

2

in this issue
I wanted to use an old photo to go with my comments for this, the fifth Security Spe-
cial Edition of ;login:. Why? This ID photo was taken in 1982, when I worked as a con-
sultant for Morrow, an early designer and manufacturer of desktop computers.
Morrow had brought in a security firm and had everyone get photo IDs, because they
were losing a lot of money on stolen hard drives. In those days, a 34-megabyte hard
drive cost nearly $2000 (when purchased in bulk) and had a high street value. Employ-
ees had been caught recovering hard drives from dumpsters – having previously put
them into trash cans inside the building.

The addition of physical security made my life more difficult. I worked on two Mor-
row product lines, one that used CP/M and the other a version of UNIX. I had two
hard drives, each with one OS on it, and would carry just the hard drives from my
home office into Morrow. Getting administrative permission to do this was possible,
but difficult.

My solution? Carry the hard drive in my backpack, under a spiral notebook. The guard
would check my photo ID, look inside my backpack, which I would open wide for
him. The heavy hard drive would sink beneath the notebook every time. So, to me, this
old photo helps to remind me of the failings of security, even when it is as simple as a
physical search.

At about the same time I was learning about UNIX by trying to teach other people
about it; Tom Perrine was working with a group of people writing KSOS, a secure ker-
nel designed to run under Version 6 UNIX. In his article, Perrine talks about how often
today’s programmers ignore lessons from the past. I did mention to Tom that the
information that he wishes were better known used to be very secret. Many of us had
copies of the Lion’s notes (mine was at least 10th generation), which provided us with
our only example of any operating system code or design. Things have gotten consid-
erably better on this score, even if programmers are still working at re-inventing secu-
rity.

Kevin Fu and his co-authors make the point that not everything about security was
developed in the 1970s. Although they do leverage asymmetric encryption, a seventies
invention, SFS provides true security but with a policy the opposite of most security
policies: the remote users have control over their accounts, and anyone can decide to
mount a public SFS share. SFS also incorporates other applications, including secure
remote execution as an alternative to SSH and a read-only file system that uses digital
signatures (making mirror sites much safer to use).

Jared Allison and George Jones, both from UUNET, provide practical discussions
about taking advantage of logging and securing your network infrastructure, respec-
tively. Two San Diego Supercomputing Center denizens wrote articles, one discussing
computer legal practice (Erin Kenneally) and the other, how to start your own regional
information watch (Abe Singer). Lance Spitzner, of the Honeynet Project, introduces
HOSUS, a plan for getting early warnings about Internet attacks. And Sven Dietrich, of
CERT, gets much more controversial with some of his suggestions for improving the
security of Internet connected systems. And when it comes to the millions of poorly
maintained Windows boxes attached to always-on connections these days, perhaps he
has the right idea.

Ofir Arkin, of Sys-Security, presents us with just how insecure Voice over IP really is.
Arkin has already come up with several advisories about vulnerabilities in different
Internet phone products. Finally, Peter Salus describes his experiences during the
Security Symposium.

Vol. 27, No. 6 ;login:

by Rik Farrow

Rik Farrow provides
UNIX and Internet
security consulting
and training. He is
the author of UNIX
System Security and
System Administra-
tor’s Guide to System
V.

rik@spirit.com

3December 2002 ;login:

This edition also includes the session summaries from the Security Symposium, some-
thing that I sincerely want to thank the summarizers for. One session did not get cov-
ered. A closing keynote had been scheduled, then a speaker substitution occurred, and
then even the substitute flaked. Fortunately for USENIX, Dick Cheney was in town
(San Francisco) to speak to some rich executives at a meeting in the Saint Francis
Hotel. Not that Mr. Cheney wanted to speak to us, but his stand-in was more than
willing.

The stand-in, a member of the San Francisco Mime Troupe (http://www.sfmt.org)
lacked only a bevy of serious-looking Secret Service agents to complete the illusion. Ed
Holmes gave a speech that, with the exception of several howlers, seemed just as
authentic as any of the normal Administration double-speak. There were several peo-
ple lined up to ask questions, starting with Peter Honeyman, who, for once, sounded
to me completely inarticulate. John Gilmore, who has made a point of not traveling
with photo ID, asked why he had to present ID to travel. The Cheney look-alike
replied, “I don’t have a problem traveling, what’s wrong with you?” Holmes finished up
by inducting the attendees into the Web Rangers, and enjoined them to report any
“suspicious activities” they or their associates might be engaged in to the “govern-
ment.”

Some of what you will find in this issue comes from the hall talk – what goes on
between sessions at any USENIX conference. But nothing can substitute for the experi-
ence and fun of actually being there.

One of the issues that I touched upon above, the millions of Internet-connected Win-
dows systems, is likely to become an even more serious security problem over time.
Today, the spread of worms and email viruses gets a lot of help from home systems.
According to David Moore of CAIDA (at SDSC), Code Red II is still around, still run-
ning on systems that appear to be primarily running at home, in small offices, and in
Southeast Asia (based on the times the scans peak). Based on a recent virus report,
Nimda is still infecting systems (4.7% of infections), with SirCam at 10.4% of virus
occurrences. Both of these involve bugs in Internet Explorer that should have been
patched years ago.

The issue with these persistent pests is not so much their nuisance value, but how to go
about patching systems that belong to people who either will not or cannot patch
them. In many cases, these systems have pirated copies of MS software installed, and
their owners may be afraid to visit Microsoft and download the patches. Or the owners
remain blissfully unaware that a lot of their network bandwidth goes to scanning and
spamming other sites around their world.

It’s not just Windows users, either. Installations of Linux from old CDs remain one of
the biggest targets of automatic scanning today (my firewall logs show that DNS
probes are second only to probes looking for open Windows file shares).

The problem of patching systems goes beyond the systems under our control. Sven
Dietrich goes so far as advocating attacking “the immediate surroundings of the
attacker,” or using a version of an attack, like Code Red, to install the correct patch
(Code Green). While such attacks violate the laws of most countries, we might some-
day reach the point where they will seem justified. After receiving 176 spam emails in a
single night (92% spam that night) and seeing my firewall logs filled with denied
probes, I am beginning to believe that Sven has a good point.

ED
IT

O
RI

A
LS

http://www.sfmt.org

Vol. 27, No. 6 ;login:

I Really Hate to Complain, But . . .
I am so tired of spam. It was driving me to distraction before my local sysadmin
installed a spam-mitigation system (doesn’t matter which one – it seems to do an OK
job – and I’m not here to start a religious fight).

It just hasn’t been that long since every incoming message rang a bell, and the Pavlov-
ian feeling that bell evoked was like Christmas: another exciting gift to be unwrapped
to be enjoyed. I know I’m sounding mawkishly AOL-ian here, but I really do like hear-
ing from people and getting good e-mail.

As time wore on, the bells only signaled new irritation. I even turned off the bell for a
while, but my life just felt so empty.

Enough pundits have already justified their spending habits, money-making habits,
and adequate size of their body parts that I don’t need to elaborate here on what a
waste of time, energy, and bandwidth spam is. I just can’t figure out who is motivating
the spammers to continue their merry little game: stupid entrepreneurs? stupid con-
sumers? I just don’t get it.

But the biggest thing I don’t get is this: Why is it that so little is being done by the tech-
nological community to discourage spamming in the first place? Oh, there’s the occa-
sional legislation here or there, but I really have in my mind that spammers should be
treated as societal outcasts and shunned as “bad citizens.”

Over and over I hear the trite responses, “Oh, we need to level the playing field with
the big (read: well-funded) corporations for advertising,” or my local newspaper’s
favorite: “Just delete the spam; how much time could it take?” ARRGH! It takes a lot of
time! Important messages are buried. Messages demanding quick response are lost
amid the noise.

Why aren’t sysadmins circulating petitions against spam? Why aren’t users screaming
to get the problem solved? Why are some sites still accepting all mail on the off-chance
some mis-classified spam-mail will actually be a sales-lead? Hotmail reports rejecting
one BILLION spam messages per day. Of the non-rejected (and delivered) messages,
80% are spam (undetected earlier, sad to say).

Why do people put up with this?

I’d like to hear from you why you are accepting the situation, if you are. I have an idea
that we’re collectively spending thousands (hundreds of thousands?) of person-hours
fighting this scourge (this or that spam filter, configuring mail systems, etc.) – but
why? Why is it allowed to happen in the first place? Do people with small body-parts
wait at their keyboards hoping someone will mail them with a solution? Are people
really making money too slowly? Have I really missed the boat for transfer of the ill-
gotten Oil Minister’s gains from Nigeria? I think not. So why does it continue? Help!

motd

4

by Rob Kolstad

Rob Kolstad is cur-
rently Executive
Director of SAGE, the
System Administra-
tors Guild. Rob has
edited ;login: for
over ten years.

kolstad@sage.org

6

Introduction
The Self-Certifying File System (SFS) (http://www.fs.net/) is a secure dis-

tributed file system, and associated utilities, that can both increase the

security of networks and simplify system administration. SFS lets people

securely access file systems over insecure networks without the need for

virtual private networks (VPNs) or a public key infrastructure (PKI). In

many situations, SFS provides a suitable and more secure alternative to the

widely deployed NFS file system. Nonetheless, SFS gracefully coexists with

NFS and other file systems such as Samba. Thus, one can easily install, test,

and incrementally deploy SFS without disrupting existing network services.

SFS administration is greatly simplified by the fact that client machines have no con-
figuration options. An SFS client just needs to run a program called sfscd at boot
time; users can then access any server with no further administrative assistance. In
contrast, many distributed file systems require the client to have a list of what remote
file systems to mount where. In SFS, it is actually the server that determines which of
its file systems clients mount on what pathnames. As users access those pathnames,
client machines learn of new servers and transparently “automount” them.

SFS cryptographically secures all client-server network communications with encryp-
tion and a message authentication code. To prevent rogue servers from impersonating
valid ones, each SFS server has a public key. A server’s files all reside under a so-called
self-certifying pathname derived from its public key. Self-certifying pathnames contain
enough information for an SFS client to connect to a server and establish a crypto-
graphically secure channel – even if the client has only just learned of the server
through a user’s file access. A variety of techniques exist for users to obtain servers’
self-certifying pathnames securely.

In addition to protecting network traffic, SFS performs user authentication to map
remote users to credentials that make sense for the local file system. SFS’s user-authen-
tication mechanism is based on public key cryptography. On the client side, an
unprivileged agent process holds a user’s private keys and transparently authenticates
him or her to remote servers as needed. On the server side, SFS keeps a database of
users’ public keys. Users can safely register the same public key in multiple administra-
tive realms, simplifying the task of accessing several realms. Conversely, administrative
realms can also safely export their public key databases to each other. A file server can
import and even merge user accounts from several different administrative realms.

BACKGROUND
The SFS project began in 1997 after one of the authors became frustrated by the lack
of a global, secure, decentralized network file system. No existing file systems had all
three properties.

NFS does not have a viable notion of security for most environments. NFS essentially
trusts client machines, allowing an attacker to impersonate a legitimate user with little
effort. NFS also lacks a global namespace, because client administrators can mount

using SFS for a
secure network
file system

Vol. 27, No. 6 ;login:

by Kevin Fu,

Kevin Fu is a doctoral
student at the Labo-
ratory for Computer
Science at MIT. His
research interests are
computer security,
cryptography, and
operating systems.

fubob@mit.edu

Michael
Kaminsky,

Michael Kaminsky is a doctoral student at
the Laboratory for Computer Science at
MIT. His research interests are operating
systems, security, and networking.

kaminsky@lcs.mit.edu

and David
Mazières

David Mazières is an
assistant professor of
computer science at
New York University.
He began the SFS
project while a doc-
toral student at MIT.

dm@cs.nyu.edu

NFS file systems anywhere. The same files might be accessible under two different
paths on two different machines.

The Andrew File System (AFS) offers a global namespace and, in some contexts, secu-
rity, but it cannot guarantee data integrity to users who do not have accounts in a
server’s administrative realm. Moreover, when users have several accounts in different
realms, AFS makes it hard to access more than one account at a time. As a result, AFS
tends to lead to inconveniently large administrative realms – often as large as an entire
campus. Such unwieldy realms in turn restrict users who might want greater auton-
omy. For example, it is not uncommon for AFS users to have to recycle “guest”
accounts to avoid the onerous burden of going through a central administration to
create a new account for every visitor. SFS, in contrast, lets a server operator both
import a campus-wide user database and manage additional local accounts.

STATUS
SFS is free software and runs on UNIX operating systems that have solid NFSv3 sup-
port. We have run SFS successfully on recent versions of OpenBSD, FreeBSD, MacOS
X, OSF/1, Solaris, and several Linux distributions. Although a Windows port exists, it
relies on a commercial NFS implementation. We currently have no plans to merge the
Windows port into the mainline distribution, though we would like to see this happen
eventually.

There are pre-packaged SFS distributions available for Debian, Red Hat, and FreeBSD,
among others. The packages greatly simplify installation, because SFS requires a robust
compiler that can cope with extensive use of C++ templates. (Some versions of GCC
generate internal compiler errors when compiling SFS from scratch.) Because SFS is
open source, US regulations allow export of the code to most countries.

The SFS installation and setup procedures are described below. The SFS Web site
(http://www.fs.net/) has technical papers which provide a detailed discussion of related
work, a performance analysis, and the theory behind SFS.

OVERVIEW
From a system administrative point of view, SFS consists of two programs run at boot
time. SFS clients must run the SFS client daemon (sfscd), which creates the /sfs direc-
tory and implements the auto-mounting of remote SFS servers. SFS servers must run
the SFS server daemon (sfssd), which makes local file systems available to SFS clients
on TCP port 4.

Internally, however, SFS is structured in a modular manner and consists of many dae-
mons. sfscd and sfssd each launch and communicate with a number of subsidiary
daemons that actually implement the different SFS features (Figure 1). For example,
sfscd is responsible for automatically mounting new remote file systems. On the server
machine, sfssd accepts incoming SFS connections and de-multiplexes these requests
to the appropriate SFS server daemons. The three basic servers are the SFS file server,
the authentication server, and the remote login server. The client and server file system
daemons communicate with the kernel using NFS loopback. SFS components com-
municate with each other using RPC. SFS implements a secure RPC transport which
provides confidentiality and integrity. Finally, the SFS agent runs on the client
machine, one instance per user.

7December 2002 ;login:

NFS does not have a viable

notion of security for most

environments.

USING SFS FOR A SECURE NETWORK FILE SYSTEM ●

●
SE

C
U

R
IT

Y

http://www.fs.net/

Vol. 27, No. 6 ;login:

If you already use NFS, switching to SFS is straightforward. Because the SFS server can
coexist with an NFS server on the same machine, you don’t have to switch “cold
turkey” from NFS to SFS: you can serve both from the same machine. For instance,
you may wish to continue using NFS for local machines but make SFS available for
users traveling or using wireless networks.

A single machine can be both an SFS client and a server. However, the client software
will refuse to mount an SFS file server running on the same machine, since this can
cause deadlock in the kernel on some operating systems. This is a result of SFS’s imple-
mentation as an NFS loopback server for portability.

Naming Servers
A fundamental problem that SFS tries to address is how to name resources securely.
Setting up secure communication requires authentication of the remote resource; sys-
tems today often use some form of public key cryptography. The basic problem facing
these public key–based systems is key distribution: how does the user who wants to
connect securely to a remote resource get that resource’s public key securely?

SELF-CERTIFYING PATHNAMES
SFS does not mandate any particular kind of key distribution, but instead provides a
flexible set of options based on self-certifying pathnames. Given a self-certifying path-
name, the public key of the file server can be certified with no additional information.
Thus, if one obtains a self-certifying pathname in a trusted manner, the SFS client will
automatically verify the associated server’s public key.

Figure 2 shows the two basic components of self-certifying pathnames: the location
and HostID. The location is the DNS hostname of the file server; it tells the client soft-
ware where to find the server, but not how to communicate securely with it. The

HostID portion of the self-certifying pathname is what allows secure communication.
The HostID is a SHA-1 hash of the server’s public key, similar in concept to a PGP fin-
gerprint. Hence, the client can insecurely ask the server for its public key, then verify

8

Figure 2: A self-certifying pathname

Figure 1: Architectural overview of SFS

that the public key actually matches the hash in the pathname. A user who trusts in the
authenticity of the HostID can then trust in the authenticity of the corresponding
public key that the client has fetched and verified.

When a user accesses a self-certifying pathname (under /sfs), the SFS client software
contacts the server based on the location component. The server responds with its
public key. If the server can prove its identity by demonstrating it has the correspon-
ding private key, the SFS client will automatically mount the file server under /sfs. All
communication between the client and server is encrypted and mutually authenti-
cated. We will discuss user authentication shortly.

While self-certifying pathnames require some method for users to obtain HostIDs
securely, they are not wedded to any particular public key infrastructure or method of
key distribution. The user is free to decide, even on a host-by-host basis, how to obtain
the HostID of a server. Users who need a centralized repository of public keys (a certi-
fication authority) and those who want to set up stand-alone servers both benefit from
self-certifying pathnames. The following sections demonstrate several useful tech-
niques for securely obtaining servers’ self-certifying pathnames.

SYMBOLIC LINKS AS SIMPLE CERTIFICATES
Symbolic links provide an easy way for users to refer to a self-certifying pathname. For
example, a user might create a symbolic link as follows:

redlab -> /sfs/@redlab.lcs.mit.edu,gnze6vwxtwssr8mc5ibae7mtufhphzsk

When the user accesses the path redlab, the SFS client software will mount the file
server at redlab.lcs.mit.edu with the given public key hash. Symbolic links allow users
to assign human-readable names to hard-to-type self-certifying pathnames. The user
could store these links in a subdirectory of his or her home directory, and they would
serve a similar function to the user’s SSH known_hosts file.

Administrators can use symbolic links to provide a system-wide set of names for com-
monly used file servers. These may be distributed using a floppy disk, rsync/rdist over
SSH, or whatever other technique is in use for remotely administering software on
machines. Once a single symbolic link has been installed on a client, administrators
can bootstrap a larger set of self-certifying pathnames and symbolic links from a
trusted source. These links can be placed in a well-known location (e.g., /sfslinks) and
would serve a similar function to a host-wide SSH /etc/ssh/ssh_known_hosts file.

Symbolic links in the file system have an advantage over a known_hosts-style name
cache, because a name lookup can involve several levels of symbolic links; moreover,
these symbolic links can reside on multiple file systems, some of which are on SFS.
This feature of symbolic links and self-certifying pathnames provides a convenient,
simple way to implement certificate authorities as file servers. As a hypothetical
example,

/sfs-CAs:
sun -> /sfs/@sfs.sun.com,ytzh5beann4tiy5aeic8xvjce638k2yd
thawte -> /sfs/@thawte.com,...
...

/sfs/@sfs.sun.com,ytzh5beann4tiy5aeic8xvjce638k2yd:
yahoo -> /sfs/@www.yahoo.com,...
redhat -> /sfs/@redhat.com,...
...

9December 2002 ;login:

Symbolic links provide an

easy way for users to refer to

a self-certifying pathname.

●
SE

C
U

R
IT

Y

USING SFS FOR A SECURE NETWORK FILE SYSTEM ●

Vol. 27, No. 6 ;login:

If a user wants to read from the file server which certificate authority Sun calls redhat,
the user can reference a path such as:

cat /sfs-CAs/sun/redhat/README

The directory /sfs-CAs is on the local machine, the directory /sfs-CAs/sun is on the
machine sfs.sun.com, and the directory /sfs-CAs/sun/redhat is on the machine red-
hat.com (as is the file README). The pathname by which one accesses a file deter-
mines how the file server is authenticated. For example, the same README file might
be available as:

/sfs-CAs/thawte/redhat-server/README

SERVER NICKNAMES
Some users might require a more sophisticated means of naming a server. SFS allows
users to invoke arbitrary certification programs to map a human-readable “nickname”
into a self-certifying pathname. The user’s agent keeps a list of these certification pro-
grams and runs them as needed.

Server nicknames are non-self-certifying names that a user accesses under /sfs (e.g.,
/sfs/work or /sfs/lab-machine1). When the SFS client software sees a nickname, it asks
the user’s agent to translate the nickname into a self-certifying pathname. The agent
will invoke, in order, all of the certification programs that the user has registered with
it until there is a successful match. The sfskey utility, discussed in the examples, allows
users to register certification programs with their agents.

Certification programs provide the user with a lot of flexibility. For example, the certi-
fication program might look up the nickname in an LDAP database. As a less complex
example, the SFS distribution actually comes with a program called dirsearch that
takes a list of directories and looks up the nickname in each one until it finds a sym-
bolic link with that name. For instance, the certification program

dirsearch ~/my-links /sfslinks/sfs.mit.edu /sfs-CAs/sun

would have the effect of giving precedence to the user’s personal links directory first,
then some university-wide directory, and finally Sun’s. The dirsearch program allows
the user to specify his or her own trust policy.

SECURE REMOTE PASSWORD PROTOCOL (SRP)
SFS also provides a means of securely downloading a server’s self-certifying pathname
with a password. In this case, the password typed by the user is actually used to authen-
ticate the server to the user in addition to the more conventional authentication of user
to server. Though users cannot be expected to remember self-certifying pathnames,
they will remember passwords of their own choosing. In this way, users can always
resort to typing their passwords if there is not a more convenient way of obtaining a
server’s pathname.

SFS uses the Secure Remote Password Protocol (SRP) for password authentication.1

SRP allows users both to download self-certifying pathnames securely and to down-
load encrypted copies of their own private keys. When a user registers a public key
with an SFS server, the user can additionally give the server an encrypted copy of the
corresponding private key and a secret “SRP parameter” computed as a function of his
or her password and the server’s location. When the user and server later engage in the
SRP protocol, SRP mutually authenticates the two sides’ communications. The details

Certification programs

provide the user with a lot of

flexibility.

10

1. Thomas Wu, “The Secure Remote Password
Protocol,” Proceedings of the 1998 Internet Soci-
ety Network and Distributed System Security
Symposium, San Diego, CA, March 1998, pp.
97-111.

of SRP are handled for the user by the sfskey program (or indirectly through sfsagent,
which can invoke sfskey). After a successful run of SRP, sfskey installs a symbolic link
from the server’s location to its self-certifying pathname. For example:

/sfs/redlab.lcs.mit.edu ->
/sfs/@redlab.lcs.mit.edu,gnze6vwxtwssr8mc5ibae7mtufhphzsk

We chose SRP rather than a simpler protocol so as to protect weak passwords against
offline “dictionary attacks.” In other file systems, such as AFS, an attacker can exchange
a single message with the server, then invest a large amount of computation to guess
and verify an unbounded number of candidate passwords. SRP allows only “online”
password-guessing attacks – the number of passwords an attacker can guess is propor-
tional to the number of messages the attacker has exchanged with the server or user.

Examples
Many operating system distributions offer pre-compiled SFS binary packages. These
packages provide both client and server support out-of-the-box. Other users will most
likely have to compile and install SFS from the source. The SFS Web site contains
details about the compilation process and about compiler compatibility. Because the
client software is implemented as an NFS loopback server, all SFS installations require
working NFSv3 client support.

INSTALLING THE SFS CLIENT
Installing the SFS client is straightforward using package management tools such as
dpkg or RPM. If you are behind a firewall, you will need to allow outgoing connec-
tions to TCP port 4. The following example shows how to set up SFS on a freshly
installed Red Hat 7.3 box:

[root@client /root]# rpm -ivh sfs-0.7-1.i386.rpm
Preparing... ### [100%]

1:sfs ### [100%]
[root@client /root]# /etc/rc.d/init.d/sfscd start
Starting sfscd: [OK]

SFS clients require no configuration. Simply run the program sfscd as shown above,
and a directory /sfs should appear on your system. To test your client, access our SFS
test server. Here we download a file:

$ cd /sfs/@sfs.fs.net,uzwadtctbjb3dg596waiyru8cx5kb4an
$ cat CONGRATULATIONS
You have set up a working SFS client.

Note that the /sfs/@sfs.fs.net:... directory does not need to exist before you run the cd
command. SFS transparently mounts new servers as you access them.

USER AUTHENTICATION
In the example above, the SFS server is exporting its file system publicly and read-only.
Typically, however, SFS servers will require user authentication, so that only registered
users can access the file system. A registered user is one whose public key has been
installed on the SFS server: specifically, in the “authserver.” To register a public key, log
into the file server and run the command:

$ sfskey register

11December 2002 ;login:

Many operating system

distributions offer pre-com-

piled SFS binary packages.

●
SE

C
U

R
IT

Y

USING SFS FOR A SECURE NETWORK FILE SYSTEM ●

Vol. 27, No. 6 ;login:

This will create a public-private key pair for you and register the public key with the
server. Note that if you already have a public key on another server, you can reuse that
public key by giving sfskey your identifier at that server (i.e., sfskey register user@
other.server.com).

The SFS user registration process also sets up SRP. As mentioned above, SRP allows the
user to securely download a copy of the server’s self-certifying hostname. SFS also uses
SRP to store an encrypted copy of the user’s private key on the server. The user can
then download a copy of his or her private key from the server knowing only a pass-
word. Because the private key is encrypted, the server does not have access to it.

In some settings, users do not have permission to log into file servers and thus cannot
run the sfskey register command. In this case, there are two options for creating user
accounts. The system administrator can ask the user to supply a public key, or else can
ask the user for an initial password and use the password to register a temporary pub-
lic key and SRP parameter.

RUNNING THE SFS USER AGENT
Once you have registered your public key with an SFS server, you must run the
sfsagent program on an SFS client when you wish to access the server. On the client,
run the command:

$ sfsagent user@my.server.com
Passphrase for user@my.server.com/1024:

my.server.com is the name of the server on which you registered. user is your identi-
fier on that server. (The value 1024 is the size in bits of SRP’s cryptographic parame-
ters, which you can ignore, though paranoid users may wish to avoid small values.)
This command does three things: it runs the sfsagent program, which persists in the
background to authenticate you to file servers as needed; it fetches your private key
from the server and decrypts it using your password and SRP; and, finally, it fetches
the server’s public key and creates a symbolic link from /sfs/my.server.com to
/sfs/@my.server.com,HostID. Each user has a different view of the /sfs directory. Thus,
one user’s links in /sfs will not be visible to another user, and two users’ links will not
interfere with each other.

If, after your agent is already running, you wish to fetch a private key from another
server or download another server’s public key, you can run the command:

$ sfskey add user@myother.server.com
Passphrase for user@myother.server.com/1024:

In fact, sfsagent runs this exact command for you when you initially start it up. Note
that sfskey does not take a self-certifying pathname as an argument; the user’s pass-
word and SRP are sufficient to authenticate the server holding your encrypted private
key.

To generate a public-private key pair explicitly and save it to disk, use the following
command:

$ sfskey gen

Optional arguments allow you to specify the key size and name. The sfskey subcom-
mands edit, list, delete, and deleteall manage the keys stored in your SFS agent. The

SRP allows the user to

securely download a copy of

the server’s self-certifying

hostname.

12

sfskey update command allows you to replace the key stored on a server with a new
one.

When you are done using SFS, you should run the command

$ sfskey kill

before logging out. This will kill your sfsagent process running in the background and
get rid of the private keys it was holding for you in memory. There is also an option to
specify a timeout to automatically remove keys from memory.

SETTING UP AN SFS SERVER
Setting up an SFS server requires very little configuration. The procedure consists of
setting up the NFS loopback and choosing what directory trees to export. For extra
security, you may wish to configure local firewall rules to prevent non-local users from
probing portmap. Recall that only the server itself needs to access the NFS exports.
Here we start with a Red Hat 7.3 box that has the SFS client software already installed.

[root@server /root]# rpm -ivh sfs-servers-0.7-1.i386.rpm
Preparing... ### [100%]

1:sfs-servers ### [100%]
[root@server /root]#

Let’s assume you want to export disks mounted on /disk/disk0 and /disk/disk1 to
authorized users. We first need to create mount points for the SFS root file system and
for each exported directory tree.

[root@server /root]# mkdir -p /var/sfs/root/disk0 /var/sfs/root/disk1

Recall that for portability reasons, SFS accesses the file systems it exports by pretending
to be an NFS client over the loopback interface. Thus, the server must export the
desired file systems to the localhost via NFS. We add the following three lines to the
/etc/exports file to enable NFS exporting of /var/sfs/root, /disk/disk0, and /disk/disk1 to
the localhost:

[root@server /etc]# cat /etc/exports
/var/sfs/root localhost(rw)
/disk/disk0 localhost(rw)
/disk/disk1 localhost(rw)

Now we start the NFS server:

[root@server /etc]# /etc/rc.d/init.d/portmap status
portmap (pid 643) is running...
[root@server /etc]# /etc/rc.d/init.d/nfs start
Starting NFS services: [OK]
Starting NFS quotas: [OK]
Starting NFS mountd: [OK]
Starting NFS daemon: [OK]

We’re almost done! Now we need to create the server’s public-private key pair and tell
the SFS server to also export the same directories:

[root@server /root]# sfskey gen -P /etc/sfs/sfs_host_key
Creating new key for /etc/sfs/sfs_host_key.

Key Name: root@my.server.com

sfskey needs secret bits with which to seed the random number generator.
Please type some random or unguessable text until you hear a beep:

13December 2002 ;login:

Setting up an SFS server

requires very little

configuration.

●
SE

C
U

R
IT

Y

USING SFS FOR A SECURE NETWORK FILE SYSTEM ●

Vol. 27, No. 6 ;login:

DONE
[root@server /root]# cat /etc/sfs/sfsrwsd_config
Export /var/sfs/root / R
Export /disk/disk0 /disk0
Export /disk/disk1 /disk1

The R flag makes /var/sfs/root globally readable – you can omit this flag if you do not
wish to have any anonymously accessible directories. Finally, we start the server:

[root@server sfs]# /etc/rc.d/init.d/sfssd start
Starting sfssd: [OK]
[root@server sfs]# tail /var/log/messages
Sep 12 23:46:43 server sfssd: sfssd startup succeeded
Sep 12 23:46:43 server : sfssd: version 0.7, pid 1881
Sep 12 23:46:43 server : sfsauthd: version 0.7, pid 1885
Sep 12 23:46:44 server : sfsauthd: serving
@server.mit.edu,66zrwhw5i9jr5ym7i9mkcxijn5fmtaz8
Sep 12 23:46:44 server : sfssd: accepted connection from 18.247.7.168
Sep 12 23:46:44 server rpc.mountd: authenticated mount request

from localhost.localdomain:790 for /disk/disk0 (/disk/disk0)
Sep 12 23:46:44 server rpc.mountd: authenticated mount request

from localhost.localdomain:790 for /disk/disk1 (/disk/disk1)
Sep 12 23:46:44 server rpc.mountd: authenticated mount request

from localhost.localdomain:790 for /var/sfs/root (/var/sfs/root)
Sep 12 23:46:44 server : sfsrwsd: version 0.7, pid 1886
Sep 12 23:46:44 server : sfsrwsd: serving /sfs/@server.mit.edu,

66zrwhw5i9jr5ym7i9mkcxijn5fmtaz8

REMOTE LOGIN
REX is an SSH-like remote login tool that uses self-certifying paths instead of a static
known_hosts file. While REX can be disabled on the server by commenting out a sin-
gle line in the sfssd_config configuration file, it makes remote login more pleasing to
users with home directories stored in SFS. By default, REX forwards X11 connections
and forwards the SFS agent itself. The basic invocation is with a hostname:

$ rex amsterdam.lcs.mit.edu
rex: Prepending '@' to destination 'amsterdam.lcs.mit.edu' and attempting SRP
Passphrase for fubob@amsterdam.lcs.mit.edu/1024:
rex: Connecting to @amsterdam.lcs.mit.edu,bkfce6jdbmdbzfbct36qgvmpfwzs8exu
amsterdam:(~/)%

REX can use the SFS agent and/or SRP to map DNS hostnames to self-certifying path-
names as described earlier. In the above example, REX prompts for a password and
uses SRP to obtain amsterdam’s self-certifying pathname and the user’s private key
securely. Subsequent logins to the same server do not require a password.

REX also accepts other names for servers. For example, REX accepts self-certifying
pathnames and even SFS symbolic links as a way of naming servers. System adminis-
trators may find fully qualified self-certifying pathnames useful for non-interactive
scripts. Here we generate a list of currently logged-in users:

$ rex @amsterdam.lcs.mit.edu,bkfce6jdbmdbzfbct36qgvmpfwzs8exu
/usr/bin/who

Connection caching allows subsequent REX executions to the same server to avoid
public key operations. The client and server generate a new session key based on the

14

previous one. The speedy reconnection will be useful for system administrators who
frequently make multiple remote execute commands to the same servers. No longer
will each command require a good portion of a second to complete.

You can see what sessions your agent currently maintains by running

$ sfskey sesslist

The additional command sfskey sesskill removes a connection from the agent’s cache.

SSH was the main inspiration for REX, as we needed an SSH-like tool that could work
with SFS. Although we could have extended SSH for this purpose, SSH servers typi-
cally read files in users’ home directories during user authentication. This policy is
incompatible with our goal of integrating remote login with a secure file system, as the
remote login machine would generally not have permission to read users’ files before
those users are authenticated.

For those who are hesitant to use REX but need remote login to work with home
directories stored in SFS, the libpam-sfs module may be a reasonable alternative.

SFS Toolkit
The SFS file system infrastructure or “toolkit” provides support for several other proj-
ects and extensions. Below is a short list of what the extended SFS world has to offer.
For all the details and references, see the SFS Web page.

FILE SYSTEMS
One of the goals of SFS is to facilitate the less painful development of new file systems.
As an example, one of the authors wrote a crude encrypted file system in just 600
additional lines of C++ code. SFS provides an asynchronous library and an efficient
NFS loopback server. By implementing the server side of the NFS loopback server, a
developer can create a new file system that works on all operating systems with solid
NFSv3 support.

In a read-only dialect of SFS (TOCS 20(1)), a publisher could replicate content on
untrusted servers while maintaining the integrity of the file system as a whole. The
read-only dialect is significantly faster than the read-write dialect, because the server
performs no online cryptography. Another dialect caters to low-bandwidth connec-
tions (SOSP 2001). The Chord system (SIGCOMM 2001) uses the SFS asynchronous
library to implement a peer-to-peer lookup algorithm. The Cooperative File System
(SOSP 2001) uses the SFS asynchronous library to implement a distributed peer-to-
peer read-only file system. Ivy (OSDI 2002) does the same for a read-write log-based
file system.

ACLS
One drawback to traditional UNIX file sharing is the lack of access control lists
(ACLs). We find that file sharing in NFS (and hence SFS) is limited because of the dif-
ficulty of creating and administering groups for users without administrative privi-
leges. In a dialect of SFS under development, the server supports ACLs similar to those
of AFS. A key difference is that we have no-hassle cross-realm support. A student at
MIT can give a friend at NYU access to a file or directory simply by adding the friend’s
public key to the appropriate ACLs. Although the ACL prototype works and appears in
the main sourcetree, it does not yet appear in an official release.

15December 2002 ;login:

One of the goals of SFS is to

facilitate the less painful

development of new file

systems.

●
SE

C
U

R
IT

Y

USING SFS FOR A SECURE NETWORK FILE SYSTEM ●

Vol. 27, No. 6 ;login:

Caveat
SFS serves files to clients using cryptographically protected communications. As such,
SFS can help eliminate security holes associated with insecure network file systems and
let users share files where they could not do so before. That said, we realize that perfect
security is a remote fantasy. Our documentation on the SFS Web site discusses many of
the security issues raised by SFS.

Conclusion
Our research groups have used SFS on a daily basis for several years. Several of us use
SFS for our home directories. In part because SFS is implemented on top of mature
NFS code, we have never lost a file to SFS. A number of groups outside of our research
groups also use SFS in production environments. We hope you find SFS as convenient
and useful as we have.

ACKNOWLEDGMENTS

Several people have contributed to the SFS development, including Chuck Blake, Ben-
jie Chen, Frank Dabek, David Euresti, Kevin Fu, Frans Kaashoek, Michael Kaminsky,
Maxwell Krohn, David Mazières, Eric Peterson, George Savvides, and Nickolai Zel-
dovich. We thank Eric Anderson, Sameer Ajmani, Michael Barrow, Rik Farrow,
Maxwell Krohn, Chris Laas, Emil Sit, and Ram Swaminathan for helpful feedback on
drafts of this article.

SFS is funded by the DARPA Composable High Assurance Trusted Systems program
under contract #N66001-01-1-8927. Support also came from an NFS Graduate Fel-
lowship and a USENIX Scholars Research Grant.

. . . we have never lost a file

to SFS.

16

17December 2002 ;login:

Hindsight Is 20/20
It happens to everyone – one of your systems is compromised and you go

back through the logs to see what happened. How did the intruder break

in? Then you see it:

Jun 14 13:08:58 computer.company.com sshd[9779]: log: Connection from
452.312.34.58 port 3552
Jun 14 13:09:01 computer.company.com sshd[9779]: fatal: Local: crc32
compensation attack: network attack detected

(Names and numbers have been changed to protect the innocent.)

As you trace it through the logs, you can see the whole sequence of events. But why
didn’t you notice this before it happened? Or at least quickly afterward? When going
through log files to determine what happened and what needs to be fixed, it is often
easy to see entries that indicated an attempted intrusion. If only you’d seen those logs
beforehand! Of course, nobody has the time to constantly watch their logs for scans,
dictionary attacks, misconfigured equipment, and so on. Even given the time, it would
be very difficult to pick these events out of the noise. To have a chance at keeping up,
monitoring tasks must be automated with scripts that can filter out the noise and
report only information that is relevant and useful. Though there is some time delay
inherent in log processing, logs can still be useful in proactive security. Let’s look at
some straightforward examples of how to use logs to help prevent intrusions and
increase the visibility of events on your network.

Log Files and Low-Hanging Fruit
Simple port scans are one of the most common and easy-to-detect indicators of
wrongdoing. This is especially true of worms and IRC “botnets” that don’t attempt to
be stealthy about their scanning. Using an intrusion detection system to watch for
attempted break-ins can be very effective and has been treated in many books. When
an IDS isn’t an option, however, you can still detect a lot of the simple intrusion
attempts through log analysis. Firewall logs from access lists, for example, can provide
enough information to detect port scans (protocol, source and destination IPs and
ports, and times). The question is, what to do with that information? How do you pick
out the scans from the noise? Once you pick out the scans, then what do you do?

Before you can take any action, you have to find the scan activity. The first step toward
doing that is to parse your logs into a usable format. Perl is great for this. You are going
to need to be able to search through and group the data a number of different ways.
Perl alone will work for this as well, but an easier and more flexible solution is to use a
database. Writing your Perl parsing script to dump the interesting part of the logs in,
say, CSV format and loading the whole file into the database at once is much faster
than interfacing directly to the database and loading one row at a time. These scripts
are very simple and generally look something like this:

while(defined($line=<LOGFILE>)) {
if($line =~ /(\d+)-(\d+)\s+ # date

(\d+:\d+:\d+)\s+: # time
(\S+)\s+ # protocol
(\d+\.\d+\.\d+\.\d+):(\d+)\s+ # source IP and port
->\s+
(\d+\.\d+\.\d+\.\d+):(\d+) # destination IP and port

/x) {

automated log
processing

AUTOMATED LOG PROCESSING ●

●
SE

C
U

R
IT

Y

by Jared Allison

Jared Allison is an
Internet security
engineer at UUNet.
He has spent much
of his time working
on projects that
automate traffic
analysis, intrusion
detection, and router
and system security
configuration check-
ing in large-scale
networks. Most of
his work is done with
C, Perl, and PHP.

jallison@UU.NET

Vol. 27, No. 6 ;login:

print TEMPFILE ("$1-$2 $3", (getprotobyname($4))[2], ",",
unpack("N", inet_aton($5)), ",$6,",
unpack("N", inet_aton($7)) ",$8, "\n");

}
}

The particular regular expression will vary depending on the format of the log files.
Finally, you should define a generalized table layout so that you can import logs from
many different types of devices (e.g., routers, firewalls, or even tcpdump) into the
same database table. At a minimum, your database table should have the following
fields:

Data Source (This field could be text – perhaps an enumerated
type.)

Date & Time (Store these in the same field if possible.)
Protocol (Use /etc/protocols to convert this to an 8-bit

unsigned integer.)
Source IP Address (Store as a 32-bit unsigned integer.)
Source Port (Store as a 16-bit unsigned integer.)
Destination IP Address (Store as a 32-bit unsigned integer.)
Destination Port (Store as a 16-bit unsigned integer.)
Action (Was this packet permitted or denied?)

A quick note on ICMP – it is useful to store the ICMP type and code information. An
easy way to do this without wasting space is to store them in the source port and desti-
nation port fields, respectively. Just remember to check the protocol in your scripts, or
you might spend a lot of time trying to track down why anyone would use those weird
low ports.

Once your data is loaded into a database, a fairly easy way to look for obvious scans is
to group the data as follows. Grouping by the source and destination IP address and
then looking for large numbers of different destination ports will reveal potential host
scans, since a conversation between two hosts is usually confined to, at worst, a small
number of ports. Likewise, grouping by the source IP and destination port and then
looking for large numbers of different destination addresses reveals network scans.
Expressed in SQL language, a search for network scans might look like:

SELECT source_ip_address, destination_port
COUNT(DISTINCT(destination_ip_address))
AS DST_IP
FROM my_log_table
GROUP BY source_ip_address, destination_port
HAVING DST_IP > 10

Examine the output with some Perl and you’ve got a list of potential scans. You may
want to add in some code to adjust your sensitivity to different ports and address
ranges. For example, some UDP/53 packets bouncing off of a firewall is probably not
as important as TCP/22 packets, so you might want to require 50 of those packets
before you get upset instead of 10. Then again, maybe it is more important; you
should adjust the sensitivity in a manner appropriate to your situation.

There are several options for what to do with the list of IP addresses that appear to
have scanned your equipment. One fairly extreme option would be to block all packets
from that IP address to any of your systems. This would help keep intruders out and
could be automated, but that could lead to a self-inflicted denial of service and so is

18

not a good idea. In deciding what to do, it is important to bear in mind that usually
the IP address that the scan came from is not actually the IP address of the computer
the scanner was sitting at. It is often another machine that has been compromised. In
light of that, a good solution is to send a polite but firm email to the system adminis-
trator detailing what happened and to include some logs. This will usually solve the
problem and can be safely scripted using a Perl WHOIS module to find administrator
contacts for IP addresses (whois.abuse.net works well if you have a domain name). It is
wise to design the script so that it errs on the side of caution when deciding whether to
send mail. Crying wolf will not help your cause. If the recipient of the mail fixes the
system, it will cut off one potential avenue of attack and have the added benefit of rais-
ing the bar for security in general. Even if nothing comes of the email, by tracking scan
activity you will gain insight into what services may be exploitable.

The same general process can be applied to a host’s authentication logs. Making effec-
tive use of the logs is simply a matter of defining a pattern of activity that appears
unusual. For example, the use of su to elevate privileges may not be uncommon, but
what about more than one failed attempt to become root without success? A few
attempts followed closely by success might indicate a forgotten or mistyped password.
However, without a successful attempt closely following, it starts to sound more suspi-
cious. It is straightforward to write a Perl script that parses syslogs and checks for suc-
cessful su attempts within, say, 15 seconds after an unsuccessful attempt. The script
could then mail the administrator a list of suspicious usernames and times of
attempted accesses.

Catching Misconfigurations
A major threat to the security of any system is misconfiguration – whether accidental
or intentional. An administrator may configure a system in a way that puts it in an
insecure state. Good logging can help detect this condition, hopefully before it
becomes a problem. It can also help educate users and administrators by pointing out
which commands can create security holes. The following example outlines how to
detect someone misconfiguring a router.

Many routers support command-level accounting via the TACACS+ protocol. If com-
mand accounting is enabled, the TACACS+ accounting server will receive logs of every
command entered (for a certain privilege level), what time it was entered, and which
user entered it. These command logs can be parsed by a Perl script and, optionally,
loaded into a database. Whether from the database or as it goes through the logs, the
Perl script can then watch for commands such as no access-list or no service pass-
word-encryption that could create security problems. An alert could be paged or
emailed to an administrator should such a command be entered. In a network with a
small number of administrators, you could even make the script mail directly to the
person who made the change (since you aren’t all sharing the same passwords, right?).

Future Work
Simple scripts and databases are great for catching the easy stuff, but what about more
stealthy attacks? Expanding the time span of your search will help catch some things,
but this requires more and more processing power and storage space. One potential
solution is to combine data from several different sources into one system. With data
from application syslogs, firewall logs, and command accounting logs, for example,
you could assign probabilities or levels of alert to different events from each. This
would give a script a common ground for comparing events from different sources of

19December 2002 ;login:

●
SE

C
U

R
IT

Y

AUTOMATED LOG PROCESSING ●

Vol. 27, No. 6 ;login:

data. If three events, each with a low probability of occurrence, happen on the same
system, there is a greater cause for alarm than if any occur individually. In this way,
several events that by themselves would not be significant enough to cause alarm can
be put together into a more complete picture. For example, a few TCP/22 packets
denied to a few hosts on a subnet is perhaps nothing to be concerned about, but if you
also notice a few unusual syslog messages from sshd on a machine on that subnet, and
a few files that root owns get changed, then it would be a good idea to look at that
machine. The more disparate sources of data are included, the more difficult it will be
for attackers to slip through unnoticed.

20

21December 2002 ;login:

Within the past several years, the information security community has

increasingly recognized the value of honeypots. First discussed in 1989 and

1990 by Clifford Stoll1 and Bill Cheswick,2 honeypots are a unique security

technology; they are resources designed to be attacked. Many people have

different interpretations of what a honeypot is. For the purposes of this

paper, I will use the following definition for honeypots: a security resource

whose value lies in being probed, attacked, or compromised.3

This is a highly flexible definition, but then again, honeypots are a highly flexible tech-
nology, able to satisfy a variety of different goals and objectives. Commercial vendors,
such as ManTrap, Smoke Detector, or Specter, have developed honeypots that can be
used to detect attacks.4 Other organizations, such as the Honeynet Project, have de-
ployed honeypots for research purposes.5 This paper attempts to describe one possible
deployment of honeypots, called HOSUS (HOneypot SUrveillance System), a concept
based on the Navy’s SOSUS (SOund SUrveillance System) program.6

SOSUS
During the Cold War, one of the greatest threats facing the United States was the
Soviet nuclear submarine threat. Submarines could move virtually undetected through
the oceans. Used as platforms to launch nuclear attacks or gather intelligence based on
intercepted signals, submarines could covertly collect sensitive information on or
obliterate a country. One of the greatest assets of a submarine is its ability to operate
clandestinely. Nothing is more frightening or more dangerous than an enemy you can-
not find or track.

To counter this threat, the United States Navy in the 1950s developed and first
deployed the SOSUS program. The intent was to monitor and track enemy subma-
rines, thus neutralizing their greatest advantage and diminishing the threat. SOSUS
consists of hydrophones placed along the bottom of various oceans. These hydro-
phones are linked together to passively capture activity-generated sounds, which are
then used to identify, better understand, and track enemy threats.

HOSUS
Much as the United States faced hidden threats in the vastness of the oceans during the
Cold War, organizations now face an even greater magnitude of hidden threats in the
vastness of cyberspace. Just like the oceans, the Internet is an international domain,
where threats come and go, allowing the enemy to strike at a time and target of their
choosing. It is extremely difficult to identify and track this threat. HOSUS can provide
a solution similar to the one provided by SOSUS. Like hydrophones that passively col-
lect data from the ocean’s depths, honeypots deployed throughout the Internet can
passively capture attacker activity.

As an information collection and detection technology, honeypots have several advan-
tages. First, they have no real production value, so any activity sent to them is most
likely a probe, scan, or attack. This dramatically reduces false positives, one of the
greatest challenges faced by most detection technologies. In addition, honeypots can
also capture unknown attacks, reducing false negatives, as demonstrated with the
Solaris dtspcd exploit captured in the wild in 2002.7 Last, unlike most detection tech-
nologies, honeypots can interact with the attacker, giving more information on the

HOSUS (honeypot
surveillance system)

HOSUS ●

●
SE

C
U

R
IT

Y

by Lance Spitzner

Lance is a security
geek whose passion
is using honeypots to
study blackhats. This
love for tactics began
as a tanker in the US
Army’s Rapid
Deployment Force.
He is a senior secu-
rity architect with
Sun Microsystems.

lance@honeynet.org

1. Clifford Stoll, The Cuckoo’s Egg (New York:
Doubleday), 1989.

2. Bill Cheswick, “An Evening with Berferd,”
USENIX Proceedings, January 20, 1990.

3. Lance Spitzner, Honeypots: Tracking Hackers
(Boston: Addison-Wesley, 2002).

4. ManTrap: http://www.mantrap.com; Specter:
http://www.specter.com; Smoke Detector:
http://palisadesys.com/products/
smokedetector/prod_smokedet.shtml.

5. The Honeynet Project:
http://www.honeynet.org.

6. SOSUS:
http://www.pmel.noaa.gov/vents/acoustics/
sosus.html.

7. Solaris dtspcd exploit: http://www.cert.org/
advisories/CA-2002-01.html.

http://www.mantrap.com
http://www.specter.com
http://palisadesys.com/products/
http://www.honeynet.org
http://www.pmel.noaa.gov/vents/acoustics/
http://www.cert.org/

Vol. 27, No. 6 ;login:

attacker’s activities and intent. Examples of this capability can be found in the series of
Know Your Enemy white papers and challenges sponsored by the Honeynet Project.8

Threats using active measures, such as probes, attacks, or exploits, would be captured
by these devices. Once correlated at a central point, this information can give organi-
zations a much better understanding of the threats they face within cyberspace. More
importantly, this information can potentially detect activity and predict attacks before
they happen. However, HOSUS has the potential of capturing far more information
then SOSUS ever could.

A concept similar to this has already been employed, though in a limited fashion. An
organization known as the Honeynet Research Alliance,9 an extension of the Hon-
eynet Project, has passive surveillance devices, known as Honeynets, deployed
throughout the world (as of July 1, 2002, they currently have 10 Honeynets). Data is
passively collected on threats and attacks, then forwarded to a central point for data
correlation and analysis (see Figure 1). This data has proven extremely valuable, result-
ing in analysis and publication of the characteristics and methodology of many differ-
ent threats within cyberspace. The HOSUS concept could be employed on a much
larger scale.

Deployment
There are two approaches to deploying the HOSUS concept: low interaction and high
interaction. Honeypots are categorized by the level of interaction they provide to the
attacker.10 The greater the interaction, the more functionality honeypots have. For
example, a low-interaction honeypot would emulate a Linux server running the wu-
ftp service, limiting the amount of interaction the attacker would have with the sys-
tem. A high-interaction honeypot would be a real Linux server running a real version
of the wu-ftp service; there would be no limitation, since the attacker would have
access to a real system. The attacker could exploit the service, take over and reprogram
the computer, and then use it as a base for communication. The greater the level of
interaction, the more we can learn about the attacker. However, the greater the interac-
tion, the more work involved and the greater the risk the system could be subverted to
attack or harm other non-honeypot systems.

Both low- and high-interaction solutions have their advantages with a HOSUS deploy-
ment. Low-interaction solutions are much simpler to deploy and maintain. But they
are limited primarily to the transactional information of an attack, such as IP
addresses, port numbers, and the time/date of the attack. Depending on the level of
emulation with the low-interaction solution, some of the attacker’s activities, such as
login attempts, could be captured. This data can be extremely useful for detection,
early warning, and prediction of activity, or statistical analysis of attack behavior.

High-interaction honeypots have the advantage of capturing far greater levels of infor-
mation. They provide real operating systems and applications for attackers to interact
with, just as they exist in the real world. One example of high-interaction honeypots,
Honeynets, could be used to capture detailed information on the enemy, including
their communications, latest tools and techniques, motives, and organization. Addi-
tional measures could be taken to create realistic Honeynets, perhaps even solutions
that contain false information designed to mislead attackers. These Honeynets could
be customized to appear as different targets, such as a university, government , or hos-
pital site.

22

Figure 1: Distributed deployment of hon-
eypots (in this case honeynets) passively
collecting and then forwarding data to a

central location. Source: Honeynet
Research Alliance.

8. Know Your Enemy papers: http://www.
honeynet.org/papers/; challenges:
http://www.honeynet.org/misc/chall.html.

9. The Honeynet Research Alliance:
http://www.honeynet.org/alliance/.

10. Spitzner, Honeypots: Tracking Hackers.

http://www
http://www.honeynet.org/misc/chall.html
http://www.honeynet.org/alliance/

The quantity of passive listening devices deployed has a direct correlation to the
amount of data collected and the value and statistical significance of the data analysis.
The more sensors (honeypots) you can deploy, the more data you can obtain. To facili-
tate this wide deployment, it’s possible to create rapidly deployable honeypot sensors.
One idea is to create a simple appliance, such as a bootable CD-ROM. The CD-ROM
would contain all the required software for the establishment and maintenance of the
honeypot. It would be preconfigured to remotely and securely log all captured infor-
mation to a central collection point. To facilitate ease of deployment, honeypots could
also be pre-configured to passively monitor any IP address that is not specifically
assigned to a system. This allows for easy and rapid deployment within most organiza-
tions. Whenever the honeypot sees activity for unassigned IPs, it simply assumes the
identity of the victim, interacts with the attackers, prevents outbound attacks, captures
the information, then securely forwards that information to the central data collection
point.

The idea of monitoring unused IP space is not new, having been demonstrated by
organizations such as CAIDA11 and Arbor Networks, Inc.12 However, in addition to
monitoring IPs in unused networks, HOSUS monitors unused IPs within production
networks of valid organizations as well. And honeypots take this concept one step fur-
ther by not only monitoring but also interacting with attacks.

For a low-interaction deployment, technology like this already exists, such as the open
source solution honeyd,13 developed by Niels Provos. Honeyd is a low-interaction
solution that emulates a variety of operating systems and services. When combined
with a technology called arpd, honeyd can dynamically monitor unused IP space, then
interact with any activity or attacks bound for those systems. A high-interaction solu-
tion would be more difficult to automate the deployment process, but would also have
far greater information-gathering capabilities. It may be possible to build a Honeynet
solution that also boots off a single CD-ROM, creating the Honeynet architecture, ful-
filling data control, data capture, and data collection requirements. Then the Honeynet
would only need to be populated with target systems. This process could even be
streamlined further by creating virtual Honeynets,14 multiple systems running off a
single physical computer. Similar to honeyd, virtual Honeynets already exist and have
been successfully deployed.

Risk
Just like any technology, HOSUS has inherent risks. The greatest risk is identification
by the enemy. If the enemy can identify the existence and location of the deployed
honeypots, he can neutralize their effectiveness. In the case of the low-interaction hon-
eypots, the attacker can merely avoid the devices, avoiding detection. With high-inter-
action solutions, the attackers could not only avoid the systems but, if they so chose,
feed it bad information, establishing, for example, a false IRC channel with bogus
communications. A second risk exists: the honeypots can potentially be compromised
and then be used to attack or harm other non-honeypot systems. This risk is especially
prevalent with high-interaction honeypots, as we provide actual operating systems for
the attackers to interact with.

These risks can be mitigated. By making the deployment of low-interaction honeypots
simple and efficient, their identity and location can quickly be changed with minimal
impact. Honeypots can be rotated to new locations on a weekly or monthly basis. In
cyberspace, unlike the ocean, it is extremely easy to reconfigure and redeploy assets.

23December 2002 ;login:

11. CAIDA, “Inferring Internet Denial-of-Ser-
vice Activity,” http://www.caida.org/outreach/
papers/2001/BackScatter/.

12. Arbor Networks, “A Snapshot of Global
Worm Activity,” http://research.arbor.net/
up_media/up_files/snapshot_worm_activity.pdf.

13. Honeyd:
http://www.citi.umich.edu/u/provos/honeyd/.

14. Virtual Honeynets:
http://www.honeynet.org/papers/virtual/.

●
SE

C
U

R
IT

Y

HOSUS ●

http://www.caida.org/outreach/
http://research.arbor.net/
http://www.citi.umich.edu/u/provos/honeyd/
http://www.honeynet.org/papers/virtual/

Vol. 27, No. 6 ;login:

This capability also exists with Honeynet technology. Honeynets can mitigate this risk
even further by creating a highly realistic environment, running services and applica-
tions just as they would be found in a production environment.

For the risk of compromise, measures can be taken to control the attacker. For low-
interaction honeypots, the emulated services are created to limit the attacker’s interac-
tion. These emulated services are designed not to be compromised; they do not
provide enough functionality for the attacker to exploit. At most, they merely appear
as vulnerable or exploited services. For high-interaction solutions, data-control mech-
anisms can be used to control outbound connections, mitigating the risk of the honey-
pot harming others. One example is Hogwash,15 a solution that allows hostile egress
from the honeypot but alters a bit in the malware to negate the outbound attack. This
provides the maximum realism for an intruder inside the honeypot, leading the mis-
creant to believe the attack tool to be flawed. Other examples of data control include
data throttling and counting outbound connections.

Conclusion
The purpose of this paper is to highlight the value of the honeypot deployment con-
cept HOSUS. Similar to the hydrophones deployed during the Cold War, distributed
honeypots could be used to passively collect information on threats and hostile activ-
ity within cyberspace. Once centrally correlated, this information could then be ana-
lyzed to better understand the threats that exist, detect indications of hostile activity,
and prevent or, if required, defend against the cyberattack. The types of deployment,
low interaction and high interaction, each has its advantages and disadvantages,
depending on the data to be captured. Most likely, a successful deployment would
require a combination of both technologies. However, both technologies share the
same risks: detection and compromise. HOSUS is one possible method to better
understand and protect against cyberthreats. If you are interested in learning more
about honeypot technologies, http://www.tracking-hackers.com is an excellent place to
start.

15. Hogwash: http://hogwash.sourceforge.net.

24

http://www.tracking-hackers.com
http://hogwash.sourceforge.net

25December 2002 ;login:

“The network is the computer.” – Sun Microsystems, ca. 1984

“The network is the network, the computer is the computer. Sorry about the
confusion.” – Anonymous

What Does “Network Security” Mean?
What do you mean when you say “network security”? Firewalls? Intrusion

detection systems? Anti-virus software? Authentication systems? System

and application hardening? These are all fine and even necessary elements

of “current best practice” if you’re running a small office network or even a

medium-sized corporate intranet.

But what if you’re running a global Internet backbone with over 4700 routers,
announcing over 60% of all routes, and have over 600 routers and switches in 25 host-
ing data centers? What does “network security” mean when you are the network and
have no perimeter?

Chances are that in your world, you are closer to the first scenario. It is the premise of
this article that while many of the solutions for smaller networks don’t scale, many of
the problems in the larger networks do apply generally, and that ignoring them may
result in widespread disruption of service.

The main goal for large networks is availability. The bits should keep flowing, prefer-
ably to the right place. While integrity and confidentiality are important problems, it is
assumed that these are handled “at the end of the pipe” by VPNs, host-based controls,
good security policy and practice, etc. Assuring availability is a larger problem than it
might at first seem. Let’s take a look at some (relatively) recent problems.

Some Real Problems
DDOS ATTACKS
The greatest foreshadowing (not counting the Morris Worm of ’88) of what could go
wrong occurred in February 2000. Distributed Denial of Service (DDoS) attacks were
launched, disabling Yahoo, eBay, Amazon.com, and others [lem01]. These attacks were
made possible because hackers were able to “own” many poorly protected hosts across
the Internet. Since then, DDoS defense has been a hot topic with governments,
researchers, standards bodies, and network operators. A few products have even come
on the market to address the problem. Still, there are no generally accepted solutions,
technical or social, that adequately address the issue. In 2001, Code Red and Nimda
demonstrated the speed with which worms can spread (and that we clearly have not
solved the problem of insecure hosts). A paper [sta02] presented at the 2002 USENIX
Security Symposium, titled “How to Own the Internet in Your Spare Time,” demon-
strates the current magnitude of the problem and suggests solutions, both technical
and social.

The bottom line: DDoS attacks have already caused some disruption of service and
have the potential to do far greater damage. Solutions are needed.

the case for network
infrastructure
security

THE CASE FOR NETWORK INFRASTRUCTURE SECURITY ●

●
SE

C
U

R
IT

Y

by George M.
Jones

George Jones is a
network security
architect for UUNET.
In previous lives he
worked at BankOne,
CompuServe, and
Ohio State Univer-
sity. He has been
noodling around with
Emacs since ‘79,
UNIX since ‘85, and
security things since
‘97. What a long
strange trip it’s been.

gmj@pobox.com

Vol. 27, No. 6 ;login:

BUGS THAT ENABLE HACKING OF THE NETWORK
Here is a sampling of some “recent” bugs that enable hacking of network infrastruc-
ture.

SNMP VULNERABILITIES

In February 2002, CERT announced vulnerabilities [cer02] that had been discovered
in SNMP trap and request handling.1 SNMP is the most widely used protocol for
managing and monitoring network infrastructure. The root of the problem was our
old friend the buffer overflow. In this case it was in the ASN.1 encoding/decoding that
underlies SNMP. There are apparently very few ASN.1 implementations, so the result
was that most SNMP implementations were vulnerable. A single malformed packet
could cause the device to crash, or at least disable the IP stack. Imagine your core
routers all suddenly rebooting.

NTP BUGS

In April 2001, a buffer overflow was discovered in certain UNIX-based NTP (Network
Time Protocol) daemons [sec01]. Exploit code was published. Cisco published their
own advisory in May 2002 [cis02]. The Cisco advisory stated that they were unable to
reproduce the problem. Sources known to this author were able to exploit the vulnera-
bility in IOS. Moral #1: Bugs can be “out there” a long time before they are exploited.
Moral #2: Don’t believe everything you read. Moral #3: Trust, but verify.

TELNET BUFFER OVERFLOWS

Going back a little further, to December 2000, we see that all problems are not related
to buffer overflows in routers. A memory leak in the Telnet process on catalyst switches
[cis00] caused them to reboot. Bye-bye desktops. Bye-bye Web servers . . .

SSH VULNERABILITIES

But you are being good. You’re not using Telnet with its clear-text passwords. You use
SSH to manage your devices. Have we got a vulnerability or two for you . . .[cis01]

CONFLICTING PRIORITIES
Commercial vendors and network operators have conflicting priorities.2 Vendors are
interested in selling new equipment and software. Network operators are interested in
operating networks. Vendors tend to focus effort on developing new products (which
invariably have new bugs). Network operators focus on operating networks. Vendors
tend to view bug fixing as a distraction from new product development and sales. Net-
work operators view bug fixes in existing products as essential to operating networks.
Vendors tend to see their job as done when the bug is fixed in the latest release. Net-
work operators see their job as done when the bug fix is deployed across all devices
(including old/obsolete ones) in their operating networks.

OPERATIONS
Operational realities can adversely affect security, even if technical solutions are
known and available.

ANTIQUATED CODE REVS REQUIRED

It is sometimes the case that antiquated code revs are required for production. This
may be true, for instance, if the vendor has produced a “special” to address unique

1. SNMP has been rumored to stand for “Secu-
rity Not My Problem.”

2. The author acknowledges that this may be
“unfair,” since it portrays an external view of
vendors as seen from the engineering/security
trenches.

26

needs of a particular customer or if the customer has policies against running “bleed-
ing edge” releases (as is the case in industries such as utilities and banking).

UPGRADES NOT POSSIBLE

Sometimes, in the real world, it is just not possible to upgrade code quickly. Maybe
“the network guy” quit or was laid off, and consultants are not immediately available.
Maybe the IT department has other priorities (i.e., the risk of a bug in networking
infrastructure is not perceived as high). Maybe the vendor has not produced a fix for
the bug in question, or it is not available on the old hardware that is still doing just fine
at meeting the business needs it was purchased to address. “If it ain’t broke . . .”

PEOPLE/REAL-WORLD ISSUES

This does not touch the non-technical yet very real issues of staffing and training. At
the present time the entire telecommunications sector is experiencing serious financial
difficulty, with all the attendant impact on priorities and funding.

CONFIGURATION
In defense of vendors, it can be argued that the majority of vulnerabilities in network-
ing infrastructure are due to incomplete configuration or misconfiguration. Vendors
are supplying the right knobs. They just need to be set correctly. That’s where tools
such as the Router Audit Tool [jon02a] come in.

SURVEY SAYS . . .

A quick survey of 471 routers across the Internet that showed up in traceroutes to 94
Web servers showed that 81 of them (17%) accepted connections from arbitrary
sources on either port 22 (SSH), 23 (Telnet) or 80 (HTTP). This is bad – no filters on
administrative access. Of those, 38 (8%) were listening on port 22, 57 (12%) were lis-
tening on 23, and thankfully only 5 (1%) answered on 80.3

Some Potential Problems
We have seen a sampling of things that are problems today. Now, let’s take a look at
Network Nightmares: The Next Generation.

SAME OLD SAME OLD
If past performance can be used to predict future behavior, we can project that:

■ Vendors will continue to release new products.
■ These products will, with non-zero probability, have bugs.
■ Consumers will buy and deploy these buggy products.
■ The numbers of deployed networks,4 systems, and users will continue to increase.
■ The product of the probability of bugs and the number of deployed systems will

increase. In absolute terms, there will be more vulnerabilities.
■ The number of trained (and employed) systems and network security administra-

tions will not increase at the same rate. The result will be more misconfigured or
unconfigured systems.

MORE SPEW
The eBay/Yahoo attacks of February 2000 [lem01] may only have been the tip of the
iceberg, as demonstrated in Staniford et al. [sta02]. Real and crippling DDoS attacks
on major sites and networks are a distinct possibility.

27December 2002 ;login:

3. Thanks to Pete White for suggesting this sur-
vey method.

4. From 1/5/00 to 3/5/02, the number of adver-
tised routes grew from 76,182 to 110,842, a 45%
increase, even in the face of a down economy.
Source: http://www.employees.org/~tbates/
cidr-report.html.

●
SE

C
U

R
IT

Y

THE CASE FOR NETWORK INFRASTRUCTURE SECURITY ●

http://www.employees.org/~tbates/

Vol. 27, No. 6 ;login:

DO YOU KNOW WHERE YOUR ROUTES ARE?
Attacks on routing infrastructure (routers, routing protocols) have been a matter of
great speculation for some time [ahm00, yas01]. Should they materialize, they could
result in denial of service or misrouted traffic on a large scale. Does your intrusion
detection system alert you when someone advertises a more specific route for your
address blocks, or when someone logged in to your router, set up a tunnel, and policy
routed all traffic for a single customer down the tunnel?

SED QUIS CUSTODIET IPSOS CUSTODES?
Juvenal asked, “But who watches the watchmen?” This is a question we need to ask
again as we design and legislate confidentiality out of our systems. Networks provide
aggregation points that are natural targets for those who would practice surveillance.
See [eff02] and [yro02] for a list of current abuses and privacy threats mixed with
some strong opinions and wild ravings.

Short-Term Solutions
What can you do today to improve the security of your network?

■ Be vigilant. Be clued. The first and best line of defense for any network is net-
work/security admins doing things like: staying on top of current vulnerabilities,
being aware of current best practices and tools, implementing fixes as needed,
watching logs, etc.

■ Patch, patch, patch. Vendors routinely put out patched versions of code to fix
newly discovered problems. Running old/unpatched code is inviting trouble.
Check your vendor advisories.

■ Harden network infrastructure using current best practices and tools. See the
resources section for some suggestions.

Medium-Term Solutions
What can you do in “medium” term to improve the security of your network?

■ Policy. You do have a policy even though you may not have written it down. Why
does your network exist? Who can use it and for what? Who manages it? How are
changes made? Having clear, documented answers to these questions backed by
those in charge of the organization provides a foundation for all other standards,
requirements, practices, etc.

■ Standards and requirements. What features do you need to be able to implement
your policy? Does your current infrastructure support them? Can you clearly
communicate them to your vendors? Some areas to consider (addressed more
fully by the author in [jon02b]) include:

■ device management
■ user interface
■ IP stack (RFC compliance, disable services/ports, DoS tracking, traffic

monitoring/sampling, rate limiting . . .)
■ packet filtering
■ event logging
■ authentication, authorization, and accounting (AAA)
■ layer-2 issues (VLAN isolation).

■ Industry participation. Work with others to define the important problems and
generate solutions. This could range from policy and legislative work, to generat-

28

REFERENCES AND RESOURCES

REFERENCES

[ahm00] “Network Infrastructure Insecurity,”
Rauch Ahmad: http://www.blackhat.com/
presentations/bh-asia-00/jeremy-dave/jeremy-
dave-asia-00-network.ppt.

[cer02]“Multiple Vulnerabilities in Many
Implementations of the Simple Network Man-
agement Protocol (SNMP),” CERT/CC:
http://www.cert.org/advisories/CA-2002-03.html.

[cis00] “Cisco Catalyst Memory Leak Vulnera-
bility,” Cisco Systems: http://www.cisco.com/
warp/public/707/catalyst-memleak-pub.shtml.

[cis01] “Multiple SSH Vulnerabilities,” Cisco
Systems: http://www.cisco.com/warp/
public/707/catalyst-memleak-pub.shtml.

[cis02] “Cisco Security Advisory: NTP Vulnera-
bility,” Cisco Systems: http://www.cisco.com/
warp/public/707/NTP-pub.shtml.

[eff02] EFF Homepage, Electronic Frontier
Foundation: http://www.eff.org/.

[jon02a] “The Router Audit Tool and Bench-
mark,” George M. Jones et al., Center for Inter-
net Security: http://www.cisecurity.org.

[jon02b] “Network Security Requirements for
Devices Implementing Internet Protocol,”
George M. Jones, editor: http://www.port111.
com/docs/netsec-reqs.html.

[lem01] “DDoS Attacks – One Year Later,”
Robert Lemos: http://zdnet.com.com/2100-11-
527990.html?legacy=zdnn.

[sec01] “Ntpd Remote Buffer Overflow Vulner-
ability,” SecurityFocus: http://online.
securityfocus.com/bid/2540/info/.

[sta02] “How to 0wn the Internet in Your Spare
Time,” Stuart Staniford, Vern Paxon, and
Nicholas Weaver: http://www.icir.org/vern/
papers/cdc-usenix-sec02/.

[yas01] “Latest Hacker Target: Routers,” Rutrell
Yasin: http://www.internetweek.com/story/
INW20011217S0004.

[yro02] “Your Rights Online,” Slashdot:
http://www.slashdot.org/yro/.

http://www.blackhat.com/
http://www.cert.org/advisories/CA-2002-03.html
http://www.cisco.com/
http://www.cisco.com/warp/
http://www.cisco.com/
http://www.eff.org/
http://www.cisecurity.org
http://www.port111
http://zdnet.com.com/2100-11-
http://online
http://www.icir.org/vern/
http://www.internetweek.com/story/
http://www.slashdot.org/yro/.

ing industry-wide consensus on required security features, helping to define stan-
dards and best practices, and developing tools to ensure their application.

Long-Term Solutions
What can be done in the long term to improve the security of your network?

■ Cooperation and communication. Staniford et al. [sta02] suggest a network ana-
log to the Center for Disease Control (CDC) for network issues. There have been
some attempts to form such an organization (e.g., www.first.org). The big ques-
tion is how to ensure participation.

■ Consensus. Consensus must be achieved about what the “right” solutions are.
■ Conformance. Vendors must be convinced to conform to the consensus solutions.

The strongest incentive for conformance would be to have many customers mak-
ing conformance a condition of purchase in contracts.

■ Compliance certification. Once vendors are convinced and implement the
requested features, there will be a need for testing and certification. It is likely that
larger organizations will do this “in house,” while smaller organizations will need
to rely on some external testing entity.

■ Coercion (“Send lawyers, guns, and money”). In the end (maybe sooner than we
would think/like), we will have lawyers, legislators, insurance companies, and
auditors telling us how to run and secure networks.

The Big Question
The big question, assuming this assessment of the problem is correct, is whether any-
thing will be done before we have a major network outage. Can we, as a community,
proactively address the issues raised here, or will it take a major disruption of services
for “Network Security” to be recognized as an important priority? Time will tell.

29December 2002 ;login:

●
SE

C
U

R
IT

YRESOURCES FOR SECURING CISCO ROUTERS

“Hardening Cisco Routers,” Thomas Akin:
http://www.oreilly.com/catalog/hardcisco/.

“Improving Security on Cisco Routers,” Cisco
Systems: http://www.cisco.com/warp/public/
707/21.html.

“The Router Audit Tool and Benchmark,”
George M. Jones et al., Center for Internet
Security: http://www.cisecurity.org.

“Securing Cisco Routers Step-by-Step,” John
Stewart and Joshua Wright: http://www.
sansstore.org (forthcoming).

Rob Thomas’ Security Articles, Rob Thomas:
http://www.cymru.com/~robt/Docs/Articles/
(articles/guides to securing IOS, JunOS, BGP,
DoS tracking, etc.).

Thanks to the whole UUNET net-sec team
(past and present) for feedback.

THE CASE FOR NETWORK INFRASTRUCTURE SECURITY ●

http://www.oreilly.com/catalog/hardcisco/
http://www.cisco.com/warp/public/
http://www.cisecurity.org
http://www
http://www.cymru.com/~robt/Docs/Articles/

30

Introduction
Privacy and security are mandatory requirements with any telephony-based

network. Although not perfect, over the years a certain level of security has

been achieved with traditional telephony-based networks.

On the other hand, IP telephony-based networks, which might be a core part of our
telephony infrastructure in the near future, introduces caveats and security concerns
which traditional telephony-based networks do not have to deal with, long ago forgot
about, or learned to cope with.

Unfortunately, the risk factors associated with IP telephony-based networks are far
greater than traditional telephony-based networks.

The security concerns associated with IP telephony-based networks are overshadowed
by the technological hype and the way IP telephony equipment manufacturers push
the technology to the masses. In some cases IP telephony-based equipment is being
shipped although the manufacturer is well aware of the clear and present danger to the
privacy and security of the IP telephony-based network its equipment is part of.

This article highlights the security risk factors associated with IP telephony-based net-
works and compares them, when appropriate, with the public switched telephony net-
work (PSTN) and other traditional telephony-based solutions.

What Is IP Telephony?
IP telephony is a technology in which IP networks are being used as the medium to
transmit voice traffic.

IP telephony has numerous deployment scenarios and architectures which the follow-
ing terms are usually associated with:

■ Voice over IP (VoIP) – describes an IP telephony deployment where the IP network
used as the medium to transmit voice traffic is a managed IP network.

■ Voice on the Net (VON) or Internet telephony – describes an IP telephony deploy-
ment where the IP network used as the medium to transmit voice traffic is the
Internet.

With any IP telephony-based deployment scenario, the underlying IP network will
carry data as well as voice. The term Converged Network is used to describe networks
which carry both voice and data. This is in contrast with the current Public Switched
Telephone Network (PSTN), where voice and data are being carried on physically sepa-
rated networks.

Different protocols play different roles in IP telephony. With any IP telephony-based
network, several types of protocols will be responsible for different aspects of a “call”:

Signaling protocols perform session management and are responsible for:

■ Locating a user – the ability to locate the called party.
■ Session establishment – the ability to determine the availability of the called party

as well as its willingness to participate in a call. The called party is able to accept a
call, reject a call, or redirect the call to another location or service.

security threats to
IP telephony-based
networks

Vol. 27, No. 6 ;login:

by Ofir Arkin

Ofir Arkin is the
founder of the Sys-
Security Group, a
non-biased computer
security research and
consultancy body. In
his free time he
enjoys doing com-
puter security
research. His publica-
tions and work is
available from the
group’s Web site,
http://www.
sys-security.com.

ofir@sys-security.com

■ Session setup negotiation – the ability of the communicating parties to negotiate
the set of parameters to be used during the session, including, but not limited to,
type of media, codec, sampling rate, etc.

■ Modifying a session – the ability to change session parameters during the call,
such as the audio encoding, adding and/or removing a call participant, etc.

■ Tearing down a session – the ability to end a session.

Media transport protocols are responsible for the digitization, encoding (and decoding),
packing, packeting, reception, and ordering of voice and voice samples.

IP telephony-based networks also make use of other protocols and technologies which
are common to any IP-based network, such as DNS and quality of service,

A GENERIC CALL-SETUP PROCESS

When a user places a call on an IP telephony-based network, the signaling protocol its
IP phone supports will locate the called party either directly or by using other servers
on the network, determine the called party’s availability and willingness to participate
in a call, and
negotiate the
parameters to be
used during the
call.

The actual voice
samples are car-
ried by a media
transport proto-
col, such as the
Realtime Trans-
port Protocol
(RTP), which
samples human
speech according
to the parameters
negotiated by the signaling protocol during the call-setup process. Some, but not all, of
the media protocol’s operations will be controlled by the signaling protocol.

During the call, when needed, the signaling protocol is used to change a call parame-
ter. It is also responsible for tearing down the call.

The signaling information might traverse several signaling-related servers, while the
voice samples are being sent directly between call participants.

Parameters other than security and privacy, must be taken into account when design-
ing an IP telephony-based solution. They include but are not limited to:

■ Availability
■ Speech quality
■ Quality of service
■ Scalability

Although these parameters do not seem to be linked with security, the ability of a
malicious party to interfere with the operation of the network will pose a direct threat
to its availability and therefore will downgrade its role as critical infrastructure.

31December 2002 ;login: SECURITY THREATS TO IP TELEPHONY-BASED NETWORKS ●

●
SE

C
U

R
IT

Y

Figure 1: A very abstract example of an IP telephony-based network

Vol. 27, No. 6 ;login:

Why IP Telephony Is at Risk
IP telephony brings the terms “phreaker”1 and “hacker” closer together than ever
before. Several characteristics of IP telephony make it easier for a hacker to try to com-
promise and/or control different aspects or parts of the IP telephony-based network.

Compared to the PSTN, IP telephony-based networks face a greater security threat as a
result of a combination of key factors outlined below.

USE OF THE IP PROTOCOL
Since IP telephony is using the IP protocol as the vessel for carrying both data and
voice, it inherits the known (and unknown) security weaknesses that are associated
with the IP protocol.

IP NETWORKS ARE COMMON
IP networks are easily accessible, allowing more people to explore security issues, and
for security vulnerabilities when found to be published or otherwise disseminated.
This is unlike the obscurity which characterizes the PSTN.

SIGNALING AND MEDIA SHARE THE SAME NETWORK
Although they might take different routes, signaling information and media (voice
samples), with IP telephony-based networks, share the same medium: the IP network.
Unlike the PSTN, where the only part of the telephony network the signaling and
media share is the connection between the subscriber’s phone and its telephony switch
(thereafter the signaling information will be carried on a different network physically
separated from the media – the SS#7 network), with IP telephony no such isolation or
physical separation between voice samples and signaling information is available,
increasing the risk of misuse.

THE PLACEMENT OF INTELLIGENCE
With the PSTN the phones are no more than a “dumb terminal” where the telephony
switch holds the actual intelligence. With some IP telephony-signaling protocols (e.g.,
the Session Initiation Protocol – SIP), some or all of the intelligence is located at the
endpoints (IP Phones, softphones,2 etc.). An endpoint supporting this type of signal-
ing protocol will have the appropriate functionality and ability to interact with differ-
ent IP telephony components and services as well as different networking components
within the IP telephony-based network. A malicious party using such an endpoint, or
a modified client, will have the same ability to interact with these components. This is
in contrast to the PSTN, where a phone is only able to interact with its telephony
switch.

The ability of an endpoint to interact with more IP telephony-based elements and net-
work components poses a greater risk of misuse for an IP telephony-based network
compared with the PSTN, where the switch a phone is connected to is the most likely
to be attacked.

NO SINGLE AUTHORITY (ENTITY) CONTROLS AN IP MEDIUM (THE NETWORK)
With several IP telephony architectures, the signaling and media information will tra-
verse several IP networks controlled by different entities (e.g., Internet telephony, dif-
ferent service providers, different telecom companies). In some cases, it will not be
possible to validate the level of security (and even trust) that different providers will

1. A phreaker is one who engages in phreaking,
cracking phone systems.

2. A softphone is telephony-based software run-
ning on a PC.

32

enforce with their network infrastructure, making those networks a potential risk fac-
tor and an attack venue.

THE NATURE OF SPEECH
Without adequate speech quality, subscribers/users will avoid using IP telephony solu-
tions. Speech quality with IP telephony is a function of several key factors, such as
latency (delay), jitter (delay variation), and packet loss. With the PSTN some of these
factors were long ago dealt with or are a non-issue.

A good example is jitter. During a call setup with the PSTN, a dedicated communica-
tion path between several telephony switches, also known as a trunk, is set, allowing a
voice passage between the call participants. Since this is a dedicated communication
path, voice traffic between the call participants will take the same route during a call.
Therefore jitter is less likely to occur.

The number of factors affecting speech quality, and the ways to stimulate those condi-
tions, are far greater with IP telephony-based networks than with the PSTN.

Unacceptable speech quality is an availability problem, which jeopardizes the critical
infrastructure tag IP telephony has.

IP TELEPHONY INFRASTRUCTURE
The IP telephony infrastructure is usually put together from standard computer equip-
ment and in many cases is built upon known operating systems, which are fully func-
tional. The IP telephony infrastructure components interact with other computer
systems on the IP network. They are thus more susceptible to a security breach than
the equipment combining the PSTN, which is usually proprietary equipment whose
operation is somewhat obscure.

COMPONENTS OF THE IP NETWORK
Networking components and the other computer equipment (e.g., network servers)
combining to make up the IP network that serves the IP telephony infrastructure are
the same common components found in many other IP networks. They offer other
attack venues.

IP TELEPHONY PROTOCOLS
IP telephony-related protocols were not designed with security as their first priority or
as a prime design goal. Some of those protocols added security features when newer
protocol versions were introduced. Other IP telephony protocols introduced some
security mechanisms only after the IETF threatened not to accept a newer version of
the protocol if security was not part of it. Despite such demands and an effort to intro-
duce “decent” security mechanisms within some IP telephony protocols during their
design phase, in some cases inappropriate security concepts were adopted only to sat-
isfy the IETF. Some of those security mechanisms were simply not enough, regarded as
useless or impractical, giving a false sense of security to the users of these IP telephony
protocols.

An example of a security technology that might cause more harm than good is
encryption. Encryption affects voice quality, since it adds delay on top of the usual
delay experienced with an IP telephony-based network. Although some IP telephony-
related protocol specifications mandate the use of encryption, it is sometimes simply
not feasible to use encryption with those protocols. An example is the draft version of

33December 2002 ;login:

IP telephony-related

protocols were not designed

with security as their first

priority or as a prime design

goal.

●
SE

C
U

R
IT

Y

SECURITY THREATS TO IP TELEPHONY-BASED NETWORKS ●

Vol. 27, No. 6 ;login:

the new RTP protocol, which mandates the use of triple-DES encryption. We should
not forget that most IP phones today are not powerful enough to handle encryption.

VPN technology is another good example of a security-related technology that
degrades voice quality. Where we have more than two or three encrypted IP telephony
“tunnels,” voice quality is usually unbearable, the result of current encryption tech-
nologies combined with realtime multimedia demands.

Some security mechanisms offered by different IP telephony protocols might break the
protocol functionality and even the functionality related to an IP telephony-based net-
work.

IP telephony protocols are open to malicious attack to the degree that the attacker
would be able to compromise and/or control different aspects or parts of the IP
telephony-based network. The PSTN enjoys some level of obscurity in relation to
security, the kind of obscurity which is not possible for a set of protocols using an
openly developed IP telephony solution.

The fact is that IP telephony-based protocols are still going through several develop-
ment cycles. The requirements for privacy and security are not being correctly bal-
anced with what is feasible.

SUPPORTING PROTOCOLS AND TECHNOLOGIES
IP telephony protocols pose a threat to the security of IP telephony-based networks,
but so do the supporting protocols and technologies that are usually part of an IP net-
work; among these, we can name application protocols (e.g., DNS, quality of service)
and internetworking technologies (e.g., Ethernet, Token Ring), and the list is long.
Taking advantage of a supporting protocol or a technology being used in the IP net-
work serving the IP telephony-based components might allow a malicious party to
control different aspects or parts of the IP telephony-based network.

PHYSICAL ACCESS
With IP telephony, physical access to the network or to some network component(s) is
usually regarded as an end-of-game scenario, a potential for total compromise. A mali-
cious party gaining physical access to the network or to a network element will have
several key advantages over one having a similar physical access to PSTN equipment.
This is a direct result of the way IP networks work, the placement of intelligence in
some IP telephony-based networks, and the boundaries of physical security and access
with the PSTN.

For example, if a malicious party is able to gain unauthorized physical access to the
wire connecting a subscriber’s IP phone to its network switch, the attacker will be able
to place calls at the expense of the legitimate subscriber while continuing to let the
subscriber place calls at the same time. With the PSTN, a similar scenario would unveil
the malicious party when the legitimate subscriber took the handset off hook.

DESIGN FLAWS WITH IP TELEPHONY PROTOCOLS
The IP telephony-related protocols contain several design flaws – not easily identified,
but costly – that would allow an attacker to cripple an IP telephony network. One such
flaw is a signaling protocol that does not maintain knowledge of changes made to the
media path during a call. If one is able to abuse the media path, the signaling path will
remain unnotified and clueless about the changes performed to the media path.

34

Another example is a signaling protocol that does not have an integrity-checking
mechanism.

AVAILABILITY, OR LOW-TECH IS VERY DANGEROUS
IP telephony-based networks face a serious risk of availability. The availability risk
does not result only from availability-based attacks against protocols, endpoints, net-
work servers, and/or the kind of attacks designed to reduce the quality of speech or
that target simple equipment malfunction(s). The main risk, and one that is even
more basic, is the lack of electricity to power endpoints (e.g., IP phones) and other ele-
ments making up an IP telephony-based network or infrastructure.

NO ELECTRICITY? – NO SERVICE!

The electricity availability problem may strike anywhere along the path from one sub-
scriber to another, anywhere on the network. While service providers would have to
have redundancy and means to solve power-down problems as part of their license
terms (at least in most Western countries), for a corporation, a small-to-medium busi-
ness, or an individual subscriber this problem is more critical.

For a business the question of redundancy and power down means additional cost and
economic burden, but for the subscriber at home it might mean life and death.

For a subscriber the phone is the critical infrastructure. Whenever things go wrong,
the first thing most people do is to use their phone to get help. An IP phone depends
on power. With most IP phones, power can be drawn either from a direct connection
with an electricity outlet, or if the network infrastructure and IP phone supports it,
from the LAN (power-over-LAN). If electricity is cut either to the subscriber’s house
(or any other location an IP phone is being used at) or to the network switch the sub-
scriber’s IP phone is connected to, the IP phone is useless.

For a subscriber, an IP phone simply cannot be depended upon as a critical infrastruc-
ture component if no electricity backup solution is available.

REDUNDANCY

If one IP telephony element fails within an IP telephony-based network and there is no
redundancy, there is no availability either.

It all comes down to the economic burden of supporting availability in an IP teleph-
ony-based network.

Taking into account the other availability risks and targets within IP telephony-based
networks, availability becomes one of the biggest concerns.

DIFFERENT IP TELEPHONY ARCHITECTURES
Although sharing the same basic threats, various deployment scenarios and IP teleph-
ony architectures differ from each other by the overall risk factor presented and the
attack venues a malicious party might use. Securing IP telephony-based solutions is
more complicated and challenging than securing the PSTN, where the major security
issue is fraud.

IMPROPER IP TELEPHONY NETWORK DESIGNS
The currently offered network designs for the implementation of IP telephony-based
networks do not provide proper mechanisms to defeat several basic hazards to the IP
telephony network.

35December 2002 ;login:

●
SE

C
U

R
IT

Y

SECURITY THREATS TO IP TELEPHONY-BASED NETWORKS ●

Vol. 27, No. 6 ;login:

We can name a couple of examples:

IP telephony equipment (devices) is not being authenticated to the network, and this
makes the work of the phreaker easier; in some cases, by plugging a rogue device to the
network, free phone calls can be made.

In many IP telephony-based networks an IP phone’s (that is, the user’s) actual location
is not checked against the credentials it uses. It is not enough that the network switch
is able to perform “port security” and bind the port connected to an IP phone with the
phone’s MAC address. There should be a mechanism to correlate between the creden-
tials presented, the MAC address the phone is using, and the physical port on the net-
work switch it is connected to.

NON-TRUSTED IDENTITIES
Without the proper network design and configuration of an IP telephony-based net-
work, one cannot trust the identity of another call participant. The user’s identity, the
“call-ID” information (i.e., a phone number or other means to identify a subscriber in
IP telephony-based networks), is easily spoofed using any one of a variety of scenar-
ios. An identity-related attack might occur anywhere along the path signaling informa-
tion is taking between call participants.

A malicious party might use designated software to perform digital impersonation,
adding to the attacker’s arsenal of available tools, when spoofing an identity of a call
participant or a targeted call participant, where the voice samples might have been
gleaned from the IP telephony-based network itself.

Unlike IP telephony-based networks, spoofing identities with the PSTN is a much
harder task to perform, and is usually performed only at the endpoints, where some-
one other than the intended subscriber answers the subscriber’s phone, for example, or
a calling party claims to be someone he/she is not.

What Is at Risk?
Everything is at risk. With IP telephony there is even greater meaning to the phrase
that the security of a particular architecture is only as good as its weakest link. Multiple
venues exist for a malicious party to choose from in order to launch an attack against
an IP telephony-based network. Most disturbingly, in most cases it is only a question
of subverting one network server or one IP telephony element (e.g., IP phones)3 to
achieve complete control over an IP telephony-based network or its functionality.

Conclusion
Each and every potential security threat examined within this article has shown that IP
telephony-based networks face a greater risk of being breached than the Public
Switched Telephone Network. Unfortunately, mitigating the risks highlighted within
this article is not simple.

When examining the current IP telephony-based protocols and network designs, it is
clear that both need to undergo major changes.

3. For more information, please see
http://www.sys-security.com/html/projects/
VoIP.html.

36

http://www.sys-security.com/html/projects/

37December 2002 ;login:

●
SE

C
U

R
IT

Y

Last August I had the pleasure of attending the USENIX Security Symposium

in San Francisco. As a security practitioner and former OS designer, I’ve

always considered this one of my favorite conferences, and I haven’t missed

one in quite a while. But as I attended the panel discussion of Microsoft’s

Palladium and the TCPA, I was once again struck with a curious sense of

déjà vu. Palladium in particular seems to be an attempt to create a

“trusted” hardware system to overcome the inability to create large mono-

lithic operating systems with acceptable software quality.

It seemed to me that both Palladium and TCPA were rediscovering older security solu-
tions to solve some of the same old problems. Much as I felt when Microsoft (and
some of the open source OSes) announced the “invention” of symmetrical multipro-
cessing (SMP), I felt that someone, somewhere, had not done their homework. I felt
the same way about VAX/VMS (and later, Windows NT) access control lists (ACLs),
which were pale imitations of the Multics1 ACLs.

There were SMP mainframes at least as far back as the 1960s in General Electric’s
GECOS2 and, later, Multics operating systems – up to six processors in some cases. For
those of you who don’t remember, when Bell Labs pulled out of the GE/MIT Multics
project (Project MAC), UNIX was conceived in part as a smaller, more practical imple-
mentation of the “Multics vision.” IBM and (I think) UNIVAC also sold multiproces-
sor mainframes in the same era.

Now, I hate the “when I was a kid we had to feed wood into the boiler to power our
steam computers” stories as much as everyone else. But, to be honest, the computer
science and engineering disciplines do a terrible job of teaching the history of our
field. And this leads to someone rediscovering the same old “new and novel” solutions
to the same old problems about every five years, solutions that can often be found in
the older literature.

Palladium and TCPA (and Linux and *BSD) continue to rediscover solutions that have
been found before, in systems such as KVM/370,3 Multics, SCOMP, and KSOS.

To understand KSOS and its place, you need to understand the time and background
of its creation. It was the late 1970s and TOPS-10, TWENEX (later TOPS-20), UNI-
VAC EXEC 8, OS/360, and Multics were the denizens of this new thing called the
ARPANET. The ARPANET backbone ran at 56Kbps and connected about 100 comput-
ers. There was also this new upstart thing that people were beginning to play with
called UNIX, “6th Edition.” It ran on these new 16-bit mini-computers from Digital
Equipment, PDP-11s. Big ones, with 512K of core or semiconductor memory and
20MB washing machine drives. Programs were limited by the hardware to 64K bytes
total or 64K instructions and 64K data, using split instruction and data addresses.
SPLIT I/D was ugly. Don’t ask. If you were there, I’m sorry to have reminded you.

There was a lot of interest in computer security. The government needed to process
classified information, and computers were still expensive enough that they needed to
be shared. There was lots of interest in allowing data at different classifications to be
processed on the same computer at the same time, without “spilling” data across secu-
rity levels.

the kernelized
secure operating
system (KSOS)

KSOS ●

by Tom Perrine

Tom Perrine is the
Manager of Security
Technologies at the
San Diego Super-
computer Center,
where his job des-
cription is “protect
the privacy and intel-
lectual property of
our users.” Involved
with computer secu-
rity since the ‘80s, he
was a Multician, has
testified to Congress
concerning Carni-
vore, and studies
computer security
technology and how
it relates to people
and public policy.

tep@ARPA.NET

1. The best current online information about
Multics (Multiplexed Information and Com-
puting Service) can be found at http://www.
multicians.org/.

2. The following online entry has most of the
story right. The main mistake is the claim that
Multics had no database and no transaction
processing. Other than that, it’s pretty on target:
http://wombat.doc.ic.ac.uk/foldoc/foldoc.
cgi?GCOS.

3. “KVM/370 in Retrospect,” 1984 IEEE Sympo-
sium on Security and Privacy: http://www.
computer.org/proceedings/sp/0532/05320013abs.
htm.

http://www
http://wombat.doc.ic.ac.uk/foldoc/foldoc
http://www

Vol. 27, No. 6 ;login:38

The “Orange Book” hadn’t been written yet. The experiences from developing Multics,
SCOMP, and KSOS substantially influenced4 the content of the Orange Book.5 “Hack-
ers” were still people who were curious about computers and wrote interesting code,
mostly at MIT and Stanford AI Lab.

A few years earlier, in 1973, the seminal report on computer security – the “Anderson
Report”6 – had been published for the US Air Force. This report called for better soft-
ware design practices, better programming languages, and something new called a
“security kernel.” It also suggested using formal mathematical models to prove that the
kernel would operate correctly. This paper also, almost as an afterthought, described
what we now call “automated intrusion detection” and noted that a primary way to
compromise an operating system was to exploit “insufficient argument validation.”

Yes, the Anderson Report described buffer overflows as a proven penetration method
and ways to avoid them 30 years ago. We’ve obviously come a long way since then. So
far that we need Palladium and TCPA.

The Anderson Report also cited an obscure little paper: “Notes on Structured Pro-
gramming” by Edsger Dijkstra. This was about the same time that he wrote a letter to
the Journal of the ACM, “Goto considered harmful.” Strangely enough, it was the day of
the Palladium/TCPA panel that we learned of his death. His two papers jump-started
the entire structured programming movement of the 1970s and 1980s.

At about the same time (1973), a DoD-inspired mandatory formal security model was
developed by Bell and LaPadula working at Mitre. This model formalized the DoD
classification system into a set of mathematical rules called “mandatory access con-
trols.” The idea was that the site policy would override any “discretionary access con-
trols” – that is, people could not give away data to unauthorized people. One rule
(“simple security”) prohibited data at a “higher” level from being read by a process at a
“lower” level. Another rule (“*-property”) prohibited a process at a “higher” level from
writing to “lower” level data.

People started to design and develop “security kernels.” These were small, well-defined
cores upon which an OS could be written that would be small and “verifiable” using
formal methods. This gets around the problem that verification methods and human
minds weren’t ready to deal with analyzing very complex systems. The idea was to con-
centrate all the security features, and only the security features, into a small kernel that
would provide the base upon which a secure OS could be layered. This was imposing
“least privilege” on the operating system itself, allowing the operating system to have
bugs and yet not be able to compromise security. In 1976, Peter Neumann and others
at SRI proposed “pSOS,” a provably secure operating system.

In 1978, Neumann, John Nagle, and others at Ford Aerospace started work on a more
ambitious project, which was actually expected to produce a running, practical, usable
system, the Kernelized Secure Operating System (KSOS). Neumann went on to
become the editor of Risks Digest, among many other projects. Nagle later worked in
networking, producing Nagle’s algorithm for merging tiny packets for TCP perfor-
mance, which was published in RFC 896 and is part of every modern TCP/IP stack.

KSOS was intended to be a security kernel upon which a UNIX-like operating system
could be built. It was recognized that the V6 UNIX kernel, at 10,000 lines of code7 and
48(!) system calls, was much too big(!) to be formally specified or verified.

4. Jeff Makey, private communication. Jeff was
an editor of the original Orange Book while at
the National Computer Security Center.

5. Department of Defense, Trusted Computer
System Evaluation Criteria: http://www.radium.
ncsc.mil/tpep/library/rainbow/5200.28-
STD.html.

6. J.P. Anderson, Computer Security Technology
Planning Study, ESD-TR-73-51, ESD/AFSC,
Hanscom AFB, Bedford, MA (Oct. 1972) [NTIS
AD-758 206]: http://seclab.cs.ucdavis.edu/
projects/history/seminal.html.

7. The “infamous”“Lions book,” an annotated
display of the UNIX V6 kernel for PDP-11,
shows about 9000 lines of code, in 44 source
files, including the .h files. Again available in
print (after being quashed by AT&T in the sev-
enties): John Lions, Lion’s Commentary on the
UNIX 6th Edition with Source Code (San Jose,
CA: Peer-to-Peer Communications), 1996,
ISBN 1-57398-013-7.

http://www.radium
http://seclab.cs.ucdavis.edu/

39December 2002 ;login:

8. Perrine, Codd, Hardy, “An Overview of the
Kernelized Secure Operating System (KSOS),”
Proceedings of the 7th DoD/NBS Computer
Security Conference, September 24–26, 1984:
http://users.sdsc.edu/~tep/Presentations/
Overview_Paper.text.

●
SE

C
U

R
IT

YBut by building a smaller security kernel that would implement the security features, a
UNIX-compatible layer could be built on top of that “micro-kernel” that would pro-
vide a UNIX-compatible system-call interface. The micro-kernel approach lived on in
later OSes such as MACH.

It was amusing to me that during the Palladium/TCPA panel, when asked about
improving the quality of the operating system so that Palladium would be less neces-
sary, the Microsoft speaker scoffed at “fixing millions of lines of code,” implying that
the OS was just too big to be written properly. Perhaps they need to “invent” least priv-
ilege and “micro-kernels” again!

But back to KSOS. First, the security kernel itself was designed and specified. The ker-
nel was modeled as a finite-state machine, and the system calls were defined in terms
of the state transitions that could occur. It was decided that by defining an initial
known secure state, and then checking all possible state transitions (system calls) to
make sure that they led to a known secure state, the kernel would be “verified.” The
design was documented and specified in the SPECIAL specification language. The ker-
nel specification was considered manageable because there were only 32 kernel calls.

The kernel specification was examined using the Boyer-Moore theorem prover. The
prover, which ran on a fairly large DEC 20, was eventually able, with extensive human
assistance, to prove enough of the theorems to provide a significant level of assurance
of “correctness.” In this context, this means that the kernel specification contained no
explicit violations of the Bell-LaPadula model, no “covert channels” or ways for data to
be implicitly shared across mandatory access boundaries. Note that even with only 32
system calls, the specification had to be split into five pieces, which were separately ver-
ified. This verification allowed KSOS to be considered a candidate for an “A1” rating,
“verified design,” the highest Orange Book rating.

KSOS was implemented in a higher-level language, Modula-2. Think of the type safety
of Pascal, with the package constructs of Ada or C++ (years before either language was
designed). User programs could be written in Modula-2 or C. KSOS was not self-
hosted; programs had to be compiled under V6 UNIX and copied to the KSOS system.

KSOS had some other interesting features for its time, such as multiple virtual termi-
nals per real terminal (think of Linux virtual consoles), and a “trusted path” from the
terminal into the security kernel. When a user hit the “secure attention” key (such as
BREAK), all user programs were suspended and disconnected from the user’s termi-
nal. The terminal was connected straight to the kernel. This was to avoid applications
from impersonating trusted applications or the kernel’s authentication (login) or pass-
word change functions.

KSOS also implemented “shared memory segments,” typed files, and what could be
considered network firewall features – all before Berkeley completed 4.2BSD.

In 1981, KSOS development moved to Logicon in San Diego, where it was further
enhanced and later served as the platform for several Navy and Air Force operational
systems, such as ACCAT GUARD and USAFE GUARD. These systems used KSOS-
hosted applications to provide multi-level secure application gateways on very secure
DoD networks. The “final” version of KSOS for PDP-11 is described in Perrine, Codd,
and Hardy,8 which also includes some information about ACCAT GUARD.

KSOS ●

http://users.sdsc.edu/~tep/Presentations/

Vol. 27, No. 6 ;login:

Later, KSOS was ported to the VAX and became KSOS-32. That project was canceled,
along with many other DoD computer security projects, in September 1988, shortly
after the first user login was achieved.

Although KSOS (and SCOMP and Multics) made significant advances in computer
security and software design methodologies and helped us to understand the problem
of software quality and assurance, they have been mostly forgotten. These OSes, and
their contemporaries, provided many features and services that are continually redis-
covered or even “invented” every few years for new operating systems. Palladium and
TCPA are just the most recent efforts to cover the same ground. In Orange Book
terms, they are trying to go “beyond A1” into “trusted hardware,” without first getting
to B-level software architecture.

It may be that UNIX came along and swept up a new generation, and the “old skool”
operating systems and their “old guard” were not able to pass along the accumulated
knowledge. It may be that so many of the older papers and research and real-world
experience are not available online and, hence, not findable with a quick Google
search. Or it may be that the computer science and engineering curricula aren’t cover-
ing the history of computing at all, let alone the history of secure computing. What-
ever the reasons, we’re losing a lot of time and energy rediscovering technology and
re-visiting the same failed solutions over and over again.

40

41December 2002 ;login:

●
SE

C
U

R
IT

Y

defining legal values for
network behavior

“Men feed data to a computer and men interpret the answer the computer spews
forth. In this computerized age, the law must require that men in the use of com-
puterized data regard those with whom they are dealing as more important than a
perforation on a card. Trust in the infallibility of a computer is hardly a defense,
when the opportunity to avoid the error is as apparent and repeated as was here
present.”

This was a response by a Court of Appeals to Ford Motor’s assertion that a computer
mistake caused it to wrongfully repossess a customer’s car.1 Although the punch card
reference might cause one to dismiss its significance as antiquated pre–World Wide
Web naïveté, the underlying message remains even more true in our current Internet-
worked society. Whether we are dealing with a disputed bill payment and mistaken
repossession or questionable computer access and release of protected information,
human use of computers involves conflicts over values and property that necessitate
defining and enforcing socially acceptable behavior. This is where the standard known
as “reasonableness” is paramount to guiding the acts and consequences involved in
network behavior.

Ignorance Is Not Bliss
On one hand, people are quick to parrot the notion that Internetworked society is the
new Wild Wild West, referring to the dearth of computer-specific laws and regulations,
coupled with our free-market tradition of allowing industry to self-regulate and
reward beneficial behavior. Nonetheless, even the habitation of “unchartered” land
relied upon notions of reasonableness to guide the resolution of conflicts. To continue
to use the relative dearth of historical network behavior as a justification for unaccept-
able behavior is to ignore the social indicators of consensus on what network behavior
is tolerable.

“Reasonableness” itself is a relative and dynamic standard in that there is no fixed for-
mula, and determinations are made on a case-by-case basis.2 Yet this standard under-
lies many of our laws and constitutional rights. Reasonableness can be found at the
heart of many mechanisms that are invoked to govern network behavior – laws such as
the Computer Fraud and Abuse Act (CFAA), the Fourth Amendment, social pressures
(i.e., public relations), and corporate privacy policies.

Recognizing that there are myriad standards regarding computer security and yet no
single, overriding measuring stick, one is hard-pressed to know what standard should
be followed so as to not run afoul of the law. Furthermore, the “reasonableness” stan-
dard facilitates the ignorance defenses, blaming the victim, and Robin Hood justifica-
tions, as evidenced by the cases discussed below.

Nevertheless, both the physical and digital realms employ laws, contracts and licenses,
and informal social pressure as mechanisms to notify and implement acceptable
behavior. However, a notion of what constitutes acceptable computer network behav-
ior is much less developed. For example, there is no disputing that taking a golf club to
my neighbor’s window is unacceptable; yet employing an equally malicious software
tool against a fellow Netizen’s computer does not necessarily evoke such a binary judg-
ment of right and wrong. Although consensus about acceptable network behavior is

“it depends”:

“IT DEPENDS” ●

1. Ford Motor Credit Company v. Swarens, 447
S.W.2d 53 (1969).

2. What is a reasonable search is not to be deter-
mined by any fixed formula. The Constitution
does not define what are “unreasonable”
searches and, regrettably, in our discipline we
have no ready litmus test. The recurring ques-
tions of the reasonableness of searches must
find resolution in the facts and circumstances of
each case. United States v. Rabinowitz, 339 U.S.
56 at 63 (1950).

by Erin Kenneally

Erin Kenneally is a
Forensic Analyst with
the Pacific Institute
for Computer Secu-
rity (PICS), San
Diego Supercom-
puter Center. She is a
licensed attorney
who holds Juris Doc-
torate and Master of
Forensic Sciences
degrees.

erin@sdsc.edu

Vol. 27, No. 6 ;login:

embryonic and there are comparably fewer laws that are specific to “cyber-behavior,”
notions of right and wrong do exist. Recent conflicts involving Ziff-Davis, HP and
Snosoft, Princeton and Yale universities, and ForensicTec illustrate how we are defining
reasonableness in our Internetworked society.

Law as a Metric for Reasonableness
If reasonableness is a consensus standard, what is the relevant metric? Although bad
PR/public opinion is not a formal category that courts check off when adjudging rea-
sonableness, it nonetheless can be a gauge of what society believes to be right and
wrong behavior. Other metrics for ascertaining reasonableness include regulations,
policies and practices, contemporary litigation, notice/knowledge, and capability.

As with ForensicTec, employees accessed government and other private networks and
viewed and downloaded files containing military procedures, email, SSNs, and finan-
cial data.3 Attempting to justify their actions, ForensicTec allegedly noted that they
used publicly available scanning software to identify vulnerable computers, as well as
using easily guessed passwords to gain “unobstructed” access to these sites.

In response to criticism and allegations that it had violated the federal computer crime
law (CFAA), ForensicTec played the Robin Hood card by claiming that it was merely
pointing out serious vulnerabilities in various networks. Even though ForensicTec was
a “legitimate” company on paper, its actions were no different from that of a teenaged
hacker conducting the digital equivalent of chest beating. In the eyes of the law, the
same elements that constitute a crime are present in both cases: intentional access to a
protected computer without authorization.4 As for the intent element, ForensicTec
admitted to repeatedly navigating through multiple government and private networks,
thus illustrating knowledge and directed control of its scanning, cracking, and probing
activities for connecting to and entering other systems. Insofar as “protected” has been
interpreted to mean any computer connected to the Internet, that element can be
checked off. And finally, unless ForensicTec had some type of agreement or consent
from the government agencies and companies that it accessed, its digital exploration
was unauthorized.

Never mind that it notified the vulnerable victims after contacting the media, Foren-
sicTec had no legal right to troll through networks where they had no legitimate and
authorized business reason to be. Is this any different from trying to justify strolling
through your neighbor’s house because you discovered their door was open? The ease
with which one can access another’s property, be it their computer or homestead, is
not a factor in determining whether one’s actions are lawful. The situation would be
no different if ForensicTec had used a million-dollar, one-of-a-kind software tool
and/or the victim computers were locked 50 feet below the Pentagon behind a 24/7-
managed intrusion detection-firewall schema. Furthermore, although motivation may
be a mitigating factor in the penalty phase, the law only considers the “why” insofar as
it can be used to infer proof of some element (act or intent) of the offense. This is why
Robin Hood and Jean Valjean were both criminals, despite the honorable motivations
behind their acts.

Defining Expected Network Behavior
Another emperor without clothes was sighted in the case of the Princeton University
administrator who used the SSN and birth dates of student applicants to access admis-
sion records at Yale University.5 Similar to the ForensicTec case, Princeton’s actions

42

3. See Robert O’Harrow, “U.S. Probes Firm in
Security Breach: Consultants Invaded Federal
Computers,” Washington Post.com (August 21,
2002): http://www.washingtonpost.com/
wp-dyn/articles/A42019-2002Aug20.html.

4. See 18 U.S.C. § 1030.

5. See Karen Arenson, “Princeton Pries into
Web Site for Yale Applicants,” New York Times
Online (July 26, 2002): http://www.nytimes.com
/2002/07/26/education/26IVY.html.

http://www.washingtonpost.com/
http://www.nytimes.com

invoke laws that decry and punish Princeton’s network behavior. Primarily, the federal
Computer Fraud and Abuse Act prohibited Princeton’s intentional entry into Yale’s
Web site without authorization.6 The official in question admitted to using the stu-
dents’ identification information to call up their application status from the non-pub-
lic, restricted Web site, which provided notice that it was authorized for use by
prospective students only.

Notwithstanding a seemingly clear violation of the law, the public outcry in response
to Princeton’s actions is perhaps a stronger metric for the unreasonableness of its net-
work behavior. Princeton officials were quick to express regret and exact discipline
almost as soon as the news hit the academic community. In this respect, there was no
disagreement that Princeton’s digital behavior was illegal and unethical. However, a
great deal of attention was shifted by legal scholars to what this situation said about
the state of competitiveness in Ivy League admissions. Surely in this breach of student
trust the very act of digitally trespassing onto the property and values of another
should be the primary focus, rather than the perceived symptom of collegial competi-
tiveness.

The medium of storage or method of transmission should not alter one’s (lack of)
right to interfere with another’s property or values. Would we tolerate a Princeton offi-
cial using the same information to request and obtain physical records contained in a
file cabinet or to greet the postal carrier at the students’ mailboxes under such false
pretenses? If we bear in mind this non-distinction between traditional and cyber-
actions when assessing acceptable network behavior, it is harder to get sidetracked by
defenses that obscure the wrongfulness of the act. To do otherwise would dismiss
unauthorized intrusive acts as “gaining access out of curiosity about a site’s security”
or lead down the slippery path of blaming the victim. To be sure, Yale could have
implemented stronger security measures such as PINs or randomly generated identi-
fiers to secure applicant records. Other laws such as the Federal Education Records and
Privacy Act would give applicants a reasonable expectation that their personal records
would not be misused or unprotected by the schools. However, Yale’s duty to protect
its students’ information is an issue distinct from whether Princeton acted with knowl-
edge that it was not permitted to digitally trample on Yale’s property rights and values.
If someone enters your house and snatches your child’s savings bonds – regardless of
whether he climbs through an open window or blasts a battering ram through the
steel-fortified door – he is violating your reasonable expectations to be secure in your
home, as defined under the burglary laws (your child’s ability to afford college being a
separate matter).

Policy: Another Metric for Reasonableness
Laws and regulations present relatively clear metrics for standards of tolerable behav-
ior, since they are supposed to be formal embodiments of society’s values. Private poli-
cies, licenses, and contracts are other mechanisms by which society defines, enforces,
and adjudges reasonable network behavior. Insofar as individuals can more easily dic-
tate the scope of policies and contracts, these mechanisms may more accurately reflect
and more immediately shape notions of reasonableness.

The expectation of online personal data privacy, defined by Web site policies and
enforced by informal consumer sanctions, is a prominent instance of acceptable net-
work behavior. This was illustrated in the case involving the Ziff-Davis settlement pay-
ment of $150,000 to various states and customers for exposing the credit card

43December 2002 ;login:

●
SE

C
U

R
IT

Y6. In addition, Princeton may have run afoul of
the Federal Education Records and Privacy Act
(FERPA; 20 U.S.C. 1232g (1993), regulations at
34 C.F.R. 99 (1993)), which creates minimum
standards for educational institutions receiving
federal funds to protect students’ records.
FERPA considers student SSNs an education
record in and of itself. SSN collection and dis-
closure by government agencies is generally
prohibited by the Privacy Act of 1974.

“IT DEPENDS” ●

Vol. 27, No. 6 ;login:44

numbers and identifying information of many of its subscribers.7 Here, expectations
of reasonable behavior were primarily derived from Ziff-Davis’s privacy policy, which
promised reasonable security in protecting its customers’ financial and identity data
stored in its databases.8

Policies that speak to protecting customer private financial information create a bilat-
eral notice that one party is agreeing to disclose data to the other party that is not for
public consumption. Alongside this knowledge is the expectation that the party receiv-
ing the data has the capability to protect it from prying eyes, as well as the duty to
enforce the promise. These expectations are not unique to Internetworked society –
they speak to the same “reasonableness” that demands notice, consent, security, and
enforcement of rights to control physical property. If you give your Visa card to the
clerk at Krispy Kreme, you reasonably expect that the information will not be posted
to the telephone pole outside. In fact, you feel entitled to have that information pro-
tected by the physical store owner.

Likewise, the level of computer literacy in the public is such that people have trans-
ferred that sense of entitlement to the transmission of private information over the
Internet. As such, vendors are expected to implement technical measures to ensure
that this information is not exposed to the public. Increased publicity surrounding
identity theft has certainly added force to that reasonable expectation.

In fact, the Federal Trade Commission’s regulation of unfair and deceptive trade prac-
tices is heavily influenced by expectations established by privacy policies.9

The expectations become less clear regarding the extent to which a company posting a
privacy policy must go to protect the customer data. This will likely be resolved on a
case-by-case basis, depending on how specifically the policy was worded, as well as
what the cost-benefit analysis reveals. In the Ziff-Davis case, the data was readily
exposed by anyone engaging in normal Internet surfing, as opposed to having been
unlawfully accessed by someone with über-hacker skills. Despite the fact that Ziff-
Davis claimed this was a result of a coding error, it’s likely that the potential negative
publicity – with corresponding loss of good will and customer base – factored into its
decision to pay for its insecure posture. Thus, the risk of damaging commercial repu-
tation and profitability are ways that informal social pressures can be a metric for
defining reasonable network behavior.

Reasonableness as a Balancing Act
Amid the cases discussed thus far, a consensus of “reasonable” network behavior has
been relatively clear because analogies could be drawn from notions of right and
wrong surrounding physical property. The Snosoft-HP case involves conflicting stan-
dards of reasonableness, emanating from different measuring sticks. The issue in this
case was the reasonableness of disclosing a computer security vulnerability. Snosoft
researchers uncovered a vulnerability in the Tru64 UNIX operating system distributed
by Hewlett-Packard (HP).10 Before disclosing the exploit to the public, Snosoft fol-
lowed the informal custom of informing HP so as to give it time to develop a patch
and disseminate it to the community of users. As a result of HP’s failure to respond, a
Snosoft researcher alerted the public to the flaw. In response, HP threatened Snosoft
with violations of the federal Digital Millennium Copyright Act (DMCA) and Com-
puter Fraud and Abuse Act.

On one hand, Snosoft claimed its actions were a reasonable application of its fair use
rights under copyright law, the First Amendment right to free speech, and a reasonable

7. See, generally, Seanna Adcox, “Ziff Davis
Agrees to Pay Settlement,” Findlaw News and
Commentary (visited August 29, 2002):
http://news.findlaw.com/ap_stories/f/1310/8-28-
2002/20020828141503_76.html.

8. See http://www.ziffdavis.com/terms/
index.asp?page=privacypolicy.

9. Federal Trade Commission, “Privacy Online:
A Report to Congress” (June 1998):
http://www.ftc.gov/reports/privacy3/priv-23a.pdf.

10. See Declan McCullach, “Security Warning
Draws DMCA Threat,” CNET News.com (July
30, 2002): http://news.com.com/2100-1023-
947325.
html.

http://news.findlaw.com/ap_stories/f/1310/8-28-
http://www.ziffdavis.com/terms/
http://www.ftc.gov/reports/privacy3/priv-23a.pdf
http://news.com.com/2100-1023-

means to protect themselves and other Tru64 UNIX community members. HP
invoked other legal mechanisms to justify the reasonableness of its actions to protect
its copyrighted property. Although the debate surrounding the DMCA is well-pub-
lished, contentious, and beyond the scope of this article, the significance of these con-
flicting values is that informal social pressure prevailed over institutionalized legal
standards in defining reasonable network behavior.

Despite having the force of law and case precedent (to date, every lawsuit challenging
the DMCA has failed) on its side regarding the DMCA’s broad prohibition on circum-
venting copyright protection technologies, HP backed off of federal charges against
the researchers who published the exploit. The case for Snosoft’s reasonableness boiled
down to the public support for this socially beneficial act of alerting potentially
harmed parties who were denied knowledge and protection from the vendor. The
power of this informal social pressure was surely manifest in the remnants of bad pub-
licity that befell Adobe when it was embroiled with Dmitry Sklyarov over a similar
issue. Similar to Ziff-Davis, the social sanctions (harm to reputation and commercial
profitability) turned out to be a formidable ally in reaching some sort of consensus on
right and wrong Internetwork behavior. HP’s prior knowledge of the flaw, capability to
rectify the vulnerability, wait-and-see approach, and reactionary attempt to use the law
to counterattack did not gain it social popularity points.

Just as the Fourth Amendment has become the de facto reference point for defining
“reasonableness” (in the search and seizure context) and has been interpreted by the
US Supreme Court as a balancing test between conflicting interests, a similar weighing
is evolving in the context of network behavior.

This is undoubtedly not the last time we will encounter the conflict between rights and
property that DMCA brings about. Perhaps the introductory case of Ford v. Swarens
holds greater significance and foresight than we are willing to acknowledge. As that
scenario played out, the collectors returned for the last time to collect from Swarens,
who, Ford admitted, was always current on his payments. Frustrated with their
groundless visits, Swarens advised them that he would show them no more records,
and strongly suggested that they leave his home . . . while brandishing a shotgun. They
left, but first reminded him of their experience in the repossession of automobiles and
promised him that they would repossess his.11

As we know, however, the court had little sympathy for the computer-error defense
raised by Ford. Instead, it chose to use the context-dependent standard of reasonable-
ness – a standard that humans must continually define if we wish to resolve digital
repossessions and cyber gun-slinging conflicts that are sure to arise in our increasingly
technology-centric interactions with one another.

45December 2002 ;login:

●
SE

C
U

R
IT

Y11. Ford Motor Credit Company v. Swarens, 447
S.W.2d 53 (1969).

“IT DEPENDS” ●

46 Vol. 27, No. 6 ;login:

Some Concepts and Techniques
We define Active Network Defense (AND) as the defensive side of com-

puter network operations. The defensive side contains active and passive

aspects, and we will focus on the active techniques available for defensively

engaging the attacker.

The threats that AND is attempting to address include:

■ Denial-of-service (DoS) attacks, including distributed DoS attacks, which cause
unusable or crashed systems, clogged networks, or untimely responses for critical
missions.

■ Worms, recognized as a threat to network security when the Morris worm spread
in 1988. Worms such as Code Red and Nimda continue to pose a real threat
through their propagation and their embedded mission.

■ Viruses which attach themselves to electronic mail messages and local documents.
■ Malicious code, including various attack techniques not covered above, such as

penetration via exploits, external information gathering such as scanning, etc.

In order to address the threats, one must consider different approaches. The goals set
forth are to limit access for the attacker by reducing the attacker’s ability to do damage
by changing:

■ the network path from the attacker to the victim
■ what the attacker can see and/or do.

Active Deception Techniques
Typical deceptions include concealment of information, false and planted informa-
tion, and camouflage to mislead the attacker with respect to characteristics or contents
of a host or network. The attacker’s strength is focused on an interesting object, such
as a host, a set of hosts, or an entire network of attractive hosts. Fred Cohen’s Decep-
tion ToolKit1 is a prime example of this honeypot capability. More recently, highly
interacting networks of honeypots have been used in the Honeynet Project2 to dis-
cover presence, tools, tactics, and the intent of the attacker. By actively feeding the
attacker more attractive systems in comparison to the systems to be defended, the
attacker is encouraged to spend time and energy compromising, exploiting, and con-
tacting these honeypots. Since honeypots are not production machines, should a con-
nection from a honeypot be detected it would indicate the presence of the attacker. A
recent development is the concept of a virtual honeypot (honeyd).3 In this approach, a
single host creates virtual hosts on a network, with given characteristics of a chosen
operating system, in order to deceive the attacker, including a given topology of virtual
hosts. Here is a sample configuration script for honeyd:

annotate "AIX 4.0 - 4.2" fragment old
Example of a simple host template and its binding
create template
set template personality "AIX 4.0 - 4.2"
add template tcp port 80 "sh scripts/web.sh"
add template tcp port 22 "sh scripts/test.sh $ipsrc $dport"
add template tcp port 23 proxy 10.23.1.2:23
set template default tcp action reset

bind 10.21.19.102 template

active
network defense

1. Fred Cohen, Deception ToolKit:
http://www.all.net/dtk/index.html.

2. The Honeynet Project: http://project.
honeynet.org/.

3. Niels Provos et al., virtual honeypots:
http://www.citi.umich.edu/u/provos//honeyd/.

by Sven Dietrich

Sven Dietrich is a
Member of the Tech-
nical Staff at the
Carnegie Mellon Soft-
ware Engineering
Institute in Pittsburgh,
PA. He is the project
manager for the
Active Network
Defense project, and
focuses his research
on security and sur-
vivability.

spock@cert.org

http://www.all.net/dtk/index.html
http://project
http://www.citi.umich.edu/u/provos//honeyd/

The config script simulates an AIX host with the old fragment reassembly policy (to
fool scanning tools such as nmap),4 scripts to handle probes/connects to ports 80
(HTTP) and 22 (SSH), and the capability to proxy port 23 (telnet) connections to
another host. Any other TCP scanning attempts will encounter a TCP reset. Even
though honeyd is a work-in-progress, it can be downloaded and is usable today.

Related to the idea of obfuscation outlined before, there is another deception tech-
nique, known as packet scrubbing,5 which can hide and falsify host, operating system,
or other characteristic information for those systems behind the packet scrubber. An
attacker looking to fingerprint a target host or network will be faced with false and
possibly inconsistent information. Consider a network of mixed hosts, say PCs and
Macintoshes. One can make the network look like all PCs, all Macintoshes, all Solaris
boxes, or like nothing in particular. The emphasis, however, is on “normalizing” the
traffic so that it is indistinguishable from any other operating system, rather than pre-
tending to be a different type of operating system. One approach is already built into
the pf packet filter,6 included in OpenBSD, for example. A simple configuration line
added to your pf.conf file will “scrub” your inbound traffic in an effort to thwart
exploitation of ambiguities in TCP/IP protocol stacks to perform fingerprinting
attacks or worse:

ext_if = "kue0"

normalize all incoming traffic
scrub in on $ext_if all

Attacks that are worse include exploiting the IP fragment reassembly techniques of
intrusion detection systems for overlapping IP fragments. Using pf with packet scrub-
bing enabled on a NAT (Network Address Translation) box or firewall will protect
hosts on the closed side. OpenBSD itself is already immune to such attacks.

Hogwash takes a more proactive approach. Using snort-like configuration files, Hog-
wash is built on top of layer 2, also known as the data link layer, and is designed to run
on Linux systems without IP networking installed, so as to be completely invisible on
the network. The defense philosophy of Hogwash is centered on the theory that a low-
level network approach will prevent the packet scrubber from becoming the target of
the next attack. Its focus is to drop or sanitize malicious packets only. All other packets
travel completely unmodified through the network, since the system does not directly
interact with the packet at the protocol level (e.g., Ethernet hardware addresses or
time-to-live fields do not get changed or updated). Packets fall into three categories:

■ Legitimate or good packets are let into the network.
■ Malicious or bad packets are dropped by the system, and an alert is sent to the

operator.
■ Transient or, sometimes, bad packets are left unaffected, but an alert is still sent to

the operator.

For example:

drop tcp $EXTERNAL_NET any -> $HOME_NET 80 (content:"/etc/passwd";
msg:"WEB: attemp to request /etc/passwd";)

This drops any requests originating on the external network and directed at the Web
server on the home network that contain the string /etc/passwd, potentially an
attempt to retrieve the UNIX password file. The Hogwash project is still experimental,
but its author claims that a Celeron 733-equipped host with two 100Mbps Ethernet

47December 2002 ;login:

●
SE

C
U

R
IT

Y4. Fyodor, nmap: http://www.insecure.org/
nmap/index.html

5. Matthew Smart, Robert Malan, and Farnam
Jahanian, “Defeating TCP/IP Stack Fingerprint-
ing,” 9th USENIX Security Symposium, 2000:
http://www.usenix.org/publications/library/
proceedings/sec2000/smart.html.

6. Daniel Hartmeier, “Design and Performance
of the OpenBSD Stateful Packet Filter (pf),”
2002 USENIX Technical Conference, June 2002:
http://www.benzedrine.cx/pf.html.

ACTIVE NETWORK DEFENSE ●

http://www.insecure.org/
http://www.usenix.org/publications/library/
http://www.benzedrine.cx/pf.html

Vol. 27, No. 6 ;login:

cards can handle the full 100Mbps network, depending on the rule set. Your mileage
will vary.

Preemptive Strike
As a preventive measure, network defenders can actively wander the networks in
search of potential attackers. Once a potential attacker has been identified, by whatever
means, the network defenders can collect intelligence on the capabilities of the attack-
ers. Such intelligence gathering can include host and network characteristics – for
example, operating system versions, infrastructure architecture details, and router
operating systems. By exploiting this knowledge, the defenders could make a preemp-
tive strike against the attacker, taking advantage of existing vulnerabilities in the
remote hosts. This can take several forms. If a potential set of vulnerable hosts is iden-
tified and it is known they are not (yet) under the control of the attacker, then a series
of “mass patchings” can remove vulnerabilities in the remote machines. If, on the con-
trary, the hosts have already been compromised, then some cleaning code can be
injected to remove the malicious code and possibly patch the system. This was demon-
strated in the response to Code Red: a benign version of the original Code Red called
Code Green7 removed Code Red from an attacking system and patched it to resist fur-
ther Code Red infections. The development of Code Green was assisted by the
findings8 of the Eeye Digital Security team, and by various other “experiments” with
the Code Red worm. It is, of course, possible to turn the hostile host against its con-
troller, effectively turning the attacker’s agents against the attacker’s host(s).

Rather than attacking the enemy’s hosts themselves, it is also possible to target the
routing infrastructure, resulting in a collapse of the attacker’s connectivity. Coopera-
tive ISPs can install access control lists and/or rate-limiting to prevent attack traffic
from entering the Internet core. Lacking ISP cooperation, DDoS or crafted BGP
attacks against routers can cripple the connectivity of attacking hosts. BGP has been
the object of analysis for its instability,9 but seriously: “Kids, don’t try this at home.”

Striking Back at the Attacker
In a different scenario, such as during an ongoing attack, network defenders could
explore the possibility of retaliating against the attacking hosts. While this is a legally
and ethically problematic subject,10 let us explore what the possibilities are today.

The first option would be to disable the attacking machines, if/when they have been
properly identified. Suppose such traceback or other identification has taken place,
then fault inducement in the attacker’s code, the underlying environment, and/or the
operating system will stop the attack, or at least a portion thereof. By exploiting known
vulnerabilities causing kernel panics in the remote host, such as the Ping of Death11 or
teardrop,12 the attack would stop, temporarily at least. By gaining system privileges on
the remote host, one can modify, clean, or spoil the system for the attacker for
extended periods of time.

The second option would be to attack the immediate surroundings of the attacker. If
for some reason the attacking hosts are impenetrable, disabling the nodes providing
connectivity to the attacking hosts would make the attack stop. This can be achieved
by crashing routers or causing the local routing infrastructure to collapse.

A third option would be to develop code that leverages strategic knowledge of the
attacker’s intentions and techniques to thwart the attack. Again using the Code Red
incident as an example, the re-addressing of the whitehouse.gov servers which allowed

48

7. Herbert HexXer, Code Green: a copy is avail-
able at http://archives.neohapsis.com/
archives/vuln-dev/2001-q3/0575.html.

8. Eeye Digital Security. “.ida ‘Code Red’
Worm”: http://eeye.com/html/Research/
Advisories/AL20010717.html.

9. Rik Farrow, “Routing Instability on the Inter-
net,” Network Magazine, March 2002:
http://www.networkmagazine.com/article/
NMG20020304S0007/2.

10. Nathan Buchheit, Anthony Ruocco, and
Donald Welch, “Strike Back: Offensive Actions
in Information Warfare,” New Security Para-
digms Workshop, 1999.

11. CERT, Advisory CA 1996-26:
http://www.cert.org/advisories/CA-1996-26.html.

12. Microsoft Corporation, “Stop 0a in tcpip.sys
When Receiving Out-of-Band (OOB) Data”:
http://support.microsoft.com/support/kb/
articles/Q143/4/78.asp.

http://archives.neohapsis.com/
http://eeye.com/html/Research/
http://www.networkmagazine.com/article/
http://www.cert.org/advisories/CA-1996-26.html
http://support.microsoft.com/support/kb/

the network defenders to sidestep Code Red’s date-triggered DDoS attack and the
development of Code Green, were made possible by the analysis and scrutiny of Code
Red’s behavior produced by many cooperating analysts and reverse engineers. The
recognition of the attacker’s mission enabled response options otherwise not consid-
ered.

Dynamic Infrastructure Modification and Traceback
The aftermath of both the University of Minnesota (1999) and the February 2000
attacks generated a series of DDoS traceback and mitigation schemes. The following is
a list of a few representative examples based on their predominant role, end host vs.
infrastructure.

SCHEMES WITHIN THE END HOSTS
Both Bellovin13 and Savage et al.14 show how information fed back to the attacked
hosts facilitates attack path reconstruction. Since the audit messages are sent proba-
bilistically (typically one every 20,000 packets), the victim, having accumulated
enough of these, can trace the real path back to the attacker, who is attempting to
evade tracking by spoofing its source address. Song and Perrig15 improve on Savage’s
work, providing more efficiency and scalability. Both schemes incorporate messages
into unused fields of the IP packets, effectively marking them. All of the schemes
involving the marking of small numbers of packets are problematic for a very wide-
spread attack using small numbers of packets from a very large number of machines.

Snoeren et al.16 propose a passive monitoring scheme for assisting with the traceback
of a single packet. Packet digests are kept for a limited amount of time and permit the
traceback across the traceable infrastructure up to the edge of this tracing infrastruc-
ture. The scheme provides a low false positive rate, which diminishes as the packet
moves closer to the source of the offending packet. The impact is minimal, since the
mechanism attaches to the network passively, but it can be implemented on the router.
Note that the schemes of Bellovin and Snoeren require that additional traffic be deliv-
ered to the host under attack in order to determine the attacking location. This is
problematic under conditions where links or routers are saturated, but it is conceivable
to perform this via an out-of-band mechanism.

SCHEMES WITHIN THE INFRASTRUCTURE
All the schemes in this category suffer from various degrees of the same shortcoming:
a substantial latency involved in recognizing an attack and implementing a counter-
measure. Short-lived, or one-packet, attacks cannot easily be handled with these tech-
niques. In addition, it may be the case that attacks that occur in bursts with durations
shorter than the countermeasures’ recognition and reconfiguration period will largely
evade the countermeasures. Similarly, it is not clear that the approaches are viable if an
attack comes from a very large number of well-dispersed sources. Note that any of the
traceback techniques of the previous section could be used to guide these countermea-
sures. Stone’s CenterTrack17 uses an overlay network of routers that allows for moni-
toring and rerouting of suspicious traffic. Bellovin and Ioannidis implement
pushback,18 a router-based mechanism that treats DDoS as a congestion-control prob-
lem and drops the traffic causing the congestion. Sterne et al. propose an active net-
work approach in their autonomic response to DDoS attacks.19 Malicious attacks are
countered by sending mobile code upstream, which analyzes traffic flows on each
router and duplicates itself at split points until the source of the offending stream is
narrowed down or identified. Papadopoulos et al. investigate the coordinated

49December 2002 ;login:

●
SE

C
U

R
IT

Y13. Steve Bellovin, Marcus Leech, and Tom Tay-
lor, “ICMP Traceback Messages,” IETF work-in-
progress, October 2001.

14. Stefan Savage, D. Wetherall, A. Karlin, and T.
Anderson, “Practical Network Support for IP
Traceback,” in ACM SIGCOMM 2000.

15. Dawn Song and Adrian Perrig, “Advanced
and Authenticated Marking Schemes for IP
Traceback,” IEEE Infocom 2001.

16. Alex Snoeren, Craig Partridge, Luis A.
Sanchez, Christine E. Jones, Fabrice Tchakoun-
tio, Beverly Schwartz, Stephen T. Kent, and W.
Timothy Strayer, “Single-Packet IP Traceback,”
IEEE/ACM Transactions on Networking 2002,
forthcoming.

17. Robert Stone, “CenterTrack: An IP Overlay
Network for Tracking DoS Floods,” 9th
USENIX Security Symposium, 2000:
http://www.usenix.org/publications/library/
proceedings/sec2000/stone.html.

18. J. Ioannidis and Steve Bellovin, “Implement-
ing Pushback: Router-Based Defense Against
DDoS Attacks,” Network and Distributed Sys-
tems Security Symposium, February 2002.

19. Dan Sterne, Kelly Djahandari, Ravindra
Balupari, William La Cholter, Bill Babson, Brett
Wilson, Priya Narasimhan, Andrew Purtell, Dan
Schnackenberg, and Scott Linden, “Active Net-
work-Based DDoS Defense,” 2002 DARPA
Active Networks Conference and Exposition
(DANCE 2002), May 29–31, 2002.

ACTIVE NETWORK DEFENSE ●

http://www.usenix.org/publications/library/

Vol. 27, No. 6 ;login:

approach to dealing with DDoS in their COSSACK scheme.20 The correlation between
the attacking hosts, i.e., the simultaneous presence of similar packets, reveals the pres-
ence of an attack in this snort-based tool. D-WARD21 looks at the validity of TCP con-
nections, such as completed three-way handshakes, for allowing or disallowing packets
through routers. By establishing traffic models, potentially offensive packets are kept at
bay via throttling at the router level.

Most of this work assumes that the attacks and their sources have been correctly iden-
tified before performing what amounts to a denial of service on itself. The risk remains
that due to a partial compromise of the system a denial of service is easily triggered,
effectively finishing the task intended by the attacker.

On a more practical note, UUNET has developed an interesting technique for dealing
with traceback of an attack flood, called “backscatter traceback.”22 In this technique, a
clever combination of BGP configuration and triggers can quickly lead to the entry
point into the infrastructure of spoofed IP addresses. During an attack, the offensive
traffic is redirected to a null interface on the border routers. The resulting flurry of
ICMP unreachable messages is sent back to both legitimate and spoofed sources, and a
large portion of these messages destined for non-routable addresses (a large chunk, say
96.0.0.0/3) are redirected to a so-called sink hole network. Since the source address of
these ICMP messages is one or more routers, which represent the entry points into the
infrastructure, the source of the attack can easily be traced and quenched, often within
one or two minutes.

A Comment in Closing
While some of the techniques in AND (the preferred term is now Computer Network
Defense Response Actions or CND RA) remain controversial, it provides fertile
ground for research as countermeasures are challenged and circumvented in a contin-
uous cat-and-mouse game.

ACKNOWLEDGEMENTS

I would like to thank John McHugh, Howard Lipson, Eric Hayes, and other colleagues
at CERT for their contributions and comments, and Tom Longstaff for making this
article possible.

50

20. Christos Papadopoulos, Ramesh Govindan,
Bob Lindell, and John Mehringer, “Coordinated
Suppression of Simultaneous Attacks (COS-
SACK),” December 2001: http://www.isi.edu/
cossack/.

21. Jelena Mirkovic, Peter Reiher, and Gregory
Prier, “A Source Router Approach to DDoS
Defense,” Technical Report 010042, UCLA
Computer Science Department, 2001.

22. Brian W. Gemberling, Christopher L. Mor-
row, and Barry R. Greene, “ISP Security: Real-
World Techniques,” October 2001:
http://www.nanog.org/mth-0110/greene.html.

http://www.isi.edu/
http://www.nanog.org/mth-0110/greene.html.

51December 2002 ;login:

●
SE

C
U

RI
TY

by
Introduction
The San Diego Regional Information Watch (SDRIW)1 is a sort of “network neighbor-
hood block watch,” a venue for bringing together area system/network security people
and law enforcement, providing education about the technical and legal issues sur-
rounding computer security, and providing an opportunity for “human networking.”
It has been very successful, and with the ever growing need for effective security and
investigation of intrusions, we would like to share our experience and encourage oth-
ers to form their own regional information watch.

Evolution
SDRIW began in part as a reaction to the incident of Steve Jackson Games and Opera-
tion Sundevil.2 University system administrators (and others) were hesitant to report
intrusions to law enforcement for fear that their systems would be seized for long peri-
ods of time. We were looking for a way to get these groups talking when an opportu-
nity appeared: the mayor’s “City of the Future” program3 realized that there was a
need for some type of high-tech law enforcement to be ready to protect the city’s new
high-tech sector.

SDRIW was originally thought of as a regional CERT;4 however, we discovered that
providing introductions and building trust between law enforcement, academics, and
companies was more important and beneficial than being a CERT would have been.

SDRIW started as a three-way partnership between the San Diego Supercomputer
Center (SDSC), Space and Naval Warfare Systems Command (SPAWAR),5 and San
Diego Data Processing Corporation (SDDPC).6 SDDPC has faded from the scene, but
we still have ties to SPAWAR, and our participation from law enforcement and local
high-tech companies has grown. In the last couple of years, our meeting attendance
has averaged around 40 people. We have over 200 addresses on our mailing list. Our
“members” include system and network administrators, consultants, federal and local
law enforcement, attorneys, students, researchers, local press, and even members of the
local 2600 chapter.7

And we have realized our goal. Members are familiar with each other. If I have an inci-
dent at 3 a.m. and think it warrants attention from the FBI, I can get an agent to return
my call. (We’ve actually had to do this.) Likewise, we’ve been called by some of our
friends at other companies when they were in the thick of it. People are actually talking
to and helping each other.

Mission
The Regional Information Watch is a combination of network neighborhood block
watch, users group, and information-sharing organization.

We provide opportunity for:

■ Information exchange/information sharing on technical and legal issues relevant
to computer security.

■ Face-time and familiarity between area professionals and law enforcement.
■ “Networking” opportunities for people in the computer security arena.
■ Early warning of regional incidents.
■ Education on security tools, techniques, and standards.

The Regional Information Watch is open to anyone who wishes to participate.

the regional
information watch

THE REGIONAL INFORMATION WATCH ●

by Abe Singer

Abe Singer is a com-
puter security man-
ager at the San
Diego Supercom-
puter Center, and
occasional consultant
and expert witness.
His current work is in
security measure-
ment and security
“for the life of the
Republic.”

Abe@SDSC.edu

1. San Diego Regional Information Watch:
http://www.sdriw.org.

2. Bruce Sterling, The Hacker Crackdown:
http://www.mit.edu/hacker/part2.html.

3. “San Diego: City of the Future — The Role of
Telecommunications,” Report of the Mayor’s
Advisory Committee on the City of the Future,
San Diego, March 11, 1994: http://www.
smartcommunities.org/city_of_the_future_report.
pdf.

4. Computer Emergency Response Team:
http://www.cert.org.

5. Space and Naval Warfare Systems Command:
http://enterprise.spawar.navy.mil/
spawarpublicsite/.

6. San Diego Data Processing Corporation:
http://www.sddpc.org/.

7. San Diego 2600: http://www.sd2600.org/.

http://www.sdriw.org
http://www.mit.edu/hacker/part2.html
http://www
http://www.cert.org
http://enterprise.spawar.navy.mil/
http://www.sddpc.org/
http://www.sd2600.org/.

Vol. 27, No. 6 ;login:

Activities
Currently, the group’s only activity is to hold monthly meetings, and we maintain a
Web site with some local information, such as contacts in the area.

At our meetings we have had presentations on software security tools, the USA
PATRIOT Act, forensics, California computer crime laws, data recovery, and handling
email and phone threats, just to name a few. Some of our presentations are quite tech-
nical, others are for beginners.

But we don’t just do presentations; in fact, we usually have 20 to 30 minutes of discus-
sion before the “feature presentation.” Our meeting agenda looks something like this:

■ Introductions
■ Announcements
■ Current events
■ Incidents, vulnerabilities, exploits
■ New security tools
■ Upcoming conferences and other events
■ Featured speaker – varying topics, varying levels
■ Call for speakers
■ “Social hour”(sometimes with food)

The meeting is all in an open, round-the-room format, which gives people the oppor-
tunity to ask, “Has anyone ever seen probes like X?” or “Where can I find a tool to do
Y?” or “We have a job opening for Z.”

Our law enforcement members actively participate, letting us know about things hap-
pening on the legal side, and sometimes telling us about interesting cases that have
been closed.

While our presentations are always useful, the social hour is often especially so, provid-
ing an opportunity for people to chat and get to know each other (some like to call this
“networking”).

And we occasionally act as a point of contact for related issues; we will get a call from
law enforcement or a local company asking, “Do you know whom to contact at com-
pany X?”

Members/Structure
Officially, SDRIW doesn’t exist. We’re just a “public meeting,” a group of people peace-
ably assembling to chat about interesting stuff. There is no board, no corporate entity
– just some people putting stuff on a Web site and mailing out information about who
might be somewhere at a certain time. We chose that path on purpose; there’s no one
to point a finger at, no membership requirements, restrictions, or dues (for that mat-
ter, no official membership).

Our “membership” consists in part of:

■ Academics: sysadmins, researchers, and students from UC San Diego and San
Diego State University.

■ Large companies in the area: Qualcomm, SAIC, Cox Communications, TRW,
SPAWAR, Exodus.

■ Small companies: Anonymizer.com, local ISPs, independent consultants, forensics
companies.

52

■ Hardware vendors: Sun and others.
■ Law enforcement and government: FBI, Secret Service, Postal Service, US Attor-

ney’s Office, City Police, County Sheriff, University Police, County D.A.
■ Community: local members of 2600.

Future Goals
While we feel we have accomplished our primary objective, we do have some goals for
expanding our activities. We are looking for sources of funding to allow us to pay
expenses for out-of-town speakers and eventually host some workshops or a confer-
ence.

We would also like to provide job listings for security-related positions in the area.

And, of course, we always want to expand our “membership.” We’d like to get more
participation from ISPs and other companies in the area. In an ideal world, we’d have a
security contact for every ISP in town, and for the security or sysadmins for (at least)
the larger networks in the area.

Competition
When telling people about SDRIW, I am sometimes asked, “Isn’t that what HTCIA
(High-Technology Crime Investigation Association)8 does?” Well, yes and no.

San Diego does have an HTCIA chapter. There is also a San Diego chapter of Infra-
gard,9 and a chapter of ISSA (Information Systems Security Association).10 Many of
the SDRIW participants are members of these groups too. In other cities, HTCIA or
Infragard chapters might provide some of the services that SDRIW provides. But in
San Diego, SDRIW was already so successful that the local Infragard chapter decided
that it would not try and reproduce the effort in the same area; instead, it suggests that
Infragard members interested in computer security participate in SDRIW.

HTCIA is roughly 80% law enforcement and 20% technical people. HTCIA is a formal
organization with annual membership dues. New members have to be endorsed by
existing members and consent to a background check. HTCIA’s scope is wider than
just computer security and is focused on criminal/legal aspects.

Infragard is also wider in scope than just computer security – its members are involved
with “critical infrastructure” organizations. The San Diego chapter does not require
dues but, like HTCIA, does background checks and has confidentiality requirements.

ISSA requires dues ($100 in San Diego).

SDRIW is about 80% technical people, 20% law enforcement, is focused on computer
security, and is free.

How to Form Your Own
Okay, so you’re sold, and you’d like to form your own group. Here’s how to do it:

Find a space for a meeting. Maybe your employer has an auditorium or a large meet-
ing room; someplace with a video projector for laptops is best; Internet access is help-
ful.

Pick a time for your first meeting. You’ll eventually want to schedule a regular time,
but start with a single meeting. We schedule our meetings from 2 to 4 p.m., which
gives some people the opportunity to avoid having to go back to the office afterwards.

53December 2002 ;login:

●
SE

C
U

RI
TY8. High Technology Crime Investigation Associ-

ation: http://www.htcia.org.

9. Infragard: http://www.infragard.net/.

10. Information Systems Security Association:
http://www.issa.org.

THE REGIONAL INFORMATION WATCH ●

http://www.htcia.org
http://www.infragard.net/
http://www.issa.org

Vol. 27, No. 6 ;login:

If you can, find someone to give a presentation on something interesting. Do one
yourself if you can’t find anyone else. Or come up with a discussion topic for the
group.

Put up a Web site (it can be simple to begin with) and mailing list for announcing
meetings. Our mailing list is moderated and is used almost exclusively for the meeting
announcements, so volume is quite low. We have found that some people rely on the
mailing list to know when the next meeting is, and some look at the Web site. So it’s
useful to have both. Put information about the meeting on your Web site, including
presentation topic and directions to the meeting. Also include information on sub-
scribing to the mailing list.

Invite people to attend. For people you know, you might be able to get away with an
email. But for people you don’t know, you might want to pick up the phone and talk to
them. They’ll take you more seriously. Especially law enforcement people.

Who should you invite? Well, start with local companies. Call all the ISPs in town and
ask to talk to their security person. Find security consulting firms and invite them. If
you’ve got any colleges or universities in town, find a contact there, and ask them to
forward it on to others. Identify companies with large networks and contact their secu-
rity or network administrators, and/or CIOs.

Go visit local user groups, like the Linux users group, and give a five-minute spiel
about the Regional Info Watch. If you can, make and give out a little flyer that
describes the group, has the meeting time, Web site URL, and mailing list information.

Don’t forget government agencies, such as county or city – they’ve got sysadmins too,
y’know.

Get some law-enforcement participation. If you don’t know any, call your nearest FBI
office and ask to speak to an agent who handles computer and/or high-tech crime.
Some offices have a squad specializing in that, while others just have one or two agents
who handle those areas. Call the local police and sheriff ’s departments, too. Some
places have people dealing with high-tech crime (we’ve got an entire task force here).11

Oh, and there’s also the prosecutors – district attorneys, state attorneys, and US attor-
neys. And it never hurts to ask each of them if they know people at other agencies who
might be interested.

The Meeting
So you’ve got a meeting scheduled and people invited. What now?

About two weeks in advance, verify with your speaker that they’re coming. Don’t rely
on the speaker to remember to contact you if they have to cancel, especially if they
have something like a family emergency.

Send out a meeting announcement to the mailing list at least a week in advance.
Include the time and date, location, directions, and a description of the talk. If you
want, send out a (short) reminder the day before, too.

Before the meeting, make sure that whatever you need for the meeting is in place and
working (chairs, video projector, whatever). Also, make a list of things to talk about:
news, new vulnerabilities and exploits, tools, etc. Don’t rely on your audience to supply
information – anything that they do is a bonus.

54

11. Computer and Technology Crime High
Tech Response Team: http://www.catchteam.org.

http://www.catchteam.org.

If necessary, put up signs showing people where the meeting is. Also have someone to
greet and escort the speaker to the meeting.

Plan to show up for the meeting a half-hour early so that you can be prepared and
greet people as they show up. You may have to assist the speaker in getting set up. Put
the meeting agenda (see above) on a whiteboard. Also put up the URL for the Web
site, subscription information, and when the next meeting is (once it is determined).

One agenda item for your first meeting is to set a regular time for future meetings. We
have found that a consistent meeting time is helpful (ours are currently the 2nd Mon-
day of the month). People tend to set aside the time when they know when the meet-
ings are, and they remember a regular time better. Get some consensus on the time –
more people show up that way.

Also, see if you can get volunteers to give presentations at upcoming meetings, at least
for the second meeting. We pitch our meetings as a “friendly audience,” a way to try
out a presentation before giving it elsewhere.

Finally, use the social hour as an opportunity to thank people for showing up and get
feedback from people on what they liked or didn’t like. You may find that people vol-
unteer to help or volunteer to speak.

Lather, rinse, repeat the following month.

Getting Speakers
The hardest part about doing this is rounding up speakers. Sometimes you get volun-
teers quickly, but often you have to do a little convincing. Sometimes when somebody
tells us about something they’re working on, we ask them if they wouldn’t mind talk-
ing to the group about it. Occasionally, we pick a topic and find somebody to speak on
it. Other times, we see a presentation elsewhere and invite the speaker to give the same
presentation to our group.

We emphasize that the talks can be on a wide range of topics, 20 to 40 minutes, and
can be low-level or high-level. In this way we have a forum that attracts both beginner
and expert-level people.

And we try to have a balance between technical and non-technical presentations. As it
turns out, the legal/law enforcement people are often very interested in the technical
presentations, and the geeks are interested in the legal presentations.

But we strongly discourage presentations by vendors who just want to do a sales pitch.
We allow product vendors who wish to do a technical presentation on their product –
how it works and what problem(s) it solves. But in our case, some members of the
audience are quite savvy and quick to tear apart a product that is smoke and mirrors –
and we point this out to the vendor. Since our mission is to be educational, there’s no
value in our “members” learning about a tool that is not effective.

Some Tips and Gotchas
Some random tips, in no particular order:

■ Be sure to coordinate with your speaker on what technical requirements they have
for their presentation (e.g., video projection, Internet connection, audio, micro-
phone) and/or what you are able to provide. And make sure that someone is pres-
ent who knows how to work the equipment.

55December 2002 ;login:

●
SE

C
U

RI
TY

THE REGIONAL INFORMATION WATCH ●

Vol. 27, No. 6 ;login:

■ If applicable, on the day of the meeting inform your receptionist(s) about the
meeting so they can direct people to it.

■ If you have to change a meeting from its regularly scheduled date or time, send
out extra announcements making it clear that it’s not at the usual date/time.

■ Remember to provide directions and parking information. No use having a meet-
ing if people can’t find it.

■ The meeting date/time has a big effect on who shows up. Some people do better
with mornings (law enforcement), some do better with afternoons (geeks). Some
people prefer after-hours, but others want to be home with their families (or don’t
want to miss the latest episode of “Buffy the Vampire Slayer”).12 Friday afternoons
are probably the worst day for a meeting, as many people take off early Friday to
do weekend stuff or are caught up with end-of-the-week tasks that they need to
finish.

■ Consistency and continuity is important. Keep the meeting cycle going. If once a
month is too much, try once every two months, but keep it steady. If your meet-
ings become too irregular or infrequent, attendance will taper off drastically.

Finally...
If you do form a Regional Info Watch, let us know, and we’ll put a link to your site on
our Web page. And we’d love to know how it’s going. Just send an email to
sdriw@sdriw.org.

Oh, and if you’d like to give a presentation at SDRIW, send an email to
speakers@sdriw.org. We’re always looking for speakers.

56

12. Buffy the Vampire Slayer:
http://www.buffy.com/.

http://www.buffy.com/.

57December 2002 ;login:

●
SE

C
U

RI
TYThe 11th Security Symposium took place in the San Francisco Marriott,

August 5–9. I was struck by several things: how much interest there was in

the concept of “security,” and how little that concept had changed since

1988, when I attended the First Security Workshop in Portland, Oregon.

The keynote this year was by Whitfield Diffie, the co-inventor of the Diffie-Hellman
protocol for public key cryptography a quarter-century ago. Whit posed the question,
“What is security?” and responded that it was “prevention of adverse consequences
from illegitimate acts of human beings.” Not bad. But it struck me, as it has before,
that we spend too much time considering intrusions and break-ins, on encryption,
passwords, and firewalls.

Back in 1998, Bill Cheswick gave a wonderful talk at SANE in Maastricht, involving
castles with moats, the Great Wall of China, siege warfare, and sneak attacks.

Nowadays, tens of thousands of enterprises depend on the Internet. They are as vul-
nerable to cutting off that service as ancient and medieval cities were to sieges. Pre-
venting access to their customers and suppliers would be as disastrous to the modern
corporation as lack of access to food and water was to the besieged. And this is exactly
what SYN floods and DDoS attacks do: they render Internet communication impossi-
ble to the besieged.

Diffie pointed out that the goal of security is not retaliation, but denial of success.
Thus, preventing others from obtaining secrets is important. Losing secret information
is a vulnerability. But so is the inability to use information. The proliferation of the
Internet, Diffie pointed out, leads to increasing power, increasing digitization, and a
need for security remote from the individual.

There was much more in Diffie’s keynote, and there was a lot of food for thought.
Which may be yet more important.

The Plan 9 guys gave a great paper on security in Plan 9 resulting from constraints on
privileged execution of server processes through “factotum.” If you weren’t in SF, read
the paper.

I then toddled off to hear Ed Felten of Princeton speak on the “Freedom to Tinker,” the
law’s impact on technologies being of increasing concern. Felten understands the free-
dom to tinker as vital to our ability to understand, discuss, repair, and modify the tech-
nological devices that we own.

When I was a kid, I liked to take things apart: an alarm clock, a toaster, etc. I’ll bet
most of us did. Taking things apart (and, as time went on, putting them back together)
brought about understanding. I’m willing to state that my ability to explore and
understand has, over time, benefited others, too.

Felten made the point that “Tinkering is socially important.” He’s right.

On Thursday, I went to listen to Stuart Staniford, Vern Paxson, and Nicholas Weaver
talk about the ways that script kiddies wreak mischief. While valuable, I found the
most important point of the paper buried at the end: while he has advocated it in the
past, Paxson makes an increasingly salient point in advocating a sort of CDC for
cyberspace, an organization whose mission is to track and monitor various forms of
cyber-disease and attack.

secure from what?

SECURE FROM WHAT? ●

by Peter H. Salus

Peter H. Salus is a
member of the ACM,
the Early English Text
Society, and the Trol-
lope Society, and is a
life member of the
American Oriental
Society. He is Chief
Knowledge Officer at
Matrix NetSystems.
He owns neither a
dog nor a cat.

peter@matrix.net

Vol. 27, No. 6 ;login:

With the attention being paid to “homeland security” these days, $10 to $25 million a
year to map, track, dissect, and analyze the matrix seems almost trivial.

Paul Kocher’s “Illusions of Security” had a number of good points embedded in it:
security does not equal functionality; “Most commercial products have negligible
probability of being very secure against creative attackers”; “There are too many peo-
ple designing secure systems who have never broken one” (refer to Felten’s right to tin-
ker); and “There is a shrinking ratio of engineers to problems.”

On Friday morning, I listened to Pam Samuelson’s excellent presentation on the
DMCA. Again, Felten came to mind. While Jack Valenti and the TV/video, music, and
film industries may have a lot of money, they’re wrong-headed. Preventing reverse-
engineering is like passing a law against taking apart an alarm clock.

I keep having this bizarre ahistorical fantasy in which Petrarch sues Chaucer and Mil-
ton and Shakespeare for “reverse-engineering” the sonnet.

Lots of things to think about, hence a fine conference.

58

59December 2002 ;login:

December already!

I know that all of you are eagerly await-
ing Christmas/Chanukkah or some-
thing. So I thought I’d begin with two
items you might want someone to buy
for you.

Gift Suggestions
First, a perfect gift for anyone who works
with/on the Internet: Addison-Wesley
has brought out a boxed set of TCP/IP
Illustrated – three volumes by Rich
Stevens (and in vol. 2, Gary Wright) that
are invaluable. The boxed set comes with
a poster of the 4.4BSD TCP/IP Network-
ing Data Structures. I tacked mine above
my desk. While the set runs $169.95,
that’s 15% less than buying the volumes
separately. I’ve seen it discounted, too.
ISBN 0-201-77631-6.

The second is far smaller and cheaper,
but it’s worth reading and thinking
about. This is Free Software, Free Society:
Selected Essays of Richard M. Stallman.
At just over 200 pages, it’s a “light-
weight,” but it’s not at all light conceptu-
ally. The contents are divided into four
sections: history and philosophy of the
GNU Project and free software; the poli-
tics of copyright and patents; freedom,
rights, and the threats of globalization
and proprietary software; and “The
Licenses” – containing the GPL, the
“Lesser” GPL, and the “Free Documen-
tation License.” Larry Lessig has written
an Introduction to the volume. Whether
you’re a GNU lover or not, these are sin-

the bookworm
VoIP
I’m not sure whether VOCAL (Vovida
Open Communication Application
Library) is the “answer” to VoIP, but it’s
certainly a good beginning. Two of the
authors of Practical VoIP are at Cisco,
and Cisco sponsors the Web site,
http://www.vovida.org, but VOCAL is an
open source product. Calling, routing,
billing, etc., are all covered in this book.
It’s another example of the excellence
I’ve come to expect from O’Reilly.

Revisiting
Bradley’s second edition of his XSL vol-
ume is quite excellent. XSLT is a com-
panion to XML, one of the “standards”
promulgated by the W3 Consortium. If
you work with XML and stylesheets, this
is a definite must have.

Top Ten for 2002
The Stevens trilogy doesn’t qualify for
this year’s top ten, as the volumes were
originally published too long ago, but
Stallman’s volume certainly belongs
here. (As I say each year, these ten are
not in any particular order.)

See you all next year!

Evi Nemeth et al., Linux Administration
Handbook. Upper Saddle River, NJ:
Prentice Hall, 2002. 889pp.
ISBN 0-13-008466-2.

Richard M. Stallman, Free Software, Free
Society... Boston, MA: GNU Press, 2002.
224pp. ISBN 1-882114-98-1.

Thomas Sterling, ed., Beowulf Cluster:
Computing with Linux. Cambridge, MA:
MIT Press, 2001. 496pp.
ISBN 0-262-69274-0.

Nick Christenson, Sendmail Performance
Tuning. Boston, MA: Addison-Wesley,
2002. 228pp. ISBN 0-321-11570-8.

Martin McCarthy, The Procmail Com-
panion. Edinburgh, Scotland: Addison-
Wesley, 2002. 235pp.
ISBN 0-201-73790-6.

gular essays; no one but RMS could have
written them. And even when RMS is
at his most irritating, what he says is
important and valuable.

Command Guide
Last column I lauded the Universal
Command Guide. I’ve learned that
there’s a Web site: http://www.
allcommands.com.

It is a Web version of the command
finder which helps you find the com-
mand in any operating system by typing
in the task you want to perform. Guy
Lotgering also informs me: “We will also
be putting the entire book in a search-
able online database available on my
Web site.”

Really laudable.

Reading and Reference
Once you’ve read and internalized the
2000-plus pages of Stevens, you’ll want
to move over to Pike’s volume on net-
work security. Pike covers the PIX fire-
wall; the implementation of IPsec in the
Cisco environment; etc. I enjoyed read-
ing Pike’s exposition, but I was irritated
by the sparseness of his references.
Encryption is limited to Diffie-Hellman,
Stallings, and Schneier. Talking about
firewalls without a mention of Bellovin
is bizarre. You’ll search in vain for many
other notables, too.

Staying within networking but broaden-
ing your horizon beyond Cisco, you
should look at Edwards et al. This book
provides you with solid bases for exam-
ining the rationale and benefits of mul-
ticasting on the Internet. I happen to
think that multicasting is an important
technology, but I’m unconvinced that it
is the killer app some people think it is.
The descriptions of the protocols are
fine. And this book has a bibliography.

THE BOOKWORM ●

by Peter H. Salus

Peter H. Salus is a
member of the ACM,
the Early English Text
Society, and the Trol-
lope Society, and is a
life member of the
American Oriental
Society. He is Chief
Knowledge Officer at
Matrix NetSystems.
He owns neither a
dog nor a cat.

peter@matrix.net

http://www.vovida.org
http://www

Vol. 27, No. 6 ;login:60

Brian Ward, VMWare. San Francisco,
CA: No Starch Press, 2002. 249pp. ISBN
1-886411-72-7.

Robert J. Chassell, Introduction to Pro-
gramming in Emacs Lisp. 2nd ed. Boston,
MA: FSF, 2001. 292pp.
ISBN 1882114-43-4.

Gary McGraw & John Viega, Building
Secure Software. Boston, MA: Addison-
Wesley, 2001. 528pp.
ISBN 0-201-72152-X.

Guy Lotgering & the UCG Training
Team, Universal Command Guide. New
York: Hungry Minds, 2002. 1591pp.
+ CD-ROM. ISBN 0-7645-4833-6.

Michael Lucas, Absolute BSD. San Fran-
cisco: No Starch Press, 2002. 616pp.
ISBN 1-886411-74-3.

Four more that are almost as good:

James Pike, Cisco Network Security.
Upper Saddle River, NJ: Prentice Hall,
2002. 302pp. ISBN 0-13-091518-1.

Brian M. Edwards et al., Interdomain
Multicast Routing. Boston, MA:
Addison-Wesley, 2002. 356pp.
ISBN 0-201-74612-3.

Luan Dang et al., Practical VoIP Using
VOCAL. Sebastopol, CA: O’Reilly &
Associates, 2002. 502pp.
ISBN 0-596-00078-2.

Neil Bradley, The XSL Companion. 2nd
ed. Harlow, UK: Addison-Wesley, 2002.
465pp. ISBN 0-201-77083-0.

ics such as relaying and virtual domains.
By the fifth chapter, Sill has already
described how to manually inject mes-
sages, provided an overview of each file
available for use (qmail is very file-cen-
tric in how it is configured), and walked
the reader through basic methods for
controlling qmail and the qmail queue.

I have one small criticism of Chapter 3,
“Configuring qmail: The Basics.” Sill
does provide a good review of all of the
configuration files, but instead of group-
ing file descriptions into related cate-
gories, he simply uses alphabetical order.
I would like to see more thought put
into grouping the file descriptions into
related categories so that readers can
quickly jump where they need to go. For
example, readers may want to be able to
quickly review all files related to virtual
domains. Currently, you will need to
skim all file descriptions to be sure you
catch everything you need.

One of the most helpful chapters for
most readers, especially those new to
qmail, will be Chapter 6, “Troubleshoot-
ing qmail.” Sill does a good job of run-
ning through various troubleshooting
scenarios, and details which tools should
be used for each job.

The next several chapters are devoted to
covering popular topics, such as send-
mail migration, performance issues,
junk mail, mailing lists, and accessing
mail from remote systems using POP3
and IMAP. In addition, a chapter
devoted to virtual domains is included
that describes the use of VmailMgr and
Vpopmail, two “add-ons” to qmail that
make virtual domain support easier.

In the final chapter, Sill tackles some of
the more difficult issues, especially those
that face administrators of high-volume
mail servers. In addition, he reviews cus-
tomizations of qmail to allow antivirus
scanning, patching the source to allow
use of a database backend to store user
account information, and more.

THE QMAIL HANDBOOK

Dave Sill

Berkeley, CA: APress, 2002. 492pp.
ISBN 1-893115-40-2.

Reviewed by Dustin Puryear
dustin@puryear-it.com

A popular MTA that has been ported to
various UNIX flavors as well as FreeBSD
and Linux, qmail was written with secu-
rity and scalability in mind. Indeed, the
software has a record for being rock
hard in terms of resiliency to attack and
its ability to cope with high loads of mail
traffic.

The power and reliability of qmail is
great news for the harried network
administration staff, but having the
qmail software alone does not solve the
problem of learning how to best config-
ure and deploy it. That’s where The
qmail Handbook steps in.

The qmail Handbook is written as both a
technical introduction to the workings
of qmail and a how-to manual detailing
the installation and configuration of the
software. The book is broken into 12
chapters, with six appendixes, and Sill
uses first person throughout to create a
book that is quite readable.

He begins with a basic overview by cov-
ering architecture and some of the
details of the inner workings of qmail.
Unfortunately, Sill doesn’t really go into
as much depth in this chapter as I had
hoped – I was looking for more back-
ground information about the design
decisions made by Bernstein, the author
of qmail, but that information was not
generally forthcoming. Rather, much of
the first chapter is a basic and pretty
generic MTA tutorial. Sill rectifies this
lack of detail somewhat by discussing
the qmail architecture in more depth in
later chapters and in Appendix A, “How
qmail Works.”

As the book progresses, Sill covers instal-
lation and basic configuration issues and
includes a wide range of important top-

book reviews

Sill also includes valuable information in
the six appendixes: “How qmail Works,”
“Related Packages,”“How Internet Mail
Works,”“qmail Features,”“Error Mes-
sages,” and “Gotchas.” Most users new to
qmail will certainly appreciate “Related
Packages,” which contains a list of soft-
ware that can be used to add features to
qmail.

I found Dave Sill’s book quite clear and
full of good information. Alas, like many
books written about specific software,
The qmail Handbook lacks sufficient
focus on management issues. Specifi-
cally, I would like to see more informa-
tion on account management and more
in-depth coverage of database back ends
used for authentication and perhaps
even mail storage (although Maildir
works quite well in an NFS environment
due to its excellent design) and qmail
used for large, clustered environments
that handle very large volumes of mail.
Certainly Sill addresses some of these
concerns, but mostly in a piecemeal
fashion. These minor issues notwith-
standing, this is a good book for those
seeking a solid understanding of how to
install, configure, and use qmail.

RUBY IN A NUTSHELL

Yukihiro Matsumoto w/translated text
by David L. Reynolds, Jr.

Sebastopol, CA: O’Reilly & Associates, 2001.
204pp. ISBN: 0-596-00214-9.

Reviewed by Raymond M. Schneider
ray@securityfoo.net

Here we go, it’s a Ruby revolution.
O’Reilly has come out with another text
on the jewel scripting language from
Japan. Last time around the book was
hardly more than a pamphlet, a pocket
reference in Japanese. This time it is a
Nutshell text. It would seem to the inno-
cent bystander that Ruby is moving up
in the world. A quick grep of one of the
book-selling Web sites shows at least five
texts dedicated to the Ruby language.
Ruby is getting mature.

61

●

B

O
O

K
R

EV
IE

W
S

book reviews
instance, the Ruby debugger is addressed
here, as is a profiler, a code tracer and
interactive Ruby. One of the last things
here is “ri.” Ri is to Ruby what perldoc is
to perl.

Ruby in a Nutshell delivers a quick and
dirty reference for an incredibly fun lan-
guage to program in. The organization
of the book makes sense, so the pro-
grammer can quickly find the needed
reference. It is a joy for me to read a
short (204 pages) book about a pro-
gramming language that contains a
usable reference. Ruby in a Nutshell
never fails as a quick reference for check-
ing syntax or checking for the right
method of an object class.

There are only a couple disappointments
with Ruby in a Nutshell. The first is that
the Ruby C API is not covered. This is
disappointing, as extending and embed-
ding Ruby is something that happens
quite often. The second is that terse
explanations sometimes require the
reader to seek out more complete infor-
mation elsewhere. It is unfortunate that
O’Reilly has not given us a full-fledged
Programming Ruby text. I hope that’s
around the corner.

If you are looking for a desk reference,
Ruby in a Nutshell is for you. If you want
to learn the Ruby language, this is defi-
nitely not the text you need. I recom-
mend Programming Ruby: The Pragmatic
Programmer’s Guide (Addison-Wesley,
2000, ISBN: 0-201-71089-7) for that
purpose.

Ruby in a Nutshell is like all the other
O’Reilly nutshells: it’s a light desk refer-
ence. The reader (most likely a program-
mer or system administrator) should be
familiar with programming on at least a
novice level. Ruby in a Nutshell is broken
down into four distinct sections: lan-
guage basics, built-ins, standard library,
and tools.

In the Language Basics section the book
follows the format of the nutshell series,
giving the reader an extremely brief
overview (30 pages), but it serves its
purpose. Readers familiar with other
scripting languages will notice some
inferred opinions. For instance, the
author writes in a section entitled
“Whitespace,”“We’ll leave the thorny
questions like ‘How much whitespace
makes code more readable and how
much is distracting?’ for another day.”
The reader then discovers that Ruby
ignores whitespace. This is sort of pok-
ing fun at another scripting language,
python, which does make whitespace
count. The author’s expressed attitude
throughout Ruby in a Nutshell is light-
hearted and fun.

The Built-In Library Reference section
explains exactly what a programmer
would expect to find in this section: pre-
defined globals, built-in objects, and
their methods. This section totals 73
pages in length and is terse in explana-
tions.

The Standard Library section contains
those things that are essentially exten-
sions of the Built-Ins. In order to use
these libraries a programmer must
“require” them in the code. The reader
will find things about Basic sockets and
TCP sockets here. This section also
includes information about CGI and a
decent, though short, example.

The final section,Tools, talks about
things every programmer using or
thinking about using Ruby will want to
have around and know how to use. For

December 2002 ;login: RUBY IN A NUTSHELL ●

62

news

Vol. 27, No. 6 ;login:

USENIX MEMBER BENEFITS
As a member of the USENIX Association,
you receive the following benefits:

FREE SUBSCRIPTION TO ;login:, the Association’s

magazine, published six times a year, featur-

ing technical articles, system administration

articles, tips and techniques, practical

columns on security, Tcl, Perl, Java, and

operating systems, book and software

reviews, summaries of sessions at USENIX

conferences, and reports on various stan-

dards activities.

ACCESS TO ;login: online from October 1997

to last month: www.usenix.org/publications/

login/

ACCESS TO PAPERS from the USENIX Confer-

ences online starting with 1993:

www.usenix.org/publications/library/proceedings/

THE RIGHT TO VOTE on matters affecting the

Association, its bylaws, election of its direc-

tors and officers.

OPTIONAL MEMBERSHIP in SAGE, the System

Administrators Guild.

DISCOUNTS on registration fees for all

USENIX conferences.

DISCOUNTS on the purchase of proceedings

and CD-ROMS from USENIX conferences.

SPECIAL DISCOUNTS on a variety of products,

books, software, and periodicals. See

http://www.usenix.org/membership/

specialdisc.html for details.

FOR MORE INFORMATION

REGARDING MEMBERSHIP OR

BENEFITS, PLEASE SEE

http://www.usenix.org/

membership/

OR CONTACT

office@usenix.org

Phone: 510 528 8649

But here’s a paper on 4.2BSD on the Sun
Workstation, by Tom Lyon and Bill
Shannon. And one on porting 4.1 to the
λ750 VLSI, by Paul Chen and Chet Brit-
ton. And, truly notable, John Chambers
and John Quarterman’s paper compar-
ing System III and 4.1BSD.

But that’s a mere beginning. There was
Eric Allman on “Mail Systems and
Addressing in 4.2BSD”; Mark Horton on
“Usenet”; Mike Karels on vfork; Brian
Harvey on “UNIX Logo”; Mike O’Dell
on “Portability”; and Mike Tilson, Jean
Wood, Joe Yao, John Mashey, Jim Isaak,
Heinz Lycklama, and . . . , and . . .

But there was more to reflect upon.

First among these was a paper by Jim
Lawson, “UNIX Research at Lucasfilm.”
We’re talking about January 1983. At
that time ILM had already won awards
for Star Wars (1977), The Empire Strikes
Back (1980), Raiders of the Lost Ark
(1981), and ET (1982), and were soon to
receive an Oscar for Return of the Jedi.

Lawson talked about running four VAX
11/750s, one 11/780, and a network of
6800s. He also remarked on the fact that
Lucasfilm was awaiting 4.2BSD support.
And he said that Lucasfilm has found
UNIX to be the “ideal operating system.”

Really impressive.

Nearly 20 Years
Ago in USENIX

The date on this issue of ;login: is
December 2002, but the next issue will
be February 2003, and I want to write
about January 1983, San Diego, CA.
About 1850 eager UNIX users gathered
for “UNICOM” – a combined meeting
of STUG (Software Tools User Group),
/usr/group (in later years UniForum),
and USENIX.

This was the meeting where Bob Guffy
announced that AT&T was about to
introduce System V; where Bill Munson
announced that “DEC supports UNIX”;
and where Bob Fabry announced that
4.2BSD was “almost ready” (and that it
was 46% larger than 4.1: 53,500 lines of
code!). Hot stuff!

There were two divergent things I noted
as I re-read the Proceedings: (1) how
many of the topics (and companies)
were passé and (2) how many of the
people (and papers) were notable.

Passé as well as notable. It seems bizarre.

by Peter H. Salus

USENIX Historian

peter@usenix.org

USENIX SUPPORTING MEMBERS

Atos Origin B.V.

Freshwater Software

Interhack Corporation

Microsoft Research

Motorola Australia Software Centre

OSDN

Sendmail, Inc.

SunMicrosystems, Inc.

Sybase, Inc.

Taos: The Sys Admin Company

UUnet Technologies, Inc.

Ximian, Inc

On a similar topic, Jeff Loomis and Phil
Mercurio talked about “Computer Ani-
mation at UCSD.”

The other topic that struck me was stan-
dards. While /usr/group had begun its
UNIX standardization efforts at UNI-
COM in 1981, now Heinz Lycklama
announced the availability of a “draft
UNIX interface standard.” Jim Isaak
spoke about “Standards Organization”;
Rob Petersen gave a paper on “The His-
tory and Purpose of Standards”; and
Robert Swartz talked about “Criteria for
Standards.”

Twenty years later, many issues of ;login:
have a section on the POSIX commit-
tees. Sigh.

There were many other interesting
papers, but what strikes me as I write is
that so many of the things that seemed
important (UNIX on the NS6032, port-
ing to the Gould 32/27, UNIX on Apollo
computers) are meaningless today.

Oh, by the way, there was a special ses-
sion on “Marketing and Venture Capi-
tal.” How little we knew.

IOI 2002
Yong-In, Korea

Sunday evening, August 18, 2002, the US
delegation arrived in Korea and were
bussed to Kyung Hee University, the site
of the International Olympiad of Infor-
matics for 2002. Our delegation con-
sisted of thirteen members, including a
pair of international committee mem-
bers, two team leaders, two observers (to
learn how to run the IOI in the USA in
2003), four contestants, and three visi-
tors.

63December 2002 ;login: IOI 2002 ●

●

U

SE
N

IX
 N

EW
SThe opening ceremony was held in

Renaissance Hall in the Central Library
for 277 contestants along with a host of
leaders and guests, for a total near 600. It
began with a short report on IOI 2002
followed by two messages, one from the
president of IOI 2002 and another from
the Minister of Science and Technology
for Korea.

The contestants were sent off to their
rooms by 8 p.m. while the team leaders
approved the three problems for the first
competition day and began the long task
of translating them into their native lan-
guage (since contestants are not required
to know English). Some did not finish
until the wee hours of the morning.

On the first competition day, the con-
testants were given five hours to work on
the three problems of round one. The
word after the time was up was that they
were a very challenging set of problems.

Thursday, the second set of problems
was appreciated by the competitors
more than the first. Everyone came out
feeling relieved it was finally over.

When we got the results back they were
all very close together – around 200
points out of a possible 300 points on
round 2. On the first day, Tiankai Liu
had a higher than average score because
of his success on one problem which he
solved better than all other competitors
at IOI. His total number of points (415)
for the two days was over a hundred
points ahead of the rest of our team. The
other three, Jacob, Adam, and Alex, were
close together with totals just under 300
and combined with day 1, good enough
for medals.

Overall, the team did a wonderful job
getting medals in a very difficult compe-
tition. The problems used by the Kore-
ans were very original and forced the
students to think outside the box.
Tiankai showed his extraordinary ability
to do just that by coming up with an

original solution that surprised even the
judges. He was the only one in the com-
petition to get full marks on the prob-
lem called XOR. His winning solution
was only 100 lines of code, about a third
as long as expected, and it outperformed
the judges’ solution. Remember, this is
only one of three problems he had to
solve in five hours and the judges had
spent weeks finding their best solution.

Tiankai Liu, a sophomore from Phillips
Exeter Academy in Exeter, NH, captured
a gold medal. The other three members
of the US team won silver medals: high
school seniors Adam D’Angelo, also
from Phillips Exeter Academy, Jacob
Burnim, from Montgomery Blair High
School in Silver Spring, MD, and Alex
Schwendner, a home-schooled freshman
from Austin, Texas.

Burnim captured the highest silver
medal during the competition.
Schwendner, a freshman, was the
youngest team member from the US
ever to receive a silver medal. Tiankai
had the fourth highest score in the
whole contest and this was his first year
at IOI.

In addition to his gold medal Liu was
awarded the Sens Q prize, newly estab-
lished by Samsung Electronics for the
contestant who solved the problems the
most creatively. He received a Samsung
laptop computer as his prize.

Participation in the IOI 2002 was made
possible by USENIX, our sponsor for the
USACO.

by Don Piele

USACO Director

piele@cs.uwp.edu

The team: from l. to r.: Jacob Burnim,
Alex Schwendner, Tiankai Liu,

Adam D’Angelo

	inthisissue
	motd
	Fu
	allison
	spitzner
	jones
	arkin
	perrine
	kenneally
	dietrich
	singer
	salus
	books
	usenix

