.

■ XML is the interchange mechanism between applications.

■ XML cleanly separates presentation layers from data layers.

Figure 1. Sebek in Browse Mode

Basically, the architecture works as follows:

The application creates a connection with the remote database, gets and modi-
fies the data, and sends the data back as an XML file. Data is displayed as HTML
pages using an XSL stylesheet. The application is also usable in a wireless envi-
ronment via WAP technology.

The XML file has a two-part structure. The first is located in the header tag and
contains information concerning the header of the HTML page; the second,
placed between Sebek tags, contains data obtained from the database. Both of
these parts are placed between the root tags.

<?xml version=”1.0” ?>

<root>

<header>

.

.

.

.

</header>

<sebek>

.

.

.

.

</sebek>

</root>

Let’s have a look at the most common tags in the document:

■ root: the main tag, within which the other components of the document
are placed

■ header: contains information about the page header
■ sebek: contains the data created by a database query
■ read data: contains some information about the database fields

34 ; L O G I N : V O L . 2 9 , N O . 6

; LO G I N : D E C E M B E R 2 0 0 4 S E C U R IT Y: S E B E K W E B “ ITA” I NTE R FAC E 35

Figure 2. Sebek in Keystroke Mode

There is a relationship between data returned by the Web interface and the data
stored in the database. Other data are obtained via aggregation functions or sim-
ilar operations:

■ ip addr: IP address of the port where the commands were issued
■ insert time: insert time of the information in the database
■ command: command executed by the intruder on the compromised host
■ time: current host time
■ fd: file descriptor
■ pid: process ID
■ uid: user ID
■ length: byte length of the recorded activity
■ data list: a summary list of the keystrokes executed by the intruder
■ rec num: total number of inserted records
■ start time: start command time
■ end time: end command time

In addition to the tags we have explained above, there is another type of tag with
a different kind of function:

■ link: creates a link to a different page. The link can be text type or image
type. In addition to the type of link, defined by the aspect attribute, there
is an additional attribute. The page attribute is used to define the link, the
frame in which to open the new page, and possibly other parameters.

■ now: contains information about local server date and time.

■ space: defines an empty area.

WA P I NTE R FAC E

It is possible to get information about our honeynet via a WAP device, without
using a networked PC. By means of a device which supports WAP technology,
we are able to verify at any time and from any location whether the network is
under attack.

The most useful part of the WAP interface is that it provides a summary page
containing the monitored hosts, the number of records for each host, and the
latest update. Only these few items were chosen for display because of the lim-
ited computational and graphics capabilities of WAP devices. The details of teh
situation are reported through the HTML application. In any case, the summary
page provides a useful snapshot of the monitored hosts.

It is also possible to create a dump of the database from the WAP device, which
may be handy if we are not connected through a “normal” network device.

36 ; L O G I N : V O L . 2 9 , N O . 6

D U M P DATA BA S E

After some days of network activity, we observed an overload of the Sebek
MySQL database. We therefore created the Utilities section of the interface to
allow a dump of the current database. The operation is catalogued with dump
date and time information, and an empty database is created. This brilliant solu-
tion allows for faster browsing of the collected data entries and a reduction in
transmission delay. It is also possible to activate a database dump via a WAP
interface.

Figure 3. WAP Interface to Sebek

Further Developments

The Sebek Web ITA Interface can be downloaded from http://www.honeynet.it.
Comments and feedback are welcome. Of course, it is just an experiment, but
we are pretty confident that this tool can be a valid alternative to the current ver-
sion of the interface. Meanwhile, Sebek is going to undergo some major
changes. Ed Balas has presented the next version of Sebek, which will include a
new interface, and the Italian Honeynet Project group was added to the devel-
oper team. Sebek and its implementations are proof that the Honeynet Project is
maturing rapidly and effectively.

Acknowledgments

The tool was developed by the Italian Honeynet project, a group of people work-
ing with the University of Milano at Crema. Special thanks to Michele Zambelli,
Cristiano Maruti, and Davide Bertoletti, who worked on the source code and the
architecture.

R E F E R E N C E S
Ed Balas, “Honeynet Data Analysis: A Technique for Correlating Sebek and Network
Data,” Proceedings of the Digital Forensic Research Workshop: http://www.dfrws.org.

Ed Balas, “Know Your Enemy: Sebek, a Kernel-Based Data Capture Tool”:
http://www.honeynet.org/papers/sebek.pdf.

Dario Forte, “The Art of Log Correlation: Tools and Techniques for Digital Investiga-
tions,” Proceedings of the Information Security South Africa 2004 Conference:
http://www.dflabs.com/images/Art_of_correlation_Dario_Forte.pdf.

The Italian Honeynet Project: http://www.honeynet.it.

J E N N I F E R S . G R A N I C K

strike back
Jennifer Stisa Granick joined Stanford Law School in
January 2001 as a lecturer and is Executive Director of
the Center for Internet and Society (CIS). She teaches,
speaks, and writes on the full spectrum of Internet
law issues, including computer crime and security,
national security, constitutional rights, and electronic
surveillance, areas in which her expertise is recog-
nized nationally.

jennifer@granick.com

S E V E R A L C O M P A N I E S A R E D E V E L O P I N G
interesting new programs system adminis-
trators can use to disable remote machines
that are sending damaging packets to their
computer systems. These technologies—
often called “strike back” or “active de-
fense”—foment a lot of interest among
those of us fed up with an avalanche of
unending worms and viruses.

But are strike-back technologies legal? The law simply
hasn’t developed to the point where there’s a clear
answer, but sysadmins resorting to strike-back are
playing with legal fire.

strike-back technologies are designed to locate the
source of unwanted or harmful Internet connections
and shut those machines down. For example, one such
program responds to the Code Red worm by identify-
ing the machine sending the worm, and using a back
door left by the worm itself to install and execute code
that stops the attacking machine from transmitting the
worm.

Many critiques of strike-back focus on the risk of retal-
iating against the wrong machines. IP spoofing can
mask the true origin of unwanted packets. Also, an
attack may come from an unwary third party’s machine
that is itself the victim of an attack. Disabling that
machine may cause the innocent owner serious prob-
lems. At the very least, the owner will realize that the
strike-back program has altered his or her system and
will need to investigate to determine exactly what
happened.

Even if a strike-back program accurately targets the
source of the attack, state and federal laws prohibit
unauthorized access to and modification of networked
computers. These laws not only outlaw the transmis-
sion of worms and viruses but also prohibit victims of
attacks from themselves intruding on their attacker’s
systems, regardless of motive. Any unauthorized access
to a networked computer that causes damage of $5000
or more (which includes the costs of investigating the
access) violates federal law. “Unauthorized access” cur-
rently means connecting to the computer without the
permission of the system owner. Most state laws pro-
hibit unauthorized access whether or not it causes
damage. Users of strike-back technology may be buy-
ing themselves a civil suit or, worse, criminal prosecu-
tion.

In time, legal rules may embrace strike-back. Congress
could decide to give system owners the right to disable
attacking machines, as it recently proposed doing for
intellectual property owners who discover their copy-
righted information on peer-to-peer networks. Or

; LO G I N : D E C E M B E R 2 0 0 4 S E C U R IT Y: STR I K E BAC K 37

38 ; L O G I N : V O L . 2 9 , N O . 6

judges confronting strike-back cases may decide to extend traditional legal
excuses such as self-defense or defense of others to this new situation.

The doctrine of self-defense or defense of others permits the use of otherwise
illegal force to prevent harm to oneself or to others under certain circumstances.
The precise definition of self-defense differs from state to state, but as a general
rule, self-defense applies only if the force used to repel the harm is necessary,
reasonable, and proportional. As applied to strike-back, a judge might think dis-
abling a system from sending Code Red packets is self-defense, but completely
paralyzing the system or reformatting the hard drive is not.

The excuse of self-defense usually applies only if you have no other means of
protecting yourself. Some states even require you to retreat if possible, to leave
the scene of the problem, before resorting to self-defense measures. There are
usually alternatives to strike-back, whether it’s taking your system offline (a dig-
ital form of retreat, perhaps), firewalls, or comprehensive patching. Perhaps a
court will find that self-defense is never a valid excuse, because the first line of
defense is to secure the system properly, not to strike back against attackers.

It’s folly to ask judges or juries to calculate whether a digital retaliation is neces-
sary, reasonable, and proportional when the security community itself doesn’t
yet agree on best practices. But in light of the interest in strike-back technology
and the eagerness of sysadmins to deploy it, it won’t be long before judges have
to decide whether strike-back is self-help or vigilantism.

M I C H A E L B . S C H E R

SSO/RSO/USO/
oh no?
Mike Scher makes his way in life as a security policy
and architecture consultant in Chicago. An attorney,
anthropologist, and security technologist, he’s been
working where the policy tires meet the implementa-
tion pavement since 1993.

mscher@cultural.com

T H E R E C U R R E N T C O R P O R AT E D R I V E T O
create1 a reduced, single, unified, or other-
wise simpler sign-on process is experiencing
a new growth phase, based on password
authentication. The rush to use passwords,
indeed to use one password for everything,
should give IT security personnel pause. The
move to use one password for everything
strikes me as significant backsliding. It may
be that I differ from many of my contempo-
raries in that I think even “good” passwords
are not always a good idea.

The only thing that’s wrong with password authentication
is that it uses passwords.—Me

It’s one thing to use passwords and a unified login por-
tal when you have 1.5 million customers using your
Web-based services, but it’s quite another to clump an
employee’s corporate, financial, business, and adminis-
trative access behind a single password. That single
password becomes everything, a valuable stepping-
stone taking the single-sign-on system into the brave
new world of “single break-in.”

When passwords are strong, they can become difficult
for users to manage. Forcing users to maintain six or
more passwords with variant rules, change periods, and
so forth won’t increase real-world security. When we do
find passwords manageable, it’s often because we have
created weak, predictable, guessable, crackable, or eas-
ily stolen passwords. When we succeed in making
strong passwords manageable, we have usually done
one of three things: tucked them all behind another
password (e.g., cryptographic password safes, certifi-
cate stores), placed them all someplace risky (e.g., wal-
let, keyboard tray, text file, Word doc), or made a cen-
tral authentication system of some sort that lets users
just use one or a couple of passwords for everything.

Let’s try to define some terms:

■ Unified sign-on: Passwords are synchronized or
authentication is centralized. Think RADIUS
servers with passwords, standard Microsoft domain
or Active Directory authentication, Sun’s NIS/NIS+,
central strong-authentication servers, or the many
password-synchronizing programs that don’t
require a central authentication server (but which
do require a system to coordinate your global pass-
word space).

■ Single sign-on: You log in to one application or host,
and other items know you’re logged in, because you
send some special blob of data to them that proves
it. Each device validates the data you send, either by
passing it to a central authentication system or by

; LO G I N : D E C E M B E R 2 0 0 4 S E C U R IT Y: S S O/ R S O/ U S O/ O H N O ? 39

40 ; L O G I N : V O L . 2 9 , N O . 6

cryptographically validating it. SSO implies a flat or tiered trust model, which
must be well documented for it to be effective. Full SSO is often deployed
with Web-based applications, using browser cookies or complex URLs to
“pass the hash,” by way of products like RSA Cleartrust and Entrust, and
with many Kerberos implementations, Microsoft’s included.2

■ Reduced sign-on: What most companies get when attempting to implement
single sign-on. At best, systems that share common authentication are
grouped by security level and purpose, so the user has a handful of authenti-
cation items that “do it all” ranked by security, each group its own trust
realm. At worst, there is no security coordination; all systems that could be
put on SSO are on one SSO or RSO system, the rest aren’t. Then, for example,
significant blurring of security realms may occur: Internet-facing, cleartext
Web interfaces may take the same password as the corporate benefits and
health insurance service system’s SSL interface, two IP addresses over.

T YP E S O F R E D U C E D - O R S I N G L E -S I G N - O N SYSTE M S
■ Password synchronization/coordination systems
■ Authentication store consolidation (AD, LDAP, NIS/NIS+)
■ Portal-based SSO and authentication gateways (including transparent man-

in-the-middle authenticators)
■ Token/cookie-enabled “start pages” (sometimes portals)
■ Token/cookie distribution centers (Cleartrust/Kerberos, etc.)

Risks

The risks presented by SSO systems stem from two significant audit and coordi-
nation issues: authentication credentials and user IDs.

AUTH E NTI C ATI O N C R E D E NTI A LS A R E L I K E E V I D E N C E

I tend to think of authentication as an evidence problem: “Does what the user is
providing meet the level of evidence that we require to prove they are who they
say they are?” Passwords, for example, are weak as evidence: They can be stolen
without the user’s knowledge, copied, intercepted, guessed. The stronger the
passwords are and the better the mechanisms over which they travel and their
compliance with good password policy, the better they are as evidence. Good
password policy, auditing, and a well-designed sign-on architecture can signifi-
cantly boost the efficacy of password-based security.

Nevertheless, on their own, passwords don’t really rise above what the legal
world might term a “preponderance of the evidence” (essentially, “more likely
than not”) in terms of evidentiary value. In the effort to make them stronger, we
combine them with other bits of evidence: physical access, IP addresses (e.g.,
the finance service center segment), digital certificates (which are used for most
authentication purposes as large passwords protected by small passwords), soft
tokens, hardware tokens, time of day, and so on. Just as with evidence in a trial,
the more evidence that points to the same conclusion, the more likely we are to
believe the conclusion likely is true. Indeed, “more likely than not” on its own is
not so bad. It’s the standard of proof required in many kinds of civil suit, and it’s
the standard that (everything taken in the best light for the plaintiff or prosecu-
tor) must be met before a case may go to trial.

R ATE YO U R SYSTE M S, O RG A N I Z E YO U R U S E R S

For some purposes passwords alone may be “good enough,” but remember that
we are talking about a shared authentication framework: The selected authenti-
cation mechanism is going to be used for many systems. The level of protection
required may vary from one system to another.

; LO G I N : D E C E M B E R 2 0 0 4 S E C U R IT Y: S S O/ R S O/ U S O/ O H N O ? 41

Thus, before a company implements a new password-based sign-on regime, it
should consider a company-wide effort to rate and rank hosts and applications
by business-criticality, regulatory requirements, and susceptibility to abuse via
stolen authentication credentials. Next, the company should try to organize
users’ network, host, and application login names into a unified or coordinated
scheme. For real SSO, a company-wide identity management scheme helps
administrators select the systems to which a given user should have access and
the rights of each class of user, and allows ready changes in user authentication
rights as responsibilities change. To ensure proper scope, the company must not
only define what systems are critical, but also the kinds of system that are to be
“in scope” for centralized authentication. At many organizations, Sarbanes-
Oxley compliance initiatives are already producing a set of critical systems and
authorized users, a first step on the path to real identity management.

The risks of not ranking systems and applications are significant. A system that
ought to use a higher-strength credential could be tied into a basic password-
based sign-on regime. A server that authenticates “in the clear” (internally or
even over the Internet) could be tied in, exposing passwords used for more sen-
sitive applications. Policies that are well defined, user education, and a good
audit process are essential to strengthen a password-based sign-on regime.

PA S SWO R D S A N D U N I F I E D -S I G N - O N SYSTE M S :
L I K E K E TC H U P A N D C H O CO L ATE C A K E ?

Depending on the company, information that is sensitive, business-critical,
trade-secret, or regulated could require stronger credentials than passwords
alone. Some authentication requirements (authorizing transactions or launching
events that will have major ramifications) may require standards of proof that
come close to “beyond a reasonable doubt.” We can achieve those higher levels
by using multiple factors that together rise to the level we need. Thus if we can
ensure that a password has sufficient strength, is regularly audited, and is never
used outside the corporate network, even for remote access, we can have a
higher level of trust in it. We could perhaps trust such a password for use on
more sensitive systems. Again, policy, education, and audit are key to using
passwords across the enterprise, with or without a fancy sign-on system.3

R I S KS F ROM R E D U C I N G / CO O R D I N ATI N G S I G N - O N
■ Payoff from password-guessing attacks (dictionary and brute force) is

increased. Think single break-in rather than single sign-on.
■ Password theft impact increases.
■ Coordinated DoS from bulk lockouts becomes a risk.
■ SSO may be provided to system-level accounts or to user IDs that have varied

access levels across the enterprise, placing the wrong level of safeguard on
critical accounts/systems.

■ Global authentication credentials may be exposed through integration with
external, non-SSL Web systems or through use on third-party, insecure hosts
(kiosks and the like); users may also use the same password on third-party
systems, from banking to blog sites and beyond.

■ Remote authentication gateways and VPNs may use the same, easily stolen
authentication credential, making single break-in a real possibility.

Benefits

Don’t get me wrong: A well-implemented SSO system can actually increase secu-
rity, but it’s going to take some work to get there. The mechanism behind single
sign-on that lets the server know the user has already logged in can be more
secure than the basic username/password mechanism an integrated application

42 ; L O G I N : V O L . 2 9 , N O . 6

used to use, as with using Kerberos tickets instead of user/pass over unen-
crypted channels. Policy at the company may already be ill-enforced—users reg-
ularly selecting weak passwords, leaving them in text files on their laptops,
etc.—such that consolidation to just a few passwords may allow better policy
enforcement along with increased user convenience.

When combined with a well-executed identity management program, the SSO
system may well provide some cost savings. Old accounts on per-seat systems
can be removed in a timely way; help-desk costs for password management may
go down; new employees may find all their accounts up and working right away;
new services can be rolled out on new systems without having users go through
the “new password” process. One must take care, however, to rate these savings
in a conservative way. Costs will not entirely disappear, and other issues will rise
to take their place.

B E N E F ITS
■ Convenience to both end users and developers
■ Account provisioning and removal efficiency, and cost savings (including bet-

ter oversight of per-seat license costs)
■ Centrally enforced, consistent authentication policies
■ Easier implementation of identity management systems, if the company is

trying to get a grip on distributed systems
■ Auditing and anomaly-based alerting for application and host login activity

Real-World Costs

Most of the costs are predictable, up-front costs to make the new authentication
regime a reality. Do not, however, forget that there will be ongoing costs in addi-
tion to the systems themselves. Legacy systems in particular may house critical
applications that will require careful, custom coding to enable integration with-
out simultaneously creating security exposures. Depending on the sign-on sys-
tem implemented, the company may need to step up its audit activities, policy
enforcement, and change-control procedures. Lost or forgotten authentication
credentials mean the user can do no work until the authentication is replaced or
a temporary authentication credential is assigned (one-use password, for exam-
ple). The increased need to assign temporary credentials so that users can get
back up and working leads to a need for superior controls against social engi-
neering. The SSO core systems become critical to the workday, so there need to
be redundant systems in resilient (and perhaps geographically diverse), physi-
cally secure environments with fault-tolerant networking to the rest of the com-
pany.

CO STS
■ Fault-tolerant systems in fault-tolerant environments
■ Recurring software licenses (and per-user licenses)
■ Software integration costs (internal staff and consultants)
■ Any hardware/license costs for strong authentication devices
■ Heightened audit and staff education costs in some environments

Real-World Quagmires

I’ve been unfortunate enough to witness several failed unified- or single-sign-on
rollouts from the perspective of an external security consultant. The process at
the large organizations involved inevitably proceeded in the following manner:

; LO G I N : D E C E M B E R 2 0 0 4 S E C U R IT Y: S S O/ R S O/ U S O/ O H N O ? 43

1. Users complain about having a ton of passwords with conflicting creation
and change policies (some of which are misguided in terms of the real risk
profile).

2. Security admins crack down on users reusing passwords or using poorly
constructed passwords, making the issue both an embarrassment and even
more unmanageable.

3. Users complain even more; help-desk calls go up as users forget new pass-
words more frequently than before.

4. Management does a study and finds that over 50% of help desk calls are
about password-related or account-creation issues; management may
already be looking at or paying for password reset management software.

5. Management calls for SSO, arguing that it’s an efficiency and cost issue.
6. IT security calls for tokens and a central authentication system.
7. A vendor-affiliated (or vendor-owned) consulting firm does a study showing

how much more token-based SSO/RSO will cost than plain-password
USO/SSO because of legacy system issues and per-seat costs for tokens.

8. The consulting firm makes arguments about how much more secure pass-
words can be with central password policy enforcement, without regard to
the costs of ensuring policy compliance.

9. Someone says, “Isn’t this just going back to Sun’s YP/NIS?” but is quickly
hauled out of the building.

10. Millions are slated for analyst input, consultants, redundant hardware,
software, licenses, and implementation.

11. By the time the SSO system is up in prototype, management finds that criti-
cal legacy systems can’t be integrated with it except at very high cost.

12. Other authentication systems start coming in (again). If first time here, go
back to step 1 and start over. Otherwise, continue . . .

13. Eventually, wiser organizations base all new authentication on one easy-to-
use token authentication system (plain RSA key fobs or SafeWord Silver
tokens, for example), while integrating Web-based applications behind one
or more single-sign-on portal systems.

Conclusion

Reducing the number of times and ways a user needs to sign on to applications
and systems is a worthy goal. Password policies don’t scale well when users are
faced with six, seven, or more sets of divergent policy implementations (even
where policy is consistent). However, one must take care not to assume that
integrated sign-on regimes are the only way to straighten out the authentication
mess. Further, one must take great care to manage expectations, risks, costs, and
timelines from the outset. Set fully articulated objectives based on realistic, cost-
justified goals, and it can work.

Finally, base whatever you do on public standards, either open or easily extensi-
ble ones. Adhering to standards ensures that future development and new appli-
cations cost less to integrate, and standards will meet with readier recognition
from business partners, auditors, and new systems personnel. There are several
well-fleshed-out standards for portal-based and central authentication integra-
tion. For example, for portal-based and Web-integrated SSO, the Liberty
Alliance standard4 (employing SAML),5 Kerberos, and MS Kerberos6 approaches
are solid, vetted, and well documented. For centralized authentication, there
are, of course, RADIUS, LDAP (and S/LDAP), MS AD, and many others.7

R E COM M E N DATI O N S
■ Combine any sign-on project with an enterprise-wide identity management

project. Benefit: Sarbanes-Oxley audits may be taking you down this path
already. Take advantage of the work now, while it’s current.

44 ; L O G I N : V O L . 2 9 , N O . 6

■ Combine any sign-on system with strong authentication products, such as
hardware tokens on an application-class or enterprise basis, to ensure that
critical credentials are less prone to theft, guessing, or other compromise.

■ Carefully spell out the real goals of the project. Ensure enterprise-wide
buy-in.

■ Ensure that most users will experience a noticeable reduction in sign-on
events. The best deployments of strong authentication have user demand
escalate dramatically, even with no SSO benefit, when users find that they no
longer need to deal with a dozen passwords. With an SSO result, the user
buy-in can thus be even greater.

■ Ensure that the project has realistic cost estimates and measurable goals.
Expect integration difficulties and special development and consulting costs.
Target specific problems that have readily assessed costs to the enterprise
today, so that the predicted cost savings can easily be substantiated.

■ Base the final technical architecture on public standards that provide
integration examples, reference code, and excellent documentation.

N OTE S
1. Or is it re-create? See Andrew Findlay’s piece on the corporate world’s quest to regain
the mainframe login milieu, “Regaining Single Sign-On,” at http://www.brunel.ac.uk/
depts/cc/papers/regaining-sso.html.

2. The Open Group has an introduction to single-sign-on concepts and the trust relation-
ships they entail at http://www.opengroup.org/security/sso/sso_intro.htm.

3. See G. Ellison, J. Hodges, and S. Landau, “Risks Presented by Single Sign-On Architec-
tures,” at http://research.sun.com/liberty/RPSSOA/, and Avi Rubin’s risk analysis of
Microsoft’s Passport SSO protocol at http://avirubin.com/passport.html.

4. See Project Liberty’s home pages at http://www.projectliberty.org/; for a good overview
of its current market position, go to
http://www.eweek.com/article2/0,1759,1619564,00.asp.

5. See http://java.sun.com/features/2002/05/single-signon.html for a practical description
of SAML in the SSO realm.

6. See
http://www.microsoft.com/technet/security/topics/identity/idmanage/P3Intran_1.mspx.

7. Diana Kelley and Ian Poynter gave an excellent overview of single-sign-on issues at
Black Hat USA 2002. Their presentation is available at http://www.blackhat.com/
presentations/bh-usa-02/bh-us-02-poynter-sso.ppt, with audio at rtsp://media-1
.datamerica.com/blackhat/bh-usa-02/audio/2002_Black_Hat_Vegas_V06-Diana_Kelly_
and_Ian_Poynter-Single_Sign_On_101-audio.rm.

E L I O T L E A R

being awash in
keys
A member of the USENIX community since 1988,
Eliot Lear works for Cisco Systems, Inc., and has
been their self-proclaimed corporate irritant
since 1998. He’s been a consumer a bit longer.

lear@cisco.com

T O D AY ’ S C O N S U M E R M U S T K E E P T R A C K
of many passwords in order to make use of
online banking, commerce, and government
services. Attempts to consolidate authenti-
cation methods into a single sign-on service
have thus far failed. Worse, with viruses,
spam, and phishing, more sophisticated
authentication is demanded. That sophisti-
cation today has brought confusion to the
consumer. What stops the consumer from
having a single secure password? This article
considers several areas of improvement the
industry should consider, and we’ll put forth
an example of a single smartcard that could
potentially provide unified authentication.

A (Very) Brief History of Success

The enterprise has largely been successful at consoli-
dating identity. This evolution began with common
host access through mechanisms such as Kerberos.1

Common network access was then made possible
through protocols and mechanisms such as TACACS
and RADIUS.2 Application integration is now follow-
ing as directory services evolve. All of this is great for
the enterprise, because with a single administrative
function tied to a registrar or human resources func-
tion, it is possible to enable or disable a user, change
user rights, and retrieve a log of user activity. This suc-
cess has been made possible by a vested interest in
consolidating administrative overhead costs. Unfor-
tunately, not only are most of the mechanisms devel-
oped for the enterprise inappropriate for consumer
authentication, but those products actually contribute
to the individual’s inconvenience. What does the con-
sumer need? What is necessary for the e-commerce
vendor?

The Phishing Example

Today most US banks use simple username/password
security with one-way SSL authentication and encryp-
tion.3 Put another way, the bank server authenticates
itself to the user’s browser, and in return the user sends
a username and password through a form to authenti-
cate himself or herself to the server. From a protocol
standpoint, this method provides mutual authentica-
tion. It breaks down, however, at the user interface
level. Published reports of US bank losses range from
$500 million to $1.2 billion last year, while British
banks lost over £1 billion.

; LO G I N : D E C E M B E R 2 0 0 4 S E C U R IT Y: B E I N G AWA S H I N K EYS 45

46 ; L O G I N : V O L . 2 9 , N O . 6

In order to stem the losses, some banks have attempted
to up the ante by requiring sophisticated challenge-
response systems. Even these systems, however, are
not impervious to attack. Consider the case in which
the masquerader receives from a potential victim a
username necessary for generating a challenge, sends
the username to the real bank, parses the challenge,
and then sends it back to the victim. In other words,
these miscreants are able to effect a classical man-in-
the-middle attack, all because the user didn’t bother to
click the little lock icon in his browser to verify that
the certificate was correct. Worse, most people don’t
know what the correct certificate would look like.

This same bank might want to raise the stakes further
by attempting to make the challenge readable only to
humans (and perhaps just barely at that). Unfortu-
nately, the same technology used by spammers and
phishers is also used by legitimate screen readers for
those who are visually impaired.

One approach to solve this problem is to make use of
public/private key pairs in the smartcards. There are
many methods to choose from, but the key point is
finding where the line of trust begins and ends. SANS
infection statistics claim that the average survival time
of an unpatched Windows PC is 19 minutes.4 Clearly
the PC is not to be trusted. This means that the point
of trust must be the smartcard itself, and that it must
maintain an opaque channel through the PC to the
authentication system on the other side.

Multiply the single bank login by investment houses,
health insurance, travel sites, bookstores, telephone
companies, not to mention an employer, so that in
order to retain convenient access one needs a whole
bag of hardware and a whole slew of login names.
Instead, wouldn’t it be nice if the user could make use
of one or more identities to authenticate against any
particular service?

Privacy concerns also abound. Any solution in this
space will have to come to grips with the idea that ven-
dors may wish to sell information about consumer
identities. While some jurisdictions, such as the Euro-
pean Union, provide strong controls for consumers,
others, such as the US, do not. Such correlation of
information is difficult to prevent, in part thanks to
HTTP and cookies. While it is unlikely that any solu-
tion in this space could help consumer privacy, one
wishes not to add to the problem.

“Many Have Tried”

There have been several attempts at providing individ-
uals with unique identities that could be used for
commerce. The reasons they have failed are complex,

including implementation limitations, trust of the
provider, vendor costs, and competitive concerns. As
we’ve seen, a software implementation leaves a tremen-
dous amount to be desired. Any solution in this prob-
lem space must be widely accepted by both consumers
and vendors, thus requiring that the needs of both be
met. Inasmuch as credit card companies indemnify
consumers from identity theft, they too have skin in
this game.

There exist a number of standards in this space already.
A plethora of ITU (International Telecommunication
Union) standards define the interface between smart-
cards, computers, and identities. SASL, SSL, and TLS
provide a means of transporting authentication over
the network, and Mozilla provides a way to use hard-
ware tokens. However, none of these standards has
established a sufficiently trustworthy path between the
smartcard and the server on the other end. In short,
because everyone wants to be king of the mountain,
nobody has been able to ascend.

Getting to a Secure Single Password

Reviewing our discussion, we can begin to see the
form of a solution and can derive some requirements.
Here, then, are mine:

■ First, while a beautiful dream to some, a PKI
deployed globally to all consumers has not hap-
pened yet, and there is no reason to believe condi-
tions will change. Therefore, a solution should not
rely on such a concept.

■ No single vendor can own the market. Anyone
playing King of the Mountain will be King of the
Molehill. This implies use of open standards from
the authenticator to the server, inclusively.

■ The mechanism must be easy to use.
■ The mechanism must handle multiple identities.
■ The mechanism must be secure, not only from the

network but from the host computer itself. This
includes the computer keyboard!

■ Finally, the mechanism must not cost an arm and a
leg. We consumers are price-conscious!

With these requirements in mind, let’s take a look at a
straw man.

A Straw-Man Solution

What follows is not a complete answer to all consumer
concerns. It is submitted for purposes of discussion.

Posit a smartcard with a small LCD display and a key-
pad (or other accessibility mechanisms) whose pur-
pose is merely to provide mutual authentication for

; LO G I N : D E C E M B E R 2 0 0 4 S E C U R IT Y: B E I N G AWA S H I N K EYS 47

any single transaction. The interface between this card
and a host computer would likely be USB, due to
power concerns.

Each service will have its own identity, which will con-
tain the following fields:

■ A name that is a randomly generated 2048-bit
number

■ A nickname supplied by the service
■ A 128-bit serial number
■ A 2048-bit public/private key pair

The card will have the following functions:

■ longlonglong createIdentity(char
*nickname, int *serial, char *pub-
lic)

■ confirmIdentity(longlonglong name,
char *cryptext)

These functions are called not by the host computer
but by the remote server. They are only accessible if
and only if the user confirms them on the smartcard
itself.

Let us assume that the identity with the nickname of
“Joe Blow’s Bookstore” exists with a name of N and a
serial number of S. When I connect to Joe Blow’s Web
site and want to authenticate a transaction, it will call
the function confirmIdentity(). cryptext will
be encrypted in the previously generated public/
private key pair and will contain the next expected
serial number and a comment indicating the nature of
the transaction. Assuming that there is such a name on
my smartcard and the cryptext is decrypted prop-
erly, if the serial number is correct, both it and the
comment will be displayed on the smartcard, along
with the nickname. If all looks correct to me, I push
the green button. If it looks incorrect, I either do noth-
ing or push the red button. Similarly, the card should
report all failed access attempts.

What has this accomplished? First and foremost, no
more passwords are sent on the wire—encrypted or
not. Second, I no longer rely on the host computer for
security. Third, I may store as many identities as I wish
in as many smartcards as I wish. Fourth, no individual
vendor can share an identity in such a way that a third
party could make use of it for purposes of authentica-
tion without me knowing about it. Finally, no remote
server will be able to guess even the mere existence of
other identities on the card. Other authorized parties
may tell them about them, but if they try to access the
identity, I’ll know something fishy is going on. Note
that X.509 certificates are not needed for the common
usage case.

What happens if someone other than Joe Blow’s Book-
store tries to use the nickname for Joe Blow’s book-

store? When the user is asked to create the new iden-
tity when he is not at Joe Blow’s Bookstore, he should
notice that something is wrong. However, even if he
does create a new identity that has the same nickname,
all this phisher has access to is its own fictitious iden-
tity and not the real Joe Blow’s, because the names will
differ.

The tricky part is in createIdentity. As with any
authentication system, the weakest part is always in
the bootstrapping process. Here the risk is that some-
how the computer or other device between the card
and the authentication server might eavesdrop or oth-
erwise perform a man-in-the-middle attack. In order
to protect against such a thing, that path must be en-
crypted. For this use only, a certificate may be war-
ranted. However, one needs signed certificates for the
server and for the card, not for the individual. The
server just needs to verify that the endpoint is a suffi-
ciently secure card.

Another approach would be to use out-of-band infor-
mation, although we run the risk of having the same
accessibility problems mentioned earlier. For instance,
the user could enter the ID, as well as the serial num-
ber, directly on the card. This method is cumbersome
to the user.

The astute observer will note that there is no method
to list identities. Such a function should be considered
dangerous, because if the authorized user can execute
it from the host computer, then so might someone else.
If such a listing is displayed, it should be displayed on
the card itself.

Conclusion

There are numerous problems with the straw man
above. The goal of the exercise was to provide some
idea of what standards are needed and which aren’t
needed (X.509 for most transactions), and to demon-
strate the sort of user interface that is required. An
open standard is needed to exchange authentication
information all the way from the card to the authenti-
cation server and back again.

Enterprises have an interest in this sort of solution as
well, since solving the problem in the consumer space
brings with it the consumer market’s economies of
scale. Tokens are already pretty cheap. Having to man-
age them, however, has been another matter entirely.
That, too, could be addressed with such a solution.

The hardest part of this problem remains the registra-
tion of identities. In this limited sense, use of a PKI
may be justified.

48 ; L O G I N : V O L . 2 9 , N O . 6

One limitation of my approach is that it doesn’t easily
allow for consolidation of credit cards, which are noth-
ing more than keys themselves. Because identities are
kept secret on the smartcard and are selected by the
authorizing party, there is no way for the user to spec-
ify authorization of a charge on a particular account.

N OTE S

1. S. Miller et al., “Kerberos: An Authentication Service for
Open Network Systems,” Proceedings of the USENIX Winter
Conference1988 (February 1988), pp. 191–202.

2. C. Rigney et al., “Remote Authentication Dial-In User Ser-
vice (RADIUS),” RFC 2865 (June 2000); W. Yeong et al.,
“X.500 Lightweight Directory Access Protocol,” RFC 1487
(July 1993).

3. A. Frier et al., “The SSL 3.0 Protocol,” Netscape Communi-
cations Corp. (November 18, 1996).

4. The SANS Institute, “Survival Time History” (August
2004): http://isc.incidents.org.

S A N J A Y G O E L A N D S T E P H E N F . B U S H

biological models
of security for virus
propagation in
computer networks
Dr. Goel is an assistant professor in the School of
Business and director of research at the Center for
Information Forensics and Assurance at SUNY Albany.
His research interests include distributed computing,
computer security, risk analysis, biological modeling,
and optimization algorithms.

goel@albany.edu
http://www.albany.edu/~goel

Dr. Bush is a researcher at GE Global Research. He con-
tinues to explore novel concepts in complexity and
algorithmic information theory with a spectrum of
applications ranging from network security and low-
energy wireless ad hoc sensor networking to DNA
sequence analysis for bioinformatics.

bushsf@research.ge.com
http://www.research.ge.com/~bushsf

T H I S A R T I C L E D I S C U S S E S T H E S I M I -
larity between the propagation of patho-
gens (viruses and worms) on computer net-
works and the proliferation of pathogens in
cellular organisms (organisms with genetic
material contained within a membrane-
encased nucleus). It introduces several bio-
logical mechanisms which are used in these
organisms to protect against such patho-
gens and presents security models for net-
worked computers inspired by several bio-
logical paradigms, including genomics (RNA
interference), proteomics (pathway map-
ping), and physiology (immune system). In
addition, the study of epidemiological mod-
els for disease control can inspire methods
for controlling the spread of pathogens
across multiple nodes of a network. It also
presents results based on the authors’
research in immune system modeling.

The analogy between computers and communication
networks and living organisms is an enticing paradigm
that researchers have been exploring for some time. In
1984 Fred Cohen, in his Ph.D. dissertation, first put
the term “computer virus” into print, although there
he credits Len Adleman with coining the term used to
describe the malicious pieces of code that can prolifer-
ate on a network and infect multiple computers. Since
then, advances in bioinformatics (that is, the modeling
of biological processes as well as storage, retrieval, and
analysis of biological data through the use of informa-
tion technology) have helped to define these analogies
more precisely, to the point where results in bioinfor-
matics can often be leveraged for use in computer net-
working and security. The challenges faced in bioinfor-
matics are quite similar to those in computer network
security. Several mechanisms have been devised in bio-
logical organisms to protect against pathogen invasion.
It is important to learn from these biological phenom-
ena and devise innovative solutions to protect com-
puter systems from software pathogens.

Virus detection systems prevalent today are based on
data analysis which looks for the presence of specific
patterns. The data may be composed of header infor-
mation in incoming packets at a firewall, data resident
on a node, or behavioral patterns of programs resident
on a computer. In most cases, the patterns of behavior
(signatures) are defined a priori based on knowledge of
existing pathogens. The signatures are usually gleaned
from virus code by teams of virus experts who dissect

; LO G I N : D E C E M B E R 2 0 0 4 S E C U R IT Y: B I O LO G I C A L M O D E LS F O R V I R U S P RO PAG ATI O N 49

50 ; L O G I N : V O L . 2 9 , N O . 6

the code and identify strings that uniquely identify the virus. The signature
database in virus detection programs becomes obsolete rapidly, as new virus
strains are released, and is updated as these new viruses are discovered. How-
ever, with the speed of virus propagation increasing—as is evident from the
spread of the Slammer worm, which infected more than 90% of vulnerable hosts
in 10 minutes—this mechanism is proving inadequate to control the spread of
viruses, with its consequent loss of data and services. It is imperative to develop
new virus detection software that does not rely solely on external intervention
but can detect new strains of viruses by organically generating “antibodies”
within a node. The physiology of cellular organisms contains several paradigms
that can be used as inspiration for developing such autonomous security sys-
tems in computer networks. Several streams of research on automatic detection
of virus (and worm) signatures are in progress (Kim and Karp, 2004), but this
research is still preliminary and not mature enough for commercial deployment.

One of the initial areas explored in the realm of biological models of computer
security involves the work of Forrest et al. (1994) with regard to virus detection.
Here the similarities are strikingly clear regarding the need to quickly and effi-
ciently identify viruses, generate “antibodies,” and remove them from the sys-
tem before they cause damage and propagate throughout the system. Prior to
this, Kauffman (1969) had been focused on understanding and modeling the
mechanics of gene transcription and translation within the cell. The concept of a
complex network of interactions describing gene regulation had been born in
the form of the Boolean network model. Now that the human genome has been
fully sequenced, the task of determining gene function is a significant focus.
However, specific genes identified in the sequence can interact with other genes
in complex ways. Some portions of the genome can turn off the expression of
other genes. These portions are called the structural and regulatory genes. Their
behavior is thought to be a defense against foreign sequences, perhaps passed on
from ancient viruses, from being expressed and potentially harming the organ-
ism (Hood, 2004). In fact, in this mechanism one can draw upon concepts that
apply directly to network security, namely, the idea of defensive code that can be
inherently activated to turn off dangerous code or viruses within the network.
One of the problems in virus protection systems is the result of false positives,
when portions of the code that provide legitimate functionality may be turned
off accidentally. The authors propose use of surrogate code that can replicate the
functionality of the pieces of code that are shut off, maintaining continuity in
the operations of the node. Specifically, fault-tolerant networks are capable of
surviving attacks and dynamically reconstituting services. Bush (2003) explores
the ability of a communication network to genetically constitute a service. The
network service evolves in real time using whatever building blocks are avail-
able within the network. Thus, a service damaged by a virus attack may be
genetically reconstituted in real time. The general concept was illustrated using
a specific example of a genetic jitter-control algorithm which evolved a 100-fold
decrease in jitter in real time.

Another biological paradigm which lends itself well to adaptation as a computer
security paradigm is protein pathway mapping. Living organisms have complex
metabolic pathways consisting of interactions between proteins and enzymes,
which may themselves have multiple subunits, alternate forms, and alternate
specificities. Molecular biologists have spent decades investigating these bio-
chemical pathways in organisms. These pathways usually relate to a known
physiological process or phenotype and together constitute protein networks.
These networks are very complex, with several alternate pathways through the
same start and end point. The partitioning of networks into pathways is, how-
ever, often arbitrary, with the start and finish points chosen based on “impor-
tant” or easily understood compounds. The models for biochemical pathways
that have been developed thus far primarily demonstrate the working of the cel-

; LO G I N : D E C E M B E R 2 0 0 4 S E C U R IT Y: B I O LO G I C A L M O D E LS F O R V I R U S P RO PAG ATI O N 51

lular machinery for specific tasks, such as metabolic flux and signaling. Several
different modeling techniques are used: (1) classical biochemical pathways (e.g.,
glycolysis, TCA cycle); (2) stoichiometric modeling (e.g., flux balance analysis);
and (3) kinetic modeling (e.g., CyberCell, E-Cell). More recently, cell metabo-
lism is being studied using cellular networks that are defined from large-scale
protein interaction and gene expression measurements.

Similar to the cellular networks in organisms, computer networks are complex
in nature and collectively exhibit complex behavior. In these networks, start and
end points can be arbitrarily chosen, and multiple paths may exist between the
same nodes. Protein networks are predetermined and stay fairly static, whereas
computer networks are constantly evolving with the addition of new nodes and
network links. In protein networks, interactions among proteins, enzymes, and
catalysts culminate in specific events. Analogously to protein networks, interac-
tions among nodes of computer networks result in specific events or conditions
in the network. The events may include propagation of viruses, denial-of-service
attacks, and congestion on the network. Investigation of the network pathways
along which the events propagate will enable us in forensic analysis to deter-
mine the root cause of the failures, as well as helping in developing intelligence
for prediction of network events.

One biological paradigm that is not directly related to the physiology of living
organisms is epidemiology that involves statistical analysis of disease propaga-
tion. Three basic models of disease propagation have been used extensively in
epidemiological studies. Kephart and White (1991) first used these epidemio-
logical models to study the spread of viruses on computer networks. Williamson
and Léveillé (2003) have also developed virus spread models in computer net-
works using the epidemiological metaphor. Since then, several researchers have
used variations of these basic models for studying the spread of computer
viruses on computer networks.

The authors (Goel and Bush, 2003) have used the biological paradigm of the
immune system, coupled with information theory, to create security models for
network security. Information theory allows generic metrics and signatures to be
created which transcend the specific details of a system or an individual piece of
code. They compare information-theoretic approaches with traditional string-
matching techniques. They also provide an analytic model that uses the epi-
demiological paradigm to study the behavior of the nodes. This article discusses
several different biological paradigms which inspire defense against pathogens
that invade computer networks, but it focuses on in-depth analysis of the
immune system model. Some of the other innovative biological models that are
currently being researched will be discussed in depth in a series of future arti-
cles.

Immune System Models

The role of the human immune system is to protect our body from pathogens
such as viruses, bacteria, and microbes. The immune system consists of various
kinds of cells, which operate autonomously and through interaction with each
other to create complex chains of events leading to the destruction of pathogens.
At a high level, cells can be categorized into two groups: detectors and effectors.
Detectors identify pathogens, and effectors neutralize them. There are two kinds
of immune responses evoked by the immune system: innate response and adap-
tive response. The innate immune response is the natural resistance of the body
to foreign antigens and is non-specific toward invaders in the body. During this
response, a specialized class of cells called phagocytes (macrophages and neu-
trophils) is used. These specialized cells, which have surface receptors that
match many common bacteria, have remained unchanged throughout evolu-

52 ; L O G I N : V O L . 2 9 , N O . 6

tion. This system reacts nearly instantaneously to detect pathogens in the body.
However, it is incapable of recognizing viruses and bacteria that mutate and
evolve.

The innate immune response is complemented by the adaptive immune
response, in which antibodies are generated to specific pathogens that are not
recognized by the phagocytes. The adaptive response system uses lymphocytes,
which have receptors for a specific strain instead of having receptors for multi-
ple strains as phagocytes do. Lymphocytes are produced in the bone marrow,
which generates variants of genes that encode the receptor molecules and
mature in the thymus. When an antigen is encountered, it is presented to the
lymphocytes in the lymphatic system. The lymphocytes that match proliferate
by cloning and subsequently differentiate into B-cells, which generate antibod-
ies, and T-cells, which destroy infected cells and activate other cells in the
immune system. Most effectors that proliferate to fight pathogens die; only
5–10% are converted into memory cells which retain the signature of the
pathogen that was matched. These memory cells permit a rapid response the
next time a similar pathogen is encountered, which is the principle used in vac-
cinations and inoculations. The number of memory cells produced is directly
related to the number of effector cells in the initial response to a disease. While
the total number of memory cells can become quite large, still, as an organism is
exposed to new pathogens, newer memory cells may take the place of older
memory cells, due to competition for space (Ahmed, 1998). This decrease in
memory cells leads to weakened immunity over time. Another reason for weak-
ened immunity is an immune response rate that is not sufficiently rapid to coun-
teract the spread of a powerful exotoxin, such as that produced by tetanus (Har-
court et al., 2004). Lymphocytes have a fixed lifetime, and if during this period
they do not match a pathogen, they automatically die.

The key to the functioning of the immune system is detection. Recognition is
based on pattern matching between complementary protein structures of the
antigen and the detector. The primary purpose of the genetic mechanism in the
thymus and bone marrow is to generate proteins with different physical struc-
tures. The immune system recognizes pathogens by matching the protein struc-
ture of the pathogen with that of the receptor. If the receptor of the antigen and
the detector fit together like a three-dimensional jigsaw puzzle, a match is
found. A fundamental problem with the detection mechanism of the immune
system is its computational complexity. For example, if there are 50 different
attributes with four different values, over six million different detectors are
required to cover the search space. The number of virus structures that can arise
due to different protein configurations is virtually infinite. In spite of high effi-
ciency in creating detectors and pattern matching at the molecular level, main-
taining a detector for each possible pathogen protein structure is not feasible.
The human immune mechanism solves this problem by using generalizations in
matching—that is, some features of the structure are ignored during matching.
This is called specificity of match; the more features are ignored, the lower the
specificity. The lower the specificity, the fewer the number of detectors required
for matching a population of pathogens and the more nonspecific is the
response. An explanation of specificity is elegantly described in J.H. Holland’s
description of classifier systems (1985). To cover the space of all possible non-
self proteins, the immune system uses detectors with low specificity. This
enables the immune system to detect most pathogens with only a few detectors;
however, it results in poor discrimination ability and a weak response to
pathogen intrusion. The immune system counters this problem by employing a
process called affinity maturation (Bradley and Tyrrell, 2000). Several methods
have been proposed for analytic representation of matching pathogen signatures
in the immune system, such as bit-strings (Farmer, Packard, and Perelson, 1986;
De Boer, Segel, and Perelson, 1992), Euclidean parameter spaces (Segel and

; LO G I N : D E C E M B E R 2 0 0 4 S E C U R IT Y: B I O LO G I C A L M O D E LS F O R V I R U S P RO PAG ATI O N 53

Perelson, 1988), polyhedron models (Weinand, 1991), and, more recently, Kol-
mogorov Complexity (Bush, 2002; Goel and Bush, 2003).

Several applications based on immune systems outside the area of biology have
recently emerged, the most notable of these being computer security. Kephart
(1995) was perhaps the first to introduce the idea of using biologically inspired
defenses against computer viruses and immune systems for computer security.
Forrest et al. (1994) also proposed the use of immune system concepts for
design of computer security systems and provided an elaborate description of
some immune system principles applicable to security. They presented three
alternate matching schemes—Hamming distance, edit distance, and r-contigu-
ous bits—arguing that the primary premise behind a computer immune system
should be the ability to distinguish between self and non-self. They presented a
signature scheme where a data tuple consisting of source IP address, destination
IP address, and a destination port number were used to distinguish self-packets
from non-self packets. Hofmeyr (1999) presented a detailed architecture of a
computer immune system. He analytically compared different schemes for
detection of pathogens, such as Hamming distance and specificity. There are sev-
eral other works in the literature on the use of immune systems for network
security, including Murray (1998), Kim and Bentley (1999), and Skormin et al.
(2001). Kephart and White (1991, 1993) present an architecture for an immune
system and the issues involved in its commercialization. They incorporate a
virus analysis center to which viruses are presented for analysis through an
active network. The Kolmogorov Complexity approach (Goel and Bush, 2003)
demonstrated a 32% decrease in the time required to detect a signature over two
common Hamming distance–based matching techniques, i.e., a sliding window
and the number of contiguous bit matches. The Kolmogorov Complexity–based
technique estimates the information distance of entire code sequences, not just
specific segments or bits. Using the entire code sequence makes it more difficult
to modify the virus so that it can hide in another portion of a legitimate code
segment.

Artificial immune systems consist of detectors and effectors that are able to rec-
ognize specific pathogen signatures and neutralize the pathogens. To detect
pathogens, the signature of incoming traffic packets is matched against signa-
tures of potential viruses stored in an immune system database. An immune sys-
tem that is capable of recognizing most pathogens requires a large number of
detectors. Low-specificity detectors that identify and match several viruses are
often used to reduce the number of detectors at the cost of increased false posi-
tives. The computational complexity of a computer immune system remains
fairly high, and individual nodes are incapable of garnering enough resources to
match against a large signature set. The computational complexity gets worse as
network traffic grows due to use of broadband networks, and it is straining the
capacities of conventional security tools such as packet-filtering firewalls. Mas-
sive parallelism and molecular-level pattern matching allow the biological
immune system to maintain a large number of detectors and efficiently match
pathogens. However, artificial immune systems have not achieved these levels of
efficiency. To reduce the computational burden on any individual node in the
network, all nodes need to pool their resources, share information, and collec-
tively defend the network. In addition, such inspection should be done within
the network itself, to improve efficiency and reduce the time required for react-
ing to an event in the network. This concept of collective defense enabled by a
unified framework is the primary premise of the authors’ research. To enable this
concept of collective network defense, they have proposed an approach based
on information theory principles using Kolmogorov Complexity measures.

To study the parameters and different schemes of detection and sampling in the
immune system, Goel et al. (working paper) have developed a simulation model
using RePast (Schaeffer et al., 2004), a simulation tool typically used for model-

54 ; L O G I N : V O L . 2 9 , N O . 6

ing self-organizing systems. The simulation models a classical immune system,
where new signatures are created by mutation of existing signatures which then
go through a maturation phase. The simulation also models a cooperative
immune system, where multiple nodes on the network share virus detection
information prevalent in the network to improve the efficiency of each immune
system. The research will investigate the trade-off between the additional bur-
den of sharing information across nodes and the benefit of improving scanning
efficiency by obtaining intelligence information on active or new pathogens.
Figures 1a and 1b show the impact of the match threshold and sampling rate,
respectively, on the performance of the immune system. Figure 1a shows a high
gradient between a threshold match of 0.2 and 0.4, which is the practical operat-
ing region for the immune system. Figure 1b shows an improved performance
with the sampling rate, which asymptotes around 70%.

Figure 1. Plots showing impact of match threshold and sampling rate on immune system-
metrics

Goel and Bush (2003) have also compared different signature metrics and have
demonstrated that Kolmogorov Complexity is a feasible metric for the signature
of pathogens.

Conclusion

The security models for detection and elimination of pathogens that invade
computer networks have been based on perimeter defense. Such defenses are
proving inept against fast-spreading viruses and worms. The current tools are
unable to guarantee adequate protection of data and unfettered access to serv-
ices. It is imperative to complement these existing security models with reactive
systems that are able to detect new strains of pathogens reliably and are able to
destroy them before they can cause damage and propagate further. Several bio-
logical paradigms provide a rich substrate to conceptualize and build computer
security models that are reactive in nature. Three specific mechanisms in mam-
malian organisms present the most potential: (1) the RNAi mechanism, (2) pro-
tein pathway mapping, and (3) the immune mechanism. In addition, the models

; LO G I N : D E C E M B E R 2 0 0 4 S E C U R IT Y: B I O LO G I C A L M O D E LS F O R V I R U S P RO PAG ATI O N 55

of disease control that study the spread and control of viruses suggest ways to
throttle the spread of viruses. Current work has mainly focused on the use of
immune and epidemiological models. It is time to move beyond these existing
models to other innovative models, such as those based on genomics and pro-
teomics. Such reactive models provide a scalable, resilient, and cost-effective
mechanism that may keep pace with constantly evolving security needs.

Acknowledgments

The authors are grateful to Damira Pon, from the School of Information Science
at the State University of New York at Albany, for a thorough review of this arti-
cle and her useful suggestions.

R E F E R E N C E S
Ahmed, R., February 5, 1998. “Long-term Immune Memory Holds Clues to Vaccine
Development,” Emory Health Sciences Press Release.

Bradley, D.W., and Tyrrell, A.M., April 2000. “Immunotronics: Hardware Fault Tolerance
Inspired by the Immune System,” ICES 2000 (Springer-Verlag, 2000), pp. 11–20.

Bush, S.F., 2002. “Active Virtual Network Management Prediction: Complexity as a
Framework for Prediction, Optimization, and Assurance,” Proceedings of the 2002 DARPA
Active Networks Conference and Exposition (DANCE 2002) (Los Alamos, CA: IEEE Com-
puter Society Press), pp. 534–553: http://www.research.ge.com/~bushsf/ftn/005-
FINAL.pdf.

Bush, S.F., 2003. “Genetically Induced Communication Network Fault Tolerance,” Com-
plexity Journal, vol. 9, no. 2, Special Issue: “Resilient & Adaptive Defense of Computing
Networks”: http://www.research.ge.com/~bushsf/pdfpapers/ComplexityJournal.pdf.

Cohen, F., 1987. “Computer Viruses Theory and Experiments,” Computers and Security,
vol. 6, pp. 22–35.

De Boer, R.J., Segel, L.A., and Perelson, A.S., 1992. “Pattern Formation in One- and Two-
Dimensional Shape-Space Models of the Immune System,” J. Theor. Biol., pp. 155,
295–333.

Farmer, J.D., Packard, N.H., and Perelson, A.S., 1986. “The Immune System, Adaptation,
and Machine Learning,” Physica D, vol. 22, pp. 187–204.

Forrest, S., Perelson, A.S., Allen, L., and Cherukuri, R., 1994. “Self–Nonself Discrimina-
tion in a Computer,” Proceedings of the 1994 IEEE Symposium on Research in Security and
Privacy (Los Alamos, CA: IEEE Computer Society Press).

Goel, S., and Bush, S.F., 2003. “Kolmogorov Complexity Estimates for Detection of
Viruses in Biologically Inspired Security Systems: A Comparison with Traditional
Approaches,” Complexity, vol. 9, no. 2: http://www.research.ge.com/~bushsf/pdfpapers/
ImmunoComplexity.pdf.

Goel, S., Rangan, P., Lessner, L., and Bush, S.F., [working paper]. “Collective Network
Defense: A Network Security Paradigm Using Immunological Models.”

Harcourt, G.C., Lucas, M., Sheridan, I., Barnes, E., Phillips, R., Klenerman, P., July 2004.
“Longitudinal Mapping of Protective CD4 T Cell Responses Against HCV: Analysis of
Fluctuating Dominant and Subdominant HLA-DR11 Restricted Epitopes,” Journal of Viral
Hepatitis, vol. 11, no. 4, p. 324.

Hofmeyr, S.A., May 1999. “An Immunological Model of Distributed Detection and Its
Application to Computer Security,” Ph.D. thesis, University of New Mexico.

Holland, J.H., 1985. “Properties of the Bucket Brigade Algorithm,” Proceedings of the 1st
international Conference on Genetic Algorithms and Their Applications, ed. Grefenstette, J.J.,
L.E. Associates, pp. 1–7.

Hood, E., 2004. “RNAi: What’s All the Noise About Gene Silencing?” Environmental
Health Perspectives, vol. 112, no. 4.

Kauffman, S.A., 1969. “Metabolic Stability and Epigenesis in Randomly Constructed
Genetic Nets,” J. Theor. Biol., vol. 22, pp. 437–467.

Kephart, J. O., 1995. “Biologically Inspired Defenses Against Computer Viruses,” Proceed-
ings of IJCA ’95, pp. 985–996.

56 ; L O G I N : V O L . 2 9 , N O . 6

Kephart, J.O., and White, S.R., 1991. “Directed Graph Epidemiological Models of Com-
puter Viruses,” Proceedings of the 1991 IEEE Computer Security Symposium on Research in
Security and Privacy, pp. 343–359.

Kephart, J.O., and White, S.R., May 1993. “Measuring and Modeling Computer Virus
Prevalence,” Proceedings of the 1993 IEEE Computer Society Symposium on Research in
Security and Privacy, pp. 2–15.

Kim, H.-A., and Karp, B. 2004. “Autograph: Toward Automated, Distributed Worm Signa-
ture Detection,” Proceedings of the 13th USENIX Security Symposium, pp. 271–286.

Kim, J., and Bentley, P., 1999. “Negative Selection and Niching by an Artificial Immune
System for Network Intrusion Detection,” Late-Breaking Papers at the 1999 Genetic and
Evolutionary Computation Conference (GECCO ’99),, pp.149-158.

Murray, W.H., 1998. “The Application of Epidemiology to Computer Viruses,” Computer
Security, vol. 7, pp. 139–150.

Schaeffer, S.E., Clemens, J.P., and Hamilton, P., 2004. “Decision Making in a Distributed
Sensor Network,” Proceedings of the Santa Fe Institute Complex Systems Summer School:
http://www.tcs.hut.fi/~satu/online-papers/sensor.pdf.

Segel, L.A., and Perelson, A.S., 1988. “Computations in Shape Space: A New Approach to
Immune Network Theory,” in Theoretical Immunology Part 2, ed. Perelson, A.S. (Red-
wood City: Addison-Wesle)y, pp. 377–401.

Skormin, V.A., Delgado-Frias, J.G., McGee, D.L., Giordano, J.V., Popyack, L.J., Gorodet-
ski, V.I., and Tarakanov, A.O., 2001. “BASIS: A Biological Approach to System Information
Security,” Mathematical Methods, Models, and Architectures for Network Security Systems
(MMM-ACNS) 2001, pp. 127–142.

Weinand, R.G., 1991. “Somatic Mutation and the Antibody Repertoire: A Computational
Model of Shape-Space,” in Molecular Evolution on Rugged Landscapes, ed. Perelson, A.S.
and Kaufman, S.A., SFT Studies in the Science of Complexity, vol. 9 (Redwood City: Addi-
son-Wesley), pp. 215–236.

Williamson, M.M., and Léveillé, J., 2003. “An Epidemiological Model of Virus Spread and
Cleanup”: http://www.hpl.hp.com/techreports/2003/HPL-2003-39.html.

; LO G I N : D E C E M B E R 2 0 0 4 S E C U R IT Y: E XTR AC TI N G TH E L E S S O N S O F M U LTI C S 57

J O N A T H A N S . S H A P I R O

extracting the
lessons of Multics
Jonathan Shapiro is an assistant professor at Johns
Hopkins University. His research interests focus on
operating systems and system security. He is also a
recidivist entrepreneur and has seen the development
of several products from technical concept to market.

shap@eros-os.org
http://www.eros-os.org/~shap

T H E K E Y N O T E S P E A K E R F O R T H I S
year’s USENIX Security Conference was Earl
Boebert, a key participant in the Multics
project. Interspersed with pointed (and
painfully accurate) insights about the state
of the computing field, Dr. Boebert’s talk
focused on the structure of the Multics sys-
tem, its key features, how many security
problems it didn’t have, and how little has
been learned from it in the intervening 40
years. Karger and Schell made much the
same claim in their retrospective paper.1 In
spite of being one of the best documented
early operating system projects in
existence,2 and a staggeringly innovative
effort in its own right, Multics is primarily
remembered today as the system whose
cost and ongoing delays caused Bell Labs to
withdraw from the Multics collaboration
and ultimately led Thompson, Ritchie,
McIlroy, and Ossana to start the UNIX proj-
ect. It seems fitting to try to answer the
question Boebert posed in his talk: What can
we learn from the past? Why did Multics
fail?

The Multics project was proposed in 1962 by J.C.R.
Licklider (the founder of DARPA) as part of his com-
mitment to connected, multi-user computing. It was a
year of dramatic invention. The notion of computer-
supported collaboration, and therefore multi-user,
time-shared computing in some form, was definitely
“in the ether.” Doug Engelbart and Ted Nelson would
independently invent hypertext in 1962.3 Berkeley,
Dartmouth, and several other groups were exploring
time-sharing systems, and 1962 was also the year that
brought us Spacewar, the first computer game. The
mouse would come shortly as Engelbart gained experi-
ence with Augment and, later, NLS (early hypertext
systems). In the middle of this, a bunch of technolo-
gists decided to invent the modern computing utility.
The Multics contract was awarded by DARPA in
August 1964.

While few of the major innovations embodied in the
Multics system were original to Multics, it was proba-
bly the first attempt to integrate so many ideas effec-
tively. Virtual memory, segment-based protection, a
hierarchical file system, shared memory multiprocess-
ing, security, and online reconfiguration were all incor-
porated into the Multics design. Multics may have

58 ; L O G I N : V O L . 2 9 , N O . 6

been the first system implemented primarily in a high-level programming lan-
guage, and it was one of the first to support multiple programming languages for
creating applications. MACLISP, troff, and many other early tools trace their ori-
gins to the Multics system, as does much of the modern UNIX command line.
Multics originated the term “computer utility,” a concept that we have yet to
fully explore 40 years later The integrated circuit was patented in 1959 and by
1963 was just entering the scene in the form of the 7400-series logic parts. Vol-
ume customers might soon expect to get as many as four gates on a single chip. .
Considered in the context of then-available electronics technology, Multics was
an incredible undertaking.

Today, we take for granted (at least, we say we do) many of the software tech-
niques pioneered in the Multics effort. Multics was one of the first attempts at
serious software engineering in a large, general-purpose system. It established
the use of small, enforcedly encapsulated (isolated) software components (sub-
systems) that could be invoked only through their published interfaces. Using
this fundamental building block, the Multicians crafted an end-to-end design
that was both robust and secure. Even a casual reading of the Orange Book
(TCSEC) standard reveals that many of the ideas of the Orange Book originated
in either the Multics architecture or the Multics software process.

A skeptic might be prompted to ask, “If Multics was so wonderful, why aren’t we
using it today?” It is tempting to think, as Boebert implies, that Multics was a
victim of the American desire for “crap in a hurry,” and that this did not allow
for the emphasis on quality engineering that delayed the completion of Multics.
The truth, I suspect, is a matter of economics rather than bad taste. Multics was
largely doomed by the intersection of two forces: the exploding growth of the
computer and semiconductor industries, and a rising national sensibility of indi-
vidual empowerment that brought, inevitably, the trend toward decentralized
computing.

Exponential advances in integrated circuit design conspired against the Multics
effort. In 1962, Fairchild Semiconductor was still shipping individual transis-
tors, and this was “state of the art.” By the time Bell Labs withdrew from the
Multics project in 1969, Intel was shipping 64-bit memory chips. By the time
Multics was presented commercially in 1973, Digital Equipment Corporation
was shipping entry-level versions of PDP-11 systems running either RSTS-11 or
RSX-11. DEC would ship the LSI-11 and the PDP-11/70 two years later, and in
doing so would establish the features that would ultimately define mid-range
computer architecture. In the microprocessor world, the 8080 would be running
early versions of CP/M by 1974. A new era had arrived.

When it was announced in 1973, Multics was arguably the perfect answer to the
problems of 1964, but it was too late, too expensive, too dependent on a propri-
etary hardware architecture, and too focused on centrally shared computing to
be relevant in a world where decentralized, departmental computing was
becoming the order of the day. Following the pattern of every other competitive
market in history, the mainframe was being commoditized from below, and the
era of “personal computing” would soon take over the world. Key elements of
Multics—virtual memory, the hierarchical file system, multiple user support,
and, to a lesser degree, online reconfiguration—would be rediscovered and
incrementally introduced on Digital’s VAX line of hardware, burdened at each
step with the requirements of backwards compatibility. The same process of
reinvention is happening now as Microsoft reshapes the underlying PC standard
to support advanced server and management features. Not until the arrival of
universal, always-on connectivity would the lessons of Multics once again seem
relevant.

Ultimately, Multics failed because high-end computer-architecture ideas consoli-
dated around the VAX and System 360 feature set, and shifted away from fea-

; LO G I N : D E C E M B E R 2 0 0 4 S E C U R IT Y: E XTR AC TI N G TH E L E S S O N S O F M U LTI C S 59

tures such as segmentation and multiple protection rings, on which Multics
relied. This left the Multics operating system nonportable and unable to exploit
the shift to cheaper, more open hardware systems. Unfortunately, it occurred at a
time when circuit integration still wasn’t far enough along to support basic pro-
tection features on low-end microprocessors. A decade later, UNIX would bene-
fit from being able to ride a more stable, mature technology curve, reaping bene-
fit from the same forces that doomed the Multics effort.

Sadly, later systems would show that neither segmentation nor multilevel pro-
tection rings were necessary. A simple user/supervisor split coupled with a
paged memory management unit is sufficient. The Gemini project would con-
struct an A1-certifiable operating system on a 386-class microprocessor. Key-
KOS would provide Multics-comparable levels of robustness and security on
commodity microprocessors. The EROS research effort has directly adopted
many of these ideas. They seem to be contagious—the L4 project is now adopt-
ing many of them as well.4 The “lots of small, protected memory objects” ap-
proach of Multics is reframed in KeyKOS, EROS, and successors as a “lots of
small, protected processes” approach, which has stood up well to both formal
and practical testing.

Unfortunately, neither UNIX nor Microsoft Windows managed to preserve (or
successfully replace) the key security underpinnings of Multics, and we are now
committed to a large body of insecure legacy software that will be difficult to
overcome at a time when software patents make overcoming an entrenched
legacy provider nearly impossible.

Given the economic and technology environment into which it emerged, the
wonder of Multics is not that it has been ignored, but that so many of its key
ideas have been adopted and adapted so pervasively in later efforts. Multics
largely defined modern time-sharing systems, and its influence can be seen in
every multi-user system that is shipping today.

F U RTH E R R EA D I N G
1. Paul A. Karger and Roger R. Schell, “Thirty Years Later: Lessons from the Multics
Security Evaluation.” Proceedings of the 18th Annual Computer Security Applications Con-
ference (ACSAC) (December 2002)

2. Elliot I. Oganick, The Multics System: An Examination of Its Structure (Cambridge, MA:
MIT Press, 1972). The best starting point today for information about the Multics system
is the Multicians’ Web site at http://www.multicians.org.

3. D.C. Engelbart, “Augmenting Human Intellect: A Conceptual Framework” (Stanford
Research Institute, 1962); see Theodor H. Nelson, Literary Machines 931 (Mindful Press,
1982)

4. KeyKOS: http://www.cis.upenn.edu/~KeyKOS; EROS: http://www.eros-os.org.
L4: http://www.l4ka.org.

60 ; L O G I N : V O L . 2 9 , N O . 6

P E T E R H . S A L U S

the bookworm
Peter H. Salus is a member of the
ACM, the Early English Text Society,
and the Trollope Society, and is a
life member of the American
Oriental Society. He owns neither a
dog nor a cat.

peter@netpedant.com

B O O KS R EV I E W E D I N TH I S CO LU M N

M OV I N G TO TH E L I N UX B U S I N E S S
D E S KTO P

Marcel Gagne
Boston, MA: Addison-Wesley, 2004. Pp.
638 + CD-ROM. ISBN 0131421921.

L I N UX CO O K B O O K
Michael Stutz
2nd ed., San Francisco: No Starch,
2004. Pp. xxxi + 788. ISBN
1593270313.

H I G H -TE C H C R I M E S R EV E A L E D
Steven Weber
Cambridge, MA: Harvard U.P., 2004.
Pp. 312. ISBN 0-674-01292-5.

S U CC E E D I N G W ITH O P E N S O U R C E
Steven Branigan
Boston, MA: Addison-Wesley, 2004. Pp.
xxix + 412. ISBN 0321218736.

B U D G E TI N G F O R SYSA DM I N S
Adam Moskowitz
Short Topics in System Administration
#10, Berkeley, CA: USENIX, 2003. Pp.
37. ISBN 1-931971-12-9.

TH E TU R I N G TE ST
Stuart Shieber, ed.
Cambridge, MA: MIT Press, 2004. Pp.
346. ISBN 0262692937.

Time for the December column
again! And I gotta pick my annual
holiday “best” list. Let me say here
that it was no easy pick. Last year,
Gibson, Stephenson, and Waldrop
weren’t eligible, so that gets rid of
Sterling this year. But there is a con-
solation: I also get to list a bonus
book. But first, the books at hand.

T WO P E N G U I N S

Gagne’s keyboard must generate a
lot of heat. Earlier this year there
was Moving to Linux, and now
there’s a large Business Desktop ver-
sion. While there is a lot of space in
this “new” book given over to
material from the earlier one, there
is an admirable amount of new
material. I think Gagne does a
really fine job. But I’m afraid that
this isn’t a book for a true newbie,
either. Gagne explains Samba very
well, and I was thrilled by his expo-
sition on OpenOffice, but this is
not a book that can be used readily
by someone with no computer
background. If you’ve got some
command line experience, this will
be the perfect book. It comes with a
Knoppix CD.

Stutz’ Linux Cookbook has waxed
since 2000, when the first edition
appeared, from 402 to over 800
pages. But there’s a lot more useful
stuff here. Well worth getting.

B L AC K H ATS

Branigan has been involved in high-
tech forensics at Bell Labs and at
Lumeta for quite a while. With
High-Tech Crimes Revealed he’s pro-
duced something quite out of the
ordinary: a “security” book as com-
pelling as a whodunit. Peppering
his book with anonymized anec-
dotes, he’s given us a gripping story.

M O N EY P RO B L E M S

When I was in Boston at the ATC, I
saw Moskowitz’ pamphlet. For some
reason, SAGE hadn’t sent it to me,
so this brief review is late. I apolo-
gize, mainly because this is 30 pages
that should be read and re-read by
anyone who needs to construct and

present a budget, whether large or
small. Adam, it’s a very fine job.

T U R I N G COM P L E TE

I would guess that 60% of the
books I receive each year contain
the name “Turing” at some point.
Usually in the phrases “Turing
complete” or “Turing test.” I would
guess further that over half of those
uses are irrelevant (stuck in for
intellectual color) or just inappro-
priate. Shieber has put together a
truly superb anthology concerning
the “indistinguishability test”
(between artifact and person).

Beginning with Descartes and La
Mettrie and moving through all
four of Turing’s papers, Shieber pro-
vides us with 13 essays for and
against the “test,” ending with
Chomsky’s “Turing on the ‘Imita-
tion Game’” (written for this
anthology in 2002). A great read.

TH E V E RY B E ST

Marshall Kirk McKusick and
George V. Neville-Neil, The Design
and Implementation of the FreeBSD
Operating System, Addison-Wesley.

Lawrence Rosen, Open Source
Licensing, Pearson Education.

Steven Weber, The Success of Open
Source, Harvard U.P.

R. Kent Dybvig, The Scheme Pro-
gramming Language, MIT Press.

Craig Hunt, Sendmail Cookbook,
O’Reilly.

Cyrus Peikari & Anton Chuvakin,
Security Warrior, O’Reilly.

Diomidis Spinellis, Code Reading,
Addison-Wesley.

Arnold Robbins, Linux Program-
ming by Example, Prentice Hall.

Mark Burgess, Analytical Network
and System Administration, John
Wiley.

Jonathan Land, The Spam Letters,
No Starch.

Last year’s “bonus” was the then-
new UserFriendly book. This year it
goes to cartoons again: Nitrozac
and Snaggy, The Best of the Joy of
Tech, O’Reilly.

R I K F A R R O W

book reviews
I guess I get a lot of books for
review because I began writing arti-
cles about UNIX and security back
in 1986. I get more books than I
can read, as well as some I don’t
think I would ever read—ones
whose topics are far afield from
what I really need to know about.

Recently, I received several books
all with related topics, and thought
that they deserved special treat-
ment. Two of the books are about
using Snort, while the third does
mention Snort and IDS but repre-
sents a much deeper topic: network
security monitoring.

M A N AG I N G S E C U R IT Y W ITH S N O RT

A N D I D S TO O LS

Kerry Cox and Christopher Gerg
Sebastopol, CA: O’Reilly and Associ-
ates, 2004. Pp. 269.
ISBN 0-596-00661-6.

S N O RT 2 .1 I NTR U S I O N D E TE C TI O N ,

2 D E D.

Jay Beale et al.
Rockland, MA: Syngress Publishing
Inc., 2004. Pp. 716.
ISBN 1-931836-04-3.

Jay Beale is the editor of the Snort
2.1 book, as there are actually many
authors. The cast of characters
involved in Snort 2.1 is both an
advantage and a disadvantage. On
the plus side, you get chapters writ-
ten by Snort developers. On the
minus side, you get a book that
could be better organized and that
still contains some mistakes and
typos which also plagued the first
edition.

Managing Security with Snort is
shorter and written by Snort users

rather than developers and users.
Being an O’Reilly book, it is format-
ted differently and, as a result, is
better organized than the Syngress
book. I found the instructions for
building and using Snort, or a
Snort-related tool like ACID, clear
and easy to follow (ACID has been
and still is a bear to build).

There are certainly differences
deeper than formatting between
these books. While either will get
you going with Snort, Snort 2.1,
with its greater length, does get
into more details. For example,
Managing Security has five pages on
configuring and using Barnyard, a
tool for processing Snort alerts
asynchronously. Snort 2.1 devotes
an entire chapter, 75 pages, to
working with Barnyard.

I had wondered how these books
would handle Snort rule writing.
The two deal with this topic in
almost the same manner. Each
book explains the parts of Snort
rules and provides a couple of
examples, but neither one has a
tutorial. I consider rule writing/
editing a critical topic in a rule-
based IDS tool, and was disap-
pointed that neither book goes
deeply enough into this area. Man-
aging Security actually misses an
important new set of rule options,
flow, which allows rules to in-
clude the distinction of a packet
going to a client or a server.

I can recommend either of these
books, and suggest that you make
your decision based on how deeply
you want to go into Snort and
related tools.

TH E TAO O F N E T WO R K S E C U R IT Y

M O N ITO R I N G

Richard Bejtlich
Boston: Addison-Wesley, 2004. Pp. 798.
ISBN 0-321-24677-2.

Bejtlich honed his network moni-
toring skills working for the Air
Force Computer Emergency Res-
ponse Team, and his experience
shows. Instead of talking about
preventing intrusions, Bejtlich as-
sumes there will be intrusions. His

approach involves collecting as
much network data as possible, so
this information can be used to
determine what has happened on
your network in the past. The data
includes IDS alerts, flow data, and
complete packet dumps.

Bejtlich successfully explains why
IDS alerts are not enough. He
demonstrates how having both
flows and packet data helps ana-
lysts determine when an alert rep-
resents a successful attack. Bejtlich
does briefly mention Snort, but he
covers many other tools as well.
Bejtlich is particularly fond of
Sguil, a tool for querying back-end
databases that contain the moun-
tain of alerts, flows, and packets
generated in his approach.

Bejtlich presents network and sys-
tem management (NSM) as a phi-
losophy, backed with lots of practi-
cal advice from someone who uses
NSM in real life. I highly recom-
mend this book if you are serious
about your network security and
want to go beyond viewing IDS
alerts.

; LO G I N : D E C E M B E R 2 0 0 4 B O O K R EV I E WS 61

62 ; L O G I N : V O L . 2 9 , N O . 6

USENIX
notes

U S E N I X B OA R D O F D I R E C TO R S

Communicate directly with the
USENIX Board of Directors by
writing to board@usenix.org.

P R E S I D E NT

Michael B. Jones,
mike@usenix.org

V I C E P R E S I D E NT

Clem Cole,
clem@usenix.org

S E C R E TA RY

Alva Couch,
alva@usenix.org

TR E A S U R E R

Theodore Ts’o,
ted@usenix.org

D I R E C TO R S

Matt Blaze,
matt@usenix.org

Jon “maddog” Hall,
maddog@usenix.org

Geoff Halprin,
geoff@usenix.org

Marshall Kirk McKusick,
kirk@usenix.org

E X E C UTI V E D I R E C TO R

Ellie Young,
ellie@usenix.org

USACO: The International Finals

by Rob Kolstad

The 2004 International Olympiad
on Informatics (the final leg of the
programming contest circuit for
pre-college programmers) was held
in Athens, Greece, September
11–18. Athens was still in “Olym-
pic mode”: The 700 IOI partici-
pants stayed in one of the buildings
erected for Olympic journalists; the
Paralympics overlapped the IOI by
about five days.

Athens is a bustling place full of
new Olympic construction, fine
Mediterranean weather, and a “can
do” attitude.

I arrived several days early to set up
and tune the automated grading
system. I ended up spending six
days in the beautiful basement/
parking garage where the actual
competitions were held. The park-
ing garage was chosen for the
actual contest because the addition
of a few walls, power, lights, and
air-conditioning made it workable,
and it was one of the few places in
the vicinity that had enough room
for 300 PCs, desks, chairs, aisles,
and networking equipment.

The USA delegation, which
included not only our four finalists,
Brian Jacokes, Anders Kaseorg, Eric
Price, and Alex Schwendner, but
also Don Piele (USACO director
and this year’s chair of the main IOI
governing body), Greg Galperin
(the USA delegate to the Interna-
tional Scientific Committee),
coaches Hal Burch and Brian Dean,
and some spouses/visitors.

Contestants were challenged with
two five-hour contests, each with
three tasks. These tasks are gener-
ally very difficult and concentrate
on algorithms (rather than, say, sys-
tems programming, administration,
or databases). Here—written by
coach Brian Dean—is a typical
problem from the USACO March
2004 competition:

U S E N I X M E M B E R B E N E F ITS

Members of the USENIX Associa-
tion receive the following benefits:

F R E E S U B S C R I P T I O N to ;login:, the Associ-
ation’s magazine, published six times
a year, featuring technical articles,
system administration articles, tips
and techniques, practical columns on
such topics as security, Tcl, Perl, Java,
and operating systems, book reviews,
and summaries of sessions at USENIX
conferences.

A C C E S S T O ; L O G I N : online from October
1997 to last month:
www.usenix.org/publications/login/.

A C C E S S T O P A P E R S from USENIX confer-
ences online, starting with 1993:
www.usenix.org/publications/
library/proceedings/

T H E R I G H T T O V O T E on matters affecting
the Association, its bylaws, and elec-
tion of its directors and officers.

D I S C O U N T S on registration fees for all
USENIX conferences.

D I S C O U N T S on the purchase of proceed-
ings and CD-ROMs from USENIX
conferences.

S P E C I A L D I S C O U N T S on a variety of prod-
ucts, books, software, and periodicals.
For details, see www.usenix.org/
membership/specialdisc.html.

F O R M O R E I N F O R M AT I O N regarding
membership or benefits, please see

www.usenix.org/membership/

or contact

office@usenix.org

Phone: 510-528-8649

Moo University Gymnastics
Team Tryouts

N (1 <= N <= 1,000) calves try out
for the Moo U gymnastics team this
year, each with a positive integer
height and a weight less than
100,000. Your goal is to select a
team of as many calves as possible
from this group. There is only one
constraint the team must satisfy:
The height H and weight W of each
calf on the team must obey the fol-
lowing inequality:

A*(H–h) + B*(W–w) <= C

where h and w are the minimum
height and weight values over all
calves on the team, and A, B, and C
are supplied positive integral con-
stants less than 10,000. Compute
the maximum number of calves on
the team.

The USA tied their best perform-
ance ever, with two gold medals.
Brian Jacokes placed 6th overall;
Anders placed 13th. Eric just
missed a gold medal by 10 points
out of 600; Alex was only 25 points
out. Both Eric and Alex have one
more year of eligibility.

Over the (North American) 2004–
2005 school year, USACO will hold
half a dozen Internet-based contests
for pre-college students before the
USA Invitational Olympiad next
June; the contests are open to all
pre-college students on the Internet.
No entry fees are charged. Teachers
and students can sign up for the
low-traffic mailing list by sending a
“subscribe hs-computing” email to
hs-computing@usaco.org.

We’re working hard this year to
expand the competition levels so
that students of all abilities can com-
pete in C, C++, Pascal, and Java.
Please tell those who might benefit!

USENIX is a major sponsor of the
USA Computing Olympiad. Other
sponsors include SANS, the ACM,
IBM, and Google. If your organiza-
tion would like to contribute (in
any way—e.g., we need a few
higher speed servers for running
contests), please contact me.

Thanks to Our Volunteers

by Ellie Young
USENIX Executive Director

USENIX’s success would not be
possible without the volunteers
who lend the expertise and support
for our conferences, publications,
and member services. While there
are many who serve on program
committees, coordinate the various
activities at the conferences, work
on committees, and contribute to
this magazine, I would like to make
special mention of the following
individuals who made significant
contributions in 2004:

The program chairs for our
2004 conferences:

Chandu Thekkath, Third Confer-
ence on File & Storage Technologies

Robert Morris and Stefan Savage,
First Symposium on Networked
Systems Design & Implementation

Tarek S. Abdelrahman, Third Vir-
tual Machine Research & Technol-
ogy Symposium

Andrea Arpaci-Dusseau and Remzi
Arpaci-Dusseau, 2004 USENIX
Annual Technical Conference

Matt Blaze, 13th USENIX Security
Symposium

Ted Ts’o for organizing the 2004
Linux Kernel Developers Summit

Lee Damon, 18th LISA Conference

Eric Brewer and Peter Chen, 6th
Symposium on Operating Systems
Design & Implementation

David Culler and Timothy Roscoe,
1st Workshop on Real, Large Dis-
tributed Systems

The conferences’ Invited
Talk/Special Track chairs:

For USENIX ’04 Annual Tech:

Bart Massey and Keith Packard,
2004 Freenix Program Chairs at
USENIX Annual Tech

Murray Stokley, Avi Rubin, Ted
Ts’o, Rob Kolstad, and Jon “mad-
dog” Hall for serving as SIG Session
chairs

Peter Salus for lining up the ple-
nary speakers

Clem Cole for organizing the Guru
Is In sessions

Esther Filderman for organizing
the AFS workshop

For the 13th USENIX Security
Symposium:

Avi Rubin and Vern Paxson

For LISA ’04:

Deeann Mikula, Adam Moskowitz,
and Marcus Ranum for the invited
talks

Phil Kizer for the Guru Is In sessions

Gretchen Phillips for the workshops

Other major contributors:

B. Krishnamurthy for his efforts as
liaison and his work on the steering
committee for the SIGCOMM/
USENIX Internet Measurement
Conference

Victor Bahl for his efforts as liaison
and steering committee chair for
the SIGMOBILE/USENIX MobiSys
conference

Peter Honeyman for his eight years
of service on the USENIX Board of
Directors (1996–2004) and for his
continued efforts in reaching out to
other groups, international and
domestic: e.g., OpenAFS commu-
nity, SANE conference, Smart-
cards/CARDIS, and Middleware
conference

John Gilmore, Avi Rubin, Lois Ben-
nett, and Tina Darmohray for their
12 years of service on the USENIX
Board

Mike Jones, Clem Cole, Alva
Couch, Ted Ts’o, Jon Hall, Kirk
McKusick, Geoff Halprin, and Matt
Blaze for their service on the
USENIX Board in 2004

Rob Kolstad and Don Piele for their
efforts with the USA Computing
Olympiad, sponsored by USENIX

Mike Jones for serving as liaison to
the Computing Research Associa-
tion

USENIX is grateful to all!

; LO G I N : D E C E M B E R 2 0 0 4 U S E N I X N OTE S 63

conference
reports

K EY N OTE A D D R E S S

Back to the Future

William “Earl” Boebert, Sandia
National Laboratory

Summarized by Tara Whalen

Earl Boebert opened his remarks by
saying that his views were his own,
since “nobody in their right mind
would let me speak for them.” The
wealth of knowledge and insight
expressed in his keynote talk dem-
onstrated that nobody in their right
mind would ignore his expertise.
Boebert stated that a lot has been
forgotten about security over the
years, so it is necessary for some-
body who’s been around for a while
to speak up.

Boebert said that the way to build
buildings that stay up is to look at
buildings that fall down. Security
experts should not ask, “Why does
it work?” but “How does it fail?”
What is worrisome is that currently
insecurity has been pushed to the
end nodes, which is the worst place
for it to be. Why did this happen?
It was driven by economics: You
make money by giving people what
they want. Quoting comedian Rich
Hall, Boebert said that what Ameri-
cans wanted was “crap in a hurry,”
and, apparently, so do computer
people. However, an alternative
exists: engineering. Software devel-
opers used to aspire to well-engi-
neered solutions before the indus-
try was overwhelmed with the “get
rich quick” ethos.

Boebert went on to talk about the
higher-level goals of engineering:
operational and formal assurance.
Operational assurance is what you
gain from experience: “It hasn’t
killed anybody yet, so it must be
okay.” However, to gain operational
assurance, you must always carry
out your operations in exactly the
same way. Instead, you could rely
on formal assurance, a structured
argument that shows what you can
safely do. Boebert then talked about
assurance in the context of his ex-
perience with Multics.

Multics was developed around
principles that supported formal
assurance, including unity of
mechanism (doing a task all in one
place) and separation of policy and
mechanism. In addition, one of its
design strengths was simplicity. For
example, Multics’ virtual memory
design was useful for what it got rid
of: buffers, inodes, puts, and gets,
which were replaced by a unified
name space. Also, backups were
automatic and silent; Boebert used
Multics from 1969 to 1988 and
never lost a file.

Multics was based on a “large
process model” of the movement of
an execution point through code
modules. This supports assurance
arguments about system security.
For example, in Multics, access
rights were part of the segment
descriptor word (used for the page
table). This provides a “hardware
lemma”: You cannot avoid hitting
the access bits, because they are
integral to forming a hardware
address.

Boebert also discussed online
threats, using the term “Internet
slime” to describe such problems as
active content. What you want to
have is a system such that the
Internet slime cannot under any
circumstances get access to the ker-
nel. Following the Multics design,
you set up an intermediate module
between the slime and the kernel:
slime can’t call the kernel object
directly, but has to go through a
“gate” object. The intermediate
module performs argument valida-
tion, after which it can provide
access to the kernel object, which
keeps the slime object safely away.
In case a really bad slime object
tried to fool the kernel object into
calling back to the slime, the hard-
ware ring would trap it and stop
the disaster from happening.

Other good features of Multics
included pointers, single copies of
procedures, and heavy use of
dynamic linking. A NASA study
concluded that you should either
change software a little every day or

64 ; LO G I N : V O L . 2 9 , N O . 6

This issue’s reports
focus on the 13th
USENIX Security Sym-
posium, held in San
Diego, California,
August 9–13, 2004.
Our thanks to the
scribe coordinator:
Rik Farrow
Our thanks to the
summarizers:

Alvin AuYoung
Eric Cronin
Marc Dougherty
Serge Egelman
Rachel Greenstadt
Stefan Kelm
Zhenkai Liang
Chad Mano
Nick Smith
Ashish Raniwala
Tara Whalen
Wei Xu

a lot once a year if you want to have
a stable system. Because it sup-
ported online software updates,
Multics was remarkably stable.

Boebert added that “we had some
lousy ideas back then, but in our
own defense, we never came up
with anything as silly as security as
a side effect of copyright enforce-
ment.” He concluded with a brief
prognosis: “When an old fart
comes up here, he’s supposed to
forecast the future optimistically, so
we all go away with a nice feeling.”
However, he is not optimistic that
we will ever see a system as rigor-
ously engineered as Multics: The
desire for “crap in a hurry” will pre-
vent this in the foreseeable future,
sadly.

One audience member asked how
we could bring back the climate in
which Multics was engineered.
Boebert replied that he would try to
reinstate the principles, rather than
the system itself. He thinks that it
would be nice if somebody would
“do one [operating system] right
for the sake of doing one right,” as
a learning experience.

AT TAC K CO NTA I N M E NT

Summarized by Stefan Kelm

A Virtual Honeypot Framework

Niels Provos, Google, Inc.

This year’s first refereed paper was
presented by Niels Provos, the
author of honeyd, which he de-
scribed during this talk. A honey-
pot can be defined as a computing
resource that we explicitly want to
have probed or attacked in order to
study an attacker and his actions
on our system. In terms of their
implementation, honeypots can be
divided into low-interaction vs.
high-interaction honeypots as well
as physical vs. virtual honeypots.

honeyd offers a framework for cre-
ating low-interaction virtual hon-
eypots. It is able to simulate TCP,
UDP, and ICMP packets and to
adapt what Niels described as “dif-
ferent operating system personali-

ties.” Thus, honeyd simulates the
TCP/IP stack behavior of a huge
number of today’s known OS
implementations, thereby hiding
the IP stack of the actual system
honeyd is running on. This is real-
ized by the so-called “personality
engine,” one of the core compo-
nents of honeyd. The personality
engine is based on nmap’s finger-
print file: Anyone running nmap
against a honeyd system will there-
fore get whatever OS has been con-
figured to show up.

Another core component is the
traffic dispatcher: Since honeyd
does not itself intercept any net-
work traffic, the traffic needs to be
redirected to honeyd. The traffic
dispatcher then has to decide how
to handle any incoming packets.
Since there are several ways to redi-
rect traffic, honeyd is able to simu-
late not only a single IP address but
complete network topologies, con-
sisting of multiple hosts running
different operating systems. Inter-
estingly, honeyd seems to do very
well performance-wise: On a stan-
dard PC, honeyd is able to simulate
roughly 2000 TCP connections per
second.

Niels went on to describe possible
applications, namely, detecting and
disabling worms as well as prevent-
ing spam. The author concluded
that honeyd provides an efficient
and scalable framework that de-
ceives fingerprinting. Future work
will be to enhance honeyd for fur-
ther attack detection.

A number of interesting questions
were asked by the attendees, two of
which focused on honeyd in an
IPv6 environment. Niels acknowl-
edged that deploying IPv6 honey-
pots will likely be more expensive.

For more information, contact
niels@google.com or see http://
www.citi.umich.edu/u/provos/
honeyd/.

Collapsar: A VM-Based Architec-
ture for Network Attack Detention
Center

Xuxian Jiang and Dongyan Xu,
Purdue University

This talk can be seen as a follow-up
to the previous one. Dongyan
started by describing some of the
problems of current honeypots,
namely, lack of expertise, incon-
sistencies when operating multiple
honeypots, and no central manage-
ment. His solution is called Collap-
sar, a VM-based architecture which
is founded on Lance Spitzner’s hon-
eyfarm idea.

Collapsar tries to integrate two
goals: implementing a distributed
honeypot presence within a net-
work topology, while maintaining a
centralized honeypot operation. It
consists of three main functional
components: (1) the redirector
runs in each participating network
and captures all traffic to unused
IP addresses, which is then redi-
rected to another component;
(2) the front end acts as an inter-
face between the redirectors and
what is called the “Collapsar cen-
ter”; (3) the virtual honeypots
inside the Collapsar center are
implemented as high-interaction
honeypots and are therefore able to
simulate different operating sys-
tems as well as popular services
such as Sendmail and Apache. In
addition, there are a number of dif-
ferent assurance modules, provid-
ing, for example, traffic logging and
subsequent data correlation.

Dongyan next described the results
of a Collapsar experiment they’ve
been running. The honeypot archi-
tecture was deployed in a local
environment that consisted of traf-
fic redirected from five different
networks with 40 honeypots run-
ning within the Collapsar center.
During that experiment they were
able to do a forensic analysis on
incidents such as attacks on
Apache or on XP. As to the per-
formance, they measured TCP
throughput as well as ICMP latency

; LO G I N : D E C E M B E R 2 0 0 4 1 3 TH U S E N I X S E C U R IT Y SYM P O S I U M 65

for both VMware and UML (user-
mode Linux).

The authors observed that Collap-
sar even allows for more sophisti-
cated analyses, such as stepping-
stone identification and detection
of network scans.

During the discussion one member
of the audience remarked that Col-
lapsar relies on the (bad) principle
of “security by obscurity” in that
the redirectors need to remain in
the “dark IP space” (i.e., hidden
from possible attackers) in order to
function properly. This was con-
firmed by Dongyan.

For more information, contact
dxu@cs.purdue.edu or see
http://www.cs.purdue.edu/homes/
jiangx/collapsar.

Very Fast Containment of
Scanning Worms

Nicholas Weaver, International Com-
puter Science Institute; Stuart Stani-
ford, Nevis Networks; Vern Paxson,
International Computer Science
Institute and Lawrence Berkeley
National Laboratory

Nicholas Weaver talked about a
new and very fast method to scan
for kinds of “Internet slime” in
order to stop these worms effi-
ciently. Static defenses have been
and still are insufficient to stop
worms from spreading in networks.
The reaction needs to be automatic.

The algorithm Nicholas and his
group have developed aims to
implement worm containment, i.e.,
isolating a worm and subsequently
stopping it from spreading further.
Their work is based on the Thresh-
old Random Walk (TRW), which
has been modified for better hard-
ware and software implementation
possibilities. The basic idea is to
use caches in order to keep track of
incoming and outgoing connec-
tions; if a particular counter has
been reached, connections start
being blocked.

One interesting addition to the
algorithm seems to be cooperation
between said containment devices.

If a device is able to use the status
of other devices as another detec-
tor, the scanning results should be
improved. The speaker concluded
that not only are they able to
enhance worm containment using
their implementation, but they also
gain a better understanding of par-
ticular worm attacks.

For more information, contact
nweaver@icsi.berkeley.edu.

RFID: Security and Privacy for
Five-Cent Computers

Ari Juels, RSA Labs

Summarized by Ashish Raniwala

Ari Juels, principal research scien-
tist at RSA, gave an excellent pres-
entation on security and privacy
issues for RFID. RFID does not
refer to any single device but to a
spectrum of them, ranging from the
basic RFID tag and EZ Pass to
mobile phones. The talk focused on
the basic RFID tag, which is a pas-
sive device that gets all its power
from the RFID reader. In contrast
to a bar code, RFID does not
require line of sight between the tag
and the reader. Additionally, RFID
provides a unique ID for every
object, as compared to bar codes,
which only identify the type of
object. An RFID has fairly limited
memory (hundreds of bits), com-
putational power (thousands of
gates), and wireless range (few
meters), making it hard to imple-
ment any real cryptographic func-
tions or non-static keys.

RFID is already seeing many practi-
cal applications, starting from sup-
ply-chain visibility to anti-counter-
feiting drugs. With push from such
industry giants as Wal-Mart and
Gillette and the decreasing cost of
tags and readers (estimated to be 5
cents/tag and several hundred to
several thousand dollars/reader by
2008), RFIDs are expected to
become the physical extension of
the Internet.

However, there are several security
and privacy issues associated with
RFID usage. An RFID tag can be

clandestinely scanned to get per-
sonal information such as items
carried on person. Limited comput-
ing resources make it hard to
enforce strong access control on the
RFID. Because of such concerns,
RFIDs are already facing strong
opposition, not just from cus-
tomers but from corporations as
well. For example, corporations
need to worry about espionage and
tag counterfeiting.

One approach to address the pri-
vacy issues is to “kill” the RFID tag
as soon as the customer checks out
items from the store. However,
RFIDs are much more useful in
their “live” state. Ari mentioned
several novel applications that
require that RFIDs stay alive post-
checkout. For example, one can
imagine a “smart” closet that can
detect what clothes one has and
suggest latest styles, or a “smart”
medicine cabinet that can aid cog-
nitively impaired patients, or auto-
mated sorting of recycled objects.

Ari suggests that it is hard to come
up with useful solutions if one
assumes the omnipresent oracle
adversarial model. One needs to
work with more realistic and
weaker adversarial assumptions.
Ari discussed three different
approaches based on his own
research. The first approach,
termed “minimalist cryptography,”
is based on the observation that an
adversary has to be physically close
to the tag to be able to read it, and
therefore can query it only a few
times in any attack session. One
can therefore store multiple pseu-
donyms on the tag, and return a
different one each time the adver-
sary queries. This makes it hard for
the adversary to associate any tag
with a particular object. The
object-pseudonyms association can
be known only to a trusted verifier.
This approach can be further
strengthened by throttling the
query rate to prevent rapid,
repeated scanning of the tag, and
by refreshing the set of pseudo-
nyms using a trusted reader.

66 ; LO G I N : V O L . 2 9 , N O . 6

The second approach is based on
the idea of a “blocker tag,” which
can simulate all possible tags for
any object. The blocker tag exploits
the “tree-walking” anti-collision
protocol used in ordinary tag-
reader communications, and re-
turns both “0” and “1” every time
the reader queries for the next bit
of the tag. This spams the reader
with a large number of tags, pro-
tecting the privacy of the person.
A blocker tag, however, needs to
be selective in its blocking; for in-
stance, it should only block pur-
chased items carried by a shopper,
not the unpurchased ones. Juels
discussed use of a privacy bit that
can be turned on or off based on
whether the user wants the item to
belong to the privacy zone.

The third approach uses a proxy
RFID device, such as a mobile
phone. The proxy device acquires
the tags of the object and deacti-
vates the original tag. All queries to
the tag are then answered by the
proxy device while enforcing the
desired privacy policies. The proxy
device can release the acquired tag
and reactivate the original tag when
it is about to leave the wireless
range of the proxy.

RFIDs have led to a significant pri-
vacy debate, but at this point these
security and privacy problems are
more psychological than techno-
logical. Currently, RFID deployers
can barely get the technology to
work. For instance, UHF tags do
not work well when close to the
human body. It is hard to distin-
guish items in one shopper’s cart
from those in another’s, because of
the uncontrolled wireless range.

Ari concluded the talk by dis-
cussing some of the open issues for
research: more realistic adversarial
models for evaluating security
techniques, and anti-cloning to
prevent cloning of RFIDs. Ari
pointed to http://www.rfid-security
.com for more information.

PA N E L : C A P T U R E TH E F L AG

Giovanni Vigna, University of
California, Santa Barbara; Marc
Dougherty, Northeastern University;
Chris Eagle, Naval Postgraduate
School; Riley Eller, CoCo Communi-
cations Corp.

Summarized by Rachel
Greenstadt

The goal of this panel was to
explore the utility of Capture the
Flag competitions as pedagogical
tools. These are competitions in
which teams compete to defend
their computers/data and attack
those of the other team. A scoring
bot periodically gauges the progress
of the various teams and assigns
points.

The panel, moderated by Tina Bird,
got off to a rough start as Riley/Cae-
sar—representing the Ghetto Hack-
ers—was delayed. The Ghetto
Hackers run the famous Capture
the Flag competition at DefCon. He
arrived by the end, but the panel
began with the other panelists:
Chris Eagle, associate chairman of
the Naval Postgraduate School and
a member of their Capture the Flag
team; Marc Dougherty, who runs a
Capture the Flag competition at
Northeastern; and Giovanni Vigna,
an associate professor of CS at
UCSB who runs Capture the Flag
competitions at his school and par-
ticipates in the DefCon competi-
tion. It turned out Chris repre-
sented the winning team at this
year’s DefCon, and Giovanni, the
second place team.

Marc Dougherty got his start in
Capture the Flag competitions by
participating in the competition at
Northeastern and winning by
exploiting a trivial weakness in the
game setup. He decided to help fix
the competition and has been
involved in it ever since. He likes
Capture the Flag competitions
because they give students an
opportunity to play with tools they
wouldn’t get to play with (legiti-
mately) otherwise. At Northeast-

ern, Capture the Flag is all-volun-
teer, not part of any class, and is all
about fun. They run their competi-
tion attached to the Internet (as
opposed to most other competi-
tions, which have an air gap), but
the students are careful. Marc’s
working on a modular system for
running and scoring games so that
they are easier to set up and run.
He hopes to have it out, and avail-
able to the public, by October.

Chris has been involved with Cap-
ture the Flag for four years; this
year his team won at DefCon. In
describing their victory, he ex-
plained how the setup of the game
can have unintended consequen-
ces. This year’s DefCon was sup-
posed to be all about offense—85%
of the points were gained from
offense, only 15% from defense—
but Chris acknowledged that Gio-
vanni’s team had a better offense
than his. However, the way the
scoring bot worked was to access
each system and then award points
based on how many of your own
and other teams’ tokens you had.
Chris’s team won by waiting for
Giovanni’s team to hack a bunch
of systems and then hacking theirs,
stealing all their tokens and de-
fending them well.

Giovanni concurred with this
analysis and also mentioned that
DefCon was tricky this year
because the VM image of the sys-
tem they were supposed to attack
and protect was Windows, and who
knows how to deal with that? Gio-
vanni talked more about running a
competition in a university setting.
Capture the Flag competitions are a
great tool to educate students in
security. In this hands-on experi-
ence, the students learn a lot about
buffer overflows, SQL injection,
etc. You can also structure the com-
petition so that you get useful data
for your research, which is a nice
side effect. The competitions help
students develop teamwork and
crisis management skills. All the
panelists agreed that the most diffi-
cult part of running the competi-

; LO G I N : D E C E M B E R 2 0 0 4 1 3 TH U S E N I X S E C U R IT Y SYM P O S I U M 67

tions was developing a good scor-
ing system. A competition requires
a lot of time to set up initially, but
running it becomes easier after
that.

This was Caesar’s fourth year
involved in running the DefCon
Capture the Flag competition. After
the Ghetto Hackers won the com-
petition the third time in a row,
they decided to run it. This year
they changed the system so that the
scoring bot monitored who had the
tokens of the various teams. Before
this, scoring was just based on
rooting a box, which is not an
interesting measure per se, since it
doesn’t provide a realistic view of
the way information is stolen today
(at this point, Tina noted that two
of the panelists’ eyebrows moved).
The competition was easier to pre-
pare this year; they got people with
a bunch of drinks coding nonstop
for 10 days and it was done. All the
panelists praised the way the Def-
Con qualifying round was run this
year. The Ghetto Hackers are orga-
nizing a large, Internet-based con-
test, called Mega Root Fu. The
Ghetto Hackers are willing to run
competitions in exchange for air-
line and hotel costs and a weekend
beer budget ($200–$300 of alcohol
a day).

Fighting Computer Virus Attacks

Peter Szor, Symantec Corporation

Summarized by Wei Xu

Every month, critical vulnerabili-
ties are reported in a wide variety of
operating systems and applications.
Computer virus attacks are quickly
becoming the number one security
problem and range from large-scale
social engineering attacks to
exploiting critical vulnerabilities.
In this talk Szor discussed the state
of the art in computer viruses and
computer virus defense. He pre-
sented some promising host-based
prevention techniques that can
stop entire classes of fast-spreading
worms, as well as worms using
buffer overflow attacks. He also dis-

cussed in-depth worm and exploit
analysis.

Szor first presented a short history
of self-replicating structures. Mod-
ern computers started from von
Neumann’s architecture, in which
programs are stored in primary
memory and the CPU executes the
instructions one by one. In 1948
von Neumann introduced Kinema-
ton, a self-reproductive machine.
Later Ed Fredkin used cellular
automata to represent self-repro-
ductive machines. In 1966, warrior
programs, Darwin and Core Wars,
were devised. In these programs,
warriors fight each other, which is
very similar to modern worms.
John Horton Conway’s 1970 Game
of Life is unusual. The game fol-
lows a set of simple rules, but it can
produce a remarkably large number
of patterns. In the early seventies,
self-replicating programs emerged.
For instance, in 1971–1972,
Creeper was born during the early
development of ARPANET. In
1975, the self-replicating version of
the Animal game was released,
written by John Walker, founder of
Autodesk, Inc. In 1982, Skrenta’s
Elk Cloner, a virus on Apple II, was
developed. Peter showed a quick
demo of Elk Cloner using an Apple
II emulator.

Peter then presented several repre-
sentative virus code evolution tech-
niques. The complexity of virus
threats has increased over time. In
1987, code encryption began to be
used to hide the function of the
virus code, and in 1990, code per-
mutation was introduced into
viruses. The number of permuta-
tions of a single virus has increased
significantly. For example, in 2000
W32.Ghost had 10 factorial differ-
ent permutations. Polymorphic
viruses, which first appeared in
1991, can create an endless number
of new decryptors that use different
encryption methods to encrypt the
constant part of the virus body. An
even more powerful technique used
by polymorphic viruses is external
polymorphic engines (Polymorphic

Engine Object, or MtE). Emulation
provides a very good approach to
detection of this type of virus.

Metamorphic viruses are more dif-
ficult to detect. Here “metamor-
phic” means “body polymorphic.”
Unlike other polymorphic viruses,
metamorphic viruses do not
require a decryptor. Instead, the
virus body is “recompiled” in new
generations, and the virus code can
shrink and expand itself. Source
code mutation (encrypted source
code compiled into slightly differ-
ent but equivalent encrypted
source code) is usually used in
metamorphic viruses (e.g.,
W32.Apparition). Equivalent
instruction sequences are one s
uch technique. There are metamor-
phic viruses for Windows operat-
ing systems, including the recent
Windows .NET framework
(MSIL.Gastropod in 2004). Sur-
prisingly, there are also multi-plat-
form metamorphic viruses, such as
{W32, Linux}/Simile.D, which
infects both Windows and Linux
systems.

There is a class of “undetectable”
computer viruses. W95.Zmist is
one example. This virus is an entry-
point-obscuring virus that is meta-
morphic. Moreover, the virus ran-
domly uses an additional
polymorphic decryptor. Zmist also
supports a unique new technique:
code integration. The Mistfall
engine contained in the virus is
capable of decompiling portable
executable files to their smallest
elements. Zmist first moves code
blocks out of the way, inserts itself
into the code, regenerates code and
data references, including reloca-
tion information, and rebuilds the
executable.

Next Szor talked about modern
worm attacks. Nowadays, we have
another important problem: fast-
spreading worms. The frequency of
worm attacks is increasing, and
worms are getting faster than
update and patch deployment.
Meanwhile, known vulnerabilities
are on the rise. There are many

68 ; LO G I N : V O L . 2 9 , N O . 6

incidents of worms that caused
major DoS attacks; for instance, the
Blaster worm contributed to a
major blackout. Here are several
famous worms: Blaster (August
2003), Code Red (July 2001),
Nimda (September 2001), Slammer
(January 2003).

The Code Red worm is based on a
buffer overflow attack on Microsoft
Internet Information Server (IIS).
The worm uses GET requests to
trigger the buffer overflow vulnera-
bilities in IIS.

The Slammer worm is another
buffer overflow–based attack tar-
geting Microsoft SQL Server. The
Slammer code is amazingly small,
only 376 bytes.

To detect these types of worms, we
can use generic IDS signatures
characterized by the sizes of buffer
and input strings as well as other
important attack patterns. Below is
a rule to detect Slammer:

alert udp any any -> any
1434 (msg: “MS02-039
exploitation”; content:
“|04|”; offset 0; depth:1;
dsize>60)

where 60 is calculated by
size_of_buffer - (string_size1 -
string_size3 - terminating_zero)
= 128 - 40 - 27 - 1 = 60.

Szor gave the details of how Blaster
works. Basically, Blaster exploits
the target on port 135/tcp of Win-
dows XP/2000 and uses the TFTP
protocol to upload the worm code
onto the victim systems.

Szor then presented various worm-
blocking techniques.

In a host-based layered security
model, we have layers such as per-
sonal firewall, anti-virus protec-
tion, host-based IDS, and OS/appli-
cation layer prevention or access
control. The network can also be a
part of this model. Outbound
SMTP worm blocking is an exam-
ple of network protection. In this
case, emails sent by an SMTP client
are first redirected to a scan man-
ager for virus scanning before being

passed to the SMTP server. The
scan manager can use a NAV client
and consists of a decomposer and
anti-virus engines.

Digital Immune System can provide
worm/virus protections for a large-
scale network. In this system, the
customer-side AV client communi-
cates with a quarantine server,
which itself talks to the vendor-
side servers through a customer
gateway. The vendor-side servers
include automated/manual analysis
centers and definition servers.
Anti-virus researchers interact with
these servers to identify new
viruses/worms and provide detec-
tion mechanisms.

There are many techniques for
blocking buffer overflow attacks:
code reviews, security updates
(patches), compiler-level exten-
sions (e.g., StackGuard; ProPolice;
and Buffer Security Check in MSVC
.Net 7.0/7.1), user-mode exten-
sions (e.g., Libsafe), kernel exten-
sions against user-mode overflows
(e.g., PAX, SecureStack), and OS
built-in protections (e.g., Solaris on
SPARC).

An NX (non-executable) page
attribute on AMD64, EM64T, and
updated Pentium 4 can be used to
prevent buffer overflow attacks.
When an NX-marked page is exe-
cuted, an exception is generated.
The Data Execution Prevention
(DEP) in Windows XP SP2 takes
advantage of this feature. Note that
there are already viruses that are
aware of DEP.

In order to block worms, we can
also deploy other techniques such
as exception-handling validation,
injected code detection (shell-code
blocking), and self-sending code
blocking (send blocking). These
techniques can stop attacks after a
buffer overflow or prevent
viruses/worms from propagating.

Szor showed demos on blocking
shell code in both Windows and
UNIX systems. He also showed
demos on blocking various worms.
It is worth mentioning that the

Witty worm made use of exploita-
tions of third-party software (Inter-
net Security Systems’ security prod-
ucts).

In the end, Szor pointed out some
future threats from viruses/worms.

Worms can do secure updating. For
example, the Hybris worm has
more than 20 plug-ins, and these
plug-ins can be downloaded via
secure channels by the worm itself.

Worms can communicate. They
can export/import user accounts/
passwords, payloads, mutation
engines, and exploit modules.

Viruses for mobile phones, smart
phones, and pocket PCs will
become a huge problem. In fact,
there already exist proof-of-concept
viruses for these platforms.

Q. Have you seen any viruses on
mobile devices that spread by
means other than Bluetooth?

A. Haven’t seen such viruses. But
we expect to see viruses that leave a
backdoor on mobile devices and
use SMTP to send out emails with
attachments or invitation SMS mes-
sages to infect other devices.

Q. How would I get access to proof-
of-concept viruses?

A. No public accesses. We get them
by submissions.

Q. What is the meaning of “proof-
of-concept” viruses?

A. These are viruses that do not
want to hide themselves.

Q. How can one detect Zmist
today?

A. It is hard. But we can detect the
virus using a disassembler.

Q. Is there convergence between
anti-spam and anti-virus efforts?

A. We have recognized that anti-
spam techniques are very impor-
tant. We are investigating this.

; LO G I N : D E C E M B E R 2 0 0 4 1 3 TH U S E N I X S E C U R IT Y SYM P O S I U M 69

P ROTE C TI N G S O F T WA R E

Summarized by Chad Mano

TIED, LibsafePlus: Tools for
Runtime Buffer Overflow
Protection

Kumar Avijit, Prateek Gupta, and
Deepak Gupta, IIT Kanpur

Kumar Avijit presented a two-
pronged approach for protecting
both new and legacy code from the
“menace” called buffer overflow.
This is accomplished by using
TIED (Type Information Extractor
and Depositor) and LibsafePlus.

TIED uses debugging data gener-
ated by the compiler to create a
data structure containing the size
information of all global and auto-
matic buffers. This data structure is
inserted into the program binary to
be used at runtime. LibsafePlus is
an extension of the Libsafe tool
which provides more extensive
bounds-checking features. Libsafe-
Plus identified all 20 buffer over-
flow attacks in the Wilander and
Kamkar test suite, while Libsafe
identified only six.

The overhead associated with these
tools is around 10 percent. The
code is available at http://www
.security.iitk.ac.in/projects/Tied-
Libsafeplus.

Privtrans: Automatically Parti-
tioning Programs for Privilege
Separation

David Brumley and Dawn Song,
Carnegie Mellon University

David Brumley explained that
attackers target privileged pro-
grams because “it gives them a big-
ger bang for their buck.” Programs
can be partitioned into two sepa-
rate entities to increase protection.
This prevents a bug in the unprivi-
leged part of the program from giv-
ing access to a privileged area. The
privileged program, or monitor,
handles sensitive processes, such as
opening /etc/passwd. The unprivi-
leged program, or slave, handles all
other processes. The important
result of partitioning is a small

monitor, which means the trusted
base is easier to secure.

Partitioning of programs is tradi-
tionally done manually. Mr. Brum-
ley presented the first approach to
automatic privilege separation.
This is accomplished using a tool
called Privtrans. Variables and
functions in the source code must
first be annotated to identify the
privileged parts of the program. For
the programs tested this took
between 20 minutes and two
hours. Privtrans takes the anno-
tated source and creates separate
monitor and slave source code.
Communication between the two
programs is implemented with
RPC.

Privtrans is able to obtain results
similar to manually partitioned
code. The associated overhead is
reasonable for the increase in soft-
ware security.

Avfs: An On-Access Anti-Virus
File System

Yevgeniy Miretskiy, Abhijith Das,
Charles P. Wright, and Erez Zadok,
Stony Brook University

Yevgeniy Miretskiy presented Avfs,
which is a true on-access virus-
scanning file system. In contrast to
on-open, on-close, and on-exec
scanning, which run in user space,
Avfs runs in kernel space and pro-
vides incremental file scanning,
which prevents infected files from
being written to disk.

Avfs is based on the ClamAV virus
scanner, which was enhanced and
renamed Oyster. The enhance-
ments improve the scalability from
a linear function to a logarithmic
function. The important features of
Avfs are that it detects viruses early
to prevent file system corruption, it
avoids repetitive unnecessary scan-
ning by implementing partial scan-
ning, it works transparently in ker-
nel space, and it can be ported to
many file systems.

I Voted? How the Law Increasingly
Restricts Independent Security
Research

Cindy Cohn, EFF

Summarized by Rachel Greenstadt

Cindy Cohn used the work Avi
Rubin and his colleagues did exam-
ining the Diebold voting machines
to illustrate a problem facing secu-
rity researchers today: In order to
do our research, we need “her or
someone like her” to answer our
legal questions.

The first hurdle she often faces
when dealing with these matters is
people questioning the need for
independent security research. She
often has to explain that the vendor
might not otherwise be motivated
to fix security problems and that,
since we are all connected, good
security is in the public interest.
The insecure system in question in
this case was the Diebold voting
software. The source code was
leaked on the Internet, and
researchers at Johns Hopkins and
Rice did an independent security
audit. They found serious
problems.

The talk focused on four areas of
the law where the Diebold study
could be called into question.
These were copyright law, the
DMCA, the Computer Fraud and
Abuse Act, and trade-secret law. In
the case of copyright law, Diebold
owned the copyright to the code.
In order to study the code, the
researchers needed to make copies,
facing as much as $150,000 in fines
for infringement. In this case, the
researchers had a good case for
making fair use of the code, since it
was for critical and scientific work
and didn’t impede the market.
However, the law is structured
poorly for protecting fair use, as
there is no cut-and-dried way to tell
whether an action qualifies as fair
use, so you need to hire a lawyer.

Next came the DMCA. The DMCA
prohibits people from circumvent-
ing a technological measure that
controls access to a copyrighted

70 ; LO G I N : V O L . 2 9 , N O . 6

work. The scientific exception is
effectively useless. Some of the files
were encrypted zip archives, so the
EFF instructed the researchers only
to audit code that had been
unzipped by others. Members of
the audience expressed incredulity
that a zipped archive could be con-
sidered an effective control mecha-
nism. Another issue raised by the
DMCA is publishing findings. It is
unclear how far this goes: DeCSS?
source code showing how to bypass
some DRM? a high-level descrip-
tion of such code? an academic pa-
per? This last case was at issue in
the SDMI challenge paper pre-
sented at USENIX ’01 Annual Tech-
nical Conference. The RIAA made
threats but then backed down, so
no legal precedent has been set.

The Computer Fraud and Abuse
Act is the generic federal computer
intrusion law. It states that unau-
thorized access to a protected com-
puter is illegal. Even though the
code was publicly available on
Diebold’s servers, someone proba-
bly broke this law to access it.
There was a concern that Diebold
might claim an intruder stole the
code and handed it to the research-
ers. That would be difficult since
the code was so widely available on
the Internet. But the researchers
had to depend on code falling out
of the sky.

The last issue that often comes up
is trade-secret law, which basically
states that a company’s desire to
keep any particular information
secret has to be respected and that
anyone who publishes that infor-
mation is liable. Many vendors
would love to claim that the secu-
rity flaws in their products are
trade secrets. Fortunately, reverse
engineering is allowable. However,
not all security flaws can be found
through reverse engineering, and
EULA licenses often prevent
reverse engineering. This institu-
tionalizes security through obscu-
rity.

The researchers in the Diebold situ-
ation finally got enough clearance

to do their research, but there were
a lot of legal pitfalls, and EFF needs
support. Cindy urged the audience
to support HR 107, which provides
a fix to the DMCA, and said that it
is important to talk about the need
for security research with people
who are nontechnical. A good way
to frame the issue is in terms of
consumer protection: people need
to be protected from companies
that will sell you snake oil security
and buggy software. Avi Rubin
mentioned that everything turned
out okay in their case, but would
she advise other researchers to take
the same risk? Cindy responded
that, at the end of the day, she does
not tell people what to do. It’s her
job to lay out the risks, costs, and
benefits and whether EFF will rep-
resent them. Great advances in the
law have happened because people
were willing to take chances and
bear it if they lost. The history of
the law demonstrates that people
are rarely given rights, that they
must take them. She can tell you
what the law says now, but then
you have to make your decision.

P ROTE C TI N G S O F T WA R E I I

Summarized by Stefan Kelm

Side Effects Are Not Sufficient to
Authenticate Software

Umesh Shankar, Monica Chew, and
J.D. Tygar, University of California,
Berkeley

This talk was somewhat different
from most of the other ones, in that
it didn’t present a solution to a
security problem but presented an
attack to a security solution that
had been presented at the previous
security symposium.

Umesh presented a number of
problems with Genuinity, a system
allegedly able to authenticate
remote systems without using
trusted hardware. Since the Gen-
uinity source code was not avail-
able to the authors, they based their
attack scenarios on what had been
published already. The basic idea
behind Genuinity is the computa-

tion of checksums by remote sys-
tems, which subsequently gets veri-
fied by the authenticating system.
The authors described and imple-
mented what they called a substitu-
tion attack: They computed the
correct checksum quickly while
running non-approved (arbitrary)
kernel code. Thereafter, the origi-
nal data in the computation needed
to be substituted.

Umesh even went to so far as to
argue that remotely authenticating
systems will not be possible at all
without some form of trusted hard-
ware. Moreover, he questioned the
availability of useful applications
except, e.g., set-top game boxes.

For more information, contact
ushankar@cs.berkeley.edu or see
http://www.cs.berkeley.edu/~ushan
kar/research.

On Gray-Box Program Tracking
for Anomaly Detection

Debin Gao, Michael K. Reiter, and
Dawn Song, Carnegie Mellon
University

In this more theoretical talk, Debin
Gao presented work on anomaly
detection systems. Today there are
a number of systems trying to de-
tect anomalies by closely monitor-
ing system calls; these systems usu-
ally can be grouped into white box,
black box, and gray box systems.
The motivation behind this work
was to perform a systematic study
on existing systems.

During the analysis Debin and his
team discovered that all the current
systems can be organized along
three axes: (1) the information as
extracted from the process on each
system call; (2) the granularity of
atomic units; and (3) the size of the
so-called “sliding window.” In doing
so they try to focus on all of the 18
resulting areas instead of looking at
only one, pointing out advantages
and disadvantages of one area over
another. Detailed results are
described in the proceedings.

In the Q&A session two attendees
remarked that this work does not

; LO G I N : D E C E M B E R 2 0 0 4 1 3 TH U S E N I X S E C U R IT Y SYM P O S I U M 71

take system-call parameters into
account, which the author con-
firmed. For more information, con-
tact dgao@ece.cmu.edu.

Finding User/Kernel Pointer Bugs
with Type Inference

Rob Johnson, David Wagner, Univer-
sity of California, Berkeley

The final presentation of this ses-
sion focused on the issue of point-
ers that are passed from user appli-
cations into kernel space and that
might cause security problems.
Misusing this “feature,” an attacker
might be able to read or write to
kernel memory, or simply crash the
machine. According to Rob, this
has been and still is a persistent
problem in the Linux kernel (as
well as other kernels).

The solution presented by the
authors uses type qualifiers that
enhance the standard C language
types by defining both a kernel and
a user type qualifier. This has been
implemented using CQUAL, a
type-qualifier inference tool.

In an experimental setup, they
tested their enhancements against
several versions of the Linux kernel,
using CQUAL in verification as well
as bug-finding mode. Of the many
interesting results, they presented
17 different security vulnerabilities,
some of which had escaped detec-
tion both by other auditing tools
and by manual audits. Moreover, all
but one of those bugs was con-
firmed to be exploitable by an
attacker. As an additional result, not
in their paper, they reported that
their analysis of Linux 2.6.7-rc3
revealed that although some bugs
had been fixed, they were able to
find seven new security vulnerabili-
ties in only two days.

Someone asked why programmers
are not using the kind of solution
presented here even though similar
work has been available for quite
some time. Rob replied that he
thinks this is beginning to change.

For more information, see http://
www.cs.berkeley.edu/~rtjohnso/.

Metrics, Economics, and Shared
Risk at the National Scale

Dan Geer, Verdasys, Inc.

Summarized by Serge Egelman

Dan Geer’s talk centered on risk
assessment as applied to national
security. He covered the current
state of risk assessment, the nature
of risk, how various models are
used to measure risk, and predic-
tions for risk in the near future.

Geer first explained how risk
assessment is related to engineer-
ing; getting the problem statement
correct is extremely critical. The
correct problem cannot be solved
unless the right questions are asked
and the problem is thoroughly
understood. In terms of national
security, the questions are centered
around what can attack our infra-
structure, what can be done about
it, what the time frame is, and who
will care about it.

Because of the Internet and other
enabling technologies, our society
has greatly increased the amount of
information that is available. While
this increases productivity, it also
increases risk since, in an interde-
pendent society like ours, it is now
increasingly easy to stumble into
different locales. The technologies
are still following Moore’s Law, yet
the skills needed to properly use
this new power are unable to keep
pace. This divergence is creating a
dangerous situation with broad
implications.

Geer mentioned sitting in on a risk
management discussion at a major
bank. The key to managing their
risk is knowing exactly how much
risk to take. Not taking enough risk
does not take full advantage of
potential returns (thus losing
money), whereas taking too much
risk can result in insolvency. The
biggest problem for them is finding
this median. In finding the right
amount of risk, scenarios are dis-
cussed. These scenarios cover every
conceivable factor, as risk is the
result of many interdependencies.
This system is the basis for our

banks and financial markets, and it
largely works, for one reason:
There is zero ambiguity about who
is responsible for taking the risks.
And this is a problem for national
security because it is not very clear
who owns the risk.

Along this line of reasoning, online
risk is difficult to calculate because
the Internet is a new and unique
domain. The economic models
function because the institutions
are fairly static and predictable,
whereas the Internet crosses many
boundaries and jurisdictions. John
Perry Barlow suggests that the
Internet is separate from other
jurisdictions, while others argue
that it belongs to every jurisdiction.
Attacks on the Internet are easy
because the HTTP transport model
allows the attacker to concentrate
on the attack itself, as he or she
does not need to worry about prop-
agating it. Software companies are
increasingly relying on HTTP for
communication with applications,
thus allowing attacks to be more
concentrated. Additionally, this will
increase the total amount of traffic
on HTTP, which will make content
filtering infeasible.

Economics have dictated a shift
toward data. Corporate IT spend-
ing on data storage has been
increasing every year, from 4% in
1999 to 17% in 2003. The total vol-
ume of data has been doubling
every 30 months. Because of this,
the focus of security will shift
toward protecting the data. Viruses,
spam, and online theft (whether it
be identity or economic) have
greatly increased. Users respond
with complaints, and legislators
respond with an increase in laws
governing online security and pri-
vacy. But much of the response is
ill-conceived; HIPAA attempted to
account for technology change, but
resulted in a law that was totally
unreadable.

On the national scale, there are
many considerations for mitigating
risk. We create unique assets to
decrease ambiguity; for example,

72 ; LO G I N : V O L . 2 9 , N O . 6

there is only one DNS system, since
having multiple ones will defeat the
purpose. But this creates a huge
risk in that it offers a single target.
The best counter to this is replica-
tion, creating multiple homoge-
neous nodes that all work together.
On the other hand, replication can
result in cascade failure; nodes can
be used to propagate attacks. Creat-
ing this monoculture has a direct
effect on exploits, since only one is
needed to take out entire networks
of machines. Additionally, the ama-
teur attackers create smokescreens
for the professional attackers.

Currently, the best solution we
have for online attacks is field
repairs. Software is patched when
a vulnerability is found. This has
many implications, the first of
which is liability. Software is sold
“as is,” and thus the user agrees not
to hold the manufacturer liable for
any problems if the product up-
dates are not applied. Automatic
updating of software has been man-
dated in many license agreements
for this same reason. At the same
time, applying patches is not with-
out risk. As Fred Brooks described,
fixing flaws in old software invari-
ably introduces new ones.

Geer predicts that within the next
10 years, advances in traffic analy-
sis will greatly increase, just as
advances in cryptography have
increased over the last 10 years.
Additionally, increasing threats will
result in decreasing security perim-
eters. Currently firewalls are used
to secure a corporate network; this
will shift toward mechanisms to
protect individual data. Security
and privacy are currently being
treated similarly; this will also
change in the future.

Geer discussed further challenges
in the next 10 years. Among those
were eliminating large-scale epi-
demics and minimizing the amount
of skill needed to be safe. He pro-
poses creating commercially avail-
able tools for creating certifiable
systems. Finally, he believes that
information security needs to be as

good as or better than financial
security. But to accomplish this,
better metrics are needed to answer
specific assessment questions.

Because of the immediacy of this
need, there is no time to create a
system from scratch. We must steal
models from other fields such as
public health, insurance, financial
management, and even physics.
These models must take into
account information sharing and
must place values on the informa-
tion. This amounts to calculating
both replacement and future val-
ues. Currently the basis for these
are the black market values: email
address, chat screen names, and
pirated software are all sold. In lieu
of measuring security, we can sim-
ply assign risk in much the same
way that credit card companies do
(i.e., $50 liability on fraudulent
purchases). These metrics are not
free, however. There is always the
tendency for government or other
entities to impose strict controls.

In conclusion, Geer stressed that,
rather than using words to describe
problems, we need to do quantita-
tive analysis. Unknown vulnerabili-
ties are secret weapons of the
attackers. The absence of a major
incident says nothing about a
decrease in risk. All of this is fur-
ther ensuring that tradeoffs will be
made between safety and freedom.

TH E H U M A N I NTE R FAC E

Summarized by Nick Smith

Graphical Dictionaries and the
Memorable Space of Graphical
Passwords

Julie Thorpe and Paul van Oorschot,
Carleton University

Graphical passwords can be a more
secure authentication mechanism
than traditional text passwords,
because they offer a wider set and
could possibly effect a positive
change on the percentage of the
password set that a typical user will
choose. It may also be easier for

users to memorize an image than a
text password.

The idea proposed is to have a user
draw an image on a grid (larger or
smaller to increase or decrease size
of the password set) and to track
the start and end position of each
pen stroke to create an image defi-
nition. In this way, identical images
could possibly be drawn in several
different ways, which further
expands the password set. The idea
does suffer from the same problem
as text passwords, though, which is
that users are more likely to draw
certain patterns (e.g., symmetric
images along center axes, common
images, low number of pen strokes,
similar drawing sequences).

Regardless of drawbacks, which are
unavoidable in any solution, graph-
ical passwords are shown by
Thorpe and Oorschot to be poten-
tially more useful and secure than
text passwords.

On User Choice in Graphical
Password Schemes

Darren Davis and Fabian Monrose,
Johns Hopkins University; Michael
K. Reiter, Carnegie Mellon University

Recognition of images, specifically,
of human faces, can be used to
replace text passwords for authenti-
cation. Humans are especially good
at pinpointing minute and detailed
characteristics in the human face,
especially in those of a person’s
native culture.

There are two proposed schemes:
the “Face” scheme, in which a user
chooses a variable number of faces
from a single provided set; the
“Story” scheme, where a user
chooses one picture (not all of
which are faces) from each of sev-
eral provided sets (recorded in
sequence). In a small, 154-student
study done within the university, it
was found that the “Story” scheme
proved much more secure (i.e.,
more difficult to guess) than the
“Face” scheme.

One drawback to these schemes is
that certain races/cultures/genders

; LO G I N : D E C E M B E R 2 0 0 4 1 3 TH U S E N I X S E C U R IT Y SYM P O S I U M 73

tend to choose the same type of
pictures in a set (supermodels, cute
animals, etc.). Also, although the
“Story” scheme proved superior to
the “Face” scheme, some students
found it hard to remember the
sequence of pictures even though
they could identify all of the correct
images.

Design of the EROS Trusted
Window System

Jonathan S. Shapiro, John Vander-
burgh, and Eric Northup, Johns
Hopkins University; David
Chizmadia, Promia, Inc.

The goal of this system is to impose
MLS information flow controls into
the X Window System. The idea is
that each window’s information
should not be available to all other
windows, but only to trusted win-
dows (such as those within the
same process). For example, com-
mon features such as cut&paste
and drag&drop currently use bi-
directional communication
between windows, which violates
the security measures of the sys-
tem. Workarounds were developed
to make the communication unidi-
rectional. Also, the storage buffers
used for each window must now be
managed by the client rather than
the window server (in this case, X).
Future work anticipates the porting
of current GUI toolkits.

Exploiting Software

Gary McGraw, Cigital

Summarized by Chad Mano

Gary McGraw presented an eye-
opening view into the world of
software security. Traditionally,
security is thought of as an infra-
structure problem, not a software
problem. Also, many believe that
cryptography is the key to provid-
ing security. However, as McGraw
puts it, there is no such thing as
“magic crypto dust.”

The security issue that needs to be
addressed concerns the software,
not the infrastructure. McGraw
described the “Trinity of Trouble”:
connectivity, complexity, and ex-

tensibility, which are the underly-
ing reasons why developing secure
software is a difficult task.

Connectivity: The Internet is every-
where, and most software is on it.

Complexity: As the size of the code
increases, so do the number of vul-
nerabilities.

Extensibility: Systems evolve in
unexpected ways.

Two things that make software vul-
nerable to attacks: bugs and flaws.
Bugs are the simple, easy-to-find
mistakes in the code. Flaws are
more complex problems that can be
the result of mistakes in code and
design. We traditionally work on
fixing bugs, whereas attackers don’t
care whether it’s a bug or a flaw that
allows them to exploit software.

Educating new software developers
is one of the keys to improving
security. Traditional software engi-
neering classes are boring, but that
does not have to be the case. Stu-
dents should be taught how to
break software the way hackers do
so they will better understand how
to build secure software. Breaking
stuff is fun and makes for a more
invigorating class, as well as pro-
viding a valuable learning experi-
ence.

Functional testing and security
testing are not the same thing.
Functional testing looks at a pro-
gram as a black box and tries to
determine whether the output is
correct. Security testing needs to
get inside the code. Hackers use
tools such as decompilers and dis-
assemblers to understand the con-
trol flow of a program. Security
testing cannot be used to build
security into a program. Security
must be built into the design of the
program, so that security is truly
inside the code.

See McGraw’s book, co-authored
with Greg Hoglund, Exploiting Soft-
ware: How to Break Code, for more
information on this topic.

PA N E L : PATC H M A N AG E M E NT

Crispin Cowan, Immunix; Marcus
Ranum, Bellwether Farm; Eric
Schultz; Abe Singer, SDSC; Tina Bird,
InfoExpress

Summarized by Eric Cronin

Crispin Cowan began the presenta-
tions by looking at the tradeoff
between safety and stability inher-
ent in patching. Patching too late
leads to getting hacked; patching
too soon can lead to problems from
buggy patches. For a given vulnera-
bility these two trends move in
opposite directions as time passes
(bugs decrease, compromises
increase), so there should be some
optimal point, where these two
curves cross, at which to apply the
patch. Unfortunately, from study-
ing historical information, Cowan
found that on average it takes 10
days after being released for the
final stable revision of a patch to
arrive—up to 30 days in some
cases. Attacks, on the other hand,
are beginning within hours of a
vulnerability being published. In
reality, the two curves never inter-
sect, so from a security standpoint
patch management is a doomed
cause. Cowan instead suggested
that patching be looked at as a
maintenance activity and alterna-
tive strategies be used for security.
The first alternative proposed was
to only run perfect software, which
has some problems in practice. The
second alternative was to rely on
intrusion detection and intrusion
prevention technologies, such as
the fine products sold by Immunix.

Tina Bird related some of her expe-
riences as system administrator at
Stanford during the MS Blaster
attack. On July 16 the vulnerability
exploited by Blaster was announced.
On July 18, proof-of-concept attack
code became available. A month
later, on August 18, Blaster hit the
Internet. Despite this month-long
window during which users could
have patched, 8,100 Windows
machines at Stanford were compro-
mised. Many users had not patched

74 ; LO G I N : V O L . 2 9 , N O . 6

because they did not want to break
working systems. The CVE (Com-
mon Vulnerabilities and Expo-
sures) reports announcing patches
make it very difficult for users to
gauge the criticality of a patch.
From her experience, Bird thought
the best solution in an environment
like Stanford’s was to remove free
will from the users and use auto-
mated update systems to force
patching. Bird also noted that by
their nature, the most dangerous
vulnerabilities are those against
network services that are remotely
accessible, that are on by default,
and that do not require authentica-
tion. These same properties also
make it very easy for administra-
tors to scan their networks periodi-
cally and locate unpatched hosts.

Eric Schultz provided some insight
on the view of patch management
from “the other side.” While at
Microsoft he had a part in every
service pack and security patch
released. One strategy used by
Microsoft was to remove all refer-
ences from service pack release
notes for fixes to previously undoc-
umented/unannounced security
fixes, in order to lessen the risks
to those not applying the service
pack. Microsoft usually saw a flurry
of activity immediately after a
patch was announced, and then lit-
tle activity until right after a worm
hit, at which time there was a spike
in purchases of patch management
solutions.

Abe Singer briefly talked about a
major security attack suffered by
SDSC last spring. Of note, none of
the machines involved in the attack
was running Windows; the vulner-
abilities were all against *NIX
hosts. A contributing factor to the
vulnerability was that Sun’s patch
system indicated that kernel
patches had been applied but the
machines had not been rebooted to
use the new kernel. Without accu-
rate reporting it is very difficult to
determine what the vulnerability
status of hosts actually is.

The final presenter was Marcus
Ranum, who concurred with
Cowan’s observation that patch
management was the wrong strat-
egy for security. He went one step
further, however, and insisted that
patching was a fundamentally stu-
pid thing to do. Production Sys-
tems 101, he stated, is “If it’s work-
ing, don’t f— with it.” He never
patches his own systems, and he
never changes his passwords (sev-
eral of his passwords were then
provided to the audience). Instead,
he solved his security problem by
configuring his network so that he
doesn’t have to care about new vul-
nerabilities. Corporations want the
conflicting features of cheap and
good software as well as unsegre-
gated Internet-facing hosts and
security. His solution is to run soft-
ware that is less questionable than
the rest of the herd and to run even
that software within sandboxes and
with extra protection. He con-
cluded by stating that securing sys-
tems is engineering, while patching
systems is anti-engineering.

In the Q&A, Steve Bellovin asked
Ranum whether it was reasonable
to expect every user to write her
own “better than the herd” Web
browser, for example. The panel
answered that when you need to
run commodity software such as a
browser, you shouldn’t run it on a
machine that you care anything
about; the techniques the panel had
presented were suitable for servers.
Another audience member pointed
out that by properly isolating
servers with chroot and systrace it
is possible to run after a vulnerabil-
ity without patching and still be
secure. Another point raised was
that most machines on a network
are desktops and not servers, and
that these machines are rarely pro-
fessionally managed. When these
machines are attacked, the collat-
eral damage can impact the net-
work and even the most hardened
server. The panel agreed with this
observation, and also noted that it
is often wise to treat these unman-

aged desktops (and laptops) as
being just as dangerous as remote
hosts on the Internet, and placing
them outside the innermost firewall
surrounding critical servers.

Military Strategy in Cyberspace

Stuart Staniford, Nevis Networks

Summarized by Marc Dougherty

Stuart Staniford presented his pre-
dictions for a hypothetical cyber-
warfare scenario. There has not yet
been a real cyberwar, but Staniford
believes the tactics and technolo-
gies necessary will develop rapidly
in the wake of real cyberwar. Stani-
ford describes a scenario in which
China invades Taiwan. The US dis-
patches a few carrier groups to
assist the Taiwanese, causing sub-
stantial damage to the Chinese
invasion force. In order to elimi-
nate US involvement, China opens
the North American theater with a
cyberattack.

Staniford theorizes that in order to
have sufficient results, the Chinese
must disable two critical infrastruc-
tures. Staniford believes the num-
ber of targets necessary to disable
an infrastructure is on the order of
one hundred. The attacker not only
must compromise the security of
internal corporate networks, but
must then gain access to the
SCADA control systems in order to
disable the target. Staniford esti-
mates that a single attacking battal-
ion could range from 150 to 1000
attackers.

Only a nation-state could muster
the extensive resources necessary
to create such a tremendous force.
The attacking force is likely to be
extremely disciplined and well
trained. Because of this, Staniford
believes that defensive forces must
be organized and trained like a mil-
itary regime, especially in the case
of critical infrastructures.

; LO G I N : D E C E M B E R 2 0 0 4 1 3 TH U S E N I X S E C U R IT Y SYM P O S I U M 75

S E C U R IT Y E N G I N E E R I N G

Summarized by Marc Dougherty

Copilot — A Coprocessor-Based
Kernel Runtime Integrity Monitor

Nick L. Petroni, Jr., Timothy Fraser,
Jesus Molina, and William A.
Arbaugh, University of Maryland

Nick Petroni described a Kernel
Integrity Monitor known as Copi-
lot, which resides on a PCI card.
The goals of Copilot are to create a
system that is compatible with
commodity hardware, effective in
detection as well as performance,
and isolated from the host, and that
cannot be tampered with in the
event of a compromise. The current
system functions on commodity
x86 Linux systems without modifi-
cation.

Copilot monitors a number of data
points, including the list of loaded
kernel modules and a hash of the
Linux kernel text. The results of
these checks are compared to a
known good state, and in the event
of a change, it is reported to the
administrative system, to which the
Copilot PCI card connects directly.

In an experimental test of Copilot’s
capabilities, it was able to detect all
13 of the rootkits attempted. The
performance penalties of using
Copilot are also relatively minor.
When checking every 30 seconds,
there is only a 1% performance
penalty. Continuous checking,
however, showed a 14% penalty,
which is believed to be caused by
bus contention.

Further work for the Copilot team
includes predicting memory foot-
print based on a binary, and insti-
tuting further checks on kernel
data such as the process table and
open file descriptors. Copilot can
also currently be extended to sup-
port dynamic data.

Fixing Races for Fun and Profit:
How to Use access(2)

Drew Dean, SRI International; Alan
J. Hu, University of British Columbia

Drew Dean presented a probabilis-
tic solution to the age-old problem
of race conditions. Dean’s solution
deals particularly with the problem
of setuid programs using the access
rights of the real user. The access()
system call was created for this pur-
pose, but due to the non-atomic
nature of the call, it is still vulnera-
ble to a TOCTOU attack (time-of-
check to time-of-use).

Dean’s approach involves applying
“hardness amplification,” a tech-
nique commonly used in the cryp-
tography realm, to make winning
this type of race more difficult. The
system described uses a coefficient
K to determine the strength of the
system. When opening a file,
access() is called, and the file is
opened. Instead of using that file
descriptor, the following steps are
performed K times.

Random delay

Call access()

Random delay

Re-open the file

Verify that the device, inode, and
fstat() results match

Close the re-opened file

This process relies on access() pro-
ducing no side effects, open() being
idempotent, and fstat() not being
vulnerable to a race condition. The
result of this procedure is that an
attacker must win 2K + 1 races in
order to achieve his goal. Dean rec-
ommends a K of 7 for single-
processor machines, and a K of 10
for a reasonable level of security.

Network-in-a-Box: How to Set Up a
Secure Wireless Network in Under
a Minute

Dirk Balfanz, Glenn Durfee, Rebecca
E. Grinter, Diana K. Smetters, and
Paul Stewart, PARC

Diana Smetters presented a PKI-
based wireless security solution
modeled on the 802.1x EAP. The
barrier preventing widespread use
of EAP is the configuration, which
involves typing large hexadecimal
strings into the clients and the APs.

The goal of NiaB is to create a
smarter access point that handles
the generation of certificates and
exchange this new authentication
information through a second com-
munication channel. By using a
short-range method such as IR for
this second channel, wireless secu-
rity becomes a matter of physical
security.

The NiaB architecture is divided
into four parts:

Wireless Access Point

Enrollment Station

Certificate Authority

Authentication Server

When joining a network, the user
interacts with the Enrollment Sta-
tion portion of the system, which
talks to the CA to autocreate client
keys. Once the keys have been ex-
changed, the user can safely com-
municate with the Authentication
Server element over TLS, since the
public key digest is also exchanged
via the secondary communication
channel. This communication is
done using a custom protocol
called EAP-PTLS.

Smetters also noted that for enter-
prise use, the architecture can be
separated to allow a centralized
Enrollment Station, CA, and Auth-
entication Server. Experimental
results show that users can connect
to a NiaB network in under one
minute, demonstrating that wire-
less networking can be usable as
well as secure.

Design and Implementation of a
TCG-Based Integrity Measurement
Architecture

Reiner Sailer, Xiaolan Zhang, Trent
Jaeger, and Leendert van Doorn, IBM
T.J. Watson Research Center

Reiner Sailer presented an integrity
detection system based on the work
of the Trusted Computing Group.
The TCG system relies on a special
chip that stores information about
the boot process. The system pre-
sented by Sailer uses this same
TPM chip to detect tampering with

76 ; LO G I N : V O L . 2 9 , N O . 6

important system files. TPM chips
are already installed in most IBM
laptops.

This system uses the TPM chip to
store SHA1 checksums of impor-
tant system files. These checksums
are then digitally signed by the
chip. The checksums are also avail-
able to the kernel of the host OS.

The software portion of the current
implementation consists of a kernel
module which performs the above
checksumming before opening
each file. Experiential results show
that a clean hit takes only .1 mil-
lisecond, and the opening of a new
file takes only 5 milliseconds plus
the time required to perform the
SHA1 checksum.

This work is included in the TCG
Linux project. More information is
available at http://www.research
.ibm.com/secure_systems_
department/projects/tcglinux/.

What Biology Can (and Can’t)
Teach Us About Security

David Evans, University of Virginia

Summarized by Alvin AuYoung

Note: Slides from the talk are avail-
able at http://www.cs.virginia.edu/
~evans/usenix04.

Nature provides a fascinating
example of how to design com-
puter systems. David Evans pre-
sented analogies between nature
and computer systems, highlight-
ing both the potential and the limi-
tations of using nature to guide the
design of secure computer systems.

Approximately 99.9% of species in
nature become extinct. Evans
emphasized the slim odds of sur-
vival faced by nature’s species, who
must adapt in order to survive their
predators and other attacks in
nature. He drew a parallel between
attacks faced by these species and
well-known attacks faced by today’s
computer systems. For example, a
lion chasing down a gazelle might
be similar to a “brute force attack,”
where an attack is conducted by
sheer force. A Bolas spider attract-
ing male moths by emitting chemi-

cals that mimic pheromones of
female moths is similar to a com-
munication integrity attack.

Species that are able to survive
against predators in nature and var-
ious ecological phenomena are
examples of secure and robust bio-
logical systems. Understanding
how these species have evolved can
help us design secure and robust
computer systems.

Biological systems are too complex
to understand analytically. Instead,
Evans suggests that we should
learn from the qualities of existing
species in nature that have survived
over time. There are four common
traits observed in such systems:
expressiveness, redundancy, aware-
ness of surroundings, and localized
organization. If we were to mimic
these characteristics, could we also
build programs that survive both
its adversaries and the test of time?

Amorphous computing, swarm
programming, and autonomic com-
puting are examples of research
that attempts to use these charac-
teristics to design computer sys-
tems. In particular, Evans discussed
the amorphous computing project
from the lab of Radhika Nagpal,
where the goal is to design a system
in which a potentially large number
of simple and possibly unreliable
pieces can cooperate to create a sys-
tem with complex and well defined
behavior. An example of this is
Nagpal’s work with origami mathe-
matics. In this work, a set of identi-
cally programmed cells forms a
sheet of (virtual) paper, and the
goal is to have these cells cooperate
using only local interactions to
form a complex structure such as
an origami shape (e.g., half of the
cells will “move” to one side to
simulate a fold in the paper). Al-
though this is an example of how
to design a robust system that cap-
tures some of the qualities of
nature’s systems, there is still a long
way to go before we understand
how to use these qualities to design
secure systems for real-world appli-
cations.

Another place where the principles
of nature’s systems can be applied
to computer systems is computer
immunology. Identifying intrusion
and removing viruses in computer
systems is similar to how our
immune system wards off attacks.
In nature, diversity of receptors
within species allows them to sur-
vive strains of specific pathogens.
As a result, a large number of the
members of a species can survive.
In computer systems there has been
a push toward providing system
diversity. A commonly cited exam-
ple is in operating systems, where
over 90% of the machines in the
world use Microsoft Windows.
Largely as a result of this, computer
worms, using a single vulnerability
in Windows, have been able to
infect a large number of computer
systems connected to the Internet.
The fact that so many machines on
the Internet share vulnerabilities
has allowed Internet worms to pro-
liferate and has caused many peo-
ple to push for diversifying the
operating systems market. Evans
argues that diversifying an operat-
ing system isn’t the complete
answer. For example, vulnerabili-
ties in widespread network proto-
cols like TCP/IP, applications like
the BlackICE firewall, and common
libraries like libpng also contribute
to this problem. The lesson here is
that diversity must be present at
several levels of abstraction in
order to be effective. Evans cites
existing work such as instruction-
set randomization and protection
of special registers in an address
space as examples of diversity tech-
niques in computer systems.

There are limits to the lessons to
learn from nature. In particular,
Evans notes that computer systems
are human-engineered and there-
fore don’t naturally “evolve.” In
other words, the process of evolu-
tion is smarter than we (humans)
can be in redesigning our systems,
so we shouldn’t count on a few iter-
ations of software to evolve into
secure software. There are also

; LO G I N : D E C E M B E R 2 0 0 4 1 3 TH U S E N I X S E C U R IT Y SYM P O S I U M 77

many instances where nature fails,
such as mass extinction of species
due to environmental changes and
the ability of viral epidemics to
wipe out large portions of a species’
population. Evans also notes the
success of humans in engineering
mass destruction in nature, such as
vaccines to wipe out smallpox. He
uses these points to establish that
nature can succumb to “out-of-
band” attacks (environmental
changes, humans).

In conclusion, Evans says that
while there is still much we can
learn from biological systems, we
have to do much better than nature
in designing computer systems,
because the attacks that our sys-
tems face can also include “out-of-
band” attacks that nature often can-
not defeat.

F O R E N S I C S A N D R E S P O N S E

Summarized by Zhenkai Liang

Privacy-Preserving Sharing and
Correlation of Security Alerts

Patrick Lincoln, Phillip Porras, and
Vitaly Shmatikov, SRI

The prevalence of computer viruses
and worms drives the need for
Internet-scale threat-analysis cen-
ters. These centers are data reposi-
tories to which pools of volunteer
networks contribute security alerts,
such as firewall logs or intrusion
alerts. However, the possibility of
leaking private information in the
contributed data prevents people
from providing alert-sharing data
for those centers. Vitaly Shmatikov
presented a practical scheme to
provide strong privacy guarantees
to those who contribute alerts to
these threat-analysis centers.

The authors’ solution is an alert-
sharing infrastructure, the core of
which is a set of repositories where
alerts are stored and accessed. In
preventing sensitive information
(e.g., IP addresses, captured and
infected data, system configuration
information, defense coverage)
from being revealed, several tech-

niques to be used in combination
are proposed, including scrubbing
sensitive fields, hashing IP address,
re-keying by repository, using ran-
domized host list thresholds, and
delaying alert publication. To pre-
vent single point of failure, they use
multiple alert repositories and ran-
domized alert routing. The alert
sanitization techniques protect
information in raw alerts, as well as
allowing a wide variety of large-
scale and cross-organization analy-
ses to be performed. In the per-
formance evaluation, the authors
conclude that the cost of their
scheme is very low: “a small impact
on the performance of alert produc-
ers, and virtually no impact on the
performance of supported analy-
ses.” It is implemented as a Snort
plug-in for alert sanitization.

Q: How do you defend flooding of a
repository?

A: There’s no defense against flood-
ing currently. One possible solution
is to let the contributors of alerts
register with the system.

Static Disassembly of Obfuscated
Binaries

Christopher Kruegel, William
Robertson, Fredrik Valeur, and
Giovanni Vigna, University of
California, Santa Barbara

Christopher Kruegel introduced a
static binary analysis technique for
disassembling obfuscated binary
codes. Disassembly is the process
of recovering a symbolic represen-
tation of a program’s machine code
instructions from its binary repre-
sentations. Recently, a number of
techniques have been proposed to
make it difficult for a disassembler
to extract and comprehend the pro-
gram’s high-level structure while
preserving the program’s semantics
and functionality.

Without the requirement that the
code was generated by a well-
behaved compiler, their disassem-
bler performs static analysis on
Intel x86 binaries. The analysis
techniques can be divided into two
classes: general techniques and

tool-specific techniques. General
techniques do not rely on any
knowledge of how a particular
obfuscator transforms the binary.
These techniques first divide the
binary into functions. Then they
attempt to reconstruct the func-
tions’ intra-procedural control flow
graph, which is a major challenge
of their approach. Finally, a gap
completion step improves the
result of the previous step. In their
tool-specific techniques, the gen-
eral techniques are modified to deal
with binaries transformed with
Linn and Debray’s obfuscator.

The authors’ techniques were eval-
uated on eight obfuscated SPECint
95 applications. The authors
claimed that their disassembler
provides a significant improvement
over the best disassembler used in
the evaluation by Linn and Debray.
With the tool-specific techniques,
they said that the binary was disas-
sembled almost completely (97%
on average). The authors also per-
formed experiments to find the
ratio between the number of valid
instructions identified by the con-
trol flow graph and the number of
valid instructions identified by the
gap completion phase. In their
observation, the control transfer
instructions and the resulting con-
trol flow graph constitute the skele-
ton of an analyzed function.

Q: Can you comment how your
tool works on encrypted or
encoded binaries?

A: The tool is currently a static
analysis tool, which cannot help in
this situation. It can be extended
with dynamic disassembling.

Autograph: Toward Automated,
Distributed Worm Signature
Detection

Hyang-Ah Kim, Carnegie Mellon
University; Brad Karp, Intel
Research and Carnegie Mellon Uni-
versity

Hyang-Ah Kim described Auto-
graph, a system that automatically
generates signatures for novel
Internet worms that propagate

78 ; LO G I N : V O L . 2 9 , N O . 6

; LO G I N : D E C E M B E R 2 0 0 4 1 3 TH U S E N I X S E C U R IT Y SYM P O S I U M 79

using TCP transport. The paper
answers the question, “How should
one obtain worm content signa-
tures for use in content-based filter-
ing?” The authors noted that all
current content-based filtering sys-
tems use databases of worm signa-
tures that are manually generated.
On detecting a virus, network oper-
ators communicate with one
another, manually study packet
traces to produce a worm signature,
and publish the signature to worm
signature databases. This process of
signature generation is slow in the
face of today’s fast-propagating
worms.

Autograph takes all traffic crossing
an edge network’s DMZ as the
input, and outputs a list of worm
signatures. A single Autograph
monitor’s analysis of traffic is
divided into two main stages. First,
a suspicious flow selection stage
uses heuristics to classify inbound
TCP flows as either suspicious or
non-suspicious. Then Autograph
selects the most frequently occur-
ring byte sequences across the
malicious flows as signatures. To do
so, it divides each suspicious flow
into smaller content blocks using
content-based payload partitioning
(COPP) and counts the number of
suspicious flows in which each
content block occurs. The authors
also created an extension to Auto-
graph, tattler, for distributed gath-
ering of suspected IP addresses
using multiple monitors.

In the evaluation of local signature
detection, the authors conclude
that, as content-block size de-
creases, the likelihood that Auto-
graph will detect commonality
across suspicious flows increases,
so it generates progressively more
sensitive but less specific signa-
tures. In the evaluation of distrib-
uted signature detection, the
authors conclude that multiple
independent Autograph monitors
clearly detect worm signatures
faster.

Q: Do all possible common signa-
tures fall into a single-block con-
tent signature?

A: There is a possibility that we
miss signatures contained in multi-
ple packets.

Q: Do you look at multiple content
blocks for signatures?

A: We are exploring this.

Q: How do you deal with the situa-
tion where someone is trying to
overload (flood) the monitors?

A: It can happen. The solution is to
use distributed monitors to verify
signatures.

Nuclear Weapons, Permissive
Action Links, and the History of
Public Key Cryptography

Steve Bellovin, AT&T Labs—
Research

Summarized by Tara Whalen

Steve Bellovin gave the audience an
entertaining and informative trip
through nuclear weapons technol-
ogy, Cold War politics, and military
history, with a side trip to visit Dr.
Strangelove. He provided a thor-
ough discussion of permissive
action links (PALs), which were
designed to prevent unauthorized
use of nuclear weapons. Appropri-
ately enough for a security forum,
he proposed an intriguing theory
that public key cryptography may
have been developed initially as a
necessary component of nuclear
weapon security.

Historically, permissive action links
were required to protect nuclear
bombs, not from unauthorized use
by enemies or rogue US troops, but
to keep them from being misused
by US allies. In the 1950s the US
was concerned that the Soviet
Union was going to invade Western
Europe. Keeping a large number of
US troops in Europe was not
acceptable. The alternative was
chosen to create NATO and provide
nuclear weapons for NATO allies.
However, because of political insta-
bility in some European countries

and fear that the US could not
tightly control deployment of these
remote weapons, PALs were added
to provide some measure of secu-
rity.

Out of intellectual interest, Bellovin
began independent research into
how PALs worked; the documents
he obtained from government
agencies gave some hints but no
conclusive information. The safety
features of nuclear bombs were rea-
sonably well documented. These
features included a strong link/
weak link pair: the strong link pro-
vided electrical isolation, while the
weak link was designed to fail
under stress (such as in an acci-
dent). One component of the
strong link was the unique-signal
generator, a safety system designed
to produce a 24-bit signal that was
highly unlikely to occur by acci-
dent (meant to indicate human
intention to deploy). The unique-
signal discriminator is designed to
lock up if it receives a single erro-
neous bit.

The PALs themselves were origi-
nally electromechanical controls
which required two cooperating
parties to unlock the weapon. PALs
respond to a variety of codes
(recently, 6- or 12-digit codes); the
weapon is designed to deactivate if
too many incorrect codes are
entered. Bellovin speculated on
design principles that may have
been used for PALs. One hypotheti-
cal design involves encrypted sig-
nal paths: PALs use switches to
control the voltage path to the det-
onators. The original designs used
rotors, similar to WWII-era encryp-
tion machines, but more recent
models use a microprocessor to
control the switches; possibly this
works by providing an encryption
key for the weapon’s environmental
sensors, with the signal being
decrypted by the strong links.
Another hypothetical design
involves encrypted code, in this
way: It is highly likely that the
internal control and sequencing

requirements are complex; this tim-
ing information, or perhaps the
code paths, is encrypted. The pub-
lic interface could be used for re-
keying plus decryption.

Bellovin brought the discussion
back to cryptographic history, stat-
ing that he found no requirement
for the use of public key crypto in
PALs (or any indication it was used
there, except in one prototype).
The PAL sequences are short,
which indicates that no secure pub-
lic key cryptosystem could have
been supported. However, consider
that by law US nuclear weapons
can only be deployed by order of
the President; to support this
requirement for authenticating the
arming code, it is possible that the
NSA invented digital signatures.
(Added Bellovin wryly, “Including
an X.509 naming format for bomb
certificates.”) In addition, codes
need to be put into the PAL: How is
this done securely? Since this infor-
mation should not be passed in the
clear, this requirement may have
led to the NSA’s development of
public key cryptography. (This the-
ory is not well documented, but
makes for interesting speculation.)

What lessons can security profes-
sionals learn from nuclear weapons
safety and security designs? One
important lesson is to understand
exactly what problem you’re solv-
ing: The weapons designers got it
right because they knew precisely
what the real problem was. For
access control, you want to find the
One True Path that everything
must pass through, and block that.

For more information on this topic,
see Steve Bellovin’s PAL Web page
at http://www.research.att.com/
~smb/nsam-160/pal.html.

DATA P R I VACY

Summarized by Rachel
Greenstadt

Fairplay—A Secure Two-Party
Computation System

Awarded Best Student Paper!

Dahlia Malkhi, Noam Nisan, and
Yaron Sella, Hebrew University;
Benny Pinkas, HP Labs

Yaron Sella presented an imple-
mentation of Secure Function Eval-
uation (SFE), a theoretical con-
struct studied in the cryptography
community for 20 years. The clas-
sic example of SFE is the million-
aire’s problem. Two millionaires
want to know who is richer. One
has $X million and one has $Y mil-
lion, and they don’t trust each
other. They need either a trusted
third party or SFE. In this case the
function is > = <, but it could be
any function. The goal of the
research was to see whether two-
party SFE was practical and to bet-
ter understand where the bottle-
necks were, in computation or
communication. They wanted to
push this protocol from the theo-
retician’s realm to the practical
arena.

They defined two languages, Secure
Function Definition Language
(SFDL) for specifying the function
to be evaluated, and Secure Hard-
ware Definition Language (SHDL)
for turning the program into a cir-
cuit. Thus if Alice and Bob want to
evaluate a circuit, Bob takes the cir-
cuit and garbles it m times and
sends these to Alice. Alice chooses
one and tells Bob which. Bob then
reveals the secrets of all the non-
chosen ones and Alice verifies that
they are okay. This is the com-
monly used cut-and-choose
method of indirect randomized ver-
ification. Bob types in his input and
sends the garbled version and Alice
types her input. They engage in
oblivious transfer where Bob is the
sender and Alice is the chooser.
Alice evaluates, sends to Bob, and
they both print the results.

Yaron then gave the audience a live
demo of Fairplay. He first showed
examples of SFDL and SHDL (the
millionaire’s problem) and created
circuits. He then showed examples
of running the billionaire’s problem
(bigger numbers). There was a
short delay as the circuits were
sent; Bob had 100000, Alice
100001. So Bob received 0 and
Alice 1. The code was written in
Java, using its crypto-libraries and
SHA1. They tried several functions:
AND, billionaire’s problem, keyed
database search, and finding the
median of unified arrays. The main
bottlenecks were in the communi-
cation of the circuits and the oblivi-
ous transfer. You can play with the
system at http://www.cs.huji.ac.il/
danss/Fairplay. An audience mem-
ber suggested that the delay experi-
enced on the LAN might be
reduced by turning off nagling.

Tor: The Second-Generation Onion
Router

Roger Dingledine and Nick Mathew-
son, The Free Haven Project; Paul
Syverson, Naval Research Lab

Roger Dingledine began by
explaining that TOR (The Onion
Routing) was similar to Zero
Knowledge’s Freedom networks,
except with some improvements
and free. It aims to provide
anonymity by protecting packets
from traffic analysis. The research
is funded by the government (they
want to look at Web sites without
revealing their .gov and .mil
addresses and to protect their net-
works from insider attack), but
anonymity is also useful for indi-
viduals, corporations, and even law
enforcement. People are worried
about criminals, but they already
have anonymity (Nick Weaver can
tell you more about this). The idea
behind the network is to distribute
trust among several nodes and that
not all of them will collude and do
traffic analysis on the users. The
system provides location
anonymity, not data anonymity. You
should use something on top of it
to scrub your cookies and whatnot.

80 ; LO G I N : V O L . 2 9 , N O . 6

Onion Routing is an overlay net-
work of anonymizing proxies using
TLS between each pair of links.
Alice, the client, connects to the
first hop, negotiates a key, then tun-
nels to the second hop, and then to
the third hop. Each node only
knows its predecessor and succes-
sor. Once built, you can multiplex
TCP streams over these circuits,
which are rotated periodically. To
connect, you contact the directory
servers (more trusted nodes) and
they tell you about who’s in the net-
work, keys, exit policies, etc.
There’s a human in the loop to pre-
vent Sybil attacks. They have 50
servers. TOR is 26,000 lines of C
code that runs in user-space. The
client looks like a socks proxy, so
they don’t need to build an applica-
tion for each protocol they want to
support. There are flexible exit
policies to deal with abuse and
legal issues. The system works with
only a couple of seconds of latency.
The system also supports location-
hidden services, so Bob can run an
Apache without revealing his IP. At
http://freehaven.net/tor there are
specifications, a second implemen-
tation of the TOR client, a design
paper (this one), and code.

People asked about abuse issues,
and Roger answered that there
haven’t been any, but they are a
research network and they block
SMTP. Someone asked whether
someone could follow the packets
by comparing their sizes. Roger
answered that they already give up
if the adversary can see both sides
of the connection; their goal is to
prevent all attacks that are easier
than that. Someone wondered
whether you should send the host-
name or the IP address through
TOR. The answer is, the hostname;
the resolve has to be done at the
end or DNS (since it is UDP) will
break anonymity.

Understanding Data Lifetime via
Whole System Simulation

Awarded Best Paper!

Jim Chow, Ben Pfaff, Tal Garfinkel,
Kevin Christopher, and Mendel
Rosenblum, Stanford University

Jim Chow began by laying out a
common scenario: a user at a pass-
word prompt. The question was,
after you type your password, what
happens to this sensitive data?
Under the assumption that the soft-
ware was written with security in
mind, it will read the password into
a buffer locked in memory, use
encrypted software, and erase the
password once it’s done with it.

If your computer is broken into at a
later date, that sensitive informa-
tion is assumed by most people to
be gone, but this paper showed that
not to be the case. Even if the appli-
cation has been careful, many extra
copies of the data often exist in the
tty buffer, the X server, gtk+
buffers, etc. The problem with data
lifetime issues is that you can only
erase the copies you know about;
the others may get written to disk.

To address this problem, they wrote
TaintBochs, a program to do whole
system simulation and track sensi-
tive data as it flows through soft-
ware. However, just figuring out
what was a copy was nontrivial;
where this was the case, the pro-
gram erred on the side of caution.

They learned that there were usu-
ally several copies of data stored in
the kernel, and although kernel
memory isn’t paged, there are
plenty of ways to dump it to disk,
from hibernating laptops to
crashes. Since indirection is so pop-
ular, it’s impossible to avoid mid-
dlemen processes, so you get a lot
of copies there, too. Fixing things is
usually easy, though: Zeroing and
string destructors destroy most
taints, and TaintBochs can help
with that.

During Q&A, Jim pointed out that
there are possibly false negatives in
the experiments, since TaintBochs

can only prove the existence of
taints, not prove you don’t have
problems. Someone else brought
up the point that sometimes the
compiler doesn’t obey the memset
command, but there are lots of
ways to get around that problem.

My Dad’s Computer, Microsoft,
and the Future of Internet Security

Bill Cheswick, Lumeta Corp.

Summarized by Serge Egelman

The biggest threat to Internet secu-
rity is not large corporate comput-
ers that are specifically targeted by
intruders, but individual home
machines that are simply config-
ured poorly. Bill Cheswick elabo-
rated on this by using his father as
the typical user. He’s an 80-year-old
veteran who runs Windows XP. He
uses the computer to trade stocks,
check email with Microsoft Out-
look, and chat with family and
friends via AOL Instant Messenger.
He has been “skinny dipping” for
years, by which Cheswick means
that his father does not have a fire-
wall or any spyware protection, and
he never updates his anti-virus def-
initions. Pop-ups appear on the
screen every three minutes or so,
but his father simply dismisses
them without giving any thought to
it. In fact, a computer repair person
came over to take a look at the
machine and discovered a variety of
spyware programs, redirections to
obscene Web sites, and viruses that
he had never heard of before.

The question is, why should he
care? He found a way of getting
around all of these distractions so
that he could still be productive,
and he did not want a system
administrator changing any of his
personal settings. Since malicious
attacks are very rare, he did not see
any real reason to bother changing
any of his habits. On the other
hand, his machine had become a
slave that could be used in propa-
gating spam or denial of service
attacks across the Internet, thus
disrupting other people’s work.
Cheswick described it as a “toxic

; LO G I N : D E C E M B E R 2 0 0 4 1 3 TH U S E N I X S E C U R IT Y SYM P O S I U M 81

82 ; LO G I N : V O L . 2 9 , N O . 6

waste dump spewing blue smoke
across the Internet.” It is in every-
one’s best interest that these
machines are secured.

Computer security has become an
arms race. Originally anti-virus
software worked by looking for
specific signatures in the virus
code, but this was later thwarted by
viruses that would encrypt or
recompile themselves. So the detec-
tors started running simulations to
see how the virus would act on the
program, but now newer viruses
can detect these simulations.
Trusted computing offers a solution
to this problem, but it is only a
matter of time before the virus
writers regain control. Similar arms
races can be seen in password sniff-
ing, password cracking, hardware
vulnerabilities, and even software
upgrades. In an homage to The
Karate Kid, Cheswick quotes Mr.
Miyagi: “The best block is not to be
there.” That is, the key is to stay
out of the game altogether.

In order to keep Dad out of the
game, better client security is
needed. Windows ME has eight
ports open by default, and Win-
dows 2000 and XP have increas-
ingly more. A similar machine run-
ning FreeBSD will have one open
for SSH, if any. It is obvious that
these ports should not be open by
default. Personal firewalls try to
solve this problem, but additional
software really is not needed here;
the problems are caused by all the
programs that are not used.

Cheswick has a solution, though:
Windows OK. This could be a new
end-user-oriented operating system
that functions as a thin client. No
firewall or anti-virus software will
be necessary, since no ports will be
open by default. Additionally, all
programs will be signed by trusted
parties, and all security settings will
be located in one central location.
Additionally, macros will not func-
tion in Word or PowerPoint and

can only be used for arithmetic in
Excel.

Such a system would be immune to
the vast majority of security threats
on the Internet. Cheswick believes
that we may never win the malware
detection arms race, so instead we
must win the protection game.
Unfortunately, most users simply
do not see the problem; a fully
hosed computer may still seem
functional to them. What the user
does not know is that his system is
affecting other people. By creating a
usable system with tight security by
default, we can keep the average
user out of the security game alto-
gether.

For WiPs and Posters, please see
http://www.usenix.org/events/
sec04/tech/wips/.

For audio files of some sessions,
see http://www.usenix.org/publica-
tions/library/proceedings/sec04/
tech/mp3/.

	letter
	wireless
	musings
	spyware
	code
	fwknop
	homebrew
	sebek
	strike
	ohno
	keys
	propagation
	multics
	bookworm
	reviews
	unotes
	sec04reports

