
{
THE USENIX MAGAZINE 

December 2003 • volume 28 • number 6

#
The Advanced Computing Systems Association 

inside:
SECURITY

Perrine: The End of crypt() Passwords

. . . Please?

Wysopal: Learning Security QA from

the Vulnerability Researchers

Damron: Identifiable Fingerprints in

Network Applications

Balas: Sebek: Covert Glass-Box Host Analysis

Jacobsson & Menczer: Untraceable Email Cluster Bombs

Mudge: Insider Threat

Singer: Life Without Firewalls

Deraison & Gula: Nessus

Forte: Coordinated Incident Response Procedures

Russell: How Are We Going to Patch All These Boxes?

Kenneally: Evidence Enhancing Technology

BOOK REVIEWS AND HISTORY

USENIX NEWS

CONFERENCE REPORTS

12th USENIX Security Symposium 

Focus Issue: Security
Guest Editor: Rik Farrow







2

in this issue

Vol. 28, No. 6 ;login:

by Rik Farrow
Rik Farrow provides
UNIX and Internet
security consulting
and training. He is
the author of UNIX
System Security and
System Administra-
tor’s Guide to System
V.

rik@spirit.com

Welcome to the sixth security special edition of ;login:. Since 1998, I have
invited security researchers, lawyers, and other professionals to write arti-
cles for these editions. I have also received proposals each year from those
who had simply heard about the security edition and wanted to contribute
to it. If you want to submit a proposal for the next security issue, May 2004
would not be too early.
I am especially excited about the articles submitted this year. We start off with perhaps
the last security paper from Tom Perrine, who worked at San Diego Supercomputer
Center until his move to Sony. Tom and Devin Kowatch used the abundant disk and
computing capabilities at SDSC to show why crypt-based passwords should never be
used anymore. Even without clusters of computers, the time required to crack a single
crypt password is too short to believe.

Chris Wysopal writes about why security researchers can find exploitable bugs that
software vendors miss. For example, when Microsoft announced the first patch for the
RPC vulnerability (MS03-026), security researchers immediately found several other
problems, resulting in a second patch from Microsoft.

Jason Damron has researched techniques for application fingerprinting. In his article,
Jason shows how various versions of Apache httpd servers can be distinguished just
through their responses (ignoring the “Server:” line, if present).

Ed Balas, of Indiana University and the Honeynet Project, explains how the Genera-
tion II honeynets can capture encrypted data – unencrypted. His clever ploy uses a
kernel module roughly based on the Adore rootkit.

Markus Jakobsson and Filippo Menczer report on a new technique for using email
forms for denial of service. Their article includes appropriate remedies that need to be
applied to any site offering email forms.

Mudge digs into the realm of tunneling, using protocols in ways they had never been
intended for. In particular, Mudge explains how to detect tunneling, focusing on
HTTP.

Abe Singer, also of SDSC, writes about how SDSC has survived for many years, very
successfully, without firewalls. Abe points out the most important areas for anyone
who wants to improve security at a site, especially for sites that demand a large degree
of openness.

Renaud Deraison and Ron Gula write about using Nessus. Rather than just offering a
rehash of online documents, Renaud and Ron provide hints for making your use of
Nessus more efficient, as well as customizing the .nessusrc file.

Dario Forte explains how he and an international team of law enforcement personnel
tracked down a slick and aggressive group of computer criminals. According to Dario,
this group used custom rootkits to control critical systems, but it was a more common
tool that helped to bring the organization down.

Ryan Russell writes about patching Windows systems. Ryan explains why this is one of
the most critical security issues that exists today, and why he considers agent technol-
ogy the right way to go.

Finally, Erin Kenneally has the entire legal component of this issue to herself. Erin has
been researching the problems surrounding the use of computer logs as evidence. She
includes examples of the use of logs and compares these uses with the current US legal

 



3December 2003 ;login:

standards for the acceptance of evidence. Erin has also been working with others to
create the “secure audit log” model, designed to follow the standards set by the rest of
Western law for evidence admissibility.

As always, summaries from the annual Security Symposium are included. As I spent
most of the symposium in the basement, running the Ask the Experts track, I person-
ally was very glad to be able to read the summaries, and I want to thank all of the sum-
marizers (again).

I believe that we all enjoyed a wonderful period, roughly coinciding with the growth in
popularity of the Internet and going up to the dot-com crash that ended an era of
“irrational exuberance,” to quote an overquoted Federal Reserve Board chairman.
During the Internet runup, technology specialists, including programmers and net-
work and system administrators, were highly valued as the producers of new wealth.
Once the bubble popped, the belief in technology as a source of wealth largely van-
ished as well. Many organizations decided that they no longer needed the services of
highly paid specialists. After all, the systems had been installed, and the traffic was
flowing over the network, wasn’t it?

But we are still in the early stages of computer science and security. Most of our appli-
cations have terrible designs, our protocols are flawed, and security is an afterthought.
Running networks and systems is still an art, not yet a science. And security? I often
believe that we would do better by starting over, with simpler operating systems,
cleaner and better documented interfaces, and network protocols based on the lessons
we have learned. But how likely is this?

CyberInsecurity
On Thursday, September 25, Dan Geer was fired from his job as CTO of @Stake. Geer
is the primary author of the paper “CyberInsecurity: The Cost of Monopoly” (http://
www.ccianet.org/papers/cyberinsecurity.pdf ), in which he is critical of Microsoft, one of
@Stake’s largest clients. In this paper, co-authored by six other well-known names in
security, Geer discusses some issues that are already well known, such as the danger of
having a single operating system, a monoculture, that provides fertile ground for
worms and viruses. Geer also points out that the “edges” of the Internet are where the
fastest growth occurs, with the total computing power of the Internet doubling every
10 months. And the users of these edge systems are not computer security experts.
They are home users, and small business owners, who are buying new computers with
a Microsoft operating system pre-installed.

Geer also cites the complexity of Microsoft’s operating systems. According to Micro-
soft’s own figures, the NT code base has grown at 35% a year, and Internet Explorer at
220% a year. Software experts often describe complexity as proportional to the square
of code size. Thus, NT grows by 80% in complexity each year, while IE grows an
astounding 380%. Based on the growth in complexity, Microsoft products will have
between 15 and 35 times the number of flaws as other operating systems now, with
increased disparity in the future.

Geer goes on to write than not all of this complexity is accidental. While Microsoft has
begun to employ best programming practices on its internal code, the interfaces pro-
vided to application writers are undocumented. Geer uses the proprietary Exchange
interface, designed to work with Outlook, as an example.

Microsoft programmers must provide clear modularization and code interfaces on
internal code, but the external interfaces are designed to be complex, so that they can-

ED
IT

O
RI

A
LS

Microsoft products will have
between 15 and 35 times the
number of flaws as other
operating systems



4

not easily be duplicated. The goal of this design is to be anti-competitive. The side
effect of this practice means the code that faces the network and all local programs is
unnecessarily complex. And that complexity means that there will be more bugs,
including many exploitable holes.

Geer et al. do not mention what I consider to be an equally important issue. Back in
1998, when USENIX and Microsoft were co-sponsoring Windows NT conferences in
Seattle, Microsoft speakers talked at length about the goal of supporting mobile code.
COM was being phased out in favor of DCOM, the Distributed Common Object
Model, and would form the basis for future Microsoft operating systems. In this
model, code is sent to clients, or servers (SOAP), seamlessly merges with running soft-
ware, and runs with the privileges of this software. To make this code secure, it would
be signed using Authenticode.

Signing does not make code secure, but only serves to associate the code with the
signer of that code. In 2002, an excellent example of this appeared when the Microsoft
MSN Chat control, an ActiveX object, was discovered to have a buffer overflow vulner-
ability (http://www.cert.org/advisories/CA-2002-13.html). Because the object had been
signed by Microsoft, it was trusted by the operating system. And because of the design
of Windows, a system without an MSN Chat object could be tricked into downloading
the vulnerable object through the use of email containing HTML.

Most Windows viruses spread via email, although other mechanisms, such as Web
pages and file shares, are also used. Email- and Web-spread viruses rely on the features
of IE to interpret and execute code, making the work of virus writers much easier.
Users of IE can deactivate ActiveScripting and prevent the spread of viruses that do
not require human interaction, such as SoBig. But doing so also disables all plug-ins.
That’s right, Flash, sound, the Adobe Acrobat reader, all get disabled as well, to make IE
secure (http://www.spirit.com/Network/ net0502.html and http://www.kb.cert.org/vuls/
id/25249#solution).

Ethics
Geer was fired from his position at @Stake the day his paper was published. I found
myself defending Geer, whom I know through USENIX, as some people considered
what he had done to have been unethical. That is, as an employee of a company which
had Microsoft as a frequent client (http://www.atstake.com/research/reports/eval_ms_
ibm/objectives.html), Geer should not have done anything that would harm the com-
pany by which he was employed. He would also have been under NDA (Non-Disclo-
sure Agreements) that might have prevented him from publishing anything harmful
about an @Stake client.

I believe that the historical standards for complying with unethical orders come from
the Nuremberg trials. During these trials, people who had committed human experi-
mentation and genocide argued that they did not make these decisions themselves, but
were acting under orders. The Nuremberg trials produced the standard that a soldier
or actor of the state is compelled to disobey unethical orders, even if this will be con-
sidered treason.

At this point, you may be wondering what the Holocaust has to do with Microsoft or
with Geer’s ethics. How can I compare something that involved the torture and death
of millions to a computer monopoly, or to the well-being of @Stake and its investors?
While certainly not anywhere near the same scale of offense, what Geer did involved a
similar ethical decision, one that may impact Geer’s ability to get work as an executive

Vol. 28, No. 6 ;login:

Signing does not make code
secure, but only serves to
associate the code to the
signer of that code.



December 2003 ;login:

in the computer industry. And will the Microsoft monopoly cause millions of deaths?
Hardly. But no deaths?

For the sake of discussion, let’s consider a specialist in computer security who signs an
NDA as part of the process of becoming employed. Note that consultants also sign
NDAs before working with a company. Let’s present our security person, whom I will
call Barnaby, with three different ethical conundrums.

In the first, Barnaby has gone to work for a modest sized, but thriving, software busi-
ness. As soon as Barnaby gets settled, he discovers that part of his job will be to protect
the company’s intellectual property. The problem is that this intellectual property was
acquired when an executive left another company and brought along the code base
from his old company. Should Barnaby comply with the NDA?

Let’s raise the stakes. After Barnaby leaves his old employer in disgust, he goes to work
for a better-paying job at a pharmaceutical company. Barnaby plows into his work, and
it is only after working for months that he discovers the company’s big secret. The flag-
ship drug, used for weight loss, has been found to be lethal and is killing, on average,
18 people a year. Should Barnaby comply with his NDA? Keep in mind that disclosing
this information would have dire effects on his company’s bottom line and on the
stock prices so dear to those with options.

In the final example, Barnaby has become an executive in a company that provides
code and product reviews for software developers. His company has in the past pro-
vided glowing white papers for a software company that has a dominant industry posi-
tion. This software has become an important element in the monitoring of medical
equipment used in ICUs, in nuclear power plants, in the stock market, traffic control,
and in many other areas where mistakes can have serious, even deadly, consequences.
And Barnaby has discovered that the code in question is nowhere near secure or
robust enough to be used in many of the applications where it has been installed. Just
the widespread use of this software poses a threat to national security.

Should Barnaby give up his career, possibly violating his NDAs, because he strongly
feels that supporting his company’s position is not only unethical but may result in
death, and certainly will result in considerable economic losses?

Dan Geer is not Barnaby. But in case you believe that this is wholly fiction, remember
that the great August 2003 blackout in the US involved a First Energy control facility
where the operators lost their consoles during the critical hour when the cascading
shutdown occurred – starting on their portion of the grid. Note that this was during
the spread of MSBlaster. Also recall that operators of a First Energy nuclear power
plant, fortunately shut down for maintenance, lost their consoles when the Windows
systems they were using to run X Window servers crashed during the Slammer worm
attack. Note that firewalls should have prevented either of these attacks from getting
into the networks – but in each case these worms penetrated even supposedly isolated
networks.

I find myself standing and applauding Dan Geer for his courage, integrity, and
strength. Geer et al. do suggest ways in which Microsoft could modify its strategies to
increase the security of all networks. Microsoft would have to give up its monopoly
position to do so, and that would be a bad thing for Microsoft, its employees, and its
stockholders. But if the alternative is more huge economic hits with each new worm
(an estimated $30 billion in August 2003 alone), and potentially the deaths of many
(how many people might die during a blackout?), then I think the course that must be
taken is crystal clear.

EDITORIAL STAFF
EDITOR:

Rob Kolstad kolstad@usenix.org

CONTRIBUTING EDITOR:
Tina Darmohray tmd@usenix.org

MANAGING EDITOR:
Alain Hénon ah@usenix.org

COPY EDITOR:
Steve Gilmartin

PROOFREADER:
jel jel@usenix.org

TYPESETTER:
Festina Lente

MEMBERSHIP, PUBLICATIONS,
AND CONFERENCES

USENIX Association
2560 Ninth Street, Suite 215
Berkeley, CA 94710
Phone: 510 528 8649
FAX: 510 548 5738
Email: office@usenix.org

login@usenix.org
conference@usenix.org

WWW: http://www.usenix.org

5



6

1. Tom Perrine and Devin Kowatch, “Teracrack:
Password Cracking Using Teraflop and Petabyte
Resources,” SDSC, 2003, http://security.sdsc.edu/
publications/teracrack.pdf and http://security.
sdsc.edu/publications/teracrack.ps.

Vol. 28, No. 6 ;login:

by Tom Perrine
Tom Perrine is the
Infrastructure Man-
ager for Sony's
Playstation Product
Development organi-
zation, where he
watches over online
games, software
developers, artists,
and musicians. In
former lives he has
been a computer
security researcher,
system administrator,
and operating sys-
tem developer for
universities, compa-
nies, and govern-
ment agencies.

tep@scea.com

Introduction 
In the security realm, there is a tendency on the part of of some system
administrators and many vendors to ignore “theoretical” vulnerabilities.
Inertia is one of the driving forces behind the “full disclosure” movement, a
group that believes the only way to get a vendor (or anyone else) to fix
something is to release working exploits, so that vulnerabilities cannot be
dismissed as theoretical and therefore safe to ignore. It is a recurring issue
that it is often difficult to convince vendors (and some system administra-
tors) that vulnerabilities are “real” before exploits appear in running code. 
For example, for over 30 years the UNIX password protection system has depended 
on the UNIX crypt() function to protect 8-character ASCII passwords. Assumptions
about computational and storage resources that were made 30 years ago are no longer
valid. The UNIX crypt() function has been overtaken by computing technology and
should no longer be relied on for password protection.

Although some UNIX and all Linux vendors now offer alternatives, such as longer
passwords and stronger hash functions, crypt() passwords are still often required for
compatibility with existing account management software or in multi-vendor environ-
ments where not all systems support those alternatives. Stronger systems are the norm
in the open source operating system community, with Linux and the BSDs all support-
ing stronger hash functions such as MD5. However, there are still many commercial
UNIX variants where crypt() is either the only option or the only option with full sup-
port from the vendor, or where using MD5 is incompatible with layered software for
that platform.

Until now, quantifying the risks of continuing to depend on this outdated function has
been via “back of the envelope” calculations based on key space size and theoretical
performance figures for various hardware platforms. The evidence of Moore’s Law and
academic analysis of cryptographic algorithms have been insufficient to push vendors
into supporting stronger systems by default. One of the goals of this project is to drive
the last nail into the coffin of the UNIX crypt() function for 8-character passwords,
using real-world results. Hopefully, the persuasive power of weaknesses demonstrated
by running code and a large database of precomputed password hashes may accom-
plish that.

Toward this end, over the past few years system administrators and security practition-
ers at the San Diego Supercomputer Center (SDSC) have investigated the security of
the crypt() function in light of ever-increasing computing and storage capabilities.

Our recent paper1 describes the most recent large-scale password cracking project
undertaken at the SDSC. This project examined the use of teraflop computing and
petabyte storage capabilities to attack the traditional UNIX crypt() password system.

The paper presents results from applying high-performance computing (HPC)
resources such as a parallel supercomputer, abundant disk, and a large tape archive
systems, to precompute and store crypt()-based passwords that would be found using

the end of crypt()
passwords…
please?



common password-cracking tools. Using the Blue Horizon supercomputer at SDSC,
we found that precomputing the 207 billion hashes for over 50 million passwords can
be done in about 80 minutes. Further, this result shows that for about $10,000 anyone
should be able to do the same in a few months using one uniprocessor machine.

This article provides a summary of that work, focusing on the results and implications
instead of the technology. Full details of the computing hardware, software, and stor-
age resources are available in the paper.

Project History, Motivation, and Goals 
There have been two major password-cracking projects at SDSC. The first, Tablecrack,
was intended to quickly determine which UNIX accounts, if any, had passwords that
were easily guessed. Tablecrack was used for several years at SDSC to identify vulnera-
ble passwords.

During the use of Tablecrack, it became apparent that there were other interesting
questions to investigate, some of which are discussed below. The current project, Ter-
acrack, explores some of these questions, as well as takes advantage of the advances in
computing that have occurred since the original Tablecrack project began in Decem-
ber 1997.

Both Tablecrack and Teracrack exploit a novel time/space trade-off to take advantage
of very large data storage capabilities, such as multi-terabyte disk systems, on password
cracking.

The last and most recent goal of Teracrack was to pursue a “world land-speed record”
for password cracking, combining multi-teraflop computing, gigabit networks, and
multi-terabyte file systems.

For the purposes of this project, easily guessed passwords are defined as those in a spe-
cific list, which is generated using common, publicly available methods (e.g., Alec
Muffet’s Crack)2 from publicly available word lists (dictionaries).

The effort in this specific dictionary attack is not an exhaustive search of all possible
eight-character passwords. For our purposes, it is not necessary to try all passwords,
just all those that are likely to be tried by an attacker using commonly available soft-
ware. In real life, this set of passwords is defined by the software likely to be used by an
attacker, e.g., Crack 5.0a or perhaps John the Ripper.3 By testing the user’s password
against the set of guesses likely to be tried by this software, we can make a reasonable
determination about the user’s password falling to an intruder’s attack.

The Time/Space Trade-Off 
A novel part of both Tablecrack and Teracrack is the reversing of the time/space trade-
off. Traditionally, it has been considered infeasible to precalculate (and store) all possi-
ble (or reasonable) passwords, forcing the attacker to generate (test) passwords on
demand.

In fact, at least one earlier paper on password cracking4 did discuss implementations
of precomputed passwords. However, given the hardware (DEC 3100 CPUs and 8mm
tape) of 1989, it took several CPU-weeks to produce hashes on 8mm digital tape for
only 107,000 passwords, and it took several hours to check those tapes when searching
for hashes. Clearly, it would have been impractical to try to store the hashes for mil-
lions of passwords, given disk and tape technologies available at the time.

7December 2003 ;login:

2. “Crack, a Sensible Password-Checker for
UNIX,” http://www.users.dircon.co.uk/
~crypto/download/c50-faq.html.

3. John the Ripper,
http://www.openwall.com/john/.

4. D.C. Feldmeier and P.R. Karn, “UNIX Pass-
word Security — Ten Years Later,” Proceedings
of Crypto ’89, in Lecture Notes in Computer
Science, vol. 435, pp. 44–63.

●
SE

CU
RI

TY

THE END OF CRYPT() PASSWORDS ● 



Vol. 28, No. 6 ;login:

These original assumptions live on in most password-cracking software, including
Crack and John the Ripper. These systems assume that there is limited (disk) storage
and that each password hash should be calculated from a candidate password, checked
against the actual target hash, and then discarded; the computed hashes are not saved
for reuse.

Results and Conclusions 
First, it is obvious that the original UNIX crypt() is completely obsolete. In today’s
computing environment, it should certainly not be the default password hash algo-
rithm. It could be strongly argued that the algorithm should not be available at all, that
only MD5 or stronger algorithms should be used.

WHAT ARE THE COMPUTATIONAL AND STORAGE REQUIREMENTS 
FOR SUCH ATTACKS? 
We have shown that using the resources present at SDSC it is possible to precompute
and save the 207 billion hashes from over 50 million of the most common passwords
in about 80 minutes. This means that all hashes for the interesting passwords for a sin-
gle salt can be computed in about 20 minutes. Further, on a per-CPU basis, the Power3
CPUs used in Blue Horizon are by no means the fastest available. In particular, the
Intel Celeron provided very good numbers in our crypt timings. If, as we believe, the
numbers above are related to the actual performance of Teracrack, then a modern x86
(1-2GHz) should be able to hash our word list for one salt in far less than 20 minutes.5

To save 207 billion hashes requires 1.5 terabytes of storage. We had this much storage
in a network file system, connected over high-speed network links. We also have a
multi-petabyte tape archive to provide long-term storage for the hashes. The I/O
bandwidth required for a full 128-node run is an average of 80 megabytes per second;
however, in that time a single process only averages 80-82 kilobytes per second. Fur-
ther, running the post-processing requires 2.27 terabytes of storage, and the resultant
.pwh files will require 2.26 terabytes. Note that this space is not cumulative, but just
represents different amounts at different times as the work is done.

These requirements are probably out of the reach of typical machines used by a single
attacker. We were trying to exploit the resources available to us, and thus were trying to
make this run in as little real time as we could. There are other methods we could have
used that would have been less demanding. A more patient attacker could use fewer
resources and still launch a successful attack in a reasonable amount of time, such as a
few weeks.

ARE LARGE-SCALE DICTIONARY ATTACKS FEASIBLE FOR ATTACKERS WITHOUT
ACCESS TO HIGH-PERFORMANCE COMPUTING RESOURCES? 
IS A DISTRIBUTED (COOPERATIVE) EFFORT FEASIBLE? 
The computational requirements for precomputing all the hashes are high, but not
prohibitively so. For a single Power3 CPU, the bulk encryption phase should take
about 60 days. It should take a single CPU on a Sun-Fire 15K about 13 days to do the
post-processing. Ignoring the storage and I/O bandwidth issue, the time required for
bulk encryption and post-processing phases should decrease linearly for every CPU
added to it.

The storage requirements are also “reasonable.” With the current availability of IDE
disk drives larger than 200GB, perhaps in IDE RAID arrays, the storage requirements

5. A test run indicates that this is the case.

8

It is obvious that the original
UNIX crypt() is completely
obsolete.



are also accessible. In fact, SDSC has experimented with low-cost “terabyte-class” file
servers.6 We have recently (November and December 2002) purchased 1.2-terabyte
PC-based RAID file servers for around $5,000. We have been quoted prices below
$10,000 for 2.8-terabyte file servers.

The I/O bandwidth should not be a problem for the smaller machines which are more
likely to be used by an attacker. Even a dual-processor 1.5GHz x86 machine would
generate less than 2MBps of output. If the machine only writes to local disk, there will
be no network-bandwidth problems.

There are also several strategies for coping with the total amount of storage space
required. Most involve either distributing the computation or making a space/time
trade-off.

■ By distributing the computation across several machines, the storage space
required on each machine would be greatly reduced. It would also allow using
existing hardware, with the addition of a large IDE hard drive. For example, a
cooperative effort with eight machines could add a 200GB IDE hard drive to each
machine. This would provide 1.6TB of storage, which is enough to store the out-
put of the bulk encryption phase. Using the next technique, it will be enough to
handle the post-processing phase as well.

■ The post-processed output requires 50% more storage space than the raw hashes.
This is only because the output also contains a reverse pointer that allows retriev-
ing the password as part of the table lookup. Having this pointer is not necessary,
even for an attacker who is trying to recover the password. The post-processing is
still needed to sort the hashes (and speed lookup times), but the final space require-
ment will be 1.5TB instead of 2.26TB if the reverse pointer is left out. Instead of
using the precomputed hashes to retrieve passwords, the attacker can use them to
figure out which passwords can be recovered with minimal effort. Here the
attacker uses the precomputed hashes on a stolen password file to determine
which hashes are in the attacker’s dictionary. Once it has been determined which
passwords will be found, it will take 20 minutes or less per salt to recover the pass-
word. As it only takes one password to compromise an account, a single 20-
minute run should suffice. Using this method, however, an attacker can still
recover over 30 passwords in a single day. The savings is from not wasting time
attacking strong passwords.

■ We did not investigate compression at all. However, in Tablecrack, it was found
that an algorithm like the one used by Crack to compress dictionaries showed
promise.

■ While over a terabyte of disk storage is still expensive, 200GB is very affordable,
and enough space to store precomputed hashes for 400 salts. While having 400
salts is not as good as having all of them, all it takes is one broken password.

Thus, it seems safe to say that large-scale dictionary attacks are feasible for either a very
patient single attacker, an attacker with a farm of compromised machines, or a collec-
tive of cooperating attackers. What we were able to do in hours, a network of attackers
could easily do in days.

ARE THERE COLLISIONS (MULTIPLE PASSWORDS THAT PRODUCE 
THE SAME HASH) IN THE PASSWORD SPACE? 
We found two types of collisions. First, there were some words in our dictionary which
contained characters with the high-bit set. There were 24 such collisions in each case

9December 2003 ;login:

6. SDSC, “A Low-Cost Terabyte File Server,”
https://staff.sdsc.edu/its/terafile/.

●
SE

CU
RI

TY

THE END OF CRYPT() PASSWORDS ● 



Vol. 28, No. 6 ;login:

the two colliding words only differed in one character. Also in each case the differing
characters were the same in the lower seven bits. These collisions are due to the way
crypt() makes a key from the password, by stripping off the high bit, and concatenating
the lower seven bits of each byte to form a 56-bit key. The lesson from these collisions
is that there is no benefit from including characters which use the high bit in a user
password, even if your version of UNIX supports this.

Second, we found one “real” collision. By this we mean two words that differ in more
than just the lower seven bits of each byte, which hash to the same value. This occurs
with the words $C4U1N3R and SEEKETH, under the salt 1/. Both words hash to ChER-
hgHoo1o. The lesson from this is that although there are collisions in the crypt algo-
rithm, and they do reduce the usable key space, they are relatively rare and this is likely
not a real-world concern. Quantifying the exact number of collisions would require a
dictionary equal to the key size.

WHAT ARE THE NONTECHNICAL (SOCIAL, ETHICAL, AND LEGAL) ISSUES
INVOLVED IN MAKING THE RESULTS OF THIS PROJECT PUBLICLY AVAILABLE?
This question has been at the heart of both the Tablecrack and Teracrack projects and
was not adequately addressed by either.

With Tablecrack we examined the issue and made a decision to only store password
hashes, and not include the “back pointers” to the original passwords. This decision
was mostly to address storage concerns, but also made it at least slightly more difficult
for attackers, even if they had access to our password hashes. At that time, we consid-
ered that the most likely misuse of the Tablecrack data would be by an insider, due to
the difficulty in moving the large data sets outside of SDSC. We expected that even if
the attacker could determine sets of crackable passwords, we would have a good
chance of detecting the resulting attacks on the identified vulnerable passwords.

While designing Teracrack, we realized that data storage and CPU performance had
advanced to the point that even a small set of cooperating attackers, or an attacker
with moderate resources, could independently duplicate our work in days or weeks.
This changes the issues considerably.

We have investigated several ways to make our results available for system administra-
tors to check their own password hashes for weak passwords. None of the ways is com-
pletely satisfactory, for various reasons:

1. We started by looking at providing a Web interface, such as a search engine: sub-
mit a Web form with a UNIX password hash and we could tell you whether or
not the hash was from a weak password. This has problems in terms of back-end
lookup performance, online storage, and our complete inability to prevent this
system from being abused by an attacker. Such an interface, if it existed, would
quickly succumb to the dreaded “slashdot effect” and become useless.

2. It was suggested that we could improve the Web interface idea by occasionally
returning “weak” for a strong password. This would cause any attacker to occa-
sionally waste CPU time trying to crack an “un-crackable” password. For the
legitimate user, we would occasionally influence them to change a password that
was not weak. It can be argued that it is never a bad idea to influence a user to
change a password, but this is only true if they don’t replace a strong password
with a weak one.

3. We then decided that the problem was authenticating the user of any system we
might build. We decided that we could probably find a way to manually vet users,

Even a small set of . . .
attackers, or an attacker with
moderate resources, could
independently duplicate our
work.

10



registering people whom we could identify and decide we trusted as users of our
system. Although we could generate a list of well-known individuals, and indi-
viduals who were personally known to us, this obviously does not scale. If this is
still accessed via a Web server, the problem of ad hoc query performance remains.

4. Our last thought experiment combines the ideas of user registration and bulk
lookups. We could register the PGP keys of people we trust not to abuse the sys-
tem. These people could send formatted email messages, signed with the regis-
tered keys. We could batch all the requests from all the users in each 24-hour
period into a subset of lookups. This would have several advantages. It would
allow us to batch queries by salt, so that we would have to make only one pass
through each salt’s file. Additionally, if the hash files were stored in HPSS, we
would only need to retrieve the files of the salts that were in at least one query.
With fewer than a thousand or so queries in a batch, it is likely that we would not
need to retrieve more than half of the per-salt files.

Unfortunately, this system still suffers from problems of scale in handling user sub-
scriptions, problems of policy in determining who may use the system, and the cost of
actually operating such a system.

In the end, it is not clear how we can make the resulting data publicly accessible. Even
if we can satisfy our own concerns, there would be liability issues if it could be shown
that our system was used by an attacker to mount a successful attack against someone’s
weak passwords.

Yet all of this may be moot, as we have shown that this work can be recreated by a
determined, patient attacker.

For ourselves, using a batch mechanism to submit the information from SDSC’s pass-
word files will allow us to find weak passwords in a timely fashion, until we have com-
pletely eliminated the use of crypt() passwords on all our systems.

Future Work 
There are six main areas in which we would like to pursue this project further:

1. Performance tuning for better scalability. We would like to attempt a few meth-
ods for reducing or eliminating the runtime connection to the number of nodes.
Also, there are performance tweaks which show promise but were nonfunctional
at publication time. Some of these include asynchronous I/O and dividing the
word list rather than the salts.

2. Moving the software to emerging hardware platforms. SDSC is currently
installing a new system that may offer up to 34 teraflops, with scaler integer
performance at least 30 times that of Blue Horizon. This system will have very
different cache, main memory, and network and I/O performance.

3. Public access to check for weak passwords. We would like to allow subscribers to
check their site’s passwords against our precomputed hashes. Thus subscribers
could verify that they have no passwords in the Crack dictionary, without need-
ing to invest in the resources to run Crack. Even though we have identified some
of the problems above, there should be some way to make this service available
for legitimate use.

4. Measurement of different-sized word lists. We would like to try measuring run-
times for word lists which are both larger and smaller. The larger word list would

11December 2003 ;login:

●
SE

CU
RI

TY

THE END OF CRYPT() PASSWORDS ● 



Vol. 28, No. 6 ;login:

likely come from adding foreign-language dictionaries to the initial dictionary.
The smaller word lists would simply be subsets of our current word list.

5. Algorithms other than the traditional DES-based UNIX crypt(). We would like to
try precomputing an effective number of passwords for other algorithms, includ-
ing SHA-1 and MD5. Precomputing the Microsoft “LANMAN” hashes would be
particularly easy, as the passwords are limited to uppercase and the hash is not
salted. This would effectively be a massively parallel “L0phtCrack.”

6. Investigating crypt() performance on x86. The x86 architecture seems to run
crypt() very quickly, but just how quickly depends on a variety of factors. We
would like to examine factors such as cache and CPU core versions. However,
since we are arguing that crypt() should be eliminated, we should actually focus
on the performance of MD5-based hashes instead.

Acknowledgments
This article is based on the Teracrack paper, which would not exist without the signifi-
cant Teracrack development work by Devin Kowatch, and the contributions by the sys-
tem administration staff at SDSC, especially Jeff Makey, the creator of “Tablecrack.”

Availability 
The code used for this paper is publicly available at http://security.sdsc.edu/software/
teracrack. It is covered under the U.C. Software License, which allows source code
access and is free for noncommercial use.

12



13December 2003 ;login:

Every day, vulnerability researchers find and publicly disclose new vulnera-
bilities for software products. Many of these products are made by vendors
who assure us that they know how to create secure software. What makes
it possible for a vulnerability researcher, who usually doesn’t have access to
design documentation or source code, to find these problems? He would
seem to be at a major disadvantage compared to the vendor’s testing team.
Is the vendor not looking? Or is there something about the process of dis-
covering vulnerabilities that keeps software vendors from doing it well? This
article will take a look at the differences between researcher and vendor
and how these differences lead to different results.
First, let’s examine a bit of history. The setting is the 1997 USENIX security confer-
ence. Mudge from the L0pht is hanging out with Hobbit, who, while not officially part
of the group, often collaborated with it. The two are approached by Paul Leach, a
Microsoft security architect, and other senior technical people from Microsoft. The
gentlemen from Microsoft wanted to sit down and learn how Hobbit had discovered
vulnerabilities in the Windows CIFS protocol1 and how Mudge managed to find flaws
in Windows NT’s network authentication. Over a fine dinner and a few bottles of
wine, the two researchers took the Microsoft security folks through the process of
black box reverse engineering, with a vulnerability twist. This is what they described.

The first task for attacking the CIFS protocol was to install a host with a sniffer on the
network between two hosts running Windows. The sniffer was running on a non-
Microsoft OS. The reason for this wasn’t just because Hobbit’s coding skills happened
to be better on UNIX. It was also to make sure that the analysis host’s OS wasn’t con-
taminated with any Windows internals knowledge. If a Windows host was used for
analyzing the network traffic, the network stack or other internal OS components
might perform hidden data manipulation. This is a theme that will pervade the reverse
engineering process. All analysis tools, whether off-the-shelf or custom coded, need to
be free of unwanted interaction with the program under test. For network analysis, a
different OS often provides enough isolation. For analysis programs that must run on
the same host, it is best to avoid using higher-level OS APIs that might perform
unwanted data manipulation.

With the sniffer in place, CIFS transactions were performed between the two Windows
hosts, and the network packets were recorded. Transactions were repeated with slight
changes, and the differences in the packets were noted. This was a laborious process,
but over time it was clear what different packet types there were and what data fields
were in these packets. The gentlemen from Microsoft were surprised by the approach.
It had never occurred to them to analyze the protocol this way. After all, they had Win-
dows API functions they could call to look at the data in the CIFS transactions. They
had design documentation to tell them what was in a particular field within a packet.
Their analysis approach differed in that they were seeing how the CIFS protocol was
supposed to work, not how it actually did work. With his independent-analysis
approach, Hobbit was able to discover workings of the CIFS protocol that were
unknown to its designers and implementers.

learning security QA
from the vulnerability
researchers

LEARNING SECURITY QA ● 

●
SE

CU
RI

TY

by Chris Wysopal
Chris Wysopal is the
vice president of
research and devel-
opment at @stake,
where he leads
research on how to
build and test soft-
ware for security vul-
nerabilities.

cwysopal@stake.com

1. Hobbit, “CIFS: Common Insecurities Fail
Scrutiny,” 1997, http://downloads.securityfocus.
com/library/cifs.txt.

 



Vol. 28, No. 6 ;login:

What may seem like liabilities on the vulnerability researchers’ side – using a different
OS, having no design documentation or code to look at, and having no access to inter-
nal testing tools (which may share code with the system under test) – are turned into
benefits. The researcher is not tempted to take a time-saving shortcut while analyzing
the system. He must build up from scratch what the bits on the wire mean and how
they can be changed. He gets an unbiased view of how the program actually works.

It is understandable that the security folks from Microsoft didn’t know how vulnera-
bility researchers worked in 1997. Vulnerability researchers were a small, closed group
of people dealing with something fairly arcane. Today, software security affects every
computer user, from those in the military and government to the teenager at home. It
is hard to believe in this age of heightened security awareness that most people who
develop software still don’t know how vulnerability researchers work. The software-
testing community needs to learn why these researchers are successful and start to
work like them, though perhaps a bit more formally. Otherwise, vulnerabilities that
could have been found before a product is delivered to the customer will be found by
researchers and end up needing to be patched, or worse, be exploited.

The first thing the researcher does is zero in on the weakest links in the software, the
areas of highest risk. Ad hoc threat modeling is performed on the data as it flows in
and out of the program. Where can the attacker inject data into the program? Where
are the places that data can be injected without first performing authentication? This is
the primary attack surface.

Many software testers, when they actually take time to do security testing, get bogged
down looking at the security throughout the entire application. This is understand-
able, since they are used to testing the functionality of the whole application. But secu-
rity testing is very different from feature testing. When there is limited time, and there
always is, there is a need to start at the areas of highest risk and continue toward areas
of lower risk.

The other major shift that testers need to make is to stop thinking of security as a fea-
ture that can be tested with positive functionality testing. Positive testing is making
sure a feature works. If the program has authentication and access control lists, those
are typically tested. Vulnerability researchers almost never look at the security features.
Positive testing will not find out that a program contains a stack buffer overflow in
code that reads data from the network. Testers need to learn the art of negative testing,
the art of causing faults.

In the perfect development world, a finished program would exactly match the func-
tionality of its design specification, with no more functionality and no less. In the
graphic on the facing page there are two circles, one representing the program’s design
and the other representing the actual implementation. Since we have not perfected
software coding, there is a need for testers to find the mistakes that coders make. These
are the mistakes that lead to the design not matching the implementation. But most
testers only cover the deviation, where the implementation is lacking functionality
defined in the design. What about the deviation where the program has functionality
that was unintended? This is where the vulnerability researcher’s skills come into play.
This is where knowing what a program actually does and not just what it was designed
to do is critical.

Negative testing is identifying the inputs of the program and putting in data that is
obviously invalid. Typically, the data is nowhere close to what a normal user would do.

It is hard to believe in this
age of heightened security
awareness that most people
who develop software still
don’t know how vulnerability
researchers work.

14



Many testers can’t imaging anyone inputting a username of 50,000 characters, so they
don’t make it part of their test plan. But attackers do try such seemingly ridiculous
inputs, so the negative testing plan should too.

Luckily the tester does not need to input this manually. State-of-the-art vulnerability
research involves automated fuzzers that can perform the fault-injection process.
Fuzzers have a list of rules for creating input that is known to cause errors in process-
ing: long strings, Unicode strings, script interpreter commands and delimiters, printf-
style format strings, file names, etc. @stake’s WebProxy tool does this for HTTP.
Immunity Security’s SPIKE is a fuzzer-creation toolkit that can be used to fuzz arbi-
trary network protocols. Once you have a fuzzer for the protocol you want to test, you
just run it against a debug version of the software running in the debugger. Chances
are the program will eventually crash and you will be sitting at the vulnerable line of
code in the debugger.

There is much more for the software tester to learn, but a great start is to learn how to
threat model for the highest-risk attack surfaces, understand negative testing, and get
up to speed on fuzzing. Follow the online security community to learn the tools and
techniques that vulnerability researchers use and make them part of your quality
assurance process. Every vulnerability found during QA is one less for the vulnerability
researchers to find and one less vulnerability for software users to patch.

15December 2003 ;login:

2. H. Thompson and J.A. Whittaker, “Testing for
Software Security,” Dr. Dobb’s Journal (Novem-
ber 2002).

●
SE

CU
RI

TY

Design vs. Reality2

LEARNING SECURITY QA ● 



16

It is important for both an attacker and a defender to know exactly what is

running on a target system. Knowing not only the specific application but

also the version number allows one to enumerate the vulnerabilities that are

present. Application fingerprinting is a method of determining the type and

version of an active network server or client. This is an advanced technique

that replaces banner grabbing for situations where a banner doesn’t exist or

has been removed or obscured.

Typically, banner grabbing consists of initiating a connection to a network server and
recording the data that is returned at the beginning of the session. This information
can specify the name of the application, version number, and even the operating sys-
tem that is running the server. Other protocols require that a request first be made,
with the resulting response holding the server information.

Savvy administrators have started removing or obscuring this data, making banner
grabbing useless or misleading. For instance, an Apache server can be modified to
respond with the banner of a Stronghold, an ISS/5.0, or a completely contrived server.
Adversaries may then unknowingly choose attacks that will not affect the real Apache
server. This method of security through obscurity (while not a good practice by itself)
can be a profound gain, since the time it takes to obscure is far less than the time and
effort it can take to overcome it.

Application fingerprinting is the field of study that can be used to overcome ambiguity
and misdirection. It can be used actively or passively to detect fine distinctions in net-
work programs that give away specific product and version information. Because of
this, security through obscurity can definitely increase the challenge but cannot com-
pletely remove the threat of a determined attacker’s ability to identify the running ser-
vice. Some have started to undertake the task to counter this “raising of the bar” and
are providing tools such as amap and vmap.1

What to Fingerprint?
Any active service on a network can be fingerprinted to some extent. Passively watch-
ing the traffic flow by is one method of fingerprinting, but it relies on fingerprints
found in normal traffic. This is most efficient when banners are present within the
information transfer. However, when banners are not present this method can lose
granularity, and it may take a large volume of traffic for the different variations
required to precisely determine the application and version information. Active
approaches yield much faster results, since the traffic can be intelligently chosen in
order to focus the identification process.

Client software can also be fingerprinted. This can be important knowledge in pre-
venting a network breach due to a client-side security flaw. Rogue Internet servers
could be loaded with potentially damaging payloads for vulnerable Web browsers, chat
clients, media players, or other client programs. These rogue servers could potentially
force the traffic of the conversation in a way that will uniquely identify the client. At
that point, it could respond with malicious content targeted to the specific client, pro-
ducing a higher probability of success.

identifiable finger-
prints in network
applications

1. “The Hacker’s Choice – Releases,”
http://www.thc.org/releases.php.

Vol. 28, No. 6 ;login:

by Jason Damron 

Jason Damron has
been involved in net-
work security for 10
years. He is currently
the lead developer of
the Dragon Network
Intrusion Detection
System for Enterasys
Networks.

jdamron@enterasys.com



Fingerprinting unknown ports may be somewhat more complicated, because the pro-
tocol must be determined first. Banner grabbing can start with the initial return, but if
the banner is obscured, deeper inspection must occur. This process may break down to
simple trial and error, cycling through the protocols that have been researched.

Even typically passive devices such as an Intrusion Detection System could be identi-
fied if set up for active response. An attacker could force traffic to be emitted, trigger-
ing a defensive measure such as a TCP session termination. Then by examining the
returning traffic for the number of TCP RST packets sent, how fast the sequence num-
bers grow in attempting to catch up to the ongoing traffic, static values such as IP
identity field, and other possible indicators, the fingerprinting software can determine
the make and model of the IDS.

How Is It Possible?
Application fingerprinting works because all actively developed software evolves. New
software versions typically include some combination of bug fixes, updates, rewrites,
and completely new features. If any of these affect its network presence, it allows the
software to be uniquely identified from its predecessors.

The fact that some applications can be uniquely identified by a remote agent is not a
vulnerability in the software. In fact, it can be viewed as the opposite, in that vulnera-
bilities are being removed, which can change the network’s characteristics. Ideally,
developers who become conscious of this will choose to create a normalized network
interface. They could allow modified interactions to take place only when needed by
new functionality configured to be active by the user. Alternatively, they could allow
configurations that removed unneeded functionality to retain the conventional inter-
action.

Intrusion Detection
Intrusion detection systems have started applying banner grabbing and modeling
technologies. An example of this would be picking out the Sendmail banner and
remembering what it is for future reporting, or generating an event immediately if it is
known to be vulnerable.

An implementation of application fingerprinting could be the identification of a DNS
server from observing a normal DNS conversation. Typical DNS traffic does not
include any version information to trigger current systems. However, with careful
research it may be possible to detect nuances of the conversation that give away the
type and version of the DNS server. At this point, the IDS can respond like any other
fingerprinting system – by learning and applying that knowledge to present more
intelligent alerts.

Another example could be the security administrator of a large enterprise who doesn’t
own or operate all of the Web servers. If one of his users makes the effort to obscure
the server type and version, they have also obscured it from the IDS. However, if the
IDS can monitor enough conversations to determine the type and version, it can then
generate events with better information about whether the server was susceptible to
the attack.

The above examples are narrow in scope, since they assume a standard port or that the
underlying protocol is at least known. A broader version of this idea is an application
fingerprinting engine. This engine could be fed by any unencrypted network traffic

17December 2003 ;login:

Intrusion detection systems

have started applying banner

grabbing and modeling 

technologies.

IDENTIFIABLE FINGERPRINTS ● 

●
SE

CU
RI

TY



Vol. 28, No. 6 ;login:

and first determine the protocol, then move to the type of server/client, and finally,
identify the version (if possible). For instance, if a user decided to hide and obscure a
Web server on port 44322, an engine such as the one described above could attempt to
determine all of the server characteristics to enable the enhanced reporting available
for that application.

Case Study: Apache 1.3.x
WHY APACHE?

Apache is the most widely utilized Web server in the world.2 It is also open source, so
code for every version can be downloaded and checked for differences. Previous ver-
sions are available at http://archive.apache.org/dist/httpd/old/. Other good choices to
examine for fingerprints would be BIND and Sendmail. Both are used extensively, and
source code for the current and prior versions is freely available. Also, both BIND3 and
Sendmail4 have had security-related issues in the past, which makes it more important
to be able to identify any non-current servers.

Please note that this is not a vulnerability of the Apache Web server. As Apache grows
and evolves there will be changes, and some will cause its network presence to change.

TEST SETUP

For this case study, we will assume default installations of Apache servers. The only
changes made to the configuration were to make each version listen on a different port
for concurrent testing and to start a single instance of the server, since performance
will not be an issue. Also, the scope of this research was limited to UNIX versions of
the server.

WHERE TO START

The safest and most direct method is to make simple requests. A query
for the DocumentRoot can provide useful information such as the
options that are present, the order of the options, syntax of the options,
and maybe the default Web page, all of which can be used to identify
the server. This information is more likely to help determine the type of
server rather than an exact version.

Next, simple request errors can be made, such as requesting pages that
are not present or leaving out required headers (HTTP/1.1 requires that
the Host: header be present). However, because not all Web servers are
as robust as Apache, these types of attempts to fingerprint may cause
poorly implemented servers to crash.

The accompanying matrix illustrates three simple requests that can be
used to narrow down the version of Apache that is being run. They are
listed in order of obtrusiveness, starting with the safest method.

As can be seen , several of the unique characteristics of a default Apache
installation revolve around its ability to negotiate. The first test uses the
existence of the Transparent Content Negotiation (TCN) header in any
response to divide up the versions. Versions 1.3.11 to 1.3.27 can be bro-
ken down further by submitting Accept: statements with an invalid
type to force the server to present all known content types. Over time,

2. “Netcraft: Web Server Survey Archives,”
http://news.netcraft.com/archives/Web_server_
survey.html.

3. Internet Software Consortium: BIND Vulner-
abilities, http://www.isc.org/products/BIND/
bind-security.html.

4. Vulnerabilities found by searching Security-
Focus vulnerability archive for “Sendmail Con-
sortium,” http://www.securityfocus.com/bid/
{2794, 2897, 3377, 3378, 4822, 3163, 5770, 5921,
6548, 5845, 5122, 7614, 7829, 6991, 7230, 8485}.

18

Apache Version
TCN

Present
Negotiation

Options
Bad Method
(HEAD 1)

1.3.27 X
Fewer than 24
(missing .lu)

Error 1, 4, 5

1.3.22 Similar to 23 Error 2, 4, 5

1.3 {12, 14, 17,
19, 20, 23, 24, 27}

X
Only 17 and 19

match
Error 1, 4, 5

1.3.11 X Fewest options Error 1, 4, 5

1.3 {4, 6, 9} None Error 1, 4, 5

1.3.3 None Error 1, 5

1.3.2 None Error 3, 5

1.3 {0, 1} None Error 1

Returning Error includes:

1. HEAD1 to /index.html not supported.<P>
2. Same as above except URL reads /index.html.en
3. Invalid method in request HEAD1 / HTTP/1.1<HR>
4. Same as above but ends with <P>\n<HR>
5. <ADDRESS> tag present



the supported content types have changed in the default configuration and this can be
used to determine the specific versions. The older versions can be broken down fur-
ther by submitting improper requests and checking for uniqueness in the results. Some
of the releases, such as 1.3.{4,6,9}, have very few functional changes in the protocol
code, which makes version distinction very difficult. In those cases, fingerprinting may
become dependent on the additional modules that have been loaded.

RAISING THE BAR HIGHER

The first step in disguising an application is to enable only the functionality you
require. The more functionality that is utilized by the network server, the greater the
chance for identifying anomalies to be present. Likewise, you don’t want to expose
yourself to potential security risks that may exist in unnecessary functionality.

The next step is to create a custom configuration to remove as many default responses
as possible. Some software does not provide enough flexibility to remove any standard
replies. In these cases, either source modifications or binary editing would be required
to create the necessary obfuscation. The following are some examples of the options
Apache administrators have to increase the complexity required to determine the ver-
sion information.

Starting with the 1.3.x tree, Apache introduced the ServerTokens directive, which
allows the administrator to manipulate the responding Server: header by applying it to
the httpd.conf file. However, the version information was always present until version
1.3.12, when it allowed the Prod[uct Only] option, which limits the display to just
“Apache.”

To further obfuscate the Server: response header, a simple change can be made in the
source code. The include file {ApacheTree}/src/include/httpd.h contains #define state-
ments for the product information. The product name can be changed to read:

#define SERVER_BASEPRODUCT "GuessMe"

Then setting the ServerToken directive to Prod[uct Only] will cause Apache to answer
with the following “Server” header:

Server: GuessMe

The ErrorDocument directive can also be used to deter inquisitive minds from uncov-
ering the type and version of the server. This option, when placed within the httpd.conf
file, allows Apache to serve up custom error pages which will remove some of the low-
hanging fruit of fingerprinting.

The following is an example of using ErrorDocument to remove identifiers:

ErrorDocument 500 /standard-error.html
ErrorDocument 404 /standard-error.html

The negotiation alternatives of an Apache server can be modified in the httpd.conf file.
When the mod_mime module is enabled, only the languages and character sets that
need to be supported should be included, using the AddLanguage and AddCharset
directives. Also, if the mod_negotiation module is enabled, the language priority list
should also be altered to reflect only languages that are required. The following is a

19December 2003 ;login:

The first step in disguising an

application is to enable only

the functionality that you

require.

●
SE

CU
RI

TY

IDENTIFIABLE FINGERPRINTS ● 



Vol. 28, No. 6 ;login:

modified section of the httpd.conf file that limits the language priority to only English
(en) and German (de):

<IfModule mod_negotiation.c>
#LanguagePriority en da nl et fr de el it ja kr no pl pt pt-br ru ltz ca es sv tw
LanguagePriority en de

</IfModule>

Following the procedures specified above negates many of the fingerprinting tech-
niques discussed and takes a surprisingly small amount of time. Without making these
changes, creating fingerprints for individual versions of Apache is a time-consuming
task. Spending the extra time to customize the configuration can remove unique char-
acteristics, which causes the application fingerprinting to become much more difficult.

20

Statement of Ownership, Management, and Circulation, 10/01/03

Title: ;login: Pub. No. 0008-334. Frequency: Bimonthly. Subscription price $110 individuals and institutions. Office of publication:
USENIX Association, 2560 9th Street, Suite 215, Berkeley, Alameda County, CA 94710. Headquarters of Publication: Same. Pub-
lisher: USENIX Association, 2560 9th Street, Suite 215, Berkeley, CA 94710. Editor: Rob Kolstad. Managing Editor: Alain Hénon, all
located at office of publication. Owner: USENIX Association. The purpose, function, and nonprofit status of this organization and
the exempt status for Federal income tax purposes has not changed during the preceding 12 months.

Extent and nature of circulation Average no. of copies of each issue in Actual no. of copies of single
preceding 12 months issue published nearest to filing

A. Total no. of copies 8,068 7,550
B. Paid and/or Requested Circulation

Outside-County Mail Subscriptions 5,223 5,111
In-County Subscriptions 148 0
Sales through Dealers 2,179 1,945
Other Classes 0 0

C. Total Paid and/or Requested Circulation 7,550 7,056
D. Free Distribution by Mail

Outside County 0 0
In-County 0 0
Other Classes 32 33

E. Free Distribution Outside the Mail 333 400
F. Total Free Distribution 365 432
G. Total Distribution 7,915 7,488
H. Copies Not Distributed 199 515
I. Total 8,068 7,550
Percent Paid and/or Requested Circulation 94% 93%

I certify that the statements made by me above are correct and complete.
Alain Hénon, Managing Editor



21December 2003 ;login:

Covert Glass-Box Host Analysis
Introduction
To defeat your enemy you must know your enemy. For individuals who run
networks or network services, anyone who attempts to gain or deny access
in an illegitimate manner may be considered an enemy. One tool that
allows us to learn about this enemy is the honeypot. 
A honeypot is a host whose value lies in being compromised by an intruder (see
http://project.honeynet.org/papers for more details). A “high-interaction honeypot” is
nothing more than a regular host that is closely monitored; as an intruder breaks in,
the researcher monitors the actions of the intruder on the honeypot.

The key to the honeypot concept is the capturing of intruder activities. For such data
to be of use it is critical that an intruder not detect that his or her actions are being
captured. If captured correctly this data allows one to identify the tools, techniques,
and motives of the intruder.

Today, packet captures using libpcap are the most common data capture technique.
Tools that use this technique include Snort, ethereal, p0f, and many more. However,
the increased use of session encryption has made packet captures increasingly inade-
quate for observing attackers. In response to this trend, the Honeynet Project has
developed a new tool called Sebek for the circumvention of such encryption. This
paper will be an introduction to the Sebek data capture system and the broader
impacts of this new type of forensic data.

The Goals of Data Capture
For any data capture technique, we want to determine information such as when an
intruder broke in, how they did it, and what they did after gaining access. This infor-
mation can, potentially, tell us who the intruder is, what their motivations are, and
who they may be working with. Specifically there are two very important things we
want to recover: the attacker’s interactions with the honeypot, such as keystrokes, and
any files copied to the honeypot.

Data Capture Techniques and Their Limits
When encryption is not used, it is possible to monitor the keystrokes of an intruder by
capturing the network activity off of the wire and then using a tool like ethereal
(which is excellent for this work) to reassemble the TCP flow and examine the con-
tents of the session. This technique yields not only what the intruder typed but also
what the user saw as output. Stream reassembly techniques provide a nearly ideal
method to capture the actions of an intruder when the session is not encrypted. When
the session is encrypted, stream reassembly yields the encrypted contents of the ses-
sion. To be of use these must be decrypted. This route has proven quite difficult for
many. Rather than trying to break the encryption of a session, we have looked for a
way to circumvent encryption.

Information that is encrypted must at some point be decrypted for it to be of any use.
The process of circumvention involves capturing the data post-decryption. The idea is
to let the standard mechanisms do the decryption work, and then gain access to this
unprotected data.

sebek

SEBEK ● 

●
SE

CU
RI

TY

by Edward Balas
As a network secu-
rity researcher at
Indiana University’s
Advanced Network
Management Lab
and Honeynet Pro-
ject team member,
Edward Balas has
focused on network
infrastructure protec-
tion. Edward’s pro-
fessional interests
include Network
Monitoring and Traf-
fic Analysis, as well
as advanced hon-
eynet data capture
techniques.

ebalas@iu.edu



Vol. 28, No. 6 ;login:

The first attempts to circumvent such encryption took the form of trojaned binaries.
When an intruder broke into a honeypot, he or she would then log into the compro-
mised host using encrypted facilities such as SSH. As they typed on the command line,
a trojaned shell binary would record their actions.

To counter the threat posed by trojaned binaries, intruders started to install their own
binaries. It became apparent that the most robust capture method involved accessing
the data from within the operating system’s kernel. When capturing data from within
the kernel, the intruder can use any binary they wish, and we are still able to record
their actions. Further, because user space and kernel space are divided, there is ample
opportunity to improve the subtlety of the technique by hiding our actions from all
users, including root.

The first versions of Sebek were designed to collect keystroke data from directly within
the kernel. These early versions were the equivalent of a souped-up Adore rootkit that
used a trojaned sys_read call to capture keystrokes. This system logged keystrokes to a
hidden file and exported them over the network in a manner to make them look like
other UDP traffic, such as NetBIOS. This system allowed users to monitor the key-
strokes of an intruder, but it was complex, it was easy to detect through the use of a
packet sniffers, and it had a limited throughput. The latter made it difficult to record
data other than keystrokes.

The next and current iteration of Sebek, version 2, was designed not only to record
keystrokes but all sys_read data. By collecting all data, we expanded the monitoring
capability to all activity on the honeypot, including keystrokes and secure file transfers.
If a file is copied to the honeypot, Sebek will see and record the file, producing an
identical copy. If the intruder fires up an IRC or mail client, Sebek will see those mes-
sages.

The Sebek Design
Sebek has two components, a client and server. The client
captures data off of a honeypot and exports it to the net-
work, where it is collected by the server (see Fig. 1). The
server collects the data from one of two possible sources.
The first is a live packet capture from the network; the sec-
ond is a packet capture archive stored as a tcpdump for-
matted file. Once the data is collected, it is either uploaded
into a relational database or the keystroke logs are imme-
diately extracted.

Client Data Capture
Data capture is accomplished with a kernel module, which
allows us access to the kernel space of the honeypot. Using
this access, we then capture all read() activity. Sebek does
this by replacing the stock read() function in the system

call table with a new one. The new function simply calls the old function, copies the
contents into a packet buffer, adds a header, and sends the packet to the server. The act
of replacing the stock function involves changing one function pointer in the system
call table.

When a process calls the standard read() function in user space, a system call is made.
This call maps to an index offset in the system call table array. Because Sebek modified

22

Figure 1



the function pointer at the read index to point to its own implementation, the
execution switches into the kernel context and begins executing the new Sebek
read call. At this point Sebek has a complete view of all data accessed with this sys-
tem call. This same technique could be used for any system call that we may wish
to monitor.

Data that remains encrypted is of little use; to view the data or act on it in some
way it must be decrypted. In the case of an SSH session, the keystrokes are
decrypted and sent to the shell to have actions performed. This act typically
involves a system call. By collecting data in kernel space, we can gain access to the
data within the system call, after it has been decrypted but before it has been
passed to the process that is about to use it. Thus we circumvent the encryption
and capture the keystrokes, file transfers, Burneye passwords, etc.

To make the presence of the Sebek module less obvious, we borrow a few tech-
niques used in modern LKM-based rootkits such as Adore. Because Sebek is
entirely resident in kernel space, most of the rootkit techniques no longer apply;
however, hiding the existence of the Sebek module is one example of direct techno-
logical benefit derived from its rootkit heritage. To hide the Sebek module we install a
second module, the cleaner. This module manipulates the linked list of installed mod-
ules in such a way that Sebek is removed from the list. This is not a completely robust
method of hiding, and techniques for detecting such hidden modules do exist.1

There are two side effects of this removal: Users can no longer see that Sebek is
installed and, once it is installed, they are unable to remove the Sebek module without
rebooting.

Client Data Export
Once the Sebek client captures the data, it needs to send the data to the server
without being detected. If Sebek were simply to send the data to the server over a
UDP connection, an intruder could simply check for the presence of such traffic
on the LAN to determine whether Sebek was installed. Sebek does send data to the
server using UDP, but first it modifies the kernel to prevent users from seeing
Sebek packets, not just the packets generated by the local host, but any appropri-
ately configured Sebek packet. Next, when Sebek transmits data onto the network,
it ensures that the system cannot block the transmission or even count the packets
transmitted.

Because Sebek generates its own packets and sends them directly to the device
driver, there is no ability for a user to block the packets with iptables or monitor
them with a network sniffer. This prevents an intruder on a honeypot from
detecting the presence of Sebek by examining the LAN traffic.

The Broader Impact
Not too long after development, it became clear that not only was Sebek allowing
us to circumvent encryption, but it was providing a previously unavailable source
of data. Sebek was allowing us to look at the honeypot as a glass box rather than a
black box. It was easy to monitor the keystrokes of an intruder, but we could also
observe the actions of applications that never send data over the network. We ini-
tially tried to filter such data, but eventually we realized that such data could help
researchers understand the intention and functioning of an unknown and poten-
tially hostile binary installed on a system.

23December 2003 ;login:

●
SE

CU
RI

TY

Figure 2

Figure 3

SEBEK ● 

1. Phrack issue 61 has an article on detecting
hidden kernel modules in its Linenoise section.
The article describes a brute-force method for
detecting hidden modules by looking for what
appears to be the key module structure.

 



Vol. 28, No. 6 ;login:

We haven’t been the only ones to take notice of the potential power of this monitoring
technique. Recently, a paper was published on a site purporting to be affiliated with
the computer security group Phrack. This paper not only covered the risks associated
with running honeynets, but also provided techniques used to detect and disable
Sebek. (The honeynet site has a mirrored copy of the article at http://www.honeynet.
org/papers/honeynet/anti-honeypots.txt.) Once these techniques trickle down to the
least skilled form of attacker, the script kiddie, it is anticipated that checking for Sebek
on a compromised host will be common practice. The most common technique
involves installing a kernel module that attempts to reset the system call table.

The Future
In the near future, the primary goal is to ensure that Sebek is stable and can identify or
perhaps even withstand attempts by attackers to disable it. The second priority will be
Sebek data analysis. Within the Sebek data we see repeating patterns that are indica-
tions of illegitimate privilege escalation. Just as network-based intrusion detection sys-
tems examine libpcap data for patterns that represent known bad events, it is
anticipated that an IDS based on Sebek data could be developed to detect bad events at
the host level. Further, for a few situations it may be that such rules can be contained
with the Sebek client, and when the client detects such a situation it would cause the
kernel to take remedial action. This would be equivalent to a host-based intrusion pre-
vention system.

Summary
Sebek is a kernel-based data capture tool that was originally designed to covertly mon-
itor activity on a honeypot. Sebek circumvents encryption by capturing the activity in
kernel space, where it is in an unencrypted form. Because of this we can capture key-
strokes, recover passwords, and monitor any communication including IRC chats,
email, and SSH/SCP activity.

Sebek allows an excellent view into the internal activities on a honeypot. Its methodol-
ogy has not only provided a way to circumvent session encryption but also captures an
entirely new type of data. This new data type may lead to the development of new
technologies that will help make general-purpose systems more secure.

More information on the Sebek data capture system can be found at http://www.
honeynet.org/tools/sebek/.

Once these techniques trickle
down to the least skilled form
of attacker, the script kiddie,
it is anticipated that checking
for Sebek on a compromised
host will be common practice.

24



25December 2003 ;login:

On Agent-Based Distributed Denial of
Service
We describe a vulnerability that allows an attacker to perform an email-
based denial-of-service attack on selected victims, using only standard
scripts and agents. As we will describe, the attack can also target the SMS
and telephony infrastructure. What differentiates the attack we describe
from other, already known, forms of DDoS attacks is that an attacker does
not need to infiltrate the network in any manner – as is normally required
to launch a DDoS attack. Not only is the attack easy to mount, but it is also
almost impossible to trace back to the perpetrator. We describe the attack,
some experimental results, and some countermeasures.
The attack involves Web-crawling agents that, posing as the victim, fill in forms on a
large set of third-party Web sites (the “launch pads”), causing them to send emails or
SMSes to the victim or have phone calls placed. The launch pads do not intend to do
any damage – they are merely tools in the hands of the attacker. What makes the attack
difficult to prevent is that the launch pads perform the same type of operations as nor-
mally desired, thereby giving their administrators no indication that they are part of
an attack. This also makes legislation against unwanted emails, SMSes, and phone calls
a meaningless deterrent: Without the appropriate technical mechanisms to distinguish
valid requests from malicious ones, how could a site be held liable when used as a
launch pad? To further aggravate the issues, and given that our attack is a type of
DDoS attack, it will not be possible for the victim (or nodes acting on its behalf) to fil-
ter out high-volume traffic emanating from a suspect IP address, even if we ignore the
practical problems associated with spoofing such addresses.

The attack we describe is an extension of the recent work by Byers, Rubin, and Kor-
mann (“Defending Against an Internet-Based Attack on the Physical World”) in which
an attack was described where victims are inundated by physical mail. While the
underlying principles are the same, the ways the attacks are performed and what they
achieve are different. Moreover, the defenses proposed in the two papers vary consid-
erably, given both the different threat situations and the different goals in terms of sys-
tems to be secured.

Our attack takes advantage of the absence in the current infrastructure of a (non-
interactive) technique for verifying that the submitted email address or phone number
corresponds to the user who fills in the form. This allows an automated attacker to
enter a victim’s email address in a tremendous number of forms, causing a huge vol-
ume of emails to be sent to the victim. (For concreteness, we focus on the email-based
attack, noting the similarities to the SMS and phone call attacks.) 

Note here that the “double opt-in” defense routinely employed against impersonation
of users is not useful to avoid the generation of network traffic. Namely, some sites
attempt to establish that a request emanated with a given user by sending the user an
email to which he is to respond in order to complete the registration or request. How-
ever, as far as our email-based attack is concerned, it makes little difference whether
the emails sent to a victim are responses to requests or simply emails demanding an
acknowledgment.

untraceable email
cluster bombs

UNTRACEABLE EMAIL CLUSTER BOMBS ● 

●
SE

CU
RI

TY

by Markus 
Jakobsson
Dr. Markus Jakobs-
son is a principal
research scientist at
RSA Laboratories,
and an adjunct asso-
ciate professor at
New York University.
He is engaged in
research related to
wireless security, pri-
vacy issues, and pro-
tocol vulnerabilities.

mjakobsson@rsasecurity.com

and Filippo
Menczer
Dr. Filippo Menczer
is an associate pro-
fessor of informatics
and computer sci-
ence at Indiana Uni-
versity, Bloomington.
His research spans
Web, text, and data
mining, intelligent
agents, and complex
systems, and is sup-
ported by a Career
Award from the
National Science
Foundation.

fil@indiana.edu



Vol. 28, No. 6 ;login:

In a first phase, an agent would harvest forms from the Web by posting appropriate
queries directly to some search engine. The agent can then fetch the hit pages to
extract forms. For example, at the time of this writing, MSN reports about 5 million
hits for the query “free email newsletter” (all terms required) and over 800,000 hits for
“send free SMS.” However, search engines often do not return more than some maxi-
mum number of hits (say, 1,000). One way for the attacker’s software to get around
this obstacle is to create many query combinations by including positive and/or nega-
tive term requests. These combinations can be designed to yield large sets of hits with
little overlap.

Once a potential page is identified, it must be parsed by the agent to extract form
information. The page value must match a string like “email.” Such a heuristic identi-
fies potential launch pad forms with high probability.

In a second phase, forms are filled in and submitted by the agent. This can be per-
formed right after a form is found, or later, using many already harvested forms.
Heuristics can be used to assign values to the various input fields. These include the
victim’s email address and, optionally, other information such as name, phone, etc.
Other text fields can be left blank or filled with junk. Fields that require a single value
from a set (radio buttons, drop-down menus) can be filled with a random option.
Fields that allow multiple values (check boxes, lists) can be filled in with all options.
The request can then be sent.

The program could be executed from a public computer, in a library, for example, or a
coffee shop. All that is required is an Internet connection. The program could be
installed from a floppy disk, downloaded from a Web or FTP server, or even invoked
via an applet or a virus.

While it is possible for a site to determine the IP address of a user filling in a form, not
all sites may have the apparatus in place to do so. Even if the first phase of the attack
takes place from an identifiable computer using a search engine, it is difficult for the
search engine to recognize the intent of an attacker from the queries, especially consid-
ering the large numbers of queries handled. And it is impossible for a launch pad site
to determine how its form was found by the attacker, whether a search engine was
used, which one, and in response to what query. In other words, the second phase of
the attack cannot be traced to the first (possibly traceable) phase.

We will now report on a number of contained experiments carried out in April 2003
to demonstrate the ease of mounting the attack and its potential damage. We are inter-
ested in how many email messages, and how much data, can be targeted to a victim’s
mailbox as a function of time since the start of an attack. We also want to measure
how long it would take to disable a typical email account.

Clearly, these measurements and the time taken to mount an attack depend on the
number of forms used. It would not be very difficult to mount an attack with, say, a
hundred thousand or a million forms. However, much smaller attacks suffice to dis-
able a typical email account by filling its inbox. Furthermore, experimenting with truly
large-scale attacks would present ethical and legal issues that we do not want to raise.
Therefore we limit our experiments to very contained attacks, aiming to observe how
the potency of an attack scales with its computational and storage resource require-
ments. We created a number of temporary email accounts and used them as targets of
attacks of different sizes. Each attack used a different number of Web forms, sampled
randomly from a collection of about 4,000 launch pads, previously collected.

It would not be very difficult
to mount an attack with, say,
a hundred thousand or a 
million forms.

26



In the collection phase of the attack, we used a “form-sniffing” agent to search the Web
for appropriate forms based on hits from a search engine. The MSN search engine was
used because it does not disallow crawling agents via the robot-exclusion standard.
(We wanted to preserve the ethical behavior of the agent used in our experiments; an
actual attacker could use any search engine, since the robot-exclusion standard is not
enforceable.) This was done only once.

The collection agent was implemented as a Perl script using no particular optimiza-
tions (e.g., no timeouts) and employing off-the-shelf modules for Berkeley database
storage, HTML parsing, and the LWP library for HTTP. The agent crawled approxi-
mately 110 hit pages per minute, running on a 466MHz PowerMac G4 with a shared
100Mbps Internet connection. This configuration is not unlike what would be avail-
able at a copy store. From our sample we measured a harvest rate of 40% (i.e., 40
launch pad forms per 100 search engine hits) with a standard error of 3.5%. At this
harvest rate, the agent collected almost 50 launch pad forms per minute, and almost
4,000 forms in less than 1.5 hours. If run in the background (e.g., in the form of a
virus), this would produce as many as 72,000 forms in one day, or a million forms in
two weeks – probably in significantly less time with some simple optimizations.

The second phase, repeated for attacks of different size, was carried out using the same
machinery and similarly implemented code. A “form-filling” agent took a victim’s
information (email and name) as input, sampled forms from the database, and sub-
mitted the filled-in forms. The agent filled in approximately 116 forms per minute.
The email traffic generated by our attacks was monitored until the size of the inbox
passed a threshold of 2MB. This is a typical quota on free email accounts such as Hot-
mail and Yahoo. No other mail was sent to the victim accounts, and no mail was
deleted during the experiments. When an inbox is full, further email is bounced back
to senders and, for all practical purposes, the email account is rendered useless unless
the victim makes a significant effort to delete messages. We call kill time the time
between the start of an attack and the point when the inbox size reaches 2MB.

In Figure 1 we can observe that for the three smaller attacks (using 514, 1026, 2050
forms), the kill time occurs well after the attack has terminated. For the largest attack
(3911 forms), kill time occurs while the attack is still being mounted. This means that
the time to disable a standard email account is less than one hour if around 4000
forms are used. If a million forms were filled in parallel by several agents, or by one
agent with high bandwidth, we can see from the figure that a standard account can be
disabled in well under a minute.

A first line of defense consists of a simple preventive step by which Web sites can avoid
being exploited as launch pads in our attack, but without abandoning Web forms. Web
sites would use the following simple strategy. After the form has been filled out, the
Web site dynamically creates a page containing a mailto link with itself as an addressee.
Legitimate users would send the message to validate their request. The email to the
Web site would then be used by the site’s mailing list manager to verify that the sender
matches the email address submitted via the Web form. Although the address of the
sender is not reliable, because it can be spoofed in the SMTP protocol, the sender can-
not spoof the IP address of its legitimate ISP’s SMTP server. The site can thus verify
that the email address in the form request matches the originating SMTP server in the
validation message.

27December 2003 ;login:

●
SE

CU
RI

TY

Figure 1

UNTRACEABLE EMAIL CLUSTER BOMBS ● 



Vol. 28, No. 6 ;login:

There are three caveats to this strategy. First, messages via open relays must be dis-
carded by the site. Second, if an attacker could guess that a user in a given domain
requests information from some site, she could request information from the same site
for other users in the same domain, potentially spoofing the validation created by the
addressee. To prevent such an attack, the validation message created by the site should
contain a random number with sufficient entropy that it is hard to guess. Third, one
could still attack victims who share their ISP’s mail server. In general this would be
self-destructive, but a disgruntled employee might use such an attack against his
employer. In this case, however, the attack could be traced. With these caveats, our pre-
ventive strategy would afford the same security as forms that now request email con-
firmation, but without sending any email to victims.

The above technique works for forms where a party requests information to be sent to
herself, but it does not cover common services such as sending newspaper articles or
postcards to others. Sites wishing to allow this can use alternative defenses – namely,
well-behaved sites may make the harvesting of forms more difficult by not labeling
forms using HTML, but rather, using small images. This would increase the effort of
finding and filling in the forms. Given the relative abundance of available forms,
potential attackers would then likely turn to sites where no image analysis has to be
performed to find and fill in the form. Doing this has no impact on human users,
except to a very small extent on the download time of the form.

If legislation is enacted that makes sites liable for any attacks mounted using their
facilities, then even poorly behaved sites might wish to employ protective measures to
avoid being the defendants in lawsuits by victims of the attack we have described.

In our full paper, available from http://www.markus-jakobsson.com, we describe further
experimental results, along with descriptions of secondary lines of defense that can be
used by end users to avoid becoming the victims in attacks where potential launch
pads have not taken sufficient precautions to prevent a successful attack from being
mounted.

If legislation is enacted that
makes sites liable for any
attacks mounted using their
facilities, then even poorly
behaved sites might wish to
employ protective measures
to avoid being the defen-
dants in lawsuits by victims
of the attack we have
described.

28



29December 2003 ;login:

Models and Solutions
When a problem persists even after the outpouring of tremendous sums of
money and resources, it is sometimes necessary to revisit the belief systems
around what your problem might actually be. Intrusion detection systems,
security scanners, managed firewalls, and external audits have all provided
some form of value, but have they addressed the issues they were deployed
to solve? In cases where they have, has it been to the extent hoped for and
expected?
Several very large organizations have approached me with this dilemma recently. They
are finding themselves overrun with reverse tunnels. In actuality, it is not the reverse
tunnels that are the problems as much as the compromised internal systems. Identify-
ing reverse tunnels, and various covert communications channels, can be difficult in
certain cases. However, the majority of instances are very easy to identify accurately.

It is the purpose of this article to share a perspective on security within an organiza-
tion’s perimeter, using a perspective and threat model largely derived from counter-
intelligence/counter-espionage (CI/CE) models. The various solutions, such as some
of the reverse-tunnel analysis below, are derived from a framework I have constructed
called “The Physics of (Internal) Networks.” Together they accurately define and map
the networked “insider threat” issue. It is important to point out that this paper only
targets internal corporate networks.

Before we embark upon the description of reverse tunnels, HTTP in particular, and
some methods to identify these within your network, let us look at some of the current
industry beliefs.

Increasingly, the industry believes the threats to protect against are the overt attacks
that might be launched against them in the future. The attacks being worried about
are directed specifically against them. Further, it is believed that the attacks will origi-
nate externally and will attempt to breach the firewall perimeter. What the attacks will
attempt to accomplish does not seem to be an area that has been given much thought,
the predominant belief, stemming from popular media reports, being that of disrupted
service or various kinds of Web defacement.

Perhaps, whether accurate or not, it is too painful for organizations to entertain the
notion that they might already be compromised. Being overrun by reverse HTTP tun-
nels might be an easier pill to swallow than accepting that these reverse tunnels are
symptoms of actions initiated from internal machines that are already compromised.

Attacks draw unwanted attention. It is, and always has been, preferable in most situa-
tions to use credentials that are permitted on a system, however those credentials are
obtained. This way, there is no actual “attack” as IDS would classify it.

Like a mole in a government agency, the greatest value is achieved through unnoticed
longevity in the target environment. The expected movement and characteristics of
information and its handling related to business functions must change in these cases,
providing us with the ability to identify such covert activities. Profiling the business
functions and their information flows on the internal network is the important com-
ponent, not profiling the people.

insider threat

INSIDER THREAT ● 

●
SE

CU
RI

TY

by Mudge 
Mudge continues in
his goal to “make a
dent in the universe.”

mudge@intrusic.com,
mudge@uidzero.org



Vol. 28, No. 6 ;login:

How Much Progress Have We Really Made?
What follows is a subset of various trojan and back-door tools and targets, along with
some time frames showing when the author of this article first came across them. The
items mentioned below have been found in use, unmodified or trivially altered, up to
the present – very successfully. Intentionally, only tools that have been around for
many years are listed. The greater concern does not reside in the actual modified pro-
grams and tools themselves but, rather, in the fact that they are still so tremendously
successful, and seldom spotted until after it’s too late.

The success and longevity these sorts of tools enjoy highlights the fact that the internal
network threat model is not being addressed by current network intrusion detection
solutions.

Are We Under the Belief That the Sun Orbits the Earth?
Consider the following data points that go hand in hand with the tools and techniques
just mentioned:

■ Intruders are already inside most corporations, often sitting on key components
of critical infrastructure and usually without knowledge of exactly what they are
in control of.

■ Accidental catastrophic failure is possible.
■ Intentional catastrophic failure is possible.

■ Passive control of systems is much more desirable than disruption or damage
without purpose.

30

NAME BRIEF DESCRIPTION ROUGH DATE

fingerd
accepts commands to add users, launch an
interactive root shell, etc.

1994

BSD-logind
embedded password that allows and hides a
root-level login

pre-1997

rshd back-door account with root access pre-1997

Telnet
trojan to copy username, hostname, pass-
word of anyone connecting to a remote
machine

1993

Telnetd
back-door enabled through Telnet option
negotiation variables (placed into various
distribution trees)

pre-1997

ICMP (pinsh/ponsh)
covert communications over ICMP echo
packets

1995

Ident back door 1995

dynamic library
trojan/(kernel interface
calls)

hides processes the interloper has tagged
(would and still does defeat many host-
based intrusion systems)

1993



■ Target selection is opportunistic.
The selection is often acquired from within a large selection of systems, user-
names, and passwords of already compromised systems:

■ VPN – scanning DSL/cable/dialup (also known as Island Hopping)
■ Sniffed credentials of corporate accounts accessed from schools/universi-

ties (Fluffy Bunny demonstrated and documented this in his compromise
of Akamai and other substantial environments)

■ Shell systems or other large user-base machines through trojaned bina-
ries/applications

■ Sniffed credentials obtained via compromised systems at ISPs

■ Passive control and tools have not changed much since pre-1996.
■ Cloaking tools have not changed much since pre-1996.

These last two points are not news to the people involved in operational security and
cleanup. With all of the updates and advances that the defensive products being
deployed incorporate, the same rootkits and hide packs are consistently found to be
running on compromised systems.

Obviously, the issues at hand goes well beyond simply identifying tunnels and reverse
tunnels. However, it remains important to address and be able to identify symptoms of
such problems. Here are a few ways to analyze internal network traffic to identify
streams as likely being reverse HTTP tunnels. Again, these are just a few ways to look
at network traffic dumps that have proven successful for this purpose.

A Quick Definition of Tunneling
Tunneling is the process by which one communication channel is embedded within
another. Tunneling is often performed not only to hide a session’s contents from casual
observation, but to allow compromised hosts located on an internal network to use
firewall- and filter-allowed protocols in order to act in collusion with outside agents.
HTTP tunneling encapsulates data in HTTP; often the data is simply sent across the
ports associated with HTTP and not even embedded within the protocol itself.

Freely available software to help automate the planting of back doors is in wide circu-
lation. Once compromised, the internal systems are able to communicate with external
targets while appearing to be standard Web surfing or other allowed activities. The
more common modus operandi utilizes a variant of HTTP tunneling known as reverse
tunneling. In this case, what appears to be a client system surfing the Web contacts a
specified Web server and allows commands to be sent back to it. Thus, the client
becomes a server to the intruder’s external system.

The key to discovery lies within the understanding of how things work normally
(remembering that this paper is specifically dealing with internal networks, CI/CE, and
the insider threat). Reverse tunnels’ primary purposes are to permit a single actor to:

1. enable their communications to pass through outbound filters,
2. camouflage the connection, and
3. allow control or influence to originate from external locations.

The above do not adhere to the “Physics of (Internal) Networks” as defined by busi-
ness function or data purpose. So, taking the tcpdump or other sniffer logs from your
internal networks, we can begin. (You do keep these sorts of things handy or at least
have such network traffic logging systems deployed, don’t you?)

31December 2003 ;login:

●
SE

CU
RI

TY

INSIDER THREAT ● 



Vol. 28, No. 6 ;login:

Quick, Dirty, and Successful Reverse Tunnel Analysis 
Techniques

DURATION
HTTP sessions are usually short-lived and initiated per-page (or per-
item). A session to port 80 that lasts more than a few minutes is
quite unusual for standard Web surfing. However, a session of this
duration or longer is quite common for interactive shell connec-
tions.

CLIENT-SERVER FLOW DIRECTIONS
HTTP operates in a client-server fashion. The browser acts as the
client and typically consumes more data than it produces. Client sys-
tems that produce significantly more data than they consume in a
session can indicate potential reverse-tunnels.

LACK OF CLIENT BROWSER IDENTIFICATION TO THE WEB
SERVER

When a client connects to a Web server, the browser sends not only the request for the
Web page but a series of directives. The following is what the OmniWeb browser on a
MacOS X system sends.

GET / HTTP/1.0
Connection: Keep-Alive
User-Agent: Mozilla/4.75C-CCK-MCD {C-UDP; EBM-APPLE} (Macintosh; I;
PPC) OmniWeb/v496

Host: 127.0.0.1:8080
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, 

image/png, image/tiff, multipart/x-mixed-replace, /;q=0.1
Accept-Encoding: gzip, identity
Accept-Charset: iso-8859-1, utf-8, iso-10646-ucs-2, macintosh, 

windows-1252, *
Accept-Language: en, *;q=0.5

If the first data packets in the session sent from the client could not possibly
represent something similar to the character-frequency graph above, the
session is potentially suspect. Bi-grams, tri-grams, and character frequency
are all well-understood cryptography and linguistics analysis techniques
that work very well here.

Many permutations on the graph exist. Was too little data sent from the
client initially to form a normal request? Did the client never attempt to

send this sort of initial data (i.e., server sends first payload)? And so on.

INTERACTIVE VERSUS NON-INTERACTIVE DATA STREAMS
Surfing the Web seems to the end user to be an interactive experience. The user
requests a Web page, is presented with information, and, based upon the options
within this new information, performs subsequent requests or actions.

The system-to-system communications which make up each stream are in fact non-
interactive in comparison to Telnet and others.

Reverse HTTP tunnels are most frequently interactive sessions allowing “server” termi-
nal or shell-style communications with the initiating “client.”

32



This is easily spotted by, among other things:

■ Small data packets making up most of the “server’s” data
■ Large deviations/variances in the time span between packets
■ Both large and small data packets making up the “client’s” data stream where

there are distinct groupings of large vs. small

The reader is referred to Yin Zhang and Vern Paxson’s paper1 on this topic.

PERIODIC REQUEST SPACINGS
Cron or other timed automated execution methods are commonly used on the com-
promised internal system. The internal system in these situations attempts to connect
to the external system once an hour, once every several hours, once a day, etc. When
the external system that is acting in collusion accepts the connection, the client pre-
sents the equivalent of a shell prompt. Connection attempts to systems that
are rejected most of the time but are successful on occasion is another
potential indicator of a compromised system.

The figure on the right shows connection requests at four-hour intervals,
each being reset by the server system. The final connection proceeds as one
would expect. A common permutation of this leaves the initial SYN pack-
ets unanswered.

Wrap-up
While this subset of methods is useful in spotting reverse HTTP tunnels,
individually they still offer a potential for false positives. Luckily, more
than one of these individual checks will almost always have to be true in
the actual tunnel situation. Combining these checks and others in logical
ways can easily negate most occurrences of false positives. A commercial
tool to address these and other insider threats will be available at
http://www.intrusic.com.

33December 2003 ;login:

1. Y. Zhang and V. Paxson, “Detecting Stepping
Stones,” Proceedings of the 9th USENIX Security
Symposium, (USENIX Association, 2000) http://
www.usenix.org/events/sec2000/zhangstepping.
html.

●
SE

CU
RI

TY

INSIDER THREAT ● 



34 Vol. 28, No. 6 ;login:

Here at the San Diego Supercomputer Center (SDSC) we recently went
almost four years without an intrusion on our managed machines.1 And it
was some time between that one and the previous one.
We have a decent-sized organization – a few thousand machines, over 6000 users
worldwide. We think we do a pretty good job of keeping our systems secure.

And here’s a little secret: We don’t use firewalls.

Why not? Well, because, basically, they’re not worth it, and they don’t provide us with
the protection we need. Because it’s about effective security – solutions which actually
work against actual threats, which scale, and which are robust.

This article outlines our strategy for effective security. While not all of it is applicable
in all environments, I hope some (maybe a lot) of it is useful to others.

Space limitations prevent me from going into detail about our implementation. Expect
more in future articles.

The Myth of Firewalls
There is a pervasive myth that firewalls are necessary for effective security. Firewalls
have become a panacea, and are assumed to magically protect everything. The net
result is often that a network is less secure.

“Use a firewall” is a common recommendation from security literature and practition-
ers. VISA’s Cardholder Information Security Program requires online merchants to
“install and maintain a firewall.”2

The myth that a firewall is necessary for effective network security is so prevalent that
many believe you are doing something wrong if you don’t have one.

For example, I was helping a private research lab construct a comprehensive security
plan, which focused on infrastructure protection. They hired a new CTO, who
informed us that he wanted a firewall, because whenever he discussed security with his
peers at other organizations, they were incredulous that he did not have one, and he
felt that his reputation was suffering as a result. Some time later, at a technical staff
meeting, the issue of security came up, and he announced that they were now secure
because they had a firewall. (They weren’t, and some of the staff called him on it.)

I used to be a full-time consultant, and I can’t tell you how many times a customer (or
potential customer) would say something similar: “We’re safe – we have a firewall.”

But firewalls aren’t the magical bullet-proof vest that the public seems to think they
are. Just look at the spread of worms throughout the Net: Code Red, Blaster, etc. Look
at Web sites that have been defaced by vandals, or had credit card or social security
numbers stolen. Many of these compromised sites had firewalls.

Why does the myth persist? First, firewalls are sexy. It’s much c00l3r to play with a fire-
wall than to patch machines. Second, we live in the “magic pill” culture, where we look
for a one-time quick fix, and management wants to hear that the problem is solved.

Why Firewalls Don’t Work
So what is a firewall? Early firewalls were just packet-filtering routers, which could only
filter IP addresses (not port numbers). Then came port filtering, proxy firewalls, and
stateful packet filtering (SPF). To some people, using NAT is considered a firewall.

life without firewalls 

1. We do have “unmanaged” (user-managed)
machines that have been compromised. This
will be explained in more detail below.

2. VISA Cardholder Information Security Pro-
gram, http://usa.visa.com/business/merchants/
cisp_index.html.

by Abe Singer
Abe Singer is a com-
puter security man-
ager at the San
Diego Supercom-
puter Center, and
occasional consultant
and expert witness.
He is responsible for
operational security
for SDSC, involved
with the Teragrid
security working
group, and is doing
research in security
measurement and
logfile analysis” 
Abe@SDSC.edu 



A firewall works only as well as it’s configured. A firewall which allows traffic through
on every port provides no protection whatsoever. One which does not allow any traffic
through will probably protect against external attacks, but isn’t otherwise useful.

So a firewall has to allow some traffic through. And if the machine receiving the traffic
behind the firewall has a vulnerability, it can be compromised.

Now at this point the firewall-o-philes will be saying, “Oh, but a proxy firewall would
solve that problem” or “Stateful packet filtering is the answer.” Those technologies also
only work as well as they’re configured or programmed.

A proxy has the capability to examine the data and only allow “legitimate” data
through, but it has to be programmed to differentiate between what is legitimate and
what is not. And that program has to be maintained, bugs have to be fixed, and so on.

And you still have to protect the service against attacks from other hosts on the same
network behind the firewall.

Firewalls which rely on chained rule sets are vulnerable to cascade failures – a change
in one rule can have an effect on every rule which follows it. I’ve seen systems that
relied on a firewall to block services which were only supposed to be available on the
local network, but which were made available to the entire Internet due to the unfore-
seen result of a firewall rule change.

Firewalls also have performance issues; they usually only work if all traffic is directed
through them, and usually not at the speeds found, for example, on OC-192 connec-
tions. Firewalls do not work well or at all in a high-speed network with multiple paths.

Finally, having a firewall should not be used as an excuse for poor system administra-
tion.

Now, having said all that, I’m going to back down a little and say that firewalls do have
their uses. They’re just not the magic pill that people think.

Lack of Metrics
The truth is we don’t have any real scientific measurement of how effective different
security practices are. There’s no data that shows that, to make up an example, fire-
walled sites have 34.5% fewer compromises than those without. There’s no data that
shows how much longer it will take, on average, to compromise a “secure” system con-
figuration vs. a default “out of the box” configuration.3

(We could really settle some religious wars if we did have such data.)

SDSC’s Approach
HISTORY
Like almost everyone, we had to feel the pain before getting smart about security.
About 10 years ago, SDSC had recurring problems with intruders. As fast as an
intruder could be kicked out, another one got in. Finally, we decided to take drastic
measures: We shut down the entire network. Machines were reinstalled and not
allowed back on the network until they were considered secure. Our Cray was down
for three weeks, the longest it had ever been down (before or after). Our director, Sid
Karin, said, “I never want to do this again.” Meaning that whatever we did should work
over the long term, not just be an immediate fix.

35December 2003 ;login:

A firewall works only as well
as it’s configured.

●
SE

CU
RI

TY

3. Marcus Ranum’s cat may have some num-
bers.

LIFE WITHOUT FIREWALLS ● 



Vol. 28, No. 6 ;login:

Sid also said that we should have an open environment, where people can do what
they want to do. (He actually said that if someone wants root access, why not give it to
them?) But he recognized that one person’s actions on one machine can have an
impact on other machines on that network.

So we developed a long-term strategy to keep our machines and network secure, while
providing resources that are open and usable. We did not do everything immediately.
Rather, we implemented what we could, and improved things as new technologies
became available. We also recognized that there are people who just want to do their
own thing, either because they have a need that doesn’t fit with our environment or
because they have an ego problem, so we also provided a way for those people to man-
age their own resources.

THE SDSC ENVIRONMENT
SDSC is a facility which provides supercomputing resources for scientific research, and
does research in high-performance computing technology.4 SDSC is also part of Tera-
Grid and Internet2. SDSC does not do any government-classified work.

We have about 6000 users, of which only about 300 are on-site. The rest are at other
institutions around the globe (mostly in the US).

We have several thousand systems on-site and about five petabytes of near-line stor-
age, plus several hundred terabytes of spinning disk on a SAN. Our network supports
10Gb Ethernet (no, that’s not a typo) internally and to other TeraGrid sites. We have
multiple OC-192 connections to various sites. In other words, LOTS of bandwidth.

We do not insist on absolute homogeneity (more on that below). On-site users get
their choice of desktop: Linux, Solaris, Windows, or Macintosh. Many users have more
than one desktop machine. Our infrastructure machines are a combination of Linux
and Solaris. Oh, and we have some IRIX machines used by the Visualization group.

We currently support the following OS revs:

RedHat 7.2, 7.3, 8, 9; Solaris 7, 8, 9; IRIX 6.5; Windows NT4, 2000, 2003, XP (for some
specific applications); MacOS 9, X

We treat hardware as commodity devices. System configuration is independent of the
hardware. If a system dies, it is replaced with new hardware and auto-installs. User
downtime is kept to a minimum, as are support staff resources.

RISK ANALYSIS
A security policy and strategy should be based on a realistic risk analysis. Our analysis
looks at the assets we are trying to protect and the threats to those assets.

ASSETS
To SDSC, the most important thing to protect is the integrity (and, where necessary,
the confidentiality) of our data. In this context, “data” means both user and system
data (mess with system data and you’ve compromised the machine).

We also need to protect our resources: bandwidth, CPU, and data storage capacity.
Many of the script kiddies out there don’t want our data (or yours), they just want our
disk space and bandwidth.

36

4. The San Diego Supercomputer Center,
http://www.sdsc.edu.

A security policy and strategy
should be based on a realistic
risk analysis. 



Finally, we want to protect our reputation as a site that does security well and provides
high performance and reliability to its users.

THREATS
We have several threat vectors to deal with. First, there are the Evil Internet Hackers™,
who want to break into our machines for whatever reason. As mentioned above, some
just want to use our resources, but some are targeting us specifically because we’ve got
a high profile,5 such as those that hold us responsible for Kevin Mitnick’s most recent
incarceration (as of this writing ;-).

In addition to external, anonymous threats, we have to worry about our own users,
whom we really don’t trust any more than the “outsiders.” Sometimes our users will-
fully violate policy because they just don’t care. Others are light on clue.

And sysadmins can do stupid, careless, or malicious things; we have to find a way to
contain them, too (I think I hear the sound of cats and a herder).

POLICY
The general SDSC security policy is pretty short. It basically says that the security pol-
icy is to protect the confidentiality and integrity of our users’ data and to provide reli-
able service.

In order to provide this protection, we must protect our file servers. Our policy
requires that only machines considered “secure” according to a reference system can be
on networks that can communicate with the file server. We refer to these systems as
“managed” machines or “reference systems.” How we build a reference system is
described below.

We also realize that accounts can be compromised by the sniffing of passwords, and
that an account compromise can lead to a system compromise. So we instituted a pol-
icy that says that no authentication protocols which use plaintext passwords or other
secrets which can be intercepted and reused can pass between our “trusted” networks
and other networks. I call this the “no plaintext passwords” policy.

Since a compromise of one system can lead to compromise of other systems, our pol-
icy also requires anyone with a system on any of our networks to report any suspected
compromise to the security group for investigation.

For privileged access, the user must explain why they need the access and sign an
acceptable-use agreement that is also signed by their supervisor. The root password is
only given out where absolutely necessary, such as to people who need to log in to a
system console during the installation process. For all other cases, limited “sudo” access
is given for UNIX access, and a local administrator (not domain administrator) is pro-
vided for Windows users. The user is also given a little lecture to make clear that they
are not to use their privileges for activities beyond the reason they gave for access –
that access/ability is not authorization. The agreement form also indicates this.

Finally, in order to accommodate users who do not want to comply with our reference
guidelines, we have a section of the network which we call “The Outback,” in which
anyone can install a system. The user and their supervisor must sign a form indicating
that they take responsibility for their system, and that if it is compromised we may take
custody of the system for forensic analysis and, potentially, as evidence in a criminal
case.

37December 2003 ;login:

●
SE

CU
RI

TY

5. Probes of takedown.com,
http://security.sdsc.edu/incidents.

LIFE WITHOUT FIREWALLS ● 



Vol. 28, No. 6 ;login:38

We have, on occasion, had to strip a user of privileged access. We also have seized
numerous Outback machines over the years (although the rate has decreased over the
last year or so).

SDSC’s Security Approach
Our security approach revolves around a few basic strategies described here.

SCALABLE CONFIGURATION MANAGEMENT
Most (all?) default vendor installations of operating systems have security vulnerabili-
ties. Systems with default installations will eventually get compromised.6

Another common point of security failure is secure configurations that are lost after a
system is reinstalled, upgraded, or overwritten by a vendor patch. Also, sometimes the
configuration change fails to get installed on all machines – 99 were patched, but the
100th forgotten, or a machine that was down for several weeks and stored in a closet is
booted onto the network, and it does not have the fixes that were put on the other
running systems.

Our system configurations are based on a “reference system” and managed using auto-
mated configuration management software (cfengine).7

We use cfengine to correct things that the vendor gets wrong, to install locally built
software, and to install/maintain configuration files (e.g., fstab). Every system runs
cfengine upon boot, and each night, files or permissions that have been modified by
hand on a system will be detected by cfengine and restored to their “reference” state –
the system is effectively self-healing. Cfengine operates on “classes” of machines – a
change put into the reference will be automatically installed on all machines in that
class. And since cfengine logs the changes it makes and makes backup copies of any
files it modifies, it serves as an automated intrusion detection and recovery system.

Now, those of you who paid attention when I was ranting about firewalls might point
out that a misconfiguration will cause a failure across all systems; that is correct. But
since most host-based protective measures are not interdependent (chained), we are
not as susceptible to the cascade failures mentioned above. And, yes, we could open up
a window of vulnerability on our machines. But we think the trade-off is worth the
risk, as we don’t end up with machines on the network whose configuration state is
unknown. And putting the fix into the reference guarantees that it will be propagated
to all machines.

AGGRESSIVE PATCHING
Most publicized compromises (especially worms) have taken advantage of vulnerabili-
ties for which patches were already available, in some cases for months or years.
Aggressive patching could probably solve 90% of most companies’ security problems.8

Security patches are installed as soon as possible. We prioritize patches based on a
combination of whether the vulnerability is remote or local, and whether or not an
exploit exists.

Patches are tested on a single machine, then on willing victims’ (users) desktops for
Microsoft systems, and then are distributed to all appropriate hosts with automated
tools.

6. See http://worm.sdsc.edu/.

7. cfengine, http://www.infrastructures.org/
cfengine/.

8. Marcus Ranum’s horse would probably dis-
agree with that number.

 



NO PLAINTEXT PASSWORDS/STRONG AUTHENTICATION
The other vector for attack is via a compromised account where the password for that
account had been sniffed from the network, or guessed. Additionally, many intruders
will install a sniffer, regardless of their main purpose, to opportunistically find other
accounts and machines to compromise.

A compromised account is one of the most difficult to detect. How can one easily
determine whether a given login session is the legitimate user or an intruder?

We use a combination of solutions to provide authenticated services where passwords
are either encrypted or not transmitted (e.g., SSH, Kerberos).9

Practices
REFERENCE SYSTEMS
The general process of creating a reference system is to first install an appropriate
selection of system software (usually, the vendor’s procedures will be used for this),
then add SDSC-specific software (e.g., cfengine), then modify everything to fix secu-
rity problems and establish the functionality we require. Key to making this work is a
high degree of automation, which allows the easy replication of the system.10

Our reference system includes the following:

■ Automated configuration management using cfengine (see description, below).
■ Time synchronized to atomic clocks using Network Time Protocol. This is essen-

tial when mounting a central NFS file system. Synchronized time is also useful for
forensic purposes in analyzing file timestamps and correlating syslog entries from
multiple hosts.

■ Centralized account management. NFS requires that UIDs be consistent across
clients in order to prevent inadvertent access to protected files. Centralized
account management keeps UIDs consistent across all our machines.

■ A password-changing program that rejects easy-to-guess passwords. Our pass-
word changing uses cracklib11 to test passwords that could be guessed with crack,
instead of trying to crack them after the fact. Why look for crackable passwords
when you can prevent people from using them in the first place?

■ Detailed logging to a central host. All syslog facilities are forwarded to a central
loghost and archived on our storage system (yes, we have eight years of logs
stored!). Centralized logging preserves log data in the event that a system is com-
promised and local copies of the logs are modified by the intruder. Centralized
logging also allows us to monitor logs for interesting activity across all hosts.

■ Most services (including RPC) protected by TCP Wrappers. Some services which
should only be used within our networks are limited to just those networks. TCP
Wrappers also provides consistent logging of accepted and refused connections
for services, even those accessible from anywhere.

■ SSH.12

■ Kerberos 5 authentication for Telnet, FTP, rlogin, & SSH.13

■ Email notices sent to administrators at shutdown and boot time. Getting boot
and shutdown notices helps alert us to potential problems with a host. It also
reminds us to check hosts that have been down for a period of time and ensure
that they are fully patched.

■ Sudo.14 Most users who need privileged access are given it via sudo. Very few peo-
ple actually have the root passwords. Sudo assists with accountability by logging

39December 2003 ;login:

●
SE

CU
RI

TY

11. Cracklib, http://www.crypticide.org/users/
alecm.

12. See Singer, “No Plaintext Passwords.”

13. See Singer, “No Plaintext Passwords.”

14. Sudo, http://www.courtesan.com/sudo.

9. See Abe Singer, “No Plaintext Passwords,”
;login:, November 2001, vol. 26, no. 7, for details
of how we eliminated plaintext passwords.
http://www.usenix.org/publications/login/2001-
11/.

10. Jeff Makey wrote this in an unpublished
document describing our reference system.

LIFE WITHOUT FIREWALLS ● 



Vol. 28, No. 6 ;login:

15. Sudo can be subverted. We handle this
through policy.

40

the commands performed as root, plus it allows us to limit what the user can do,
where appropriate.15 Additionally, keeping the list of people with the root pass-
word to a minimum keeps us from having to change the root password quite so
frequently.

■ Identd with encrypted responses. This tool allows a remote site to collect ident
information, but that information is encrypted and does not provide useful infor-
mation to an attacker. However, if the remote site has a problem with connections
from our site, they can send us the encrypted ident string which we can decrypt
and use to track down what is happening.

■ A modified “xhost” program with “+” functions disabled. The “+” function
authorizes any connection from a remote host, regardless of who owns the process
at the other end.

■ A version of “su” that uses group 0 as an access list. Some vendor versions of “su”
only allow users who are in group 0 (called “system,”“root,” or “wheel” on some
OSes) to su to root. Those that don’t have the vendor version replace with one
that does. This helps prevent an unauthorized user from becoming root even if
they have the root password.

BUILDING A REFERENCE SYSTEM
We have a reference for each operating system we manage. We start by installing the
OS, using the vendor’s installer. We then remove software that we don’t need and that
(1) starts daemons, (2) has setuid/setgid programs, (3) has files with ownership or per-
missions we don’t like, or (4) is duplicated by our own versions. We reboot the system
to make sure everything comes up as we expect, and lather, rinse, repeat, until the sys-
tem is configured the way we like.

We then build an auto-installer using the vendor’s software (e.g., kickstart for RedHat)
for the system as configured. The auto-installer also installs all necessary patches and
runs cfengine once the base installation is done. Cfengine is put in a startup script to
run at boot time and as a cron job to run once a day.

CENTRALIZED DATA STORAGE
Key to keeping secure reference systems is maintaining the integrity of the reference.
Additionally, maintaining the integrity of user data is necessary.

We use a central NFS file server. Since the NFS protocol has some weaknesses (file han-
dles can be sniffed/guessed), we only let the NFS server talk to hosts that are consid-
ered “secure” – reference systems. File systems are exported to the client’s IP address in
order to avoid DNS spoofing.

Furthermore, the NFS server does not have a default route – it only has routes to the
“trusted” networks which only have hosts that we manage. An attacker is not able to
establish a two-way connection to our NFS server.

The reference partition of the file server is export read-only to all hosts, so that a com-
promise of a host cannot be used to compromise the reference. Administrators must
be able to log in to the file server in order to make changes to the reference.

We export file systems read-only where possible, but other file systems on the file
server, such as user home directories, are exported read-write. The root user on all
clients is mapped to “nobody” on the file server, since root on one machine could be
used to compromise files exported to another machine.

WINDOWS SYSTEMS



I’m not going to say a lot about Windows here, only a little bit about how we manage
them . . .

We use Ghost and SMS to install and manage our Windows system: Ghost to install
systems, SMS to install patches on existing systems.

A PLACE FOR FIREWALLS
Okay, as I said above, I don’t think firewalls are completely useless. It’s really about
proportion of effort. I think most organizations spend more than 90% of their effort
(money and time) on firewalls, and it should probably be less than 5%. Firewalls can
provide an extra layer of protection (provided you know what you are protecting
against). And some people say that firewalls are for machines that cannot protect
themselves, such as printers and maybe Windows machines.

We do perform some packet filtering on our network. We have anti-spoof filters (on
ingress) to prevent someone on the outside from sending packets that appear to come
from the inside. We keep Windows machines on their own subnet and only allow cer-
tain Microsoft protocols within that subnet.

We are also playing with firewalls for some applications. One is for users who bring in
their laptops. We currently put them on an open, external network like The Outback
(see above). We are experimenting with a firewall that allows outbound connections
but no inbound, to provide some measure of protection for the user machines. The
firewall may reduce their exposure, and it provides us with a choke point to monitor
and block misbehaving machines from attacking the rest of our network.

We may also use a firewall for the Windows network, as new attacks pop up so fre-
quently, and some of them are difficult or impossible to control from the host.

Conclusion
Firewalls don’t necessarily provide as much security as popularly believed. Securing
individual hosts can provide better security and functionality than using a firewall.
Hosts are protected from each other in addition to the Internet. Use of scalable config-
uration management, no plaintext passwords, and aggressive patching can provide
host-based security in a scalable, cost-effective manner. It has worked for us; maybe it
can work for you.

41December 2003 ;login:

I don’t think firewalls are
completely useless.

●
SE

CU
RI

TY

LIFE WITHOUT FIREWALLS ● 



42 Vol. 28, No. 6 ;login:

The basic concept of conducting a network vulnerability assessment is to
find security flaws so that they can be fixed before they are exploited. Nes-
sus is a free, powerful, and easy-to-use network vulnerability scanner. It is
an open source tool that is available at http://www.nessus.org for most
UNIX operating systems. 
Like most vulnerability assessment tools, Nessus performs a network vulnerability
audit by first determining which hosts are alive, which applications are present, and
then which vulnerabilities may be present. It has many techniques to determine all of
this information and is constantly updated with new features and new vulnerability
checks. Nessus also takes a closer look into the network and can identify unneeded
servers or services that can have a greater long-term impact on security.

Nessus Architecture
Nessus can be deployed in a permanent or stand-alone configuration. Nessus installa-
tions consist of one or more “Nessus daemons,” which are servers that perform the
actual vulnerability testing, and one or more “Nessus clients,” which are the control
points to launch scans and review the collected data.

For single-host Nessus installations, such as a laptop, a user would install both the
Nessus client and the Nessus daemon. In order to run a vulnerability scan, the Nessus
daemon needs to be started first and then the Nessus client can be launched.

The client-server architecture of Nessus also makes it possible to deploy permanent
“scanners” and have multiple users share them as a resource. For example, a Nessus
daemon could be installed on a secured OpenBSD server located outside of a univer-
sity network. This Nessus daemon can be connected to any Nessus client (with proper
credentials such as a username/password or a certificate) to perform a scan. Multiple
users can perform these scans simultaneously. Each user account on a Nessus daemon
can also be restricted such that they can only scan a specific range of IP addresses.

Nessus Attack Scripting Language
The heart of Nessus’s power and flexibility is the Nessus Attack Scripting Language
(NASL). This interpreter is yet another computer language, but this one has the advan-
tage of being a portable language designed to do network vulnerability checks. The
syntax of NASL is beyond the scope of this article, but full documentation and almost
2000 examples are available at the Nessus Web site.

In version 2 of Nessus, this language was completely rewritten to improve speed and
performance. A variety of built-in functions were also added, such as the ability to
evenly slice IP ranges rather than just scanning sequentially. Almost any type of net-
work vulnerability action can be coded with NASL. Some examples include generating
a specific packet for a DoS attack, completing a TCP handshake to observe a banner
string, and completing an NTLM authentication to a Windows primary domain con-
troller.

Individual NASL scripts can be run alone. This is useful for testing, or building a set of
scripts which are not run by the Nessus daemon. To test a NASL script, simply run the
command nasl –t <IP Address> <script name> and the script will be attempted. What
is more useful is that the entire processing of NASL can be viewed with the -T option,
which can trace each step of the script and record it to a specific file for analysis. This
makes writing custom NASL scripts and modifying existing ones extremely easy.

nessus

and Ron Gula
Ron Gula is the CTO
and co-founder, with
Renaud Deraison, of
Tenable Network
Security, which funds
the Nessus project
and produces enter-
prise security man-
agement tools, as
well as a variety of
commercial active
and passive vulnera-
bility scanners. 

rgula@tenablesecurity.com

by Renaud 
Deraison
Renaud Deraison is
the original author of
Nessus and the man-
ager of the Nessus
project. Nessus is the
world’s most popular
vulnerability scanner
and has more than
50,000 users.

deraison@nessus.org



All Nessus plugins are open source and can be inspected by the Nessus user commu-
nity. The Nessus project also attempts to maintain each original author’s copyright
information.

Installing Nessus
Nessus source code, pre-built binaries, and even automated Internet installations are
available from a variety of mirror sites and from http://www.nessus.org. All Nessus
build scripts are very robust and will complain if certain packages are missing from the
desired target platform for Nessus.

On most UNIX systems, the easiest (and most insecure) way to install Nessus is with
the simple command 

lynx –source http://install.nessus.org | sh

Though easy, this command allows an attacker who has gained control or influence
over your DNS service to redirect you to another site and provide different code for
you to execute.

A more secure way to retrieve Nessus is to download the nessus-installer.sh tool from
the Nessus Web site. This shell archive is a complete Nessus source distribution, which
also automates the build process. PGP-signed MD5 signatures are also provided at the
site for verification of the distributed content.

A compile-time decision that needs to be made is whether the X Windows Nessus
client is needed. Without X Windows, there is no GUI for the Nessus client. This is not
a problem, since Nessus is readily configurable from the command line and also from
a variety of Nessus clients (some for Microsoft Windows platforms) that are main-
tained outside of the Nessus project. If an X Windows GUI is desired, then the graphi-
cal toolkit (GTK) library needs to be present on your desired flavor of UNIX. Most
fully loaded installations of Linux or RedHat have the required libraries already
installed. There are additional directions to install and compile the Nessus client with
GTK support at http://www.nessus.org/nessus_2_0.html.

Once Nessus is downloaded and compiled, it will prompt the user for a few post-
installation configuration options. These will prompt the user to generate a unique
cryptographic certificate for the Nessus daemon and to create at least one Nessus
“user” for the Nessus daemon. This user account will be used by the Nessus client to
log into the Nessus daemon and launch a scan.

Starting Nessus and Launching a Command Line Scan
To start the Nessus daemon, simply use the command

nessusd –D

This will invoke the Nessus daemon and leave one process running. If the Nessus dae-
mon is performing a scan, it will fork and several dozen Nessus daemon processes may
become active.

By default, the Nessus daemon will listen for Nessus client TCP connections on port
1241. Nessus’s man pages also do an excellent job of describing the location of the var-
ious configuration and logfiles for the Nessus daemon.

When Nessus is installed, it comes with the most recent vulnerability checks available.
In the future, new vulnerability checks will be downloadable from the Nessus project

43December 2003 ;login:

●
SE

CU
RI

TY

NESSUS ● 



Vol. 28, No. 6 ;login:

by typing the command nessus-update-plugins. If you are behind a Web proxy, this
script needs to have some internal variables edited such that it can access the Internet
through your proxy. Some Nessus users choose to create a cron job to schedule a
download of the updated Nessus plug-ins once per day or once per week.

The Nessus command line client has a variety of features, and there are many ways to
launch a scan. What follows is a very quick example to illustrate how easy it is for Nes-
sus to do a scan.

To verify that the Nessus client and Nessus daemon can talk, we will invoke the client
to ask the daemon for a list of scanning sessions (of which there should not be any). If
there is a communications problem, such as the wrong port, IP address, username or
password, we will get an error. If things are configured correctly, we will then move on.
Here is the command to try to log onto our Nessus daemon (on the same server) with
an example username and password of user and pass:

nessus -m -q 127.0.0.1 1241 user pass

If the Nessus client and daemon are on the same server, this command can be modi-
fied using the -x option to disable certificate checks:

nessus -m -q -x 127.0.0.1 1241 user pass

Otherwise, Nessus may ask for guidance as to how it should attempt to encrypt the
access between the Nessus client and daemon, with the following message:

Please choose your level of SSL paranoia (Hint: if you want to manage many
servers from your client, choose 2. Otherwise, choose 1, or 3, if you are 
paranoid). 

Choosing 2 allows one Nessus client to access multiple Nessus daemons as long as
their username and password are known. Options 1 and 3 are for PKI-style deploy-
ments of Nessus daemons and are not covered in this article. The Nessus client will
continue to prompt the user to verify whether a specific certificate is correct.

Normally, with a GUI tool, the GUI handles selection of which vulnerability checks to
run and how the Nessus daemon should perform. This information is stored in a hid-
den configuration file named .nessusrc and is located in your home directory. When-
ever a scan is run (from the GUI or from the command line), this file is overwritten.
Without a GUI, though, invoking the Nessus client with the -m –q option is the right
way to make the default configuration file for Nessus.

For a set of networks or IP ranges to be scanned, they must be specified and listed in
one file. To specify an IP address, simply list it. To specify a range of addresses, CIDR
blocks and ranges can be used. All target IP addresses need to be concatenated onto
one line and should be saved into a file for use by the Nessus client. The following lines
are example valid target IP specifications:

10.10.20.23
10.10.20.0/24
10.10.20.40-33
10.10.20-30.40-45

That last example would scan each class C network from 10.10.20.0/24 to
10.10.30.0/24, but would only scan hosts .40 through .45 within each network.

44



For our example, let’s call the file to put this information into the “targets.txt” file. The
Nessus client will need to know this, and which file it should output its data to.

nessus -q 127.0.0.1 1241 user pass ./targets.txt output.nsr

This will launch a scan against the systems contained on the first line of the targets.txt
file. Watching the processes for nessusd while scanning is ongoing reveals what the
particular instance of nessusd is attempting to do. For example:

nessusd: testing 127.0.0.1 (/usr/local/lib/nessus/plugins/roads_cgi.nasl) 

could be a typical test.

While the Nessus daemon is active, a trace of its progress can be found by watching its
logfile:

tail -f /usr/local/var/nessus/logs/nessusd.messages

Once the scan is completed, the Nessus client will write a report as shown in the exam-
ple below:

127.0.0.1|http (80/tcp)|11408|INFO|;The remote host appears to be running a
version of;Apache 2.x which is older than 2.0.43;;This version allows an
attacker to view the source code;of CGI scripts via a POST request made to a
directory;with both WebDAV and CGI enabled.;;*** Note that Nessus solely
relied on the version number;*** of the remote server to issue this warning.
This might;*** be a false positive;;Solution : Upgrade to version 2.0.43;See
also : http://www.apache.org/dist/httpd/CHANGES_2.0;Risk factor :
Medium;CVE : CAN-2002-1156;BID : 6065;

The Nessus client defaults to writing an ASCII-style report with a relatively straight-
forward documentation of the vulnerabilities and hosts discovered. Other report for-
mats, including HTML, a one-line style, and even XML, are also available.

Reports can also be converted on the fly as needed using the Nessus client. For exam-
ple, to convert the output.nsr file from our example to an HTML file, the following
command would be used:

nessus –i output.nsr –o output.html

In the example above, the output.html file could be served by any Web server, or
loaded into any Web browser.

Using the X Windows GUI
The Nessus client, if compiled with the GTK toolkit, also provides a GUI for scan con-
figuration and analysis of the discovered vulnerabilities. The GUI allows the Nessus
user to select which Nessus daemon will be used for testing, which vulnerabilities will
be used during the test, and how the Nessus daemon will perform the vulnerability
scanning process. Many of these options are discussed in the next section.

The Nessus GUI can also be used to evaluate the results of a vulnerability scan. Infor-
mation discovered during a vulnerability scan can be sorted by network addresses,
DNS domain names, IP addresses, open ports, and discovered vulnerability types and
severities. The GUI can also be used to save and convert Nessus reports in a variety of
formats.

45December 2003 ;login:

●
SE

CU
RI

TY

NESSUS ● 



Vol. 28, No. 6 ;login:

Tweaking Nessus: The Nessusrc File
Nessus’s performance, accuracy, and intrusiveness can all be controlled from the nes-
susrc file. When the Nessus GUI client runs, it creates the nessusrc file with the options
selected by the Nessus user. If no options are specified by the Nessus client, the Nessus
daemon will choose a variety of its own default values.

To build customer nessusrc files, an easy technique is to first run a basic scan with the
Nessus GUI client, and then to use the generated nessusrc file as a template that can be
modified. The default nessusrc file will be located in the user’s home directory as a
hidden file named .nessusrc. For example, a root user would find their nessusrc file in
/root/.nessusrc.

The nessusrc file has several sections. These are SERVER_PREFS, SCANNER_SET,
PLUGINS_PREFS, and PLUGIN_SET. The SERVER_PREFS controls a variety of set-
tings that relate to how the Nessus daemon performs scanning. The SCANNER_SET
and PLUGIN_SET sections identify which NASL scripts are enabled and disabled. The
PLUGIN_PREFS section provides information, such as a desired SNMP community
string, which may be used by one or more NASL scripts.

Several keywords in the SERVER_PREFS section are useful in configuring a Nessus
scan. Here is an example SERVER_PREFS section from a nessusrc file:

begin(SERVER_PREFS)
port_range = 1-1024
optimize_test = yes
safe_checks = yes
max_hosts = 30
max_checks = 10
cgi_path = /cgi-bin:/scripts
report_killed_plugins = yes
language = english
per_user_base = /usr/local/var/nessus/users
checks_read_timeout = 15
delay_between_tests = 1
non_simult_ports = 139
plugins_timeout = 320
auto_enable_dependencies = yes
use_mac_addr = no
save_knowledge_base = no
kb_restore = no
only_test_hosts_whose_kb_we_dont_have = no
only_test_hosts_whose_kb_we_have = no
kb_dont_replay_scanners = no
kb_dont_replay_info_gathering = no
kb_dont_replay_attacks = no
kb_dont_replay_denials = no
kb_max_age = 864000
plugin_upload = no
plugin_upload_suffixes = .nasl
save_session = no
save_empty_sessions = no
host_expansion = ip
reverse_lookup = no
detached_scan = no

46



continuous_scan = no
unscanned_closed = no
diff_scan = no
log_whole_attack = no
slice_network_addresses = no
end(SERVER_PREFS) 

To limit or increase Nessus’s activity (and required resources), the keywords
max_checks and max_hosts can be modified. Increasing max_checks will allow the
Nessus daemon to launch more processes per tested system, and increasing the
max_hosts variable will increase the total number of systems a Nessus daemon will
check at once. On large servers with extra memory, bandwidth, and CPU resources, a
Nessus scan may run much faster with higher values than the defaults.

There is no exact formula for tuning a Nessus scan for optimized performance. How-
ever, during a scan, if CPU utilization is low, increasing these numbers by 50% may
decrease the amount of time to complete a scan. Also, if the desired scan is not a full
scan, but just a quick check for a few NASL scripts, increasing the max_hosts value
may decrease the overall scan time.

The optimize_test keyword invokes logic at the Nessus daemon such that it will only
attempt to launch a vulnerability check if a dependency has already been discovered.
For example, with this option enabled, a “writeable anonymous FTP directory” check
will not get invoked unless the “anonymous FTP access” check has returned positive.
Similarly, the auto_enable_dependencies keyword can be used to enable a plugin that
is required during testing. In the above example, if a Nessus user attempted to do a
“writeable anonymous FTP directory” sweep of a network but forgot to enable the
“anonymous FTP access” check, the scan would not return meaningful results. This
keyword allows Nessus users to perform quick checks without having to memorize the
potentially intricate dependencies some Nessus NASL plug-ins have.

The safe_checks keyword allows the Nessus daemon to select code within some NASL
scripts that is less intrusive but possibly more prone to false positives. For example, a
particular NASL script to look for a buffer overflow could attempt to actually flood an
application with potential exploit data, or with safe_checks enabled it might read the
banner information and make a decision about the vulnerability based on that.

If the particular scan includes a port scan, the ports to be probed are indicated with
the port_range keyword. Ports can be listed individually or in ranges separated by
commas. For example, 22,25,80,443,31330–31430 would scan the default ports for
SSH, SMTP, HTTP, HTTPS, and all ports between and including 31330 and 31430.

In addition, the unscanned_closed option causes the Nessus daemon to treat ports
that were not scanned as if they were closed. This is advantageous for doing “point”
scans. For example, when using a Nessus scan to find SMTP servers on port 25, NASL
scripts that perform checks on ports other than 25 would automatically not be
invoked.

The cgi_path keyword can be used to optimize certain NASL scripts that attempt to
find vulnerabilities on Web servers with CGI-BIN paths in non-obvious places. This
variable can be modified if the Nessus user has knowledge about how a particular Web
server has configured its CGI-BIN location.

The last keyword in the SERVER_PREFS section is the slice_network_addresses com-
mand. When enabled, the order in which IP addresses are tested is randomized. In an

47December 2003 ;login:

●
SE

CU
RI

TY

NESSUS ● 



Vol. 28, No. 6 ;login:

environment which is not reactive to a Nessus scan, this has no effect on results of the
scan. However, some dual-homed servers may experience several full scans at the same
time and suffer some sort of negative impact. Consider a router, switch, or even a data-
base server which is multi-homed on more than one network. If such a system were hit
on each interface at the same time, it might experience slower network response time,
slower server response times, or possibly even some sort of denial of service.

The PLUGIN_PREFS section specifies a wide variety of options for the enabled Nessus
plug-ins. Some of these can be used to increase the accuracy and number of vulnera-
bilities discovered on any network. For example, Nessus can also be preconfigured
with additional information, such as an SNMP community string and Windows net-
work “auditing” account information. This information can be used by the Nessus
daemon to actually log on to the tested hosts and check specific settings.

In the case of SNMP, several dozen Nessus checks make direct queries to the SNMP
information for security information. To specify an SNMP community string to be
used during testing, the SNMP port scan[entry]:Community name : = entry would be
coded with the desired string. It is important to realize that there still may be other
NASL scripts which do SNMP checks that do not take advantage of this setting, but
that there are one or more checks that do. In the specific case of SNMP, there is a spe-
cific NASL plugin that attempts to brute-force several common SNMP community
names. However, there are several dozen other NASL SNMP checks that use any dis-
covered SNMP community names, and any preconfigured in the nessusrc file.

For Windows auditing, if a Primary Domain Controller is being used, then a global
account which has read-only registry rights to each server in the domain can be used
by Nessus to actually log in to an evaluated system. This account’s username, pass-
word, and domain are placed in the nessusrc Login configurations options, specifically,
within the PLUGIN_PREFS section. These entries are shown below:

Login configurations[entry]:SMB account : =
Login configurations[password]:SMB password : =
Login configurations[entry]:SMB domain (optional) : =

When Nessus sees that a target host is a potential Windows host, it will attempt to log
in to the system and make registry calls to determine the configuration and whether
any vulnerabilities exist.

(For more information, see “Utilizing Domain Credentials to Enhance Nessus Scans,”
by Ty Gast of the Security Assurance Group, located at http://www.nessus.org/doc/nes-
sus_domain_whitepaper.pdf ).

To determine whether a host is alive, the following settings can be configured for Nes-
sus:

Ping the remote host[entry]:TCP ping destination port(s) : = built-in
Ping the remote host[checkbox]:Do a TCP ping = yes
Ping the remote host[checkbox]:Do an ICMP ping = no

If either a TCP ping or an ICMP ping check is enabled, then one of those checks has to
return positive, or else the tested IP address will be assumed not to be active. This is
important when testing systems that are protected by firewalls.

From outside a firewall, or with the presence of host-based firewalls, this may be the
only way to accurately test a host’s vulnerabilities. Consider a host serving a SQL data-

48



base on a high port that also has a firewall in front of it which prevents any access to
the server except via SQL. Any attempt to ping it with an ICMP packet, make a TCP
connection on any port other than the SQL port, or send any UDP packet to it would
not be successful. However, if SQL were running on the default SQL port, the first
NASL plugin that connected to it would succeed and the vulnerabilities would be
tested.

When scanning a large network, choosing either ICMP or TCP host enumeration is
recommended. Otherwise, each NASL plugin script must time out on its own. This
makes for a much longer, but also much more accurate, Nessus scan. For a TCP ping,
Nessus will attempt to connect to several common ports in the 1–1024 range. If
desired, a customer port list can be placed in the TCP ping destination port(s) configu-
ration option.

There are several hundred more settings for the PLUGIN_PREFS section. Readers
interested in crafting custom settings for other variables are encouraged to experiment
with the Nessus GUI client and observe the changes made in the produced nessusrc
files. Readers are also encouraged to consult the Nessus mailing list archive highlighted
at the end of this article.

The last two sections in the nessusrc file are PLUGIN_SET and SCANNER_SET. Both of
these sections list which NASL plug-ins are enabled and disabled. The SCANNER_SET
section is used to identify plug-ins that perform some sort of port scanning. These are
executed before the regular vulnerability-checking plug-ins. Historically, Nessus has
been able to invoke a wide variety of port scanning and host enumeration tools, such
as NMAP (http://www.nmap.org) and SNMPWALK. Currently, Nessus 2.0 does not
require any external port scanning tools. When listing a plugin for testing, the ID will
be printed followed by a simple “yes” if it is to be considered for testing, or a “no” if it
is to be excluded. Here is an example excerpt from a nessusrc file:

10909 = no
10330 = no
11268 = no
11480 = yes
10351 = yes
10010 = yes
10536 = yes
10440 = yes
11210 = yes
11641 = yes
11554 = yes

Nessus Vulnerability Checks and NASL
There are almost 2000 unique Nessus NASL scripts available. These scripts are each
labeled with a unique Nessus ID, contain a brief description of the relevant security
audit or vulnerability, and also have links to CVE (http://cve.mitre.org) and Symantec’s
BugTraq (http://www.securityfocus.com). Each NASL script is grouped into a family
that focuses on specific services, operating systems, and “problem areas” such as peer-
to-peer (P2P) file sharing.

Many of the vulnerability checks performed by NASL are unique tools unto them-
selves. For example, the traceroute tool includes logic to perform multiple traceroute
checks to many hosts without colliding. There are checks that identify wireless access

49December 2003 ;login:

There are almost 2000 unique
Nessus NASL scripts 
available.

●
SE

CU
RI

TY

NESSUS ● 



Vol. 28, No. 6 ;login:

points by their TCP/IP operating-system fingerprint, individual Web interface, and
SNMP or FTP banner information.

Nessus includes plug-ins that can perform extremely complex audits of Web services.
For example, the “torture” CGI NASL script actually reads in the values of the Web
forms automatically found during a Nessus scan, and commonly queries these forms
with typical CGI-BIN exploit techniques. Similar checks are performed by commercial
Web-application testing tools.

Deploying Permanent Nessus Daemons
When deploying Nessus, many organizations take advantage of placing a server per-
manently within an infrastructure that is dedicated to scanning. These servers are
often located within server farms, behind firewalls, and within DMZs. Sometimes they
are also deployed permanently outside of a network to perform an external audit.

The advantage to deploying  dedicated servers is that they are always on and ready to
perform a scan from the perfect location. Anyone who has performed a network secu-
rity audit and has had to drag a laptop around a network to get to the right spot to
perform a scan knows what a hassle it can be. By pre-placing a Nessus within a net-
work, the time it takes to perform a scan is just the time it takes to perform a scan.
There is no more need to walk to the building that has the firewall in it, fly to the
remote location, or find the proper network cable or switch port to plug into.

The systems that run the Nessus daemons should be secured so that no remote ser-
vices are running except those that are required to securely communicate with the
device. For example, a common “hardened” Nessus daemon server would include the
actual “nessusd” process, which normally listens on port 1241, and the Secure Shell
daemon, which listens on port 22. It is also common for users to use a system firewall
to limit connections to the Nessus daemon from the authorized network users and to
limit access to port 22 from only “trusted” IP addresses within the network.

When a Nessus daemon is deployed, very little vulnerability information will be pres-
ent on the device. Most scan data passes through the Nessus daemon and is not stored
there.

Minimizing Scanning Impact
Scanning with any network vulnerability scanner, including Nessus, can have a nega-
tive impact on the target network. This impact can come from an overall slowdown or
degradation in network performance, or a denial-of-service event on one or more
devices.

When Nessus 1.0 was originally available, its standard tests included a list of DoS tests
that were enabled by default. Often, a Nessus user in the late ’90s would end up finding
out very quickly if their network systems were vulnerable to the “ping of death” DoS
attacks and several others. With Nessus 2.0, great care has been taken to limit the num-
ber of potentially damaging DoS checks that Nessus can perform. DoS checks are no
longer enabled by default.

When Nessus performs its checks, the traffic that it generates may have a negative
impact on a switch or firewall. Not only does the scan send packets across a network,
but often, one packet in a port scan will be considered a new session by a switch or
firewall. For example, some appliance firewalls that keep track of unique network ses-
sions will quickly lose track of their current valid sessions when faced with a large port

50



scan. If a firewall can only keep track of 65,000 unique network sessions, a port scan of
one host can quickly fill this buffer up, pushing out valid sessions. Similarly, poorly
designed firmware in routers, switches, and some firewalls doesn’t handle the large
numbers of network sessions generated during a vulnerability scan. The flaws in the
handling can be very subtle.

For example, the author used to work for a certain routing vendor, and one of our
products would reboot when scanned with a certain commercial vulnerability scanner.
Duplicating the same scan with Nessus or NMAP did not cause the reboot, and only
doing a low-level packet trace resulted in identifying the exact sequence of events
which brought the network device down.

To avoid stressing the network infrastructure, Nessus daemons should be placed as
close as possible to their desired targets. Any deployment that minimizes the flow of
host identification, port scans, and vulnerability checks across the core routers and
switches should be considered. Also, when doing a vulnerability scan for the first few
times on a large enterprise network, attempt to correlate the scan with the CPU load,
packet rates, and any other statistics that can be obtained from network engineering.
These statistics may indicate faults in the network before actual faults are caused, if
any.

Finally, when a specific host is identified, conducting vulnerability scans on the host
may cause some of its applications or the entire operating system to crash. Even with
careful writing and testing of NASL scripts, and with careful laboratory testing, there is
no way to guarantee that an NASL script will have no impact on every possible system
and application. All vulnerability scanners have this problem. Even if there were a way
to perform regression testing on all known operating systems and applications, there
are still thousands of custom applications that the Nessus project does not have access
to test.

When testing a production network, a lab test on a certain group of NASL scripts can
be used as a benchmark to predict the impact of running the NASL scripts on the
entire network. If a network has many similar hosts, such as a large network of Red
Hat Apache servers, doing some quick tests in a lab before blasting the entire network
can give a sense of the impact that will result. However, in networks with extremely
diverse families of servers, it is impossible to predict the impact of a scan without actu-
ally doing the scan itself.

Unlike other vulnerability scanners, Nessus does attempt to alert the user if it may
have crashed a server during testing. It does this by looking for changes in the available
ports of a tested server. If during a port scan, it sees that ports 80, 443, and 6000 are
open, it will alert the user that the server (or service) may have crashed if one of the
ports goes away.

Readers are advised that a poorly run network may crash for many reasons, including
failing to survive a vulnerability scan. They should not be dissuaded from performing
active scans, but should realize that doing any network activity can impact the net-
work. Most vulnerability scans simply exercise systems that have not been used in a
long while, or “operational” systems that were not fully tested.

The Future of Nessus
The Nessus project is currently funded by Tenable Network Security (http://www.
tenablesecurity.com), which is a commercial network security product company.

51December 2003 ;login:

●
SE

CU
RI

TY

NESSUS ● 



Vol. 28, No. 6 ;login:

Although the Nessus project continues to be open sourced, Tenable has introduced
several commercial products that greatly enhance Nessus for large enterprises.

Long-term plans for Nessus include a preliminary design of Nessus 3.0, which will
continue to make Nessus one of the top vulnerability scanners available to the network
security community. In the short term, the Nessus Web site recently added the ability
for users to submit information privately and anonymously about which of their
NASL scripts have produced false positives for them. This helps Tenable and the Nes-
sus project quickly identify when a NASL script needs to be modified. Nessus 2.0 was
released early in 2003, and ports to the OS X operating system have been completed.

There is a wide variety of information about Nessus available at http://www.nessus.org,
as well as a searchable mailing list located at http://msgs.securepoint.com/nessus/.

52



53December 2003 ;login:

●
SE

CU
RI

TY

A Case History
Background
In mid-2002, two groups of malicious hackers were identified by the Italian
Financial Police as being responsible for a series of attacks on over a thou-
sand targets throughout the world. The backtracing procedure was seriously
complicated by the fact that the groups used numerous stepping-stones and
camouflage techniques, such as IPv6 tunneling. In this article we take a
general look at the attack methods and illustrate the techniques and steps
used to backtrace them. For reasons of privacy we will not name the targets
but will use letters instead: 
A – The German target used as an initial stepping-stone to attack the American gov-
ernmental sites indicated below

B – The main American governmental target attacked by the group 

C – Another American governmental target attacked by the group, which served as the
starting point for the investigation

SS1 – A university machine used as a repository to hide rootkits and other tools used
in the post-intrusion phase

A Coordinated Attack
In September 2001, the owner of C realized that one of his machines (an IRIX) had
been attacked. The exploit had been launched from a German machine, which had
previously been compromised by an exploit from its resident Web server. The sys-
tem administrators for C later reported that commands had been sent from the
German machine to download certain post-intrusion tools (including rootkits)
from a third machine, SS1, located at an American university. Here is the general
scheme.

Reconstructing what happened to C was possible thanks to the presence of an IDS
that monitored the target. While this did not permit a response in realtime, it did
make it possible to recover a series of logs that illustrated what had happened. The
logs were usable because they were not on the attacked machine. In the meantime a
post-mortem exam was carried out on the German machine, A, that had been used
as a stepping-stone. The method used to compromise the German machine was
generally conventional, but had a number of personalized touches added by the
attackers.

Requirement No. 1: Reconstruct the Events
One of the first steps in this sort of investigation is to check how much time passed
between the last update of the machine and the attack. This may help identify the
exploit that was used to achieve the intrusion. In this case it was a Linux machine that
was not running the latest release. At the time of the intrusion, the bug exploited to
compromise the box was the then-known wu-ftpd site command exploit.

coordinated incident
response 
procedures

by Dario Forte
Dario Forte, after
working for the Ital-
ian government for
15 years, is now
security advisor for
the European Elec-
tronic Crime Task
Force (EECTF), a
nongovernmental
group dedicated to
incident response.
He is also the
founder of Incident
Response Italy,
developed at the
University of Milan,
where he teaches
incident response
management. 

dario.forte@acm.org

COORDINATED INCIDENT RESPONSE PROCEDURES ● 

Figure 1



Vol. 28, No. 6 ;login:

An attacker who penetrates a machine installs a rootkit in order to keep the machine
compromised. One of the attack group’s characteristics was the use of completely self-
made rootkits along with materials known to the security community. The choice
depended on the type of target (in the case we are examining, there were nearly a
thousand boxes compromised worldwide).

The t0rn rootkit was chosen for the German machine and installed in /usr/info/.t0rn.
Evidently, the reasoning used in this case was, given that the system was generally
poorly administered, it was not worthwhile to keep it compromised with something
exotic, since it was unlikely that the administrator would realize what was going on
anyway. In any case, it may be helpful to consult /usr/src/ to try to determine what is
going on. In the specific case, a lot of information was found in /usr/src/.r00t.

t0rn rootkit, like most tools of its ilk, is configured to hide certain network connec-
tions. This is the usual syntax found during a post-mortem (the IP addresses are ficti-
tious):

65.93.*.*
195.242.20.*

where * is used to hide all the addresses of the block. The first instance usually occurs
to hide classes of dynamic IPs that the attacker has access to (e.g., ADSL and dialup
based on DHCP). In the second instance, an entire class is indicated, including one or
more machines compromised for the long term by the attacker.

Once the groundwork is laid, the hacking tools are installed. The choice of tools is
completely up to the attacker. In our case, the hacktools installed were:

7350wu exploit to hack into the wu-ftpd (used on this system, too)
massroot exploit for a bug in the telnetd of IRIX systems
statdx exploit for the rpc.statd of RedHat
mirkforce attack tool to disrupt IRC communication
papasmurf smurf attack tool, a denial-of-service tool
seclpd exploit for lpd in RedHat 7.1

Please note that we are talking about an attack that occurred in 2001. Interestingly,
several text files made clear that A was the machine used to attack the governmental
sites. The attacked networks, in fact, were in the 136.*.*.* and 137.*.*.* nets. It might
be useful to seek subdivisions by operating system in these files. In this case FreeBSD,
IRIX, Linux, and SunOS were found, along with a “.txt” file which contained progress
info of the scanning.

This proves how important it is to correlate what is found on one machine with what
is found on the one that appears to be directly connected to it. The correlation, espe-
cially if done on more than two machines, can map out the events with a certain mar-
gin of certainty and point back to a single source.

Another item usually installed is psyBNC IRC Bounce BOT. In this case it was used as
a deflector to participate in IRC communication without revealing the hacker’s IP
number, thus avoiding DoS attacks on the hacker’s machine. Usually the attacker
installs BOT with the his IRC nick, which, in many cases, turns out to be very impor-
tant for final backtracing.

The following presents the main steps taken by the attacker after the intrusion:

54



1 System is penetrated through an exploit.
2 A rootkit is installed.
3 nc-ftpd is installed.
4 A port scanner is installed.
5 A sniffer is installed.
6 A psyBNC BOT is compiled and installed.
7 A rootkit is fine-tuned.
8 A file with IP numbers is created.
9 The “real use activity” starts.

The compilation of the items downloaded by the third machine (SS1 in this case) is
generally carried out either on the attacker’s machine or directly on the compromised
machine. Both choices have their pros and cons. For example, compiling on the
attacker’s machine might speed things up but risks instability due to potential differ-
ences in platforms. On the other hand, one cannot be sure that there is a compiler on
the compromised machine, even though it is quite probable for relatively simple cases.

Further Correlations
In the case in question, there was another positive factor for the investigation: cross-
checking of the SS1 machine. When a machine is used as a repository for tools that
will be downloaded onto target machines, it may happen, with a bit of luck, that addi-
tional cross-references can be found to correlate all the necessary information. Given
that most such “containers” are located on university networks, we find ourselves con-
fronted with the following situation:

■ University officials provide system logs and an image of the compromised com-
puter.

■ The compromising of the US university machine is linked to the compromised
third-party computer.

■ The university computer is used as a “toolbox.” All links between the .edu
computer and the real target require a physical-level search that, very often,
reveals a dialup connection.

■ A proper HD analysis can uncover the intruder’s rootkit.

This check, in the specific case, allowed the real departure-point ISP of one of the
attackers to be backtraced. The same control also provided several important
correlations regarding attacks on B, from which important sensitive files were
stolen. Figure 2 diagrams the basic correlation.

Conclusion
Another successful aspect of the investigation was that all the investigators spoke
the same technical language. Terminology, log type, image format, tools, and PGP
keys were agreed on before beginning the investigation, proving the fundamental
importance of setting things up well before getting started.

We have only touched the tip of the iceberg in this article and discussed only those
parts of the investigation not protected by nondisclosure restrictions. The investiga-
tion was anything but simple. The operation, known as “Rootkit,” took more than one
year and involved five European and American investigative agencies (military and
civilian). Fourteen people were charged, including four minors. Most of them worked
as security consultants or managers in large multinational companies. More than 40
computers and almost one terabyte of data were seized, along with thousands of CD-

55December 2003 ;login:

●
SE

CU
RI

TY

COORDINATED INCIDENT RESPONSE PROCEDURES ● 

Figure 2



Vol. 28, No. 6 ;login:

ROMs and DVDs. Many credit card files were recovered. If it had not been for the
close international collaboration, it might not have been possible to track down the
perpetrators of over 1000 worldwide attacks, who were so active and so skillful as to be
able to write their own rootkits and log wipers, used on the most “important”
machines, and so crafty as to use IPv6 tunneling. Unfortunately (or fortunately), it’s a
small world: Some of the people charged as a result of this investigation had also
punched holes in a Mexican honeynet, going so far as to get into the Honeynet Pro-
ject’s famous “scan of the month.”

Acknowledgments
I would like to thank Eddie Autelli, Dave House, Alvin Allen, Kevin Manson, Troy Bet-
tencourt, and Chris Fischer, all members of EECTF, for all the incredible support I
have received over our years of working together.

56



57December 2003 ;login:

●
SE

CU
RI

TY

Chances are excellent that I don’t need to point out to you that you’ve
been beset by worms. If you have a sizable network and run Microsoft
Windows, you have probably seen the front lines of the worm battle. If you
run a Microsoft-free environment, you at least get to see the fallout in
terms of constant probes and email-borne malicious code (or bounces,
when the worm decides to be your email address for the day).
Are worms strictly a Windows problem? Technically, no. There have been worms for
most of the major operating systems, and that includes most of the UNIX-like flavors.
For all practical purposes right now, however, worms are a Windows problem. I hap-
pen to be one of those people who thinks that this has primarily to do with market
share rather than any particular technical reason. Call me when Linux has had a 90%+
market share for a couple of years, and I’ll be more than happy to revisit my opinion. I
just don’t think that the malicious code authors will give up and find something useful
to do simply because the UNIX security model is “too hard.”

That said, this article is about patching, rather than worms themselves. Obviously, the
worms are the driving factor behind the recent interest in keeping patches up-to-date.
This doesn’t mean that your non-Windows operating systems aren’t just as deserving
of having their patches kept current, far from it. It’s just that in terms of fire-fighting,
you tend to go after the towering inferno first, and worry about the kitchen fires later.
As we’ll see, though, maybe while you’re figuring out patching, you can take care of all
your computers, and save some future headache.

Let’s review. Here’s the list of things that you’re supposed to do that will “help keep
you secure”:

■ Install a firewall
■ Don’t run unnecessary services
■ Install patches
■ Run antivirus (AV) software and keep it up to date
■ Use an intrusion detection system (IDS)
■ Educate users

Does this list look familiar? I think it’s probably something like 15 years old now (with
the addition of more recent developments like IDS, of course). Do you do all these? Of
course you don’t; at least, you don’t do them right. It’s not your fault, you can’t. You’ve
got nowhere near enough budget or management support. The closest I’ve seen to this
being done right is in the military (well, certain military) networks. I don’t doubt that
I’ll get email from net/sysadmins at these facilities disabusing me of that impression,
too.

Sure, you’ve got the easy parts “done.” You’ve got the firewall, and an enterprise AV
software license, and the IDS is running. Maybe you’ve taken a stab at user education.
How about the patches and disabling of unneeded software? Is the AV software actu-
ally installed, running, and up-to-date everywhere?

The basic pattern is that the pieces that are few, central, and under your direct control
(firewalls, IDS, central servers) are well managed. The pieces that are many, distrib-

how are we going 
to patch all these
boxes?

by Ryan Russell
Ryan Russell is an independent
security expert, author, and
speaker. Presently, he is contract-
ing at BigFix, Inc. where he is
helping them expand their UNIX
support.
ryan@thievco.com

HOW ARE WE GOING TO PATCH ALL THESE BOXES ● 



Vol. 28, No. 6 ;login:

uted, and under user control are poorly managed. This is not surprising. With the cen-
tral devices, you can do amazing things. For example, count how many you have. You
can physically lay hands on them. You can lock them up and keep other people from
laying hands on them.

Sadly, the centralized pieces, the ones you can actually get a handle on, have become
less effective. Firewalls seem a lot more porous in the past few years. Internet applica-
tions have become very adept at traversing various types of firewalls. You’ve got com-
puters coming and going, portable computers, VPN links, wireless access points
(authorized or not). The two most prevalent worm attack points, HTTP and SMTP,
were the very first two to be enabled at the firewall when it went in.

Signature-based technologies (namely, most AV and IDS products) have one basic
drawback: The threat must be known in order for it to be caught. Generally speaking,
in order to create a signature for something, you have to have caught and analyzed that
something. This means that AV always lags behind the malicious code, and IDSes
almost always lag behind the exploit. It has been reported that the SQL Slammer worm
spread to the majority of vulnerable hosts in as little as eight minutes. That’s not quite
enough time to capture the worm, analyze it, create a signature, distribute it to cus-
tomers, and have them put the new signature into production. That’s an extreme case,
but it illustrates the basic point. Keep in mind also that IDSes generally are completely
passive; they only detect. Even if you could detect the problem within minutes, that
wouldn’t solve it. However, knowing that it is going on is the first requirement for 
fixing it.

Please don’t take that to mean that I’m saying these technologies are useless, or that
you can quit buying them. Not at all. They are still very much your minimum price of
admission for installing an Internet connection. Sure, the IDS signature may not be
available for a day after the worm is launched, but how else are you going to know that
the worm has been running on your network since yesterday and is still going strong?
You’re going to need it to tell you which inside boxes are infected. There is always the
option of using a packet capture program and manually reading through the packets.
You should be capable of doing so when needed, but your IDS is supposed to auto-
mate part of this process for you.

What I am saying is that this (relative) weakening of the perimeter, coupled with the
increased threat of the upsurge in worm volume, means that the level of security of
your inside machines must increase. The word “security” means, in the context of
worms, installing patches. Not all worms utilize only known vulnerabilities to infect a
host, but the majority of them do, and it tends to be the most effective vector. One of
these days, we will see a worm that uses an unknown vulnerability (no patch available
ahead of time, a.k.a. a 0-day worm), but by definition, there is no patch to put on
before it hits, so we won’t worry about that for this discussion. (The general mecha-
nism I talk about is still helpful in the case of a 0-day worm for clean-up, though.)

So, the challenge is to apply the various security patches and, secondarily, a little host
hardening and monitoring. I further qualify that: The challenge is putting patches on
and keeping them on. Why is keeping them on a challenge?

Imagine this scenario: A new Microsoft security hotfix is available. You mentally add it
to the to-do list, until you get wind of a new worm that takes advantage of that vulner-
ability. So, you log in as domain admin and run your script:

The challenge is putting
patches on and keeping them
on.

58



C:\admintools\domainrun mydomain c:\dl\q8675309.exe

For purposes of discussion, this fictional (though quite feasible) tool finds all hosts in
the domain “mydomain,” uploads the program given, and runs it. Are we done?

Of course not. Here’s a partial list of things that might have gone wrong:

■ Some hosts were not in the domain.
■ Some hosts were not on at the time.
■ Some hosts were on, but not on the network at the time.
■ Some hosts were Win9x, and the patch was for NT, 2000, and XP.
■ Some hosts have the service that allows the remote install turned off.
■ Some hosts didn’t have a new enough service-pack level for that hotfix.
■ Some hosts were running another language version of Windows and needed a

slightly different hotfix.
■ On some hosts, the patch program crashed.
■ Some hosts were patched, but then configuration was changed later, and the patch

got downgraded.

The list goes on, and that’s just the Windows patches. For non-Windows, you can sub-
stitute “root password was changed” for “not in the domain,” or similar. The concept
and problems still apply.

You might imagine running the same command periodically, which fixes some of the
problems. You might think about including similar commands in your login scripts.
Either of these looks somewhat workable, until you’ve accumulated a couple of hun-
dred patches and realize how long it is going to take for each cycle.

Having stated what I think the current set of challenges is, allow me to discuss how I
think the challenges can best be met. In the interest of disclosing my biases to the
reader, I want to point out that as of this writing, I’m working as a contractor at a
company that sells enterprise software that does patch management (among other
things). A lot of my research comes from having seen how that software works, and
what I’m going to suggest you do looks a lot like what they sell. However, I believe they
are on the right track and that the solution is valid. They aren’t the only ones who sell
software like this, so please take my statements as general and make your own decision
about how you’re going to get a system like the one I will describe. I’m not here to
make a sales pitch.

In order to continually determine whether a patch is needed on a particular host, you
will need a piece of software continually running on that host. I’m going to call this
piece of software an “agent,” but you can substitute whatever word you like. This agent
must periodically check the system to see whether the host has a particular patch. Note
that it is checking, not applying (yet). The checking process should be much quicker,
overall, and therefore tolerable to do frequently. The agent will do this for each patch it
knows about. Therefore, there must be some sort of list of all existing patches you wish
to worry about, and must be updated as new patches are made available. I’ll refer to
this as “content.” To recap, there is an agent that runs on every host, and based on
some content it is given, it can determine which patches are in place and which are
not.

Astute readers will be asking themselves how the agent gets onto the host in the first
place. Ah, so there is a bootstrapping problem? Yes, and it’s an ongoing bootstrapping

59December 2003 ;login:

●
SE

CU
RI

TY

HOW ARE WE GOING TO PATCH ALL THESE BOXES ● 



Vol. 28, No. 6 ;login:

problem, because new hosts get added all the time, and old hosts will somehow man-
age to lose their agents on occasion.

Allow me to briefly discuss the bootstrapping issue without going into great detail.
There are a number of ways to do this – there’s no single “best” way – and you may
choose to use some combination of techniques. First, you could manually visit each
host. It’s boring, but at least it’s obvious. Second, the techniques that I derided as hav-
ing many problems for delivering a patch are actually not a bad way to get your 80% of
hosts covered in a hurry. Use your domain credentials to blast the installer out, either
with a command line program or by using the login script facilities. Third, you need
some way to monitor your network for agentless hosts. You might do this with net-
work scanning (say, the agent runs on a particular port and has a particular banner),
you might tie in with your DNS/DHCP infrastructure, or you might ask your routers
and switches which hosts they know about. I recommend all of the above.

Once you’ve got your agent running everywhere, what does it do exactly? Well, a good
agent can do anything you like, but I’m here to talk about patching. You want the agent
to download and install the patch. What, automatically and with no intervention? No,
of course not. Don’t run screaming quite yet, I’m not talking about a completely auto-
matic, blind-faith patch install. I’m talking about putting on the patch that you will
put on eventually, but at a schedule you pick, and without having to trek all the way to
every host. The way we do this is by having all the agents report in to the central con-
sole.

In our design, the central console serves several functions:

■ It tracks all the agents (so we know when they disappear).
■ It reports which hosts need which patches (with appropriate sorting and search-

ing functions).
■ It issues commands to the agents to perform a particular patch install (at the

prompting of its human operator).

Clearly, there is much more that the console could do (e.g., statistics, history, inventory
tracking), but I’m going to stick with discussing these base functions.

As a console operator, your job is to look at what patches are needed and to apply
them. After the patches are applied, the central console will report back on whether
those agents now indicate their hosts are patched. Can you get away with doing Select
All and clicking Go? Not if you’re like most organizations. Many organizations have to
deal with change control, patch program quality concerns, breaking software compati-
bility, service-level agreements, and similar issues. Well, no problem, your patch man-
agement agent is still going to make your life easier.

What does your change-control procedure say you should do to approve a patch for
mass deployment? Test on your testbed hosts? Select those, and click Go. Test on some
portion of your network? Select your IT department desktops, or your least favorite
users, or whatever subset you like. You might even try finding willing volunteers, to
avoid impacting your own long-term employment. Click Go. Want to make sure the
patch is rolled out when help-desk personnel are available? Schedule according to day,
hour, geography, follow-the-sun, whatever, click Go.

Have a set of hosts that your vendor supplies as “black boxes,” even though they are
running a stock version of Windows that needs to be patched like the rest, and they

60



refuse to support you if you patch yourself? Well, sorry, can’t help you there, don’t click
Go. They probably wouldn’t let you put the agent on in the first place.

And, of course, when you’ve neglected your rollout schedule of patches for whatever
reason, when the day rolls around that a worm is released for a vulnerability that you
haven’t fully vetted the patch for yet, you can decide if you’d rather have the worm or
the patch of unknown quality. At least, if you decide the latter, you’ve now got the
means to implement that decision in a hurry. (I would not recommend that admins
not follow change-control procedure, or that they have faith that their vendors always
produce flawless patch software, but most of the time you’d rather not pick the worm.)

So, is everything perfect? As described, such a system will let you determine which
patches are needed, apply them according to your schedule, and verify that they stay
there. This meets all of our requirements.

An actual implementation always leaves things to be desired. Could such a system
lessen security in any way? Just like any software, it must be written with security in
mind, specifically meaning, no security holes. Yes, if your agent has holes, then you’ve
added that many more holes to each host. At least if these are discovered in the agent,
you’ve got an easy way to upgrade the agent software in a hurry. (Actually, self-upgrade
is not necessarily an easy problem, so if you’re investigating such software, make sure
to check into that.) 

So, our agent is bug-free; what else can go wrong? Can an attacker pretend to be the
console, and tell all the agents to download and install backdoor.exe? One would hope
not. One solution that seems reasonable is to use public key cryptography to issue
commands. In other words, PGP/GPG-sign the commands at the console and have the
agents verify the signature against a stored key. And don’t forget to deal with replay
attacks (check that old, saved, signed commands won’t work later).

And, obviously, keep careful control of the console. The public key crypto will help
against some attacks, but if an attacker has full control of the console over a period of
time, including installing a keyboard sniffer, it may not make any difference.

My hope is that this article has made you think a bit about some of the practical steps
you can take to help keep your network worm-free. No solution is perfect, but we
should still look for tools that can make a significant impact. The tools I’ve discussed
here would help maintain a base level of security against worms and script kiddie-level
attacks. Simple patching may not help save you from a clever, determined attacker, but
who has time to worry about them with all these worms on our networks?

61December 2003 ;login:

●
SE

CU
RI

TYREFERENCES
“eWEEK Review of Patch Management Solu-
tions,” eWEEK, http://www.eweek.com/
article2/0,3959,1246104,00.asp.

“PatchLink Helps Keep Windows Closed,” Net-
work Computing, http://www.networkcomputing.
com/1318/1318f3.html.

“Windows Patch Management Tools,” Network
World Fusion, http://www.nwfusion.com/
reviews/2003/0303patchrev.html.

HOW ARE WE GOING TO PATCH ALL THESE BOXES ● 



62

Bridging the Techno-Legal Gap 
with Secure Audit Logging
Got Logs?
Computer logs may be used as evidence. Computer logs are like footprints
for traditional crime scene investigators or financial ledgers for auditors. All
of these objects are time machines, containing answers to questions related
to IT processes, unlawful acts, and economic transactions, respectively.
Inherent in each is the ability to reconstruct the who, what, when, where,
why, and how of an IT, legal, or financial dispute. As crimes and social
wrongs increasingly involve or target the use of computers, and as business
relies on information systems to function, logs have become the digital eye-
witnesses to transactions between computers and humans. 
Realizing that eyewitnesses are only as valuable as their perception, memory, and cog-
nition, so too are logs in their ability to paint a picture of digital events. Similarly, just
as persons cannot predict or prepare for eyewitness events, it is difficult to foreknow
which digital transactions will necessitate recreation in resolving a dispute. However,
we can engineer reliable perception, memory, and cognition into our digital eyewit-
nesses through the process of secure audit logging (SAL).

SAL provides a general model for collecting and storing digital event data in accor-
dance with legal admissibility standards and in compliance with the specific audit
needs of systems administrators, law enforcement, and businesses. During legal dis-
putes, investigators – system administrators, forensic examiners, regulators, private
and public law enforcement – will often rely on audit and transaction logs as a source
of evidence to prove/disprove their claims. These logs can contain virtually any type of
data that a computer system is programmed to capture.

The SAL model facilitates the automated, centralized, and trustworthy collection and
storage of any audit data that is dictated by a chosen policy. Information assurance and
the ability to maintain the integrity of digital data for the purposes of legal proof are
continually challenged by the nature of network computing, system bugs and vulnera-
bilities, and constantly changing technology. These features have conspired to facilitate
confusion surrounding the admissibility of log records. The secure audit logging
model is being designed with evidentiary standards and presumptions in mind. As
such, SAL raises the bar for successful challenges to integrity of log records by includ-
ing assurances of credibility – authenticity and reliability.

Secure Audit Logging: A Forensics Enhancing Technology 
Many of the emerging applications for auditing and investigation are focused on data
collection and monitoring within an organization’s intranet. Unfortunately, existing
tools for facilitating such capabilities require system administrators within these net-
works, who are not versed in legal principles, to deploy the technology that should
enable business process within the context of its policies and legal directives. Such
deployments frequently become mired in the difficulties of supporting user function-
ality, configuring hardware and software for compatibility, and providing other utility
services, all within volatile distributed environments. The design purpose for logs pro-

Evidence Enhancing
Technology 

Vol. 28, No. 6 ;login:

by Erin Kenneally
Erin Kenneally is a
Forensic Analyst with
the Pacific Institute
for Computer Secu-
rity (PICS), San
Diego Supercom-
puter Center. She is a
licensed attorney
who holds Juris Doc-
torate and Master of
Forensic Sciences
degrees. 

erin@sdsc.edu 



duced by computers originated from utility service requirements. For instance, logs
were system administrators’ way of debugging, or troubleshooting, computers for vari-
ous technical performance reasons. Absent this data collection mechanism, the ability
to detect suspicious behavior and computer intrusions and distinguish between inad-
vertent machine error and malicious human tampering was implausible. As logs are
increasingly being used for purpose of corporate governance, regulatory and legal
forces are driving nontechnical folks to turn to log data to substantiate and defend
against dispute claims. Because logs are humans’ link to the who, what, when, where,
and how of computer functioning and usage, logs are being thrust from the annals of
computer “techdom” to the adversarial realm of jurisprudence. Like all other evidence
offered for legal proof purposes, they must meet certain evidentiary standards.

Anatomy of the Law Applied to Computer Logs 
LEGAL SEMANTICS AND PURPOSE OF EVIDENTIARY STANDARDS 
In general, the standard for the admissibility of evidence is that it is shown to be rele-
vant, authentic, and reliable. This includes that the evidence must not contain hearsay,
unless it falls within an exception to the hearsay prohibition. These preliminary deter-
minations can occur under the auspices of the Federal Rule of Evidence requirement
that the matter in question is what it is claimed to be, or via the more demanding
showing of reliability for scientific, technical, or specialized evidence. The purpose of
this initial screening is to ensure that the evidence is reliable enough to go before a
fact-finder, whose job it is to decide what weight that evidence should carry in resolv-
ing the issue at hand. In other words, a basic evidentiary tenet governing admissibility
determinations is that there are guarantees of trustworthiness attached to the evidence
so that a jury is not unduly confused or prejudiced.

AUTHENTICATION AND LOG EVIDENCE 
Authentication standards are meant to ensure that the evidence is what it purports to
be, and how rigorous a foundation is needed to make this finding depends on the exis-
tence of something that can be tested in order to prove a relationship between the doc-
ument and an individual, and control against the perpetration of fraud.

The degree of scrutiny applied to determine whether or not computer log evidence is
admissible is unsettled. This determination may turn on how a court categorizes the
log evidence: computer-generated, computer-stored, or some hybrid. To date, there is
no overarching prescription for establishing how computer logs should be categorized,
thus leaving admissibility open to case-by-case determinations.

Generally, the authenticity control is established by testimony that the computer pro-
gram which generated the record was functioning properly. It is important to keep in
mind that this can rebutted if the source, method, or circumstance of preparation
indicates lack of trustworthiness.

While increasing automation will diminish the number of witnesses qualified to
authenticate computer-generated evidence like logs, inconsistencies at the human-
computer interface when collecting, processing, and storing logs may provide fodder
for log opponents to rebut the low threshold of proving authenticity and reliability
and force proponents of log evidence to offer more solid foundational proof.

63December 2003 ;login:

In general, the standard for
the admissibility of evidence
is that it is shown to be 
relevant, authentic, and 
reliable. 

●
SE

CU
RI

TY

EVIDENCE ENHANCING TECHNOLOGY ●  



Vol. 28, No. 6 ;login:

SECURE AUDIT LOGS AS THE DIGITAL CHAIN-OF-CUSTODY 
The level of scrutiny and legal categorization of computer logs is ambiguous. To be
clear, although the legal standard is unwavering – relevant, authentic, original – the
application of the standard to log evidence is unsettled. While not comforting for
those seeking black letter law on whether logs can be used as a sword or shield in legal
disputes, there are controls that courts use to measure the reliability of evidence which
can serve as a blueprint for attempts to ensure log admissibility. Arguably one of the
most recognized reliability controls is chain-of-custody, and it is this concept that the
SAL model mirrors.

Chain-of-custody (COC) is one of the controls used by courts to implement reliability
standards. That is to say, authenticity of physical evidence is tested by accounting for
the who, what, when, where, and how of a given piece of evidence from its initial dis-
covery, to its collection, access, handling, storage, and eventual presentation at trial.
COC has been institutionalized as a procedure for the seizure of physical evidence by
law enforcement, as well as for the handling of digital evidence by computer forensic
examiners as a measure of evidence integrity. The SAL ensures a digital chain-of-cus-
tody so as to minimize the challenges that digital evidence has been created, lost, dam-
aged, or modified. SAL minimizes the manual human interfaces during collection and
storage, as well as providing the metrics upon which legal determinations of reliability
can be made.

SAL replicates the general procedures followed by computer forensic examiners to
establish authenticity of physical evidence. These include:

■ refraining from altering the original evidence
■ documenting procedures used in collection, storage, and analysis and explaining

any changes that may have been made to the evidence. These procedures should
be auditable.

■ maintaining the continuity of evidence; making a complete copy of data in ques-
tion using a reliable copy process (independently verifiable; hashing)

■ employing security measures (tamperproof storage, write protection)
■ properly labeling time, date, source (tracking # and tagging)
■ limiting and documenting the persons with access to data 

LOG EVIDENCE RELIABILITY CONTROLS – 
WHAT IS THE LYNCHPIN OF CREDIBILITY? 
Is the lynchpin of credibility for log data derived from the technology (computer and
software producing the log), or from the person who reads and interprets the log data?
In other words, who the real witness is should dictate what should be examined to
measure the trustworthiness of statements in the logs. The nature of log evidence,
unlike instances where a human is putting a pen to paper, suggests that the “real wit-
ness” is the chain of digital events surrounding the creation, transportation, and stor-
age of logs. As such, courts should insist upon controls that measure the reliability
with as little abstraction as possible.

Do the controls applied by courts to adjudge reliability log records ensure that evi-
dence standards prescribed by the F.R.E. regulations and policy are being met? Con-
trols are the guarantees of trustworthiness that enable an audit event to be measured
against a standard or principle. The value of SAL lies in its ability to provide more
direct guarantees of trustworthiness of log records, thereby reducing the uncertainty
of legal risks. Even though the reliability controls for paper records are an abstraction

64



of the controls for witness credibility, the underlying metric is the same: time
(chronology), distance (location), and computation (cognition). SAL provides con-
trols that more directly measure the lynchpin of credibility – the technology producing
the logs – against the relevant standard.

When a witness takes the stand to testify, the audit event is what he is being asked to
testify about – i.e., the accident he saw, what he did with the evidence being offered, or
whether the computer was functioning – and is manifest by testing the witness’s per-
ception, memory, or narration/bias. Audit tools such as oath, personal presence at
trial, and cross-examination are used to measure the credibility/trustworthiness of the
witness’s account of the audit event. The reliability metric the audit tools are measur-
ing can be distilled into time (chronology), distance (location), and cognition.

As logs are increasingly used to resolve legal disputes and become the lynchpin of
proof, focus will shift from presumptively ushering in the digital traces of business
activities to disputing the logs used to buttress claims. Attempts to discredit logs will
accompany this shift, and the technical folks who understand the mutability associated
with current log data will be tapped for their knowledge that alterations (insertion,
deletion, modification) are not only possible but probable, and oftentimes impossible
to detect. This will be exacerbated by the emergence of software programs that expand
data alteration capabilities to anyone with point-and-click capabilities, in contrast to
the present state of affairs where log data alteration is limited to a small number of
persons with the knowledge and skills to manually weave through log data and manip-
ulate certain bits to reflect factual changes. The evidentiary significance is that contin-
ued reliance on controls such as proper functioning of the computer producing the
logs do not speak to the threats to log integrity. Indeed, one’s IDS, spreadsheet pro-
gram, or email program may be working in tip-top shape, but that does not address
the risk that the data it produces was altered by virtue of the interconnections or vul-
nerabilities posed by other persons and programs.

Two recent cases have turned this conjecture into reality. Log evidence was the subject
of scrutiny in the acquittal of a U.K. teen accused of launching a DDoS attack that
knocked out IT systems at the Port of Houston in Texas. The striking aspect of this
case is that logs were used as both a sword and shield to support the increasingly pop-
ular, “unknown third party” defense. On one hand, the defense leveraged server logs
showing regular probing of the defendant’s computer to assert that it was possible the
system could have been compromised and wielded by a remote hacker to perpetrate
the crime. Simultaneously, the accused decried that the log files found on his system
that implicated him in the attack were unreliable because his system was unpatched
and thus susceptible to manipulation.

A similar tactic was used successfully to persuade a jury in a Montgomery County Cir-
cuit Court that an accountant charged with tax evasion was not guilty. Here the defen-
dant blamed tax return inaccuracies on an unnamed computer virus. Despite evidence
showing that the alleged virus did not affect the tax returns of clients prepared on the
same computer, the defendant averted the maximum 33 years in prison and up to
$900,000 in penalties.

Whether or not these outcomes are merely exceptional or the tip of an iceberg, they
illustrate increasing reliance on digital evidence to fortify a particular rendition of the
“truth.” As the possibility of backdoors and vulnerabilities in systems challenge liti-
gants to prove a negative in presenting or defending a claim, it becomes all the more

65December 2003 ;login:

●
SE

CU
RI

TY

EVIDENCE ENHANCING TECHNOLOGY ●  



Vol. 28, No. 6 ;login:

important to establish the reliability of the digital footprints that paint the real picture
of the “truth.” Because logs can be authoritatively persuasive for either party in a dis-
pute, a battle of the logs will demand that the data contained therein is reliable. As
such, control mechanisms must be employed to avoid finding reasonable doubt or a
preponderance based on logs shrouded by conjecture.

By relying exclusively on humans as the only witness in addressing the reliability of log
evidence, courts are not addressing the threats and vulnerabilities attendant to elec-
tronic evidence. They overlook the reality that computer hardware, software, and their
interconnections converge to produce log evidence that is susceptible to events that
render logs unreliable. This is simply an inadequate control to measure reliability. It is
similar to claiming that all the cells in one’s body can be labeled as trustworthy because
of the fact that the body’s organs and systems are healthy and functional.

If the law continues to use controls that provide second-order indicia of reliability,
business reliance will be the control used to safeguard trust in logs. However, busi-
nesses run on commodity technology. The problem with relying on commodity tech-
nology to satisfy legal reliability standards is that it is driven by time-to-market forces
and not built with legal standards in mind. This is not satisfactory when the costs of
mistakes and errors are economically high and socially detrimental. Further, taking
judicial notice of a process’s accuracy (i.e., that computers produce logs that can be
relied on) may be confused with taking notice that a particular result is accurate (i.e.,
that logs submitted as evidence are trustworthy).

SAL addresses the log challenges by engineering the collection and preservation of logs
with the principles and procedures of forensic integrity in mind. SAL offers more
empirical evidence of the sequence of events surrounding log collection and storage, as
well as minimizing the error that accompanies human interaction with log processes.
By performing a digital chain-of-custody , the SAL model better fits the evidence
whose trust is attempted to be measured.

The Timing Is Right 
The development of this secure audit logging technology is motivated by the need to
facilitate a just legal framework for establishing the trustworthiness of digital log
records and for recognizing the fundamental uncertainties in the processes involved in
utilizing these logs as evidence. These uncertainties are not being addressed by current
information assurance and product development processes. IT departments lack
meaningful guidance on how to utilize technology to comply with legal/regulatory
standards, and reliance on vendors to know and foster the enabling technology is mis-
guided at best. Further, these uncertainties risk being perpetuated if the assumptions
underlying legal interpretations of the standards are institutionalized without proper
measurement.

This article is an abbreviated version of a much more detailed work in progress. An
extended version of this paper, complete with references, can be found at http://
security.sdsc.edu/.

A battle of the logs will
demand that the data 
contained therein is reliable.

66



67December 2003 ;login:

the bookworm
BOOKS REVIEWED IN THIS COLUMN 

But there is a consolation: I also get to
list a bonus book. Most of the others are
large: my bonus will go easily into your
shoe (instead of that lump of coal) or
into a stocking when furled. It’s the lat-
est from Illiad. What? You don’t read
“User Friendly”? Shocking! Learn how
to generate static electricity by rubbing
balloons against Dust Puppy.

But I do want to mention a few books
before getting to the list.

(In)Security
Bruce Schneier has a machine that
enables him to turn out good books
with amazing regularity. Applied Cryp-
tography (now in a second edition) and
Secrets & Lies have been reviewed by me
previously. Bruce’s Beyond Fear is, quite
simply, in a class by itself. This is not
“merely” a book about computer secu-
rity, it’s about just how ineffective those
waits in the airport are. It’s about why
ID cards will be absurd encumbrances
and why ID checks are just worthless.

Beyond Fear is a must buy and a must
read. If only there were a way to get
someone like Tom Ridge or W to read it.

TCP/IP
Bill Fenner and Andrew M. Rugoff have
done the networking field a real favor.
They have edited and enlarged the first
volume of Rich Stevens’ standard UNIX
Network Programming, volume 1. The
first edition had 600 pages; the second
was just 1000; this one has 946. They’ve
revised what needed to be revised and
added great gobs of stuff. And they’ve
deleted where necessary. They’ve
dropped T/TCP and XTI; they added
three chapters on SCTP. Etc. It’s a great
job!

HLA
I’m not a great fan of assembler lan-
guage, most likely because I’ve never
needed to do a lot of low-level program-
ming. But I can see the utility of it. HLA
is “High-Level Assembler” – actually a
compiler. Hyde has produced a readable
book with a useful CD included.

Peter’s Holiday List
This has been a strange year. And I’m
breaking what was once a fixed and firm
rule: not considering second and later
editions. At the same time, there are sev-
eral reissues I’m most likely slighting.
And there are certainly several books of
which I think quite highly that I’m not
including.

But I do think that the volumes I’m list-
ing are among the very best. For the nth
year in a row, let me state that this list is
not ordered by rank, nor is it alphabeti-
cal. But these are good books. Really
good books.

Season’s greetings!

Cricket Liu, DNS and BIND Cookbook
(O’Reilly)

Matt Bishop, Computer Security: Art and
Science (Addison-Wesley)

Time for the December column again!
And I gotta pick my annual holiday
“best” list. Let me say here that it was no
easy pick. I decided that Gibson,
Stephenson, and Waldrop weren’t eligi-
ble. That’s like disallowing Eisenstein,
Griffiths, and Kurosawa from a best
director’s list. Oh, well. How I suffer.
(And I’m sure that many of you read
Pattern Recognition and Quicksilver and
Custer’s Last Jump with as much pleasure
as I did.)

by Peter H. Salus
Peter H. Salus is a
member of the ACM,
the Early English Text
Society, and the Trol-
lope Society, and is a
life member of the
American Oriental
Society. He owns nei-
ther a dog nor a cat.

peter@netpedant.com

BEYOND FEAR
BRUCE SCHNEIER

New York: Capricorn Books, 2003. Pp. 295.
ISBN 0-387-02620-7.

UNIX NETWORK PROGRAMMING,
VOLUME 1: THE SOCKETS 
NETWORKING API
W. RICHARD STEVENS ET AL.

3rd ed. Boston, MA: Addison-Wesley, 2003. Pp.
946. ISBN 0-13-141155-1.

THE ART OF ASSEMBLY LANGUAGE
RANDALL HYDE

San Francisco, CA: No Starch, 2003. Pp. 903 +
CD-ROM. ISBN 1-886411-97-2.

William R. Cheswick et al., Firewalls and
Internet Security (Addison-Wesley)

Eric S. Raymond, The Art of UNIX Pro-
gramming. (Addison-Wesley)

Marcel Gagné, Moving to Linux (Addi-
son-Wesley)

Ellen Siever et al., Linux in a Nutshell 4th
ed. (O’Reilly)

John Eilert, et al., Linux on the Main-
frame (Prentice Hall)

David Jordan & Craig Russell, Java Data
Objects (O’Reilly)

Bruce Schneier, Beyond Fear (Capricorn
Books)

W. Richard Stevens et al. Unix Network
Programming, Volume 1: The Sockets
Networking API, 3rd ed. (Addison-Wes-
ley)

Bonus Book:
J.D. Frazer, Even Grues Get Full
(O’Reilly)

THE BOOKWORM ●  



Vol. 28, No. 6 ;login:68

Nearly 20 Years Ago in
U[SE]NIX

At the beginning of 2002, I reminisced
about the January 1987 USENIX Con-
ference in Washington, DC. The second
Washington snowstorm . . .

Ted Dolotta, a contributor to the -mm
macros and one of the managers of
USG, sent me these remembrances:

“The reason for this message is your
“Fifteen Years Ago in USENIX” item in
the February 2002 issue of ;login: – in it
you mention (in addition to the 1987
USENIX meeting) the 1984 USENIX
meeting in DC, snowstorm and all. That
started me reminiscing.

If my memory serves, the January 1984
USENIX meeting was also marked by
another “storm:” there was a last-
minute, surprise exhibitor at that show:
Big Blue, which set up a dozen PC-ATs
in a hotel suite (all regular exhibit space
being already taken) running the Per-
sonal Computer Interactive Executive,
PC/IX, a single-user UNIX running on
the PC-AT and developed for IBM by
my team at INTERACTIVE Systems. (I
just looked at the User’s Manual for
PC/IX, and it says, smack in the middle
of the title page, “by INTERACTIVE
Systems Corporation,” with the IBM
logo relegated to the bottom of the
page.) 

IBM invited all the attendees to come up
to their hotel suite and play with the sys-
tem at will; there were no canned
demos, no presentations – just UNIX
and a bunch of IBM guys, and my folks,
to answer questions. (Several of my guys
had to buy, on short notice, their first
adult suit; two among them actually

SysAdmin stuff, since PC/IX was a sin-
gle-user, native-mode system that ran on
the PC-AT, while VM/IX was a multi-
user system hosted on VM/360 – some-
thing I’m quite proud of to this day).
Anyway, the PC/IX binders were pin-
striped, very dark charcoal gray, with
white type, and a bud vase with a single
red rose, harking back to the original
IBM PC ad campaign featuring “The
Little Tramp” (Charlie Chaplin look-
alike with a red rose); the VM/IX
binders were identical, except for a vase
with a bouquet of red roses. It was bril-
liant.

Today, IBM is into UNIX in a big way,
with Linux mainframes and AIX systems
(the latter, I suspect, will be around
alongside Linux systems for a good long
time), huge booths at Linux World, and
a suit from SCO over alleged license and
copyright infringements . . .

But it was at the 1984 USENIX meeting
in Washington, DC, that IBM first pub-
licly put its toe into the UNIX stream
(no pun intended).”

Thanks, Ted. And a happy (appropriate)
holiday to all of you. One wonders
whether SCO realizes that INTERAC-
TIVE Systems wrote the first UNIX port
for IBM . . .

2004 marks a number of things: The
ARPAnet/Internet and UNIX will both
be 35; and Linux 1.0 will be ten. Lots of
fodder for a historian.

I hope to celebrate these events live at
Nordu in Copenhagen in January, at
USENIX in Boston in July, and at SANE
in Amsterdam in September.

asked me whether they could share a
suit.) 

And notwithstanding the fact that
PC/IX eventually went nowhere, sud-
denly UNIX was no longer a Bell
Labs/Berkeley/academia/hacker/nerdy
thing – it was in the mainstream,
endorsed by the largest computer com-
pany in the world. A heady day, indeed!
The whole thing was just amazing (I
know I’m biased).

As I said, PC/IX was not a commercial
success; it was followed by VM/IX
(UNIX as a guest on the VM/360 main-
frame system) and IX/360 (native UNIX
on a System/360 mainframe); both of
these flopped as well. And then came
AIX: UNIX on the PC-RT (a RISC chip),
which IBM sells to date, albeit on much
more modern hardware. These ports
were done by my team at INTERAC-
TIVE (another outfit whose name
escapes me started the IX/360 port, but
eventually INTERACTIVE was asked to
finish it in collaboration with IBM/Ger-
many). For AIX, that team consisted of
18 people, including the support staff –
secretary, hardware guy, administrator,
etc.; IBM had a team of 350+ people in
Austin testing the stuff my folks built.
IBM was very worried about keeping the
project secret: we were not allowed to
open the window shades in our offices,
and the PC-RTs were chained to the
walls. I did tell you about the AIX man-
ual and their problems in a previous let-
ter.

Speaking of manuals, I also explained in
another letter about the various issues
that arose in the context of creating
UNIX manuals within the constraints of
IBM’s practices – it was essentially Mis-
sion Impossible; but to give the devil his
due, IBM graphic design folks did a
great job of designing the covers for the
PC/IX and VM/IX documentation
(whose content was identical except for
the name of the system and for some

by Peter H. Salus
USENIX Historian

peter@netpedant.com



69December 2003 ;login:

news 

l
  

U
SE

N
IX

 N
EW

S2004 Election for Board of
Directors

The biennial election for officers and
directors of the Association will be held
in the spring of 2004. A report from the
Nominating Committee will be emailed
to USENIX members and posted to the
USENIX Web site in mid-December
2003 and will be published in the Febru-
ary 2004 issue of ;login:.

Nominations from the membership are
open until January 9, 2004. To nominate
an individual, send a written statement
of nomination signed by at least five (5)
members in good standing (or five sepa-
rate nominations), to the Executive
Director at the Association office, to be
received by noon PST, January 9, 2004.
Please include a Candidate’s Statement
and photograph to be included in the
ballots.

Ballots will be sent to all paid-up mem-
bers on or about February 6. Ballots
must be received in the USENIX office
by March 19, 2004. The results of the
election will be announced on the

USENIX Web site by April 2 and will be
published in the June issue of ;login:.

The Board consists of eight directors,
four of whom are “at large.” The others
are the president, vice president, secre-
tary, and treasurer. The balloting is pref-
erential: those candidates with the
largest numbers of votes are elected. Ties
in elections for directors shall result in
run-off elections, the results of which
shall be determined by a majority of the
votes cast. Newly elected directors will
take office at the conclusion of the first
regularly scheduled meeting following
the election, or on July 1, 2004,
whichever comes earlier.

USENIX MEMBER BENEFITS
As a member of the USENIX Association,
you receive the following benefits:

FREE SUBSCRIPTION TO ;login:, the Association’s

magazine, published six times a year, featur-

ing technical articles, system administration

articles, tips and techniques, practical

columns on such topics as security, Tcl, Perl,

Java, and operating systems, book reviews,

and summaries of sessions at USENIX con-

ferences.

ACCESS TO ;login: online from October 1997

to last month <www.usenix.org/

publications/login/login.html>.

ACCESS TO PAPERS from the USENIX Confer-

ences online starting with 1993

<www.usenix.org/publications/library/

index.html>.

THE RIGHT TO VOTE on matters affecting the

Association, its bylaws, election of its direc-

tors and officers.

DISCOUNTS on registration fees for all

USENIX conferences.

DISCOUNTS on the purchase of proceedings

and CD-ROMS from USENIX conferences. 

SPECIAL DISCOUNTS on a variety of products,

books, software, and periodicals. See

<http://www.usenix.org/membership/

specialdisc.html> for details.

FOR MORE INFORMATION 

REGARDING MEMBERSHIP OR 

BENEFITS, PLEASE SEE

<http://www.usenix.org/

membership/

OR CONTACT

<office@usenix.org>

Phone: 510 528 8649

by Ellie Young

Executive Director

ellie@usenix.org

USENIX SUPPORTING MEMBERS

Ajava Systems

Aptitude Corporation

Atos Origin B.V.

Computer Measurement Group

Electronic Frontier Foundation

Interhack Corporation

MacConnection

The Measurement Factory

Microsoft Research

Motorola Australia Software Centre

Sun Microsystems, Inc.

UUNET Technologies, Inc.

Veritas Software



70 Vol. 28, No. 6 ;login:

conference reports
tification. In addition, the link between
identity and reputation is not addressed
in conventional systems.

This led to the next phase of the talk:
reputation. Black Unicorn’s most appro-
priate definition is a specific characteris-
tic or trait ascribed to a person or thing:
a reputation for courtesy. The value of
reputation is as a predictor of behavior,
as a means of valuation, and as a means
for third-party assessment. Black Uni-
corn took issue with the notion of repu-
tation as a behavior-predictor.

Black Unicorn then discussed trust; he
presented several definitions, choosing
“reliance on something in the future;
hope” as the most appropriate for this
talk. The value of trust has several com-
ponents: as a means of inexpensive due

diligence; as a delegation
enabler; as a means to
reduce robustness of envi-
ronmental security; and as
an indication of risk toler-
ance.

Black Unicorn then dis-
cussed the relationships
between trust, identity, and
reputation, showing how
factors such as credentials,
third-party attestation, and
certification affect trust.

Identity information can be augmented
by due diligence, consequence augmen-
tation (e.g., penalties for crimes), and
third-party attestation.

Q: Given the reticence of Americans to
use ID cards, how will we be able to
identify people? 

A: This problem is likely to remain.
There is no good answer; identity is
always going to be nebulous. We have
different roles that we play, and we tend
not to like third-party assertions about
our identities.

Q: How is the use of third-party attesta-
tions different from due diligence? 

OUR THANKS TO THE SUMMARIZERS:

Scott A. Crosby
Catherine Dodge

Clif Flynt
Seung Won Jun

David Molnar
Chris Ries

Gelareh Taban
Tara Whalen

NOTE
Reports for BSDCon ’03 arrived too late
to be included in this issue. They are
available at http://www.usenix.org/
publications/library/proceedings/
bsdcon03/confrpts.

12th USENIX Security 
Symposium
August 4–8, 2003 
Washington, D.C.
KEYNOTE ADDRESS: REFLECTIONS

ON A DECADE OF PSEUDONYMITY

Black Unicorn 

Summarized by Tara Whalen

Black Unicorn, aka A.S.L. von Bern-
hardi, kicked off the conference with his
talk on the relationships between iden-
tity, reputation, and trust. Anonymity
has negative connotations, or “sunny
climes attract shady characters.” He
chose his pseudonym when the cypher-
punks list was being archived, and sug-
gested that anybody who doesn’t want to
attract undue attention should probably

pick a benign pseudonym, such as “Bill
Smith.”

He then launched into a detailed discus-
sion of identity: its definition, its value,
and some common fallacies. The defini-
tion he prefers is “the distinct personal-
ity of an individual regarded as a persist-
ing entity; individuality.”

The value of identity encompasses both
its use as a unique identifier and in
establishing the uniqueness of a reputa-
tional assertion.

The problems with identity are a lack of
a standard unique identifier, reliance on
third-party attestation, and the absence
of static physical characteristics for iden-

Black Unicorn and Vern Paxson



71December 2003 ;login:

l
  

 C
O

N
FE

RE
N

CE
RE

PO
RT

SA: We often look at collections of attes-
tations, which is better than looking at
only one attestation. The problem with
third-party attestations is that these par-
ties have limited motivation to do
proper due diligence (to save money),
and their own liability is limited by
insurance, which makes them less likely
to be appropriately diligent. Direct expe-
rience and/or lore may be better guides.

Q: Do you want different ID documents
for different purposes? 

A: Definitely. You have to look at the
agency making the attestation—what are
they qualified to say? Probably not a lot.
When looking at ID documents, you
have to look at what the agency is good
at attesting.

Q: Considering this issue from a cultural
perspective: Identity is partially defined
by race, religion, etc., and this affects
one’s reputation. Comment?

A: I agree. A lot of reputation is tied up
in name, for example, and differs from
culture to culture (e.g., Europe vs. US).
Look at what’s used for credibility: in
Europe, it’s family history, unlike in the
US.

REFEREED PAPERS: ATTACKS

Summarized by Clif Flynt

REMOTE TIMING ATTACKS ARE PRACTICAL

David Brumley and Dan Boneh, 
Stanford University 

The authors received the Best Paper
award for their report on the viability of
timing attacks on the RSA algorithm as
implemented in OpenSSL. They proved
that they could extract RSA private keys,
not only when running on the same
hardware as the secure application, but
also across a network including several
routers.

Dan Boneh described how a timing
attack works and how to defend against
it. In a timing attack, the secure server is
sent many different queries that are

expected to fail, and the time it takes to
reject each query is measured. Rejecting
a query requires that the server perform
several math operations. Depending on
the organization of the 1s and 0s in the
query, different speed optimizations may
be performed. A program can deduce
the positions of 1s and 0s from the time
required to perform the math opera-
tions.

The timing attacks have been done
many times in the past, but previous
work was done against “simple” devices
like smartcards. Boneh and Brumley’s
work shows that a surprising level of
noise can be introduced into the timing
data without degrading it beyond
usability. Complex systems with multi-
ple applications running simultaneously,
or even the variance of network latency,
do not produce enough noise to disguise
the time difference required to perform
the analysis.

OpenSSL was chosen for this work
because the package is used in many
other applications, including mod_SSL,
stunnel, sNFS, and more. Of the applica-
tions examined, only the Mozilla NSS
packages defaulted to secure behavior.

Because the RSA algorithm requires
many multiplications of very large num-
bers, most implementations use arith-
metic optimization techniques to speed
up encrypting and decrypting. These
techniques are sensitive to certain bit
patterns in the test and real key, making
a message rejection faster or slower
depending on how closely the bit pat-
terns of the test key match the real key. A
defense against this attack is to use RSA
blinding, in which the client and server
should decrypt a random string as well
as the actual encrypted text to provide a
random decryption time. This produces
a 2–10% hit in performance. Brumley
found that this was sufficient to prevent
a successful timing analysis. This is
implemented by default in versions of
OpenSSL after version 0.9.7b.

802.11 DENIAL-OF-SERVICE ATTACKS: REAL

VULNERABILITIES AND PRACTICAL SOLUTIONS

John Bellardo and Stefan Savage, Uni-
versity of California, San Diego 

While many members of the audience
were connected to the outside world via
their laptops and 802.11b wireless links,
Stefan Savage demonstrated just how
insubstantial that link can be. He
opened his talk by showing a graph of
current network activity and then
attacked John Bellardo’s link, halting his
download. When this attack was started,
the graph showed that traffic to Bel-
lardo’s laptop was reduced to nearly 0
packets, and Bellardo concurred that he
was no longer downloading any data.
Savage then extended the attack to the
rest of the audience, and I can confirm
that my connection to the outside world
was gone. This lasted a few seconds after
which Savage discontinued the attack,
and service was restored.

He then described the two denial-of-ser-
vice attacks he used, both of which use
legitimate features of the 802.11b proto-
col. The first attack, which disabled only
a single 802.11b user, used a deauthenti-
cation attack. In a normal conversation
between an 802.11b client and access
point, the client requests and receives an
authentication. At any point in the con-
versation, the client can request that the
session be deauthenticated. The deau-
thentication request is not a secure mes-
sage; thus one client can send a message
to deauthenticate another client. Once a
session has been deauthenticated, the
original client must return to the begin-
ning of the conversation with the AP
before transmitting any more informa-
tion.

He described a simple technique to pro-
tect against this attack. When the AP
receives a deauthenticate request, it
should hold the request for a period of
time before implementing it. If a fresh
data packet from the deauthenticating

12TH USENIX SECURITY SYMPOSIUM l  



client is received, the AP will not process
the deauthenticate request.

Savage described other potential attacks
based on fields designed to enable power
conservation and reduce packet colli-
sions. However, when they implemented
some of these attacks they discovered
that current implementations of most
802.11b interface cards don’t implement
these features, and data in those fields is
ignored.

As the use of 802.11b becomes more
widespread and quality-of-service
demands become greater, we can expect
new cards to implement these features,
so Savage simulated a network of cards

that implement the specifications cor-
rectly, and simulated attacks on that net-
work. One of these specifications is the
Network Allocation Vector (NAV) field.
The NAV field allows an AP-client pair
to reserve a period of time for their
exclusive use. This allows a large packet
to use up the bandwidth without having
another unit collide with it. This time
period can be as long as 31.5 millisec-
onds. The NAV bit is maintained by the
firmware and, in theory, can’t be modi-
fied by a user program. Savage described
how an attacking application can scan
the SRAM to find the value being placed

72 Vol. 28, No. 6 ;login:

into the packets and modify it. The
defense against this attack is simply to
reject unreasonably large values in the
NAV field. In actual use, legitimate val-
ues are always under 3 ms.

DENIAL OF SERVICE VIA ALGORITHMIC

COMPLEXITY ATTACKS

Scott A. Crosby and Dan S. Wallach,
Rice University

Scott Crosby pointed out that algo-
rithms have best-case, normal-case, and
worst-case behaviors. When we imple-
ment algorithms, we rely on normal-
case behavior. A system with malicious
users may be forced to demonstrate
worst-case behavior.

A hash algorithm dis-
plays a constant time to
access an element
(O(1)), unless there are
many collisions. As the
number of collisions
increases, the behavior of
the hash access
approaches linear (O(n)).
By discovering a few sets
of letters that hash to
“zero,” an attacker can
easily generate a large
number of collisions.

Crosby demonstrated
that thousands of colli-
sions are required before

the linear nature of the hashtable search
becomes 
a problem, but that this can be achieved
in six minutes with a typical dialup
modem. In an attack on a Perl applica-
tion, he generated 90,000 collisions.
After these collisions, retrieving a value
for a key with no collision took about
two seconds, while retrieving a value for
a key that had collisions took about two
hours.

This vulnerability was found in Perl,
Squid, the Bro Intrusion Detection Sys-
tem, the Linux routing cache and direc-

tory entry cache, and others. Since the
paper was written, the Bro IDS and the
Linux vulnerabilities have been
addressed.

Crosby described several alternative
hash implementations and discussed
their strengths and weaknesses. The uni-
versal hashing algorithm described by
Carter & Wegman in 1979 is about as
fast as the Perl 5 hash algorithm. The
UMAC hash generator is optimized for
modern compilers. A new hashing
library dubbed UHASH was developed
based on the Carter & Wegman code
and UMAC code with further optimiza-
tions and generalizations to make it use-
ful for applications with unknown
length strings (CGI applications that
may hash on user input), as well as
applications where a key length can be
determined (compilers where the key-
word size is fixed).

The UHASH library is slower than the
Perl hash algorithm for strings of fewer
than 60 characters, but faster for longer
strings.

INVITED TALK: DISTRIBUTING 

SECURITY: DEFENDING WEB SITES

WITH 13,000 SERVERS

Andy Ellis, Akamai

Summarized by Seung Won Jun

Andy Ellis showed the audience some
numbers to give an idea of the scale of
the Akamai network: 14,000 servers that
run 100 applications and are distributed
in 2,400 different locations. They collec-
tively serve 25 billion connections and
200 terabytes per day. Securing such a
system is a challenge.

A traditional Web service model may
provide confidentiality and integrity via
the separation of application/database
servers guarded by firewalls and IDSes,
but it does not provide availability very
well. Availability can be compromised
when flash crowds or denial-of-service
attacks occur. Akamai addresses it by

A book-signing party



delivering contents from the edge. While
some servers on the edge may be over-
whelmed, plenty of others can still serve
the requests. The principle of delivering
from the edge applies to almost all pro-
tocols Akamai supports, including DNS
traffic as well as Web traffic.

Several management techniques were
presented. Given so many servers and so
few administrators (about 30), installing
software could be a headache without an
automated process, which is called “net
deploy.” Automated installation gives
flexibility for managing servers. If a sus-
picious event occurs, the relevant servers
can be wiped out and freshly reinstalled
rather than examined and patched. Key
management is done cooperatively by
several components: key generation cen-
ter, key distribution center, access con-
trol database, and audit server. An Auth-
Gate is a gateway for access manage-
ment. Administrators ssh to the Auth-
Gate, which is replicated, to access edge
servers rather than having direct access
to them. This way, access control policy
can be more flexible. For example, the
policy can say that a particular user is
allowed to access a certain number of
machines rather than having the list of
machines that are allowed to a user.
Edge Diagnostics is the facility to test
edge servers. The primary purpose is,
hopefully, to show customers that the
problem is not in Akamai’s servers but
somewhere else (maybe in the network).
With so many servers, it is important to
know what happens to which servers.
Event management also requires a scala-
ble solution. Events from several edge
servers are merged into a log file, which
is collected by Query Aggregator. The
Monocle application automatically
checks the Query Aggregator and
reports any alerts to clients.

While Akamai runs many servers, it does
not own, or have control over, any net-
work backbone. Ellis mentioned that
BGP is not particularly good about

73December 2003 ;login:

l
  

 C
O

N
FE

RE
N

CE
RE

PO
RT

Sperformance or reliability; it is all about
“screwing the neighbors” or “not having
your bits on my network.” Though Aka-
mai is across the street from MIT, Inter-
net traffic requires 15 hops and is routed
through New York. On September 11,
this became 54 hops, with traffic routed
through Israel. To mitigate BGP’s rout-
ing, Akamai uses some servers to relay
the traffic, which is especially effective
for transcontinental traffic, producing
up to 40% improvement in round-trip
time.

Ellis concluded the talk by giving three
lessons he had learned: plan for failure,
use heavy automation, and make a deci-
sion in advance.

REFEREED PAPERS: COPING WITH

THE REAL WORLD 

Summarized by Clif Flynt

PLUG-AND-PLAY PKI: A PKI YOUR MOTHER

CAN USE

Peter Gutmann, Auckland University 

In contrast to the many very technical
papers regarding timing attacks, encryp-
tion, file systems, and packet protocols,
Peter Gutmann examined the user expe-
rience of public key infrastructure (PKI)
to obtain a certificate, and proposed
some solutions.

He noted that using the current public
key infrastructure is more difficult than
it should be. While obtaining a connec-
tion to an ISP can be done in a few min-
utes with three pieces of information
(login name, password, and credit card
number), obtaining a certificate from a
public certificate authority (CA) can
take a skilled user between 30 minutes
and a month, and may or may not have
any verification.

In practice, most sites use the sample
(clown suit) certificate that can be gen-
erated for testing purposes with
OpenSSL, cryptlib, and others. What is
needed is a system with the following
prime directives:

n Don’t scare the user. The certificate
request forms should only require
information they will actually use
(username, password), not unneces-
sary information such as passport
number.

n It must be possible to bootstrap the
procedure with no previous certifi-
cate. Username/password should be
all that’s required to get a basic cer-
tificate.

n The user can submit the certificate
to the CA to get it signed. The CA
will return a signed certificate to the
user.

The system Gutmann developed relies
on a few assumptions: (1) The user has
some existing relationship with the cer-
tificate-issuing agency. He proposes that
banks offer CA services, since a user can
be assumed to have a relationship with 
a bank that has already been verified.
(2) There is a centralized server that can
act as a CA locator. This is much like a
DHCP server. In practice the HTTP 3xx
Redirect message was used to redirect 
a user from a central site to the CA.
(3) The resulting procedure need only
be as secure as the applications warrant.
This is for online shopping, not exchang-
ing nuclear missile launch codes.

The first problem in obtaining a certifi-
cate is finding a certificate authority.
This can be implemented by having ISPs
provide a redirect from a common
named location—for example, http://
pkiboot.example.com or http://www.
example.com/pkiboot, and using the
HTTP redirect to redirect a browser (or
automated certificate acquisition pro-
gram) to the proper page. Current PKI
systems use a baby duck security model.
The user imprints on the first available
system, and believes it to be secure.
When started, an automated certificate-
acquisition system will be initialized to
remove existing state. It will trust the
first certificate authority it discovers.

12TH USENIX SECURITY SYMPOSIUM l  



This is obviously insecure, since it is
based on physical location. While there
are many PKI RFCs in existence, none of
them met Gutmann’s requirements, so
he came up with a partially home-grown
solution. A user simply enters his or her
username and password and obtains a
certificate. A developer can create a
Plug-and-Play PKI session that performs
PKIBoot using username + password,
generates signing key, requests signing
certificate using username_password,
and generates encryption key. This can
be used with files or smartcards for key
storage. Gutmann commented that
SCEP (Simple Cert Enrollment Proto-
col), which is used in IPSec routers, is
somewhat quirky. The certificate mes-
saging is done with secured messages,
but certificate fetch is done via (inse-
cure) HTTP GET. The initial bootstrap-
ping procedure is difficult, and there is
no provision of rMAC’d messages. The
SCEP system also uses all-in-one certifi-
cates, with no separation of signing and
encryption.

ANALYZING INTEGRITY PROTECTION IN THE

SELINUX EXAMPLE POLICY

Trent Jaeger, Reiner Sailer, and Xiaolan
Zhang, IBM Research 

The SELinux project is an attempt to
provide mandatory access controls to
Linux. The project includes a set of
example rules that are intended to pro-
vide a secure base for developing local
rule sets. Jaeger described a technique
for analyzing those rules to determine
whether or not the example policy is
actually secure. This technique relies
upon the Gokyo tool, which compares a
set of SELinux policy rules and the
desired integrity goals and reports how
well the rules implement these goals.
This work is done as part of the Linux
Analysis Tools project, housed at
http://www.research.ibm.com/vali.

The Linux Security Modules project
provides a framework for implementing

74 Vol. 28, No. 6 ;login:

a set of Mandatory Access Control
(MAC) rules within the Linux kernel.
The SELinux project is developing a set
of rules to be implemented by the LSM
framework to implement a comprehen-
sive integrity policy. For each application
there are policy statements which define
a particular threat model and the reac-
tion to these threats. This can lead to
many statements for each application on
a Linux system. The SELinux policy base
is composed of over 50,000 policy state-
ments, making manual coverage analysis
difficult.

At a system level, the SELinux defines an
aggregate of the application policies.
There is no coherent threat model, and
the application policy interactions are
not examined. This leads analysts to
express concerns regarding the complex-
ity and size of the system being analyzed.

Jaeger and his associates claim that the
complexity is necessary because it flows
from flexibility in the system. They also
point out that while the policy base is
large, they can reduce size. Only a smaller
policy subset is needed to express an ade-
quate Trusted Computing Base (TCB)
rule set. Their technique is to assess the
threats and evaluate the policy against
TCB security requirements in the threat
model. The goal of a Trusted Computing
Base is to protect higher integrity data
and applications from modification or
misbehavior by lower integrity applica-
tions.

SECURITY HOLES . . . WHO CARES? 

Eric Rescorla, RTFM, Inc.

Eric Rescorla reported on research into
user compliance with security upgrade
notifications. They probed many
machines to see what versions of
OpenSSL were installed. They discov-
ered that most sites that will install an
upgrade (about 40%) do so immediately
when an update is released. The next
surge in updates (about 20% of sites)
happens when an exploit is released. The

number of patched sites asymptotically
approaches 35%. They found that large
installations are more responsive than
small sites. This can be explained by
large installations having a full-time
administration staff responsible for
installing upgrades.

During the question period, one person
involved in writing up descriptions of
security flaws wasn’t aware that disabling
SSLv2 would provide a workaround. A
reward/punishment system for installing
or not installing security upgrades might
work, but nobody knows where the
money for rewards would come from. It
was observed that the OpenSSL upgrade
was not trivial; if upgrades are not easy,
they won’t be installed. Rescorla was
asked what percentage of sites surveyed
were home-user systems. He replied that
this was not known, and the number of
poorly administered home systems is a
serious problem.

INVITED TALK: PROTECTING THE

INTERNET INFRASTRUCTURE 

John Ioannidis, AT&T Labs–Research

Summarized by Seung Won Jun

The Internet has infrastructure, some-
thing upon which applications depend:
links, routers, supporting services such
as DNS servers and perhaps Google, and
buildings where the equipment is located.
Before getting into details, John Ioannidis
mentioned several security mantras.
There is no global security solution, so
we must remain vigilant. Since security
is always a cost-benefit trade-off, it is
important to understand the threat
model (who is out to get us and how
they might get us), trust model (who are
friends and from whom can we get
help), and available tools (or, in the end,
money, which is not sufficient but is
necessary for security).

Infrastructure consists of several layers.
Physical infrastructure includes fiber,
wires, routers, buildings, and electric



power. To protect the physical infra-
structure against intruders, natural and
manmade disasters, and other accidents,
we can use hardening and replicating in
conjunction with traditional measures
such as alarms, locks, traps, and armed
guards.

Bit transport is the infrastructure in
which bits travel. Links are characterized
by capacity, delay, and bit-error rate.
Attacks are typically on capacity, that is,
denial of service. According to a four-
year-old survey of attacks, the DoS
attacks are fairly crude and anisotropic,
which means that attacks are directional
rather than pervasive, probably because
attackers can take control of only a lim-
ited number of hosts. What can we do
about the DoS attack? We can detect the
attack by monitoring traffic carefully or
even marking some traffic. Upon detec-
tion, although we may not completely
stop the attack traffic, we can reduce its
collateral damage. A “blackhole” router,
which is configured manually or semi-
automatically, swallows the attack traffic
rather than forwarding it to the victim.
As a result, other parts of the network
are saved from the attack. Going even
further, we can “push back” the attack
traffic by making a router tell its up-
stream routers not to forward the attack
packets.

A major component of control infra-
structure is DNS. There are many points
where DNS can go wrong. While the
root and TLD DNS servers are critical,
there are so few of them that they can
be, and are, DoS-attacked. The DNS
response, which is carried on UDP, is
not authenticated and, hence, can be
spoofed. Cache poisoning (corruption of
local DNS servers) can misdirect the
traffic, and the servers are prone to be
misconfigured. Although DNSSec tries
to address some security aspects in DNS,
it still leaves many problems unsolved.
A semantic problem is fundamental:
Does microsoft.com represent “the”

75December 2003 ;login:

l
  

 C
O

N
FE

RE
N

CE
RE

PO
RT

SMicrosoft that you intend? Availability is
still not addressed, and the key manage-
ment for DNSSec will be a nightmare.
The configuration of DNSSec is more
difficult than DNS, and we have little
operational experience.

Another component of control infra-
structure is routing, particularly focused
on BGP. As BGP is arguably the most
distributed routing protocol, its compli-
cation is aggravated by the policy con-
flicts among ISPs. Route announcements
are not authenticated, which can lead to
a problem. Considering the effectiveness
of such a simple measure as filtering out
all BGP packets whose TTL is lower than
254, it is a pity that not all BGP routers
follow such a practice. S-BGP, So-BGP,
and IRV address the security issue of
BGP, but security is always harder to bolt
on later than to build in from the begin-
ning.

PANEL: ELECTRONIC VOTING 

SECURITY

Summarized by Scott A. Crosby

The panel for electronic voting security
included Dan Wallach as moderator, Jim
Adler from VoteHere, David Dill from
Stanford, David Elliot from Washington
State’s Office of Secretary of State, Dou-
glas W. Jones from University of Iowa,
Sanford Morganstein from Populex, and
Aviel Rubin from Johns Hopkins Uni-
versity.

The panel started off
with a warning by Dan
stating that “no blood
will be spilled,” and
asked if anyone from
Diebold was in the audi-
ence. This was timely
because two weeks
before the conference, a
highly critical report on
Diebold voting
machines was released.
The authors of that
report included Avi

Rubin, the first speaker, and Dan Wal-
lach, the moderator.

Aviel Rubin started with highlights from
the report and a rebuttal from Diebold.
He discussed high-profile disclosures
and the risks of these disclosures: legal
action against the researchers, restrain-
ing orders against publishing, PR blitzes
to discredit the researchers, and jeopar-
dizing one’s job or career. He also made
some firsthand observations of the
response he experienced: people criticiz-
ing the paper without reading it, people
calling his boss to complain, and detrac-
tors lying to the press and playing on
emotion.

The next speaker was Doug Jones, a
computer scientist who also sits on the
Iowa Board of Examiners for voting
machines. As part of that duty, he has
assessed voting machines presented by
various vendors, including Global Elec-
tion Systems (later bought by Diebold).
He said that in 1997 he talked to the
head developer at GES about its flawed
use of a static constant as an encryption
key, a flaw that still existed over five
years later in the code examined by Avi
Rubin. He spent most of his presenta-
tion documenting that claim and how it
shows that the voting machine certifica-
tion system is demonstrably flawed.

After Doug Jones came Jim Adler. Vote-
Here does not make voting machines,
but it creates software technology for

L. to R.: Aviel Rubin, Dan Wallach, David Elliott, Jim
Adler, Douglas W. Jones, Sanford Morganstein

12TH USENIX SECURITY SYMPOSIUM l  



machines. Doug classified attackers as
insiders and outsiders and pointed out
the need for threat analysis and open
technology. He described his company’s
voting system which uses cryptographic
magic to construct ballots and secure
shuffles to preserve anonymity. He
emphasized the importance of looking
at requirements, design, and risk analy-
sis.

David Elliot described the problems of
the current system as the result of
benign neglect. It’s designed with secu-
rity based on controlled access to the
system. He noted that there were no
security standards until 1990, and even
those are voluntary. The current testing
methodology is hardware stress tests like
heat and vibration, not security.

Next came Sanford Morganstein, a rep-
resentative from Populex, a company
that actually manufactures voting
machines and is brand new to the field.
Their system is a reimplementation
based on the Mercuri Method, in which
a computer voting machine prints out a
human-readable receipt with a bar code.

The final panelist was David Dill. He
focused on the cultural gap between
computer scientists and voting officials.
Voting officials believe that black-box
testing can detect malicious code and
refuse to listen to computer scientists
who say differently. Short-term prob-
lems required fixing the regulatory and
certification framework and stopping
the acquisition of paperless voting
machines. He described the long-term
problem as satisfying the requirements
that lead to touch-screen voting, such as
a dislike of paper.

The panel then opened to questions.
One questioner inquired whether open
source is necessary for secure design.
The response from Jim Adler was that all
that is needed is verifiability of results. A
point was made that even if open source
was used, no one could know that a par-

76 Vol. 28, No. 6 ;login:

ticular program was what was actually
being run in the machine. There was
disagreement between panelists over the
need for a paper trail. Jim Adler was crit-
ical of a proposed bill that required one,
claiming that it would be stupid and
proscriptive; his design uses cryptogra-
phy that would make paper obsolete.
Aviel Rubin disagreed; a mechanism
only Ph.D.s understand will be less
trusted by the general public than paper.

INVITED TALKS: INTERNET SECURITY:

AN OPTIMIST GROPES FOR HOPE

BILL CHESWICK, LUMETA

Summarized by Tara Whalen

Bill Cheswick provided a historical per-
spective on computer security, explain-
ing why he remains optimistic that good
security is possible (despite his state-
ment that “an optimistic security person
may be an anti-job requirement”). Back
in 1993, when he and Steve Bellovin
were writing the first edition of Firewalls
and Internet Security, the Web had not
yet arrived on the scene and most net-
work attacks were theoretical. There was
no wide-scale sniffing, no massive denial
of service attacks, not many worms. But
fast-forward only a few years, and these
attacks have become prevalent, coupled
with a rapid rise in the use of the Inter-
net. Cheswick stated that “there are lot
more players, and on average they are a
lot less secure.”

However, there are also a lot of tools
available that weren’t around in 1994,
such as widely available crypto, SSH,
firewalls, and intrusion detection sys-
tems. Many of these can be easily
deployed, as you don’t have to “roll your
own” security tools anymore.

There are a number of reasons why
Cheswick remains optimistic: Reliable
systems can be built from unreliable
parts; we have control over the rules we
set on our hosts; good encryption is

readily available; and “the Bad Guys are
giving us lots of practice.”

Cheswick pointed out that a cost vs.
benefit analysis must be performed: We
need to figure out the value of our
assets, and how much an attacker is will-
ing to spend. Security is not perfect but
only needs to be “good enough.” There
are some problems that resist easy solu-
tions, such as buggy software, poor pass-
word choices, and social engineering.
Also, even experts can’t always get things
right. To illustrate this point, Cheswick
displayed some passwords that had been
sniffed during the conference from the
USENIX wireless network.

To mitigate these problems, he proposed
several security strategies. First, stay out
of the game if possible (“best block is
not be there”), through such means as
avoiding the monoculture of homoge-
neous systems. Second, deploy defense
in depth by engineering redundancies
into your systems. Third, make security
as simple as possible: Set up secure
defaults and use hardware tokens.
Finally, design security into a system
from the start, because it can’t simply be
added later.

Cheswick continued his talk with a dis-
cussion on firewalls. Although they are
useful in many situations, they have cer-
tain drawbacks. For example, people go
around them, and they offer no protec-
tion from insiders. Another problem is
that firewalls are often used as perimeter
defense around very large perimeters;
Cheswick believes that smaller enclaves
are much safer. Note that you don’t have
to use a firewall. Cheswick stated that
this is like “skinny-dipping on the Inter-
net: somewhat exciting, but with an ele-
ment of danger.” Such an approach
requires secure host technology, like the
current efforts in *BSD and Linux. One
technique is to jail servers (and clients),
for example, through chroot. Cheswick
provided a list of “routes to root” that
should be minimized (such as root net-



work services and setuid programs), and
stated that chroot is the only standard-
ized layer of defense that we currently
have. He described his experiences with
jailing programs, outlined some practi-
cal difficulties of this approach, and
listed some of the programs he has jailed
(Web servers, Samba) and those that
probably should be jailed (Apache,
NTP).

Cheswick next provided an interesting
diversion about “spook networks,”
telling the audience to talk to spooks for
their advice (rather than their secrets).
He said that they seem to have a great
deal of success running secure networks,
and have adopted good practices for
maintaining secure systems (e.g., using
enclaves and restricting client software).
Cheswick finished his talk with a secu-
rity wish list, which included more work
on chroot, formal analysis of crypto, and
sandboxes for browsers. He concluded
with his contention that things can get
better, with enough work and diligence.
The audience responded to this talk with
anecdotes and opinions, as well as a few
questions:

Q: What’s the worst thing you could do
to the Internet? 

A: I don’t want to give specifics, but the
worst thing I can think of would take it
down for weeks. As in the past, I expect
that experts would step in to respond
immediately, but they’d probably all
have to phone each other.

Q: You didn’t mention how to help users
operate security tools correctly.

A: I don’t think that users are going to
become more competent. My hand-wav-
ing answer is to use tools like USB don-
gles, obtained from a trusted source.

77December 2003 ;login:

REFEREED PAPERS: HARDENING I

Summarized by Chris Ries

POINTGUARD: PROTECTING POINTERS FROM

BUFFER OVERFLOW VULNERABILITIES

Crispin Cowan, Steve Beattie, John
Johansen, and Perry Wagle, WireX
Communications

The goal of most attackers in exploiting
vulnerabilities is to execute code that
they provide, commonly known as shell-
code. Usually this is done by overwriting
a pointer and aiming it at their own code
that has been placed somewhere within
the attack space. Different approaches
can be taken to protect these pointers,
such as surrounding them by canary val-
ues that expose an attack if they are
overwritten. The authors, however, take
the approach that pointers are danger-
ous until they are loaded into a register,
and so their method involves encrypting
the pointer until this occurs. During an
attack, when the pointer is de-referenced
after being overwritten, it will not jump
to where it was intended, since the value
it was overwritten with will be decrypted.
Instead, it points off into some “crazy
space” and the program crashes. Point-
Guard works at compile time and essen-
tially XORs pointers stored in memory
with a secret key. This key is kept on its
own page, and the page is marked read-
only so that the attacker cannot over-
write it. It can be implemented at differ-
ent times during the compilation process
– either at the pre-processor stage, inter-
mediate representation, or the architec-
ture-dependent stage – but the authors
decided to implement at the intermedi-
ate level. This stage is late enough to
avoid most chance of the defenses being
optimized away, and early enough to still
have type information to distinguish
between pointer and non-pointer data.
There are some difficult issues that arise
while using PointGuard, such as mixing
PointGuard-compiled code with code
that was compiled without it. For this,
the authors added compiler directives.

Another major problem, preventing
cleartext leaks when register values are
stored on the stack to free them up for
other purposes, will be prevented in
future implementations.

The authors were surprised to discover
that in some situations code compiled
with PointGuard actually performed
better than code that was not. This is
probably because PointGuard uses regis-
ters more heavily than the normal com-
piler. Other performance costs varied
from less than 1% to 21% overhead.

ADDRESS OBFUSCATION: AN EFFICIENT

APPROACH TO COMBAT A BROAD RANGE

OF MEMORY ERROR EXPLOITS

Sandeep Bhatkar, Daniel C. DuVarney,
and R. Sekar, Stony Brook University

Using a language such as C or C++
allows the programmer to have greater
control over memory with tools such as
pointers, but this opens programs up to
memory errors such as buffer overflow
vulnerabilities. One possible solution is
to use a type-safe language, but C is too
widely used today to be completely
abandoned. Other solutions involve
educating the programmer or ensuring
that the programmer’s assumptions
about input are always valid. Instead, the
authors provide a solution that involves
directly stopping the attacker. In order
to exploit these memory errors to gain
control of the program, the attackers
need to know such data as the distance
between the buffer their input is placed
into and the return address or the mem-
ory address of the buffer itself. By ran-
domizing the virtual addresses of the
memory the program uses, the attacker
will jump to a random location and
crash the program most of the time,
which provides a telltale sign of the
attack. Similar solutions are being used
in both the PaX project and PointGuard.

Address obfuscation is performed dur-
ing linking, loading, and execution.
The authors’ method essentially involves

l
  

 C
O

N
FE

RE
N

CE
RE

PO
RT

S

12TH USENIX SECURITY SYMPOSIUM l  



three different ways to obfuscate:
(1) Randomize the base address of the
stack, heap, and code memory regions,
as well as the starting address of dynam-
ically linked libraries; (2) add random
gaps within the stack between allocated
memory on the heap, and to routines, to
be just jumped over; and (3) permute
the order of local variables on the stack,
static variables, and the routines of
dynamically linked libraries and of the
program itself. Such obfuscations make
exploits that rely either on absolute
addresses (stack smashing, return-into-
libc, heap overflows, double free, data
modification) or on relative addresses
(partial overwrites and data modifica-
tion) much more difficult. Many attacks
are very unlikely to be successful when
this method of obfuscation is used (the
authors report a 4*10-5 success probabil-
ity with return-into-libc attacks). It also
involves no change to source code, and
very little overhead.

HIGH COVERAGE DETECTION OF

INPUT-RELATED SECURITY FAULTS

Eric Larson and Todd Austin, University
of Michigan 

Many software vulnerabilities, such as
the latest MS RPC DCOM vulnerability,
arise from the failure to perform proper
boundary checking on data. Data received
from a network, for example, is often
trusted and put into a buffer without first
checking that the buffer is big enough.
Other bugs occur when string library
functions are improperly used, and these
bugs can lead to serious security vulner-
abilities, such as stack overflows and for-
mat string bugs. Searching for these bugs
can occur at several different stages. It
can be done at compile time, in which
case there is no dependence on what
input is actually used, but this makes
things like keeping track of data on the
heap difficult. Instead, the authors
decided to take the approach of check-
ing at runtime, but eliminated many
common weaknesses of doing it at this

78 Vol. 28, No. 6 ;login:

stage, such as specifying actual input to
check for bugs. Since the method will
find a bug even if a dangerous value is
not input, it only needs to be used dur-
ing the software testing phase. When
testing is complete, it is no longer used,
and therefore there is no performance
penalty. The authors’ method involves
shadowing any variables that contain
user input. For example, integers are
shadowed by a variable that stores its
lower and upper bound, strings are
shadowed by a variable that stores its
size and whether it is null-terminated,
and array references are shadowed by a
variable containing possible ranges.
These shadow variables are adjusted at
any control points, such as loops, if
statements, and arithmetic operations.
At any use of the input that is potentially
dangerous, the possible range of the
input, not the input itself, is checked, so
even if a dangerous value is not input
errors can be detected. Using their imple-
mentation, the authors tested eight dif-
ferent programs and discovered 16 bugs,
including three in the popular OpenSSH
program. Most of these were the result
of unbounded integers used in loops.
Their method does have some limita-
tions, such as only checking the execu-
tion paths taken during runtime, and it
also has high runtime performance
penalties. Some of their future work will
involve optimizing their current imple-
mentation.

INVITED TALK: WHEN POLICIES 

COLLIDE: WILL THE COPYRIGHT

WARS ROLL BACK THE COMPUTER 

REVOLUTION? 

Mike Godwin, Public Knowledge 

Summarized by Tara Whalen 

Mike Godwin described how legislation
put forward by content providers
(media interests) will impede progress
in the computer sector. The fundamen-
tal issue is that computers are very good
at making copies: this is part of their

basic functionality. This is not news to
the IT sector, but it was news to the
media (particularly the music industry).
Content companies did not expect
duplication of digital media; the music
industry is an object lesson for the rest
of the content industry (TV, movies) –
they are looking at file trading, fear it
will destroy them, and want to stop it.

In the summer of 2000, Michael Eisner
told Congress there was a need for more
legislation to protect copyrighted works.
Only two years earlier, Jack Valenti said,
“We aren’t going to need legislation,
because DCMA will protect us.” But Eis-
ner felt that more legislation was neces-
sary, stating, “The problem for us is
computers.” Not file trading, or broad-
casting, but computers. As usual, media
players wanted targeted legislation, which
is never as narrow as they think it is.

Hollywood can’t say, “We have to stop
the computer revolution.” This won’t
work at all. But they can propose sys-
tems that have the effect of slowing
down the pace of the computer revolu-
tion. For example, in the mid-1990s,
Hollywood proposed legislation to pro-
tect video content through a scheme
that marked every small set of frames.
You’d play the video and the computer
would look for the marks – if marks not
there, then okay to copy, else abide by
copyright rules. This is a very inefficient
solution from a computer perspective:
You need to dedicate resources to check
for copyright marks. After extensive IT
and media debate, they eventually
derived the DVD standard. This stan-
dard (a) doesn’t need to look for a mark,
and besides which (b)  DVD turned out
to be a huge windfall.

Godwin went on to say that this experi-
ence taught different lessons to IT and
media. IT companies concluded that if
they negotiate with Hollywood, they can
get a good compromise. What Holly-
wood concluded is that if they muscle



hard enough, they can drag IT to the
table and get largely what they want.
Fast-forward to the Hollings Senate bill.
It would have required a copyrighted-
work-detecting chip built into every dig-
ital device. For this approach to work,
there would need to be a regulatory but-
tress supporting it, because you can beat
this scheme fairly easily. This now moves
the debate into the arena of policy deci-
sions, which would require re-architect-
ing the digital world from top to bot-
tom.

Godwin is concerned that such legisla-
tion will hamper progress: IT has been
built on open architectures, which cre-
ated opportunities and investment. “If
Hollywood had its way, computers
would be more like consumer electronic
devices, with limited, controlled func-
tionality. . . .What’s troubling to me is
that the content guys don’t seem to see
what harm they may be doing. They
know that marking schemes require
making devices untamperable, but they
don’t seem to realize this has a high cost
– to us, but also to them. They will slow
down the computer revolution that they
themselves use for their business.”

Godwin added that this is about making
computer platforms acceptable to the
content industries. We value user control
in the IT community, and we don’t want
to give that up, but this model is now at
risk. He concluded his talk by asking:
What do we tell Hollywood? The glib
answer is, “Develop another business
model.” A better answer is, “If you are
concerned about content, we can design
a more secure system that is leaky but
overall will still make you money [like
the DVD model].”

The talk was followed by extensive audi-
ence commentary and questions:

Q: We seem to be losing the Hollywood
battle. What position can we actually
hold? 

79December 2003 ;login:

A: The best compromise is probably to
tell Hollywood to encrypt content at
source and restrict the decoding to soft-
ware decoding, such as with the DVD
model.

Q: But studios aren’t happy with the
DVD model – can we hold them to it so
they won’t keep demanding changes? 

A: When we negotiate compromises, we
need to include consumer interests, not
just studio interests.

Q: This situation reminds me of the
crypto wars, with lots of regulation set
up against a small group of geeks.
Progress went ahead only when business
came forward as an ally – who’s the new
ally in this arena? 

A: I’m happy to work with any company
who wants to work with me on these
proposals. There are IT people who are
suspicious of Microsoft or Intel, and you
shouldn’t assume that they are your ene-
mies: use their muscle.

REFEREED PAPERS: DETECTION

Summarized by Chris Ries 

STORAGE-BASED INTRUSION DETECTION:
WATCHING STORAGE ACTIVITY FOR SUSPI-
CIOUS BEHAVIOR

Adam Pennington, John Strunk, John
Griffin, Craig Soules, Garth Goodson,
and Gregory Ganger, Carnegie Mellon
University

Current intrusion detection systems are
often implemented at either the host
level or the network level. There are sce-
narios, however, where both of these can
fail. If an attack is too new and there is
no signature for it, or worse yet, if it is
misconfigured, a network intrusion
detection can fail to spot an intruder.
Host intrusion detection systems can
also be disabled by rootkits after a host
has been compromised, and logs can be
scrubbed to cover the attacker’s foot-
steps. Adding storage-based intrusion
detection could help “augment the capa-

bilities” of already existing systems and
spot some of these attacks. The authors’
idea was to implement an intrusion
detection system on a host used for stor-
age by multiple computers. With this
setup, the intrusion detection system
sees all persistent activity, and is also on
a separate self-contained host, so it is
not susceptible to being disabled after
one of the hosts that uses it is compro-
mised. It monitors changes to static files
or corruption of well-understood files
such as /etc/passwd, unexpected changes
to the middle of a log file, or any suspi-
cious content. The authors state that the
storage IDS is no “silver bullet” and has
limitations and weaknesses like any
other IDS. One unique limitation is that
it only sees storage traffic, so other traf-
fic such as denial-of-service attempts
will not be detected. It is also susceptible
to general IDS weaknesses, such as false
positives and misconfiguration. It does,
however, add another level of detection.
The authors concluded that storage
IDSes provide a new vantage point to
watch from, with minimum space and
performance costs.

DETECTING MALICIOUS JAVA CODE USING

VIRTUAL MACHINE AUDITING

Sunil Soman, Chandra Krintz, and 
Giovanni Vigna, University of Califor-
nia, Santa Barbara

One of the original goals of Java was to
provide dynamic content embedded into
a Web page. Since then its use has spread
much further, due to such strengths as
security, flexibility, and portability. Cur-
rently, Java security consists of type sys-
tem and verification mechanisms, as
well as mechanisms that can be used for
authentication and access control. Fine-
grained auditing and intrusion detection
could improve the existing security built
into Java, but running a host-based IDS
as a separate process will not be effec-
tive, since multiple Java applications are
run within the same virtual machine.
The goal of the authors was to add an

l
  

 C
O

N
FE

RE
N

CE
RE

PO
RT

S

12TH USENIX SECURITY SYMPOSIUM l  



event stream at the JVM level with fine-
grained response, which would allow for
intrusion detection within the JVM. To
create their built-in event stream, the
authors first began with JikesRVM and
extended it to associate a user ID and IP
address with each thread. They also built
in an auditing system that consists of an
event driver, an event queue, and an
event logger thread that runs as a system
thread and reports to an external audit
log. This audit log is then processed by
an external IDS based on the STAT
framework developed by the authors in
a prior work. They extended that STAT
core with a language-extension module,
an event provider that collects the
events, and a response module for react-
ing to attacks. To test their IDS they cre-
ated various attack scenarios and
showed the reports generated from
them. They demonstrated harmful
thread intercommunication, unautho-
rized access detection, and privileged
information leakage. The alerts gener-
ated from these attacks included time,
action, source thread ID and UID, inter-
nal network and remote address, sensor
that detected the attack, result of the
attack, and message-specific data. They
also tested the performance with both
partial and full logging enabled: perfor-
mance time increased from 1 to 2.5 sec-
onds (on an Intel Xeon 2.4GHz with
1GB RAM). In the future they plan to
reduce this overhead.

STATIC ANALYSIS OF EXECUTABLES TO DETECT

MALICIOUS PATTERNS

Mihai Christodorescu and Somesh Jha,
University of Wisconsin 

Mihai Christodorescu began by dis-
cussing how malicious code detection,
like many other areas of computer secu-
rity, has really become an arms race
between the good guys and the bad guys.
Detection of viruses and other malicious
code began with the use of signatures to
identify the malicious code. To foil this
detection, the bad guys started using

80 Vol. 28, No. 6 ;login:

techniques such as register renaming,
and the good guys countered this by
using regex signatures that were essen-
tially templates that allowed the signa-
tures to have gaps. Next, the bad guys
started packing and encrypting the mali-
cious code, and the good guys countered
this by using emulation and heuristics.
Now the bad guys have started to use
code reordering and integration to try to
keep their malicious code from being
detected, and this type of obfuscation is
not always detected. The authors obfus-
cated four viruses using NOP-insertion
and code transposition, and then scanned
them using three popular antivirus tools.
The viruses that they used were Cher-
nobyl, zombie-6.b, f0sf0r0, and Hare,
and none of the scanners detected the
obfuscated versions. Their tool, however,
called SAFE (Static Analyzer for Exe-
cutables), detected all four of them. A
malicious binary is first loaded into
SAFE, then a control flow graph (CFG)
is created for each procedure. A program
annotator then reads a CFG and a set of
abstraction patterns from a library. The
output is an annotated CFG that has
patterns associated with each node of
the graph. For example, a NOP instruc-
tion would have a pattern matched with
it that states that it is an irrelevant
instruction. A pattern consists of a list of
typed variables, a sequence of instruc-
tions, and Boolean expressions. A detec-
tor then reads this annotated CFG and
compares it to a malicious-code
automaton to decide whether it contains
any malicious code. The advantage of
their approach is that SAFE is able to
detect malicious code even if it has been
obfuscated. As was pointed out during
the Q & A, as long as there is a mali-
cious-code auto-maton for that type of
behavior, obfuscation will not fool
SAFE. The performance of their imple-
mentation seemed to be successful, as no
false positives or negatives were encoun-
tered. They plan to improve SAFE by

having it look for different types of
malicious code, such as trojans.

INVITED TALK: PHYSICAL SECURITY:

THE GOOD, THE BAD, AND THE UGLY

Mark Seiden, MSB Associates 

Summarized by David Molnar

Mark Seiden began by talking about the
basics of physical security. In the physi-
cal world, unlike online, the concept of
“secure perimeter” is real and meaning-
ful. Security audits begin by talking
about security analyses. Unfortunately,
it’s important to make sure that a secu-
rity analysis is realistic. Too often, when-
ever someone says, “I did a security
analysis and determined that it was not a
threat,”“it” ends up being something
they didn’t think about.

Seiden went over the basics of establish-
ing a secure perimeter. Check doors,
windows, and also roof and tunnel access.
As an undergraduate at Columbia Uni-
versity in the late 1960s, he reported on
student demonstrations and police reac-
tions to them by sneaking into the main
library at Columbia through the sewers.
Because the police had chained and
locked the front door, they thought it
was “secure.”

Another case dealt with a supposedly
“ultra secure” co-location facility Seiden
had visited as part of his work. The facil-
ity boasted motion detectors, alarms,
and other measures for notifying secu-
rity when a breach had occurred. Unfor-
tunately, it also had pull-up floors. Sei-
den and a colleague attempted to trip
the response system by first going under
the floor to come up in a server room
and then tripping the motion detector.
Instead of calling security, the motion
detector simply opened the locked door,
a common setup to prevent someone
from accidentally being locked inside.

Seiden also talked about the divergent
security philosophies of the physical and
network security communities. For the



physical security community, security by
obscurity is valid – it means an adver-
sary has to put in more work to deter-
mine the layout of your installation, and
this may buy you time after a break-in.
By contrast, the network security com-
munity does not value security by
obscurity nearly as much and therefore
will share information at conferences
such as this one. As a concrete example,
the speaker pointed to Matt Blaze’s
recent work on rights amplification in
master-keyed locks. The physical secu-
rity community had known about this
issue for a long time, but their culture
was to keep it secret and not talk about
it. The network security culture pub-
lished it so as to effect systematic
change.

Another side effect of the culture of
secrecy is the suppression of informa-
tion regarding incompatibilities that
affect security. For example, the most
popular deadbolt and the most popular
electric strike (a device that allows elec-
tric operation of a lock, such as by a
computerized access control system) are
incompatible. Installing the strike dis-
ables the deadbolt-locking mechanism,
degrading the lock to the security of just
an ordinary house lock.

As a case study of the boundary between
computer and physical security, the
speaker talked about a magstripe access
control system he had audited. The sys-
tem consisted of panels and a central
access control list system. Panels had
limited memory and communicated
with the main system via dialup modem.
The system then pushed lists of
approved users and pulled access events
(such as attempted unauthorized
access). Unfortunately, the dialup con-
nection was not authenticated in any
way; anyone could call up the panel or
alternatively interpose and pretend to be
the main access control system. At the
least, such a compromise could be used
to flush the panel’s record of access con-

81December 2003 ;login:

trol events, because panels did not keep
records after the first attempt to send
events to the main system. At the worst,
password guessing or eavesdropping
could be used to take complete control
of an access panel.

The speaker and his team also took a
look at the source code of the access
control system. It turned out that the
source code contained #ifdefs specific to
each customer of the system. From the
code snippets, much could be inferred
about the structure of these customers’
access control needs. The audit also
uncovered several cache-consistency
issues between panels and the main sys-
tem. When questioned, the manufac-
turer claimed that everything was oper-
ating “exactly as designed.”

REFEREED PAPERS: APPLIED CRYPTO 

Summarized by Gelareh Taban 

SSL SPLITTING: SECURELY SERVING DATA

FROM UNTRUSTED CACHES

Chris Lesniewski-Laas and M. Frans
Kaashoek, MIT

This presentation focused on the prob-
lem of reducing bandwidth load from a
server Web site while still allowing  high-
content throughput to its clients. One
possible solution is to use mirror sites.
That is, the server can ask a group of
volunteers to proxy the contents of the
site and so distribute the bandwidth
load. However, this scheme has potential
for mischief, whereby an adversary can
pose as a volunteer and serve modified
contents to the clients. So this scheme
requires trust in the proxy from both the
client and the server.

A cryptographic solution is for the
server to attach a signature to the data
being served and allow the client to
ensure the integrity and authenticity of
this content by verifying the signature.
Existing protocols that deal with this
problem are not practical, since they
either require the client to use a special-

ized browser (e.g., S-HTTP, SFSRO),
thus leading to the depreciation of their
deployment, or the protocol operates at
the channel level and not the file level.

An example of the latter protocol is the
widely deployed browser support for the
SSL protocol. The author splits the
server end of the SSL connection by
introducing a proxy between the server
and the client, such that the proxy is not
privy to the shared client-server key. In
this scheme, the proxy caches the data
content of the server. In response to a
request from the client, the server sends
the proxy the unique identifier of the
requested data as well as a message
authentication code (MAC) for the data,
using the shared secret key. The proxy
then sends the cached data and associ-
ated MAC to the client. The server thus
is able to offload bandwidth to mirrored
sites while maintaining the integrity and
authenticity of the data. The problem
with this scheme, however, is that there
is no end-to-end confidentiality; the
server only distributes bandwidth load
and not CPU.

In short, SSL splitting reduces band-
width load while guaranteeing end-to-
end data integrity and offering trans-
parency to the client. For more informa-
tion, visit http://pdos.lcs.mit.edu/
barnraising/.

A NEW TWO-SERVER APPROACH FOR

AUTHENTICATION WITH SHORT SECRETS

John Brainard, Ari Juels, Burt Kaliski,
and Michael Szydlo, RSA Laboratories

Ari Juels opened his presentation by
recalling the other name of the project,
“Nightingale,” explaining, “It was a mid-
night project.” He went on, “The project
began as an inquiry into the mind of the
hacker.” What does a hacker want? Fame,
wealth, love . . ? Alas, the hacker wants
“root access”!

The sensitive data the project “Nightin-
gale” is intended for are short secrets

l
  

 C
O

N
FE

RE
N

CE
RE

PO
RT

S

12TH USENIX SECURITY SYMPOSIUM l  



and “life” questions, commonly used on
the Internet today to authenticate users.
How are these data stored securely on
the application server? There are two main
types of protections: frontline defenses
such as up-to-date security configura-
tion, authentication, and intrusion
detection, and cryptographic rearguards
such as hashing and encryption. How-
ever, due to the architecture of the
scheme, there exists a “single point of
compromise.” This means that once
access is obtained to the server, all data
on the server is compromised. The
adversary is able to launch various
attacks, exploiting the weaknesses of the
cryptographic techniques employed.

Nightingale eliminates the weaknesses of
a single point of compromise by distrib-
uting the secret data between two servers,
the application server and the Nightin-
gale server, so that compromise of a sin-
gle server does not compromise the data.
The data can be shared using threshold
cryptography and can be used to per-
form distributed (or blind) secret verifi-
cation, remote reconstruction of data
shares, or management of cryptographic
keys.

The architecture of the system is impor-
tant. Instead of allowing both servers to
be equally accessible by the client, it is
proposed that the Nightingale server be
placed behind the application server,
allowing better security protection as
well as client transparency of the servers.
Furthermore, different implementations
of the servers allows different levels of
security and protection for the secret
data.

Presently, Nightingale is being integrated
into the RSA Security Inc. product lines.
For more information on the Nightin-
gale system, please refer to http://
developer.rsasecurity.com/labs/nightingale.

82 Vol. 28, No. 6 ;login:

DOMAIN-BASED ADMINISTRATION OF IDEN-
TITY-BASED CRYPTOSYSTEMS FOR SECURE

EMAIL AND IPSEC

D.K. Smetters and Glen Durfee, PARC

How do we make public keys more
usable?

Deployment of cryptographic tech-
niques today in such applications as
secure email and IPSec has been ham-
pered by the distribution of keys in a
public key infrastructure (PKI). More
specifically, the sender has to ensure that
the receiver has generated a certified key
pair, and the sender must also obtain an
authenticated copy of the receiver’s pub-
lic key. This means that trust must exist
between the sender and the certificate
authority (CA) of the receiver. However,
there are many difficulties involved in
establishing a large-scale PKI, most
importantly the question of large-scale
trust between users.

The authors automate key distribution
in a PKI setting by combining the idea
of limited trust in the existing hierarchi-
cal DNS server infrastructure (using
DNSSec to ensure security) with the
usability advantages of identity-based
cryptography (IBC). The main idea of
IBC is to make the private key a function
of the public key and some IBC parame-
ters, thereby allowing the “identity” of a
user to be her public key. In practice,
however, the global scope of trust and
namespace needed in a large-scale infra-
structure is unacceptable for most appli-
cations. The proposed DNS-based IBC
(DNSIBC) allows limited but usable
scope.

The authors bootstrap trust from
DNSSec such that clients are authenti-
cated in their own local domain. This
means that key-escrow, an automatic
side effect of IBC, will also be limited to
the local domain. The scheme requires
no secure servers on the Internet, and
only IBC parameters need be stored 
on DNS. Key revocation can be easily

implemented by using time expiry for
the keys. DNSIBC is easily deployed and
incorporated in S/MIME and IPSec.

INVITED TALK: THE INTERNET AS THE

ULTIMATE SURVEILLANCE NETWORK 

Richard M. Smith

Summarized by David Molnar

From the abstract, I expected that the
talk would be about the current uses of
the Internet for surveillance. Instead, the
speaker gave a more speculative talk
about how the Internet could be used in
the future to enable global tracking and
surveillance of individuals. This specula-
tive talk managed to provoke a great deal
of discussion, particularly in the area of
radio frequency identification (RFID)
technology.

Smith began by pointing out that more
and more devices will become IP-
enabled, including phones, laptops, and
PDA devices. He then defined devices
analogous to a URL but intended to
encapsulate information about a target’s
physical location. These location mark-
ers could be generated and then sent
surreptitiously through any Internet-
enabled device to a central database. The
result would be a pervasive infrastruc-
ture for keeping track of the locations of
people and passing the information back
through other devices to a central data-
base.

How can a device recognize what person
has come in contact with it? The speaker
pointed to several methods, but the
method that excited the most comment
was that of keeping track of a person by
his or her personal RFID profile. The
speaker outlined the current state of
RFID technology and future trends.

Passive RFID tags consist of small chips
connected to antennae. The chips are
powered by a radio broadcast from a
special RFID reader. These passive RFIDs
carry an ID number and not much
more, which allows them to be used to



replace barcodes and to perform remote
tracking. Currently, passive tags cost less
than 50 cents (US) per tag, but the even-
tual goal is to reduce costs by another
order of magnitude, to five cents, to
enable per-item RFID tagging. Active
RFID tags are more expensive, have their
own internal battery, and are generally
used for containers or other aggregates
of goods.

One of the envisaged applications for
per-item RFID tagging is theft reduc-
tion. The speaker talked about a recent
field trial of RFIDs in Gillette Mach3
razors. Mach3s are easily resellable and,
consequently, often shoplifted. The trial
combined RFIDs on each razor package
with a “smart shelf” that took a picture
of a customer whenever he or she
removed “too many” packages of razors.
The idea here is that if the razors are
later found to have been shoplifted,
there is a picture of the perpetrator.

Smith then demonstrated a Texas
Instruments RFID reader and invited
audience members to come up after-
wards to check whether their devices
carried RFID. The reader connected to a
laptop; associated display software
picked up RFIDs in several items carried
by the speaker and displayed them on the
screen. The audience could then clearly
see how some innocuous-looking items
from the speaker’s wallet in fact turned
out to contain RFID tags.

The discussion of RFIDs turned out to
be controversial even before the ques-
tion and answer session. Perry Metzger
interrupted the speaker at several points
to underline potential threats involved
in pervasive RFID. For example, would 
it be possible to build a device that
allows someone to travel through a
crowd and read off the RFID informa-
tion of all passersby? Metzger claimed
such a device was easy with current
technology, while the speaker was not so
sure. The speaker also disagreed with

83December 2003 ;login:

Metzger about the feasibility of an active
device that could “burn” out RFIDs by
sending them too much power.

During the question and answer session,
much discussion focused on the nature
of RFID technology and its implications.
Some audience members questioned the
speaker’s assertion that per-item RFID
tagging would be driven by shoplifting
protection, since shoplifting is just “part
of the cost of doing business.” Others
wanted to know if the RFID reader
demonstrated would catch all RFIDs that
might be on their person; the speaker
replied that was not true, because multi-
ple standards for RFID currently exist. A
reader for one standard may not read
tags for another. A great deal of discus-
sion involved the range of RFID readers
and the possibility of RFID “burners,”
but without much agreement.

Summarizer’s note: Readers who desire
more information on RFIDs may find
the following links helpful:
Silicon Valley RFID Yahoo! Group:
http://groups.yahoo.com/group/sv_rfid/;
MIT Auto-ID Center: http://www.
autoidcenter.org/
RFID Privacy Symposium at MIT,
November 15: http://www.rfidprivacy.
org/ and associated Web log http://www.
rfidprivacy.org/blog.

PANEL: REVISITING TRUSTED 

COMPUTING 

Panelists: Douglas Barnes, Dave Saf-
ford, William Arbaugh, and Peter Biddle

Summarized by Catherine Dodge

The panel began with short comments
from each of the panelists: Peter Biddle
from Microsoft, Dave Safford from IBM,
William Arbaugh from the University of
Maryland, and Douglas Barnes founder
of the Government Open Technology
Information Project.

In his comments, Biddle referred to a
technology as NGSCB (pronounced ink-
scab), its current moniker within

Microsoft. In his presentation, he
focused on how NGSCB is being devel-
oped to meet customer concerns about
the erosion of their IT security perime-
ter. Increasingly, mobile computers, cell
phones, PDAs, and other wireless
devices are accessing the network, often
bypassing outdated security measures
not designed to handle these new tech-
nologies. He cited the occurrence of
Xbox tournaments over the Microsoft
corporate network as evidence that
administrators have less and less control
over the ways their IT systems are being
used. This has led to customers wanting
a means of doing application-to-appli-
cation authentication that will protect
intellectual property information, be it a
clinical trial database or a secret recipe.
Along with this protection, customers
are asking for technologies that will
allow them to share select information
and systems with suppliers, partners,
and customers in a secure and con-
trolled way. Micro-soft’s vision is that
applications must have third-party veri-
fication before running, which would
prevent an application that has had a
keystroke logger added to it, or a bogus
user account, from running. Biddle’s
final point was that Microsoft has heard
loud and clear that customers do not
want to be “locked in,” having once
deployed this technology. For further
reading, consult a paper on authenti-
cated operation of operating systems
(http://cs-people.bu.edu/mpe/acisp.pdf )
and white papers about the NGSCB
architecture (http://www.microsoft.com/
resources/ngscb/productinfo.mspx).

Dave Safford began his comments by
holding up the August 2003 issue of
Linux Journal, which includes an article
on the open source tools for TCPA that
IBM has developed. His perspective is
that no matter what the vendors say,
nothing can convince a skeptical user base
that TCPA isn’t “evil,” therefore any solu-
tion must be open source. He noted 

l
  

 C
O

N
FE

RE
N

CE
RE

PO
RT

S

12TH USENIX SECURITY SYMPOSIUM l  



that the current working document
(http://www.trustedcomputergroup.org)
for the TCG consists of over 320 pages
of dense language. Because of this, most
people engaged in the debate over TCPA
have not actually read the specification.
The Trusted Platform Module (TPM, or
TCPA chip) upon which the platform is
based is essentially an RSA chip, with the
key never leaving the chip. A diagram of
the chip can be found in the Linux Jour-
nal article. Safford kept emphasizing
that solutions to the trusted computing
problem should and will be open source.
Further information, including white
papers and source code for a TPM
device driver, can be found at http://
www.research.ibm.com/gsal/tcpa.

Prof. William Arbaugh drove home the
point that any new technology can have
unintended or dual uses, a perspective
which placed him fairly middle-of-the-
road in the debate. While everyone lumps
all trusted computing platform concepts
together, in his view this is incorrect.
There had been very emotional debate
around these platform proposals,
namely, concerns voiced by users that
they will become “locked-in” to the plat-
form, that free software will be excluded
from the playing field, and that the pri-
vacy of users will be seriously violated.
While a trusted platform could support
such usage, the technology alone cannot
do these things. The issues raised above
result from the policy that the trusted
platform would enforce, not from the
platform itself. And just as there are
potential drawbacks, there are also many
potential benefits, such as protected
storage and proof of configuration to a
third party. Ultimately, users should
have the choice of what kind of policy to
use – and a policy language and inter-
face that enables them to understand the
policy choices they make.

Douglas Barnes gave his perception of
what life would be like once a TCPA-like
platform became prevalent. In his view,

84 Vol. 28, No. 6 ;login:

the technology will amplify existing
market power, while ending the sense of
“ownership” users have come to feel over
content and software. He also views any
espoused “choices” as an illusion, since
third-party validation cannot be done
with just anyone if the second party
(namely, the one constructing the
TCPA) does not allow the user to com-
municate with them. To ensure that this
is not what the future of trusted com-
puting looks like, Barnes urged users to
demand that their own benefits take
precedence over the more profit-driven
benefits to be reaped by commercial
parties. Users should also not feel pres-
sured to buy until proper safeguards and
assurances are in place. The discussion
that followed was mainly fueled by ques-
tions around who will ultimately control
how a trusted platform is utilized – the
vendors or the user? Repeatedly ques-
tioned as to how we can be sure that
Microsoft won’t “do it,” interpreted to
mean that the company will not sud-
denly limit the types of policies that can
be implemented on NGSCB, Biddle
stated that Microsoft would be bound by
the contracts it had entered into regard-
ing the NGSCB. They would likely be
bound by the most strict of the contracts
they had signed. Pressed on develop-
ment aspects of the NGSCB project,
Biddle provided some details. Microsoft
is writing the code in C and has people
doing formal methods proofs for the
project. They will not prove the entire
code but will evaluate key components,
such as the memory management mod-
ule. Additionally, the team maintains
two development trees, one for code yet
to be examined and validated and one
for production. The development team
is also utilizing tools that do not allow
changes to the code interface without
making the appropriate changes to the
specification. Biddle emphasized that if
they do not end up with a system that is
comprehensible by a single individual,
they will consider the project a failure.

Another interesting point brought to
light was how humans interact with
security. Most panelists agreed that it is a
problem without a good solution at this
point. Some technical details of the
TCPA were also covered. The panelists
noted that the system is not designed to
be secure against a physical attack. Saf-
ford said that IBM’s goal is to get the
TCPA platform to interact with virtual
machines. Many in the audience were
also concerned about how third-party
software would be able to run on the
platform. Biddle said that the default
setting would be to allow any software to
run. This can then be configured by the
user to narrow down the kinds of cre-
dentials the user accepts. His comments
indicated that the issue of how a small
software developer can “certify” their
software comes down to how the major-
ity of users configure their security poli-
cies under the TCPA.

REFEREED PAPERS: HARDENING II 

Summarized by Clif Flynt 

PREVENTING PRIVILEGE ESCALATION

Niels Provos, Peter Honeyman, Univer-
sity of Michigan; Markus Friedl,
GeNUA mbH

Two problems with secure computing
are bad design and bad implementation.
Even with a good, secure design, a pro-
gram that has a buffer overrun or other
implementation error can be compro-
mised. If that program runs in a privi-
leged state, it opens the door for all
kinds of trouble. Provos described an
application architecture that reduces the
potential for trouble by separating those
sections of an application that require
privileges from the rest of the applica-
tion. This reduces both the amount of
code that must be carefully examined to
create a secure application and the
impact of implementation errors in the
application. For example, applications
that perform user validation require
access to files that users are not allowed



to read (/etc/shadow) and thus must be
run as SUID root.

Provos described how the OpenSSH
application can be split into a small
monitor section that runs with privi-
leges and a larger slave section that per-
forms most of the interaction with a
user. The downside to this is that there is
no automated way to split an application
into privileged and unprivileged sec-
tions. Provos’ implementation of this
concept separates the monitor and slave
into two applications, which use a socket
to exchange requests and data. He
explained that processes under UNIX
are protected entities, and only the
owner can send signals, debug, or other-
wise interact with a process. Requests a
slave may send to the monitor include
Information (request challenge, provide
response from remote, monitor com-
pares) and Capabilities (may access file
system for slave). When a slave dies and
a monitor creates a new slave with a new
ID, there may be state information that
must be saved and loaded into the new
slave. In this case, the slave exports state
to the parent before terminating, and the
new slave imports state without the
monitor evaluating the data. In practice,
exporting the state is pretty messy. This
uses XDR-like data marshaling for
Global Structures; to handle dynami-
cally allocated state, the application uses
shared memory. The master keeps the
shared memory open and lets a new
slave attach to shared memory. Provos
noted that this required a new malloc to
allocate memory in shared mem space
instead of normal heap. The reimple-
mentation of OpenSSH using this tech-
nique included a list of permitted
requests; if a slave’s request is unrecog-
nized, the master immediately termi-
nates the slave. In this implementation,
the slave owns the SSH session socket
and sends Information requests to the
master for server signature, testing pass-
word validity, a challenge to send the

85December 2003 ;login:

SSH client, and to check the SSH client
response. Thus, all determination of
identity of client is done in the monitor;
if a malicious user can manage to com-
promise the slave with a buffer overrun
or a similar attack, the application won’t
allow malicious login.

IMPROVING HOST SECURITY WITH SYSTEM

CALL POLICIES

Niels Provos, University of Michigan 

Niels Provos discussed techniques for
preventing applications from perfor-
ming unexpected actions by reducing
their access to system library functions.
He pointed out that it’s not possible for
anyone to have intimate knowledge of
all the applications running on their
computer. Even given source code, and
assuming enough time to examine it
completely, there’s no guarantee that the
running application is actually compiled
from that code. We must assume that
any vulnerability in a system is known to
an attacker, even if it’s not known to the
user. Any damage to a system must be
done through the system call library.
Intercepting these calls will prevent a
malicious program from modifying a
file system, overwriting memory, invok-
ing other programs, or other unpleasant
actions. Provos’s work resulted in the
Systrace system, which catches all system
function calls on the fly and determines
which calls are allowed (or require per-
mission) to an application. When using
Systrace, no applications need to be run
with root privileges (SUID root). Instead,
applications that require privilege esca-
lation to invoke system functions at a
superuser level are granted access to the
only necessary subset of the system
functions, without exposing other func-
tions to possible abuse. Provos solved
the problem of rule complexity by put-
ting a user-friendly front end on Sys-
trace that pops up a query when an
application tries to do something the
rules don’t allow. If the user is willing to
allow this operation, a new rule is gener-

ated and added to the rule set. With this
technique, one can start with a fully
locked down system that can’t be used
for anything, and develop a set of rules
that permit work to be done quickly.
The Systrace system is implemented as a
hybrid of kernel and user-space func-
tions to provide for portability and effi-
ciency. Provos notes that a good policy is
one that allows only the actions neces-
sary for the intended functionality of the
application and denies everything else.
We can generate policies automatically,
or a user can define policies interactively
via a GUI dialog. In practice, he found
that policies with a subset defined, and
dialogs when something unknown
comes in, converge to good policy fairly
quickly.

INVITED TALK: THE INTERNET IS TOO

SECURE ALREADY 

Eric Rescorla, RTFM, Inc.

Summarized by David Molnar

Note: Slides from the talk are available at
http://www.rtfm.com/TooSecure-usenix.
pdf.

Despite nearly two decades of open
research in security and cryptography,
the state of real-world system security
does not seem to have improved much.
Why is this and what can we do about it?
Eric Rescorla placed the responsibility
for this state of affairs on an incorrect
threat model and lack of attention to
real-world security problems. Practical
software security is much less glamorous
than coming up with a new crypto-
graphic hole. As a result, perhaps we are
focusing on the wrong areas of research
for practical protocols.

The rest of the talk developed this point
with specific examples. The speaker con-
sidered the SSH, SSL/TLS, IPSec, PKIX,
S/MIME, and WEP protocols. These
were divided into “wins,”“draws,” and
“losses.” SSL/TLS and SSH count as

l
  

 C
O

N
FE

RE
N

CE
RE

PO
RT

S

12TH USENIX SECURITY SYMPOSIUM l  



“wins,” IPSec, PKIX, and S/Mime as
“draws,” and WEP as a security “loss.”

In each of these protocols, the threat
models assume that endpoints are invio-
late and links are completely controlled
by an adversary. The speaker then argued
that in the real world, most of today’s
problems come from endpoints com-
promised by virus, worm, or DDoS
attack. Therefore these threat models are
not well matched to today’s real vulnera-
bilities in protocols. In particular, the
practice of requiring public-key certifi-
cates and certificate authorities to pro-
tect against man-in-the-middle attacks
adds significant complexity to deploy-
ment.

In SSL, this complexity is mitigated
because only servers need certificates,
but in the case of encrypted email, the
requirement seems to have significantly
hindered adoption. The speaker also
made the point that perhaps people
don’t actually want encrypted email,
despite the fact that everyone says they
want encrypted email and there are
plenty of startups past and present for
the concept. After all, we are on our
third generation (counting from MOSS)
or more, and still no one uses it.

The SSH “leap of faith” model, in con-
trast, was held up as a good example of a
usable model that manages to resist
most attacks. The speaker noted that
SSH key management was considered a
very bad idea at the time, but now every-
one thinks it’s the right way to go!

Rescorla then discussed the difference in
credit and glamour for flaws in cryptog-
raphy and flaws in software quality. He
made the point that we will review the
entire protocol to deal with one padding
attack that has never been implemented,
as far as anyone knows, but that we seem
to invest comparatively little work in
dealing with buffer overflows or usabil-
ity enhancements. For example, in 1998,
Daniel Bleichenbacher found a vulnera-

86 Vol. 28, No. 6 ;login:

bility in the padding used by SSL; his
name is well known, despite the fact that
his attack has never been seen outside
the lab. In contrast, the discoverer of the
buffer overflow exploited by the Slapper
worm, which compromised thousands
of servers, is practically unknown. This
difference in credit leads to a difference
in research emphasis. More recent exam-
ples of “theoretical” holes in cryptogra-
phy that were given great attention
included Serge Vaudenay’s padding attack
on CBC and Phil Rogaway’s attack on
padding.

Many of these theoretical attacks can be
prevented with good “crypto hygiene”;
for example, timing attacks are resisted
by using the blinding code in OpenSSL.
Operational solutions such as this can
avoid the need to upgrade the entire
protocol to deal with a weakness. This is
important because the protocol revision
process is time-consuming and often
bogs down. Necessary functionality
improvements are held up because secu-
rity issues are considered in the same
committee. A secondary point was made
about the efficiency (or lack thereof) of
standards committees; for example, SSH
was introduced to the IETF several years
ago and is only now becoming standard-
ized, IKE is two years overdue for a
rewrite, etc.

The speaker ended by discussing end-
user requirements for security. For
example, when they say “security is
important,” they tend to mean “I need to
know what to tell my boss.” This led to a
discussion of methods for fixing our
security research practice and getting
market feedback on what is important
to fix and what is not. Finally, he left the
audience with a list of questions for
shaping future research in security.

One audience member commented that
he was from the NSA, and that in the
classified community they had paid a lot
of attention to issues of software quality

influencing the reliability of the transac-
tion. The key question is what you are
relying on the software to do. The audi-
ence member commented that attesta-
tions of software quality will come to
play a greater role in protocols; parties
may require certificates stating that the
software of the other party has been
audited to an acceptable level before
entrusting data.

Another audience member commented
that the speaker’s view of cryptographic
considerations in the design of security
protocols might be colored by the spe-
cific issues of the Internet Engineering
Task Force (IETF), where many of the
examples originated. The speaker replied
that he had seen similar issues outside
IETF and in other organizations.

David Larochelle mentioned that SSH
also added functionality with regard to
xterm forwarding, which helped it dom-
inate its market segment. He then refer-
enced his paper on the subject (
http://www.cpppe.umd.edu/
rhsmith3/papers/Final_session3_
farahmand.navathe.sharp.enslow.pdf ).

David Molnar asked if the speaker had a
good place to learn about crypto
hygiene. The speaker replied he was too
busy to write a paper on the subject but
invited others to do so. “Maybe you can
do it.”

REFEREED PAPERS: THE ROAD LESS

TRAVELED 

Summarized by Scott A. Crosby 

SCRASH: A SYSTEM FOR GENERATING SECURE

CRASH INFORMATION

Peter Broadwell, Matt Harren, and
Naveen Sastry, University of California,
Berkeley

This presentation dealt with crash
dumps. When a program crashes, it may
leave behind a dump of its stack, vari-
ables, and memory contents to aid in
debugging. Many popular programs are
now including automated reporting so



that users can easily send these dumps to
developers. Such dumps are valuable
debugging and development aids, but
may contain sensitive information such
as passwords, bank account numbers,
keys, trade secrets, or PINs. Users may
want to send these dumps to developers
but don’t because they don’t want to dis-
close their secrets.

This paper outlines how to make still
useful crash dumps available to develop-
ers without disclosing user secrets. The
approach used is to annotate some of a
program’s variables as “sensitive” and
then to apply a data-flow analysis from
CQual to identify all other variables that
may become tainted with sensitive data.
Those variables are also marked as sensi-
tive. A custom malloc library that sup-
ports region-aware allocation is used to
store sensitive data in one region, sepa-
rated from nonsensitive data, which is
stored normally. When a crash dump
happens, the sensitive region is wiped so
that it won’t contain any data that was
tainted as being sensitive.

In the performance analysis, a micro-
benchmark implementing a recursive
GCD solver shows a 22% degradation,
while the time taken by scp to transfer
100 megabytes of data degraded by 6%.
They also tested two interactive pro-
grams, the GNOME calendar applica-
tion and a Palm Pilot synchronization
program. For these applications, under
25% of the stack variables were marked
as possibly containing sensitive informa-
tion and no impact on performance was
observed.

IMPLEMENTING AND TESTING A VIRUS

THROTTLE

Jamie Twycross and Matthew W. Willia,
HP Labs, Bristol

Jamie Twycross started this talk by
showing the infamous movie of the Sap-
phire worm infecting tens of thousands
of hosts in minutes. He then reminded
us that patching systems don’t work;

87December 2003 ;login:

patches can be available for months and
yet tens of thousands of computers may
remain unpatched and infectable. Signa-
ture-based worm detection also doesn’t
work. Worm signatures – e.g., ports they
scan – require prior knowledge or active
infection to determine. By that time it is
too late.

This paper proposes a different scheme:
detecting a worm based on its network
behavior, in this case, outgoing traffic.
The response to detecting adverse
behavior is benign – it delays traffic but
does not drop it. The detector is based
on the idea that most hosts will only reg-
ularly contact a small working set of
hosts; worms will contact many hosts. If
a host attempts to contact a host that is
in the working set, the connection goes
through immediately. The working set
size is set to five hosts. Otherwise, the
connection is delayed. The host can
assume it is infected if the queue of
delayed connections grows too long.

Because connections are delayed, this
mechanism does not create false posi-
tives, and because it detects scanning
behavior, it can work without knowing
much about a worm. The authors
showed that this scheme takes seconds
to stop both simulated and real worms
on their test network, and that only a
slim portion of their normal desktop
traffic was delayed at all.

ESTABLISHING THE GENUINITY OF REMOTE

COMPUTER SYSTEMS

Rick Kennell and Leah Jamieson, 
Purdue University

This won the Best Student Paper award.
Rick Kennel started his talk with a pro-
nunciation guide to genuinity, then
described why it is desirable. In current
systems, forgery is a classic problem.
Users can masquerade as other users,
computers may be substituted for other
computers, and simulators can masquer-
ade as physical machines.

He gave as an extreme example remote
NFS clients. NFSv3 depends on client-
side trust to be a secure distributed envi-
ronment. He asked whether clients can
be trusted, including remote ones, on an
insecure network with ordinary hard-
ware and with no trusted human to look
over the remote machine. He then
described how an authority could be
able to trust remote entities.

The authority can know if the entity is
executing the correct code by requesting
a checksum over it. Unfortunately, the
remote host can lie. The authority can
resist this by combining the checksum
with a hardware test that can detect
whether the checksum operation was
actually run. Since computers can simu-
late other computers, a right answer is

not enough. The authority must find a
hardware test that is deterministic, but
hard to simulate quickly and accurately,
such as implicit parallelism, data-cache
updates, or other aspects of the memory
hierarchy. Once such a test is found, its
response is regularly included as part of
the checksum. The authority checks to
make sure that the checksum is both
correct and timely. Any attempt to virtu-
alize hardware or alter the program is
almost guaranteed to alter those hard-
ware values and create a bad checksum.

l
  

 C
O

N
FE

RE
N

CE
RE

PO
RT

S

12TH USENIX SECURITY SYMPOSIUM l  

Rick Kennell and Vern Paxson



INVITED TALK: THE CASE FOR 

ASSURANCE IN SECURITY PRODUCTS 

Brian Snow, National Security Agency 

Summarized by Catherine Dodge

Brian Snow spoke about the need for
greater assurance in commercial off-the-
shelf products. Snow discussed two dis-
tinct threat categories: generic and tar-
geted. A generic threat, for example, is
one posed by a burglar who wants to
steal a VCR. The algorithm for such a
task is relatively simple: find house; if
house is dark, check door; if door is
unlocked, go in; if locked, try next
house. The subject of a generic attack
must only invest in enough defense to
make it cheaper and easier for the bur-
glar to rob the neighbors. On the other
hand, if a burglar were after your Picasso,
the algorithm would become much
more sophisticated: find house; if dark,
check door; if door is unlocked, go in; if
locked, break window and go in; if alarm
visible on windows, rip off siding, punch
through gypsum, rip out insulation,
punch through dry wall and go in; if
motion detectors present, cut phone line
that dials the police upon alarm and go
in via the above methods. The point is
that defense against a well-funded,
determined adversary is difficult and
must be similarly well thought out and
well funded. While the NSA would like
to be able to recommend commercial
products to its Department of Defense
customers, Snow expressed his frustra-
tion that “I still haven’t found what I’m
looking for” and wondered “when will I
be secure, nobody knows for sure” (via a
video of song commissioned by Jim Bid-
zos for RSA ’99, to the tune of the U2
song by the same name). Snow likened
the state of today’s computer security to
cars built in the ’30s, with no anti-lock
brakes, no air bags, not even seat belts.
Assurance, like an air bag, while gener-
ally invisible to the user, becomes
prominent on failure. Snow extended
the car analogy and recognized that

88 Vol. 28, No. 6 ;login:

there are not enough customers for GM
to build tanks to sell at their dealerships.
Yet he does wish that commercial prod-
ucts at least had the same level of secu-
rity as a car built in 2003 does. While
popular wisdom often says otherwise,
Snow argued that quality and reliability
can sell software. The example he gave
was how Toyota and Honda moved into
the US car market in the ’70s, based
solely on such attributes. Yet this kind of
assurance cannot simply be slapped on
top of a product at the end of the devel-
opment cycle. Software engineering too
often assumes a benign environment.
Developers must move beyond this
assumption and factor in malice at
design time. Above all, Snow was con-
cerned that in another 10 years we’ll
have more features but not more assur-
ance, a state of affairs which led him to
exclaim, “Am I depressed? Yes!” These
features may include the ability to
counter many hacker attacks, yet tar-
geted attacks will still be overwhelm-
ingly successful. “We will think we are
secure, but we will not be.”

After finishing this self-described
“polemic,” Snow outlined six areas in
which vendors can address his concerns:
operating systems, software modules,
hardware features, systems engineering,
third-party testing, and legal constraints.

Snow advocated improvements in oper-
ating systems, such as digital signature
checks on modules prior to execution,
utilization of the principle of least privi-
lege, and enforcement of security poli-
cies. He also sees room for improvement
in software modules. They need to be
well documented, be created in certified
development environments, and use
separate design and review teams. Snow
pointed out that a contractor with
uncleared foreign national employees
could apply good principles by having a
German team design the project and a
French team review it. Included in this
process should be some degree of formal

methods, as the tools to support their
usage have gotten better. Hardware fea-
tures are also essential to creating assur-
ance, since they can create isolation in a
way that software cannot. The major
issue with hardware then becomes trust
in the person you are purchasing from.
Additionally, systems engineering is a
key component of assurance. Questions
that need to be answered in this arena
include: How can products of unknown
quality be used safely? How can compo-
nents be composed in such a way that
the assurance level is a synergistic result
of the parts, and not be reduced to a
“weakest link in the chain” situation?
Third-party testing is another area that
can help address assurance, since it pro-
vides something beyond “emphatic
assertion” that a product provides the
desired level of security. A current major
failing of such certification processes is
that the results are not easily understood
by users. Ultimately, though, it may be
legal constraints that convince software
companies to invest in assurance. Estab-
lishing a fitness-for-use criteria and lia-
bility beyond the media that the soft-
ware is distributed on would go a long
way toward raising the bar in the soft-
ware industry. And more insurers 
may do what some have already done,
namely, charge different rates to insure a
company based on which operating sys-
tem and applications they use. Whether
these changes really do come about
depends on these three aspects: training,
research, and assurance built in from the
ground up.

Someone asked how those who develop
free software can have their products
certified, in light of the considerable
expense this requires. Snow replied that
there is no way of getting around the
fact that a certification will cost money.
He thought the best path for free soft-
ware would be to create a foundation
which would raise money specifically for



funding the certification of such soft-
ware projects.

WORK-IN-PROGRESS REPORTS 

Summarized by David Molnar

ANALYSIS OF ELECTRONIC VOTING SYSTEM

Adam Stubblefield

Note: For more information, go to
http://www.avirubin.com/vote.

The speaker discussed his and Avi
Rubin’s experiences auditing the source
code of a widely used voting machine.
Among the issues they discovered were
that key management is handled by a
single #define DES_KEY “XXXX” in the
code, where “XXXX” is an ASCII string;
this key appears to be the same across all
instances of the machine. Another issue
was that the code did not appear to have
been audited at all for correctness or
security; long stretches of code appear
without any comments whatsoever.
Audit features in the code were
extremely weak; while changes do
appear in an audit log, nothing seems to
protect the log itself from being
changed. In response to a write-up on
these issues, the company claimed that
the “voting system works exactly as
designed.”

One audience member asked if source
code was still available. The speaker
replied that it was the last time he
checked.

VALIDATOR – TESTING FIREWALLS

Clif Flynt

Flynt’s framework for firewall testing,
Validator, allows for defining “interac-
tions” and “monitors” for firewalls. The
framework also allows for the creation
of “golems,” autonomous agents that
take scripted actions for firewall testing,
and “probes,” which test firewalls with
known good or known bad packet
traces.

The system is in late beta; it consists
mostly of expect scripts. Interested par-

89December 2003 ;login:

ties are invited to contact the author at
clif@cflynt.com.

LINK CUT ATTACK

Steve Bellovin

Note: A draft version of the associated
paper is available at http://www.research.
att.com/~smb/papers/reroute.ps. As of
this writing, the paper stated, “Please do
not mirror or distribute.”

The speaker opened by pointing out
how we are close to deploying secure
BGP and secure OSPF. These protocols
address attacks where nodes lie to each
other in advertisements about what
routes they can provide. Unfortunately,
there is an attack that these protocols
will not address: cutting links to force
routing protocols to route through
adversary-controlled nodes.

Suppose that the adversary controls a
node N that is in the same network as
two communicating nodes S and T and
that N is not initially on the path
selected for routing between S and T.
Further, suppose the adversary can cut a
limited number of edges in the graph.
Then the adversary can use some graph
theory to figure out the edges to cut
such that the resulting shortest path
between S and T runs through the com-
promised node N. The graph theory is
fairly simple, and the resulting algo-
rithm runs quickly on graphs obtained
from real network topologies. Because
the attack changes the real topology of
the network, mechanisms for preventing
false advertisement have no effect. A
worked example was shown in which 
an adversary caused the shortest path
between two network nodes to run
through the node it controlled.

STREAM

Simson L. Garfinkel 

URL: http://stream.simson.net/

The speaker raised the question, “Why,
after all these years, do we not yet have
encrypted email?” The answer lies in 

the cumbersome key management for
PGP and the impossibility of obtaining
S/MIME certificates. Therefore, the
speaker created a new opportunistic
encryption layer called Stream. The aim
is for deployment as transparently and
as widely as possible. Keys are placed in
the headers, where they aren’t noticed by
mail agents. The speaker showed a plug
in running with Eudora that talked to a
Stream proxy responsible for key man-
agement and encryption.

One audience member asked if the soft-
ware would be freely available. The
speaker responded that it could be
downloaded right now from his Web
page. Precompiled binaries are available
for FreeBSD, Linux, and Mac OS X;
source is also available.

A FRAMEWORK FOR RECEIPT ISSUING, 
CONTENDABLE REMOTE POLL-SITE VOTING

Prashanth Bungale

The speaker presented a new design for
an electronic voting system. A key fea-
ture of this voting system is receipt-free-
ness while maintaining voter verifiabil-
ity. Voters can verify that their vote was
cast correctly but cannot prove which
way they voted to a third party. This pre-
vents them from selling their vote and
then making good on the promise. In
addition, voters can vote at any poll site.
Unlike previous receipt-free solutions,
the framework allows a voter to contest
his or her vote and ensure that it was
counted correctly. The framework also
allows for multiple independent tallying
agents.

One audience member asked what the
provisions were for a third party, such as
a candidate, to contest a user’s vote with-
out their consent. The speaker replied
that such a party can act as a tallier
(because any number of talliers are pos-
sible) and tally votes according to their
own policy.

l
  

 C
O

N
FE

RE
N

CE
RE

PO
RT

S

12TH USENIX SECURITY SYMPOSIUM l  



WLAN LOCATION SENSING FOR SECURITY

APPLICATIONS

Algis Rudys 

Note: The associated paper is available at
http://www.cs.rice.edu/~arudys/papers/
wise2003.html.

At USENIX ’01, someone mounted an
active attack and took over the wireless
network. People who tried to connect
were rerouted to a Web page proclaim-
ing “ALL YOUR WAP BELONG TO US.”
What if we could track the perpetrator
by triangulating signal strength? Thanks
to Algis Rudys and his collaborators,
now you can!

Their implementation can handle both
single and multiple adversaries. The
speaker showed a jitter diagram and
claimed that even in the presence of
multiple adversaries their implementa-
tion can get location claims within 3.5
meters. A full version will be presented
at WISE 2003.

TRENDS IN DOS ATTACKS

Jose Nazario 

URL: http://www.monkey.org/~jose/
presentations/ddos.d/

The speaker detailed the preliminary
results of an experiment in monitoring
Internet traffic for traces of DoS events.
Over the past few years, 117K events
were monitored using blackhole collec-
tion with a view of roughly 1/256 of the
Internet. The monitoring view consisted
of targets geographically distributed
over the world on a Class A network.
Overall, there was a 50–50 split between
spoofed and real source addresses. The
speaker showed graphs of TCP vs. UDP
traffic year by year, and noted that there
has been a dramatic shift: In 2003 nearly
all DoS traffic has been UDP with very
little TCP, while the opposite was true in
2002. The presentation also showed a
graph of durations of DoS attacks.

One audience member asked if the
monitor network was a contiguous Class

90 Vol. 28, No. 6 ;login:

A network. The answer was yes, contigu-
ous and globally announced.

Another audience member asked about
trends in spoofed source addresses; how
many are spoofed vs. real? The speaker
replied that there was a general trend
toward DoS adversaries noticing when
they are monitored. As a result, the effi-
ciency of the method was beginning to
decrease.

SONICKEY

Greg Rose

The speaker demonstrated a system in
which a public key, challenge-response,
or other data is encoded as a sound
playable over a phone or computer
speaker. With this system, when you
want to send your public key to some-
one, you just play it for them; their com-
puter or phone receives it via the micro-
phone, decodes it, and obtains your
public key. A similar mechanism can be
used to allow the phone to answer chal-
lenge-response queries from a PC
equipped with speaker and microphone.
The speaker is employed by Qualcomm,
a major cellular phone software com-
pany – the SonicKey system is in use at
the Qualcomm head office for access
control to the building.

One audience member asked whether
transaction details were necessary before
creating a response. The speaker replied
that the system could be deployed just
like SecureID.

Another audience member asked about
the range of the system. The speaker
replied that it was spread spectrum, with
a range of 8–9 feet.

Someone asked whether there was dedi-
cated hardware in the phone. The
speaker replied that the prototype plat-
form phone does have some dedicated
hardware for speeding up RSA public-
key crypto operations, but not specifi-
cally for the encoding itself.

Another audience member asked
whether you can do decoding in the
handset. The speaker replied that this
was for the next phone generation.

REKEYING

David Molnar

Slides: http://www.cs.berkeley.edu/
~dmolnar/tiny-rekey-wip.ppt

The speaker gave a short overview of the
Berkeley mote sensor network platform
and the TinySEC mechanism for link
layer authentication and encryption in
mica2. The main problem with TinySEC
is that keys are baked into motes at code
image flash time and cannot be changed
afterwards. The speaker presented a pro-
tocol for rekeying these sensor nodes
and outlined its applications in imple-
menting “secure transient associations.”

HONEYFARM

Nicholas C. Weaver 

URL: http://www.cs.berkeley.edu/
~nweaver/

The speaker addressed the question of
automatic detection of fast worms. After
seeing Sapphire, Slammer, and other
quick-spreading worms, we know that it
really is possible to own the Internet in
15 minutes. What can we do about this?
The speaker introduced a “honeyfarm”
as a method for automatic detection of
quick-spreading worms. In a honeyfarm,
multiple machines running honeyd can
act as targets for quick worms and pro-
vide researchers with early warning and
analysis traces. The speaker also outlined
the idea of “wormholes,” or network seg-
ments designed to draw and contain
worm activity. The goal of such a system
is to give researchers early warning and,
more important, provide a platform for
automatic response to new worms.

One audience member asked how many
distinct physical machines were in the
honeyfarm. The speaker replied that he
had about 1000 endpoints in the current
deployment.



HONEYD

Niels Provos 

http://www.citi.umich.edu/u/provos/
honeyd/

The speaker gave an update on the hon-
eyd virtual network host daemon. A
machine running honeyd looks like
multiple hosts on a network; adversaries
probing a network will attempt to attack
these hosts, leading to valuable analysis
traces. More work is needed, so potential
users and volunteers should check out
the honeyd page.

DOS THROUGH REGEXPS

Scott Crosby

URL: http://www.cs.rice.edu/~scrosby/
hash/slides/USENIX-RegexpWIP.2.ppt

The speaker introduced the idea of caus-
ing denial of service by forcing applica-
tions to take a long time matching
inputs to regular expressions; this is an
extension of the idea presented by the
speaker and others in a regular confer-
ence paper on “Algorithmic Denial of
Service Attacks.” The key here is that
instead of converting regexps to Nonde-
terministic Finite Automata (NFA),
determinizing to form Deterministic
Finite Automata (DFA), and then run-
ning, many implementations simply
attempt to match regexps nondetermin-
istically directly. In naive implementa-
tions, this can lead to exponential time.
Perl has optimizations that claim to
limit the running time, but it’s not clear
whether these are correct.

The speaker then gave a simple example
of a regexp that could take exponential
time, namely a*[ab]*O, and walked
through the process by which the regexp
parsing could take this much time. Then
the speaker gave an example of a regexp
“in the wild” that could take exponential
time in the worst case – this one from
SpamAssassin. The key issue was the
number of “.” in the regexp. In theory a
spammer could use this to cause a DoS

91December 2003 ;login:

attack on individuals using SpamAssas-
sin.

Someone asked if you could avoid the
problem by converting the regexp to an
NFA and parsing from the equivalent
DFA. The speaker noted that the conver-
sion to DFA introduces an exponential
blowup in the size of the state machine.

Readers who want more background on
NFAs and DFAs may want to look at
Lewis and Papadimitriou’s Elements of
the Theory of Computation for a theoret-
ical perspective. For a practical perspec-
tive on regular expressions and their
matching, readers may wish to consult
Freidl’s O’Reilly book Mastering Regular
Expressions.

PORTING TRUSTED BSD TO DARWIN

The speaker discussed Apple’s approach
to migrating mandatory access control
and other security features from recent
BSDs to Darwin, and the challenges
involved. These features have also
appeared in systems such as SELinux
and Flask/TE. The presentation pro-
vided a short overview of the Darwin
architecture: Darwin = NextStep, recent
Mach (monolithic Mach), parts of
FreeBSD 3 and 4, and IOKit. The
speaker then went over new security fea-
tures added to BSD since the creation of
Darwin, such as sbuf. One of the key
issues involved is the treatment of IPC
and threaded processes; Darwin man-
ages a mapping between BSD and Mach
notions of processes, and some of the
work requires working around the Mach
IPC model.

STILL CLEARTEXT AFTER ALL THESE YEARS

This talk was a follow-up to Dug Song’s
presentation at the USENIX Security
WiP session in 2001. At that talk, Song
showed that many conference attendees
were divulging passwords over the open
802.11b network. The presenter asked
the question, “Have we learned anything
since then?” After all, USENIX Security

is supposed to be a gathering of the best
of the best security experts. Are we prac-
ticing what we preach in security? The
speaker mounted active and passive
attacks on the (open, unencrypted) con-
ference wireless network. Tools used
included dsniff, honeyd, and netics. In
addition, the speaker worked with Niels
Provos to create an “SSH mirage” – a
fake AP that trapped SSH connections
and attempted to mount a man-in-the-
middle attack on unwary conference
goers.

After discussing the methods, the
speaker posted a slide full of passwords.
“If you see your password up here, you
might want to change it.” No usernames
were provided at that time, to allow vic-
tims to change their passwords. Unen-
crypted Web authentication provided
many of the passwords, as well as AOL
Instant Messenger and other IM clients.

In a point of good news, no Telnet traffic
was observed, only SSH. In addition,
only one conference attendee fell for the
SSH mirage; the others heeded the
warning “HOST KEY HAS CHANGED”
and thought better of it (or maybe peo-
ple just didn’t get close enough to the
fake AP?). The speaker’s conclusion was
that many people, even at USENIX
Security, are not yet taking wireless secu-
rity seriously enough, even though there
are some marginal improvements over
2001.

At the end of the talk, one audience
member pointed out that encrypted
instant messaging is available via Jabber
or the Trillian AIM client.

l
  

 C
O

N
FE

RE
N

CE
RE

PO
RT

S

12TH USENIX SECURITY SYMPOSIUM l  






	fm
	perrine
	wysopal
	damron
	balas
	jacobsson
	mudge
	singer
	deraison
	forte
	russell
	kenneally
	salus
	usenixnews
	sec03



