
D E C E M B E R 2 0 0 9 V O L U M E 3 4 N U M B E R 6

T H E U S E N I X M A G A Z I N E

The Advanced Computing
Systems Association

OPINION Musings	 2
R i k Fa R Row

SECURITY The	Conflicts	Facing	Those	Responding	to		
Cyberconflict	 7
Dav i D D i t tR i ch

Top	10	Web	Hacking	Techniques:	“What’s		
Possible,	Not	Probable”	 16
J e R em i a h G Ro ssm a n

Hardening	the	Web	with	NoScript	 21
G i o RG i o m ao n e

Correct	OS		Kernel?	Proof?	Done!	 28
G e Rwi n k l e i n

Improving	TCP	Security	with	Robust	Cookies	 35
Pe R Ry m e t zG e R , wi l l i a m a l l e n s i m P s o n ,
a n D Pau l v i x i e

COlUmNS Practical	Perl	Tools:	Essential	Techniques	 44
Dav i D n . B l a n k- e D e l m a n

Pete’s	All	Things	Sun:		
Swaddling	Applications	in	a	Security	Blanket	 51
Pe t e R Ba e R G a lv i n

iVoyeur:	7	Habits	of	Highly	Effective	Nagios		
Implementations	 57
Dav e J o se Ph se n

/dev/random:	A	Realist’s	Glossary	of	Terms		
Widely	Employed	in	the	Information	Security	
Arena	 62
Ro B e R t G . F e R R e l l

bOOk REvIEwS Book	Reviews	 65
e l i z a B e t h z wi ck y e t a l .

USENIx NOTES 2010	Election	for	the	USENIX	Board	of		
Directors	 70
e l l i e yo u n G

USACO	Teams	Shine	 71
Ro B ko l sta D

CONfERENCES Reports	from	the	18th	USENIX	Security		
Symposium	 73

Reports	from	the	2nd	Workshop	on		
Cyber	Security	Experimentation	and	Test		
(CSET	’09)	 101

Reports	from	the	4th	USENIX	Workshop	on		
Hot	Topics	in	Security	(HotSec	’09)	 108

dec09covers.indd 1 10.29.09 10:09:48 AM

Upcoming Events

For a complete list of all USENIX & USENIX co-sponsored events,
see http://www.usenix.org/events.

First Workshop on sustainable inFormation
technology (sustainit ’10)
Co-located with FAST ’10

february 22, 2010, San JoSe, ca, uSa
http://www.usenix.org/sustainit10

2nd useniX Workshop on the theory and
practice oF provenance (tapp ’10)
Co-located with FAST ’10

february 22, 2010, San JoSe, ca, uSa
http://www.usenix.org/tapp10
Submissions due: December 14, 2009

8th useniX conFerence on File and storage
technologies (Fast ’10)
Sponsored by USENIX in cooperation with ACM SIGOPS

february 23–26, 2010, San JoSe, ca, uSa
http://www.usenix.org/fast10

3rd useniX Workshop on large-scale
eXploits and emergent threats (leet ’10)
Co-located with NSDI ’10

april 27, 2010, San JoSe, ca, uSa
http://www.usenix.org/leet10
Submissions due: February 25, 2010

2010 internet netWork management
Workshop/Workshop on research on
enterprise netWorking (inm/Wren ’10)
Co-located with NSDI ’10

april 27, 2010, San JoSe, ca, uSa
http://www.usenix.org/inmwren10
Paper registration due: February 5, 2010

9th international Workshop on peer-to-peer
systems (iptps ’10)
Co-located with NSDI ’10

april 27, 2010, San JoSe, ca, uSa
http://www.usenix.org/iptps10
Submissions due: December 18, 2009

7th useniX symposium on netWorked systems
design and implementation (nsdi ’10)
Sponsored by USENIX in cooperation with ACM SIGCOMM and
ACM SIGOPS

april 28–30, 2010, San JoSe, ca, uSa
http://www.usenix.org/nsdi10

2nd useniX Workshop on hot topics in
parallelism (hotpar ’10)
Sponsored by USENIX in cooperation with ACM SIGMETRICS,
ACM SIGSOFT, ACM SIGOPS, and ACM SIGARCH

June 14–15, 2010, berkeley, ca, uSa
http://www.usenix.org/hotpar10
Submissions due: January 24, 2010

8th annual international conFerence on
mobile systems, applications and services
(mobisys 2010)
Jointly sponsored by ACM SIGMOBILE and the USENIX
Association

June 14–18, 2010, San franciSco, ca, uSa
http://www.sigmobile.org/mobisys/2010/
Abstracts due: December 4, 2009

useniX technical conFerences Week

2010 useniX annual technical conFerence
(useniX atc ’10)

June 23–25, 2010, boSton, Ma, uSa
http://www.usenix.org/atc10
Submissions due: January 11, 2010

useniX conFerence on Web application
development (Webapps ’10)

June 23–25, 2010, boSton, Ma, uSa
http://www.usenix.org/webapps10
Paper titles and abstracts due: January 4, 2010

3rd Workshop on online social netWorks
(Wosn 2010)

June 22, 2010, boSton, Ma, uSa
http://www.usenix.org/wosn10
Paper submissions due: February 18, 2010

2nd useniX Workshop on hot topics in
cloud computing (hotcloud ’10)
2nd Workshop on hot topics in storage and
File systems (hotstorage ’10)

19th useniX security symposium
(useniX security ’10)

auguSt 11–13, 2010, waShington, Dc, uSa
http://www.usenix.org/sec10
Submissions due: February 5, 2010

dec09covers.indd 2 10.29.09 10:09:49 AM

; LO G I N : D ecem b e r 20 0 9 A rTI cLe T ITLe 1

contents

Ed i to r
Rik Farrow
rik@usenix.org

M a n agi n g Ed i to r
Jane-Ellen Long
jel@usenix.org

Co p y Ed i to r
Steve Gilmartin
proofshop@usenix.org

pro d u C t i o n
Casey Henderson
Jane-Ellen Long
Jennifer Peterson

t y pEsE t t Er
Star Type
startype@comcast.net

usEn i X a ss o Ci at i o n
2560 Ninth Street,
Suite 215, Berkeley,
California 94710
Phone: (510) 528-8649
FAX: (510) 548-5738

http://www.usenix.org
http://www.sage.org

;login: is the official
magazine of the
USENIX Association.

;login: (ISSN 1044-6397) is
published bi-monthly by the
USENIX Association, 2560
Ninth Street, Suite 215,
 Berkeley, CA 94710.

$90 of each member’s annual
dues is for an annual sub-
scription to ;login:. Subscrip-
tions for nonmembers are
$125 per year.

Periodicals postage paid at
Berkeley, CA, and additional
offices.

POSTMASTER: Send address
changes to ;login:,
USENIX Association,
2560 Ninth Street,
Suite 215, Berkeley,
CA 94710.

©2009 USENIX Association

USENIX is a registered trade-
mark of the USENIX Associa-
tion. Many of the designations
used by manufacturers and
sellers to distinguish their
products are claimed as trade-
marks. USENIX acknowledges
all trademarks herein. Where
those designations appear in
this publication and USENIX
is aware of a trademark claim,
the designations have been
printed in caps or initial caps.

V O L . 3 4 , # 6 , D e c e m b e r 2 0 0 9

OPINION Musings 2
r I k FA r rOw

SECURITY The Conflicts Facing Those Responding to
Cyberconflict 7
DAv I D D I T Tr I ch

Top 10 Web Hacking Techniques: “What’s
Possible, Not Probable” 16
J e r em I A h G rO ssm A N

Hardening the Web with NoScript 21
G I O rG I O m AO N e

Correct OS Kernel? Proof? Done! 28
G e rwI N k L e I N

Improving TCP Security with Robust Cookies 35
Pe r ry m e T zG e r , wI L L I A m A L L e N s I m P s O N ,
A N D PAu L v I x I e

COlUmNS Practical Perl Tools: Essential Techniques 44
DAv I D N . b L A N k- e D e L m A N

Pete’s All Things Sun:
Swaddling Applications in a Security Blanket 51
Pe T e r bA e r G A Lv I N

iVoyeur: 7 Habits of Highly Effective Nagios
Implementations 57
DAv e J O se Ph se N

/dev/random: A Realist’s Glossary of Terms
Widely Employed in the Information Security
Arena 62
rO b e r T G . F e r r e L L

bOOk REvIEwS Book Reviews 65
e L I z A b e T h z wI ck y e T A L .

USENIx NOTES 2010 Election for the USENIX Board of
Directors 70
e L L I e yO u N G

USACO Teams Shine 71
rO b kO L sTA D

CONfERENCES Reports from the 18th USENIX Security
Symposium 73

Reports from the 2nd Workshop on
Cyber Security Experimentation and Test
(CSET ’09) 101

Reports from the 4th USENIX Workshop on
Hot Topics in Security (HotSec ’09) 108

Login_articlesDECEMBER_09_final.indd 1 10.29.09 9:27:12 AM

2 ; LO G I N : vO L . 3 4, N O. 6

R i k F a R R o w

musings
Rik is the Editor of ;login:.

rik@usenix.org

I m a g I n e w at c h I n g t h e b e g I n n I n g
of a stock car race. As the drivers climb
into their cars, they ignore the webbing
for covering the drivers’ windows and do
not attach their five-point restraints or the
head-and-neck supports. Although this goes
against safety recommendations (and NAS-
CAR rules), the drivers have decided that
these safety measures are “inconvenient”
and “interfere with the experience.”

Certainly my imagined event sounds unbeliev-
able today. Yet at the end of Jeremiah Grossman’s
invited talk at the 2009 USENIX Security Sympo-
sium, I asked the audience, over 300 of the people
who had chosen to attend the premier security re-
search conference, for a show of hands on users
of NoScript. Only a few hands went up, and I sat
down, astonished.

Later that evening, a usability researcher ap-
proached me. He said that NoScript was considered
a bad example of usability. I certainly understand
that, yet when the consequences of not using
NoScript are considered, it is like not choosing to
wear a seatbelt while racing because of the incon-
venience. That security researchers would choose
a “better experience” and “convenience” over Web
browsing safety still amazes me.

Through the Browser Window

For many years now, Web browsers have been the
pen testers’ choice for getting past firewalls. I know
some very good penetration testers, and as fire-
walls became common as well as including better
configurations, the initial penetration method was
to attack via Web browsers. The pen testers may
abuse vulnerabilities in Web browsers, but just
as often they simply use features of Web brows-
ers combined with normal human weaknesses,
such as trust, that are easily exploited. While home
users’ Windows systems are the most infected with
malware installed via driveby attacks [1], busi-
nesses are not immune. Businesses can be targeted
using techniques similar to those of my pen testing
friends, but the goals in these cases are different.
Businesses may be targeted for intellectual property
or secrets, but these days the target is often bank
account information [2, 3].

I did ask Jeremiah Grossman if he used NoScript.
Grossman said he did, which is not surprising con-
sidering that he had just presented the Top 10 Web

Login_articlesDECEMBER_09_final.indd 2 10.29.09 9:27:13 AM

; LO G I N : D ecem b e r 20 0 9 musI N Gs 3

Hacking Techniques (see article on p. 16) and NoScript blocks several of
these attacks. I particularly shuddered when contemplating clickjacking, a
technique that allows an attacker to trick a browser user into clicking on the
button of the attacker’s choice. Clickjacking is a feature of modern browsers,
allowing an attacker to move (hover) over an iframe so that the button to be
clicked is always under the user’s mouse. And this happens invisibly to the
user, as the iframe is hidden beneath other content.

Many years ago, I mused about having a button on my browser that would
give me the option of allowing scripting to work for a particular site.
NoScript has provided that button for many years now, and Giorgio Maone
has continued to add security features to NoScript over the years as well. I
asked Maone if he wanted to write about NoScript for this issue, and you
can find his article on p. 21.

Maone considers the same usability issues that some people complain about
to be a feature. He wants NoScript to work without cluttering up your
browser with popups. I will say that I had to learn that when a Web site
doesn’t work as expected, I need to see what NoScript is blocking. For the
most part, I have already whitelisted the sites I trust, which also happen to
be those I visit often. When I visit a new site, I have to decide whether to
allow scripting to work. I usually enable scripting temporarily unless I know
I will be visiting a site frequently. And I don’t enable scripting for all sites
that request the ability, as some of these sites just use scripting to present
advertising or to collect information about your browsing habits. I’d rather
maintain my privacy. And when I want to buy something, I will research
products rather than buy the product with the spiffy and/or annoying ad.

Advertising sites themselves can be sources of malware. In [1], the research-
ers mention that a source of drive-by downloads comes from reselling adver-
tising slots on Web pages. If there are no current buyers for advertising on a
particular Web page, these potential slots can be resold to other advertising
networks. You could wind up being the victim of an attack even when visit-
ing a trusted site, if you don’t use NoScript. Because NoScript blocks script-
ing based on the site the script comes from, you can still view your favorite
site while preventing other sites from executing scripts.

Banks and Credit Cards

Credit card companies provide you with some insulation against loss of cre-
dentials. If someone steals your credit card info, you can report it to the
credit card company and pay a limited amount (at most $50 in the US).
Banks, however, look at credential loss completely differently. Banks have
traditionally focused on using SSL to protect transaction data while it tra-
verses the Internet. At the same time, banks assume that the endpoints of
the communication, including browsers, are secure. Yet that is unlikely to be
the case today for most PC users.

Even the use of one-time passwords and password generation tokens does
not provide protection for users of malware-infected PCs. Malware has been
designed to wait until the user has provided authentication and then to ini-
tiate a fund transfer request that appears to the bank to be authenticated. If
you can’t trust your own computer, SSL really doesn’t help you at all. Adding
insult to injury, banks in some countries hold users responsible for losses if
the computers they use are not secure.

In the US, recent looting of the bank accounts of small businesses and even
a county have garnered some news. And in these cases, the owners of the

Login_articlesDECEMBER_09_final.indd 3 10.29.09 9:27:13 AM

4 ; LO G I N : vO L . 3 4, N O. 6

accounts, whose credentials have been stolen using malware and botnets,
were held responsible for the losses as well.

Secure Operating Systems

It would be helpful if we could use secure operating systems. Just recently,
an Australian research project undertaken to prove the correctness of an op-
erating system, the seL4 microkernel, was completed. You can read what one
of the researchers, Gerwin Klein, has to say about this starting on p 28 of
this issue. The operating system executes with the highest level of privilege
and has exclusive access to all hardware devices, including disk and network
devices, as well as arranging for access to pages in memory. Having an oper-
ating system with proven security guarantees is a great leap forward.

We also need secure applications that we can use. I’ve written about the OP
browser before [4], a browser which uses process-based isolation for each
site that goes well beyond what Google Chrome and IE8 do today. Just the
week before I completed this column, the source code to the OP browser
went online [5]. There are still issues with the OP browser, mainly having
to do with running isolated windows on top of window managers that do
not support the concept of sharing a display among different security prin-
ciples—that is, each site acting as a separate user, isolated from what other
sites can do. And sites that rely on overlapping views, such as mashups
that use overlays on top of maps, are very difficult to deal with. But the OP
browser, because of its design, already shows higher performance on multi-
core systems than IE8 or Chrome for certain tasks.

SeCure TCP

Not even TCP itself can be considered safe. Security issues with TCP con-
nection state have been known since 1985 [6], but little has been done
beyond quick fixes, such as initial sequence number randomization. As
DNSSEC begins to see wider adoption, starting in December 2009, root
server operators will really be feeling the effects of having to support TCP
connections, as TCP connection state can easily be abused. Attackers began
using SYN floods against TCP in 1996, and only non-standard kludges de-
fend against these and similar denial-of-service attacks today.

Metzger, Simpson, and Vixie have written about a change to TCP that elimi-
nates these issues. This change, TCP Cookie Transactions (TCPCT), has
been discussed for many years in some form and appears close to being im-
plemented in at least two OS stacks soon. TCPCT can easily be integrated
into the Internet, as the new option will be ignored by systems, including
firewalls, that don’t recognize it. You can read about TCP Cookie Transac-
tions beginning on p. 35 of this issue.

Lineup

I have actually touched on many of the articles in this issue of ;login: already.
Dave Dittrich has written an article that both recalls the history of distrib-
uted denial of service (DDoS) attacks and ethics. Both researchers and in-
vestigators need to be bound by a code of ethics, perhaps legally bound.
Dittrich carefully covers this concept with a story about how he collected the
source code to early DDoS tools.

Peter Galvin covers an emerging feature in OpenSolaris: Immutable Ser-
vice Containers (ISCs). ISCs are a containment mechanism designed to be
used for networked services. Initially they work with Solaris Zones, but may

Login_articlesDECEMBER_09_final.indd 4 10.29.09 9:27:13 AM

; LO G I N : D ecem b e r 20 0 9 musI N Gs 5

eventually work under Solaris VM environments as well. ISCs promise to be
another useful tool for securing services.

David Blank-Edelman provides more general advice for Perl programming,
or, as he has put it, he “likes to get meta.” Blank-Edelman describes simple
techniques, as well as how to endure them, for improving the robustness of
your Perl code.

Dave Josephsen provides 7 tips for successful Nagios implementations. Ac-
tually, you would do well to pay attention to his list no matter what type of
monitoring and reporting you are doing.

Robert Ferrell regales us with his own definitions of terms used in the secu-
rity industry. Robert has his own way of looking at things, as you will have
noticed. I find that I can strongly agree with Robert on his definitions, as a
large dose of cynicism is in order when it comes to computer security.

We have lots of book reviews this time around, and we close with reports
from the 2009 USENIX Security Symposium and two associated workshops:
HotSec and CSET.

I became paranoid about UNIX security, and later Internet security, starting
in 1984. That was the year someone shared a much-copied list of security
exploits that had occurred at UCSC over a few years. The list provided a re-
minder of what clever students could do with a little knowledge and a dose
of misguided motivation.

Today, exploiting browsers is big business. Exploits are sold on the black
market, converted into easy-to-use toolkits for exploiting browsers and Web
servers, then sold. These tools are designed to steal login credentials or to
proxy authenticated connections to banks and financial institutions. Noth-
ing magical is involved here, as our current Web browser technologies actu-
ally support the installation and use of tools that have browser-wide impact.
In fact, without this support, NoScript itself would not work.

Strap into your Web browsers! I encourage you to endure the inconvenience
of having to decide, perhaps after some research, whether you consider a site
safe or not. While NoScript’s user interface could be easier to use, I find a bit
of inconvenience a lot more palatable than the consequences.

referenCeS

[1] N. Provos, P. Mavrommatis, M.A. Rajab, and F. Monrose, “All Your
 iFRAMEs Point to Us,” Proceedings of the 17th USENIX Security Symposium,
July 2008, pp. 1–15.

[2] Kelly Jackson Higgins, “Attack of the Mini-Botnets,” DarkReading:
http://www.darkreading.com/security/attacks/showArticle.jhtml?articleID
=216402026.

[3] “Clampi Targets Banking Info”: http://www.usatoday.com/tech/news/
computersecurity/2009-07-30-clampi-computer-virus_N.htm.

[4] Chris Grier, Shuo Tang, and Samuel T. King, “Building a More Secure
Web Browser”: http://www.usenix.org/publications/login/2008-08/pdfs/
grier.pdf; Rik Farrow, “Musings,” http://www.usenix.org/publications/
login/2008-08/openpdfs/musings.pdf.

[5] OP-Browser source: http://code.google.com/p/op-web-browser/source/
checkout.

[6] R. Morris, “A Weakness in the 4.2 BSD UNIX TCP/IP Software”:
pdos.csail.mit.edu/~rtm/papers/117.pdf.

Login_articlesDECEMBER_09_final.indd 5 10.29.09 9:27:13 AM

6 ; LO G I N : vO L . 3 4, N O. 6

Thanks to uSenIX and SAGe Corporate Supporters
uSenIX Patrons
Google
Microsoft Research

uSenIX Benefactors
Hewlett-Packard
IBM
Infosys
Linux Pro Magazine
NetApp
Sun Microsystems
VMware

uSenIX & SAGe Partners
Ajava Systems, Inc.
BigFix
DigiCert® SSL Certification
FOTO SEARCH Stock Footage and
Stock Photography
Splunk
SpringSource
Zenoss

uSenIX Partners
Cambridge Computer Services, Inc.
GroundWork Open Source Solutions
Xirrus

SAGe Partner
MSB Associates

Login_articlesDECEMBER_09_final.indd 6 10.29.09 9:27:13 AM

; LO G I N : D ecem b e r 20 0 9 Th e cO N FLI c T s FAcI N G Th Ose resP O N D I N G TO c y b e rcO N FLI c T 7

D a v i D D i t t R i c h

the conflicts facing
those responding
to cyberconflict
Dave Dittrich holds an appointment as an
affiliate principal scientist with the Applied
Physics Lab at the University of Washing-
ton. He has studied distributed denial of
service (DDoS) attack tools, botnets, host
and network forensics, and the legal/ethical
framework for responding to computer at-
tack (the “Active Response Continuum”) for
over a decade.

dittrich@speakeasy.net

t h e r e I s I n c r e a s I n g ta l k o f c y b e r -
warfare, where the computers of private cit-
izens are the weapons being used. Out of a
sense of frustration, some call for a right to
self-defense and for going on the offensive
against cyberattackers. Researchers today
are regularly doing things that cause effects
visible to others and publishing information
under the banner of full disclosure without
supporting their decisions through a sys-
tematic analysis of both the legal and the
ethical issues involved. We are entering a
dangerous time and have a lot to talk about
and agree upon, lest someone with good
intentions causes massive harm.

The purpose of this article is twofold. First, I want
to encourage the computer security community to
discuss how ethics apply to responses to cybercon-
flict. Second, I want those outside the computer
security community to understand how much more
damaging and serious the situation is becoming.
Such an understanding is necessary to help get the
policy and legal changes necessary to address to-
day’s increased threat landscape in ways that are
acceptable to society.

I use my own story here as a case study in how
some of these issues are raised and how they can
be addressed, centering on events that led to the
first distributed denial of service (DDoS) attacks
over a decade ago. Anyone reading my analysis of
the trinoo distributed denial of service attack tool
written in October 1999 and released to the pub-
lic on December 30, 1999, would have noticed the
following:

Trinoo daemons were originally found in bi-
nary form on a number of Solaris 2.x systems,
which were identified as having been compro-
mised by exploitation of buffer overrun bugs
in the RPC services “statd”, “cmsd” and “ttdb-
serverd”. These attacks are described in CERT
Incident Note 99-04:

http://www.cert.org/incident_notes/IN-99-04
.html

The trinoo daemons were originally believed to
be UDP based, access-restricted remote com-
mand shells, possibly used in conjunction with
sniffers to automate recovering sniffer logs.

During investigation of these intrusions, the
installation of a trinoo network was caught in
the act and the trinoo source code was obtained

Login_articlesDECEMBER_09_final.indd 7 10.29.09 9:27:13 AM

8 ; LO G I N : vO L . 3 4, N O. 6

from the account used to cache the intruders’ tools and log files. This
analysis was done using this recovered source code.

These statements play down the significance of distributed intruder attack
tools, an advance that was taking place beyond the gaze of the public. At-
tacks have become more automated, more sophisticated, and more complex.
This has put great pressure on incident responders to deal with the increase
in abuse and compromised systems. Incident response teams face a choice.
They can take the easy route, wiping and re-installing systems and spending
just enough effort to keep up with the onslaught. Of course this “easy way
out” makes it harder for law enforcement to do their job, possibly resulting
in more harm to society (a concept known as externalizing costs). Or they can
make the effort to find ways to be more efficient, effective, and proactive at
countering cybercrime. This might mean taking aggressive actions to home
in on crucial evidence for attributing criminal acts, or identifying key at-
tacker assets (e.g., command and control servers) and finding ways of taking
those assets out of the hands of attackers to neutralize their ability to cause
harm to society. The latter option has its own potential risks of harm to so-
ciety—starting with loss of privacy, but ranging up to possible disruption,
destruction of computer data, or even physical damage—which can be miti-
gated through ethical decision-making that systematically balances potential
harms and benefits.

The Advent of Distributed Attacks

Distributed denial of service (DDoS) became widely known when high pro-
file targets such as Yahoo, CNN, Amazon, and eBay were attacked in Feb-
ruary 2000. Denial of service itself was not new, but the remote control of
thousands of computers at a time was. And it started many months ear-
lier than the public knew. What had once been manual and limited to the
number of people who could type on command lines became automated,
distributed, and allowed a handful of malicious actors to create orders of
magnitude more damage than before.

SnIffer ATTACkS

In the mid to late 1990s, computer intrusions involving the installation
of sniffers, programs that monitor network traffic for the purpose of steal-
ing login credentials, were rampant. Many sites were still using older TCP/
IP protocols, such as telnet, ftp, imap, pop, and rlogin, for remote termi-
nal sessions, file transfers, and email. The problem was that networks at the
time were often wired using thin-wire Ethernet, a shared network medium on
which any host was capable of seeing all network traffic to/from any other
host. Login names and passwords were visible to anyone who could control
a computer on the same network segment. The result at large universities
was massive account theft and abuse. Someone possessing a list of several
hundred stolen accounts could hop from account to account, remaining ac-
tive within the network for over a year. Intrusions also spread quickly from
one host to many other hosts and many other sites. There was still a limiting
factor: attackers had to manually install sniffers and come back later to re-
trieve the sniffer logs. The solution: client-server computing!

DISTrIBuTeD SnIfferS

In the early months of 1999, an attentive system programmer, responsible
for the large clusters of IBM AIX systems that the University of Washing-

Login_articlesDECEMBER_09_final.indd 8 10.29.09 9:27:13 AM

; LO G I N : D ecem b e r 20 0 9 Th e cO N FLI c T s FAcI N G Th Ose resP O N D I N G TO c y b e rcO N FLI c T 9

ton (UW) made available centrally, noticed some odd processes that showed
very long up times. He had wisely obtained process memory dumps before
killing the processes and made note of listening network ports that indicated
that the program might be a remote access trojan.

I analyzed the memory dumps and identified what looked like a simple
array data structure with a user name, a password, and a numeric value. I
identified the numeric values as UNIX timestamps. Comparison of last login
records showed a correlation between the account names and timestamps.
Analysis of process lists and login records on other cluster members for the
accounts involved showed that at one point, over a month earlier, someone
had started running the same program on all hosts in the cluster. What we
had discovered was the first known distributed sniffer for IBM AIX systems.
Now the sniffer logs from all hosts in the cluster could be automatically re-
trieved over the Internet in rapid succession, increasing the scale and speed
of credential harvesting.

While a single host on a shared Ethernet segment could net a few hundred
login credentials in a month, having a local sniffer on every host in a large
cluster used by tens of thousands of people could potentially yield orders
of magnitude more. This was not the only type of attack being automated,
though.

DISTrIBuTeD DOS TOOLS

Denial of service attacks in the late 1990s relied on using stolen accounts
to run programs such as synk4, teardrop, or smurf from the command line.
The first two programs implemented point-to-point attacks, where band-
width and the number of accounts used dictated who would win. A smurf
attack was a form of reflected and amplified DoS attack that exploited poorly
configured network routers and required far fewer accounts to initiate the
attacks. Regardless, such floods were straightforward to identify and trace
back to the accounts used to run these attack programs, which could then
be easily shut down. The primary limiting factor was the number of attack-
ers who could log into stolen accounts, download DoS attack programs, and
initiate attacks.

Things changed significantly in the summer of 1999. UW began to get re-
ports of DoS attacks against different sites around the world, all involv-
ing dozens of UW systems all at the same time. Some unknown program
was being installed and run on dozens of compromised computers. It was
controlled through remote connections from a small handful of central lo-
cations, using an unknown protocol. It looked similar to the distributed
sniffers and had the same problem of being indirectly controlled. And it was
capable of flooding remote hosts in several different ways, keeping them off-
line for days at a time.

Nobody had ever dealt with this kind of distributed attack before. Nobody
knew exactly how it worked. Worst of all, nobody knew how to stop it. We
desperately needed a detailed understanding of how to identify these dis-
tributed denial of service programs on infected computers, how to identify
them by observing network traffic patterns, and how to scan our networks
to quickly find infected hosts and get them cleaned up. Our responses had
to scale as well as these new attacks, both in social and technical terms.

Login_articlesDECEMBER_09_final.indd 9 10.29.09 9:27:14 AM

10 ; LO G I N : vO L . 3 4, N O. 6

My Story

Responding to account abuse involves determining whether the account
holder knowingly misused their account or gave their password to someone
who abused the account (a policy violation), or unknowingly had their login
credentials stolen by an outsider (i.e., they are innocent). One method of in-
vestigating these attacks involves examination of account contents, including
files stored in the account and saved email messages. To respect the privacy
of the user, while learning who was responsible for account abuse, I adopted
an investigative method, patterned on the FBI’s procedure used when wire-
tapping, known as minimization. This means starting with the least invasive
methods first and only using more invasive analysis if evidence warranted it.
Searching for keywords like password, pwd, pw:, account, acct, acc:, etc. could
indicate purposeful sharing. Only if I found such keywords would I then
expand the search to include the email headers for Subject, To, Cc, From,
Sender, Date, etc. to provide more context. Finally, I would only look at the
specific messages (identified by the header lines) and the specific paragraph
in which the keywords occurred. If it looked like that portion of message
had nothing to do with account abuse, I would immediately stop reading
and go on to the next suspect message. My task was only to verify account
sharing, not read personal communications. This conformed with policies
for protecting UW systems, maximizing efforts to secure UW systems, and
minimizing intrusion into account holder privacy.

The same minimization techniques can be applied to analysis of the con-
tent of files stored in suspect accounts. By correlating login history with the
creation or modification dates of files in the account and looking at their
names, it was possible to identify those files that were created during peri-
ods of suspected abuse (e.g., a DoS attack, spam run, or scanning activity). It
was not necessary to wade through any/all files, which would be more inva-
sive to privacy. Correlating this information across multiple abused accounts
often illuminated a pattern. One host, or one domain name, might show up
as the source for logins across multiple abused accounts. By looking at the
exploit programs stored in the stolen accounts, it was sometimes possible
to identify a specific target (e.g., Linux running imapd). A quick scan of the
suspect network for any hosts with the vulnerability being used by the at-
tackers often allowed me to locate the host running the sniffer. I would then
target that host for forensic analysis.

I wrote scripts that parsed the log files produced by several of the most com-
monly used malicious sniffers. These sniffer logs typically showed the source
and destination hosts, the login account name, what protocol or service
was involved, and the first couple of dozen to couple of hundred characters
typed. This latter text is where the password is found and sometimes also
the first few commands that were typed (e.g., logins to other hosts, the root
password in su or sudo commands). This script allowed me to extract a list
of all accounts that were compromised by the sniffer and on which systems
those accounts existed.

I modified another script, originally written by a brilliant programmer at
UW named Corey Satten, to extract lines by domain name, IP address, and
even network block in Classless Internet Domain Routing (CIDR) notation. I
could process the compromised account and host lists from the sniffer logs
and split them up by (1) those at UW and (2) those at remote sites. Another
script would iterate over the list of remote sites and send one email per site
reporting those accounts or hosts at just that site. Rather than sending one
big list to everyone, which would expose information about all victims, I
could do targeted reporting. This allowed the efficient reporting of compro-

Login_articlesDECEMBER_09_final.indd 10 10.29.09 9:27:14 AM

; LO G I N : D ecem b e r 20 0 9 Th e cO N FLI c T s FAcI N G Th Ose resP O N D I N G TO c y b e rcO N FLI c T 11

mised assets at all sites affected at one time and I could proactively identify
and remove from attacker control all compromised resources at one time instead
of waiting for abuse reports to come in and spending far more time handling
them individually. While this kind of response was more complex, on sev-
eral occasions it resulted in distant hackers leaving the UW network and not
coming back. This was fighting automation of attacks with automation of
defensive response. The technique was quite effective, at least in those cases
where affected sites were capable and cooperative in removing access to ma-
licious hackers.

During the routine investigation of a suspected sniffer on a UW subnet in
the summer of 1999, I was able to locate the sniffer on a Linux workstation,
retrieve its log file, and began extracting account/host information to do the
all-at-once cleanup. One entry in the sniffer log caught my eye, however. It
showed a connection from a different host on the same shared network seg-
ment, but sourced from a computer owned by a completely different re-
search group. Such shared networks were the easiest way for an intrusion
to spread quickly. Effectively, one hacker’s sniffer had managed to capture
a connection exposing another hacker’s activity! I recognized the name of
the second computer as one of the Sun computers involved in DDoS attacks
weeks earlier. The sniffer had been running long enough to capture his-
torical evidence of the installation of a DDoS agent. I now knew where the
DDoS attackers were caching their trinoo agent binaries (and possibly much
more, given recent experience). Had I simply reported the sniffer to the
owner, who would have been tempted to just wipe and reinstall the OS, this
key piece of information would have disappeared forever.

Recognizing the significance of what I had learned, I quickly put on my
headset, looked up the technical contact information from the relevant do-
main registry and initiated a telephone call. My intention was to (1) con-
tact a responsible party at the affected site to report the intrusion into their
network and (2) request that they preserve evidence and provide me with
a copy of files in the directory to analyze. While they might not (and odds
were good they probably didn’t) have a skilled incident response team, with
someone who understood computer attack tools, networking, programming,
and scripting, I was prepared to make use of the information to try to put a
stop to the harm being caused to systems around the globe. If this company
didn’t report the incident to law enforcement, it meant that the investigation
hit a dead end. If they did report it to law enforcement, it might take weeks
or months (if ever) to complete a detailed analysis. Even if such analysis was
performed, it might not be widely enough distributed to achieve worldwide
mitigation of the event. The likelihood was that if I did not get my hands on
the data in that account, key information would simply disappear and the
damage worldwide would continue to escalate.

When making blind contact with remote sites in situations like this, in the
middle of active hostile activity, there are many common outcomes I have
encountered over the years. Most of the time, explaining who I am and what
I am doing results in cooperation by the site being contacted. Sometimes
they even offer to provide a root password and let me clean up the system,
which I decline and instead provide guidance to help them clean up their
own systems. Sometimes they say, “Thanks for reporting this to us,” and im-
mediately take the system off-line, wipe the hard drive, and reinstall the
operating system. This destroys most/all evidence on the system. They may
not even report to law enforcement, which results in a dead end for inves-
tigation. Sometimes the person denies there could possibly be any problem
or gets mad and hangs up. Sometimes they are distrustful and assume I am
somehow involved. In a handful of cases, the person I spoke with professed

Login_articlesDECEMBER_09_final.indd 11 10.29.09 9:27:14 AM

12 ; LO G I N : vO L . 3 4, N O. 6

to be helping to stop the intruder, even asking that I contact them immedi-
ately whenever I noticed this person using their systems. They later turned
out to be actively helping the intruder, or they themselves were the intruder.
Sometimes my report gets sent around the organization in email which hap-
pens to be actively monitored by the bad guys.

I reached the operator at the victim site and informed them I had reason
to believe that one of their main computer servers had been compromised
and that I needed to speak with someone responsible for computer security
investigations at their company. My call was transferred. The conversation
began something like this:

Hello. My name is David Dittrich and I am a computer security
engineer at the University of Washington in Seattle. If you wish
to verify my identity, you can call the main switchboard at the
University of Washington and ask to be transferred to me, or get
my contact information from my Web site, which you can find
with a search engine by entering my name. I understand if you
don’t trust what I am saying to you.

I am investigating a series of intrusions at the University of
Washington that involve distributed denial of service attacks in-
volving thousands of computers around the world. One attack
last month disrupted the entire campus of the University of Min-
nesota for over three days. These attacks have been reported to
the FBI and are under active investigation. I have a report that
I can send you that details these attacks so you can understand
their complexity and impact.

I have evidence that your computer system hostname has been
compromised and is actively being used by someone for engag-
ing in remote attacks against systems around the globe. Your sys-
tem holds files associated with these attacks that are central to
understanding them and trying to identify who is perpetrating
them. I urge you to report this intrusion to the RCMP.

I am requesting your permission to analyze the files contained in
the compromised account I have identified and I advise that you
make your own bit-image copy of the hard drive to preserve evi-
dence that may still exist in unused file space.

The response I got was positive. The person verified who I was by looking
at my Web site and said they appreciated the call and wanted to help. I was
granted the permission I requested on the condition that I promised (1) to
give them full details of how their system was compromised and how it was
being used by the attackers, (2) never to disclose the name of their company
and (3) not to publish any corporate or customer data I might encounter that
was unrelated to the illegal activity of the attackers. I have to this day ad-
hered to and will continue to adhere to all aspects of this promise.

The fruits of my analysis were the first detailed technical understanding of
distributed denial of service attack tools. I produced details of how to detect
these programs on infected hosts, how to detect them on the wire, and how
to scan for them remotely. Instructions and guidance on how to locally scan
one’s own network were given, along with cautions about likely countermea-
sures that could result in false-negative checks. I circulated these analyses
privately at first, trying to provide as much lead time as possible for law en-
forcement, the military, policymakers, and the security industry to prepare
for what might come next. My analyses were used as discussion points for
the first workshop ever organized and sponsored by CERT/CC [9]. Several

Login_articlesDECEMBER_09_final.indd 12 10.29.09 9:27:14 AM

; LO G I N : D ecem b e r 20 0 9 Th e cO N FLI c T s FAcI N G Th Ose resP O N D I N G TO c y b e rcO N FLI c T 13

years later I co-authored the first book on Internet denial of service attacks
with Jelena Mirkovic, Peter Reiher, and Sven Dietrich [6].

In the years following the release of the initial DDoS attack tool analyses,
those publications were widely cited in academic research as among the first
references on the subject. A new class of security products and services de-
signed to detect and mitigate DDoS attacks was also created, many starting
out by addressing the specifics detailed in these same analyses. However, the
technical details of these attack tools alone were not the only insights into
the complex nature of responding to large-scale distributed attacks. DDoS
attacks, distributed tools, and botnets (as they are now popularly known) are
multi-phase attacks that involve a complex arrangement of compromised
resources spread across networks around the globe and organized into a co-
ordinated attack network. There is much more to countering these threats
than just detecting and blocking a flood of packets, and it demands similar
automation of response actions, coordination between involved sites, and a
deep knowledge of the attackers’ tools and tactics.

responding to Complex Computer network Attacks

The issues of responding to increasingly sophisticated and complex com-
puter network attacks that are illustrated here are not new. Just a few years
earlier, President Clinton created the President’s Commission on Criti-
cal Infrastructure Protection (PCCIP) to advise his administration on how
to deal with the threats to critical infrastructures that were emerging from
widespread Internet connectivity. The PCCIP produced a series of reports,
entitled the Legal Foundations Study [8], which addressed such issues as dif-
ficulties in detecting computer crime, resource constraints, the existing legal
landscape, (in)adequacy of existing criminal statutes, strains on federal law
enforcement investigation and prosecution capabilities, international agree-
ments on cooperation in cyber-investigations, and proposed new approaches
to enhancing cyber-intrusion response. Two of the principal authors of the
PCCIP reports published a law review article in which they call for a bal-
anced public/private approach for responding to cybercrime that includes
oversight mechanisms such as licensing and certification [7].

There have been other discussions of these topics in the private sector [1,
2]. Kenneth Einar Himma and I co-authored an article on what I am call-
ing the active response continuum (ARC) in which some of the legal and ethi-
cal issues are raised [5]. We describe the issues in responding to large-scale
coordinated attacks in the face of differences in skill level and capacity of
the victim sites involved and other issues brought up by the PCCIP reports.
I prefer the term “active response continuum” over “active defense,” to stress
the range from low to high of the capacity to respond, aggressiveness of ac-
tions, and risk of harm that must be balanced against intended benefit. It is
very common for discussions involving people new to this topic, who have
never engaged in coordinated and collaborative response to computer intru-
sions, to jump to simplistic self-defense analogies and call for the right to
“hack-back” or “counter-strike.” This is both naïve and very risky, as these
are at one extreme end of the spectrum. Arguing simply whether or not one
has a right to “hack-back” in self-defense misses more subtle, and less risky,
alternatives. Similarly, all the various options along the continuum are not
viewed in relation to effects on others who are simultaneously investigating
and responding to the same widespread events, or those using the computer
systems and networks involved in criminal activity.

Login_articlesDECEMBER_09_final.indd 13 10.29.09 9:27:14 AM

14 ; LO G I N : vO L . 3 4, N O. 6

Conclusion

Times have changed since 1999. The days of finding the source code, log
files, exploit tools, etc., being cached in one place for months at a time are
quite rare for the most advanced attacks. The sophisticated attacker knows
better and does a much better job of operational security. This requires a
more sophisticated response with more difficult challenges to overcome than
in years past. Law enforcement is now far more coordinated internationally,
more highly staffed, and more engaged with groups I will call mitigation com-
munities whose good intentions and talents are applied to counter today’s so-
phisticated cybercrime.

Good intention alone is not sufficient in deciding whether or not to take ag-
gressive or risky actions in response to cybercrime, or in choosing which
action to take. There are a host of unintended consequences that result from
one’s actions. It is important to have as much knowledge as possible about
the behavior of attackers and the capabilities of their tools. It is hard enough
to reverse engineer sophisticated malware, but finding an attacker’s weak-
ness and immediately leaping to disclose it or attack it is unwise in the
extreme. It is equally hard to develop a sophisticated counterattack that con-
siders the effects of any action one might take, in terms of benefit or advan-
tage as well as risk or harm (e.g., privacy violation.)

This is not a situation where one group of white hats congregating in an
online vetted community goes toe-to-toe with another group of black hats
who congregate in their underground equivalent. There are millions of in-
nocent third parties standing between and around us who just want to go
about their daily business, using the Internet to enhance their lives. They
don’t want to be harmed by getting caught in the cyber cross-fire. The effect
of a mistake that causes widespread harm to the general public could be sig-
nificant, resulting in a public-opinion backlash or knee-jerk legislation that
significantly sets back the efforts of defenders and puts attackers in an even
stronger position. Solidifying the gap between government agencies and
the private sector, or allowing researchers to perform crime-scene-altering
experiments in an uncontrolled and uncoordinated manner, will similarly
prevent a comprehensive cyber-response capability and further the damage
currently being done to our nation.

My colleagues and I presented a poster at the 16th ACM Conference on
Computer and Communications Security [3] that is based on a techni-
cal report [4] in which we call for a structured debate of the ethical issues
surrounding computer security research activities that will guide decision-
making in a more sophisticated and deliberate manner. This technical re-
port contains over two dozen case studies from the research and computer
security communities, going back many years. We provide an overview of
various ethical codes, analysis methods, and related discussions from the in-
formation warfare and software engineering disciplines.

At the most basic level are issues of privacy that apply across a large percent-
age of computer security research. It is important that these fundamental is-
sues be addressed, as they are increasingly raised in the context of academic
research. Even if a research exception were to be added to the Wiretap Act
or Stored Communications Act, the public would likely still want require-
ments for researchers to adhere to ethical principles that include the kind of
minimization techniques described above. Having a legal exception allowing
collection of data involving private communications does not mean privacy
rights can then be ignored.

Login_articlesDECEMBER_09_final.indd 14 10.29.09 9:27:14 AM

; LO G I N : D ecem b e r 20 0 9 Th e cO N FLI c T s FAcI N G Th Ose resP O N D I N G TO c y b e rcO N FLI c T 15

At the far end of the spectrum, where the subjects of research are criminal
activities that have financial, political, business continuity, or national secu-
rity implications, there is a need to look beyond privacy rights and harmo-
nize research activities with law enforcement investigation and security- or
network-operational requirements. In this area, we need standards and de-
cision-making guidelines that allow deconfliction1 of researchers’ activities,
consider alternative actions in terms of risk/benefit, harmonize security op-
erations and research with law enforcement investigations, and balance roles
and responsibilities.

We, as a community, urgently need to continue and expand the discussions
about sophisticated and potentially aggressive countermeasures to cyber-
criminal activities in order to minimize harm and maximize benefit in the
ongoing conflict occurring in cyberspace.

referenCeS

[1] Agora workshop moderators, First Agora Workshop on Active Defense,
August 2001: http://staff.washington.edu/dittrich/arc/AGORA\%208JUN01
.ppt.

[2] David Dittrich, Second Agora Workshop on Active Defense, September
2003, sponsored by Cisco Systems, Inc.: http://staff.washington.edu/dittrich/
arc/AD-workshop-091203.pdf.

[3] David Dittrich, Michael Bailey, and Sven Dietrich, “Have We Crossed the
Line? The Growing Ethical Debate in Modern Computer Security Research,”
November 2009. Poster presented at the 16th ACM Conference on Computer
and Communication Security: http://www.sigsac.org/ccs/CCS2009/pd
/abstract_22.pdf.

[4] David Dittrich, Michael Bailey, and Sven Dietrich, “Towards Community
Standards for Ethical Behavior in Computer Security Research,” Technical
Report CS 2009-01 (April 20, 2009), Stevens Institute of Technology:
http://staff.washington.edu/dittrich/papers/dbd2009tr1/.

[5] David Dittrich and Kenneth E. Himma, “Active Response to Computer
Intrusions,” Chapter 182 in Vol. III, Handbook of Information Security (Wiley,
2005): http://papers.ssrn.com/sol3/papers.cfm?abstract_id=790585.

[6] Jelena Mirkovic, Sven Dietrich, David Dittrich, and Peter Reiher, Internet
Denial of Service: Attack and Defense Mechanisms (Prentice Hall PTR, 2004).

[7] Stevan D. Mitchell and Elizabeth A. Banker, “Private Intrusion Response,”
1998: http://jolt.law.harvard.edu/articles/pdf/v11/11HarvJLTech699.pdf.

[8] President’s Commission on Critical Infrastructure Protection, PCCIP
 –reports archive: http://cip.gmu.edu/clib/PCCIPReports.php.

[9] Several, Results of the Distributed-Systems Intruder Tools Workshop,
CERT/CC, December 1999: http://www.cert.org/reports/dsit_workshop.pdf.

1. The term deconfliction comes
from the military, where flight
plans of fighters are coordinated
to avoid interference during
action. In this context, it means
coordinating researchers’ ac-
tivities to avoid interfering with
each other or interfering with
law enforcement investigations,
both of which can have negative
effects such as over-counting,
obscuring criminal actors, or
sending law enforcement down
dead-end paths that waste
scarce resources and time.

Login_articlesDECEMBER_09_final.indd 15 10.29.09 9:27:14 AM

16 ; LO G I N : vO L . 3 4, N O. 6

J e R e m i a h G R o s s m a n

top 10 Web hacking
techniques: “what’s
possible, not probable”

Jeremiah Grossman, founder and CTO of
WhiteHat Security, is a world-renowned Web
security expert. A co-founder of the Web
Application Security Consortium (WASC),
he was named to InfoWorld’s Top 25 CTOs in
2007 and is often quoted in major publica-
tions such as SC Magazine, Forbes, and USA
Today. He has authored dozens of articles
and white papers, is credited with the
discovery of many cutting-edge attack and
defensive techniques, and is a co-author of
XSS Attacks: Cross Site Scripting Exploits and
Defense. Grossman is also an influential blog-
ger who offers insight and encourages open
dialogue regarding research and vulnerabil-
ity trends. Prior to WhiteHat, Grossman was
an information security officer at Yahoo!,
responsible for performing security reviews
on the company’s hundreds of Web sites.

jeremiah@whitehatsec.com

n e w at ta c k t e c h n I q u e s p r o v I d e
keen insights into the state of the security
of the Web. Web client attack techniques
impact online businesses, reveal what may
become the next popular exploit technique,
and may affect anyone who uses a Web
browser. In this article, I cover the top 10
Web hacking techniques, a selection chosen
by a panel of security experts from a field
of 70 candidates [1].

Sharing technical details of these hacking tech-
niques isn’t meant to give malicious hackers a set
of instructions, but to level the playing field for
the good guys. Without this information, defend-
ers would be unfairly handicapped against a de-
termined criminal element who targets the Web as
their primary attack vector. Notification of vendors
by researchers also provides vendors with a chance
to patch their software before it can be exploited.

It is unclear which of these, if any, will become a
widely used method of attack. What we do know
is that some have already been used against us.
The following hacking techniques were ranked by
a panel of four widely recognized security experts
(Rich Mogull, Chris Hoff, H.D. Moore, and Jeff
Forristal) based on their novelty, impact, and per-
vasiveness. With that I give you the Top 10 Web
Hacking Techniques of 2008!

1. GIfAr by Billy rios, nathan Mcfeters,
 rob Carter, and John Heasman [2]

A GIFAR is the concatenation of a GIF image and
Java Archive (JAR) containing a potentially mali-
cious Java Applet. Many Web sites take ownership
of user-supplied content (e.g., image uploads) after
parsing the bytestream beginning to end and ig-
noring trailing “garbage” data. In the case of GIFAR
the trailing garbage data is a compressed Java Ap-
plet, a JAR, which is essentially a zip file parsed
bottom up. When Web sites take ownership of a
GIFAR because it “looks” like a GIF, the attached
Java archive may execute arbitrary applet code in
the victim’s browser under the context of the do-
main from where it was loaded. This results in a
same-origin policy violation, similar in scope to
that of a persistent cross-scripting vulnerability.
Furthermore, the GIF portion of GIFAR can be
substituted for any file type the Web site will ac-
cept and parse in a top-down fashion (i.e., JPG,
DOC, MP3, etc.).

Login_articlesDECEMBER_09_final.indd 16 10.29.09 9:27:14 AM

; LO G I N : D ecem b e r 20 0 9 TO P Te N we b h AckI N G Tech N I qu es : “ wh AT ’s P OssI b Le , N OT PrO bA b Le” 17

2. Breaking Google Gears’ Cross-Origin Communication Model
 by Yair Amit [3]

Google Gears is a browser extension that allows developers to create rich
and responsive Web applications. Of the many available features, Google
Gears offers developers cross-origin communication capabilities, making
it much easier to implement mash-ups, for example. Under some circum-
stances the cross-origin communication security model of Google Gears may
be bypassed by an attack that inserts malicious code. If an attacker can up-
load arbitrary “worker” code (the JavaScript code that can access Gears ca-
pabilities) to target a Web site, the attacker can issue malicious commands
under that domain. This worker code is likely to pass input security con-
trols, as it lacks suspicious tokens such as <script> tags.

3. Safari Carpet Bomb by nitesh Dhanjani [4]

The Safari Carpet Bomb attack allows a malicious Web site to litter the user’s
desktop on Microsoft Windows or the user’s “Downloads” directory on OS
X with arbitrary files or malware. Unless patched, when the Safari browser
is served a file with a content type that cannot be rendered by the browser,
it automatically downloads it to the default download location without no-
tifying or asking the user. This “carpet bomb” attack may trick users into
clicking on the malicious files by mistake or through curiosity. Safari Carpet
Bomb has the distinction of bringing the term “blended threat” into the se-
curity vernacular, because if you are able to litter user’s machines with arbi-
trary files, you can further the impact and affect other applications that trust
content on the local file system.

4. Clickjacking/Videojacking by Jeremiah Grossman and
 robert Hansen [5]

Think of any button (image, link, form, etc.) on any Web site that can ap-
pear between the Web browser walls. This includes wire transfer forms from
bank sites, DSL router buttons, Digg buttons, CPC advertising banners, Net-
flix queue, Facebook friend requests, and so on. Next consider that an at-
tacker can invisibly hover these buttons below the user’s mouse using iframe
tags and CSS opacity functionality, so that when a user clicks on something
they visually see, they’re actually clicking on something the attacker wants
them to—you now have clickjacking. We also demonstrated that clickjack-
ing can be used to trick users into enabling a Web cam and microphone
through a Flash movie to enable remote surveillance. If you haven’t done so
already, I strongly suggest you upgrade to Flash version 10 or later or at least
cover up the camera with a Post-It note. Finally, cross-site request forgery
defenses using one-time tokens (nonces) can also be bypassed using click-
jacking.

5. A Different Opera by Stefano Di Paola [6]

Until it was patched, the Opera Web browser itself was vulnerable to
a cross-site scripting vulnerability in the History Search page, where
JavaScript execution occurred under the opera:* context. Using iframe tags
and a cross-site request forgery, this provided a malicious attacker with
the ability to modify browser settings under opera:config, specifically the
“mailto” preference. Updating the mailto preference to an arbitrary value
could enable the arbitrary execution of operating system commands.

Login_articlesDECEMBER_09_final.indd 17 10.29.09 9:27:14 AM

18 ; LO G I N : vO L . 3 4, N O. 6

6. Abusing HTML 5 Structured Client-Side Storage by Alberto Trivero [7]

HTML 5 has introduced three powerful new ways to store significant
amounts of data on the client’s PC through the browser. This allows storage
of much more data than standard cookies, in Session Storage, Local Stor-
age, and Database Storage. If a Web application using this kind of client-side
storage is vulnerable to cross-site scripting, attackers can use their payload
to read or modify the content of known storage keys on the computer’s vic-
tim. If the Web application loads data or code from the local storage, this
could also be a powerful method to inject malicious code that will be exe-
cuted every time the Web application requests it.

7. Cross-Domain Leaks of Site Logins via Authenticated CSS
 by Chris evans and Michal Zalewski [8]

Web browser vendors take great pains to ensure that their same-origin pol-
icy prevents code on one Web site from obtaining details, such as authen-
ticated content or session cookie data, from another Web site. Violations of
the same-origin policy, such as the ability to determine if a user is actively
logged on to an arbitrary Web site (e.g., a social network), has serious secu-
rity and privacy implications. One way this can be achieved is through the
inline inclusion of authenticated Cascading Style Sheets on off-domain lo-
cations by a malicious Web page. The malicious Web page checks to see if
unique CSS properties have been loaded by the off-domain Web page using
standard JavaScript APIs. If so, the user is logged in—a simple Boolean re-
sult. Similarly, this same attack can be performed with content that only ap-
pears in authenticated sessions, including images and JavaScript files.

8. Tunneling TCP over HTTP over SQL Injection by Glenn Wilkinson,
 Marco Slaviero, and Haroon Meer [9]

The common Web infrastructure is designed using a multi-tier architecture.
A client connects to the server (port 80/443), which connects to back-end
databases and applications to generate dynamic content. Remote clients may
not directly connect to the back-end systems, where the crown jewels are lo-
cated, as the server can, and certainly cannot communicate with them over
arbitrary protocols and ports—that is, unless the server has a SQL injection
vulnerability. In this technique, squeeza, a tool for exploiting SQL injection,
is used to upload reDuh to the vulnerable server as a JSP, PHP, or ASP file.
reDuh, when executed as a Web application on the vulnerable server, creates
a TCP tunnel through validly formed HTTP requests using a client-server
model. reDuh gives an attacker access to the server behind the first-layer
firewall, which then acts as a relay to communicate with any reachable back-
end system.

9. ActiveX repurposing by Haroon Meer [10]

Resident or latent ActiveX controls, including those used to access SSL
VPNs, can be abused by a malicious attacker. In this technique, a particu-
lar ActiveX control included the features to update itself if the server in-
formed it of a new software version. By simply instantiating the control and
passing it a higher build number and a URL path to a downloadable file, it
would cause the client to download a possibly malicious file. Before loading
the control, Internet Explorer would first check the downloaded file to see
if it was properly signed. If it was not, then the file would not be executed.
However, the file would still download to a predictable location on the local

Login_articlesDECEMBER_09_final.indd 18 10.29.09 9:27:14 AM

; LO G I N : D ecem b e r 20 0 9 TO P Te N we b h AckI N G Tech N I qu es : “ wh AT ’s P OssI b Le , N OT PrO bA b Le” 19

file system, where it would remain. Upon first malicious instantiation, an
attacker would force the control to download a mock configuration file it
supported. The second instantiation would call the control and point to the
previously downloaded configuration file, which could contain arbitrary op-
erating system commands, including an uninstall method.

10. flash Parameter Injection by Yuval Baror, Ayal Yogev, and
 Adi Sharaban [11]

Flash parameter injection introduces a new way to inject values into global
parameters in Flash movies while the movie is embedded in its original
HTML environment. These injected parameters can grant the attacker full
control over the page DOM, as well as control over other objects within the
Flash movie. This can lead to more elaborate attacks which take advantage
of the interaction between the Flash movie and the HTML page in which
it is embedded. There are several different FPI variants, and most include
tricking the server into sending back a page where user input is interpreted
as Flash parameters. This allows an attacker to inject malicious global pa-
rameters to the Flash movie and exploit Flash-specific vulnerabilities. When
an attacker is able to access and control global Flash parameters, he can
achieve attacks such as cross-site scripting through Flash, cross-site flashing,
and changing the flow of the Flash video.

Conclusion

There is a difference between what is possible and what is probable, some-
thing we often lose sight of in the world of information security. For ex-
ample, a vulnerability represents a weakness an intruder may exploit in an
asset by way of a particular attack technique, such as those described above.
Obviously, a vulnerability’s mere existence does not necessarily mean it will
be exploited or indicate by whom or to what extent. Some vulnerabilities are
more difficult to exploit than others and therefore attract different attack-
ers. Often a particular attack technique will only become widely used ma-
liciously years after initial discovery, similarly to SQL injection. This is why
we are exploring them now.

What we do know is that attack techniques tend to only be taken seriously
after they are both well understood and respected. We can assist with un-
derstanding through awareness efforts but, unfortunately, historically respect
is gained through mass exploitation.

referenCeS

[1] Top Ten Techniques blog entry: http://jeremiahgrossman.blogspot.
com/2009/02/top-ten-web-hacking-techniques-of-2008.html.

[2] GIFAR technique: http://xs-sniper.com/blog/2008/12/17/sun-fixes-gifars/.

[3] Breaking Google Gears’ cross-origin communication protection:
http://blog.watchfire.com/wfblog/2008/12/breaking-google-gears-cross
-origin-communication-model.html.

[4] Safari Carpet Bombing: http://www.dhanjani.com/blog/2008/05/
safari-carpet-b.html.

[5] Clickjacking: http://www.sectheory.com/clickjacking.htm.

[6] Opera History attack: http://seclists.org/fulldisclosure/2008/Oct/
0401.html.

Login_articlesDECEMBER_09_final.indd 19 10.29.09 9:27:14 AM

20 ; LO G I N : vO L . 3 4, N O. 6

[7] Abusing HTML 5 Structured Client-Side Storage: http://trivero
.secdiscover.com/html5whitepaper.pdf.

[8] Cross-domain leaks of site logins via Authenticated CSS: http://
scarybeastsecurity.blogspot.com/2008/08/cross-domain-leaks-of-site
-logins.html.

[9] Tunneling TCP over HTTP over SQL Injection: http://www.sensepost
.com/research/reDuh/.

[10] ActiveX Repurposing: http://www.sensepost.com/blog/2237.html.

[11] Flash Parameter Injection: http://blog.watchfire.com/wfblog/2008/
10/flash-parameter.html.

Login_articlesDECEMBER_09_final.indd 20 10.29.09 9:27:14 AM

; LO G I N : D ecem b e r 20 0 9 h A rD e N I N G Th e we b wITh N OscrI P T 21

G i o R G i o m a o n e

hardening the Web
with NoScript

Giorgio Maone is CEO and CTO of InformAction, a
software development and IT consulting firm based
in Italy. He’s the author and main developer of
NoScript, a popular open source solution enhancing
browser security.

g.maone@informaction.com

n o s c r I p t I s a p o p u l a r s e c u r I t y
add-on for Firefox and other Web browsers
based on Mozilla technology. Although it
is mainly known for providing easy fine-
grained script blocking at the domain level,
NoScript pioneered several innovative and
unique client-side countermeasures against
emergent Web-based threats, such as Cross-
Site Scripting (XSS), Cross-Site Request Forg-
ery (CSRF), and UI redressing (also known
as “clickjacking”), which had previously
believed to be addressable on the server side
only.

Default Deny, easy Allow

Since its very first release (May 2005 [1]),
NoScript’s core feature has been whitelist-based
selective activation of “executable” Web content.
JavaScript and browser plugins containing script-
ing interpreters and just-in-time compilers, such as
Sun’s Java, Adobe’s Flash, or Microsoft’s Silverlight,
have turned the Web, which had been originally
intended as an interlinked collection of static docu-
ments, into a rather anarchic executable platform
with loose or nonexistent security checks. The
same-origin policy (stating that active Web content
on a certain site must not be allowed to access data
or execute code from a different site) and sand-
boxing mechanisms (meant to prevent active Web
content from reaching out of the browser and inter-
acting with the underlying system) have long been
the only security constraints enforced by brows-
ers on Web-based “programs,” but they get violated
very often, because of design flaws or implementa-
tion bugs.

Design flaws, responsible for “structural” vulner-
abilities such as XSS, CSRF, or UI redressing, are
very unlikely to be fixed in a satisfactory way, be-
cause of compatibility concerns: their mitigation
is delegated to Web development “good practices”
recommendations, doomed to remain almost al-
ways unheard or misunderstood. Implementation
bugs, often allowing malicious Web content to es-
calate privileges and compromise a user’s account
or system, are the reason why Web browsers and
their plugins are bound to impressively tight patch-
ing and updating cycles, which are indispensable
to keep an acceptable degree of security [2]. Unfor-
tunately, the rise of a florid zero-day vulnerabilities
black market, full disclosure stunts, corporate rules
slowing down or banning automatic updates, leg-

Login_articlesDECEMBER_09_final.indd 21 10.29.09 9:27:14 AM

22 ; LO G I N : vO L . 3 4, N O. 6

acy compatibility needs, and other factors can significantly widen the expo-
sure window of many users to unpatched browser and plugin vulnerabilities,
which have quickly become a major venue of malware propagation.

Nearly every security vulnerability that has been affecting the browser or its
plugins so far could be mitigated or even, more often than not, completely
neutered by disabling JavaScript or, when applicable, the vulnerable plugin.
In fact, almost all the security advisories about exploitable browser flaws
play the “Disable JavaScript” card as the only possible workaround until a
patch is available. However, in the modern Web, where many sites and ap-
plications rely on JavaScript-based techniques (e.g., DHTML and AJAX) to
enhance users’ “experience” or even to implement their basic functionality,
this simple and effective countermeasure is often impractical.

But what if you had a quick and easy way to enable JavaScript and poten-
tially dangerous plugins only on those sites you trust, either permanently or
just when you need to? This is exactly what NoScript has been conceived
for: enforcing a “Default Deny” policy on active Web content, yet providing
users with the ability to whitelist trusted domains on the fly as needed, by
popping up a contextual menu and selecting the proper “Allow some.trusted.
domain.com” command. A subtle non-modal notification bar is displayed on
the bottom of pages where active content has been disabled, to remind you
that some script might need to be allowed if the site doesn’t work properly.
This feedback system has been carefully designed to be as discreet as possi-
ble and never get in your way, especially on those Web sites which do work
fine even if scripting is disabled. NoScript neither begs for attention nor re-
quires any user interaction: it tries to avoid the trap of training users to per-
mit everything, an effect that modal security questions (“Allow this?” “Block
that?”) are often accused of causing.

Site-level permissions for active Web content actually had a venerable pre-
cursor in Microsoft Internet Explorer 6’s “Security Zones” [3], and about
nine months after NoScript’s appearance, Opera 9 provided a user interface
for configuring “Site specific preferences” [4], including JavaScript, Java, and
Plugins. However, IE’s Zones, being mainly oriented to enforcing corporate
policies, are buried deep inside the Internet Options panel and quite hard to
configure for end users, while Opera’s implementation, albeit user-friendlier,
lacks any contextual feedback system and the ability to discriminate among
third-party imported scripts, both required for effective security-grade script
management.

Deflecting reflective XSS

Assuming that the whitelist policy for active content execution is effectively
enforced and cannot be violated—NoScript’s implementation has never
been broken so far—is there still any way for malicious code to run against
a user’s will? Sadly, the answer is yes: quite obviously, it is sufficient for the
malicious code to be injected in any of the whitelisted sites. This can be
achieved by hacking the Web server that hosts the site or, much more fre-
quently, through a Cross-Site Scripting (XSS) attack.

XSS vulnerabilities affect those Web applications which don’t properly es-
cape their input when it is echoed back as (X)HTML output: this allows
script fragments crafted by the possibly malicious user controlling the input
to be executed by the browser in the context of the vulnerable site. Accord-
ing to studies by the Web Application Security Consortium [5] and White-
Hat Security [6], corroborated by live data from the XSS Project [7], this
kind of vulnerability is the most prevalent in Web application security and

Login_articlesDECEMBER_09_final.indd 22 10.29.09 9:27:15 AM

; LO G I N : D ecem b e r 20 0 9 h A rD e N I N G Th e we b wITh N OscrI P T 23

affects an overwhelming majority of Web sites, from social networks to on-
line banking applications, no matter how popular and/or resourceful they
are. Of course, XSS lowering the effectiveness of script blocking is a minor
concern compared to its overall impact: XSS attacks can be used to silently
steal credentials, perform stealth financial transactions impersonating a
logged-in user, or set up “perfect” phishing attacks (undetectable, since the
fake page comes from the real domain).

The painful awareness of these threats and the complete lack of initiative
by the browser vendor against them, being considered at the time a server-
side only problem which could never be mitigated on the client side, ig-
nited the development of the first in-browser XSS filter, which was publicly
released as a NoScript component called InjectionChecker in March 2007.
InjectionChecker examines any cross-site HTTP request for HTML docu-
ments, looking for HTML or JavaScript fragments that could be injected in
the destination page. If one is found, the request gets sanitized by stripping
out the potential payload before it’s sent. Initially considered with skepticism
by both security researchers and browser vendors, this approach quickly
demonstrated its reliability and effectiveness against Type 0 (DOM-based)
and Type 1 (Reflective) XSS attacks. The main limitation of the earliest In-
jectionChecker versions, which were based exclusively on pattern matching,
was a moderately high false-positive rate. However, after some development
iterations, the analysis algorithms underwent a radical overhaul: by lever-
aging the browser’s JavaScript interpreter itself (SpiderMonkey) in order to
discriminate non-trivial and syntactically valid script injections from in-
nocuous but suspect request data, newer versions managed to reduce the
false-positive rate near to 0. Still, even though extremely rare, a cross-site
request might legitimately include some valid HTML or JavaScript fragment
and therefore trigger the InjectionChecker. However, this residual issue is al-
leviated by the non-blocking design of the filter which, rather than prevent-
ing the possibly attacked page from loading or brutally disabling its scripting
capabilities, just sanitizes the request, modifying the bare minimum for the
attack to fail: this approach usually keeps the landing page functional. Fur-
thermore, the issued warning message is non-modal (like every notification
from NoScript) and gives the user an option to examine the original request
and replay it unfiltered, if it is deemed safe. Finally, exceptions for safe ori-
gins or targets can easily be configured to handle specific situations.

The success of NoScript’s XSS filters probably encouraged browser vendors
to approach this problem with fewer prejudices. In fact, even if more than
one year later, Microsoft revealed that an XSS protection subsystem, impres-
sively resembling NoScript’s InjectionChecker, was being added to Internet
Explorer 8 [8], and in September 2009 Adam Barth announced a similar
development effort in progress for the open source Chromium browser on
which Google Chrome is based [9]. Notwithstanding, both Microsoft’s and
Google’s solutions appear quite limited compared to NoScript’s: since they
act on the page rather than on the request, they’re unable to neutralize Type
0 (DOM-based) XSS and, at least in Microsoft’s case, new XSS vulnerabilities
can be introduced by the neutering routine itself, when it modifies the land-
ing document’s contents.

ClearClick vs Clickjacking

In September 2008 Jeremiah Grossman (WhiteHat Security) and Robert
“RSnake” Hansen (SecTheory) generated lots of buzz when, requested by
Adobe, they canceled a speech scheduled for the World OWASP AppSec
conference in New York. A new exploitation technique they were going

Login_articlesDECEMBER_09_final.indd 23 10.29.09 9:27:15 AM

24 ; LO G I N : vO L . 3 4, N O. 6

to present, dubbed “clickjacking,” implied many more critical conse-
quences than initially thought, if combined with an otherwise minor flaw
in the Flash browser plugin [10]. As was revealed after Adobe had fixed its
 plugin-specific issue, a remote attacker could easily modify the local Flash
privacy settings and start spying on a user’s activity through his microphone
or Webcam [11].

While speculations about the nature of this mysterious attack flourished,
some observers deduced from the available information that, even if the spe-
cific exploitation scenario was indeed new and spectacular, the underlying
vulnerability was a known one, endemic in all the modern browsers but still
underestimated (or, better, understated, because no obvious solution could
be deployed without drastically breaking the Web as we know it): UI re-
dressing [12]. This is the problem definition as put by Google’s browser se-
curity expert Michal Zalewski:

A malicious page in domain A may create an IFRAME pointing to an ap-
plication in domain B, to which the user is currently authenticated with
cookies. The top-level page may then cover portions of the IFRAME with
other visual elements to seamlessly hide everything but a single UI button
in domain B, such as “delete all items,” “click to add Bob as a friend,” etc.
It may then provide [its] own, misleading UI that implies that the button
serves a different purpose and is a part of site A, inviting the user to click
it. Although the examples above are naive, this is clearly a problem for a
good number of modern, complex Web applications. [13]

UI redress/clickjacking, in its simplicity, is actually much more faceted and
difficult to approach than it seems: variants may target same-site plugin con-
tent (as in the famous Adobe case) rather than cross-site documents, the vic-
tim UI can be rendered transparent by abusing the CSS “opacity” property
rather than by being covered by the parent malicious site, keyboard strokes
might be solicited rather than clicks, and so on. In spite of the fact that
NoScript, as noted by Jeremiah Grossman in his early interviews before full
disclosure, provided protection against his Flash-based clickjacking exploit
by default and against the more general scriptless UI redress attacks if users
enabled the “Forbid IFrames” option, the latter configuration was much too
inconvenient to be recommended to the general public.

There was clearly a need for a specific countermeasure, which had not been
conceived yet. So on October 7, 2008, after a week-long design and coding
marathon, a prototype of the ClearClick NoScript module could be finally
released [14]. ClearClick’s concept is almost as simple as UI redressing it-
self: whenever a mouse or keyboard interaction is engaged with a cross-site
framed document or an embedded plugin object, event processing gets tem-
porarily suspended while two screenshots of the involved item are com-
pared: one taken from the top-level window (reproducing the user’s point
of view), the other taken after isolating and opacizing the event target. If
the two images match, the user can see “the naked truth” and the original
mouse or keyboard event processing is immediately resumed. Otherwise,
the situation is considered suspect because the event target is concealed,
transparent, or otherwise not clearly visible: a warning is issued, showing
both the screenshots for easy visual verification and allowing the user to
judge if the interaction needs to be aborted or not.

Some months later Microsoft announced with a fanfare [15] that “clickjack-
ing protection” was being added to IE8, but it was quickly exposed [16] as
an “X-Frame-Options” HTTP header which should be sent by Web sites
when they do not want to be framed: an opt-in proposal requiring Web de-
velopers’ cooperation, then, not comparable to a client-side automatic solu-

Login_articlesDECEMBER_09_final.indd 24 10.29.09 9:27:15 AM

; LO G I N : D ecem b e r 20 0 9 h A rD e N I N G Th e we b wITh N OscrI P T 25

tion like ClearClick. Nevertheless, NoScript implemented this feature as well
(just a few hours after it had been revealed) for compatibility’s sake, while
Apple’s Safari 4 and Google’s Chrome 2 followed the lead later. However, as
Google’s “Browser Security Handbook” itself explains,

So far, the only freely available product that offers a reasonable degree of
protection against the possibility is NoScript (with the recently introduced
ClearClick extension). To a much lesser extent, an opt-in defense is avail-
able [for] Microsoft Internet Explorer 8, Safari 4, and Chrome 2, through a
X-Frame-Options header, enabling pages to refuse being rendered in any
frames at all (DENY), or in non-same-origin ones only (SAMEORIGIN)
[18].

ABe Patrolling the Web’s Borders

Cross-Site Request Forgery (CSRF) had been called “the sleeping giant” [19]
back in 2006, because it was as ubiquitous as it was misunderstood. If a
Web application is vulnerable, a malicious site can perform unintended ac-
tions (e.g., to transfer funds or change router settings) on behalf of the users
who are browsing it, by silently sending a known HTTP “command” request
through one of the many automatic navigation vehicles provided by HTML
and JavaScript. The browser will automatically add authorization informa-
tion, either as a session cookie or an Authorization header. Three years later
the giant has awakened, even though some progress has been done in pre-
vention: awareness grew among developers, and support for countermea-
sures, such as explicit security tokens, has been introduced in popular Web
application frameworks.

However, as usual, mitigation is left to Web authors’ skill and good will,
with no help from the client side and no control in user’s hands. ABE (Appli-
cation Boundaries Enforcer), a project sponsored by the NLnet Foundation
[20], tries to improve this situation.

Released as a NoScript component in June 2009 [21], but planned to be also
decoupled from the Firefox add-on and ported to different browsers, ABE is
a firewall-like system which allows users, Web developers or trusted third
parties (subscription providers) to configure “Rulesets” declaring the bound-
aries of one or more Web applications. Rules are expressed using a syntax
[22] which should look natural to any system administrator. This rule, for
instance, can be used to protect Gmail against CSRF attacks:

Site mail.google.com
Accept from SELF, www.google.com
Deny

It causes Gmail (mail.google.com) to reject (Deny) all the potentially forged
requests, identified as those coming from any site except mail.google.com it-
self (SELF) and www.google.com, the domain from which the login form for
the Google application is served. Selectors can be much more fine-grained
than these, allowing glob patterns and regular expressions to be combined
in site specifications and HTTP methods to be used as criteria to match re-
quests. Documentation and examples are available on the project Web site,
http://noscript.net/abe/.

Rules are enforced at the beginning of the HTTP load cycle, preventing ma-
licious requests from doing any harm. Furthermore, since it lives inside the
browser, ABE knows the real origin of each request, allowing decisions to
reliably depend on this information but not requiring it to be leaked through
the wire, unlike the Referer HTTP header which, indeed, often gets sup-

Login_articlesDECEMBER_09_final.indd 25 10.29.09 9:27:15 AM

26 ; LO G I N : vO L . 3 4, N O. 6

pressed or forged because of privacy concerns and, for this reason, must not
be trusted.

Any Web site can protect its boundaries by providing an ABE rule set in its
root directory, but they can’t override the user’s own rule sets or those on
other sites. ABE refreshes site-provided rule sets when a session starts, then
hourly, but honors HTTP caching hints if provided.

Users can add their own rules, which take precedence over the ones pushed
by trusted third parties and Web applications, by editing the initially empty
USER rule set accessible from the ABE panel, among NoScript’s Advanced
options. A visual UI to build rules contextually, during navigation, is under
development.

The only ruleset provided at installation time, labeled SYSTEM, includes just
one rule:

Site LOCAL
Accept from LOCAL
Deny

This quite obviously means that requests toward local sites (i.e., private IPv4
and IPv6 networks according to RFC 3330 and RFC 4193) are blocked un-
less they come from origins which are local as well. Such a rule automati-
cally protects intranets against scanning and CSRF attacks toward internal
Web applications and devices (e.g., router hacking) initiated from malicious
Internet Web sites [23].

Did You know?

Although often described as a “simple” script blocker, NoScript features
multiple additional security enhancements, completely independent of its
script-blocking core. Some users may believe that maintaining a whitelist of
trusted sites allowed to run scripts is too tedious in this AJAXified world.
Nevertheless, they should give NoScript a try: no matter if they give up
and resort to “Allow Scripts Globally (dangerous!),” the InjectionChecker,
ClearClick, and ABE components, unattended and silent in the background,
will keep delivering a degree of protection against XSS, clickjacking, and
CSRF that is currently unmatched by any other available Web browser tech-
nology.

referenCeS

[1] NoScript’s public release versions history: https://addons.mozilla.org/
en-US/firefox/addons/versions/722.

[2] T. Duebendorfer and S. Frei, “Why Silent Updates Boost Security,”
ETH Tech Report 302, May 5, 2009: http://www.techzoom.net/publications/
silent-updates/.

[3] http://www.microsoft.com/windows/ie/ie6/using/howto/security/setup
.mspx.

[4] “Opera 9 introduces ‘Site specific preferences’ User Interface,” February 7,
2006: http://snapshot.opera.com/windows/w90p2.html

[5] Web Application Security Consortium, “Web Application Security
 Statistics 2007”: http://www.Webappsec.org/projects/statistics/.

[6] WhiteHat Website Security Statistics Report: http://www.whitehatsec
.com/home/resource/stats.html.

Login_articlesDECEMBER_09_final.indd 26 10.29.09 9:27:15 AM

; LO G I N : D ecem b e r 20 0 9 h A rD e N I N G Th e we b wITh N OscrI P T 27

[7] The XSS Project: http://www.xssed.com.

[8] Giorgio Maone, “NoScript’s Anti-XSS Filters Partially Ported to IE8,”
July 3, 2008: http://hackademix.net/2008/07/03/noscripts-anti-xss-filters
-partially-ported-to-ie8/.

[9] Adam Barth, “Reflective XSS protection (for reals this time),” Chromium-
dev Group, September 4, 2009: http://groups.google.com/group/chromium
-dev/browse_thread/thread/d2931d7b670a1722/d56bdfccfcef677f.

[10] Robert Hansen, “Clickjacking,” September 15, 2008: http://ha.ckers.org/
blog/20080915/clickjacking/.

[11] Robert Hansen and Jeremiah Grossman, “Clickjacking,” September 12,
2008: http://www.sectheory.com/clickjacking.htm.

[12] Mark Pilgrim, “This Week in HTML 5—Episode 7,” September 29,
2009: http://blog.whatwg.org/this-week-in-html-5-episode-7.

[13] Michal Zalewski, “Dealing with UI Redress Vulnerabilities Inherent to
the Current Web,” WHATWG Mailing List, September 25, 2009: http://lists
.whatwg.org/pipermail/whatwg-whatwg.org/2008-September/016284.html.

[14] Giorgio Maone, “Hello ClearClick, Goodbye Clickjacking”: http://
hackademix.net/2008/10/08/hello-clearclick-goodbye-clickjacking/.

[15] Giorgio Maone, “Ehy IE8, I Can Has Some Clickjacking Protection?”
January 27, 2009: http://hackademix.net/2009/01/27/ehy-ie8-i-can-has
-some-clickjacking-protection/.

[16] Giorgio Maone, “IE8’s ‘Clickjacking Protection’ Exposed,” January 28,
2009: http://hackademix.net/2009/01/28/ie8s-clickjacking-protection
-exposed/.

[17] Giorgio Maone, “X-FRAME-OPTIONS in Firefox,” January 29, 2009:
http://hackademix.net/2009/01/29/x-frame-options-in-firefox/.

[18] Michal Zalewski (Google Inc.), “Arbitrary Page Mashups (UI Redress-
ing),” Browser Security Handbook: http://code.google.com/p/browsersec/
wiki/Part2#Arbitrary_page_mashups_%28UI_redressing%29.

[19] Jeremiah Grossman, “CSRF, the Sleeping Giant,” September 26, 2006:
http://jeremiahgrossman.blogspot.com/2006/09/csrf-sleeping-giant.html.

[20] NLnet Foundation’s NoScript/ABE page: http://www.nlnet.nl/project/
noscriptabe/.

[21] Giorgio Maone, “Meet ABE,” June 30, 2009: http://hackademix.net/
2009/06/30/meet-abe/.

[22] Giorgio Maone “ABE—Rules Syntax and Capabilities”: http://noscript
.net/abe/abe_rules.pdf.

[23] Jeremiah Grossman, “Hacking Intranet Websites from the Outside,”
Black Hat (USA)—Las Vegas, August 3, 2006: http://www.blackhat.com/
presentations/bh-usa-06/BH-US-06-Grossman.pdf.

Login_articlesDECEMBER_09_final.indd 27 10.29.09 9:27:15 AM

28 ; LO G I N : vO L . 3 4, N O. 6

G e R w i n k l e i n

correct OS
 kernel? proof?
done!
Gerwin Klein is a principal researcher at
NICTA in Sydney, Australia. He is leading
the L4.verified project at NICTA and teaches
formal program verification at the University
of New South Wales.

gerwin.klein@nicta.com.au

NICTA is funded by the Australian
Government as represented by the De-
partment of Broadband, Communica-
tions and the Digital Economy and
by the Australian Research Council
through the ICT Centre of Excellence
program.

t w o y e a r s a g o g e r n o t h e I s e r
demanded in this venue Your System is
Secure? Prove it! [5] He also mentioned
the L4.verified [3] project at NICTA, which
is doing just that. This proof is now
 completed, and in this article I show what
we have proved and what that means for
security.

The seL4 Microkernel: Correct!

The basic idea goes back to the 1970s: off and on
since then, people have been trying to formally
verify operating systems [10, 4]. It’s the obvious
place to start when you are serious about mean-
ingful assurance for critical systems. The idea for
formal verification is that programs are just math-
ematics in the end, and if you want to show be-
yond doubt that something is true in mathematics,
you prove it. If you want to be sure that the proof
is right, you do it fully formally so that it can be
machine-checked.

It was clear early on that this is possible in princi-
ple, but enthusiasm ebbed after an initial flurry of
activity around the late ’70s and early ’80s. Math-
ematical semantics for real programming languages
had not developed far enough, machine support for
theorem proving was only starting to appear, and
the whole problem seemed infeasible for any real
program of interesting size. Full formal program
verification was like controlled fusion power: about
30 years of research in the future.

In contrast to controlled fusion, 30 years later
things have changed. With the formal verification
of the seL4 microkernel, we have reached an im-
portant milestone: the first commercially viable
microkernel, formally verified all the way down
to its low-level C implementation [8]. The proof is
machine-checked from first principles in the theo-
rem prover Isabelle/HOL [2], and it was an order of
magnitude cheaper to build than a traditional soft-
ware certification.

seL4 is a small microkernel in the L4 family [1]:
8,700 lines of C and 600 lines of assembly. It is
not Linux with millions of lines of code. Instead,
it provides the basic mechanisms to build an OS:
threads, message passing, interrupts, virtual mem-
ory, and strong access control with capabilities.
Network, file systems, and device drivers are im-
plemented in user space in microkernel systems,
and it has been shown that this can be achieved
with high performance.

Login_articlesDECEMBER_09_final.indd 28 10.29.09 9:27:15 AM

; LO G I N : D ecem b e r 20 0 9 cO rrec T Os k e rN e L ? PrO O F ? D O N e ! 29

Our proof does precisely what the dream of the ’70s was: we define formally
in an abstract specification what it means for the kernel to be correct. We
describe what it does for each input (trap instruction, interrupt, etc.) but not
necessarily how it is done. Then we prove mathematically that the C imple-
mentation always correctly implements this specification.

The proof goes down to the level of the C implementation and assumes the
correctness of things below that level: compiler, linker, assembly code, hard-
ware, low-level cache management, and TLB. We also assume correctness of
the boot code. This is still a long list, but each proof has to stop somewhere.
This is what we picked. With more resources, it is possible to eliminate al-
most all of the assumptions above. There are, for instance, a number of re-
cent research projects on verified optimizing C compilers.

We not only proved the code correct, we also did extensive design proofs
and validation.

What Does This Mean for Security?

In a sense, functional correctness is one of the strongest properties you can
prove about a system: you have a precise formal prediction of how the ker-
nel behaves in all possible situations for all possible inputs. If you are inter-
ested in a more specific property and you can express this property in Hoare
logic, it is now enough to work with this formal prediction, with the speci-
fication. This is orders of magnitude easier than direct proofs on the imple-
mentation.

Does this mean that we have proved seL4 is secure? Not yet, really. We
proved that seL4 is functionally correct. Secure would first need a formal def-
inition, which in itself is a wide field and depends on what you want to use
the kernel for. Taken seriously, security is a whole-system question, includ-
ing the system’s human components. Nevertheless, there are many different
formal security properties of the kernel, such as access control, confidenti-
ality, integrity, and availability that one might be interested in. We do have
a high-level model for seL4 access control with a nice confinement theo-
rem about it, and we are currently busy connecting up this model with the
proven specification. Other properties, for instance secrecy, do not necessar-
ily connect that easily, but we will be looking into that as well in the future.

Even without proving specific security properties on top, a functional cor-
rectness proof already has interesting implications for security. If you sit
back a minute and think about what it means that we can always predict
what the system is going to do, then a number of things come to mind. If
the assumptions above are true, in seL4 we will have:

No code injection attacks.■■ If we always know precisely what the system
does, and if the spec doesn’t explicitly allow it, then we can’t have any
foreign code executing as part of seL4. Ever.
No buffer overflows.■■ This is mainly a classic vector for code injection,
but buffer overflows may also inject unwanted data and influence kernel
behavior that way. We prove that all array accesses are within bounds, and
we prove that all pointer accesses are well typed, even if they go via casts
to void and arcane address arithmetic. Buffer overflows are not going to
happen.
No NULL pointer access. ■■ Few things crash a kernel more nicely or are
easier to exploit: see, for instance, a recent bug in the Linux kernel believed
to affect all versions since May 2001 [9]. The bug allows local privilege
escalation and execution of arbitrary code in kernel mode, and it’s a classic

Login_articlesDECEMBER_09_final.indd 29 10.29.09 9:27:15 AM

30 ; LO G I N : vO L . 3 4, N O. 6

NULL pointer dereference. We have these as direct proof obligation for
every pointer access in the system. None of them occurs in seL4.
No ill-typed pointer access.■■ Even though the kernel code deliberately
breaks C type safety for efficiency at some points, in order to predict that
the system behaves according to specification, we have to prove that cir-
cumventing the type system is safe at all these points. We cannot get unsafe
execution from any of these operations.
No memory leaks. ■■ There are no memory leaks in seL4 and there is never
any memory freed that is still in use. This is not purely a consequence of
the proof itself. Much of the design of seL4 was focused on explicit memo-
ry management, and it is one of the kernel’s more innovative features. Users
may run out of memory, but the kernel never will. The kernel also pro-
vides an availability property for users (this one we have not yet explicitly
proved): if you have set up your memory resources correctly, other users
will not be able to starve you of that memory or of the kernel memory
resources necessary to back your metadata. This is far from true for other
kernels, even in the L4 family.
No non-termination.■■ We have proved that all kernel calls terminate. This
means the kernel will never suddenly freeze and not return from a system
call. This does not mean that the whole system will never freeze; you can
still write bad device drivers and bad applications, but if you set it up right,
you can always stay in control of runaway processes.
No arithmetic or other exceptions.■■ The C standard defines a long list
of things that can go wrong and that you should not be doing: shifting
machine words by too large an amount, dividing by zero, etc. Our frame-
work makes it a specific obligation for us to prove that these do not occur.
We have solved all of them. We’re also taking special care with overflowing
integer arithmetic.
No unchecked user arguments.■■ All user input is checked and validated. If
the kernel receives garbage or malicious packages it will respond with the
specified error messages, not with crashes. Of course, it is still possible to
shoot yourself in the foot. For instance, if you have enough privileges, the
kernel happily allows a thread to kill itself. It will never allow anything to
crash the kernel, though.

Many of these are general security traits that are good to have for any kind
of system. We have also proved a large number of properties that are specific
to this kernel. We have proved them about the kernel design and specifica-
tion. With functional correctness, we know they are true about the code as
well. Some examples are:

Aligned objects.■■ Two simple low-level invariants of the kernel are: all ob-
jects are aligned to their size, and no two objects overlap in memory. This
makes comparing memory regions for objects very simple and efficient.
Well-formed data structures.■■ Lists, doubly linked, singly linked, with and
without additional information, are a pet topic of formal verification. These
data structures also occur in seL4, and we proved the usual properties: lists
are not circular when they shouldn’t be; back pointers point to the right
nodes; insertion, deletion, etc., work as expected and don’t introduce any
garbage.
Algorithmic invariants. ■■ Many optimizations rely on certain properties
being always true, so specific checks can be left out or can be replaced by
other, more efficient checks. A simple example is that the distinguished idle
thread is always in thread state idle and therefore can never be blocked or
otherwise waiting for I/O. This can be used to remove checks in the code
paths that deal with the idle thread. If the state invariant wasn’t true, not hav-
ing explicit cases for other thread states would easily lead to kernel crashes.

Login_articlesDECEMBER_09_final.indd 30 10.29.09 9:27:15 AM

; LO G I N : D ecem b e r 20 0 9 cO rrec T Os k e rN e L ? PrO O F ? D O N e ! 31

Correct bookkeeping.■■ This one was much more interesting and consists of
a large collection of individual properties. The seL4 kernel has an explicit
user-visible concept of keeping track of memory, who has access to it, who
access was delegated to, and what needs to be done if a privileged process
wants to revoke access from a whole collection of delegates. It is the central
mechanism for re-using memory in seL4. The data structure that backs this
concept is correspondingly complex, and its implications reach into almost
all aspects of the kernel. For instance, we proved that if a live object exists
anywhere in memory, then there exists a node (an explicit capability, actu-
ally) in this data structure that covers the object. And if such a capability
exists, then it exists in the proper place in the data structure and has the
right relationship toward parents, siblings, and descendants within. Also,
if an object is live (may be mentioned in other objects anywhere in the sys-
tem), then the object itself together with that capability must have recorded
enough information to reach all objects that refer to it (directly or indi-
rectly). Together with a whole host of further invariants, these properties
allow the kernel code to reduce the complex, system-global test, whether
a region of memory is mentioned anywhere else in the system, to a quick,
local pointer comparison that takes next to no time to execute.

We have proved about 80 such invariants on the low-level design such that
they directly transfer to the data structures used in the C program.

The key condition in all this is if the assumptions above are true. To attack any
of these properties, this is where you would have to look. What the proof
really does is take 7,500 lines of C code out of the equation and reduce pos-
sible attacks and the human analysis necessary to guard against them to the
remaining bits. It is not an absolute guarantee or a silver bullet, but it is defi-
nitely a big deal.

What About Type-Safe Languages and Static Analysis?

A frequent question is whether the same couldn’t be achieved by full cover-
age testing, by using a type-safe language, or by static analysis.

It is almost customary in verification papers to bash testing as not sufficient
to show the absence of bugs and therefore useless. I’m not going to do that
here. Used correctly and in combination with other techniques, testing is an
effective method to get reliable software. After all, planes do not fall out of
the sky all the time because of implementation errors. There have been soft-
ware-related incidents, but to the best of my knowledge planes still are the
safest mode of transportation available. People can build reliable software.
Testing is just very hard and very expensive to get complete. There are no
easy measures for it. For example, if you have the very simple fragment of
C code if (x < y) z = x /y else z = y/x for x, y, and z being int and you
test with x= 4, y=2 and x= 8, y=16, you have full code coverage, every line
is executed at least once, every branch of every condition is taken at least
once, and you still have two bugs remaining. Of course, any human tester
will immediately spot that you should test for something like x= 0, y= -1
and x= -1, y= 0, but for bigger, non-trivial programs there is no easy way to
find these cases and it is pretty much infeasible to be sure you have all of
them. Humans are good at ingenuity and creativity, but they are not so good
at repetitive, complex, high-detail tasks—especially not under pressure. So
anything that can reduce the burden should be used. Our style of formal
verification, on the other hand, is very good at completeness. It’s what it’s all
about. It will force you to work through all the relevant cases, and it will tell
you what the relevant cases are. And because humans are bad at repetitive
tasks, we have machine assistance and machine-checking of the proofs.

Login_articlesDECEMBER_09_final.indd 31 10.29.09 9:27:15 AM

32 ; LO G I N : vO L . 3 4, N O. 6

As I said above, the verification takes the C implementation out of the pic-
ture. You now only have to test the models and the specification against your
expectations. The C model can be reused for any verification, so that cost
amortizes quickly. Testing the specification was a big part of our develop-
ment and design process and is a lot easier than testing the implementation.

Similarly, type-safe languages as used in Singularity [7], for instance, are
good. They help. They prevent you from doing lots of stupid things right
from the start. If you can, you should use them. But they will usually not
save you from the effects of a NULL pointer dereference. Sure, an unex-
pected NULL pointer access will be checked, caught, and reported as an
exception. But in an OS, then what? You may fail gracefully instead of cata-
strophically, but even that may be hard to do if you have progressed way
after argument checking and have already changed parts of the state. The
difference is that seL4 will just not access NULL pointers. Period.

Type-safe languages often require a complex runtime of “dirty” code that
needs to be trusted. Singularity’s trusted code base is larger than the whole
seL4 kernel, so there is no real win in terms of easier verification. And de-
spite Singularity eliminating the need for context switches, you still pay
overhead for runtime checks. As a result, L4 kernels are still faster [6].

Static analysis can do even more than most type-safe languages. Some parts
of the security-relevant properties that are implications and by-products of
our proof are covered in theory by a number of static analysis tools. The ad-
vantage and the problem with static analysis is that it is automatic. It cannot
be safe and complete at the same time, otherwise it would solve the halting
problem. So if it is safe, then it will have false alarms and instances of maybe
correct instead of definitely correct. The functional correctness property we
proved is way too hard for static analysis. Even the by-products are too hard.
Some instances of pointer dereferences in the code are safe for deep rea-
sons of the underlying algorithm. You would have to add redundant explicit
checks into the code to make them go through with static analysis. This is
precisely what you don’t want for a high-performance OS kernel. Humans,
constructing an interactive, machine-checked proof, on the other hand, have
no problem solving the halting problem and conducting a fully precise anal-
ysis.

So, Did You find Any Bugs?

We didn’t test the kernel extensively before verification started, but we did
quite a bit of debugging initially and we did use it for student projects inter-
nally for more than six months and ported it to a different architecture. After
initial debugging, these activities found 16 bugs in this internal alpha-re-
lease. After that, the kernel ran just fine for everything the students wanted
to do.

We also ran a static analysis tool on the code before verification. We found
two bugs (counted in the above 16) and got hundreds of false positives.

Formal verification then found 144 more bugs in the C code, in total 160.
This means that even though the code appeared to be running just fine for
normal application, there was an order of magnitude more bugs lurking in
there than the 16 found initially. They were mostly but not exclusively in
rarely used features. As mentioned, we also did proofs on the design and the
specification level. Most of these design and specification proofs were com-
pleted before the code was written, and we fixed about 150 issues in each.
That means, in total we have discovered roughly 460 issues in kernel code,
design, and specification.

Login_articlesDECEMBER_09_final.indd 32 10.29.09 9:27:15 AM

; LO G I N : D ecem b e r 20 0 9 cO rrec T Os k e rN e L ? PrO O F ? D O N e ! 33

None of the bugs found in the C verification stage was deep in the sense that
the corresponding algorithm was flawed. These were already caught in the
design validation phase. Some examples are missing checks on user supplied
input or subtle side effects in the middle of an operation breaking global in-
variants. The bugs discovered in the C code were mainly typos, misreading
the specification, or failing to update all relevant code parts for specification
changes. Even though their cause was often simple, understandable human
error, their effect in almost all cases was sufficient to crash the kernel or cre-
ate security vulnerabilities. Other more interesting bugs found during the
C implementation proof were missing exception case checking and differ-
ent interpretations of default values in the code. For example, the interrupt
controller on ARM returns 0xFF to signal that no interrupt is active, which
is used correctly in most parts of the code, but in one place the check was
against NULL instead.

Do I need a Team of PhDs for This?

Formal verification is thought of as high-effort, expensive, and needing a
large team of highly qualified experts. Our project shows that things are by
far less bad than that, especially compared to other high-assurance methods.
After the industry rule of thumb of $10k/LOC, Common Criteria EAL6 cer-
tification of seL4 would have cost about $87 million.

If we overestimate our effort with 30 person years and if we overestimate
our fully loaded salary with $200k/year per person, we get $6 million spent.
Even if you take into account that CC takes more than just providing evi-
dence that the design and code works, our proof provides higher assur-
ance than what EAL7 officially requires—EAL7 requires only formal design
proofs, no formal implementation proofs. And it does that for an order of
magnitude less money.

So, yes, it is still considerable effort, but it is at the same level required of
normal, good quality design and implementation, not in the prohibitively
expensive class anymore.

Do you need a team of PhDs for this? We didn’t. Most of the verification
engineers in the project did not have a PhD. Some, but not all, were PhD
students. Many were never involved in theorem proving before. They were
university graduates and they are certainly very smart people, but they
learned machine-checked theorem proving on the job. This attests that mod-
ern theorem proving tools like Isabelle/HOL are mature enough to be used,
even if they can undoubtedly still be improved. You will probably want at
least one expert with previous experience on the team, and you will defi-
nitely want domain experts such as OS designers, but formal foundational
verification on real code with about 10,000, maybe 50,000 LOC, for full
functional correctness is definitely possible with today’s technology and
tools. It’s fun, too. More people should get into it.

referenCeS

[1] L4 microkernel: http://l4hq.org.

[2] The Isabelle theorem prover: http://isabelle.in.tum.de/, 2009.

[3] The L4.verified project: http://ertos.nicta.com.au/research/l4.verified/,
2009.

Login_articlesDECEMBER_09_final.indd 33 10.29.09 9:27:15 AM

34 ; LO G I N : vO L . 3 4, N O. 6

[4] R.J. Feiertag and P.G. Neumann, “The Foundations of a Provably Secure
Operating System (PSOS),” in AFIPS Conference Proceedings: 1979 National
Computer Conference (AFIPS Press, 1979), pp. 329–334.

[5] G. Heiser, “Your System Is Secure? Prove It!” USENIX ;login:, vol. 32, no.
6, pp. 35–38, December 2007.

[6] G. Heiser, “Q: What is the difference between a microkernel?” http://
www.ok-labs.com/blog/entry/singularity-vs-l4-microkernel-performance/,
2009.

[7] G.C. Hunt and J.R. Larus, “Singularity: Rethinking the Software Stack,”
ACM Operating System Review, vol. 41, no. 2, 2007, pp. 37–49.

[8] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D.
Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and
S. Winwood, “seL4: Formal Verification of an OS Kernel,” in 22nd ACM Sym-
posium on Operating Systems Principles, Big Sky, MT, USA, October 2009, pp.
207–220.

[9] T. Ormandy and J. Tinnes, “Linux Null Pointer Dereference due to Incor-
rect proto_ops Initializations,” 2009: http://archives.neohapsis.com/archives/
fulldisclosure/2009-08/0174.html.

[10] G.J. Popek, M. Kampe, C.S. Kline, and E. Walton, “UCLA Data Secure
Unix,” in AFIPS Conference Proceedings: 1979 National Computer Conference
(AFIPS Press, 1979), pp. 355–364.

Login_articlesDECEMBER_09_final.indd 34 10.29.09 9:27:15 AM

; LO G I N : D ecem b e r 20 0 9 I m PrOv I N G TcP secu rIT y wITh rO busT cO O k I es 35

P e R R y m e t z G e R , w i l l i a m a l l e n
s i m P s o n , a n D P a u l v i x i e

improving TCP

security with
robust cookies
Perry E. Metzger is the managing partner of
Metzger, Dowdeswell & Co. and is also pur-
suing a doctorate in computer science at the
University of Pennsylvania. He desperately
needs more sleep.

perry@piermont.com

William Allen Simpson is a very independent
consultant, involved in design, implemen-
tation, and operation of Internet routing,
network security, network protocols, wire-
less networking, game networking, real-time
data collection and distribution, and many
other projects for over 30 years.

William.Allen.Simpson@GMail.com

Paul Vixie took over BIND maintainance
after Berkeley gave it up in 1989. He rewrote
it (BIND8, 1995) and then hired other people
to rewrite it again (BIND9, 2000). He has
recently hired a new team to rewrite it yet
again (BIND10, 201?). Between BIND releases,
Paul founded the first neutral commercial
Internet exchange (PAIX, 1998) and spent a
small fortune fighting lawsuits by spam-
mers (MAPS, 1998).

vixie@isc.org

Some men dream of fortunes, others dream of
cookies.
 —fortune cookie

t h e r e ’ s a n I m p e n d I n g c r I s I s , d r I v e n
by the deployment of Domain Name System
(DNS) Security (DNSSEC). DNS responses no
longer fit in small UDP datagrams and are
subsequently repeated in TCP sessions. We
urgently need to robustly handle high rates
of short-lived transactional TCP traffic and
seamlessly segue to longer-lived sessions.
TCP Cookie Transactions solve these prob-
lems and some denial-of-service attacks
against TCP as well.

Current TCP implementations store enormous
amounts of internal state for every connection.
Heavily loaded servers can run out of memory
and other resources simply by receiving too many
connections (or bogus connection attempts) too
quickly. TCP Cookie Transactions (TCPCT) deter
spoofing of client connections and prevent server
resource exhaustion by eliminating the need to
maintain server state during establishment and
after termination of connections. The TCPCT
cookie exchange itself may optionally carry <SYN>
data, limited in size to inhibit denial-of-service
(DoS) attacks.

Motivation

Common DNSSEC-signed responses are as long as
1749 bytes. During key rollover, the response could
be more than twice that size, much larger than the
default UDP data size of 512 bytes.

Large DNS replies over UDP permit an attacker
to amplify a denial-of-service attack. By spoofing
a DNS request from a victim’s IP address, an at-
tacker can turn relatively short queries over a low
bandwidth connection into a far more devastating
amplification attack. That’s potentially more potent
than a generic attack, as operators cannot filter root
server responses. Currently, only 2% of DNS root
server queries over UDP are legitimate [33].

DNSSEC over UDP results in multiple IP fragments
where the UDP headers and port numbers are only
present in the first fragment. Badly implemented
middleboxes [6]—such as stateless firewalls and
network address translators (NAT) [28]—either
drop all the fragments or pass the first and block
the rest.

Login_articlesDECEMBER_09_final.indd 35 10.29.09 9:27:16 AM

36 ; LO G I N : vO L . 3 4, N O. 6

A horrific number of badly implemented middleboxes rewrite DNS over
UDP messages according to local policy. These middleboxes assume that
packets are not fragmented. Such middleboxes are likely to remain in place
for many years.

UDP has no reliable signal that large datagrams won’t work. Often the only
symptom is a timeout, without any hint about which of the many possible
problems occurred.

The burden is on DNS resolvers to try a protocol with less interference from
middleboxes. Therefore, DNS resolvers repeat the same query over TCP.

Figure 1 shows that standard TCP creates server state immediately and re-
tains it after the connection has closed during the TCP TIME-WAIT interval
(usually 4 minutes).

f I G U r e 1 : W h e N a < S Y N > I S r e c e I V e D , c U r r e N t S e r V e r I m P L e m e N -
t a t I O N S c r e a t e S t a t e (t h e t c b) a N D m a I N t a I N t h a t S t a t e U N t I L
t h e t I m e - W a I t I N t e r V a L h a S e X P I r e D (U S U a L LY 4 m I N U t e S) .

Unfortunately, existing traffic patterns indicate that repeating most DNSSEC
root UDP queries again over TCP would dramatically increase server load.
After DNSSEC deployment in one major top-level domain, a 600% increase
in TCP requests was reported [32] at the North American Network Opera-
tors Group (NANOG) meeting of June 2009.

To avoid overload, some operators are turning off the TCP port for DNS.
That violates underlying DNS protocol expectations [2]. The inability to use
TCP after missing or truncated UDP responses will prevent successful DNS-
SEC deployment.

TCP Cookie Transactions (TCPCT) permit TCP to be used in place of UDP
for high-transaction-rate services without burdening servers. Operators
can mitigate load by selective rejection of connection attempts without the
Cookie option. Moreover, using the cryptologically secure robust cookie
mechanism instead of UDP prevents the exploitation of amplification and
fragmentation DoS attacks.

robust Cookies

In 1994, Phil Karn described a mechanism to avoid accumulating server
state during an initial protocol handshake. The client sends an opaque anti-
clogging token (a “cookie”). The server responds to each communication at-
tempt by issuing its own cookie that is dependent on the client cookie, and
it retains no state about the attempt.

The client returns this pair of cookies to the server, demonstrating a com-
plete communications path. If the client fails to reply, the server has no state
to free.

Login_articlesDECEMBER_09_final.indd 36 10.29.09 9:27:16 AM

; LO G I N : D ecem b e r 20 0 9 I m PrOv I N G TcP secu rIT y wITh rO busT cO O k I es 37

Karn and Simpson set forth explicit design criteria:

The computing resources themselves must also be protected against ma-
licious attack or sabotage. . . . These attacks are mitigated through using
time-variant cookies, and the elimination of receiver state during initial
exchanges of the protocol. [15, pp. 2–3]

It MUST NOT be possible for anyone other than the issuing entity to gen-
erate cookies that will be accepted by that entity. This implies that the
issuing entity will use local secret information in the generation and sub-
sequent verification of a cookie. [15, p. 12; 16, p. 19]

The Responder secret value that affects its cookies MAY remain the same
for many different Initiators. However, this secret SHOULD be changed
periodically to limit the time for use of its cookies (typically each 60 sec-
onds). [16, p. 20]

This use of the term cookie should not be confused with other uses of
“cookie” or “magic cookie,” such as by HTTP or X Window systems, and
other security protocol attempts [27]. Each of these is missing one or more
of the requirements: (1) eliminating responding server state; (2) using a local
secret; (3) having a time limit.

Previous Papers and Proposals

Over the past 35 years, hundreds (perhaps thousands) of articles, papers,
and reports have described network attacks using TCP: address and port
spoofing, amplification, fragmentation, resource exhaustion, and others less
commonly publicized [12]. Various incremental approaches have been pro-
posed.

T/TCP [4] permits lightweight TCP transactions for applications that tradi-
tionally have used UDP. However, T/TCP has unacceptable security issues
[13, 26].

By September 1996, the long anticipated DoS attacks in the form of TCP
SYN floods were devastating popular (and unpopular) servers and sites. Phil
Karn informally mentioned adapting anti-clogging cookies to TCP. Perry
Metzger proposed adding Karn’s cookies as part of a “TCP++” effort [22], and
two years later as part of a “TCPng” discussion [23].

Daniel J. Bernstein implemented “SYN cookies,” small cookies embedded
in the TCP SYN initial sequence number. This technique was exception-
ally clever, because it did not require cooperation of the remote party and
could be deployed unilaterally. However, SYN cookies can only be used in
emergencies; they are incompatible with most TCP options. As there is in-
sufficient space in the sequence number, the cookie is not considered cryp-
tologically secure. The SYN cookie mechanism remains inactive until the
system is under attack, and thus is not well tested in operation. Because of
these deficiencies, SYN cookies were not accepted for publication in the In-
ternet Engineering Task Force (IETF) RFC series until recently [7].

In 1999, Faber, Touch, and Yue [9] proposed using an option to negotiate
the party that would maintain TIME-WAIT state. This permits a server to
entirely eliminate state after closing a connection.

In 2000, the Stream Control Transmission Protocol (SCTP) [29] was pub-
lished with a mechanism partially based on Karn’s ideas. There have been a
number of barriers to deployment of SCTP [15].

In 2006, the Datagram Congestion Control Protocol (DCCP) [18] was pub-
lished with a mechanism analogous to SYN cookies.

Login_articlesDECEMBER_09_final.indd 37 10.29.09 9:27:16 AM

38 ; LO G I N : vO L . 3 4, N O. 6

Medina, Allman, and Floyd [21] found that the vast majority of mod-
ern TCP implementations correctly handle unknown TCP options passing
through middleboxes. A new TCP option sent in <SYN> and returned in
<SYN,ACK(SYN)> will reliably indicate that both parties understand the ex-
tension. But it is still prudent to follow the [RFC 793] “general principle of
robustness: be conservative in what you do, be liberal in what you accept
from others.”

Solving <SYn> Spoofing

The initial TCP <SYN> exchange is vulnerable to forged IP addresses, pre-
dictable ports, and discoverable sequence numbers [25]. A complete fix
requires that IP sources be checked as they enter the provider network, en-
suring that they match those assigned to the provider’s customers. Unfortu-
nately, this ingress-filtering best current practice [11] is not widely enforced,
and source address forged attacks continue at growing rates.

TCP Cookie Transactions (TCPCT) bolster the defense against such attacks.
A cookie option is exchanged as the connection is opened. These cookies are
larger and more unpredictable than addresses, ports, sequence numbers, and
timestamps. They validate the connection between two parties.

Figure 2 demonstrates the TCPCT cookie exchange.

f I G U r e 2 : a N e W t c P O P t I O N c a r r I e S t h e c O O K I e S , f O L L O W e D b Y
O P t I O N a L t r a N S a c t I O N D a t a I N t h e I N I t I a L e X c h a N G e (< S Y N >
a N D < S Y N , a c K >) .

AMPLIfICATIOn ATTACkS

TCP does not have the amplification problems of UDP [31]. A falsified source
address on a <SYN> query results in a <SYN,ACK> response that is usually
the same size as the query.

Unlike SCTP, TCPCT cookies are the same size in each direction, so the
cookies themselves do not provide amplification.

Both T/TCP and a more recently proposed option [19] allow data to be
carried on the <SYN,ACK> response, potentially allowing amplification.
TCPCT enables sending this limited amount of data, as seen in Figure 2.

However, this optional feature is off by default, and is only enabled by an
application on a per-port basis. Moreover, the feature may be temporar-
ily disabled during periods of congestion and/or other resource limitations,
transparently returning to default TCP behavior.

Login_articlesDECEMBER_09_final.indd 38 10.29.09 9:27:16 AM

; LO G I N : D ecem b e r 20 0 9 I m PrOv I N G TcP secu rIT y wITh rO busT cO O k I es 39

frAGMenTATIOn fAILureS

Problems with IP fragmentation have long been well known [17]. For ex-
ample, IP fragmentation doesn’t work reliably and, more importantly, doesn’t
fail reliably. UDP has no segmentation and relies entirely on unreliable IP for
fragmentation support.

TCPCT requires the TCP Timestamps Option [5], which in turn requires
Path MTU Discovery [24] and that the Don’t Fragment (DF) bit is always set
in the IP header.

POrT PrOBLeMS

Busy servers that deal with a large number of short transactions can experi-
ence port exhaustion.

For example, a Network Address Translator (NAT) maps routed hosts to its
address, commonly implemented by assigning each connection to a different
port [28]. When many hosts behind a NAT communicate with a common
server, a port number must be assigned to each transaction. If too many
transactions happen in rapid succession, the NAT will run out of port num-
bers.

DNS caching resolvers provide another example. When many hosts make
queries through a caching resolver to a common server, a port number must
be assigned to each transaction. If too many queries happen in rapid succes-
sion, the resolver will run out of port numbers. Repeated querying and ag-
gressive retransmission [20] exacerbate these problems.

A closed TCP port must not be reused until a (TCP TIME-WAIT) timeout
period has expired. If old port numbers are recycled too quickly, mes-
sages intended for the closed session cannot be distinguished from a newly
opened session, appearing to be delayed duplicate transmissions.

TCPCT obviates antique duplicate transmissions by entirely eliminating
server state after the <FIN> exchange. Only the client retains prior connec-
tion state for the required TCP TIME-WAIT period (see Figure 2).

TCPCT also handles reusing prior port numbers, by defining procedures
that safely emulate persistent connections. Cookies and timestamps easily
differentiate new sessions.

Most applications already follow the end-to-end principle and use the TCP
close only as an optimization. Their data format provides all the necessary
semantics for their needs.

TCPCT treats any closing <FIN> as advisory until it has been acknowledged
by both parties. Like the <SYN>, each <FIN> is accompanied by the session
cookies and timestamps. This inhibits a connection assassination attack with
<FIN>.

reSOurCe reCYCLInG

When a TCP <SYN> arrives with an unreachable source address, the target
reserves transmission control block (TCB) resources and waits for a response
to its <SYN,ACK>. These are called half-open connections. An attacker can
repeatedly open connections with bogus source addresses, causing a target
to retain state for each half-open connection until there are no resources for
legitimate connections.

Login_articlesDECEMBER_09_final.indd 39 10.29.09 9:27:16 AM

40 ; LO G I N : vO L . 3 4, N O. 6

Moreover, busy servers that deal with a large number of short transactions
can have legitimate problems with TCB exhaustion. If the number of differ-
ent clients connecting to a server locks up too much server memory, then
persistent connections will make the problem worse.

Using a different strategy, attackers need only open some long-running Ini-
tiators that do nothing or do things very slowly as a different form of DoS
attack. TCPCT works with the TCP User Timeout Option [8] to limit accu-
mulation of inactive connections.

TCPCT ameliorates TCB exhaustion by eliminating server state during the
<SYN> exchange and again after the <FIN> exchange. Optional <SYN> data
entirely eliminates TCB state for short transactions. After the connection has
closed, state is retained only by the client for the required TCP TIME-WAIT
period (see Figure 2, above).

TerMInATIOn TrOuBLeS

Perhaps the greatest security vulnerability of TCP itself is using an error in-
dication (<RST>) to affect the operation of the protocol. This leads to TIME-
WAIT assassination by antique duplicates [3], and connection assassination
by third parties [10, 30].

TCPCT treats <RST> as advisory. Like the <SYN> and <FIN>, each <RST> is
accompanied by the session cookies and timestamps. This inhibits a connec-
tion assassination attack with <RST>.

While cookies prevent most spoofed assassination attacks, the initial <SYN>
exchange is particularly vulnerable. An attacker that can guess other fields
could send a <RST> before the Responder <SYN,ACK> arrives with a proper
cookie. The Initiator will not know about the attack.

Furthermore, cookies cannot defend against monkey-in-the-middle (MITM)
attackers—where an attacker can record and/or reflect cookie, sequence, and
timestamp values. Figure 3 demonstrates a standard TCP <SYN> assassina-
tion using <RST>.

f I G U r e 3 : U S I N G a N I N J e c t e D < r S t > P a c K e t t O a S S a S S I N a t e a
t c P c O N N e c t I O N

Therefore, receipt of <RST> has no effect on the operation of the protocol.
All <RST> segments are merely counted [1, sec. 1.2.3]. Transmission will
continue until a timeout expires [1, secs. 4.2.2.20(h), 4.2.3.5]. Arguably, this
is the only substantial TCPCT change in TCP semantics.

Summary and exhortation

TCP Cookie Transactions (TCPCT) provide a cryptologically secure mecha-
nism to guard against simple flooding attacks sent with bogus IP sources or
TCP ports.

Login_articlesDECEMBER_09_final.indd 40 10.29.09 9:27:17 AM

; LO G I N : D ecem b e r 20 0 9 I m PrOv I N G TcP secu rIT y wITh rO busT cO O k I es 41

TCPCT entirely eliminates server state during connection establishment and
after termination, and it inhibits premature closing of connections. Also, im-
plementations may optionally exchange limited amounts of transaction data
during the initial cookie exchange, reducing round trips in short transac-
tions.

Finally, implementations may optionally rapidly recycle prior connections.
For otherwise stateless applications, this transparently facilitates persistent
connections and pipelining of requests over each connection, reducing net-
work latency and host task context switching.

We expect soon to have TCPCT implementations tested and deployed in
some root and TLD servers. As caching resolvers and clients are updated,
the load on servers should decrease.

Gentle reader, we hope that the numerous benefits of TCPCT will inspire
you to request implementation and deployment on your favorite systems.

ACknOWLeDGMenTS

Many thanks to Ted Faber, J. Bruce Fields, Fernando Gont, Craig Partridge,
David P. Reed, Joe Touch, and other participants at the end2end-interest and
namedroppers mailing lists for helpful comments on this topic.

referenCeS

[1] R. Braden, ed., “Requirements for Internet Hosts—Communication Lay-
ers,” STD 3, RFC 1122, October 1989: http://tools.ietf.org/html/rfc1122.

[2] R. Braden, “Requirements for Internet Hosts—Application and Support,”
STD 3, RFC 1123, October 1989. See section 6.1.3.2: http://tools.ietf.org/
html/rfc1123.

[3] R. Braden, “TIME-WAIT Assassination Hazards in TCP,” RFC 1337, May
1992: http://tools.ietf.org/html/rfc1337.

[4] R. Braden, “T/TCP—TCP Extensions for Transactions—Functional
 Specification,” RFC 1644, July 1994: http://tools.ietf.org/html/rfc1644.

[5] V. Jacobson, R. Braden, and D. Borman, “TCP Extensions for High
 Performance,” RFC 1323, May 1992: http://tools.ietf.org/html/rfc1323.
 Updating: work in progress, March 4, 2009: http://tools.ietf.org/html/
draft-ietf-tcpm-1323bis-01.

[6] B. Carpenter and S. Brim, “Middleboxes: Taxonomy and Issues,” RFC
3234, February 2002.

[7] W. Eddy, “TCP SYN Flooding Attacks and Common Mitigations,” RFC
4987, August 2007.

[8] L. Eggert and F. Gont, “TCP User Timeout Option,” RFC 5482, March
2009.

[9] T. Faber, J. Touch, and W. Yue, “The TIME-WAIT State in TCP and Its
Effect on Busy Servers,” IEEE INFOCOM 99, pp. 1573–1584.

[10] S. Floyd, “Inappropriate TCP Resets Considered Harmful,” BCP 60, RFC
3360, August 2002.

[11] P. Ferguson and D. Senie, “Network Ingress Filtering: Defeating Denial
of Service Attacks Which Employ IP Source Address Spoofing,” BCP 38,
RFC 2827, May 2000.

Login_articlesDECEMBER_09_final.indd 41 10.29.09 9:27:17 AM

42 ; LO G I N : vO L . 3 4, N O. 6

[12] F. Gont, “Security Assessment of the Transmission Control Protocol
(TCP),” February 2009: https://www.cpni.gov.uk/Docs/tn-03-09-security
-assessment-TCP.pdf.

[13] C. Hannum, “Security Problems Associated with T/TCP,” unpublished
work in progress, September 1996: http://www.mid-way.org/doc/ttcp-sec.txt.

[14] Internet Engineering Task Force (IETF), “Intellectual Property Rights
Disclosures”: https://datatracker.ietf.org/ipr/.

[15] P. Karn and W. Simpson, “The Photuris Session Key Management Pro-
tocol,” March 1995: draft-karn-photuris-01.txt.sp. Published as “Photuris:
Design Criteria,” in Proceedings of Sixth Annual Workshop on Selected Areas in
Cryptography, LNCS 1758, (Springer-Verlag, August 1999).

[16] P. Karn and W. Simpson, “Photuris: Session-Key Management Protocol,”
RFC 2522, March 1999.

[17] C. Kent and J. Mogul, “Fragmentation Considered Harmful,” 1987:
http://www.hpl.hp.com/techreports/Compaq-DEC/WRL-87-3.pdf.

[18] E. Kohler, M. Handley, and S. Floyd, “Datagram Congestion Control
Protocol (DCCP),” RFC 4340, March 2006.

[19] A. Langley, “Faster Application Handshakes with SYN/ACK Payloads,”
work in progress, August 5, 2008: http://tools.ietf.org/html/draft-agl-tcpm
-sadata-01.

[20] M. Larson and P. Barber, “Observed DNS Resolution Misbehavior,” BCP
123, RFC 4697, October 2006.

[21] A. Medina, M. Allman, and S. Floyd, “Measuring Interactions Between
Transport Protocols and Middleboxes,” Proceedings of the 4th ACM SIG-
COMM/USENIX Conference on Internet Measurement, October 2004: http://
www
.icsi.berkeley.edu/pubs/networking/tbit-Aug2004.pdf.

[22] P. Metzger, “Re: SYN floods (was: does history repeat itself?),” Septem-
ber 9, 1996: http://www.merit.net/mail.archives/nanog/1996-09/msg00235
.html.

[23] P. Metzger, “Re: what a new TCP header might look like,” May 12, 1998:
ftp://ftp.isi.edu/end2end/end2end-interest-1998.mail.

[24] J. Mogul, and S. Deering, “Path MTU Discovery,” RFC 1191, November
1990.

[25] R. Morris, “A Weakness in the 4.2BSD Unix TCP/IP Software,” Techni-
cal Report CSTR-117, AT&T Bell Laboratories, February 1985: http://pdos
.csail.mit.edu/~rtm/papers/117.pdf.

[26] route [at] infonexus [dot] com, “T/TCP vulnerabilities,” Phrack
Magazine, vol. 8, no. 53, July 8, 1998: http://www.phrack.org/issues.
html?issue=53&id=6.

[27] W. Simpson, “IKE/ISAKMP Considered Harmful,” USENIX ;login:,
 December 1999: http://www.usenix.org/publications/login/1999-12/features/
harmful.html.

[28] P. Srisuresh and K. Egevang, “Traditional IP Network Address Transla-
tor (Traditional NAT),” RFC 3022, January 2001.

[29] R. Stewart, ed., “Stream Control Transmission Protocol,” RFC 4960,
September 2007.

[30] J. Touch, “Defending TCP against Spoofing Attacks,” RFC 4953, July
2007.

Login_articlesDECEMBER_09_final.indd 42 10.29.09 9:27:17 AM

; LO G I N : D ecem b e r 20 0 9 I m PrOv I N G TcP secu rIT y wITh rO busT cO O k I es 43

[31] R. Vaughn and G. Evron, “DNS Amplification Attacks,” March 17, 2006:
http://www.isotf.org/news/DNS-Amplification-Attacks.pdf.

[32] D. Wessels, “DNSSEC, EDNS, and TCP,” June 2009: http://www.nanog
.org/meetings/nanog46/presentations/Wednesday/wessels_light_N46.pdf.

[33] D. Wessels and M. Fomenkov, “Wow, That’s a Lot of Packets,”
 Proceedings of the Passive and Active Measurement Workshop (PAM), April 2003:
http://www.caida.org/publications/papers/2003/dnspackets/
wessels-pam2003.pdf.

Login_articlesDECEMBER_09_final.indd 43 10.29.09 9:27:17 AM

44 ; LO G I N : vO L . 3 4, N O. 6

D a v i D n . B l a n k - e D e l m a n

practical Perl
tools: essential
techniques
David N. Blank-Edelman is the director of
technology at the Northeastern University
College of Computer and Information Sci-
ence and the author of the O’Reilly book
Automating System Administration with
Perl (the second edition of the Otter book),
available at purveyors of fine dead trees
everywhere. He has spent the past 24+ years
as a system/network administrator in large
multi-platform environments, including
Brandeis University, Cambridge Technology
Group, and the MIT Media Laboratory. He
was the program chair of the LISA ’05 confer-
ence and one of the LISA ’06 Invited Talks
co-chairs.

dnb@ccs.neu.edu

e v e r y o n c e I n a w h I l e I n t h I s c o l -
umn I like to get meta. In the past we have
talked about ways to become better pro-
grammers. We’ve looked at tools and meth-
odologies like test-first programming which
force you into a working style that produces
better programs. For this column, I’d like to
share three tools that can help you become
a better, or at least a more efficient, Perl
programmer in particular. So, perhaps this
month, we’ll go half-meta.

Being Strict

I know that some percentage of my readership is
going to roll their eyes with such vigor that you
can hear the noise they make in their sockets, but
I must start with this tip. So go ahead, get it out of
your system now because I’m going to say it:

 use strict;

The eye rolling comes because the Perl commu-
nity has been chanting “use strict;! use strict;! use
strict;!” to itself like some scene from Eyes Wide
Shut for many, many years now. When you turn
strict on for a program, the Perl interpreter will
complain about a whole host of potential issues
with your program that go a bit beyond syntax
 errors. The complaints range from simple things
such as

Name $blah used only once: possible typo

if a variable only appears once in a program (for
example, it is set, but never read from—that’s often
a sign that there’s a typo in the name) to more so-
phisticated warnings such as

Global symbol $blah requires explicit package name

which are trying to strong-arm you into using local
variable scopes (since larger programs that use all
global variables are fragile and easily broken).

The reason I mention this tip at all, given how per-
vasive it is in the community, is that I know it took
me a while to get “use strict;” religion. I suspect
there are others who have lapsed in the same man-
ner. I think there are two main reasons why people
get turned off early in their programming career by
this pragma and never really come back to using it
as a matter of course (i.e., circumstances don’t de-
mand otherwise):

It yammers so. Sometimes people new to the 1.
language get overwhelmed by the quantity of
error messages, especially the more cryptic ones.

Login_articlesDECEMBER_09_final.indd 44 10.29.09 9:27:17 AM

; LO G I N : D ecem b e r 20 0 9 Pr Ac TI c A L Pe rL TO O L s : esse NTI A L Tech N I qu es 45

This turns them off early in their Perl programming learning curve, and
they never really gain a desire to be yelled at by the interpreter (“Thank
you, Sir, may I have another error message? Thank you, Sir. May I have
another?”). The good news is that Perl developers have worked diligently
over the years to make the production of the error messages smarter and
the messages themselves more comprehensible. There is also a perldiag
documentation section (perldoc perldiag) that provides at least a smidgen
more information for every single error message the core Perl interpreter
might emit, thus making them more helpful. If you shied away from strict
mode before for this reason, I’d encourage you to try it again and see if it
works better for you.

Some of the error messages that 2. strict mode emits require the spankin’
new programmer to understand some programming concepts that may
initially be beyond their comprehension. I’m thinking specifically of the
scoping-related error message I mentioned before of Global symbol $blah
requires explicit package name, which comes up a great deal in first-effort
programs. The perldiag reference page I mentioned before says this about
it:

Global symbol “%s” requires explicit package name
(F) You’ve said “use strict” or “use strict vars”, which indicates that all vari-
ables must either be lexically scoped (using “my”), declared beforehand using
“our”, or explicitly qualified to say which package the global variable is in (using
“::”).

It is a very direct and pointed explanation with a teaser about how you
might fix the problem, but it only describes one or two trees of the for-
est the programmer is likely to be lost in at that point. If you aren’t familiar
with lexical and global scoping in programs or are just not clear on Perl’s
particular way of manifesting these concepts, getting a bunch of these error
messages is not going to help much even with this explanation. There’s not
a lot I can suggest for this case except that the programmer find a text that
explains “my”, “local”, and “our” in a way that makes sense to them before
starting to use strict mode.

Before we move on I just want to mention a couple of ways that the “use
strict;” idea has been extended:

The module Acme::use::strict::with::pride describes itself as performing this 3.
service: “enforce bondage and discipline on very naughty modules” and
says:

using Acme::use::strict::with::pride causes all modules to run with use strict;
and use warnings;

Whether they like it or not :-)

In general I don’t advocate forcing your choices about how strict a program-
mer should be on others, but perhaps you have a reason to make sure all of
the code you are running passes a “use strict;” test.

There are modules like Tie::StrictHash which allow you to subvert the 4.
usual auto-vivification nature of hashes (i.e., if you reference a hash key
that didn’t exist before, perhaps because of a typo, it comes into being
whether you wanted that to happen or not). As the docs say:

Tie::StrictHash is a module for implementing some of the same semantics
for hash members that use strict gives to variables. The following con-
straints are applied to a strict hash:

No new keys may be added to the hash except through the add method ■■

Login_articlesDECEMBER_09_final.indd 45 10.29.09 9:27:17 AM

46 ; LO G I N : vO L . 3 4, N O. 6

of the hash control object.
No keys may be deleted except through the delete method of the hash ■■

control object.
The hash cannot be re-initialized (cleared) except through the clear ■■

method of the hash control object.
Attempting to retrieve the value for a key that doesn’t exist is a fatal er-■■

ror.
Attempting to store a value for a key that doesn’t exist is a fatal error.■■

This sort of discipline can be helpful in all sorts of situations.

Being Tidy

Let’s leave all of that kink-themed programming discussion behind for the
moment and move on to the question of why your parents were always after
you to clean your room. You may have ignored the tool we’re going to talk
about in this section because it seemed like an aesthetic nicety, but I hope to
convince you otherwise. There’s a lovely module called Perl::Tidy that comes
with a command-line tool called “perltidy.” perltidy takes in your code and
reformats it to match a set of predefined (by you) stylistic conventions.
It’s similar to the C program source formatting called “indent” but custom
honed for Perl source code. Perl code that has been run through perltidy
looks neater and (depending on your stylistic preferences) more readable.
Given that Perl is a bit of a punctuation parking lot with a not quite de-
served reputation (from those who have never seen APL) of looking like line
noise, this can be a considerable improvement.

Let’s look at perltidy in action so I can explain why you should be running
all of your code through it even during the process of writing it. Here’s an
example from the perltidy home page (http://perltidy.sourceforge.net/) that
shows the most dramatic sort of improvement:

%TV=(flintstones=>{series=>”flintstones”,nights=>[qw(monday thursday
friday)],
members=>[{name=>”fred”,role=>”lead”,age=>36,},{name=>”wilma”,role=
>”wife”,
age=>31,},{name=>”pebbles”,role=>”kid”,age=>4,},],},jetsons=>{series=>”j
etsons”,
nights=>[qw(wednesday saturday)],members=>[{name=>”george”,role=>”le
ad”,age=>41,
},{name=>”jane”,role=>”wife”,age=>39,},{name=>”elroy”,role=>”kid”,ag
e=>9,},],},
simpsons=>{series=>”simpsons”,nights=>[qw(monday)],members=>[{name
=>”homer”,
role=>”lead”,age=>34,},{name=>”marge”,role=>”wife”,age=>37,},{name=>
”bart”,
role=>”kid”,age=>11,},],},);

run through perltidy becomes this:

%TV = (
 flintstones => {
 series => “flintstones”,
 nights => [qw(monday thursday friday)],
 members => [
 {
 name => “fred”,
 role => “lead”,
 age => 36,

Login_articlesDECEMBER_09_final.indd 46 10.29.09 9:27:17 AM

; LO G I N : D ecem b e r 20 0 9 Pr Ac TI c A L Pe rL TO O L s : esse NTI A L Tech N I qu es 47

 },
 {
 name => “wilma”,
 role => “wife”,
 age => 31,
 },
 {
 name => “pebbles”,
 role => “kid”,
 age => 4,
 },
],
 },
 jetsons => {
 series => “jetsons”,
 nights => [qw(wednesday saturday)],
 members => [
 {
 name => “george”,
 role => “lead”,
 age => 41,
 },
 {
 name => “jane”,
 role => “wife”,
 age => 39,
 },
 {
 name => “elroy”,
 role => “kid”,
 age => 9,
 },
],
 },
 ...
);

Hopefully you don’t have to look at code (from other people, right?) that
looks like the “before” in this example. But if you do get code from a col-
league that isn’t that easy to read, perltidy can help.

But this isn’t the kind of result that makes perltidy essential. Here is a more
interesting example:

sub hooberbloober {

 if (test_something()){
 if ($fred == 3){
 check_with_Shiva();
 # ... lots of code
 }}
 # ... lots of code
 do_the_dance_of destruction();
 # ... lots of code
 spin_the_wheel();
}

Login_articlesDECEMBER_09_final.indd 47 10.29.09 9:27:17 AM

48 ; LO G I N : vO L . 3 4, N O. 6

Why is this interesting? It helps demonstrate two reasons why you should
hook perltidy into your editor (all of the major ones can do it) so you can
run perltidy over code as you write it.

First, there’s a class of errors that we have all run into at one time or another
having to do with improperly placed closing brackets. It is especially easy to
do in cases where the chunks of your code spans multiple screens. We have
all had to debug code whose program flow didn’t quite work as we antici-
pated because a section of code was put in or left out of a conditional block
by mistake. In that last example, maybe we only wanted to do_the_dance_
of_destruction() based on one of the conditional tests. If there was lots more
ancillary code in our example, it might not be easy to see that we’ve closed
an if() block prematurely. But if we run it through perltidy, the error jumps
right out thanks to the reformatted indentation:

sub hooberbloober {

 if (test_something()) {
 if ($fred == 3) {
 check_with_Shiva();
 # ... lots of code
 }
 }
 do_the_dance_of destruction();

 # ... lots of code
 spin_the_wheel();
}

Second, there’s considerable value to always looking at and working with
clean-looking code. It has a subtle but powerful effect on how you work.
Here’s a quote from an invited talk I gave at LISA ’07 on what sysadmins
could learn from professional cooks and others in the cooking world:

I worked with a chef who used to step behind the line to a dirty cook’s
station in the middle of the rush to explain why the offending cook was
falling behind. He’d press his palm down on the cutting board, which was
littered with peppercorns, spattered sauce, bits of parsley, bread crumbs
and the usual flotsam and jetsam that accumulates quickly on a station if
not constantly wiped away with a moist side towel. “You see this?” he’d
inquire, raising his palm so that the cook could see the bits of dirt and
scraps sticking to the chef’s palm, “That’s what the inside of your head
looks like now. Work clean!”

 —Anthony Bourdain in Kitchen Confidential

perltidy does an excellent job of helping you find small errors not caught by
the interpreter’s syntax checks and work clean.

Being Critical

OK, last tool. If you liked how “use strict;” provided feedback about prob-
lems with your code, then you are going to love this. Perl::Critic, and its ac-
companying command-line program perlcritic, goes even further in this
direction. The documentation describes it as:

an extensible framework for creating and applying coding standards to Perl
source code. Essentially, it is a static source code analysis engine. Perl::Critic
is distributed with a number of Perl::Critic::Policy modules that attempt to
enforce various coding guidelines. Most Policy modules are based on Damian
Conway’s book Perl Best Practices. However, Perl::Critic is not limited to PBP

Login_articlesDECEMBER_09_final.indd 48 10.29.09 9:27:17 AM

; LO G I N : D ecem b e r 20 0 9 Pr Ac TI c A L Pe rL TO O L s : esse NTI A L Tech N I qu es 49

and will even support Policies that contradict Conway. You can enable, disable,
and customize those Polices through the Perl::Critic interface. You can also cre-
ate new Policy modules that suit your own tastes.

While I wouldn’t necessarily run perlcritic over my code as often as I would
perltidy, it is definitely helpful to periodically feed your code to perlcritic as
you go along. To give you an idea of how it works, here’s some output when
run over some sample code found in this very column from 2006:

$ perlcritic geocode.pl:
Code before strictures are enabled at line 5, column 5. See page 429 of PBP.
(Severity: 5)

The error here is I’ve not included (for space reasons) “use strict;” in my
code. If I pick some other code I wrote back in 2005, it tells me about more
interesting errors:

 chart.pl: Bareword file handle opened at line 20, column 1. See pages
202,204 of PBP. (Severity: 5)
 chart.pl: Two-argument “open” used at line 20, column 1. See page 207 of
PBP. (Severity: 5)

It’s complaining about this line in the code:

open (T,”>/tmp/t.png”) or die “Can’t open t.png:$!\n”;

which is using conventions that have since fallen out of favor. A better way
to write that would be:

open my $T, ‘>’, ‘/tmp/t.png’ or die “Can’t open t.png:$!\n”;

which passes perlcritic (with the default rules) with flying colors.

But the default settings for perlcritic only show the most flagrant violations.
If I crank that up to 11 (or, rather, to a severity level of “brutal”), I get these
errors from that one line:

Code is not tidy at line 1, column 1. See page 33 of PBP. (Severity: 1)
RCS keywords Id not found at line 1, column 1. See page 441 of PBP.
(Severity: 2)
RCS keywords $Revision$, $HeadURL$, $Date$ not found at line 1, column 1.
See page 441 of PBP. (Severity: 2)
RCS keywords $Revision$, $Source$, $Date$ not found at line 1, column 1.
See page 441 of PBP. (Severity: 2)
No “$VERSION” variable found at line 1, column 1. See page 404 of PBP.
(Severity: 2)
Close filehandles as soon as possible after opening them at line 1, column 4.
See page 209 of PBP. (Severity: 4)
Module does not end with “1;” at line 1, column 4. Must end with a recogniz-
able true value. (Severity: 4)
Code not contained in explicit package at line 1, column 4. Violates encapsula-
tion. (Severity: 4)
Code before strictures are enabled at line 1, column 4. See page 429 of PBP.
(Severity: 5)
Code before warnings are enabled at line 1, column 4. See page 431 of PBP.
(Severity: 4)
Magic punctuation variable used in interpolated string at line 1, column 41. See
page 79 of PBP. (Severity: 2)
Found “\N{SPACE}” at the end of the line at line 1, column 65. Don’t use
whitespace at the end of lines. (Severity: 1)

and that’s just with the default module rules. There are many other
Perl::Critic::* modules on CPAN that can add even more or different fussi-

Login_articlesDECEMBER_09_final.indd 49 10.29.09 9:27:17 AM

50 ; LO G I N : vO L . 3 4, N O. 6

ness. Clearly, much of what it is complaining about can be ignored (since I
was only testing a single line), but in real life cases perlcritic often offers re-
ally helpful criticism. If you want to play with Perl::Critic without installing
the module, some people in the Perl community have been kind enough to
set up a Web site (http://perlcritic.com) that will audit your code for you re-
motely.

All three of the tools we’ve looked at in this column can, in the right mea-
sure, really help improve your Perl programming. Enjoy, and I’ll see you
next time.

Login_articlesDECEMBER_09_final.indd 50 10.29.09 9:27:17 AM

; LO G I N : D ecem b e r 20 0 9 Pe Te’s A LL Th I N Gs su N : swA D D LI N G A PPLI c ATI O N s I N A secu rIT y b L A N k e T 51

P e t e R B a e R G a lv i n

Pete’s all things Sun:
swaddling applications
in a security blanket

Peter Baer Galvin is the CTO of IT Architec-
ture for Corporate Technologies, a premier
systems integrator and VAR (www.cptech.
com). Before that, Peter was the systems
manager for Brown University’s Computer
Science Department. He has written articles
and columns for many publications and is
co-author of the Operating Systems Concepts
and Applied Operating Systems Concepts
textbooks. As a consultant and trainer, Peter
teaches tutorials and gives talks on security
and system administration worldwide. Peter
blogs at http://www.galvin.info and twitters
as “PeterGalvin.”

pbg@cptech.com

t h e I m m u ta b l e s e r v I c e c o n ta I n e r s
(ISC) project seeks to increase systemic se-
curity within Solaris. An ISC is a potentially
perfect locale in which to run applications
where increased security is desired. Within
the ISC ecosystem is the ability to clone ISCs
and reset them to a known good state, and
the potential for automatic actions in case
of a security incident. ISC is not currently
an integrated or support project, but it is
an important security step for Solaris and
therefore worth discussing even at this early
stage.

Immutable Service Containers

ISC currently consists of a plan and documents,
as well as the “OpenSolaris Immutable Service
Container construction kit” [1], a set of tools for
building ISCs within OpenSolaris. The project’s
goal is to go beyond OpenSolaris, creating, for ex-
ample, an ISC from a VirtualBox virtual machine.
Fundamentally, ISCs are a set of tools, steps, and
techniques that can be used to more securely run
applications in highly managed environments and
can be set up and used wherever the operating sys-
tem or virtualization tools provide the features re-
quired. According to their definition, “ISCs provide
a security-reinforced container into which a service
or set of services is deployed.”

The design goals for ISCs include limiting exposure
by reducing services and using resource controls
to run those that are required, limiting change by
making service and critical operating environment
configuration read-only, limiting rights based on
the least privilege model, and increasing integrity
by isolating the service for monitoring and enforce-
ment [2]. There are several benefits to deploying
infrastructure based on ISCs, including a more
secure starting point for deployment and man-
agement, automation of application deployment,
built-in best practice security aspects, decreased
chance of break-ins, decreased chance of damage
from a break-in, and more likely standardization of
security within the infrastructure.

The reasoning behind the ISC project is that, even
when the “right” steps to increase security are
known, they are infrequently followed and even
less frequently checked and updated. An ISC has
all of those right steps already integrated, easing
the effort needed to secure an application’s environ-
ment. Certainly the world would be a better place

Login_articlesDECEMBER_09_final.indd 51 10.29.09 9:27:17 AM

52 ; LO G I N : vO L . 3 4, N O. 6

if all applications were run in ISCs, but the first steps are designing, testing,
and documenting them. My hope for this column is that it brings attention
to ISCs and helps to encourage their propagation.

ISC is a core building block of some security initiatives at Sun and secu-
rity trends in general. It can be part of an adaptive security architecture
[3] which responds to threats quickly while minimizing potential damage.
Further, ISCs can be part of an autonomic security layer that can be self-
cleansing, self-updating, and can automatically roll back and quarantine its
components, even performing a self-assessment or self-destruction if needed.

The ISC Architecture consists of an ISC “dock” and the ISC itself. The dock
provides security enforcement, monitoring, resource controls, and other
management functions. It communicates via SSH to one or more ISCs. The
ISC consists of the security-hardened container (be it a Solaris container, a
virtual machine, or other similar structure), plus security functions.

Hands-on

Even though the ISC project states that it is more of a proof-of-concept than
a production-ready service, I thought it would be interesting to take the cur-
rent implementation for a test drive. Currently, ISCs can be implemented
on OpenSolaris via Solaris Zones (a.k.a. “containers”). Other options will be
possible in the future (as discussed in the next section). Implementation and
configuration of ISCs currently take a few steps, from downloading and run-
ning the scripts through editing firewall configuration files. The steps are
outlined in the project wiki [4], but I include them here and add some ex-
planation as well as some testing results. If you want to save some steps, you
can download a virtual machine image of OpenSolaris already configured
with an ISC.

The ISC description so far is certainly high on promise. Unless components
or implementations are released officially and supported by Sun, it will be
difficult to judge how effectively ISC meets its goals. The current pre-release
should give a good indication of how close ISCs are to production usability,
how easy they will be to operate, and how close they are to delivering on
their promise.

For the purposes of this column I tested the OpenSolaris V 1.0 preview of
ISC. At this point ISC is not even an OpenSolaris package. Rather, it’s avail-
able as a Mercurial (source code management) repository. I started from a
fresh copy of OpenSolaris 2009.06. For a shortcut, a prebuilt OpenSolaris
containing ISC and an ISC container can be downloaded in OVF format
and run as a VM guest inside of an OVF-format supporting virtual machine
manager (such as VirtualBox).

First, Mercurial must be installed, and the Mercurial repository containing
ISC downloaded:

opensolaris$ pfexec pkg install SUNWmercurial
. . .
opensolaris$ hg clone https://kenai.com/hg/isc-source isc
. . .

Next, the configuration script is run to modify the system and create an ISC:

opensolaris$ pfexec isc/bin/iscadm.ksh
Setting netmask of isc0 to 255.255.255.0
Installing SMF method: /lib/svc/method/svc-isc-enc-swap
Installing SMF manifest: /var/svc/manifest/site/isc-enc-swap.xml
Installing SMF method: /lib/svc/method/svc-isc-enc-scratch

Login_articlesDECEMBER_09_final.indd 52 10.29.09 9:27:18 AM

; LO G I N : D ecem b e r 20 0 9 Pe Te’s A LL Th I N Gs su N : swA D D LI N G A PPLI c ATI O N s I N A secu rIT y b L A N k e T 53

Installing SMF manifest: /var/svc/manifest/site/isc-enc-scratch.xml
isc1: No such zone configured
Use ‘create’ to begin configuring a new zone.
A ZFS file system has been created for this zone.
 Publisher: Using opensolaris.org (http://pkg.opensolaris.org/release/).
 Image: Preparing at /export/isc/isc1/zone/root.
 Cache: Using /var/pkg/download.
Sanity Check: Looking for ‘entire’ incorporation.
 Installing: Core System (output follows)
DOWNLOAD PKGS FILES XFER (MB)
Completed 20/20 3021/3021 42.55/42.55

PHASE ACTIONS
Install Phase 5747/5747
 Installing: Additional Packages (output follows)
DOWNLOAD PKGS FILES XFER (MB)
Completed 37/37 5598/5598 32.52/32.52

PHASE ACTIONS
Install Phase 7329/7329

 Note: Man pages can be obtained by installing SUNWman
 Postinstall: Copying SMF seed repository ... done.
 Postinstall: Applying workarounds.
 Done: Installation completed in 373.243 seconds.

 Next Steps: Boot the zone, then log into the zone console
 (zlogin -C) to complete the configuration process
 Global zone version: entire@0.5.11,5.11-0.111:20090514T145840Z
 Non-Global zone version: entire@0.5.11,5.11-0.111:20090514T145840Z
 Evaluation: Packages in isc1 are in sync with global zone.
Attach complete.
 Global zone version: entire@0.5.11,5.11-0.111:20090514T145840Z
 Non-Global zone version: entire@0.5.11,5.11-0.111:20090514T145840Z
 Evaluation: Packages in isc1 are in sync with global zone.
Attach complete.

Installation transforms the OpenSolaris deployment from a general-use sys-
tem to a much more secured environment. Even the boot name changes.
The /etc/motd is changed to display a message about unauthorized use. And
the GUI login is disabled in favor of command-line interactions. Clearly this
should not be done on a desktop deployment of OpenSolaris—it’s all about
creating secure server environments in which to run services. A Solaris con-
tainer called “isc1” is preinstalled, with a default password of “iscroot” that
needs to be changed. Note that this is not a security hole, because there is
no way to connect to the container from outside the system until services
are enabled and the global zone is configured to allow communication to the
ISC.

A boot environment cache update and reboot gets the system ready for use:

opensolaris$ pfexec bootadm update-archive
opensolaris$ pfexec shutdown -g 0 -i 0 -y

Once an ISC container is built, it has many interesting aspects. For example,
the configuration is hardened, auditing enabled, and the stack set to non-
executable. Also, as well as the usual default container file systems, there
is a new /scratch one provided. This is a non-persistent encrypted file sys-
tem that applications can use to securely store log files, temporary files, and
other contents. Because ZFS does not yet implement encryption, there is

Login_articlesDECEMBER_09_final.indd 53 10.29.09 9:27:18 AM

54 ; LO G I N : vO L . 3 4, N O. 6

some indirection involved in the implementation of the encrypted scratch
space. Essentially, a ZFS zvol (volume) is the core, and then a LOFI (loop-
back file system) is created with encryption enabled (using an ephemeral key
that will be lost when the system is shut down) and a zpool on top of that,
with the end result of exporting a file system that is encrypted:

root@isc1:~# df -kh
Filesystem size used avail capacity Mounted on
. . .
/scratch 63M 19K 63M 1% /scratch
. . .
pbg@opensolaris:~$ zfs list
NAME USED AVAIL REFER MOUNTPOINT
. . .
rpool/export/scratch 300M 3.31G 19K /export/scratch
rpool/export/scratch/global 100M 3.31G 19K /export/scratch/global
rpool/export/scratch/global/ 100M 3.41G 1.19M -
 scratch_file
rpool/export/scratch/isc1 100M 3.31G 19K /export/scratch/isc1
rpool/export/scratch/isc1/ 100M 3.41G 1.19M -
 scratch_file
scratch-global 71.5K 62.9M 19K /scratch-global
scratch-isc1 71.5K 62.9M 19K scratch-isc1
. . .
pbg@opensolaris:~$ zpool status -v scratch-isc1
 pool: scratch-isc1
 state: ONLINE
 scrub: none requested
 config:

 NAME STATE READ WRITE CKSUM
 scratch-isc1 ONLINE 0 0 0
 /dev/lofi/3 ONLINE 0 0 0
pbg@opensolaris:~$ lofiadm
Block Device File Options
/dev/lofi/1 /devices/pseudo/zfs@0:1c Encrypted
/dev/lofi/2 /devices/pseudo/zfs@0:2c,raw Encrypted
/dev/lofi/3 /devices/pseudo/zfs@0:3c,raw Encrypted
/dev/lofi/4 /devices/pseudo/zfs@0:5c,raw Encrypted

Once an ISC is created, applications can be installed and enabled within it.
From the ISC wiki comes the example of installing and enabling Apache:

opensolaris$ pfexec zlogin isc1 pkg install SUNWapch22
opensolaris$ pfexec zlogin isc1 svcadm enable apache22

Because the default is for no communication to be allowed to the ISC, the
firewall rules much be changed to allow communication. This is done by
editing /etc/ipf/ipf.conf and, if the IP address of the ISC guest is 192.168.0.1,
adding a line such as:

pass in quick on e1000g0 proto tcp from any to 192.168.0.1 port = 80 keep state

Because by default the ISC’s network is not accessible from outside the sys-
tem, a new NAT rule has to be put in place to route traffic that reaches the
system on port 80 into the ISC housing the Web server. Edit /etc/ipf/ipnat.
conf and add a line such as:

 rdr e1000g0 0.0.0.0/0 port 80 -> 192.168.0.1 port 80

Login_articlesDECEMBER_09_final.indd 54 10.29.09 9:27:18 AM

; LO G I N : D ecem b e r 20 0 9 Pe Te’s A LL Th I N Gs su N : swA D D LI N G A PPLI c ATI O N s I N A secu rIT y b L A N k e T 55

For those commands to take effect, the firewall must be told to reload its
configuration files via:

opensolaris$ pfexec ipf -Fa -f /etc/ipf/ipf.conf
opensolaris$ pfexec ipnat -FC -f /etc/ipf/ipnat.conf

From a separate system, pointing a Web browser to the IP address of the
host containing the ISC should allow connection to the secure Web server
within the container.

The ISC infrastructure includes a new command-line script to manage and
modify ISCs. For example, to create a new ISC, say ISC 2, the command line
would be:

opensolaris$ pfexec isc/bin/iscadm.ksh -c -i -n 2

Currently, the iscadm script performs no other major actions. The plan is for
it to control the creation of snapshots, deletion of ISC environments, veri-
fication that an ISC environment has not been modified, and so on. Such
changes would be a welcome addition to the ISC functionality.

The future

ISC is an active project with several steps likely in the future. Glenn Bru-
nette, a Sun Distinguished Engineer, is leading the charge on this project
and actively working on designing, implementing, and automating the cre-
ation of ISCs. Next steps potentially include the following areas:

Updates to take advantage of new OpenSolaris functionality as it is inte-■■

grated (such as ZFS encryption, Validated Execution, Always-On Auditing,
and other projects).
New reference configurations that can utilize VirtualBox as the containment ■■

model in place of OpenSolaris zones, allowing for the use of alternative
guest operating systems beyond OpenSolaris. (For now, the project will
likely continue with OpenSolaris as the host OS, due to the security feature
set it provides.)
New operational configurations that implement the autonomic security use ■■

cases [6].

The project is also giving consideration to more advanced configuration tools
that allow a user to create virtual ISC networks (using Crossbow) [7]. An-
other area of interest is migration and validation tools to help people move
their applications into ISCs and ensure that the security configuration is im-
plemented properly. And on the practical front, there are plans to have ISCs
available at some point on Amazon EC2 as an extension of Sun’s security-
enhanced OpenSolaris AMI efforts.

The project is also actively seeking input from Sun customers, which in turn
creates RFEs (requests for enhancement) that get put into the development
queue. If security is of interest at your site, downloading and using the cur-
rent toolset and giving feedback as to what works, what doesn’t, and what
features you would like to see should be on your to-do list.

For more information on the ISC project, including discussion forums,
 publications, podcasts, and presentations, visit the project’s home at http://
kenai.com/projects/isc/pages/Home.

Login_articlesDECEMBER_09_final.indd 55 10.29.09 9:27:18 AM

56 ; LO G I N : vO L . 3 4, N O. 6

Conclusion

ISC has lofty goals, and the current non-production implementation meets
quite a few of them. Assuming the project does move into production with
a complete feature set, ISCs will be a huge leap forward for cloud computing
and datacenter application deployment. Easy to use, high-potency security is
the nirvana data managers seek but frequently don’t find. ISCs could be one
of those rare exceptions.

referenCeS

[1] http://kenai.com/projects/isc/pages/OpenSolaris.

[2] http://kenai.com/projects/isc/pages/Architecture.

[3] Sun Adaptive Security Architecture Blueprint 820-6825.

[4] http://kenai.com/projects/isc/pages/OpenSolaris#Service_Installation
_and_Confi.

[5] http://kenai.com/projects/isc/downloads.

[6] http://kenai.com/projects/isc/pages/Autonomic.

[7] http://kenai.com/projects/isc/pages/Networking.

Login_articlesDECEMBER_09_final.indd 56 10.29.09 9:27:18 AM

; LO G I N : D ecem b e r 20 0 9 I vOy eu r : 7 h A b IT s O F h I G h Ly e FFec TI v e N AG I Os I m PLem e NTATI O N s 57

D a v e J o s e P h s e n

iVoyeur: 7 habits of
highly effective Nagios
implementations
Dave Josephsen is the author of Building a
Monitoring Infrastructure with Nagios (Pren-
tice Hall PTR, 2007) and is senior systems
engineer at DBG, Inc., where he maintains
a gaggle of geographically dispersed server
farms. He won LISA ’04’s Best Paper award
for his co-authored work on spam mitiga-
tion, and he donates his spare time to the
SourceMage GNU Linux Project.

dave-usenix@skeptech.org

o n c e , s o m e y e a r s a g o , w h e n w e
were all younger, I had something of a
desire for knowledge (I’m guessing you can
probably relate). Don’t get me wrong: today
I spend a great deal of my time learning,
more time even than when I felt that urgent
want of it, but that’s not how I’d describe it
anymore. Now it’s more of a habit, a taste
for learning that is tempered by the things
I wish I hadn’t learned, tempered that is, by
the knowledge that haunts me. I’ll give you
an example.

I don’t remember who, and I don’t remember
where or when, but somewhere, somewhen, some-
one taught me the novel writer’s “first line” rule.
That the single most important part of a novel
was its first line. That it was obvious from line
one whether a piece of fiction was in fact a piece
of crap. Now, I don’t write fiction (or haven’t yet
anyway), and really I don’t even consider myself
a “writer,” but this “first line” business, well, it
haunts me. It’s something I simultaneously wish I
hadn’t learned and can’t let myself ignore. If you
weren’t aware of it, I’m sorry to have passed it on
to you. Even when writing 2000-word articles for
a tech journal, I invariably obsess over that con-
founded first line, revising this word or that, delet-
ing entirely and starting over from scratch until my
opening paragraphs have nothing whatsoever to do
with my eventual subject matter. I’ll give you an
example.

The opening line the computer geek part of me
wanted to begin this article with was, “There is a
fine line between monitoring systems that are ef-
fective and those that are annoying and useless.”
“A fine line!?” the lit-geek in me exclaims. “Why
don’t you just define a CLICHÉ variable and put a
‘while(1)’ around it? Or better yet, send two sleep-
ing pills to the entire subscribed readership of
;login: since that’s the effect you’re obviously going
for?!” (My inner lit-geek is kind of an elitist jerk.) At
this point in my process, I usually delete the line
in favor of something absurd and unrelated, but in
this case I couldn’t bring myself to delete it.

A fine line is in fact what it is; so fine that any one
of the seven tips I’m about to share can completely
change the effectiveness of an otherwise maligned
Nagios implementation. Further, all of them are
common pitfalls that I myself have fallen victim
to at one point or another, so they are things that
are likely to help other sysadmins. First line be

Login_articlesDECEMBER_09_final.indd 57 10.29.09 9:27:18 AM

58 ; LO G I N : vO L . 3 4, N O. 6

damned: this time I will have the courage to use a cliché if it is apt. This
time I will NOT give myself over to the right half of my brain. This time, I
REFUSE to write an unrelated yet entertaining introduction that requires a
complex and clever segue into otherwise dry subject matter.

Oops.

1. eliminate DnS Dependencies

The first tip I’d like to share has to do with name resolution. You can specify
hosts in Nagios by IP or DNS name. It’s probably a toss-up which of these is
more reliable. Using names makes Nagios dependent on an operational DNS
infrastructure. Using IPs eliminates the dependency but is a management
nightmare; IPs will change, and Nagios won’t be updated. In practical terms,
using names gives you rarely occurring, large outages, while using IPs gives
you more commonly occurring, individual outages.

You might think that Nagios being functional during a DNS outage would be
the least of your worries, but you’d be wrong, in my humble opinion. If Nag-
ios can remain functional during a DNS outage, it can provide good data on
what boxes in the infrastructure actually ceased to function properly during
the outage. There’s a huge difference between a monitoring system that can
provide good data during and especially after a cascading DNS failure and
one that cannot. That’s the kind of data that really lends credibility to the
system, and much of the difference between effective implementations and
maligned ones can be measured in credibility.

I recommend specifying names in the configuration files and then imple-
menting a DNS cache and name resolver on the Nagios box itself. Set up
zone transfers or otherwise automate the replication of DNS information
from your real nameservers to the Nagios box. This solves all of our name-
resolution woes; Nagios will point at itself for name resolution and won’t rely
on external DNS, while at the same time, there is no management overhead
on keeping IPs up to date beyond the initial configuration.

We use djbdns [1] for this purpose, which I like very much. It’s a small,
lightweight, secure system that is easily implemented and updated.

2. Minimize notifications

There are a couple of very large problems with monitoring systems that send
too many notifications. The first is that the credibility of the monitoring
system suffers when folks get notified about things they don’t care about. It
makes the system “seem” stupid, and that perception is going to make it dif-
ficult for you to get resources to improve the system.

The second, closely related problem is that people will begin to ignore the
notifications. When actually important notifications are sent, they’ll be ig-
nored, and when/if management follows up, the monitoring system will be
blamed for not sending notifications at all. The lack of credibility will make
it easier for accusations like this to stick (despite evidence to the contrary).
Further, if people don’t trust the system, they’ll be more likely to roll their
own monitoring tools and less likely to ask you for help. This in turn will
tend to magnify and compound the original perception until vendors are
brought in and something truly stupid is implemented.

I’m not saying that you shouldn’t monitor lots of services. I’m only saying
that you should refrain from notifying anyone other than yourself about any-
thing unless:

Login_articlesDECEMBER_09_final.indd 58 10.29.09 9:27:18 AM

; LO G I N : D ecem b e r 20 0 9 I vOy eu r : 7 h A b IT s O F h I G h Ly e FFec TI v e N AG I Os I m PLem e NTATI O N s 59

they’ve specifically asked you to do it■■

there’s an SLA around it■■

there’s a policy requiring it■■

Even if one or more of these requirements has been satisfied, I’d offer them
some alternatives instead (wouldn’t a daily/hourly report of boxes with high
CPU utilization be better?). Further, all notifications should be based on
thresholds that you’ve performed some analysis to obtain. Holt-Winters fore-
casting [2] is superb for this sort of thing, but anything is better than noth-
ing. The worst thing you can do is make up some arbitrary thresholds (or,
worse, take theirs), create a notification group that includes everybody, and
turn on Nagios (even if they ask you to).

There’s a creeping entropy about this problem that makes it seem more in-
nocuous than it is; notifications won’t be ignored on the first or second day.
Things will just slowly get progressively worse degree by tiny degree until
everyone’s pager is full of meaningless crap, no one notices real outages oc-
curring, and the vendors arrive. You really need to stay on top of useless
notifications. Hunt them down and eliminate them on a regular basis, ask
people if they care about the notifications they’re getting, see if you can get a
policy setup that requires problem acknowledgments for every notification,
etc.

I should also make the point that, in this context at least, you aren’t special.
It’s tempting to believe that the correct number of notifications for your or-
ganization is a subjective thing and that you don’t need to worry too much
because your recipients are savvy. Let me be clear—I don’t care if you’re sur-
rounded by the floating disembodied brains of particle physicists where you
work inside the singularity beneath the LHC, or by coffee machines harbor-
ing nascent AIs over at JPL, they will hate you if you send them too many
notifications, and “too many” is an integer that can be derived by a formula
that returns the absolute number of notifications you should be sending
given the number of hosts and recipients in your environment. My point is,
this is a universal truth of human nature, and you NEED to worry about it;
savvy is NOT an input variable. I’d give you the formula, but I haven’t had
a chance to work it out yet (when I do, I’m writing a LISA paper about it,
though).

3. eliminate email Dependencies

Once you’ve minimized the number of notifications you send, you should
proceed to make darn sure the ones you’re sending are getting delivered. A
few months back I wrote an entire article [3] on the subject of this tip, so I’ll
spare you the rant and summarize by saying that my faith in email is wan-
ing. Instead, I recommend text via SMS, voice notification via Asterisk, or a
combination of the two. Email-SMS gateways are OK, a real SMS modem at-
tached to the system is better, real SMS with voice backup is best. My article
walks you through the configuration of all of that.

Even if you do stick with email, an out-of-band backup is a great way to
make the monitoring system resilient against network outages, which is
helpful for the same credibility-related reasons listed in tip #2.

4. Monitor the Monitoring System

This one is self-explanatory. Few of us are good at introspection, and Nag-
ios being no exception, it’s wise to have at least a couple of heartbeat scripts
somewhere off the monitoring system to make sure the box and daemon

Login_articlesDECEMBER_09_final.indd 59 10.29.09 9:27:18 AM

60 ; LO G I N : vO L . 3 4, N O. 6

are running. In the past, we had separate boxes for monitoring and logging,
with the logging box watching Nagios. These days I have multiple special-
purpose Nagios systems watching each other.

5. Have a naming Convention

I cannot stress enough how important it is to have a predictable nam-
ing convention for the hosts and services in your Nagios implementation.
The CPU_LOAD service should be called the CPU_LOAD service every-
where it is consumed, measured, reported on, and referred to throughout
your environment. It should transcend disparate monitoring systems, ex-
ecutive reports, event-correlated databases, and Web front-ends. The host
called fooServer02.hq.com should be referred to everywhere as exactly foo-
Server02.hq.com, not fooServer2, or fooserver02.hq, or any other deriva-
tion thereof. “www.foo.com” should never be referred to as “fooweb” or “the
foosite” or anything other than “www.foo.com.”

Effective monitoring systems grow. They quickly become relied upon to
prove SLA compliance and provide re-purposed availability information to
executives, customers, and other technical staff members. When this hap-
pens, programs will be written to query and move data around. As things
get bigger, ancillary systems will come in—RRDtool, Cacti, etc. If you aren’t
anal-retentive about names from the get-go, then things will quickly devolve
into a kludgey mess. The RRDtool database referring to fooServer02.hq.com
will not match the name in Nagios, or people will write scripts assuming
different names. Data tables and reports will be empty for some systems but
not others, and it will appear to be the monitoring systems’ fault for not col-
lecting data.

Worse, it’s nearly impossible to fix these sorts of problems without a proper
and agreed-upon naming convention in place. Every new system, service, or
change introduces the possibility of another statically coded name exception
in one or more of the four thousand tiny data-mover scripts. Credibility is
quickly lost in an environment like this.

Your naming convention should be so pervasive that literal service names
start leaking into human vernacular. When people start saying things like
“CPU underscore Load” in meetings, you’re on the right track.

6. Aggressively Collect Performance Data

You may have wondered in tip #2 why you would want to monitor lots of
services if you weren’t going to notify on them. Performance data is the an-
swer. There is no good reason why you shouldn’t collect performance data
on every service that you poll. In Nagios even plugins that don’t officially re-
turn performance data via the pipe syntax can be parsed directly for perfor-
mance data. Tools are available to completely automate the detection of new
services on new hosts and to create and maintain round robin databases of
performance data for them. Even if you don’t have the means or the inclina-
tion to display performance data, you should be collecting it in case you ever
want to.

For years I have used the combination of NagiosGraph [4] and Drraw [5] to
glue Nagios to RRDtool. NagiosGraph does an awesome job of completely
automating the task of getting data out of Nagios and into round robin data-
bases. It detects new services and hosts using regular expressions, and cre-
ates new RRDs as necessary. After the initial setup, you don’t need to do a
thing, and you’ll have performance data for every service on every host you

Login_articlesDECEMBER_09_final.indd 60 10.29.09 9:27:18 AM

; LO G I N : D ecem b e r 20 0 9 I vOy eu r : 7 h A b IT s O F h I G h Ly e FFec TI v e N AG I Os I m PLem e NTATI O N s 61

monitor. Drraw is a super-simple CGI-based Web app that takes a directory
of RRDs and gives you interfaces to draw anything from individual graphs
to dashboards. It is the most flexible interface for drawing graphs from
RRDs I’ve used. It makes it easy for me to quickly draw a graph that cross-
references data from all sorts of hosts in different locations, and I don’t feel
I need to keep the graph around. Usually I just draw it to get a question an-
swered and never save it at all. This sort of quick, informal graphical trou-
bleshooting has become an important tool for me, and I’d be an unhappy
sysadmin without it. I highly recommend both of these tools.

7. Implement Purpose-ful nagios Systems

Finally, if you have the resources, it’s a great idea to consider running dis-
parate Nagios daemons for different purposes. For example, we run two dif-
ferent kinds of Nagios daemons where I work, “internal” and “external.” The
internal Nagios hosts sit in the production environment with the production
systems and query the NRPE-type services: CPU, memory, swap, disk space,
ps lists, and the like. The external Nagios daemons sit on the public Inter-
net and act like customers, logging into the public Web sites, authenticating,
clicking around, doing things that humans do.

We don’t bother rolling up alerts, preferring instead to let Nagios hosts indi-
vidually contact us about things they think are wrong. In this way we get a
much better feel for not only how reliable our services are but how reliable
our Nagios hosts are, and we gain a measure of clarity about a given prob-
lem based on which hosts are complaining and about what things. A box on
an XO link in California complaining about a problem that hosts in Texas
and Pennsylvania don’t see could imply an upstream network outage, for ex-
ample. This also has a tendency to keep the server configuration simple and
transparent.

That about wraps it up. I hope these weren’t overly obvious and that you
perhaps found something that might help you out in the future. There are a
lot of places to easily go wrong implementing monitoring systems, so often-
times it’s the human equation that makes a huge difference between good
systems and bad ones. A huge difference, I dare say, between two sides of a
very fine line.

Take it easy.

referenCeS

[1] djbdns: http://cr.yp.to/djbdns.html.

[2] Holt-Winters and exponential smoothing: http://www.itl.nist.gov/div898/
handbook/pmc/section4/pmc437.htm.

[3] Dave Josephsen, “iVoyeur: Message in a Bottle—Replacing Email
 Warnings with SMS”: http://www.usenix.org/publications/login/2009-02/
pdfs/josephsen.pdf.

[4] NagiosGraph: http://sourceforge.net/projects/nagiosgraph/develop.

[5] Drraw: http://web.taranis.org/drraw/.

Login_articlesDECEMBER_09_final.indd 61 10.29.09 9:27:18 AM

62 ; LO G I N : vO L . 3 4, N O. 6

R o B e R t G . F e R R e l l

/dev/random: a realist’s
glossary of terms widely
employed in the information
security arena

Robert G. Ferrell is an information security geek
biding his time until that genius grant finally comes
through.

rgferrell@gmail.com

Accountability: the principle that actions taken on
a system can be traced to a specific user who is not
under any circumstances you.

Accreditation: a decision taken by a senior man-
agement official to allow an information system to
operate securely so long as it doesn’t negatively im-
pact the budget.

Advanced Encryption Standard: the protocol em-
ployed to produce most legislation and contractual
documents.

Antivirus: a signature-based software product
which sometimes prevents malicious code that the
black hat community has long since stopped de-
ploying from infecting an information system.

Botnet: a dynamically distributed sensor array for
monitoring the aggregate online user IQ in real
time.

Certification: the miraculous process of converting
money into expertise by filling in scan sheets.

Compensating Controls: those wholly ineffective
measures stipulated by management as a cost-sav-
ing substitute for the recommended security con-
trols.

Compromise: the point at which most senior man-
agers realize those memos they’ve been getting
from the information security staff the past few
weeks/months/years were not just instances of em-
ployee whining, after all.

Cross-Site Scripting (XSS): an undocumented fea-
ture of most Web browsers.

Cryptography: the process by which the real mean-
ing of content is obfuscated. Examples include
EULAs, legislation, and telephone bills.

Disaster Recovery Plan: a detailed strategy for deal-
ing with the impact of poor executive decision-
making.

Distributed Denial of Service: technical name for
the Worldwide Web.

Hacking: the process of employing a computer sys-
tem to some significant fraction of its full potential.

Honeypot: a site where your actions and habits are
closely scrutinized; i.e., virtually any commercial
site on the Web today.

Incident: something that happens to other people.

Incident Handling: the policies and procedures in
place to deal with user behavior.

Information Security: a dangerous, wholly imagi-
nary state achieved by “experts” through a mixture
of placebos, false promises, and outright fabrica-

Login_articlesDECEMBER_09_final.indd 62 10.29.09 9:27:19 AM

; LO G I N : D ecem b e r 20 0 9 / D e v/ r A N D Om : A re A LI sT ’s G LOssA ry 63

tion. Alternate meaning: the condition achieved when all sources of power
for the system have been disabled.

Information System Security Officer: a hapless individual charged with
maintaining a strong information assurance posture without sufficient re-
sources or management support.

Insider Threat: the elephant in the computer room.

IT Security Investment: a negatively asymptotic value tending toward zero.

Kerberos: a system for secure authentication so long as no one else is listen-
ing.

Macro Virus: a feature of most word processing and spreadsheet applica-
tions.

Man-in-the-Middle Attack: a bucket brigade where one of the participants
substitutes kerosene for water.

Memorandum of Understanding: a mostly incomprehensible document
wherein both sides agree not to take responsibility for the security of a
shared information system.

Mission Critical: any software or hardware that, if it fails to function prop-
erly, may jeopardize the bonus of an executive or senior manager.

Password: a means of identification and authentication that experiences a
dramatic loss of efficacy once it passes a length of about eight characters.

Patching: the penultimate phase of the commercial software development
lifecycle, immediately preceding cessation of vendor support to the end user.

Phishing: a means for collecting sensitive personal information over the
Web. See also: eCommerce.

Plan of Action and Milestones: a document detailing the tasks that need to
be accomplished and estimating a completion date for each, created to post-
pone as long as possible actually doing any work to achieve those goals.

Port Scan: a diversionary tactic designed to keep intrusion detection systems
and security administrators occupied while the real damage is being done
elsewhere.

Residual Risk: that which remains after the IT security budget is exhausted,
usually approximately ten working days into the fiscal year.

Responsible Individual: the person whose fault it is when something bad
happens. Also known as “that other guy.”

Risk Management: the process by which stakeholders and executive leader-
ship are made to feel all warm and fuzzy about the organization’s security
posture by the use of empty assertions, inane media-created buzzwords, and
meaningless jargon.

Secure Socket Layer: a Web-based protocol employed to give users the illu-
sion that their transactions are secure by displaying a little padlock in the
status bar. The fact that padlocks can be broken with one swing of a sledge-
hammer is generally ignored.

Social Engineering: the precept that people will tell you anything you want
to know if you ask nicely enough.

Spyware: any software that has been downloaded from the Internet, either
with or without the user’s conscious participation.

SQL Injection: a clever programming trick employed primarily by obscure
commercial sites to augment their media footprint.

Login_articlesDECEMBER_09_final.indd 63 10.29.09 9:27:19 AM

64 ; LO G I N : vO L . 3 4, N O. 6

System Administrator: see Scapegoat.

Threat Assessment: a careful perusal of the employee directory.

Training: the egregiously mistaken belief that “boot camps” are all it takes to
prepare someone for the real world.

Trojan: malware that infects your computer surreptitiously if you’re not prac-
ticing safe surfing. See also: Irony.

User:

1) the principal threat to any information system.

2) the justification for existence of any information system.

Virus: a nasty piece of malicious code that wriggles its way into your ma-
chine and disrupts its functioning to the point of non-usability. See also:
 Operating System.

Login_articlesDECEMBER_09_final.indd 64 10.29.09 9:27:19 AM

; LO G I N : D ecem b e r 20 0 9 b O O k re v I e ws 65

book reviews
e l i z a B e t h z w i c k y,
w i t h J e F F B e R G , B R a n D o n c h i n G ,
a n D R i k F a R R o w

data crunching : solve everyday
problems using java , py thon,
and more
Greg Wilson

Pragmatic Bookshelf, 2005. 188 pp.
ISBN 0-9745140-7-1

Last issue, I reviewed (and loved) Automating
System Administration with Perl. Let’s suppose
you want something similar, but you don’t like
Perl. This is the book for you. What it means
by “Java, Python, and more” is basically “Java,
Python, a little bit of Ruby, the occasional men-
tion of C.” It only brings up Perl to sneer at it.

Data Crunching doesn’t cover the same range as
Automating System Administration with Perl. Obvi-
ously, some of this is because it’s not about sys-
tem administration, but the result is that Data
Crunching focuses on data sitting still, while Au-
tomating System Administration with Perl also cov-
ers notification and data gathering techniques.
Thus, Data Crunching and Automating System
Administration with Perl both give you basics
of XML, XSLT, and SQL, but Automating Sys-
tem Administration with Perl adds DNS, SNMP,
SMTP, and log files, while Data Crunching pro-
vides more coverage of regular expressions and
of programming technique.

Data Crunching gives you the basics you need to
know in order to beat a data problem to death
with programming with an appropriate level of
elegance, and when you should choose to use a
different solution (either just doing it by hand
or doing a proper job of programming).

stand back and deliver
Pollyanna Pixton, Niel Nickolaisen, Todd Little, and
Kent McDonald

Addison Wesley, 2009. 152 pp.
ISBN 978-0-321-57288-2

I love management techniques that involve low inter-
vention, so I was predisposed to like this book, and
I liked it just as much as I hoped. But as it turns out,
my absolute favorite part is not about hands-off, high
participation management; it’s about convincing peo-
ple NOT to do things. Lots and lots of books will tell
you about ways of convincing people to do things, or
helping them choose between options, but very few
people will tell you what to do if, as far as you can
tell, your entire project is obsessed with choosing be-
tween and rank ordering things they just shouldn’t
be doing at all. It can be agonizingly difficult to con-
vince people that the problem is that they are doing a
perfectly competent, well-managed, on-time job—of
the Wrong Thing. Stand Back and Deliver will not fix
all of these situations, but it provides tools for open-
ing up the conversation to the idea of doing some
things just well enough, and the idea that you might
want to totally rethink the goals of your project.

This is a book for people who already have a grasp of
the basics of managing projects and need some new
techniques; it’s not a full toolbox, it’s a set of interest-
ing, specialized tools you may not have seen before.
But they’re very useful tools that you won’t find else-
where. If you need some new ways of looking at large
projects, check it out.

gr ace hopper and the invention of
the information age
Kurt W. Beyer

MIT Press, 2009. 380 pp.
ISBN 978-0-262-01310-9

This is a fascinating biography of Grace Hopper. It’s
an academic biography, which means that it hews
pretty carefully to knowable facts, without dramatiz-
ing (in fact, sometimes it seems to be burying them a
bit), but the facts are riveting ones if you’re at all in-
terested in the history of computing. Sometimes you
marvel at how much things have changed, and some-
times you marvel at how little they’ve changed. The
startup experience and the professional group forma-
tion experience are essentially unchanged during the
time when the computers themselves and the process
of programming them have both changed beyond all
recognition.

This is mostly about the history of computing, with
some discussion of Hopper’s position in the history of
women in technology. That doesn’t appear to be the

Login_articlesDECEMBER_09_final.indd 65 10.29.09 9:27:19 AM

66 ; LO G I N : vO L . 3 4, N O. 6

author’s main interest, but you can’t really avoid
it when you’re talking about the most famous
woman in the development of modern comput-
ing. There’s a very delicate balancing act to be
done here. Grace Hopper is sometimes thought
of as evidence that women have always been
accepted in computing, and sometimes held up
as an exceptional person who succeeded de-
spite being female and is not representative. As
always, there’s truth on both sides. The book
does a nice job of trying to provide context for
Hopper’s achievements.

One warning; the chapter labeled 1 is effec-
tively a prologue. It’s more academic and less
interesting than the rest of the book, and in-
cludes some meta-argumentation about aca-
demic biographies that will only be absorbing
to those interested in academic biography as
a genre rather than in Grace Hopper and the
history of computing. I wish I’d started with
Chapter 2, which is where the actual story
starts.

algorithms for visual design
using the processing l anguage
Kostas Terzidis

Wiley, 2009. 337 pp.
ISBN 978-0-470-37548-8

Theoretically, this book is aimed primarily
at people with design and architecture back-
grounds who are learning programming from
the ground up. This is one of those rare cases
where the title does a better job of selecting
an audience than the introduction does; don’t
try this book on somebody who can’t already
program in some language, because its intro-
duction to programming takes about 30 pages,
followed by exercises such as “Write the short-
est possible procedural code that can generate
the following number pattern using only stan-
dard arithmetic operations.” You need to be
reasonably literate in programming, mathemat-
ics, and visual design: not an expert, but com-
fortable looking at equations, or code samples,
or pictures of patterns.

If you’re in that audience (or, I suppose, if you
are strongly motivated and like a challenge),
this book does a nice job of introducing Pro-
cessing, plus some native Java constructs you
might need, and the sorts of algorithms you are
likely to want to use to do visual stuff. It covers
some stuff that Processing (reviewed earlier this
year) does not, mostly by going at breakneck
speed and including less art.

I found this book useful and enjoyed it, but it has a
number of drawbacks. To start with, don’t read the
introductions to the chapters. Introducing chapters is
always tricky, and as an author I sympathize with the
struggle to work your way into the meat of the chap-
ter. But if you’re looking for advice on writing out
files, the following is not going to entice you into the
chapter:

Memory is the mental faculty of retaining and
recalling past experience; it is the act of remem-
bering or recollecting.

You’ll also probably want another book on Process-
ing, because the author is fond of doing things the
hard way while failing to fully explain the easy way.
It’s nice to know the math behind Bézier curves, but
actually implementing them from scratch is not the
right answer in a language which has curve primi-
tives built in. Once you understand what’s going on,
use the primitives. Similarly, I’m glad to know how
to do native Java file writes from Processing, but it
would have been friendlier and more useful to start
by using the handy built-ins. It would also be friend-
lier to clearly distinguish between Processing con-
structs and Java constructs, at least so that students
can easily figure out what manual they ought to be
trying to look things up in, and they will have some
idea of what Java constructs will work.

malware forensics : investigating
and analyzing malicious code
Cameron Malin, Eoghan Casey, and James Aquilina

Syngress, 2008. 592 pp.
ISBN 978-1597492683

re v Iewed by Jeff b erg

A book running over five hundred pages might seem
a bit cumbersome, but Malware Forensics: Investigating
and Analyzing Malicious Code provides a jump start
into malicious code incident response and the issues
that encompass it. Even those involved with mali-
cious code research on a daily basis will find this
book to be a good tune-up on the methodology, tools,
and techniques implemented for effective incident re-
sponse. Covering everything from retrieving potential
artifacts from physical memory and volatile informa-
tion to minimizing changes to a system, backing up
hard drives for further analysis, and the legal ramifi-
cations of investigations, Malware Forensics discusses
all the major topics and then some.

One of the underlying concepts that echoes through-
out the book is evidence dynamics—a term that has
been coined to reflect influences that will change,
relocate, obscure, or damage evidence. This is most
easily applied to physical criminal cases in which a

Login_articlesDECEMBER_09_final.indd 66 10.29.09 9:27:19 AM

; LO G I N : D ecem b e r 20 0 9 b O O k re v I e ws 67

first responder may “disturb the scene” where a
victim is found, but translates to malicious code
incident response in the way a host or victim is
influenced as an investigation begins. Evidence
dynamics is an important concept regardless
of the specific profession a researcher embarks
upon, because it is impossible to know when
data collected will have to be used as evidence.
The authors do a great job of addressing this
topic throughout the entire book.

One excellent feature of this book is the practi-
cal case scenarios that are found in each chap-
ter and, in some cases, carried on throughout
the book. The scenarios enable the reader
to translate the concepts into the real world.
The authors also provide helpful analysis tips,
such as processing suspect files and conduct-
ing analyses in isolated environments, a tip
that seems to be common sense to most vet-
eran researchers but might not be apparent to
the newbie. Another cool aspect of this book is
that the authors constantly suggest tools that
could be helpful, along with pointers about
how to obtain the tools. However, a good part
of the book’s value lies not so much in what is
included but in what is excluded. The authors
defer to other sources on general knowledge-
base topics such as network traffic analysis aid-
ing in an investigation, as well as background
knowledge of ext2 and ext3 file systems. This is
as it should be, but the reader should be aware
of the expected prerequisite knowledge and that
he or she may need to crack a second book to
get up to speed for the provided discussion.

Malware Forensics is broken into ten chapters,
some of which cover the same general concepts
but concentrate specifically on Windows or
Linux. For example, Chapters 1 & 2 cover “Vol-
atile Data Collection & Examination on a Live .
. .” Windows or Linux system, respectively. The
two chapters explain the methodology, tools,
and techniques involved with data collection
during the initial portion of a response (e.g.,
documenting network connections, logged-on
users, open ports, process information, etc.),
all while keeping evidence dynamics in mind,
documenting steps and forensic preservation
for deeper analysis. Chapters 4 & 5 discuss the
“post-mortem” phase of the analysis—gleaning
information from the preserved copies of data
and introducing a methodology that is repeat-
able and used in either a random infection or a
test infection, where a system is purposely in-
fected to better understand the piece of code.
Chapters 7 & 8 cover “File Identification &

Profiling . . .” The authors discuss a methodology,
fairly similar across Windows and Linux, for pull-
ing malicious executables or files related to them off
the hard drive and “profiling” them—i.e., getting the
hash, determining file type, scanning with a mali-
cious code scanner, and running strings for refer-
ences or keywords to assist in classifying the file and,
ultimately, the code. Chapters 9 & 10, “Analysis of a
Suspect Program . . . ,” tie a lot of the concepts cov-
ered throughout the book together into a chapter-long
case study of a potential malicious program.

The only two chapters that do not focus on Windows
or Linux specifically are 3 and 6. Chapter 3 discusses
the methodology, techniques, and different tools nec-
essary for acquiring and analyzing memory for ma-
licious code evidence on both Windows and Linux
systems. Chapter 6 is dedicated to the legal aspects
of the field, covering issues such as who has jurisdic-
tional authority to conduct an investigation, ensuring
that an investigation is performed such that the evi-
dence is admissible, and providing basic guidance for
instances where evidence may exist outside jurisdic-
tional authority and how to obtain it. Though the au-
thors stress the need to consult with legal teams, they
provide a good base of issues to be aware of.

Malware Forensics will dive as deep as analyzing a
suspect program or process in a disassembler to un-
derstand what a program is doing, but it doesn’t re-
quire a reverse engineer’s background to gain a good
amount of value from reading it. However, the reader
should be prepared to spend time with the tools and
techniques discussed. If you are anything like me,
you’ll benefit much more by doing so. And if you are
truly worried about the length, practicing with the
tools after each chapter will break up any monotony
of reading.

sex y web design : creating
 interfaces that work
Elliot Jay Stocks

SitePoint, 2009. 172 pp.
ISBN 978-0980455236

re v Iewed by b r a n d o n ch In g

I do not have a single creative bone in my body! OK,
that’s probably an exaggeration, but when it comes to
designing an innovative, attractive, and usable Web
site, I definitely could use a helping hand. As a Web
developer, I am generally responsible for the data in
our sites rather than the look and feel; that’s the UI
team’s domain!

However, not all developers have access to profes-
sional UI resources and, depending on the situation,
many of us often wear a number of different hats.

Login_articlesDECEMBER_09_final.indd 67 10.29.09 9:27:19 AM

68 ; LO G I N : vO L . 3 4, N O. 6

As such, Sexy Web Design is a book that seems
made for folks like me who know a little some-
thing about the basics of Web design, but are
nowhere near creative experts.

The primary focus of Sexy Web Design is on
the process and fundamentals of professional
design rather than specific HTML and CSS
techniques. As such, there is a heavy focus on
planning and organizing a Web site and little
coverage of actual coding. In fact, there is little
to no CSS in the book. You may now be asking
yourself, what use is a design book without any
code samples? In short, quite a bit.

The author takes you through all phases of
planning a site design, from research and cus-
tomer requirements to site mapping, wire
framing, usability, composition, navigation,
and his keen emphasis on aesthetics. The text
is an ideal companion for designers and de-
velopers who are new to interacting directly
with customers, as Stocks covers the profes-
sional give-and-take process of designer/cus-
tomer interactions. While coverage of each
topic is rather short, it is to the point and
seems to cover the requisite ground for a basic
introduction.

There are many good visual examples of the
principles Stocks is introducing, and he does
point the reader to more detailed texts and Web
sites for further reading. The text also provides
a number of general considerations that people
not trained in design could be unfamiliar with,
including composition, mood, contrast, volume
and depth, typography, and textures.

Overall, the book was very readable and ap-
proachable. I would recommend the book to
experienced Web developers who don’t dabble
much in site design or customer interactions
(but know the technical details of HTML and
CSS) and for those looking for a general intro-
duction to the planning and creative consider-
ations of designing a Web site from the ground
up.

I would say that the biggest disappointment of
the book was its brevity. Stocks covers a lot of
ground in only 172 pages, and with a lot of that
real estate used up with visual aids and ex-
amples, it doesn’t leave much for explanation.
However, in combination with other more de-
tailed and technical resources, it does creatively
address the often neglected planning, usability,
and customer interaction aspects of a bottom-
up site design, and for that, I feel that it is a
book worthy of consideration.

web 2 .0 architectures : what entre-
preneurs and information archi-
tects need to know
James Governor, Dion Hinchcliffe, and
Duane Nickull

O’Reilly, 2009. 271 pp.
ISBN 9780596514433

re v Iewed by b r a n d o n ch In g

There are many Web 2.0 books out there these days,
but most seem to address the Web 2.0 concept in a
business or abstract sense. Web 2.0 Architectures by
Governor et al. is written for “in the trenches” IT pro-
fessionals who are charged with the creation and ex-
ecution of next-generation Web platforms.

Web 2.0 Architectures takes an in-depth look at system
architectures from a practical and theoretical per-
spective relative to Web 2.0 strategies. The book can
be seen as being organized into three general areas:
introduction and models, architecture patterns, and
building for the future.

The first six chapters take you deep into the techni-
cal details of Web 2.0 architecture, network, and de-
sign principles. The real heavyweight of this section
is Chapter 3, where the authors compare and contrast
the Web 1.0 and Web 2.0 design patterns of some
major companies and concepts in tech, including
Akamai/BitTorrent, MP3.com/Napster, and CMSes/
wikis. The comparisons are detailed and informative,
outlining the major shifts in thinking and design be-
tween the approaches. There are plenty of diagrams,
flow charts, and network models to emphasize the
message. After this section, the reader will have a
solid foundation for the more theoretical concepts to
come.

Chapter 7, comprising about half the book’s page
count, is where the authors deliver the main content:
detailed coverage of Web 2.0 architecture patterns.
The authors discuss twelve patterns in detail, includ-
ing an explanation of the business problem, solution,
behavior, implementation, consequences, and more.
Again, there is no shortage of charts and diagrams
to help impress upon the reader the lessons being
taught, and superb lessons they are indeed.

Finally, Chapter 8 attempts to tie up the loose ends,
describing where Web 2.0 is going and identifying
offshoots of next-generation platforms such as Adver-
tising 2.0 and Government 2.0. This chapter was not
very strong, and I didn’t find much useful informa-
tion that was relevant to the rest of the book.

Overall, Web 2.0 Architectures is well worth a read for
its comparative analysis of Web 2.0 models and its
detailed explanation of Web 2.0 patterns. This book

Login_articlesDECEMBER_09_final.indd 68 10.29.09 9:27:19 AM

; LO G I N : D ecem b e r 20 0 9 b O O k re v I e ws 69

is ideal for senior-level information architects and
technically minded entrepreneurs who are looking to
build a Web 2.0 system architecture from the ground
up. The language and topics covered are definitely
on the technical side, so this book may be out reach
for some, but the writing is clear and professional. If
you (or your business) are looking to adopt a more
advanced and focused architecture but need a bit of
conceptual and theoretical guidance, this book is def-
initely where you should start.

iwork ’09 : the missing manual
Josh Clark

O’Reilly Media/Pogue Press, 2009. 896 pp.
ISBN 978-0-596-15758-6; eBook 978-0-596-80341-4

re v Iewed by rIk fa rrow

I wanted to try an eBook, and I also needed to know
more about Keynote, the presentation software that
Al Gore made famous. I had used Keynote to make
several presentations, and can say that it is mostly in-
tuitive and easy to use. But there were certainly some
aspects that just had me baffled.

iWork covers Pages, Keynote, and Numbers, the
Word, PowerPoint and Excel-like programs from
Apple. I focused on the Keynote section, as that is
what I was using, and quickly found that I liked
reading the book. Clark starts the Keynote section
with advice about creating presentations that I ac-
tually found useful. Instead of skipping over what
would be filler in another book, I read most of this
chapter of good advice.

Getting into the nitty-gritty, I was able to quickly
find answers to things that you might think would
be easy to do, like printing a two-up (two slides per
page) version of your slides. I had puzzled over the
Print dialogue several times, but Clark explains that
using a menu and selecting the Layout tab makes
it easy to do this. I had never used animation, and
again Clark made this easy to understand.

iWork does have features that overlap between appli-
cations, such as fonts and drawing tools, so the Key-
note section does not stand alone. But that is not a
failure of the book, just me wanting to get answers in
a hurry.

I am still not comfortable with eBooks: laptops do
not work that well for reading in a comfy chair or in
bed, the screen format is not portrait but landscape,
the laptop will start to burn your skin, among other
interesting failings. Owning a Kindle, which implies
that I can no longer lend a book to a friend without
lending my entire library, is not the model for me. I
did try borrowing the large LCD display known as a
TV these days, but again the aspect is landscape, not
portrait. I found that the eBook was good as a refer-
ence and not so good for sitting down and reading—
nowhere near as convenient to use as a plain old
paper book.

I can recommend iWork ’09, the book, as a useful
companion to the Apple apps, and well worth the
price for the time saved searching for answers to sim-
ple questions, as well as for Clark’s useful advice.

Login_articlesDECEMBER_09_final.indd 69 10.29.09 9:27:19 AM

USENIX
notes

70 ; LO G I N : vO L . 3 4, N O. 6

U S e N I X b Oa r D O f D I r ec tO r S

Communicate directly with the
 USENIX Board of Directors by
writing to board@usenix.org.

President

Clem Cole, Intel
clem@usenix.org

Vi ce President

Margo Seltzer, Harvard University
margo@usenix.org

secre ta ry

Alva Couch, Tufts University
alva@usenix.org

tre a surer

Brian Noble, University of Michigan
brian@usenix.org

direc tor s

Matt Blaze, University of Pennsylvania
matt@usenix.org

Gerald Carter,
Samba.org/Likewise Software
jerry@usenix.org

Rémy Evard, Novartis
remy@usenix.org

Niels Provos, Google
niels@usenix.org

e xecu ti V e direc tor

Ellie Young,
ellie@usenix.org

US e N IX m e m b e r b e N e f It S

Members of the USENIX Association
 receive the following benefits:

free subscrIp tIon to ;login:, the Associa-
tion’s magazine, published six times
a year, featuring technical articles,
system administration articles, tips
and techniques, practical columns
on such topics as security, Perl, net-
works, and operating systems, book
reviews, and summaries of sessions
at USENIX conferences.

access to ; lo gIn : online from October
1997 to this month:
www.usenix.org/publications/login/.

dIscounts on registration fees for all
 USENIX conferences.

specIal dIscounts on a variety of prod-
ucts, books, software, and periodi-
cals: www.usenix.org/membership/
specialdisc.html.

the rIght to vote on matters affecting
the Association, its bylaws, and elec-
tion of its directors and officers.

for more Infor m atIon regarding mem-
bership or benefits, please see
www.usenix.org/membership/
or contact office@usenix.org.
Phone: 510-528-8649

2 01 0 e Lec tI O N fO r th e US e N IX b Oa r D
O f D I r ec tO r S

Ellie Young, Executive Director

The biennial election for officers and
directors of the Association will be held
in the spring of 2010. A report from the
Nominating Committee will be emailed
to USENIX members and posted to the
USENIX Web site in December 2009 and
will be published in the February 2010
issue of ;login:.

Nominations from the membership are
open until January 6, 2010. To nominate
an individual, send a written statement
of nomination signed by at least five
(5) members in good standing, or five
separately signed nominations for the
same person, to the Executive Director
at the Association offices, to be received
by noon PST, January 6, 2010. Please
prepare a plain-text Candidate’s Statement
and send both the statement and a 600
dpi photograph to jel@usenix.org, to be
included in the ballots.

Ballots will be mailed to all paid-up
members in early February 2010. Bal-
lots must be received in the USENIX
offices by March 17, 2010. The results of
the election will be announced on the
USENIX Web site by March 26 and will
be published in the June issue of ;login:.

The Board consists of eight directors, four
of whom are “at large.” The others are the
president, vice president, secretary, and
treasurer. The balloting is preferential:
those candidates with the largest numbers
of votes are elected. Ties in elections for
directors shall result in run-off elections,
the results of which shall be determined
by a majority of the votes cast. Newly
elected directors will take office at the
conclusion of the first regularly scheduled
meeting following the election, or on July
1, 2010, whichever comes earlier.

Login_articlesDECEMBER_09_final.indd 70 10.29.09 9:27:19 AM

; LO G I N : AuGusT 20 0 9 use N Ix N OTes 71

USacO te a m S S h I N e

Dr. Rob Kolstad, Head Coach, USA
Computing Olympiad

USENIX-sponsored USA Comput-
ing Olympiad teams won the team
championship at the Central European
Olympiad on Informatics and placed
second at the world championship IOI
in Plovdiv, Bulgaria.

After a very competitive training camp
held for the USA’s top 15 competitors
during the first week of June at the
University of Wisconsin—Parkside,
extra funding enabled our traveling
teams to participate in two interna-
tional championships.

Coaches Rob Kolstad and Jacob
Steinhardt traveled to Târgu-Mureş,
Romania, for the July 8–14 Central
European Olympiad on Informatics.
The CEOI is occasionally persuaded
to invite the USA as a guest team; we
think of ourselves as sort of the west-
ern region of Central Europe. A total
of 57 competitors from 11 countries
converged on Romania for the intense
competition.

This Olympiad was just 100km east of
the location of our previous CEOI in
Romania in Cluj, and still in the heart
of Transylvania. Dracula’s influence
was felt throughout our stay, especially
when visiting tourist spots.

Compared to the 300+ competitors
at the international championships

(IOI), these competitions are relatively
intimate and much more challeng-
ing for medals. Because of the limited
number of medals available (only 1/12
of participants earn Gold medals; 2/12
for Silver; 3/12 for Bronze) and about
the toughest competition in the world
(except for China and a few individu-
als in random countries), the most
prestigious medals are very difficult to
win. The intimacy does enable the stu-
dents to get to know each other much
better, especially since the cultures are
dramatically less diverse and easier to
absorb.

The CEOI results were fabulous! Four
USA students competed at the CEOI.
IOI alternate Michael Cohen had a
great finish in his first international
outing, and three of our team won
medals, as well as placing in the top
10:

Gold Medal, #1, Neal Wu, from ■■

Baton Rouge, LA
Silver Medal, #6, Michael Cohen, ■■

from Chevy Chase, MD
Silver Medal, #8, Brian Hamrick, ■■

from Annandale, VA
#36, Travis Hance, from West ■■

Chester, OH

Neal’s 400 points were 60 more than
the second place winner’s (a stunning
victory margin), and he was one of
only three students earning above 300.

Just a month later, Coaches Rob Kol-
stad, Brian Dean from Clemson, and

Richard Peng from the University of
Waterloo escorted Neal, Brian, Travis,
and Wenyu Cao from Belle Mead,
NJ, to the International Olympiad
on Informatics in beautiful Plovdiv,
Bulgaria. (Wenyu had been unable to
attend the CEOI, because it conflicted
with the International Math Olympiad
where he was representing the USA in
an allied competition.)

The two-hour bus trip from the airport
in Bulgaria’s capital of Sofia wound
through oak- and fir-covered rolling
hills. The decreasing angle of the sun
really brought out the natural beauty
of central Bulgaria (just the first of
many aspects of the trip that exceeded
any rational expectations).

The coaches’ hotel, seven minutes away
from the students’ hotel, sported rooms
that were nicer than any non-suite I’ve
ever stayed in. A relatively large ante-
room led to the main bedroom with
its living area slightly separated from
the sleeping section. Windows looked
out over the four swimming pools,
with the city lights glimmering in the
distance. Many meals were served
poolside from a buffet with more than
100 items, almost all of which I found
edible! What a treat for this year’s IOI
accommodations.

Like the CEOI, two five-hour competi-
tions (each with one easy and three
extremely challenging tasks) were
interspersed with tours of the re-

CEIO team, left to right: Michael Cohen, Travis
Hance, Brian Hamrick, Neal Wu, Coach Jacob
Steinhardt

IOI team, left to right: Travis Hance, Wenyu Cao,
Brian Hamrick, Neal Wu

Login_articlesDECEMBER_09_final.indd 71 10.29.09 9:27:20 AM

72 ; LO G I N : vO L . 3 4, N O. 4

gion and of the city. The “old city”
adjoined the students’ hotel, so sight-
seeing was without stress.

Our students performed extremely
well in the event:

Gold Medal, #7, Neal Wu, 665 ■■

points
Gold Medal, #15, Brian Hamrick, ■■

642 points
Silver Medal, #28, Wenyu Cao, 613 ■■

points
Silver Medal, #40, Travis Hance, ■■

566 points

Wenyu was just three points away
from a gold medal. The USA’s total
points ranked second among all coun-
tries, exceeded only by powerhouse
China.

The awards ceremony was held in
a 2,000-year-old Roman amphithe-
ater. Not only were our competitors
honored by medals, but Coach Kolstad
was awarded the Distinguished Service
Medal for contributions to the IOI and
training of competitors from countries
around the world.

All in all, a fabulous end to a super
season for USACO.

USENIX is a principal sponsor of
USACO, along with Booz Allen Hamil-
ton and IBM.

The USA Computing Olympiad
continues to hold monthly competi-
tions for three divisions of competitive
programmers. This year’s contests have
each drawn 1,000 or more competitors
from more than 60 countries. Thanks
to USENIX and its membership for
continuing sponsorship of this great
program.

Statement of Ownership, Management, and Circulation, 10/1/09
Title: ;login: Pub. No. 0008-334. Frequency: Bimonthly. Subscription price $125.
Office of publication: USENIX Association, 2560 Ninth Street, Suite 215, Berkeley, CA 94710.
Headquarters of General Business Office of Publisher: Same. Publisher: Same.
Editor: Rik Farrow; Managing Editor: Jane-Ellen Long, located at office of publication.
Owner: USENIX Association. Mailing address: As above.
Known bondholders, mortgagees, and other security holders owning or holding 1 percent or more of total amount of
bonds, mortgages, or other securities: None.
The purpose, function, and nonprofit status of this organization and the exempt status for federal income tax purposes
have not changed during the preceding 12 months.

Extent and nature of circulation Average no. copies each issue No. copies of single issue (Oct. 2009)
 during preceding 12 months published nearest to filing date of 10/1/09

A. Total number of copies 5745 5508
B. Paid circulation
 Outside-county mail subscriptions 3420 3181
 In-county subscriptions 0 0
 Other non-USPS parcel distribution 1684 1698
 Other classes 0 0
C. Total paid distribution 5104 4879
D. Free distribution by mail
 Outside-county 0 0
 In-county 0 0
 Other classes mailed through the USPS 76 73
E. Free distribution outside the mail 341 300
F. Total free distribution 417 373
G. Total distribution 5521 5252
H. Copies not distributed 224 256
I. Total 5745 5508
Percent Paid and/or Requested Circulation 89% 89%

 I certify that the statements made by me above are correct and complete.
 Jane-Ellen Long, Managing Editor

Login_articlesDECEMBER_09_final.indd 72 10.29.09 9:27:20 AM

; LO G I N : D ecem b e r 20 0 9 cO N fe re N ce re p O rt s 73

18th USENIX Security Symposium
Montreal, Canada
August 10–14, 2009

opening rem arks and awards

Summarized by Rik Farrow

Fabian Monrose began with the statistics: 176 papers
were submitted to the symposium. One was withdrawn
and three rejected for double or triple submissions to
conferences (resulting in the papers being automatically
rejected from all the conferences). Three or more people
reviewed each paper, with Monrose reading the vast
majority of these papers. Many submissions were being
edited right up to the deadline. By the time of the PC
meeting, there were only 62 papers left to discuss. All
PC members attended the meeting in Chapel Hill, and
Monrose said there were some real battles there (beside
the NCAA tournament). By the end of the meeting, 26
papers were accepted.

There were 84 applications for student grant support; the
USENIX Board provided $50,000. The two Outstanding
Student Paper awards were “Compromising Electromag-
netic Emanations of Wired and Wireless Keyboards”
(Martin Vuagnoux and Sylvain Pasini, LASEC/EPFL) and
“Vanish: Increasing Data Privacy with Self-Destructing
Data” (Roxana Geambasu, Tadayoshi Kohno, Amit A.
Levy, and Henry M. Levy, University of Washington).

keynote address

Android: Securing a Mobile Platform from the Ground ■■

Up
Rich Cannings, Android Security Leader, Google

Summarized by Italo Dacosta (idacosta@gatech.edu)

With the increase in the adoption of smartphones as well
as in our reliance on these devices, they will undoubtedly
become the next target of cybercriminals. This makes
the security of the mobile operating systems an area of
critical importance. Rich Cannings described the main
features of Android, Google’s open source mobile OS,
and pointed out that its openness differentiates Android
from other popular mobile OSes. In Android, any user
can develop applications, because there is no centralized
software signing authority, but this openness also makes
Android more vulnerable to malicious software. Being
aware of this risk, Android developers follow a security
strategy based on four components—prevent, minimize,
detect, and react—to protect Android’s core components,
applications, and user data.

To prevent possible attacks based on the exploitation of
unknown vulnerabilities, Android has partnered with
security experts to target high risk areas such as re-
mote attacks and vulnerabilities in media codecs. Being

conference reports

thaNks tO Our summarIzers

18th USENIX Security Symposium 73 .
Prithvi Bisht
John Brattin
Kevin Butler
Martim Carbone
Shane Clark
Italo Dacosta
Todd Deshane
Rik Farrow
Kalpana Gondi
Salvatore Guarnieri
Stephen McLaughlin
Andres Molina
Michalis Polychronakis
Ben Ransford
Asia Slowinska
Patrick Wilbur

2nd Workshop on Cyber Security
Experimentation and Test (CSET ’09) 101
Eric Eide
Arun Viswanathan

4th USENIX Workshop on Hot Topics in
Security (HotSec ’09) .108
Tamara Denning
Akshay Dua
Michael Sirivianos

09_DECEMBER_summaries.indd 73 10.29.09 10:48:10 AM

74 ; LO G I N : VO L . 3 4, N O. 6

an open source OS, Android does not rely on obscurity
techniques for its security. In addition, well-known security
mechanisms such as stack overflow protection (ProPolice)
and heap protection (dlmalloc) have been implemented.
Address Space Layout Randomization (ASLR) has not been
implemented yet due to some platform constraints but is
expected to be added in the future.

Cannings said that not only is it unfeasible to prevent all the
possible security vulnerabilities in Android, but attackers do
not always even need vulnerabilities to compromise an OS;
social engineering techniques and bugs can also be used
to install malware. Therefore, it is important to minimize
the impact of compromised applications. For this, Android
tries to extend the Web security model to the OS, using an
application sandbox model for separation of privileges (each
application runs with its own UID and virtual machine).
Applications are locked down to their minimal functional-
ity, and permissions are required to grant more access to
resources, a whitelist model. Users decide to give permis-
sions or not to the applications when they are installed. A
challenge in this area is to determine the right number of
permissions that should be asked of the user (granularity)
because too many questions could cause the user to ignore
this mechanism. In addition, media codec libraries are
given lesser privileges than in other OSes, given the long
history of vulnerabilities in media codecs.

To detect attacks, Android uses activities such as devel-
oper education, code audits, fuzzing tests, and honeypots.
Because Android is an open source OS, anybody can detect
and report security problems: users, developers, security
researchers, etc. External reports from members of the
security community have helped Android’s developers fix
several security problems. Also, users are encouraged to
report suspicious applications in the Android Market. Re-
ported applications are analyzed by Android personnel and
removed from the Market if they are considered malicious.

Android relies on auto-updates to distributed security
patches to fix critical security vulnerabilities. Android uses
an over-the-air update system where user interaction is
optional and no additional cables or computers are required,
resulting in a high update rate. However, the main chal-
lenge to apply security updates is the testing of the updates
and the coordination with different mobile network provid-
ers. For mobile carriers, updates are a concern because they
could affect the availability of a great number of devices,
resulting in financial and customer service problems. There-
fore, before being released, security updates should be care-
fully tested and approved by each mobile carrier, but this
process can delay the release of the update considerably.

During the Q&A, Rik Farrow asked about the prevention
of privilege escalation attacks. Cannings answered that one
way to mitigate this type of attack is to reduce the num-
ber of processes running with root privileges. In Android,
only ping and zygote (the application launcher) run with
root privileges. Regarding the support of security hardware
mechanisms, Cannings commented that they are evaluating

the use of the execution prevention bit and other hardware
mechanisms. How many of Android’s 5 million lines of
code were written in type-safe language? Most of the An-
droid code is written in Java, not only for security but also
for compatibility purposes. Finally, Gary McGraw asked
what percentage of the vulnerabilities discovered in Android
were discovered externally versus internally. The number
of vulnerabilities discovered internally was several orders of
magnitude greater than those discovered externally.

at tacks on privac y

Summarized by Shane Clark (ssclark@cs.umass.edu)

Compromising Electromagnetic Emanations of Wired and ■■

Wireless Keyboards
Martin Vuagnoux and Sylvain Pasini, LASEC/EPFL

Awarded Best Paper!

According to Martin Vuagnoux, the authors chose the
keyboard as an attack vector because it is the first device
in a system that handles sensitive data such as passwords
electronically; security is not a priority in their design.
They chose to examine electromagnetic emanations because
many other attack vectors for I/O devices have been dem-
onstrated in the past, such as electromagnetic leakage from
displays and acoustic emanation from keyboards.

To provide background for the work, Vuagnoux next intro-
duced radiative emanations and their capture. Radiative em-
anations are those requiring the source to act as an antenna.
These are the emanations of interest for attacks, as others
require physical contact with a wire. Radiative emanations
can be further broken down into direct emanations (those
caused by a keypress or other action) and indirect emana-
tions (those from carrier signals, modulation schemes, etc).
To observe these emanations, the authors chose to attempt
to capture the entire spectrum of interest simultaneously in
order to capture the maximum amount of information with-
out scanning. They found that they were able to achieve this
using a large conical antenna and a 5 GSa/s oscilloscope.
After capturing the signals, they examined the Fourier
transform of each to identify interesting characteristics.

Vuagnoux moved on from background and acquisition
methodology to describe three attacks that are effective
only against PS/2 keyboards. The first attack relies on the
fact that PS/2 keyboards modulate a scan code onto a clock
signal by pulling down a data line repeatedly. It is possible
to exploit this direct emanation by observing the series of
falling edges that this creates in the modulated signal, but
this results in aliasing among the scan codes. The authors
constructed a table of all keys and their corresponding
signatures, which allowed them to reconstruct words typed
based on the sequence of key presses. The second attack
simply filters the same information and computes a dis-
tinct threshold in order to remove aliasing. The final PS/2
attack actually demodulates the captured signal in order to
remove noise from the clock. The only USB attack relies on

09_DECEMBER_summaries.indd 74 10.29.09 10:48:10 AM

; LO G I N : D ecem b e r 20 0 9 cO N fe re N ce re p O rt s 75

the use of a matrix scan loop to poll pressed keys. Which
key has been pressed can be discerned from the delay as-
sociated with scan reporting. This attack is also effective
against PS/2 and wireless keyboards. All of the attacks were
effective in realistic environments, including through walls,
though at ranges sometimes less than a few meters. Surpris-
ingly, all attacks were much more effective when tested in
an apartment building, owing to construction features such
as common grounds and water pipes.

Xiaofeng Wang (IBM) asked what the implications are of
multiple users typing in the same space simultaneously.
Vuagnoux responded that they were able to fingerprint in-
dividual keyboard models based on clock signal differences.
Perry Metzger asked a similar question, emphasizing the
problem of separating users whose input is captured simul-
taneously, to which Vuagnoux responded that this should
be possible in theory based on keyboard fingerprinting, but
presented a technical problem because they were unable to
actually trigger data capture accurately with current hard-
ware. This is something that the authors are still working
on. Had the authors attempted similar attacks against mice?
They hadn’t and, in fact, removed mice during their experi-
ments to minimize noise. Had the authors attempted any
countermeasures, such as wrapping a keyboard in shielding
material? A few keyboards implement shielding based on
the results of the TEMPEST program, but they cost hun-
dreds of dollars and the authors were not able to purchase
one without a military affiliation. Attempts by the authors
to shield a keyboard themselves sometimes resulted in more
visible emanations.

Peeping Tom in the Neighborhood: Keystroke ■■

 Eavesdropping on Multi-User Systems
Kehuan Zhang and XiaoFeng Wang, Indiana University,
 Bloomington

Kehuan Zhang reported a new shared information vulnera-
bility present on multi-user UNIX-like systems and present-
ed an example attack on Linux. Zhang started by introduc-
ing legitimate uses of shared information on Linux systems
and procfs, the mechanism for this sharing. It is common
for users on a system to run commands such as top in order
to see which users are logged in to a system, what processes
are running, and what resources they are consuming. This
information-sharing is enabled by the process file system,
procfs, which is a pseudo file system that is globally read-
able. It contains per-process data such as image name, start-
ing address of the stack, and current stack pointer (ESP).

Zhang next discussed the attack, which performs keystroke
inference using the information available in procfs. Before
the attack can be mounted, the attacker must analyze the
victim process offline and build a trace of the ESP variation
in procfs as a result of user input. The attack also requires
a multi-user system, the ability to execute programs, and a
multicore CPU. These capabilities are necessary because the
attacker must run a shadow process concurrently with the
victim process in order to observe changes in procfs. The
shadow process produces a partial ESP trace (as it is not

possible to catch all changes reliably), which is then con-
verted into a longest common subsequence problem in order
to extract keystroke timings. The timings are then given as
input to a Hidden Markov Model (HMM) to perform key
inference. Multiple timing traces are produced in order to
increase HMM accuracy.

Zhang concluded by presenting performance results and
discussing countermeasures. He noted that the percent-
age of keystrokes detected decreases rapidly as CPU usage
increases for some applications, but with CPU usage under
5%, all of the tested applications were vulnerable. Zhang
showed server traces indicating that three test machines
averaged under 4% CPU usage, to illustrate the feasibility of
the attack on real-world systems. He next presented results
for password inference using 50 keystroke captures. The
authors’ keystroke inference system was able to reduce the
password search space to between 0.05% and 7.8% of the
initial space. Zhang noted that a kernel patch to remove
the compromising information leakage is the short-term
solution, but suggested a complete evaluation of informa-
tion leakage through shared information channels. Someone
asked if this attack can be used to capture SSH keys, and
Wang answered that it can.

A Practical Congestion Attack on Tor Using Long Paths■■

Nathan S. Evans, University of Denver; Roger Dingledine,
The Tor Project; Christian Grothoff, University of Denver

Nathan Evans gave a talk on a new Tor attack which allows
the attacker to determine the path data travels through the
network. The Tor system is the most popular free software
used to achieve anonymity on the Internet. Tor uses onion
routing, which forwards data through the network, peel-
ing off a layer of encryption at each node. Each node in the
network knows only the previous hop and the next hop.
This is a key security goal for Tor, as the discovery of a
complete circuit through the network makes it easier to de-
anonymize the originator of the traffic. Evans noted three
design choices made by the Tor project that are relevant to
his attack. First, no artificial delays are induced on any con-
nection. Second, path length is set at a small finite number
(3). Third, paths of arbitrary length through the network
can be constructed.

Evans described the attack and countermeasures in more
detail. The attacker must first operate a Tor exit node that
is in use by the victim. Next, the attacker uses a malicious
client to create a long loop in the network before connecting
to the requested server. This allows the attacker to load the
intermediate nodes as desired. Finally, the exit node injects
a JavaScript ping command into the traffic that reports back
to the malicious client and is used to measure the latency
along the circuit as the attacker loads possible first hop
routers. Based on the observed latency, the attacker can
determine which node is the first hop. Since the attacker
also operates the exit node, she can determine what server
the victim is connecting to. Evans showed that attack runs
are clearly distinguishable from normal Tor traffic in testing
and that the attack is effective even against high bandwidth

09_DECEMBER_summaries.indd 75 10.29.09 10:48:10 AM

routers. Finally, he presented several possible countermea-
sures, including the prohibition of infinite path lengths,
which the Tor developers have implemented.

invited talk

The Building Security in Maturity Model (BSIMM)■■

Gary McGraw, CTO, Cigital, Inc., and Brian Chess,
Chief Scientist, Fortify Software

Summarized by Salvatore Guarnieri
(sammyg@cs.washington.edu)

The Building Security in Maturity Model (BSIMM, http://
bsi-mm.com/) ranks your corporation’s security practices
against those of other corporations. This work differs largely
from previous work in that it does not advocate security
practices based on what seems like a good idea; it doesn’t
actually recommend anything. The model simply compares
corporations’ security practices. It is up to the users of the
model to determine if they want to be like the organizations
they are being compared to.

BSIMM is based on a study of nine large companies: Adobe,
Depository Trust and Clearing Corporation (DTCC), EMC,
Google, Microsoft, QUALCOMM, Wells Fargo, and two
anonymous companies. BSIMM analyzed what these cor-
porations were doing for software security and found some
expected and some unexpected results. Two basic and ex-
pected findings were that security was an emergent property
of the entire system and that secure software requires deep
integration with the Security Development LifeCycle (SDLC).

Since BSIMM is a model that compares company practices,
one would think that the companies one is compared to
would be important. For example, an independent software
vendor (ISV) would have different security concerns and
practices from those of a financial institution. The BSIMM
study actually found that this is not the case. Financial
institutions and ISVs have approximately the same software
security model. Additionally, the size of the companies in
the study ranged from hundreds to thousands of software
developers. In all the companies, the size of the Software
Security Group (SSG) was 1% of the total software develop-
ers. This doesn’t mean that the correct SSG size is 1% of
developers, but if you like the security of these nine compa-
nies, maybe 1% is a pretty good target size for your SSG.

The model is a set of over 100 activities. You mark which
activities your company does and then compare your results
to the average of the nine studied companies. Each activity
has a ranking associated with it that describes how easy it
is to do. This ranking is also interpreted as how serious or
mature a company is in a certain area of security. The end
result is a simple comparison, but the speakers have devel-
oped a visualization that easily shows how one organization
compares to the average. The model is available from the
BSIMM Web site for free under a creative commons license.

There were a few surprising discoveries from the study,
including the top 10 most unexpected results. These are all

available on the Web site, but there were a few very inter-
esting things that everybody does. First, everyone is doing
code review, using tools and, most importantly, looking for
ways to automate the process. Second, SSGs do architectural
analysis. Architectural analysis is difficult, and product
teams have a hard time doing it, so SSGs need to help out.
Third, every organization has an SSG, but each one had a
different way of starting its SSG.

More companies need to be studied. Nine is a good starting
point, but few statistics are valid with only nine data points.
They are already up to 17 companies with their current
work and they keep looking to expand. As they get more
companies, they can start to say more interesting things,
such as comparing big companies to small companies.

memory safet y

Summarized by Stephen McLaughlin (smclaugh@cse.psu.edu)

Baggy Bounds Checking: An Efficient and Backwards- ■■

Compatible Defense against Out-of-Bounds Errors
Periklis Akritidis, Computer Laboratory, University of Cam-
bridge; Manuel Costa and Miguel Castro, Microsoft Research,
Cambridge; Steven Hand, Computer Laboratory, University of
Cambridge

Periklis Akritidis described a technique called baggy
bounds checking, which aims at increasing the efficiency
of array bounds checking. Because type-unsafe languages
such as C do not perform array bounds checking, previous
research efforts have been made to add it to the language.
Traditional backwards-compatible techniques (e.g., splay
trees) require several memory accesses per check or use too
much memory. To address this issue, the authors suggest
allocating strategically sized buffers to make bounds checks
more efficient.

The presented technique, baggy bounds checking (BBC),
pads objects upon allocation to a size that is a power of
two. Bounds checking is then performed, not on the object
boundaries but on the allocation boundaries, which can be
calculated from a pointer into the object and a single table
lookup. Because BBC partitions memory into slots that are
powers of two in size, the base address of an allocation
can be found by clearing the lowest-order lg(size) bits of a
pointer to an object, where lg is the log base two. A pointer
to an object is used to index a global array that contains
the log base two of the size of the containing slot, requir-
ing only one byte to track the bounds of each allocation. Of
course, this technique cannot detect memory accesses that
are within an allocation but outside an object. This is not a
problem, as the padded regions are cleared upon allocation
to remove any sensitive data from previous allocations.

BBC is implemented as a compiler extension that works
with the intermediate representation of a C program to
modify memory allocation and add bounds checks. Heap
allocation is modified to use buddy allocation at runtime,
while globals are modified at compile time and the heap

76 ; LO G I N : VO L . 3 4, N O. 6

09_DECEMBER_summaries.indd 76 10.29.09 10:48:10 AM

; LO G I N : D ecem b e r 20 0 9 cO N fe re N ce re p O rt s 77

allocator is modified in the library. BBC was evaluated
for memory and performance overhead using the Olden
and SPECINT 2000 benchmark suites on Windows. Each
benchmark was compiled using both BBC and splay tree
bounds checking. Most surprisingly, BBC had a smaller
average memory overhead than splay tree checking on both
suites, although the splay tree did slightly better on most
SPEC benchmarks. On the Olden tests, the splay tree ver-
sion created 170% memory overhead, while BBC sometimes
performed better than the default Windows allocator. Both
of these effects are a result of the metadata overhead caused
by the Olden benchmark’s many small allocations. The abil-
ity of BBC to detect bounds errors was tested utilizing 18
buffer overflows from a suite of benchmarks used to test for
memory errors. BBC detected 17 out of 18 errors. In the one
exception, an array was allocated inside a structure. An out
of bounds access to the array caused another pointer in the
structure to be overwritten.

Someone asked how this scheme differed from SoftBound,
which was presented at PLDI 2009. Akritidis said that
SoftBound requires eight bytes to be stored for each pointer,
causing high memory overheads.

Dynamic Test Generation to Find Integer Bugs in x86 ■■

Binary Linux Programs
David Molnar, Xue Cong Li, and David A. Wagner, University of
California, Berkeley

Dave Molnar presented work on generating better test cases
for finding integer bugs with fuzz testing and compared it to
a black box fuzz tester running in Amazon’s Elastic Com-
pute Cloud. A large number of software errors are caused by
integer bugs such as over- and underflows, non-value pre-
serving conversions, and signed and unsigned conversion
errors. Typical black box fuzz testing does not deal with
integer bugs, which may only occur for particular integer
values. Molnar described SmartFuzz, a fuzz test generation
tool that uses constraint solving to more quickly find inputs
that should cause a program to crash.

SmartFuzz performs a symbolic execution of the program
under test, yielding a set of constraints on integer variables.
These constraints may then be solved to determine the set
of inputs that should either be rejected or trigger a bug. In
order to generate constraints on signedness, SmartFuzz uses
a four-type system in which an integer is either unknown,
signed, unsigned, or bottom. If at some point in execution
the inferred type of a variable is bottom, SmartFuzz will
search for a constraint to assign a negative value to that
variable to test for a signed/unsigned conversion bug.

SmartFuzz gives fuzzed inputs to programs running in Val-
grind, which will detect any memory errors caused by fuzz-
ing. While effective at determining whether an input causes
a bug, this use of Valgrind results in different test cases dis-
covering the same bug and different bugs being discovered
by the same test case. This results in multiple reports being
filed for the same bug on different test cases. The solution
Molnar presented is a fuzzy stack hash which maps the first

three frames of a stack trace to a bucket for a single bug.
Then a single report is generated for each bucket.

MetaFuzz is run in the Amazon Elastic Compute Cloud
(EC2), where CPU time can be rented for 10 cents per hour.
The metric used for evaluating fuzz testers in this environ-
ment is dollars spent per bug found. The evaluation com-
pares SmartFuzz against zzuf, a block box fuzz tester. The
two fuzz testers were run against six programs: mplayer,
ffmpeg, convert, gzip, bzip2, and exiv2. SmartFuzz achieved
a lower cost per bug than zzuf on two out of six programs
and found two bugs in gzip, in which zzuf found none. The
metafuzz framework can be accessed at http://metafuzz.com.

Someone asked why the black box fuzzer, zzuf, found more
bugs than SmartFuzz on four of the six programs tested.
Molnar explained that this is because zzuf changes much
more of the fuzzed inputs between tests. This will find
more bugs in unrefined code, whereas SmartFuzz is aimed
at finding more obscure bugs in mature code. When were
most bugs found? Molnar said, early on in the process. How
difficult does the analysis become for programs that require
complex inputs and user interaction? There was no relation-
ship between complexity of inputs and difficulty, but there
are engineering issues that need to be overcome to fully
automate the testing of interactive programs.

N■■ ozzle: A Defense Against Heap-spraying Code Injection
Attacks
Paruj Ratanaworabhan, Cornell University; Benjamin Livshits
and Benjamin Zorn, Microsoft Research

Ben Zorn described NOZZLE, a software detection method
for heap-spraying attacks. Heap spraying is a method for
achieving code execution in the face of address space layout
randomization (ASLR). The goal is to place many instances
of malicious code on the heap, then jump to some address
in the heap with the injected code. Many instances are
needed, as ASLR prevents the calculation of the correct ad-
dress of the malicious code.

NOZZLE provides protection against JavaScript-based heap-
spraying attacks in which the malicious code is placed on
the heap through the allocation of objects, usually strings.
NOZZLE does this by inspecting objects on the heap to de-
termine if they seem malicious (e.g., if they contain a no-op
sled, a long series of no-op instructions that lead to execut-
able code). If a percentage of objects are malicious beyond a
certain threshold, the offending script is stopped. The sim-
plest way to check if an object is malicious is to check for
the presence of a no-op sled, but this technique produces
too high a false positive rate. Instead, an object is marked as
malicious if it contains a sequence of instructions that looks
sufficiently like executable code. This is a hard task in itself,
as virtually any byte sequence can be interpreted as x86
instructions.

To detect executable code, NOZZLE uses program flow
analysis on objects to determine their attack surface area
(SA). The SA of each potential code block in an object is the
likelihood that the block is reachable if execution occurs in

09_DECEMBER_summaries.indd 77 10.29.09 10:48:10 AM

78 ; LO G I N : VO L . 3 4, N O. 6

its containing object. The surface area is then propagated
throughout the control flow. Blocks that contain invalid
opcodes, such as those that must be executed in kernel
mode, have zero SA. NOZZLE exhibits zero false positives
and zero false negatives when tested on the 150 Web sites
and 12 known heap-spraying attacks, respectively. Note
that this is with a 100% sampling rate. In the case of full
sampling, NOZZLE causes a maximum overhead of two
times normal page-load time, and around 5–10% overhead
with a 5% sampling rate. Zorn concluded the talk with a
live demonstration in which NOZZLE successfully detected
heap spraying.

Avi Rubin pointed out potential means for circumventing
NOZZLE, including runtime-initialized objects and code
obfuscation with junk data. Zorn pointed out that jumps to
code in different objects is another way to trick the surface
area calculation, and that they are exploring mitigations for
all of the described escalations. Adam Barth (UCB) asked
whether NOZZLE would be effective against a less aggres-
sive heap-spraying attack in which only 10% of objects are
malicious. Zorn explained that NOZZLE would not detect
such an attack, as the malicious surface area is too small,
and that NOZZLE is not effective if an attacker is willing to
settle for a low success rate.

invited talk

Toward a New Legal Framework for Cybersecurity■■

Deirdre K. Mulligan, School of Information, University of
 California, Berkeley

Summarized by John Brattin (jbrattin@student.umass.edu)

Deirdre Mulligan spoke about the difficulties involved in
designing laws to help protect end users from cyber-attacks.
Her main ideas were: a public health analogy may be fitting,
and a new legal framework for cybersecurity could benefit
from this approach; by using tactics such as mandatory
information disclosure, the law could be more flexible than
technical standards in regulating software; and because we
have a participatory government, people with computer se-
curity expertise should get involved in helping design a new
legal framework for cybersecurity.

Lack of adoption is a major problem in computer security.
There’s no point in coming up with new, stronger security
practices if no one will bother to use them. “Security in the
marketplace is remarkably below what known best prac-
tices could provide.” In many cases, it isn’t even a techni-
cal problem—we have the theories, and we even have the
theories implemented in software, but people choose not to
use the software. Many people use virus protection software
but don’t update definitions. Many people don’t download
critical security patches.

Mulligan notes that law is a somewhat unpopular channel
for effecting change in the cybersecurity community. People
think law moves too slowly, lagging significantly behind

changes in technology. Currently, cybersecurity law focuses
on deterrence: “increasing the celerity, severity, or certainty
of punishment for criminal activity.” However, certainty of
punishment is remarkably difficult to increase, as cyber-
criminals are notoriously difficult to identify and, once
identified, are frequently not under our jurisdiction. For
these reasons, deterrence seems like a poor choice of policy.

Another option is to “incentivize the good guys” to use
more secure practices. One way we could get developers
to use secure practices is by using notification laws: when
a company emits a large volume of toxic waste, they must
report it to the government, and eventually the information
becomes public. This may lead companies to limit emissions
in order to avoid bad publicity. This “mandatory reporting”
method prevents the government from directly interfering,
but creates incentives for developers to address security
concerns.

Cybersecurity will continue to be an important issue; as
technology changes and improves, so, too, do technological
attacks. We will never completely stop these attacks. We
also put ourselves at risk by having an open flow of com-
munication—just as you can defend yourself from biological
viruses by staying in your house, you can defend yourself
from computer viruses by avoiding the Internet. Another
parallel between public health and computer health is that
viruses spread in a monoculture. If we had more diversity
in systems, particularly operating systems, viruses might
not spread as easily.

Public law is a useful channel through which to combat
cybercrime, primarily because it is more flexible than using
rigid technical standards. By using public law, we can guar-
antee that a certain problem is addressed by software, or we
can guarantee information disclosure that results in greater
security, without enforcing the use of any particular system
that may quickly become outdated. The law gives another
layer of abstraction, in essence. However, people with tech-
nical know-how should participate in the construction of
appropriate laws.

A member of the audience suggested that people don’t
patch because patching requires the user to restart, which
is time-consuming. She also suggested that it is difficult to
enforce security when there aren’t clear standards. Mulligan
proposed a checklist strategy: if a developer has in some
way addressed every problem on the list, she’s done her job.
Another strategy would be to let developers come up with
their own standards and merely report when those stan-
dards are violated. Another audience member noted that
although diversity may slow the spread of viruses, software
becomes more useful the more people use it. He then asked
if the government should somehow regulate the develop-
ment of patches, to make sure nothing breaks. Mulligan
expressed doubt that the government would ever interfere
so directly in development.

09_DECEMBER_summaries.indd 78 10.29.09 10:48:10 AM

; LO G I N : D ecem b e r 20 0 9 cO N fe re N ce re p O rt s 79

net work securit y

Summarized by Ben Ransford (ransford@cs.umass.edu)

Detecting Spammers with SNARE: Spatio-temporal ■■

Network-level Automatic Reputation Engine
Shuang Hao, Nadeem Ahmed Syed, Nick Feamster, and
 Alexander G. Gray, Georgia Tech; Sven Krasser, McAfee, Inc.

Shuang Hao spoke about SNARE, a system that uses
network-level (as opposed to content-level) features of email
transmissions to detect spam. Hao cited familiar figures on
the cost of worker productivity lost to spam and the preva-
lence of spam; he also pointed out that spam is increasingly
being used as a vector for malware. He stressed the high
cost of content filtering in terms of both network traffic and
human time. IP blacklists, commonly used in addition to
content filtering, are incomplete, and many spam senders
are newly infected machines without reputations. The au-
thors’ approach in SNARE incorporates empirically derived
heuristics to classify email transmissions, given as little as a
single packet. Hao asserted that network-level features may
be cheaper to analyze than content-level features, because
they require less input data; they may also be more difficult
for a spammer to vary. Hao offered the basic intuition that,
because over 75% of spam is thought to come from botnets,
the sending patterns of spammers should be distinguishable
from those of human non-spammers.

SNARE uses a set of thirteen features to classify spam. Hao
focused on five heuristics that classify messages based on
the receipt of a single packet (and, in some cases, using
auxiliary knowledge gained from previous interactions with
the sender). First, Hao asserted that most legitimate email
does not need to travel a long distance geographically from
the sender’s computer to the recipient’s; according to their
data set, 90% of legitimate messages travel 2,500 miles or
less. Second, because clients participating in botnets tend to
share network space with other botnet participants, spam
often arrives directly via IP addresses that are numerically
close to others that have submitted messages; legitimate
messages tend not to exhibit this pattern. Third, legitimate
senders and spammers exhibit different sending patterns
throughout the day, with spam traffic peaking slightly later
than legitimate traffic. Fourth, while legitimate email tends
to arrive via mail servers that listen on standard mail-relat-
ed ports, spam does not; Hao noted that 90% of the spam
senders in their data set had none of the standard mail-
related ports open. Finally, because some ISPs are more
spam-friendly than others—the top 20 ASes in their data
set hosted 42% of the spamming IP addresses—the sender’s
AS may provide a clue to the legitimacy of the message. Hao
concluded that SNARE is capable of providing an effective
first line of defense against spammers.

George Jones asked whether SNARE consulted lists of
known dynamically assigned IP addresses; Hao answered
that it did not. Had the authors considered ways to improve
on the linear function used to score messages? They consid-

ered improvements to the classifier a separate problem. Mi-
chael Sirivianos expressed doubt that the geodesic distance
feature was equally valid for non-US recipients; Hao agreed
that different regions might exhibit different characteristics,
and he remarked that the use of several different features
made SNARE more robust. An audience member asked
which of the classifying features was the best predictor of
spam in the authors’ experiments. Hao replied that it was
the sender’s AS number.

Improving Tor using a TCP-over-DTLS Tunnel■■

Joel Reardon, Google Switzerland GmbH; Ian Goldberg,
 University of Waterloo

Joel Reardon spoke about a way to improve the performance
of Tor. Reardon introduced Tor as an overlay system that
grants anonymity to anyone on the Internet, most impor-
tantly to people who are subject to Internet censorship. The
authors propose a change to the way in which Tor routers
handle concurrent connections; their change reduces packet
delivery latency and, according to the authors, makes Tor
more usable.

The authors studied latency in Tor in an attempt to find
bottlenecks. Reardon remarked that communication
delays—that is, those imposed by throughput limitations—
were negligible compared to overall latency. By running a
Tor node at a university and exchanging several pieces of
data, they eventually found a bottleneck in the buffering
strategy Tor uses to multiplex connections. While input buf-
fers drained quickly, output buffers occasionally required
packets to wait a long time to be sent. Because Tor uses
one socket per router-router link and because the underly-
ing asynchronous communication library, libevent, waits
to send on a socket until the operation is guaranteed not to
block, data queues up in the output buffers waiting for the
socket to become writable. The authors investigated further
and found that TCP congestion control was the primary
cause of such blocking: if circuits A and B are multiplexed
along a link E, then congestion control on E will affect A
and B regardless of the respective traffic on each. Reardon
showed several graphs illustrating how output buffers on
a Tor router changed over time. As an alternative to multi-
plexing, the authors implemented a scheme in which each
circuit that traversed two routers received its own TCP
connection between the routers. To avoid several problems
(e.g., information leaks) with using TCP directly, the authors
tunneled TCP over UDP streams with Datagram Trans-
port Layer Security (DTLS). To prevent clients having to
modify their kernels, the authors implemented a user-space
TCP stack that can assemble packets suitable for sending
via DTLS. Each router advertises a single UDP socket that
multiplexes data for all incoming connections; congestion
control is performed on a per-circuit basis in the user-space
TCP stack. Reardon showed performance graphs demon-
strating that Tor with TCP-over-DTLS exhibits much less
latency under load than unmodified Tor. Reardon discussed
future work involving Tor’s new user-space TCP stack and
rethinking Tor’s buffering strategy.

09_DECEMBER_summaries.indd 79 10.29.09 10:48:10 AM

80 ; LO G I N : VO L . 3 4, N O. 6

Michael Sirivianos asked whether it would make sense to
make Tor an IP-level service with congestion control only
at the entry and exit nodes. Reardon remarked that such
a strategy would decrease throughput, because congestion
control does not work well on long paths.

Locating Prefix Hijackers using LOCK■■

Tongqing Qiu, Georgia Tech; Lusheng Ji, Dan Pei, and Jia Wang,
AT&T Labs—Research; Jun (Jim) Xu, Georgia Tech; Hitesh
 Ballani, Cornell University

Tongqing Qiu spoke about LOCK, a system that locates IP
prefix hijackers by using PlanetLab to monitor traffic to
hijacked networks. The Internet comprises tens of thou-
sands of networks (called autonomous systems, or ASes)
that exchange packets according to an inter-network routing
protocol called the Border Gateway Protocol (BGP). BGP’s
lack of authentication allows any AS to announce ownership
of any other AS, which means any network can hijack, or
steal, another network’s traffic. Qiu described three kinds
of hijacking: blackholing, in which an attacker drops all
traffic destined for the victim; imposture, in which the at-
tacker pretends to be the victim such that the victim never
receives the hijacked traffic; and interception, in which the
attacker transparently interposes her own AS into the chain
of networks leading to the victim. Previous approaches to
the problem of prefix hijacking have been stymied by the
difficulty of changing the Internet’s routing infrastructure
or have otherwise been focused on recovering the network
without pinpointing the source of the error. Qiu claimed
that his team’s work was the first study of the hijacker loca-
tion problem. Their system, called LOCK, aims to locate
hijackers automatically in order to minimize the effort
required for mitigation and recovery.

LOCK uses monitoring software on PlanetLab nodes distrib-
uted around the world. Given a network prefix P (owned by
a specific AS) to monitor, LOCK’s constituent nodes periodi-
cally observe the AS paths from their own networks to P. If
some monitoring nodes detect that their respective paths to
P have changed—Qiu called such nodes “polluted”—they
follow an algorithm that infers the location of the hijacker.
The algorithm finds the ASes within one hop of the prefix
P in a public database of AS relationships. It then considers
all the neighbors of ASes on the new paths to P. Because a
hijacker cannot manipulate the path to her own AS that tra-
verses her upstream providers, her AS will appear in the set
of neighbors, so the algorithm restricts its search to that set.
Because paths from polluted monitors (which are distrib-
uted diversely around the Internet) to the hijacker naturally
converge around the attacker’s AS, simply ranking the ASes
in the neighbor set by the number of times they appear in
paths from polluted monitors allows a quick whittling of the
search space. Qiu showed experimental evidence that, for
real and synthetic hijacking events, LOCK correctly ranked
the hijacker’s AS in the top spot up to 94.3% of the time.

George Jones remarked that, although LOCK’s detection
mechanisms appear sound, the design sidesteps the basic
issue that no authoritative central registry of AS relation-

ships is kept up-to-date, thereby making it impossible to
determine with total certainty whether a new AS announce-
ment is good or bad. Qiu agreed that the lack of a central
registry was a fundamental problem. An audience member
asked whether an attacker couldn’t simply prepend arbitrary
AS numbers into the AS path it announces, and whether
that affected LOCK’s ability to infer the hijacker’s neighbor-
hood. Qiu remarked that some existing routers implement
sanity checks that would flag such announcements, but
agreed that a hijacker might be able to foil the neighbor-
hood inference by including arbitrary AS numbers in its
announcement.

invited talk

Modern Exploitation and Memory Protection Bypasses■■

Alexander Sotirov, Independent Security Researcher

Summarized by Martim Carbone (mcarbone@cc.gatech.edu)

Security researcher Alexander Sotirov, well known for his
work on offensive techniques, gave a very instructive talk
on the past, present, and future of memory exploitation.
His talk also covered the other side of the game by analyz-
ing the evolution of countermeasures, from virtual inexis-
tence to techniques such as Data Execution Prevention and
Address Space Layout Randomization (ASLR). Overall, his
presentation gave useful information and insight to the au-
dience on the nature of this arms race that has been going
on for many years and shows no sign of stopping.

Sotirov started by introducing some basic concepts, such
as what exactly constitutes a memory corruption vulner-
ability and an exploit. The latter is defined as a way to make
the target process execute arbitrary code by exploiting the
vulnerability. Although these two concepts are commonly
coupled, the difficulty of finding a vulnerability and that
of effectively exploiting it are not closely related. Sotirov
explained that the distance between the two has varied over
time, as our understanding of memory exploitation and
countermeasures has increased.

In the late ’90s, finding a vulnerability could be a hard task,
but once found, building a working exploit for it was trivial,
given the absence of mitigations. As time passed, tech-
niques for finding new vulnerabilities were systematically
improved, reaching a climax in the summer of 2004. At
that time, several classes of vulnerabilities were known with
no effective mechanisms to counteract them, along with
effective techniques for automatically finding such vulner-
abilities, such as fuzzing. Examples mentioned by Sotirov
include the infamous stack overflow, structured exception
handler (SEH), heap overflow, and format string exploita-
tion techniques. As he pointed out, all these exploitation
techniques relied on assumptions made about the target
process’s execution environment. Examples are the fixed
locations of code and data regions in memory, a well-known
stack layout, and the fact that data placed on a program’s
stack/heap can be executed as code. The “golden age” of
exploitation came to an end as operating systems started

09_DECEMBER_summaries.indd 80 10.29.09 10:48:10 AM

; LO G I N : D ecem b e r 20 0 9 cO N fe re N ce re p O rt s 81

being shipped with some basic mitigation mechanisms that
invalidated some of these assumptions.

Windows XP Service Pack 2, released in August of 2004,
was the first attempt at mitigation and included support for
features like disallowing code execution at the stack and
heap of programs by leveraging new hardware support (the
NX bit), safe heap header unlinking to prevent using un-
linking to control execution flow, and stack cookies. Sotirov
explained some of the workarounds that were developed
to counteract these mitigation techniques and the other
mitigation techniques that were developed in response. For
example, a simple way to circumvent stack cookies was
to no longer rely on overwriting the return address but to
use other variables and function arguments. In response to
this, compilers started supporting variable reordering in the
stack by placing all the buffers at the end of the local stack
frame. However, exploitation was still possible by overflow-
ing into other buffers or even the stack frame of the calling
function. Exploitation and mitigation techniques involving
SEHs were also discussed.

Two state-of-the art mitigation techniques were given spe-
cial focus in the presentation: Data Execution Prevention
(DEP) and Address Space Layout Randomization (ASLR).
The first effectively closes the window for code injection
attacks by disallowing code execution in the program’s
data regions. The second operates by loading executables
at randomized locations in virtual memory, preventing an
exploit from correctly guessing the address of its payload.
Sotirov explained that DEP and ASLR are only useful when
deployed together. Alone, DEP can be circumvented through
return-into-libc-style attacks and return-oriented program-
ming, techniques that execute the program’s own code in a
controlled manner for malicious purposes. If ASLR is used
alone, exploitation is still possible by using “heap spraying,”
which fills the program’s heap with copies of the malicious
payload, to the point that an exploit writer can say for sure
that a certain address will contain a copy of it, despite
the randomization. Although included in Windows Vista,
these two mitigation techniques had limited impact, since
DEP was disabled by default and ASLR was only used for
a small set of system services. It is expected that Windows
7’s implementation of DEP and ASLR will have much better
support for third-party applications.

Due to these new mitigation techniques, the situation at
the moment is the opposite of that of the late ’90s: finding
vulnerabilities has become a relatively easy task, whereas
exploiting them now sometimes requires many man-months
of hard work, according to Sotirov. In light of this, he
moved on to discuss new possibilities in memory exploita-
tion as well as interesting research directions. These include
the development of techniques to disclose memory content,
which would allow ASLR to be bypassed, as the secrecy of
a program’s location in memory would be lost. Another one
relies on partially overwriting the low-order bytes of point-
ers, giving an exploit access to the region of the address
space occupied by the target process. This works because

ASLR randomizes only the 16 high-level bits of addresses,
i.e., programs are still 64K-aligned. Entropy attacks against
ASLR are also possible. In these, an exploit is executed
many times until all possibilities for a program’s location in
memory are covered. Sotirov also mentioned the possibility
of corrupting a program’s non-control data as a way to ma-
nipulate its internal logic. This attack would require a more
detailed understanding of the program’s semantics, though.
Finally, he proposed as a research direction the use of pro-
gram analysis techniques to better understand and control a
process’s memory layout, as a way to oppose ASLR.

Sotirov concluded by arguing in favor of current mitigation
techniques, as they significantly raise the bar against ex-
ploitation. The question of whether they are enough is hard
to answer, but it is likely that the arms race will continue
for the time being. And, as he pointed out, “we will always
have the Web and all of its brokenness to look at.”

Rik Farrow wondered why format string vulnerabilities had
disappeared so quickly. Sotirov replied that it was because
they were so easy to find. Peter Kristic asked whether using
virtual machines (like VMware) makes any difference with
regard to exploitation techniques. It makes no difference,
since full virtualization replicates the execution environ-
ment of a real machine. Ben Zorn asked whether Sotirov
had thought about any new mitigation techniques which
might help to defend against some of the new attacks, to
which he comically replied, “Certainly, but I will not tell
you what they are.” Sotirov also mentioned (citing the exam-
ple of Microsoft) that as a result of this arms race, program-
mers’ awareness about writing secure code had increased,
but he cautioned the audience never to underestimate the
potential of developers to introduce new vulnerabilities into
code. And in the unlikely circumstance that all memory
corruption vulnerabilities are found and fixed, the Web will
always be there as a fertile ground for future exploitation,
with whole new classes of vulnerabilities.

javascrip t securit y

Summarized by Ben Ransford (ransford@cs.umass.edu)

G■■ atekeeper: Mostly Static Enforcement of Security and
Reliability Policies for JavaScript Code
Salvatore Guarnieri, University of Washington; Benjamin
Livshits, Microsoft Research

Ben Livshits explained that Gatekeeper statically analyzes
JavaScript code to check for violations of security and reli-
ability policies. Statically analyzing JavaScript is difficult
because it offers many ways to accomplish any given task.
For example, to materialize an alert box one can call simply
call alert(), one can use document.write() to write a call to
alert(), one can create an alias of document.write() and call
it, one can use eval() to write a call to document.write()
that writes a call to alert(), and so on. Gatekeeper allows
administrators to set simple policies that disallow certain
JavaScript features. It uses a whole-program static analysis

09_DECEMBER_summaries.indd 81 10.29.09 10:48:11 AM

82 ; LO G I N : VO L . 3 4, N O. 6

approach that is, according to the authors, general enough
to be used for purposes other than policy enforcement.

Gatekeeper recognizes two subsets of JavaScript: JavaScript_
{GK}, which lacks several JavaScript features including
eval(), and JavaScript_{SAFE}, which further lacks several
more features. The subsets are such that the SAFE variant
is fully statically analyzable without runtime checks, while
the GK variant requires basic instrumentation at runtime
to aid policy enforcement. Livshits described the authors’
experiments on over 8,500 JavaScript widgets from three
major Web sites owned by Microsoft and Google, noting
that the majority of those widgets were already in the SAFE
subset or GK subsets without any need for modifications.
Given a program in one of the JavaScript subsets, Gate-
keeper uses points-to analysis to track object relationships,
thereby ensuring that object aliases do not confound the
policy checker. Livshits said that Gatekeeper’s points-to
analysis is sound, meaning that its policy checker finds all
violations it knows to look for. To illustrate the syntax of
policy declarations, he showed an example of a Datalog rule
that recognizes calls to document.write(). Finally, he offered
experimental results: with nine security policies and two
reliability policies in hand, Gatekeeper found 1,341 policy
violations across 684 of the 8,500 widgets; it also found 113
false positives spread across only two of the widgets.

Adam Barth asked whether Gatekeeper had to parse HTML
in order to catch violations; Livshits responded that disal-
lowing document.write() was sufficient to make parsing
HTML unnecessary, and that they did not test their system
without disallowing it. The session chair, Lucas Ballard,
expressed appreciation for the authors’ choice of a small,
tractable data set (viz., widgets), and asked whether they
had attempted to apply their techniques to more complex
content. Livshits remarked that analysis of such content
was one of the authors’ long-term goals, but that most large
applications use some of the constructs Gatekeeper flags as
suspicious. Livshits suggested that by-hand annotation of
legitimate uses of such constructs would be a reasonable
way to allow them without confusing Gatekeeper. Ballard
proceeded to ask how the authors’ work relates to JavaScript
strict mode, to which Livshits replied that there were vari-
ous connections. He remarked that current approaches
required subsetting JavaScript and expressed hope that,
for the sake of simplicity, some of the current approaches
would be implemented directly in the browser.

Cross-Origin JavaScript Capability Leaks: Detection, ■■

 Exploitation, and Defense
Adam Barth, Joel Weinberger, and Dawn Song, University of
California, Berkeley

Joel Weinberger spoke about using JavaScript heap-graph
analysis to find a previously unnoticed class of browser
vulnerabilities. The JavaScript security model includes a no-
tion of contexts, which are separate containers for separate
collections of objects. Such separation is designed to prevent
private information from leaking between pages or page ele-

ments, specifically those with different origins; for example,
an advertisement from an ad network should not be able to
steal cookies from the page that embeds it. The policy of
separating objects from different origins is commonly re-
ferred to as the same-origin policy. Weinberger claimed that
the authors’ work uncovered a new class of vulnerabilities in
browsers’ enforcement of the same-origin policy.

Weinberger pointed out that browsers implement two
concurrent—and different—security models when it comes
to JavaScript. Although the Document Object Model (DOM)
that exists in each JavaScript context has a reference moni-
tor and a concomitant same-origin policy enforcement
mechanism, the JavaScript engine is a separate entity that
uses a separate capability-based policy: if you hold a refer-
ence to an object, you are granted access to that object. The
authors call the circumvention of the DOM’s policy in favor
of the permissive one a cross-origin JavaScript capability
leak: if context B somehow obtains a reference to an object
in context A (e.g., if context A passes a reference to context
B, or if such a reference leaks), then context B is allowed to
access the object without obtaining permission from context
A’s reference monitor. To detect these capability leaks, the
authors instrumented WebKit’s JavaScript engine with calls
into an analysis library at object creation, destruction, and
reference. As the program executes, the library fills out a
heap graph.

Weinberger showed several heap graphs of increasing com-
plexity, then described their automated heap graph analy-
sis as a tree traversal which flags edges that span multiple
contexts. Running their heap graph analysis on the secu-
rity-related tests from the WebKit test suite revealed two
new vulnerabilities, of one of which Weinberger showed a
graphical example. The same technique found several major
flaws in the open-source CrossSafe cross-domain JSON
request library. Finally, Weinberger suggested access control
checks on every object property access as an in-browser
defense mechanism, and he remarked that the results of
the added checks could be cached using a mechanism that
already exists in modern browsers.

Ben Zorn pointed out that JavaScript benchmarks have tight
loops that result in access control checks being handled pri-
marily from cache, and he asked whether the authors have
tested the overhead of their proposed defense mechanism
on code other than test suites. Weinberger responded that
the authors have tested other code informally and found
their mechanism’s performance to be qualitatively good.
Lucas Ballard asked Weinberger whether any Web page
could exploit the WebKit vulnerabilities to gain access to
any other Web page, and Weinberger remarked that before
WebKit was patched such exploitation had been possible.

09_DECEMBER_summaries.indd 82 10.29.09 10:48:11 AM

; LO G I N : D ecem b e r 20 0 9 cO N fe re N ce re p O rt s 83

Memory Safety for Low-Level Software/Hardware ■■

 Interactions
John Criswell, University of Illinois; Nicolas Geoffray, Université
Pierre et Marie Curie, INRIA/Regal; Vikram Adve, University of
Illinois

Nicolas Geoffray spoke about SVA-OS, a system that identi-
fies memory safety violations in low-level software-hardware
interactions with the goal of defanging kernel bugs. He
defined software-hardware interactions as sequences of
instructions that manipulate hardware resources. Such
interactions, even when expressed in perfectly valid code
free of type errors, can circumvent the execution environ-
ment’s memory safety guarantees or corrupt the hardware
resources they manipulate. Geoffray cited processor state,
I/O objects, and MMU mappings as examples of manipula-
ble hardware properties whose misuse can result in security
violations. As a set of enhancements to the SVA compiler-
based virtual machine, SVA-OS comprises a Linux 2.4
instance plus low-overhead compiler analysis and runtime
checking of hardware accesses.

Geoffray presented details about how SVA-OS intervenes
in several hardware interactions; the interventions are
implemented either as special instructions in the SVA VM
or as runtime checks. To prevent a task’s processor state
(e.g., the program counter) from being manipulated before
it is properly restored by a context switch, SVA-OS adds an
instruction that, instead of temporarily storing a task’s pro-
cessor state in memory where it can be manipulated at rest,
atomically swaps one task’s processor state for another’s. To
ensure that memory-mapped I/O operations behave prop-
erly, SVA-OS adds I/O-specific load and store instructions
whose operation parallels that of regular memory loads and
stores; it then segregates memory operations into those that
do and those that do not affect I/O. Further, SVA-OS adds
runtime checks on MMU updates to ensure that kernel
memory is not mapped into user space and that physi-
cal memory is not remapped to incorrectly typed virtual
pages. Geoffray reported that SVA-OS caught bugs that SVA
did not: they tested two real-world MMU exploits, which
SVA-OS disallowed; they injected errors into their Linux
kernel and observed that SVA-OS prevented crashes; and
they discovered that SVA-OS would have caught a serious
bug in an Ethernet driver for Linux 2.6 that disabled many
network cards. Geoffray showed several performance graphs
demonstrating that SVA-OS imposes negligible overhead
compared to SVA.

An audience member asked how SVA-OS preserves type
safety during MMU remapping and wondered whether
SVA-OS maintained type information for physical memory.
Geoffray responded that SVA (rather than SVA-OS) did so
by segregating physical memory by type.

invited talk

How the Pursuit of Truth Led Me to Selling Viagra■■

Vern Paxson, EECS, University of California, Berkeley, and
Senior Scientist, International Computer Science Institute

Summarized by Todd Deshane (deshantm@clarkson.edu)

Vern Paxson, a self-proclaimed empiricist, admittedly loves
data. The reason he loves data so much is because he has
a thirst for the truth and also a phobia about being fooled.
In this invited talk, Dr. Paxson described over two decades
of Internet measurements and how the changes have been
both incredible, at times surprising, and often unpredict-
able. He started with a general description of network char-
acteristics and then talked about some early manual attacks,
followed by the emergence of worms, botnets, and spam. He
explained how this led him to begin a campaign to pretend
to sell Viagra.

There are three invariants throughout his study of Internet
data: growth, explosive onset, and diversity. Between the
time when Vern applied to graduate school in 1988 to the
publication of his paper “Growth Trends in Wide Area TCP”
in 1994, the Internet grew from about 56,000 Internet hosts
to about 3 million. The growth was attributed to the explo-
sive commercial use of the Internet, exemplified by WWW
traffic doubling every eight weeks from late 1992 to 1994.

Dr. Paxson’s first demonstration of explosive onset appears
in his quest to understand some seemingly anomalous data
that he received regarding USENET bulletin board traffic.
His data from 1986 to 1994 shows exponential growth of
USENET usage (80% growth per year). Plotting this data
on a log linear graph shows a perfect fit to the line. The
only problem was that the data ends in 1994, but Vern re-
ally wanted to follow up on the data. He conjectured that
it couldn’t keep growing exponentially; generally, data like
that breaks downward (fades gradually before coming to
an end), but it turned out that two new data points showed
the contrary. After some investigation, he determined that
between 1994 and 1996, abuse, in the form of piracy and
porn, arrived on USENET and the Internet as a whole. That
abuse broke a decade-old invariant (the consistent exponen-
tial data growth) upward and not down as would have been
expected.

In the mid-1990s, Internet abuse started becoming a major
concern. The operators Paxson was in contact with at Law-
rence Berkeley National Laboratory (LBL) wanted to know if
he could use the data he was collecting to give some insight
into the intrusions. Not only did he think that it was pos-
sible, but he thought it could be done in real time. This led
him to create the Bro Intrusion Detection System (an open
source, UNIX-based project that is still actively worked on
by Vern and others), which was running 24 hours a day and
7 days a week starting in 1996. Much of the data presented
in the rest of the talk was gathered by Bro.

09_DECEMBER_summaries.indd 83 10.29.09 10:48:11 AM

84 ; LO G I N : VO L . 3 4, N O. 6

The ability to use Bro at LBL and the ties with LBL opera-
tional deployment were “research gold.” In particular, from
host-scanning data Paxson was able to describe in detail the
traffic changes starting with the emergence of the Code Red
worm and the beginning of the worm era in 2001. Worms
such as Code Red, Nimba, and Blaster were just the begin-
ning, however. Again, using the scanning data, he was able
to describe the emergence (around 2002) of what he refers
to as auto-rooter tools, more commonly known as bots. At
this time there was another significant increase of traffic,
which he attributes to malice. Another interesting phenom-
enon he described was the diversity of the attacks, both
in terms of the services attacked and the patterns of when
the attacks occurred. For instance, ports scanned included
common well-known ports as well as more obscure ports
(such as the Sasser backdoor). The patterns of when scan-
ning occurred ranged from heavy traffic during the day, to
consistent scanning traffic regardless of time, to scanning
the entire Internet at a certain time of day, every day.

In the second part of the talk, he described how he led an
effort to infiltrate the Storm botnet and run a spam cam-
paign. The inspiration for the spam campaign was the fact
that he had studied the enemy and understood that profit
was the motive of the botnet masters. The shift from curios-
ity and fame to an underground botnet-based economy
had begun. He showed screenshots of professional spam
software, sites that auction stolen eBay accounts, sites that
sell social networking bots (with separate services that
would integrate CAPTCHA bypassers), and affiliate pro-
grams that allow people to refer others and get a cut of the
profits on these malicious tools. He realized that a large part
of the business model was based on turning exploits into
bots, then turning the bots into spam worker threads, then
converting user clicks into sales. The spam campaign is
described in further detail in “Spamcraft: An Inside Look at
Spam Campaign Orchestration” presented at LEET ’09. He
continued by highlighting the fact that spam-filtering soft-
ware and blacklisting spam bots filtered much of the spam
to junk mail folders, which meant that only a small percent-
age of the spam was actually seen by users in their inboxes.
During what he calls their spam conversion experiment
(counting fake sales of Viagra) they were able to instrument
1.5% of the Storm botnet workers. They estimate that if they
had been able to instrument the entire botnet army, they
would have been able to make around $3 million. He notes
that there was a lot of FUD (Fear, Uncertainty, and Doubt)
about the Storm botnet in the news, where the media made
claims of very large profits from Storm (orders of magnitude
larger than reality) that are erroneous due to flaws in mea-
surement methodology.

Paxson concluded with some reflections on the enormous
changes he has seen in the Internet in just a couple of
decades, especially in cybercrime (for profit) and the latent
threat of cyberwarfare. He emphasized that measuring is
easy, but measuring in a meaningful and sound way is hard
(full of unfun grunt work dealing with messiness and error).

Despite the challenges, he argues, it is the only way to get
the truth and you can even run into some very interesting
surprises (including diversity, exponential growth, unex-
pected threats, and rapid changes in the landscape). He
encouraged the students in the audience to take on the chal-
lenge, as there is a deep fundamental need for well-ground-
ed empirical data in the computer security field.

An audience member asked whether he thought that more
success might come with more waves (repeat customers) of
the spam campaign, to which he agreed that it was possibil-
ity, but he also noted that there is a tension over whether
the botnet would be able to go after these follow-up sales
or if the pharmaceuticals themselves would follow up.
Steve Bellovin wondered about the ethics and IRB process
involved. Paxson responded that he had lawyers look at the
experiment, but that it didn’t go through the IRB process,
although he admits that it should have. A second follow-
up study is currently going through a long IRB process,
he noted. He also mentioned that there is an upcoming
workshop that focuses on ethics at Financial Cryptography
and Data Security ’10. An admirer of the Spamalytics paper
asserted that spam makes a lot of money, to which Paxson
responded that he would have thought it would have been
more (not only around $2 million per year as according to
his data). He recommended that people think about the
problem of network saturation (a “tragedy of the commons”
scenario). Were the phishing attacks from the same players?
He didn’t know and speculated about the structure of the
attackers, whether there were one or a few kingpins, or if
there were, instead, a lot of ankle biters.

r adio

Summarized by Italo Dacosta (idacosta@gatech.edu)

Physical-layer Identification of RFID Devices■■

Boris Danev, ETH Zürich, Switzerland; Thomas S. Heydt-
Benjamin, IBM Zürich Research Laboratory, Switzerland;
Srdjan Cǎpkun, ETH Zürich, Switzerland

RFID chips are important components in the security of
systems such as electronic passports (ePassports) and iden-
tity cards. Three security mechanisms have been defined
to protect ePassport RFID chips, but only one is required
by the standards. On the other hand, multiple attacks
against these mechanisms have been published by security
researchers. These attacks against ePassports prompted the
authors to determine whether RFID chips can be uniquely
identified based on their physical-layer features and the
accuracy of the identification techniques. As Boris Danev
noted, this work attempts to achieve a form of hardware
biometrics. A direct application of this technique will be the
prevention of cloning attacks against ePassports.

Danev described the experimental setup and the different
experiments used to collect features from the RFID chips. A
total of 10 ePassports and 50 Java cards were analyzed. The
authors used three techniques to analyze the data collected:
time, modulation shape, and spectral features analysis.

09_DECEMBER_summaries.indd 84 10.29.09 10:48:11 AM

; LO G I N : D ecem b e r 20 0 9 cO N fe re N ce re p O rt s 85

From these techniques, the analysis of modulation shape
and spectral features were found to be the most effective
(spectral features in particular). Based on the analysis, the
authors were able to identify the ePassports’ country and
year of issuance, and some model and manufacturer chips
design. The techniques evaluated also showed good accura-
cy: a 95% successful identification rate (5% equal error rate).
In addition, Danev said that the accuracy can be improved
dramatically through the combination of burst and sweep
techniques. Finally, the authors have done some prelimi-
nary work to determine how hard it is to reproduce the fin-
gerprints to defeat the identification techniques proposed.

Danev was asked if environmental conditions such as
temperature and age could affect the fingerprinting of RFID
chips. Current work is trying to determine if aging can af-
fect the proposed identification techniques, and more work
is needed to analyze the impact of other environmental
factors. Several members of the audience were concerned
about the privacy risks of fingerprinting RFID chips, such
as the remote profiling of individuals. Danev mentioned that
such privacy attacks may be possible but not by using the
features analyzed in this work, because such features can-
not be measured reliably from a distance. Another question
related to the use of physical protection mechanisms (i.e.,
metal shields) in current ePassports. The author mentioned
that some techniques are being implemented, but they vary
from country to country. Finally, in response to a question
regarding the relationship between the quality and the vari-
ability of an CRFID tag, Danev mentioned that the cheaper
the design the more variability an RFID chip will have and,
therefore, the easier it will be to identify.

CCCP: Secure Remote Storage for Computational RFIDs■■

Mastooreh Salajegheh, Shane Clark, Benjamin Ransford, and
Kevin Fu, University of Massachusetts Amherst; Ari Juels,
RSA Laboratories, The Security Division of EMC

Computational RFID (CRFID) tags introduce a lot of in-
teresting possibilities due to their additional components:
a micro-controller, flash memory, and one or more sen-
sors. However, these devices are also affected by hardware
constraints: small memory size, tiny energy reservoir, and
reboots every few seconds. Using the fact that radio trans-
missions are cheaper than writing to flash memory, the
authors proposed outsourcing storage to a reader to save
energy. However, using remote storage presents several
security challenges: the data is transmitted over the air and
the reader may not be trusted. Shane Clark introduced a
new protocol, Cryptographic Computational Continuation
Passing (CCCP), that adds the minimum security guaran-
tees to allow CRFID tags to use a reader as a remote storage
mechanism in an energy-efficient and secure way. The main
goals of the protocols are to use remote storage to get real
computational progress out of these devices and to elimi-
nate Sisyphean tasks that result from the short power cycles
of the CRFID tags.

The authors outlined a set of security goals: confidentiality,
integrity, authentication, and data freshness. Based on these
security goals and the CRFID tag constraints, the authors
defined some basic and efficient security primitives: the use
of stream ciphers (XOR operations) for confidentiality, and
universal-hash-function-based MAC (UMAC) for integrity
and authentication. To support the use of stream-keys, the
authors introduced pre-computation when the tag is idle
(good power season) to create stream-key bits. For data
freshness, the authors used a unary encoding technique
(hole punching) which allowed a counter in memory to be
updated more efficiently.

Clark described the experimental testbed used to evaluate
CCCP and the methodology followed. Energy was chosen
as the most appropriate metric during the evaluation. The
main result of the evaluation was that using radio for secure
remote storage is cheaper than using local storage up to a
data threshold size of 96 bytes. Finally, Clark suggested
some future work in this area: the development of more
efficient CRFID tags, extensions for long-term storage, work
on WOM codes, and a public key system for CRFID tags.

Clark was asked about his expectations regarding flash
memory costs in the future. Clark commented that back-
scatter transmissions used only one transistor, while flash
memory operations used several, and that he was quite
confident that in the near future flash will not be cheaper
than radio. What about atomicity issues with data transmis-
sion in the CCCP protocol? A solution to this issue was to
increase the counter in two steps: one before and one after
data is sent.

Jamming-resistant Broadcast Communication without ■■

Shared Keys
Christina Pöpper, Mario Strasser, and Srdjan Cǎpkun, ETH
Zurich, Switzerland

It is a well-known fact that RF communications are vulner-
able to jamming attacks. Traditional defenses against this
type of attack are the use of spread spectrum (SS) tech-
niques such as frequency-hopping SS or direct sequence
SS (DSSS). These techniques rely on the use of a shared
code to spread the transmitted messages. However, these
techniques do not work well on broadcast communication
scenarios where a sender wants to broadcast one or more
authenticated messages to a potentially large number of
receivers and some of the receivers may be unknown or un-
trusted (e.g., emergency and navigation systems). This paper
presents a novel technique, Uncoordinated-DSSS (UDSSS),
to solve this problem. UDSSS uses DSSS communication
but releases the requirement of a shared secret key by using
randomization and the following key observation: “What-
ever has arrived unjammed at the receiver can be decoded.”
To an attacker, UDSSS looks similar to DSSS. The difference
is that the code sequence used to spread the messages is
chosen randomly from a set of public code sequences that
both the sender and the receiver know. The receiver records
the spread messages and tries to de-spread them using

09_DECEMBER_summaries.indd 85 10.29.09 10:48:11 AM

86 ; LO G I N : VO L . 3 4, N O. 6

the public code sequences in a trial-and-error fashion. For
successful de-spreading of the messages, it is important to
choose the same public code sequence used by the sender,
as well as the right synchronization.

Pöpper described the prototype implementation of UDSSS,
based on Universal Software Radio Peripherals (USRP) and
GnuRadio, as well as the experimental setup and meth-
odology used. Several adversaries were considered during
the analysis, using the jamming probability with respect
to a given message transmission. Also, message transmis-
sion time was used as the main metric during the evalua-
tion. The results show that increasing the processing gain
is much more harmful for the message throughput than
increasing the size of the public code set, and that message
throughput increases with the use of large message sizes.
While UDSSS has lower performance than DSSS, it can be
enhanced to achieve similar performance to DSSS in the ab-
sence of jamming; through the use of two parallel transmis-
sions, one using a single code sequence and the other using
normal UDSSS. Pöpper also suggested an optimization that
is not described in the paper: using UDSSS to transmit only
the spreading code and not the message, which allows faster
decoding times and larger message sizes. Finally, Pöpper
described a practical application of UDSSS in a navigation
broadcast system.

invited talk

Summarized by Salvatore Guarnieri
(sammyg@cs.washington.edu)

Designing Trustworthy User Agents for a Hostile Web■■

Eric Lawrence, Senior Program Manager, Internet Explorer
Security Team, Microsoft

Eric Lawrence learned a lot while working on Internet
Explorer 8 (IE8), and he talked about how IE was designed,
where the current threats are, and the future of Web secu-
rity.

Internet attacks are always evolving, so mechanisms to pre-
vent or limit the effectiveness of these attacks must evolve
as well. In Internet Explorer 7 (IE7), the goal was to reduce
the attack surface on the local machine. This meant that IE7
had fewer vulnerable areas than previous versions of the
browser. Now the local machine isn’t as valuable a target.
Much data lives in the cloud, so cross-site scripting (XSS),
cross-site request forgery (CSRF), and other similar attacks
are major problems. IE8 tries to address these new types of
attack that don’t necessarily target the local machine but,
rather, the way in which confidential or high-integrity data
is handled in the browser.

Security is difficult for the Web because the space is very
complex. The browser needs to be secure and Web develop-
ers need to produce secure Web sites. This is a problem,
since some Web developers don’t even understand what
same-origin policy is. Furthermore, security for the Web
was largely an afterthought, and many of the interesting

security models for the Web don’t fit how the Web is being
used today. Finally, since Internet Explorer (IE) has been
around for a while, users expect that things that worked in
an old version will work in a new version. This means that
changes to the browser cannot break backward compatibil-
ity. It turns out that if backward compatibility is broken, de-
velopers don’t update their sites to work in the new browser,
so users simply refrain from upgrading and are left with a
less secure browser visiting possibly insecure pages.

The security team for IE is focused on three areas: (1) secu-
rity feature improvements, (2) secure features, and (3) se-
curity and compatibility. Security feature improvements are
new features (e.g., the XSS filter) that exist solely to improve
security. “Secure features” refers to the process of ensuring
that new features (e.g., IE8’s accelerators) are secure and do
not increase attack surface. Security and compatibility fo-
cuses on ensuring that the security features are compatible
with Web sites. Users need the security feature to work on
the Web sites they visit or they will roll back to a less secure
browser that does work.

IE8 has some features that make attacks much less effective.
Data Execution Prevention (DEP) and Address Space Layout
Randomization (ASLR) are turned on by default. This is a
huge help, because they greatly limit the exploitability of
memory-related vulnerabilities in the browser. Some new
features improve security by reducing the amount of na-
tive code needed in the system. Plug-ins such as browser
toolbars provide some functionality to users but are usually
written in conventional languages like C and often contain
security bugs. IE8 has accelerators and Web slices, which
allow third parties to enhance the user experience without
introducing potentially buggy native code.

No matter how secure the browser is, there is still a user
involved in the system. Users are faced with social engi-
neering attacks, such as phishing and malware-distribution
sites, that trick them into granting the attacker permission
to perform unwanted actions. People have tried a lot of
things to warn users about potentially unsafe actions. IE8’s
SmartScreen Filter feature can provide a bold, unambiguous
warning to block known-unsafe actions because Microsoft
actively searches out dangerous content on the Internet and
flags it using the URL Reputation Service.

securing web apps

Summarized by Shane Clark (ssclark@cs.umass.edu)

xBook: Redesigning Privacy Control in Social Networking ■■

Platforms
Kapil Singh, Georgia Institute of Technology; Sumeer Bhola,
Google; Wenke Lee, Georgia Institute of Technology

Kapil Singh gave a talk about the problems with privacy
control in social networking platforms and xBook, a system
designed to allow fine-grained and reliable control over
applications for such platforms. Singh noted that social net-
working sites such as Facebook, Twitter, and Orkut are still

09_DECEMBER_summaries.indd 86 10.29.09 10:48:11 AM

; LO G I N : D ecem b e r 20 0 9 cO N fe re N ce re p O rt s 87

growing rapidly in popularity. Many sites are also evolving
into platforms that expose APIs to third-party developers,
giving any developer’s application access to almost all stored
user data. A user must generally agree to this access when
adding an application, but there is no guarantee that the ap-
plication will use exposed data appropriately or that it will
only access data that is necessary for its advertised func-
tionality. The goal of xBook is to provide privacy protection
to users without requiring changes to the browser or any
discernible usability changes from the user’s standpoint.

Singh next introduced the high-level approach taken with
xBook. All applications are run from within the trusted
xBook domain to allow mediation. Applications are then
monitored at runtime in the browser. While they are still
allowed access to any user data, applications are required to
make the use of such data explicit to the user; xBook is able
to enforce this policy by tracking information flow. xBook
also requires applications to be split into client and server
components that are confined appropriately. For example,
JavaScript must be written in a safe subset of the language
called ADsafe and not have access to a page’s DOM ele-
ments. To enable necessary DOM accesses, xBook imple-
ments a DOM wrapper that gives client-side components
access to only those elements that belong to the same ap-
plication. Even when the components of a single application
are communicating among themselves, the data that they
are able to exchange is subject to the explicit restrictions
specified by the application developer and agreed to by
the user. Application components are also subject to these
restrictions when communicating with external entities.
The authors implemented xBook as a Facebook application
to demonstrate its effectiveness, and they also implemented
two applications that ran on top of xBook.

An audience member asked if the authors have performed
any experiments to test usability. Singh answered that they
have not completed any experiments but have designed the
system to be easy to use. Another audience member wanted
to know why users should be more willing to trust xBook
with their data than any given application. He was also
concerned that application developers may not be willing
to target xBook because they want direct access to user
data without added restrictions. Singh responded that users
already trust a large number of other applications, all with
the same privileges. Trusting xBook only requires users to
add a single application, minimizing the number that must
be trusted overall. If users choose to use xBook, developers
will be forced to target xBook with their development in
order to achieve widespread use. Finally, an audience mem-
ber pointed out that developing applications for xBook is
not necessarily an indicator of ease of use. He asked wheth-
er the authors had attempted to port an existing application
and, if so, what their experience was. Singh countered that
the two applications they implemented mirror the function-
ality of existing apps, but he acknowledged that there may
be a learning curve for their cross-platform APIs.

Nemesis: Preventing Authentication & Access Control ■■

Vulnerabilities in Web Applications
Michael Dalton and Christos Kozyrakis, Stanford University;
Nickolai Zeldovich, CSAIL, MIT

Michael Dalton presented his work on Nemesis, a system
designed to automatically prevent authentication and access
control vulnerabilities in Web applications. Dalton first
introduced some of the failings of Web authentication with
an illustrative example. If a user Bob uploads a photo to a
Web application, for example, that photo is typically stored
in the database using the credentials of the Web server
user. The database has no knowledge of Bob, and the Web
application’s user account necessarily has privileges equal to
or greater than those of any user that exists in the applica-
tion. According to Dalton, this semantic gap fundamentally
breaks Web authentication by requiring the application pro-
grammer to accurately insert access control and authentica-
tion checks before every file-system or database operation.
This must be done perfectly in order to adequately secure
any Web application.

Dalton next introduced the two classes of attacks that
Nemesis addresses and the approach to preventing each of
them. Authorization bypass vulnerabilities occur when a
user is able to access a resource without authorization, often
as the result of a missing or incorrect authorization check.
Authentication bypass vulnerabilities occur when success-
ful authentication occurs without valid credentials, often
caused by a poor URL/cookie validation method or simply
weak cryptography. Nemesis stops both classes of vulner-
abilities by inferring when authentication is performed cor-
rectly using dynamic information flow tracking (DIFT), also
known as taint tracking, and automatically enforcing access
control lists (ACLs) for Web application user accounts (as
opposed to Web server processes). To support the use of
Nemesis, DIFT functionality must be added to the language
interpreter in use, and ACL enforcement must be added to
the language’s core library. Nemesis does not require the
modification of the application code.

A Nemesis prototype has been implemented for the PHP
language and Dalton presented some examples of vulner-
abilities in real-world applications that Nemesis is able to
prevent. The prototype stopped authentication and autho-
rization bypass vulnerabilities in six popular PHP applica-
tions without any discernible performance overhead, but
does suffer from some limitations. There is currently no
SQL query rewriting support, forcing the authors to manu-
ally insert code to perform ACL and authentication checks
in some cases. The current prototype also lacks automatic
ACL generation, which leaves application administrators to
write their own. Both SQL query rewriting and automatic
ACL generation based on logs are slated for future work.

Bryan Parmo asked if Nemesis could be easily extended to
work with sites that use authentication methods other than
passwords. Dalton answered that Nemesis currently relies
on a byte-by-byte comparison of two strings in order to
infer successful authentication, but as long as there is some

09_DECEMBER_summaries.indd 87 10.29.09 10:48:11 AM

88 ; LO G I N : VO L . 3 4, N O. 6

authentication mechanism that Nemesis can be made aware
of, it should be possible to support that method. Parmo
followed up by asking if Nemesis is effectively removing the
responsibility for authentication from the Web application
and handling it completely. This is possible but Nemesis
actually requires some amount of ground truth in the appli-
cation that it can trust as a valid authentication technique.
Finally, David Wagner asked if Dalton believed that Neme-
sis is applicable to other popular Web application languages
and if he foresees any particular challenges in supporting
these other languages. Dalton answered that many popular
languages have had DIFT support implemented for them in
the past and it should be straightforward to add Nemesis
support. The authors chose to use PHP because they found
the interpreter easy to modify, and there are many insecure
PHP applications currently in use.

Static Enforcement of Web Application Integrity Through ■■

Strong Typing
William Robertson and Giovanni Vigna, University of California,
Santa Barbara

William Robertson noted that Web application vulnerabili-
ties make up more than half of all reported vulnerabilities
over the past two years, according to Symantec. The major-
ity of these Web vulnerabilities are either cross-site script-
ing (XSS) or SQL injection vulnerabilities. He acknowledged
that there are a number of existing solutions such as ap-
plication firewalls, automated code analysis, and penetra-
tion testing, but argued that these are clearly insufficient
measures, considering the continued prevalence of XSS and
SQL injection vulnerabilities.

Robertson said that a major source of Web application vul-
nerabilities is the treatment of Web documents and database
queries as unstructured character sequences. Because there
is no knowledge of appropriate structure and content at the
language or framework level, developers are responsible for
manually sanitizing this content. Developers will inevita-
bly fail at this task, as correctness requires perfect code. In
order to address this problem, the authors implemented a
language-based solution intended to explicitly denote struc-
ture and content using a strong type system. This approach
shifts responsibility for integrity enforcement from the
developer to the language and removes the need for separate
testing or analysis to ensure that an application is secure.

The authors’ prototype solution took the form of a Haskell-
based application framework, and they presented evalua-
tion results. The framework enforces integrity by requiring
the application to construct a tree of document nodes that
it then “renders” into serialized raw text for display. Each
node of the tree is sanitized during the rendering process in
order to prevent XSS vulnerabilities. The framework is able
to remove SQL injection vulnerabilities by simply requir-
ing applications to exclusively use prepared statements
where possible. When prepared statements are not possible,
the framework enforces integrity using a node rendering
approach similar to that for document nodes. Robertson

claimed that their framework achieved full sanitization
coverage and that they had confirmed correct sanitizer
operation using a large number of randomly generated test
cases. Finally, Robertson showed that their framework’s
performance was similar to that of Tomcat and Pylons. They
found that the performance of their prototype fell between
the other two frameworks in testing and is thus acceptable.

Adam Barth asked if the authors have investigated the
possibility of removing XSS vulnerabilities stemming from
client-side code such as JavaScript. Robertson answered
that they are investigating this problem. One promis-
ing approach might be to compile a representation of the
client-side code on the server side into JavaScript, similar
to Google Web Toolkit’s approach. Benjamin Livshits asked
about using symbolic execution to verify sanitizers, as op-
posed to random testing. The authors have not looked into
this, but it seems like a useful approach. Finally, David
Wagner complimented Robertson on the system’s removal of
the ability to even express some server-side vulnerabilities
and asked if the authors have looked into any other classes
of vulnerabilities. They chose to focus on SQL injection and
XSS because they can be simply expressed and prevented.
The authors are considering other vulnerabilities, but they
may be more difficult to address.

invited talk

Compression, Correction, Confidentiality, and Comprehen-■■

sion: A Modern Look at Commercial Telegraph Codes
Steven M. Bellovin, Professor of Computer Science, Columbia
University

Summarized by Kevin Butler (butler@cse.psu.edu)

Steve Bellovin delved into historical archives to present an
enlightening investigation of telegraph codes, looking back
with a modern perspective and uncovering remarkable
similarities to our current network structures and protocols.
An example of these surprising findings was discovering
that telegraph systems contained protocol stacks—the link
layer was well defined—and error correcting codes. Some
mechanisms were different, e.g., the job of a router was
performed by an operator who would relay telegraphs to
the correct destination link, but many of the problems were
similar to those we currently face. Steve focused on four
areas: compression for reducing the cost of transmission;
detection and correction of coding errors; confidentiality to
deal with operators seeing messages as they are transmit-
ted; and comprehension of the culture of the time, which is
strikingly conveyed in how the codes were structured.

The talk described a succession of codes from Sir Home
Popham’s naval code in 1805, which was expressive enough
to allow conversation, through to the telegraph era, where
codes were compiled not only for general use but for specific
industries as well. As an example, theater codes differentiat-
ed between specific capabilities desired of chorus girls, each
description compressed to a single code word. It was noted

09_DECEMBER_summaries.indd 88 10.29.09 10:48:11 AM

; LO G I N : D ecem b e r 20 0 9 cO N fe re N ce re p O rt s 89

that we still use domain-specific compression: Lempel-Ziv
doesn’t work as well on multimedia as JPEG or MP3. Early
codes did not provide redundancy, and techniques such as
terminal indices and mutilation tables were created. These
would provide potential endings for words where the first
two letters were known, and usually about five possibilities
were available. Based on the sentence, the code could either
be retransmitted or disambiguated contextually.

Confidentiality was an issue, identified in an 1870 docu-
ment that described a threat model for communication
security. However, it was not particularly well implemented
in many codes. Techniques included mono-alphabetic
substitution and constant additives. Even the US Govern-
ment’s code consisted of constant additives built on top of
the Western Union code, and this was state of the art until
around World War I. Bloomer’s Commercial Cryptograph
was a more successful code, a “holocryptic cipher” that was
unreadable without a key. This was a user-created two-part
code.

Some interesting details also appeared about threats to
confidentiality, such as Britain requiring cable compa-
nies to turn over copies of all international telegrams, and
copyright, where the US was not a signatory to the Berne
Convention until 1976, causing publishers to often publish
their works first in the US to ensure copyright there before
publishing in the rest of the world. A particularly interesting
reference to copyright infringement as “piracy” appeared in
a code book from 1936.

Telegraph codes were only recently supplanted in many
places, with China using them regularly until around the
year 2000. Much of what can be found in modern codes is
an evolution of what was done then, with formalized and
mathematical models now created, but the basis was set for
these techniques at least 75 years previously. A draft paper
of these findings can be found on Steve’s Web page at http://
www.cs.columbia.edu/~smb/papers/codebooks.pdf.

In the Q&A session, Matt Blaze pointed out that some early
military codes were based on poetry, and that codes are
only as secure as the people compiling them. Steve added to
this by discussing how early Russian OTP codes were not
in fact random; their randomness depended on the people
generating the pads.

applied cryp to

Summarized by Andres Molina (amolinaf@nsm.umass.edu)

Vanish: Increasing Data Privacy with Self-Destructing Data■■

Roxana Geambasu, Tadayoshi Kohno, Amit A. Levy, and Henry
M. Levy, University of Washington

Awarded Outstanding Paper!

Roxana Geambasu made the case that currently, when data
is communicated over the Internet, it lives forever. More-
over, while it is in transit, different providers create multiple
copies of the data. The users do not know where these

copies reside or for how long they will be kept. Some of this
data may be sensitive and resurface in a manner that is un-
wanted by the user; for example, by means of a subpoena.
The speaker referred to this type of attack as a retroactive
attack on archived data. She also pointed out that current
solutions such as PGP do not protect against such attacks,
because the key to recover the archived material can be ob-
tained by legal means. This problem also occurs in central-
ized services in which a provider maintains the data in an
encrypted form. The speaker gave the example of Hushmail,
an encrypted email provider that, in at least one case, al-
lowed access to email content as required by a subpoena.

Vanish is a system that combines distributed hash tables
(DHTs) together with secret sharing techniques to accom-
plish the goal of destroying data. The data gets encrypted
using a key that is split using Shamir shared secrets, gets
stored using the DHT in key-value pairs, and gets destroyed
after the data is successfully encrypted. Properties of DHT
systems such as member churn and discarding of key-value
pairs after a timeout is reached allow the proper destruction
of the shared key after an expiration date without requir-
ing any action by the user. With Shamir shared secrets,
a threshold amount of the shared key must be recovered,
and once that threshold can no longer be obtained the key
is gone forever. An attacker would need to capture the key
before or while it is being distributed, but this only applies
to premeditated attacks, not retroactive attacks.

The system has currently been realized using a Firefox
plug-in as the front end, allowing users to interact with
services such as Gmail, Hotmail, Facebook, Google Docs, or
essentially any other Web application that deals with plain
text. However, the speaker mentioned that Vanish can easily
be implemented as a plug-in to Thunderbird or other email
clients. The presentation only addressed some aspects of
the evaluation relevant to security, referring the audience to
other details of evaluation criteria in the paper.

A member of the audience asked about the selection of the
parameters from the user’s perspective. Geambasu re-
sponded that the current implementation provides the user
with reasonable default parameters that can be modified to
balance security and performance. Someone noted the refer-
ence in the talk to the need to use encryption techniques
like those employed in PGP to protect the data in transit.
Geambasu said such encryption techniques should be used
in addition to Vanish, not instead of it. Someone pointed
out that there are other existing solutions to the problem,
such as the Tahoe distributed file system, although this
system could pose a major drawback in terms of usability.
Geambasu was not aware of Tahoe and agreed that usabil-
ity was a major consideration in the design of Vanish. How
does Vanish protect the anonymity of the recipient, since if
the recipient is known, it would be possible to subpoena the
recipient’s computer in order to obtain the contents of the
caches? The Vanish model assumes that the attacker would
not know about the sender or recipient until after the data

09_DECEMBER_summaries.indd 89 10.29.09 10:48:11 AM

90 ; LO G I N : VO L . 3 4, N O. 6

has expired and enough time has elapsed for the data to be
destroyed.

For more information and to obtain the application, see
http://vanish.cs.washington.edu/.

Efficient Data Structures for Tamper-Evident Logging■■

Scott A. Crosby and Dan S. Wallach, Rice University

Scott Crosby started his talk by noting that everyone has
logs and that there are many applications that require stor-
age using tamper-evident techniques. Some of the examples
that were given included HIPAA regulations and credit card
payment contracts. Scott also pointed out that current com-
mercial solutions to this problem rely on the correct opera-
tion of the appliances and are too slow.

Crosby then proposed the use of efficient data structures
for tamper-evident logging. This approach would allow a
third party to prove the correctness of the solution using
known cryptographic techniques. Additionally, this solution
offers logarithmic performance in all operations, instead
of the linear performance that previous solutions offer.
The proposed solution based on history trees would offer
performance of 1,750 events per second, including digital
signatures, and 8,000 audits per second.

Crosby explained that audits are essential for this type of
application. If a malicious logger could anticipate that a par-
ticular log entry was not going to be audited, then he could
easily replace that entry. For that reason, it is necessary to
ensure that every event has a non-zero probability of being
audited. Furthermore, the author distinguished two types
of audits: audits to verify correct insertion of events and
audits to verify consistency among commitments. This new
paradigm requires that both insertions and audits are cheap
in terms of CPU, communication, complexity, and storage.
The solution proposed makes this possible by using Merkle
binary trees that avoid having to compute linear chains of
hashes. The solution allows the probabilistic detection of
tampering by only verifying a subset of events. Additionally,
this solution allows the computation of Merkle aggregates
and the performing of safe deletion by using tree pruning
techniques.

The system was evaluated with a syslog implementation,
logging 4 million events using 11 hosts over four days. The
experiment was repeated 20 times, using DSA signatures
and SHA1 hashes. While the results were reasonable (1,750
events/sec; 8,000 audits/sec), approximately 83% of the
runtime was spent computing signatures. Also, compression
reduced performance by about 50%. The authors suggested
that concurrency and replication would improve perfor-
mance. Additionally, given that the major bottleneck is due
to the computation of signatures, a performance gain is
expected if only a subset of the commits are signed, a faster
public key encryption scheme is used (such as ECC), or the
computation of the signatures is offloaded to other servers.
Using the latter approach, it is possible to process up to
10,000 events/sec.

Someone asked if it would be possible to perform data
reduction preserving the tamper-proof properties. Yes,
this is possible by employing tree pruning techniques and
appropriately using Merkle aggregation predicates with
each event. Another member asked if the technique would
account for trees with different depths, to which the author
responded affirmatively.

VPriv: Protecting Privacy in Location-Based Vehicular ■■

Services
Raluca Ada Popa and Hari Balakrishnan, Massachusetts Insti-
tute of Technology; Andrew J. Blumberg, Stanford University

Raluca Popa presented VPriv, a system that can be used in
various transportation systems to compute functions over
driver paths, such as usage costs. These computations are
performed while preserving users’ privacy. Current systems
such as EZPass do not offer adequate levels of privacy, as it
is possible to track the times and places where an EZPass
has been used. The solution came from observing that it
is possible to compute costs associated with a path with-
out actually knowing all the details of the path, by using
zero-knowledge proofs and secure multi-party computation.
VPriv was designed from the start to be efficient by exploit-
ing the properties of homomorphic encryption and families
of random functions. The system relies on the ability to
compute functions on tuples containing times, locations,
and random tags unique to each tuple.

The security model considers two parties: a client, such
as a driver, and a server. The client is not trusted, as he or
she has incentives to alter the protocol in order to reduce
personal costs. The server, on the other hand, is partially
trusted. That is, the server will be trusted to perform the
protocol correctly, but it will not be trusted to preserve the
privacy of the client. The speaker mentioned that the paper
also discusses a protocol dealing with a malicious server; in
other words, a server that is not trusted even to perform the
protocol correctly. While the talk focuses on the applica-
tion of usage tolls, the speaker briefly explained how the
system can easily be customized for other applications such
as “pay-as-you-go” insurance and speeding violations. The
protocol was divided into three phases. In the first phase,
referred to as registration, random tags are created to which
the client commits. The second phase involves the upload-
ing of the tuples containing the random tags generated in
the previous phase, together with the locations and times.
Finally, the reconciliation phase is when the client would
compute the owed cost and allow the server to verify the
result without compromising the privacy of the client.

The evaluation of the protocol showed linear performance
on the number of tags and the number of tuples uploaded
to the server. The system is three orders of magnitude faster
than Fairplay, a state-of-the-art general-purpose secure
multi-party computation compiler. Raluca mentioned that
it is possible to serve roughly a million customers with 21
server cores. The system was evaluated on Cartel, an MIT
project, with 27 taxis and 4,826 one-day paths. The experi-

09_DECEMBER_summaries.indd 90 10.29.09 10:48:12 AM

; LO G I N : D ecem b e r 20 0 9 cO N fe re N ce re p O rt s 91

ments showed that the enforcement scheme is effective and
efficient. The authors hope to see this system implemented
in the car sharing company Zipcar.

In a system like this, will it be hard for a customer to dis-
pute a bill when there is no actual record of the trips on the
server side? This is handled by the reconciliation phase, in
which the fees due are actually computed by the customer
and only verified by the server. Is it possible to leak some
information by allowing the server to identify where the
tuples are uploaded from? The system may be complement-
ed with the use of an anonymizing system, such as TOR,
to upload the tuples. Ian Goldberg asked if more complex
functions could be used to compute costs beyond simple ad-
ditions. It is possible to compute conditional functions, and,
in theory, any polynomial function could also be computed
using similar techniques, but the details would have to be
explored in future work. In the security model, although
the server is trusted to perform the protocol correctly, it
may also have incentives to prevent the protocol from being
performed correctly. The paper includes an extension to the
system that takes into account a malicious server. In such a
case, efficiency would be affected.

invited talk

Top Ten Web Hacking Techniques of 2008: “What’s possible, ■■

not probable”
Jeremiah Grossman, Founder and CTO, WhiteHat Security

Summarized by Stephen McLaughlin (smclaugh@cse.psu.edu)

Jeremiah Grossman presented the top 10 Web hacking tech-
niques of 2008. Tenth is Flash parameter injection (FPI).
FPI uses embedded Flash media as a vector for accessing the
HTML content of the containing page. One method for FPI
requires that an attacker assign values to global variables
which are initialized from values in HTTP requests.

Another technique that leverages a browser plug-in, ActiveX
repurposing, comes in at number nine. In this attack, a
malicious Web page takes advantage of the update function-
ality in the Juniper SSL-VPN client to first save a malicious
configuration file to a known location, then place a path to
it in the ActiveX control’s INI file.

The eighth Web hack, tunneling TCP over HTTP over SQL
injection, uses the reDuh server and client to give an attack-
er control of a remote machine behind a firewall. In this at-
tack the reDuh server, which tunnels TCP traffic over valid
HTTP commands, is uploaded to an SQL server behind a
firewall that only allows HTTP traffic. The SQL server is
used as a gateway between the attacker and the internal net-
work. While Grossman pointed out that database hardening
is one defense against this attack, the reDuh server may also
be uploaded to an application server as a JSP page.

Web hack number seven can be used to determine if a
victim is logged in to a given Web site or by observing the
stylesheets from another Web page. A link to a target inline
stylesheet from a malicious page can be used to obtain

the cross-domain style definition. The malicious page can
then check for style properties indicating the user is logged
in to the target site. The sixth Web hack, abusing HTML
5 client-side storage, uses any cross-site scripting (XSS)
vulnerability to either leak information from or inject code
into HTML 5 client-side stored objects. Web hack five is a
different Opera. The goal of this attack is to execute code in
the Opera browser running in the opera:* context, which
will give an adversary the ability to modify browser settings
with opera:config. This is achieved by a cross-site request
forgery to opera:historysearch, which already contains an
XSS from a previously visited page.

Clickjacking, the fourth Web hack, uses the CSS opacity
property and JavaScript to place an invisible button pulled
from a form on a target page directly under the user’s
mouse. This causes the user to click the invisible button
instead of some visible part of the page. If the user has
already authenticated to the target site, this will result in the
site taking some action on the attacker’s behalf. Examples
of target sites may be CPC advertisements, Digg links, and
options on DSL router configuration pages. Grossman went
on to say that this exploit may be used to trick users into
enabling a laptop’s camera and speakers through a Flash
applet, allowing for remote surveillance through a Flash
application. Grossman had a recommended countermeasure
to the camera-enabling attack: placing tape or a sticker over
the camera lens.

The third Web hack uses a feature of Safari in which any
file of a type not recognized by the browser is saved to the
desktop. This allows malicious site to effectively “carpet
bomb” the target machine with garbage files or malware.

Coming in at second place is an attack on Google Gears
which bypasses the cross-origin security policy. This is pos-
sible if an attacker can insert Google Gears commands into
a file uploaded to a target site. These commands are likely
to pass input filtering, as they lack suspicious tokens like
<script> tags. A malicious Gears-enabled site then executes
the commands in the context of the target site in the vic-
tim’s browser.

The number one Web hack of 2008 is the GIFAR, a concat-
enation of a GIF image and a Java JAR archive. Because GIF
files are parsed from the first byte and any garbage at the
end is ignored, and JAR files are the exact opposite, append-
ing a JAR file to the end of a GIF creates a GIFAR, which
will pass input validation for file uploads while allowing
the JAR file to be embedded in a page that will run in the
targeted site’s context.

Several of the questions after the talk concerned classify-
ing Web hacks by type, technique, and trends. Grossman
said that the trend in 2008 was toward attacks against the
browser, while in 2009 we are likely to see a shift back to-
ward servers with HTTP parameter pollution attacks. Also,
according to Grossman, as diverse as 2008’s Web exploits
are, they can likely all be classified according to MITRE’s
Common Weakness Enumeration (CWE). He gave the ex-

09_DECEMBER_summaries.indd 91 10.29.09 10:48:12 AM

92 ; LO G I N : VO L . 3 4, N O. 6

ample that clickjacking could be classified as a UI redress-
ing attack. Rik Farrow asked if Grossman used NoScript as
a countermeasure, and Grossman said that he did. When
Farrow then asked the same question of the audience, very
few hands went up. (See p. 16 of this issue for Grossman’s
article on Web hacks and p. 21 for an article on NoScript.)

poster session

Posters below summarized by Kalpana Gondi
(kgondi@cs.uic.edu)

An Examination of Secure Programming Practices Through ■■

Open Source Vulnerability Patch Characteristics
Mark Plemmons, Andrew Falivene, Jonathan Peterson, Adam
Wenner, Will Quinley, Jing Xie, and Bill Chu, University of North
Carolina at Charlotte

Mark Plemmons presented a study to understand secure
programming practices by analyzing characteristics of
patches for vulnerabilities in open source applications.
Authors analyzed Linux kernel vulnerabilities and their
patches for the period of 2006–2008 (from kernel.org)
to learn characteristics such as number of files and lines
changed. For the buffer overflow vulnerabilities, patches
were localized to a small number of files. The methodology
followed was software vulnerability cognitive complex-
ity (SVCC), where SVCC = Lines of Code added + Lines of
Code removed.

The Impact of Structured Application Development ■■

 Framework on Web Application Security
Heather Lipford, Will Stranathans, Daniel Oakley, Jing Xie, and
Bei-Tseng Chu, University of North Carolina at Charlotte

Will Stranathans presented this work about the effects of
structured application development frameworks on Web
application security. The authors have studied practically, by
training a few members to observe the behavior of the soft-
ware they have written after taking the training in applica-
tion development frameworks (especially struts). There were
two groups of people, those with and without the knowl-
edge of application development framework, who wrote the
software. The software was tested against attacks like SQL
injection, XSS, and system information leaks, and there was
a major difference in defense against XSS and information
leaks between the software developed with and without the
application framework knowledge. The authors observed
that the knowledge of frameworks will help in writing the
secure code.

Toward Enabling Secure Web 2.0 Content Sharing Beyond ■■

Walled Gardens
San-Tsai Sun and Konstantin Beznosov, University of British
Columbia

San-Tsai Sun discussed enabling secure content shar-
ing where there are no proper mechanisms in Web 2.0 to
provide content sharing among individuals in a controlled
manner across content-hosting or application service

provider (CSP) boundaries. The design includes OpenID
email protocol and RT policy service. OpenID email pro-
tocol enables OpenID identity providers to use email as an
alternative identity. RT policy provides services for Internet
users to organize their role-based trust-management access
control policies and for CSPs to make access decisions. The
two key concerns are usability and interoperability.

A Self-Certified Signcryption Scheme for Mobile ■■

 Communications
Ki-Eun Shin and Hyoung-Kee Choi, Sungkyunkwan University

Ki-Eun Shin pointed out that securing mobile commu-
nications is challenging because communicating entities
(i.e., mobile devices) are resource-constrained, and mobile
networks restrict Internet access. Hence, cryptosystems
developed for mobile communications should be efficient,
and overhead associated with the security protocol needs to
be minimal. The intervention by the conventional trusted
authority should also be minimized because of the restrict-
ed access to outside networks. The authors propose a self-
certified signcryption scheme to withstand such obstacles in
mobile communication.

Developing Security and Privacy Requirements for a Local ■■

Area COllaborative Meeting Environment (LACOME)
Fahimeh Raja, Kirstie Hawkey, and Kellogg S. Booth, University
of British Columbia

Fahimeh Raja explained that they tried to look beyond
usability toward security and privacy. The authors have
developed software to provide a multi-user platform to
support sharing of co-located and collaborative work in the
same platform. This is more useful for group discussions in
the corporate world or any group, for that matter, discuss-
ing and sharing information on a particular topic. The key
challenges here include: authentication, client authentica-
tion and authorization, and unintended disclosure of private
data. They are focusing on performing one-on-one inter-
views and focus groups to get the end users’ privacy and se-
curity requirements and to implement security and privacy
controls, especially for those in front of a large audience.
Finally, they want to test the scheme in real meetings.

Posters below summarized by Prithvi Bisht
(bishtspp@yahoo.com)

Comprehensive Redaction for Neurological Imaging■■

Alex Barclay, Laureate Institute for Brain Research; Nakeisha
Schimke and John Hale, University of Tulsa

Alex Barclay presented a technique to preserve privacy of
patients’ data captured in neurological imaging. According
to Barclay, researchers often share imaging data for collabo-
ration and research purposes. However, it may compromise
the privacy of patients, e.g., by reconstructing the face, time
of capturing the image, etc. He presented a technique to
preserve privacy by deleting certain data from images and
presented a disk level algorithm to achieve this.

09_DECEMBER_summaries.indd 92 10.29.09 10:48:12 AM

; LO G I N : D ecem b e r 20 0 9 cO N fe re N ce re p O rt s 93

Java Data Security Framework (JDSF) and Its Applications: ■■

API Design Refinement
Serguei A. Mokhov, Concordia University

Serguei A. Mokhov presented a framework to evaluate/com-
pare various implementations of security algorithms in a
homogeneous environment, primarily in Java. According to
Mokhov, this framework provides interfaces to implementa-
tion providers. Further, according to him, such a frame-
work enables evaluation of disparate implementations of an
algorithm on dimensions and metrics set by the framework,
such as runtime and memory usage.

Towards Investigating User Account Control Practices in ■■

Windows Vista
Sara Motiee, Kirstie Hawkey, and Konstantin Beznosov,
 University of British Columbia

Sara Motiee presented a study plan to investigate patterns of
usage for administrative or normal user accounts in Win-
dows Vista. Specifically, the planned study aims to discover
if users prefer admin/non-admin accounts, what challenges
are faced in non-admin accounts, and how these patterns
vary across disparate user groups.

Large-scale Multitouch Interactive Network Visualization■■

Cody Pollet, George Louthan, and John Hale, The University of
Tulsa

George Louthan presented an approach to graphically rep-
resent network traffic in large-scale networks. The goal is to
allow a human to understand and reason about the real-
time condition of the network. He further discussed plans
to integrate a multi-touch screen in such a system to provide
collaboration among different users.

FloVis: Flow Visualization System■■

Diana Paterson, Joel Glanfield, Chris Smith, Teryl Taylor,
 Stephen Brooks, and John McHugh, Dalhousie University;
Carrie Gates, CA Labs

Diana Paterson presented an approach to render the net-
work traffic through visual artifacts. A real-time traffic visu-
alization may allow security administrators to more quickly
discover patterns of hostile activity and diagnose compro-
mised hosts. It may also be useful in maintenance: e.g.,
heavy traffic on a few nodes may represent an in-progress
denial-of-service attack as well as a heavily loaded subnet.

Posters below summarized by Asia Slowinska
(asia.slowinska@gmail.com)

Beatrix: A Malicious Code Analysis Framework■■

Christian Wressnegger

Beatrix is a framework designed to reduce the effort re-
quired to build a prototype for a malware detection tech-
nique. The framework introduces a plug-in infrastructure
that divides the entire analysis process into six disjoint sub-
tasks: e.g., input, extracting, or formatting. This architecture
enables utilizing existing components, which lets the system
conduct significant parts of the examination of malicious bi-

naries and thus reduces programmers’ efforts. Future work
includes extending the set of modules available.

SAND: An Architecture for Signature-Based Automatic ■■

Network Protocol Detection
George Louthan and John Hale, The University of Tulsa

George Louthan targeted the problem of network traffic
classification, and proposed a content-aware method based
on the actual contents of packets. His solution overcomes
the prevalent lack of adherence to standard port numbers,
which could result in incomplete traffic identification in
port-based network monitors. The general SAND strategy
for identifying a stream involves matching a set of string
signatures describing a known protocol format. For ex-
ample, the SSH identifier finds the strings “SSH-” and “CR
LF” and takes the string between them to be the protocol
version. Future work includes a thorough analysis of the
performance and effectiveness of the system.

Posters below summarized by Patrick Wilbur
(patrick.wilbur@gmail.com)

Securing the Application Acquisition Chain: Security ■■

Concerns & Human Factors of Application and System
Acquisition in the Enterprise
Eric Goldman, Rochester Institute of Technology

Eric Goldman explained that this work examines to what
extent, if any, security is considered in an organization’s
selection of information technology software and hardware.
They focused on small- to medium-sized organizations,
which generally lack the resources, time, and experience
to adequately address security. He considered both the
processes of acquisition in information technology and the
psychology of good decision-making, and he concluded that
all businesses and individuals, regardless of size, deal with
sensitive and valuable data to varying degrees, and that
those organizations and individuals that do not keep up
with security concerns become easy prey as others advance
their security focus, despite those organizations’ seemingly
small size and value.

Exploring the Human-Behavior Driven Detection Approach ■■

in Identifying Outbound Malware Traffic
Huijun Xiong, Chih-Cheng Chang, Prateek Malhotra, and
 Danfeng (Daphne) Yao, Rutgers University

Chih-Cheng Chang noted that outbound malware network
traffic is unintended by the user and does not always corre-
late with a user’s actions on the system or the user’s intend-
ed actions. In this work, both user inputs and outbound
traffic are semantically examined to see if a valid correla-
tion exists between actions and outbound traffic. This work
assesses the actions a user performs and exposes invalid
outbound traffic, which could signify malware traffic that is
undesired by the user.

09_DECEMBER_summaries.indd 93 10.29.09 10:48:12 AM

94 ; LO G I N : VO L . 3 4, N O. 6

Towards Improving Identity Management Systems Through ■■

Heuristic Evaluation
Pooya Jaferian, David Botta, Kirstie Hawkey, and Konstantin
Beznosov, University of British Columbia

Pooya Jaferian pointed out that good identity management
is absolutely critical in an organization’s access control
framework. However, this work finds that identity manage-
ment systems can host significant usability problems. The
goal of this work is to expose usability problems in identity
management that could result in mistakes being made while
using or administering those systems, which, in turn, could
result in the improper granting of access to resources.

A Spotlight on Security and Privacy for Future Household ■■

Robots: Attacks, Lessons, and Framework
Tamara Denning, Cynthia Matuszek, Karl Koscher, and
Tadayoshi Kohno, University of Washington

In the future, robots and automation will become increas-
ingly ubiquitous in the household. Tamara Denning and
Karl Koscher presented this examination of various house-
hold robots for security vulnerabilities, which include hard-
coded passwords, lack of strong encryption, and other easy-
to-avoid weaknesses. Although each individual household
robot proved to be fairly innocuous on its own, this work
reveals several complex attack vectors spanning multiple,
differently purposed (and differently skilled) household
robots that could lead to more serious attack payloads (e.g.,
combining dexterity-rich and vision-rich robots to hold and
scan your keys for duplicates to be made by an attacker).

Performance Testing the Vulnerability Response Decision ■■

Assistance (VRDA) Framework
Art Manion, CERT/Coordination Center; Kazuya Togashi,
JPCERT/CC

Art Manion and Kazuya Togashi presented this work about
the Vulnerability Response Decision Assistance (VRDA)
framework, a decision support system used for predicting
an organization’s responses to vulnerability report stimuli.
In order for the VRDA framework to be an effective tool, it
must accurately predict the organization’s responses relative
to vulnerability reports. This work analyzes errors in VRDA
predictions using several techniques (hit rate, off-by-one,
mean of squared errors, and mean of the errors) in order to
quantitatively evaluate the effectiveness of the VRDA frame-
work. With the help of the Vulnerability Analysis team at
the CERT/CC, this work offers a multitude of numerical
error assessment results on various tasks for which the
VRDA framework can predict responses.

m alware detection and protection

Summarized by Andres Molina (amolinaf@nsm.umass.edu)

Effective and Efficient Malware Detection at the End Host■■

Clemens Kolbitsch and Paolo Milani Comparetti, Secure Systems
Lab, TU Vienna; Christopher Kruegel, University of California,
Santa Barbara; Engin Kirda, Institute Eurecom, Sophia Antipo-

lis; Xiaoyong Zhou and XiaoFeng Wang, Indiana University at
Bloomington

Clemens Kolbitsch introduced his talk by mentioning the
weaknesses of existing malware detection solutions that rely
on binary signatures or on the detection of artifacts. Kol-
bitsch suggests that a better solution to this problem would
be to look for patterns of malicious behavior. He claims
that a system based on detecting these patterns is harder to
obfuscate and is more stable. A major contribution of the
presented work is to provide a solution to detect malware
that combines the effectiveness of behavior-detecting tech-
niques with the efficiency of previous solutions based on
binary signatures.

First, in a detection phase in which the characteristics of the
malware’s behavior are determined, the malware is executed
in a full system emulator called Anubis. During this phase,
the system monitors the interaction with the operating sys-
tem. This observation allows the tool to perform a detailed
analysis in order to generate behavior graphs. These detec-
tion graphs describe a sequence of required system calls
leading to the security-relevant system activity, together
with the dependencies to the related previous calls. Finally,
the end host is monitored and all the system call activity
of unknown executables is logged and matched against the
behavior graphs obtained. The speaker described how this
would work, using a trojan horse as an example. Clemens
described their proposed way of matching behavior graphs
using recorded execution semantics and then extracting
data propagation and manipulation formulas.

The evaluation of the system covered aspects of the ef-
fectiveness and efficiency of the system, showing that the
behavior detection is fast enough for the end hosts and that
the approach is robust against any kind of binary obfusca-
tion, including polymorphism and metamorphism. Further-
more, in some cases the system can detect malware variants
that were never seen by the graph generator.

A member of the audience said that it is difficult to distin-
guish installers from malicious behavior, especially given
that trojans seem to be the most common type of malware
these days. Kolbitsch pointed out that trojans actually
download other malware following very precise patterns,
and the system described already detects these trojans. He
noted that the authors plan to explore this kind of detection
further in future work.

Protecting Confidential Data on Personal Computers with ■■

Storage Capsules
Kevin Borders, Eric Vander Weele, Billy Lau, and Atul Prakash,
University of Michigan

Billy Lau began his talk by noting that many users need to
work with sensitive data, such as financial records, while
using a PC that is not trusted. Lau proposed a solution to
this problem using storage capsules. He started by describ-
ing a typical workflow for a solution using TrueCrypt,
pointing out that such a solution should not be considered
safe, because when the document is open it also becomes

09_DECEMBER_summaries.indd 94 10.29.09 10:48:12 AM

; LO G I N : D ecem b e r 20 0 9 cO N fe re N ce re p O rt s 95

available to malware. He said that Trusted Boot, another
existing solution, is also not completely appropriate because
all software is required to be verified before installation, and
verifying documents is even more complex.

The authors’ solution consists of dividing the modes of op-
eration into normal and secure modes. In the normal mode,
a user would face no restrictions but should perform only
non-sensitive operations and would not have any storage
protection. In the secure mode, network output would be
prevented, but editing sensitive documents would be pos-
sible and changes would be encrypted to storage capsules.
The speaker said that from the user’s perspective the work-
flow should be very similar to using a solution such as True-
Crypt. The solution with storage capsules is implemented
by running a primary virtual machine and a secure virtual
machine. The I/O is restricted across different modules
between the Secure VM, the Primary VM, and the VMM
that handles the physical device drivers, while the system is
in secure mode.

Paul Van Oorschot from Carleton University questioned
the speaker’s claim to offer a system with better usability,
given that the authors did not conduct a study to evaluate
this claim. Another member of the audience also pointed
out that since the primary OS is not trusted and the viewer
is run in this system, it may be hard for a user to trust the
viewer. Lau and one of the co-authors responded that the
viewer is not trusted in the proposed model, and it can be
thought of as a malicious client. How would their solution
compare to simply rebooting the machine into another
more trusted OS, given that entering and exiting the trusted
modes takes a couple of minutes? The transition in their
system would still be faster than rebooting into another
system. Would all covert channels be mitigated to avoid
leakage from the Secure VM in this system? The authors did
not claim to eliminate all covert channels. Instead, the in-
tention was to eliminate as many as possible at the layer of
abstraction provided by the authors. An audience member
pointed out that buffer overflows may have to be addressed
by this architecture. Lau noted that, while this point should
be taken into account, the system is currently implemented
in Python, a type-safe language.

Return-Oriented Rootkits: Bypassing Kernel Code Integrity ■■

Protection Mechanisms
Ralf Hund, Thorsten Holz, and Felix C. Freiling, Laboratory
for Dependable Distributed Systems, University of Mannheim,
Germany

Ralf Hund noted that the kernel has elevated privileges and
that not even virtualization solutions allow the detection of
malicious programs at lower privileged levels. Hund argued
that it is necessary to prevent malicious programs from
executing in the first place. The key idea is that current in-
tegrity protection mechanisms do not protect against attacks
in which the attacker re-uses existing code within the ker-
nel to perform malicious computations. He explained how
this procedure can be automated by providing a framework

with three core components: a constructor, a compiler, and
a loader which can currently be used in 32-bit Windows
operative systems running IA-32.

Hund described the instruction sequences that are use-
ful for performing these types of attacks. He also briefly
described the designs of the so-called automated gadget
construction, the compiler, and the loader. Hund gave a
demo of the rootkit implementation, which can be used to
traverse the process list and remove a specific process. This
rootkit is only 6KB in size, and, as shown in the demo, can
be used to eliminate the program Ghost.exe from the Win-
dows Task Manager while the process is still running.

Hund concluded by claiming that the problem is malicious
computation, not malicious code, and, therefore, code integ-
rity itself is not enough to provide a secure OS. Future work
would include the implementation of the rootkit in other
operating systems in order to show its portability and to
develop some countermeasures against this sort of attack.

A member of the audience asked if address randomization
could prevent this kind of attack. Hund responded that in-
deed this could be effective in mitigating the attack but not
in the way it is currently implemented, not even in Win-
dows Vista, where the randomization is done in user space.
Could something be done to the kernel compiler to prevent
these attacks? Although possible, this approach would re-
quire the recompilation of every single system component.

invited talk

Hash Functions and Their Many Uses in Cryptography■■

Shai Halevi, IBM Research

Summarized by John Brattin (jbrattin@student.umass.edu)

Shai Halevi divided his talk on cryptographic hash func-
tions into four main parts. The first described some stan-
dard uses for hash functions; the second explained a mo-
tivating application for hash functions; the third described
how hash functions should be used; and the last described
some of the considerations taken into account during the
implementation of Fugue, the IBM submission for NIST’s
SHA-3 hash function competition.

Traditionally, hash functions have been used to compress,
encrypt, and authenticate data, or for error-checking. Hash
functions can be used in digital signature algorithms, in
message authentication codes, in pseudo-random number
generators, and in key derivation functions. Halevi de-
scribed briefly how one would go about implementing each
of these things.

The important properties of a hash function are also the
defining characteristics of a “random function”: each output
is equally (im)probable; collisions (e.g., a and b such that
H(a)=H(b)] are hard to find; fixed points [e.g., a such that
a=H(a)] are hard to find; and so on. The “random oracle
paradigm” is a method of creating a cryptosystem in which
you assume you have a random function, design a system

09_DECEMBER_summaries.indd 95 10.29.09 10:48:12 AM

96 ; LO G I N : VO L . 3 4, N O. 6

around that function, prove that that system would be
secure, and then replace the ideal random function with
a practical, somewhat nonrandom hash function. In most
cases, this paradigm is successful, resulting in secure
cryptosystems. When the paradigm fails, it is due to some
nonrandom property of the hash function.

However, every hash function has some nonrandom proper-
ties which can be exploited, because every hash function
is computable. There are degenerate cases of cryptosystems
designed using the random oracle paradigm, which are
provably secure with a random function but trivially break-
able with any hash function. According to Halevi, the best
way to minimize the effect of the nonrandom properties of
hash functions is to rely on very weak security assumptions,
i.e., to claim that a cryptosystem is secure only when several
external conditions are met. Halevi described several sys-
tems with weak security assumptions, including enhanced
target collision resistance (eTCR).

The final section of the talk concerned Fugue, IBM’s sub-
mission for the NIST hash competition. Many modern hash
functions rely on the Merkle-Damgard construction, which
is an iterative method that hashes the first part of the mes-
sage, then hashes that result with the next part of the mes-
sage, and so on. However, this construction has very little
intermediate state. At each iteration, a nontrivial amount
of work is done to hash part of the message, but that work
is all thrown away and only the hashed result is preserved
for the next iteration. Alternatively, Fugue carries along 120
bytes of intermediate state, making it harder to find inter-
nal collisions, which have been used in attacks on previous
hash functions, eventually leading to real collisions.

A member of the audience asked if a PRG could be used to
extend a short salt into a longer salt in the eTCR scheme.
Halevi replied that it could be done but that the resulting
salt may be easier to guess—if the attacker knows the PRG
and can guess the seed, then they’ve generated your salt and
it’s easier to break the eTCR. Dan Boneh noted that Halevi
talked about Fugue’s collision resistance but didn’t mention
other nice properties of random functions—fixed points,
low Hamming weight, and so on. Halevi responded that
second-preimage analysis worked out to be very similar to
the analysis he gave, and pseudo-randomness would also
work out to be similar in some ways. He hadn’t looked into
analysis of fixed points.

browser securit y

Summarized by Todd Deshane (deshantm@clarkson.edu)

Crying Wolf: An Empirical Study of SSL Warning ■■

 Effectiveness
Joshua Sunshine, Serge Egelman, Hazim Almuhimedi, Neha Atri,
and Lorrie Faith Cranor, Carnegie Mellon University

In the talk, Joshua Sunshine described a user study done
at Carnegie Mellon University (CMU), in which the goal
was to study the effectiveness of SSL warnings presented to

users by various browsers and also some custom warnings
devised by their research group. Most, if not all, modern
browsers warn about SSL certificate problems in the cases of
domain mismatch, unknown certificate authority, or expira-
tion. These warnings happen in two types of cases, either
as a final protection against man-in-the-middle attacks or
when a user is contacting a legitimate server. One example
of a legitimate server that would issue an SSL warning is the
Carnegie Mellon Library Web site, which uses the Carnegie
Mellon certificate authority. Since most browsers don’t have
the Carnegie Mellon authority added by default, the users
will see an SSL warning.

Josh showed three native browser warnings, from Firefox
2 (FF2), Internet Explorer 7 (IE7), and Firefox 3 (FF3), as
well as two custom warnings, a single-page and a multi-
page warning. He noted the change from popup style
warnings (pre-2007) to warnings that take up the entire
page (post-2007). He also described the shift from a default
action of ignoring the warning and continuing anyway to
browsers that make it very difficult to ignore the warning,
often forcing the user to make more than a single click to
get by. In the FF3 case, four steps are necessary to ignore
the warning and get through. In fact, in one of the alpha
releases of FF3 there were 11 steps.

Next, Josh described his team’s principled approach to
designing two custom warnings based on an online survey
and some warning science guidelines. The outcomes of the
online survey taught them that content sensitivity (what the
user is currently doing) is important to take into account.
Also, they learned that users will ignore warnings out of
habit (they ignored the warnings in the past and noth-
ing bad happened). From the survey, they also found that
people confused the SSL warnings with much less seri-
ous warnings, such as sending unencrypted information
over the Internet via a Google search. The warning science
guidelines they used, as taken from applied psychology
literature, were to avoid warnings when possible, clearly
explain the risk, and provide straightforward instructions
for avoiding the risk. In their custom multi-page warning,
they first asked the user what type of Web site they were
visiting (bank, e-commerce, other, don’t know). If the user
chose bank or e-commerce, then a second page appeared
wgucg gave a severe warning, based on the FF3 phishing
warning and using the most severe, red Larry icon. The
only two buttons on that second page were “Get me out of
here” and “Why was this blocked?” with a small link in the
bottom right to ignore the warning. If the user chose “other”
from the previous warning page (as the type of site), they
bypassed the severe warning page and were directed right
to the destination site. Their custom single-page warning,
as opposed to the multi-page warning, was simply the red,
severe warning page, without asking users the type of site
they were visiting.

The user study had 100 participants, all CMU students, who
were randomly assigned to the different warnings (FF2,
FF3, IE7, custom single-page, and custom multi-page). SSL

09_DECEMBER_summaries.indd 96 10.29.09 10:48:12 AM

; LO G I N : D ecem b e r 20 0 9 cO N fe re N ce re p O rt s 97

warnings were shown to the user in two of the four tasks,
the bank task and the library task. For each task, the users
were presented with an alternative method for completing
the task, such as calling or using a different Web site. The
bank task required them to enter their credentials for the
bank, while the library task didn’t require any sensitive
information. The hypotheses of the study were that the IE7
and FF2 warnings would be ignored at both Web sites, par-
ticipants would likely obey the FF3 and the custom single-
page warning on both sites, and participants who saw the
multi-page warning would obey on the bank Web site but
continue on the library site.

The hypotheses turned out to be validated, but with some
interesting findings along the way. First, although it was less
likely that users would continue to the bank Web site, even
in the best case (the single-page warning), 45% of the users
visiting the bank Web site still ignored the warning! Also,
the FF3 warning turned out to be a significant deterrent,
even in the library task. Finally, it was surprising that even
though fewer people continued through the bank task than
the library task, the difference was slight, generally only one
or two users. Based on an exit survey, the authors found
that their single-page warning was more effective at convey-
ing the risk and intent of the warning. They also noticed
that 4 out of the 20 users of FF3 confused the warning
with the “Page not found” (404) error. The FF3 warning
also caused the most (10 times as much) hesitation actions
(clicking back, refreshing, re-typing URLs, etc.) than any
other warning.

The CMU team feels there are weaknesses that need to be
addressed with their multi-page warning, such as better
context-sensitive information. Finally, they conclude that
forcing users to do the right thing (such as using systems
like Perspectives and ForceHTTPS) is the correct way to go.

Someone asked about the backgrounds of the participants.
Josh responded that as students at CMU they were rather
technical, many of them in technical master’s degree
programs, such as information networking and software
engineering. What is the general applicability of the results?
The results should be applicable to the general population;
technical expertise did not seem to play a role in the actions
of the users. What is the statistical significance of the graph
comparing users who ignored warnings on the library task
vs. those who ignored warnings on the bank task? The only
two cases where there was statistical significance was for the
single and multi-page warnings. Another questioner won-
dered about the recommendation to force safe practices and
in turn get rid of self-signed certificates. Josh said that in an
ideal world he would recommend getting rid of self-signed
certificates and use Perspectives and ForceHTTPS, although
this avenue may be too costly, and he surmised that IE
developers would not support it. Had the users entered their
actual credentials, which would imply that they could have
captured 45% of users’ actual credentials? Josh confirmed
both were true. Did users have an alternate way to succeed

in the task? Josh said that they were allowed to use the
phone or visit a different Web site.

The Multi-Principal OS Construction of the Gazelle Web ■■

Browser
Helen J. Wang, Microsoft Research; Chris Grier, University of
Illinois at Urbana-Champaign; Alex Moshchuk, University of
Washington; Samuel T. King, University of Illinois at Urbana-
Champaign; Piali Choudhury and Herman Venter, Microsoft
Research

Alex Moshchuk acknowledged the trend of users to store
information in the cloud as opposed to on their own com-
puters. He explained that the existing browser technolo-
gies, such as IE8 and Google Chrome, take the approach
of protecting valuables on the desktop via sandboxing
and other similar techniques, but fail to protect Web sites
from stealing data from each other. Therefore, the authors
set out to design their Gazelle browser to apply operating
system concepts directly in the browser’s security model: for
instance, moving all of the complicated resource allocation,
protection, etc., into a small, trusted, and simple browser
kernel. Taking the OS analogy one step further, instead of
treating users as principals they treat individual Web sites
as the principals by putting them into protection domains.
The real challenge arises when dealing with Web sites that
embed content from other Web sites, as is done with mash-
ups.

The design of Gazelle builds on the concept of same-origin
policy by labeling content based on origin and isolating
Web site origins into Web site principals. Further, they
separate principals into principal instances if, for example,
multiple browser tabs from the same origin are open. In
their design, principal instances would run in their own
processes, but finer-grained methods of separation (e.g.,
based on type-safe code) could be applied. The architecture
of the system is a single browser kernel that mediates all re-
source access of the principal instances, including network,
storage, and user display. Gazelle requires that principal in-
stances use the Gazelle API to interact with the system and
each other. Even Flash (and other plug-ins) would run in its
own process and would interact via Gazelle function calls.

The Google Chrome and IE8 browsers combine content
from different origins on the same tab into the same pro-
cess, where a malicious Web site could compromise data
from another in the same tab. In contrast, Gazelle separates
each of the principals from different origins into its own
process, thus protecting the data of another site even if one
of the principals is compromised. The goals of Chrome and
IE8 are reliability and stability (keeping the browser going
even if another tab crashes), while the goal of Gazelle is to
introduce more security by protecting principals from each
other.

Next, Alex briefly discussed the backward compatibility
vs. security trade-off and noted that it is a policy issue. He
also discussed in detail the concept of display in Gazelle

09_DECEMBER_summaries.indd 97 10.29.09 10:48:12 AM

98 ; LO G I N : VO L . 3 4, N O. 6

and explained how to use display access control to limit
both the creator window (landlord) and embedded content
(tenant) in order to allow proper control of data or display.
The concepts exist to some extent in modern browsers, but
are intermixed too much and the complexity leads to bugs.
Gazelle is designed to more easily protect against CSS his-
tory stealing and clickjacking by carefully processing events
and maintaining the proper protection between principals
in the browser kernel.

The implementation is in C# and makes use of the Trident
rendering engine of IE. The evaluation described in the talk
showed that Gazelle could perform on par with other mod-
ern browsers, specifically IE7 and Chrome, for single-origin
pages and has a fair amount of overhead for multiple-origin
pages. He noted, however, that Gazelle is still a research
prototype and has not been tuned for performance. He
noted several optimizations that could bring performance
closer to Chrome and IE7, and he mentioned Xax and Na-
tive Client (NaCl) as examples.

The first two questions concerned the overhead and the
feasibility of using Xax and NaCl. Alex responded that
he didn’t have numbers for the overhead involved, but he
didn’t think it would be a problem, based on the overhead
of system calls they had been experiencing. He mentioned
that they are considering implementing a new renderer for
Gazelle so that they can take advantage of Xax or NaCl-style
sandboxing. He considered the process of adding sandbox-
ing support to be more of an engineering effort, since XaX,
NaCl, and Google Chrome had already accomplished it.
There was a question regarding plug-ins; Alex responded
that they are prioritizing support for a Flash plug-in. Rik
Farrow asked about their decision to support transparent
frames (thus opening up the possibility for clickjacking).
Alex explained that they are studying the top sites and that
they considered backward compatibility issues. He noted
that the policy of allowing same-origin transparent frames
was just one possibility and that other policies are being
considered by his team.

invited talk

DNS Security: Lessons Learned and The Road Ahead■■

David Dagon, Georgia Institute of Technology

Summarized by Michalis Polychronakis (mikepo@ics.forth.gr)

During 2008, the DNS infrastructure underwent a major
disruption due to a new and improved DNS cache poison-
ing attack. David Dagon presented a timeline of the events
that led to the public release of the attack details, including
the response steps the DNS community took to mitigate the
attack, and discussed current and emerging DNS security
issues that remain open.

In a poisoning attack, a recursive DNS server is forced to
perform a lookup for which it does not have any cached
answer and thus needs to ask an authoritative resolver. In
the meantime, the attacker floods the recursive server with

spoofed answers using the source address of the authori-
tative server. If the race between the misleading and the
legitimate responses ends in favor of the attacker, then the
relevant DNS cache entry will be changed to point to any
malicious server the attacker chooses.

In order to succeed, one of the spoofed responses has to
match the 16-bit query ID used in the original request. In
the past, DNS poisoning was not very effective, because cor-
rect answers were cached for a long period, so the window
of opportunity for the attacker was very limited. However,
in early 2008 Dan Kaminsky disclosed a new poisoning
technique that is not affected by the retention of legitimate
responses and thus has no “wait” penalty. The technique
exploits the fact that name server (NS) locations are com-
municated through updates included in the DNS responses.
The attacker first sends a query for a random child label,
such as abcd.example.com, and then floods the server with
responses containing a malicious NS update. If the query
ID field is not matched, the attacker does not have to wait,
but repeats the attack immediately by requesting a different
child label, e.g., wxyz.example.com, in essence making the
attack only bandwidth-limited.

The response of the DNS community was immediate. Since
enhancements like DNSSEC cannot be deployed in a very
short period, most vendors chose an opaque mitigation
technique that increases the size of the query ID by adding
16 more bits of randomness through source port random-
ization. With an unprecedented simultaneous effort, most
DNS server vendors had released patches before any exploit
details were released. However, port randomization is not a
perfect solution, since it adds a considerable resource over-
head, and in many cases it is negated by NAT devices that
do not preserve the source port.

Almost simultaneously with the disclosure of the Kaminsky
attack, David Dagon and his team proposed 0x20 encoding,
a practical technique that makes DNS queries more resistant
to poisoning attacks. DNS-0x20 increases the randomness
of the query ID by mixing upper- and lowercase in the
domain name in the query. Since almost all DNS servers
preserve the mixed-case encoding in their answers, attack-
ers now have to also guess the correct mixed-case encoding.

Port randomization and DNS-0x20 have been widely adopt-
ed. However, David presented results of studies which sug-
gest that about 20% of the DNS servers remain vulnerable.
Unpatched servers can be exploited by attackers for various
malicious purposes, including email message interception.

DNS prefetching is another emerging issue that has started
affecting the DNS infrastructure. DNS prefetching aims to
improve the responsiveness of client applications, especially
Web browsers, by aggressively resolving host names in ad-
vance, before the user actually requests them. For example,
after loading a page, the browser can resolve the host names
of all URLs in the page before the user actually clicks on
any of them. In another example, as a person types in the

09_DECEMBER_summaries.indd 98 10.29.09 10:48:12 AM

; LO G I N : D ecem b e r 20 0 9 cO N fe re N ce re p O rt s 99

address bar, the browser can predict matching domain
names and attempt to resolve them with the hope that the
correct response will have arrived before the user actually
presses the return key.

The spurious requests made due to DNS prefetching can
have a major impact on the DNS infrastructure. For ex-
ample, while typing a domain name ending in “.com”, a
request for the “.co” TLD may be sent before the letter “m”
is typed, incurring extra overhead to the “.co” TLD serv-
ers. Furthermore, DNS prefetching can be abused for spam
delivery verification using unique domains seeded in spam
messages, or as a DoS attack multiplier, through nonce child
labels in the victim authority that are posted in popular
forums or spam messages.

DNS is also widely misused by malware. An old technique
is to change the resolver or manipulate the “hosts” file of the
victim computer to redirect traffic to a malicious server. Re-
cently, malware uses “DNS agility” for botnet command and
control operations. For instance, the Conficker worm used
50,000 unique domain names per day, making tracking the
actual C&C servers challenging.

Finally, David presented the current state and future of
DNSSEC deployment. DNSSEC uses public-key asymmetric
cryptography to validate content in a zone, providing mes-
sage integrity. This enables other innovative uses besides
DNS mappings, such as distribution of PGP keys and email
addresses.

In the Q&A session, Niels Provos asked about the actual
severity of the DNS poisoning problem. David mentioned
that the remaining unpatched servers are being exploited,
but it is hard to actually detect an attack since the observer
should be on path with the poisoning in order to detect it.
However, the cost for mounting a successful HTTP redirec-
tion attack is significant, since it requires additional steps
besides attacking a DNS server.

Bill Cheswick mentioned that another similar case of mas-
sive cooperation among vendors to fix a severe problem was
the SYN packet attack in 1996. (See the article on p. 35 in
this issue.)

work-in-progress reports (wips)

WiPs below summarized by Kalpana Gondi
(kgondi@cs.uic.edu)

Full-Datapath Secure Deletion■■

Sarah M. Diesburg, Christopher R. Meyers, and
An-I Andy Wang, Florida State University

Sarah Diesburg presented this work focusing on erasing file
data securely and completely. There exist previous solutions
to secure delete, but these cannot guarantee fine-grained
deletion. Diesburg is trying to come up with an extension
to secure deletion solutions using a module for the Linux
kernel to keep track of blocks to be deleted. The proposed
approach is to delete not only the files but also the meta-

data of the files, so that no traces are left in the hard disk.
Also, the module takes care of deleting the data residing at
multiple locations (e.g., on flash drives). Complete removal
is necessary for users’ privacy when a large amount of data
is to be deleted permanently—individual files from bank
accounts, for example.

Cacophony: BitTorrent over VoIP■■

Rhandi Martin and Angelos Stavrou, George Mason University

Rhandi Martin described Cacophony, a usability tool to
enable information sharing when there are legal restric-
tions. It is like steganography where the information sharing
is not noticeable to network traffic analyzers. The authors
are proposing this solution especially for BitTorrent traffic,
which may be blocked by educational institutions or ISPs.
The main idea is to hide the BitTorrent traffic in VoIP. As
a result this traffic will not be noticeable to the network
administrators/packet inspectors who can watch the traffic
to block any data. As the authors acknowledge, the main
limitation would be to conceal the large amount of BitTor-
rent traffic given the number of connections. To resolve the
size limitation, authors propose the use of multiple vectors
such as teleconferencing traffic and relaying.

WiPs below summarized by Prithvi Bisht
(bishtspp@yahoo.com)

Easier Passwords for the iPhone■■

Bill Cheswick, AT&T Research

Bill Cheswick presented a system that enables users to
quickly and securely enter passwords on the iPhone. Ches-
wick mentioned that hard passwords are, ironically, hard
to remember. This problem is aggravated for mobile phones
due to their small form factor, and may make entering such
passwords difficult and insecure (e.g., with increased time-
to-enter, users can fall prey to shoulder surfing attacks). Ac-
cording to Cheswick, this work attempts to bring “usability”
and “security” together. To retain strong entropy of pass-
words, Cheswick proposed using a combination of multiple,
easy to remember, dictionary words as passwords. To allow
users to quickly enter the password, Cheswick proposed the
iPhone’s spell checker feature to reduce the burden on users
to enter all words correctly and, hence, reduce the time
needed to enter passwords.

Lightweight Information Tracking for Mobile Phones■■

William Enck and Patrick McDaniel, Penn State University;
Jaeyeon Jung and Anmol Sheth, Intel Labs Seattle; Byung-gon
Chun, Intel Labs Berkeley

William Enck presented an approach to implement infor-
mation-flow tracking in mobile phones. He briefly touched
upon the lack of security in existing mobile phones and
presented an approach to enable taint tracking in Android
Virtual Machine. According to Enck, mobile platforms are
amenable to such taint tracking, as most sensitive informa-
tion is retrieved from single-purpose interfaces and thereby
allows for automatic tagging. He further indicated the pos-
sibility of enforcing precise security policies in the pres-

09_DECEMBER_summaries.indd 99 10.29.09 10:48:12 AM

100 ; LO G I N : VO L . 3 4, N O. 6

ence of system-wide taint information. Preliminary results
indicate that the taint tracking does not adversely impact
the performance of the system.

WiPs below summarized by Patrick Wilbur
(patrick.wilbur@gmail.com)

The OSCKAR Virtualization Security Policy Enforcement ■■

Framework
Todd Deshane and Patrick F. Wilbur, Clarkson University

User applications and virtual appliances (applications pack-
aged within virtual machines) can be difficult to secure and,
upon distribution, can potentially be run in environments
that are ill-equipped to meet their unique security require-
ments. Furthermore, without clear environmental aware-
ness of the specific needs and behaviors of applications
and virtual appliances, malware can exploit vulnerabilities
and wreak havoc on the installed system and others. This
work develops an extensible policy enforcement framework
and contract specification—where the application package
maintainer who knows best can clearly define the applica-
tion’s needs and behaviors—to mitigate malware problems
by eliminating the majority of their payload.

An Introduction to LR-AKE (Leakage-Resilient ■■

 Authenticated Key Exchange) Project
SeongHan Shin and Kazukuni Kobara, Research Center for
Information Security (RCIS), National Institute of Advanced
Industrial Science and Technology (AIST), Japan

SeongHan Shin described Authenticated Key Exchange
(AKE) protocols as a core cryptographic primitive, and
these are used for establishing both mutual authentication
and secure channels of communication. Traditional AKE
protocols assume shared secrets are and will remain secure;
in practice, however, these shared secrets are often leaked,
resulting in the cryptographic system becoming insecure.
The Leakage-Resilient Authenticated Key Exchange Proj-
ect works to design a new Authenticated Key Exchange
method that mitigates the risks associated with the leak-
age of shared secrets, while also recognizing the threat of
dictionary attacks on traditional password-based protection
of shared secrets.

Towards Exploitation-Resistant Trust Models for Open ■■

Distributed Systems
Amirali Salehi-Abari and Tony White, Carleton University

Amirali Salehi-Abari noted the importance of trust models
in establishing agent reputation within distributed systems,
where the reputation of an agent is formed from informa-
tion collected from those who have interacted with the
agent in the past. This work adds exploitation resistance to
the traditional trust model criteria. This requires the trust
model to also protect against the exploitation of the system
by an adversary who understands the internal workings of
the trust model in use. This work thwarts trust exploita-
tion by an individual agent by cautiously incrementing trust
after defection and issuing larger punishments after each
defection.

Scalable Web Content Attestations■■

Thomas Moyer, Penn State University

As Web content is received, a Web user can tell which serv-
er the content is being sent from, but a user generally has
no indication of the integrity or authenticity of the content
they are viewing. This work attempts to better inform the
user of the level of content integrity by leveraging TPM and
integrity measurement technologies. This work provides a
clear binding between the state of a server hosting content
and the content being served, and does so efficiently despite
the slowness of conducting TPM operations.

Exploring the Trusted Computing Base of User Applications■■

Hayawardh Vijayakumar, Penn State University

The Trusted Computing Base (TCB) of an operating system
is large, consisting of both the kernel and trusted programs,
despite the fact that an individual user application might
only need to interact with parts of the kernel and some
trusted applications. Based on the hypothesis that typi-
cal user-space applications use only a small fraction of the
TCB that runs on a typical OS, this work looks at applica-
tions and attempts to find what that fraction is. This work
then deploys an application in separate virtual machines
equipped only with the dependencies the application needs.

Further Improving Tor’s Transport Layer■■

Chris Alexander, University of Waterloo

Tor’s current transport layer employs a user-level TCP
stack and Round Robin to transfer data and multiplex data
across common paths, which poses problems with resend-
ing portions of multiplexed data as well as fair congestion
control in accordance with the primary purposes of Tor.
This work replaces the user-level TCP stack with user-level
Stream Control Transmission Protocol (SCTP) in order to
decrease memory requirements and allow customization of
the congestion control mechanism. Furthermore, this work
replaces the round-robin scheduling so that bursty traf-
fic (e.g., HTTP) can compete with large, steady traffic (e.g.,
BitTorrent), which is fairer for traffic closer to Tor’s primary
purposes (i.e., anonymity and censorship circumvention).

WiPs below summarized by Asia Slowinska
(asia.slowinska@gmail.com)

Challenges in Sinkholing a Resilient P2P Botnet ■■

(Is It Possible or Not?)
Greg Sinclair, iDefense/UNCC; Brent Hoon Kang, UNCC

Brent Hoon Kang presented the layered architecture of
Waledac, a P2P botnet, and described the resilient protec-
tion mechanisms that Waledac has employed to protect the
botnet against common mitigation efforts. The hierarchy
introduces a number of layers, starting from spammer nodes
at the bottom. Above these come repeater nodes, which
forward messages to/from higher parts of the hierarchy.
Subsequently, the TSL layer protects the bot master located
at the top. The research conducted demonstrates that Wale-
dac introduces a number of mechanisms preventing it from

09_DECEMBER_summaries.indd 100 10.29.09 10:48:13 AM

; LO G I N : D ecem b e r 20 0 9 cO N fe re N ce re p O rt s 101

being sinkholed. For example, taking down the TSL layer
nodes may result in converting some of the repeater (or
new) nodes to new TSL nodes. Also, unlike the Storm bot-
net in the past, the new information about new TSL server
lists is signed by the private key of the upper layer, making
any modification to TSL information impossible.

Advanced Metering Infrastructure Security Analysis■■

Steve McLaughlin and Patrick McDaniel, Penn State University

The Advanced Metering Infrastructure (AMI) is a set of
smart meters and communication networks forming the
basis of smart grid. These smart meters observe one’s
energy consumption and communicate that information to
customers, the local utility, and the grid. Steve McLaughlin
presented his research on the security implications of the
meter functionality. The penetration testing that was con-
ducted employs an attack tree methodology, where the root
of the tree defines a goal, e.g., committing energy theft. The
subgoals are defined as the child nodes. Finally, the leaves
determine the types of attack to mount. The results identify
numerous vulnerabilities and exploits possible: by unplug-
ging a meter from a phone connection at the right time, for
example, one will be able to impersonate the meter using
a regular computer and forge demand values. The work is
published at CRITIS 2009.

Enhancing the Formal Cyberforensic Approach with ■■

 Observation Modeling with Credibility Factors and
 Mathematical Theory of Evidence
Serguei A. Mokhov, Concordia University

Serguei Mokhov presented his work on refining the formal
cyberforensics approach by Gladyshev to model cybercrime
investigations, evidence, and witness accounts in order
to reconstruct the event and verify whether a given claim
agrees with the evidence. With the invention and use of an
intensional programming language called Forensic Lucid, he
improves Gladyshev’s finite state automata (FSA) approach
in order to increase the usability of the entire system. Cur-
rent work is being conducted to enable defining credibility
of witnesses or evidence in a case using the Dempster-Sha-
fer mathematical theory of evidence.

Decompiling Android Applications■■

Damien Octeau, Penn State University

Damien Octeau presented his approach to decompiling the
Android application bytecode back to Java source code. He
claimed that this might prove useful for several reasons: for
instance, to unearth security policies buried in the source
code, which is inaccessible if one holds a binary only.
Android applications are written in Java but run in a virtual
machine called Dalvik VM, which significantly differs from
the traditional JVM (Dalvik VM is register-based, for exam-
ple, as opposed to the stack-based JVM). Octeau built a tool
for converting Dalvik executable files (.dex) into new Java
bytecode files (.class), which can be further processed by
existing Java bytecode tools to recapture the original source
code. Initial results show that the method is effective.

CSET ’09: 2nd Workshop on Cyber Security
 Experimentation and Test

Montreal, Canada
August 10, 2009

Sessions below summarized by Arun Viswanathan
(aviswana@usc.edu)

opening rem arks

Douglas Maughan, Program Manager in the Cyber Security
R&D center from DHS, opened the conference on behalf
of General Chair Terry Benzel from USC/ISI by giving a
very brief talk on the importance of testbeds and security
experimentation.

He was followed by Jelena Mirkovic from USC/ISI and
Angelos Stavrou from George Mason University, who wel-
comed the attendees and thanked the Program Committee
members. Jelena presented the statistics for CSET ’09. There
were 27 papers submitted for the conference, of which
nine were accepted. Three papers were off-topic and were
rejected. Of the 22 finally reviewed, 13 were on experimen-
tation (four were accepted), five on testbeds (three accepted)
and four on education (two accepted). She noted that the
common problems found in rejected papers were lack of
novelty, bad timing, and missing lessons learned.

On the future of CSET, she was enthusiastic that total
submissions were up this year, with 25/27 papers coming
from people unrelated to the DETER testbed. She, along
with Angelos, commented on the lack of awareness among
researchers about existing testbeds such as DETER/GENI.
This situation will, hopefully, improve with newer and
larger testbeds like GENI and NCR. Jelena noted a need for
more submissions in the areas of education, tools, experi-
ment methodology, and result validation. She concluded by
stating that she was hopeful about having CSET ’10 co-
located with USENIX Security ’10.

keynote address

The Future of Cyber Security Experimentation and Test■■

Michael VanPutte, DARPA Program Manager for US NCR

Michael VanPutte started his keynote by giving a short tour
of the DARPA mission and key accomplishments from 1960
to date (from contributions during the space era, through
their key role in building the Internet, to today’s latest in
warfare). He then classified today’s cybertesting commu-
nities into two groups: operational and R&D. The cyber-
operational community’s mission is operational testing and
training, whereas the mission for the R&D community is
to experiment with new ideas. The operational community
deals with inflexible, expensive, special-purpose testbeds,
does manual configuration and management, has rigid test
schedules, deals with constraining bureaucratic policies,
and is largely driven by operationally focused policies. This
leads to unrealistic testing, questionable results, and slow

09_DECEMBER_summaries.indd 101 10.29.09 10:48:13 AM

102 ; LO G I N : VO L . 3 4, N O. 6

research-to-operation transition, and it rarely produces
production tools. The R&D community, on the other hand,
deals with advancing current understanding, generating and
testing newer ideas, and managing flexible but potentially
unstable systems.

VanPutte talked about the importance of measurement in
science in general and cyber research in particular, which
is the key reason for the NCR being part of the President’s
Comprehensive National Cybersecurity Initiative (CNCI)
program. The main goal of the NCR is to “provide a realistic
and quantifiable assessment of US Cyber research and
development technologies to enable a revolution in na-
tional Cyber capabilities and accelerate transition of these
technologies in support of the CNCI.” The NCR will be the
measurement capability for cyber research for both civilian
and military sectors.

VanPutte then laid out NCR’s key challenges: security—
securely running multiple tests at multiple security levels;
range configuration and management—securely and safely
allocating thousands of heterogeneous resources; test con-
figuration and management—using GUIs for configuring
and running tests; usability—building recipes for testing,
having malware repositories to assist experiments, and hav-
ing attackers and defenders provided as a service; realism—
having 10K nodes along with chip-level heterogeneous VMs;
test time—accelerating test time to reduce time to result;
scientific measurement—doing forensic data collection,
analysis, and presentation of results; and traffic genera-
tion—simulating traffic conditions with human behavior.

VanPutte described the program timeline for NCR. The de-
sign phase is over and the program is starting the prototype
phase. Selected proposals will have 18 months to build a
prototype, after which the program will enter the full-scale
construction phase. Finally, in closing, VanPutte provided
two ways in which everyone could participate in the effort:
through government working groups, such as the Security
Accreditation Working Group and Joint Working Group,
and via upcoming conferences on security metrics, the sci-
ence of cyber testing, and CONOPS development.

Andy Thompson from JHU asked about the possibility of
open sourcing NCR. VanPutte said that it is a possibility but
will strongly depend on the transition partner. Roy Maxion
from CMU commented that he liked VanPutte’s presentation
because it clearly compared how things are with how they
should be. Jelena Mirkovic from USC/ISI asked if the NCR
will develop a workforce for attack technologies. VanPutte
responded that the NCR may be used to evaluate the secu-
rity of systems but will not create attack technologies. Jelena
made a comment that the public knowledge base of NCR
should have the ability to take inputs from the knowledge
bases of already established testbeds. Angelos Stavrou asked
how we could achieve diversity in hardware in the testbed.
VanPutte acknowledged that it was a hard question but
said that people have been experimenting with segmenting
test beds to achieve hardware diversity. Minaxi Gupta from

Indiana University commented on the importance of real
data sets to understand attacker behavior. She asked about
efforts to make available real-time data sets. VanPutte said
that real data from real attacks may include operational
data and thus are difficult to unclassify. He said he would
still need to look into the specifics of this. Ken Zatyko from
BBN asked about the usage of NCR and the kinds of tests
that would be run on it. VanPutte responded that NCR is
primarily meant for large-scale tests for now but it would
heavily depend on the transition partner. Steve Schwab
from Sparta asked, “How big is big enough” for a testbed?
VanPutte said they need to do the math to determine the
statistically significant size for specific experiments.

securit y educ ation

A Highly Immersive Approach to Teaching Reverse ■■

 Engineering
Golden G. Richard III, University of New Orleans

Golden Richard presented his experiences with developing
a hands-on reverse engineering course at the University of
New Orleans. He described the course focus as being on
reverse engineering malware, with an emphasis on under-
standing the theory of reversing.

An education in reverse engineering is absent from aca-
demia because a course in RE could be really hard on
instructors, there is a perception that a semester is not
enough to teach RE, the university might object to it, and,
finally, there is a perception of limited student interest,
which turned out to be quite untrue. To overcome these
issues, Richard stressed the importance of building trust
with the university and the students. He did not have any
problems with the university and he laid down the law for
student conduct and informed them of the impact of being
involved in malicious activities. Students were thus careful
and self-policing. Richard’s reasons behind teaching reverse
engineering were to train students for deep systems research
and teach proper ASM/OS skills, apart from the fact that
students were begging for such a course and he himself
wanted to do it.

His audience for the course, taught for the first time in
spring 2009, consisted of 25 students (2/3 graduate and
1/3 undergraduate). About 1/5th of the students had some
OS internals knowledge and very few had any serious
ASM skills, which proved challenging. The topics covered
included the basic importance of RE, ethical and legal
issues, techniques/tools used for RE, basic malware back-
ground, Intel assembler introduction, Windows PE formats,
C basics, common malware functionality (e.g., delta offset
calculation, API address discovery), and ended with anti-
debugging/anti-VM technology. The lab setup for the course
consisted of an isolated gigabit network, with workstations
running Linux with Windows XP VMware images running
as guests. The XP image consisted of popular tools like
OllyDbg, IDA Pro, Sysinternals Suite, HBGary Responder,

09_DECEMBER_summaries.indd 102 10.29.09 10:48:13 AM

; LO G I N : D ecem b e r 20 0 9 cO N fe re N ce re p O rt s 103

VC++ , MASM32 SDK, and some industry-grade forensic
tools.

Richard’s approach to teaching the class was to immerse
students in reversing malware samples immediately. Stu-
dents started with very simple malware like Michelangelo,
which required very basic skills, and progressed on to
more difficult samples like Harulf and Conficker. Lectures
were first given using PowerPoint, then students were given
reversing assignments (performed in teams), followed by
use of a document camera for assembly code walk-through,
followed by lab sessions, and, finally, students producing
documented ASM code for the assignments. The exams
were based on assignments and were mostly focused on
converting malware code to documented assembly. In
conclusion, Richard described the course experience as fun,
with great student interest and positive feedback. His course
will now be offered on a regular basis at UNO.

Someone asked about the schedule of the course. Richard
said that it was a 15-week course with two sessions of 80
minutes each per week. Angelos Stavrou asked about the
kind of support students were provided in lab. Richard
said that there was no real support team in the lab other
than the professor. Stephen Schwab asked if the course is
teachable using only open source tools, to which Richard
said it was possible but that IDA Pro is well worth the cost
of licenses. What key challenge did the students face in the
course? Lack of assembly skills. Doug Maughan of DHS
offered to make HBGary available for the course. What
did the students think RE was about when they first went
in? Richard answered, “Cool hacker street cred.” Someone
asked about the audience for the course. Richard said it was
a mix of undergrads and grads; he found the undergrads to
be more dedicated, whereas grads varied. Could the course
be offered online? It would be very difficult, especially be-
cause it heavily relied on the document camera.

Collective Views of the NSA/CSS Cyber Defense Exercise ■■

on Curricula and Learning Objectives
William J. Adams, United States Military Academy; Efstratios
Gavas, United States Merchant Marine Academy; Tim Lacey, Air
Force Institute of Technology; Sylvain P. Leblanc, Royal Military
College of Canada

Efstratios Gavas described their experiences with NSA/
CSS Cyber Defense Exercises (CDX) and its effectiveness in
teaching information assurance. Gavas started out with an
overview of CDX, which is in its ninth year of competition.
It is a four-day exercise but typically requires months of
preparation. CDX involves a red team vs. blue team compe-
tition, with a white team monitoring. Eight teams partici-
pated in the exercise (AFIT, NPS, RMC, USAFA, USCGA,
USMMA, USMA, USNA), with RMC from Canada partici-
pating for the first time. Each team was given a network
and a mock budget to secure a poorly configured network.
The network is supposed to be fully functional and provide
services like email, IM, a Web server, etc., in the presence
of live attacks from the NSA red team. The teams were also

supposed to deal with exercise “injects” such as forensics,
help-desk requests, DNS, and network reconfigs, which are
purposely introduced to simulate real-world administrative
chores.

Gavas first gave an overview of the USMMA and its prepa-
rations for CDX. USMMA has no formal computer science
or information assurance program for participating in the
CDX. The USMMA also had only five students participat-
ing in CDX this year. As preparation for CDX, the team
used a number of virus scanners to detect malware in their
systems, used a bunch of network and process monitoring
tools to detect suspicious activity, rebuilt their Web servers,
and used graphical management tools (monowall and eBox)
to simplify administration for their network. The team’s
results for the exercise were mixed.

Next, Gavas shifted to the results of other academies and
their experiences with the exercise. He pointed out that
differences between participating academies arise because
of the different curriculum and learning objectives. USMA
participates with a large team of 30–60 students. They have
a very security-active CS department with an ACM chap-
ter and a senior-level capstone elective titled “Information
Assurance,” which form a basis for USMA participation in
CDX. As for the CDX experience, USMA cleaned worksta-
tions with a homemade Tripwire-like script and rebuilt the
DB and Web server without seeing any significant compro-
mises. As for AFIT, Gavas mentioned that they have a very
good graduate program, with courses and labs specifically
built for CDX training. Their participation was with two
teams of 15. For the CDX, AFIT used IPSec effectively, uti-
lized proxy servers, and mitigated compromises with least-
user privileges. RMC from Canada participated for the first
time in the competition. Details were not provided about
their experience in CDX.

Gavas concluded his talk by giving details of the attacks
used by the red team. There were 21 significant distinct
compromises made; the most effective attack for the red
team was malware callbacks, and the most interesting ex-
ploit was the OpenFire remote access exploit, which became
public only a few days before the exercise. There was no
time left for questions.

securit y experimentation

Evaluating Security Products with Clinical Trials■■

Anil Somayaji and Yiru Li, Carleton University; Hajime Inoue,
ATC-NY; José M. Fernandez, École Polytechnique Montréal;
Richard Ford, Florida Institute of Technology

Anil Somayaji presented an alternative method to evalu-
ate security solutions using Security Clinical Trials, which
sparked a very lively and interactive session with lots of
discussion. Somayaji made two observations: that regular
users face a huge challenge in evaluating security products
and standard lab-based practices used for evaluating and
comparing security products prove very ineffective for users

09_DECEMBER_summaries.indd 103 10.29.09 10:48:13 AM

104 ; LO G I N : VO L . 3 4, N O. 6

in reality. Standard practices do not account for a lot of
real-world variables such as interaction of the product with
different software, users, systems, uses, and attack profiles,
and thus cannot measure the actual security provided by
the product. He proposed the idea of learning from the
field of medicine, where they use clinical trials to over-
come similar challenges of genetic diversity, environmental
diversity, individual history, etc., in identifying effective
remedies. Applied to the field of security, the idea proposed
is to evaluate security products “in the field” with real users.
Questions answered will be of the nature, “Does it work?”
rather than “Why?” or “How?”

Their approach will be to isolate variables of interest via
sampling and randomization and then measure indicators
and outcomes. Somayaji presented a simple example for
anti-malware software evaluation, where 1000 customers
of a major home ISP are randomly selected. They are given
incentives like free tech support and automatic off-site
backups to encourage them to participate. Users are then
assigned one of three major antivirus programs. A variety
of measures are then used to monitor users and computers
involved in the study over a period of three years, to learn
the effectiveness of the antivirus solutions. Somayaji then
discussed objections to this approach: the significant differ-
ences between biology and computers, the utility of such an
approach, and the expenses involved. Although there were
lots of issues with this approach, Somayaji said in conclu-
sion, clinical trials are one way to determine the effective-
ness of solutions in practice and complement lab-testing
approaches.

Ken Zatyko from BBN asked why they chose to make a
comparison with medicine and not with the criminal
system. Somayaji said that the medical perspective was for
looking at which defenses are the best. Steve Schwab asked
about the legal issues arising out of comparing different
organizations. Somayaji acknowledged that there was no
way this could be done without the support of the organiza-
tions being tested, and he talked of some already willing to
do this. John McHugh from Dalhousie University pointed
out that medical companies participate in trials because
of legal requirements, but antivirus vendors may not have
any incentive to participate. Somayaji said this was a public
policy question. There was also discussion on self-selection
biases negating such trials. Somayaji pointed out that they
are incentivizing random users to join the study by provid-
ing free backups, technical support, etc., to take care of
self-selection biases. Angelos Stavrou asked why the ISPs
could not do this themselves by monitoring user traffic,
their product updates, and incidents. Somayaji said that this
would potentially create a large biased sample and thus was
a question of experiment design. Someone asked how they
measure the outcomes. Somayaji responded that for now
their method is to do retrospective analysis on automated
low-level backups. Ray Maxion from CMU concluded the
Q&A by interjecting that the “audience is inflicting death

by a thousand cuts.” His point was that they make such
stuff work at CMU all the time and hence this should not
just be dismissed. His last point to Somayaji was that as
they are proposing a methodology, they must compare it
with other methodologies.

The Heisenberg Measuring Uncertainty in Lightweight ■■

Virtualization Testbeds
Quan Jia, Zhaohui Wang, and Angelos Stavrou, George Mason
University

Zhaohui Wang started with an overview of the Heisenberg
uncertainty principle followed by a brief discussion of the
advantages of lightweight virtualization: process-level isola-
tion, no interprocess communication, high efficiency, no
requirement for any I/O or device driver virtualization, and
only one copy of the OS image required. This work ad-
dresses the question of determining the maximum number
of OpenVZ containers that could be run on a server.

The testbed architecture consisted of a Dell PowerEdge 1950
server equipped with two QuadCore Intel Xeon 2.66GHz
processors, 8GB RAM, and Gigabit Ethernet. The software
used was OpenVZ on a vanilla Linux kernel 2.6.24, along
with the UnionFS stackable file system to reduce the memo-
ry requirements of the system. Each OpenVZ container ran
only five processes: init, syslogd, dbus, sshd, and wget. The
measurement approach used was to statically determine the
shared and non-shared memory pages for each container
and then evaluate the runtime CPU and memory consump-
tion of the Virtual Execution Environments (VEEs) by
monitoring /proc file system from the host. The experiments
consisted of running containers in groups of 100, 200, 400,
600, 800, 1000, 1200, and 1400 containers, with each
container running a wget process that would continuously
fetch a pages from an Apache server in random intervals
varying from 1 to 10 seconds. The monitoring process was
run with varying sampling intervals of 0.1, 0.01, 0.005, and
0.001 seconds.

The results from the experiments showed that the comple-
tion times for the experiment increased as the number of
containers was increased, but there was a profound increase
when the frequency of measurements was increased. The
conclusion drawn was that the more you measure, the more
you lose. Zhaohui claimed that their work unveiled for the
first time the uncertainty problem due to system resource
contention in a lightweight virtualization environment. He
pointed out that it was not a trivial task to determine the
maximum number of VEEs that can be run on a physical
host, due to this form of Heisenbergian uncertainty.

Roy Maxion from CMU asked why the CPU utilization
maxed out at 600 VEEs for 0.1sec frequency in Figure 4?
Zhaohui answered that the contention between the contain-
ers caused them to reach a threshold. As for the graphs at
other frequencies, they were already affected because of
over-measuring.

09_DECEMBER_summaries.indd 104 10.29.09 10:48:13 AM

; LO G I N : D ecem b e r 20 0 9 cO N fe re N ce re p O rt s 105

testbeds

The Virtual Power System Testbed and Inter-Testbed ■■

 Integration
David C. Bergman, Dong Jin, David M. Nicol, and Tim Yardley,
University of Illinois at Urbana-Champaign

Tim Yardley from UIUC presented their work on the Virtual
Power System Testbed (VPST), which is a part of the larger
Trustworthy Cyber Infrastructure for Power Grid (TCIP)
project. TCIP works on securing devices, communication,
and data systems that make up the power grid. VPST is de-
signed to support exploration of security technologies being
developed for large-scale power grid infrastructure. VPST
at the core consists of RINSE, which is a network analyzer
and simulator. RINSE is capable of performing high-perfor-
mance, high-capability network analysis along with multi-
resolution modeling of traffic and topology. VPST itself
can be connected via secure links to external testbeds and
utility power stations.

Yardley mentioned that SCADA systems prompted the work
on VPST. SCADA research has a high barrier for entry
and thus emulation of these systems can alleviate part of
this concern by using accurate models. He mentioned that
VPST is designed to leverage valuable resources from other
testbeds such as DETER. Yardley then described the inter-
connection requirements of VPST. Secure interconnection
between testbeds and between VPST and utility companies
is a prime requirement. He mentioned use of Open PCS
Security Architecture for Interoperable Design (OPSAID) in
their architecture. Next, performance is a key requirement,
as it is very important to keep latency low across multiple
testbeds. VPST implements look ahead to keep simulation
as close to real time as possible. Resource allocation is the
next key aspect, and VPST tries to use a decentralized ap-
proach where interfaces to other testbeds are decomposed
into modules for ease of customization. Reproducibility is
important in SCADA systems because the dynamics of real
SCADA networks cover a wide range of conditions, such as
size of network, type of underlying physical medium, avail-
able bandwidth, and time-varying traffic patterns. Repro-
ducibility is complicated due to human interactions with the
system. The system must be able to record interactions and
replay. Fidelity is the last of the key requirements, which
means that VPST must be as transparent as possible to real
devices. This also means that access is needed to real-time
data patterns from utility companies.

Yardley next described the use cases for VPST. The first
use case is in the training and human-in-the-loop event
analysis. VPST allows captured system state to be replayed
on the testbed, which can help in making better control
decisions and rectifying decisions which may have led to
failures in real situations. The second use case is for analysis
of incremental deployment. As SCADA networks are large
and complex, introducing any new technology must be
done carefully. VPST can provide an alternate deployment

for testing new technology before deploying it directly into
real networks. The third use case is in analyzing the robust-
ness of a design against attacks. Yardley concluded his talk
by mentioning their future work on developing a black-box
implementation of VPST for DETER.

Roy Maxion from CMU asked how they validate their re-
sults. Yardley replied that the system is not yet fully imple-
mented and validation issues have not been fully addressed.
Yardley also said that connection to real utility company
networks is limited by legal constraints. Angelos Stavrou of
GMU asked how they validate fidelity of each component
in the network. Yardley said it depends on whether they are
using models or real devices. For models it depends on the
implementation of the model. Roy Maxion asked about the
impact of errors introduced in simulation due to modeling
proprietary devices. Yardley said that the issue had not yet
been addressed.

Sessions below summarized by Eric Eide (eeide@cs.utah.edu)

Dartmouth Internet Security Testbed (DIST): Building a ■■

Campus-wide Wireless Testbed
Sergey Bratus, David Kotz, Keren Tan, William Taylor, Anna
Shubina, and Bennet Vance, Dartmouth College; Michael E.
Locasto, George Mason University

Anna Shubina described her group’s experiences in develop-
ing and deploying the wireless portion of the Dartmouth
Internet Security Testbed (DIST). The wireless infrastruc-
ture supports experiments that require access to real-world
network traffic. The hardware architecture includes 200+
WiFi access points, called “air monitors,” distributed over
ten buildings at Dartmouth. The air monitors send captured
frames to DIST servers, which process the frames. An ex-
periment describes the kinds of frames to be collected at the
monitors and the processing steps to be run at the servers.

The software architecture is carefully designed to protect
users’ privacy and enforce experimenters’ accountability.
The air monitors discard all but the MAC layer of each
captured frame. The frames are encrypted before being sent
to the DIST servers; the servers decrypt and anonymize
the frames before making them available to an experiment
for analysis or storage. Unsanitized data is never written to
disk. The testbed enforces accountability by keeping careful
audit trails. For example, DIST policy is that an experi-
ment’s source code be checked into DIST’s revision-control
system before it can be deployed.

One of the technical lessons learned was that a long-run-
ning testbed in a production environment must be designed
to survive unexpected changes. An unannounced change
to Dartmouth’s network highlighted the need for a fallback
control channel to the air monitors. Shubina also described
the many lessons learned in obtaining approval to deploy
the wireless network at all. The project required extended
negotiations with many organizations within Dartmouth,
with issues ranging from the system’s security architecture
to the aesthetics of signage and the deployed hardware.

09_DECEMBER_summaries.indd 105 10.29.09 10:48:13 AM

106 ; LO G I N : VO L . 3 4, N O. 6

After the talk, a CSET attendee asked how often the encryp-
tion keys are changed at the air monitors. Shubina replied
that they are changed for every experiment. In response
to another question, Shubina said that their system does
not stop collecting data when the number of network users
is low; protecting privacy in such situations is a research
issue. Finally, someone asked how long it took to solve all
the administrative and social deployment issues. Shubina
said that it took two years from start to end.

An Emulation of GENI Access Control■■

Soner Sevinc and Larry Peterson, Princeton University; Trevor
Jim and Mary Fernández, AT&T Labs Research

GENI is a planned testbed for exploring new network archi-
tectures at scale. It is designed as a federated testbed, with
resources controlled by multiple administrative domains. As
such, the evolving GENI security architecture is designed to
support features such as distributed access control. In this
talk, Soner Sevinc described an experiment that he and his
colleagues performed to evaluate their design of a distrib-
uted access-control mechanism for GENI, driven by data
collected from an existing large-scale testbed, PlanetLab.

To perform an operation in GENI, an agent must supply a
set of cryptographically signed certificates to show that it is
authorized. This involves collecting a chain of certificates,
from the root GENI authority down, to establish the agent’s
identity and privileges. Building these chains means obtain-
ing certificates from multiple administrative authorities.
Soner and his colleagues designed a system to optimize the
process of certificate collection. Their system, based on a
framework called CERTDIST, handles both distribution of
certificates and the evaluation of security policy. CERTDIST
uses a distributed hash table (DHT) to cache certificates,
load-balance requests, and provide fault tolerance.

How can this distributed access-control system for GENI be
expected to perform in deployment? To answer that ques-
tion, Soner and his co-authors started by collecting traces of
access-control events in PlanetLab. From these traces, they
produced equivalent scripts of GENI access-control events,
translating from PlanetLab’s centralized model onto their
new distributed model. Finally, Soner and his colleagues
used 550 PlanetLab nodes to carry out the events in the
translated traces. Their experiments led to three main con-
clusions about the behavior of their distributed access-con-
trol system. First, the DHT effectively reduces the request
load seen by certificate authorities, although the system still
experiences minor “flash crowds” when popular certifi-
cates expire. Second, for the request load in the emulated
traces, the DHT-based system does not reduce the latency
of requests. Third, when the request load is increased by a
factor of 10, the DHT improves the success rate of queries
by balancing the load.

Future work will explore caching and retrieval strategies for
certificates, to address the issues revealed by their evalua-
tion. The PlanetLab traces that drove their experiments are
publicly available at http://www.planet-lab.org/.

experimentation tools

Payoff Based IDS Evaluation■■

Michael Collins, RedJack, LLC

Michael Collins proposed a new approach for evaluating the
efficiency of an intrusion detection system (IDS). The tradi-
tional method for evaluating an IDS is to view the system
as a binary (yes/no) classifier: its false positive and negative
rates measured as functions of the system’s discrimination
threshold. In contrast, Michael proposed modeling the IDS
as if the attacker were aware of its capacities—treating the
IDS as a constraint on the attacker’s behavior and modeling
how the attacker would respond.

The general idea is to model an IDS as a zero-sum game be-
tween an attacker and the IDS. The game is played over an
“observable attack space” (OAS), which is defined by the set
of attributes the IDS is designed to monitor. For example, if
an IDS is designed to use flow data only, the OAS would not
have attributes based on packet payloads. The OAS covers
observations during normal network behavior and observa-
tions under network attack. For every point in the OAS, two
functions are defined. The first is the payoff function: for an
attack that maps to a particular OAS point, what value does
the attacker receive? The second function describes detec-
tion: for a given OAS point, what is the probability that the
IDS will detect the attacker? Given this setup, an attack is a
multi-round game in which the attacker moves through the
OAS, collecting the payoff values. After each attacker move,
the IDS may detect the attacker and take corrective action.
This model provides a basis for comparing intrusion detec-
tion systems: over a given OAS and period of time, the best
IDS is the one that minimizes the attacker’s total payoff.

Michael illustrated his IDS evaluation methodology over
four games involving node acquisition (bots), network
reconnaissance, maintaining a back-channel, and network
saturation (DDoS). Using the evaluation methodology, for
example, one can evaluate different strategies for a DDoS
attacker. The game models presented in the talk were purely
synthetic. Michael said that his future work will focus
on developing more realistic models, based on real-world
behavior.

After the talk, someone asked about models in which appar-
ently “normal” network observations still permit high-payoff
attacker behavior. Michael replied that this was an interest-
ing question and a topic for future research into models of
real-world observable behaviors and attacks. John McHugh
asked whether network defense is not a two-party game but
a multi-party game in which most of the players are normal
users. Michael said that modeling intrusion detection as a
three-party game might be reasonable; normal users might
be modeled as a third party or as part of the game rules
themselves.

09_DECEMBER_summaries.indd 106 10.29.09 10:48:13 AM

; LO G I N : D ecem b e r 20 0 9 cO N fe re N ce re p O rt s 107

Toward Instrumenting Network Warfare Competitions to ■■

Generate Labeled Datasets
Benjamin Sangster, T.J. O’Connor, Thomas Cook, Robert Fanelli,
Erik Dean, William J. Adams, Chris Morrell, and Gregory Conti,
United States Military Academy

The final paper was presented by Benjamin Sangster and
T.J. O’Connor, who shared their experience in collecting
network traffic data from the 2009 Inter-Service Academy
Cyber Defense Exercise (CDX). As described in another
CSET talk, the CDX is an annual competition in which mili-
tary academies defend networks from a National Security
Agency (NSA) red team.

By instrumenting the CDX, the USMA team sought to ad-
dress the lack of useful network-traffic data sets for security
research. Most commonly used data sets are dated, artificial,
and contain trivial artifacts: they are not representative of
modern-day adversaries. In contrast, the CDX and similar
network warfare games are designed to reflect the design
and concerns of current networks: e.g., modern hardware
and software, networks at scale, and threats such as zero-day
attacks. The CDX involves human decision-makers as both
attackers and defenders. A potential method for producing
useful network traces for research, therefore, is to instru-
ment network warfare competitions. This approach could
automatically label the collected traffic as red-team (attack-
er), blue-team (defender), or white-team (ordinary use).

To evaluate this approach, and with the approval of NSA,
the USMA team deployed three traffic-collection points dur-
ing the 2009 CDX. One was placed at the border of the NSA
team: it collected both red-team and white-team traffic from
NSA. The second was installed on the network connection
just inside the USMA team’s VPN router, and the third was
placed on the central switch of the USMA team’s internal
network. The second and third sensors therefore witnessed
the ingress and egress filtering performed at the perimeter
of the USMA network. They observed a mix of red, blue,
and white traffic.

Benjamin and T.J. described the strengths and shortcomings
of the data that were collected. They observed that the 2009
CDX dataset has a significantly different “personality” from
some older DARPA datasets, due to the use of modern tools
and the involvement of humans in the exercise. The CDX
dataset is thus more representative of modern networks in
both of these respects. However, the CDX dataset is limited
by the nature of the exercise. It has less diversity and vol-
ume than a production network would have, and the dataset
only covers a four-day period. It was also difficult to clearly
label some traffic, for instance, due to the mixture of NSA
red traffic with white “cover traffic.” The authors believe
that automatic labeling could be improved by collecting ad-
ditional red-team logs, either automatically or manually.

The network data and other logs collected during the 2009
CDX are publicly available from http://www.itoc.usma.edu/
research/dataset/.

panel on science of security experimentation

Panelists: John McHugh, Dalhousie University; Jennifer Bayuk,
Jennifer L. Bayuk LLC; Minaxi Gupta, Indiana University;
Roy Maxion, Carnegie Mellon University

The final CSET event was a spirited panel discussion about
the challenges in doing scientifically rigorous experiments
on security topics. Jelena Mirkovic invited each of the pan-
elists to start by describing his or her most important “hard
problems” that stand in the way of scientific approaches
to security. Each of these led to a great deal of discussion
between the panel members and the audience.

Minaxi Gupta said that her favorite topics deal with access
to data, both immediate and long-term. For instance, as a
security researcher you may not know who has the data
you want—and even if you do, you may not be able to get
access to it. If you get the data you need, you may not have
the resources needed to store it and analyze it. Finally,
there is currently no standard practice for going backwards
from publications to the datasets on which the publications
are based. Minaxi concluded that the security community
needs repositories that make long-term (multi-year) datasets
available in real time, both raw datasets and derived data
products. Doug Maughan and others at the workshop noted
that the DHS PREDICT repository (https://www.predict
.org/) is an important step toward making security datasets
available to the public. Roy Maxion said that while it may
be difficult to provide data to others, it is possible, and he
offered a benchmark dataset for keystroke dynamics that
 accompanies a paper on his Web page (http://www.cs.cmu
.edu/~maxion/). The data can be used for many tasks that
are typical in intrusion and insider detection.

Jennifer Bayuk claimed that the hard problem is the “com-
munity problem.” One aspect of this is competition, rather
than cooperation, among security researchers: while re-
searchers compete against each other, the attackers continue
to advance. Competition over small problems does not help
the community solve the actual problems being faced, such
as how to make maximum use of existing tools and tech-
niques in defense of common attacks. A second aspect is the
lack of a basis for cooperation: problems that lack existing
datasets are simply not being addressed. In response, John
McHugh noted that datasets require a great deal of metadata
in order to be useful. Sergey Bratus also added that recent
testbeds, such as Dartmouth’s DIST, can help to address the
“unannotated dataset” problem by enforcing good practices.

John McHugh said that computer scientists have no excuses
for bad science; they simply have bad practices. In general,
computer scientists are not properly trained to conduct
experimental science. They lack background in statistics,
for example, and often do not collect data properly. McHugh
gave an example in which an analysis of a large dataset
was rendered invalid because the analysis assumed that
clocks were synchronized over multiple data collectors. In
fact, they were not—for most of the data-collection period.

09_DECEMBER_summaries.indd 107 10.29.09 10:48:13 AM

108 ; LO G I N : VO L . 3 4, N O. 6

The missing metadata for the dataset, which would have
described how the data collectors were configured and
calibrated, made the dataset significantly less valuable for
scientific study. Finally, McHugh said that the requirements
for funding and publishing are currently in conflict with
rigorous science. Jelena Mirkovic suggested that funding
agencies understand the need for good science, but the
security community as a whole does not.

Roy Maxion said that the panel had not yet talked about
what it means to have science in security. Science first
requires having a tightly focused question—the hypothesis.
Constructing a well-formed hypothesis is in fact a very
difficult task, because it so often involves putting struc-
ture on an ill-structured problem. Second, science requires
repeatability and reproducibility. Repeatability means that a
single experimenter can perform a procedure several times
and come up with the same result; reproducibility means
that those results can be obtained by other investigators.
Third, science depends on validity. Maxion asserted, “This
is the issue that assails our field the most.” Internal validity
means that an experiment is logically consistent, and there
are no explanations for the results obtained, other than the
proposed explanation (e.g., no confounds). External validity
means that the results are generalizable to a larger popula-
tion. Maxion suggested that conference program committees
demand better descriptions of experimental methods in
submitted work. Anil Somayaji responded that the security
community was still several steps away from rigor, because
nobody currently builds on another person’s work. The
unanimous response from the panel was that the time for
change has come!

4th USENIX Workshop on Hot Topics in Security
(HotSec ’09)

Montreal, Canada
August 11, 2009

social factors and minimizing trust

Summarized by Tamara Denning
(tdenning@cs.washington.edu)

Using Social Factors in Digital Rights Management■■

Bader Ali and Muthucumaru Maheswaran, McGill University

Bader Ali began by summarizing the current anti-piracy
efforts and their weaknesses. Such efforts include the digital
locking of software and hardware (DRM), legal measures
(lawsuits), and reducing the availability of pirated content
(content poisoning). Any anti-piracy efforts need to be
considered from the perspective of all stakeholders: both the
content publishers and the end users. For example, DRM
fails both because it is vulnerable to hacking and because it
hinders the goals of the end user.

Bader Ali continued by pointing out that part of the preva-
lence of piracy is due to lack of social stigma associated

with pirating content or obtaining pirated content. The
idea behind this project, therefore, is to leverage economic
incentives and social pressure between friends to cope with
digital content piracy. More specifically, the project concept
is to have content publishers deliver digital content to local
distributors in online social networks (OSNs).

Users form groups in OSNs. Content publishers deliver digi-
tal content to local distributors, who then sell the content
to users in their groups. End users benefit because they are
able to acquire content from local distributors at a reduced
price. Local distributors benefit because they receive a
percentage of the profit from content sales in their group.
Distributors benefit because they are able to monitor the
circulation of watermarked content and grade distribution
groups based on their piracy rates; content publishers can
then refuse to deliver content to groups with high piracy
rates. The desired end result would be the reduction of pi-
racy due to social pressure from peers in one’s group, since
the distributor and the other group members are punished
for any content that is leaked from that group.

One audience member asked why this approach is better
than having the content publishers watermark every end
user’s content. Watermarking for every user requires over-
head, as does tracking and punishing every pirating user.
This system proposes moving the punishment for piracy out
of the legal realm and into the social realm—in short, by
bringing anti-piracy norms into mainstream society.

FaceTrust: Assessing the Credibility of Online Personas via ■■

Social Networks
Michael Sirivianos, Duke University; Kyungbaek Kim, University
of California, Irvine; Xiaowei Yang, Duke University

Michael Sirivianos presented this workshop paper on
producing credible assertions via online social networks
(OSNs). The problem addressed by this work is how to
gauge the truth of statements made by online personas.
For example, when browsing the Web one might not know
whether or not to trust that a product reviewer on Amazon
is actually a doctor, as he claims he is. Other problem areas
include dating Web sites, Craigslist, eBay transactions, OSN
introductions, and age-based access controls.

The authors propose supporting relaxed credentials, where
an assertion made by a user is bound to the probability that
the assertion is true. A user posts his assertions to his pro-
file on his OSN, where his friends can tag them as verified
or rejected. The challenge here is that friends can collude
and lie together; therefore, the system assigns credibility
values to taggers. The authors use the Advogato trust metric
[Levien et al., Security ’98] and employ taggers’ credibility
ratings to assign a final credibility score to a user’s asser-
tion. Assertion-credibility pairs can be provided to others as
a signed value produced by the credential system. If a user
wants to provide a credential without revealing his or her
identity, the system can use idemix (http://www.zurich.ibm.
com/security/idemix/).

09_DECEMBER_summaries.indd 108 10.29.09 10:48:13 AM

; LO G I N : D ecem b e r 20 0 9 cO N fe re N ce re p O rt s 109

Someone asked how the system protects against a generally
credible group of friends who lie about one thing—for ex-
ample, high school students who lie about their age. This is
mitigated by the trustworthiness that is assigned based on
assertion type, and not based on the aggregate score; how-
ever, this situation is still problematic. Might this system
foster a false sense of security? The system is only meant to
produce relaxed credentials, and thus cannot be completely
trusted. Another audience member suggested that users
post false assertions as red herrings to help protect their
privacy on the OSN. The speaker agreed with this idea and
stated that posting red herrings would also help verify tag-
ger credibility.

How to Print a Secret■■

Aleks Essex, University of Ottawa; Jeremy Clark and Urs
 Hengartner, University of Waterloo; Carlisle Adams, University
of Ottawa

Aleks Essex presented this workshop paper on how to print
a human-readable secret without allowing the participating
printers to reconstruct the secret. An example of this tech-
nology is cryptographic paper-based voting, where the user
marks a ballot with a particular pen to reveal confirma-
tion codes. The work involved three components: oblivious
transfer, visual cryptography, and invisible ink.

Oblivious transfer is used as an alternative to a trusted
dealer, and would be used to blindly divide a ballot print
job between entities. Visual cryptography is used so that the
end user can re-assemble the secret—the voting confirma-
tion codes. This work also involves developing an invisible
ink that color-matches the non-reactive ink that occludes
the confirmation code.

An audience member asked what prevented the second
printing entity from printing a ballot, revealing its secrets,
and then reprinting the ballot with modifications? There are
new, cheap ways to incorporate items into paper and then
perform an authenticity check with a scanner. Another au-
dience member asked if the invisible ink was indistinguish-
able from the visible ink under a microscope, since the au-
thors had specified that it is indistinguishable with a black
light. The authors had not yet explored that possibility.

net works and soft ware

Summarized by Akshay Dua (dakshay@gmail.com)

MitiBox: Camouflage and Deception for Network Scan ■■

Mitigation
Erwan Le Malécot, Kyushu University and Institute of Systems,
Information Technologies and Nanotechnologies

Erwan Le Malécot presented a new approach for network
scan mitigation using MitiBox, a camouflage and deception
system. He argued that with the growth of the Internet it
has become increasingly profitable for attackers to compro-
mise network-connected devices. Attackers use automated
tools that can quickly scan large portions of the network

and discover potentially interesting targets (devices with
open services). This unwanted network scanning activity
now accounts for a significant portion of the traffic, and
Le Malécot wants to find an effective method for system
administrators to deal with it.

Le Malécot claims that little seems to be being done to fight
unsolicited network scans. The predominant approach is to
rely on network intrusion detection systems, but using them
for accurate and early detection is problematic. Le Malécot
proposed a new direction which focuses on reducing the
pertinence of information that is “leaked” by a network in
response to scanning probes. This can be done by mak-
ing the network behave uniformly, that is, the network
responds in an indistinguishable fashion no matter what
traffic it receives. To do so, the system proposed by the
authors implements the following processing: (1) drop all
malformed traffic, and (2) either drop or reply to traffic with
equal probability, replies being forged as necessary. Con-
currently, observed traffic sources are assigned a trust level
based on their initial behavior. This level is then dynami-
cally updated over time.

One person pointed out that any botnet member could
initially behave in a way that makes it trusted and then
perform the scanning activity. Le Malécot replied that the
trusted status lasts only for a single connection and is there-
fore temporary. Another person stated that botnets have
cheap resources and so they could use multiple resources to
gain the system’s trust. Le Malécot replied that an attacker
with extensive resources at its disposal could indeed bypass
certain mechanisms of the system but not all (e.g., he would
still need to differentiate between forged replies and replies
from authentic hosts).

SPAN: A Unified Framework and Toolkit for Querying ■■

Heterogeneous Access Policies
Swati Gupta, Indian Institute of Technology, Delhi; Kristen
 LeFevre and Atul Prakash, University of Michigan, Ann Arbor

Swati Gupta presented SPAN, a system that can unify
multiple heterogeneous security policies and allow them to
be queried later on. Swati pointed out that when security
policies from different domains interact with each other
frequently, policy loopholes get created even when each
individual policy is configured correctly. For example, the
SSH service is configured to run on port 22, but the firewall
is not made aware of that fact. Swati also mentioned that
most tools today don’t deal with multiple heterogeneous
security policies. Thus, policy unification is left to the sys-
tem administrator, who then does it in an ad hoc fashion.
SPAN helps to alleviate configuration issues by automati-
cally unifying policies from different domains: e.g., Firewall,
SSH, NFS.

SPAN takes as input multiple native security policies,
parses them, and stores them in an internal format based
on Binary Decision Diagrams. These decision diagrams
can handle ranges and make them more suitable to policies

09_DECEMBER_summaries.indd 109 10.29.09 10:48:14 AM

110 ; LO G I N : VO L . 3 4, N O. 6

with large domains such as firewalls. The unified policies
can then be queried using an SQL-like language that also
includes special statements, called “constraints,” to model
policy boundaries.

Someone asked, “Can you feed configuration files as is?” If
SPAN supports the application, then its configuration file
can be input as is. Can others in the community get in-
volved? Swati was happy to work with them and figure out
which other policies to include. Can SPAN scale to SELinux
policy files? The current version of SPAN is written in Py-
thon and designed for functionality rather than speed. They
will look into scalability in the future.

Pre-Patched Software■■

Jianing Guo, Jun Yuan, and Rob Johnson, Stony Brook University

Jianing Guo spoke about patching software before it is
released rather than after. She pointed out that patches
were slow and error-prone, exposing the user to “zero-day
exploits.” On the other hand, including runtime checks in
software involved high overhead and resulted in compat-
ibility issues.

Jianing’s solution was to “pre-patch” software by including
latent runtime checks that are enabled selectively in the
future. She argued that a significant benefit of this approach
is that it provides an immediate response to discovered vul-
nerabilities without the user incurring any visible overhead
until the vulnerability is discovered. Jianing presented a
Memsafe prototype that included latent checks for bounds
violations. A performance evaluation of the prototype indi-
cated a 10% increase in execution time with all checks off
(the default case), a 33% increase with one check on, and a
twelvefold increase with all checks on.

One person asked Jianing how she differentiated her work
from Valkyrie. Valkyrie used program binaries without any
knowledge of the program and was very resource intensive.
How can a user discover which particular check to turn on?
One way would be to turn all checks on and then see which
one fails; another way would be for the developer to work
with the user to figure this out. Wouldn’t this encourage
vendors to write sloppy code? The checks were there only
to help increase the quality of code. Does this method catch
all bugs left over after static analysis of the program code?
Their method guarantees memory safety and not type safety,
but they haven’t written a proof for that yet.

mobile and the user

Summarized by Michael Sirivianos
michael.sirivianos@gmail.com)

Authentication Technologies for the Blind or Visually ■■

Impaired
Nitesh Saxena, Polytechnic Institute of New York University;
James H. Watt, University of Connecticut

Since security often relies on users taking relatively difficult
actions, choosing hard-to-guess passwords or timely instal-

lation of security patches, a disabled person may not be able
to appropriately deal with security tasks. Attackers have
actually taken advantage of the vulnerability of visually
impaired persons by attacking JAWS, software for screen
reading.

Rob Johnson presented this work covering current direc-
tions on user authentication for the blind and visually
impaired. The first is an observation-resilient user authenti-
cation method that relies on a challenge transmitted over an
audio headset and on the user performing mod 10 computa-
tion. In summary, the method encrypts a PIN with an audio
challenge modulo 10 from a terminal, e.g., an ATM. The
method itself has some open research issues, particularly
the possibility of eavesdropping on the audio channel and
the user-friendliness of mod 10 computations. Next, John-
son presented strong password management using a mobile
phone. Under this family of methods, a user logs in with his
cell, the terminal sends a challenge, and the cell responds
by vibrating the response to the accelometer of the termi-
nal. An open issue is to investigate the secrecy properties of
vibration channel.

With respect to secure device pairing, the talk focused on
the Fake-Audio attack. Blind users may be disadvantaged
under such attacks because they will not be able to see the
attacker. An observation is that Button-Enabled Device Au-
thentication could protect the user because it replaces sound
with vibration. The Seeing Is Believing method is also not
appropriate, because the visually impaired would have
trouble aiming a camera. Any pairing method that relies
only on sound is susceptible to the Fake-Audio attack. The
talk concluded that the only appropriate solutions are the
vibration-button and vibration-vibration pairing methods.

Someone asked how realistic the audio impersonation
attacks are. Rob replied that Nitesh Saxena (one of the au-
thors) and his team are currently investigating the practical-
ity of those attacks. Since the visually impaired usually have
acute hearing, they may be able to detect the Fake-Audio
attack. Could MadLibs alleviate this? Srdjan Cǎpkun com-
mented that Fake-Audio attacks target devices as well as
humans.

Towards Trustworthy Participatory Sensing■■

Akshay Dua, Nirupama Bulusu, and Wu-chang Feng, Portland
State University; Wen Hu, CSIRO ICT Centre, Australia

Akshay Dua presented his work on trustworthy partici-
patory sensing. Traditional sensor networks have a high
hardware cost of deployment. On the other hand, participa-
tory sensing leverages user devices as sensors. For example,
GPS sensors in cars can assist with predicting or detect-
ing congestion. However, the very openness of participa-
tory sensing makes them open to abuse. Privacy is also a
concern, as users may transmit sensitive information. The
first part of Dua’s talk focused on abuses with respect to
content integrity; how to ensure that a reported event is not
a fabrication. Previous solutions to this problem employed

09_DECEMBER_summaries.indd 110 10.29.09 10:48:14 AM

; LO G I N : D ecem b e r 20 0 9 cO N fe re N ce re p O rt s 111

reputation and incentive mechanisms. Dua argued that their
proposed trusted sensing peripheral (TSP) is a more appro-
priate solution, since any data that originates from the TSP
is considered trusted.

The TSP uses a Trusted Platform Module (TPM) which
offers platform attestation, i.e., sensors process the data as
expected. It also offers data attestation in the form of origin
authentication and verifiable data integrity. The user assigns
tasks to the peripheral, and the TSP periodically responds
with attested readings. The security problems that the TSP
has addressed are: (1) data poisoning, since sensed data are
signed by a TPM; (2) spoofing, since a burned-in private key
makes it impossible to fake the origin of data; (3) collu-
sion; and (4) the Sybil attack, since the embedded private
key makes it impossible to separate identity from the device
itself. There are still ways that the system could be attacked:
(1) fake events—e.g., a lit candle to fake high temperature;
(2) damaged sensors; and (3) effective attacks on the trusted
module.

The second part of the talk focused on content protection.
One possible solution would be for the sensor to encrypt
the data for each individual consumer of the sensor data.
Dua argued that broadcast encryption (BE) is more suitable.
The TSP can also assist in content protection by providing
tamper-resistant key storage, and in the future the TSP may
also be able to perform BE. Their group has designed and
implemented BE on Nokia N800. BE on the N800 takes
only a few seconds; they also think BE with symmetric
cryptography will improve performance.

Srdjan Cǎpkun wondered whether there are scenarios where
the attacker can fake events. Dua replied that if they use
reputations and a peer-review system they may be able to
detect event fakers. Is the Flec OS, which was used in this
study, open source? It is not, and to acquire it one has to
contact its authors.

Implicit Authentication for Mobile Devices■■

Markus Jakobsson, Elaine Shi, Philippe Golle, and Richard Chow,
Palo Alto Research Center

Philippe Golle listed current trends in authentication and
mentioned that we are now reaching the limits of pass-
word authentication, resulting in two-factor authentication
becoming more commonplace. At the same time, there has
been substantial growth in the number of mobile Internet
devices, which are now used to access personal, financial,
and medical data. Philippe and his team performed a user
study that showed that device passwords are weak; 50% of
users mistype the passwords, and most users report that
typing passwords on a mobile device is much harder than
on standard keyboards. Users consider having to enter
passwords as a more significant annoyance than the small
screens of their devices.

Golle noted that proxy solutions and single sign-on solu-
tions do not solve the problem, because they do not identify
the user but only the device. Consequently, they do not

account for the case of theft. Graphical passwords may have
higher entropy and be more memorable but have not caught
on. Biometrics have been hampered by high error rates.
Golle presented their proposed solution: implicit authentica-
tion (IA). IA relies on authenticating users based on their
habits and the usage patterns of their devices. For example,
if a user arrives at work in the morning, the GPS says that
he is in the usual location, he gets a call from his spouse
and a message from his boss, he may not need to authenti-
cate his cell phone to the bank again. Their initial steps on
implicit authentication consider the following types of data:
(a) location and co-location; (b) application usage; (c) bio-
metric measurements; and (d) contextual data such as time
of day, calendar entries.

The system computes an authentication score on the device.
Scores computed on the device protect user privacy but
do not defend against theft or corruption of device. Alter-
natively, the authentication score can be computed by the
carrier, which is more secure but raises privacy concerns.
To evaluate their insights, Philippe and his team built a Java
prototype that runs on BlackBerry and Android.

Rob Johnson noted that it seems an attacker could game
the system by going through a user’s address book. Philippe
responded that the authentication score may not just rely on
phonebook/call history but also GPS, and may also decrease
every time the user looks at his call history. Fabian Monrose
noted that if someone snatches a phone and uses it immedi-
ately, in the absence of biometrics there are very few things
this system can do. Tadayoshi Kohno wondered whether
their technique can be adopted by Google and others for
Web-based authentication. Philippe replied that they collect
more dynamic and detailed data as mobile devices, and
network providers have a lot more data than a simple user
Web access profile. Eric Goldman asked whether a user can
still authenticate when the authentication score decreases
during the day. There is always the option to log in with a
password, which also supercharges the authentication score.

secure systems and applic ations

Summarized by Akshay Dua (dakshay@gmail.com)

Garm: Cross Application Data Provenance and Policy ■■

Enforcement
Brian Demsky, University of California, Irvine

Brian Demsky presented Garm, a system that can prevent
accidental disclosure of arbitrary data and track its history
even when used across multiple applications. Brian designed
Garm to seamlessly support legacy applications and current
data use patterns, such as protecting data even if copied to
USB drives.

Garm consists of a dynamic binary-rewriter that instru-
ments binaries under its control to track the provenance
(i.e., history) of the application’s state during its execution.
Further, Garm implements an intermediate layer between

09_DECEMBER_summaries.indd 111 10.29.09 10:48:14 AM

112 ; LO G I N : VO L . 3 4, N O. 6

the application and the OS to enforce policies for, and possi-
bly encrypt, each byte of data that is read or written by that
application. A remote policy server along with a Trusted
Platform Module (TPM) on the user’s machine are respon-
sible for making sure that Garm and any associated policies
have not been tampered with.

 Would it be important to track anything other than the
sources of input that created the data, such as time? It
would be easy to track the time as well. Is such fine-grained
control worthwhile? Brian highlighted the advantage of
fine-grained control with an email example where different
emails in the inbox could potentially have a wide variety
of different policies (as selected by the senders). Coarse-
grained access control, on the other hand, would cause all
policies to apply to all email in the inbox. He also men-
tioned that there was an opportunity here to optimize, since
blocks of bytes would have the same provenance.

Convergence of Desktop and Web Applications on a Multi-■■

Service OS
Helen J. Wang, Microsoft Research, Redmond; Alexander
 Moshchuk, University of Washington, Seattle; Alan Bush,
 Microsoft Corporation

Alexander Moshchuk spoke about ServiceOS, a new operat-
ing system that treats applications as services, thus enabling
convergence of Web and desktop applications. Alexander
pointed out that the PC sharing model has changed from a
multi-user model to a single-user, multi-application model.
However, although browsers can support multiple applica-
tions, they were not designed to be operating systems for
rich applications. The major differences are that browsers do
not provide reliable cross-application protection, they have
many vulnerabilities, they do not really manage resources
such as CPU or network, and they do not provide Web ap-
plications with APIs to access devices like cameras on the
system.

Alexander also argued that browsers have the right prin-
cipal model, where the principal is the application rather
than the user. Systems where the user is the principal are
plagued with malware that can misuse the privileges of
the current user. ServiceOS incorporates the best of both
worlds: it leverages the principal model used in brows-
ers and combines it with features from a traditional OS.
ServiceOS models each application as a service consisting
of a chain of content and content renderers (e.g., a movie is
rendered by a Python movie player, which in turn is ren-
dered by Jython, which is rendered by the JVM). Each entity
in the chain can have different owners and the owner of the
head of the chain is the principal. The unit of protection in
ServiceOS is the principal and the unit of failure contain-
ment and resource allocation is an instance of the principal.

Had they looked into Mobile Agent Systems (MAS), which
dealt with many similar issues? They had not looked into
that line of research in detail but were confident that their
vision of a cache-only Web-centric device was different

from the MAS that was being referred to. Another person
was concerned about backward compatibility. Alexander
said that it was an issue, but suggested that one could start
with device classes where it’s easy to be backward-compat-
ible and then move on to harder ones. What if the owner
wants a user to use a particular renderer for some content?
That’s a challenging issue that requires carefully defining
the precedence between users, the OS, and content provid-
ers in terms of who specifies the mapping from content to
its renderer.

System Configuration as a Privilege■■

Glenn Wurster and Paul C. van Oorschot, Carleton University

Glenn Wurster talked about creating a system configuration
privilege that would be separate from the traditional root. A
separate privilege could be used to prevent stealthy con-
figuration changes and to restrict the abilities of installers.
Further, he pointed out that systems are normally used for
doing work and that configuration is seldom changed.

Glenn emphasized that most install procedures require the
user to become superuser first, thus granting the installer
unrestricted access to the file system. He mentioned that
existing file-system protection mechanisms (e.g., Discre-
tionary or Mandatory Access Control) seem to assume that
the system is in a steady state—applications are not being
installed or removed. His personal observation is that exist-
ing protection mechanisms can handle installs but were not
designed for them. Glenn’s approach is to create a new con-
figuration privilege and assign it to a single configuration
daemon. The privilege cannot be obtained or granted to any
other entity. Installers can then interact with the configura-
tion daemon to request configuration changes. However,
since it is hard to differentiate between applications that are
installers and those that aren’t, all applications need to use
the configuration daemon to make configuration changes.
The configuration daemon rejects or performs configuration
changes based on user input, the presence of a specific USB
key, file-system state, or other criteria. This approach helps
limit dangerous configuration changes regardless of whether
or not the application is an installer.

What is the difference between a traditional install and
one using this system? Glenn responded that the installers’
requests for changes can still be rejected by the configura-
tion daemon (e.g., if the specific USB key is not inserted).
Another person suggested an alternative that would involve
installing on an overlay file system, verifying the changes,
and then applying it to the real file system. Glenn pointed
out that for this to work one must know which applications
are installers beforehand, but that can be difficult to figure
out. Someone else asked how the system deals with trojans
or good applications that change the configuration in an
unwanted manner. Glenn replied that their system treated
the two the same.

09_DECEMBER_summaries.indd 112 10.29.09 10:48:14 AM

Writing is not easy for most of
us. Having your writing reject-
ed, for any reason, is no fun at
all. The way to get your articles
published in ;login:, with the
least effort on your part and on
the part of the staff of ;login:, is
to submit a proposal first.

ProPoSalS

In the world of publishing, writ-
ing a proposal is nothing new.
If you plan on writing a book,
you need to write one chapter, a
proposed table of contents, and
the proposal itself and send the
package to a book publisher.
Writing the entire book first
is asking for rejection, unless
you are a well-known, popular
writer.

;login: proposals are not like
paper submission abstracts. We
are not asking you to write a
draft of the article as the pro-
posal, but instead to describe
the article you wish to write.
There are some elements that
you will want to include in any
proposal:

■ What’s the topic of the
article?

■ What type of article is it
(case study, tutorial, edi-
torial, mini-paper, etc.)?

■ Who is the intended
audience (syadmins,
programmers, security
wonks, network admins,
etc.)?

■ Why does this article
need to be read?

■ What, if any, non-text
elements (illustrations,
code, diagrams, etc.) will
be included?

■ What is the approximate
length of the article?

Start out by answering each of
those six questions. In answer-
ing the question about length,
bear in mind that a page in
;login: is about 600 words. It
is unusual for us to publish a
one-page article or one over
eight pages in length, but it
can happen, and it will, if your
article deserves it. We suggest,
however, that you try to keep
your article between two and
five pages, as this matches the
attention span of many people.

The answer to the question
about why the article needs to
be read is the place to wax en-
thusiastic. We do not want mar-
keting, but your most eloquent
explanation of why this article
is important to the readership of
;login:, which is also the mem-
bership of USENIX.

UNaCCEPTablE arTIClES

;login: will not publish certain
articles. These include but are
not limited to:

■ Previously published
articles. A piece that
has appeared on your
own Web server but not
been posted to USENET
or slashdot is not con-
sidered to have been
published.

■ Marketing pieces of any
type. We don’t accept
articles about products.
“Marketing” does not in-
clude being enthusiastic
about a new tool or soft-
ware that you can down-
load for free, and you are
encouraged to write case

studies of hardware or
software that you helped
install and configure, as
long as you are not affili-
ated with or paid by the
company you are writing
about.

■ Personal attacks

FormaT

The initial reading of your arti-
cle will be done by people using
UNIX systems. Later phases
involve Macs, but please send us
text/plain formatted documents
for the proposal. Send proposals
to login@usenix.org.

DEaDlINES

For our publishing deadlines,
including the time you can ex-
pect to be asked to read proofs
of your article, see the online
schedule at http://www.usenix
.org/publications/login/sched
.html.

CoPyrIgHT

You own the copyright to your
work and grant USENIX per-
mission to publish it in ;login:
and on the Web. USENIX owns
the copyright on the collec-
tion that is each issue of ;login:.
You have control over who
may reprint your text; financial
negotiations are a private matter
between you and any reprinter.

FoCUS ISSUES

In the past, there has been only
one focus issue per year, the
 December Security edition. In
the future, each issue may have
one or more suggested focuses,
tied either to events that will
happen soon after ;login: has
been delivered or events that
are summarized in that edition.

writing for
;login:

09_DECEMBER_summaries.indd 113 10.29.09 10:48:14 AM

April 28–30, 2010, San Jose, CA
sponsored by USENIX in cooperation with ACM SIGCOMM and ACM SIGOPS

NSDI ’10 will focus on the design principles of large-scale networks and distributed systems.

Join researchers from across the networking and systems community in fostering cross-
disciplinary approaches and addressing shared research challenges.

Don’t miss these co-located workshops, all of which will take place on April 27, 2010:
• 3rd USENIX Workshop on Large-Scale Exploits and Emergent Threats (LEET ’10)
• 2010 Internet Network Management Workshop/Workshop on Research on Enterprise

Networking (INM/WREN ’10)
• 9th International Workshop on Peer-to-Peer Systems (IPTPS ’10)

http://www.usenix.org/events

Save the Date! http://www.usenix.org/nsdi10

7th USENIX Symposium on
Networked Systems Design
and Implementation

The Advanced Computing
Systems Association

1
Save the Date!

Stay Informed: Check out the USENIX Update Blog. You’ll find the latest in
conference announcements, submissions deadlines, available proceedings,
new multimedia, and much more: http://blogs.usenix.org/

Subscribe to the RSS feed and stay current on all USENIX info:
feed://blogs.usenix.org/feed/atom/

You can also follow us on Twitter: http://www.twitter.com/usenix

Stay Connected: USENIX has groups on LinkedIn and Facebook. Joining
the groups will help you connect with other USENIX members.

 • LinkedIn: http://www.usenix.org/linkedin

 • Facebook: http://www.usenix.org/facebook

Opportunities for Community-Building
and Staying Informed

Connect with other members and keep up to date on the latest USENIX news!

The Advanced Computing
Systems Association

09_DECEMBER_summaries.indd 114 10.29.09 10:48:14 AM

June 14–15, 2010, Berkeley, CA
Sponsored by USENIX in cooperation with ACM SIGMETRICS, ACM SIGSOFT, ACM SIGOPS, and ACM SIGARCH

HotPar ’10 will bring together researchers and practitioners doing innovative work in the area of
parallel computing. HotPar recognizes the broad impact of multicore computing and seeks relevant
contributions in all fields, including application design, languages and compilers, systems, and
architecture.

To ensure a productive workshop environment, attendance will be limited to 75 participants. Each
potential participant should submit a position paper of five or fewer pages by January 24, 2010.

 Call for Papers! http://www.usenix.org/hotpar10/cfp

2nd USENIX Workshop on
Hot Topics in Parallelism

The Advanced Computing
Systems Association

HotPar 10

USENIX Technical Conferences Week will feature:
 • 2010 USENIX Annual Technical Conference (USENIX ATC ’10)
 Submissions are due January 11, 2010; see http://www.usenix.org/atc10/cfp.

 • USENIX Conference on Web Application Development (WebApps ’10)
 Paper titles and abstracts are due January 4, 2010; see http://www.usenix.org/webapps10/cfp.

 • 3rd Workshop on Online Social Networks (WOSN 2010)
 Paper submissions are due February 18, 2010; see http://www.usenix.org/wosn10/cfp.

 • 2nd USENIX Workshop on Hot Topics in Cloud Computing (HotCloud ’10)

 • 2nd Workshop on Hot Topics in Storage and File Systems (HotStorage ’10)
USENIX is seeking suggestions and proposals for offerings (e.g., sessions, workshops, tutorials) for co-location.
For more information, please contact the USENIX Executive Director, Ellie Young, at ellie@usenix.org.

June 23–25, 2010 • Boston, MA

USENIX Technical Conferences Week

09_DECEMBER_summaries.indd 115 10.29.09 10:48:17 AM

acmqueue is guided and written by

distinguished and widely known industry experts.

The newly expanded site also offers more content

and unique features such as planetqueue blogs by

queue authors who “unlock” important content from

the ACM Digital Library and provide commentary;

videos; downloadable audio; roundtable

discussions; plus unique acmqueue case studies.

acmqueue provides a critical perspective

on current and emerging technologies by bridging the worlds of journalism and peer review

journals. Its distinguished Editorial Board of experts makes sure that acmqueue's high quality

content dives deep into the technical challenges and critical questions software engineers

should be thinking about.

BLOGS ARTICLES COMMENTARY CASE STUDIES MULTIMEDIA RSSCTO ROUNDTABLES

acmqueue has now moved completely online!

Visit today!

http://queue.acm.org/

acmqueueB-WAd.qxp:Layout 1 4/28/09 3:44 PM Page 1

09_DECEMBER_summaries.indd 116 10.29.09 10:48:17 AM

Project3 1/3/08 12:03 PM Page 1

dec09covers.indd 3 10.29.09 10:09:49 AM

USENIX Association
2560 Ninth Street, Suite 215
Berkeley, CA 94710

POSTMASTER
Send Address Changes to ;login:
2560 Ninth Street, Suite 215
Berkeley, CA 94710

PERIODICALS POSTAGE
PAID

AT BERKELEY, CALIFORNIA
AND ADDITIONAL OFFICES

http://www.usenix.org/fast10

Join us in San Jose, CA, February 23–26, 2010, for the latest in file and storage technologies.
The 8th USENIX Conference on File and Storage Technologies (FAST ‘10) brings together storage
system researchers and practitioners to explore new directions in the design, implementation,
evaluation, and deployment of storage systems.

8th USENIX CoNfErENCE
oN fIlE aNd StoragE
tEChNologIES

Save the Date!

Full program info and registration are available at http://www.usenix.org/fast10.

10
february 23–26, 2010, San Jose, Ca

Don’t miss these co-located workshops, both of which will take place on February 22, 2010:

	 •	First USENIX Workshop on Sustainable Information Technology (SustainIT ‘10)
	 •	2nd USENIX Workshop on the Theory and Practice of Provenance (TaPP ‘10)

dec09covers.indd 4 10.29.09 10:09:49 AM

