
The Advanced Computing Systems
Association

O P I N I O N Musings
R I K FA R ROW

S E C U R I T Y The Underground Economy: Priceless
TE A M CYM R U

Advanced Honeypot-Based Intrusion Detection
JA N G Ö B E L , J E N S H E KTO R , A N D TH O R STE N H O LZ

The Security of OpenBSD:Milk orWine?
A N DY OZM E NT A N D STUA RT E . S C H E C HTE R

WhiteWorms Don’tWork
N I C H O L A S W E AV E R A N D DA N E L L I S

On Doing“Being Reasonable”
M I C H A E L B. S C H E R

HowOften Should You Change Your Password?
M I K E H OWA R D

S Y S A D M I N ConfigurationManagement:Models andMyths, Part 3
M A R K B U RG E S S

Homeless Vikings: Short-Lived BGP Session Hijacking
DAV E J O S E P H S E N

C O L U M N S Practical Perl Tools: Give MeMyWoobie Back
DAV I D B L A N K- E D E L M A N

ISPadmin:Wireless
RO B E RT H A S K I N S

VoIPWatch: Security
H E I S O N C H A K

/dev/random
RO B E RT G . F E R R E L L

B O O K R E V I E W S Book Reviews
E L I Z A B E TH Z W I C K Y E T A L .

S T A N D A R D S An Update on Standards
N I C H O L A S M . STO U G HTO N

U S E N I X N O T E S Letters to the Editor
Addendum to Annual Tech ’06 Summaries
Thanks to Our Volunteers
SAGE Update

C O N F E R E N C E S 15th USENIX Security Symposium;MetriCon 1.0;
New Security ParadigmsWorkshop

T H E U S E N I X M A G A Z I N E

D E C E M B E R 2 0 0 6 V O L U M E 3 1 N U M B E R 6

For a complete list of all USENIX & USENIX co-sponsored events,
see http://www.usenix.org/events

11TH WORKSHOP ON HOT TOPICS IN OPERATING
SYSTEMS (HOTOS XI)
Sponsored by USENIX in cooperation with the IEEE Technical
Committee on Operating Systems (TCOS)

MAY 7–9, 2007, SAN DIEGO, CA, USA
http://www.usenix.org/hotos07
Paper submissions due: January 4, 2007

5TH ACM/USENIX INTERNATIONAL CONFERENCE
ON MOBILE COMPUTING SYSTEMS, APPLICATIONS,
AND SERVICES (MOBISYS 2007)
Jointly sponsored by USENIX and ACM SIGMOBILE, in
cooperation with ACM SIGOPS

JUNE 11–15, 2007, PUERTO RICO
http://www.sigmobile.org/mobisys/2007/

WORKSHOP ON EXPERIMENTAL COMPUTER SCIENCE
(ECS ’07)
Sponsored by ACM SIGARCH and ACM SIGOPS in cooperation
with USENIX, ACM SIGCOMM, and ACM SIGMETRICS

JUNE 13–14, 2007, SAN DIEGO, CA, USA
http://www.expcs.org/
Paper submissions due: February 23, 2007

THIRD INTERNATIONAL ACM SIGPLAN/SIGOPS
CONFERENCE ON VIRTUAL EXECUTION
ENVIRONMENTS (VEE ’07)
Sponsored by ACM SIGPLAN and ACM SIGOPS in cooperation
with USENIX

JUNE 13–15, 2007, SAN DIEGO, CA, USA
http://vee07.cs.ucsb.edu
Paper submissions due: February 5, 2007

2007 USENIX ANNUAL TECHNICAL
CONFERENCE
JUNE 17–22, 2007, SANTA CLARA, CA, USA
http://www.usenix.org/usenix07
Paper submissions due: January 9, 2007

16TH USENIX SECURITY SYMPOSIUM
AUGUST 6–10, 2007, BOSTON, MA, USA
http://www.usenix.org/sec07
Paper submissions due: February 1, 2007

2007 LINUX STORAGE & FILESYSTEM WORKSHOP
Co-located with FAST ’07

FEBRUARY 12–13, 2007, SAN JOSE, CA, USA
http://www.usenix.org/lsf07

5TH USENIX CONFERENCE ON FILE AND STORAGE
TECHNOLOGIES (FAST ’07)
Sponsored by USENIX in cooperation with ACM SIGOPS, IEEE
Mass Storage Systems Technical Committee, and IEEE TCOS

FEBRUARY 13–16, 2007, SAN JOSE, CA, USA
http://www.usenix.org/fast07

1ST SYMPOSIUM ON COMPUTER HUMAN
INTERACTION FOR MANAGEMENT OF
INFORMATION TECHNOLOGY (CHIMIT ’07)
Sponsored by ACM in cooperation with USENIX

MARCH 30–31, 2007, CAMBRIDGE, MA, USA
http://chimit.cs.tufts.edu

SECOND WORKSHOP ON TACKLING COMPUTER
SYSTEMS PROBLEMS WITH MACHINE LEARNING
TECHNIQUES (SYSML07)
Co-located with NSDI ’07

APRIL 10, 2007, CAMBRIDGE, MA, USA
http://www.cs.duke.edu/nicl/sysml07

THIRD INTERNATIONAL WORKSHOP ON
NETWORKING MEETS DATABASES (NETDB ’07)
Co-located with NSDI ’07
Sponsored by USENIX in cooperation with ACM SIGCOMM

APRIL 10, 2007, CAMBRIDGE, MA, USA
http://www.usenix.org/netdb07
Paper submissions due: January 12, 2007

FIRST WORKSHOP ON HOT TOPICS IN
UNDERSTANDING BOTNETS (HOTBOTS ’07)
Co-located with NSDI ’07

APRIL 10, 2007, CAMBRIDGE, MA, USA
http://www.usenix.org/hotbots07
Paper submissions due: February 26, 2007

4TH USENIX SYMPOSIUM ON NETWORKED
SYSTEMS DESIGN AND IMPLEMENTATION (NSDI ’07)
Sponsored by USENIX in cooperation with ACM SIGCOMM
and ACM SIGOPS

APRIL 11–13, 2007, CAMBRIDGE, MA, USA
http://www.usenix.org/nsdi07

Upcoming Events

contents

OPINION
2 Musings

RIK FARROW

SECURITY
7 The Underground Economy: Priceless

TEAM CYMRU

17 Advanced Honeypot-Based Intrusion Detection
JAN GÖBEL , J ENS HEKTOR, AND THORSTEN HOLZ

26 The Security of OpenBSD:Milk orWine?
ANDY OZMENT AND STUART E. SCHECHTER

33 WhiteWorms Don’tWork
NICHOLAS WEAVER AND DAN ELL IS

40 On Doing“Being Reasonable”
MICHAEL B. SCHER

48 HowOften Should You Change Your Password?
MIKE HOWARD

SYSADMIN
52 ConfigurationManagement:Models andMyths.

Part 3: A Shocking Lack of Ad-Hocracy
MARK BURGESS

60 Homeless Vikings: Short-Lived BGP Session
Hijacking—ANew Chapter in the SpamWars
DAVE JOSEPHSEN

COLUMNS
65 Practical Perl Tools: Give MeMyWoobie Back

DAVID BLANK-EDELMAN

71 ISPadmin:Wireless
ROBERT HASKINS

76 VoIPWatch: Security
HEISON CHAK

79 /dev/random
ROBERT G. FERRELL

BOOK REVIEWS
81 Book Reviews

EL IZABETH ZWICKY ET AL .

STANDARDS
84 An Update on Standards

NICHOLAS M. STOUGHTON

USENIX NOTES
87 Letters to the Editor
88 Addendum to Annual Tech ’06 Summaries
89 Thanks to Our Volunteers

ELL I E YOUNG

89 SAGE Update

CONFERENCE REPORTS
91 15th USENIX Security Symposium
112 MetriCon 1.0
116 New Security ParadigmsWorkshop (NSPW ’06)

V O L . 3 1 , # 6 , D E C E M B E R 2 0 0 6
E D I TO R

Rik Farrow
rik@usenix.org

M A N AG I N G E D I TO R
Jane-Ellen Long
jel@usenix.org

CO P Y E D I TO R
David Couzens
proofshop@usenix.org

P R O D U C T I O N
Lisa Camp de Avalos
Casey Henderson

T Y P E S E T T E R
Star Type
startype@comcast.net

USEN IX ASSOC IATION
2560 Ninth Street,
Suite 215, Berkeley,
California 94710
Phone: (510) 528-8649
FAX: (510) 548-5738

http://www.usenix.org
http://www.sage.org

;login: is the official
magazine of the
USENIX Association.

;login: (ISSN 1044-6397) is
published bi-monthly by the
USENIX Association, 2560
Ninth Street, Suite 215,
Berkeley, CA 94710.

$85 of each member’s annual
dues is for an annual sub-
scription to ;login:. Subscrip-
tions for nonmembers are
$115 per year.

Periodicals postage paid at
Berkeley, CA, and additional
offices.

POSTMASTER: Send address
changes to ;login:,
USENIX Association,
2560 Ninth Street,
Suite 215, Berkeley,
CA 94710.

©2006 USENIX Association.

USENIX is a registered trade-
mark of the USENIX Associa-
tion. Many of the designa-
tions used by manufacturers
and sellers to distinguish their
products are claimed as trade-
marks. USENIX acknowl-
edges all trademarks herein.
Where those designations
appear in this publication and
USENIX is aware of a trade-
mark claim, the designations
have been printed in caps or
initial caps.

2 ; LOG I N : VO L . 3 1 , NO . 6

R I K F A R R O W

musings
rik@usenix.org

I R E C E N T LY R E AD A SUMMARY O F
new vulnerabilities in 2006 which stated
that, for the first time, buffer overflows had
fallen from number one to number four.
The new “leaders” in the vulnerability and
exploit race were cross-site scripting (XSS),
SQL-injection, and PHP file inclusion. Many
pundits drew from this the conclusion
that buffer overflow vulnerabilities are in
decline. If only that were true, perhaps we
would be seeing some light at the end of
this tunnel.

Developers, security companies, and vendors have
done considerable work to retire buffer overflows
as security issues. The early work includes scripts
that simply scan for offending string manipulation
functions, such as strcpy() in source code. Replac-
ing strcpy() with strncpy() adds bounds checking
when copying a string, and as long as the length
of the destination string is used as the bounding
value, this actually helps a lot. In the security
business, we call this “low-hanging fruit,” as find-
ing and fixing these vulnerabilities is as simple as
running a tool.

Other pathways to uncovering buffer overflows
include tracing input flows. An attacker manipu-
lates buffer overflows by providing some mali-
cious input, so the defending coder needs to fol-
low the flow and see how any input gets used. I
don’t want to make this sound easy, because it’s
not. Take the Sendmail vulnerability in the
address checking function that missed decrement-
ing a counter while parsing email addresses. That
bug had been there for many years, unnoticed—
until it was found in 2003. A second, similar bug
was found later in 2003, also in code that checks
email addresses.

Code reviews that can find bugs like these are
tedious. After the first bug was found, I down-
loaded the patches for Sendmail, then used them
to find the buggy routine (although there were
multiple functions patched, looking for ones relat-
ed to user input helped to shorten the search).
Then I walked through the crackaddr() function in
the header.c file, certain the mistake would be
found there. The error was there, I guessed cor-
rectly how it worked, but I didn’t actually uncover
the crucial place in this function where a variable
should have been decremented. It just isn’t that
easy.

A hacking group didn’t find the missing decrement either. They debugged
vulnerable versions of Sendmail and found a way to overwrite a FILE object
so that a read callback would point to their own, handcrafted code. This
code makes an outgoing connection to port 25/tcp at the IP address of the
attacker’s choosing [1] and runs a root-owned shell.

Invoking the HardwareMantra

Since code reviews are so difficult, coming up with a solution that bypasses
code reviews is imperative. And there are many such solutions, some done
in software, and better ones manifested through appropriate use of hard-
ware.

Crispin Cowan et al. [2] created the idea of placing a value in memory
that would be overwritten during a buffer overflow, and testing that value
works as a check for buffer overflows. This idea, known as the “stack
canary,” forms the basis for many software protection schemes, including
one used by Microsoft. If this worked reliably, there would no longer be
exploitable buffer overflows in Microsoft code, as evidenced by the emer-
gency patch released on September 26 to fix a buffer overflow in the Vector
Markup Language (vgx.dll) code in IE versions 5 through 7 [3].

There are, of course, other techniques that can be used to thwart buffer
overflows. RedHat, in its versions of the Linux kernel, uses several soft-
ware techniques, most notably by changing the layout of memory during
process creation. By changing the location of the stack within an 8K win-
dow, getting an exploit to work correctly becomes much more difficult
(but could succeed eventually).

Sun Microsystems has long included software support in its kernel for
hardware protection. Sun’s SPARC chip architecture makes it easy to make
the stack nonexecutable, and this has been an option since the mid-1990s
in Solaris. Other prominent CPU vendors lagged way behind on this fea-
ture. Intel processors, until more recent versions, could have nonexe-
cutable stacks only by using a kludge that involved segment registers. New
AMD and Intel processors now make it much simpler to enable hardware
stack protection by no longer lumping write and execution permission bits
in memory management together.

Kiss of Death

Even if programmers and chip designers had solved stack-based buffer
overflows, we still have to deal with other related programmer errors,
including format string, integer overflow, and double free bugs. None of
these ever attained the number 1 status of buffer overflows, but all make it
into the top 40 vulnerabilities [4]. Protecting the stack does make exploita-
tion more difficult, but not impossible, as people are still writing both
buffer overflow and other bug-related exploits.

When I posted some of my thoughts about buffer overflows being toppled
from number 1 by Web scripting bugs, I got an even more thoughtful
response from Chris Wysopal. Chris pointed out that a buffer overflow that
gets prevented by any of the methods I’ve mentioned here has been con-
verted into a Denial of Service attack. All the mechanisms designed to
defend against buffer overflow to date halt the execution of the offending
program. With the exception of multiply threaded servers, such as Apache,
or ones that watch for untimely server death, such as Postfix, the server

; LOGIN: DECEMBER 2006 MUSINGS 3

has died, denying service. Remember, if your Web browser mysteriously
dies while following a link, it may be a victim of an “unsuccessful” buffer
overflow attack.

“We stopped the buffer overflow attack, but the patient died.” How sad.

Just as significant, Chris pointed out that buffer overflow attacks have not
declined statistically. To me, this is the most damning point of all. Buffer
overflows have fallen to number 4 in the top 40 CVE vulnerability list only
because Web scripting bugs have increased in popularity. The absolute
number of buffer overflows has remained almost constant over the past
five years.

Web Services

Web scripting/programming errors now make up four of the top five
reported vulnerabilities. The “dot” category stands for vulnerabilities that
rely on the use of “..” to view or execute files that should be protected. I
would have thought that, like SQL-injection and XSS, these attacks should
have fallen to careful inspection of client-supplied input. Sadly, I am mis-
taken. People continue to make the same mistakes year after year.

I don’t want to trivialize this problem. XSS, in particular, is difficult to deal
with, although scrubbing <script> from user input to Web scripts would go
a long way toward curing this issue.

What really struck me was the “new” PHP bug, file inclusion, involving
simply appending a bit of text to a request to a PHP script. PHP has a rep-
utation for making it easy to write insecure Web scripts, and this flaw cer-
tainly bolsters that impression.

The Lineup

Team CYMRU leads off the 2006 Security focus issue with an article about
the computer underground. Rob Thomas gave the keynote at SRUTI [5] on
this very topic. If you have ever worried about sharing your personal infor-
mation online, or with anyone, whether he or she is a bank clerk or just
some anonymous person on the phone, you will want to read this article.
It’s not just the level of fraud but, as the authors write, the lack of any
attempt to hide criminal activities that is just astounding. No wonder we
haven’t caught bin Laden by this time if the United States and other coun-
tries continue to permit blatant identity trading to go on (not that identity
traders are never caught; see [6]).

Next, a trio of German researchers share information about how they
detect and quarantine infected Windows systems on a university network.
Through the use of Nepenthe, a low-interaction honeypot, they can both
capture malware and detect without any false positives infected systems on
their network. I know that this is an issue for many organizations, and the
approach described here appears worth pursuing. Also, Göbel, Hektor, and
Holz describe the Haxdoor malware and the vast cache of identity informa-
tion it captured in just nine days.

I so enjoyed Andy Ozment’s Security ’06 presentation that I asked him to
write for ;login:. Andy and Stuart Schechter have statistically analyzed the
bugs found in OpenBSD, relating each bug not just to the code patched but
to when that code appears in OpenBSD. Perhaps there is some light at the
end of this security tunnel after all.

4 ; LOG I N : VO L . 3 1 , NO . 6

Nick Weaver and Dan Ellis carefully explain why white worms, those that
attempt good works rather than exploits, are not a good idea. If you have
ever considered writing a white worm, this article is certain to dissuade you.

Mike Scher, past ;login: contributor and winner of the “legal counsel of this
issue” award, entertains us with musings about tort law and negligence. A
recent case grabbed Mike’s attention, and he uses a similar, but fictitious,
case to describe just how an organization might be liable for negligence. If
you write policy or have anything to do with administering public servers,
you need to read this article.

Finally, Mike Howard argues that changing passwords too often can be
more harmful than simply using strong passwords. I believe Mike makes
his case well.

In the Sysadmin section, Mark Burgess continues his excellent series about
the nature of configuration management. After reading (and editing)
Anderson’s “Configuration Management” [7], I thought I knew it all. But
Mark has a different way of viewing things and a very convincing way of
getting the reader to look at configuration management issues in a new light.

Dave Josephsen’s article borders on security, but it really does belong in the
Sysadmin section. Dave got me interested when he told me about BGP
hijacking attacks designed to support spammers. Stopping spam is Dave’s
real focus, but the BGP attack is interesting in itself. Dave narrates the
story of the spam wars, reaching a conclusion you might recognize if you
have read Dave’s writing before.

Our columnists have done their work as well, with David Blank-Edelman
deciding to write about security in the same sense that TSA protects those
flying in U.S. airspace. Robert Haskins writes about the use of wireless by
ISPs, including solutions that may apply to those who have chosen to live
remotely. Heison Chak considers the security-related aspects of using VoIP.
Robert Ferrell enlightens us on the uses of sledgehammers in computer
security.

In the Book Reviews section, Elizabeth Zwicky continues her search for
good Windows security books, finding two, and tells us about reading
Security and Usability, an interesting collection of papers that came out last
year. Sam Stover reports on yet another Syngress book that contains some
new material and loads of repeated chapters. Finally, I managed to write a
couple of reviews myself.

Nick Stoughton has produced another article in his series about standards.
Nick has been the USENIX representative for standards for many years,
and these articles allow you to get an insider’s view of standards processes
(some of which will affect you).

We have three summaries in this issue, all related to security. The Security
’06 conference summaries belong in this issue, of course. Dan Geer has
produced excerpts from a much longer summary of MetriCon, the first
workshop on security metrics. And the organizers of the New Security
Paradigms Workshop have produced a very concise summary of hours of
discussion.

I would like to leave you with some parting thoughts related to the
CYMRU article about stolen identity. During my Guru presentation in
Boston at USENIX Annual Tech, I pondered aloud about how it is that
in this supposedly modern age our identity can be described in approxi-
mately 160 bytes of information. This small amount of data covers every-
thing you would need to present to get a car or home loan—and every-

; LOGIN: DECEMBER 2006 MUSINGS 5

thing an identity thief would need as well. I think this is absurd, but I will
confess that I haven’t come up with (and patented) a workable solution.

In the meantime, I suggest that you watch your own credit and banking
reports closely. Someone else’s jackpot could easily be your own misfortune.

REFERENCES

[1] “Technical Analysis of the Remote Sendmail Vulnerability”:
http://lwn.net/Articles/24292/.

[2] “StackGuard: Automatic Adaptive Detection and Prevention of Buffer-
Overflow Attacks”: http://www.usenix.org/publications/library
/proceedings/sec98/cowan.html.

[3] “Microsoft Internet Explorer VML Buffer Overflow”:
http://www.kb.cert.org/vuls/id/416092.

[4] “Vulnerability Type Distribution in CVE,” posting about the CVE top
38 (not 40, but that sounds better) vulnerabilities of 2006:
http://www.attrition.org/pipermail/vim/2006-September/001032.html.

[5] 2nd Workshop on Steps on Reducing Unwanted Traffic on the Internet:
http://www.usenix.org/events/sruti06/.

[6] “Hacker Hunters,” Business Week (May 30, 2005): http://www
.businessweek.com/print/magazine/content/05_22/b3935001_mz001
.htm?chan=tc.

[7] P. Anderson, “System Configuration”: http://www.sage.org/pubs
/14_sysconfig/.

6 ; LOG I N : VO L . 3 1 , NO . 6

S AV E TH E DAT E ! www. u s e n i x . o r g /u s e n i x 0 7

2 0 0 7 U S EN I X AN NUA L T E C H N I C A L CON F E R EN C E
J U N E 1 7 – 2 2 , 2 0 0 7 , S AN TA C L A R A , C A
J o i n u s i n S a n t a C l a r a , C A , J u n e 1 7 – 2 2 , f o r t h e 2 0 0 7 U S EN I X A n n u a l Te c h n i c a l C o n f e r e n c e .

U S E N I X h a s a l wa y s b e e n t h e p l a c e t o p r e s e n t g r o u n d b r e a k i n g r e s e a r c h a n d c u t t i n g - e d g e

p r a c t i c e s i n a w i d e v a r i e t y o f t e c h n o l o g i e s a n d e n v i r o nme n t s a n d 2 0 0 7 i s n o e x c e p t i o n .

US EN I X ANNUA L T E CH I N 2 0 0 7 W I L L F E ATU R E :
• A n e x t e n s i v e T r a i n i n g P r o g r am , c o v e r i n g c r u c i a l t o p i c s
a n d l e d b y h i g h l y r e s p e c t e d i n s t r u c t o r s

• Te c h n i c a l S e s s i o n s , f e a t u r i n g t h e R e f e r e e d P a p e r s
T r a c k a n d a P o s t e r S e s s i o n

• P l u s B o F s a n d mo r e !

J o i n t h e c ommun i t y o f p r o g r amme r s , d e v e l o p e r s , a n d s y s t em s p r o f e s s i o n a l s i n s h a r i n g
s o l u t i o n s a n d f r e s h i d e a s .

; LOGIN: DECEMBER 2006 THE UNDERGROUND ECONOMY: PR ICELESS 7

T E A M C Y M R U

the underground
economy: priceless
Rob Thomas is a long-time network security profes-
sional and founder of Team Cymru. He has written
many papers on information security and spoken at
numerous conferences worldwide on the topic of
Internet security.

robt@cymru.com

Jerry Martin is an advocate of the complete informa-
tion assurance process: risk assessment, policy devel-
opment, solution deployment, and user education.
He has worked in several information security posi-
tions, including at the U.S. Air Force.

jerry@cymru.com

TH E C Y B E R UN D E RG ROUND E CONOMY
is just as seedy and illegal as its physical
counterpart. The primary objective of those
who operate there is money. The National
Cyber Security Alliance published some
data a while ago that concisely describes
the problem:

1. Fully 61% of U.S. computers are infected
with spyware.

2. Americans say they lost more than US$336
million last year to online fraud.

These figures are largely based on self-reporting,
which is often suspect. Given the enormous quan-
tity of data witnessed on numerous Internet Relay
Chat (IRC) channels, both numbers may be
underreported. Given these staggering numbers,
one might well ask what is being done to address
this criminal activity. Lamentably, the answer is,
“Not much.” The popular school of thought is
that finding and prosecuting these perpetrators
of financial fraud and outright theft is too costly,
too resource-intensive, and just too hard. This
article will expose the infrastructure the miscre-
ants have established; the open arrogance the buy-
ers, sellers, traders, and cashiers exhibit; the activ-
ities and alliances in which the underground
denizens are involved; the method by which they
receive their ill-gotten goods; the blatant manner
in which they advertise; and the personal data
that is harvested every single hour of every day of
the year. Numerous snippets of captured IRC
chatter will illustrate the points raised, although
the nicknames and the information harvested are
obfuscated.

The miscreants can make a handsome living
through these activities. Even those without great
skills can barter their way into large quantities of
money they would never earn in the physical
world. It is important to note that these miscre-
ants are located all over the globe, and thus they
may be earning well above the average income for
their areas.

Infrastructure

Entire IRC networks—networks, not just single
servers—are dedicated to the underground econo-
my. There are 35 to 40 particularly active servers,
all of which are easy to find. Furthermore, IRC
isn’t the only Internet vehicle they use. Other
conduits include, but are not limited to, HTTP,
Instant Messaging, and Peer-to-Peer (P2P).

Increasingly, many of the miscreants utilize encryption in these services,
such as VPNs or SSL. The following table illustrates the number of cards
compromised in three months for a single server!

Month Amex Visa MasterCard Discover

2005/10 70 28942 11820 1064

2005/11 51 31932 13218 1214

2005/12 89 26492 10662 1079

The miscreants in the underground economy are typically self-policing.
Each IRC network will normally have a channel, such as #help or #rippers,
dedicated to the reporting of those who are known to conduct fraudulent
deals. The operators of these networks will ban the nicknames of those
who have a proven history of fraud. This is a form of self-regulation that
ensures the sellers and buyers have a “pleasant” experience and attempts
to elicit repeat visits. The miscreants keep meticulous records of those who
have defrauded them, and they are quick to share those records with every-
one. As with all criminal societies, there is a fair amount of fraudulent
dealings and “ripping” (bad business deals).

The tale goes something like this: Miscreant <A> advertises a need for
roots, which are compromised UNIX systems on which someone has
obtained root access. disappears for a while to have a private conversa-
tion with <A>, which is the norm for those finalizing deals. then
pastes that conversation into the open trading channel as a warning to
other miscreants:

 i rember when u tried to sell me a root scanner
 lol were u going to try scam me
 yeah
 coz u told me last weekk u had a private root scanner
<A> i need it
 you were going to try scam me
 A is a scammer so beware
 1 day he trys selling me a root scanner next day he needs roots
 so beware

Rest assured that a great many miscreants will now avoid conducting busi-
ness with <A>. In contrast, some miscreants are well vetted, with certain
underground economy networks and forums bestowing verification on
those miscreant merchants who are considered reliable.

Because these miscreants encounter a wide variety of fraud, they capitalize
on the existing criminal support structure, which includes places to
obscure their ill-gotten profits. “OS” and “os” mean “offshore bank” in this
case:

<A> whats a good os bank?
 you can use webmoney
 if you can deal with their fees
 its not a OS bank
 but they wont ever freeze your account
<A> .ee right?
 no
 thats an exchanger
 www.wmtransfer.com

 is the official webmoney site

8 ; LOG I N : VO L . 3 1 , NO . 6

Buyers, Sellers, and Traders

Even the miscreants who spend most of their days herding bots have
requirements, mostly in support of their profit-making activities with those
bots. In one bit of chatter, a miscreant is specifically seeking an IRC dae-
mon to prevent interlopers from running the intelligence-gathering com-
mands. Such IRC daemons do exist, as do the IRC daemons that produce
bogus responses. The needs and those who meet them do have exchange
rates, though these can fluctuate wildly. Some miscreants willingly list their
prices, such as <A> in the following:

<A> Sell Cvv US(1$ each),Uk(2$ each)Cvv with SSN & DL(10$ each)and
ePassporte Account with 560$ in acc(50$),Hacked Host(7$),Tut Scam CC
Full in VP-ASP Shop(10$).shopadmin with 4100 order(200$), Tool Calculate
Drive Licsence Number(10$).... I’m sleeping. MSG me and I will reply U as
soon as I can !

Compromised hosts sold by <A> cost US$7, which is quite a lot, consider-
ing that the average bot costs US$0.04 (four cents). Note as well that <A>
is actually asleep; his scripted advertisements continue unabated, providing
a steady marketing opportunity.

Dealing in the underground economy is not without risks, however, and
the merchants realize this fact. This is why they provide friendly advice
designed to maintain the safety of those who visit their servers. <A> is a
bot that emits this message at regular intervals:

<A> Precautions 1. Use Fake Ip or Use a VPN While On This Server. 2. Do
Not Use Your Real ID in picking any type of money 3. Dont give your real
information to anyone unless you know him/her. 4. keep your self safe on [
UNDERGROUND ECONOMY IRC NETWORK]. ThankS!!

One can readily see the plethora of advertisements by the miscreant mer-
chants and the miscreant consumers regarding compromised financial
accounts, drops (compromised financial accounts used to launder funds),
and cashiers (those who can clean them out):

<A> i have wells and boa logins and i need to good drop manripper
f#@! off
 <=== .Have All Bank Infos. US/Canada/ Uk ...Legit Cashiers Only
Msg/me
<C> HELLO room... I am Ashley from the State... I got drops for US banks
and i need a very trust worthy and understanding man to do deal with ...
the share its 60/40...Msg me for deal

The miscreant spammers are some of the most highly paid individuals in
the underground. It’s easy to see why—spam works, and yields high prof-
its. In one particular instance, the spam involved online (illegal) diplomas.
At US$1000 per diploma, it’s obvious why these sponsors can afford to pay
the miscreant spammers. The miscreant spammers can then afford to pay
the proxy creators, malware creators, etc.

Activities and Alliances

The miscreants have all sorts of capabilities and all sorts of needs. They
aren’t so unimaginative as to limit their opportunities. When they have
needs, they offer remuneration or even partnership. One miscreant adver-
tises his need for a spam mailer to fill Hotmail inboxes. He is willing to
pay through e-gold, or will even share the proceeds from his phishing (the
miscreants call it “scam”) site. They’ll happily pay for that which no one

; LOGIN: DECEMBER 2006 THE UNDERGROUND ECONOMY: PR ICELESS 9

will trade. Selling source code for malware (rarely 0days) is another avenue
to profit. It is critical to note that these aren’t the malware authors. There
are miscreants who spend quality time obtaining source code and reselling
it. Some of them, a very few, will also modify it for a fee.

Those who provide services in the underground economy are looking for
long-term customers. It pays to keep the customers happy and to nurture
those illicit business relationships. Oh, and don’t believe those reports from
security vendors who say all hacking happens in South Korea, or Brazil, or
China. There are miscreants everywhere (e.g., <A> i need any hacker from
‘country x’).

The large number of online merchants that are regularly hacked is both sad
and impressive:

<A> selling admin database password of hacked online store with hun-
dreds of cvv2 and check draft payment (it’s Bank accounts # and Routing#)
inside. I receive the payment 1st (WU/E-Gold). Also trade cvv2 for [WEB
SITE] account.

Carding servers is easy, thanks to the proliferation of hosting sites that pro-
vide online purchase and configuration capabilities. The good news for the
miscreants is that they no longer rely on boxes on their cable or DSL links.
They now have professional, redundant hosting for their IRC servers, bot-
net servers, etc. Even exclusive, rare credit cards will be stolen. One can
just imagine the purchasing power <A> has with this card:

<A> I got an american express black card the other day
<A> weird huh?
 ... black card?
 i thought it wa blue
<A> go look it up
<A> its called the centurion
 first link has “black is beautiful” in the thingy
 and it’s talking about the card

It is also a reality that miscreants actually buy physical goods in the under-
ground economy:

<A> Sell cc’s full info with PIN (debit, credit), COB’s Laptops (alienware
area51 = 500$, Dell inspiron 6100=400$, Scam pages (ebay, aol, paypal,
egold, escrow, earthlink), track2gen (.exE) support 857 bins, 2000 bins
(update bins), root. Payment (wu or e-gold).

The miscreants are avid proponents of online banking, particularly other
people’s online bank accounts. This has been and remains quite the popu-
lar activity, with accounts compromised daily. These accounts may be trad-
ed several times prior to any activity passing through them. Buying and
selling compromised bank accounts continues unabated. Email inboxes,
with their lack of security, provide yet another compromise vector for per-
sonal information:

<A> has everything on 1 person from there emails,to paypal to ebay,
online banking .travelcity , expedia , you name it i probably have it full info
cc high limit /msg me

One miscreant inquires about the worth of 40K compromised financial
accounts. It isn’t worth much to him because he cannot cash it out. For
this task, he requires a cashier and a drop (a place or account through
which to route the money to him). For this reason, he will be paid pennies
on the dollar for his collection of compromised financial accounts, which
is just fine:

10 ; LOG I N : VO L . 3 1 , NO . 6

<A> how much would a lets say 40k
 with all informations 40k ??
 Fulls
<A> user name and pass
<A> 200-300 an account ?
 variable between 250 $ =====> 500 $
<A> ill retire in a month

This is the greatest failure of new technology—a rush to market, without
consideration of the risks and a cost/benefit analysis. This is at the heart of
the security problem. Certainly, that is not to say that industries should not
capitalize on technological advances but, rather, that they should consider
risk and threat mitigation strategies prior to bringing any product to market.

Obtaining a fake ID to cash out an illegal funds movement is an easy task
in the underground. Many of the miscreants sell or buy such IDs, or teach
others how to create them. There is quite the cottage industry providing
supplies for this endeavor. All of the ID chatter is for U.S. IDs of various
sorts, including college IDs, state IDs, and drivers’ licenses.

Cashiers

Extracting cash from the underground economy is the goal of many, if not
most, participating miscreants. They find all sorts of ways to accomplish
this goal, though these aren’t new techniques; physical world criminals
have been doing this for years. So what’s different? Online crime is often
easier and has a lot less inherent risk. The biggest challenges to the miscre-
ants aren’t IDS, firewalls, 0day creation, or any other technological hurdle.
The biggest challenge is where to cash the checks. Those who actively par-
ticipate in the underground economy have another problem—how to move
the significant quantity of illegally obtained funds. There are a variety of
solutions they discuss, such as offshore trusts to protect their financial
assets against lawsuits. Lawsuits, prying eyes, and seizure are all mitigated
through the use of offshore banking. Several offshore banks will wittingly
accept such accounts.

The miscreants advertise for cashiers for both logical and physical (e.g., go
collect the money at a Western Union site) account cleanups. Cashing out
these accounts often must be accomplished from within the country where
the account resides. Enter the bank broker, the miscreant who will cash
out the account. Demand is high for these miscreants, and they never ask
questions. When a cashier attempts to clean out a bank account (50%
always goes to the cashier) on behalf of another miscreant, that cashier
must have some semblance of legitimacy with the bank. Increasingly, the
miscreants are finding that a male voice attempting to clean out an account
obviously belonging to a female isn’t accepted by the banks. Thus is born a
new skill set: gender-based cashiers. There are plenty of female miscreants,
willing to clean out accounts both virtually and physically. When the mar-
ket makes a demand, the demand-based underground economy responds:

<A> i need who can confirmer westernunion female visa
 speaking of wu, who can do females?

The miscreants who serve as cashiers in the underground economy are
ready and waiting to fill the orders. They are happy to generate cash trans-
fers, often through services such as Western Union. The mule or the
intended recipient then picks up the cash at a Western Union office. This
is both easy and convenient, the benchmarks of success in the increasingly
online world. Although slightly obfuscated, this example is quite real:

; LOGIN: DECEMBER 2006 THE UNDERGROUND ECONOMY: PR ICELESS 11

<A> Western Union Money Transfer? Pick Up Notification.
<A> Dear X X,
<A> Thank you for using the Western Union Money Transfer
<A> Your money transfer has been picked up by the receiver.
Following is a summary of your transaction.
<A> XXXXXXX508
<A> Date of Order:
<A> 09/15/2005
<A> Amount Sent:
<A> $900.00
<A> Receiver Name:
<A> X X
<A> Status:
<A> Picked Up
<A> write me if u want me to cashout creditcard for you throgh wester-
nunion

It’s easy to move money online, because of the large number of cashiers.
These criminals widely and loudly advertise their skills, prices, and spe-
cialties. They are competing for the business of other miscreants and are
certain to add that touch of quality customer service:

 I have Bank drops for Quick Cashout in(Hsbc,Wells, Lloyds,
Citibank,Boa, Barclays,Woolwich,rbc) Contact me now for Fast Cash
out..Deal is 50% each
<D> Hello,I’m a professional MTCn confirmer if you have any order pend-
ing you can IM me,i have done so many transaction for different people
and also i made different kind of transfer into account such as BAO,
WELS,HSBC any body with full infos for this account who wanna transfer
should IM me now and also i have BIN,EBAY SCAM PAGES,PHP bulk mail-
er if anyone is interested IM me all rippers keep off.NOTE I VERIFY
FIRST.................

It’s an odd use of the term “professional,” but, in fact, these are skilled, reli-
able professionals. They know their business, are risk-averse, and are rarely
caught. (What is the MTCN? That is the Money Transfer Control Number.)

Drops

One of the hottest commodities in the underground economy is the drop.
A drop can have one of two definitions. The first definition of a drop is a
location to which goods or cash can be sent. The person who owns the
drop will then resend the items or hold them for pickup. There is a charge
for this service, of course, ranging from a 70/30 (30% to the drop owner)
split to a 50/50 split. Drops include homes and businesses, and often the
drop owner is clueless about the contents of the dropped package. In this
case, the drop owner is paid a flat fee by the shipper or the broker. The
second definition of a drop is a bank account through which money can be
moved. This is a convenient way to cash out bank accounts, online finan-
cial accounts such as PayPal, and credit cards. The drop owner almost
always receives 50% of the take, although competition in this space is
reducing that percentage. The location of the drop is critical, as some com-
panies won’t ship overseas. Some miscreants want a drop close to home
and physical access. The demand is never-ending, with the greatest
demand placed on U.S.-based drops, although some are undesirable.
Where there is demand, there shall be supply. The underground economy
abhors a vacuum.

12 ; LOG I N : VO L . 3 1 , NO . 6

There are miscreants who need drops in certain countries or who are able
to cash out bank accounts in another country. Sometimes the same miscre-
ant will conduct “business” in several nations. This miscreant is looking
for drops (shipping addresses to which fraudulently obtained or outright
stolen goods can be delivered) in a number of nations. The list of nations
in which <A> will do business is both interesting and impressive:

<A> I NEED DROPS FOR PHONES AND PDA’s in Singapore Australia
Austria Belgium Brunei Darussalam Canada China Denmark Finland France
Germany Greece Hong Kong Indonesia India Ireland Israel Italy Japan
Korea (South) Luxembourg Macau Malaysia Netherlands New Zealand
Norway Portugal Saudi Arabia Spain Sweden Switzerland Taiwan Thailand
United Arab Emirates United Kingdom United States

Criminals know no boundaries, and online crime is an international busi-
ness. The miscreants understand ROI, and they also understand that an
alliance only needs to last as long as it takes to accomplish the goals. The
miscreants continue to build large networks of like-minded criminals. It
will take a global network to thwart them. The denizens of the under-
ground economy aren’t unlike anyone else. They would like to retire at
some point. Unlike honest, hard-working people, however, the miscreants
have a paucity of ethics and perhaps a faster path to retirement.

Advertising

<A> JOIN #[CHANNEL] THE BEST HACKER CHANNEL!!! JOIN US ..!!!
U CAN BECOME HACKER AND RICH...!!!!

Doesn’t that just about sum it up? Things have changed; these aren’t the
miscreants who will hack something, get arrested, and land a six-figure job
at a security consultancy (though they might sell their sploits to one).
Now they’ll be paid to hack things, or write tools to hack things, or just
sell things they’ve hacked, and not get arrested, and still make great
money.

When a miscreant is dealing in compromised financial accounts, the mis-
creant must advertise to attract business. This proves to any potential con-
sumers that the miscreant has the goods and can deliver. <A> begins by
sharing some data from one of his collections of compromised accounts:

<A> Account Summary
<A> For optimal viewing of the Wells Fargo Web site, we recommend that
you enable CSS
<A> Cash Accounts
<A> Account Account Number Available Balance
<A> CHECKING 367-3157xxx $425.38
<A> Total $425.38
<A> Credit Accounts
<A> Account Account Number Outstanding
<A> Balance Available
<A> Credit
<A> VISA (View Spending Report) xxxx-xxxx-xxxx-9556 -$80.82
$5,900.00
<A> Total -$80.82 $5,900.00
<A> To end your session, be sure to Sign Off

It isn’t strictly about extracting cash, however. The miscreants use the cash
to obtain other goods, or they sell goods for cash. This gives us some sense
of the relative value of certain goods. The bulk sales offer is troubling, as it

; LOGIN: DECEMBER 2006 THE UNDERGROUND ECONOMY: PR ICELESS 13

indicates the result of a larger compromise:

<D> Selling CVV.$USD 3 EACH.IF BUY IN BULKS(100) 2 USD EACH

The underground shopping mall is open, as always, and happy to provide
for every need. Be it through cash or barter, everything is for sale. Many of
the traded items can yield hard currency:

 got ebay/paypal/yahoo/hotmail/citibank/aol scams + psyBNC + hotmail
mailbox closing exploit + how to crack anything + can create scam of any
site in very little time + Track2gen.exe. Got millions of proxies all over the
world + 3million ebay/paypal/egold mail list + track2gen(.php)(.exe) + dark-
mailer pro v1.9(300$) + gamadye mailer registered(140$) + wolrds fastest
mail bomber to get them msg me

Data Stolen

How much money do the miscreants make in the underground economy?
More to the point, how much money do they steal? Here’s a snapshot from
one underground economy trading channel over a 24-hour period. These
are the total account values for financial accounts to which these criminals
have obtained access. These are just the samples; these miscreants claim to
have many more accounts to sell, and they offer up the samples as adver-
tising. All amounts are in U.S. dollars, and some of these account totals are
impressive, while others are quite small. The true account owner probably
doesn’t consider them unimportant, however:

<A> Total: $310.64—A is from Country A
 Total $930,391.94—B is from Country B
<C> Total $216,934.93
<C> Grand Total $1,803.59—C is from Country C
<D> Total: $49.00—D is from the Country D
<E> Total $258,602.27—E is from Country E
<F> Total $60.07—F is from the Country D
<G> Grand Total $1,987.97—G is from Country F
<H> Total $48,096.65—H is from Country A
<I> Total $33,332.76—I is from Country B

So, with one channel, one 24-hour period, and just a few samples, at least
US$1,599,335.80 has gone to fund multinational criminals.

When your credit card details are stolen, all of the details are stolen. When
a miscreant offers up a “full” or “full info” for sale or trade, that miscreant
will have the goods. Here is an example from <A>, an overseas miscreant.
The victim’s details have been slightly obfuscated. There is no such thing
as a “secret question” when it comes to the miscreants:

<A> Name: Jason XXX
<A> Address 1: XXX S University Blvd.
<A> City: XXX
<A> State: OK
<A> Zip: XXXXX
<A> Country: usa
<A> Home Phone: (XXX) XXX-X991 Ext:
<A> Date Of Birth: 12/8/19XX
<A> Social Security Number: XXXX32199
<A> Mothers Maiden Name: Reaves
<A> Drivers License Number: XXXX24766
<A> Drivers License State: OK
<A> Secret Question: What is your pet’s name?
<A> Secret Question Answer: Joad

14 ; LOG I N : VO L . 3 1 , NO . 6

<A> Name On Card: Jason XXX
<A> Credit Card Number: 4492XXXXXXXX8831
<A> Credit Card Brand: Visa
<A> Credit Card Type: Credit
<A> EXP Date: 4/2006
<A> Credit Card PIN Number:
<A> Card ID Number: X46
<A> Card Bank Name: OU Federal Credit Union
<A> Card 1800 Number: 1800XXXXX9
<A> eBay User ID: XXX
<A> eBay Password: XXXXXX
<A> eBay Password: XXXXXX
<A> ***************
<A> ***************

Unfortunately, the little snippets don’t provide a sense of the frequency of
such advertising or the inferred frequency of the transactions between
buyer and seller. In one six-minute period of underground economy chat-
ter from one underground economy network and channel, eight distinct
miscreants sought to launder stolen money. This is fairly typical, with
advertisements coming in ebbs and flows, drops and transfers occurring,
and boldly advertising cashiers doing deals. Such activities are all readily
accessible to anyone and everyone, with numerous participants happy to
route money out of individuals’ accounts to anywhere at all.

The use of keylogging and data-extraction bots, which is just about every
bot now installed, has enabled the miscreants to have ready access to bank
accounts and other financial accounts:

<A> selling Bank Of America online access with $10,000 and other with
$900 balance. Payment : Western Union
 who can cashout Bank Of America/Washington Mutual without pin
but with online access msg me and lets make a great deal !
<C> can cashout verified paypals in 2 days. $2000 every couple of days.
75/25. Msg me for deal
<D> Payee: Centennial Bank

One miscreant even provided a screen shot of a compromised Wells Fargo
account, with a net total of US$21,431.18 in cash.

Conclusion

The underground economy is fertile ground for the pursuit (and, we hope)
prosecution of the miscreants. Most of the underground economy servers
are public, advertised widely, and easy to find (standard IRC ports, very
descriptive DNS RRs, etc.). There is absolutely no presumption of privacy
in the underground economy; the channels aren’t hidden, the channels
have no keys, and the servers have no passwords. The clients in these
channels are widely divergent. Think about what has just been shared:

1. There is no need for specialized IRC clients.
2. There is no need to rapidly track ever-changing DNS RRs and IPs.
3. There is no need to pull apart every new permutation of malware.
4. There is no need to hide, period.

This is a cosmopolitan mix; there is evidence of physical crime as well
as online crime, and admissions of guilt, and all are readily available.
Although the data in this article is obfuscated, these stanzas of gross fraud
come with the name, address, phone number, SSN, and mother’s maiden

; LOGIN: DECEMBER 2006 THE UNDERGROUND ECONOMY: PR ICELESS 15

name of the victim. That seems ready-made for a complaint and one might
imagine that a prosecutor, judge, and jury would understand those blatant
advertisements. These same individuals have, in the past, been successfully
educated about DDoS, hacking, and warez. Even in child-exploitation
cases, the jury learned about the methods by which such horrors were
shared online. There are approximately 38 active underground economy
IRC servers at present, and most of these are located in the United States.

If more than one year can be expended tracking a pair of bot-herders, then
surely logging and tracking the miscreants who are online, advertising
their crimes, is worth the resource expenditure. If the goal is putting a dent
in online crime, then focus on the biggest perpetrators instead of the
insignificant players. It is imperative to hit the miscreants where it hurts—
in the conduits for their ill-gotten gains.

It is well past time to use the miscreants’ greatest asset, the underground
economy, against them. It seems that many people still remain largely
unaware of the underground economy. They remain unaware that the
underground economy drives most of the Internet-based malfeasance
everyone (largely silently) endures. In the end, almost everything comes
down to money. Certainly, the stated reasons for an action might be reli-
gious or nationalist, but those actions are funded by only one thing—
money. The underground is a reflection of the real world, and to ignore it is
to ignore the real world.

16 ; LOG I N : VO L . 3 1 , NO . 6

Save the Date!

Sponsored by USENIX in cooperation with ACM SIGOPS,

IEEE Mass Storage Systems Technical Committee (MSSTC), and IEEE TCOS

www.usenix.org/fast07

Join us in San Jose, CA, February 13–16,2007, for the latest in file and storage technologies. The 5th USENIX

Conference on File and Storage Technologies (FAST ’07) brings together storage system researchers and

practitioners to explore new directions in the design, implementation, evaluation, and deployment of

storage systems. The FAST ’07 program will include one day of tutorials followed by 2.5 days of technical

sessions. Meet with premier storage system researchers and practitioners for ground-breaking file and

storage information!

FAST ’07 will be co-located with the 2007 Linux Storage & Filesystem Workshop, which will take place

February 12–13, 2007. Check out http://www.usenix.org/lsf07 for more information.

5th USENIX Conference on File
and Storage Technologies

February 13–16, 2007 San Jose, CA

; LOGIN: DECEMBER 2006 ADVANCED HONEYPOT-BASED INTRUSION DETECTION 17

J A N G Ö B E L , J E N S H E K T O R , A N D
T H O R S T E N H O L Z

advanced
honeypot-based
intrusion detection
Jan Göbel has an M.Sc.in computer science from
RWTH Aachen University and wrote his diploma the-
sis on “Advanced Honeynet-based Intrusion
Detection.” He is currently working at the Center for
Computing and Communication at RWTH Aachen.

goebel@rz.rwth-aachen.de

Jens Hektor holds an M.Sc. degree in physics from
RWTH Aachen University. Afterwards, he joined the
Center for Computing and Communication there. He
is responsible for the network infrastructure of the
university and developed the first version of Blast-o-
Mat.

hektor@rz.rwth-aachen.de

Thorsten Holz holds an M.Sc. degree in computer sci-
ence from RWTH Aachen University and is currently
a Ph.D. student at the University of Mannheim. His
research focuses on honeypots and honeynets and
currently one main area of work is botnets.

thorsten.holz@informatik.uni-mannheim.de

AT RWTH A ACH EN UN I V E R S I T Y, W I TH
about 40,000 computer-using people to
support, we have built a system to detect
infected machines based on honeypots.
One important building block of Blast-o-
Mat is Nepenthes, which we use both to
detect malware-infected systems and to
collect malware. Nepenthes is a low-inter-
action honeypot that appears as vulnerable
software but instead decodes attack code
and downloads malware.We have been
successful at uncovering and quarantining
infected systems with sensors listening at
0.1% of our address space. Investigation of
collected malware has led to discovery of
many infected systems and even a huge
cache of stolen identity information.

The Internet has evolved into a platform for all
kinds of security-sensitive services and applica-
tions. Online banking and payment have become
part of today’s way of life. For this reason, even
home computers store valuable information such
as passwords to online shops, credit card num-
bers, account data, and personal identification
numbers. Therefore, securing network hosts,
learning attack methods, capturing attack tools,
and studying motives of computer criminals are
important tasks for network administrators and
security engineers.

One important aspect of network attacks is mali-
cious software (malware) that spreads autono-
mously over the network by exploiting known or
unknown vulnerabilities. In the form of network
worms or bots/botnets—networks of compromised
machines that can be remotely controlled by an
attacker—malware poses a severe threat to today’s
Internet. For example, botnets cause damage from
Distributed Denial-of-Service (DDoS) attacks,
sending of spam, identity theft, and similar mali-
cious activities.

Within the university network, we want to detect
infected hosts as fast as possible. Only if we detect
a compromised machine can we contain it and
stop the spreading mechanism. This cessation pro-
tects other vulnerable hosts within the university
network and also within external networks.
Instead of using a classical Intrusion Detection
System (IDS), we have built our own solution
called Blast-o-Mat. This system aims at automatic
notification and handling of malware-infected

hosts. The main task of Blast-o-Mat is to determine the person responsible
for a system for which it receives an alert, send out a warning to the
owner, and, if an infected host is still active after a certain period of time,
block network access to and from this host. It is automatically transferred
to a quarantine network (i.e., all access to the Internet is rerouted to a cer-
tain server). Basically, the infected machine can then only access certain
sites to download patches and (in the future) also antivirus software.
Within the quarantine network, we can also monitor what happens to the
machine from a network point of view. As a result, we have a tool that
automatically performs the time-consuming tasks that the network admin-
istrator normally has to carry out.

The system consists of several modules that try to detect an infected system:

� Blast-Sniffer continuously reads traffic data from a SPAN or mirror port
of a central router of the network and writes it to a MySQL database.
This database serves as the input for the next two intrusion detection
sensors.

� Blast-PortScan detects hosts that are scanning a large number of IP
addresses for certain ports, which could indicate a malware-contami-
nated machine. To accomplish this task, the module counts the num-
ber of TCP SYN packets sent by each host during a preconfigured
period of time. Within our environment, a threshold of 50 SYN packets
within three minutes has proven to be a reasonable indicator that tends
not to generate false positives and is capable of detecting infected hosts
efficiently.

� Blast-SpamDet aims at detecting machines that send spam messages.
Similar to the portscan detector, it counts the number of initiated con-
nections from a suspicious host, but this time only connections to mail
servers are considered. When a certain number of connections are
made, the server entity, with the help of packet-capture tools, starts to
gather email header information of the suspected host. All used sender
addresses are filtered and counted. If the number of unique sender
addresses exceeds a certain threshold, further actions are initiated.

� Nepenthes is a low-interaction honeypot solution that is capable of
automatically downloading malware. We describe its inner workings in
a separate section. We use this module to get in-depth information
about ongoing network attacks, and the analysis of the downloaded
binary can help us to further examine the incident.

In the following, we give a brief background of honeypots and then intro-
duce Nepenthes in detail. We show how this low-interaction honeypot can
be used to detect infected machines, and we explain possible ways to iso-
late such compromised hosts. Finally, we highlight some incidents detected
within the past couple of months.

Background on Honeypots and Honeynets

A honeypot is “an information system resource whose value lies in unau-
thorized or illicit use of that resource” [1]. This methodology has been
used to study attackers and types of attacks in depth, providing valuable
information about tools, tactics, and motives of attackers. To learn more
about malware, we use low-interaction honeypots such as Nepenthes [2] and
high-interaction honeypots such as GenIII honeynets [3].

Low-interaction honeypots emulate services or operating systems. They
allow an attacker limited interaction with the target system and allow us to
learn mainly quantitative information about attacks. Since low-interaction

18 ; LOG I N : VO L . 3 1 , NO . 6

honeypots use simulation, they construct a controlled environment and
thus the risk involved is limited. We give a more detailed introduction to
low-interaction honeypots in the following section.

In contrast, high-interaction honeypots do not emulate any services, func-
tionality, or operating systems. Instead, they provides real systems and
services, allowing us to capture extensive information on threats. Several
honeypots can be combined into a network, called a honeynet. We can cap-
ture the exploits of attackers as they gain unauthorized access, monitor
their keystrokes, recover their tools, and learn what their motives are. The
disadvantage to high-interaction solutions is that they have increased risk:
Because the attackers can potentially fully access the operating system,
they can potentially use it to harm other nonhoneypot systems.

A honeynet creates a fishbowl environment that allows attackers to interact
with the system, while giving the operator the ability to capture all of their
activity. This fishbowl also controls the attacker’s actions, mitigating the
risk of them doing harm to any nonhoneypot systems. The key element
in a honeynet deployment is called the Honeywall, a layer-two bridging
device that separates the honeynet from the rest of the network. This
device mitigates risk through data control and captures data for analysis.
Tools on the Honeywall allow for analysis of an attacker’s activities. Any
inbound or outbound traffic to the honeypots must pass through the
Honeywall. Information is captured using a variety of methods, including
passive network sniffers, IDS alerts, firewall logs, and the kernel module
known as Sebek [4]. The attacker’s activities are controlled at the network
level, with all outbound connections filtered through both an intrusion
prevention system and a connection limiter.

Neither of these two approaches is superior to the other; each has unique
advantages and disadvantages.

CollectingMalware with Nepenthes

The low-interaction honeypot Nepenthes aims at capturing malicious soft-
ware such as network worms or bots that spread in an automated manner.
The main focus of this application is to obtain the malware itself, i.e., to
download and store the malware binary for further in-depth analysis.
Unlike other low-interaction honeypots, Nepenthes does not emulate full
services for an attacker to interact with. The key idea is to offer only as
much interaction as is needed to exploit a vulnerability. For this reason,
Nepenthes is not designed for any human interaction, as the trap would be
easily detected. On the contrary, for the automated attack just a few gener-
al conditions have to be fulfilled, thus maximizing the effectiveness of this
approach. These conditions usually include displaying the correct banner
information of an emulated service and sending back specific information
at certain offsets during the exploitation attempts. Therefore, the resulting
service is only partially implemented. This allows deployment of several
thousands of virtual honeypots with only moderate requirements in hard-
ware and maintenance.

Nepenthes is designed as a single-threaded core daemon, with a number of
different modules, facilitating each task of the malware collection process:

� Vulnerability modules emulate the vulnerable parts of network services.
� Shellcode parsing modules analyze the payload received by one of the
vulnerability modules. These modules analyze the received shellcode,
an assembly language program, and extract information about the
propagating malware.

; LOGIN: DECEMBER 2006 ADVANCED HONEYPOT-BASED INTRUSION DETECTION 19

� Fetch modules use the information extracted by the shellcode parsing
modules to download the malware from a remote location.

� Submission modules take care of the downloaded malware (e.g., by sav-
ing the binary to a hard disk, storing it in a database, or sending it to
antivirus vendors).

� Logging modules log information about the emulation process and help
get an overview of patterns in the collected data.

Besides the modular structure, Nepenthes provides an event-driven notifi-
cation mechanism. Each step of an attack triggers certain events, which
other modules can register and therefore react on. As a result, Nepenthes
can be highly customized to fit into new environments.

We briefly describe the three most important kinds of modules in more
detail in order to give a better understanding of the operation of Nepen-
thes.

Vulnerability modules are the main reason for the efficiency of the
Nepenthes platform. The main idea—only emulating the vulnerable parts
of a service—has already been explained. We only need to emulate the rel-
evant parts and are thus able to efficiently implement this emulation.
Eventually, we receive the actual payload, which is then passed to the next
type of module.

Shellcode parsing modules analyze the received payload and automatically
extract relevant information about the exploitation attempt. Currently, only
one shellcode parsing module is capable of analyzing all shellcodes
received in the wild. The module works in the following way: First, it tries
to decode the shellcode. Most shellcode is obfuscated with an XOR
encoder. An XOR decoder is a common way to “encrypt” the native shell-
code in order to evade intrusion detection systems and string-processing
functions. After decoding the code itself according to the computed key,
this module then extracts more information from the shellcode (e.g., cre-
dentials). If enough information can be reconstructed to download the
malware from a remote location, this information is passed to the next type
of module.

Fetch modules have the task of downloading files from remote locations.
Currently, there are several different fetch modules. The standard protocols
TFTP, HTTP, and FTP are supported. Since some bots use custom protocols
for propagation, there are also fetch modules to handle these bot-specific
protocols.

The modularity and flexibility of Nepenthes allow for the deployment of
unique features not available in high-interaction honeypots. For example,
it is possible to emulate the vulnerabilities of different operating systems
and computer architectures on a single machine during a single attack
(e.g., an emulation can mimic the generic parts of a network conversation
and, depending on the network traffic, decide whether it needs to be a
Linux or a Win32 machine).

The source code of Nepenthes is available under GPL at http://nepenthes
.mwcollect.org. In addition, a more detailed introduction, together with
preliminary results, is also available [2].

20 ; LOG I N : VO L . 3 1 , NO . 6

NEPENTHES AS PART OF AN IDS

Within the Blast-o-Mat architecture, Nepenthes serves as a sensor to detect
infected machines. These machines typically try to propagate further by
scanning for vulnerable machines. Thus we have placed Nepenthes sensors
all over the network and on each of these IP addresses they emulate com-
mon vulnerabilities, as already explained. We use about 180 IP addresses
to cover three /16 networks, thus covering about 0.1% of all addresses.
Nevertheless, preliminary results show the effectiveness of this approach.
One important finding is that Nepenthes has not generated any false posi-
tives: Whenever Nepenthes signals a successful exploitation attempt, it is
not a portscan or misconfigured system, but a real intrusion attempt. To
this point, the Blast-o-Mat system has already detected hundreds of infect-
ed machines and the automatic containment works without problems.

MITIGATION OF INFECTED SYSTEMS

As soon as an infected system has been detected, the first question entails
how to deal with it. Presumably the best way is to immediately take the
system offline, giving it as little chance as possible to infect other systems
in the network. The inhibition can take place on any of the OSI layers,
depending on the given infrastructure. If direct access to the switch port of
the conspicuous machine is given, one can disable this port. In this case
the host is locked at the physical layer of the OSI model. An inhibition on
layer 2 is equal to blocking the MAC address of the hostile host. This
approach would also prevent the system from being taken online again on
a different switch port. The disadvantage of these two methods is the effort
it takes to determine to what network device the contaminated machine is
connected. Less costly is the locking of the IP address with the help of
access lists (OSI layer 3). In this case, we need to determine the router,
which routes the appropriate network. Although the host is properly
blocked, it can still infect systems within the same local area network
(LAN). On higher layers of the OSI model, it is possible to lock certain
TCP or UDP ports or operate different protocol-specific filters to isolate an
infected host. However, all modifications to network components have to
be reverted as soon as the problem is solved and the user wants to get back
online.

A different approach to taking a contaminated host offline is to place it
into a quarantine network, isolating it from other systems. Although this
requires a certain infrastructure, this is the most effective solution, as addi-
tional information can be collected from the quarantined host. Currently,
we have implemented a simple form of such a quarantine network: The
Blast-o-Mat is capable of redirecting HTTP traffic of infected machines to a
special Web server. Before taking a look at the practical implementation of
this approach, we introduce two ways to actually block the infected host.

When blocking, we differentiate between two groups of users: static IPs
(normally staff people or PC pools) and dynamic IPs (typically WLAN
users).

To identify the responsible person(s) for hosts with static IP addresses, we
maintain an XML-based database with all relevant information. For each
subnet the database contains the registered administrators, their phone
number and email address, the net mask, the acronym of the institute, and,
if available, the assigned Virtual Local Area Network (VLAN) number.
Additionally, for each entry there exists information about the manageable
network router through which the associated subnet is routed. To lock a

; LOGIN: DECEMBER 2006 ADVANCED HONEYPOT-BASED INTRUSION DETECTION 21

host with a static IP address, use is made of a Perl script capable of auto-
matically creating antispoofing access lists. These access lists can be
extended with firewall rules or, in our case, with lists of locked machines,
thus efficiently blocking contaminated hosts from accessing the network.

To identify the person responsible for a dynamically assigned IP address,
we have to ascertain the account name from the authentication or account-
ing server. Therefore, we have to compare the IP address and the time of
the incident with the information stored in the Radius server. We run a
slightly modified version of the FreeRadius software, which writes its
accounting data to a MySQL database, on a daily basis. Thus, we have a
database table for each day, which greatly accelerates the process of search-
ing for specific accounting data. The account locking of an infected host is
accomplished by setting a special flag in the LDAP database, which is used
for user authentication. Once the flag is set, a user with an infected ma-
chine can no longer connect to the campus network and has to contact the
helpdesk to be unlocked again.

One of the more complicated tasks in automatic locking of infected sys-
tems is to notify the user of the suspected host. Our main method is to
notify any responsible person via email. Since every student at RWTH
Aachen gets his or her own email address upon enrollment, we have a fair-
ly good possibility of reaching any student. The obvious limitation is that
we cannot besure that the students read their university email frequently
or even at all. Therefore the Blast-o-Mat is capable of redirecting certain
traffic to a specially designed Web server (as briefly mentioned above).
Because of the network structure at RWTH Aachen, the redirection cur-
rently works only for the wireless network, but we hope to extend this in
the future. All traffic of wireless hosts has to pass one central gateway.
Thus, we are able to efficiently redirect any traffic of hostile hosts at this
point, via the use of certain iptables rules. The main advantage of this
approach is that the responsible person of a redirected host is efficiently
informed, even if the warning mail of the Blast-o-Mat is not read. Every
attempt to open a Web site on a redirected host displays the information
site of the quarantine Web server, showing all gathered data about the inci-
dent so far. Furthermore, email delivery is still possible, allowing the user
to get additional information, provided in the Blast-o-Mat warning mes-
sages.

To achieve the redirection of a contaminated host, the Blast-o-Mat remotely
executes a Python script on the gateway server and transmits the account
name, the IP address, and the time the system was online as parameters.
The easiest way would be to do the redirection based on the IP address of
the infected host. But since we have to deal with dynamically assigned
addresses, this would not prevent the user from logging in again with a dif-
ferent IP address, thus circumventing the redirection measures. Therefore,
we have to determine the MAC address of the offending machine. This is
accomplished with the help of an additional script which queries the
DHCP server with the time the host was online and its IP address as
parameters. Every DHCP server maintains a lease file, containing all MAC
addresses of hosts to which it assigned an IP address, together with the
time interval the given IP address is valid. With the help of this file, we are
able to determine the MAC address of the system that was online with a
certain IP during a given time. As a result, the script generates an iptables
rule that redirects any further HTTP traffic of the specified MAC address to
the quarantine Web server.

A more advanced solution to building a quarantine network would involve
VLANs: As soon as a host is detected by the Blast-o-Mat, the VLAN tag for

22 ; LOG I N : VO L . 3 1 , NO . 6

this machine is changed to the tag of the quarantine network (which could
be a honeynet). As a result, all traffic is redirected. The major drawback of
this concept is that it requires the network infrastructure to allow access to
the switch port of each host; additionally, the switch must support VLAN
tagging of certain ports.

In the next section, we take a closer look at one particular alert generated
by Nepenthes.

AModern Trojan:Haxdoor

During one security incident detected by Nepenthes in April 2006 we
noticed a strange behavior of the infected machine: It constantly tried to
post data to a certain PHP file located on a server in the United States.
Since the machine had already been moved into the quarantine network,
we could observe it further. We noticed that sensitive data—in this case
passwords—was sent to the remote server. A closer examination revealed
the URL from the HTTP requests and we quickly noticed that these
requests were caused by a variant of Haxdoor, one of the most advanced
Trojans in the wild.

In addition to the normal Trojan capabilities, such as copying itself to the
Windows Installation Directory and start on reboot, Haxdoor also imple-
ments rootkit capabilities and advanced identity theft mechanisms. It can,
for example, hide its presence on the compromised machine via SSDT
(System Service Dispatch Table) hooking, as well as steal all information
entered into Internet Explorer. All of this captured information can be sent
to a central server, which is precisely the activity we observed within the
quarantine network.

During further investigation, we found several log files that contained all
information stolen from all infected machines. In total, these log files con-
tained more than 6.6 million entries, amounting to 285 MB of data. This
data was stolen from the compromised machines between April 19 and April
27, 2006, i.e., within only nine days. In total, we found evidence of more
than 39,000 IP addresses that were victim of this particular Haxdoor infec-
tion. These numbers show the effectiveness of this kind of attack.

The log files contained full detailed information about more than 280 bank
accounts and several credit card numbers. All major German banks were
victim of this incident and several large brands from the e-commerce sector
were also targeted. In addition, the attacker also collected sensitive infor-
mation such as username and password combinations and other data
entered into HTML forms from the victims’ computers. More information
about this kind of modern data theft can be found in the article by Team
CYMRU in this issue of ;login: [5].

We handed this information over to DFN-CERT, the Computer Emergency
Response Team responsible for German research and education networks.
The affected users were warned, as were universities, ISPs, and other
affected sites.

BINARY ANALYSIS

Sandboxing is a well-established approach that involves executing the mal-
ware in an emulated environment and monitoring its behavior. During
preparation of a diploma thesis at our lab, Carsten Willems developed a
sandbox named CWSandbox [6]. Preliminary results show that CWSand-
box is able to efficiently and accurately analyze a given malware binary.

; LOGIN: DECEMBER 2006 ADVANCED HONEYPOT-BASED INTRUSION DETECTION 23

The tool is able to extract all important information from a given binary in
an automated way within a short amount of time (usually three minutes).
The extracted information includes information about changes to the
filesystem or the Windows registry, process access, DLL handling, and net-
work communication. The whole analysis process does not require any
human interaction and can be parallelized, allowing for concurrent analy-
sis of large amounts of data.

The information in the following paragraphs is based on the reports gener-
ated by CWSandbox, enriched with information retrieved via manual bina-
ry analysis. We analyzed eight different variants of Haxdoor. All of them
share many characteristics. The following description is a generalization of
the different Haxdoor variants.

Typically, this specimen of malware creates several different files in the
Windows installation folder. By default, this is either C:\Windows (Win-
dows 2000 and XP) or C:\Winnt (Windows NT). The created files normal-
ly include two Dynamic Linked Libraries (DLLs), three to four drivers
(SYS), and several additional configuration files. For example, according to
Bitdefender, the variant Haxdoor.IN creates the following files: sndu32.dll
and qm.dll (same as sndu32.dll), sndu64.sys and qm.sys, and stt82.ini,
klgcptini.dat, and stt82.ini.

Upon executing, the binary loads several DLLs. These include the typi-
cal Windows DLLs such as kernel32 or ntdll but also network-related
DLLs such as wsock32 and the code within the newly created files. One
characteristic sign of Haxdoor is the creation of a mutex with the name
RasPbFile.

Haxdoor also interacts with the Windows registry to enable a mechanism
to be started upon reboot. In contrast to other malware, which commonly
adds a registry key under Run or RunService, Haxdoor is more advanced.
It uses a mechanism to auto-load via Winlogon or even during SafeBoot.
The corresponding registry keys are:

HKLM\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\Winlogon\Notify

HKLM\SYSTEM\CurrentControlSet\Control\SafeBootMinimal

HKLM\SYSTEM\CurrentControlSet\Control\SafeBootNetwork

Via the Windows Service Control Manager (SCM), Haxdoor also adds a ser-
vice to the infected system that is automatically started upon system startup.
The name of the service varies; it can, for example, be “SoundDriver SDB64”
or “UDP32 netbios mapping,” depending on the variant. In addition, it cre-
ates a remote thread within the memory space of Explorer.exe, in order to
add some further services. Moreover, Haxdoor has some advanced tricks to
hide its presence on the infected system, and it is hard to get rid of it. This
topic is, however, beyond the scope of this article; more information can be
found on the Web sites of antivirus vendors.

Conclusions and Future Research

The Blast-o-Mat IDS had been running for about seven months as of
September 2006, efficiently handling malware-infected hosts in the campus
network of RWTH Aachen. With the help of the honeypot Nepenthes and
the additional intrusion sensors, so far a total of 361 incidents have been
detected. A little more than one-third were reported by Nepenthes, with
the rest split between the Blast-PortScan and Blast-SpamDet sensors. The
PortScan sensor reported the most incidents, owing to its much larger

24 ; LOG I N : VO L . 3 1 , NO . 6

number of monitored ports than vulnerability modules. However, each
portscan that was detected on a port for which a vulnerability module
exists was detected by Nepenthes as well.

Although its missing vulnerability modules means that Nepenthes does not
recognize exploit attempts on all ports, it has proven to be a great intru-
sion detection mechanism. The biggest advantage is its accuracy, as no
false positives are reported, as well as the high detection ratio, with only a
few IP addresses assigned. Currently, we are monitoring with Nepenthes
less than 0.1% of the complete IP space and already achieve almost the
same results as the Blast-PortScan sensor, which receives its data from a
SPAN port of a centralized router.

Because the bandwidth of current large-scale networks such as the one of
RWTH Aachen already exceeds 1 gigabit of traffic and can approach 10
gigabits, common SPAN port monitoring will no longer work without the
use of specialized and expensive hardware. However, Nepenthes will still
deliver the same quantitative results with just 180 IP addresses. Therefore,
it serves as a future-proof intrusion detection sensor, capable of running on
a normal off-the-shelf computer.

In addition to the detection of contaminated hosts, Nepenthes also cap-
tures the malware that is trying to exploit the emulated vulnerabilities.
Thus, we are able to submit the collected binaries for further analysis to
different applications, such as virus scanners, to determine the kind of
malware, or to the CWSandbox, to find out more about the behavior of
malicious software. As a result, we are able to supply a qualitative high-
class report for the detected incidents, both to help clean infected
machines and to raise the user’s security awareness.

ACKNOWLEDGMENTS

We would like to thank Sam Stover for reading a previous version of this
paper and giving valuable feedback that substantially improved its presen-
tation. In addition, we would like to thank the Nepenthes Development
Team for implementing such a wonderful tool.

REFERENCES

[1] The Honeynet Project. Know Your Enemy: Honeynets (May 2005):
http://www.honeynet.org/papers/honeynet/.

[2] P. Baecher, M. Koetter, T. Holz, M. Dornseif, and F. Freiling, “The
Nepenthes Platform: An Efficient Approach to Collect Malware,” 9th
International Symposium on Recent Advances in Intrusion Detection, RAID06,
Hamburg, Germany, September 20-22, 2006, Proceedings, Lecture Notes in
Computer Science (Springer, 2006).

[3]E. Balas and C. Viecco, “Towards a Third Generation Data Capture
Architecture for Honeynets,” Proceedings of the 6th IEEE Information
Assurance Workshop, West Point (IEEE, 2005).

[4] The Honeynet Project. Know Your Enemy: Sebek (November 2003):
http://www.honeynet.org/papers/sebek.pdf.

[5] Team Cymru, “The Underground Economy: Priceless,” ;login:, this issue.

[6] CWSandbox—behavior-based binary analysis: http://www.cwsandbox.org/.

See also T. Holz, “Spying with Bots,” ;login:, 30 (6) (Berkeley, CA, 2005):
18–23.

; LOGIN: DECEMBER 2006 ADVANCED HONEYPOT-BASED INTRUSION DETECTION 25

26 ; LOG I N : VO L . 3 1 , NO . 6

F I G U R E 1 : T H E N U M B E R O F V U L N E R A B I L I T I E S
I N T R O D U C E D I N E A C H V E R S I O N R E L E A S E D
D U R I N G T H E S T U D Y

A N D Y O Z M E N T A N D
S T U A R T E . S C H E C H T E R

the security of
OpenBSD

M I L K O R W I N E ?

Andy Ozment is a Ph.D. student in the Computer
Security Group at the University of Cambridge. He
will graduate in July 2007. This article describes work
performed in part when Andy was on the technical
staff at MIT Lincoln Laboratory.

andy.ozment@ieee.org

Stuart E. Schechter is a researcher in computer secu-
rity at MIT Lincoln Laboratory. He explores security
problems as they relate to system design, economics,
and user interfaces. Ironically, Stuart can neither
digest milk nor tolerate the taste of wine.

ses@ll.mit.edu

P U R C HA S E A F I N E W I N E , P L A C E I T I N
a cellar, and wait a few years: The aging will
have resulted in a delightful beverage, a
product far better than the original. Pur-
chase a gallon of milk, place it in a cellar,
and wait a few years. You will be sorry.We
know how the passing of time affects milk
and wine, but how does aging affect the
security of software?

Many in the security research community have
criticized software developers both for releasing
software with so many vulnerabilities and for the
lack of any apparent improvement in this software
over time. However, critics have lacked quantita-
tive evidence that applying effort over time will
result in software with fewer vulnerabilities. In
short, we don’t know whether software security is
destined to age like milk or has the potential to
become wine.

We thus investigated whether or not the rate at
which vulnerabilites are reported in OpenBSD is
decreasing over time. For a more technical de-
scription of this work, see [1].

Vulnerability Data

We compiled a database of 140 vulnerabilities
reported in the 7.5 years between 19 May 1998
and 17 November 2005. Vulnerabilities were iden-
tified by merging data from the OpenBSD security
Web page and four public vulnerability databases:
NVD (formerly ICAT), Bugtraq, OSVDB, and ISS
X-Force.

Figure 1 shows the number of vulnerabilities that
were “introduced” in each of the fifteen versions
of OpenBSD that were released during our study.
A vulnerability is counted as having been intro-
duced in a version if that version is the first to
contain the vulnerability within its source code.

How do we know when a vulnerability was intro-
duced? Vulnerability or patch reports often list the
versions affected by that vulnerability; however,
vendors and vulnerability hunters rarely bother to
test more than two or three versions back. So vul-
nerability and patch reports are not a sufficiently
accurate means of finding the release in which a
vulnerability was introduced.

Instead, when vulnerabilities were reported, we
used the patch to identify the vulnerable code in
the OpenBSD CVS repository. We then tracked
that code back through all the previous versions

of OpenBSD until we could identify when it had first been checked into
the code base. The first release that included that vulnerable code is the
release to which the vulnerability is attributed.

Our analysis covers all portions of the OpenBSD code in the OpenBSD
team’s primary CVS repository. This includes the X-windowing system, the
Apache Web server, and many additional services not traditionally consid-
ered to be part of the core operating system. However, it excludes the
“ports” collection of third-party software, which is not officially part of
OpenBSD. We started our study with version 2.3, which we refer to here as
the “foundation version,” because it was the first source-code stable release
for which all reported vulnerabilities are documented.

During the study, versions of OpenBSD were released approximately every
six months. The vulnerabilities that were introduced in each version were
usually checked into the CVS repository during the six months prior to that
version’s release. For example, the vulnerabilities attributed to version 2.4
were introduced in the six months between its release and the release of the
prior version. The one exception to this rule is the foundation version (2.3):
all vulnerabilities introduced before this version’s release are attributed to
this version. This includes more than twenty-five years since coding on
Berkeley UNIX began. As a result, we see in Figure 1 that 62% of the vulner-
abilities reported during the study were introduced in the foundation version.

Source Code Evolution

The majority of vulnerabilities reported during the study were thus intro-
duced sometime prior to the release of the foundation version. But now,
7.5 years later, does the security of the foundation version have any rele-
vance to current versions of OpenBSD?

To answer this question, we investigated the proportion of the source code
in the most recent version of OpenBSD that remains unchanged since each
earlier version. Figure 2 shows the results of our analysis. Each column
represents a composite version; each row represents a source version that
contributes code to the composite. A line of code in a composite version of
OpenBSD is said to originate in a source version if the line was last modi-
fied in that source version. The column for version 2.3 is composed of a
single row: By definition, all code in this foundation version is said to orig-
inate in it. For each successive version, a new row is added to the column
to represent the lines of code that were altered or introduced in that release.

F I G U R E 2 : T H E C O M P O S I T I O N O F T H E F U L L S O U R C E C O D E

; LOGIN: DECEMBER 2006 THE SECURITY OF OPENBSD 27

Identifying how the source code evolved over time was a difficult project.
We first preprocessed each version of the source code. Only files with the
suffix .c or .h were retained, and all comments were stripped. We then
compared each version with each successive version. We used diff to com-
pare files with the same path and filename. The diff tool was instructed to
ignore changes in whitespace and the location of line breaks. Finally, we
counted the number of lines in each version that were unchanged from the
immediately prior version. By recursively repeating this process, we
obtained the data in Figure 2.

The resulting estimate of code commonality is highly conservative. The
diff tool marked code lines as changed even for trivial alterations such as
variable renaming and some types of reformatting—and the OpenBSD team
has been reformatting the code base. In addition, if a file from a previous
version was moved or copied to a new location and if even one line of the
file in the new location was changed, our analysis will treat the entire file
as new. Furthermore, if the name of a file is changed, then all of the code
in that file is treated as new. Our comparison results will thus understate
the degree to which later releases are composed of that is substantively
unchanged from earlier releases.

Despite our conservative methodology, Figure 2 shows that unchanged
code from the foundation version still comprises 61% of the code in ver-
sion 3.7—which was released over seven years later. The security of the
source code for the foundation version is thus still pertinent to the security
of the source code in current versions of OpenBSD.

However, there is another startling result that is visible in Figure 2. The
number of lines of source code contributed by the foundation version to
each composite version changes over time. That, in itself, is unsurprising.
What is surprising is that the number of lines increases. How is it that the
foundation version contributes more lines of code to version 3.7 than were
in the foundation version itself? We discovered that the lines of code
derived from the foundation version increases over time because develop-
ers reused source code files in different locations. For example, one copy of
a compression library file may be used to generate a shared library while
another copy of the same file may be used to compile the kernel. Code
recycling via source-file replication causes a net increase in the lines of
code that are present in later versions.

Several large alterations and/or introductions of code stand out in Figure 2:
versions 2.6, 2.9, and 3.5. The magnitude of the changes in versions 2.6
and 3.5 is primarily due to a large number of files being renamed and
slightly altered. Our current methodology thus overstates the number of
new lines of code and understates the contribution of code derived from
earlier versions. The changes in version 2.9 are caused in part by the
renaming of files; however, they were also the result of a major upgrade of
the XFree86 package.

Milk orWine?

Let’s return to our original question: Does software security improve with
age? Unfortunately, we don’t have enough vulnerability reports to analyze
most versions of OpenBSD. Only the foundation version provides us with
enough information: 87 “foundational vulnerabilities” were reported. Our
question then becomes: Is the rate of vulnerability reporting for OpenBSD
version 2.3 decreasing?

28 ; LOG I N : VO L . 3 1 , NO . 6

; LOGIN: DECEMBER 2006 THE SECURITY OF OPENBSD 29

We use three different approaches to answering this question. First, we
divide the study into two halves and count the number of vulnerabilities
reported in each half. Figure 3 shows the result, with confidence intervals
calculated by assuming that vulnerability reporting is a homogeneous
Poisson process. The number of vulnerabilities reported significantly
declines from the first half (58 vulnerabilities) to the second (28 vulnera-
bilities).

F I G U R E 3 : T H E N U M B E R O F F O U N D AT I O N A L V U L N E R A B I L I T I E S
R E P O R T E D D U R I N G E A C H H A L F O F T H E S T U D Y

The next approach is to utilize a Laplace test, in which the discovery of
vulnerabilities is assumed to be a heterogeneous Poisson process. The test
assesses whether the interarrival times of vulnerability reports are decreas-
ing. We use as our data the number of days elapsed from the identification
of one foundational vulnerability to the next.

When the calculated Laplace factors are less than the lowest horizontal
dotted line in Figure 4, the data indicates a decreasing rate of vulnerability
reporting, with a two-tailed confidence level of 95%. The test finds evi-
dence for a decrease in the rate of vulnerability reporting by the end of
year four; by year six, the evidence for a decrease in the reporting rate is
statistically significant. This test therefore also supports the conclusion that
the rate at which foundational vulnerabilities are reported is declining.

F I G U R E 4 : L A P L A C E T E S T F O R T H E E X I S T E N C E A N D D I R E C T I O N
O F A T R E N D I N T H E R AT E O F V U L N E R A B I L I T Y R E P O R T I N G

In our third approach, we attempt to fit reliability growth models to our
data. Although normally applied to the more random discovery of defects,
these models can also be applied to the reporting of vulnerabilities. We
analyzed the data with seven time-between-failures reliability growth mod-
els. One of the seven models had acceptable one-step-ahead predictive
accuracy and goodness of fit for the data set: Musa’s logarithmic model.
According to this model, the number of vulnerabilities expected to be
reported on a given day decreases from 0.051 to 0.024 over the course of
the study. Furthermore, it estimates that 67.6% of the vulnerabilities in the
OpenBSD 2.3 source code have now been found.

Each of our three approaches thus indicates that the rate of foundational
vulnerabilities reported is decreasing.

CAVEATS

The rate at which vulnerabilities are discovered and reported depends on
the level of effort being expended by vulnerability hunters. To measure
how much more difficult it has become to find vulnerabilities over time,
we would need to normalize the rate of discovery by the effort being exert-
ed and the skills of those exerting it. Unfortunately, vulnerability reports
do not include estimates of how many individuals were involved in exam-
ining the software, the time they spent, or their relative skills. Our analysis
thus can only show that, in the vulnerability hunting environment that
existed during our study, the rate of vulnerability reporting decreased for
the foundation version.

WhileWe’re at It

Our data prompted us to consider two other questions:

� What is the median lifetime of a vulnerability?
� Do larger code changes have more vulnerabilities?

To answer the first question, we calculate the median lifetime of reported
vulnerabilities for the foundation version. The median lifetime is the time
elapsed between the release of that version and the death of half of the vul-
nerabilities reported in that version. Alas, we don’t know how many vul-
nerabilities remain in the foundation version or when they will be found.
As a result, we can provide only a lower bound on the median lifetime.
The result is striking: It took at least 2.6 years to find half of all the foun-
dational vulnerabilities that would be found during the 7.5-year study
period.

The second question is related to “vulnerability densities.” Software engi-
neers have examined the defect density of code: the ratio of the number of
defects in a program to the number of lines of code. Some have argued that
any well-written code can be expected to have a defect density that falls
within a certain range (e.g., 3–6 defects per thousand lines of code). Our
second question is thus whether or not there is a linear relationship be-
tween the number of lines of code altered and/or introduced in a version
of OpenBSD and the number of vulnerabilities introduced in that version.

As we cannot measure the total number of vulnerabilities present, we
measure the number discovered within four years of release for each ver-
sion that is at least four years old. Figure 5 illustrates the relationship
between the number of lines of altered and/or introduced code and the
number of vulnerabilities reported. Neither a visual examination of the fi-

30 ; LOG I N : VO L . 3 1 , NO . 6

gure nor Spearman’s rho test finds a correlation between the number of
lines of code altered and/or introduced in a version and the number of vul-
nerabilities introduced.

F I G U R E 5 : T H E N U M B E R O F V U L N E R A B I L I T I E S I N T R O D U C E D
A N D R E P O R T E D W I T H I N F O U R Y E A R S O F R E L E A S E C O M PA R E D
T O T H E N U M B E R O F L I N E S O F C O D E A L T E R E D O R I N T R O D U C E D ,
B Y V E R S I O N

When calculated per thousand lines of code, the density of all reported vul-
nerabilities ranged from 0 to 0.033 and averaged 0.00657. There appears to
be no trend with respect to the densities increasing or decreasing in newer
code. These vulnerability densities are thus three orders of magnitude less
than the normal range of defect densities. However, the two figures are not
necessarily contradictory: Defects include both vulnerabilities and bugs
that are not vulnerabilities. Furthermore, multiple identical security defects
that were discovered at the same time are considered a single vulnerability
in our data.

Conclusion

Over a period of 7.5 years and 15 releases, 62% of the 140 vulnerabilities
reported in OpenBSD were foundational, that is, they were present in the
code at the beginning of the study. It took more than 2.6 years for the first
half of these foundational vulnerabilities to be reported.

We found that 61% of the source code in the final version studied is foun-
dational: It remains unaltered from the initial version released 7.5 years
earlier. The rate of reporting of foundational vulnerabilities in OpenBSD is
thus likely to continue to greatly influence the overall rate of vulnerability
reporting.

We also found statistically significant evidence that the rate of foundational
vulnerability reports decreased during the study period. We utilized a relia-
bility growth model to estimate that 67.6% of the vulnerabilities in the
foundation version had been found. The model’s estimate of the expected
number of foundational vulnerabilities reported per day decreased from
0.051 at the start of the study to 0.024. We thus conclude that the founda-
tion version of OpenBSD is like wine: It is growing more secure with age.

; LOGIN: DECEMBER 2006 THE SECURITY OF OPENBSD 31

D I S C L A I M E R

This work is sponsored by the I3P under Air Force Contract FA8721-05-
0002. Opinions, interpretations, conclusions, and recommendations are
those of the author(s) and are not necessarily endorsed by the United
States Government.

This work was produced under the auspices of the Institute for Informa-
tion Infrastructure Protection (I3P) research program. The I3P is managed
by Dartmouth College and supported under Award number 2003-TK-TX-
0003 from the U.S. Department of Homeland Security, Science and Tech-
nology Directorate. Points of view in this document are those of the auth-
ors and do not necessarily represent the official position of the U.S. De-
partment of Homeland Security, the Science and Technology Directorate,
the I3P, or Dartmouth College.

R E F E R E N C E

[1] A. Ozment and S.E. Schechter, “Milk or Wine: Does Software Security
Improve with Age?” Proceedings of the 15th USENIX Security Symposium
(Berkeley, CA: USENIX Association, 2006).

32 ; L O G I N : V O L . 3 1 , N O . 6

4th USENIX Symposium on Networked
Systems Design & Implementation

April 11–13, 2007 Cambridge, MA

Sponsored by USENIX in cooperation with ACM SIGCOMM and ACM SIGOPS

www.usenix.org/nsdi07

Join us in Cambridge, MA, April 11–13, 2007, for NSDI ’07, which will focus on the design principles of
large-scale networks and distributed systems. Join researchers from across the networking and systems
community—including computer networking, distributed systems, and operating systems—in fostering
cross-disciplinary approaches and addressing shared research challenges.

NSDI ‘07 will be co-located with the following workshops, all of which will be held on April 10, 2007:

•Second Workshop on Tackling Computer Systems Problems with Machine Learning Techniques (SysML07)
www.cs.duke.edu/nicl/sysml07

•Third International Workshop on Networking Meets Databases (NetDB ‘07)
www.usenix.org/netdb07

•First Workshop on Hot Topics in Understanding Botnets (HotBots ’07)
www.usenix.org/hotbots07

Save the Date!

; LO G I N : D E C E M B E R 2 0 0 6 W H ITE WO R M S D O N ’ T WO R K 33

N I C H O L A S W E A V E R A N D D A N E L L I S

white worms
don’t work
NicholasWeaver is a researcher at ICSI specializing
in worms, computer security, and architectures for
high-speed intrusion detection.

nweaver@icsi.berkeley.edu

Dan Ellis recently finished his Ph.D. at George Mason
University. At MITRE, as an infosec scientist, he's been
working on various aspects of worm technology
since 2001.

ellisd@mitre.org

S E V E R A L V O I C E S H A V E R E P E AT E D LY
proposed using worms as a tool for fight-
ing other worms, updating systems, and
other security tasks. Such white worms
(also known as anti-worms [2,5,17], preda-
tors [6], or nematodes [1]) have been pro-
posed as a mechanism to counter a spread-
ing worm. The idea is to launch a worm
that spreads to patch the target and make
it immune to the competing worm. Like-
wise, there have been several allegedly
white worms both written (e.g., Code Green
[7]) and released (e.g., Welchia [16] and Anti-
Santy Worm [8]) with the alleged goal of
cleaning up an existing infection.

Using white worms to immunize from or clean up
after a competing worm is a bad idea for several
reasons. Technically, writing worms to do what is
desired is incredibly difficult. It is difficult to tar-
get a white worm to infect and immunize all of
the machines of interest and only those machines.
Also, getting the worm payload to do exactly what
is desired is hard to do with significant testing, let
alone on the fly in response to another worm.
Consequently, the risk of the worst-case, com-
pounded problem (deploying a damaging payload
across a large number of hosts that do not belong
to you) is practically impossible to mitigate. Even
using a highly controlled worm for penetration
testing on a live network [1] has serious issues.

There are also some significant legal reasons not
to use a white worm. For example, infecting a
machine that one does not own is a serious crime
in most nations, independent of the intentions of
the author of the white worm. Worse, if there is a
problem in the targeting of the worm and the pay-
load of the worm, significant damage is possible,
which could even lead to international conflict if
spread occurs across national boundaries, inde-
pendent of intent or sponsorship [18].

Fortunately, a combination of machine attestation,
automated inventory management, and patch
management offers a superior and acceptable
solution. A combination of these tools provides
mechanisms to distribute patches and protective
instructions faster than all existing worms. Even
better, the fundamental time scale for patch distri-
bution can equal or even exceed the fastest worm
theoretically possible. Any host that could be

configured in any way to improve or facilitate the performance of a white
worm could also be instrumented with a patch-management system. We
conclude that, without exception, the use of white worms poses an unac-
ceptable risk.

What Is aWhiteWorm?

A white worm, in our definition, is any worm released with allegedly be-
nign intent. The objective could be to patch systems before a malicious
worm is released, to out-compete an already spreading worm, or to clean
up after a worm attack. We use the term white rather than good because
the actions of such a worm may not be deemed beneficial by the owner of
a targeted machine.

In all these scenarios, we assume that the white worm is spreading by ex-
ploiting some vulnerability in a target system, rather than by legitimately
accessing the target machine (e.g., via an authorization daemon installed
on the target). This is simply because if an authorized backdoor or daemon
can be installed on the target computers, then a patch-management system
can be deployed instead.

A patch-management system, in contrast to a white worm, is a purely con-
sensual mechanism. All participating systems contain a small daemon that
is used to receive and apply defensive instructions, including patches and
network filters. Combined with machine attestation systems such as Cis-
co’s Network Admission Control [3], this system can ensure that all sys-
tems within a well-structured corporate network are participating and able
to receive and process updates.

Displacing an ExistingWorm

The most commonly proposed application for a white worm is to displace
a malicious worm already in place. Yet it is currently considered standard
procedure for an attacker to close the vulnerability used to exploit the sys-
tem, and we have heard anecdotal reports of even other unrelated vulnera-
bilities being patched. Compromised hosts are a resource to the attacker;
thus, an attacker benefits from preventing that resource from being claimed
by others.

As a specific example, Welchia [16] was called a white worm, because it
removed a competing worm (Blaster) and installed the patch. Yet, Welchia
also contained a malicious payload, opening up a backdoor on infected
systems. Welchia’s patching was really to prevent double-infection and to
remove a competitor that made infected systems unstable.

Displacing a rootkit or worm that takes measures to defend itself can prove
highly difficult. Since a worm author is likely to be less concerned about
the stability of other applications on the target host, there is little motiva-
tion for a defensive worm author not to produce a patch suite. Whereas a
conscientious sysadmin would vet (which may include testing negative
impacts) a patch before applying it, a worm author has little motivation.
Therefore a worm author may decide to patch other vulnerabilities not pre-
viously addressed by the sysadmin. As a white worm would be constructed
primarily using publicly available exploits, it would be very difficult to
successfully infect a previously infected and patched host.

A worm author may get the benefit of limiting access without patching if
infection results in the host becoming invulnerable, which often occurs

34 ; LOG I N : VO L . 3 1 , NO . 6

when the target application is single-threaded and the exploit never returns
control flow to the victim program. Blaster on Windows 2000 [15], Witty
[11], and Slammer [10] all showed this behavior. Additionally, the worm
author could simply terminate the vulnerable service after infection, unless
the worm author needs to use the vulnerable service or the service is
essential to system operation.

Thus, unless there is a separate vulnerability known by the white-worm
author but not by the original worm author, there is a vulnerability in the
original worm, or the original worm author simply doesn’t care about
being displaced, a white worm can’t be reliably used to displace an existing
infestation.

Of course, the same problem applies to patch management. It is common
for malicious code to disable antivirus and other defensive applications in
the process of rootkitting a system. Thus, although a white worm cannot
reliably displace a worm, neither can patch management. But this is part of
the general problem of recovering compromised machines, not a specific
limitation of patch management.

Outracing a SpreadingWorm

Thus if a white worm is to out-compete a worm that is currently spread-
ing, it must be created dynamically and released very quickly in response
[2]. The problem is that if both worms are equally optimized, the worm
with the head start has an effectively insurmountable advantage. Only if
the anti-worm gets an unmatched performance boost through some other
technique (e.g., hitlisting) can it be expected to compete with the initial
worm.

However, the author of a malicious worm can use these same techniques to
gain a speed advantage, obviating any optimizing effect of the white worm.
Thus, it is best to consider the two worms, the initial malicious worm and
the white worm, as having the same speed, as any speed improvements
that the white-worm author could use could be copied by the author of the
malicious worm.

We conducted a simple simulation using a modified version of the simula-
tor from [14]. At T = 0, a malicious worm is released (300,000 vulnerable
systems, 200 scans/s/worm, 32-bit IPv4 address space). After some speci-
fied fraction of the hosts are infected (0.01%, 0.1%, 1%, and 10%), an
equivalent white worm is released from a single source and spreads at the
same rate as the initial worm. For all but the 0.01% sensitivity, the white
worm was effectively useless, having a negligible impact on the black
worm’s propagation and final infection. But even the supersensitive white
worm, released when 0.01% of the systems are infected by the black worm,
is almost useless, inoculating less than 3% of the victims in the median
case. We conducted 100 simulations and graphed the median case, the case
representing the top 5%, and the case representing the bottom 5% in terms
of effectiveness. This is shown in Figure 1.

; LOGIN: DECEMBER 2006 WHITE WORMS DON’T WORK 35

F I G U R E 1 : T H E N U M B E R O F S Y S T E M S I N F E C T E D B Y T H E B L A C K
WO R M F O R T H R E E D I F F E R E N T S I M U L AT I O N R U N S (O U T O F
1 0 0) , W H E N T H E W H I T E W O R M I S R E L E A S E D A F T E R 0 . 0 1 % O F
T H E V U L N E R A B L E S Y S T E M S A R E I N F E C T E D . T H E R E A R E
3 0 0 , 0 0 0 V U L N E R A B L E S E R V E R S .

Even with a supersensitive white worm, released after 0.01% of the sys-
tems are infected, most of the vulnerable population is still compromised
by the malicious worm. This is because even with the highly (even opti-
mistically) sensitive value of 0.01%, the black worm has infected 30 sys-
tems, giving it a nearly 5-generation head start over the white worm. If we
even consider a perfectly timed white worm, equally matched to the mali-
cious worm and released at the same time, the white worm is still expected
to save only 50% of the systems.

Another important aspect of relying on a white-worm-based defense is the
accuracy of the underlying detection mechanism. It is understood in the
worm community that accuracy is the most important issue in developing a
successful worm-detection capability [19]. The cost of a false alarm varies
depending on the response. The best false alarm rates reported are on the
order of just over once per day [4,13]. A false alarm that causes a significant-
ly disruptive event, such as a premade white worm, could be catastrophic.

Disruption from aWorm

One problem with worms is they can be disruptive to the network. For
example, an anti-Slammer, released at the same time as Slammer, would
have proved equally disruptive (at least until the white worm stopped
spreading). In fact, Welchia, owing to a faulty ICMP scanner, was far more
disruptive to the network than Blaster, the worm it was displacing. Blaster’s
traffic was simply normal TCP, and its scanning rate was low. Welchia had
a high-rate ICMP scanner that flooded the local network with unrespon-
sive traffic that caused congestion, and it was Welchia (the alleged white
worm), not Blaster, that disrupted the Navy/Marine Corps intranet [9].

Of course, even if a white worm is released before a malicious worm, the
white worm may prove to be as bad as or worse than the disease. Assume
that the patch deployed by the white worm requires a system reset, but the
original worm does not affect system stability. In this case, the white
worm’s act of resetting a critical but infected system may be more damag-
ing than an unchecked infection by the malicious worm.

36 ; LOG I N : VO L . 3 1 , NO . 6

Additionally, a single-packet UDP worm such as Slammer or Witty will
naturally be disruptive to the network. It would require significant engi-
neering to develop a congestion-sensitive UDP-based worm, and such a
worm would be considerably slower than a malicious worm, which doesn’t
care about fair congestion control.

The Difficulty of Control

Even if a white worm is to be used for another task, such as proactively
patching before a malicious worm can spread, there is still the substantial
difficulty of controlling the system.

If the white-worm author doesn’t a priori know which systems should be
compromised and have provable coverage only over those systems, an
error in this logic could prove catastrophic. The original worm paper by
Shock and Hupp [12] only touched on the real limitations: the havoc
caused by bugs in the worm that either would cause self-propagation
(their model was mobile without duplication) or could disrupt the entire
network.

The one proposal that attempts to address this, Nematodes, postulates
either an end-host allowed token or an authorization server (in either case
patch management could be deployed instead with much lower risk), or a
white graph of allowed traversal topology.

But what happens if there is a failure (i.e., bug or unforeseen circum-
stance) in the white graph? For example, the Nematodes proposal remarks
that attacking 192.169/16 space should be OK if the worm is already in
192.169/16 space (thus the notion of a white graph instead of a list). Yet
what happens if happenstance causes a nematode to end up on a critical
system in someone else’s private address space (e.g., spreading via a laptop
that changes locations and IP addresses)?

This is far worse than the problem of a bad input into a vulnerability scan-
ner. A nematode, by infecting a host, may disrupt the host considerably
more than a vulnerability scanner would. Worse, because of the self-propa-
gating nature, a badly targeted nematode could spread to many more loca-
tions. With a bad entry in a vulnerability scanner, only those hosts affected
by the entry will be discovered. But a bad entry in a nematode’s target data-
base could propagate, affecting far more systems.

The Legal Minefield

It is this difficulty of control that brings up the greatest problem. If the
white worm’s author has legitimate access and control of the systems, he or
she can use a patch-management tool. But if the author does not have
legitimate access and control of the systems the white worm ends up
infecting, the worm’s author or releaser just committed a crime (a felony in
the United States).

Even a nationally authorized white worm could encounter these difficul-
ties. If the worm itself infected a computer in a different country, the laws
of the computer’s location, not of the worm author’s, apply. If the breach of
the white worm or the payload is damaging enough, the victim nation may
perceive it to be an act of war and retaliate commensurately [18]. The
potential for catastrophic political damage, even for a governmentally
authorized worm, is difficult to understate.

; LOGIN: DECEMBER 2006 WHITE WORMS DON’T WORK 37

The Alternative: PatchManagement

For networks that are controlled, patch management and system attesta-
tion provide all the benefits of a white worm with a much lower risk pro-
file. System attestation (such as Cisco’s NAC [3]) prevents any system from
connecting that is not running a set of administratively mandated software,
such as antivirus and patch-management tools. A patch-management sys-
tem allows the administrator to push code to the systems dynamically.
Using these two capabilities together, it is reasonable to assert that hosts
are attested and up-to-date with the most current patches, assuming they
haven’t already been compromised and rootkitted.

Unlike a white worm, attestation and patch management has perfect and
controlled coverage: All systems on which the patch-management software
is installed, and only those systems, are updated. There are no issues with
self-propagating code escaping into the wild. Patch-management systems
are much easier to test than a white worm, as their behavior is more deter-
ministic. Finally, patch-management systems can be intrinsically faster
than a worm, as there is no target discovery, TCP sessions can be preestab-
lished, and, with multicast, the same data can be sent to all systems simul-
taneously.

Patch management, however, is not without cost. It may require additional
software, testing infrastructure, and sitewide policies to deploy. However, a
well-run enterprise already needs a patch-management system to handle
the large number of upgrades and patches for a variety of software pack-
ages. It seems far more reasonable to invest in extending that capability
than it is to invest in a technology whose potential negative impacts are
practically impossible to bound.

Conclusions

The theme of using white worms has recurred roughly annually over the
past few years as one proposal to deal with network worms. Network
worms are a serious threat because they can spread quickly and deploy an
arbitrary payload. It is natural to want to harness that power to do some-
thing useful. One naive proposal is to use them to counter other worms.
However, the potential negative consequences of a white worm solution
are exceptionally grave, because they cannot be practically bounded. Fur-
ther, a patch-management system out-competes white worms in terms of
performance (speed and coverage) and has a far more acceptable risk pro-
file. The capabilities are also technically more mature and cost-effective
than those of white worms. We, therefore, call on the community to dis-
courage the consideration of white worms and focus intellectual effort on
the many other hard problems in computer security.

REFERENCES

[1] D. Aitel. “Nematodes—Beneficial Worms”: http://www.immunityinc
.com/downloads/nematodes.pdf.

[2] F. Castaneda, E. C. Sezer, and J. Xu. “Worm vs. Worm: Preliminary
Study of an Active Counter-Attack Mechanism,” Workshop on Rapid
Malcode (WORM), 2004.

[3] Cisco network admission control: http://www.cisco.com/en/US/netsol/
ns466/networking_solutions_package.html.

38 ; LOG I N : VO L . 3 1 , NO . 6

[4] D. Ellis, J. Aiken, A. McLeod, D. Keppler, and P. Ammann. “Graph-
Based Worm Detection on Operational Enterprise Networks,” Technical
Report MTR 06W0000035, The MITRE Corporation, April 2006.

[5] R. Foulkes and J. Morris, “Fighting Worms in a Large Corporate
Environment: A Design for a Network Anti-Worm Solution,” Virus Bulletin
International Conference, New Orleans, 2002, pp. 56–66.

[6] A. Gupty and D. DuVarney, “Using Predators to Combat Worms and
Viruses: A Simulation-Based Study”: http://ieeexplore.ieee.org/xpl
/freeabs_all.jsp?arnumber=1377222.

[7] Herbert HexXer, Codegreen beta release: http://seclists.org/vuln-dev/
2001/Sep/0000.html.

[8] I. Marson: http://www.zdnet.co.uk/news/internet/security/
0,39020375,39182954-1,00.htm.

[9] E. Messmer, “Navy Marine Corps Intranet Hit by Welchia Worm”:
http://www.nwfusion.com/news/2003/0819navy.html.

[10] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and
N. Weaver, “Inside the Slammer Worm,” IEEE Security & Privacy, pp.
33–39, July/August 2003.

[11] D. Moore and C. Shannon, “The Spread of the Witty Worm”:
http://www.caida.org/analysis/security/witty/.

[12] J. Shoch and J. Hupp, “The ‘Worm’ Programs—Early Experience with
a Distributed Computation,” Communications of the ACM, March 1982.

[13] S. Singh, C. Estan, G. Varghese, and S. Savage, “Automated Worm
Fingerprinting,” 6th Symposium on Operating System Design and
Implementation (OSDI ’04) (Berkeley, CA: USENIX Association, 2004).

[14] S. Staniford, V. Paxson, and N. Weaver “How to Own the Internet in
Your Spare Time,” Proceedings of the 11th USENIX Security Symposium
(Berkeley, CA: USENIX Association, 2002).

[15] Symantec. W32.blaster.worm: http://securityresponse.symantec.com/
avcenter/venc/data/w32.blaster.worm.html.

[16] Symantec. W32.welchia.worm: http://www.symantec.com/avcenter
/venc/data/w32.welchia.worm.html.

[17] S. Tanachaiwiwat and A. Helmey, “Vaccine: War of the Worms in
Wired and Wireless Networks”: http://www.ieee-infocom.org/Posters/
1568980643_VACCINE%20War%20of%20the%20Worms%20in
%20Wired%20and%20Wireless%20Networks/Tanachaiwiwat
_INFOCOM_abstract.pdf.

[18] W. G. Sharp, Cyberspace and the Use of Force (Ageis Research Corp.,
1999).

[19] N. Weaver, D. Ellis, S. Staniford, and V. Paxson, “Worms vs.
Perimeters: The Case for Hard LANs,” in submission.

; LOGIN: DECEMBER 2006 WHITE WORMS DON’T WORK 39

40 ; LOG I N : VO L . 3 1 , NO . 6

M I C H A E L B . S C H E R

on doing “being
reasonable”
Michael Scher is general counsel and compliance
architect for the Chicago-based IT security firm
Nexum. An attorney, anthropologist, and security
technologist, he’s been working where the policy
tires meet the implementation pavement since 1993.

mscher@nexuminc.com

I T ’ S AN ADM I N ’ S WORST N I GHTMAR E :
Mission-critical servers are compromised,
and you didn’t know about it. Systems you
can’t patch except in tightly controlled
downtime windows have nefarious
changes being made to them by persons
unknown; systems where uptime equals
money and downtime equals loss; systems
you probably could have patched sooner,
but the politics were just too treacherous.
Worst of all, you didn’t even discover the
intrusion—you found out from the legal
department: Your company is being sued
because those mission-critical, fiscally sen-
sitive hosts are being used to attack a third
party. That third party cried havoc and let
slip the lawyers of tort.

Well, that’s not the way it went down at IBM this
summer [1], but a glimmer of that kind of sce-
nario briefly made the news with IBM in the head-
lines. In short, a D.C.-area law firm sued Big Blue
because, allegedly, a number of servers at IBM’s
Durham, N.C., facility were being used to attack
the law firm, which had, allegedly, suffered harm
as a result. IBM says the firm hasn’t even demon-
strated that either organization’s systems had been
compromised, let alone suffered harm, and has
asked the court to throw the case out. We’ll have
to wait to see where this one goes, but even if it’s
a tempest in a teapot, it illustrates an emerging
consciousness among the legal community that
harm caused by way of an ill-protected computer
can be worthy of a lawsuit.

Are you responsible for critical or Internet-facing
systems at a large organization? Have you talked
lately with corporate legal about the company’s
policies for systems security? Oh, sure, your
group has probably discussed SarbOx, HIPAA,
GLBA, the various state consumer information
privacy acts (starting with California’s SB1386),
and maybe even 21 CFR 11 with them, inspired
by auditors and under the shadow of possible
penalties. Maybe your organization has a policy
to cover and look for contributory copyright in-
fringement, for uses that constitute harassment, or
for communications that create a hostile work-
place. But how about good old negligence? Now’s
a good time to have that talk.

Some of this paper will strike systems personnel
as heavy on the legal material; it will strike attor-

neys as light on the legal side and full of too many technical details. My
goal is to raise awareness about negligence law in systems groups and to
help them start a dialog with their own legal departments or outside coun-
sel. The content and positions contained in this article should not be taken
as legal advice—the discussion is simply far too general to safely use that
way. The purpose is to make you more conversant in the issues and able to
discuss them with personnel responsible for corporate, fiscal, and legal risk.

The Hypothetical: Arnold’sWidgets v. Burt’s Technical Company

Let’s take a look at the kind of lawsuit in question. We’ll walk through a
hypothetical set of facts, and see where and how a negligence suit could
fly. Since the facts are ambiguous from the recent story in the news, we’ll
start fresh. Let’s say a company, Arnold’s Widgets, has had some of its
Internet-facing hosts compromised and others hit with traffic-flood denial
of service (DoS) attacks by persons unknown, who apparently used com-
promised servers at Burt’s Technical Company (BTC) to do their dirty work.

Arnold’s has suffered several days of DoS attacks that rendered its widget-
ordering site unavailable. The company estimates a nonrecoupable loss of
business (which went to the competition) amounting to $300,000. Arnold’s
has also spent some $50,000 on forensics and consultants to locate and
clear compromised hosts in its DMZ. The forensics folks identified several
IPs in the BTC netblock as the source of both the DoS traffic and the direct
system compromises. Arnold’s sues BTC for damages of $350,000, which
Arnold’s claims are the result of BTC’s negligence.

Negligence

Negligence is at once a simple concept and a complex morass of subtle
rules brought about through case law and statutes. Actions for negligence
are part of “tort law”—non-criminal law handling harms caused by breach-
es of duty between two parties. At its core is the following principle: If you
fail to live up to a duty, you’re negligent. It gets a little complicated from
there. There are a number of ways a person can be under a duty, but we’ll
just look at two:

� Duty to conform to regulatory or statutory requirements
� Duty to act reasonably

DUTY TO CONFORM TO REGULATORY OR STATUTORY REQUIREMENTS

This principle seems self-explanatory. If there’s a law or a regulation, and
you don’t live up to it, you could be seen as negligent. Indeed, in some
states, it’s a special kind of negligence called per se negligence. In essence,
that means that it’s presumed to be negligent to fail to live up to it—the
defendant has to show that not doing the duty was reasonable. Normally,
the plaintiff (the person suing) would have to show it was an unreasonable
act, but per se negligence turns that on its head. Sometimes, the regulation
or statute specifies what the injured party can collect (“a remedy”); in
some circumstances, that means the statutory or regulatory remedy is
exclusive, and one cannot sue otherwise over the harm caused by negli-
gence; one can just request whatever remedy is specified. Sometimes, the
remedy is not meant to be exclusive—some provisions don’t have a speci-
fied remedy at all, leaving “enforcement” mostly up to the public, who may
sue for harms resulting from failures to obey the law. Politicos don’t have
to show much of a budget to enforce laws or regulations that will be

; LOGIN: DECEMBER 2006 ON DOING “BEING REASONABLE” 41

enforced by the public through lawsuits (though certainly it does cost the
system money).

DUTY TO ACT REASONABLY

This duty can be more complicated and lies at the core of the more “inter-
esting” lawsuits alleging negligence. As a member of society, or of some
specific profession or subgroup, you have a duty to act like a reasonable
person, taking reasonable care in your behavior to avoid reasonably fore-
seeable harm to a reasonably foreseeable swath of people. Doctors have to
act like reasonable doctors when doing doctor stuff; systems administrators
have to act like reasonable systems administrators when doing sysadmin
stuff; and the person driving a car has to act like a reasonable car driver
while driving. Sounds reasonable, right [2]?

DETERMIN ING WHAT ’S REASONABLE

We already discussed how, usually, it’s considered reasonable to follow the
directives of law or government regulation, and how in some jurisdictions
there’s a presumption that failing to do so is presumed to be negligent. So
where, for example, HIPAA lays down some rules, it would be wise to fol-
low them, not just for HIPAA reasons but because not doing so may be
construed as unreasonable behavior. But what about when there’s no spe-
cific law or regulation? I mean, most of us think about lawsuits as the
result of mistakes of some kind or clumsy error, so there’s got to be some
kind of reasonable standard, right? Right. Kind of.

Reasonableness is determined by the finder of fact—a jury quite often, and
sometimes the judge—based on community standards of behavior. Usually,
that means, in the absence of a law or regulation, you can look to common
practice for a decent idea of reasonable behavior. But not always. “This is
the way we’ve always done it” is usually disingenuous, and in any event,
the excuse doesn’t always hold water.

In a famous case from 1932, two barges sank in a storm while being guid-
ed by tugboats, and the tugboat operators were sued for losing the barges.
Neither tug had a radio, so they failed to receive warning of the oncoming
storm and taken shelter, as many other tugboats did that day. The industry
was just starting to adopt radio receivers in boats and it could hardly be
called the norm to have them at the time. The tug owners were found to
be negligent for not having radios, and they had to pay for the barges,
despite doing what many if not most tug companies were doing. In his
decision affirming the judgment, Judge Learned Hand set down an impor-
tant principle [3]:

Indeed in most cases reasonable prudence is in fact common pru-
dence; but strictly it is never its measure; a whole calling may have
unduly lagged in the adoption of new and available devices . . . there are
precautions so imperative that even their universal disregard will not
excuse their omission. [emphasis added]

In IT, and all other fast-changing industries, that means in essence that one
may want to look a little bit ahead—in short, at best practice—to help
determine what’s reasonable. If achieving best practice levels is reasonably
cost-effective, it might not be reasonable to slouch along with the competi-
tion. Those lagging behind may be deemed negligent.

Another famous Learned Hand decision, again involving barges, came in
1947. Tugs and barges seem to have been on the technology and risk fron-

42 ; LOG I N : VO L . 3 1 , NO . 6

tier of the day, an industry trying to compete and cut costs by saying “this
is the way we’ve always done it!” His decision will sound familiar to any-
one familiar with risk analysis, in IT or in tugboatdom. This time, a barge
broke loose in a storm, smacking into other vessels at dock, causing a lot
of damage. No attendant was kept stationed at the barge because it would
have been too expensive. Judge Hand wrote [4] that the level of reasonable
care can be estimated from:

(1) the probability that [the risky event will occur]; (2) the gravity of
the resulting injury, if [it] does; (3) the burden of adequate precau-
tions. Possibly it serves to bring this notion into relief to state it in
algebraic terms: If the probability be called P; the injury, L; and the
burden, B; liability depends upon whether B is less than L multiplied
by P; i.e., whether B < PL.

Sounds reasonable, right? If the risk is caused by your operations, and the
burden of protection is not so bad, and the potential harm is significant
and not unlikely, then there’s a duty as a reasonable person to avoid sub-
jecting others to that risk.

Most states also have an inverse rule: The victim can be penalized if his or
her own negligence added to or helped cause the harm. In many states, the
ability to collect is completely cut off if the harmed party was more than
51% responsible, as determined by the fact finder. In a handful of states,
the harmed party can’t collect if they were even a little responsible, and in
all the rest, some balancing act takes place to allocate the costs of fixing
the damage among the parties based on comparative fault.

DO WHAT YOU SAY AND SAY WHAT YOU DO

Does your organization have any systems policies, designed to protect some
group of people from some group of harms, which your organization isn’t
quite meeting? While probably not per se negligence, it’s definitely good evi-
dence that your organization knew what the right thing was, wrote it down,
and then failed to do it. That is, it’s evidence that your organization was
negligent. That’s a deep hole to explain your way out of when the harm the
policy is supposed to have prevented comes to fruition.

Corporate legal should help the technical organizations craft policies that
can actually be implemented on the ground in a realistic time frame. Don’t
set or accept pie-in-the-sky policies that can’t be done. It’s your job to talk
with legal, and with corporate finance, to find that magic balance point of
risk and the cost to avoid. If there’s a need to reach some policy directive,
but it will take time, make your policy actually set a time frame. If it looks
as though you will miss the due date, ensure policy is changed to a later
due date long before it’s reached. It’s better to try again honestly than to
live with a policy level you’re simply not meeting.

COLD HEARTS AND RISK ANALYSIS

There are of course circumstances where the harm is so significant that cal-
culating it away as too costly to avoid will be frowned upon in the courts.
Matters of life and death, or broad health disaster, or the performance of
generally life-threatening acts, or allowance of obviously life-threatening
problems under your control will probably not be considered reasonable
and may be the subject of punitive damages [5]. Probably you won’t see
much of that in systems administration, but it would certainly be wise to
ensure the controls to your medical therapeutic systems aren’t available

; LOGIN: DECEMBER 2006 ON DOING “BEING REASONABLE” 43

from the Internet. In general, one should consider any precaution priced a
lot lower than the potential harm.

At some level of inherent risk, the courts are likely to say that, if it’s so
expensive to fix, and so risky to do, it probably should not be done, unless
one is willing up-front to take on the costs of harm. For example, there are
practices that are so inherently dangerous that a standard called “strict lia-
bility” applies. That is, the practice is so dangerous that the risk of harm
cannot be eliminated by any expense; therefore the organization so doing
is simply liable for the consequences—costs to avoid and standards of care
are irrelevant. Blasting and some aspects of defective product liability are,
for example, held to strict liability standards [6].

HARM AND “ACTIONABI L ITY”

Here’s a funny thing: if someone is completely negligent, but no one is
harmed, then no one gets to sue for negligence. There has to be a harm.
Tort law is there to make the harmed party whole—no harm, no tort. The
harm also needs to be one that is reasonably foreseeable, the result of the
failure to meet the duty, and of the general kind that the duty was there to
prevent. It can be a surprising harm in its scale, so long as it’s a direct re-
sult of the failure to meet the duty and a foreseeable kind of harm. That set
of relations from an act makes that act the “actual and proximate cause”—
that’s a key (and sometimes quite complicated) concept in practice.

Another principle is that sometimes an intervening action by a third party
can cut off your liability for failing to meet a duty. Their action must con-
stitute a “superseding” cause: it has to occur after your negligence, and
become one of the proximate causes of the harm. This principle holds
mostly when the intervening act was itself not
a reasonably foreseeable circumstance, so that you could not reasonably be
expected to take it into account in forming your behavior. So if you’re a
landlord in a bad neighborhood and the tenants complain that there is a
dark spot at the entry that muggers can use to attack them, and you do
nothing about it, the mugging is probably not going to be seen as an inter-
vening act: It’s the very act you were warned about and part of your duty
as a landlord to mitigate. Mind, if you took every reasonable step and
someone still committed such a criminal act, you would probably not be
viewed as negligent and the act would be seen as intervening.

Whew!

Summing It Up for Our Theoretical Arnold’s v. BTC Case

Arnold’s has alleged the following:

� BTC has a duty to keep its servers reasonably secure against unautho-
rized access; alternatively, if an employee failed to perform his or her
duty securing the hosts, BTC nevertheless has a duty to supervise its
employees.

� BTC failed to act reasonably as is evidenced by someone using its
servers to attack the Arnold’s network.

� BTC is responsible even if the attacker was an unauthorized attacker
who illegally gained access to the BTC servers.

� Arnold’s has suffered actual fiscal damage as a proximate result of these
attacks.

44 ; LOG I N : VO L . 3 1 , NO . 6

BTC replies:

� BTC takes reasonable steps to secure its hosts, based on industry-nor-
mal practices and recommendations from its auditors. It looks to its
industry for guidance.

� The break-in occurred despite reasonable practices.
� The intervention of a criminal act cuts off the proximate causation of
BTC’s alleged failure to meet a duty and places the fault strictly on the
criminal.

� The compromised servers at Arnold’s were compromised only because
they themselves were not well secured, unreasonably so, to no less a
level than BTC’s alleged negligence, and so Arnold’s is contributorally
negligent.

Let’s go through it by the numbers.

1. Did BTC have a duty to keep its hosts secured to some level? Does
such a duty exist? Well, we all know a compromised host can be used
to attack others and cause harm. Compromised hosts also help shield
the identity of an attacker using them to go after third parties. That in
turn hurts the third party’s ability to sue the real attacker. Is it reason-
able, knowing all that, to set up a situation where attackers are likely
to be able to use your servers to attack others? Probably not. It seems
likely that such a duty could be found to exist, a duty to keep the
hosts secured to a reasonable level. If BTC had a policy saying it had to
keep its hosts patched up to snuff, and failed to meet its own policy,
that’s some more evidence that BTC didn’t live up to a reasonable stan-
dard of behavior—one it had set for itself, no less. BTC could claim its
own policy was unreasonable, but let’s face it—that isn’t going to
sound good in court.

2. Were BTC’s practices reasonable? Did BTC fulfill its duty to act reason-
ably? Most companies do make the effort to firewall, watch, and patch
their hosts, especially the Internet-facing ones. If nevertheless many
get broken into on a recurring basis, common practice may not be
enough to be reasonable. “Reasonable” behavior may be to move
toward protection levels that more or less cut off what we all under-
stand to be one of the most likely (and therefore foreseeable) outcomes
of a host compromise. So if BTC’s actual practices were below what
(many expensive) experts say is “common practice” for the industry, it
could well be found negligent. If it acted at “common practice” levels
but below “best practice” levels, it could still be found negligent, a
rather damning message to the industry in question. The question
would be in essence: What does the company need to have done to
constitute “reasonable” steps to cut off such a likely harm?

3. Did the criminal actions of the attacker cut off BTC’s responsibility?
Consider that, but for the actual criminal actions of the attacker, there
would have been no harm to anyone, let alone to Arnold’s. Yet, an
exposed system, we are all aware, would probably be probed by auto-
mated attack processes several times a week, if not more frequently.
Studies show that they are subsequently compromised on an ever-
more-frequent basis [7]. Was it inevitable or at least reasonably fore-
seeable that a host with a vulnerability would be compromised (crimi-
nal act) and used for nefarious purposes (another criminal act)? I
think we can all agree that, yes, it is likely. Is the action, therefore,
more like a mugger in a dark spot that is plainly useful to muggers and
about which the landlord has been warned than like a burglar using
top-of-the-line tools to break into an ordinary apartment? I think we
can agree that a key point of border security and patching is to prevent

; LOGIN: DECEMBER 2006 ON DOING “BEING REASONABLE” 45

exactly this kind of criminal act, so it would be likely that the act
would not cut off liability. It’s the very series of events the duty would
be there to prevent.

4. Was the negligence the proximate cause of the harm? If (given all the
above) the attacker’s act is held to be just part of the stream of reason-
ably foreseeable events, then BTC’s negligence is a proximate cause of
the harm. Arnold’s wins! Well, maybe not. BTC alleges that Arnold’s
was at least partly responsible for the harm by not securing its own
machines—the very same duty BTC failed to perform. Here it looks
like BTC finally has some traction: those servers that were compro-
mised were certainly not up to snuff, and an expert could argue that
they would have been broken into eventually. Depending on the state
law, Arnold’s could be in a position to collect nothing for its damages
in finding and fixing the compromised hosts. Applying comparative
negligence to a DoS attack, however, is harder. It’s not currently even
best practice to be truly DoS proof, lots of products claiming to help at
low cost notwithstanding. It costs a lot to defend against a traffic flood
on your own, and having the resources to do so is a business decision
mostly brought about by frequently being in the sights of DoS-based
attackers. Then again, good contracts with upstream providers, good
upstream providers, and emerging services that significantly reduce
the effects of a traffic flood DoS will shift reasonable DoS protection
from the rare and extreme to the best practice realm probably within a
few years. Only companies requiring instant defense (rather than
within an hour from a service provider) might require a higher stan-
dard. Which way the jury might go on this last score will be the result
of the expert testimony. Nowadays, not noticing that your servers are
flooding someone else’s network could tend to be seen as negligent.
Conversely, I’d guess most businesses don’t need extreme DoS
defenses to be “reasonable” but someday, not too far away, they well
might.

Hypothetical Case Summary

BTC is probably going to have to pay out something to Arnold’s for the
harm caused by the DoS flood. Yet, the entire experience was probably
stunningly expensive for both companies. Obviously, they might well settle
long before reaching the trial stage. Nevertheless, one doesn’t want to be in
BTC’s position. And one never wants to be on the receiving end of a land-
mark case.

You’re probably not negligent if you act with reasonable, due care, even if
harm somehow happens. You’re probably not liable (though you would be
negligent) if your failure to act reasonably results in no harm, or harm of
an utterly different kind than that which the duty to act reasonably is there
to prevent. It’s not an excuse much of the time that the harm depended on
a criminal third party if the third-party action is reasonably foreseeable and
the harm is the kind you’d expect.

Compliance Is a Two-Way Street

Systems and security/risk teams need to talk to corporate legal and busi-
ness risk personnel. Instead of just implementing controls that react to
compliance regimes, systems and network security needs to work hand in
hand with legal in the crafting of security policies. The issues aren’t just
that the company will itself be directly harmed (risks that a good risk man-

46 ; LOG I N : VO L . 3 1 , NO . 6

agement group can estimate) but that the company’s security posture deci-
sions could result in harm to foreseeable third parties.

And hey—let’s be reasonable out there.

REFERENCES

[1] “D.C. Law Firm Claims IBM Worker Hacked Its Computers”:
http://www.informationweek.com/security/showArticle.jhtml?articleID=190
400233.

[2] We’ll just pretend we didn’t all just think “and what about the reason-
able attorney,” for now. OK? Good.

[3] The T.J. Hooper, 60 F.2d 737, 740 (2d Cir. 1932).

[4] U.S. v. Carroll Towing Co., 159 F.2d 169, 173 (2d Cir. 1947).

[5] Although the famous Ford Pinto cases from the 1970s are often dis-
cussed as exemplifying this principle, they are actually not very good
examples. See “The Myth of the Ford Pinto Case,” by Gary T. Schwartz, 43
Rutgers L. Rev. 1013 (1991), available at http://www.pointoflaw.com
/articles/The_Myth_of_the_Ford_Pinto_Case.pdf.

[6] Inc. magazine had a 1999 article with a number of strict liability
examples. It’s online at http://www.inc.com/articles/1999/11/15396.html.

[7] See, for example, the SANS ISC study:
http://isc.sans.org/survivalhistory.php.

OTHER RESOURCES

Carter Schoenberg of ISS has written an excellent primer on the relation-
ship of regulatory processes and patching to negligence: http://www
.infosecwriters.com/text_resources/pdf/InformationSecurityCClass.pdf.

A discussion of the differences among contributory, comparative, and
modified negligence, and a listing of which states follow which principle,
can be found at
http://www.mwl-law.com/PracticeAreas/Contributory-Neglegence.asp.

; LOGIN: DECEMBER 2006 ON DOING “BEING REASONABLE” 47

48 ; LOG I N : VO L . 3 1 , NO . 6

M I K E H O W A R D

how often should
you change your
password?
Mike Howard came into programming from systems
engineering and has been stuck there. He currently
makes his living doing custom software and system
administration for a few small companies.

mike@clove.com

F O L K LO R E T E L L S U S THAT WE N E E D
to change our passwords fairly frequently.
In fact, it is required by the security policy
of many companies. I recently revisited the
problem and have concluded that changing
passwords doesn’t really matter.

The issue came up because a client for which I
have worked for about twenty years recently sold
two of its divisions to a major company. The new
owners—as you would expect—have all kinds of
security requirements and security specialists and
policies and what not. In contrast, our security
policy was almost nonexistent, not enforced, not
policed, and implemented only on privileged
accounts. In spite of this, we have never been suc-
cessfully penetrated from the outside.

Admittedly, the company is not a significant tar-
get, but looking at the secure logs on the Linux
systems on our public networks revealed that they
had been subject to fairly continuous, automated,
low-level probing. I once made the mistake of
misconfiguring an Apache server so it could
become an open mail relay and that was almost
instantly discovered and used—so automated
probing is effective.

During the time we had public networks—well
over eight years—we had only changed the root
password once and had had that same administra-
tive password on all the servers. We have had
dial-in connections for well over twenty years
without a break-in. (Although attack through a
dial-in port seems unlikely, I personally learned
early on that even an unlisted phone number is
not safe: I had an early Xenix system cracked
when I sloppily configured it without a root pass-
word.)

So I got curious.

This note is a summary of what I came up with. A
more detailed note, “How often should you change
your password—or should you bother?” is avail-
able at www.clove.com/clove_tech/tech_notes.

Throughout this note, I use the letter k to denote
the cumulative number of password crack
attempts, N for the total number of probable pass-
words, and Pk for the probability of being cracked
after k crack attempts.

Effect of Changing Passwords: Pk
If you think about it for a minute, cracking passwords is a classical “draw-
ing with (or without) replacement” probability problem. If I have a sack
containing N − 1 black balls and a single white one, then guessing a pass-
word is equivalent to pulling a ball out of the sack. If I leave the ball out,
then that is the same as not changing my password. If I put it back each
time, then that is changing my password after each attempt.

In the first case, Pk = k/N.

In the second case, Pk = 1 − (1 − 1/N)k.

For anything else, the probability must be someplace in between.

I made the reasonable assumption that we want to keep k << N—that is,
we want our number of crack attempts to be much less than the number of
probable passwords. If this is true, then we get a good approximation for
the “continuously changing password” case of Pk ≈ k/(2N).

So, in general k/(2N) ≤ Pk ≤ k/N, where you need to take the left ≤ with a
small dose of salt.

So, no matter how often you change your password, it doesn’t have much
effect on the Pk—the probability that your password will be cracked.

All that matters is keeping k small relative to N. In other words, we want k
(number of crack attempts) small and N (number of probable passwords
the cracker has to probe) large.

Probable Number of Password:N

The number of probable passwords a cracker has to test is under the con-
trol of the users. That is, we usually pick our own passwords. As a result,
passwords are generally constructed of words, pseudo-words, and num-
bers. A few brave souls add punctuation and other things, but my sense of
things is that this is rare. For the most part, we use words.

This is important, because our use of words severely limits the size of N.
For example, if we construct five-character passwords from the lowercase
alphabet alone, we will have 1.2x107 possible symbols. Words, however,
are more restrictive.

To get a handle on this, I downloaded the King James Bible, The Federalist
Papers, and A Short Biographical Dictionary of English Literature from the
Gutenberg Project and wrote a little code to do a naive analysis. It turned
out that the three texts only contained 106 words, of which 2.7x104 were
distinct. In fact, there were only 2,283 five-character words and only 3,271
eight-character words.

It is clear that using words is dangerous, because N is far too small.

In our case, we generate passwords using a system based on folklore:

� We create a five- to eight-character alphabetic string by selecting a sin-
gle word or concatenating two short ones together.

� We then randomly capitalize a few letters.
� Finally, we insert a couple of digits.

When I analyzed this scheme using the words in my aforementioned docu-
ments, it expanded the number of eight-character passwords from 3x103 to
8x1012. If you are willing to use ten-character passwords, this goes up to
7x1014. Again, see “How often should you change your password—or

; LOGIN: DECEMBER 2006 HOW OFTEN SHOULD YOU CHANGE YOUR PASSWORD? 49

should you bother?” for more details at htttp://www.clove.com/clove
_tech/tech_notes.

The Teracrack project [1] used a dictionary from “crack” containing about
5x107 passwords to create a precomputed password hash of about 2x1011

entries. Briefly, the Teracrack project tested the feasibility of speeding up
cracking by precomputing password hashes used by the crypt algorithm.
The project was able to demonstrate that crypt is unsafe because the hash
database fit within 1.5 terabytes of disk—an amount easily affordable
nowadays. If the size of the password hash scales roughly linearly, then this
algorithm should expand the hash requirements by five orders of magni-
tude—say, to something on the order of 1016 for eight-character pass-
words—and so require something on the order of 1.5x105 terabytes. This
is a fairly simple change which should move the storage requirements of
this technique out of reach for a little longer. This is not an endorsement of
crypt, which has been known to be deficient for at least twenty years.

Variations of this scheme yield different effects. Here are some rules of
thumb:

� Adding one character of password length increases N by a little less
than a power of 10.

� Inserting an additional digit increases N by about a power of 10.
� Replacing letters with digits helps a little, but much less than inser-
tions.

Our experience is that passwords of this form are fairly easy to type from
memory—after practicing a few times—even though it is often difficult to
remember how to write them down with a pencil.

As a side project, I looked at the effect of case-insensitive password
schemes—which are common with certain large computer manufacturers.
In general, they reduce the number of probable passwords using this
scheme by about two orders of magnitude for short passwords and three
for longer passwords (of length 11 or 12).

Case sensitivity in password schemes is very important.

Controlling k

The value of k is not static. It grows as crackers attempt to crack and sys-
tem administrators and system software vendors do nothing about it. It has
nothing to do with users and their changing of passwords.

Crackers appear to be building nets of robots that mechanically attack sys-
tems. There is not much we can do about that other than detect crack
attempts and shut them down.

I made some off-the-cuff computations and came up with an estimate of
3x108 crack attempts per year per host by assuming that the system is
exposed to one crack attempt per second. This gives a Pk of about 0.0001
per year for an eight-character password.

Referring back to why I started thinking about this in the beginning, we
see that, in our case, we had seven hosts on the public net and experienced
nowhere near that crack attempt rate, so this explains why we were not
cracked. Our Pk was well below 0.006 [0.0001 x (7 hosts) x (8 years)],
which is pretty good odds of not being broken into.

To digress for a moment, we and crackers have different points of view.
From our point of view, we don’t want to be cracked, so these are fairly
good odds. However, from most crackers’ point of view, they are also good

50 ; LOG I N : VO L . 3 1 , NO . 6

odds because he or she probably just wants to crack some system—not
necessarily a particular one. So if he or she attacks 100,000 systems in an
automated way, then one should burst open often enough to be interesting.
This is kind of a sick win-win situation for both sides.

I don’t want to have one of those systems, so I did the obvious thing—
devise a way to detect crack attempts and cut them off. If I cut off hosts
that attempt to crack my system more than, say, five tries in an hour, then
the cracker needs to control a vast number of systems to be effective
against me.

To do this, I wrote a short hack which monitors /var/log/secure to detect
crack attempts on ssh and firewall-off suspicious hosts. The code requires
Python 2.4, is GPL’ed, and could easily be adapted to monitoring for other
types of crack attempts—say, against Apache servers. Again, see
www.clove.com/clove_tech/download/.

Conclusion

Changing passwords frequently is a doomed strategy.

The important thing to do is keep Pk small by bounding the rate of growth
of k and constructing passwords so that N is large, both of which are easy
to do.

REFERENCES

[1] T. Perrine, “The End of crypt() Passwords . . . Please?”
;login: (December 2003): 6–12.

; LOGIN: DECEMBER 2006 HOW OFTEN SHOULD YOU CHANGE YOUR PASSWORD? 51

52 ; LOG I N : VO L . 3 1 , NO . 6

M A R K B U R G E S S

configuration
management:
models and myths
PA RT 3 : A S HO C K I NG L AC K O F
AD - HO C R ACY

Mark Burgess is professor of network and system
administration at Oslo University College, Norway.
He is the author of cfengine and many books and
research papers on system administration.

Mark.Burgess@iu.hio.no

I N H I S 1 9 7 0 B E ST S E L L I N G BOOK
Future Shock [1], writer Alvin Toffler predict-
ed the demise of bureaucracy. Toffler was a
writer emerging from the 1960s, on the tail
end of the hippie revolution. They were
going to make the world right, optimism
was in the air, and everyone saw the pace
of technological change as a force for good.
Today, we are less enamoured by progress
and have fallen back into a stagnant eco-
nomic tumble-drier of selling and consum-
ing that seems to have no vision or direc-
tion. Perhaps that is why Toffler’s vision of
the demise of bureaucracy never really
came about.

Toffler predicted that centralized power structures,
with their rigid procedures for decision-making
and management, designed for a slower age, an
age of little change, would collapse under their
own sluggishness—buckling under the force of a
cultural and technological deluge. Bureaucracies
would be replaced by lean, mean decision ma-
chines, guided by simple principles, and so agile
that they would win over traditional leviathans,
much like mammals sticking out their tongues at
the sauropods. Moreover, people like me, working
in government organizations, would be freed from
the slavery of application-report-archive to live
productive lives full of choice and measured re-
flection. He called this state of affairs ad-hocracy.
Toffler wrote:

Faced by relatively routine problems, [Man]
was encouraged to seek routine answers.
Unorthodoxy, creativity, venturesomeness
were discouraged . . . rather than occupying
a permanent, cleanly-defined slot and per-
forming mindless routine tasks in response
to orders from above, [Man] must [now]
assume decision-making responsibility—and
must do so within a kaleidoscopically
changing organizational structure built upon
highly transient human relationships.

That is what Toffler said about the human work-
place in 1970. This well-meaning sermon has
admittedly not taken the human world by any
great storm, as we attest from experience (though,
if we are being fair, it has indeed made inroads).
What I find ironic is that we are now reliving an
almost identical discussion in a different sphere.
Today, we are struggling to accept the same wis-

dom in the area of computer management. It will take the next two parts
of this series to do this subject justice.

Strategies in theWar Against Tera

What is a good strategy or algorithm for computer management? Few would
argue against the idea that the sheer size of systems today practically necessi-
tates automated tools. (Recall Ken’s law: Always let your tool do the work.)
Certainly I believed this in 1993 when I started writing cfengine, and today
IBM certainly believes it and flags it with its Autonomic Computing initia-
tive. Toffler pointed out that automation does not necessitate production-line
thinking, in which one mass-produced identical copies—a world in which
one can have any color as long as it’s black. On the contrary, he argued that
“As technology becomes more sophisticated, the cost of introducing varia-
tions declines.’’

But in the management of the information technology itself, we are still
hearing about “ways to mass-produce 1000 workstations, all identical,
from a common source”—golden master servers that are to be worshipped
by hundreds, perhaps thousands, of clones. Ad-hocracy is not the default
doctrine in computer administration.

Ever since the late 1980s, the telecommunications companies have had
their own vision of computer resource management, borrowing from tried
and trusted inventory systems, for warehouse and personnel management,
and trying to modify them to cope with the computing age. In time they
borrowed ideas from software engineering (e.g., object-oriented database
models).

Industry standards organizations such as the renamed Telemanagement
Forum (TMF) and Internet Engineering Task Force (IETF) have continued
to develop models for managing computing equipment that are essentially
bureaucratic. What they perhaps failed to anticipate was the pace at which
the technology would develop (something akin to the rate at which device
drivers have to be written on PCs). Trying to keep up with the schema-
centric definitions for all new products has led to a classic “Tortoise versus
Achilles” race between the development of new technology and the strug-
gle to document the growing zoological inventory. (Cisco’s IOS is surely
the winner of this race.)

For the telecoms, Operational Support Systems (OSS) and Business
Support Systems (BSS) were the order of the day. The idea was simply to
document every device and human procedure exhaustively in a huge data-
base so that help-desk staff would be able to see an overview. Later came
tools that could interact with the devices via a “management console” in
order to write certain values to routers and switches, and even to worksta-
tions and PCs. Today, the legacy of these approaches is still with us; they
still cling to life, even today in the largest corporations, but they are still
wailing (or yawning) from their tar pits.

The complexity of those systems is legendary. No sane engineer, in his or
her right GHz CPU, would seriously try to build such a monster. Yet, in
the wake of these support systems, designed for the telephone era, the
same knowledge engineers attempted to create the new generation of
forms and processes that would manage the computing age. Among today’s
species:

� SNMP/MIB: A hierarchical table-based data structure (the Management
Information Base) that is mapped into a linear set of machine-readable

; LOGIN: DECEMBER 2006 CONFIGURATION MANAGEMENT: MODELS AND MYTHS, PART 3 53

identifiers. The values associated with these identifiers are simply read
or pushed into place by the SNMP read/write protocol. The algorithmic
complexity is very low. The data complexity is a simple regular approx-
imation to a context-free language.

� SID: Shared Information and Data model. This is an information model
that is used in both NGOSS and DEN-ng. It includes services and orga-
nizational containers in an object-oriented framework.

� CIM: Common Information Model. An information model that pro-
vides an exhaustive replacement for MIB.

� NGOSS: The TMF describes this as a “comprehensive, integrated
framework for developing, procuring and deploying operational and
business support systems and software.” It includes the SID and eTOM
standards. It is a complete organization map.

� DEN(-ng): Directory Enabled Networks. This is a model that is com-
plementary to SID. It focuses on modeling network elements and ser-
vices, using an interpretation of policy-based management. DEN-ng
products and locations are subsets of the SID.

I challenge readers to look up the data models on the Web to see just how
complex they truly are. The DEN-ng and SID initiatives are trying to move
away from a MIB-like catalog of device attributes to an overview of an
organization and its resources. In particular, the notion of services is an
important addition.

Even equipped with these big guns for pattern description, and having the
most eager blue-collar beavers to register all of this information, the efforts
of these engineers ultimately seem to have fallen on deaf ears. No one real-
ly seems to want these systems—not even their key designers. Why? As
the Soviet Union or European Union or even the State of the Union will
testify, bureaucracy is just too expensive.

What’s on the Yellow Brick Road?

The data models mentioned here have sufficient linguistic complexity to
describe the patterns we would expect to manage in an organization, just
as we predicted in the last issue’s episode, but something is wrong. Toffler’s
warning is ringing in our ears. We seem to be missing a vital part of the
story. Configuration management is not merely about brick-laying and
form-filling.

Configuration management (a pretty low-level animal in the administrative
phylogeny) has become the topic de jour in the UNIX world, perhaps
because it is a technological problem, which tech folks love. But it is not
the beginning or end of any story that we really care about. We have no
real interest in what the configuration of a system looks like. What we
really care about is how to represent the goals of our organizations and
applications using patterns in order to lead to a predictable pattern of
behaviors. This leads us to a hypothesis, which, as far as I know, has not
been convincingly proven:

Hypothesis: There is a direct association between a “correctly
configured computer” and a “correctly behaving computer,” where
“correct” means “policy or specification compliant.”

The essence of this hypothesis is shown in Figure 1. It is not just a matter
of configuring a computer but one of solving the problem of achieving the
correct behavior. Configuration is a static thing; behavior is a dynamic
consequence, but not a fully predictable one.

54 ; LOG I N : VO L . 3 1 , NO . 6

F I G U R E 1 : T H E S T A G E S F R O M P O L I C Y T O B E H A V I O R .
A S T O R Y Q U I C K L Y F O R G O T T E N ?

There are three parts to the story depicted in Figure 1::

� Planning the intended behavioral policies for all parts of a system.
� Mapping this to a configuration that can lead to the correct behavior.
� Implementing the change in configuration reliably.

How do we know that we can complete this manifesto? Is it doable? If so,
can it be done reliably? Well, in 2003, I proved a limited version of this
hypothesis [2], showing only that it is possible to define the meaning of
“policy” in terms of configuration changes so as to lead to predictable
behavior on average. This is not quite the same as the hypothesis posed
here; what it says is that there a restricted language that maps directly to
behavioral consequences, so if we restrict ourselves to that, we are okay.
The part about “on average” is general, and it says that no configuration
management scheme can guarantee that a host will always be correctly
configured, unless the machine is never used.

You Say Tomato and I Say . . . Semantics

According to the first two parts of this series, we have a reasonable account
of how to manage patterns of data (with or without the monstrous data
models that pepper the procedures with structural complexity). These pro-
cedures might be messy, but they are essentially just bureaucratic spaghetti,
somewhat irrelevant to the deeper issues.

If we fix a bit string, such as a file mode, using a numerical value, there is
little ambiguity in the procedure. It seems like a straightforward problem
to write some configuration to a computing device: This is like stamping
out molds from a production line (e.g., chmod 755 filename). It is straight-
forward, easy, and not complex—much like SNMP without MIB. Any com-
plexity lies in the patterns themselves—in the coding of the instructions,
and in understanding what the behavioral consequences of these changes
are. Thus, this is not where the problem lies.

But now consider the expression of policy itself. If we wish to describe an
operation in terms of a high-level procedure (e.g., “InstallPackage(ssh)”)
then this is no longer straightforward, because it is describing the configu-
ration coding only at a medium level, not all the way down to the bits.
This is like saying, “Make me prettier!” It is not a uniquely defined or
reproducible goal. Someone might say that it is their policy to make you
prettier, but you cannot guarantee their behavior from this assertion. (You
might trust them more, if they told you about what end result they were
going to guarantee—see the following.) If we take only a shell of patterns
such as InstallPackage, there can be several (even many) nonequivalent
ways of defining the internal procedures within the language of the low-
level configuration. Consider the following two interpretations of an
InstallPackage command, which are inspired by real examples:

; LO G I N : D E C E M B E R 2 0 0 6 CO N F I G U R ATI O N M A N AG E M E NT: M O D E LS A N D MY TH S, PA RT 3 55

InstallPackage(foo)
Check dependencies
Check if package README exists
if (!exists)

copy package
unpack
run local script

InstallPackage(foo)
Check if existing binary is executable
if (!exists_and_exectuable)

Check dependencies
Copy packages
unpack all
copy files to /usr/bin

The resulting patterns are described and implemented in terms of language
syntax, as we have already noted, and computing is obsessed by syntax
today—but if the complete syntax is missing from the explanation, the call
for InstallPackage is meaningless. Several of the big data models mentioned
here boast a specification written in the Unified Modeling Language (UML),
which is based on an object-oriented syntax (i.e., hierarchical class struc-
tures). Thus it is fundamentally built as a bureaucracy of types. Moreover,
XML has become the bureaucratic memo-paper of choice. XML is no more
than an empty syntax “desperately seeking semantics.”

This is pretty much what happens in configuration management tools. By
attempting to be user-friendly and high-level, many configuration tools
sacrifice operational clarity for human readability. Trying to define configu-
ration in terms of such vague high-level precepts is like trying to tell a
story like this:

A man (motion-verb) into a (drinking-place-noun) and (communica-
tion-verb) a drink.

We can fill in many alternatives that lead to grammatically correct
sentences, i.e., which obey a pattern language that is recognized by our
system. But the patterns all mean quite different things, or perhaps nothing
at all. There is no clear way to say that what we meant was “a man walks
into a bar.”

If we are to successfully govern systems, either externally or autonomically,
we need to be able to complete the chain from top-level goals, to a clear
and reproducible set of operations, to a definite configuration that leads to
predictable behavior. This is not an impossible task, but it is far from
guaranteed.

How to SayWhat YouMean

At the 2001 cfengine workshop (later followed up by Paul Anderson and
opened to a wider community, becoming the configuration management
workshop), a discussion almost became an argument. My friend Steve
Traugott, bless him, told me I was wrong. Thunderclaps sounded, screams
were heard. Tempers were enraged. In the meantime, Alva Couch and I
were quietly interested in Steve’s point as others were doing battle over it. I
thought, “Clearly, I was not wrong; I am surely never wrong,” and yet
Steve pressed his point, which has since been studied in detail by Alva
Couch and which I have come to understand better as I have pondered the
matter using different reasoning. Of course, neither of us was wrong, but,
importantly, something was learned.

56 ; LOG I N : VO L . 3 1 , NO . 6

The matter concerned two design strategies that have been discussed for
constructing configuration management schemes:

� We specify the final state and leave it up to the program to figure out
the details of getting there.

� We specify the starting point and a specific program of steps to take.

For reasons we won’t go into yet, these were labeled “convergence” and
“congruence,” respectively. To borrow Alva Couch’s terminology, we can
rather refer to these as precondition-based and postcondition-based
specifications.

Ultimately, I believe that the first of these is preferable for a number of
reasons, including parsimony, consistency, and aesthetics (stay tuned), but
the real difficulties associated with configuration management are present
in both cases. They cannot be avoided simply by choosing one.

In both cases there is the matter of how it is possible to change from the
old state to the new state. Suppose a computing device is in a state that is
not consistent with policy. We require a procedure, whether that means a
static bureaucratic procedure or a lean-mean entrepreneur procedure, to fix
it. In the first case (postcondition), we define this procedure generically,
like a template, once and for all (i.e., we define what we want to get out of
“make me prettier”). In the latter, we define the procedure in each case,
making it potentially inconsistent. Steve said we can still achieve consis-
tency by always starting from a known state and following a precise chain
of preconditioned actions, meaning that if a computer gets messed up, you
wipe it clean and start over. This is a reasonable approach to take if one
thinks in production-line terms about configuration management, but this
is not my vision.

Mass Production Undone

Production-line factory thinking requires a chain of preconditions. When
you create a chain of operations that depends on previous operations, each
step is preconditioned on what came before. If one step fails to be imple-
mented, all subsequent steps fail (e.g., “I’m sorry, sir; I can’t make you
prettier; your nose is in the way.”).

This is fair enough—we just have to figure out how to get it right without
getting stuck. That might be possible, but in fact it is harder than in the
postconditional case, because the compositional complexity of the approach
has to be dealt with in one go, whereas it only has to be dealt with for one
operation with postconditions. But the real problem with preconditions is
that the approach fails to easily support a wide variety of different adapta-
tions. It takes us back to Toffler’s fear of the totalitarian-commie nightmare
of mass production of a single unvarying model.

Oddly, in system administration, many still worship the totalitarian gods of
mass production. The god of small things, to paraphrase Arundati Roy, is
still being trampled by the heavy boots of bureaucratic thinking.

Suppose we assume that the postcondition model is possible (cfengine uses
this approach, so it works at least in some limited capacity). Then we can
(at least try to) never base an operation on something that came before.
Then the order no longer matters, and only the final state is significant.
Now, although this approach is achievable, in principle, it is also beset
with problems. Its chief selling points are:

� Consistent semantics.
� Specification of the final state is often simpler than specification of the
steps needed to get there.

; LOGIN: DECEMBER 2006 CONFIGURATION MANAGEMENT: MODELS AND MYTHS, PART 3 57

� You do not have to wipe out a machine if something goes wrong; the
system can adapt in real time.

Its main problem is a residual ordering ambiguity caused by creation and
deletion and competitive adaptation.

Black Boxes and Closures

The inner workings of bureaucracy are generally opaque, but for reliable
administration this is not necessarily a bad thing. Black boxes are a main-
stay in computing because they hide inner complexity and also protect
inner details from outside corruption.

As Alva Couch and his students have pointed out, the computer science
black-box notion of closure gives us a level of predictability, by locking out
the environment that generally confounds predictability. This is the same
environment that can screw up chains of preconditions, as Alva’s work has
taken some pains to model in detail. The trouble is that, although closure
is easily implemented for things such as database transactions, it is quite
difficult to implement in the area of system administration, because sys-
tems are constantly being exposed to the environment by uncontrollable
backdoors. Moreover, they often share an operational state (routing tables,
databases, etc.) that breaks open closures.

The story of order-independent operations is also rather nontrivial and is
based on a very low-level approach to operational semantics. With cfengine,
the focus has been on this approach (some think too much so), and hence it
often fails to provide higher-level expressivity, which other projects such as
Luke Kanies’ Puppet are trying to remedy (hopefully keeping the low-level
semantics intact). Paul Anderson has long told me that he sees cfengine as a
low-level language that one compiles down to. This seems sensible to me. In
the meantime, together with Alva Couch, I am developing a more precise
theoretical model for these low-level semantics that will eventually be incor-
porated into cfengine 3.

Even if a configuration is reachable without any ordering problems, there
are some features of behavior that depend on the order. This has to do
with the fact that creation and deletion are catastrophic state-destroying
operations that break commutativity on present-day operating systems. It
is conceivable that one could build an operating system that did not have
this property, but it would be quite difficult. A fair approximation would
not be too hard to build, however, so we could have commuting operations
and the order of procedures would be entirely irrelevant to the final state.

The King Is Dead: Long Live the Laissez-Faire Army

Humans beings have a remarkable capacity to view the world in terms of
subordination, and system administrators are no exception. You’d think
we’d all done military service or were trying to establish ourselves as king
or emperor by conquering fourth-world tribes of disorganized computers
and sending them for Pygmalion execution lessons on how to behave in
the Kingdom of the Data Center.

In the 1990s, as telephonic empires were crumbling, small-business entre-
preneurship invaded this turf and took computer management in a differ-
ent direction. Small furry businesses started making it up as they went
along, thanks to tools such as small computers, UNIX, and ad hoc solu-
tions of Windows and Macintosh. With an excitement for progress rather
than control, mammals evolved and dinosaurs were left floundering. The

58 ; LOG I N : VO L . 3 1 , NO . 6

UNIX world has bothered itself little with the data models mentioned here:
cfengine, Isconf, LCFG, and of course every site’s home-brew scripts have
been much more ad hoc in their approaches—with almost devil-may-care
informality. And yet they work. Why?

In Future Shock, Toffler related an important insight, an insight that it is
appropriate for us to relearn. His point was this: In the 1960s, as we
remained scared of the looming presence of communism, it was assumed
that the industrial age and the rise of technology meant a future that was
mass-produced, in which everything was the same—there was no variation
and no choice, just an overwhelming amount of factory produce, because
the duplication of fixed pattern was marching to the tune and beat of
industrial nations’ sternest baton.

What Toffler realized was that better technology allows one to manage
more variety, greater diversity, and, importantly, greater choice. We do not
have to fear diversity. What, after all, is the point of information technolo-
gy if not to manage the complex array of specially tailored blueprints?
What is the reason for improving management of productivity if not to
cater for the whims and desires of minorities and special interests?

The weight of bureaucratic constraints just to maintain a large information
model is overwhelming. It is too slow. If you are attached to a fleet of steel
balls by a cat’s cradle of elastic bands, your best career choice is not that of
acrobat.

A Bearable Lightness of Being

There is a myth that, if you do not control something, the result will be
chaos. There is a belief that, if you do control something, its behavior will
be in accordance with your wishes.

I believe that there is some linguistic confusion at the heart of this debate.
The word we want is not “control,” because that is a word of hubris. You
can tame a horse but you will never control it. There is a world of differ-
ence between control and management. Toffler pointed out the answers in
1970. We are fighting the wrong battles.

Rising novelty renders irrelevant the traditional goals of our chief
institutions. . . . Acceleration produces a faster turnover of goals.
Diversity or fragmentation leads to a relentless multiplication of
goals. Caught in this churning, goal-cluttered environment, we stag-
ger, future shocked, from crisis to crisis, pursuing a welter of con-
flicting and self-cancelling purposes.

The real measure of intellectual achievement is to take something complex
and make it simpler—by suitable abstraction. Anyone can make excruciat-
ing syntax, an exhaustive list, or a database of every possible detail. There
is absolutely no evidence that tight bureaucracy leads to greater pre-
dictability. What can lead to predictability is clearer semantics—perhaps
with a lighter touch.

In the next episode, I want to dispel a related myth: why centralization is
not the necessity that has generally been implied.

REFERENCES

[1] Future Shock, A. Toffler (Random House, 1970).

[2] “On the Theory of System Administration,” M. Burgess, Science of
Computer Programming 49, 1–46, 2003.

; LOGIN: DECEMBER 2006 CONFIGURATION MANAGEMENT: MODELS AND MYTHS, PART 3 59

60 ; LOG I N : VO L . 3 1 , NO . 6

D A V E J O S E P H S E N

homeless vikings

S HO RT- L I V E D BG P S E S S I ON

H I J A C K I NG—A N EW CHA P T E R

I N TH E S PAM WAR S

Dave Josephsen is author of the upcoming book
Building Monitoring Infrastructure with Nagios
(Addison-Wesley). He currently works as the senior
systems administrator for a smallWeb hosting com-
pany and donates his spare time to the SourceMage
GNU Linux project.

dave-usenix@skeptech.org

TH E F I R ST U N SO L I C I T E D , COMME R -
cially motivated bulk email was sent on
ARPANET in 1978 by a DEC representative
named Gary Thuerk [1]. A full 28 years later,
spam has evolved into a 55-billion-mes-
sages-per-day [2] global epidemic that has
affected areas of technology unimaginable
by the ARPANET engineers of 1978. This arti-
cle will chronicle the history of the spam
wars, a war that has almost always been
waged along two technological fronts:
those of content filtering and delivery
countermeasures. By examining the history
of the arms race in the context of recent
attacks with zombied PCs and short-lived
BGP session hijacks, I conclude that one of
these fronts may in fact be a dead end and
worth abandoning altogether.

From 1978 to 1994, the business of spam remained
a nonissue because email itself was in an infantile
state. In the early 1990s, most spam was sent in the
context of USENET newsgroups, and by a few
identifiable individuals, such as Canter, Siegel, and
Wolff [3]. In 1994 the Net witnessed its first real
spam, sometimes referred to as the “spam heard
round the world,” when Canter and Siegel’s “green
card” message was sent to at least 6000 USENET
groups [4].

In the early days, retribution was swift [5], but
things degenerated quickly. In 1995, Floodgate,
the first commercially available spamware, was
available. By 1996, four more automated spam
packages were available for sale, as were lists of
millions of email addresses [6]. The spammers
wasted no time legitimizing their so-called busi-
ness model with various pro-spam trade groups
such as the Freedom Knights and the IEMMC and
proceeded to reach millions of USENET sub-
scribers with their marketing messages. The lure
of free marketing combined with the lack of pro-
tocol security set the stage for the inevitable war
that rages on to this day.

Almost immediately, two technological method-
ologies appeared to combat spam. The first type
focused on the content of the message in ques-
tion, and the second type on indicators such as
the email or IP address of the sender. These diver-
gent paths have evolved largely independent of
each other as the spam attacks have become more

frequent and increasingly complex. Content filters eventually moved
toward statistical learning, whereas delivery countermeasures evolved
increasingly sophisticated challenge/response mechanisms. Let’s examine
the lineage of each front independently, beginning with content filters.

Content Filters

The earliest example of automated content filtering might be Nancy Mc-
Gough’s procmail filtering FAQ, published in 1994 and still available at
http://www.faqs.org/faqs/mail/filtering-faq/. Early spam messages were very
much singular events [7]. The defenders of the time knew who would be
sending spam, and sometimes even when, so early content filters needed to
do little more than look for static strings in the message body.

Static string searching continued to work well for many people until around
the year 2000, when various content obfuscation techniques became preva-
lent in spam [6]. The word obfuscation games continued for a number of
years, with spammers using misspellings, character spacing. and a multi-
tude of other HTML- and MIME-based [8] techniques to bypass word fil-
ters. For a while the defenders followed in step, adding html parsers and
character transformation algorithms to their content filters.

In late 2000 and early 2001, based on an idea from Paul Vixie, an innova-
tive content filter was created which worked by taking a fuzzy checksum
of a message and comparing it to a database of known spam checksums.
Two implementations of this idea exist today in The Distributed Checksum
Clearinghouse (http://www.rhyolite.com/anti-spam/dcc/) and Vipul’s Razor
(http://razor.sourceforge.net/). Spammers responded with attempts to poi-
son the checksum database by reporting legitimate messages to the abuse
lists and by adding unique gibberish to the messages in an effort to make
the checksums more “different.”

Then, in August 2002, Paul Graham published his seminal paper, “A Plan
for Spam” [9], in which he publicly made the case for Bayesian learning
algorithms for spam classification. Prior work existed [10, 11], but ironi-
cally Graham’s less mathematically rigorous approach made the technique
far more effective [12]. At least a dozen Bayesian implementations exist
today.

Since 2002, several improvements have been made to Graham’s core idea;
these include the addition of several classification algorithms, such as
Robinson’s inverse chi-square [13], and data purification techniques, such
as Bayesian noise reduction [14]. But overall, naive Bayesian classifiers
have been unanswered by the spammers for four years and are therefore
considered a category killer for content-based filters. Where researchers
have had success against Bayesian filters, it has been by training other
Bayesian filters to use against them [15].

Delivery Countermeasures

On the delivery countermeasure front, examples of blacklists date back to
November 1994 [3], when USENET “remove lists,” consisting of malicious
sender addresses, were used to remove unwanted messages. In those early
days, reporting abuse to a spammer’s ISP yielded swift results [5]. By 1995
the USENET community’s outrage over spam abuse had outweighed its
censorship fears, and UDPs (USENET Death Penalties) were used to block
all posts from malicious sites. At the time, the sites weren’t necessarily con-
sidered malicious; the UDP was most often used to “persuade” the admin-

; LOGIN: DECEMBER 2006 HOMELESS VIK INGS 61

istrators of a particular site to take care of its abuse problems after more
diplomatic means had failed [16].

In non-USENET circles, sender address-based filtering was becoming more
and more common, forcing spammers toward joe-job attacks. By 1996, the
abuse reports and sender filtering resulted in the spammers’ use of relay
systems to deliver their mail. In 1997 the term “open relay” was coined to
describe a mail server that would relay mail for any recipient from any
sender. The first real-time spam blacklists (RBLs) appeared the same year
[6].

From 1998 to 2002, so many delivery countermeasures had been proposed
and beaten that they are too numerous to mention. Attempts at using black-
lists were thwarted by relays, whitelists were met by directory harvest
attacks and more joe-job spoofing, and greylists still showed promise but
wreaked havoc with noncompliant MTAs. A few payment-based systems
were proposed in this period, including micropayment-based “e-stamps”
[17] and the CPU-based idea that eventually became hashcash [18]. These
are not particularly effective against spoofing attacks and never gained
widespread adoption. Direct challenge/response systems were ineffective,
owing to forged “from” headers, and were generally considered rude. Most
of the other solutions of the time were in one way or another thwarted by
spammers simply adopting someone else’s net identity, through open relays,
or with header spoofing, or using a combination of the two.

The ease with which the spammers abused valid credentials was clearly
frustrating to those designing delivery countermeasure systems. Many in
this period became convinced that the problem with SMTP was the lack of
sender authentication. In June of 2002, Paul Vixie wrote a paper entitled
“Repudiating MAIL FROM” [19] which became the basis for SPF, or Send-
er Policy Framework. SPF is a DNS-based authentication mechanism
which calls for the use of MX-like DNS records for mail servers that send
mail, instead of those that receive them.

Although SPF was in clear violation of the SMTP RFCs and broke impor-
tant functionality such as forwarding, many (especially in the business
community) lauded SPF as the silver bullet that would once and for all
solve the spam problem, especially when it was embraced by Microsoft and
AOL. But, alas, SPF too has met with defeat [20] (although many vendors
still encourage its use).

The year 2000 witnessed the first large-scale distributed denial-of-service
attack against multiple prominent Web sites, including Yahoo! and eBay.
The attack, launched by a Canadian teenager, brought public attention to
the problem of botnets. A recent IronPort study found that 80% of the
spam currently sent on the Internet is sent through similar collections of
zombied PCs [2]. In one way or another, zombies make moot most of the
remaining challenge/response systems of today. By directly making use of
“grandma’s” PC to send their message, spammers are nearly assured of suc-
cess in a challenge/response scenario.

Today, RBLs remain the largest and most widely used tool on the delivery
countermeasures front, despite the questionable ethics and legal entangle-
ments of the RBL managers themselves [21, 22, 23]. The ease of setup,
combined with a quantifiable reduction in spam, makes RBLs a popular
choice with system administrators looking for a quick fix so that they can
get back to their “real” work.

62 ; LOG I N : VO L . 3 1 , NO . 6

BGP Prefix Hijacks

However, a recent paper by Anirudh Ramachandran and Nick Feamster
[24] may change all that by providing a sneak peek at the next battlefield
on the delivery countermeasures front. The Feamster paper provides the
first documented evidence of spammers using short-lived BGP prefix
hijacks against RBLs to get their mail delivered. Since you may not be
familiar with the technique, I’ll briefly summarize.

Prefix hijacking can happen a couple of different ways. In the first sce-
nario, the hijacker advertises a huge netblock, for example, 12.0.0.0/8.
Much of the space in this netblock is unallocated, or allocated but unused.
More specific advertisements in this netblock will take precedence over
larger ones, so in practice, the attacker won’t interrupt legitimate traffic.
For example, a legitimate company advertising 12.10.214.0/24 will not be
affected by the hijacker’s less specific advertisement.

The second scenario is more of a direct prefix hijack, whereby the hijacker
advertises a legitimate netblock (yours, for example), and routers closer to
the hijacker who don’t or can’t filter bogus announcements from their BGP
peers simply believe the hijacker. This is less common in practice right
now, because this sort of thing is easier to spot and has less of a payoff;
some routers still believe the legitimate Autonomous System.

Prefix hijacking has been used in the past by profiteers who would com-
bine bogus BGP announcements with RIR social engineering to take con-
trol of blocks of IP space they did not own. They would then sell these
bogus netblocks to unwitting organizations. In the past few years, however,
the network engineering and security communities have become aware of
a different kind of prefix hijack. These hijacks are very short-lived, lasting
15 minutes or less.

Why would someone hijack a route for such a short amount of time? For
the readership of this magazine, it’s probably not a huge test of the imagi-
nation. In fact, pretty much any illicit behavior you happen to fancy would
benefit from the technique, because using addresses nobody owns makes
you harder to track. If you wanted to nmap the NSA, DoS the RIAA, P2P
MP3s, or perform whatever other acronyms might get you in trouble, and
you wanted to do it in a quasi-untraceable manner, this might be for you.
Spamming people is of course a behavior generally assumed to be associat-
ed with short-lived prefix hijacks, but while speculation abounds, very lit-
tle in the way of actual evidence has been available until the Feamster
paper.

Prefix hijacking attacks directly target countermeasures such as RBLs by
using netblocks nobody has seen yet. It’s simply a new take on the same
old trick of using someone else’s credentials to deliver unwanted mail.
Prefix hijacks can also target SPF by making it so that large portions of the
Internet might actually send their SPF DNS authentication requests right
to the spammers. The bottom line is that if your anti-spam solution
depends on IP addresses, you lose.

Conclusions

I believe prefix hijacking may prove to be the proverbial nail in RBL’s cof-
fin, but even as you read this the arms race escalates on the delivery coun-
termeasures front. RBLs for their part are evolving lower into the network-
ing stack and I’m quite sure that this is not a good thing.

; LOGIN: DECEMBER 2006 HOMELESS VIK INGS 63

For example, the MAPS RBL now offers a BGP feed that your Cisco router
can consume [25]. Given the history of the war thus far, I am skeptical
that further forays toward filtering spam using incidental indicators such
as IP address are going to be effective without incurring additional collater-
al damage. Finally, given that NBCs (naïve Bayesian classifiers) remain an
effective and unanswered weapon in the fight, I find it curious that there
are two fronts at all.

REFERENCES

[1] http://www.templetons.com/brad/spamreact.html.

[2] http://www.ironport.com/company/ironport_pr_2006-06-28.html.

[3] http://www-128.ibm.com/developerworks/linux/library/l-spam/
l-spam.html.

[4] http://en.wikipedia.org/wiki/Canter_&_Siegel.

[5] http://catless.ncl.ac.uk/Risks/15.79.html#subj12.

[6] http://keithlynch.net/spamline.html.

[7] http://www.l-ware.com/wsj_cybersell.htm.

[8] http://www.jgc.org/tsc/.

[9] http://www.paulgraham.com/spam.html.

[10] http://citeseer.ist.psu.edu/sahami98bayesian.html.

[11] http://citeseer.ist.psu.edu/pantel98spamcop.html.

[12] http://www.paulgraham.com/better.html.

[13] http://radio.weblogs.com/0101454/stories/2002/09/16/
spamDetection.html.

[14] For example, http://freshmeat.net/projects/libbnr/.

[15] http://www.jgc.org/SpamConference011604.pps.

[16] http://www.stopspam.org/faqs/udp.html.

[17] http://www.templetons.com/brad/spam/estamps.html.

[18] http://www.hashcash.org/papers/hashcash.pdf.

[19] http://sa.vix.com/~vixie/mailfrom.txt.

[20] http://www.theregister.co.uk/2004/09/03/email_authentication_spam/.

[21] http://www.internetnews.com/dev-news/article.php/10_995251.

[22] http://csifdocs.cs.ucdavis.edu/tiki-download_wiki_attachment
.php?attId=431.

[23] http://www.peacefire.org/stealth/group-statement.5-17-2001.html.

[24] http://www-static.cc.gatech.edu/~feamster/publications/
p396-ramachandran.pdf.

[25] http://www.pch.net/documents/tutorials
/maps-rbl-bgp-cisco-config-faq.html.

64 ; LOG I N : VO L . 3 1 , NO . 6

; LOGIN: DECEMBER 2006 PRACTICAL PERL TOOLS: GIVE ME MY WOOBIE BACK 65

D A V I D B L A N K - E D E L M A N

practical Perl tools:
give me my
woobie back
David N. Blank-Edelman is the Director of Technology
at the Northeastern University College of Computer
and Information Science and the author of the book
Perl for System Administration (O’Reilly, 2000). He has
spent the past 20 years as a system/network admin-
istrator in large multi-platform environments,
including Brandeis University, Cambridge Technology
Group, and the MIT Media Laboratory. He was the
program chair of the LISA ’05 conference and is one
of the LISA ‘06 Invited Talks co-chairs.

dnb@ccs.neu.edu

E V E RYON E I K NOW I N OU R F I E L D
who has been working with security for any
reasonable length of time is walking
around these days with their cynicism pol-
ished to a mirror sheen. I’m guessing part
of this comes from the amount of Keystone
Kopp–ish activity taking place every day in
the name of “security.” I know my eyes roll
so much in response to the rules du jour
at an airport that I’m starting to look like
Cookie Monster.

So in that spirit, let’s see what sort of “security
theatre” we can perform for others with our Perl
code. I want to posit the following question: What
can I do to make you feel more secure about run-
ning my Perl code?

We’re going to look at a set of surface-level changes
you can make so that others feel better. They may
actually help make the code more secure; they may
not. But after all, this is the-a-tre! The notion here
is we’re trying to reduce fear in the user as she or
he runs the code. To that end, here are five ways to
address five different kinds of anxiety.

1.WhenWill It All End? (Fear of Infinite Run-Time)

For anything larger than a trivial script that com-
pletes quickly, users want to have a sense of where
the code is in its process and how long it will take
to complete. There’s one reason why installer pro-
grams always feature some sort of progress ther-
mometer. Humans are willing to suffer all kinds of
pain, including excruciating ennui, if they are
constantly reassured that it will pass, and they
have some sense as to when that will happen.

There are a number of modules that can make
displaying the progress of a process easy. Let’s
look at two of them. The first is fairly standard.
Term::ProgressBar can show a standard progress
thermometer:

use Term::ProgressBar;

my $endvalue = 500;
my $pbar = Term::ProgressBar->new($endvalue);

foreach my $value (0..$endvalue){
do something profound here instead of sleep.
(actually, for a new parent, that is pretty
profound...)
sleep 1;

$pbar->update($value);
}

This will produce a lovely thermometer that looks something like this:

39% [=========]

Term::ProgressBar has a number of features worth reading the documenta-
tion to discover. Especially impressive is its ability to tell you the most effi-
cient way to call its routines. Though we didn’t make use of this informa-
tion in the previous example, update() actually returns the next value that’s
required to cause the display to change. To see how this might work, imag-
ine a process that has 100,000 steps. Calling update() at the tenth step
doesn’t do anything because that value isn’t large enough to move the ther-
mometer over another notch. It’s a wasted subroutine call. If we store the
return value of each update() call, we can choose to only call update() again
when it matters. This can be a big efficiency win for larger jobs.

A second module worth mentioning came up in the April 2006 column. In
that column I demonstrated the use of Smart::Comments. This magic mod-
ule will actually take specially formatted comments in your code and make
them come alive. The example I gave in April was this:

use Smart::Comments;

for $i (0 .. 100) { ### Cogitating |===[%] |
think_about($i);

}

sub think_about {
sleep 1; # deep ponder

}

The result is a cool progress bar that looks like this as the program runs:

Cogitating |[2%] |
Cogitating |====[37%] | (about 1 minute remaining)
Cogitating |=============[71%] | (about 30 seconds remaining)
Cogitating |==========================|

2.Hello? Tap . . . Tap . . . Is This Thing On?
(Fear That the Script Has Locked Up)

Sometimes your code performs a task of indeterminate length or with an
unknowable number of steps before completion. We can’t use modules
such as Term::ProgressBar in those cases because we have no idea what the
end value will be; ten steps could represent 10% completion or .00010%
completion. Even though we can’t put up a pretty thermometer in cases
like this, it is still important to relieve those running the program of their
anxiety that things might not actually be progressing.

A simple ‘print “Working...”’ at the beginning of the process just doesn’t
cut it. The next best thing (and it’s not particularly good) is something like
this:

while (do_something){ print “.”;}

This sort of thing works fine for small numbers of operations but it leads
to an indistinguishable blizzard of periods marching across the screen
when the number of steps is anything but a small amount. Yes, something
like this could be used:

my $counter;
while (do_something){

print “.” if ($counter++ % 100 == 0); # print every 100 steps
}

but we can do better.

66 ; LOG I N : VO L . 3 1 , NO . 6

I’m old enough to wax nostalgic about Sun2 machine boot sequences, so I
have a soft spot in my heart for Term::Twiddle. This module provides a
spinner like the one you see in either the Sun or FreeBSD boot process.
That’s the little animated cursor that prints the following characters in
sequence in the same spot on the screen so it appears to spin:

\ | / -

(For those of you who want to play along with the home-game version,
feel free to cut out the previous line, paste each character on its own card,
and make a flip-book.)

Term::Twiddle has many customization options available, but my personal
favorite is the following (quoted from the documentation):

probability . . . The purpose of this is to create a random rate of
change for the thingy, giving the impression that whatever the user is
waiting for is certainly doing a lot of work (e.g., as the rate slows, the
computer is working harder, as the rate increases, the computer is
working very fast. Either way your computer looks good!).

Using Term::Twiddle is easy:

use Term::Twiddle;
my $spinner = new Term::Twiddle;
$spinner->start; # start the spinner a’spinnin’
do_something code
$spinner->stop; # fin

The one gotcha worth noting for Term::Twiddle is that the do_something
section in the this example can’t include any sleep() calls, since sleep()
potentially messes with the interval timers that allow the module to work.

If you don’t like that restriction, you may be interested in another module
in that family, Term::Activity, which provides a slightly less disingenuous
view of how things are progressing. Term::Twiddle sets off this animated
cursor thingy that changes without any direct connection to the actual
process it is purporting to show working. In contrast, Term::Activity actu-
ally requires your code to call a tick() subroutine every time it wants anoth-
er step in the process to be registered (and the display to change). The
code then looks like this:

use Term::Activity;
my $progress = new Term::Activity;
while (things_are_happening){

do_something code
$progress->tick();

}

The result is an ASCII wavelike thingy (install the module to see what I
mean) that also counts the number of times tick() has been called and the
interval between tick()s. All of this increases the warm fuzzy count of the
person running the code.

; LOGIN: DECEMBER 2006 PRACTICAL PERL TOOLS: GIVE ME MY WOOBIE BACK 67

3. Perl the Destroyer (Fear That the Script Could Be Doing Damage)

If I take a BB gun, aim it at my foot, and pull the trigger I can roughly
approximate the process many Perl neophytes go through when they first
learn how to write filesystem walking/changing code. Modules such as
File::Find or the even spiffier File::Find::Rule make it super easy to write
code that will nuke large chunks of your filesystem with very little effort.
For this reason it is crucial that your code make it fairly hard to take
destructive actions. If your code mass-removes files by default, someone
who stumbles on your “cleanup.pl” script will be in a for a rude surprise
when he or she decides to run it to see how it works. Granted, this is per-
haps the last time that person will do something so ill-advised, but still,
this isn’t exactly the best pedagogical technique.

One easy way to avoid this situation is to force the user to call the script
with a large and slightly unwieldy command-line switch if deletions are
really desired. Something such as --deleteFilesAtWill could be used. A quick
warning is called for here: If you are using a module such as Getopt::Long
that handles abbreviated switches automatically and by default, be sure to
pick something that doesn’t abbreviate to a common switch name. This
means that arguments such as --debugByDeletion, --verboseMakeGoByeBye,
or --helpMeNukeMyFilesystem are probably right out.

4. CheckWhat Condition Your Condition Is In
(Fear That the ScriptWill Run for a Long Time andThen Fail)

As tempted as I am, I’m not going to harp more on the test-first methodol-
ogy we discussed back in the April column. Instead let me harp on a varia-
tion of that idea. It can inspire confidence if your program can run a brief
self-test before it runs. This test can check necessary conditions the pro-
gram needs before running. For example:

� Is the database it needs hot and ready to go?
� Are the file permissions on key configuration files still ok?
� Do the working directories used by the program exist, and are they
writeable?

� Is DNS reverse-lookup working fine?
� Are the TLS/SSL certificates that are going to be used still valid?

Code like this:

use Test::Simple tests => 5;
ok(configs_owned_by_user(), ‘config files are fine’);
ok(-w $tempdir, ‘$tempdir ready for writing’);
ok(test_database(), ‘database ready to go’);
ok(reverse_lookup(‘192.168.0.1’) eq ‘router.example.com’, ‘DNS ok’);
ok(check_certs($certdir/$certname),’TLS cert is valid’);

produces comforting output like this when everything is going smoothly:

1..5
ok 1 - config files are fine
ok 2 - /var/tmp ready for writing
ok 3 - database ready to go
ok 4 - DNS ok
ok 5 - TLS cert is valid

so you know Thunderbirds are Go!

68 ; LOG I N : VO L . 3 1 , NO . 6

Here’s a tip: If the program itself is due to have a long runtime there’s a lit-
tle more leeway for how long this self-test should take, but beware of let-
ting it drag on too long. At a certain point it becomes like a folk singer
who spends more time tuning the guitar than playing it. Eventually the
audience revolts and starts throwing berets and bongos.

5. Breakfast. Lunch. I Said Lunch,Not Launch!
(Fear of Using the Script Incorrectly)

For our last anxiety-reducing tip of this issue we’re going to look at an
easy way to embed the documentation for a script in that script. This
method will allow the documentation to travel with the script (versus a
separate manual page) without getting in the way of the code itself.

Pod::Usage makes it easy to provide two types of documentation on
demand: the standard short “USAGE” message for a summary of script
purpose and options or a full-blown manual page. It can actually produce
something in between, but in practice I only use it for these two.

Here’s how it works: Code outside of Pod::Usage is responsible for the
parsing of the program options that choose how to call Pod::Usage. In
practice, this means the usual option-parsing code that probably looks
something like this:

use Pod::Usage;
use Getopt::Long;

I prefer to store the options I receive in a hash
my %options;
GetOptions(\%options, ‘help’, ‘man’, {more options...});

Now we dispatch based on the switches the script receives:

handle help or man page request
pod2usage(-exitstatus => 0, -verbose=> 0) if (exists $options{help});
pod2usage(-exitstatus => 0, -verbose=> 2) if (exists $options{man});

In this case we’re calling Pod::Usage with two parameters:

1. Exit status: When Pod::Usage exits after doing its job, what should
the exit value of script be as a whole? In the preceding code, we say
it should be 0 (i.e., success), since the script will have successfully
done its job of printing out documentation upon request. In some
cases (e.g., if the script detects that the user hasn’t called an option
with the right arguments) we’ll want to set this exit status to indicate
failure. That way the program can exit with an error message and set
the status accordingly. For example:

abort if we don’t get some key info about our ice cream cone
die “--flavor <name> not specified, aborting... (try --man)\n”

unless (exists $options{flavor});

2. Verbosity: How verbose (i.e., USAGE message only or full manual
page) should Pod::Usage be? Verbose level 0 prints the former; level
2 prints the latter.

Are we done? Well, almost. All we have to do now is arrange for there to
be some documentation to display. (You did write documentation in paral-
lel with the code, right?) The documentation typically lives at the bottom
of the script in POD format (see “perldoc perlpod” and “perldoc perlsyn”
for more info) after an __END__ token:

; LOGIN: DECEMBER 2006 PRACTICAL PERL TOOLS: GIVE ME MY WOOBIE BACK 69

lovely script here above this point in the file ...

__END__

=head1 NAME

makecone - construct an ice cream cone

=head1 SYNOPSIS

makecone [options]

Options:
--flavor <name of flavor> specify flavor for ice cream (required)
--help print usage message only
--man show entire man page for this script

=head1 DESCRIPTION

. . . and so on.

Now if a user calls your script with --help or --man he or she will receive
enough documentation to gain some sense of whether your script is being
used correctly.

And with those warm cockles, I’m afraid it is time to end this issue’s col-
umn. Take care, and I’ll see you next time.

70 ; LOG I N : VO L . 3 1 , NO . 6

; LOGIN: DECEMBER 2006 ISPADMIN: WIRELESS 71

R O B E R T H A S K I N S

ISPadmin: wireless
Robert Haskins has been a UNIX system administra-
tor since graduating from the University of Maine
with a B.A. in computer science. Robert is employed
by Shentel, a fast-growing network services provider
based in Edinburg, Virginia. He is lead author of
Slamming Spam: A Guide for System Administrators
(Addison-Wesley, 2005).

rhaskins@usenix.org

TH I S A RT I C L E F O CU S E S ON T E C H -
nologies and hardware that service pro-
viders would typically use for deploying
wireless networks. Nonlicensed spectrum
products are the focus here, since licensed
spectrum products are usually beyond the
budget of a typical ISP. That doesn’t mean
licensed products are not used in the ser-
vice provider market; it just means that
licensed spectrum usage is a much smaller
segment of that market than is unlicensed
spectrum usage.

This article is not meant to be a primer on wire-
less technologies. The references contain a few
pointers to resources where the reader can obtain
additional information on wireless technologies
[1, 2]. Note that this article is based upon U.S.
standards, so readers in other countries should
consult their local regulatory agency’s rules
regarding what is licensed in their particular
country.

(Disclaimer: My employer uses many of the prod-
ucts used in this article, including Colubris and
Motorola.)

Background

The three applications and frequency ranges typi-
cally used (in parentheses) in service provider
networks can be broken down as follows:

� Last mile (900 MHz)
� Hotspot, last mile (2.4 GHz)
� Backhaul, hotspot, and last mile (5.x GHz)

In the United States, most of this space is unli-
censed spectrum, allocated by the Federal
Communications Commission (FCC). One of the
major differences between unlicensed and licensed
spectrum is that with unlicensed spectrum, the
operator of the equipment is required to resolve
interference issues. With licensed products, there
is no spectrum “sharing,” so interference is usual-
ly minimal.

One unexpected application of a wireless provider
network is in the area of device tracking in metro-
politan areas. Often the traditional satellite GPS
signal is unusable where there is a lot of interfer-
ence, such as near a tall building. By triangulating
multiple wireless device signals from an ISP’s
existing wireless network, the location of the
device can be determined. Although this will

never replace GPS altogether, it is useful for some metropolitan regions
and applications.

Last Mile

Last mile access can be thought of as a DSL or cable modem access replace-
ment. That is, the service provider’s POPs connect to the end customer via
wireless connection. This “last mile” access eliminates the need for using a
local exchange carrier’s (LEC’s) network, saving cost and possibly time to
deployment. One useful application of wireless is allowing access for people
living in remote areas whose network access is nonexistent or not more
than 128 kbps.

The frequency behind many last mile products is 900 MHz, though 2.4
and 5.x GHz can also be used. As with many wireless technologies, line of
site is important but not necessary. Many 900-MHz products are able to get
six miles of non-line-of-sight service at 3 Mbps [3]. Typical pricing for the
Trango solution is $539 for the customer premises equipment (CPE) and
$1595 for the radio and antenna, which can serve 126 CPEs. Motorola
Canopy [4] is another offering in this space.

Interference with 900 MHz can be caused by several things: other ISPs
running 900 MHz equipment, older wireless phones, scanners, baby moni-
tors, and video senders. Mitigation of the interference is the responsibility
of the equipment owner (i.e., the service provider) when unlicensed prod-
ucts are used.

Hotspot

The first widely deployed hotspot IEEE standard was 802.11b, which used
the 2.4-GHz frequency at up to 11 MB/s (a maximum of 300 feet from
access point to subscriber). Subsequently, the 802.11a standard was devel-
oped; it used the 5.x-GHz frequency up to 54 MB/s but was not compatible
with 802.11b, because it used a different set of frequencies. Finally, the
802.1g standard allows the 2.4-GHz range up to 54 MB/s and retains com-
patibility with IEEE 802.11b.

One benefit of deploying 802.11 hotspots (Wi-Fi) is that many portable
devices (e.g., laptops) contain embedded 802.11 access devices. This elimi-
nates the need for the provider to ship a CPE device to the subscriber. (Of
course, it also eliminates a potential one-time revenue source, but service
providers aren’t usually focused on selling hardware.)

Hotspots can be deployed using “consumer grade” access points such as
Cisco/Linksys or Netgear. However, these devices are often lacking needed
features in a service provider’s network. The list includes:

� Remote manageability/monitoring (SNMP)
� RADIUS authentication for end-subscriber access
� Wall/ceiling/outdoor enclosure
� Multiple wireless networks (SSIDs) within the same device

One option is for a service provider to build its own access points. Many
open source solutions exist for manufacturing your own hardware (see the
October 2005 edition of ISPadmin on the topic of embedded systems).
However, the cost and trouble involved in a home-grown solution usually
makes a commercial solution more attractive. An option for a low-priced
gateway would be NoCatAuth [6]. This open source project handles
authentication on low-cost hardware.

72 ; LOG I N : VO L . 3 1 , NO . 6

Along with the radio, a provider will want to control some activities of
the subscriber by deploying a gateway that can provide a login screen,
authenticate the subscriber, and handle redirection and other similar fea-
tures. This gateway can be combined with the radio (e.g., the Colubris
3300R) or can be separate (the Colubris MSC-5200/5500 or Nomadix
AG3000 [5]). In large deployments, multiple radios can be attached to the
5000-series device, lowering the cost of the project. One manufacturer of
service-provider–grade access points is Colubris.

The Colubris 3300R series [7] devices are a good example of what a ser-
vice provider might use in a combined gateway and radio device. In addi-
tion to the necessary but often omitted features in the bulleted list on p.
72, the 3300R series includes, but is not limited to, the following features:

� Multiple radios
� DNS relay and SMTP redirection
� 100 subscriber maximum
� Quality of Service (QoS) management

Backhaul

Backhaul involves moving data between different points on the provider’s
network. For example, the provider might aggregate all customer traffic at
two points in its network. From those two points, the service provider
would purchase two connections to the Internet. So the question comes
down to how to get all the subscriber traffic to one or both of those
Internet connections. This is known as backhaul.

Back in the days before unlicensed wireless, the only option for backhaul
was either an LEC-provided data circuit (T1, DS3, etc.) or an expensive
license spectrum (RF or microwave-based equipment). The licensed-spec-
trum solution was not typically an option for an undercapitalized ISP.
However, once the nonlicensed spectrum was open and products were
available, wireless and the ability to bypass the LEC became a viable
option. Also, the ability to reach remote non–LEC-served areas was possi-
ble with low-cost wireless backhaul.

Wireless backhaul equipment is normally very similar to the “last mile”
equipment, but with an antenna that sends a signal in a narrow range (as
opposed to the omnidirectional antenna typically used in last mile applica-
tions). Backhaul via wireless is not without the usual issues, however.
Some of these issues include:

� Interference with other providers
� Interference with wireless devices
� Line of site
� Power

The Trango Atlas 5010-EXT [8] offers 45 Mbps of bridged Ethernet up to
20 miles at $2795 per connection. This is quite cost-effective when com-
pared to the recurring cost of a DS3 circuit. Another option would be the
Motorola Canopy 5430BH product, which offers 60 Mbps line-of-sight to
124 miles.

Troubleshooting

No article on wireless would be complete without covering issues related
to deploying wireless networks. A wireless spectrum analyzer is extremely
helpful in troubleshooting interference with other devices and networks.
Like traditional network analyzers, they come in two types: standalone

; LOGIN: DECEMBER 2006 ISPADMIN: WIRELESS 73

dedicated devices, and software (and possibly hardware) that runs on
another device such as a laptop or handheld PC. The references list a cou-
ple of devices, both dedicated [9] and portable-PC-based [10]. Another
tool that is useful for troubleshooting hotspots is a software program such
as Netstumbler [11]. This is an application that runs on a Wi-Fi–enabled
laptop and tells you what networks are within the range of the wireless
radio.

When designing and deploying a wireless network, be sure to check over-
all throughput and make sure latency doesn’t affect performance. Latency
can be high if there are a large number of hops or if interference is present.
Also, don’t deploy wireless networks during the winter when foliage is
missing and expect it to work during the summer when everything is in
full bloom!

WiMAX

WiMAX (IEEE standards 802.16d and 802.16e) is a next-generation wire-
less protocol supporting a wide frequency range (2–66 GHz) and fast
speeds. It is designed as a “last mile” replacement, offering multi-megabit
speeds, with a range of 1–5 miles without line of sight. It may be useful for
backhaul applications, but use in this area is currently somewhat limited.
The standard could conceivably even replace the 802.11a/b/g wireless
“hotspot,” though total replacement is unlikely at least over the next few
years, owing to the large installed base of 802.11 devices and networks.

WiMAX can be used with either licensed or unlicensed spectrum, making
it a flexible choice for spectrum license holders and nonlicense holders as
well. It can be deployed as a fixed or mobile (handheld/laptop) configura-
tion. Although it is often hard to distinguish between the hype and news,
references [12] and [13] give some good background on the WiMAX
arena.

Community Access

Because of the low cost and lack of LEC involvement in deployments,
wireless technology is an excellent way for communities to “build their
own ISP.” In fact, several U.S. cities are sponsoring wireless access deploy-
ments within their boundaries. Many other entities are getting into the act
as well; sponsors can range from counties and homeowner associations to
technologically oriented geeks. Because they operate like a nonprofit, the
cost can be less than traditional access methods (DSL and cable modems)
and built to serve underutilized and/or remote or rural areas. However, just
because these organizations are nonprofit doesn’t mean that money-paying
subscribers will accept poor service!

Mesh networking [14] is a methodology used by some community-sup-
ported enthusiasts (and others) to reduce backhaul costs. Instead of rout-
ing all traffic directly to the Internet connections on the network, mesh
networks route traffic through several peer (subscriber) nodes prior to hit-
ting a node that is Internet-connected. This has the benefit of potentially
reduced cost, depending on how the network is architected. The downside
is that it takes specialized software to handle routing (and, potentially,
billing) and other tasks that are not widely supported in current consumer
firewall/router/access points.

I’d like to thank Bob Alexander of Shentel for his assistance with this article.

74 ; LOG I N : VO L . 3 1 , NO . 6

REFERENCES

[1] http://www.practicallynetworked.com/pg/wireless_networking
_bkgrounder.htm.

[2] 802.11 Wireless Networks: The Definitive Guide, 2nd ed., Matthew Gast
(O’Reilly Media, 2005).

[3] Trango M900S: http://www.trangobroadband.com/products/
m900s.shtml.

[4] Motorola Canopy: http://motorola.canopywireless.com/products/
specshome.php.

[5] Nomadix AG3000: http://www.nomadix.com/products/platforms
/ag3000/.

[6] NoCatAuth: http://nocat.net/.

[7] Colubris 3300R: http://www.colubris.com/downloads/datasheets
/DS_MSC_3000.pdf.

[8] Trango Atlas 5010: http://www.trangobroadband.com/products/
atlas_5010.shtml?id=bb.

[9] BK Precision Handheld 8.5-GHz Spectrum Analyzer Model #2658:
http://www.bkprecision.com/www/np_specs.asp?m=2650.

[10] Fluke Networks AnalyzeAir Wi-Fi Spectrum Analyzer: http://www
.flukenetworks.com/fnet/en-us/products/AnalyzeAir/MOA.htm.

[11] Netstumbler: http://www.netstumbler.com/.

[12] ZD Net UK article on WiMAX: http://news.zdnet.co.uk/
communications/wireless/0,39020348,39241047,00.htm.

[13] WiMAX Forum: http://www.wimaxforum.org/home/.

[14] Mesh networking page from Wikipedia: http://en.wikipedia.org/wiki/
Mesh_network.

; LOGIN: DECEMBER 2006 ISPADMIN: WIRELESS 75

Copyright 2006 R. Moon

76 ; LOG I N : VO L . 3 1 , NO . 6

H E I S O N C H A K

VoIP watch:

security
Heison Chak is a system and network administrator
at SOMA Networks. He focuses on network manage-
ment and performance analysis of data and voice
networks. Heison has been an active member of the
Asterisk community since 2003.

heison@chak.ca

A S I WA S WA I T I NG AT TO RON TO
Pearson Airport to board my flight, my early
evening nap was interrupted by a familar
sound—the default ring tone of a Cisco
phone. Pearson is one of the airports that
have taken the step to convert most (if not
all) telephone communication to VoIP
about three years ago. Today, Cisco IP hand-
sets can be seen just about everywhere
throughout the airport, from airline coun-
ters to information kiosks.

Although most VoIP implementations focus on
voice quality, latency, and interoperability, the first
question that comes to my mind is, How is securi-
ty handled at this scale of deployment? In other
words, how are confidentiality, availability, and
integrity issues being addressed?

These state-of-the-art telephony systems promise
to cut communication costs by carrying more
voice calls than traditional switched circuit net-
works and enable enhanced services such as uni-
fied communications. However, as with traditional
telephony, vulnerability to theft of service, denial
of service attacks, and eavesdropping are all con-
cerns for organizations deploying VoIP, and the
consequences can be far more serious.

Confidentiality

As with data networks, VoIP security needs to be
handled in a similar context, which may involve
properly locking down servers and placing them
behind firewalls, patching against vulnerabilities,
and monitoring activities with intrusion-detection
systems. Call detail records contain identity of
callers and call patterns and should be treated
with the same level of sensitivity as the actual
content of a communication channel. Since voice
travels in packets over IP networks, hackers can
use data-sniffing and other hacking tools to carry
out unauthorized wiretapping. It is possible to
identify, modify, and play back voice traffic tra-
versing such networks. For example, the vomit
utility converts a conversation of a Cisco IP phone
in G.711 (a codec) to a wave file that can be
played back with a sound player.

$ vomit -r phone.dump | waveplay -S8000 -B16 -
C1

Break-ins of a call manager host or soft switch
that is directly accessible from the Internet or an

open network on a university campus could result in loss or compromise
of sensitive data. Credit card numbers, social security numbers, and other
important PINs entered during a phone call may end up in the wrong
hands, allowing identity theft. A compromised gateway could turn into
financial damages as a result of theft of use.

Availability

When designing VoIP networks, one should be aware that a VoIP packet
stream exhibits behavior different from that of data packets. Although VoIP
packets are small, they come in at a higher rate than do most data packets.
Consider a regular data switch deployed in a VoIP network trying to han-
dle tens or hundreds of VoIP devices communicating at 20-ms packetiza-
tion interval (voice media separated into 20-ms frames for transmission);
the switch can easily grind to a halt with high packet rates while utiliza-
tion is still low. Buffers, echo canceller, and interface queues on routers
and switches may also introduce additional delay, contributing to unpleas-
ant conversations. Reducing hop count and increasing bandwidth may ease
some of these delay issues. In the back office, when VoIP equipment is
deployed alongside data equipment, one must size UPS and HVAC accord-
ingly. Provisioning additional UPS power and runtime for soft switches and
PoE capability will avoid an embarrassing situation should UPS power be
overdrawn in a failover situation. The airflow in a small riser room may no
longer be adequate for the VoIP PBX system. One of the biggest challenges
in VoIP is providing telephony-like system uptime with general-purpose
computer hardware and software. The discrete network elements like to
advertise 4 or 5 9s of availability, but the ITU Telcordia estimates overall
PSTN availability to be 99.94%. This metric also implies that 99.94% is the
end-to-end requirement for VoIP to achieve PSTN equivalence.

Integrity

Voice packets should not be altered, callerID should reflect the true identi-
ty of a caller, and call detail records should be guarded with care, so that
billing reports can be generated accurately. These requirements may sound
reasonable and simple, but the fact is that they may be technically difficult
to achieve. With NAT (Network Address Translation) and some widely
used Layer 4 protocols (e.g., SIP and H.323), Layer 3 addresses can often
be found in the wrong layer, making them difficult to deal with. For exam-
ple, the “contact” address of a SIP packet originated from a host with an
RFC1918 address behind a NAT firewall is not reachable from the Internet.
An ALG (application layer gateway) and the middlebox solution are
designed to disassemble the packet and replace the Layer 4 SDP (session
description protocol) contact address of a SIP packet with a routable
address of the edge router, such that return packets can be routed. It is
obvious that such techniques violate the integrity of these VoIP packets,
and it will continue to happen as long as the dominant VoIP protocol
breaks NAT. There are many workarounds, yet the permanent fix is to
avoid using NAT altogether and may be to go to IPv6 or use a protocol,
such as IAX, that works well with NAT.

As with callerID, which was never really trusted in the PSTN world,
emerging to VoIP makes it even easier to forge. The following Asterisk
dial plan demonstrates how easy it is to alter callerID information. It sends
a call to a SIP provider with callerID set to “Bill G” (you may be surprised
to find out how many telephone companies actually pass the callerID

; LOGIN: DECEMBER 2006 VOIP WATCH: SECURITY 77

onward). In the extensions.conf configuration file used by Asterisk, chang-
ing the callerID is as simple as including a couple of lines:

_9.,1,SetCallerID(Bill G)
_9.,n,Dial(SIP/${provider}/${EXTEN:1})

NowWhat?

Some suggest signing, encrypting, and tunneling VoIP packets to ensure
authenticity of callers, protecting all voice stream and touch-tone key-
strokes, and working around the NAT problem. Since VoIP is susceptible to
delay, having to sign every single packet and crypto overhead may intro-
duce further delay to a VoIP packet in transit. Tunneling can also impact
throughput, as additional header is required, worsening the header versus
payload ratio (especially for efficient codecs, such as G.729). Header com-
pression can ease the pain but may require custom work.

Typically, the one-way delay of a PSTN phone call is less than 150 ms. To
maintain similar quality of voice over an IP network, there need to be algo-
rithms that can perform tasks of signing and encrypting packets in a
speedy fashion.

Delay Source (G.729) | On-Net Budget (ms)

——————————————————————————————-

Device sample capture | 0.1

Encoding delay (Alg delay + processing) | 17.5

Packetization/depacketization delay | 20

Move to output queue/queue delay | 0.5

Access uplink transmission delay | 10

Backbone network transmission delay | latency

Access downlink transmission delay | 10

Input queue to application | 0.5

Jitter buffer | 60

Decoder processing delay | 2

Device playout delay | 0.5

Total (one-way) | 121.1+latency

Until such algorithms become available, we may need to weigh confiden-
tiality against usability. To match the latency in PSTN of 150 ms, when the
typical VoIP latency is already 121.1 ms (ignoring network latency), any
algorithm used for encryption must be so fast as to be insignificant.
Perhaps we should continue to rely on our own ears to authenticate a
caller’s voice until standards and the required infrastructure for authentica-
tion exist.

78 ; LOG I N : VO L . 3 1 , NO . 6

; LOGIN: DECEMBER 2006 /DEV/RANDOM 79

R O B E R T G . F E R R E L L

/dev/random
Robert is a semiretired hacker with literary and
musical pretensions who lives on a small ranch in
the Texas Hill Country with his wife, five high-main-
tenance cats, and a studio full of drums and guitars.

rgferrell@greatambience.com

KNOW WHAT I L I K E A BOUT ON L I N E
auctions?Well, several things actually, but
in this case I’ll confine my enthusiasm to
the juicy low-hanging fruit known as stor-
age media. I’m talking “previously owned”
hard disks, thumb drives, micro drives,
memory sticks, compact flash cards, SM
cards, and all the other variations on that
theme to be found for sale to the highest
bidder. Even old DLT tapes, Zip disks, and
their somewhat archaic ilk can be had, for
those with the equipment to read them.
What is it about these utterly common-
place devices, you may well ask, that waxes
my elephants? It is the treasures nestled
deep in their binary bowels, of course:
intact data. The number of people who
yank media out of a computer or digital
camera and ship it off to a never-met buyer
without even bothering to delete the con-
tents is, to choose but one from the stable
of modifiers that apply, staggering. Even
among those who make some attempt at
sanitization, the belief that simply deleting
files on a hard disk is sufficient to obliter-
ate data is as widespread as it is erroneous.
That minor misconception is what makes
disk-diving entertaining.

I’m not going to cover the basics of file systems
and the mechanisms for deletion of data there-
from, because I strongly suspect most anyone
reading this already knows all about that sort of
thing—probably more than I do, in fact. I will
instead press onward and mention that the public
record is liberally littered with examples of care-
lessly cast-off bits. Customer profiles, patient files,
Privacy Act data, confidential transactions, stu-
dent grades, personal communications, pirated
music and video, homegrown pr0n, and just
about every other embarrassing and potentially
actionable manifestation of our obsession with
archiving ones and zeroes for posterity are there
for the bidding and the winning and the fondling.
Garfinkel and Shelat in 2003 estimated that only
9% of used drives bought off an auction site fit
into the “properly cleansed” category, while some-
thing like 17% still contained intact operating sys-
tems as well as user data. I’m not talking about

data recoverable only using expensive forensics suites or scanning tunnel
microscopy, either. I mean plug it in, boot it up, read ’em, and reap.

Although I don’t have figures at hand concerning other forms of removable
data storage, I would expect them to suffer from a similar lack of deletion
diligence. There have been marketing campaigns touting thumb drives, for
example, as “disposable” storage. All storage is disposable, as far as that
goes. Despite prolific coverage of “dumpster diving” as a lucrative tech-
nique for intelligence gathering, people still tend quite naively to equate
disposal with oblivion. One of my best friends as a child was the son of a
small-town garbage man. (Yep, that’s what we called them back then. They
hadn’t come up with “sanitation engineer” yet.) His dad would find some
truly amazing things in the trash on occasion: completely functional elec-
tronics, toys still in their original packaging, intact china, perfectly service-
able furniture, and so on. My buddy had, as a result, the single largest per-
sonal collection of plastic model parts in the known universe: closets and
bedrooms and storage sheds full of them. If we were children today, I fig-
ure his dad would be bringing home operational thumb drives and flash
memory cards for us. They’re not as easy to build room-filling space sta-
tions out of, but we’d manage somehow. Nerds are nothing if not resource-
ful.

Giggling at embarrassing vacation photos someone thought they’d dis-
patched forever or riffling through breathy emails to an old lover are inva-
sions of someone’s privacy, admittedly, but they don’t come close, damage-
wise, to the ever more popular hobby of identity theft. Aye, there’s the rub,
or rather, jagged laceration, where unsanitized media are concerned. When
your Social Security number, bank account, date of birth, and online pass-
words are in the hands of the profit-minded, you’re in a world of hurt.
There’s an awful lot of mayhem that can be perpetrated in your name in
this case and—here’s the really dicey part—even though you’re the victim
here, it’s up to you to prove you didn’t do it. The “innocent until proven
guilty” principle, which has already taken a terrific tossing around in
recent years, goes right out the window and splatters messily on the pave-
ment far below. Meanwhile, the bad guy has moved on to buying stuff
using someone else’s identity, blissfully unconcerned with the years it will
take you to rebuild your besmirched reputation in the eyes of the financial
sector. All because you, or more likely some company with whom you
once did business, couldn’t be bothered to wipe before flushing.

Here, of course, is where the whole concept gets seriously scary. No matter
how careful you are with your personal data on equipment you control,
there’s not much you can do about the appalling lack of security at the
myriad institutions with whom you’ve shared this information. Just stop
and think how many hard drives in the world have your private data stored
on them, any one of which falling into the wrong hands could shred your
life quite thoroughly. On second thought, maybe it’s better if you don’t think
about it too much. There’s enough bad news permeating our daily exis-
tence as it stands now without adding yet another worry based on an event
with a fairly low statistical probability of occurring, like a hurricane or a
supervolcano eruption or an asteroid strike or avian flu or global warming
or Lyme disease or . . . Sorry, my world view has been deteriorating steadi-
ly since I ran out of selective serotonin reuptake inhibitors the other day.

Returning briefly to the subject of used media, the Data Protection Gurus
say that if you’ll take the simple preliquidation precaution of overwriting
everything with zeroes or ones you’ll foil all but the most determined and
well-funded illicit data recovery efforts. I go them one better, though.
Before I discard old media, I overwrite everything with twos.*
*The “two” is stamped into the head of a twelve-pound sledgehammer.

80 ; LOG I N : VO L . 3 1 , NO . 6

; LOGIN: DECEMBER 2006 BOOK REVIEWS 81

book reviews
E L I Z A B E T H Z W I C K Y ,
S A M S T O V E R , A N D
R I K F A R R O W

SECURITY AND USABI L ITY:

DES IGN ING SECURE SYSTEMS

THAT PEOPLE CAN USE

Lorrie Faith Cranor and Simson
Garfinkel, eds.
O’Reilly, 2005. 692 pages.
ISBN 0-596-00827-9

This is a collection of individual
papers about security and usabil-
ity. The collective message is
“Security is hard. Usability is
also hard. They are not actually
in complete opposition, but
combining them is really hard.”
Security people often get away
with waving their hands and say-
ing dismissively that making
things more secure inherently
makes them less usable, so
there’s no point expecting sys-
tems to be usable. This volume is
devoted to the proposition that
this is a cop-out. Some security
interferes with some usability,
but most secure systems have
usability problems for the same
reason that most usable systems
have security problems; someone
decided that the relevant prop-
erty could be painted on at the
end, but it’s actually a design
property. You have to actually
know what you’re doing, think
deeply about it, and build it in.

This volume covers a wide range
of topics from a wide range of
perspectives. I found it pretty

uneven and yawned my way
through several articles, but on
the whole it was enlightening. It
includes some great tragicomic
moments, such as Simson Gar-
finkel’s paper on used disks, and
the infamous “Why Johnny Can’t
Encrypt,” in which 12 people
tried to use PGP and only a third
of them managed to sign and
encrypt a message correctly
within 90 minutes and three
accidentally exposed the secret.
There are also some great case
studies where people actually
ended up able to use the stuff,
which tend to drive home the
“usability is also a design prop-
erty” point, and some good stud-
ies on passwords, which drive
home the points that actual data
can be useful and that text pass-
words remain popular for really
good reasons.

This is a great book to consider
before you design your next
project that includes authentica-
tion and handy to have around
to pull out figures to support
arguments like “No, I don’t think
biometrics will solve that for
you” and “Yes, I think we ought
to run a nice, low-level format
on that disk before we let it out
of our hands.” This is not a book
to read from start to finish, at
least for me; it starts slowly and
doesn’t really pick up steam until
section three.

PROTECT YOUR WINDOWS NET-

WORK: FROM PERIMETER TO DATA

Jasper M. Johansson and Steve
Riley
Addison-Wesley, 2005. 549 pages.
ISBN 0-321-33643-7

This is a sensible, well-written
guide to security from a Win-
dows perspective. Of course,
mostly what I mean by “sensi-
ble” is that the authors agree
with me on almost all the sub-
jects where I already knew my
opinion, but I also mean that
they have a balanced, rational

tone and talk about broad issues
instead of exclusively about de-
tails. They spend a lot of time
encouraging the reader to think
about security overall, instead of
securing one thing and focusing
on the demon of the day.

Although the book comes from
a Windows perspective and
occasionally gets into Windows
specifics, it covers a lot more
than just Windows issues. It
talks about policies, about users,
about physical security. It’s a nice
guide to the universe of security,
even if you’re not interested in
Windows. If you are interested in
Windows, it gives you a lot of
important information not avail-
able elsewhere and helps sort out
the genuinely important issues
from the frantic hand-waving
and the strange registry-setting
obsessions.

This is by far the best, most read-
able Windows security book I’ve
come across. Admittedly, my
experience with the genre is not
exhaustive, but it’s large enough
to have been exhausting; I’ve
certainly hefted a bunch of them,
opened them up, groaned in mis-
ery, and put them down again.
This is not one of those; it’s a
fine addition to any security
library that happens to be about
Windows.

WINDOWS SERVER 2003 SECURITY

COOKBOOK

Mike Danseglio and Robbie Allen
O’Reilly, 2005. 479 pages.
ISBN 0-596-00753-1

Once you’ve read Protect Your
Windows Network so that you
understand what you want to do,
this will help you figure out how
to do it. Don’t, under any cir-
cumstances, do it in the other
order. This is a cookbook; Protect
Your Windows Network is a menu
planner and nutrition handbook.
If you start with the cookbook
and eat nothing but cookies and
steak, it’s not the cookbook’s

fault, but you’re not going to feel
good.

The Cookbook does attempt to
give you some background as to
why you might want to do things
and what might go wrong if you
do them, but it’s only really
enough to help you if you have a
firm background in the underly-
ing issues. Once you have that
background, it looks useful, pro-
viding command-line and script-
able solutions wherever possible.
I’m definitely keeping it around
for those moments when I know
I need to beat something into
submission but don’t know how.
I will be using caution, however;
I note that it doesn’t mention the
oddities of the “cacls” utility,
which doesn’t propagate permis-
sions. In Windows, you have to
tell files to inherit permissions—
cacls doesn’t, so changing direc-
tory permissions won’t change
permissions on files that are sup-
posed to inherit the directory
permissions, until some future
time when something else propa-
gates the inheritance. This is a
nasty trap, and anything that
suggests you use cacls really
ought to mention the issue.

HOME NETWORK SECURITY

S IMPL I F I ED

Jim Doherty and Neil Anderson
Cisco Press, 2006. 199 pages.
ISBN 1-58720-163-1

This is a book designed for the
security-naive but not technol-
ogy-phobic Windows user—the
kind of thing you’d hand to your
more self-sufficient relatives to
get them to deal with their own
security. To fit network security
into 199 pages, with lots of color
pictures and white space, it sim-
plifies pretty ruthlessly. For in-
stance, it doesn’t even mention
the existence of non-Windows
operating systems. If you were
hoping it might apply to your
relatives who are bothering you
about the security of their Mac-

intoshes, your hopes will be
dashed.

That said, I think it does a pretty
good job of covering the issues
for its audience. They’re more
tolerant of WEP than I would be.
(They do encourage the use of
WPA if it’s available, but they’re
willing to accept WEP.) I also
have a nontechnical issue with
their snooping advice; snooping
is just as icky as a parenting
technique as it is within a mar-
riage. In either situation, you
might consider logs and traces as
an agreed-on way to maintain
accountability instead of as a
secret, an idea they don’t men-
tion.

On balance, however, the auth-
ors cover the important stuff in a
friendly, accessible way, and they
manage to be realistic about the
dangers of the Internet. I might
hand mine off to one of my more
distant relatives (the close ones
all run operating systems it does-
n’t believe in).

DICTIONARY OF INFORMATION

SECURITY

Robert Slade
Syngress, 2006. 222 pages.
ISBN 1-59749-115-2

This is billed as an essential ref-
erence tool; I’m not sure about
that. It’s not that it’s a bad dic-
tionary of information security.
It’s a perfectly good one, with
definitions that are precise
enough to be useful without
being incomprehensibly techni-
cal. The jokes are small enough
and rare enough to work as leav-
ening, and there’s a nice appen-
dix with a list of other useful dic-
tionaries. I am also somewhat
awed that Slade has managed to
respond to the one complaint
about security books that I didn’t
expect to see ever handled:
Appendix B has a plot and some
character development.

Nonetheless, I’ve never thought
“Gee, what I really need here is a

dictionary of information secu-
rity,” and I don’t expect I will
anytime soon. I might possibly
look something up in it to
answer a question such as “Is
that new, or did I just miss it
somehow?” but most of my
questions about information
security terms are more likely to
be answered by a search engine
(for brand-new terms) or the Jar-
gon File (for the history of
terms). This book would be most
useful for somebody just enter-
ing computer security, but if
you’re that person, and you’re
reading things you can’t under-
stand without the help of the
dictionary, you’re in over your
head and need some deeper
background.

SOCKETS, SHELLCODE, PORTING,

& CODING

James C. Foster
Syngress, 2005. 667 pages.
ISBN 1597490059

R E V I E W E D B Y S A M S T O V E R

This is the final entry in a list of
books that I’ve reviewed by this
author. This book, as with the
previous ones I’ve reviewed,
comes with an upside and a
downside. The upside is that
there are a couple of chapters
that have really excellent mate-
rial. The downside is that there
are only a couple, and the
remaining chapters have been
cut-and-pasted from other
books.

Let’s focus on the good first.
Chapters 3, 4, and 5 explain
BSD, Windows, and Java Sock-
ets, respectively. There’s lots of
good material here, and although
I’m not a fan of Java, it does pro-
vide at least a great foundation
for both UNIX (BSD) and Win-
dows sockets.

Chapter 6 is a good introduction
to writing portable code, which
is the name of the chapter, inci-
dentally. From that, Chapter 7
launches into network-specific

82 ; LOG I N : VO L . 3 1 , NO . 6

portable coding. I found these
two chapters to be the real gems
in this book. My day-to-day life
does not include any C program-
ming, so working through these
chapters was very fun and
informative.

Chapter 13, “Writing Security
Components,” focuses on intro-
ducing the reader to the Compo-
nent Object Model (COM) and
implementing it with the Active
Template Library (ATL). Once
that foundation is laid, the final
chapter, “Creating a Web Secu-
rity Tool,” gives a very fun
glimpse into the intricacies the
authors encountered when writ-
ing their own Web scanner. Very
good stuff.

Now here’s the bad: All of the
other chapters exist in other
books, namely Writing Security
Tools and Exploits, Buffer Over-
flow Attacks, and The Pen-Testers
Open Source Toolkit. There are 14
chapters in this book, and only
half of them contain original
material. If you own any of the
other three books, be warned.
The chapters are all in various
stages of cut-and-pasting. It’s
hard to tell which chapters were
lifted from which books, but the
fact remains that there is a highly
incestuous relationship among
the four books.

As I’ve said before, each book on
its own contains a wealth of
information. The problem arises
when you buy one of the other
books in the hopes of moving
deeper into the subject, only to
find that it’s the same material,
sometimes verbatim. Regardless
of the right or wrong of it, I feel a
duty to let people know so that
their expectations are managed.
It’s one thing to buy a cut-and-
paste book knowing that the dif-
ference among the books is what
you want.

To make a long story short, this
book has some incredibly valu-
able information on C coding,
but readers and buyers should be
aware that 50% of the book
could very well already exist on
their bookshelf.

DESIGN ING EMBEDDED HARDWARE

John Catsoulis
O’Reilly, 2005. 377 pages.
ISBN: 0596007558

R E V I E W E D B Y R I K F A R R O W

Embedded systems has been one
of my interests for years, so when
this book appeared, I wanted to
read it. And although it lingered
on my “to be read” stack for a
while, once I got into it I found
that Catsoulis writes about a dif-
ficult topic clearly, and he held
my interest.

Embedded systems are every-
where, more common than
desktop computers by far. I had
worked with embedded systems,
as well as early PC components
that used co-processors, back
in the early 1980s, and had as-
sumed that things had simply
gotten too complex to under-
stand. Instead, Catsoulis explains
how embedded system designs
have gotten less complex, as chip
designers worked to create hard-
ware that is easier to integrate. If
you think about it for a moment,
it makes perfect sense that ease of
use ranks right up there with
capabilities, making this a natu-
ral evolution.

Catsoulis starts off gently, with
chapters as basic as architecture,
some assembler and Forth, and
Electronics 101; there are even
soldering tips. He then moves
into the use of specific intercon-
nects, the buses of embedded sys-
tems. These chapters initially
caught my interest, as they ex-
plained concepts I had heard

about: the Canbus used in my
Prius, or I2C used with real-time
clocks in PCs, and even a good
explanation of USB. To me, these
chapters alone were worth the
price of the book. Then Cat-
soulis describes how these buses
are used to tie together sensors,
relays, and various micropro-
cessors. Catsoulis’s experience
teaching college-level classes in
embedded system design shows
as he points out commonly made
design errors, such as forgetting
to use draw-down resistors.

If you have ever considered
building that network-connected
toaster or Web-based wine-cellar
temperature sensor, this is the
book for you. Even if you won’t
be designing your own circuit
boards, you will certainly under-
stand what is involved in any kit
or prebuilt design you may
decide to use.

STEAL ING THE NETWORK: HOW TO

OWN A CONTINENT

131ah, Russ Rogers, Jay Beale, Joe
Grand, Fyodor, FC, Paul Craig,
Timothy Mullen, and Tom Parker
Syngress, 2004. 432 pages.
ISBN 1-931836-05-1

This is another book that sat
around gathering dust; I started
reading it in the middle, then
went on to read the whole thing.
Books in this series (the titles of
which start with “Stealing”) are
fictional accounts of hacks and
hacking. The chapters vary in
quality, but I found I enjoyed
reading most of this book, per-
haps in part because I know
many of the authors and could
recognize their hacking styles in
their chapters. Stealing the Net-
work makes for good idle-time
reading.

; LOGIN: DECEMBER 2006 BOOK REVIEWS 83

N I C H O L A S M . S T O U G H T O N

an update on
standards

Nick is the USENIX Standards
Liaison and represesnts the
Association in the POSIX, ISO,
C, and LSB working groups. He
is the ISO organizational rep-
resentative to the Austin
group, a member of INCITS
committees J11 and CT22, and
the Specification Authority
subgroup leader for the LSB.

nick@usenix.org

As you know if you’ve been fol-
lowing this column, the POSIX
standard is undergoing a revi-
sion. This is the third official full
revision since it first became a
standard in 1988. In this article,
we’ll take a more detailed look at
some of the new interfaces that
are planned for inclusion in the
revised standard. There are four
separate sets of new interfaces,
each of which is currently an offi-
cial Open Group specification.

SET 1 : GENERAL INTERFACES

There are several extremely use-
ful interfaces in the GNU C
library, glibc, many of which are
also found in other vendors’
libraries. These interfaces can be
broadly grouped into the follow-
ing categories:

� Directory handling: alphasort(),
dirfd(), and scandir().

� Signal handling: psignal() and
psiginfo().

� Standard I/O extensions:
dprintf(), fmemopen(),
getdelim(), getline(),
open_memstream(), and
open_wmemstream().

� Temporary files: mkdtemp().
� String handling: stpcpy(),
stpncpy(), strndup(), strnlen(),
strsignal(), mbsnrtowcs(),
wcpcpy(), wcpncpy(),
wcscasecmp(), wcsdup(),
wcsnlen(), and wcsnrtombs().

I don’t plan to describe each and
every one of these interfaces in
detail, but there are some inter-
esting points to note. First and
foremost is the relationship
between this project and the
Technical Report the ISO C com-
mittee is preparing on “bounds
checking interfaces.” Although
the ISO C document contains
newly invented functions to sup-
plement the standard I/O and
string handling functions of the
ISO C standard, it will only be a
Technical Report. This is not the
same as a Standard; it is a way of

testing the water, providing a
trial-use period to see whether
industry is interested in going
that way. At this point, a few
companies have indicated an
interest in that approach, includ-
ing both Microsoft and Cisco.

However, the interfaces listed
above will be going into the
POSIX standard and will have
the full weight of an Interna-
tional Standard to them. They
are not invention, and they have
been implemented (quite proba-
bly on the system you are using).
Many of them solve the same
problem, buffer overflow, that
the ISO C Technical Report tries
to, but in a very different way.
There is a second part to the ISO
C technical report planned,
which will reference many of
these new POSIX interfaces as
better alternatives if you are
designing new programs. On the
other hand, if you are retrofitting
large, established code bases to
fix potential buffer overflows,
then the ISO C inventions may
be useful.

Two interfaces fmemopen()
and open_memstream(), are par-
ticularly interesting, in that they
provide a way of performing
standard I/O to dynamically allo-
cated memory buffers. Consider
the following:

char *
itos (int i)
{
FILE *f;
size_t len;
char *buf;

if((f = open_memstream(&buf,
&len)) == NULL)

return NULL;
fprintf(f, “%d”, i);
fclose(f);
return buf;

}

Although this is a rather trivial
use of the new functionality, it
serves to illustrate the point. The
function converts an integer to a

84 ; LOG I N : VO L . 3 1 , NO . 6

string, allocating space for the
string as required. A more con-
ventional program might have
chosen to use a static buffer and
assumed that the size of an inte-
ger was n bits, and therefore the
maximum length that the string
could ever be was m bytes. And
the program would have over-
flowed its buffer when ported to
a system with a larger size of
integer.

SET 2 : PATHNAMES RELATIVE TO

OPEN DIRECTORIES

Solaris 10 introduced a handful
of file system interfaces to work
on files with extended attributes.
These interfaces were all named
with an ...at() suffix, and they
took a file descriptor of an open
directory as the first argument.
Relative pathnames are relative
to the open directory, and not
(necessarily) relative to the cur-
rent working directory. For
example, openat() behaves as
ordinary open(), except that it
takes an additional argument,
the file descriptor for relative
pathnames. In the Solaris case,
openat() accepts an additional
value, O_XATTR, for the file
mode.

In the glibc case, the extended
attributes part of these interfaces
was dropped, but the concept of
handling pathnames relative to
an open directory proved a pow-
erful mechanism for addressing
a number of security and other
related issues, and so the concept
was extended to all system inter-
faces that took a pathname. One
other interface in this set is
fexecve(), which is similar to
execve() except that it executes
the file on an open file descrip-
tor. This allows, for example, a
program to open the file it is
about to execute, lock it, check-
sum it, and only execute it if it
matches the expected checksum.
Without fexecve(), an applica-
tion that attempted to do this

would suffer a vulnerability that
the file could be replaced
between successfully checksum-
ming it and executing it.

One other useful feature of this
set is the ability to avoid (or at
least postpone) buffer overflow
with pathnames that exceed
PATH_MAX bytes.

The complete list of interfaces in
this set is as follows: faccessat(),
fchmodat(), fchownat(),
fdopendir(), fexecve(), fstatat(),
futimesat(), linkat(), mkdirat(),
mkfifoat(), mknodat(), openat(),
readlinkat(), renameat(), sym-
linkat(), and unlinkat().

One other noteworthy point
must be made here: futimesat()
may yet change its name and
functionality slightly. There is
an intention in this revision of
POSIX to include file timestamps
with nanosecond granularity.
Until now POSIX has specified
only one-second granularity on
files. However, almost all OS
vendors now have support for a
finer-grain resolution, typically
at the nanosecond level. As pro-
cessors get faster and faster, the
ability for tools to be able port-
ably to distinguish between a
source file and a file generated
from that source becomes more
and more important. Since
futimesat() is a new function,
both in glibc (as far as I am
aware, it has not been imple-
mented anywhere else) and
POSIX, this may be the best
place to add support for setting
file time stamps at this fine a
granularity. This aspect is still
under discussion in the commit-
tee.

SET 3 : ROBUST MUTEXES

Developers of multi-threaded
applications are probably well
aware of the problems that can
arise when a process terminates
while one of its threads holds a
mutex lock. While it is some-

times possible for another thread
to unlock the mutex and recover
its state, this is at best an unreli-
able and unportable mechanism.

Robust mutexes are introduced
in this set of new interfaces. A
robust mutex is simply a mutex
with a special “robust” bit set in
its attributes. Whenever a thread
that owns a robust mutex termi-
nates, current or future waiters
on that mutex will be notified
that the owner is dead. Another
thread then has the opportunity
to take over and clean up the
state that was protected by the
mutex and to make the mutex
once again consistent.

One important feature of this
proposal is that it is only in-
tended to deal with abnormal
termination of the process own-
ing the mutex (e.g., if the pro-
cess was subject to a signal). It is
not intended to be a way to
encourage bad programming and
have applications simply not
bother to clean up properly at
exit, and so on; therefore, if a
thread is terminated by cancella-
tion or if it calls pthread_exit(),
it is expected that that thread
will handle its own cleanup
properly (e.g., by registering
appropriate cleanup handlers).

This set of interfaces includes
pthread_mutex_consistent(),
pthread_mutexattr_getrobust(),
and pthread_mutexattr_setro-
bust(). It also alters the behavior
of several other existing mutex
APIs, essentially by adding the
EOWNERDEAD error return.

SET 4 : THREAD-AWARE LOCALES

The concept of locales to allow
processes to have different natu-
ral-language interfaces has
always been a part of POSIX.
Until now, the process has been
the object that is associated with
a locale. This set of new APIs
permits individual threads to be
in different locales.

; LOGIN: DECEMBER 2006 AN UPDATE ON STANDARDS 85

The major new concept in this
set of interfaces is the locale_t
object. Applications can create as
many locale objects as they
require, each one associated with
a different locale. Each thread
can then choose to use one of
these locales, and in doing so
does not affect the behavior of
any other thread. Compare this
with the old concept of the
process as a whole being in a
given locale; if one thread
changed the locale, then all the
threads in that process would be
changed.

The fundamental interfaces
in this set are newlocale(),

duplocale(), freelocale(), and
uselocale().

In addition to these, all of the
ctype.h character categorization
functions gain a new locale
object counterpart. For example,
as well as isalnum(int c), there is
an isalnum_l(int c, locale_t l)
interface. The former returns
true if the character represented
by c is alphanumeric. The new
interface returns true if the char-
acter is alphanumeric in the
locale represented by l.

THE TIMETABLE

The revision project has been
working up to full steam over

the past couple of years, but it is
now in full-scale development
mode. The first committee drafts
appeared in July (as I write this
article). The second draft, which
will probably be the first one to
be publicly balloted, is sched-
uled for November 2006. The
document will probably take
until April 2008 before it is com-
pletely approved. As always, the
Austin Group welcomes any
interested party to join the
process. For details, see
www.opengroup.org/austin.

86 ; LOG I N : VO L . 3 1 , NO . 6

USENIX
notes

USEN IX BOARD OF DIRECTORS

Communicate directly with the
USENIX Board of Directors by
writing to board@usenix.org.

P R E S I D E NT

Michael B. Jones,
mike@usenix.org

VI C E P R E S I D E NT

Clem Cole,
clem@usenix.org

S E C R E TA RY

Alva Couch,
alva@usenix.org

TR EA S U R E R

Theodore Ts’o,
ted@usenix.org

D I R E C TO R S

Matt Blaze,
matt@usenix.org

Rémy Evard,
remy@usenix.org

Niels Provos,
niels@usenix.org

Margo Seltzer,
margo@usenix.org

EX E C UTIVE D I R E C TO R

Ellie Young,
ellie@usenix.org

LETTERS TO THE EDITOR

TO ROBERT HASKINS

Robert,

I just read “ISPadmin: Anti-Spam
Roundup” in the October issue of
;login;. I thought you might have
been a bit more clear about repu-
tation filtering with regard to
DCC. DCC has offered reputa-
tion filtering with its commercial
license for close to a year now.
Vernon tests Solaris builds on
USENIX’s MX, so I don’t know
whether the commercial license

is revenue-generating. You might
ping Vernon about it.

Otherwise I enjoyed your col-
umn, as always.

Tony Del Porto
Sysadmin, USENIX Association

ROBERT HASKINS REPL I ES

Tony is indeed correct. The Rhy-
olite commercial solution Tony
mentions combines IP reputation
information from originating IP
addresses with the DCC check-
sum data from messages, using
data from paying subscribers
only. Utilizing paying clients
helps to eliminate the possibility
of the checksum data getting
contaminated by spammers
wanting to get their junk
through.

TO MARK BURGESS

Dear Sir,

To me ;login: seems to reinvent
the wheel in about every issue.

One of the other articles in
;login: February 2006 is about
Configuration Management.
That is part of ISO 20000, so
why reinvent it? In fact several
other articles in earlier ;login:s
refer to problems and issues that
are addressed in a structured
manner (engineering-like) in
ISO 20000, ISO 17799, and
other international standards. I
think it will benefit your maga-
zine, and ICT in general, to refer
to international standards when
they are available. The standards
are not absolute, so any discus-
sion will benefit the community.

A practical suggestion: perhaps a
thorough article on ISO 20000
(ITIL) may be a suitable start.
There is a U.S. chapter of the
user group, www.itsmf.com.

ISO 20000 was originally devel-
oped by users; that is one reason
why it is useful. However, there
are a number of tools that follow

USEN IX MEMBER BENEF ITS

Members of the USENIX
Association receive the following
benefits:

F R E E S U B S C R I P T I ON to ;login:, the Associ-
ation’s magazine, published six times
a year, featuring technical articles,
system administration articles, tips
and techniques, practical columns on
such topics as security, Perl, Java, and
operating systems, book reviews, and
summaries of sessions at USENIX
conferences.

ACC E S S TO ; LOG I N : online from October
1997 to this month:
www.usenix.org/publications/login/.

ACC E S S TO PA P E R S from USENIX confer-
ences online:
www.usenix.org/publications/
library/proceedings/

TH E R I GH T TO VOT E on matters affecting
the Association, its bylaws, and elec-
tion of its directors and officers.

D I S COUN T S on registration fees for all
USENIX conferences.

D I S COU N T S on the purchase of proceed-
ings and CD-ROMs from USENIX
conferences.

S P E C I A L D I S COUN T S on a variety of
products, books, software, and
periodicals. For details, see
www.usenix.org/membership
/specialdisc.html.

TO J O I N SAG E , see www.usenix.org/
membership/classes.html#sage.

F O R MOR E I N FO RMAT I ON regarding
membership or benefits, please see
www.usenix.org/membership/
or contact office@usenix.org.
Phone: 510-528-8649

; LOGIN: DECEMBER 2006 USEN IX NOTES 87

the standard and may help
implementation.

Until ICT quality is much
improved, we are seen as hack-
ers, not professionals.

It would be nice to have an
answer, perhaps that I and ISO
are both junk?

Yours very truly,
Tore Audun Høie,
Ph.D. computer science

MARK BURGESS REPL I ES

My answer is simple:

ISO17799 (formerly BS17799)
is a standard for heuristic secu-
rity management in organiza-
tions, and ISO20000 (formerly
BS15000) is the ITIL reference
document. Both of these are
high-level, handwaving guide-
lines about service and business
operations. True enough, they
pay lip service to configuration
management, but the configura-
tion management they refer to is
not the same as discussed in
;login:—it concerns software and
information organization and
revision/change control. The
technical problem covered in
;login: is more about automa-
tion, tuning, and maintenance
in operating systems. The prin-
ciples are somewhat similar, but
these ISO documents offer no
solutions to implementation,
only finger-wagging “should
do’s” to be complied with.

ADDENDUM TO ANNUAL TECH ’06

2006 USEN IX ANNUAL TECHNICAL

CONFERENCE INVITED TALK

Hackers and Founders

Paul Graham, Y Combinator

Summarized by Marc Chiarini

[This summary was inadvertently
omitted from the conference sum-
maries published in the October
2006 ;login:. We apologize to the
summarizer, the speaker, and our
readers.]

Graham, a well-known hacker
and essayist (and all-around nice
guy) gave a thought-provoking
and at times hilarious talk about
the power of the marginal. He
began with an observation by his
friend Trevor Blackwell. On a
trip to the Apple garage, Black-
well who hails from Saskatch-
ewan, was amazed at how dedi-
cated Jobs and Wozniak must
have been to work in a garage.
“Those guys must have been
freezing!” Graham pointed out
that the mild climate of Silicon
Valley, which has sprouted quite
a few famous startups, encour-
ages work on the margins, where
there is more incentive to tinker
and much less need to justify the
use of well-heated indoor spaces.
There is a paradox, however:
even though many hackers and
founders come from and work
best on the margins, many also
crave acceptance by the main-
stream. This is not a good thing;
most great ideas come from the
margins. Graham made a witty
attempt at explaining why this is
so and what can be done to en-
courage the process.

He touched on many core ideas:
the disadvantages of “insider”
(mainstream) projects, illus-
trated via analogy with the gov-
ernment commissioning the
writing of the Great American
Novel; ways of determining in
what fields it’s worth trying to
become an insider, including
evaluation of the tests that admit
you and the quality of existing
insiders (from a practitioner’s
point of view); why big compa-
nies frequently get blind-sided
by startups, because the employ-
ees continually undergo tests for
the wrong qualities; how out-
sider success hinges on corrupt
tests selecting ineffectual insid-
ers with lots of money, followed
by fair tests such as the market-
place, where, thanks to the Inter-
net, ideas are increasingly pro-
motable on a level playing field.

Graham provided a veritable
guidebook for success as an out-
sider: In any field, even in those
with honest tests for inner-circle
admission, outsiders don’t have
much to lose; they can take risks
again and again, with few people
noticing their failures. Tradition
should generally be shunned, as
the state of the art changes much
faster these days and the space of
possibilities is ever growing. Nor
can outsiders allow their lives to
become scheduled; it’s not good
for thinking. Long, uninter-
rupted blocks of time allow
broad tinkering. It’s also essential
for outsiders to stay in direct
contact with the latest platforms,
programming languages, and
other technologies. Delegation,
especially in the starting phases
of an “unplanned” project, is a
death knell; if you are not doing
almost all the work yourself, you
stop learning. Outsiders must
find problems that can be solved
in one person’s head (like the
Woz building the hardware and
software for the Apple II). One
way is to focus on the places
where tasks are normally di-
vided: create a programming lan-
guage and, instead of shotgun-
ning it to other hackers, build
something useful with it and
hand that off. Since outsiders
don’t have the benefit of highly
focused training, they can cast a
wide net, creating new interdis-
ciplinary projects for themselves,
learning enough in each area to
hack together something brand
new. Finally, working on small
things provides quick gratifica-
tion and the ability to make do
with less.

The remainder of Graham’s talk
focused on how to make up for
what insiders often have—for
instance, an audience, money,
nonmaterial resources—without
becoming like them. His con-
cluding advice was to try just
hacking things together; when
people complain that you’re

88 ; LOG I N : VO L . 3 1 , NO . 6

unqualified or that what you’ve
been doing is “inappropriate,”
you know you’re on the right
track!

In the Q&A, people asked what
it takes to be a good startup
founder. You need to be unbe-
lievably determined, you have to
have a good sense of design, and
you have to be outgoing enough
to speak with other people. Q:
How does one make something
marginal catch on? A: Start with
other hackers and early adopters
(Google was a great example, no
marketing, just word of mouth).
Q: What is the path to startup
success? A: The most important
thing is to make something that
other people want or, better yet,
need. Q: How do you know
when to let something you’ve
created run its course or to inter-
vene in its development? A: You
cannot hose yourself by open-
sourcing everything and letting
people play. Q: How do you
know when something has failed
and it’s time to try your next
foolish idea? A: Collect good
friends whose opinion you trust,
and always be open to sugges-
tions.

THANKS TO OUR VOLUNTEERS

Ellie Young
ellie@usenix.org

As many of our members know,
USENIX’s success is attributable
to a large number of volunteers,
who lend their expertise and
support for our conferences,
publications, and member ser-
vices. They work closely with
our small staff in bringing you
the best there is in the fields of
systems research and system
administration. Many of you
have participated on program
committees, steering commit-
tees, and subcommittees and in
SAGE, as well as contributing to
this magazine. We are most
grateful to you all. I would like

to make special mention of the
following individuals who made
significant contributions in
2006.

The program chairs for our 2006
conferences:

Larry Peterson and Timothy
Roscoe, NSDI ’06

Atul Adya and Erich Nahum,
2006 USENIX Annual Technical
Conference

Mahadev Satyanarayanan and
Nigel Davies, MobiSys 2006

Steven M. Bellovin, SRUTI ’06

Matt Blaze and Angelos D.
Keromytis, First HotSec Work-
shop

Dan Wallach and Ron Rivest,
first Electronic Voting Technol-
ogy Workshop

Angelos D. Keromytis, USENIX
Security ’06

Ted Ts’o, 2006 Linux Kernel
Developers Summit

David Andersen and Neil Spring,
WORLDS ’06

Brian Bershad and Jeff Mogul,
OSDI ’06

Michi Henning and Maarten van
Steen, Middleware 2006

William LeFebvre, LISA ’06

Invited Talks/special track chairs:

Chris Small and Matt Blaze,
Invited Talks for 2006 USENIX
Annual Technical Conference

Patrick McDaniel and Gary
McGraw, Invited Talks for
USENIX Security ’06

David N. Blank-Edelman and
Doug Hughes, Invited Talks for
LISA ’06

Philip Kizer, Guru Is In Coordi-
nator for LISA ’06

Some other major contributors:

Balachander Krishnamurthy for
his continued efforts in obtain-
ing sponsorships and providing
guidance for SRUTI

Alva Couch for liaising with VEE
and HotAC, co-sponsored by
USENIX

Avi Rubin and ACCURATE for
helping organize our first Elec-
tronic Voting Technology Work-
shop

Peter Honeyman for his efforts in
outreach to the international
community, e.g., the SANE and
Middleware conferences

Michael B. Jones for serving as
liaison to the Computing
Research Association

Matt Blaze, Clem Cole, Alva
Couch, Rémy Evard, Jon “mad-
dog” Hall, Michael B. Jones,
Marshall Kirk McKusick, Niels
Provos, Margo Seltzer, and
Theodore Ts’o for their service
on the USENIX Board of Direc-
tors in 2006

Jon “maddog” Hall for holding
auctions for contributions to the
John Lions Chair in Operating
Systems at the University of New
South Wales

Dan Geer, Theodore Ts’o, and
Marshall Kirk McKusick for
serving on the USENIX audit
committee

Clem Cole, Peter Salus, Keith
Packard, John Gilmore, Jim
McGinness, and Jon “maddog”
Hall for serving on the USENIX
awards committee

Rob Kolstad and Don Piele for
their work with the USA Com-
puting Olympiad, co-sponsored
by USENIX

SAGE UPDATE

Greetings from USENIX. We’ve
been busy, working hard on the
upcoming LISA conference and a
fantastic new SAGEWeb site.
Take a look at what’s been hap-
pening with SAGE.

; LOGIN: DECEMBER 2006 USEN IX NOTES 89

90 ; LOG I N : VO L . 3 1 , NO . 6

L ISA ONSITE REGISTRATION, GROUP

DISCOUNTS, AND COMMUNITY

MEETINGS

The LISA Program Committee
and USENIX have put together a
high-caliber slate of tutorials for
LISA ’06. There’s something for
everyone, whether their special-
ity is storage, networks, security,
or jack-of-all-trades sysadmin.
It’s not too late to register—in
fact, it’s the perfect time, lest you
find that your annual conference
fell victim to somebody’s Q4
budget squeeze. Onsite registra-
tion opens at 5 p.m. on Saturday,
December 2. Bring your manager
and your colleagues, and qualify
for the multiple-employee dis-
count by taking 5 or more people
to LISA:
http://www.usenix.org/events
/lisa06/.

JOIN US AT L ISA—SAGE COMMUNITY

MEETING ON DECEMBER 6

We’ve scheduled the SAGE Com-
munity Meeting for Wednesday
night, December 6, and we hope
to see a large presence there. We
value the input you have given
us to keep SAGE on track, so
please keep it coming.

NEW SAGE WEB GOES L IVE

It’s here! The new SAGEWeb
site is live, and it’s a lean, clean,
information machine! We lis-
tened to your feedback and gave
you the same no-nonsense inter-
face that works so well on the
USENIX site, with all the fea-
tures you expect from SAGE:
Jobs Board, Speakers Bureau, and
so on. The new site is more than
just skin-deep, though: Content
has been updated and expanded
throughout, and new functional-
ity has been written in. Check it

out and learn more about SAGE
at http://www.sage.org.

JOHN LIONS FUND—LAST CALL

You may recall that in the April
issue (p. 80) we announced that
USENIX was matching dona-
tions to the fund to establish an
endowed Chair in Operating
Systems at the University of New
South Wales. The period of
matching donations is rapidly
drawing to a close.

To double the value of your con-
tribution, make your donation
before December 31, 2006. Send
a check to:

John Lions Fund
USENIX Association
2560 Ninth St., Suite 215
Berkeley, CA 94710

or donate online at
http://www.usenix.org
/about/lionsfund/

Statement of Ownership, Management, and Circulation, 10/2/06

Title: ;login: Pub. No. 0008-334. Frequency: Bimonthly. Subscription price $115.
Office of publication: USENIX Association, 2560 Ninth Street, Suite 215, Berkeley, CA 94710.
Headquarters of General Business Office Of Publisher: Same. Publisher: Same.
Editor: Rik Farrow; Managing Editor: Jane-Ellen Long, located at office of publication.
Owner: USENIX Association. Mailing address: As above.
Known bondholders, mortgagees, and other security holders owning or holding 1 percent or more of total amount of bonds, mortgages, or
other securities: None.
The purpose, function, and nonprofit status of this organization and the exempt status for federal income tax purposes have not changed dur-
ing the preceding 12 months.
Extent and nature of circulation Average no. copies each issue No. copies of single issue

during preceding 12 months published nearest to filing date of 10/2/06
A. Total number of copies 6800 7140
B. Paid and/or requested circulation

Outside-county mail subscriptions 3977 4105
In-county subscriptions 0 0
Other non-USPS parcel distribution 1726 1793
Other classes 0 0

C. Total paid and/or requested circulation 5703 5898
D. Free distribution by mail

Outside-county 0 0
In-county 0 0
Other classes mailed through the USPS 61 73

E. Free distribution outside the mail 555 720
F. Total free distribution 616 793
G. Total distribution 6319 6691
H. Copies not distributed 481 449
I. Total 6800 7140
Percent Paid and/or Requested Circulation 91% 89%

I certify that the statements made by me above are correct and complete.
Ellie Young, Publisher

; LOGIN: DECEMBER 2006 CONFERENCE SUMMARIES 91

conference
reports

THANKS TO OUR SUMMARIZERS

SECURITY '06

Madhukar Anand

Tanya Bragin

Kevin Butler

Lionel Litty

Michael Locasto

Bryan D. Payne

Manigandan Radhakrishnan

Micah Sherr

Patrick Traynor

Wei Xu

METRICON 1.0

Dan Geer

NSPW ’06

Matt Bishop

Michael Collins

Carrie Gates

Abe Singer

CONTENTS

91 15th USENIX Security Symposium
112 MetriCon 1.0
116 New Security Paradigms

Workshop (NSPW ’06)

Security ’06: 15th USENIX
Security Symposium

Vancouver, B.C., Canada
July 31–August 4, 2006

KEYNOTE ADDRESS

The Current State of the War on
Terrorism and What It Means for
Homeland Security and Technology

Richard A. Clarke, Chairman,
Good Harbor Consulting LLC

Summarized by Kevin Butler

Richard Clarke gave an impas-
sioned, scathing indictment of
the U.S. government’s policies
and practices that electrified the
crowd in Vancouver, bringing
them to their feet at the conclu-
sion of his keynote speech.
Clarke was the former counter-
terrorism advisor on the U.S.
National Security Council for the
Bush administration and has
advised every administration
since Reagan. He brought his 30
years of consulting work to bear
on his speech, where he laid out
many of the issues facing both the
security research community and
the populace at large, given the
current global situation.

Clarke began by commenting
that, nearing the fifth anniversary
of the September 11 attacks, we
should examine what measures to
increase security have been
addressed since that time. As
Clarke pointed out, five years is a
long time: It took less than five
years for the Allies to destroy
Nazi Germany and Imperial
Japan. The day after the 9/11
attacks, President Bush asked
Clarke to outline a series of plans
to maintain security. Clarke
responded with a series of blue-
prints for going after Al Qaeda
while simultaneously addressing
vulnerabilities at home. Part of
these plans concerned the state of
IT security, given the growing
dependence of the nation on
cyber-based systems. Unfortu-

nately, since that time, little of
what had been discussed was
implemented, while other, more
draconian measures that impinge
on civil liberties have instead
taken their place.

Much of Clarke’s criticism was
aimed at the administration’s han-
dling of the Al Qaeda threat. After
9/11 there was talk about finding
the cells and taking out the lead-
ership, when the focus should
have also included attacking the
root causes of problems: a battle
of ideas, where the West displays
a better ideology that is more
appealing to the Islamic world
than that promulgated by Al
Qaeda. The results have not been
great to this point, as Al Qaeda
still exists and has transformed
from a hierarchical, pyramid
structure to a decentralized
organization with dozens of indi-
vidual organizations. In the 36
months after 9/11, Clarke
asserted, the number of attacks
by groups related to Al Qaeda
doubled around the world.
Clarke satirically referred to an
Arabic satellite TV station estab-
lished by the U.S. government
“that nobody watches” as our
entry into the battle of ideas.

He also showed many similarities
between the American occupa-
tion of Iraq and the French occu-
pation of Algeria, a conflict that
the French ultimately lost. By
alienating the Iraqi population
thanks to the stories from Abu
Grahaib, the assaults on Fallujah,
and the perception of killing
innocent civilians in Iraq (despite
what the truth may be, Al Jazeera
and Al Arabia show daily images
of Americans killing women and
children through aerial and other
assaults), we are losing the battle
of ideas and convincing the Iraqis
that Al Qaeda was right: For its
oil, we are taking over a country
that did nothing to us. We are
almost fulfilling bin Laden’s
prophecies. What are the metrics
of success in Iraq? Clarke sug-

gested these are the economy
and stability of the country.
When asked how many innocent
civilians had been killed in Iraq,
President Bush replied, “Around
30,000”; however, a team from
Johns Hopkins did a field survey
using internationally accepted
metrics and found the number
was close to 100,000, not count-
ing the 2,500 dead and 10,000
wounded Americans. The Penta-
gon admits to having already
spent $400 billion on the war,
and some estimates put the total
price tag at over a trillion dollars.
Part of the rationale of the high
economic and human cost is that
fighting the terrorists “over
there” means we won’t be fight-
ing them “here.” This argument
is logically fallacious, however;
nothing we are doing there pre-
vents them from fighting us here
or anywhere else, as evidenced
by the attacks on the Madrid
train system, attacks on the Lon-
don subway, and the planned
attacks in Toronto. None of the
fighting overseas prevented these
situations, nor will it prevent
future attacks in Canada and the
United States.

Clarke argued that more effort
should have been spent protect-
ing critical infrastructure and
minimizing the possibilities of
damage here. An ABC report
showed how easy it was to take a
backpack onto a train and leave
it unattended, the modus oper-
andi of the Madrid attacks. Simi-
larly, 120 chemical plants in the
United States store lethal gas,
with over a million people in the
plume radius. If one such plant
were attacked and a plume un-
leashed, over 17,000 casualties
would be expected; however,
Congress has debated plant pro-
tection for over three years but
nothing has been done. This has
occurred with issue after issue.
Instead, measures that reduce
civil liberties—such as the inef-

fective color-coded threat sys-
tem—have been implemented by
abusing the term “security.” The
government engaged in mass
wiretapping without any judicial
oversight and, combined with
other abuses, this has led to the
association of security with Big
Brother in the minds of the pub-
lic.

The current situation has impli-
cations for security researchers,
as currently many systems were
not designed with security in
mind, and Clarke asserted that
research into securing these sys-
tems is necessary. However,
DARPA no longer funds many of
these activities, and research
money is being handled by the
Department of Homeland Secu-
rity through the HSARPRA pro-
gram; however, this program is
severely underfunded, with this
year’s budget cut from $16 mil-
lion to $12 million—Clarke
noted that such was the adminis-
tration’s commitment to cyber-
security research. This view is
shared by the president’s own
committee, which identified the
program as requiring significant
new funding, but this has not yet
come to pass.

Clarke made some controversial
statements describing what regu-
lation should be required. He
suggested that identifying best
practices for ISPs is possible to
regulate the service provider
industry. He also suggested gov-
ernmental regulation in critical
systems such as electrical power
systems and banking, but he
considers the current govern-
ment ideologically opposed to
such measures. The upshot is
that many opportunities to focus
on real security have been
wasted. The best thing for us in
the community to do is not to
rely on the government, but to
unite and come up with ways of
solving problems ourselves, as

well as staying vigilant for gov-
ernmental attempts to further
erode civil liberties. He ended his
address by noting that when peo-
ple erode civil liberties, privacy,
and constitutional guarantees,
they need to be reminded of
their oath to defend the Consti-
tution against all enemies, lest
they become the enemies them-
selves.

A spirited question period fol-
lowed. To the question “Is it that
the administration is apathetic,
malicious, or doesn’t have a
clue?” Clarke responded, “Yes.”
The administration, in his view,
cannot be educated and needs to
be replaced. He also reiterated
the need to win the battle of
ideas by supporting moderate
and progressive voices in the
Middle East, and he noted the
amount of “security theatre”
being practiced, where there is a
show of security without sub-
stance. A particularly resonant
point was the need to find and
disclose vulnerabilities; as
Clarke noted, our real enemies
already know our vulnerabilities
and security processes, and pre-
tending we won’t talk about
them because these enemies will
learn about them is very wrong.
One of the best defenses against
future attacks is an environment
of openness and disclosure.
Another important point was
that we need to accept that risk
is present and casualties will
occur; the question of an attack
is not “if” but, rather, “when.”
We should focus on mitigating
the effects of the next attacks
whenever they may happen,
while focusing on ideals such as
due process and guaranteed
Constitutional rights that are the
hallmarks of our civilization: If
we cannot preserve those, then
what are we fighting for?

92 ; LOG I N : VO L . 3 1 , NO . 6

AUTH E NTI C ATI O N

Summarized by Micah Sherr

A Usability Study and Critique of Two
Password Managers

Sonia Chiasson, P.C. van Oorschot, and
Robert Biddle, Carleton University

Sonia Chiasson presented a
usability study of two password
managers, PwdHash (USENIX
Security ’05) and Password Mul-
tiplier (WWW2005). Although
both password managers attempt
to increase security by shifting
the burden of creating and main-
taining strong passwords away
from the user, the study demon-
strated that usability issues in
the applications led to incorrect
usage of the managers and, in
some cases, to the leakage of
password information.

Sonia presented the results of a
follow-up questionnaire given to
members of the focus group. Par-
ticipants indicated that they did
not perceive an improved sense
of security. Users were uncom-
fortable with not knowing the
passwords to the sites they vis-
ited, and many had misconcep-
tions as to the operation of the
managers (e.g., the belief that
their passwords were kept in a
large and remote database). At
the same time, the transparency
of the applications often led to
false senses of security. For
example, users who installed a
password manager but failed to
activate it falsely believed their
passwords were being protected.
Sonia concluded by noting that
the usability of a system directly
impacts its security. Security sys-
tems must support users’ con-
ceptions as to how software
should operate; they should
imbue a sound (and not neces-
sarily transparent) sense of
security.

On the Release of CRLs in Public Key
Infrastructure

Chengyu Ma, Beijing University;
Nan Hu and Yingjiu Li, Singapore
Management University

The talk was given by Yingjiu Li,
who presented a method of
determining a more nearly opti-
mal schedule for distributing cer-
tificate revocation lists (CRLs)—
time-stamped lists of certificates
that have expired or become
compromised or otherwise inval-
idated. In the first part of his talk,
Yingjiu described an empirical
study of CRL distributions. By
examining CRL release data from
VeriSign, he and his coauthors
derived a probability distribution
function for the distribution of
CRLs. They determined that
most revocation requests occur
within the first few days after a
certificate is issued and are less
common as the certificate ages.

In the second part of his talk,
Yingjiu introduced a new eco-
nomic model for optimizing the
distribution of CRLs. The objec-
tive of the model is to minimize
the total operational cost of dis-
tributing the certificates while
maintaining a reasonable degree
of security. Yingjiu presented evi-
dence that different types of cer-
tificate authorities (CAs)—i.e.,
start-up CAs and well-estab-
lished CAs—should adopt differ-
ent strategies for CRL distribu-
tion and that the number of CRL
distributions will stabilize after a
period of time.

Biometric Authentication Revisited:
Understanding the Impact of Wolves
in Sheep’s Clothing

Lucas Ballard and Fabian Monrose,
Johns Hopkins University; Daniel
Lopresti, Lehigh University

Lucas Ballard presented a study
of biometric authentication, a
method of using biological and
physiological traits to authenti-
cate humans. In particular,
Lucas’s talk focused on exposing

weaknesses in both the imple-
mentations and evaluation meth-
ods for biometric authentication
schemes.

The presentation examined the
security of biometrics based on
the writing of passphrases (i.e., a
human is authenticated by com-
paring his or her passphrase
against a corpus of previously
supplied handwriting samples).
Lucas presented results that
show that even novice forgers
(students who showed some tal-
ent in producing forgeries) can
produce forgeries far better than
what the biometric systems pre-
dicted could be produced.

In the last part of the talk, Lucas
described a system for automat-
ing forgeries based on a genera-
tive model. A synthesis algo-
rithm selects n-grams from a
corpus of the target’s handwrit-
ing samples. The n-grams are
then used to forge a passphrase
in the target’s handwriting style.
Lucas presented results that
show that the generated and
forged passphrases perform bet-
ter than those generated by
skilled forgers.

I N V ITE D TA L K

Selling Security to Software Develop-
ers: Lessons Learned While Building a
Commercial Static Analysis Tool

Brian Chess, Fortify Software

Summarized by Tanya Bragin

Brian Chess said that finding
security vulnerabilities in source
code is like trying to find the
proverbial “needle in a hay-
stack.” However, he stressed that
well-built, highly configurable
tools not only help organizations
uncover potential problems but
also shape long-term software
development policy and its
enforcement.

There are several reasons static
analysis works well. First, exist-
ing software development proce-

; LOGIN: DECEMBER 2006 CONFERENCE SUMMARIES 93

dures can easily be modified to
employ source code analysis and
in doing so allow bugs to be
fixed before deployment. Sec-
ond, there are a limited number
of common vulnerability types,
so patterns can be used to detect
them via static analysis methods.
Third, static analysis tools can be
built to give uniform coverage
over large code bases in reason-
able time, as opposed to, for
example, those using dynamic
analysis, and thus they are prac-
tical.

Although there have been many
academic efforts to develop static
analysis techniques, they are not
appropriate for use in commer-
cial environments, for a number
of reasons. First, the tools devel-
oped in academic settings were
not explicitly designed for the
scale and variety of environ-
ments in which they could be
used. Consequently, they gener-
ally lack the customizability
needed in a complex organiza-
tion. Second, reporting in such
tools tends to be insufficient for
enterprise use. Finally, the man-
agement interfaces required for
over-time tracking of defects and
activities is lacking.

It turns out that these shortcom-
ings are key to the eventual suc-
cess of a practical static analysis
tool. Aside from simply working
well, finding important vulnera-
bilities, not crashing, not hang-
ing, and not having any vulnera-
bilities of its own, the tool has to
be scalable, well-documented,
and intuitive to a person who is
not an expert in all nuances of
software security. The main users
of static analysis tools in indus-
try tend to not just be developers
themselves, but security auditing
departments that outline, moni-
tor, and enforce organization-
wide security policies, and Brian
stressed the importance of work-
ing closely with such teams.

Adopting new technology that
fundamentally changes how soft-

ware should be written is hard
and can cause resistance from
developers. “Developers are opti-
mizers,” stated Brian, himself
having come from that back-
ground. “If they think that secu-
rity is optional, they will opti-
mize it out.” He continued with
a couple of amusing examples of
excuses he has heard out in the
field about why obvious vulnera-
bilities do not actually make
code insecure, such as “I trust
the system administrator” or
“That code will never be run.”
But in reality these vulnerabili-
ties can open unexpected back-
doors into critical software,
which significantly damage the
company brand, open it up to
liability, and cause economic
losses.

Teaching developers to think
about security is critical, con-
cluded Brian, but we need to
enable them to do their job effi-
ciently with the necessary tools.
A good analogy is spelling, he
offered. We teach everybody to
spell, but we still have spell
checkers in our word processors.
Similarly to how we already have
compilers to check for proper
programming language syntax,
static analysis tools can go a step
further and help enforce good
programming practices that
result in fewer software vulnera-
bilities and incrementally help
developers write good code on
their own.

I N V ITE D TA L K

Security Vulnerabilities, Exploits, and
Attack Patterns: 15 Years of Art,
Pseudo-Science, Fun, and Profit

Ivan Arce, Core Security Technologies

Summarized by Madhukar Anand

In conferences such as the
USENIX Security Symposium, it
is typical to learn about the work
and experience of academicians
and researchers in computer sci-
ence. The invited talk by Ivan

Arce (CTO of Core Security
Technologies) was very unlike
this. It offered an insightful,
alternate perspective on the evo-
lution of information security.
Arce presented his views based
on his forays and experiments in
designing systems for fun and
profit.

Arce, introduced to the world of
computers through the Com-
modore VIC 20, recounted how
he saw computers as a toy to
experiment with. Consequently,
he grew up with a notion of
computers as a game rather than
a tool. Programming the VICs
taught him that computers could
be tailored and have many hid-
den features, and he learned the
key difference between an enemy
and an adversary. Some of these
experiences have shaped his
views on the evolution of attacks
and security paradigms in the
past 15 years.

Evolution of Attacks: In the early
1990s (post–RT Morris worm)
there was no Linux, TCP/IP
stack in Windows, or the Web.
Security information flowed
from technical journals, bulletin
boards, and underground publi-
cations. For most people outside
of the academic world, these
underground publications were
the main source. This was the
time when many home-com-
puter users started turning pro-
fessional—kids who picked up
programming, started exploring
their home PCs, and turned to
security for jobs. By the mid-
1990s, exploits in shell code
become common and stack
smashing was done for fun and
profit. From then on, there has
been increasing complexity in
software and, subsequently, an
increasing sophistication in
attacker skills.

Today, the attacker has the ability
to hack networks, write viruses,
and reverse-engineer software.
The trend now, post-2001, is to
go directly at a workstation and

94 ; LOG I N : VO L . 3 1 , NO . 6

own the whole network. This
works because there are myriad
vulnerable applications, it is dif-
ficult to implement inventory, it
is difficult to deploy and manage
countermeasures, desktops are
operated by careless and
unaware users, and, above all, it
represents the law of “minimal
effort for maximum profit.”

Arce observed that in our “quest
for completeness,” we have too
strongly emphasized under-
standing attacks, rather than vul-
nerabilities. To illustrate this
point, he gave the example of the
ssh v1 CRC insertion attack dis-
covered in 1998. The patch dis-
tributed to fix this vulnerability
was itself found to contain a bug.
Therefore, it is important that we
focus on getting the basics right
rather than going after the
obscure and complicated.

Another problem with current
systems is that underlying mod-
els of systems have not kept up
with changing technology. The
management, deployment (poli-
cies, ACLs, RBAC, authentica-
tion tokens, etc.), and generation
of security value (AV/IDS signa-
tures, patches, certificates, vul-
nerability checks, etc.) in an
information system are central-
ized. In contrast, outside of the
information world, there has
been an evolution of open source
software, P2P, mobile code, and
technology based on social net-
working and reputation- and col-
laboration-based systems. So the
current information security
technology and business models
should not ignore them.

In conclusion, Arce felt that the
generation that entered the
information security field in the
early 1990s has successfully
managed to create a market for
security. This generation has
embraced and promoted open
and unmediated discussion
about security. He felt that we are
better off now than we were 15
years ago (at least, we know

where we are wrong), and so he
urged everyone to learn from
past mistakes, stop reinventing
the wheel, and brace ourselves
for a new generation in informa-
tion security.

AT TAC KS

Summarized by Patrick Traynor

How to Build a Low-Cost, Extended-
Range RFID Skimmer

Ilan Kirschenbaum and Avishai Wool,
Tel Aviv University

Ilan Kirschenbaum explained
that as radio-frequency identifier
(RFID) technology begins to
permeate our lives (credit cards,
passports, etc.), many in the
community have voiced their
concerns about the security of
such devices. An attacker can,
with little difficulty, skim the
data entrusted to these devices
from a distance of tens of meters
with little effort. Unlike with
other networking technologies,
however, no one has examined
the challenges of building a
device capable of such a feat. To
address these issues, Ilan dis-
cussed the process of developing
a portable, extended-range ISO
14443-A compliant RFID skim-
mer. Using a Texas Instruments
RFID reader and one of two
antennas (a 10x15 cm printed
PCB antenna and a 39 cm cop-
per-tube antenna), the research-
ers were able to develop a leach-
ing device capable of capturing
RFID data from a distance of 35
cm, or approximately 3.5 times
the advertised operational range.
At approximately US$100, such
a mechanism is easily within the
budget of any dedicated adver-
sary.

Many of the questions addressed
the use of a loop antenna, which
inherently has poor range. Addi-
tionally, because of the size of
the copper-tubing antenna,
many in the audience wondered
about the practicality of using
such a device without it being

noticed. In its current form, Ilan
argued, the device would in fact
be extremely effective if the
attacker could hide it well before
the time of attack (e.g., behind
drywall or around a potted
plant). Ilan then concluded by
mentioning that although the
current work was simply a proof
of concept, better antenna tech-
nology could easily be applied
for a modest increase in cost.

Keyboards and Covert Channels

Gaurav Shah, Andres Molina, and Matt
Blaze, University of Pennsylvania

Awarded Best Student Paper

Gaurav Shah pointed out that
there are uncountable ways to
extract sensitive data from a tar-
geted machine. Most of these
techniques, from “shoulder-surf-
ing” to the installation of spy-
ware, are easily detectable given
current techniques. Shah dis-
cussed the JitterBug, a PS/2 key-
board attachment designed to
capture such information. Un-
like previous hardware schemes,
which suffer from problems in
recovery, the JitterBug delivers
compromised data through an
interpacket covert channel.
Based on the time between two
packets, an adversary located
somewhere between the legiti-
mate sender and the receiver can
decode single bits of information
without arousing suspicion on
either end of the communica-
tion. Guarav stressed that such
attacks are not limited to pass-
word stealing. By placing such
hardware into machines prior to
their distribution, adversaries
from rival corporations to watch-
ful governments can easily estab-
lish surveillance over a number
of targets.

When asked how the JitterBug
determined which data to trans-
mit, Guarav discussed the use of
trigger sequences. For example,
attacks targeting user passwords
can be activated after “ssh host-
name.domain” is typed into the

; LOGIN: DECEMBER 2006 CONFERENCE SUMMARIES 95

keyboard. Others asked about
the use of more robust TCP
covert channel encoding meth-
ods that have been implemented
in software. Guarav agreed that
such encoding mechanisms
could be incorporated into the
JitterBug and that the use of
interpacket spacing was suffi-
cient for a proof of concept.
Guarav concluded with a discus-
sion on the need for error correc-
tion and repeated messages in
order to account for network jit-
ter and uncertainty. By publish-
ing this work, the authors hoped
to draw attention to the need for
all devices to be part of the
trusted computing base in order
for real security to be attained.

Lessons from the Sony CD DRM
Episode

J. Alex Halderman and Edward W.
Felten, Princeton University

When Sony, the world’s second
largest music company, deployed
digital rights management (DRM)
protection for its music, it also
released a number of critical vul-
nerabilities into the digital land-
scape. J. Alex Halderman dis-
cussed how he and Edward
Felten of Princeton University
logged the events as the first
major rollout of mandatory DRM
software occurred. The software,
made by First4Internet and Sunn-
Comm, works by automatically
installing itself on the first inser-
tion of a CD-ROM. Both products
installed themselves as rootkits to
each client’s machine, in order to
prevent their subsequent unin-
stallation. Unfortunately, because
of vulnerabilities in both prod-
ucts, other malicious programs
could then exploit the DRM soft-
ware to gain root control. Sony
initially refused to offer uninstal-
lation software, even when pre-
sented with the weaknesses dis-
covered by numerous researchers.
However, after numerous class
action lawsuits and much public

duress, the music distributor
eventually provided the tools nec-
essary to rid infected machines of
these rootkits.

Questioning by the audience was
limited, focusing largely on the
response from other members of
industry. For example, a number
of attendees were interested in
whether or not the software by
First4Internet and SunnComm
has been classified as spyware by
antivirus companies. The speak-
er said that he believed that all
major antivirus manufacturers in
fact now classify this software as
such. Halderman then discussed
how the elimination of enabling
mechanisms such as AutoRun
would go a long way to prevent
a repeat of such an incident. In
the end, this work highlights the
conflict between entities at-
tempting to protect their intel-
lectual property and legitimate
users of that content. In an
attempt to prevent “unapproved”
use of their music, Sony in fact
broke into and endangered its
clients’ PCs. Because the use of
DRM is effectively an attempt to
undermine a user’s control of his
or her own computing appara-
tus, its use is fundamentally a
security issue.

S O F T WA R E

Summarized by Lionel Litty

Milk or Wine: Does Software Security
Improve with Age?

Andy Ozment and Stuart E. Schechter,
MIT Lincoln Laboratory

Andy Ozment presented the
results of a study that examined
whether the reporting rate of
security vulnerabilities decreases
over time. An earlier study by
Eric Rescorla had found no evi-
dence that this was the case for
the four operating systems he
studied. The authors of the study
found otherwise by scrutinizing
OpenBSD over a period of 7.5

years, starting with version 2.3,
the “foundational” version for
this study. They carefully exam-
ined the 140 security advisories
released over that period of time,
as well as the OpenBSD source
code repository, to determine
exactly when a vulnerability was
introduced in the source code
and when it was fixed. In addi-
tion, they estimated the amount
of new code introduced by each
release of OpenBSD to find out
whether there was a correlation
with the number of vulnerabili-
ties that were introduced in a
release.

Andy reported that a majority of
the vulnerabilities found during
the past 7.5 years were already
present in the foundational ver-
sion and that the median lifetime
of those vulnerabilities was at
least 2.6 years. In addition, he
showed that the rate at which
vulnerabilities were discovered
in the foundational version
decreased over time, with only
half as many vulnerabilities
reported during the second half
of the time period. Using a relia-
bility growth model, the authors
also estimated that 42 vulnera-
bilities remained in the founda-
tional version. Andy concluded
by saying that they found no
clear correlation between num-
ber of lines of code added be-
tween versions and number of
new vulnerabilities, and that the
OpenBSD source code was in-
deed like wine.

When asked whether he thought
the findings would extend to
other operating systems that may
have less of an emphasis on
security, Andy replied that his
stab in the dark was that it may,
but that the decrease rate was
probably slower. Theo de Raadt
asked (via IRC and Dug Song)
whether the study took into
account the mitigation mecha-
nisms, such as having a nonexe-
cutable stack, added by Open-

96 ; LOG I N : VO L . 3 1 , NO . 6

BSD since the foundational ver-
sion. Andy said that they had not
and that taking them into ac-
count would make the picture
look even better for OpenBSD.

N-Variant Systems: A Secretless
Framework for Security Through
Diversity

Benjamin Cox, David Evans, Adrian
Filipi, Jonathan Rowanhill, Wei Hu,
Jack Davidson, John Knight, Anh
Nguyen-Tuong, and Jason Hiser,
University of Virginia

Artificial diversity consists of
introducing differences in the
way software is executed on a
machine, for example by ran-
domizing the memory layout.
This may foil an attacker who is
trying to take control of the
machine, as long as the attacker
does not know the key used to
randomize the memory layout.
Benjamin Cox described a new
technique that would eliminate
this reliance on a secret by run-
ning several variants of the same
process in parallel, resulting in
provable security. For all benign
inputs, the variants would
behave identically, but for some
attacks, the variants would
diverge. A monitor would detect
the divergence and raise an
alarm.

Benjamin discussed two ways to
introduce diversity between the
variants: partitioning the address
space and tagging instructions.
When partitioning the address
space, the two variants use dis-
tinct memory addresses. If an
attack relies on the absolute
memory address of either code
or data, it will cause a memory
fault in at least one of the vari-
ants. Instruction set tagging adds
a tag to each instruction. This
tag is checked and removed by a
dynamic binary translator before
the code is run. Any code
injected by the attacker will have
an incorrect tag for at least one

of the variants, once again rais-
ing an alarm. Depending on the
workload and the diversification
technique used, overhead for the
prototype ranges from 17% to
more than double the execution
time for Apache.

Ron Jackson questioned wheth-
er security was provable for the
address space partitioning
scheme. He described an attack
consisting of only overwriting
some of the bits of an address,
allowing the attack to be suc-
cessful in both variants. Ben-
jamin answered that this attack
simply fell outside the class of
attacks prevented by address
space partitioning. Other limita-
tions of the current prototype,
left for future work, included
handling signals and shared
memory.

Taint-Enhanced Policy Enforcement:
A Practical Approach to Defeat a
Wide Range of Attacks

Wei Xu, Sandeep Bhatkar, and R. Sekar,
Stony Brook University

Wei Xu observed that before per-
forming a security-sensitive
operation, an application should
check that this operation is not
under the control of an attacker.
This can be done by tracking
what parts of an operation are
tainted, i.e., originating from
untrusted interfaces. Data in
memory originating from the
network is marked as tainted and
taint is then propagated through-
out the execution of the applica-
tion. To this end, the source code
of the application needs to be
automatically instrumented to
maintain a bitmap of tainted
memory locations.

When a security-sensitive opera-
tion is performed, a policy-
defined check is conducted to
make sure the operation is safe.
For instance, an application may
construct a SQL query based on
user input. To prevent SQL injec-

tions, a check ensures that only
data fields in the query are under
user control. Wei suggested that
a policy ensuring that no two
consecutive tokens are tainted
would achieve that goal. Similar
policies can be used to defeat
other types of attacks, such as
cross-site scripting, path-tra-
versal attacks, and command
injections. These policies are
enabled through the availability
of fine-grained taint information.
Various low-level optimizations
allow the performance overhead
of the approach to be below 10%
for server applications.

Asked whether one could apply
the same approach directly to
binaries, thus suppressing the
requirement that source code
be available, Wei explained that
it may be possible but would
almost certainly preclude the
optimizations they used to keep
the performance overhead ac-
ceptable. Anil Somayaji asked
whether hardware support could
help improve performance. Wei
answered that it was a possibility
that had not been fully explored
yet.

I N V ITE D TA L K

Signaling Vulnerabilities in
Wiretapping Systems

Matt Blaze, University of Pennsylvania

Summarized by Patrick Traynor

With a recent push for the com-
pliance of VoIP systems with the
Communications Assistance for
Law Enforcement Act (CALEA),
many in the community have
focused on the technical hurdles
of this proposal. In an attempt to
understand the security and reli-
ability of these new eavesdrop-
ping systems, Matt Blaze and a
team of University of Pennsylva-
nia researchers have examined
the inner workings of traditional
telecommunications surveillance

; LOGIN: DECEMBER 2006 CONFERENCE SUMMARIES 97

technology. As part of the Trust-
worthy Network Eavesdropping
and Countermeasures (TNEC)
project, this group explores the
challenges behind building both
surveillance-friendly and resist-
ant networks. Most important,
this work asks the question,
“Assuming properly functioning
tools, is wiretap evidence trust-
worthy?”

There are a number of ways in
which telecommunications traf-
fic can be intercepted. If direct
access to the targeted phone is
possible, the eavesdropping
party can gain control of the two
wires connecting the phone to
the network (known as the local
loop). Such methods are prone
to discovery by the monitored
party and are therefore not typi-
cally used in law enforcement.
This work instead focuses on the
use of the loop extender, a wire-
tapping device placed between
the targeted phone and a net-
work switch that allows for mon-
itoring in both traffic analysis
(“pen register”) and full content
modes. The loop extender works
by redirecting a copy of the con-
tent from the “target line” to
recording devices on a “friendly
line.” Because both traffic analy-
sis and content are always sent to
the friendly line, the actual infor-
mation recorded is set via config-
uration at the recording device.

Blaze and his team began by
examining vulnerabilities in the
pen register mode. In order to
determine which number a tar-
get is calling, the recording
equipment decodes the series of
unique audio tones sent across
the line. In order to accommo-
date a wide range and quality
level of products, both the net-
work switching equipment and
eavesdropping tools accept a
range of analog tones. The
ranges accepted by the devices,
however, are not the same. Ac-
cordingly, Blaze was able to show

that sending tones just outside
the range of the telecommunica-
tions switch (either above or
below) but within the range of
the loop extender allowed the
party being eavesdropped upon
to forge the list of dialed num-
bers recorded in pen register
mode.

Blaze then discussed subtle vul-
nerabilities in the audio record-
ing mechanism used for eaves-
dropping. The taping of audio
content automatically begins at
the cessation of the “C-tone,” an
audio tone transmitted across a
phone line when it is not in use.
Accordingly, when the C-tone is
again detected, the recording
equipment automatically shuts
itself off. To prevent sensitive
material from being recorded, a
targeted party can simply play
the C-tone continuously into the
receiver. This technique is suc-
cessful even when the C-tone is
played at 1/1000 of its normal
volume.

The new CALEA standards fix
many of the problems associated
with loop extender wiretaps.
Eavesdropping now occurs at the
switch itself and signaling has
been separated onto a separate
channel. Unfortunately, many
vendors continue to offer sys-
tems that are compliant to the
C-tone shutoff mechanism. De-
pending on the configuration of
these new CALEA-compliant
devices, modern eavesdropping
systems may also be susceptible
to the vulnerabilities discovered
for loop extender systems.

The attendees of the talk asked
Matt a wide variety of questions.
Because of the illegality of wire-
tapping equipment, many were
curious as to how this group was
able to perform their work with-
out fear of legal recourse. Matt
mentioned that because this
research was part of an NSF
grant devoted to wiretapping
technology, they had implied

consent to carry it out. Others
were curious about testing the
local loop by the phone compa-
nies. Matt said that it was indeed
possible for the phone company
to detect the deviation of fre-
quencies from the accepted band
but that the wide range of quality
across user devices means that
such divergence from the stan-
dard may only be the result of
poor construction. Matt’s talk
concluded with a discussion of
the practical difficulties facing IP
wiretapping efforts.

N E T WO R K S E C U R IT Y

Summarized by Wei Xu

SANE: A Protection Architecture for
Enterprise Networks

Martin Casado and Tal Garfinkel,
Stanford University; Aditya Akella,
Carnegie Mellon University; Michael J.
Freedman, Dan Boneh, and Nick
McKeown, Stanford University

Martin Casado started his talk by
pointing out that traditional
techniques for putting access
control onto enterprise networks
are associated with many prob-
lems, such as inflexibility, loss of
redundancy, and difficulty in
management.

To address these limitations,
Martin proposed SANE, a Secure
Architecture for the Networked
Enterprise. SANE introduces an
isolation layer between the net-
work layer and the datalink layer
to govern all connectivity within
the enterprise. All network enti-
ties (such as hosts, switches, and
users) in SANE are authenticat-
ed. Access to network services is
granted in the form of capabili-
ties (encrypted source routes) by
a logically centralized server
(Domain Controller) according
to high-level declarative access
control policies. Each capability
is checked at every step in the
network.

98 ; LOG I N : VO L . 3 1 , NO . 6

Martin also presented several
important details in SANE (such
as connectivity to the DC, estab-
lishing shared keys, and estab-
lishing topology), as well as the
countermeasures that SANE
offers for attack resistance and
containment. He also mentioned
that their prototype implementa-
tion showed that SANE could be
deployed in current networks
with only a few modifications.

PHAS: A Prefix Hijack Alert System

Mohit Lad, University of California, Los
Angeles; Dan Massey, Colorado State
University; Dan Pei, AT&T Labs—
Research; Yiguo Wu, University of
California, Los Angeles; Beichuan
Zhang, University of Arizona; Lixia
Zhang, University of California, Los
Angeles

In this talk, Mohit Lad first
briefly introduced the BGP (Bor-
der Gateway Protocol) and then
illustrated the widely reported
BGP prefix hijack attack, in
which a router originates a route
to a prefix but does not provide
data delivery to the actual prefix.

After that, Mohit presented a Pre-
fix Hijack Alert System (PHAS).
The objective of PHAS is to pro-
vide reliable and timely notifica-
tion to prefix owners when their
BGP origin changes, so that pre-
fix owners can quickly and easily
detect prefix hijacking events and
take prompt action to address the
problem. PHAS uses BGP data
collectors (especially RouteViews
and RIPE) to observe the BGP
updates. The updates are then
provided to the origin monitor,
which detects the origin changes
and delivers email notifications
to the affected prefix owners
through a multipath delivery.
According to Mohit, PHAS is
lightweight and readily deploy-
able.

Passive Data Link Layer 802.11 Wire-
less Device Driver Fingerprinting

Jason Franklin, Carnegie Mellon
University; Damon McCoy, University of
Colorado, Boulder; Parisa Tabriz, Uni-
versity of Illinois, Urbana-Champaign;
Vicentiu Neagoe, University of California,
Davis; Jamie Van Randwyk, Sandia
National Laboratories; Douglas Sicker,
University of Colorado, Boulder; Scott
Shenker, University of California,
Berkeley

Parisa Tabriz gave the first part
of this talk, in which she
explained the motivation for
their work by arguing that the
emerging driver-specific exploits
were particularly serious for the
802.11 wireless devices because
of their wide deployment and
external accessibility. Device
driver fingerprinting can be of
help for an attacker to launch a
driver-specific attack.

Damon McCoy then presented
the details of their passive finger-
printing technique, which iden-
tifies the wireless device driver
running on an IEEE 802.11 com-
pliant device. Their technique is
based on the observation that
many of the details of the active
scanning process are not fully
specified in the IEEE 802.11
standard, and hence they are
determined by wireless driver
authors. As a result, drivers can
be distinguished by their unique
active scanning patterns. Damon
said that they had generated sig-
natures for 17 different wireless
drivers, and their evaluation
showed that this fingerprinting
technique could quickly and
accurately fingerprint wireless
device drivers in real-world wire-
less network conditions. Finally,
Damon discussed several possi-
ble ways to prevent the 802.11
wireless driver fingerprinting.

When asked whether the finger-
print of a wireless driver would
change in different operating
systems or when the driver inter-
acted with different access

points, Damon and Parisa
answered that the active scan-
ning behavior should depend
only on the driver implementa-
tion, but they had not looked
into these particular problems.

I N V ITE D TA L K

Turing Around the Security Problem:
Why Does Security Still Suck?

Crispin Cowan, SUSE Linux

Summarized by Bryan D. Payne

Crispin Cowan began this
invited talk saying that “security
sucks” more than any other
aspect of computing. He backed
up this statement by showing
how Turing’s theorem can be
used to show that security is an
undecidable problem. In addi-
tion, security is harder than cor-
rectness. Although correctness is
important, security increases
programmer burden, since
attackers can produce arbitrary
input. History has shown that
neither money nor even diligent
corporate practices are sufficient
to solve the problem.

Crispin explained that one
approach to security is to use
heuristics. This is seen, for
example, in static analyzers. The
problem with heuristics is that
they are not perfect. Heuristics
cannot analyze all programs, and
they provide imperfect results in
other applications.

As an alternative, Crispin sug-
gests that security professionals
use the OODA Loop. Colonel
John Boyd (USAF) invented the
idea of an OODA Loop. OODA
stands for Observation, Orienta-
tion, Decision, and Action. The
OODA Loop provides a pattern
for fighter pilots to use in deci-
sion-making. In general, the per-
son with the fastest OODA Loop
will win a battle. Crispin spent a
large portion of the talk mapping
the process of security to the
OODA Loop.

; LOGIN: DECEMBER 2006 CONFERENCE SUMMARIES 99

The OODA Loop can be mapped
to the three critical questions:
when, where, what. Crispin
walked through many security
tools and concepts, mapping
each to one of these three ques-
tions. He covered topics such as
Saltzer and Schroeder’s princi-
ples of secure design, syntax
checkers, semantic checkers,
type-safe languages, kernel
enhancements, intrusion detec-
tion, intrusion prevention, net-
work access controls, host access
controls, capabilities, and more.

In closing, Crispin changed
gears and spoke about AppAr-
mor, SUSE’s approach to improv-
ing application security. Crispin
described the fundamental dif-
ference between AppArmor and
SELinux: AppArmor uses path
names and SELinux uses labels.
He also acknowledged that
AppArmor is a work in progress;
some types of protection are not
currently possible.

In the Q&A session, Pete Lo-
scocco, a leader of the SELinux
project, suggested that the differ-
ences between SELinux and
AppArmor are more fundamen-
tal than Crispin stated because
SELinux tries to be comprehen-
sive whereas AppArmor has less
control. Crispin acknowledged
that there are trade-offs and sug-
gested that SELinux achieves
higher security but also has a
higher cost. Other people asked
questions about practical secu-
rity issues. Why aren’t compa-
nies doing more about security?
Crispin believes that they are
secure enough for their pur-
poses. What’s being done to
address the security problems
today? Crispin pointed to better
programming languages and var-
ious forms of isolation. How
does one properly extend secu-
rity from the kernel into the
applications? Crispin suggested
using discrete programs that
cooperate (e.g., Postfix).

PA N E L

Major Security Blunders of the Past
30 Years

Matt Blaze, University of Pennsylvania;
Virgil Gligor, University of Maryland;
Peter Neumann, SRI International
Computer Science Laboratory; Richard
Kemmerer, University of California,
Santa Barbara

Summarized by Madhukar Anand

Matt Blaze: We are going to have
more damage because of excess
attention to security. For in-
stance, consider an alarm sys-
tem. It is designed such that the
alarm is triggered as quickly as
possible. Consequently, any
attack that aims at not setting off
the alarm system is entering into
a arms race with the alarm sen-
sor design. Although the alarm
system could win such an arms
race, it must be noted that the
main objective of the attacker is
not to defeat the sensor system
but to break the system. A sim-
ple strategy of setting off the
alarm repeatedly would do the
trick. The police might be
tricked into losing faith in the
alarm system.

Another example is the signaling
in telephone systems. The objec-
tive of the attacker here is to
defeat the billing system and
make free long distance calls or
call unauthorized phone num-
bers. The protocols are designed
by people who did not know
they were designing a security
function. The only people who
are motivated to break into such
a system are the bad guys.

The Telnet protocol was de-
signed with an option for en-
cryption (DES 56-bit key in a 64-
bit package). The newer library,
to be more compliant with the
DES standard, had 8 bits desig-
nated as the checksum. If the
checksum would not tally, then
the key would be all 0s. Because
of this, if there were bit errors,

there was a 1/256 chance of
using encryption. In 255/256
cases, the key would be all 0s.
So, this is an counterexample to
the principle “Good code is
secure code.” Code that checks
secure values in this case indeed
made it less secure.

Virgil Gligor: Blunder 1: Morris
worm—Buffer overflow in fin-
gerd. This was the first tangible
exploit of a buffer overflow, the
first large-scale infection engine,
and the first large-scale DDoS
attack. Although there were no
lessons learned for a long time, it
did result in the creation of
CERT. It also led to the realiza-
tion that any new technology
introduces new vulnerability and
vulnerability removal takes 6 to
12 years, creating a security gap.
Also, we learned that “security is
a fundamental concern of sec-
ondary importance.”

Blunder 2: Multilevel Secure
Operating System (MLS-OS).
This was pushed by the defense
establishments in the United
States and Europe. However,
there was no market for MLS-
OSes as they break off-the-shelf
applications and are often hard
to use. In fact, the stronger the
MLS-OS, the worse the system
(e.g., B2 secure Xenix broke all
our games). This blunder largely
drained most security funding
and was a major R&D distraction.

Blunder 3: Failed attempts at fast
authenticated encryption (in 1-
pass -1 cryptographic primitive.)
This blunder was largely aca-
demic. Starting with CBC+CRC-
32 systems in 1977 to NSA dual
counter mode + XOR, each suc-
cessive system was built only to
be broken later. Together, they
constitute the largest sequence
of cryptographic blunders. The
upshot of this is the realization
that some of the simplest crypto-
graphic problems are hard. The
lesson to be learned is to stick to
basic system security research.

100 ; LOG I N : VO L . 3 1 , NO . 6

Richard Kemmerer: Blunder 1:
U.S. export controls of cryptog-
raphy. These controls were based
on international traffic in arms
regulations. However, they were
very difficult to enforce. The les-
sons learned from the export
control episode are that they
make sense but change con-
stantly and that the enforcers
have no sense of humor—a case
in point being the Verification
Assessment study (Kemmerer,
1986), which was published
with the warning that its export
is restricted by the arms export
control act. This hampered the
publication of the study and
resulted in many copies being
stocked and not reaching their
readership.

Blunder 2: Kryptonite Evolution
2000 U-Lock. Although the
Kryptonite was advertised as the
“toughest bike lock,” all it took
to break it was a Bic pen. After
cutting small slits in the end of
the pen’s barrel to ease it in, the
lock opened with a single twist.

Blunder 3: Australian Raw
Sewage Dump in March 2000.
Vitek Boden from Brisbane, Aus-
tralia, hacked into a local waste
management computer system
and directed raw sewage into
local rivers, into parks, and even
onto the landscaping of a Hyatt
Regency hotel. Boden had previ-
ously been fired from the com-
pany that installed the waste
management system, and he van-
dalized the public waterways as
an act of revenge. The lessons
learned from this were to pay
attention to security in SCADA
systems and to insider threats. In
conclusion, “Beware of gorillas
invading your system while you
are counting basketball passes,”
which was depicted by showing
a video where a person in a
gorilla suit walks through the
scene but is unnoticed by most
of the attendees until the second
showing of the video.

Peter Neumann: The big picture
is that security is complex, it is a
end-to-end system emergent
property, and there is a weakness
in depth. We do not really learn
from experience, as some of the
blunders keep recurring. Secu-
rity is holistic. So, we should not
consider it in isolation. For
instance, application security is
easily undermined by OS security.

Propagation Blunders: 1980
ARPANET collapse. The col-
lapse, resulting from a single
point failure in one node, ended
up bringing down the entire net-
work. In 1990, there was a half-
day when AT&T long lines col-
lapsed, again as a result of a
single point of failure. Yet
another example of propagation
blunders are the repeated power
outages from 1967 to August
2003. In some sense, we don’t
design our infrastructures and
our systems to withstand things
as simple as a single point fail-
ure. The standard answer is,
“This can never happen.”

Backup and Recovery Blunders
(e.g., air traffic backup and re-
covery failures): In July 2006,
there was a power outage in
Palmdale, CA, including the air
traffic control center. The center
automatically switched to backup
diesel generators. They worked
for about an hour but then the
system that switches the center
between commercial and backup
power failed and the building
went dark. In 1991, three New
York airports were closed as
backup batteries were acciden-
tally drained. Other examples
of such blunders include the
Swedish train reservation system
failure and the Japanese stock ex-
change system failure in Novem-
ber 2005. There have been blun-
ders where there was no backup,
such as when the New York Pub-
lic Library lost all its references.

Software Blunders: There have
been many types of buffer over-

flows. Programming language
research could help reduce these,
but they could also prove to be a
hindrance. In fact, Multics was
mostly free of buffer overflow
vulnerabilities, owing to the use
of PL/I as the implementation
language. PL/I required an ex-
plicit declaration of the length of
all strings.

Election Systems Blunder: The
requirements of an electronic
voting system include end-to-
end reliability, integrity, and
accountability. Therefore, Help
America Vote (HAVA) was a
huge blunder. Because none of
the electronic paperless systems
were auditable, they lack integ-
rity.

The lessons learned are that indi-
vidual cases may be less impor-
tant than the fact that we see the
same types of problems. We need
a massive cultural change in how
we develop software.

More resources on risks and
trustworthy architectures can be
found at http://www.csl.sri.com/
users/neumann/chats4.html.

I N V ITE D TA L K

Aspect-Oriented Programming:
Radical Research in Modularity

Gregor Kiczales, University of British
Columbia

Summarized by Kevin Butler

Gregor Kiczales gave a practical,
code-oriented talk that provided
an introduction to aspect-ori-
ented programming (AOP).
Kiczales and his team originated
the idea of AOP while he was at
PARC. The talk focused on AOP
and what it is, what makes it
interesting, and how software
will be different with AOP com-
pared to what has come before.
The focus was on the Aspect/J
programming language, a seam-
less extension to Java that is fully
supported by the Eclipse open

; LOGIN: DECEMBER 2006 CONFERENCE SUMMARIES 101

source project and is a model for
other AOP tools.

One of the biggest benefits of
AOP is its ability to aid code
expressiveness: The code looks
like the design, and what is
going on in terms of operations
is clear. As an example, Kiczales
pointed to a Java program called
jHotDraw which allows joining
of points and lines, setting col-
ors, and other graphical tasks.
This can be designed and imple-
mented with object-oriented
programming, where shapes
become classes. There are also
objects relating to the display of
the shapes and to perform
update signaling (e.g., when
shapes change). The goals for
any programming paradigm are
expressiveness, modularity, and
abstraction. For jHotDraw,
object-oriented programming
allows good support of these
goals for shapes and their dis-
play, but it is not good for update
signaling. The structure of sig-
naling is not localized, clear, or
declarative, and the resulting
solution is neither modular nor
abstract. Signaling is clearly not
localized as it cuts across multi-
ple objects. With AOP, it is possi-
ble to provide the three goals set
out.

Some of the terminology specific
to AOP includes the idea of join
points, which are defined points
in a program flow (Aspect/J
allows for dynamic join points)
and pointcuts, a set of join points
on which a predicate is based
that may or may not match.
Pointcuts are composed like
predicates, and a set of primitive
pointcuts are defined in Aspect/J.
When a pointcut is reached, a
specified piece of code, called
advice, is run. To go back to the
drawing example, there is an
observer pattern aspect of the
system, and some points in the
system’s execution are changed;
after returning for a change, the

display is updated. Updated calls
would be scattered and tangled
with object-oriented program-
ming; by contrast, with AOP, val-
ues at the join points are defined,
a pointcut can explicitly expose
certain values, and advice can
use these explicitly exposed val-
ues. The key to AOP is its ability
to deal with crosscutting across
multiple concerns. For example,
a pointcut in a model can specify
a slice of a different part of the
world to provide an interface.
This could be particularly perti-
nent to industry: One can walk
up to a big system, drop point-
cuts in it, and program against
the system even if it doesn’t have
the structure the programmer
was expecting. In response to
questions about this, Kiczales
explained that one of the funda-
mental differences with AOP is
that there is no need to explicitly
signal events as is necessary with
OOP. For example, one could
take a million lines of already
written code and do pointcuts
without even having the source
code for the original system.
When asked whether the goal of
AOP was to be able to retrofit
features into legacy code, Kicza-
les was circumspect and careful
in his answer. The biggest goal of
AOP is to modularize crosscut-
ting concerns, which sometimes
can be done for legacy code and
sometimes not. Oftentimes, new
features are crosscutting con-
cerns.

Kiczales expressed some
thoughts as to whether going
further than Aspect/J could be
feasible. Referencing the book
On the Origin of Objects by Ryan
Smith (where objects refer to
actual real-world things, not
class instances), he talked about
perception and how we see the
world in different ways (e.g., a
glass half empty vs. half full),
and how do we both grab the
same thing. Registration is the
process of parsing objects out of

the fog of undifferentiated
“stuff,” and we are constantly
registering and reregistering the
world. We also possess the abil-
ity to process critically: We have
multiple routes of reference,
such as the ability to exceed
causal reach (e.g., describing
someone as closest to average
height in Gorbachev’s office) or
indexical reference (e.g., the one
in front of him); allowing this
sort of expressiveness into pro-
gramming could be similarly
useful. Join point models can
decompose software into differ-
ent ways and atomize into the
fog of undifferentiated points,
with connections and effects
made through registration. All
could have causal access to the
same point but access it in differ-
ent ways, given the multiple
routes to reference.

Much of the Q&A session
focused on the security aspects
of AOP. For example, if AOP or
Aspect/J can touch a JAR file,
then all bets are off. Audit log-
ging is a clear example of where
AOP is useful, but what other
security uses are there? Is ACL
checking a potentially good use?
Kiczales responded that his
group intentionally did not
touch on the uses for security,
leaving that to security profes-
sionals, but intimated that there
were certainly security problems
that could best be attacked with
AOP. Gary McGraw commented
that this logic could be taken
only so far: If something is a
security feature, it can probably
be done as an aspect, but secu-
rity is not just a bunch of fea-
tures. Other questions included
dealing with aspect clashes, to
which the best defense is good
software engineering and a qual-
ity codebase; how to debug code,
which has improved greatly as
Aspect/J has matured; and the
problems of retrofitting legacy
code with access control hooks,
which is nontrivial. Kiczales

102 ; LOG I N : VO L . 3 1 , NO . 6

responded to this by comment-
ing that no sane person claims
that one should be able to take a
system and add modular imple-
mentations of crosscutting with-
out having to jigger the source
code a little bit, particularly
when dealing with the domain
functionality of a system. How-
ever, refactoring and some mild
editing of the code could make
all the difference.

STATI C A N A LYS I S F O R S E C U R IT Y

Summarized by Lionel Litty

Static Detection of Security Vulnera-
bilities in Scripting Languages

Yichen Xie and Alex Aiken, Stanford
University

Alex Aiken observed that Web
applications are increasingly
popular and that they present
application-level vulnerabilities
that are hard to prevent using
low-level security mechanisms.
Instead, static analysis may
prove valuable when hunting for
security bugs in such applica-
tions. He reported that his group
was successful in performing
static analysis of a scripting lan-
guage (PHP) to find SQL injec-
tion vulnerabilities, despite the
difficulties inherent in analyzing
scripting languages: dynamic
typing, implicit casts, weak scop-
ing, and extensive use of string
manipulation functions and hash
tables.

To scale to large applications
without making the analysis too
imprecise to detect bugs reliably,
three levels of abstraction were
used: intrablock level, intrapro-
cedural level, and interproce-
dural level. The result of the
symbolic simulation of each
code block is summarized before
performing the analysis of each
procedure. The result of this
analysis is in turn summarized to
perform interprocedural analy-
sis. Each summary captures

exactly the information neces-
sary to perform the next step of
the analysis, which is the key to
scaling. Applying this technique
to six large applications resulted
in the discovery of 105 con-
firmed vulnerabilities with only
a small number of spurious
warnings.

Christopher Kruegel asked how
the tool dealt with variable alias-
ing. Alex answered that the tool
did not perform sound tracking
of aliasing outside of the block
level and that this was one way
in which the tool was not a veri-
fication tool, meaning that it will
not guarantee the absence of vul-
nerabilities. He also highlighted
that programmers often do not
use the full power of a program-
ming language. This enables the
tool to perform well despite
making a number of
simplifications.

Rule-Based Static Analysis of Network
Protocol Implementations

Octavian Udrea, Cristian Lumezanu,
and Jeffrey S. Foster, University of
Maryland

Octavian Udrea argued that
whereas formal methods have
been used extensively to check
network protocol designs, the
actual implementations of these
protocols often do not get the
same level of attention. He de-
scribed a tool called Pistachio that
addresses this situation by focus-
ing on static verification of a pro-
tocol implementation against a
high-level specification of the
protocol. This manually con-
structed specification, derived
from documentation describing
the protocol, consists of a set of
rules that the protocol must
adhere to.

With the help of a theorem
prover, execution of the imple-
mentation is then simulated.
Developing rules for the SSH and
RCP protocols took the authors
only seven hours, although these

rules did not cover all aspects of
the protocols. Implementations
of these protocols were then ana-
lyzed, and rule violations were
found in the LSH implementa-
tion of SSH and the Cygwin ver-
sion of RCP. These violations
were checked against a database
of known bugs. Of the warnings
produced by Pistachio, 38% were
spurious. Pistachio failed to find
5% of known bugs. More infor-
mation is available at http://www
.cs.umd.edu/~udrea/Pistachio
.html.

David Wagner asked how the
authors were able to estimate the
false-negative rate. Octavian
explained that this number cor-
responded to known implemen-
tation bugs that Pistachio did not
find. This number might be
inflated by still unknown bugs in
the implementation.

Evaluating SFI for a CISC Architec-
ture

Stephen McCamant, Massachusetts
Institute of Technology; Greg Morrisett,
Harvard University

Awarded Best Paper

Software-based Fault Isolation
(SFI) is a sandboxing technique
used to confine the effects of
running a piece of code from the
rest of the system by inserting
checks before every memory
write and every jump. While the
technique has been shown to
work for RISC architectures,
Stephen McCamant showed that
it could be applied to a CISC
architecture, the IA-32 architec-
ture, as well. The key challenges
in building a prototype, PittS-
FIeld, were the variable length of
the IA-32 instructions and their
lack of alignment constraints,
potentially allowing complex
code obfuscation.

These challenges were addressed
by forcing instruction alignment
via assembly code rewriting and
by adding padding. In addition,

; LOGIN: DECEMBER 2006 CONFERENCE SUMMARIES 103

the authors implemented new
optimization techniques and
carefully analyzed the perfor-
mance overhead introduced
by SFI, which is a 21% slow-
down on the SPEC benchmark.
One reason for the slowdown
is increased cache pressure
caused by the 75% increase in
size of the binary code as a re-
sult of padding. Finally, Stephen
emphasized that the security
of PittSFIeld relies on a small
verifier. The authors formally
proved, using the ACL2 theorem
proving system, that the verifier
checks ensure confinement.
More details can be found at
http://pag.csail.mit.edu/~smcc
/projects/pittsfield.

The audience asked whether the
same technique could be per-
formed directly on the assembly
code. Stephen answered that it
might be possible with a very
good disassembler or if addi-
tional symbol information is
available. Stephen was also asked
the difference between SFI and
Control Flow Integrity (CFI). He
said that the two approaches
were very similar. SFI provides
memory isolation, but this can
be added to CFI as well. Timothy
Fraser mentioned that he knew
of failed efforts to implement SFI
for IA-32 and commended the
authors.

I N V ITE D TA L K

Surviving Moore’s Law: Security, AI,
and Last Mover Advantage

Paul Kocher, Cryptography Research

Summarized by Micah Sherr

Paul Kocher’s talk was divided
into two parts. In the first half,
he explored how complexity can
be used to secure systems. He
began by examining the effect of
Moore’s Law on cryptography.
On the one hand, increased CPU
performance seems to favor the
cryptographer. For example,
moving from DES to 3DES

requires only three times the
CPU cost, at the same time
requiring an exponential in-
crease in work by the cryptana-
lyst. However, as Paul points out,
systems are becoming more com-
plex, and added complexity (and
lines of source code) raises the
number of potential vulnerabil-
ities dramatically. The growth
of human intelligence does not
necessarily match the growth
of system complexity. There is
therefore a need to harness com-
plexity to improve security
rather than hinder it.

Paul proposes increasing com-
plexity by adding components to
systems and connecting those
components in a stream. The
output of the system is the com-
bination (e.g., XOR) of all of the
components’ outputs. If one sys-
tem fails or is compromised, the
overall security of the system
does not necessarily falter. Gen-
erally, he advocates adding “mi-
cro CPUs”—independent and
isolated execution areas that are
specialized for different opera-
tions. The micro CPUs commu-
nicate with each other to pro-
duce the final result.

In the second half of the talk,
Paul described the current state
of security as a tug-of-war be-
tween those who protect systems
and those who attack them. Paul
believes that companies no
longer believe that security is
binary and that they have adopt-
ed the strategy of minimizing
(rather than preventing) the
amount of harm done to their
systems. The major defense
mechanism is the patch, which is
applied after an attack, but
which hopefully reduces the pos-
sibility of further attack. On the
flip side, the attacker attempts to
exploit new and unpatched vul-
nerabilities. This leads to a stale-
mate in which attacks are closely
followed by fixes. According to
Paul, this stalemate is the best-
case scenario for the defender:

Playing for a stalemate requires
less devotion than comprehen-
sive security fixes, stalemates al-
low defenders to place the blame
on others (those who haven’t
applied the patches), and devel-
oping patches is easier than in-
house security testing. However,
playing for a stalemate leaves the
defender with nonoptimal secu-
rity.

Paul concludes by considering
the future of this tug-of-war
between defender and attacker.
To some degree, generation of
attacks (exploits) and defenses
(patches) can be automated. At
the same time, the undecidabil-
ity of certain problems means
that there are limits to what
automation can accomplish. To
some degree, the human element
will always be involved in the
automation process.

I NTR U S I O N D E TE C TI O N

Summarized by Michael Locasto

SigFree: A Signature-Free Buffer
Overflow Attack Blocker

Xinran Wang, Chi-Chun Pan, Peng Liu,
and Sencun Zhu, The Pennsylvania
State University

Xinran Wang began by illustrat-
ing the problems with current
approaches to blocking buffer-
overflow based attacks. Such
attacks can be previously unseen
or potentially delivered by poly-
morphic malware. Remote buffer
overflows are typically driven by
network input containing the
exploit code, and Xinran and his
coauthor’s key insight is that
detecting the presence of legal
binary code in network flows
was one way to recognize such
attacks without having to resort
to a signature-based scheme.

Xinran described two techniques
their Instruction Sequence Ana-
lyzer (ISA) uses to build an
extended instruction flow graph
(EIFG), a construct similar to a
control flow graph. Since x86 is a

104 ; LOG I N : VO L . 3 1 , NO . 6

very dense instruction set, in-
struction sequences can be de-
rived from most binary strings,
and the authors propose build-
ing an EIFG from the network
traffic. Intuitively, the larger the
EIFG, the more likely it is that a
certain binary string is a working
x86 program. The first technique
for building an EIFG employs
pattern detection to provide a
frame of reference for the ISA—it
detects the push-call instruction
sequences that represent a sys-
tem call.

Xinran outlined a more sophisti-
cated method (Data Flow Anom-
aly), which is based on detecting
abnormal operations on vari-
ables. The motivation for this
technique is that a random
instruction sequence is full of
these types of data flow anom-
alies, but a useful x86 program
(such as one provided by an
attacker) is not. This latter tech-
nique is also more resistant to
polymorphic attacks, since the
malware decoder does not neces-
sarily need to make system calls,
but still must include useful
instructions. The authors report
on fairly good results: No false
positives were observed in a
“normal” test set, and their tech-
niques detected about 250 at-
tacks and variations. They are
looking forward to using a
weighted scheme to frustrate
attackers who may know the
threshold of useful instructions
for the DFA scheme. A follow-up
question on how well this tech-
nique may apply beyond the x86
instruction set was tabled for
offline discussion. An attendee
from Cisco asked whether the
code for the system would be
publicly available, since this type
of capability was of widespread
interest, but Xinran indicated
that the techniques were cur-
rently under patent review.
Finally, another attendee from
MIT asked about the nature of
the “normal” requests that actu-

ally contained fairly long
sequences of code. That discus-
sion was taken offline.

Polymorphic Blending Attacks

Prahlad Fogla, Monirul Sharif, Roberto
Perdisci, Oleg Kolesnikov, and Wenke
Lee, Georgia Institute of Technology

Prahlad discussed the design and
implementation of a class of mal-
ware capable of dynamically
adapting its payload to the char-
acteristics of the surrounding
network traffic in order to bypass
content-based anomaly sensors
such as PayL. The key idea is
that the malware is able to sneak
past the anomaly detector be-
cause purely statistical content
anomaly detectors discard both
the syntax and the semantics of
the normal traffic content.

The malware has two capabilities
that allow it to create a variant
that will not trip the content
anomaly detector. First, it is able
to observe a portion of the target
system’s network traffic. Second,
it knows the algorithm that the
anomaly detector uses to con-
struct a model. After creating an
initial and approximate model of
the traffic that the target system
is receiving, the malware creates
a variant of itself using shellcode
encryption and padding to
match the generated profile
within some error bound. In
their experiments using PayL as
the content anomaly detector,
the authors found that all they
needed was 20 to 30 packets to
learn the target profile. The
authors closed by suggesting
some possible countermeasures
to the polymorphic blending
attack, including the higher-cost
techniques of actually parsing
the packet data rather than using
solely statistical methods. It may
also be possible to use multiple
independent models or to some-
how randomize the implementa-
tion of the anomaly detector
algorithm. At the end of the
presentation, the attendee from

Cisco reprised his question on
the availability of the system,
and Prahlad answered that they
shared code with some partners
of the lab. A second questioner
asked for clarification as to the
practicality of the first counter-
measure (doing deep packet
inspection). Prahlad answered
that with appropriate support or
in some types of low-traffic envi-
ronments, such inspection
would not be prohibitively
expensive.

Dynamic Application-Layer Protocol
Analysis for Network Intrusion
Detection

Holger Dreger, Anja Feldmann, and
Michael Mai, TU Munchen; Vern
Paxson, ICSI/LBNL; Robin Sommer,
ICSI

Holger raised the question of
how network intrusion detection
systems actually know which
protocol decoder should be
applied to the traffic that these
systems observe. Most current
systems simply rely on the trans-
port layer port numbers in order
to make this decision. This as-
sumption does not hold for stan-
dard services that are run on
nonstandard ports nor for stan-
dard or nonstandard services
that are run on the “incorrect”
port.

Holger then used some summary
statistics of a large body of data
to further explicate the problem.
The data was a full packet cap-
ture over a 24-hour period, total-
ing some 3.2 TB, 137 million
TCP connections, and 6.3 billion
packets. The authors ran the
Linux netfilter i7 protocol signa-
tures on the traffic trace and
focused on HTTP, IRC, FTP, and
SMTP. They found that i7’s
matching was good for the nor-
mal case, that is, when a particu-
lar protocol appeared on a port it
normally does. But a significant
portion of the traffic defied clas-
sification or was incorrectly clas-
sified.

; LOGIN: DECEMBER 2006 CONFERENCE SUMMARIES 105

The key question the authors
seek to address is the problem of
distinguishing among network
services without taking a hint
from the port number. Holger
presented the design and imple-
mentation of a modification to
the Bro NIDS that performs
dynamic analysis of the observed
traffic: The system matches mul-
tiple possible protocols in paral-
lel. The system provides the
mechanism for doing so; wheth-
er or not to commit to a particu-
lar parsing decision is left as a
matter of thresholding and pol-
icy.

Holger described a number of
interesting results, including that
most connections on nonstan-
dard ports in their traffic trace
were HTTP and that the proto-
cols tunneled therein were
mostly P2P services, some raw
HTTP, and some FTP traffic.
They were able to identify and
close some open SMTP relays
and HTTP servers that violated
the site’s security policy and have
been able to detect some botnets
at one of the author’s sites. Hol-
ger closed by indicating that the
system will be incorporated into
Bro.

The first question focused on
how difficult it would be to add a
new protocol definition to the
system. Holger indicated that it
was a moderate amount of work,
but Bro provides a great deal of
infrastructure for doing this
already. The remaining questions
focused on the system’s ability to
handle tunneled traffic in vari-
ous forms, in particular, how
easy it would be for an attacker
to craft input that prevented the
parallel logic from making a
choice between two protocols.
Holger replied that the system
provides the mechanism, and the
policy to control it is up to the
user or site administrator. Even
so, he indicated that the combi-

nation of protocol signature
matching and dynamic analysis
somewhat alleviated this prob-
lem.

Behavior-Based Spyware Detection

Egin Kirda and Christopher Kruegel,
Technical University Vienna; Greg
Banks, Giovanni Vigna, and Richard A.
Kemmerer, University of California,
Santa Barbara

Egin gave an engaging talk about
the techniques used in real spy-
ware systems and described the
author’s system for detecting this
spyware. He began by pointing
out that spyware is a burgeoning
problem, and that it is difficult to
identify this type of malware
because it often comes in many
different guises and is potentially
installed by a trusted but unwary
user. Signature-based spyware
solutions are often on the losing
end of an arms race.

However, spyware often cannot
escape its main goal, and that
goal is to gather information
about a user’s behavior and then
transmit that information some-
where. This type of anomaly or
behavior-based detection is a
promising technique for detect-
ing spyware that doesn’t yet have
a signature.

The authors focus on spyware for
Internet Explorer, and Egin said
that most spyware registers as a
Browser Helper Object (BHO)
or toolbar (for all practical pur-
poses, a toolbar is no different
from a BHO). One major reason
for BHO’s popularity as a spyware
vehicle is that high-level user
behavior and data are readily
available to a BHO, thus greatly
simplifying the implementation
of the spyware component: It
can simply use the events, data
objects, and services that IE pro-
vides to all BHOs. Egin indicated
that their techniques are of lim-
ited applicability for spyware that
does not use COM services. For

example, spyware may utilize
other forms of communication
such as issuing GET requests to
URLs that are under the attacker’s
control.

Egin described their implemen-
tation of a “stub” IE instance
that intercepts communication
between the browser and BHOs.
The system combines static and
dynamic analysis to drive the
training phase. The dynamic
analysis records all “interesting”
COM calls and provides the
starting point for static analysis
to construct a control flow graph
to see whether information
could have been leaked. For all
of their 51 test samples (33 mali-
cious/spyware, 18 benign), the
false-negative rate was zero, but
the false-positive rate only
improves as the system moves
toward the combination of static
and dynamic analysis. One in-
teresting result is that the pri-
vacy/P3P plugin acts like spy-
ware, according to the authors’
behavior characteristic: It reads a
URL and then contacts the Web
site. After the talk, an attendee
asked whether or not it would be
possible for a malicious BHO to
detect that it was being run by
the detector version of the
browser and adjust its behavior
accordingly. Egin said that this
situation was similar to a pro-
gram detecting whether it was
running in a VM, and that the
countermeasures taken by the
spyware may be detectable, but it
was certainly an avenue for
future research.

I N V ITE D TA L K

DRMWars: The Next Generation

Ed Felten, Princeton University

Summarized by Tanya Bragin

For a number of years digital
rights management (DRM) has
been a hot topic in the press and
a focus of many research and

106 ; LOG I N : VO L . 3 1 , NO . 6

development efforts. But has
there been any significant prog-
ress since the Digital Millennium
Copyright Act (DMCA) of 1998
bolstered DRM by criminalizing
any attempts to circumvent it?
And after the public outrage over
the Sony rootkit fiasco, what
future awaits DRM? Ed Felten is
uniquely positioned to answer
these questions. He spent many
years as a computer scientist in
both industry and academia, but
in recent years he has been in-
creasingly focusing on legal and
policy issues related to technol-
ogy.

“‘Rights Management’ is some-
what of an Orwellian term,”
stated Ed Felten. “It implies that
DRM advocates want to manage
your rights, not control what you
do.” But in reality DRM software
by the very nature of what it tries
to accomplish must restrict users’
ability to control their personal
computers in order to prevent
them from copying restricted
content. When DMCA came out,
it was considered reasonable for
users to surrender some control
in order to protect the artists’
right to collect revenue for their
work. However, it is unclear that
technology can deliver on the
DRM promise, so some people
are starting to question why users
have to hand over control of their
machines to DRM software com-
panies.

According to Ed, the main issue
with the assumption that tech-
nology can actually solve the
problem of protecting digital
content is the “rip once, infringe
everywhere” phenomenon, pub-
lished in what became known as
the “Darknet Paper” by Micro-
soft Research in 2002 (www
.freedom-to-tinker.com/?p=206).
Given the ease with which peo-
ple can participate in peer-to-
peer file sharing networks, it is
only necessary for one person to
defeat DRM in order for every-

one else to have ready access to
the unprotected content. This
type of threat model is really
hard to defeat and DRM advo-
cates have gradually become
convinced that this problem is
intractable in practice.

With this realization, incentives
for deploying DRM software
have also changed. Originally
DRM was supposed to provide
antipiracy features that benefited
artists and ensured compliance
of digital content with the copy-
right law. However, given the
apparent infeasibility of these
goals, DRM software has come to
serve other purposes. First, it
allowed digital content distribu-
tors to perform price discrimina-
tion, which is enabled by DRM’s
ability to hinder transfer of con-
tent from user to user. Second, it
allowed some organizations,
such as Apple, to gain significant
market share through platform
locking. Apple’s successful com-
bination of iPod, iTunes, and the
Apple Store has created an unri-
valed digital music sale fran-
chise.

It is unclear that these new ratio-
nales for using DRM continue
to benefit artists. For example,
Apple, publicly published an
“interoperability workaround”
that allows users to burn pro-
tected content to a CD and then
rip that content from the CD in
an unprotected format. Similarly,
price discrimination primarily
benefits digital content distribu-
tors, because it allows them to
make a profit on products they
otherwise could not afford to
produce. Although price dis-
crimination can also benefit
artists and consumers, since it
allows certain types of products
to come to market, arguably it
can be achieved using tech-
niques other than DRM.

Ed expects to see more efforts by
companies to use DRM for self-
serving purposes, while continu-

ing to claim that antipiracy is the
ultimate goal. Ed warned audi-
ence members to look out for
these troubling developments,
since they are likely to hinder
interoperability, complicate
products, and frustrate con-
sumers. In Ed’s opinion, DRM
policy should be neutral, neither
discouraging nor bolstering its
use. Given the “inherent clumsi-
ness of DRM,” he believes that
market forces would ultimately
decide against it. For more infor-
mation about DRM and other
legal and policy issues related
to technology, visit Ed Felten’s
blog, “Freedom to Tinker,” at
www.freedom-to-tinker.com.

SYSTE M A S S U R A N C E

Summarized by Bryan D. Payne

An Architecture for Specification-
Based Detection of Semantic Integrity
Violations in Kernel Dynamic Data

Nick L. Petroni, Jr., and Timothy Fraser,
University of Maryland; AAron Walters,
Purdue University; William A. Arbaugh,
University of Maryland

Current systems design makes
the kernel a high-value target
for attackers. Defenses such as
load-time attestation and run-
time attestation are valuable, but
these are only capable of detect-
ing changes to static data. Nick
Petroni described how attacks
can exploit this limitation to
avoid detection, using an exam-
ple of manipulating dynamic
data structures to hide a process
in Linux.

The proposed solution is to cre-
ate a high-level model of the
dynamic data and to use this
model to validate the data. This
approach, which was inspired by
work from Demsky and Rinard,
uses a data structure specifica-
tion language to model con-
straints on the data. Nick
showed a simple example that
would catch the previously men-
tioned attack. The technique has

; LOGIN: DECEMBER 2006 CONFERENCE SUMMARIES 107

some limitations, including the
possibility of missing short-lived
changes and the need for a kernel
expert to model the constraints.

In the Q&A session, the session
chair asked whether people
would actually use a parallel lan-
guage such as this. Nick believes
that they would and that compa-
nies could provide the specifica-
tion for binary operating systems
such as Windows or Red Hat
Linux.

vTPM: Virtualizing the Trusted Plat-
form Module

Stefan Berger, Ramón Cáceres, Kenneth
A. Goldman, Ronald Perez, Reiner
Sailer, and Leendert van Doorn, IBM
T.J. Watson Research Center

Stefan Berger presented an archi-
tecture for creating virtualized
trusted platform modules (TPMs).
Multiple virtual machines cannot
share a single hardware TPM, be-
cause of limited resources in the
TPM and because the TPM has a
single owner. In addition, virtual
machines can migrate, whereas a
TPM is physically tied to a single
machine. The problem is that
hardware-rooted security is still
desirable.

As a solution to this problem,
Stefan presented a virtualized
TPM (vTPM) that is linked to
the TPM through signed certifi-
cates. The vTPM is implemented
as a software component, but
one could also build it into a
secure co-processor for im-
proved security properties.
Although there are still some
challenges related to virtual
machine migration, Stefan
explained how the vTPM archi-
tecture allows a TPM to be
extended to a virtual environ-
ment today.

In the Q&A session, the first
question involved hardware
requirements. Stefan said that
TPM is a standard and is avail-
able from a variety of vendors. To
a question about the size of the

vTPM implementation, Stefan
answered that it is about 250
kbytes per vTPM.

Designing Voting Machines for
Verification

Naveen Sastry, University of California,
Berkeley; Tadayoshi Kohno, University
of California, San Diego; David Wagner,
University of California, Berkeley

Naveen Sastry presented tech-
niques for building direct record-
ing electronic (DRE) voting
machines for easier verification.
Current-generation DRE voting
machines are built as one large,
monolithic system. However, by
building these systems using dis-
tinct components with minimal
data passing, each component
becomes easier to verify. Naveen
proposed building separate com-
ponents for each of the security-
critical functions. In addition,
Naveen recommended rebooting
between voters to ensure that
each voter starts with a known
good system state.

In the presentation, Naveen dis-
cussed the need to select specific
security properties and design
the system to satisfy these prop-
erties. Specifically, he looked at
two security properties: (1) none
of the voter’s interactions with a
DRE may affect a later voter’s
sessions, and (2) a ballot may be
stored only with the voter’s con-
sent to cast. Compartmentalized
implementation techniques were
used to demonstrate a system
that upholds these properties.

In the Q&A session, one ques-
tioner asked about the problem
of malicious developers. Naveen
answered that this can be viewed
as another security property and
a system designed to handle the
problem. Naveen also addressed
concerns that a reboot would not
clear the system memory by sug-
gesting that one cut power to the
system.

WO R K- I N - P RO G R E S S R E P O RTS

Summarized by Manigandan
Radhakrishnan

Exploiting MMS Vulnerabilities to
Stealthily Exhaust a Mobile Phone’s
Battery

Radmilo Racic, Denys Ma, and Hao
Chen, University of California at Davis

This attack is aimed at draining
the battery of the victim’s cell
phone without his or her knowl-
edge. The cell phone discharges
the most when it is in the Ready
state as opposed to Idle and
Standby. The attack works by
keeping the cell phone at the
Ready state as long as possible
even when no useful function is
performed. The authors achieve
this feat by exploiting vulnera-
bilities in the Multimedia Mes-
saging Service (MMS), specifi-
cally the Packet Data Protocol
(PDP) context retention and
paging channels. The attack
works in two phases. The first
phase involves the creation of a
hit list, which is a list of mobile
devices that includes their cellu-
lar number, IP address, and
model number. The second
phase is the battery-draining
phase, where repeated UDP/TCP
ACK packets are sent to the
mobile phone either just before
the timer expires or just after the
timer expires (so that the net-
work has to page the mobile
device). The timer here is the
duration the mobile device waits
before going to Standby state
from the Ready state. The experi-
mental results show that the
authors have been able to dis-
charge cell phone batteries at a
rate that is up to 22 times faster
than that in the Standby state.

108 ; LOG I N : VO L . 3 1 , NO . 6

Applying Machine-Model-Based
Countermeasure Design to Improve
Protection Against Code Injection
Attacks

Yves Younan, Frank Piessens, and
Wouter Joosen, Katholieke Universiteit
Leuven, Belgium

Code injection attacks are more
prevalent today, and the authors
point out that the countermea-
sures are developed in an ad hoc
manner. The authors suggest a
more methodical approach to
countermeasure development.
They present two approaches,
machine-model and meta-model.
The machine-model is the model
of the execution environment of
the program including the mem-
ory locations (stack, global ta-
bles, etc.) along with the opera-
tions performed on them. The
relations between the different
components and their interac-
tions are captured using UML
(although the authors do note
that they are working on a better
alternative). Such a model not
only allows the designer of coun-
termeasures to function at an
abstract level but also provides a
means to compare and evaluate
different countermeasures. The
shortcoming of this approach is
the fact that the machine model
is closely tied to a particular
architecture. To overcome this
the authors suggest the meta-
model, which is an abstraction of
several machine models, and
which, according to them, pro-
vides uniformity when con-
structing machine models and
allows a designer to work out the
global principles of a counter-
measure independent of a spe-
cific platform.

Building a Trusted Network Connect
Evaluation Testbed

Jesus Molina, Fujitsu Laboratories of
America

The Trusted Network Connect
(TNC), a part of the Trusted
Computing Group (TCG) proto-
cols, comprises a set of standards
that ensure multivendor interop-
erability across a wide variety of
endpoints, network technolo-
gies, and policies. The particular
issue that this presentation tries
to address is the composition of
secure applications developed by
different vendors. The author is
building a TNC testbed to test
various vendors’ products under
a variety of policies. The idea is
to expose any possible vulnera-
bilities.

The SAAM Project at UBC

Konstantin Beznosov, Jason Crampton,
and Wing Leung, University of British
Columbia

Every authorization system has a
policy-based decision maker and
an enforcement engine. In the
model presented in this WiP, they
both communicate through mes-
sage exchange to decide whether
a particular authorization request
is allowed. If this decision maker
fails or is unresponsive, the sys-
tem either becomes unavailable
as no operations are allowed or
gets breached because every oper-
ation is allowed. To prevent such
a situation, the authors propose a
Secondary and Approximate
Authorization Model (SAAM).
SAAM derives approximate
authorization decisions based on
cached primary authorization
decisions. The efficiency of a
SAAM system depends on the
authorization policy of the sys-
tem. The authors tested their
scheme on a system implement-
ing the Bell-LaPadula model and
found a 30% increase in authori-
zation requests that can be

responded to without consulting
the primary policy decision
maker.

ID-SAVE: Incrementally Deployable
Source Address Validity Enforcement

Toby Ehrenkranz, University of Oregon

Routers deployed on the Internet
today do not track the source of
an IP packet. They base their
routing decisions only on the
destination address of each pack-
et. The authors contend that this
has been the root cause of IP
spoofing attacks over the Inter-
net and of the unreliability of the
RPF protocol. ID-SAVE works by
building “Incoming Tables” for
valid IP addresses that can route
packets through this router. A
packet not matching a valid
entry in the Incoming Table is
dropped. The authors do refer-
ence Li et al.’s work [“Source
Address Validity Enforcement
(SAVE) Protocol,” 2002] and
mention that their approach has
similar ideas to SAVE. The nov-
elty of ID-SAVE lies in its ap-
proach toward deployment of
the protocol in the Internet,
which has many legacy routers
that may not support Incoming
Tables. They use a variety of
techniques such as packet mark-
ing, neighbor discovery, on-
demand updates, blacklists, and
packet-driven pushback to de-
rive benefits even with partial
deployment.

Automatic Repair Validation

Michael E. Locasto, Matthew Burnside,
and Angelos D. Keromytis, Columbia
University

Automated intrusion prevention
and self-healing software leave
the system administrator a little
perplexed, since it is just not
possible for him or her to manu-
ally ensure that the fix actually
fixes the vulnerability. To address
the issue and motivate further
research in this direction, the

; LOGIN: DECEMBER 2006 CONFERENCE SUMMARIES 109

authors propose bloodhound, a
system that facilitates automatic
verification of fixes by subjecting
them to the original input that
caused the intrusion. This can be
achieved by automatically log-
ging suspicious network traffic
and reusing the data to test the
fixed software. As was pointed
out by the authors, the chal-
lenges to this approach lie in sift-
ing through enormous amounts
of network traffic to identify
malicious inputs, in indexing
identified input and storing
them, and in ensuring that the
replay is an effective guarantee to
show that the problem is fixed.
Also, this technique has time and
space limits and has to be opti-
mized for both if this technique
is to be efficient.

Secure Software Updates: Not Really

Kevin Fu, Anthony Bellissimo, and John
Burgess, University of Massachusetts at
Amherst

Software updates are used by a
wide variety of applications to fix
bugs and patch security vulnera-
bilities. This WiP took a compre-
hensive look at the update mech-
anisms found in some of the most
common applications (Mozilla
Web browsers, Adobe Acrobat,
etc.). They found these mecha-
nisms to be heavily dependent on
the presence of secure networks
for correct functioning. And there
were instances of them being vul-
nerable to man-in-the-middle
attacks. The software update
mechanisms were also found to
be prevalent in embedded devices
(typically with limited computing
power and battery life) that either
operate over insecure networks
or cannot support secure compu-
tations. The specific examples
presented were those in use in
automobiles, electronic voting
machines, and some implanted
medical devices. The statement
“Help! My heart is infected and is
launching a DDoS on my pan-

creas” to emphasize the need for
secure content distribution was
not only hilarious but also
thought-provoking.

Integrated Phishing Defenses

Jeff Shirley and David Evans, University
of Virginia

This WiP presented an inte-
grated approach to identifying
and thwarting phishing attacks.
The proposed system has two
parts: (1) to identify suspicious
emails and Web sites and (2) to
prevent users from accessing
these phishing sites. This inte-
grated approach to identification
combines existing identification
heuristics (link obfuscation and
email text contexts) with the
authors’ own idea of gathering
URL popularity measures (de-
rived using such common search
engines as MSN and Google).
The novelty of their system lies
in their use of an HTTP proxy
that diverts a user to a warning
page when he or she tries to
access a URL classified as a
phishing site. The authors pres-
ent experimental evidence that
this greatly reduces the false-
positive and false-negative rates.
They also show that this scheme
is successful in preventing a user
from reaching a phishing site
94% of the time (with an error
rate of about 3%).

The Utility vs. Strength Tradeoff:
Anonymization for Log Sharing

Kiran Lakkaraju, National Center
for Supercomputing Applications,
University of Illinois, Urbana-
Champaign

Logs contain a variety of infor-
mation and some of these may
be sensitive information about
an organization. To facilitate
sharing of logs among organiza-
tions, these logs need to be suffi-
ciently anonymized to prevent
any leakages. This WiP talked
about the FLAIM framework for
log anonymization. The authors

described a “strength vs. utility”
trade-off to decide on the extent
of anonymization. Here “utility”
refers to the amount of usable
information that is still present
in the anonymized log, and
“strength” refers to the extent of
anonymization. The noteworthy
fact here is that the stronger the
anonymization, the less useful
the log is, and vice versa. The
FLAIM anonymization frame-
work uses multilevel policies
coupled with a library of anon-
ymization algorithms to anon-
ymize logs. The anonymization
policy is represented in a XML-
based policy language.

Malware Prevalence in the KaZaA
File-Sharing Network

Jaeyeon Jung, CSAIL, Massachusetts
Institute of Technology

More and more viruses are re-
ported to use peer-to-peer (P2P)
file-sharing networks such as
KaZaA to propagate. These mal-
ware programs disguise them-
selves as files (e.g., Winzip.exe
or ICQ.exe) which are frequently
exchanged over P2P networks;
they infect the user’s host when
downloaded and opened. They
leave copies of themselves in the
user’s sharing folder for further
propagation. The authors pres-
ent a crawler-based malware
detector, called “Krawler,” built
specific for the KaZaA network.
The crawler has a signature data-
base and looks for files with dif-
ferent file names but matching
signatures known to the crawler.
The crawler uses longest com-
mon substring to minimize false
positives. Based on their experi-
ments, the author reports that
they found 15% of crawled files
were infected by 52 different
viruses, 12% of KaZaA hosts
were infected, and 70% of in-
fected hosts were in the DNS
blacklists.

110 ; LOG I N : VO L . 3 1 , NO . 6

Election Audits

Arel Cordero and David Wagner,
University of California, Berkeley;
David Dill, Stanford University

Random election audits are a
way of ensuring that the election
process is fair. When done cor-
rectly these audits can provide
objective and measurable confi-
dence about the election process.
The difficulty lies in the selec-
tion of the samples because (1)
the process for selection of the
samples should be transparent
and yet (2) the samples should
be as random as possible. For
example, the use of software for
random selection may produce
a random sample but is not a
transparent process. To make the
selection process fully transpar-
ent and to allow public oversight
the authors suggest the use of a
die (a 10-faced one, to increase
the bandwidth). They are wary
that the choice of dice may and
probably will encounter resis-
tance in adoption because of the
public perception that dice are
associated with gambling. And
they also note that such public
perception has led to superior
selection techniques having been
rejected in the past. They advo-
cate education as the means to
shift perception toward accept-
ance of physical means such as
dice and a lottery in use of ran-
dom selection.

The Joe-E Subset of Java

Adrian Mettler and David Wagner,
University of California, Berkeley

Every process executes with the
same set of privileges inside the
Java Virtual Machine (JVM).
This means that the principle of
least authority is not enforced to
ensure that each process has just
the necessary set of privileges.
Joe-E is a subset of Java designed
to build secure systems. Joe-E
uses capabilities for the enforce-
ment of protection; hence the
program can perform only those

operations for which it has capa-
bilities. Joe-E has the advantage
of permitting safely extensible
applications, where an applica-
tion’s privileges can be limited to
the capabilities granted, thereby
simplifying analysis.

Prerendered User Interfaces for
Higher-Assurance Electronic Voting

Ka-Ping Yee, David Wagner, and Marti
Hearst, University of California, Berk-
eley; Steven M. Bellovin, Columbia
University

It is critical that the software
present in voting machines be
validated. The authors contend
that the codebase in commer-
cially existing voting machines
is not only huge (37,000 lines)
but also contains a lot of code
that is related to the user inter-
face (14,000 lines). Prerender-
ing, to generate the user inter-
face before the election, drama-
tically reduces the amount of
security-critical code in the
machine, thus reducing the
amount and difficulty of soft-
ware verification required to
ensure the correctness of the
election result. Moreover, pub-
lishing of the prerendered user
interface as a separate artifact
enables public participation in
the review, verification, usability
testing, and accessibility testing
of the ballot.

Fine-Grained Secure Localization for
802.11 Networks

Patrick Traynor, Patrick McDaniel, and
Thomas La Porta, The Pennsylvania
State University; Farooq Anjum and
Byungsuk Kim, Telcordia Technologies

This WiP presented a novel ap-
proach to ascertaining a user’s
location in an unforgeable man-
ner. This is essential when the
user’s location is a necessary part
of user authentication. The
authors use a network of access
points to transmit cryptographic
tokens at various power levels.
This location information is fur-
ther refined by using a low-cost

radio in the desktop machines
present in the vicinity of the
location ascertained by the
access points. The use of hash
functions (as part of the tokens)
ensures that this method is resil-
ient against spoofing attacks.

KernelSecNet

Manigandan Radhakrishnan and
Jon A. Solworth, University of Illinois
at Chicago

In most of today’s operating sys-
tems, networking authorizations
are practically nonexistent; that
is, common networking opera-
tions are unprivileged and end-
to-end user authentication is
done (if at all) on a per-applica-
tion basis and is never tied to the
authorization system of the oper-
ating system. The KernelSecNet
project is aimed at providing a
unified networking and distrib-
uted system abstraction that is
implemented at the operating-
system level, allows networking
policy specification, and pro-
vides automatic encryption of
all traffic between hosts. The
authors intend to develop a
model that is specific to the Ker-
nelSec project and another inde-
pendent UNIX-based model.

Taking Malware Detection to the
Next Level (Down)

Adrienne Felt, Nathanael Paul, David
Evans, and Sudhanva Gurumurthi,
University of Virginia

The WiP presented a novel tech-
nique for malware detection
using the disk processors. The
detection works by having the
disk processor monitor se-
quences of I/O requests and
identify sequences that corre-
spond to known malicious
actions (essentially, a signature).
Implementing the detection at
this low a layer makes the mech-
anism immune to most subver-
sion mechanisms that are pres-
ent in the layers above and
makes it extremely hard to cir-
cumvent. Also, this mechanism

; LOGIN: DECEMBER 2006 CONFERENCE SUMMARIES 111

works in isolation from the oper-
ating system and can operate
even when the host is compro-
mised. The authors mention that
this technique is more effective
when the processors can store
more meta information about a
request, for example, whether it
is a create-file or a remove-file
request.

Data Sandboxing for Confidentiality

Tejas Khatiwala, Raj Swaminathan, and
V. N. Venkatakrishnan, University of
Illinois at Chicago

The authors present a technique
they call “Data Sandboxing,”
which allows information flow
confidentiality policies to be
enforced on different parts of a
legacy application to prevent
leakage of confidential informa-
tion. This is especially relevant
when the application is a mono-
lithic one that accesses (via read-
ing or writing) ordinary as well
as confidential media. The tech-
nique partitions the application
into two parts (each run as a sep-
arate program) with each part
having its own confidentiality
policy. The first program per-
forms operations on public out-
put channels, and the confiden-
tiality policy does not allow it to
read confidential information.
The second program is allowed
to read confidential information,
but is not allowed to write to
public channels. The authors
contend that this partitioning
enables them to enforce a confi-
dentiality policy that in totality
prevents leakage of confidential
information from the original
program on publicly observable
channels.

MetriCon 1.0

Vancouver, B.C., Canada
August 1, 2006

Summary by Dan Geer

[This material was excerpted
from the digest found at
www.securitymetrics.org.]

MetriCon 1.0 was held on
August 1, 2006, as a single-day,
limited-attendance workshop in
conjunction with the USENIX
Association’s Security Sympo-
sium in Vancouver, British
Columbia. The idea had been
first discussed on the security-
metrics.org mailing list and sub-
sequently an organizing commit-
tee was convened out of a lunch
at the RSA show in February
2006. There was neither formal
refereeing of papers nor proceed-
ings, but there is both a digest of
the meeting and a complete set of
presentation materials available
at the www.securitymetrics.org
Web site. Andrew Jaquith (Yan-
kee Group) was chair of the
organizing committee, the mem-
bers of which were Betsy Nichols
(ClearPoint Metrics), Gunnar
Peterson (Artec Group), Adam
Shostack (Microsoft), Pete Lind-
strom (Spire Security), and Dan
Geer (Geer Risk Services).

K EY N OTE A D D R E S S

Resolved: Metrics Are Nifty
Andrew Jaquith, Yankee Group

Resolved: Metrics Are Too Hard
Steve Bellovin, Columbia University

Andrew Jaquith opened Metri-
Con 1.0 by pointing out that
other fields have their bodies of
managerial technique and con-
trol, but digital security does not,
and that has to change. He pre-
sented his list of what features
are included in a good metric: It
must (1) be consistently mea-
sured, (2) be cheap to gather, (3)
contain units of measure, (4) be

expressed as a number, and (5)
be contextually specific. Jaquith
argued that this all breaks down
to modelers versus measurers.
Modelers think about how and
why; measurers think about
what. He was quick to admit that
measurement without models
will not ultimately be enough,
but “let’s get started measuring
something, for Heaven’s sake.”

Steve Bellovin countered with
the brittleness of software and
thus the infeasibility of security
metrics. Beginning with Lord
Kelvin’s dictum on how, without
measurement, your knowledge is
“of a meagre and unsatisfactory
kind,” Bellovin said that the rea-
son we have not had much prog-
ress in measuring security is that
it is in fact infeasible to measure
anything in the world as we now
have it. We cannot answer “How
strong is it?” in the same style as
a municipal building code unless
we change how we do software.
Because defense in the digital
world requires perfection and
the attacker’s effort is linear in
relation to the number of defen-
sive layers, this brittleness will
persist until we can write self-
healing code. So his challenge:
Show me the metrics that help
this.

Lindstrom argued that Bellovin’s
reasoning did not show that met-
rics are impossible but rather
that they are necessary. Another
attendee asked, “So what if I
agree on bugs being universal
and it only takes one to fail a sys-
tem? The issue is: How do we
make decisions?” Butler agreed,
saying that if it’s that hopeless,
then why do security at all?
Epstein reminded all that for-
mally evaluated systems still
have bugs, too. Another attendee
suggested that we can borrow
some ideas from the physical
world, especially relative meas-
urements such as “this is safer
than that.” An attendee said that

112 ; LOG I N : VO L . 3 1 , NO . 6

there are certainly things you can
measure, if for no other reason
than to avoid stupid things.
Another attendee cared about
data, not software that handled
data: “I want to know about
changes in data state.”

S O F T WA R E S E C U R IT Y M E TR I C S

Gunnar Peterson, track chair

A Metric for Evaluating Static
Analysis Tools

Brian Chess and Katrina Tsipenyuk,
Fortify Software

Peterson began with a call for
rethinking what granularity we
need if metrics are to be mean-
ingful, not with regard to “sys-
tem” or “security” but, rather, to
C/I/A (confidentiality, integrity,
and authentication).

Chess proposed a weighted com-
posite score reflecting the orthog-
onal interests of the tool vendor,
the auditor, and the developer
and showed some preliminary
results of applying this to a mix
of tools and applications. He dis-
played real data from real work.

An Attack Surface Metric

Pratyusa Manadhata and Jeannette
Wing, Carnegie Mellon University

Manadhata posited a formal
framework intended to find an
answer to “Is the attack surface
of A more serious than that of
B?” Using the ratio of damage
potential to attacker effort, he
displayed several examples in
each of which he manually anno-
tated the source code and ana-
lyzed the call graph of the appli-
cation using off-the-shelf tools.
The question on the table is
whether the number of vulnera-
bilities is or is not correlated
with this attack surface metric.

“Good Enough” Metrics

Jeremy Epstein, WebMethods

Rather than argue about which
numbers it makes sense to col-

lect, Epstein suggests gathering
as many as you can and only
then decide which make sense.
Some numbers have only a dis-
tant relationship to vulnerabili-
ties, some are merely retrospec-
tive, and some tend to too many
false positives. Epstein suggested
that ratios of Cowan’s “relative
vulnerability” sort are valuable,
though Epstein’s true desire is
the security equivalent of “lead-
ing economic indicators.”

Software Security Patterns and Risk

Thomas Heyman and Christophe
Huygens, University of Leuven

Huygens argued that we should
attach metrics to security pat-
terns, where a “pattern” is the
observable connection between
the core of one’s computing envi-
ronment and the ecosystem in
which it lives. He is interested in
ratio scores such as the number
of firewall invocations vs. the
number of service invocations,
or the number of guards vs. the
number of access points for each
component. Preliminary results
indicate that this approach is fea-
sible; the aim is to craft indica-
tors to use in the system design
space.

Code Metrics

Pravir Chandra, Secure Software

Chandra focused on remediation
metrics—metrics that help (and
assess) getting better and better.
His main tool is a 4x4 matrix
crossing severity (Critical, Error,
Warning, Informational) with
review state (Unknown, Known,
Accepted, Mitigated). For each
review state, he plans to use cap-
ture-recapture or capture-for-
removal metrics to estimate flaw
count and then look at changes
in market share by severity to
track progress. Chandra pro-
posed correlating this with
software complexity metrics
(McCabe Cyclomatic, System,
and Information Flow Complex-
ity).

ENTERPRISE AN D CASE STUDI ES A

Adam Shostack, track chair

Adam Shostack led off with a
discussion of “Enterprise Case
Studies: Substitute for Ongoing
Data,” followed by Butler on
“What Are the Business Security
Metrics?”

Data Breaches: Measurement Efforts
and Issues

Chris Walsh

Walsh began with the dates of
(U.S.) adoption of data-breach
laws and asked whether online
breaches are a significant source
of ID theft. Most studies focus on
firm-level impact on income or
stock price. To Walsh, such stud-
ies lack enough reach to estab-
lish causality or even to establish
whether the public is simply
becoming inured to breaches.
More than anything else, Walsh
was outlining what it is that we
don’t know and we will need to
know, in other words, a research
agenda.

The Human Side of Security Metrics

Dennis Opacki, Covestic

To Opacki, the point of any met-
ric is to change behavior, but
behavior change is prone to pit-
falls. Opacki tied together find-
ings in evolutionary psychology,
social psychology, and behav-
ioral economics, noting that
human intuition has low energy
cost and runs in parallel, where-
as human reason has high energy
cost and runs single-threaded.
Focus on scales that people
gauge intuitively, keep the num-
ber of metrics small, do not neg-
lect entertainment value, and
give bad news first. Measure the
impact of your delivery before
and after, express everything in
dollars where you can, and use
plain language. Remember, it is
better to be vaguely right than
precisely wrong.

; LOGIN: DECEMBER 2006 CONFERENCE SUMMARIES 113

No Substitute for Ongoing Data,
Quantification, Visualization, and
Story-Telling

John Quarterman and Gretchen Phillips,
InternetPerils

Quarterman demonstrated how
his firm handles phishing at-
tacks, making an argument for
data aggregation. He used anima-
tion to illustrate a time series of
complex interconnection paths.
Quarterman is squarely in the
observation (measurement)
camp, not the simulation (mod-
eling) camp, and he suggests col-
lecting data when you do not yet
need it so that when you do need
it baselines are already in hand,
such as on the other side of your
firewall. Some discussion fol-
lowed on what measured level of
misbehavior an ISP needs before
it can break its contract to sup-
port a phishing site.

What Are the Business Security
Metrics?

Shawn Butler, MSB Associates

For Butler, business decisions are
what security metrics are about.
What we must have are fre-
quency and impact if we are to
get at true cost, and cost is the
basis of business decision-mak-
ing. Without impact, there is no
importance to management. Irra-
tionality is involved everywhere,
driven, ironically, by standards of
due care and the perception
thereof. Butler does endorse the
idea of decision support, but she
notes that although requests are
not coming down from on high,
massive amounts of data are
moving up and, worse, data rep-
resents lots of information about
frequency (number of probes,
viruses, unauthorized this or
that) but nearly no information
about impact (cost). She feels
that impact is the hardest ques-
tion to answer and that not
assessing impact means there is
no feedback between effective-
ness and investment.

ENTERPRISE AN D CASE STUDI ES B

Betsy Nichols, track chair

Nichols began the session by
showing that maturity of secu-
rity metrics deployment and
market capitalization are uncor-
related. As session lead, she set
out the core question: Why are
metrics so hard? Her answer
focused on three issues: vast and
unclean data, a lack of consensus
on indicators and models, and
difficulty in packaging results.

Leading Indicators in Information
Security

John Nye, Symantec

With his easy access to work at
the Symantec Attack Center, Nye
undertook to show what leading
security indicators might look
like. Beginning with the results
of 449 remote penetration tests,
he calculated a “vulnerability
score” and “vulnerability satura-
tion.” Dividing his data set into
quartiles by saturation, Nye
showed an expectably sharp rise
in vulnerability saturation from
quartile to quartile. From that,
he was able to identify specific
vulnerabilities that might serve
as leading indicators.

Top Network Vulnerabilities Over
Time

Vik Solem

Solem used a similar data set
limited to Nessus scans in a con-
tiguous timespan, to identify the
top 10 vulnerabilities over the
study interval. Questions from
the attendees mainly concerned
details of data sources and meth-
ods. Using the Symantec Threat
Report, Solem found no correla-
tion between attacks and Nessus
plug-in IDs, but there is correla-
tion between attacks and what is
in the Qualys “Laws of Vulns”
report, although, as Opacki re-
marked, any tool including Nes-
sus could be scanning for the
wrong things.

IAM Metrics Case Study

Andrew Sudbury, ClearPoint Metrics

Sudbury confirmed that real
work is hard; you must start with
real goals and, within that, iden-
tify what is it that you do not
know. His measures are designed
to determine whether you are in
control of your controls, and he
confirmed that business value
comes from fusing multiple data
sources. Discussion was brisk:
Kirkwood suggested that Sud-
bury add targets to his graphs of
trend data. Jansen asked how
one would confirm that a help
desk clearance score is actually
clearance and not just somebody
skipping work. Blakley asked,
Which of the following should
be considered true? (1) Manage-
ment is dumber than technical
staff; (2) management and tech
staff want to see different things;
(3) you cannot give management
bad news. Daguio said such tools
let managers decide whether to
ever give a particular team a
project again.

Assessment of IT Security in Net-
worked Information Systems

Jonas Hallberg and Amund Hunstad,
Swedish Defence Research Agency

Hallberg made the insightful
observation that, although sys-
tem properties control the secu-
rity level and the security level
controls consequences, the se-
curity level is not measurable,
whereas system properties and
consequences are. Ergo, some-
thing that bridges the gap be-
tween system properties and
likely or potential consequences
has to be crafted. The Swedish
Armed Forces uses five high-
level security properties: access
control, security logging, protec-
tion against intrusions, intrusion
detection, and protection against
malware. Saaty’s “Analytic Hier-
archy Process” was then used to
differentially weight 20 low-level
properties related to access con-

114 ; LOG I N : VO L . 3 1 , NO . 6

trol. The relationship between
the properties was interesting
and useful and was close to
Bellovin’s comments made at the
beginning of the day.

G OV E R N A N C E

Dan Geer, track chair

Geer set the tone for this session
by simply declaring that the only
metrics that matter are those
for decision support in risk
management.

Model Concepts for Consideration and
Discussion

Bryan Ware, Digital Sandbox

Ware described how his firm cal-
culates the U.S. Department of
Homeland Security’s allocation
of grant dollars to municipali-
ties. Before Ware’s involvement,
the criterion of per-capita dollars
was used, which is fair but use-
less. But after Ware’s involve-
ment, risk-centric dollar alloca-
tion was used, which is easier
said than done. The first step
was to require management
plans from states and cities that
respond to the risk measures.
Because 2x2 tables show the
decisions you are making, Ware’s
firm used 17 sets of 6 experts
each to work out criteria that set
thresholds between high and low
effectiveness (of proposed dol-
lars spent) and high and low
risk. Ware demonstrated how
this was done, and subsequently
how dollars were allocated—first
to quadrants, then within indi-
vidual quadrants. In the low/low
quadrant, a minimum amount of
money is used. In the high-risk
but low-effectiveness quadrant,
the two obvious East Coast U.S.
cities were the most problematic.
Choosing between low risk/high
effectiveness and high risk/low
effectiveness was hardest. Most
money went to high effective-
ness, which got Ware’s firm
raked over the coals. Discussion
was brisk.

Mission and Metrics from Different
Views: Firm/Agency, Industry, and
Profession

Kawika Daguio, Northeastern Uni-
versity

Daguio reminded all to “Do no
harm” as we introduce new met-
rics, that accountability matters,
and that separating risk and
compliance is essential. Compli-
ance is more important than
security’s C/I/A requirements. A
lot of what banks do is imposed
on them, and the change from a
compliance model to a risk mod-
el is a breath of fresh air. Daguio
says that we should use nominal
and ordinal measures to avoid
bad effects and that we should
not do interval or ratio scales
because those invite comparison
and hence organizational inter-
ference. Getting information
sharing will require competitive,
policy, technical, and political
reasons for doing so, or it simply
won’t fly. Daguio was clear;
although we are about metrics,
these metrics do not exist in a
vacuum nor are the recipients of
the metrics necessarily going to
be good-hearted and forthright.
Discussion was again brisk.

Measuring Information Security Risk

Bob Blakley, Burton Group

Blakley began with a formal defi-
nition intended to disambiguate
a measurement from a metric,
and to look at metrics with an
eye to finding “normal limits”
and thus to act when you are
outside them. In short, a mea-
surement is something you take;
a metric is something you give.
He argues that we are not meas-
uring risk, which is probability
times impact. Instead of proba-
bility, we have to use game the-
ory, and instead of measuring the
probability of bad things, we
have to measure consequence(s)
of those bad things. Further, you
use game theory to measure your
opponent’s goals as well as your

own, which is a key point. Blak-
ley illustrates this with a 2x3
matrix aimed at decision-mak-
ing: high/low impact versus
whether to mitigate, mitigate
and recover, or recover alone.
Blakley also pointed out that, for
decision-making, correlates of
risk are just as good as direct
measures of risk, using as his
example that while blood pres-
sure, temperature, and pulse rate
may not make you ill it is hard to
make you ill without changing
one or more of those three mea-
sures. He suggested we should
find and be happy with such cor-
relates in our sphere. There was
then some discussion of frequen-
tist versus Bayesian approaches
and whether a bimodal probabil-
ity distribution (1 x 106 vs. 106 x
1) doesn’t make any probabilist
approach impossible. Quarter-
man asked about risk aggrega-
tion, and Butler reminded all
that decision analysis is not
about the “right” decision but
about the “informed” decision, a
meaningful difference. Geer and
Blakley agreed that there is no
probability distribution for a
sentient opponent, so pure prob-
ability cannot be the answer.

Information Assurance Metrics
Taxonomy

Wayne Jansen, NIST

Jansen showed one slide summa-
rizing the taxonomy work of
Vaughn et al. Jansen described
himself as a novice in the metrics
area and asked the audience to
consider a number of questions
drawn from the taxonomy. Does
there exist somewhere a set of
well-established metrics and
measures on which a new organ-
ization should be focusing its
initial efforts? The apparent dis-
continuity between strategic
efforts and tactical ones leads
one to ask whether there is a way
to bridge the gap. What kinds
of things need to be done to
advance the state of the art? Do

; LOGIN: DECEMBER 2006 CONFERENCE SUMMARIES 115

we even know where we want to
go? Ware answered that two of
the most fascinating are the
FICO (Fair Isaac) score, which
made it possible to have instant
credit decisions, and the KMV-
Merton model to predict likeli-
hood of default for corporations.

Daguio, as a banker at that time,
asked that we all please not do
something that wrenching again.
He said that he had exhausted all
the mechanisms he has for scor-
ing security or something; the
corporate end result is always to
find a way to kill projects. An
attendee asked whether it is a
two-player game, or is game the-
ory just intrinsically easier. Blak-
ley answered that games are just
as challenging and that what is
going on now is, at least, a two-
player game as illustrated by
Microsoft’s first Tuesday security
drill and its monthly sequelae.
Second, infosec is an economic
game and not just a technical
game. More discussion followed.

D I N N E R / R U M P S E S S I O N

Three unscheduled presenta-
tions rounded out the day: Le-
versage on “The Security Inci-
dent Database,” Ozment and
Schecter on “Does Software Se-
curity Improve with Age?” and
Lindstrom on “Security Metrics.”

Leversage observed that target of
choice losses vastly exceed target
of chance losses, that good old
wiretapping is on the rise, that
infected laptops as a transmis-
sion mechanism are very much
on the rise, that human intelli-
gence (HUMINT) is still the
main source of information, and
all in all his world is very much
like the intelligence community.
There is a growing demand from
potential consumers, and it is
private in every way.

Ozment described a fine-detail,
time-series look at the history of
OpenBSD. As this was a full con-
ference paper with overlapping

relevance to MetriCon, this sum-
mary is brief: Software does
improve with age and is thus, as
the title asks, more like wine
than milk. As an inspired use of
security metrics, this is a quota-
tion from the paper’s summary:

“We found statistically signifi-
cant evidence that the rate of
foundational vulnerability re-
ports decreased during the study
period. We utilized a reliability
growth model to estimate that
67.6% of the vulnerabilities in
the foundation version had been
found. The model’s estimate of
the expected number of founda-
tional vulnerabilities reported
per day decreased from 0.051 at
the start of the study to 0.024.”

Lindstrom made a number of
points about risk, using a num-
ber of Venn diagram examples of
how to calculate varieties of risk.
In Lindstrom’s view, risk fluctu-
ates the way a financial index
like the S&P 500 fluctuates; as
such, quantifying risk necessar-
ily requires an actuarial tail (i.e.,
you calculate risk by looking at
incidence and/or prevalence of
activities in the past). That said,
his examples are worth examin-
ing closely.

In summary, 44 people attended,
predominantly representing
industry (30) rather than acade-
mia (10) or government (4).
Altogether the meeting lasted
about 12 hours and ended on
that note of happy exhaustion
that marks a successful event.
Not bad as a first try, and if you
believe that imitation is the sin-
cerest form of flattery, then Met-
riCon is already being flattered
in more ways than one. If you
want to be involved in this area,
visit www.securitymetrics.org.
Thanks go to USENIX for con-
tinuing its tradition of putting its
trust in experiments.

New Security Paradigms
Workshop (NSPW ’06)

September 19–22, 2006
Schloss Dagstuhl, Germany

The New Security Paradigms
Workshop (NSPW) is a unique
workshop devoted to the critical
examination of new ideas in
security. Each year since 1992,
we have examined proposals
for new principles upon which
information security can be re-
built from the ground up. Our
program committee particularly
looks for new paradigms: inno-
vative approaches to older prob-
lems, early thinking on new top-
ics, and controversial issues that
might not make it into other
conferences but deserve to have
their try at shaking and breaking
the mold.

The format of NSPW differs
somewhat from other work-
shops. Attendance is limited to
authors and workshop organiz-
ers, numbering around 30 total.
All attendees are required to
attend and pay attention to all
presentations (no email, IM, or
phone calls), without exception,
so that all authors receive equal
opportunity for discussion. We
conduct extensive, highly inter-
active discussions of these pro-
posals, from which we hope both
the audience and the authors
emerge with a better understand-
ing of the strengths and weak-
nesses of what has been dis-
cussed. Free time outside of
presentations is provided for
those who have to conduct other
business.

As opposed to most forums,
where the authors present their
papers and then answer a few
questions afterward, NSPW
allows questions to be asked
during the presentation. As a
result, although authors are
given around 60 minutes for
presentation, they are encour-

116 ; LOG I N : VO L . 3 1 , NO . 6

aged to limit their presentation
material to 20 minutes and leave
the rest of the time open for dis-
cussion. In some cases, authors
presenting highly provocative or
controversial topics may not
make it past their second slide.
We consider the high level of
discussion to be the primary
benefit of the conference, as
stimulating discussion provides
more feedback with which the
author can refine his or her
work.

Provocative work invites dis-
agreement, especially work that
is contrarian or questions the
status quo. To prevent discussion
from becoming an unfettered
attack of the author’s work, we
engage the attendees in a “psy-
chological contract,” where
positive feedback is strongly
encouraged.

Since the discussion can provide
significant feedback to the
author, the final proceedings of
the workshop are not published
immediately at the workshop.
Authors are given notes taken
at their presentation, and they
are expected to modify their
papers based on the feedback
they have received. The final
proceedings are published two
to three months after the work-
shop. The resulting papers are
more complete and thought out
than the original submissions.

Room and board is included in
the registration fee, so that atten-
dees can also share meals, easily
participate in social activities,
and not have to spend time trav-
eling each day. This close inter-
action creates an atmosphere of
camaraderie and provides for
continued exchange of ideas.

It was my honor and pleasure
this year to be the NSPW Gen-
eral Chair. I always find the
workshop to be the most stimu-
lating and highly enjoyable of all
the workshops and conferences I

attend. A terrific array of topics
was presented this year, and a
good time was had by all. In the
following you will find a sum-
mary of the papers presented.
I highly encourage researchers
who have new paradigms to ex-
plore, especially risky or possibly
“half-baked” ideas, to submit a
paper to future New Security
Paradigms Workshops.

—Abe Singer, NSPW 2006
General Chair

Sessions summarized byMatt
Bishop,Michael Collins, Carrie
Gates, and Abe Singer

Hitting Spyware Where It Hurt$

Richard Ford and Sarah Gordon,
Florida Institute of Technology

The first paper outlined a
method for retargeting click-
fraud to damage spyware and
adware vendors by increasing
the risk associated with these
methods. The authors develop a
model for the return on invest-
ment for adware owners and
then develop an attack aimed at
disrupting the earnings of these
owners by systematically send-
ing fake requests.

The ensuing discussion focused
on both the ethics and the logis-
tics of implementing this net-
work. An open question is the
number of hosts that would be
required to actually increase the
risk to adware maintainers: A
suggested biological analogy was
the eradication of the Mexican
Screw Worm in the 1970s, which
was done by using sterile male
Screw Worms who competed
with the fertile male population.
A huge number of infertile males
was required to eradicate the fer-
tile population, suggesting that
an attack network would also
have to be disproportionate.

Dark Application Communities

Michael Locasto, Angelos Stavrou,
and Angelos Keromytis, Columbia
University

This paper focused on the con-
cept of a Dark Application Com-
munity (DAC), a botnet that for-
wards crash reports and other
state disruptions to the bot
maintainer. Essentially, the bot
maintainer can acquire stack
traces and other state disruptive
information from normal use to
acquire information on new
potential vulnerabilities and
threats that can then be used to
generate exploitable code.

The ensuing discussion covered
both the probability of success-
fully mining this technique for
bugs and the implications for
botnet management. It was
pointed out that this technique
extends a botnet’s useful lifetime.
An open question was whether
this result would be more pro-
ductive than fuzzing or other
standard diversity techniques.
Several noted the similarity be-
tween this method and n-version
programming, although here the
diversity is in usage rather than
implementation. Possible experi-
ments were suggested by com-
paring the bug discovery rates
from open source auto-updated
tools such as Firefox or Adium.
A major concern was that, al-
though generating reports was
cheap, the cost of filtering and
sorting the reports for valuable
results was untenable.

Challenging the Anomaly Detection
Paradigm

Carrie Gates, CA Labs; Carol Taylor,
University of Idaho

This paper described weaknesses
the authors perceived in the
anomaly detection paradigm.
The authors identified and ques-
tioned assumptions in three
domains: the rarity and hostility
of anomalies, problems in

; LOGIN: DECEMBER 2006 CONFERENCE SUMMARIES 117

training data, and incorrect
assumptions about operational
requirements.

In the first case, the authors ar-
gue that the assumptions made
about the “normalcy” of data dif-
fer both since Denning’s original
studies and owing to changes in
scope: Network data is more
complex than system logs, and
network data today is far more
hostile than at the time of Den-
ning’s paper. In the second case,
there are implicit assumptions
about training data, such as the
normalcy of a previous sample
and the rarity of attacks that
overlap this former case. Finally,
the operational constraints were
discussed in depth, with several
commentators noting that the
acceptable false-positive rate
among the operational commu-
nity is close to zero.

Inconsistency in Deception for
Defense

Vicentiu Neagoe and Matt Bishop,
UC Davis

This paper questions whether
deceptive mechanisms, such as
servers and systems that present
a false view of the system, need
to maintain consistent views to
fool attackers. It examined the
nature of inconsistency in sys-
tem response and actions. The
deception model divides com-
mands into two categories: do
commands (which alter system
state) and tell commands (which
provide information on system
state). Different implementations
of deception were also presented.

Discussion focused on multilevel
secure systems, where com-
mands refuse to provide status
information. How do these affect
the model? If the probability of
deception of each occurrence of
events were independent, by
repeating commands an attacker
could probabilistically detect
deception.

A Model of Data Sanitization

Rick Crawford, Matt Bishop, Bhume
Bhuiratana, Lisa Clark, and Karl Levitt,
UC Davis

This paper introduced a compet-
itive model of sanitization in the
form of an inference game: a
three-party game involving a
sanitizer, an analyzer, and an
adversary. The goal of sanitiza-
tion (and the criteria for success
in the game) is for the sanitizer
to transform the data so that the
analyst can obtain the desired
information without the adver-
sary obtaining any private infor-
mation. An example was given
using k-anonymity (e.g., a mem-
ber of a set of k elements cannot
be distinguished from any other
member of the set).

Discussion focused on questions
involving actively tampering
with the dataset before releasing
sanitized information. Examples
of such attacks include salting
the data beforehand and using
the sanitization as a public
excuse to announce something
known privately (i.e., an insider
requesting its own sanitized
data).

Panel: Control vs. Patrol: A New
Paradigm for Network Monitoring

Panelists: John McHugh, Dalhousie
University; Fernando Carvalho-
Rodrigues, NATO; David Townshed,
University of New Brunswick

The panelists debated the idea of
an independent network-moni-
toring authority operating to
ensure network integrity. The
panelists contrast their concept
of patrol versus more traditional
discussions of network monitor-
ing, which, in their perspective,
are control- or ownership-ori-
ented. The analogy driving the
discussion was the role of high-
way patrols: Where a person
drives in public spaces is their
own business but that they were
present is publicly accessible
knowledge.

The ensuing discussion focused
on two elements: the logistics of
such a patrol mechanism and the
role and implicit privacy of
users. In the former case, there
were fundamental questions of
what the patrol would observe
and collect. Some patrol func-
tions already exist (e.g., chat-
room chaperoning), but develop-
ing a large-scale patrol involves
aggregating and analyzing huge
volumes of data, and deciding
what classes of problems the
patrol would address. Given the
initial concept of privacy on the
highway, there was an extensive
debate about the role of privacy
online, with the recognition that
a user’s perception of privacy is
extremely contextual and possi-
bly totally unrelated to the facts
on the ground (such as blogging
using a public site).

Large-Scale Collection and
Sanitization of Security Data

Phil Porras, SRI; Vitaly Shmatikov,
UT Austin

This paper summarized existing
research challenges in data col-
lection and sanitization for secu-
rity research. Security research
lacks a strong body of empirical
work because of the lack of data
sets; although public data sets
are slowly being released, the
question of sanitization is still
not handled satisfactorily.

Discussion followed about how
to handle the constraints of sani-
tization explicitly within the
context of empirical research.
Several suggestions focused
around letting the sanitizer
decide when data was released
(e.g., whether some of these
problems could be managed by
releasing data sets after some
safety period). As an alternative,
a researcher may request logs of
3 consecutive days, but the sani-
tizer may decide which 3 consec-
utive days.

118 ; LOG I N : VO L . 3 1 , NO . 6

Googling Considered Harmful

Greg Conti, United States Military
Academy

The author began by showing
AOLStalker, a search engine
using the recently released (and
then reclaimed) AOL dataset.
This served as the context for the
paper’s thesis: Users increasingly
rely on a large number of free
services provided by a limited
number of service providers. In
the majority of cases, the price
paid for these services is per-
sonal data: Users implicitly make
micropayments of their personal
privacy. The author developed a
threat analysis model to privacy
based on information released or
gleaned from these services.

Discussion then followed on the
various forms of signal analysis
and social contracts previously
used to protect privacy. Exam-
ples included tracking military
mobilization by studying pizza
deliveries in the D.C. area. Simi-
larly noted were requirements to
families of service members to
keep silent before a deployment
compared to the kind of logistic
actions families may take en
masse before a mobilization,
such as communicating with
various soldiers’ benefits serv-
ices. Discussion than focused on
the construction of a privacy
panel for W3C.

A Pact with the Devil

Mike Bond, University of Cambridge;
George Danezis, KU Leuven

The authors outlined a novel,
and hypothetical, virus that
would negotiate with its victim
to improve its capacity to spread
across networks. The hypotheti-
cal virus would offer an infected
user a chance to commit a col-
laborative computer crime; for
example, the original victim
would write a mail that a new
victim would readily open. In
exchange for this, the virus

would seek data on the new vic-
tim’s drive (such as all of the new
victim’s email) and pass it on to
the original victim.

Discussion focused on the strate-
gies such a virus could take, and
whether or not the victim could
double-cross the virus. For exam-
ple, in addition to offering car-
rots, the virus could eventually
offer sticks such as threatening to
release private or incriminating
information, or planting criminal
information on the victim’s com-
puter. Active comparisons were
made to previous socially spread-
ing problems (AIDS infections
and the appearance of email chain
letters on air-gapped networks
being two prominent examples),
along with consideration of what
techniques would make the virus
more effective, such as the scope
of threats and offers the virus
could make.

E-Prime for Security

Steve Greenwald, Independent Con-
sultant

This paper introduced E-Prime,
a restricted subset of the English
language developed by the Gen-
eral Semantics movement. E-
Prime differs from English by
avoiding all uses of the verb “to
be,” such as “is,” “am,” and “is
not.” The author argued that by
eliminating these verbs, a writer
is forced to provide more com-
plete information, such as pro-
viding attribution to some action
or requirement. Requiring that
security policies be written in E-
Prime would result in policies
that are easier to read and that do
not include assumed informa-
tion. For example, “The admin-
istrator is required to provide
audit logs” would become “The
security team requires the admin-
istrator to provide audit logs.”

Diffusion and Graph-Spectral Meth-
ods for Network Forensic Analysis

Wei Wang and Tom Daniels, Iowa State
University

This paper described a graph-
theoretic approach to analyzing
audit logs and network traffic
with the aim of detecting attacks.
The approach used was to have
each node represent a host, for
example, while connections
between nodes would represent
events. These events would have
a weight associated with them
that was based on some quality
of the event or alert. The authors
used eigenvectors to determine
qualities of the network, finding
that the first three eigenvectors
often did not result in interesting
information; however, the fourth
eigenvector could isolate attacks.

The authors used data from the
Lincoln Labs data set for testing,
and so discussion focused on
how this approach would per-
form given data from a real net-
work. The primary issue dis-
cussed was what effect the noise
inherent in a real network would
have on the ability for this
approach to extract attack
information.

PKI Design for the Real World

Peter Gutmann, U. Auckland; Ben
Laurie, Google; Bob Blakley, Burton
Group; Mary-Ellen Zurko, IBM;
Matt Bishop, UC Davis

Each panelist described his or
her belief about PKI and its
adoption in the real world.
Zurko started, describing the
PKI system currently in use by
Lotus Notes at IBM. This is a sys-
tem that is deployed at many
large enterprises and has been in
use for several years. Laurie felt
that the issue with PKI was the I:
The infrastructure required for
PKI was lacking. In particular,
he noted that there were two
requirements that needed to be
met: (1) You want to know that

; LOGIN: DECEMBER 2006 CONFERENCE SUMMARIES 119

120 ; LOG I N : VO L . 3 1 , NO . 6

the person you are talking to
today is the same person you
were talking to yesterday, and (2)
you want to know that the per-
son you are talking to is the same
person you were introduced to.
Blakley, in contrast, felt that PKI
was developed for two reasons:
(1) Key distribution is hard and
should be easier, and (2) digital
signatures are cool. As a result,
he felt that the main problem
with PKI was that it was designed
to solve a problem that no one

had, and that PKI does not mimic
any real-world processes. Bishop
felt that the issue with PKI was
that the design of the system is
not understandable. For exam-
ple, many nontechnical users do
not understand what a chain of
trust is. This also introduced
legal issues, such as who has root
and what does it mean to trust
them? He felt that PKI was work-
able on a personal level (e.g.,
PGP) and at the level of a corpo-
ration, but not among the general

public. Gutmann focused on a
study he performed asking senior
engineers and managers how
they would design a PKI system
given the constraint that they
would need to support their
design. He found that the sys-
tems described were all Web-
based and differed completely
from the designs proposed in the
standards committee.

August 6–10, 2007 Boston, Massachusetts

Announcement and Call for Papers

16th USENIX Security Symposium
http://www.usenix.org/sec07

Important Dates
Paper submissions due: February 1, 2007, 11:59 p.m. PST
Panel proposals due: March 29, 2007
Notification to authors: April 4, 2007
Final papers due: May 14, 2007
Work-in-Progress reports due: August 8, 2007, 6:00 p.m. EDT

Symposium Organizers
Program Chair
Niels Provos, Google Inc.

Program Committee
Kostas Anagnostakis, Institute for Infocomm Research, Singapore
Dan Boneh, Stanford University
Hao Chen, University of California, Davis
Monica Chew, Google Inc.
David Dagon, Georgia Institute of Technology
Marius Eriksen, Google Inc.
Kevin Fu, University of Massachusetts Amherst
Tal Garfinkel, Stanford University
Thorsten Holz, University of Mannheim
Somesh Jha, University of Wisconsin
Tadayoshi Kohno, University of Washington
Christopher Kruegel, Technical University Vienna
Wenke Lee, Georgia Institute of Technology
Patrick McDaniel, Pennsylvania State University
Fabian Monrose, Johns Hopkins University
Vern Paxson, ICSI/LBNL
Adrian Perrig, Carnegie Mellon University
Vassilis Prevelakis, Drexel University
Dug Song, Arbor Networks
Angelos Stavrou, Columbia University
Rebecca Wright, Stevens Institute of Technology
Paul Van Oorschot, Carleton University
Wietse Venema, IBM Research
Yi-Min Wang, Microsoft Research, Redmond

Invited Talks Committee
Bill Aiello, University of British Columbia
Angelos Keromytis, Columbia University
Gary McGraw, Cigital

Symposium Overview
The USENIX Security Symposium brings together researchers,
practitioners, system administrators, system programmers, and
others interested in the latest advances in the security of computer
systems and networks. The 16th USENIX Security Symposium will
be held August 6–10, 2007, in Boston, Massachusetts.

All researchers are encouraged to submit papers covering novel
and scientifically significant practical works in security or applied
cryptography. Submissions are due on February 1, 2007, 11:59 p.m.
PST. The Symposium will span five days: a two-day training pro-
gram will be followed by a two and one-half day technical program,

which will include refereed papers, invited talks, Work-in-Progress
reports, panel discussions, and Birds-of-a-Feather sessions.

Symposium Topics
Refereed paper submissions are solicited in all areas relating to sys-
tems and network security, including:

! Adaptive security and system management
! Analysis of network and security protocols
! Applications of cryptographic techniques
! Attacks against networks and machines
! Authentication and authorization of users, systems, and

applications
! Automated tools for source code analysis
! Cryptographic implementation analysis and construction
! Denial-of-service attacks and countermeasures
! File and filesystem security
! Firewall technologies
! Forensics and diagnostics for security
! Intrusion and anomaly detection and prevention
! Malicious code analysis
! Network infrastructure security
! Operating system security
! Privacy-preserving (and compromising) systems
! Public key infrastructure
! Rights management and copyright protection
! Security architectures
! Security in heterogeneous and large-scale environments
! Security of agents and mobile code
! Security policy
! Self-protecting and healing systems
! Techniques for developing secure systems
! Technologies for trustworthy computing
! Voting systems analysis and security
! Wireless and pervasive/ubiquitous computing security
! World Wide Web security

Note that the USENIX Security Symposium is primarily a sys-
tems security conference. Papers whose contributions are primarily
new cryptographic algorithms or protocols, cryptanalysis, electronic
commerce primitives, etc., may not be appropriate for this confer-
ence.

Program committee members are limited to being authors or co-
authors of at most two paper submissions. The program chair is not
permitted to be author or co-author of any paper submissions.

Refereed Papers & Awards
Papers that have been formally reviewed and accepted will be pre-
sented during the Symposium and published in the Symposium Pro-
ceedings. It is expected that one of the paper authors will attend the
conference and present the work. It is the responsibility of the
authors to find a suitable replacement presenter for their work, if
the need arises.

One author per paper may take a registration discount of $200. If
the registration fee poses a hardship to the presenter, USENIX can
offer complimentary registration

Symposium Proceedings
The Proceedings will be distributed to attendees and, following the
Symposium, will be available online to USENIX members and for
purchase. The online Proceedings will be made available for free to
everyone one year after the conference.

Best Paper Awards
Awards may be given at the conference for the best overall paper
and for the best paper for which a student is the lead author. Papers
by program committee members are not eligible for these awards.

Training Program, Invited Talks, Panels, WiPs, and
BoFs
In addition to the refereed papers and the keynote presentation, the
technical program will include a training program, invited talks,
panel discussions, a Work-in-Progress session (WiPs), and Birds-of-
a-Feather sessions (BoFs). You are invited to make suggestions
regarding topics or speakers in any of these sessions via email to
the contacts listed below or to the program chair at sec07chair
@usenix.org.

Training Program
Tutorials for both technical staff and managers will provide imme-
diately useful, practical information on topics such as local and net-
work security precautions, what cryptography can and cannot do,
security mechanisms and policies, firewalls, and monitoring sys-
tems. If you are interested in proposing a tutorial or suggesting a
topic, contact the USENIX Training Program Coordinator, Dan
Klein, by email to tutorials@usenix.org.

Invited Talks
There will be several outstanding invited talks in parallel with the
refereed papers. Please submit topic suggestions and talk proposals
via email to sec07it@usenix.org.

Panel Discussions
The technical sessions may include topical panel discussions. Please
send topic suggestions and proposals to sec07chair@usenix.org.
The deadline for panel proposals is March 29, 2007.

Work-in-Progress Reports (WiPs)
One session of the Symposium will consist of Work-in-Progress
reports (WiPs). This session offers short presentations about work
in progress, new results, or timely topics. Speakers should submit a
one- or two-paragraph abstract to sec07wips@usenix.org by 6:00
p.m. EDT on Wednesday, August 8, 2007. Make sure to include
your name, affiliation, and the title of your talk. The schedule of
presentations and accepted abstracts will be posted on the Sympo-
sium Web site. The time available will be distributed among the
presenters, with each speaker allocated between 5 and 10 minutes.
The time limit will be strictly enforced.

Birds-of-a-Feather Sessions (BoFs)
Birds-of-a-Feather sessions (BoFs) will be held Tuesday, Wednes-
day, and Thursday evenings. Birds-of-a-Feather sessions are
informal gatherings of persons interested in a particular topic. BoFs
often feature a presentation or a demonstration followed by discus-
sion, announcements, and the sharing of strategies. BoFs can be
scheduled on-site or in advance. To preschedule a BoF, please send
email to the USENIX Conference Department at bofs@usenix.org
with the title and a brief description of the BoF; the name, title,

affiliation, and email address of the facilitator; and your preference
of date and time.

How and Where to Submit Refereed Papers
Papers are due by February 1, 2007, 11:59 p.m. PST. All submis-
sions will be made online, and details of the submissions process
will be made available on the Call for Papers Web site, http://www
.usenix.org/events/sec07/cfp, well in advance of the deadline. Sub-
missions should be finished, complete papers.

Paper submissions must not be anonymized.
Submissions must be in PDF format (i.e., processed by Adobe’s

Acrobat Distiller or equivalent). Note that LaTeX users can use the
“dvipdf” command to convert a DVI file into PDF format. Please
make sure your submission can be opened using Adobe Acrobat
4.0. For more details on the submission process, authors are encour-
aged to consult the detailed author guidelines.

To insure that we can read your PDF file, authors are urged to
follow the NSF “Fastlane” guidelines for document preparation, and
to pay special attention to unusual fonts. For more details, see:

! https://www.fastlane.nsf.gov/documents/pdf_create
/pdfcreate_01.jsp

! https://www.fastlane.nsf.gov/documents/tex/tex_01.jsp
All submissions will be judged on originality, relevance, correct-

ness, and clarity. In addition to citing relevant published work,
authors should relate their submission to any other relevant submis-
sions of theirs in other venues that are under review at the same
time as their submission to the Symposium. Simultaneous submis-
sion of the same work to multiple venues, submission of previously
published work, and plagiarism constitute dishonesty or fraud.
USENIX, like other scientific and technical conferences and jour-
nals, prohibits these practices and may, on the recommendation of a
program chair, take action against authors who have committed
them. In some cases, program committees may share information
about submitted papers with other conference chairs and journal
editors to ensure the integrity of papers under consideration. If a
violation of these principles is found, sanctions may include, but are
not limited to, barring the authors from submitting to or partici-
pating in USENIX conferences for a set period, contacting the
authors’ institutions, and publicizing the details of the case.

Authors uncertain whether their submission meets USENIX’s
guidelines should contact the program chair, sec07chair@usenix
.org, or the USENIX office, submissionspolicy@usenix.org.

Papers accompanied by nondisclosure agreement forms will not
be considered. All submissions are treated as confidential, both as a
matter of policy and in accord with the U.S. Copyright Act of 1976.

Authors will be notified of acceptance by April 4, 2007. The
camera-ready final paper due date is May 14, 2007. Each accepted
submission may be assigned a member of the program committee to
act as its shepherd through the preparation of the final paper. The
assigned member will act as a conduit for feedback from the com-
mittee to the authors.

Specific questions about submissions may be sent via email to
the program chair at sec07chair@usenix.org.

Program and Registration Information
Complete program and registration information will be available in
May 2007 on the Symposium Web site, both as HTML and as a
printable PDF file. If you would like to receive the latest USENIX
conference information, please join our mailing list at http://www
.usenix.org/about/mailing.html.

Last Updated: 9/26/06

PERIODICALS POSTAGE
PAID

AT BERKELEY, CALIFORNIA
AND ADDITIONAL OFFICESUSENIX Association

2560 Ninth Street, Suite 215
Berkeley, CA 94710

POSTMASTER
Send Address Changes to ;login:
2560 Ninth Street, Suite 215
Berkeley, CA 94710

Join us in San Jose, CA, February 13–16, 2007, for the latest in file and storage technologies.

The 5th USENIX Conference on File and Storage Technologies (FAST ’07) brings together

storage system researchers and practitioners to explore new directions in the design,

implementation, evaluation, and deployment of storage systems.

Meet with premier storage system researchers and practitioners for ground-breaking file and storage information!

http://www.usenix.org/fast07

The FAST ’07 programwill include one day of tutorials
followed by 2.5 days of technical sessions.

Join us in San Jose, CA, February 13–16, 2007

