
D E C E M B E R 2 0 1 5 V O L . 4 0 , N O . 6

Security

History
Peter H. Salus on STUG and LISA
Interview with Rob Kolstad

Columns
Python 3.5s and the new Async-IO
David Beazley

Practical Perl Tools
David N. Blank-Edelman

Proper Metrics for Logging
Dave Josephsen

The Unpredictability of the Future
Dan Geer

& CAN bus
Ian Foster and Karl Koscher

& The Future of Digital Forensics
Simson L. Garfinkel

& The Failure of Megamos Crypto
Roel Verdult and Flavio D. Garcia

& How NVM Changes Everything:
Interview with Darrell Long
Rik Farrow

U P C O M I N G E V E N T S

Stay Connected...

www.usenix.org/facebook

twitter.com/usenix

www.usenix.org/youtube

www.usenix.org/linkedin

www.usenix.org/blog

www.usenix.org/gplus

Enigma 2016
January 25–27, 2016, San Francisco, CA, USA
enigma.usenix.org

FAST ’16: 14th USENIX Conference on File and
Storage Technologies

February 22–25, 2016, Santa Clara, CA, USA
www.usenix.org/fast16

NSDI ’16: 13th USENIX Symposium on Networked
Systems Design and Implementation

March 16–18, 2016, Santa Clara, CA, USA
www.usenix.org/nsdi16

Co-located with NSDI ’16
CoolDC ’16: USENIX Workshop on Cool Topics on
Sustainable Data Centers
March 19, 2016
Submissions due December 15, 2015
www.usenix.org/cooldc16

SREcon16
April 7–8, 2016, Santa Clara, CA, USA

USENIX ATC ’16: 2016 USENIX Annual Technical
Conference

June 22–24, 2016, Denver, CO, USA
Submissions due February 1, 2016
www.usenix.org/atc16

Co-located with USENIX ATC ’16:

HotCloud ’16: 8th USENIX Workshop on Hot Topics
in Cloud Computing
June 20–21, 2016
Submissions due March 8, 2016
www.usenix.org/hotcloud16

HotStorage ’16: 8th USENIX Workshop on Hot Topics
in Storage and File Systems
June 20–21, 2016
Submissions due March 10, 2016
www.usenix.org/hotstorage16

SOUPS 2016: Twelfth Symposium on Usable Privacy
and Security
June 22–24, 2016
Paper registration due March 1, 2016
www.usenix.org/soups2016

SREcon16 Europe
July 11–13, 2016, Dublin, Ireland

USENIX Security ’16: 25th USENIX Security
 Symposium

August 10–12, 2016, Austin, TX, USA
Submissions due February 18, 2016
www.usenix.org/sec16

Co-located with USENIX Security ’16

WOOT ’16: 10th USENIX Workshop on Offensive
Technologies
August 8–9, 2016

CSET ’16: 9th Workshop on Cyber Security
Experimentation and Test
August 8, 2016

ASE ’16: 2016 USENIX Workshop on Advances in
Security Education
August 9, 2016

HotSec ’16: 2016 USENIX Summit on Hot Topics
in Security
August 9, 2016
www.usenix.org/hotsec16

OSDI ’16: 12th USENIX Symposium on Operating
Systems Design and Implementation

November 2–4, 2016, Savannah, GA, USA
Abstracts due May 3, 2016
www.usenix.org/osdi16

LISA16
December 4–9, 2016, Boston, MA, USA
www.usenix.org/lisa16

Do you know about the
USENIX Open Access Policy?

USENIX is the first computing association to offer free and open
access to all of our conferences proceedings and videos. We
stand by our mission to foster excellence and innovation while
supporting research with a prac tical bias. Your membership fees
play a major role in making this endeavor successful.

Please help us support open access. Renew your USENIX
membership and ask your colleagues to join or renew today!

www.usenix.org/membership

http://www.usenix.org/youtube
http://www.usenix.org/facebook
http://www.usenix.org/linkedin
http://www.usenix.org/gplus
http://www.usenix.org/blog
http://www.usenix.org/fast16
http://www.usenix.org/nsdi16
http://www.usenix.org/cooldc16
http://www.usenix.org/atc16
http://www.usenix.org/hotcloud16
http://www.usenix.org/hotstorage16
http://www.usenix.org/soups2016
http://www.usenix.org/sec16
http://www.usenix.org/hotsec16
http://www.usenix.org/osdi16
http://www.usenix.org/lisa16
http://www.usenix.org/membership
https://www.usenix.org/conference/enigma2016

E D I T O R
Rik Farrow
rik@usenix.org

M A N A G I N G E D I T O R
Michele Nelson
michele@usenix.org

C O P Y E D I T O R S
Steve Gilmartin
Amber Ankerholz

P R O D U C T I O N
Arnold Gatilao
Jasmine Murcia

T Y P E S E T T E R
Star Type
startype@comcast.net

U S E N I X A S S O C I AT I O N
2560 Ninth Street, Suite 215
Berkeley, California 94710
Phone: (510) 528-8649
FAX: (510) 548-5738

www.usenix.org

;login: is the official magazine of the USENIX
Association. ;login: (ISSN 1044-6397)
is published bi-monthly by the USENIX
Association, 2560 Ninth Street, Suite 215,
 Berkeley, CA 94710.

$90 of each member’s annual dues is for a
subscription to ;login:. Subscriptions for non-
members are $90 per year. Periodicals postage
paid at Berkeley, CA, and additional offices.

POSTMASTER: Send address changes to
;login:, USENIX Association, 2560 Ninth Street,
Suite 215, Berkeley, CA 94710.

©2015 USENIX Association
USENIX is a registered trademark of the
USENIX Association. Many of the designa-
tions used by manufacturers and sellers
to distinguish their products are claimed
as trademarks. USENIX acknowledges all
trademarks herein. Where those desig-
nations appear in this publication and
USENIX is aware of a trademark claim,
the designations have been printed in caps
or initial caps.

D E C E M B E R 2 0 1 5 V O L . 4 0 , N O . 6

E D I T O R I A L
2 Musings Rik Farrow

S E C U R I T Y
6 Exploring Controller Area Networks

Ian Foster and Karl Koscher

12 The Expanding World of Digital Forensics Simson L. Garfinkel

17 Cryptanalysis of the Megamos Crypto Automotive Immobilizer
Roel Verdult and Flavio D. Garcia

23 Ethical Behavior in Cyberspace Research John Murray

26 Hack, Play, Win: Lessons Learned Running the Maryland
Cyber Challenge Richard Forno

S Y S A D M I N
32 /var/log/manager: I’m the Manager, This Is My Job

Andy Seely

F I L E S Y S T E M S
36 Interview with Darrell Long Rik Farrow

H I S T O R Y
38 Offshoots: STUG and LISA Peter H. Salus

40 Interview with Rob Kolstad Rik Farrow

43 ;login: The UNIX Newsletter

C O L U M N S
48 Awaiting for Godot David Beazley

55 Practical Perl Tools: OAuth2 in Situ David N. Blank-Edelman

60 iVoyeur: Tests and Metrics Dave Josephsen

64 For Good Measure: Why Speculate? Dan Geer

66 /dev/random: Streamailer and Beyond Robert G. Ferrell

B O O K S
68 Book Reviews Mark Lamourine and Rik Farrow

U S E N I X N O T E S
70 2016 Election for the USENIX Board of Directors

Casey Henderson

71 Team USA Continues to Impress at IOI 2015
in Kazakhstan Brian C. Dean

72 Thanks to Our Volunteers Casey Henderson 1975–2015

2  D ECE M B ER 20 1 5 VO L . 4 0, N O. 6 www.usenix.org

EDITORIALMusings
R I K F A R R O W

Rik is the editor of ;login:.
rik@usenix.org I’ve often written about how depressing I find computer security is for the

December issue, so this year I thought I’d try a different tack. Honestly,
there were parts of USENIX Security, particularly the WOOT workshop,

that had me laughing out loud.

I really liked the “Fast and Vulnerable” [1] paper for its humorous insights into the state of
programming. A widely used product, one that is Internet-connected and can be used to
control cars, totally fails at having any security at all. What a laugh! They even included the
private SSH key for the root account for the device—and the same key is used on all devices by
this manufacturer.

Not that SSH is needed at all: just a simple SMS message to the device can be used to instruct
it to download a software update. That’s right. All you need is a phone number and to send a
text message, and you can “own” someone else’s car. And the phone number could be war-
dialed. As if this weren’t enough, there’s also a Web and a Telnet interface you can use.

Programmers
I’ve heard Wietse Venema and D. J. Bernstein’s names mentioned many times at USENIX
Security as the only people who have a proven track record for writing secure software. That
should give you food for thought: if just these two guys have done it right, that implies every-
one else is doing it wrong.

And that seems to be about right. Getting the security right is very hard; even the best
programmers often make exploitable mistakes, and I think we should assume that the best
programmers are a tiny minority. That leaves about six nines, or 99.9999% of programmers
among those who are not the best. Then what those statements about Venema/Bernstein
really mean is that effectively no one can write software securely.

A large part of the problem has to do with the nature of programming. Someone, hopefully a
skilled programmer, gets tasked with creating software that will convert requests into the
appropriate responses. In most cases, the programmer writes a list of instructions, does some
testing, then keeps working on the software until it appears to work.

Nowhere in that outline of the programming task does the concept of security even appear.
If security does come up, the requirement is often something like “must include crypto,” and
the programmer then adds a function with a hash check or perhaps XORs something so the
program includes encryption. Perhaps the programmers are more advanced and decide they
will use a library in OpenSSL, but because they don’t understand cryptography they use weak
keys and repeat the same initialization vector with every request.

I used to laugh at early attempts to port Microsoft MS-DOS programs to UNIX. The authors
didn’t understand the UNIX security model, so they would run their software as root. All files
would be publicly writeable by all, too. For someone coming from the MS-DOS world, where
there was no security, this was the equivalent security “ported” to UNIX.

mailto:rik@usenix.org
http://www.usenix.org

www.usenix.org D ECE M B ER 20 1 5 VO L . 4 0, N O. 6 3

EDITORIAL
Musings

In the research for “Fast and Vulnerable,” the programmers/
designers for the car-connected device didn’t do much better.
They did have a root password and a user password (for the
user named “user”), but they were trivially cracked. You can
query, update, or control the device either locally, over a network
connection (via a USB port), or remotely, as the Web and Telnet
services appear both locally and remotely. And since this device
connects to the OBD-II port on US-built cars, you can play the
types of tricks with the car as Miller and Valasek did with the
entertainment head found in new Chrysler Jeeps [2].

The Question
Finding vulnerable devices online is nothing new. Companies
have created everything from routers to medical devices that
appear online, have software with exploitable vulnerabilities,
and provide no mechanism for updating the software of these
devices, and this has been true for about as long as there has
been a public Internet (1991). You might think that we, the
computer science community, might try and do something about
this sorry state of affairs. And we have, but because security isn’t
easy, things haven’t worked out so well.

Let’s take a look at a couple of recent attempts to provide security
for applications that assume that programmers shouldn’t be
expected to do this themselves: Android and iOS. Of the two, iOS
has a stricter model, which has worked well until XcodeGhost [3]
came along. By adding a Trojan object file to the Xcode develop-
ment framework, used to write applications for iOS, applica-
tions would include the Trojan binary. And Apple accepted
these applications into the Apple App Store, as the applications
appeared to follow the rules. Ooops.

Android has fared much worse for a couple of reasons. Google
never wanted, or could have, the same degree of control over
the apps market for Android, and that has opened the field to
malware. And second, the model chosen for Android was never
intended to be as robust. When I first heard about the Android
security model, at a USENIX Security Symposium in Mon-
treal (2009), I heard that the model would partially rely on
people noticing and complaining about insecure apps. Also,
users would be expected to decide whether or not to allow apps
access to their devices, with over 140 different types of access
potentially allowed. I made a point of speaking with the program
manager, and when I complained to him that they expected way
too much from Android users, he told me that it was too late to
change the design.

Google has recently updated the Android security design [4], but
the user still must make security decisions, and those decisions
are still all or nothing. For example, if you want to use the Uber
app, you grant Uber complete access to your phone and personal
information. I found that very interesting. I also know that lots

of people are willing to trust Uber, the corporation, and Uber
programmers, with complete access to their phones. Really?
Have you done that?

Google has created a new sandbox, without any access permis-
sions, that apps can be run in. Another of my favorite papers
at Security, “Boxify: Full-Fledged App Sandboxing for Stock
Android” [5], will allow knowledgeable programmers to run
other people’s apps inside a permissionless sandbox, and have
finer-grained control over what personal data we are willing to
share and when. What distinguishes the new sandbox from the
old one is the ability to run unmodified apps, regardless of what
permissions the app programmers have asked for (everything if
you’re Uber), and decide to grant access to a selected set when
executed, instead of at install time.

Microsoft got serious about security in 2001. Just this year, they
replaced the default browser, IE, with something better. Apple
and Google have always been serious about security, but their
results have been mixed so far. Keep in mind that iOS in China,
where lots of iPhones are jailbroken, is on a par with Android in
the rest of the world. None of this is easy.

To sum up, we have a history of programmers being unable to
write programs securely. We have vendors who are unable to
provide secure environments in which to run insecure apps. So
why are we at all surprised at the lack of security today?

The Lineup
I was so impressed with Ian Foster’s WOOT ’15 presentation
about finding weaknesses in an OBD II device that I asked
him and one of his co-authors (Karl Koscher) if they would
write about CAN bus for ;login:. Understanding CAN bus is
the key to understanding how modern cars work—and why we
see remote hacks of cars that might appear to be magic if we
didn’t know better.

Roel Verdult and Flavio Garcia explain the problems found
in Megamos, a widely used automobile immobilizer. In what
could be seen as a reprise to the theme of my editorial, Verdult
and Garcia analyzed both the immobilizer itself and how it has
been used in many brands of automobiles, showing that indeed,
programmers cannot program securely and vendors don’t under-
stand cryptography.

Simson Garfinkel volunteered an article on digital forensics.
Fresh from chairing the DFRWS 2015 conference, Simson
provides us with a clear view of how the field of digital forensics
has grown both broader and more challenging over time. Both a
current researcher and an accomplished writer, Simson takes
us through from the early days of cloning drives to modern tools
that can analyze the vast amount of data found on our digital
devices and networks.

4  D ECE M B ER 20 1 5 VO L . 4 0, N O. 6 www.usenix.org

EDITORIAL
Musings

I met John Murray during the USENIX Security ’15 poster ses-
sion, where he was explaining the Menlo Report to anyone who
would listen. I’d only that afternoon heard of the Menlo Report,
during a panel session by past program committee members
discussing how they handle ethical lapses in submitted papers. I
asked John if he could tell us more about how the Menlo Report
provides a better basis for institutional review boards (IRBs)
considering security research proposals.

I’ve known Rick Forno for many years, from when he worked for
the early US Internet name registry. Rick offered to share five
years of experience running the Maryland Cyber Challenge, a
cyber competition that allows participants at different levels of
education and experience to learn together.

Andy Seely has written a summary of his 11 columns on manag-
ing system administrators. If you missed any of his past col-
umns, you can review the useful practices that Andy has shared,
as well as locate the columns you either missed or find that you
now need.

I interviewed Darrell Long (UCSC) about how the actual arrival
of a real non-volatile memory (NVM) RAM product will affect
the world of computing. The answer? You need to read the inter-
view, but I can tell you here, this is big.

Peter Salus writes his final USENIX history article and dis-
cusses the founding of the Software Tools User Group (STUG)
and LISA. If you’ve ever wondered where USENIX came from,
who came up with that name, I suggest you read all of Peter’s
articles. They aren’t that long but do put the past of USENIX in
perspective.

I also interview Rob Kolstad. Rob was elected to the USENIX
Board three times and started the LISA conference. Rob is an
amazing guy, and you can find hints of this by reading this inter-
view, as well as another look at where USENIX has come from
and what happened in the past to make it the organization that it
is today.

Dave Beazley waxes enthusiastic about the new asynchronous
I/O (asyncio) module in Python 3.5. As Dave writes, this will
blow your mind if you are already familiar with past asyncio
Python modules. More practically, you will learn the current
direction for handling thousands of threads of activity using
coroutines.

David Blank-Edelman took up the challenge I tossed him when
he submitted his October column and worked up some Perl script
magic for using OAuth2. OAuth2 is more than an authentica-
tion protocol, as OAuth2 tokens are used for delegating access to
resources on other folks’ servers. David’s column covers check-
ing all of the Google Calendars shared with you for events that
may be bugging you with daily notifications, perhaps while the
person involved is off on vacation.

Dave Josephsen discusses monitoring for programmers. While
we usually think of monitoring as a task belonging to system
administrators and SREs, Dave reminds us that developers need
to understand what types of events they should be reporting in
their code.

Robert Ferrell uses his fertile imagination to come up with a
new form of secure email, Streamailer, and also addresses how
difficult change in any form is for many people, and ends with a
new technique for authentication.

We have book reviews by both Mark Lamourine and myself.
Mark reviewed Python for Data Analysis and an introductory
book on Go, while I reviewed the Donovan and Kernighan
Go book.

Restarting
I believe that if people are allowed to do anything, including
things harmful to themselves or others, someone will try to do
those harmful things. And it appears that humanity in general
agrees with this belief, as we have laws and customs that set
constraints on behavior. We drive on a particular side of roads,
do not pick up apples at a farmer’s market and walk off with them
without paying, throw stones or shoot at passersby, and so on.
We live in a civil society (for the most part).

But in the world of programming, we have few constraints. The
“Fast and Vulnerable” [1] paper clearly shows what happens
when programmers are set free of the constraints of security to
design a product that, when misused, can kill people.

I also believe that people are much more comfortable with
constraints that appear natural. We all learn as children that
when we jump up, we quickly fall back to earth, if we eat too
much, our stomach starts hurting, and so on. These are natural
constraints, and they work for the most part (see 72-ounce steak
rules [6]), for most people.

That said, I also believe that we need programming environ-
ments where writing secure code comes naturally. I believe we
can do that with modern languages and a structure of natural
constraints that encourage writing small modules that require
least privileges, as Venema and Bernstein have been showing us
for years.

When we, the culture of computer scientists, began writing pro-
gramming languages, we needed something better than writing
in machine language, and we got FORTRAN and COBOL. We’ve
come a long way since then, but it’s painfully obvious we still
have a long way to go.

There is another important leg to having an environment where
secure programming feels natural, and that is the hard part:
hardware. Our programming environment matches our hard-
ware architecture, where even a smartwatch has an architecture

http://www.usenix.org

www.usenix.org D ECE M B ER 20 1 5 VO L . 4 0, N O. 6 5

EDITORIAL
Musings

References
[1] I. Foster, A. Prudhomme, K. Koscher, S. Savage, “Fast and
Vulnerable: A Story of Telematic Failures,” in the Proceedings
of the 9th USENIX Workshop on Offensive Technologies
(WOOT ’15), August 2015, Washington, DC.

[2] Andy Greenbaum, “Hackers Remotely Kill a Jeep on the
Highway—With Me in It,” July 21, 2015: http://www.wired
.com/2015/07/hackers-remotely-kill-jeep-highway/.

[3] http://researchcenter.paloaltonetworks.com/2015/09
/novel-malware-xcodeghost-modifies-xcode-infects-apple
-ios-apps-and-hits-app-store/.

[4] Security-Enhanced Linux in Android: https://source
.android.com/devices/tech/security/selinux/index.html.

[5] Michael Backes, Sven Bugiel, Christian Hammer, Oliver
Schranz, and Philipp von Styp-Rekowsky, “Boxify: Full-
Fledged App Sandboxing for Stock Android,” in the Proceed-
ings of the 24th USENIX Security Symposium, August 2015,
Washington, DC, pp. 691–706: https://www.usenix.org
/conference/usenixsecurity15/technical-sessions
/presentation/backes.

[6] The 72 oz. Steak Rules: http://bigtexan.com/72oz-steak
-rules/.

[7] http://www.rikfarrow.com, Design for Security.

that evolved from 1960 mainframes. We are still building time-
sharing systems, even now that we can put tens of cores on a tiny
chip. Those cores, properly connected, could form the basis for
many small services that work today.

There’s even a name for those services that has become quite
popular: microservices. Let’s build the architecture [7] for
running those microservices natively and securely, and design
a software architecture that makes programming securely
natural.

www.usenix.org/annual-fund

USENIX is the first computing association to offer free and open access to all of our conferences
 proceedings and videos. We stand by our mission to foster excellence and innovation while
supporting research with a practical bias. Your financial support plays a major role in making
this endeavor successful.

Please help to us to sustain and grow our open access program. Donate to the USENIX Annual Fund,
renew your membership, and ask your colleagues to join or renew today.

Do you know about the
USENIX Open Access Policy?

http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
http://researchcenter.paloaltonetworks.com/2015/09/novel-malware-xcodeghost-modifies-xcode-infects-apple-ios-apps-and-hits-app-store/
https://source.android.com/devices/tech/security/selinux/index.html
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/backes
http://bigtexan.com/72oz-steak-rules/
http://www.rikfarrow.com
http://www.usenix.org/annual-fund
http://www.usenix.org

6  D ECE M B ER 20 1 5 VO L . 4 0, N O. 6 www.usenix.org

SECURITYExploring Controller Area Networks
I A N F O S T E R A N D K A R L K O S C H E R

Ian Foster recently completed
his master’s degree at the
University of California, San
Diego, where he worked on
analyzing the security of

aftermarket telematics dongles. In doing so he
found that security of some of these devices
was often an afterthought, if existent at all.
idfoster@cs.ucsd.edu

Karl Koscher is a postdoctoral
researcher at the University of
California, San Diego, where
he specializes in embedded
systems security. He earned

his PhD in 2014 from the University of
Washington, working with Tadayoshi Kohno.
As part of his dissertation work, he was one
of the lead researchers to perform the first
published, comprehensive, experimentally
backed security analysis of a modern
automobile. supersat@cs.ucsd.edu

The highly publicized attack by Miller and Valasek during the summer
of 2015 once again drew attention to weaknesses in automobile secu-
rity. All modern automobiles rely on a broadcast network called CAN,

and interfaces into that network are actually required by law. In this article,
we explain how the CAN bus works and how it can be exploited.

Background
The Controller Area Network (CAN) is a serial bus standard designed for reliable, real-time
message delivery between distributed control systems. Originally intended for vehicle appli-
cations, the CAN bus standard has found its way into many types of control systems, such
as those used in elevators, medical devices, and robots. As detailed below, the standard is
commonly implemented as a shared, differentially signaled bus, and enables priority-based
arbitration. Multiple bitrates are supported, up to one megabit per second.

In automotive contexts, CAN buses are now commonly used to connect the various com-
puters (known in the industry as electronic control units, or ECUs) of a car together. These
ECUs now control most aspects of modern automobiles, including the engine, transmission,
brakes, airbags, lights, and locks. Additional systems, such as “infotainment” (e.g., radio/nav-
igation systems) and telematics systems (e.g., OnStar), are often connected to these ECUs.
Vehicles will often have multiple CAN buses connecting various subsets of ECUs together.

The Controller Area Network Standard
Bosch, a German manufacturer of automotive control systems, began work on the Controller
Area Network standard in 1983. Intel and Mercedes-Benz became involved with the project
shortly thereafter, and in 1986 a paper introducing the “Automotive Serial Controller Area
Network” standard was presented at the annual International Congress of the Society of
Automotive Engineers (SAE) [1]. Version 2 was released in 1991 and forms the basis of all
modern CAN implementations. CAN was subsequently adopted as an ISO standard (11898)
in 1993 [2].

The CAN standard is optimized for low latency, high throughput, and reliable transmission.
Low latency is achieved through short frame sizes (with a maximum payload length of eight
bytes) and a priority-based, carrier sense multiple access (CSMA) arbitration scheme. While
the maximum bitrate of 1 Mbps may seem low by today’s standards, it meets the needs of
most control systems. A new, backwards-compatible extension called CAN FD supports
higher data rates. Reliability is ensured through multiple mechanisms. Differential signal-
ing is commonly used at the physical layer, which provides immunity to common-mode noise
(i.e., interference that couples onto one line will couple on to the other as well, canceling
out its effect), as well as potential redundancy if one of the lines should fail. A 15-bit CRC
(cyclic redundancy check) field at the end of each frame provides a high amount of certainty
that frames are received correctly and are uncorrupted. An ACK slot at the end of the frame
allows the sender to ensure that the frame was received correctly by at least one node, and
many CAN controllers will automatically retransmit unacknowledged CAN frames. Figure 1
shows the CAN frame format.

mailto:idfoster@cs.ucsd.edu
mailto:supersat@cs.ucsd.edu
http://www.usenix.org

www.usenix.org D ECE M B ER 20 1 5 VO L . 4 0, N O. 6 7

SECURITY
Exploring Controller Area Networks

Figure 1: The CAN frame format

The CAN standard allows some flexibility in the physical layer
(and in fact is not specified in Bosch’s original standards), but
relies on there being a “dominant” logical zero state and a “reces-
sive” logical one state. Most CAN applications implement the
physical layer described in ISO 11898-2, which specifies two
lines, CAN_H and CAN_L, which are connected to each other
at both ends of the bus with a 120Ω terminating resistor. In the
recessive state, CAN_H and CAN_L are at approximately the
same voltage (nominally 2.5v to ground). In the dominant state,
CAN_H is pulled to 5v, while CAN_L is pulled to ground.

CAN frames primarily consist of an 11-bit or 29-bit arbitration
ID, a four-bit length field, up to eight bytes of payload, a 15-bit
CRC, and an acknowledgment bit. The arbitration ID typically
is treated as a message type, but is sometimes (such as with
OBD-II diagnostics, described below) used as a controller source
or destination identifier. When transmitting the arbitration ID,
the CAN transceiver monitors the bus. If it sends a recessive
bit but detects a dominant bus condition, it aborts the message
transmission. Note that the frame from the node that asserted
the dominant bus condition has not been corrupted and thus can
continue to be sent. Since a dominant state indicates a logical
zero, and data is transmitted most-significant-bit first, lower
arbitration IDs take precedence over higher arbitration IDs.

At this point, the astute reader may notice some security issues
with the CAN protocol as described. In particular, CAN buses
are broadcast networks, typically don’t provide a way to identify
the sender or recipient of a message, and are subject to trivial
denial-of-service attacks. Each node on a CAN bus can observe
all traffic. In fact, aspects of the CAN protocol, such as arbitra-
tion, require this. Furthermore, each node can send arbitrary
CAN frames, without other nodes being able to verify the sender.
Source or destination IDs, if used, can be trivially spoofed. Con-
stantly asserting a dominant bus state will cause all other nodes
to back off indefinitely, although well-designed CAN transceiv-
ers will detect this and enter a receive-only mode, making this
type of denial-of-service attack difficult to pull off in software
alone.

Given that the CAN standard provides no protection against
malicious behavior, an attacker with access to a CAN bus is
often able to take control of many critical aspects of the attached
control systems. In the case of modern automobiles, there are
many potential entry points into a vehicle’s CAN bus(es), and
these buses expose almost complete control over every aspect of
the car’s operation.

CAN Buses in Vehicles
Since CAN was invented with automotive applications in mind,
we should step back and explain why vehicle ECUs may want
to communicate with each other. Early engine control systems
were introduced to meet stringent new emissions limits. In
particular, by monitoring multiple sensors, the air/fuel ratio
could be tightly controlled to minimize emissions. Since then,
ECUs have evolved and proliferated to support ever-increasing
fuel efficiency, emissions, safety, and reliability standards, and
there can be further synergies with cross-ECU communications.
For example, as Bosch explained in their original CAN bus paper,
a transmission control unit can request the engine control unit
to reduce torque, which reduces wear on the clutch and provides
smoother shifting [1]. Similarly, the airbag controller can ask the
engine controller to shut off the fuel pump if the airbags deploy,
minimizing the chance of a fuel leak after an accident. Faced
with a growing amount of inter-ECU communication, moving to
a shared communications bus reduced the number of expensive
(and heavy) point-to-point links.

Today, most aspects of a vehicle’s operation go over one or more
CAN buses. For example, in one vehicle we looked at [3], the anti-
lock braking/stability control system reports the vehicle’s speed
to other modules, such as the speedometer, as well as to the
engine controller (as input to its cruise-control algorithms). The
radio also receives these speed messages to dynamically adjust
its volume. In fact, the familiar click-clacks of the turn signal
relays are now simulated by the radio, which receives the turn
signal status from the body controller. The telematics system
routes its audio through the radio, and can command the HVAC
system to turn down the fans when a call is received.

These are just a few examples of inter-ECU communication
in today’s modern vehicles. In fact, the amount of information
being transferred has grown to a point where vehicles often have
multiple CAN buses, with gateway nodes that route selected
messages between these buses. The architecture of how ECUs
are connected together varies a great deal by manufacturer, but
in 2014 Miller and Valasek published a survey of CAN bus archi-
tectures across a wide range of OEMs [4].

8  D ECE M B ER 20 1 5 VO L . 4 0, N O. 6 www.usenix.org

SECURITY
Exploring Controller Area Networks

Figure 2: OBD-II VIN query frame—only the ID field and eight-byte data
field of the CAN frame are shown.

The ID or priority of the example CAN frame shown in Figure
2 is 0x7E0. CAN identifiers for legislated OBD are defined by
ISO 16765-4 [7], which specifies that ECUs can be physically
addressed with IDs 0x7E0–0x7E7, with corresponding replies
sent to 0x7E8–0x7EF. The frame type and length are both nib-
bles. The type is 0x0 to indicate a “single frame,” which means
that the entire OBD request can fit within a single CAN frame.
The LEN field specifies how many more bytes follow in the
request. SID is the service identifier, which in this case is 0x09,
or the “Request Vehicle Data” service. The “Request Vehicle
Data” service takes a parameter ID (PID). For this service, a PID
of 0x02 corresponds to the VIN.

Figure 3: OBD-II initial VIN response frame

The response to the query frame is shown in Figure 3. The ID
and PID code fields should be the same as the query frame. As
with the request, if the response can fit within a single frame,
the type is 0. However, in this case, the response is split across
many frames, so a frame type of 1 is used to indicate the “start
frame” of a multi-frame packet. The LEN field of a start frame
indicates the total number of bytes in the response. In an OBD
response, the SID field is equal to 0x40 plus the SID from the
query. For service 0x09, NO is the number of data items (in this
case 1 for the VIN). Data contains the first three bytes of the
requested data.

Figure 4: ISO 15765-2 OBD-II flow control frame sent to main ECU

In order to get the remaining 17 bytes, a flow control frame needs
to be sent to the ECU informing it of the parameters for send-
ing consecutive frames. Figure 4 shows a flow control frame
that will instruct the ECU to send all of the remaining packets
immediately. The ID is the same as the OBD query. A status of
0x30 requests the rest of the data to be sent now and a status of
0x31 requests the ECU to wait. BS is the block size, defining the
number of frames to send before waiting for next flow control
frame (0 means no further flow control frames are needed). ST is
the separation time delay between frames in milliseconds.

On-Board Diagnostics
In 1996, the OBD-II (On-Board Diagnostics) connector became
federally mandated by the US Government. The OBD-II con-
nector provides a way to verify the status of emissions control
systems and facilities emissions testing. For example, emissions
control systems can indicate over OBD-II port whether any sen-
sor faults have been detected, the overall confidence in sensor
performance, whether any unapproved firmware modifications
have been made (which may affect emissions), as well as current
sensor readings, which can be validated against external testing
equipment. At the time, while the physical connector was stan-
dardized, there were several OBD-II communication protocols
used by different manufacturers. The widespread adoption of
CAN for powertrain ECU communications led it to be the natu-
ral choice for a single OBD standard. Since 2008, all vehicles sold
in the US are required to provide OBD functionality over CAN.
Practically speaking, this means that one or more major CAN
buses are typically exposed to the OBD-II port.

The legally-required implementation of OBD over CAN (“legis-
lated OBD”) is defined by ISO 15031 and ISO 15765 and provides
a relatively limited set of services, such as reading certain pow-
ertrain parameters such as engine speed, retrieving and clearing
trouble codes, retrieving historical parameters recorded when a
trouble code was raised, and requesting sensor test data. Under
these standards, diagnostic messages are directed to ECUs at
fixed CAN IDs, with their responses coming back with other fixed
CAN IDs. ISO 15765-2 defines a simple transport layer, known as
ISO-TP, which can be used to assemble larger diagnostic messages
across multiple CAN frames and ensures in-order delivery [5].

In addition to legislated OBD, many vehicles also support the
newer Unified Diagnostic Services (UDS) standard, defined
by ISO 14229-3, which builds on legislated OBD. UDS provides
several additional services, such as the ability to read and write
arbitrary memory locations in ECUs, reflash ECU firmware, and
override ECU I/O. For sensitive operations, such as reflashing
safety, theft, or emissions-critical ECUs, or performing poten-
tially unsafe I/O overrides, an OEM-defined unlocking pro-
cess must usually be performed with the UDS SecurityAccess
service, which defines a challenge/response-type mechanism
for authentication. However, these unlocking schemes are often
not robust—some OEMs use small keys that can be brute-forced,
while others use simple algorithms such as XORing the chal-
lenge with a known secret [3, 6].

OBD-II Example
In the following example we show how to request the vehicle’s VIN
from the engine control module using OBD over CAN. OBD query
and response packets are sent over the CAN bus using ISO-TP
standard [5]. In this example, all nibbles and bytes shown are part
of the CAN frame’s eight-byte data section except for the ID field.

http://www.usenix.org

www.usenix.org D ECE M B ER 20 1 5 VO L . 4 0, N O. 6 9

SECURITY
Exploring Controller Area Networks

Figure 5: Remaining OBD-II VIN response frames

Figure 5 shows the remaining data frames sent by the ECU after
receiving the flow control frame. The ID is the same as the initial
response frame. Type and Index are both nibbles. The type is 0x2
to indicate consecutive frames, and the index is a frame counter
starting at 1. Data contains up to seven bytes of the response
data per consecutive frame. In this example, VIN is represented
as a 20-byte string that is divided up into an initial frame and
three consecutive frames.

This example uses a well-known query to request the VIN from
the main ECU. However, for every ECU on the bus there are
many other packets that are not well-documented. The more
interesting CAN frames that can affect things like the engine,
brakes, locks, etc. are proprietary and are generally not shared by
the manufacturer.

Most of what is publicly known about the non-standard CAN
frames has been reverse-engineered. Each vehicle may have dif-
ferent CAN messages, and sometimes even different generations
of the same vehicle will use different frames. For example, the
CAN frame to unlock the trunk on one vehicle may activate the
windshield wipers of another vehicle.

Exploiting Vehicular Controller Area Networks
We now turn our attention towards how these automotive CAN
buses can be abused. An attacker may be able to get access to
these CAN buses in a variety of ways. Since these buses are often
exposed over the ODB-II port, aftermarket devices that plug into
this port (such as dongles that track your driving for insurance
purposes) are potential entry points. At WOOT ’15 we demon-
strated several attacks against a popular OBD-II dongle platform
that gives an attacker complete access to at least one CAN bus
[8]. These dongles connect cars to the cellular network and can
be exploited via SMS or their built-in Web server. Prior work by
researchers at UC San Diego and the University of Washington,
as well as Miller and Valasek, have also demonstrated multiple
remotely exploitable vulnerabilities in unmodified vehicles, which
can also be used to gain complete access to CAN buses [9, 10].
With vehicles becoming increasingly connected to the outside
world, the number of potentially vulnerable entry points to these
vehicles’ CAN buses is rapidly growing.

With access to the CAN buses, an attacker can either use stan-
dard inter-ECU messages to influence vehicle behavior or may
be able to exploit diagnostic services. For example, Miller and

Valasek demonstrated partial control of the steering wheel by
spoofing parking-assist and lane-keep-assist messages. These
messages are relatively easy to discover—since the CAN bus is
a broadcast network, we can simply monitor the messages sent
while eliciting a behavior we want to reproduce. These messages
can be captured using a CAN frame logger connected to the
ODB-II port, and we can verify that we’ve found the correct mes-
sage by replaying it and seeing if it produces the desired effect.

Given the relatively fragile nature of CAN, an attacker can over-
ride messages as well. For example, the UW/UCSD researchers
were able to falsify speedometer readings—and in fact, invert
them such that the displayed speed was 100 MPH minus the
actual speed—simply by flooding the bus with spoofed messages
[3]. A slightly more sophisticated attack could detect speedome-
ter messages sent by other ECUs and assert a dominant bus state
during the CRC, causing all other receivers to reject the message
as invalid, although this requires fairly precise timing.

Some “functionality” is not exposed by standard inter-ECU mes-
sages. For example, there is no message that will let another ECU
completely disable the brakes, and especially not for an extended
period of time. In these instances, diagnostic services can often
be abused to achieve the desired effect.

One powerful diagnostic service is the ability to override device
I/O. While the exact payload of these message varies by OEM
and ECU, the UW/UCSD team found it extremely easy to enu-
merate virtually every possible behavior by just sending random
payloads. Combined with elevated privileges obtained by exploit-
ing weak SecurityAccess schemes, an attacker can potentially
perform dangerous operations, such as taking direct control of
the brakes while the vehicle is moving at high speed.

Another useful diagnostic service is ReadMemoryByAddress,
which can enable an attacker to read arbitrary pieces of an
ECU’s address space. This service can often be used to dump an
ECU’s firmware for reverse-engineering or to leak sensitive val-
ues such as authentication keys. While suppliers are cautioned
to prevent leaking sensitive data over this service, many do not
heed this warning. Others may not implement ReadMemory-
ByAddress restrictions correctly. For example, an ECU may
prevent you from reading out sensitive values from flash, but
does not prevent you from reading the same values out when they
are copied to RAM.

Finally, the RequestDownload/TransferData services can be
used to reflash ECUs, which allows an attacker to implement
arbitrary behavior. These services should normally be restricted,
but in many cases they aren’t, and in other cases the SecurityAc-
cess mechanism protecting access can often be defeated.

10  D ECE M B ER 20 1 5 VO L . 4 0, N O. 6 www.usenix.org

SECURITY
Exploring Controller Area Networks

Summary
Modern automobiles have dozens of control units that commu-
nicate with each other via CAN buses. CAN buses are a shared
broadcast medium, and while they are designed for reliability,
they aren’t designed to withstand malicious attacks. Many criti-
cal aspects of a vehicle’s operation can be controlled with access
to these buses, either by spoofing ordinary inter-ECU messages
or by abusing diagnostic services. These CAN buses are becom-
ing increasingly vulnerable to attack. Aftermarket devices

plugged into the ODB-II port are in a position of privileged
access and may be vulnerable to wireless attacks. Furthermore,
vehicles themselves are now incorporating wireless connectiv-
ity (e.g., Bluetooth, WiFi, and cellular) in their infotainment
and telematics systems, further broadening the potential attack
surface. However, with recent media attention on these types of
vulnerabilities, we are hopeful that automakers and aftermarket
device manufacturers will devote more resources to securing
their products.

References
[1] U. Kiencke, S. Dais, and M. Litschel, “Automotive Serial
Controller Area Network,” SAE Technical Paper 860391, 1986:
doi:10.4271/860391.

[2] International Organization for Standardization, “Road
Vehicles— Interchange of Digital Information—Controller Area
Network (CAN) for High-Speed Communication,” ISO/DIS
Standard 11898:1993.

[3] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S.
Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S.
Savage, “Experimental Security Analysis of a Modern Automo-
bile,” in the Proceedings of the 31st IEEE Symposium on Security
and Privacy, May 16–19, 2010, Oakland, CA.

[4] C. Miller and C. Valasek, “A Survey of Remote Automotive
Attack Surfaces,” Black Hat USA 2014, August 2014, Las
Vegas, NV.

[5] International Organization for Standardization, “Road Vehi-
cles—Diagnostics on Controller Area Networks (CAN)—Part 2:
Network Layer Services,” ISO Standard 15765-2:2004.

[6] C. Miller and C. Valasek, “Adventures in Automotive
 Networks and Control Units,” DEF CON 21, July 2013, Las
Vegas, NV.

[7] International Organization for Standardization, “Road
Vehicles—Diagnostics on Controller Area Networks (CAN)—
Requirements for Emissions-Related Systems,” ISO Standard
15765-4:2005(E).

[8] I. Foster, A. Prudhomme, K. Koscher, S. Savage, “Fast and
Vulnerable: A Story of Telematic Failures,” in the Proceedings
of the 9th USENIX Workshop on Offensive Technologies
(WOOT ’15), August 2015, Washington, DC.

[9] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Sha-
cham, S. Savage, K. Koscher, A. Czeskis, F. Roesner, T. Kohno,
“Comprehensive Experimental Analyses of Automotive Attack
Surfaces,” in the Proceedings of the 20th USENIX Security
 Symposium, August 2011, San Francisco, CA.

[10] C. Miller and C. Valasek, “Remote Exploitation of an
 Unaltered Passenger Vehicle,” Black Hat USA 2015, August
2015, Las Vegas, NV.

http://www.usenix.org

It’s time for the security community to take a step back and get a fresh perspective on threat assessment

and attacks. This is why the USENIX Association is excited to announce the launch of Enigma,

a new security conference geared towards those working in both industry and research.

Enigma will deliver three days of talks from leading practitioners and researchers, all of whom

are uniquely qualifi ed to discuss security as it relates to the Internet of Things, black markets,

election issues, threats, scalability, and much more.

JANUARY 25–27, 2016
SA N FR A NCISCO, C A LIF OR NI A , USA

enigma.usenix.org

Featured speakers include:

Bryan Payne, Netfl ix:
“PKI at Scale Using

Short-Lived Certifi cates”

Adrienne Porter Felt, Google:
“Why Is Usable Security Hard,

and What Should We Do about It?”

Damon McCoy,
New York University:

“Bullet-Proof Credit Card
Processing”

The full program and registration are now available.

12  D ECE M B ER 20 1 5 VO L . 4 0, N O. 6 www.usenix.org

SECURITY

The Expanding World of Digital Forensics
S I M S O N L . G A R F I N K E L

Digital forensics is on its way to becoming a mainstream part of
computer science. With the right tools, forensic examiners can trace
the source and determine the extent of a cyberattack. They can find

evidence on a cell phone to help convict a bank robber or pimp. They can pull
apart the firmware in cars and embedded devices, finding privacy leaks and
security vulnerabilities. To accomplish this wizardry, the field has had to
grow beyond its roots of simple data extraction and file system analysis, and
now incorporates a wide variety of leading-edge computer science tech-
niques, including big data analytics, visualization, multilingual processing,
and program analysis. It’s never been a better time to be a digital forensics
researcher—the people who are charged with discovering how to exploit new
technologies and building the tools that systemize that knowledge. At the
same time, increased technical complexity and diversity is making the job of
front-line forensics examiners more challenging every day.

Digital forensics is fragmenting. Ten years ago, it was common for examiners to be masters
of the entire field—and perhaps developing their own tools as well. But as computer systems
have become more complex, there’s been an increasing need for examiners to specialize. As
a result, having one or a few forensic specialists on staff is no guarantee that an organiza-
tion can perform the necessary forensic tasks when the times arise. Instead, organizations
increasingly rely on specialized teams that deeply practice and research a particular modal-
ity, then use partnerships to cover other forensic areas.

This article provides a brief overview of digital forensics as it is practiced today. I then pres-
ent some of the recent advances in digital forensics research. Finally, I discuss the profound
changes the field is likely to encounter over the next few years as a result of the growing
attention that society is paying to privacy and security.

Digital Forensics Comes of Age
Modern digital forensics got going in the 1990s when law enforcement agents started
encountering digital media during the course of criminal investigations. Some of these were
classic examples of what we call cybercrime today—an outsider breaking into some kind
of networked computer system, or an authorized user planting malware. Other cases were
traditional crimes involving drugs, theft, or extortion, with the added twist that a computer
system was used by the suspect to convey a threat, keep records, or communicate with
co-conspirators.

The Internet’s explosive growth in the late 1990s was accompanied by a similar increase
in child pornography proliferation [1]. At the time, much of the public discussion focused
on technologies for detecting and preventing criminals from downloading child porn over
the network. But when law enforcement actually made an arrest, agents faced computers
that needed to be examined. As the cases started to mount, agents at the FBI and other law

Simson Garfinkel was the
program chair of the DFRWS
2015 Conference and researches
digital forensics in Arlington
VA. He is also an Affiliate

Faculty Member of George Mason University
in Virginia. simsong@acm.org

mailto:simsong@acm.org
http://www.usenix.org

www.usenix.org D ECE M B ER 20 1 5 VO L . 4 0, N O. 6 13

SECURITY
The Expanding the World of Digital Forensics

enforcement agencies realized that they needed standardized,
repeatable, and accepted approaches for preserving digital evi-
dence, making digital duplicates for use by examiners, searching
for items of interest, and other aspects of the new digital labora-
tory practice [2].

To understand why standards were necessary, consider the
example of deleted file recovery. Since the 1980s, programs like
Norton Disk Doctor and Mace Utilities could “unformat” hard
drives and “undelete” files that users accidentally deleted [3].
Law enforcement professionals were interested in such tools as
well, since perpetrators would frequently delete files or other-
wise try to hide their criminal activity if they suspected they
were in danger of being apprehended. Evidence extracted from a
suspect’s own system proved to be incredibly useful for estab-
lishing guilt.

But it’s one thing for a consumer to use an off-the-shelf program
to recover a file that’s been accidentally lost, another thing
entirely for a law enforcement officer to recover a file on a sus-
pect’s computer and submit that file as evidence in a court of law.
In the latter case, the officer needs some way to prove that the
“deleted” file was really on the suspect’s computer and not the
result of contamination from another case or from running the
recovery tool. To address these and similar concerns, practitio-
ners developed techniques for both preserving and isolating case
data. Eventually, the Federal Crime Laboratory Directors formed
the Scientific Working Group on Digital Evidence (SWGDE) in
February 1998 to help formalize the profession’s standards [4].

Vendors responded by perfecting software that would reliably
copy all of the data from a hard drive into a single “image file”
(complete with checksums, case notes, and timestamps), and
devices called “write blockers” that fit between a hard drive and
a computer, allowing data to be copied off the drive but blocking
attempts from the computer to overwrite sectors on the drive.
Disk imaging proved to be more complex than first thought, as
data could be hidden (and occasionally was hidden) in the “host
protected area” or “device configuration overlay” of ATA-hard
drives. Likewise, some hard drives contain bad blocks, and many
imaging tools did not behave in a reliable and consistent manner
when bad blocks were encountered [5]. Hardware write blocking
proved necessary because many operating systems would over-
write sectors on a hard drive even when the drive was mounted
“read-only.” For example, some Linux “live CD” distributions
will mount and use a Linux swap partition, potentially overwrit-
ing important evidence [6]. Write blockers also protected against
an examiner’s mistakes.

The aftermath of September 11, 2001, demonstrated that the
power of digital forensics to recover deleted documents and
report about a computer’s past usage could be used for more than
child exploitation cases. Although the hijackers are reported

to have had no computers of their own, investigators searched
computers in public libraries and copy shops frequented by the
hijackers and discovered the systems had been used “to review
and order airline tickets” used in the attack [7]. Computer
records, including data found on the laptop of Zacarias Mouss-
aoui, the alleged “20th hijacker,” were featured prominently at
Moussaoui’s trial and significantly assisted the prosecution
[8]. In the years that followed, digital forensics was widely used
by coalition forces in Iraq and Afghanistan to gain intelligence
from captured cell phones and laptops [9]. In May 2015, for
example, the Office of the Director of National Intelligence
released a trove of documents that had been seized as part of the
2011 raid on Osama bin Laden’s compound [10].

Data extraction and file recovery remained primary goals of dig-
ital forensics researchers and developers in the decade follow-
ing the 9/11 attacks. Smartphones increased the importance of
digital forensics. Far more personal than a laptop, smartphones
are often intimately involved in the planning and commission of
crimes. Criminals use smartphones to communicate with their
co-conspirators and with their victims (in the case of sexual
assault) and even to document their crimes [11]. Unfortunately, it
can be quite complicated to get the information out of a smart-
phone—unlike a hard drive, an examiner can’t simply connect
the phone to a “write blocker” and copy out all of the data. But
once a phone’s memory is dumped, the use of SQLite databases,
JSON data structures, and text files made phone content rela-
tively straightforward for an examiner to understand.

Many forensic processes designed for copying and analyzing
data from simple IDE hard drives have been adopted for RAID
arrays, SSDs, digital cameras, GPS devices, mobile phones,
and an increasingly dizzying array of devices. There have been
challenges. For example, many modern systems do not statically
preserve data in the same way that magnetic drives do—SSDs
that implement the TRIM command will slowly clear the blocks
associated with deleted files if the drive is powered up, without
any help from the operating system. This requires changing not
just operating procedures, but underlying assumptions about the
nature and goals of digital forensics.

Today there are mature commercial and open source tools avail-
able for digital forensics practitioners. Programs like EnCase,
FTK, X-Ways Forensics, and Autopsy allow an examiner to
view the contents of a disk image, perform keyword searches,
and even recover deleted files. These tools typically support
a range of file systems, including Windows FAT, XFAT and
NTFS, Macintosh HFS+, and Linux EXT 2/3/4. A similar set
of tools from companies like Celebrite and NowSecure provide
these functions for iOS and Android-based phones. These tools
implement a model I call “visibility, filter and report.” First, they
find all of the forensically interesting data on the media being

http://www.usenix.org

14  D ECE M B ER 20 1 5 VO L . 4 0, N O. 6 www.usenix.org

SECURITY
The Expanding the World of Digital Forensics

analyzed and make them visible, typically by putting them in a
database and displaying a section of that database in a graphi-
cal user interface. Next, they allow the examiner to filter the
data according to rules. Finally, the tools produce reports such
as timelines, indications of known malware, and user activities.
These tools have proven to be remarkably effective in helping
examiners perform a wide variety of functions, from malware
analysis to crime fighting.

Handling of non-English text has become increasingly impor-
tant as examiners routinely encounter text in other languages.
Early forensic tools simply could not display many non-US lan-
guages. Today, support for UNICODE is uneven but improving,
and some tools are beginning to incorporate machine transla-
tion, allowing examiners to get the sense of a case without hav-
ing to bring in a human translator.

Forensics has also grown beyond analyzing data at rest. Con-
sider network forensics. Fifteen years ago, civil libertarians
were outraged over the FBI’s development and use of a network
wiretapping program called “Carnivore” [12]. But at roughly the
same time, network examiners were developing an open source
network forensics program called Ethereal, now known as Wire-
shark. Unlike Carnivore, Wireshark can decrypt SSL-encrypted
traffic (provided that the examiner has a copy of the server’s
private key). It’s a great tool for “forensicating” networks, as the
pros call it. Meanwhile, there’s a whole new generation of mal-
ware analysts who consider digital forensics to be the study of
opcodes, execution paths, and trust elevation exploits.

Digital Forensics Research
“Digital forensics” has become an umbrella term for any
systematic examination of digital artifacts, code and data, no
matter where they may be formed. And as the field has grown
and matured, so too has the need for systematic research into
the processes that create those digital artifacts and techniques
for helping examiners to make sense of the massive amount of
information that systematic examination produces.

The idea of digital forensics as an area of academic or industrial
research dates to August 2001, when the Air Force Research
Laboratory sponsored a two-day workshop in Utica, New
York, on Digital Forensics Research. The results of that work-
shop were a 42-page report, “A Roadmap for Digital Forensics
Research,” and the annual Digital Forensics Research Work-
shop, later renamed “DFRWS.”

Much of the past 15 years of research has been devoted to under-
standing the nature of stored data. In practice, there is little pub-
licly available documentation for the vast majority of systems
that have been deployed. An added complication is that many
vendors have made their own changes to the data structures
used by various operating systems and applications, sometimes

in an attempt to get better performance from these systems,
other times because they were not interested in maintaining
compatibility with their competitors’ systems. But even when
software is open source, there is a big difference between having
a copy of a program’s source code and being able to understand
the information that a program writes into a file, in a database,
or on a disk.

Consider the case of SQLite, the cross-platform open source
database that’s widely used on mobile phones and desktop
computers. Even though SQLite’s code has been public since
its initial release in May 2000, it’s only in the past few years
that forensic examiners have understood how to recover data
that’s been deleted in SQLite databases or partially overwrit-
ten database files. The reason: simply having a program’s code
may give insight into how the programs run, but the only way to
really understand the data that a complex program produces is
to methodically trace the program’s execution and painstakingly
track the output. In hindsight, this is just another application of
the Church-Turing thesis.

Likewise, even though Microsoft has published specifications
that describe FAT file systems in great detail and there have
been open source implementations for nearly two decades, nei-
ther explains how to recover deleted files, or how to carve FAT32
directories from a drive that was reformatted by a computer run-
ning Windows XP, a version of Windows for which formatting
wiped the root directory of the drive but did not overwrite most
of the drive’s actual storage.

Researchers have also spent considerable effort understanding
the internal structure of various file formats. Simply trying to
identify a file’s “type” and extract the file’s “text” proved to be a
difficult problem in many cases. Although identifying a Micro-
soft Word document is relatively easy, there are thousands of dif-
ferent word processors, graphics tools, and financial programs
in use. In many cases different versions of these programs write
files with subtly different formatting. Since it’s frequently not
practical for examiners to acquire and run the precise version
of the software that was used to create a file, other approaches
need to be developed for understanding formats and extract-
ing their text. Understanding these formats has another benefit
as well: frequently, files contain hidden information that the
normal end-user application doesn’t show. Such information can
be used to gain additional insight or intelligence about a crime or
criminal organization.

Some of the most interesting data analysis work involves the
reconstruction of files when some information is overwrit-
ten or missing but other binary data remains. For example, file
carving is an approach for extracting files from media based on
their content, rather than using file system metadata. Early file
carvers could find and identify JPEGs by searching for the two

http://www.usenix.org

www.usenix.org D ECE M B ER 20 1 5 VO L . 4 0, N O. 6 15

SECURITY
The Expanding the World of Digital Forensics

characteristic bytes that start and end every JPEG file (hex FF
D8 and FF D9, respectively), then saving the header, the footer,
and all of the bytes between into a new file. This approach,
called header-footer file carving, generated a large number of
false positives. Researchers discovered ways for discarding the
invalid JPEGs. Researchers have since developed techniques for
reassembling fragmented JPEG files [13], and even for rendering
a fragment of a JPEG photograph when large parts from the file’s
beginning and end are missing and all that’s available are the
blocks in the middle [14]. These techniques need to be extended
to the multitude of video formats.

Another important research area is memory analysis. Tools like
the open source Volatility memory analysis framework [15] pro-
vide building blocks for understanding memory dumps, convert-
ing virtual memory addresses to physical, and decoding many of
the operating system structures. Plugins written for Volatility
can reconstruct the process list and find rootkits residing on
Windows, Macintosh, and Linux systems. The contents of the
Windows clipboard can be extracted and printed, open files
can be displayed, and typed command lines can be found and
recovered. Such tools have been tremendously important for
incident response. Unfortunately, they are incredibly expensive
to develop, creating the need for new development approaches.

Malware analysis has also become hugely important—so much
so that it is largely its own area with specialty tools like Ida Pro
and OllyDbg. Most malware analysis is done manually, with tools
performing disassembly, search, and clerical support, but there
is growing work in techniques that are largely automatic, relying
either on static analysis or else running malware in environ-
ments that are highly instrumented.

Data extraction is still an important research area, although
these days the hard problems are overcoming encryption and
dealing with the data volumes of modern storage systems. For
example, at the 15th DFRWS, which concluded August 2015 in
Philadelphia, the Best Paper Award went to a pair of research-
ers who developed a technique for selectively imaging a small
portion of a hard drive while still acquiring information neces-
sary to solve a case [16]. Demonstrating the increased emphasis
on scientific method and validation in the world of forensics,
the paper characterized the accuracy of the technique with a
synthetic publicly available data set [17] and on an actual case
involving employee misconduct. Such techniques are soon to be
extended to mobile devices and the cloud.

Privacy Cuts Both Ways
The public’s increasing concern about digital privacy is increas-
ingly a strong motivator and a growing barrier to digital foren-
sics. A significant amount of research is now the result of work
of researchers in related fields using current digital forensics

tools and developing new approaches to perform privacy assess-
ments of computers, mobile devices, and embedded systems.
What they do with the results of these assessments will deter-
mine the future of the field.

For example, at the October 2015 ACM Conference on Computer
and Communications Security, a pair of papers from research-
ers at Purdue explore sensitive information left in the memory of
Android mobile phones. In one paper, the authors show that they
can recover images that were taken with the camera but never
stored in the phone’s flash memory, such as frames from a Skype
call or preview images from the camera [18]. In the second paper,
the same authors show that they can recover Android GUIs from
memory fragments that haven’t been cleared [19]. These two
papers rely on existing forensic techniques to image the phones’
memory and provide new techniques that might be hugely useful
in criminal investigations. On the other hand, these papers, and
others in the same vein, provide developers with roadmaps of
privacy leaks that need fixing—and in so fixing them, removing
the possibility that the leaks might be used in future forensic
examinations. In the past, forensics researchers typically did not
widely publicize their findings for fear that vendors would fix the
very privacy bugs that were helping to put criminals in prison.

Tool developers are actively searching for approaches that will
let a forensics examiner visualize the massive amounts of data
that a typical examination can recover. Examiners need tools
that can automatically construct activity timelines, digest docu-
ments, and summarize video. These approaches need to auto-
matically adjust themselves as the data scales multiply by orders
of magnitude—from a few hundred photos that might be on a
person’s cell phone, to a few million that might reside on a server
in a datacenter.

To leverage the attention of human examiners, some of the most
important work being done on the algorithmic front is to identify
new similarity techniques. The idea is to have digital forensics
tools reliably find and cluster documents, photographs, and
movie clips that are similar, so that examiners can spend their
time looking at objects that are different from what’s been seen
before. Once clustered, other techniques like random sampling
and machine learning could be used to characterize the variety.

These tools that can digest huge amounts of data are beginning
to raise the concerns of civil liberties activists—just like in the
days of Carnivore—who say that forensic capability needs to be
weighed against privacy concerns. As a result, some jurisdic-
tions are actively limiting the extent that examiners are allowed
to search on a suspect’s computer.

Meanwhile, forensic examiners are faced with the growing pro-
liferation of devices, operating systems, and data formats. Exam-
iners frequently master one kind of device just as something new

http://www.usenix.org

16  D ECE M B ER 20 1 5 VO L . 4 0, N O. 6 www.usenix.org

SECURITY
The Expanding the World of Digital Forensics

shows up on the market. That keeps the job interesting, but it
means that the tools and technologies used by the examiners are
almost never current, and developers are constantly struggling
to keep up. In the fast-changing world of digital forensics, what’s
needed most are not ways for automating forensic analysis, but
faster ways for doing digital forensics research and deploying
new tools.

References
[1] Kathryn C. Seigfried-Spellar, Gary R. Bertoline, and Marcus
K. Rogers, “Internet Child Pornography, U.S. Sentencing Guide-
lines, and the Role of Internet Service Providers,” in Gladyshev
and Rogers (eds), Digital Forensics and Cyber Crime: Third
International ICST Conference, ICDF2C 2011, Dublin, Ireland,
October 2011.

[2] Carrie Morgan Whitcomb, “An Historical Perspective of
Digital Evidence: A Forensic Scientist’s View,” International
Journal of Digital Evidence, vol. 1, no. 1 (Spring 2002): https://
utica.edu/academic/institutes/ecii/publications/articles
/9C4E695B-0B78-10593432402909E27BB4.pdf.

[3] Peter McWilliams, “Mace Utilities Can Recover Disk Data
That Drives Away,” Chicago Tribune, February 1, 1987:
http://articles.chicagotribune.com/1987-02-01/business
/8701080849_1_hard-diskfiles-unformat.

[4] Scientific Working Group on Digital Evidence: https://
www.swgde.org/.

[5] James R. Lyle and Mark Wozar, “Issues with Imaging Drives
Containing Faulty Sectors,” Digital Investigation, vol. 4 (Sep-
tember 2007), pp. 13–15: doi:10.1016/j.diin.2007.06.002.

[6] Ahmed Fathy Abdul Latif Mohamed, Andrew Marrington,
Farkhund Iqbal, Ibrahim Baggili, “Testing the Forensic
Soundess of Forensic Examination Environments on Bootable
Media,” Digital Investigation, vol. 11 (2014), S22–29: http://
www.dfrws.org/2014/proceedings/DFRWS2014-3.pdf.

[7] “9/11 Hijackers Used Public Libraries,” The Washington
Times, April 28, 2005: http://www.washingtontimes.com
/news/2005/apr/28/20050428-115527-9817r/.

[8] Copies of those computer records, including a chilling letter
from M. Atta requesting information about pilot training in the
United States, can be found at http://www.vaed.uscourts.gov
/notablecases/moussaoui/exhibits/prosecution.html.

[9] Stephen Pearson and Richard Watson, Digital Triage Forensics:
Processing the Digital Crime Scene, Syngress Publishing, 2010.

[10] Documents that had been seized as part of the 2011 raid on
Osama bin Laden’s compound: http://www.dni.gov/index.php
/resources/bin-laden-bookshelf.

[11] Dana Hedgpeth, “‘Fire Selfies’ after a Jealous Rage Lead to
Maryland Man’s Arrest,” The Washington Post, September 1,
2015: https://goo.gl/nOq9x6.

[12] For a full description of the Carnivore program, including
more than a thousand pages of documents obtained under the
Freedom of Information Act, see https://epic.org/privacy
/carnivore/.

[13] Anandabrata Pal, Husrev T. Sencar, Nasir Memon, “Detect-
ing File Fragmentation Point Using Sequential Hypothesis
Testing,” Digital Investigation, vol. 5 (2008), S2–S13.

[14] Jusrev T. Sencar and Nasir Memon, “Identification and
Recovery of JPEG Files with Missing Fragments,” Digital
Investigation, vol. 6 (2009), S88–S98.

[15] The Volatility Foundation, Volatility Memory Forensics
Framework: http://www.volatilityfoundation.org/.

[16] Jonathan Grier and Golden G. Richard III, “Rapid Forensic
Imaging of Large Disks with Sifting Collectors,” Digital Investi-
gation, vol. 14 (2015), S34–44.

[17] S. Garfinkel, P. Farrell, V. Roussev, and G. Dinolt, “Bring-
ing Science to Digital Forensics with Standardized Forensic
Corpora,” Digital Investigation, vol. 6 (2009), S2–11.

[18] Brendan Saltaformaggio, Rohit Bhatia, Zhongshu Gu,
Xiangyu Zhang, Dongyan Xu, “VCR: AppAgnostic Recovery of
Photographic Evidence from Android Device Memory Images,”
ACM CCS, October 2015.

[19] Brendan Saltaformaggio, Rohit Bhatia, Zhongshu Gu,
Xiangyu Zhang, Dongyan Xu, “GUITAR: Piecing Together
Android App GUIs from Memory Images,” ACM CCS,
October 2015.

https://utica.edu/academic/institutes/ecii/publications/articles
https://utica.edu/academic/institutes/ecii/publications/articles
http://articles.chicagotribune.com/1987-02-01/business
https://www.swgde.org/
https://www.swgde.org/
http://www.dfrws.org/2014/proceedings/DFRWS2014-3.pdf
http://www.dfrws.org/2014/proceedings/DFRWS2014-3.pdf
http://www.washingtontimes.com
http://www.vaed.uscourts.gov
http://www.dni.gov/index.php
https://goo.gl/nOq9x6
https://epic.org/privacy
http://www.volatilityfoundation.org/
http://www.usenix.org

www.usenix.org D ECE M B ER 20 1 5 VO L . 4 0, N O. 6 17

SECURITY

Cryptanalysis of the Megamos Crypto
Automotive Immobilizer
R O E L V E R D U L T A N D F L A V I O D . G A R C I A

The Megamos Crypto key fob is used in one of the most widely
deployed automotive electronic immobilizers. Such an anti-theft
device is designed to prevent hot-wiring of the vehicle. We have

reverse-engineered all proprietary security mechanisms of the key fob and
have found several weaknesses in the cipher and also in their usage and
configuration by carmakers. We exploit these weaknesses in three practi-
cal attacks that recover the 96-bit key fob secret key. We end our article with
suggestions to mitigate some of our attacks, something that knowledgeable
users can do themselves.

Electronic vehicle immobilizers have been very effective at reducing car theft. Such an
immobilizer is an electronic device that prevents the engine of the vehicle from starting
when the corresponding key fob is not present. This key fob is a low-frequency RFID chip
typically embedded in the vehicle’s key. When the driver starts the vehicle, the car authen-
ticates the key fob before starting the engine, thus preventing hot-wiring. In newer vehicles
the mechanical ignition key has often been removed and replaced by a start button (see
Figure 1a). In such vehicles the immobilizer key fob is the only anti-theft mechanism that
prevents a hijacker from driving away with the vehicle. In some countries, having such an
immobilizer is enforced by law. For example, according to European Commission direc-
tive (95/56/EC) it is mandatory that all cars sold in the EU from 1995 on be fitted with an
electronic immobilizer. Similar regulations apply to other countries like Australia, New
Zealand (AS/NZS 4601:1999), and Canada (CAN/ULC S338-98). Although it is not required
by law in the US, according to the independent organization Insurance Institute for Highway
Safety (IIHS), 86 percent of all new passenger cars sold in the US had an engine immobilizer
installed.

An electronic car immobilizer consists of three main components: a small key fob chip
embedded in (the plastic part of) the car key (Figure 1b); an antenna coil located in the
dashboard of the vehicle, typically around the ignition barrel; and the immobilizer unit that
prevents the vehicle from starting the engine when the key fob is absent.

Roel Verdult performed
scientific research in a
variety of security topics,
including electronic passports,
contactless smart cards,

radio frequency identification (RFID), near
field communication (NFC), secure storage,
authentication protocols, and other types
of transmission security. The relevance of
his work is demonstrated by his numerous
significant international research awards.
He earned his doctorate at two universities,
receiving a dual degree from Radboud
University, the Netherlands, and KU Leuven,
Belgium. Currently, Roel Verdult is active as
a cryptographic research engineer and is co-
founder of the Dutch IT Security & Engineering
company FactorIT BV. roel@factorit.nl

Dr. Flavio Garcia is a Senior
Lecturer (Associate Professor)
and Senior Birmingham Fellow
at the University of Birmingham
in the UK. His work focuses on

the design and evaluation of cryptographic
primitives and protocols for embedded devices
like automotive key fobs and smart cards. His
research achievements include breakthroughs
such as the discovery of vulnerabilities in
the four most widely used contactless smart
cards: the Mifare Classic, HID iClass, and
Atmel’s SecureMemory and CryptoRF. The
first of these, Mifare Classic, was widely used
for electronic payment (e.g., Oyster Card)
and access control (e.g., Amsterdam Airport).
f.garcia@bham.ac.uk

1a: Keyless ignition with start button
1b: Megamos Crypto key fob (indicated
by arrow) in a car key

Figure 1: Megamos Crypto integration in vehicular systems

mailto:roel@factorit.nl
mailto:f.garcia@bham.ac.uk
http://www.usenix.org

18  D ECE M B ER 20 1 5 VO L . 4 0, N O. 6 www.usenix.org

SECURITY
Cryptanalysis of the Megamos Crypto Automotive Immobilizer

The immobilizer unit communicates through the antenna coil
and enumerates all key fobs that are in proximity of the field.
The key fob identifies itself and waits for further instructions.
The immobilizer challenges the key fob and authenticates itself
first. On a successful authentication of the immobilizer unit,
the key fob sends back its own cryptographic response, which is
different every time. Only when this response is correct does the
immobilizer unit enable the engine to start.

The immobilizer unit is directly connected to the internal board
computer of the car, also referred to as the electronic control unit
(ECU). To prevent hot-wiring a car, the ECU blocks fuel-injec-
tion, disables spark plugs, and deactivates the ignition circuit if
the key fob fails to authenticate.

A distinction needs to be made between the vehicle immobilizer
and the remotely operated central locking system. The latter is
battery powered, operates at ultra-high frequency (UHF), and
only activates when the user pushes a button on the remote to
(un)lock the doors of the vehicle. Figure 1b shows a disassembled
car key where it is possible to see the passive Megamos Crypto
key fob and also the battery powered remote of the central lock-
ing system.

The Megamos Crypto key fob is the first cryptographic immo-
bilizer key fob manufactured by EM Microelectronic-Marin SA
and is currently one of the most widely used. The manufacturer
claims to have sold more than 100 million immobilizer chips,
including Megamos Crypto key fobs [4]. Table 1 shows a list of
vehicles that use or have used Megamos Crypto at least for some
version/year. As can be seen from this list, many Audi, Fiat,
Honda, Volkswagen, and Volvo cars used Megamos Crypto key
fobs.

The key fob uses a 96-bit secret key and a proprietary cipher in
order to authenticate to the vehicle. Furthermore, a 32-bit pin
code is needed in order to be able to write on the memory of the
key fob. The concrete details regarding the cipher design and
authentication protocol are kept secret by the manufacturer, and
little is currently known about them.

From our collaboration with the local police it was made clear to
us that sometimes cars are being stolen and nobody can explain
how. They strongly suspect the use of so-called “car diagnostic”
devices. Such a device uses all kinds of custom and proprietary
techniques to bypass the immobilizer and start a car without a
genuine key. This motivated us to evaluate the security of vehicle
immobilizer key fobs.

In the last decades, semiconductor companies introduced sev-
eral proprietary algorithms specifically for immobilizer security.
Their security often depends on the secrecy of the algorithm,
contrary to Kerckhoffs’ principle. When their inner-workings
are uncovered, it is often only a matter of weeks before the first
attack is published. There are several examples in the literature
that address the insecurity of proprietary algorithms [5]. There
are four widely used immobilizer key fobs that depend on propri-
etary cryptography: DST, KeeLoq, Hitag2, and Megamos Crypto,
which were all proven to be insecure [1, 2, 7, 8]. The Megamos
paper was accepted at the 22nd USENIX Security Symposium,
but appears as an addendum to the 24th’s Proceedings, and is
used as a basis for this article.

Hardware Setup
We used a Proxmark III (http://www.proxmark.org/) to eaves-
drop and communicate with the car and key fob. This is a generic
RFID protocol analysis tool that supports raw data sampling of
radio frequency signals [6]. We have developed a generic open

Make Models
Alfa Romeo 147, 156, GT

Audi A1, A2, A3, A4 (2000), A6, A8 (1998), Allroad, Cabrio,
Coupé, Q7, S2, S3, S4, S6, S8, TT (2000)

Buick Regal
Cadillac CTS-V, SRX
Chevrolet Aveo, Kalos, Matiz, Nubira, Spark, Evanda, Tacuma
Citroën Jumper (2008), Relay
Daewoo Kalos, Lanos, Leganza, Matiz, Nubira, Tacuma
DAF CF, LF, XF
Ferrari California, 612 Schaglietti

Fiat Albea, Doblo, Idea, Mille, Multipla, Palio, Punto
(2002), Seicento, Siena, Stilo (2001), Ducato (2004)

Holden Barina, Frontera

Honda Accord, Civic, CR-V, FR-V, HR-V, Insight, Jazz (2002,
2006), Legend, Logo, S2000, Shuttle, Stream

Isuzu Rodeo
Iveco Eurocargo, Daily
Kia Carnival, Clarus, Pride, Shuma, Sportage
Lancia Lybra, Musa, Thesis, Ypsilon
Maserati Quattroporte
Opel Frontera
Pontiac G3
Porsche 911, 968, Boxster
Seat Altea, Cordoba, Ibiza (2014), Leon, Toledo
Skoda Fabia (2011), Felicia, Octavia, Roomster, Super, Yeti
Ssangyong Korando, Musso, Rexton
Tagaz Road Partner

Volkswagen

Amarok, Beetle, Bora, Caddy, Crafter, Cross Golf,
Dasher, Eos, Fox, Gol, Golf (2006, 2008), Individual,
Jetta, Multivan, New Beetle, Parati, Polo, Quantum,
Rabbit, Saveiro, Santana, Scirocco (2011), Touran,
Tiguan (2010), Voyage, Passat (1998, 2005),
Transporter

Volvo C30, S40 (2005), S60, S80, V50 (2005), V70, XC70,
XC90, XC94

Table 1: Vehicles that used Megamos Crypto for some version/year. Bold-
face and year indicate specific vehicles we experimented with.

http://www.proxmark.org/
http://www.usenix.org

www.usenix.org D ECE M B ER 20 1 5 VO L . 4 0, N O. 6 19

SECURITY
Cryptanalysis of the Megamos Crypto Automotive Immobilizer

source library, which is capable
of supporting any custom and
proprietary RFID communica-
tion scheme that operates at
a frequency of 125 kHz. This
allowed us to implement a
custom firmware and FPGA
design that uses the modula-
tion and encoding schemes of
Megamos Crypto key fobs.

Furthermore, we added RFID
reader/programmer function-
ality to send simple commands
like read and write to the key
fob. In particular, this library
can be used to set the memory

lock bit and a random pin code as a mitigation for our second
attack, as described later in this article. Finally, we imple-
mented an advanced firmware, which contains all cryptographic
operations and is fully compatible with the Megamos Crypto
authentication protocol. This enabled us to perform practical
experiments with cars by eavesdropping and emulation of Mega-
mos Crypto key fobs. However, we will not release any attack
tools such as this advanced firmware.

Megamos Crypto
This section gives a short introduction to the workings of the
Megamos Crypto key fob. It briefly introduces the cryptographic
algorithms and protocols used in Megamos Crypto; a more
detailed description is available in [8].

Authentication Protocol
The car authenticates by sending a random nonce nC and the
corresponding car authenticator aC. When the car successfully
authenticates itself, the Megamos Crypto key fob responds with
its own key fob authenticator aT back to the car. A simplified
version of the Megamos Crypto authentication protocol is shown
in Figure 3.

When the driver turns on the ignition, several messages between
the car and key fob are exchanged. It starts with the car reading
out the key fob memory blocks. Next, the car tries to authenticate
using the shared secret key k. If the authentication fails, the car
retries around 20 times before it reports on the dashboard that
the immobilizer failed to authenticate the key fob. Table 2 shows
an eavesdropped trace of a German car that initializes and
authenticates a Megamos Crypto key fob using the 96-bit key
000000000000010405050905. The structure of the secret key
of the car suggests that it has an entropy of only 24 bits.

Cryptographic Algorithm
Several after-market diagnostic and locksmith tools such as the
Tmpro2, MiraClone, AVDI, and Tango Programmer implement
the Megamos Crypto cipher for key fob production and verifica-
tion. None of these tools is able to recover the secret key of a key
fob or perform any kind of cryptanalysis. However, the software
package that comes with Tango Programmer implements all
cryptographic operations of the key fob, including the Megamos
Crypto cipher. We have analyzed the software thoroughly and
extracted the algorithm from it. The Megamos Crypto cipher is
a stream cipher that consists of five main components: a 23-bit
Galois Linear Feedback Shift Register, a 13-bit Non-Linear
Feedback Shift Register, and three 7-bit registers.

The stream cipher basically works as a pseudo-random genera-
tor that is seeded by the secret key k and the car nonce nC. It then
runs producing pseudo-random bit-strings aC and aT, which are
used in the authentication protocol as proof of knowledge of the
secret key (see Figure 4).

Cryptanalysis of Megamos Crypto
In our full paper [8], we have proposed a cryptanalysis that com-
promises all vehicles using Megamos Crypto. This cryptanalysis
requires an adversary to eavesdrop two successful authentica-
tion traces between the car and the key fob to recover the 96-bit
secret key. We would like to emphasize that in order to get these
two traces, a perpetrator needs access to both the car and the
original car key. Our cryptanalysis reduces the computational
complexity from 296 (a brute force attack) to 256 encryptions.

Figure 4: Initialization and propagation of the cipherFigure 3: Megamos Crypto authentication protocol

id

nC , aC

aT

Figure 2: Experimental setup for
eavesdropping

http://www.usenix.org

20  D ECE M B ER 20 1 5 VO L . 4 0, N O. 6 www.usenix.org

SECURITY
Cryptanalysis of the Megamos Crypto Automotive Immobilizer

This could be computed within two days on a copacobana, which
is an FPGA-based massively parallel computer.

Once the secret key is recovered, it is possible to emulate the
original key fob, effectively cloning the original key. The crypt-
analysis described above exploits the following weaknesses.

◆◆ The key fob lacks a pseudo-random number generator, which
makes the authentication protocol vulnerable to replay attacks.

◆◆ The internal state of the cipher consists of only 56 bits, which is
much smaller than the 96-bit secret key.

◆◆ The cipher state successor function can be inverted; given an
internal state and the corresponding bit of cipher-text, it is pos-
sible to compute the predecessor state.

◆◆ The last steps of the authentication protocol provide an adver-
sary with 15-bits of known-plaintext.

This computational complexity can be further reduced by a
time/memory tradeoff. Many tradeoffs are possible, but if we
were to use a 12-terabyte lookup table, for example, then the
complexity is reduced to 249 table lookups. This optimized
version of the attack takes advantage of the fact that some of
the cipher components can be run quite autonomously. Such a
time-memory tradeoff, however, requires many indirect memory
lookups and is therefore difficult to mount in practice with ordi-
nary consumer hardware.

Partial Key-Update Attack
Currently, the memory of many Megamos Crypto key fobs in
the field is either unlocked or locked with a publicly known
default pin code. This means that anybody has write access to
the memory of the key fob. This also holds for the secret key bits
that make it vulnerable to a trivial denial of service attack. An
adversary just needs to flip one bit of the secret key of the key fob
to disable it.

Besides this obvious weakness, there is another weakness
regarding the way in which the 96-bit secret key is written to the
key fob. These 96 bits are stored in six memory blocks of 16 bits
each. But it is only possible to write one block at a time to the key
fob, which constitutes a serious weakness since a secure key-
update must be an atomic operation.

This weakness enables an adversary to use a guess-and-deter-
mine technique in which she overwrites one block of the key at
a time until she finds the complete secret key. For this attack we
assume that an adversary is able to communicate with the car
and key fob. A slightly optimized version of this attack requires
only one successful authentication trace. In total, we need to
write three times on the memory of the key fob and perform 3 ×
216 authentications with the key fob. This can be done within 30
minutes using a Proxmark III. The computational complexity
of the last three steps is 215 encryptions, which takes less than a
second on an ordinary laptop.

We have executed this attack in practice and recovered the
secret key of several cars from various makes and models. Hav-
ing recovered the key, we were able to emulate the key fob and
start the vehicles.

Weak-Key Attack
Our third attack is based on the following observation: many of
the keys that we have recovered using the previous attack had
very low entropy and exhibited a well-defined pattern, i.e., the
first 32 bits of the key were all zeros. In the remainder of this
paper we call such a key weak. This attack consists of a time-
memory tradeoff that exploits this weakness to recover the
secret key, within a few minutes, from two authentication traces.
This attack requires storage of a 1.5 TB rainbow table.

Table 3 shows some examples of weak keys we found during
our experiments (on the vehicles indicated in Table 1). To avoid
naming concrete car models we use A, B, C…to represent car
makes. We write numbers X.1, X.2, X.3…to represent different car
models of make X.

Car Secret key
A.1 00000000d8 b3967c5a3c3b29
A.2 00000000d9 b79d7a5b3c3b28
B.1 0000000000 00010405050905

Table 3: Recovered keys from our own cars. Besides the evident 32 leading
zero bits, every second nibble seems to encode a manufacturer-dependent
value, which further reduces the entropy of the key.

Origin Message Description

Car 3 Read identifier

Key fob A9 08 4D EC Identifier id31 . . . id0

Car 6 | 3F FE 1F B6 CC 51 3F | 07 | F3 55 F1 A Authentication, nC55 . . . nC0 , 07 , aC

Key fob 60 9D 6 Car authenticated successfully, send back aT

Table 2: Eavesdropped Megamos Crypto authentication trace

http://www.usenix.org

www.usenix.org D ECE M B ER 20 1 5 VO L . 4 0, N O. 6 21

SECURITY
Cryptanalysis of the Megamos Crypto Automotive Immobilizer

Apparently, some car manufacturers have decided to use only 64
bits of the secret key, probably due to compatibility issues with
legacy immobilizer systems. If a Megamos Crypto key fob uses
such a weak key, it is possible to recover this key quickly, even
when the memory of the key fob is locked with a pin code. Con-
cretely, if the first 32 bits of the key are constant (e.g., zeros), this
allows an adversary to pre-compute and sort on 47 contiguous
output bits for each internal state. However, such a table, with
256 entries, requires a huge amount of storage. Many time-mem-
ory tradeoff methods have been proposed in the literature. For
example, a rainbow table shrinks the storage significantly, while
requiring only a modest amount of computation for a lookup.
Just to give an impression of the feasibility of this attack, if we
were using a rainbow table of 1.5 TB, then the computational
complexity required to perform this attack would only be 237

encryptions, which can be computed within a few minutes on a
standard laptop.

Practical Considerations and Mitigation
Our attacks require close-range wireless communication
with both the immobilizer unit and the key fob. It is not hard
to imagine real-life situations, like valet parking or car rental,
where an adversary has access to both for a period of time. It
is also possible to foresee a setup with two perpetrators, one
interacting with the car and one wirelessly pickpocketing the car
key from the victim’s pocket.

As mitigating measures, car manufacturers should set
uniformly generated secret keys and, for the devices which are
not locked yet, set pin codes and writelock their memory after
initialization. These obvious measures would prevent a denial of
service attack, our partial key-update attack described earlier,
and our weak-key attack in the previous section.

Car owners can protect their own vehicles against a denial of
service and the partial key-update attack. These attacks only
work if the adversary has write access to the memory of the key
fob, which means that the lock-bit is set to zero. It is possible for
a user to test for this property with any compatible RFID reader,
like the Proxmark III, using our communication library. If the
lock-bit is set to zero, then you should set it to one. It is possible to
set this bit without knowing the secret key or the pin code. When
dealing with the more recent version of the Megamos Crypto key
fob (EM4170), users should also update the pin code to a random
bit-string before locking the key fob.

On the positive side, our first (cryptographic) attack is more
computationally intensive than the other attacks, which makes
it important to take the aforementioned mitigating measures in
order to prevent the more inexpensive attacks. Unfortunately,
our first attack is also hard to mitigate when the adversary has
access to the car and the key fob (e.g., valet parking or car rental).

It seems infeasible to prevent an adversary from gathering
two authentication traces. Furthermore, this attack exploits
weaknesses in the core of the cipher’s design (e.g., the size of
the internal state). It would require a complete redesign of the
cipher to fix these weaknesses. To that purpose, lightweight
ciphers like Grain, Present, and KATAN have been proposed in
the literature and could be considered as suitable replacements
for Megamos Crypto. Also, immobilizer products implementing
AES are currently available in the market.

Conclusions
The implications of the attacks presented in this paper are
especially serious for those vehicles with keyless ignition. At
some point the mechanical key was removed from the vehicle,
but the cryptographic mechanisms were not strengthened to
compensate. We want to emphasize that it is important for the
automotive industry to migrate from weak proprietary ciphers
like this to community-reviewed ciphers such as AES and use
them according to the guidelines. For a few years already, there
have been contactless smart cards on the market that implement
AES and have a fairly good pseudo-random number generator. It
is surprising that the automotive industry is reluctant to migrate
to such key fobs considering the cost difference of a better chip
(≤ 1 USD) in relation to the prices of high-end car models (≥
50,000 USD). Since most car keys are actually fairly big, the
key fob design does not really have to comply with the (legacy)
constraints of minimal size.

Following the principle of responsible disclosure, we notified the
manufacturer of our findings back in November 2012. Since then
we have maintained an open communication channel with them.
We understand that measures have been taken to prevent the
weak-key and partial key-update attacks when the key fob was
improperly configured.

Acknowledgments
The authors would like to thank Ross Anderson, Tom Chothia,
Riccardo Focardi, Dorine Gebbink, Casey Henderson, Bart
Jacobs, Sam King, Bas Kortmann, Karsten Nohl, Carolyn Pike,
Jon Rowe, Mark Ryan, Graham Steel for their firm support. We
are also thankful to Robert Carolina and Kenny Paterson for
getting involved [3].

22  D ECE M B ER 20 1 5 VO L . 4 0, N O. 6 www.usenix.org

SECURITY
Cryptanalysis of the Megamos Crypto Automotive Immobilizer

References
[1] A. Bogdanov, “Linear Slide Attacks on the Keeloq Block
Cipher,” in Information Security and Cryptology (2008), vol.
4990 of Lecture Notes in Computer Science, Springer, pp. 66–80.

[2] S. C. Bono, M. Green, A. Stubblefield, A. Juels, A. D. Rubin,
and M. Szydlo, “Security Analysis of a Cryptographically-
Enabled RFID Device,” in Proceedings of the 14th USENIX
Security Symposium (USENIX Security 2005) (2005), USENIX
Association, pp. 1–16.

[3] R. Carolina, and K. G. Paterson, “Megamos Crypto, Respon-
sible Disclosure, and the Chilling Effect of Volkswagen
Aktiengesellschaft vs. Garcia et al.”: http://www.isg.rhul.ac.uk/
~kp/ Carolina-Paterson-Megamos-comment-20130828.pdf.

[4] 125 kHz crypto read/write contactless identification device,
EM4170, product datasheet, March 2002, EM Microelectronic-
Marin SA.

[5] R. Verdult, “The (In)security of Proprietary Cryptography,”
PhD thesis, Radboud University, The Netherlands, and KU
 Leuven, Belgium, April 2015.

[6] R. Verdult, G. de Koning Gans, and F. D. Garcia, “A Toolbox
for RFID Protocol Analysis,” in Proceedings of the 4th Inter-
national EURASIP Workshop on RFID Technology (EURASIP
RFID 2012) (2012), IEEE Computer Society, pp. 27–34.

[7] R. Verdult, F. D. Garcia, , and J. Balasch, “Gone in 360
Seconds: Hijacking with Hitag2,” in Proceedings of the 21st
USENIX Security Symposium (USENIX Security 2012) (2012),
USENIX Association, pp. 237–252.

[8] R. Verdult, F. D. Garcia, and B. Ege, “Dismantling Megamos
Crypto: Wirelessly Lockpicking a Vehicle Immobilizer,”
in Supplement to the 22nd USENIX Security Symposium
 (USENIX Security 2013) (2015), USENIX Association, pp.
703–718.

Do you have a USENIX Representative on your university or college campus?
If not, USENIX is interested in having one!

The USENIX Campus Rep Program is a network of representatives at campuses around the world who provide Association
information to students, and encourage student involvement in USENIX. This is a volunteer program, for which USENIX
is always looking for academics to participate. The program is designed for faculty or staff who directly interact with stu-
dents. We fund one representative from a campus at a time.

A campus rep’s responsibilities include:

■ Maintaining a library (online and in print) of USENIX
publications at your university for student use

■ Distributing calls for papers and upcoming event
 brochures, and re-distributing informational emails
from USENIX

■ Encouraging students to apply for travel grants to
conferences

In return for being our “eyes and ears” on campus, the Campus Representative receives access to the members-only areas
of the USENIX Web site, free conference registration once a year (after one full year of service as a Campus Representative),
and electronic conference proceedings for downloading onto your campus server so that all students, staff, and faculty
have access.

To qualify as a campus representative, you must:

■ Be full-time faculty or staff at a four-year accredited university

■ Have been a dues-paying member of USENIX for at least one full year in the past

■ Providing students who wish to join USENIX with
 information and applications

■ Helping students to submit research papers to relevant
USENIX conferences

■ Providing USENIX with feedback and suggestions on
how the organization can better serve students

For more information about our Student Programs, contact
Julie Miller, Marketing Communications Manager, julie@usenix.org

http://www.isg.rhul.ac.uk/~kp/Carolina-Paterson-Megamos-comment-20130828.pdf
mailto:julie@usenix.org
http://www.usenix.org

www.usenix.org D ECE M B ER 20 1 5 VO L . 4 0, N O. 6 23

SECURITY

Ethical Behavior in Cyberspace Research
J O H N M U R R A Y

Traditional principles of scientific ethics for studies involving people
are primarily designed to address direct human-centered research.
However, online research in cybersecurity is inherently data-centered

in nature. Consequently, cyber-researchers often operate with limited aware-
ness or oversight of the potential human risks and effects of their activities.
Newly proposed changes in the US policies and regulations governing human
studies are likely to have a significant impact on the online research com-
munity. Furthermore, given the inherently transnational nature of online
studies, there is a pressing need for harmonizing ethics observance regula-
tions and guidelines for security research on virtual worlds, social network
systems, and other cyber-environments across multiple jurisdictions.

At the USENIX 2015 Security Symposium, a panel of academic and industry experts focused
on cybersecurity research ethics. The discussions specifically centered upon the dilemmas
facing those involved in academic publishing—editors, reviewers, etc.—when confronted by
articles that discuss cybersecurity explorations, which may reveal potential or real expo-
sures or vulnerabilities.

The underlying questions of research integrity concern the beliefs and justifications that
system developers, investigators, and experimenters use as the basis for undertaking their
explorations, what types of impacts are considered and when, what benefits vs. harms trad-
eoffs are made, and so on.

While the moral dilemmas of revealing system vulnerabilities in academic publications are
indeed important, they generally come towards the end of a (potentially lengthy) research
effort, well after other damage may already have been done. In reality, the actual ethical
challenges should be considered early in the process, when the research team is designing
their initial investigations.

For example, suppose that cyber-investigators are exploring aspects of real-time online
censorship in various countries. Their strategy is to find ways to initiate download requests
across national boundaries for various forms of potentially controversial material. In order
to accomplish this, the researchers gain unauthorized access to some individual devices
in a targeted jurisdiction, which they use as proxy platforms for issuing their exploratory
requests.

However, in their zeal to deploy their probes, they neglect to consider the possible adverse
effects that their study might have on the owners or operators of the compromised systems.
Such individuals or groups may be put at risk vis-a-vis their own government authorities, as
a result of the investigators’ actions. A tech-savvy ethics review of the research plans would
probably have drawn attention to the potential problems and ensured that appropriate safe-
guards were put in place.

John Murray is a Program
Director in the Computer
Science Laboratory at SRI
International, Silicon Valley, CA.
His research interests include

interactive human-machine technologies,
collaborative intelligence, multi-player game
systems, and cognitive engineering. Prior to
joining SRI, Dr. Murray held executive and
technical leadership positions at several
international information systems firms. He
holds advanced engineering degrees from
Stanford, the University of Michigan, and
Dublin Institute of Technology in Ireland.
jxm@sri.com

mailto:jxm@sri.com
http://www.usenix.org

24  D ECE M B ER 20 1 5 VO L . 4 0, N O. 6 www.usenix.org

SECURITY
Ethical Behavior in Cyberspace Research

Many academic institutions and larger corporate organiza-
tions have ethics oversight panels or institutional review boards
(IRBs), which are responsible for monitoring the human health
and safety of experimental subjects, and attending to the poten-
tial for exploitation or coercion, especially among vulnerable
populations. The historical background for IRBs grew out of the
revelation of numerous misguided and abusive scientific studies
during the twentieth century. The result was the introduction
of policies and standards based on the 1979 Belmont Report [1],
which is still used today to guide scientific ethics reviews across
the US and beyond. These guidelines translate into government
regulations for several categories of human subject research, in
particular those that are supported by US federal funding.

Although these guidelines and regulations have continued
applicability to classical human research laboratory work in
fields like medicine and psychology, they have limited practi-
cal relevance to modern behavioral studies that involve highly
networked information and communications technology (ICT)
systems. These impracticalities are exacerbated by the pervasive
need to undertake comprehensive, transnational experimental
projects, where much of the human data collection and analysis
is undertaken remotely across varied, and often incompatible,
legal regimes and social norms. Yet such is the case for numerous
researchers nowadays, who are working not just in ubiquitous
social networks and popular gaming worlds, but also with online
educational environments, cybersecurity applications, and
monitoring/surveillance systems.

In consideration of these challenges, a 2011 update to the earlier
guidelines, called the Menlo Report [2], was specifically devel-
oped to address issues of online security, privacy, anonymity,
and other personal identifiable information (PII) concerns. The
report’s authors recognized that the broad cyber-research com-
munity needs a more rational and coordinated strategy for man-
aging ethics observance, which particularly considers the scope
and needs of ICT research. Such a tailored approach should
emphasize studies of human behavior and community activity
online, and apply across multiple jurisdictions in interactive
professional and social environments.

This transition of some of these concerns into formal policies
and regulations recently moved forward with the publication of a
Notice of Proposed Rulemaking (NPRM) in the US Federal Reg-
ister [3]. This serves to promote conversation and comment from
parties affected by the proposed changes. The latest comment
period is open until December 2015, after which revisions to the
proposal will be considered in light of comments received.

As they currently stand, some of the proposed changes may have
significant implications for transnational cyber-research. One
key concern is the extent that they might exacerbate the differ-
ences between human subjects research requirements in the US

and elsewhere, while at the same time relaxing some of the more
stringent requirements that currently apply to the US research
community.

Traditional ethics reviewers try to ensure equitable distribu-
tions of burdens and benefits among the human subjects actually
involved in the study. However, as noted in the example earlier,
online research activity may adversely affect innocent bystand-
ers and neutral nonparticipants. Given the risks associated with
real-time data-intensive experiments, such studies might better
be reviewed in terms of human-harming research rather than
human subjects research.

For example, solid contingency and response plans are needed
for mitigation of realized harms, especially for low-probability/
high-impact events. These types of safety monitoring proce-
dures are standard in traditional biomedical studies, but are
rarely considered in ICT research. Furthermore, when research
involves surveillance, profiling, or monitoring, additional
vulnerability protections are needed to prevent the misuse of
findings and results. This is particularly the case when novel
mergers of partial data from several public sources may produce
PII that is not individually available from just one of them. Other
concerns arise from the potential for abuse of data for social
discrimination, especially by non-investigators.

Provisions are required to ensure conformance with interna-
tional regulations on transborder data flow that include personal
information. In this regard, the current oversight policies and
data handling processes for multi-jurisdictional ethics approvals
are primarily centered upon the requirements of pharmaceutical
drug trials, medical device tests, etc., rather than on the research
needs in global-scale social science, human-machine systems,
and ICT.

To address this gap, an international ethics observance orga-
nization is needed, which would coordinate/oversee regula-
tions and guidelines for research in online systems and other
cyber-environments across multiple jurisdictions. This could
be a consortium of nonprofit organizations in several domains,
which would ensure smooth transnational processing of approv-
als. It seems appropriate that such a consortium would need to
have the backing of a recognized international entity such as
UNESCO.

The first steps toward such harmonization could be merely a
matter of coordinating and making available the critical features
of each local research context, or it could extend to negotiat-
ing safe harbors for compliance with a local research context.
Thus, if a study complies with certain key components, then it is
deemed to satisfy local research context requirements for spe-
cific countries. Another, further step might be to aim for legisla-
tive harmonization on the topic of research protection.

http://www.usenix.org

www.usenix.org D ECE M B ER 20 1 5 VO L . 4 0, N O. 6 25

SECURITY
Ethical Behavior in Cyberspace Research

The bottom line is that almost any form of standardized ethi-
cal framework would help cyberspace researchers worldwide
become more aware of the challenges and know when they have
addressed some required basic considerations. This must be bet-
ter than the current haphazard obstacle course, which generally
leaves everyone guessing as to what they still need to do to work
through this ethical minefield.

References
[1] Belmont Report: www.hhs.gov/ohrp/humansubjects
/guidance/belmont.html.

[2] Menlo Principles: www.dhs.gov/sites/default/files
/publications/CSD-MenloPrinciplesCOMPANION-20120103
-r731_0.pdf.

[3] Notice of Proposed Rulemaking, Protection of Human
Subjects: www.federalregister.gov/articles/2015/09/08/2015
-21756/federal-policy-for-the-protection-of-human-subjects.

Become a USENIX Supporter and
Reach Your Target Audience

The USENIX Association welcomes sponsorship and offers custom packages to help you promote your
 organization, programs, and products to our membership and con ference attendees.

Whether you are interested in sales, recruiting top talent, or branding to a highly targeted audience,
we offer key outreach for our sponsors. To learn more about becoming a USENIX Supporter, as well
as our multiple conference sponsorship packages, please contact sponsorship@usenix.org.

Your support of the USENIX Association furthers our goal of fostering technical excellence and innovation in
neutral forums. Sponsorship of USENIX keeps our conferences affordable for all and supports scholarships for
students, equal representation of women and minorities in the computing research community, open access
to our online library, and the development of open source technology.

Learn more at:
www.usenix.org/supporter

http://www.hhs.gov/ohrp/humansubjects/guidance/belmont.html
http://www.dhs.gov/sites/default/files
http://www.federalregister.gov/articles/2015/09/08/2015-21756/federal-policy-for-the-protection-of-human-subjects
mailto:sponsorship@usenix.org
http://www.usenix.org/supporter
http://www.usenix.org

26  D ECE M B ER 20 1 5 VO L . 4 0, N O. 6 www.usenix.org

SECURITY

Hack, Play, Win
Lessons Learned Running the Maryland Cyber Challenge

R I C H A R D F O R N O

Cyber competitions are a popular way for cybersecurity practitioners
to develop operational skills and acquire and demonstrate abilities
and competence in a range of technical and non-technical knowledge

areas in the quest for prizes and bragging rights. I describe how the lessons
from current competitions can help future competition organizers run suc-
cessful challenges of their own, and discuss whether such events are suffi-
cient to prepare the next generation of cybersecurity professionals.

An oft-cited and prominent concern facing the Internet security community is the need to
identify and hire qualified cybersecurity practitioners able to fill critical technical, analyti-
cal, and managerial positions within the global technology workforce. A 2014 report from the
Education Advisory Board [1] discusses the “exploding” demand for qualified cybersecurity
practitioners, noting that cybersecurity jobs grew by 73% between 2007 and 2012 compared
to 6% in all other industry sectors. Similarly, Burning Glass Technologies, a national employ-
ment research firm, notes that there are nearly 23,000 available cybersecurity positions in
the Washington, DC metropolitan area [2]. Nowhere is this need more evident, or discussed
more frequently, than in Maryland, a region some dub the “epicenter of cybersecurity” educa-
tion, research, and industry [3].

In response to this concern, events in the cybersecurity discipline known as “cyber competi-
tions” or “cyber challenges” seek to motivate and encourage high school and college students
toward careers in cybersecurity by developing their technical and teamwork skills while
also allowing more experienced cybersecurity professionals an opportunity to practice
their expertise in a challenging venue for professional recognition. As a form of intellectual
competition, these events are becoming increasingly popular and widespread; industry secu-
rity conferences like DEFCON CTF or the Department of Defense DC3 Digital Forensics
Challenge, and competitions within educational communities such as the National Cyber
League (NCL), CyberPatriot, or the Collegiate CyberDefense Competition (CCDC) are but a
few examples of prominent cyber challenges drawing worldwide participation. Other com-
petitions, both large and small, continually are under development, as is a National Science
Foundation-backed effort to create a national federation [4] to support and standardize the
rules, activities, and conduct of cyber competitions.

Given the popularity of these events, and the ongoing global desire to launch new ones, I will
draw upon the experiences of organizing and coordinating the Maryland Cyber Challenge in
offering advice to current and future cyber competition planners. While no event will ever
run perfectly, organizers must always strive to “get it right”—or as close to “right” as possible!

Event Background
As one of the many cyber competitions emerging in recent years, the Maryland Cyber Chal-
lenge (MDC3) is a prominent regional and innovative approach to cybersecurity competi-
tions in support of Maryland’s declared leadership in cybersecurity education, research, and
industry. However, unlike most cyber competitions, MDC3 is a multi-division event that

Dr. Richard Forno directs
the University of Maryland
Baltimore County’s Graduate
Cybersecurity Program, serves
as the Assistant Director of

UMBC’s Center for Cybersecurity, and is a
Junior Affiliate Scholar at the Stanford Law
School’s Center for Internet and Society (CIS).
His 20-year career spans the government,
military, and private sectors, including helping
build a formal cybersecurity program for
the US House of Representatives, serving
as the first Chief Security Officer for the
InterNIC, and co-founding the Maryland Cyber
Challenge. Richard was also one of the early
researchers on the subject of “information
warfare,” and he remains a longtime
commentator on the influence of Internet
technology upon society. rforno@umbc.edu

mailto:rforno@umbc.edu
http://www.usenix.org

www.usenix.org D ECE M B ER 20 1 5 VO L . 4 0, N O. 6 27

SECURITY
Hack, Play, Win: Lessons Learned Running the Maryland Cyber Challenge

simultaneously hosts competitors in high school, college, and
professional categories—although teams only compete within
their respective division and for separate, quite meaningful,
prizes.

The challenge is organized around two virtual qualification
rounds leading to an in-person finals event included as an inte-
gral part of the annual CyberMaryland Conference held each
October in Baltimore. During the qualification rounds (typically
spanning a three-day period), teams of up to six players down-
load a specified virtual machine “target” that has been precon-
figured with numerous vulnerabilities that must be identifed
and fixed within a six-hour scoring window. A similar process is
used for the second qualification round, although the target and
objectives will change depending on the division—for example,
high school teams may face a different operating system, and
college/professional teams may encounter a challenge requir-
ing forensics knowledge and the ability to successfully report
their findings to the referees for scoring evaluation. Following
the qualification rounds, the top eight teams in each division are
invited to compete in the finals.

For the finals, high school teams must defend several servers
from active attack by an onsite Red Team while simultaneously
repairing any vulnerabilities discovered; college and profes-
sional teams defend a more complex set of servers while at the
same time attempting to “capture”—and then defend—other
servers they discover as part of a modified “Capture the Flag”
game scenario. To help provide a realistic cybersecurity threat
environment for players, the MDC3 gaming platform scores
teams based not only on their ability to identify and fix vulner-
abilities but also on how well they keep the vulnerability fixed
over time. Thus, if a fixed vulnerability is re-exploited later in
the day, the team will start losing points until they discover and
remedy the situation. Consequently, the scoring process adds to
the realistic flavor that the competition provides during game-
play—meaning that teams must embrace a proactive and ongoing
cybersecurity posture instead of the commonly held “find-fix-
and-forget” mentality found in the operational world. How teams
successfully achieve this outcome depends on their ability to
coordinate responsibilities, delegate tasks, prioritize actions,
and apply other professional “soft skills” within skilled technical
operations during gameplay.

Although it is still too early to determine the effectiveness of
cybersecurity competitions in providing long-term meaningful
value to the cybersecurity workforce, the sheer number of cyber
challenges like MDC3 suggests they are considered useful tools
in meeting that goal and promoting the cybersecurity discipline
more generally.

Observations and Lessons Learned
Having briefly described the organization of the Maryland Cyber
Challenge, I will now reflect on the past four years’ competitions
to offer readers key observations and insights that may assist
in planning, marketing, and running their own cybersecurity
competitions.

Fostering Gender Diversity
Perhaps the most striking observation about the Maryland
Cyber Challenge is the lack of gender diversity among partici-
pants—something unfortunately representative of the cyberse-
curity profession as well. Meaningfully addressing this situation
in both the cybersecurity and broader STEM fields remains
an ongoing and prominent concern for schools and employers
alike. Much continues to be written and discussed about the
ongoing issue of gender equality in computer science [5, 6], but
if the educational and professional communities embrace cyber
competitions as a way of developing computer security practitio-
ners now, they must also be used to facilitate a more diverse and
gender-balanced workforce in the future.

One way to assist in reaching this goal is to ensure that male-
dominated clubs and team environments are collegial, tolerant,
and foster a culture that does not condone gender discrimina-
tion or harassment. Organizations that mentor girls and women
interested in cybersecurity or STEM-related fields also play
important roles in helping narrow the gender gap in computer
science and cybersecurity education. Examples of such groups
and programs include the UMBC Center for Women in Tech-
nology’s (CWIT) “Bits and Bytes” program for high school
girls interested in engineering and IT fields and the nonprofit
Women’s Society of Cyberjutsu (WSC), whose members (current
cybersecurity practitioners) regularly teach girls and women
about cybersecurity topics and practices via evening semi-
nars, weekend workshops, and summer camps. Although much
remains to be done in this area, ultimately each individual must
be known, respected, mentored, and utilized appropriately and
fairly based upon their talents and capabilities as a member (or
potential member) of their desired profession or field.

Cheating
A significant issue facing cyber competition organizers is cheat-
ing. For MDC3, this is a concern both during the distributed
qualification rounds (conducted unsupervised at a team’s own
location) and in the finals. To address these concerns, one col-
lege team advisor suggested having unaffiliated third-person
monitors present during each team’s distributed qualification
rounds or implementing Web-based video surveillance to moni-
tor the room where the teams were working. In 2014, that same
advisor reported that one of his two teams competing in the
finals communicated with his other team on technical items
regarding the competition. Although initiated with no malicious

http://www.usenix.org

28  D ECE M B ER 20 1 5 VO L . 4 0, N O. 6 www.usenix.org

SECURITY
Hack, Play, Win: Lessons Learned Running the Maryland Cyber Challenge

intent, the conversation led the first team captain to revisit his
own team’s work based on information not previously consid-
ered. Was this inconsequential conversation akin to intentional
cheating through social engineering? When an organization has
multiple teams competing, should its teams be prohibited from
discussing between them anything about the competition? Given
logistical and other resource considerations during distributed
qualification rounds found in MDC3 and other competitions, it
is likely that such prohibitions are unenforceable, and proposed
solutions to monitor teams remotely may not be practicable
without significant volunteer, financial, and technical resources.
Regarding this particular incident, the team’s advisor conducted
an internal inquiry and kept MDC3 organizers informed of the
situation—ultimately, the team in question was allowed to com-
pete as planned since there was no rule prohibiting teams from
the same club at the same university from talking to each other.

During an in-person finals competition event, cheating is even
more difficult to ascertain and/or counter: coaches, specta-
tors, teammates, and supporters may develop ways of signaling
information to competitors from the sidelines; participants
may “bump into” advisors or supporters while going to and from
the restroom (if located outside of the competition area); or, in
perhaps the most egregious example of cheating witnessed at
MDC3, an acquaintance may be positioned outside the com-
petition area with a laptop and mobile phone ready to look up
solutions to problems and relay them to the team inside the com-
petition area. Overcoming cheating at in-person events requires
not only a degree of trust in the teams and their advisors to abide
by the rules, but also active patrolling and monitoring of the area
in the immediate vicinity of the competition floor by staff to
discover any possible indicators of cheating.

In terms of cheating, although cybersecurity competitions
attempt to provide realistic environments for players, they
are still only games—and games require a functional gaming
environment for the competition to take place within. Therefore,
“cheating” at cyber competitions also can include actions taken
by participants to attack or disrupt the competition infrastruc-
ture (e.g., unplugging routers, DDoS attacks on network con-
nections, and disabling scoring agents or required services on
servers) during gameplay to prevent other teams from playing.
Minimizing these types of gameplay risks include declaring the
game infrastructure itself off limits as part of the competition
rules of engagement and deploying network logging capabilities
to help facilitate investigation into alleged attempts to “break”
the game during play.

Unfortunately, given the nature of the competition, available
technology, and potential limitations of facility layouts, it may
not be possible to eliminate all sources of cheating during the
event. In response to these concerns, although MDC3 never
disqualified a team for cheating, it reserved the right to do so

under a “one warning and you’re out” policy. In such situations,
the competition referees (the White Team) would consult with
the teams in question, game engineers, and review network log
data to determine whether a violation took place. During the first
four years of MDC3, there were three warnings issued to teams
during the MDC3 finals, but none resulted in disqualification or
ejection from the competition.

Determining “Student” Standing
Although many cyber competitions are intended primarily for
high school and college students, uneasy situations may arise
in establishing what constitutes a “student” vis-à-vis competi-
tion objectives. For example, a person may be a highly trained
cybersecurity professional at work but also enrolled in a part-
time academic program in the evening as a (non-traditional)
“student”—however, even though a person is indeed a “student,”
should he compete in the same division as other “students” with
limited or no professional industry experience? In these con-
texts, other competitors may believe, rightly or wrongly, that
some teams are populated with “ringers” who provide an unfair
advantage. By contrast, could a motivated high school student
compete on a college team in that division, even though she is
technically a high school student? To preclude such perceptions
or confusion, competition organizers should be mindful of what
constitutes a “student” in their event, be flexible in how they
approach establishing participant identity and eligibility for the
competition, and ensure that these criteria are well-known in
advance to all involved. Failing to do that may invite unneces-
sary drama during the event.

Proactive Communications and Outreach
Perhaps the most important things facilitating a successful
cyber competition are the communication and customer service
skills of the organizers. Not only is it crucial to set and manage
participant expectations appropriately before, during, and after
the competition, but when problems in execution inevitably
occur, it is essential that teams are informed regularly in an
objective and confident manner. Proactive and regular updates
to teams (e.g., via email or Twitter) can reassure them that their
concerns are noted and that the event organizers are actively
working toward a resolution.

For example, in MDC3’s inaugural year, a minor earthquake in
San Diego created a sinkhole that disrupted communications
links to the datacenter containing the MDC3 game environment
less than an hour before the start of the first scored qualification
round where 35 teams were standing by to compete. By provid-
ing regular updates to competitors (including projected esti-
mates regarding repairs and/or when to expect the next situation
update), the competition schedule was modified, and despite
slipping the exercise start time nearly 48 hours, participants
were able to plan accordingly and the competition went forward.

http://www.usenix.org

www.usenix.org D ECE M B ER 20 1 5 VO L . 4 0, N O. 6 29

SECURITY
Hack, Play, Win: Lessons Learned Running the Maryland Cyber Challenge

Cyber challenge organizers must never be accused of failing to
keep teams informed or being unresponsive to their requests and
inquiries—no matter how mundane or inconsequential. Good pro-
active communication is essential for all types of cyber competi-
tions but is particularly important when dealing with high school
students given the typical impulsive nature of adolescent students.

Well ahead of the competition, most organizers publish and/or
otherwise inform teams about the rules governing gameplay—
and also remind teams of the rules prior to the start of play.
However, if any changes are made to the posted rules, they must
be promulgated promptly and publicly to all teams. Failing to
announce changes to the rules or gaming environment quickly
(e.g., “Target #3 is disqualified for all due to unspecified techni-
cal problems; no points will be awarded for any work done on
Target #3.”) may lead to confusion, lost time, or anger exhibited
by teams not aware of the change.

Avoiding Vulnerability “Conditioning”
In terms of training and educating students on cybersecurity
practices, one of the key characteristics of MDC3 also is one of
the most frustrating to participants. Specifically, MDC3 does
not disclose what vulnerabilities are present or used for scoring
on competitor systems, even after the scores are calculated. For
example, if a team only found half of its assigned vulnerabilities
during the qualification rounds, frequently they will inquire
which vulnerabilities they missed so that they “can learn how
to find and fix them” in the future. However, computer security
vulnerabilities can manifest in many different ways and yield
similar effects; therefore MDC3 organizers do not want to condi-
tion teams into believing that a certain vulnerability could only
appear as it did during the competition. This policy is revisited
regularly by event organizers but as of 2015 remains in place.

External Internet Access during Finals
During the in-person finals, another area of possible contro-
versy regards access to the public Internet during gameplay.
For MDC3, although teams were free (and expected) to use the
Internet to research vulnerabilities and solutions during the
distributed qualification rounds, during the onsite finals teams
either had no or extremely limited Internet access (e.g., a shared
and paltry 256K bandwidth assigned for the entire competition
network) as a way of discouraging participants from using it
during gameplay. This was done to reduce distractions such as
social media use and to prevent cheating by teams planning to
pre-position scripts or other tools on private external servers to
gain an unfair advantage.

To compensate, the MDC3 game environment includes an
internal patch server that allows teams to download whatever
Windows or UNIX updates they believe are necessary to harden
their systems and ensure availability. In cases where a team

wants a particular tool or patch that is not available (such as
a free, open-source tool like nmap), it may initiate a request
through the White Team, who in turn discusses the request
with the competition referees; if the request is granted, the game
engineers will acquire the files in question and place them on the
internal update server while the White Team announces to all
participants that the new files are available. This ensures that
no team has an unfair advantage in terms of software or techni-
cal resources. Of course, to help prevent cheating (which may
include external access to the Internet), MDC3 maintains a “no
mobile device” policy on the competition floor during the finals;
however, it allows teams to use paper-based resources such as
reference books, notebooks, or printouts they wish to bring to the
event.

Cyber Challenges as Bragging Rights
Regardless of student or professional status or amount of prize
money won, involvement with and/or winning a cyber competi-
tion is considered an attractive activity to list on a resume to
demonstrate operational commitment to cybersecurity. Indeed,
participation in cyber competitions is an attractive factor when
corporate recruiters evaluate students for internships or other
entry-level positions. Similarly, professionals competing in
such events “on company time” have a strong interest in proving
their skills to colleagues and supervisors, often with the strong
support of senior leadership: for example, in 2011, the first-
place MDC3 professional team was granted entry to the global
Cyberlympics finals taking place the following week—their CEO
offered strong support and authorized additional travel and time
away from the office while they were onstage receiving their
MDC3 prize.

As such, competition organizers should be prepared to gener-
ate award certificates, participation letters, or other “proof” of a
participant’s involvement beyond the awarding of any trophies,
plaques, or bestowed “bragging rights”—which may include
working with local media on stories profiling individual par-
ticipants, teams, their schools/employers, or their preparations
for the competition [7]. To support these efforts, competition
organizers should maintain excellent records of scores, scor-
ing criteria, and their interactions with teams that can serve as
references if/when questions arise over competition outcomes.

“Unknown Unknowns” and the Competitive Spirit
As with any large event, competitive or otherwise, there will
be spontaneous issues, problems, concerns, and situations that
organizers did not consider during the planning process. This is
particularly problematic when planning cyber competitions for
elementary and high school participants, where organizers not
only must coordinate competition items across multiple schools,
school districts, and states, but may not be aware of every
conceivable special situation or resource limitation (i.e., policy,

http://www.usenix.org

30  D ECE M B ER 20 1 5 VO L . 4 0, N O. 6 www.usenix.org

SECURITY
Hack, Play, Win: Lessons Learned Running the Maryland Cyber Challenge

financial, infrastructure, scheduling, or instructional) facing
those schools. As a result, unanticipated incidents may present
the event in a less-than-favorable way to school administrators
or parents.

For example, during the inaugural MDC3 in 2011, one high
school team discovered they could not maintain steady access to
the game environment during the first qualification round due
to an updated configuration of their school’s firewall following
the earlier practice rounds. Upon encountering this problem, and
unbeknownst to their faculty advisor, the team simply modified
their school’s firewall and continued competing in the round.
While their ingenuity allowed the team to move into the second
qualification round, the team’s faculty advisor (and computer
science teacher) was forced to defend the team’s actions to the
Principal and school IT Manager the following week—at which
point school administrators became aware of the nature of (and
skills needed for) such competitions. Although the incident
was resolved without punishment, it exemplifies some of the
“unknown unknowns” that can arise when highly motivated
young participants embrace the competitive spirit. Thus, when
preparing for competitions, regardless of student or professional
status, teams should ensure that all competitors are cognizant
of any local computer use or security policies and coordinate
their actions with the appropriate IT staff well in advance of the
event. Here again, proactive and ongoing communications with
all involved can minimize the potential for confusion or unfavor-
able views on either the team or competition.

These are some of the more noteworthy observations and recom-
mendations emerging from the first four years of the Maryland
Cyber Challenge. Although no organizing team can predict every
contingency, appropriate prior planning, proactive communica-
tions, diligence in maintaining a fair and diverse competition
environment, a degree of objective operational flexibility, and
effective management of the expectations of all involved can
help facilitate successful and meaningful events.

Final Thoughts and Admonitions
As a partial retrospective, I have shared some key observations
and lessons learned from the first years of the Maryland Cyber
Challenge (MDC3) in an attempt to offer useful advice to cur-
rent and future competition organizers in helping them develop
and conduct successful events of their own.

Cyber competitions are a useful tool for the cybersecurity
industry. However, in developing the cybersecurity workforce,
we must be mindful that cybersecurity competitions tend only
to emphasize the demonstration and application of specific
hands-on skills to address technical symptoms of current prob-
lems versus developing the fundamental or interdisciplinary
knowledge to remedy, if not prevent, their root causes [8]. While
certainly necessary for success in cyber competitions, and
quite useful in the world of technical cybersecurity operations,
the knowledge and attributes needed by well-rounded security
practitioners—indeed, professionals in any field—must extend
beyond the (albeit important) technician-level skills that cyber
competitions like MDC3 inculcate. As suggested in a recent
Pew research survey [9] and by political observers [10], personal
characteristics such as self-reliance, inquisitiveness, critical
thinking and analysis, teamwork, strong communication skills,
adaptability, excellent organizational or management capabili-
ties, understanding of the theoretical foundations of technology,
and situational awareness maintained across an interdisciplin-
ary spectrum are just as, if not more, important as technical
skills to a person over the length of their professional career.

Indeed, developing and/or possessing excellent technical skills
may qualify a person for a series of jobs that earn a paycheck, fill
critical roles in industry, and help meet the politically expedient
goal of workforce development—however, a career in cybersecu-
rity involves a far broader set of knowledge, skills, and abilities.
Therefore, while cyber competitions are popular events that
encourage many toward or further into a career in cybersecurity,
we must remember that cybersecurity itself is an interdisciplin-
ary field—and that not all positions in the cybersecurity realm will
require expert technical skills honed through competition alone.

http://www.usenix.org

www.usenix.org D ECE M B ER 20 1 5 VO L . 4 0, N O. 6 31

SECURITY
Hack, Play, Win: Lessons Learned Running the Maryland Cyber Challenge

References
[1] Education Advisory Board, “Multi-Track Cybersecurity
Pathways” (Industry Futures Series), Washington, DC, 2014:
mirrored at http://www.csee.umbc.edu/~rforno/EAB-Cyber
-2014.pdf.

[2] Sarah Halzack, “Report Finds D.C. Area a Hotbed for Cyber-
security Jobs,” Washington Post, March 8, 2014: retrieved from
http://www.washingtonpost.com/business/capitalbusiness
/report-finds-dc-area-a-hotbed-for-cybersecurity-jobs/2014
/03/08/1b72ff1e-a560-11e3-8466-d34c451760b9_story.html.

[3] Fort Meade Alliance, “Epicenter of Cyber Security”: retrieved
from http://www.ftmeadealliance.org/mbc/doing-business
/epicenter-of-cyber-security.

[4] CyberFed, “About Us,” 2015: retrieved from http://cyberfed
.org/about.html.

[5] D. Beede, T. Julian, D. Langdon et al., “Women in STEM: A
Gender Gap to Innovation,” US Department of Commerce Eco-
nomics and Statistics Administration, 2011: retrieved
from http://www.esa.doc.gov/sites/default/files/women
instemagaptoinnovation8311.pdf.

[6] American Association of University Women (AAUW),
“Solving the Equation: The Variables for Women’s Success in
Engineering and Computing,” 2015: retrieved from http://
www.aauw.org/research/solving-the-equation/.

[7] Lauren Loricchio, “Catonsville High Cyber Team Mem-
bers Prepare for the Future,” Baltimore Sun, October 28, 2014:
retrieved from http://www.baltimoresun.com/news/maryland
/baltimore-county/catonsville/ph-ca-cyber-security-1022
-20141028-story.html.

[8] D. Burley, “An Interview with Gene Spafford on Balancing
Breadth and Depth in Cybersecurity Education,” ACM Inroads,
vol. 5, no. 1, pp. 42-46.

[9] Sara Kehaulani Goo, Pew Research Center Blog, “The Skills
Americans Say Kids Need to Succeed in Life,” February 19,
2015: retrieved from http://www.pewresearch.org/fact-tank
/2015/02/19/skills-for-success/.

[10] Fareed Zakaria, “Why America’s Obsession with STEM
Education Is Dangerous,” Washington Post, March 26, 2015:
retrieved from http://www.washingtonpost.com/opinions
/why-stem-wont-make-us-successful/2015/03/26/5f4604f2
-d2a5-11e4-ab77-9646eea6a4c7_story.html.

The 14th USENIX Conference on File and Storage Technologies (FAST ’16) brings together storage-system

researchers and practitioners to explore new directions in the design, implementation, evaluation, and

 deployment of storage systems. The conference will consist of technical presentations, including

 refereed papers, Work-in-Progress (WiP) reports, poster sessions, and tutorials.

www.usenix.org/fast16

SAVE THE DATE!

February 22–25, 2016 • Santa Clara, CA

14th USENIX Conference on
File and Storage Technologies
Sponsored by USENIX in cooperation with ACM SIGOPS16

http://www.csee.umbc.edu/~rforno/EAB-Cyber-2014.pdf
http://www.washingtonpost.com/business/capitalbusiness/report-finds-dc-area-a-hotbed-for-cybersecurity-jobs/2014/03/08/1b72ff1e-a560-11e3-8466-d34c451760b9_story.html
http://www.ftmeadealliance.org/mbc/doing-business/epicenter-of-cyber-security
http://cyberfed
http://www.esa.doc.gov/sites/default/files/womeninstemagaptoinnovation8311.pdf
http://www.aauw.org/research/solving-the-equation/
http://www.aauw.org/research/solving-the-equation/
http://www.baltimoresun.com/news/maryland/baltimore-county/catonsville/ph-ca-cyber-security-1022-20141028-story.html
http://www.pewresearch.org/fact-tank/2015/02/19/skills-for-success
http://www.washingtonpost.com/opinions/why-stem-wont-make-us-successful/2015/03/26/5f4604f2-d2a5-11e4-ab77-9646eea6a4c7_story.html
http://www.usenix.org/fast16
http://www.usenix.org

32  D ECE M B ER 20 1 5 VO L . 4 0, N O. 6 www.usenix.org

SYSADMIN/var/log/manager
I’m the Manager, This Is My Job

A N D Y S E E L Y

Andy Seely is the Chief Engineer
and Division Manager for an IT
enterprise services contract,
and is an Adjunct Instructor in
the Information and Technology

Department at the University of Tampa. His
wife Heather is his PXE Boot, and his sons
Marek and Ivo are always challenging his thin-
provisioning strategy. andy@yankeetown.com

I’ve written “/var/log/manager” for the past two years. The concept was
to open a window into how technical managers think and why they act
the way they do, and to offer help and guidance to young sysadmins trying

to grow in their careers. This is my last “/var/log/manager,” and I hope you’ve
enjoyed reading as much as I’ve enjoyed writing. I’d love to hear from you.
What are your thoughts, ideas, and problems with respect to these issues?

Over the last 11 articles, I have covered themes of communication, understanding, leader-
ship, career management, prioritization, and problem-solving. This last “/var/log/manager”
entry is my manager’s playbook.

Communicate so people can actually understand [1]. Communication is surprisingly
difficult, given that it’s the thing people give the appearance of doing more than anything
else. Communicating across boundaries of expertise and understanding is an extra chal-
lenge. We assume that a common spoken language like English sets a standard for common
understanding, but domain knowledge of a highly technical sysadmin topic is usually not
evenly distributed. Communication is improved when you understand the other person
and try to hear the sound of your own voice through their ears. Accept that communication
isn’t about the shipping, it’s about the receiving and getting the message right so it can be
received.

Blame is a counterproductive luxury [2]. What is the purpose of your systems? To
provide whatever resource they’re built for. What is your purpose as a sysadmin? To maxi-
mize the effectiveness of the systems. In highly complex environments, things go wrong. Add
nondeterministic meat-based systems like people and more things are available to go wrong.
I consider the whole thing as a holistic system, with silicon, virtual, and meat nodes. When a
computer fails due to lack of resources or poor configuration in the network, we don’t ques-
tion fixing it. When a sysadmin fails due to lack of resources, time, knowledge, or even judg-
ment, it’s easy to blame first. Understand why failures happen and correct the root causes.
Sometimes a computer needs to be replaced, and sometimes a person needs to be replaced,
but focusing on blame first means you’re not focusing on understanding the complexity of
your system.

Don’t believe your own hype [3]. We’re sysadmins, a term I use as a synonym for “rock-
star-awesome people.” It can be easy to get caught in a hype cycle and start performing for an
audience rather than focusing on the things that matter to the business. Rock stars get to be
rock stars through hard work, putting in the time, and sweat equity, and they don’t stop doing
those things when they get to be stars. Prioritize the little things, the mundane necessities,
and the core functions that make your business successful, and let someone else be the rock
star.

Performance tuning and fault isolation analysis works for organizations as well
as for systems [4]. When a system isn’t performing well, you analyze and troubleshoot.
What are the key performance indicators? Where are the bottlenecks? What are the produc-
ers and consumers? The threat vectors and attack surface? Baseline, then measure, adjust,
monitor, repeat until there’s a new baseline that meets requirements. I think it’s funny to

mailto:andy@yankeetown.com
http://www.usenix.org

www.usenix.org D ECE M B ER 20 1 5 VO L . 4 0, N O. 6 33

SYSADMIN
/var/log/manager: I’m the Manager, This Is My Job

talk about systems as made up of both silicon and meat, but the
people-based systems we call organizations may be approached,
understood, and tuned in much the same way. Understand your
systems and optimize them, regardless of what they’re made of.

Help people understand and overcome problems [5]. I like
to remind people that their jobs are hard, and that’s why we have
them to do the jobs. If the jobs were easy, we’d have someone
else. Find ways to help people through their roadblocks so they
can get things done. Sometimes that’s a hard push, sometimes
it’s removing a blockage, and sometimes it’s just getting in their
heads with an idea that they can use in their own way to navigate
a problematic terrain.

Do the little things so they don’t become big things [6].
There’s nothing glamorous about doing a time card or taking a
certification test. There’s also nothing glamorous about getting
fired over something so trivial. Do the easy, mandatory stuff
first. Don’t make it your manager’s job to make you do it.

Get in each other’s heads and see the world from some-
one else’s eyes [7]. People will work best when they bring
knowledge, skills, and abilities and they’re met in the middle
with guidance, trust, and support. It’s very easy to allow a gulf
to come between a sysadmin and a manager and to assume that
they don’t understand each other just because they have dif-
ferent priorities. The gulf grows by itself, without any help. It’s
important to keep the gap in mutual understanding as small as
possible, and shrink it whenever you can.

Finding ways to categorize people is just a step towards
understanding them [8]. The goal of any business is supported
by computing systems, which are in turn supported by sysad-
mins. Two equally great sysadmins may have very different
abilities. Making an over-generalization about people can be
misguided if it’s the only thing you do, but a first step towards
understanding someone can be to assess how they learn and how
they work. This is a round pegs/round holes situation on the sur-
face, but at its core the real goal is to put an individual sysadmin
in a role that maximizes their capabilities.

Don’t treat outliers like they’re the new normal [9]. In
large organizations and large systems, the chances are high that
something unexpected will happen at some point. If something
really weird, out of the ordinary, and stupid happens, remind
everyone around you that the most important thing is “out of
the ordinary.” It’s incredibly wasteful to re-engineer a complex
process because there’s one outlier, but it is human nature to
focus on the outlier. As we say in the South, “The high nail gets
the hammer.” Conversely, if you find yourself explaining away a
lot of weird events as outliers, you might want to reassess your
baseline of normal.

Understand why people come to work, and give them rea-
sons to keep coming to work [10]. Each employee has a unique
situation and a personal set of motivators that they themselves
may not truly understand. Taking the time to codify why people
come to work is the first step. Figuring out which parts you can
actually influence is the second step. Actively doing things to
positively influence those things is the approach, and the goal is
to keep smart people happy and productive.

Don’t let your information flow become your enemy [11].
Understand your own information inputs, outputs, and reposi-
tories. Understand and articulate your own personal priorities.
Make information flow be your tool rather than your nemesis.
Always prioritize people first, and give your attention to the
person you’re talking to.

Be the manager, but don’t forget to be the leader. The
difference between being the manager and being the leader is
simply where you stand: managers are in the back directing,
while leaders are in the front leading. Managers tell you what to
do, and leaders inspire you to do it. The best are those who are
both at the same time.

I will leave you with a last thought: when you’ve been following
leaders, mentors, and guides as you moved through your career,
one day you’ll realize that you don’t have anyone leading you
anymore. Just look over your shoulder. You’ll find a line of people
who have been following you all along and you didn’t even realize
it. At that moment, you become the leader you were looking for.

34  D ECE M B ER 20 1 5 VO L . 4 0, N O. 6 www.usenix.org

SYSADMIN
/var/log/manager: I’m the Manager, This Is My Job

References
[1] “Message Not Received,” ;login: logout, January 2014: https://
www.usenix.org/publications/login-logout/january-2014-login
-logout/seely.

[2] “Let’s Find Someone to Blame,” ;login:, vol. 39, no. 2, April
2014: https://www.usenix.org/publications/login/april14/seely.

[3] “Rock Stars and Shift Schedules,” ;login:, vol. 39, no. 3, June
2014: https://www.usenix.org/publications/login/june14/seely.

[4] “When Technology Isn’t the Cause of a Technical Problem,”
;login:, vol. 39, no. 4, August 2014: https://www.usenix.org
/publications/login/august14/seely.

[5] “Parables of System Administration Management,” ;login:,
vol. 39, no. 5, October 2014: https://www.usenix.org/publications
/login/october-2014-vol-39-no-5/varlogmanager-parables
-system-administration-management.

[6] “Career Preventative Maintenance Inspections,” ;login:, vol. 39,
no. 6, December 2014: https://www.usenix.org/publications
/login/dec14/seely.

[7] “Daily Perspectives for the Sysadmin and the Manager,”
;login:, vol. 40, no. 1, February 2015: https://www.usenix.org
/publications/login/feb15/seely.

[8] “A Generational Theory of Sysadmins,” ;login:, vol. 40, no. 2,
April 2015: https://www.usenix.org/publications/login/apr15
/seely.

[9] “Surreal Management Situations,” ;login:, vol. 40, no. 3, June
2015: https://www.usenix.org/publications/login/june15/seely.

[10] “Incentivizing Smart People,” ;login:, vol. 40, no. 4, August
2015: https://www.usenix.org/publications/login/aug15/seely.

[11] “How Technical Managers Tell Time,” ;login:, vol. 40, no. 5,
October 2015: https://www.usenix.org/publications/login
/oct15/seely

https://www.usenix.org/publications/login-logout/january-2014-login-logout/seely
https://www.usenix.org/publications/login/april14/seely
https://www.usenix.org/publications/login/june14/seely
https://www.usenix.org/publications/login/august14/seely
https://www.usenix.org/publications/login/october-2014-vol-39-no-5/varlogmanager-parables-system-administration-management
https://www.usenix.org/publications/login/dec14/seely
https://www.usenix.org/publications/login/feb15/seely
https://www.usenix.org/publications/login/apr15/seely
https://www.usenix.org/publications/login/june15/seely
https://www.usenix.org/publications/login/aug15/seely
https://www.usenix.org/publications/login/oct15/seely
http://www.usenix.org

CoolDC ’16: USENIX Workshop on Cool Topics on Sustainable
Data Centers
March 19, 2016, Santa Clara, CA
Paper submissions due December 15, 2015
The 2016 USENIX Workshop on Cool Topics in Sustainable Data
Centers (CoolDC ’16) is a forum to disseminate results and stimulate
further cutting-edge research in quantitative design, evaluation,
and research methods for sustainable data centers. The goal of the
workshop is to become a venue where experts in sustainable energy
systems, data center physical infrastructure, networking and server
architecture, cloud computing, and internet-scale applications can
come together to exchange ideas on how to maintain and improve
the sustainability of warehouse-scale computer infrastructure.

USENIX ATC ’16: 2016 USENIX Annual Technical Conference
June 22-24, 2016, Denver, CO
Paper and Talk submissions due February 1, 2016
USENIX ATC ’15 will again bring together leading systems researchers
for cutting-edge systems research and unlimited opportunities
to gain insight into a variety of must-know topics, including vir-
tualization, system administration, cloud computing, security,
and networking.

Authors are invited to submit original and innovative papers to
the Refereed Papers Track. We seek high-quality s ubmissions that
further the knowledge and understanding of modern computing
systems with an emphasis on imple mentations and experimen-
tal results. We encourage papers that break new ground, present
insightful results based on practical experience with computer
systems, or are important, independent reproductions/refutations
of the experimental results of prior work.

Industrial practitioners are invited to submit talk proposals to
the Practitioner Talks Track. This track seeks presentations about
practical solutions and challenges to significant real-world issues fac-
ing industrial practitioners. It will provide a unique venue for indus-
trial and academia participants to exchange ideas and experiences.

HotCloud ’16: 8th USENIX Workshop on Hot Topics in
Cloud Computing
June 20-21, 2016, Denver, CO
Paper submissions due March 8, 2016
HotCloud brings together researchers and practitioners from
academia and industry working on cloud computing technologies
to share their perspectives, report on recent developments, discuss
research in progress, and identify new/emerging “hot” trends in this
 important area. While cloud computing has gained traction over
the past few years, many challenges remain in the design, imple-
mentation, and deployment of cloud computing.

HotCloud is open to examining all models of cloud computing,
including the scalable management of in-house servers, remotely
hosted Infrastructure-as-a-Service (IaaS), infrastructure augmented
with tools and services that provide Platform-as-a-Service (PaaS), and
Software-as-a-Service (SaaS).

HotStorage ’16: 8th USENIX Workshop on Hot Topics in
Storage and File Systems
June 20-21, 2016, Denver, CO
Paper submissions due March 10, 2016
The purpose of the HotStorage workshop is to provide a forum
for the cutting edge in storage research, where researchers can
exchange ideas and engage in discussions with their colleagues. The
workshop seeks submissions that explore longer-term challenges
and opportunities for the storage research community. Submissions
should propose new research directions, advocate non-traditional
approaches, or report on noteworthy actual experience in an emerg-
ing area. We particularly value submissions that effectively advocate
fresh, unorthodox, unexpected, controversial, or counterintuitive
ideas for advancing the state of the art.

Submissions will be judged on their originality, technical merit,
topical relevance, and likelihood of leading to insightful discussions
that will influence future storage systems research. In keeping with
the goals of the HotStorage workshop, the review process will
heavily favor submissions that are forward-looking and open-
ended, as opposed to those that summarize mature work or are
intended as a stepping stone to a top-tier conference publication
in the short term.

OSDI ’16: 12th USENIX Symposium on Operating Systems
Design and Implementation
November 2-4, 2016, Savannah, GA
Abstract registration due May 3, 2016
The 12th USENIX Symposium on Operating Systems Design and
Implementation seeks to present innovative, exciting research
in computer systems. OSDI brings together professionals from
 academic and industrial backgrounds in a premier forum for dis-
cussing the design, implementation, and implications of systems
software. The OSDI Symposium emphasizes innovative research
as well as quantified or insightful experiences in systems design
and implementation.

The program committees of the following conferences are seeking submissions. CiteSeer ranks the USENIX
 Conference Proceedings among the top ten highest-impact publication venues for computer science.

Get more details about these Calls at www.usenix.org/cfp.

www.usenix.org/cfp

Publish and Present
Your Work at USENIX Conferences

http://www.usenix.org/cfp
http://www.usenix.org/cfp

36  D ECE M B ER 20 1 5 VO L . 4 0, N O. 6 www.usenix.org

FILE SYSTEMSInterview with Darrell Long
R I K F A R R O W

Dr. Darrell D. E. Long is
Professor of Computer Science
at the University of California,
Santa Cruz. He holds the Kumar
Malavalli Endowed Chair of

Storage Systems Research and is Director of
the Storage Systems Research Center. His
broad research interests include many areas
of mathematics and science, and in the area
of computer science include data storage
systems, operating systems, distributed
computing, reliability and fault tolerance, and
computer security. He is currently Editor-in-
Chief of ACM Transactions on Storage.
darrell@soe.ucsc.edu

Rik Farrow is the editor of ;login:.
rik@usenix.org

The Intel/Micron announcement of XPoint 3D in July 2015 really got
my attention [1]: finally, a vendor will start shipping a form of non-
volatile memory (NVM) that’s not NAND flash. XPoint 3D promises

to be byte addressable, faster, more durable, and require lower power than
any form of flash today. The downsides (there are always downsides) will be
that XPoint 3D will be more expensive and have less storage capacity when it
appears in early 2016.

Having byte-addressable NVM will have impacts on the way computers are designed and
operating systems and software are written. If this technology proves to be everything that
Intel and Micron are promising, it might change everything about the systems we are famil-
iar with. At the very least, XPoint 3D would become a new tier in the storage hierarchy.

I asked around, trying to find someone I knew in our community who could address this
topic from a file system and storage perspective. The timing was terrible, as all of the people
I asked (who responded) were busy preparing FAST ’16 papers for submission, and with two
deadlines at about the same time, you can guess which one is the more important.

Darrell Long, a professor at UCSC, took up my challenge, even though he too was busy on an
overseas trip, as well as supervising papers to be submitted to FAST ’16. Long has experience
in both storage systems and operating systems, and seemed like the right person to talk to
about this development.

Rik: I recently heard about a new type of NVM developed by Intel and Micron and in produc-
tion. I’ve been hearing talks about how a technology like this could result in large changes in
the designs of systems and operating systems for many years.

Darrell: I don’t know a lot about the details of the technology, and was waiting to get home
from travel to sit down with Intel for a technical briefing on the details, but I agree with you
100% that this may in fact be a game-changer. Ethan and I wrote a paper on this about 14
years ago, when there was hope for MRAM (before physics got in the way) [2].

One of the key points is that unlike flash, this will be on the memory bus. We will have per-
sisted memory that is lower power, denser, and unfortunately slower than DRAM. But it will
be byte addressable. That means all the tricks we have developed over the years for packing
data structures into blocks go away—at least at that level.

My belief is that files do not go away, they are simply too useful. I think it would be a mis-
take to tie an object, say a photograph, to an application (as Apple loves to do with the iPad).
Objects may become first-class entities, and you can then think of applications as operators
that perform transformations on them. There will be a lot of them, so we still need naming
and protection, and we still need long-term storage—so I do not see spinning rust disap-
pearing, at least not for quite a while, but it may move back into “archive” where we keep our
named objects. And as before with disk, we will still need to worry about mapping memory
addresses to some (in this case) higher level representation; unlike Word in the old days, you
can’t just dump persistent memory to disk and load the image.

mailto:darrell@soe.ucsc.edu
mailto:rik@usenix.org
http://www.usenix.org

www.usenix.org D ECE M B ER 20 1 5 VO L . 4 0, N O. 6 37

FILE SYSTEMS
Interview with Darrell Long

Rik: MRAM never happened, and XPoint 3D will be slower than
DRAM, initially by a factor of 100,000, although the claim is that
this will come down to 1000 times slower than DRAM.

Darrell: Physics got in the way of MRAM, and phase change
memories were not yet a thing when we wrote the paper [2]. So
MRAM will never happen, except for low-density stuff that needs
to be radiation hard (but phase change is also radiation hard).

I think the key issues for this new technology are byte-address-
ability and its speed relative to the others. For high performance
computing, power consumption will also be huge. Most people do
not realize it, but the vast majority of energy comes from moving
the bits, not the computation. If you look at a processor die, it’s all
cache and bit movement. The ALU and FPU are tiny parts of it
these days.

Having byte-addressable persistent memory on the memory bus
is, I think, a game changer. I am not sure how it will all shake out.
But the usual ideas of never having to fully reboot (but we need
to retain that ability due to the crappy software that gets writ-
ten) will certainly come up.

I think the key things that we need to think about are how we
manage our data: how do we name it, find it, and protect it? The
file model works pretty well, and we may not want to just throw
it away. But we can lose a lot of its strictures.

Rik: I agree, moving bits is expensive, and have been looking at
dies (well, masks for dies) since the early ’80s. Now, it’s mostly
cache and the parts that determine whether the right line is
present or not.

As for crappy software, even geniuses can’t write perfect
software, and most people who write software aren’t geniuses.
Someday, perhaps software systems will write software, but
even then there might be memory leaks, accidental corruption of
data structures, and so on.

And will all of the strictures on file system design go away? I
think file systems will still use locks, write metadata before data
is written, and so on. NVM file systems will need to be differ-
ent, or should be different, for handling media that is byte rather
than block addressable. That might be the interesting bit, given
examples like NTFS, where MS systems programmers decided
to have irregularly sized data structures, as they did in their in-
memory logging system, and had terrible trouble with reliability
and in the performance and reliability of their logging system.

Darrell: I haven’t completely thought it through yet, but I think
that the role of file systems will change. And I think that conse-
quently they will get simpler. Consider the object abstraction we
have been pushing for about 20 years (Swift [3] was 1991), and it
is finally getting traction through Ceph and Seagate’s Kinetics. A

lot of the low-level stuff you can just push off onto the device, and
let the higher-level file system worry about naming, load balanc-
ing and distribution, and protection (though some of that must
be at the object level too).

Now look at the persistent memory. If the density is high enough,
we really don’t need the low-level parts of the file system on, say,
your laptop. We already have flash, although that pretty much
pretends to be a fast disk. But we will still need the naming and
protection; when we want to back up our system, we will still
want to use something like files. We will be taking byte-address-
able memory and mapping it to block storage, be it flash, disk,
tape, or the long-promised holostores.

So the locking and so forth will still be there, but it will change.
It will be more like shared memory, and in the beginning before
programming models really change I would expect a lot of
mmap() kinds of things to happen. The back-end file systems
may get a lot simpler, since they will probably not need to support
range locking or update in most cases. Remember Tanenbaum’s
“Bullet” file system? [4] They could very well end up like that,
with immutable files that get written in one fell swoop.

References
[1] Intel Micron XPoint memory announcement: http://
newsroom.intel.com/community/intel_newsroom/blog
/2015/07/28/intel-and-micron-produce-breakthrough
-memory-technology; analysis by Anandtech: http://www
.anandtech.com/show/9470/intel-and-micron-announce
-3d-xpoint-nonvolatile-memory-technology-1000x-higher
-performance-endurance-than-nand.

[2] Ethan L. Miller, Scott A. Brandt, and Darrell D. E. Long,
“HeRMES: High-Performance Reliable MRAM-Enabled
Storage,” Proceedings of the Eighth Workshop on Hot Topics
in Operating Systems (HotOS-VIII), Elmau, Germany: IEEE,
May 2001, pp. 83–87: ftp://ftp.soe.ucsc.edu/pub/darrell
/HotOS-Miller-01.pdf.

[3] Luis-Felipe Cabrera and Darrell D. E. Long, “Swift: Using
Distributed Disk Striping to Provide High I/O Data Rates,”
Computing Systems, vol. 4, no. 4 (1991), pp. 405–436: https://
www.usenix.org/publications/compsystems/1991/fall
_cabrera.pdf.

[4] Robbert van Renesse, Andrew S. Tanenbaum, Annita
Wilschut, “The Design of a High-Performance File Server,”
9th International Conference on Distributed Computing
 Systems, 1989, pp. 22–27: https://static.aminer.org/pdf
/PDF/000/297/552/the_design_of_a_high_performance
_file_server.pdf.

http://newsroom.intel.com/community/intel_newsroom/blog/2015/07/28/intel-and-micron-produce-breakthrough-memory-technology
http://www.anandtech.com/show/9470/intel-and-micron-announce-3d-xpoint-nonvolatile-memory-technology-1000x-higher-performance-endurance-than-nand
ftp://ftp.soe.ucsc.edu/pub/darrell/HotOS-Miller-01.pdf
https://www.usenix.org/publications/compsystems/1991/fall_cabrera.pdf
https://static.aminer.org/pdf/PDF/000/297/552/the_design_of_a_high_performance_file_server.pdf
http://www.usenix.org

38  D ECE M B ER 20 1 5 VO L . 4 0, N O. 6 www.usenix.org

HISTORY

1975–2015

Offshoots
STUG and LISA

P E T E R H . S A L U S

Peter H. Salus is the author of A
Quarter Century of UNIX (1994),
Casting the Net (1995), and The
Daemon, the Gnu and the Penguin
(2008). peter@pedant.com

This column is brought to you by the letter K. K as in Kernighan and K
as in Kolstad. Of course, others were involved: Bill Plauger, Deborah
Scherrer, Dennis Hall, Joe Sventek. Were you alive in 1976? In 1987?

Well, pull up your chairs and learn ancient lore.

Software Tools by Brian Kernighan and P. J. (“Bill”) Plauger bears a copyright date of 1976. I
own two copies: one was given to me as a Christmas gift by Lou Katz in 1978. It’s full of notes.
The other was purchased in the mid-1990s when I was working on The Handbook of Pro-
gramming Languages (4 vols., 1998). I still consider it the very best book on programming I’ve
ever read. Andy Tanenbaum (world-renowned computer scientist of the Vrije Universiteit in
Amsterdam) thought so, too. He left a copy at Lawrence Berkeley Labs (LBL), telling Debbie,
“You might be interested in this.” She was.

“I thought it was wonderful,” she told me. “At the same time that Andy mentioned the tools
book, Dennis Hall discovered it. And Dennis got me involved and got the PI to approve using
my time. So over the weekend I started to implement all the tools. It was great!”

It was that fast, too. Debbie and Dennis and Joe Sventek did it all.

“Remember,” Mike O’Dell told me, “Debbie knew Brian, and he knew what they were doing,
so he pointed people who asked about the tools to LBL. And that started the Software Tools
User Group.”

User group? Yes. A BoF was held at the USENIX meeting in 1979 in Toronto. Just over 100
attended. A newsletter was initiated. And in volume 1, number 2 of Software Tools Communi-
cations (November 1979) there was this announcement: “The next meeting of the Software
Tools User’s Group will be held January 29th in Boulder, Colorado.”

Software Tools wasn’t about UNIX, it was about philosophy and style. The late Dennis
Ritchie told me, “The tool-using approach is powerful and intellectually economical, but it
takes imagination to use.”

Interestingly, Debbie, Dennis, and Joe realized just how powerful the tool concept was. They
wrote a virtual operating system (VOS) that would serve as a pseudo-interface between the
software tools written in Brian’s Ratfor (Rational Fortran) and whatever OS was running.
The paper, “A Virtual Operating System,” appeared in CACM 23.9 (September 1980). In April
1996, Debbie, Dennis, and Joe were awarded the USENIX Flame for their efforts.

STUG waxed rapidly. In April 1980 it had over 2,000 members. And Debbie prepared a
“Cookbook” (January 1981), which comprised “Instructions for implementing the Software
Tools Package (as distributed by the Software Tools Users Group).” The tools? Oh, the tools
ran (alphabetically) from ar (archive) to xref (make a cross-reference).

Software Tools Communications ceased publication after January 1986. But a decade later,
USENIX began an annual award. “The STUG Award recognizes significant contributions
to the community that reflect the spirit and character demonstrated by those who came
together in the Software Tools User Group (STUG). Recipients of the annual STUG award
conspicuously exhibit a contribution to the reusable code-base available to all and/or the pro-

mailto:peter@pedant.com
http://www.usenix.org

www.usenix.org D ECE M B ER 20 1 5 VO L . 4 0, N O. 6 39

1975–2015

HISTORY
Offshoots: STUG and LISA

vision of a significant enabling technology to users in a widely
available form.” The STUG Award originated in a donation by
Debbie Scherrer of the funds remaining after the group ceased
activity.

LISA
Rob Kolstad, then at Convex in Texas and newly elected to the
USENIX Board, mentioned the difficulties of large systems at
a board meeting and, together with Alix (Max) Vasilatos, then
at MIT, organized a “Large Installation System Administration
Workshop,” held in Philadelphia in April 1987. There were 55
attendees. I vividly recall Rob asking whether anyone “backed-
up” 10 meg a night. About a third of those present stood. He then
increased the number. There were still two at “over 100 meg.”

In those days it was a lot.

The LISA15 event many readers attended was the 29th. I hope
there will be a major celebration for the 30th in 2016.

When LISA began, no one even imagined “the cloud” or instal-
lations like those of Google or Amazon. The largest users were
government and military. Today most of us have gigabytes on
our desks. One can buy 5T for well under $200. What will “large”
mean in another few years?

Thank you Brian and Bill; Debbie, Dennis, and Joe; Rob and Max.

Epilogue
At year-end, it’s customary to predict what’s coming. I’m
reluctant to do that. Let’s face it, we do a really lousy job at pre-
diction—especially of the future. By the way, although that’s fre-
quently attributed to the late Yogi Berra and occasionally to Sam

Goldwyn, it comes from a question and answer period during
a seminar in Copenhagen where Niels Bohr laid out the funda-
mental nature of quantum physics. Included was the description
of the Heisenberg uncertainty principle, which basically says
that you can’t predict where a particle will be at a specific place
in time, or vice versa. The question that triggered the answer
was: “What do you predict the influence of quantum physics
will have on the world in the future?” and Bohr said, somewhat
tongue in cheek due to the prominence of the principle, that “it is
exceedingly difficult to make predictions, particularly about the
future” (because we can’t even know what the state of our situa-
tion is NOW, much less in the future).

Dr. Susan Calvin made her first appearance in “Robbie,” but she
wasn’t in the version that appeared in Super Science Stories in
September 1940. Asimov “adjusted” his history and inserted her
in a revised version. But that wasn’t all he revised: he moved the
action from 1982 to 1998. As he died in 1992, I guess he didn’t
concern himself with shoving things further.

H. G. Wells originated moving sidewalks, but my guess is that
most people first thought of them in Heinlein’s “The Roads Must
Roll,” which appeared in Astounding Science Fiction magazine
in 1940. Now, nearly every airport has a slow version of them
(though when I was in Vancouver, half of them weren’t running
and in Portland, Oregon, none were). A roadway from Boston to
New York to Philadelphia to Baltimore to Washington would
be great. By the way, Heinlein’s Rocket Ship Galileo appeared in
1947 and involves Nazis on the moon.

These are just to further illustrate that Bohr was right. Happy
New Year!

http://www.usenix.org

40  D ECE M B ER 20 1 5 VO L . 4 0, N O. 6 www.usenix.org

1975–2015

HISTORY

Interview with Rob Kolstad
R I K F A R R O W

I believe I first met Rob Kolstad in the early ’90s, during the time of the
AT&T lawsuit against BSDi and the University of California. I was very
interested in what was happening in that lawsuit, partially because

I consulted for UNIX World magazine in those days, and largely because I
believed in open source. Rob was the head of BSDi by then, and he arranged
for me to receive versions of BSD as they were updated.

Rob also had history with USENIX by that time, having (among other activities) started
LISA as a small workshop (see Peter Salus’ article in this issue). Rob was the editor of ;login:
for many years too, as well as a popular speaker and conference organizer.

But there’s surely more to his story, I thought, so I decided to see what I could elicit.

Rik: Tell us about your early days in computer science.

Rob: I was told “you must go to college” from the day Sputnik launched. My parents indepen-
dently emphasized this starting from first grade when I mentioned standardized tests we
had just taken. It was a given and as natural as being born or getting up in the morning. “You
must go to college.”

After spending half a dozen years as a very young programmer hanging out at the labs of
the University of Oklahoma, I headed to SMU to work on one of the first computer science
degrees. I followed some professors to Notre Dame for a master’s degree in electrical engi-
neering (all theory). From there it was six years at the University of Illinois, ending up with a
thesis in the realm of distributed operating systems.

Convex Computer Corp. (then called Parsec Scientific Computers) was hiring OS folks to
port UNIX to their new vector processor. As it turns out, I was one of the very few on the
market at the time and thus joined them and learned how to play the startup game (this being
the 1982 timeframe when supercomputers were the bubble instead of PCs or the Internet).
Convex worked out well, going public and then increasing their share price.

I followed my boss to Colorado Springs to join Prisma Technica, who were going to manu-
facture a SPARC-compatible processor using gallium arsenide chips, which would have
the then-blazing clock rate of 250 MHz. GaAs does have its challenges; the software group
eventually ended up joining Sun Microsystems in order to ply their large system expertise for
Sun’s higher-end efforts.

After two years with Sun, I moved on to BSDi, whose goal was to commercialize Berkeley-
style UNIX; it was my dream job. The lawsuit with AT&T over their misunderstanding of the
provenance of BSDi’s code cost over a million dollars and enabled the completely unencum-
bered Linux to gain its first foothold; the rest is history.

I then moved to work with conference-running organizations like USENIX and SANS before
commencing independent consulting in the intellectual property world. Some of my projects
there have included analyzing voting machine code, dissecting solid state disks in search of pat-
ent violations, and constructing the software to interpret and summarize high-speed bus traffic.

After earning his PhD, Rob
Kolstad spent eight years at
successful supercomputer
startup Convex Computers
as the Manager of Operating

Systems. During his tenure there, he was
elected to serve the first of his three terms
on the USENIX Board of Directors. He joined
Prisma Technica, a Colorado Springs-based
startup whose mission was to construct a
high-speed gallium arsenide SPARC processor,
which led to two years with Sun Microsystems,
followed by seven at the first Internet server
company, Berkeley Software Design (BSDi).
He was also a program manager at SANS, and
later Executive Director of SAGE for USENIX.
Most recently he has been an intellectual
property consultant, working on projects like
analysis of voting machine code and patent
infringement investigations (including disk
drives, flash components, embedded software
reverse engineering, and DVD recording
formats). Rob also volunteered for 20 years
as the head coach of the USA Computing
Olympiad, training pre-college students to
represent the US at annual international
programming contests held around the world. 
rob.kolstad@gmail.com

Rik Farrow is the editor of ;login:.
rik@usenix.org

mailto:rob.kolstad@gmail.com
mailto:rik@usenix.org
http://www.usenix.org

www.usenix.org D ECE M B ER 20 1 5 VO L . 4 0, N O. 6 41

1975–2015

HISTORY
Interview with Rob Kolstad

Rik: You started LISA in 1987 as the Large Installation System
Administration conference. Can you provide some background
about why you thought USENIX needed a conference about
managing large numbers of UNIX systems? To be honest, I
didn’t even know there were large numbers of UNIX systems to
manage in 1987.

Rob: I was privileged to attend USENIX conferences starting
late in my graduate school career. It devolved in my circles that
one’s ticket to the conference was contingent upon publishing
a paper there, and so that’s what I did. I enjoyed the experience
and worked on the things that seemed important: organizing
late-night panels, helping with tasks, and generally slowly grow-
ing into a role of contributor (talks, tutorials, keynotes, chairing
conferences, creating distribution tapes, etc.).

Early in my tenure at Convex Computer Corporation, USENIX
founder Lou Katz suggested that I run for the USENIX Board of
Directors. I wrote a platform statement that apparently reso-
nated with the electorate and joined the Board.

I believe in “working boards” vs. those who use their contacts
for fundraising (in the case of charities) or business promotion
(in the case of corporations). I believe there was a general feel-
ing that board members were in charge of presenting ideas for
workshops, conference enhancements (including topics, tutorial
ideas, and non-technical ideas), and generally creating the orga-
nizational plans which the main office then executed.

Of course, folks would often propose programmatic ideas in
their own fields of interest, so I proposed a “Large Installation
System Administrators’ Workshop” (among others, including
a supercomputer workshop that fared less successfully in the
long-term). I was working as Manager of Operating Systems at
Convex Computers; my job was to ensure that BSD UNIX ran
seamlessly on the new Convex C1 affordable supercomputer.
Even our organization of under 50 people was expanding into
ever greater numbers of systems, and, of course, utilized large
systems in order to ensure they worked when delivered to
customers.

Some folks think back and wonder about how “large” a shop
could syadmins in our marketplace administer. Here’s an
excerpt of the original announcement:

[The] Large Installation System Administrator’s
Workshop [will] be held in Philadelphia, PA, on April
9th and 10th, 1987. This workshop will bring together
system administrators trying to conquer UNIX’s
historical bias towards smaller systems. It is believed
these administrators battle many of the same problems
repeatedly and can share their unique solutions to some
problems in order to avoid duplication of effort as UNIX
grows to run in ever larger installations.

System managers of shops with over 100 users (on
one or several processors) will find this workshop
particularly valuable....

Some topics to be considered include: large file
systems (dumps, networked file systems), password
file administration (including YP), large mail system
administration, USENET/News/Notes administration,
mixed vendor (and version) environments, load control
and batch systems, handy new utilities, and large LANs.

I seem to remember that, early on, one of the qualifications for
“large” was “administration of over a gigabyte of disk storage.”
Times have changed!

The lack of unified tool sets, the complexity of the tools that did
exist, and the emergence of new challenges all made large instal-
lations an interesting problem. Recall that this is back in the day
when a system crash (which was not an infrequent occurrence)
required running the fsck program to repair the disks before the
system could be fully booted.

Rik: Can you tell us what’s involved in coaching USACO partici-
pants? Do you help choose participants, create test problems,
manage logistics, or do other work?

Rob: As the computer industry matured over the years, so did the
USACO coaching techniques. In the earliest years, the problem
was simply finding students who had the skills to participate.
Later, there were more than enough students, so a camp was
organized to perform training via lectures and labs (along with
both technical activities like program AI-players for games and
non-technical activities like ultimate frisbee), which led to a pair
of five-hour on-site contests to select the representatives for the
international contest.

A number of things became clear:

◆◆ Manual task grading was onerous, time-consuming, and had a
potential for errors.

◆◆ A host of students could benefit from earlier exposure to the
task types.

◆◆ Ultimately, the Web could provide a fertile training environ-
ment.

Thus, the coaches developed a grading system to run a contes-
tants’ program using a number of different data sets for input
and provide results. While this might sound easy today, it was
revolutionary in its time (hearken back to the days when people
were mystified by UNIX, processes, the Web, and networking in
general). That system ultimately ran sev-
eral of the international competitions.

The coaches created test data for these
tasks, and that became a challenge since
erroneous test data leads to competitor

http://www.usenix.org

42  D ECE M B ER 20 1 5 VO L . 4 0, N O. 6 www.usenix.org

HISTORY
Interview with Rob Kolstad

complaints and a general tarnishing of reputation. Russ Cox
(now Dr. Cox, at Google) led the way to “validators” whose job
was to ensure that the test data conformed to the task descrip-
tion and was valid. Ultimately, the system could read the input
descriptions and generate the validators automatically; this
proved to be an extraordinary technique for ensuring that non-
conforming data did not sneak into the grading process.

The automated grading system meant that USACO could hold
competitions on the Internet, which led to an era of six annual
contests (five shorter contests at three hours each; one five
hours). These contests made it much easier to choose the best
contestants to attend camp, since so many “performance data
points” were collected. Open to the entire Internet community,
it was not unusual for more than 1000 competitors from more
than 65 countries to participate (several of whom were past their
pre-college career but wanted the exposure and were ranked
separately). A later upgrade enabled contests to be translated
quickly, right before a contest began, thus expanding their scope.

Once that challenge was met, it was obvious that an online train-
ing system could move the students more quickly through the
complexities of “algorithmic programming.” This engendered
“The USACO Training” pages at http://train.usaco.org. Open to
the entire Internet community, the site enforces a path through
a curriculum, with 100 sample tasks that amplify the concepts of
its tutorial sections. Almost a quarter million folks from around
the world are registered for the training pages, which have also
been translated into half a dozen languages for international
students.

Each contest featured three tasks in each of three divisions,
nine tasks total. Six contests required 54 tasks, each with 10–20
test data sets, validation, several sample solutions in various
programming languages, and an analysis to be shared after the
contest. The USACO camp featured an additional 5–6 contests
(only one or two divisions) of three tasks in addition to a game-
AI-challenge or other challenge—a total of 18–36 more tasks and
the special software to run the challenge. This totals up to at
least 72 tasks per year, repeated with new tasks each year.

Keeping track of these tasks became a challenge, so I built the
contest-task management system based on some heuristics
developed by Greg Galperin, Hal Burch, and others at camp. It
keeps track of task text, coaches’ solutions, test data, valida-
tor, validation status, the analysis, the difficulty (and other)
ratings, and other miscellaneous information. Ultimately, this
system could create a contest with three divisions and ensure
the contest started on time and finished on time—automation
at its finest. Of course, being data-driven, one had to ensure that
the data was present, a huge task recurring monthly through the
school year.

In summary, yeah, it’s a lot of work to run the season. A set of a
dozen coaches online throughout the year complements perhaps
eight coaches (usually the same folks) invited to keep the camp
(now with more than 30 participants) running smoothly. Two
coaches and four students participate in the IOI and, occasion-
ally, other international competitions. It’s great fun and a real
inspiration for those students who are interested. See http://
www.usaco.org for more information.

XKCD

xkcd.com

http://train.usaco.org
http://www.usaco.org
http://www.usaco.org
http://www.usenix.org
xkcd.com

www.usenix.org D ECE M B ER 20 1 5 VO L . 4 0, N O. 6 43

1975–2015

HISTORY

;login: The UNIX Newsletter
Volume 2, Number 7, August 1977

Minutes of the First National UNIX Users
Group Meeting
Steven Zucker, Interactive Systems Corporation

The First National Meeting of the UNIX User’s Group was
held at the University of Illinois, Urbana-Champaign Cam-
pus, on May 19–21, 1977. Steve Holmgren of the University’s
Center for Advanced Computation chaired the meeting. The
enthusiasm of the more than 150 participants and the infor-
mal tone of the sessions resulted in a very stimulating atmo-
sphere for the exchange of ideas. The meeting was divided
into eight sessions:

 • UNIX Site Activities
 • UCLA Data Secure UNIX
 • Interprocess Communications
 • Graphics
 • Languages
 • Networking
 • Data Base Management Systems
 • Phototypesetting

My hope is that these notes on the sessions will be useful
in directing those wishing more details to people who can
provide them. I offer my apologies to those whose contribu-
tions I have inadvertently omitted and urge them to send their
contributions to this Newsletter.

Many of the sessions were replete with announcements by
speakers as well as members of the audience of new and/or
improved drivers for one or another device, with the T1-16
Magnetic Tape Unit receiving the most attention. Rather than
list all the drivers mentioned here, I would like to suggest that
a column in the UNIX NEWSLETTER be devoted to informa-
tion of this kind with installations or individuals willing to
disseminate such code supplying information as to features
and requirements.

UNIX Site Activities
Heinz Lycklama, Bell Telephone Laboratories
Heinz described the several variants of UNIX that have been
or are being developed at Bell Labs. In addition to the standard
UNIX system which Western Electric already licenses, there
are three other systems in use at Bell Labs.

LSI UNIX (LSX): LSX occupies 8K words of main memory
leaving up to 20K words of user space for the single user that
it supports. Minimum memory requirements for running LSX

The second issue of ;login: (formerly UNIX News) was published in August 1977
and included the minutes of the First National UNIX Users group meeting held
May 19–21, 1977. Excerpts from that issue are reproduced here and on the fol-
lowing pages. We have also scanned the complete issue and made it available for
download at www.usenix.org/login/dec15/login_aug77.pdf.

are 20K words of main memory, the extended instruction set and two
floppy disks. LSX is written in C and will run the C compiler. It runs at
most three processes and supports the notion of contiguous files but
pipes are not supported.

LSX will run on the 11/10, 11/20, 11/34, or 11/40 as well as the LSI 11.

MINI-UNIX: Mini-UNIX supports up to four users running up to 13
concurrent processes on an 11/40, 11/34, 11/20, or 11/10. It occupies
12K words of memory leaving up to 16K words
for user programs. It uses no memory mapping
and, therefore, provides no memory protection.
It requires an RK05 or larger disk.

http://www.usenix.org/login/dec15/login_aug77.pdf
http://www.usenix.org

44  D ECE M B ER 20 1 5 VO L . 4 0, N O. 6 www.usenix.org

1975–2015

HISTORY
;login: The UNIX Newsletter

MERT (Multi-Environment Real-Time System): This sys-
tem runs only on an 11/70 or 11/45 as it requires the separation
of kernel and supervisor spaces. MERT supports a real-time
supervisor which can lock processes in memory, perform pre-
emptive scheduling or time-out scheduling. The communication
 facilities (events, messages, shared memory, and process ports)
were described. File system support for MERT is embodied in
independent processes which communicate with other levels
via messages.

* * * * *

Ken Thompson, Bell Telephone Laboratories
An effort is under way at Bell Labs to convert UNIX to run on the
INTERDATA 8/32. The conversion is being treated primarily as
a portability exercise. As part of the portability exercise a pseudo
C has been developed which enforeces strict typing of variables.

A significant number of file system changes are being planned
for Version 7 of UNIX. The changes would extend the allow-
able number of blocks in a file system from the present 216 to
224 blocks, thus, making it easier to use large disk files such as
the RP04. The i-node size will be extended from the present 16
words to 32 words which will include space for 10 direct block
pointers, one indirect block pointer, one double indirect pointer,
and one triple indirect block pointer, allowing files to be as long
as 232 bytes. Users IDs will be extended to 16 bits and the STAT
and the FSTAT system calls will hide the physical addresses.
A long SEEK system call will replace the present SEEK and
a TELL system call (the inverse of SEEK will be added). The
SWITCHES call will be thrown away and the SLEEP call will
be replaced by PAUSE and ALARM. Significant changes are
also anticipated in the STTY and GTTY system calls. It is
unlikely that the new system will be available before the
beginning of 1978.

* * * * *

UCLA’s Data Secure UNIX
Jerry Popek, University of California, Los Angeles
Jerry Popek described work at UCLA in which a secure version
of the UNIX operating system is being developed. The system
architecture is based on a kernel architecture, with program
verification methods being applied to that software.

The kernel is composed of an operating system nucleus, smaller
and simpler than the UNIX kernel, which is responsible for all
operational security. It provides a “capability machine” with a
number of simple kernel calls. Each one provides a primitive
operating system function, such as process invocation, swap-

ping, I/O, etc. Above the kernel, running
in supervisor mode, is a “UNIX interface”
module, that is part of each user’s pro-
cess (a process has two address spaces).
That module is respinsible for providing

an interface to user code that is identical to UNIX, and either
performs the function, or prepares kernel requests to accomplish
them if security relevant.

The secure UNIX system Popek described is to be capable of
supporting large numbers of processes, and running virtually all
non-super-user code without any change. A prototype imple-
mentation has been delivered to the government, and they are in
the process of letting a contract to build a production version of
secure UNIX.

Popek also described the program verification procedures nec-
essary to show that protection is enforced by the system in an
uncircumventable way.

* * * * *

R. M. Walden, Western Electric
Following the Data Secure UNIX presentation, Bob Walden
announced that the Government and International Systems
Division of Western Electric has established an organization to
provide support for UNIX, initially to government users. The
service will include consultation, installation and training,
trouble shooting or problem solving assistance, improved docu-
mentation, and new feature development.

* * * * *

Interprocess Communication
Alan Nemeth, Bolt Beranek & Newman
Alan Nemeth reported on a series of meetings held to discuss
interprocess communication in UNIX. The immediate goals of
the meetings was to standardize on one or more interprocess
communication mechanisms to be supported in UNIX systems
run by the Department of Defense.

Two such mechanisms have been tentatively adopted: the port
mechanism developed at The Rand Corporation and events
developed at the University of Illinois. The Rand port mecha-
nism described in Rand Report, R-2064/2, Interprocess Commu-
nication Extensions for the UNIX Operating System, provides a
mechanism very much like pipes except that they can be named
and opened by readers unrelated to the creator of the port. Ports
also support message-oriented (as opposed to stream-oriented)
I/O. While ports are intended for transfers of large amount of
data between unrelated processes, the Illinois event mecha-
nism provides a more efficient path for small one or two word
messages. Each process has associated with it one event queue.
Processes, using primitives provided by the kernel, can send
“events” to ther processes, read an event from its queue if one
is there, or wait for an event to appear on its queue. At present
the development of a suitable signalling mechanism to augment
ports and events and provide process synchronization is a sub-
ject for further study.

* * * * *

http://www.usenix.org

www.usenix.org D ECE M B ER 20 1 5 VO L . 4 0, N O. 6 45

1975–2015

HISTORY
;login: The UNIX Newsletter

Following an open discussion of ports, events, and synchro-
nization, there were two presentations of segment sharing
mechanism that have been employed in UNIX systems. Heinz
Lycklama of Bell Telephone Laboratories described the MERT
interprocess communication facilities. MERT provides messges
which are very similar to the Illinois events except that the
messages may be somewhat longer—10 words instead of 2. The
messages are employed in MERT for communication between
the file manage process and the MERT kernel. In MERT the user
is given the capability of manipulating memory segments. The
user may have up to 32 segments—6 of which may be in his active
address space.

Following Heinz’s presentation, Steve Holmgren described the
Illinois segment sharing mechanism by which processes may
send segments to or receive segments from other processes.

* * * * *
Graphics
A special meeting of those attendees interested in graphics
under UNIX was held on the evening of May 19. Karl Kelly of the
University of Illinois Center for Advanced Computation presided
at the meeting. This was a very informal session at which each
manufacturer of graphics hardware took its knocks. The main
conclusion that could be drawn from this session was that there
exists a very large and very active group doing graphics under
UNIX on a tremendous variety of equipment. It is probably safe
to say that there is a UNIX driver for most of the common com-
mercially available graphics devices.

* * * * *
Languages

Mike O’Brien, University of Illinois
Mike spoke very briefly about a new C compiler which sup-
ports long variables with initialization, structures, containing
variables with byte fields, conditional compilation, structure
initialization, and a new printf program.

* * * * *

Steve Bunch, University of Illinois
Steve spoke about a C compiler for the Honeywell level 6 which is
to be in the public domain.

At this point in the meeting there were a number of announce-
ments made from the floor of various languages available under
UNIX from various sources. In particular Commercial Union
Leasing Corporation, New York City, apparently has a C to
FORTRAN processor as well as FORTRAN IV PLUS running
under UNIX. Reports have indicated that the Commercial Union
FORTRAN IV PLUS is vastly better than UNIX FORTRAN and
it is available for a license fee from Commercial Union.

* * * * *

Tucker Taft, Harvard University
Tucker described ECL, an extensible language that is being run
at Harvard. Documentation is available from the Harvard Sci-
ence Center.

* * * * *

Arthur Olson, University of California, San Diego
Arthur Olson announced that San Diego was running the 11/40
floating point under UNIX.

* * * * *

Evelyn Walton, University of California, Los Angeles
Evelyn Walton made a brief presentation of the Pascal to C
translator being used by the UCLA security kernel project. The
purpose of the translator was to enable the production of code
in Pascal for which an automatic verifier exists. No attempt was
made to translate all of Pascal to C. Thus the translator does not
support sets or nested procedures.

* * * * *

Peter Weiner, Interactive Systems Corporation
At this point in the meeting, Peter Weiner of Interactive Systems
Corporation solicited suggestions from the floor on areas of
UNIX that needed improvement or extension. Several euch sug-
gestions were forthcoming especially in the networking area.

* * * * *

Networking
Jody Kravitz, University of Illinois
Steve Abraham, University of California, Los Angeles
The first networking presentation was made jointly by Jody
Kravitz and Steve Abraham. They announced that there will
be an official release of the UNIX ARPANET NCP (Network
Control Program) combining changes made at the University of
Illinois, at UCLA, and at Rand. The new release will be available
in mid-summer from ILL-NTS.

* * * * *

Ken Thompson, Bell Laboratories
Ken described an experimental UNIX networking facility he is
working on at Bell Laboratories. An interesting feature of the
network is a protocol which provides a “directory assistance”
facility. A demon process on each host accepts calls for directory
assistance and provides routing information based on the part
of the network that it knows about. The call initiation protocol
establishes a path between the nodes on the
network from source to destination and the
messages transmitted from the source to
the destination all follow the same path.

http://www.usenix.org

46  D ECE M B ER 20 1 5 VO L . 4 0, N O. 6 www.usenix.org

1975–2015

HISTORY
;login: The UNIX Newsletter

Present plans call for the use of a new DEC device, the KMC-11, a
small microprocessor, to provide support for the network.

* * * * *

Brian Lucas, National Bureau of Standards
Brian Lucas discussed the ETHERNET. The ETHERNET
provides a very high bandwidth yet low cost means of connecting
machines that are within a single building or cluster of build-
ings. The network utilizes coaxial cables which support a one to
two megabaud signalling rate. Adding a new host is as simple as
connecting to the cable with a high impedance tap. Microproces-
sors between the host and the cable perform the actual signal-
ling and detect and resolve conditions in which more than one
host tries to signal simultaneously.

* * * * *

Data Base Management Systems
John Hoskins, Office of Institutional Research
John Hoskins described the Yale University Registration
System. The system manages ten years of Yale undergradu-
ate student records. Each student record is a separate file and
the system holds approximately 15,000 records of two to three
thousand bytes each. The system has been very well received
in the Registrar’s office where personnel are trained in only 4
hours and become expert in the use of the system in only two
weeks. The primary components of the system are the Text
Editor, a program called the “fence” (which makes available an
editable copy of a student’s record and prevents simultaneous
update) and a number of shell files for producing grade reports,
class schedules, and other reports as required. Those involved
with it—both developers and users—speak very highly of the
convenience and economy of using UNIX—even when compared
with other larger and more expensive operating systems and
machines.

* * * * *

Dan Giclan, New York Telephone
Dan Giclan reported on the development of an enhanced, produc-
tion version of the INGRES system developed at Berkeley. The
improved system is oriented towards production use rather than
theoretical completeness. By vesting ownership of the data bases
in the user rather than the system and by placing responsibil-
ity for avoiding the rare but potentially dangerous problem of
concurrency (simultaneous update) the system is able to run ten
times faster than the original Berkeley system.

* * * * *

Bill Mayhew, The Children’s Museum
Bill Mayhew described “The Information System,” available for
license [from the Children’s Museum].

The Information System is distributed as a collection of routines
that perform the standard database operations: add item, delete
item, add descriptor to item, remove descriptor from item, locate
descriptor, retrieve next item in inverted list, delete descrip-
tor from dictionary, plus the AND, OR, and AND NOT hitlist
boolean operators. Also supplied is a user interface implement-
ing a simple query language and providing facilities for entering,
updating, and retrieving textual data items.

The Information System can be applied to a wide range of
information management problems. It has been successfully
used to develop interactive maintenance systems for mailing
lists, membership and contribution records, and group visit and
educational program reservations, and is about to be used as the
foundation for a service to match the educational resources of
cultural organizations with the needs of teachers throughout the
Commonwealth of Massachusetts.

* * * * *
Phototypesetting
Joe Ossana, Bell Laboratories
The principal speaker at the Phototypesetting session was Joe
Ossana. He announced a new phototypesetting package, type-
setter V7, which is or soon will be available from Western Elec-
tric for a $3300 license fee. The new package combines NROFF
and TROFF and is written in C. This results in TROFF being
50% larger and 20–30% slower than the earlier version. There
have been a number of significant improvements in the package
however. First TROFF font control and width calculations are
now taken from files so it is relatively easy to use the package
to drive other phototypesetters. Second, one can now specify
artificial bolding which is performed by overstriking characters
with a small offset. EQN the mathematics typesetting program
now works with NROFF.

Also:

• Bell Labs is looking into other typesetters (an APS4 or
APS5 typesetters, which sells for about $100,000). TROFF
will easily drive it, although making use of the advanced
features such as more fonts or sizes may be difficult.

• Bell Labs has a Tektronics 4014 TROFF simulator which,
though slow, can show what a typeset page will look like.

• Measurements have indicated that NROFF hypenation is
correct approximately 97-1/2% of the time.

• There is a new columnar cable builder

* * * * *

http://www.usenix.org

www.usenix.org D ECE M B ER 20 1 5 VO L . 4 0, N O. 6 47

1975–2015

HISTORY
;login: The UNIX Newsletter

Two other announcements were made at the Phototypesetting
session.

Larry Smith, Texas Student Publications
Larry announced that the University of Texas at Austin Stu-
dent Publications are running two PHOTON typesetters under
UNIX.

* * * * *

Gerry Barksdale, Naval Postgraduate School
Gerry announced the availability of fonts which can be printed
on a VERSATEK printer.

* * * * *

During a break in the Phototypesetting session, two awards were
presented. The first was presented by Greg Chesson to Steve
Holmgren for his work in organizing and chairing the confer-
ence. Steve was pleased to receive a stuffed pheasant for his
mantlepiece. The second award was presented by Ken Thomp-
son to Dennis Mumaugh of the Department of Defense for having
the largest collection of UNIX users software in existence.

Anyone wishing to purchase an angry-looking rubber chicken
should get in touch with Dennis.

* * * * *

Users Group Business
Mel Ferentz, City University of New York
Mel announced that the UNIX Users Group will be incorporat-
ing as a nonprofit educational organization in order to obtain
such benefits as favorable postage rates on its mailings. He also
announced that the software distribution center will be mov-
ing from Chicago Circle to New York where the availability of
greater machine resources will make it possible to speed the
delivery of new distributions. The schedule for the next Users
Group meeting was discussed; it will be published in the NEWS-
LETTER when fixed.

* * * * *

http://www.usenix.org

48  D ECE M B ER 20 1 5 VO L . 4 0, N O. 6 www.usenix.org

COLUMNS
Python 3.5 was released to the world on September 13, 2015. Included

in this release was a substantial upgrade to asynchronous I/O support
in the asyncio module, including brand new syntax in the Python

language itself [1]. In this article, we dive into modern asyncio and take it
for a test drive on code involving low-level socket programming, high-level
sockets, HTTP clients, and HTTP servers. Prepare yourself for the unex-
pected—this is not the Python you know. Just to be clear, you’ll need Python
3.5 or newer to try the examples.

But First, Some Beckett
To be honest, I’ve never considered myself to be much of a theater nut. In fact, my wife often
teases me about how easily I fall asleep at shows. However, much to her chagrin, I find myself
to be a huge fan of Samuel Beckett plays. For reasons that will become clear shortly, the title
of this article is a reference to Beckett’s most famous work, “Waiting for Godot,” a play in
which nothing actually seems to happen! I like such plays—they’re easier to follow.

Beckett plays are not your ordinary kind of theatrical affair. For example, a few years back, I
found myself riveted during a production of Krapp’s Last Tape, a play where not a single word
is spoken for the first 25 minutes. Instead the main character slowly paces around stage
eating a banana—deep in thought. What is this? What is going on here? Or as a more extreme
example, there is Beckett’s Play—a production in which three motionless heads, situated
atop funeral urns, talk frenetically amongst themselves at such a rapid pace, you can’t make
any sense of what is actually happening or what it is about. The play suddenly ends, the stage
lights go out, and you’re left wondering, “WHAT was THAT?” No, wait, the lights come back
on and they simply repeat the whole play word-for-word start-to-finish again. What? As I
said, Beckett plays defy convention.

This brings me to the topic of this article—asynchronous I/O and Python’s new asyncio
module. Like a Beckett play, asyncio defies normal Python conventions. At times, I don’t
know what exactly I’m looking at, and I’m not even sure if I like it. However, it’s never boring.
If anything, understanding asyncio will push your Python knowledge to the very edge of
what’s possible. First added in Python 3.4, asyncio’s goal was to reboot Python’s support for
asynchronous I/O and to take advantage of programming techniques involving advanced
use of generator functions. However, in Python 3.5, it has taken flight with new language
syntax and constructs. To the uninitiated, the code looks foreign and crazy. Is this even
Python? What is this? What is going on?! As a whole, the Python community tends toward
the conservative (just consider the number of people still using Python 2). Yet Python 3.5
might represent the most radical departure from the ordinary that I can recall in my nearly
20 years of Python coding. Yes, it’s that different.

Although asyncio has been brewing in Python for a few years, I’ve never really quite figured
out how to tackle it as a topic. Should I dive into its history and talk about the internals that
make it work? Or should I just throw people into the deep end of the pool and see what hap-
pens? This article takes the latter approach. Assuming you have never done any prior async

David Beazley is an open
source developer and author of
the Python Essential Reference
(4th Edition, Addison-Wesley,
2009). He is also known as the

creator of Swig (http://www.swig.org) and
Python Lex-Yacc (http://www.dabeaz.com
/ply.html). Beazley is based in Chicago, where
he also teaches a variety of Python courses.
dave@dabeaz.com

Awaiting for Godot
D A V I D B E A Z L E Y

http://www.swig.org
http://www.dabeaz.com/ply.html
http://www.dabeaz.com/ply.html
mailto:dave@dabeaz.com
http://www.usenix.org

www.usenix.org D ECE M B ER 20 1 5 VO L . 4 0, N O. 6 49

COLUMNS
Awaiting for Godot

programming in Python and know nothing about past efforts,
what does it look like in Python 3.5? This is what we’re going to
find out. Part of the exercise is to see if using asyncio can be as
easy and useful as more traditional parts of Python.

Some Background
Before beginning, it’s useful to know why you might consider
asynchronous I/O. In many modern network applications, it is
common to have to a huge number of connected clients. These
clients typically don’t involve tons of high-bandwidth I/O—it’s
just that there are a lot of them (imagine a single server pro-
cess with 10,000–20,000 open clients). Classic techniques for
managing concurrency such as threads and processes have
known limitations working with such a large number of cli-
ents. Asynchronous I/O takes a different approach. Typically, a
single process runs an event-loop that polls for activity on all of
the clients and handles it in some way, such as triggering event
callback functions. However, callbacks have their own problem—
leading to what’s commonly referred to as a kind of “callback
hell” of spaghetti code.

The asyncio module takes a different approach involving corou-
tines. Coroutines look a lot like normal synchronous code but
are driven by an event loop under the covers. This tends to lead
to code that is much easier to write and reason about. However,
coroutines are not the same as ordinary functions or procedures.
Thus, Python’s asyncio module has a rather different flavor than
the rest of the standard library.

To explore asyncio, we will look at four common problems
involving network programming: programming directly with
sockets, creating high-level socket servers, interacting with
HTTP services, and creating a simple HTTP server. You’ll prob-
ably want to hang on for the ride. Let’s begin.

Low-Level Socket Programming
One of my first uses of Python involved writing simple network
services directly using sockets [2]. Having previously written
such code in C, it was an enlightening experience to see how easy
it was in Python. For example, here is a simple multithreaded
echo-server:

A simple echo server using sockets and threads

from socket import *

from threading import Thread

def echo_server(address):

 sock = socket(AF_INET, SOCK_STREAM)

 sock.setsockopt(SOL_SOCKET, SO_REUSEADDR, 1)

 sock.bind(address)

 sock.listen(5)

 while True:

 client, addr = sock.accept()

 print(‘Connection from:’, addr)

 Thread(target=echo_client, args=(client,),

 daemon=True).start()

def echo_client(client):

 while True:

 data = client.recv(1000)

 if not data:

 break

 client.sendall(data)

 print(‘Connection closed’)

 client.close()

if __name__ == ‘__main__’:

 echo_server((‘’, 25000))

It’s simple, yet perhaps a bit dicey with the potential for unlim-
ited thread creation as the number of clients increases.

As a first test of asyncio, let’s see if we can write the same code
without much fuss. Here is a direct translation of the code to an
asynchronous version:

A simple server using asyncio and sockets

from socket import *

import asyncio

async def echo_server(loop, address):

 sock = socket(AF_INET, SOCK_STREAM)

 sock.setsockopt(SOL_SOCKET, SO_REUSEADDR, 1)

 sock.bind(address)

 sock.listen(5)

 sock.setblocking(False) # Critical

 while True:

 client, addr = await loop.sock_accept(sock)

 print(‘Connection from:’, addr)

 task = loop.create_task(echo_client(loop, client))

async def echo_client(loop, client):

 while True:

 data = await loop.sock_recv(client, 1000)

 if not data:

 break

 await loop.sock_sendall(client, data)

 print(‘Connection closed’)

 client.close()

if __name__ == ‘__main__’:

 loop = asyncio.get_event_loop()

 loop.run_until_complete(echo_server(loop, (‘’, 25000)))

http://www.usenix.org

50  D ECE M B ER 20 1 5 VO L . 4 0, N O. 6 www.usenix.org

COLUMNS
Awaiting for Godot

At first glance, this code will shatter your mind. async def and
await? What is this business? It’s new Python syntax related to
asynchronous programming. The async def statement declares
a function as a coroutine that must be managed by an event loop.
The await statement is used to execute a coroutine and return its
result. The two statements are meant to work together.

As noted, the execution of the code requires the use of an under-
lying event loop. The asyncio.get_event_loop() and loop.

run_until_complete() calls at the end of the program show how
you obtain a reference to the loop and initiate execution of the
program.

Other operations in the code have changed into methods involv-
ing the event loop. For example, the loop.sock_recv(), loop.

sock_accept(), and loop.sock_sendall() carry out the standard
socket operations. The loop.create_task() method launches a
new task much like the creation of a thread.

If you run the code, you’ll find that it works just as it did before.
Concurrent connections also work fine even though no threads
or subprocesses are involved. Great!

High-Level Sockets
For most, directly programming with sockets is not the most
ideal way to write network applications. Python has long
provided a higher-level interface in the socketserver module
(named SocketServer in legacy Python) [3]. Here is another
implementation of an echo server using the streams interface of
socketserver:

Echo server using socketserver

from socketserver import (

 StreamRequestHandler,

 ThreadingTCPServer

)

class EchoHandler(StreamRequestHandler):

 def handle(self):

 print(‘Connection from:’, self.client_address)

 for line in self.rfile:

 self.wfile.write(line)

 print(‘Connection closed’)

if __name__ == ‘__main__’:

 serv = ThreadingTCPServer((‘’, 25000), EchoHandler)

 serv.serve_forever()

In this code, the EchoHandler class has rfile and wfile attri-
butes, which operate like files for reading and writing network
data. A simple for-loop can be used to read line-by-line as shown.
This loop will terminate when the connection is closed.

As a second test of asyncio, can we write a similar high-level
program? Here is the answer:

Echo server using asyncio and streams

import asyncio

async def handle_echo(reader, writer):

 print(‘Connection from:’, writer.get_extra_info(‘peername’))

 async for line in reader:

 writer.write(line)

 await writer.drain()

 print(‘Connection closed’)

 writer.close()

if __name__ == ‘__main__’:

 loop = asyncio.get_event_loop()

 coro = asyncio.start_server(handle_echo, ‘’, 25000, loop=loop)

 server = loop.run_until_complete(coro)

 loop.run_forever()

Although the code is packaged in a slightly different way (no
need for a class definition), it is comparably short and similar in
logic. You’ll find that it handles concurrent client connections
even though no threads are being used.

Again, async def is being used to declare the handler as corou-
tine. The await writer.drain() statement waits for the written
data to be successfully sent. A new mystery arises in the async

for statement. What in the world is that? In short, it’s a for-loop
whose iteration requires coordination with the event loop (e.g.,
the event loop has to suspend the code and resume it when data
actually arrives). If you don’t use async for, the code would
change slightly to the following:

async def handle_echo(reader, writer):

 print(‘Connection from:’, writer.get_extra_info(‘peername’))

 while True:

 line = await reader.readline()

 if not line:

 break

 writer.write(line)

 await writer.drain()

 print(‘Connection closed’)

 writer.close()

That’s not nearly as elegant. Besides, dropping some Python code
with an async for loop in it on your coworkers will be a good
thing for them. Do it.

http://www.usenix.org

www.usenix.org D ECE M B ER 20 1 5 VO L . 4 0, N O. 6 51

COLUMNS
Awaiting for Godot

Making HTTP Requests
One of my favorite libraries for interacting with the Web is the
requests library [4]. Using it is easy:

>>> import requests

>>> r = requests.get(‘http://www.python.org’)

>>> print(r.text)

... see returned result ...

It’s almost too easy. Of course, a really good request needs some
threads. And threads need semaphores. And why not a queue for
good measure? Behold:

get.py

#

Fetch data from a collection of URLs using requests and threads

import requests

from queue import Queue

from threading import Thread, Semaphore

max_active = Semaphore(4)

def url_worker(url, result_queue):

 with max_active:

 r = requests.get(url)

 result_queue.put((url, r.status_code, r.text))

def get_urls(urls):

 result_queue = Queue()

 # Launch workers

 workers = []

 for url in urls:

 worker = Thread(target=url_worker, args=(url,

 result_queue))

 worker.start()

 workers.append(worker)

 # Wait from the workers to finish and collect results

 results = { }

 for worker in workers:

 worker.join()

 url, status, text = result_queue.get()

 results[url] = (status, text)

 return results

if __name__ == ‘__main__’:

 urls = [

 ‘https://docs.python.org/3/library/asyncio.html’,

 ‘https://docs.python.org/3/library/select.html’,

 ‘https://docs.python.org/3/library/threading.html’,

 ‘https://docs.python.org/3/library/selectors.html’,

 ‘https://docs.python.org/3/library/queue.html’,

 ‘https://docs.python.org/3/library/socket.html’,

 ‘https://docs.python.org/3/library/socketserver.html’,

]

 result = get_urls(urls)

In this program, the get_urls() function takes a list of URLs
and spawns a collection of worker threads to fetch data concur-
rently. The workers are throttled using a semaphore. Results are
returned via a queue. The final result is a dict mapping URLs to
a status code and text from the response. It’s a program that only
a parent process could love. Take that async!

A similar program can be written for asyncio using the third-
party aiohttp library [5]. Using that, here’s an async version:

aget.py

#

Fetch data from a collection of URLs using

aiohttp and asyncio

import aiohttp

import asyncio

max_active = asyncio.Semaphore(4)

async def url_worker(url, result_queue):

 async with max_active:

 r = await aiohttp.get(url)

 await result_queue.put((url, r.status,

 await r.text()))

async def _get_urls_task(urls, loop):

 result_queue = asyncio.Queue()

 # Launch workers

 workers = []

 for url in urls:

 worker = loop.create_task(url_worker(url,

 result_queue))

 workers.append(worker)

 # Wait for the workers to finish

 results = { }

 for worker in workers:

 await asyncio.wait_for(worker, timeout=None)

 url, status, text = await result_queue.get()

 results[url] = (status, text)

 return results

def get_urls(urls):

 loop = asyncio.get_event_loop()

 result = loop.run_until_complete(_get_urls_task(urls, loop))

 return result

http://www.usenix.org

52  D ECE M B ER 20 1 5 VO L . 4 0, N O. 6 www.usenix.org

COLUMNS
Awaiting for Godot

if __name__ == ‘__main__’:

 urls = [

 ‘https://docs.python.org/3/library/asyncio.html’,

 ‘https://docs.python.org/3/library/select.html’,

 ‘https://docs.python.org/3/library/threading.html’,

 ‘https://docs.python.org/3/library/selectors.html’,

 ‘https://docs.python.org/3/library/queue.html’,

 ‘https://docs.python.org/3/library/socket.html’,

 ‘https://docs.python.org/3/library/socketserver.html’,

]

 result = get_urls(urls)

Does it work? You bet, but there are a variety of details. First,
the aiohttp module provides its own get() method for making
an HTTP request. It’s similar to the requests library except
that you need to use r = await aiohttp.get() when making the
request and await r.text() to obtain the downloaded data.

Next, the asyncio module provides its own version of syn-
chronization primitives and queues. So the code uses asyncio.

Semaphore and asyncio.Queue. The async with max_active
statement in url_worker performs an asynchronous acquisi-
tion of the associated semaphore. All queueing operations are
prefaced by the await keyword to indicate their asynchronous
nature. The asyncio.wait_for() call waits for a task to finish.
In many ways, it’s not too dissimilar from threads. One subtle
aspect concerns the separate _get_urls_task() and get_urls()
functions. With asyncio nothing happens unless someone drives
the underlying event loop. Thus, the get_urls() function works
by setting up the calculation and driving the loop until the result
comes back.

Stepping back for a moment, the only purpose of the queue in the
threading example is to deal with the fact that there is no clean
way to communicate results back from worker threads. It turns
out you can eliminate it from the asynchronous code entirely.
Here’s a slightly modified version that is a bit cleaner:

import aiohttp

import asyncio

max_active = asyncio.Semaphore(4)

async def url_worker(url):

 async with max_active:

 r = await aiohttp.get(url)

 return url, r.status, await r.text()

async def _get_urls_task(urls, loop):

 # Launch workers

 workers = []

 for url in urls:

 worker = loop.create_task(url_worker(url))

 workers.append(worker)

 # Wait for the workers to finish

 results = { }

 for worker in workers:

 url, status, text = await asyncio.wait_for(worker,

 timeout=None)

 results[url] = (status, text)

 print(url, status)

 return results

asyncio provides a fairly complete set of primitives normally
associated with thread programming. These include locks,
semaphores, events, queues, and more. Although these objects
do not provide 100% compatibility with their threading coun-
terparts, it seems that many programs written for threads could
probably be adapted to asyncio in a straightforward way.

Writing a Web Service
As a final test, let’s write a simple Web service. In this example, the
third-party bottle library is used to implement an endpoint that
computes Fibonacci numbers, returning the result as JSON [6]:

Simple web service using bottle

import bottle

def fib(n):

 if n <= 2:

 return 1

 else:

 return fib(n-1) + fib(n-2)

@bottle.route(‘/fib/<n>;’)

def serv_fib(n):

 result = fib(int(n))

 return { ‘result’: result }

if __name__ == ‘__main__’:

 bottle.run(host=’’, port=25000, debug=True)

Connect to the service using a URL such as http://localhost:

25000/fib/6 on your machine. Replace n by an integer number
such as 6. You should get a response such as this:

{“result”: 8}

Can this code be replaced by an asynchronous version? aiohttp
to the rescue!

Simple web service using aiohttp

from aiohttp import web

import asyncio

import json

http://www.usenix.org

www.usenix.org D ECE M B ER 20 1 5 VO L . 4 0, N O. 6 53

COLUMNS
Awaiting for Godot

def fib(n):

 if n <= 2:

 return 1

 else:

 return fib(n-1) + fib(n-2)

async def fib_handler(request):

 n = int(request.match_info[‘n’])

 result = fib(n)

 resp = { ‘result’: result }

 return web.Response(text=json.dumps(resp),

 content_type=’application/json’)

def run(address):

 loop = asyncio.get_event_loop()

 app = web.Application(loop=loop)

 app.router.add_route(‘GET’, ‘/fib/{n}’, fib_handler)

 srv = loop.create_server(app.make_handler(), *address)

 loop.run_until_complete(srv)

 loop.run_forever()

if __name__ == ‘__main__’:

 run((‘’, 25000))

Alas, it’s not quite as compact as the bottle version, but it per-
forms the same function.

One downside of this implementation is that the implementation
of fib() is especially bad for large integers. Try giving a number
such as 45 as input and watch how the whole server locks up
(you can’t make requests from other clients). This is the nature
of async—long-running calculations will block the entire event
loop. However, you can move the work out to a thread pool by
using the loop.run_in_executor() function as follows:

from concurrent.futures import ThreadPoolExecutor

_pool = ThreadPoolExecutor()

async def fib_handler(request):

 n = int(request.match_info[‘n’])

 if n < 15:

 result = fib(n)

 else:

 loop = asyncio.get_event_loop()

 result = await loop.run_in_executor(_pool, fib, n)

 resp = { ‘result’: result }

 return web.Response(text=json.dumps(resp),

 content_type=’application/json’)

If you try this modified version with a large integer, you’ll find
that the computation no longer blocks everything—you’ll be able
to make other requests while the calculation is churning away.
Excellent. A similar technique would need to be used for any
code that might potentially block the event loop.

Thoughts
In this article, I’ve presented a few examples of using asyncio
with variations of the modern async syntax. At first glance, the
code is probably a bit jarring—it looks unlike any Python code
you might have written before. Yet, at the same time, the code
retains the clarity of synchronous code written to use threads or
processes. That is certainly a big plus.

A major concern with asyncio is that it tends to be an “all in”
prospect for software development. If you’re going to use it, you
need to make sure that all of your libraries and code support it.
Particular attention needs to be given to blocking operations
involving files, network connections, subprocesses, and other
I/O related tasks. A big part of the new “async” and “await”
syntax is making the distinction between synchronous and
asynchronous code absolutely clear. As a general rule, any exist-
ing Python code will probably run in an asynchronous environ-
ment, but unless “await” is being used, there’s no guarantee that
it won’t block the event loop by accident. Whenever possible,
you’ll want to use libraries that have been written with asyncio
in mind.

On that subject, just what libraries are available? At this time,
there seems to be a growing set of modules for interacting with
a variety of network services. As noted, aiohttp provides async
support for HTTP, both as a client and a server. The library
provides additional support for WebSockets and other modern
HTTP features. A search for “asyncio” on the Python Package
Index reveals a wide variety of libraries for interacting with
services such as Redis, ZeroMQ, MondoDB, XML-RPC, IRC,
Postgres, and others. Naturally, many of these are new and
experimental. However, it seems that Python’s asynchronous
future is poised to be rather interesting.

Finally, a few words of caution. In writing this article, I debated
how much information to provide on how asyncio actually works
under the covers. If anything, you really don’t want to know how
it works—if you go wandering into the source code, your mind
will completely shatter into a million pieces. Let’s just say that
it involves a lot of very clever programming with generators. I
wrote about some of the general concepts in a previous ;login:
article although asyncio takes it to a whole new level of com-
plexity [7]. Also, if you’re going to use asyncio you must heed
every word of advice you can find in the documentation. If you
decide to play it fast and loose, you’re likely going to spend hours
debugging and cursing. For example, I wasted the better part of a
half-day trying to figure out why I couldn’t get my simple socket
example to work. As it turns out I forgot to put the socket in non-
blocking mode—a detail found in the documentation, but which
I overlooked at the time. The bottom line: you need to read the
documentation carefully.

54  D ECE M B ER 20 1 5 VO L . 4 0, N O. 6 www.usenix.org

COLUMNS
Awaiting for Godot

More Information
The documentation for asyncio should be your first starting
point. PEP 3156 is a must read for background information and
rationale for asyncio [8]. PEP 492 contains information on the
new async and await syntax [9]. There have been numerous talks
given about asyncio over the last year. There are too many to list
individually, but a search of pyvideo will not disappoint [10].

References
[1] asyncio module: https://docs.python.org/3/library/asyncio
.html.

[2] socket module: https://docs.python.org/3/library/socket
.html.

[3] socketserver module: https://docs.python.org/3/library
/socketserver.html.

[4] requests module: http://www.python-requests.org/en
/latest/.

[5] aiohttp module: http://aiohttp.readthedocs.org.

[6] bottle module: http://bottlepy.org.

[7] David Beazley, “A Tale of Two Concurrencies (Part 2),”
;login:, vol. 40, no. 4, August 2015: https://www.usenix.org
/publications/login/aug15/beazley.

[8] PEP 3156: https://www.python.org/dev/peps/pep-3156/.

[9] PEP 492: https://www.python.org/dev/peps/pep-0492/.

[10] pyvideo: http://pyvideo.org.

NSDI focuses on the design principles, implementation, and practical evaluation of networked and distrib-

uted systems. The symposium provides a high quality, single-track forum for presenting results and discuss-

ing ideas that further the knowledge and understanding of the networked systems community as a whole,

continue a significant research dialog, or push the architectural boundaries of network services.

NSDI ’16 will be co-located with the 2016 Open Networking Summit.

www.usenix.org/nsdi16

SAVE THE DATE!

March 16–18, 2016 • Santa Clara, CA

13th USENIX Symposium on Networked Systems
Design and Implementation

https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/socket.html
https://docs.python.org/3/library/socketserver.html
http://www.python-requests.org/en/latest/
http://aiohttp.readthedocs.org
http://bottlepy.org
https://www.usenix.org/publications/login/aug15/beazley
https://www.python.org/dev/peps/pep-3156/
https://www.python.org/dev/peps/pep-0492/
http://pyvideo.org
http://www.usenix.org/nsdi16
http://www.usenix.org

www.usenix.org D ECE M B ER 20 1 5 VO L . 4 0, N O. 6 55

COLUMNS

Practical Perl Tools
OAuth2 in Situ

D A V I D N . B L A N K - E D E L M A N

In the last column I threw a little hissy fit around the authentication
options for working with the WordPress REST API. In it, I made noises
about the adoption of OAuth 2.0 over version 1.0a and further grumbled

about the backwards incompatibility (not to mention some of the politics
around the changes) between the two versions. All of this piqued the inter-
est of my editor who asked me to write some more on the topic. I’m still not
thrilled about the OAuth situation, but I thought I would try to redeem myself
by providing a column around the subject based on an actual piece of code
that had to authenticate using OAuth2. This still won’t address the OAuth
1.0a questions, but perhaps future columns will drag me kicking and scream-
ing in that direction as well. One brief aside about version 1.0a because I need
to make a slight correction: in the previous column I had suggested that 2.0
had all but supplanted 1.0a in the world. I’ve recently been discovering a few
pockets of 1.0a (for example, Twitter’s API, probably for historical reasons,
seems to consist of this strange mishmash of the two), so I don’t think 1.0a
can be considered dead quite yet. Maybe we’ll make with the Twitter in a
future column.

Background
For those of you who haven’t had the pleasure of diving into either of the OAuth versions, let’s
take a quick moment to describe the beast and what purpose it serves. In many of the cases
where you will initially encounter it, it will be used as an authentication protocol (albeit one
that appears to be more complex than it needs to be). But OAuth was designed to be much
more than that. Here’s the very best description [1] of the intent I have ever seen, from a blog
post by Eran Hammer, one of the former lead authors of the spec, which is also quoted on
oauth.net, the canonical home for OAuth material:

Many luxury cars today come with a valet key. It is a special key you give the
parking attendant and unlike your regular key, will not allow the car to drive more
than a mile or two. Some valet keys will not open the trunk, while others will block
access to your onboard cell phone address book. Regardless of what restrictions the
valet key imposes, the idea is very clever. You give someone limited access to your
car with a special key, while using your regular key to unlock everything.

Every day new websites launch offering services which tie together functionality
from other sites. A photo lab printing your online photos, a social network
using your address book to look for friends, and APIs to build your own desktop
application version of a popular site. These are all great services—what is not so
great about some of the implementations is their request for your username and
password to the other site. When you agree to share your secret credentials, not
only do you expose your password to someone else (yes, that same password you

David Blank-Edelman is
the Technical Evangelist at
Apcera (the comments/
views here are David’s alone
and do not represent Apcera/

Ericsson). He has spent close to 30 years
in the system administration/DevOps/SRE
field in large multiplatform environments,
including Brandeis University, Cambridge
Technology Group, MIT Media Laboratory,
and Northeastern University. He is the author
of the O’Reilly Otter book Automating System
Administration with Perl and is a frequent invited
speaker/organizer for conferences in the field.
David is honored to serve on the USENIX
Board of Directors. He prefers to pronounce
Evangelist with a hard “g.”
dnblankedelman@gmail.com

mailto:dnblankedelman@gmail.com
http://www.usenix.org

56  D ECE M B ER 20 1 5 VO L . 4 0, N O. 6 www.usenix.org

COLUMNS
Practical Perl Tools: OAuth2 in Situ

also use for online banking), you also give them full
access to do as they wish. They can do anything they
wanted—even change your password and lock you out.

This is the problem OAuth solves. It allows you, the
User, to grant access to your private resources on one
site (which is called the Service Provider), to another
site (called Consumer, not to be confused with you, the
User). While OpenID is all about using a single identity
to sign into many sites, OAuth is about giving access
to your stuff without sharing your identity at all (or its
secret parts).

As an aside, in the process that led to 2.0, Hammer subsequently
left the OAuth working group and withdrew his name from the
specification because he thought 2.0 was deeply flawed. See his
subsequent post, “OAuth 2.0 and the Road to Hell,” [2] for more
details. He’s also got an entertaining, albeit NSFW, talk on the
flaws of OAuth and the OAuth spec process [3]. I told you that
OAuth was politically messy…

So a key thing to note about the OAuth intention statement above
(that is brought out nicely in the first chapter of the upcoming
book OAuth2 in Action by Justin Richer and Antonio Sanso)
is that OAuth is less of an authentication protocol and more of
a delegation protocol. The idea is that it can provide you a way
to say, “Let this program/service/etc. have the access to do the
following things on my behalf.” If you’ve ever signed into a new
mail or Twitter client and found yourself logging first into Gmail
or Twitter to be faced with a screen of permissions to grant, you’ve
likely been part of an OAuth transaction (of some version or other).

The Goal
Now that you know what sort of protocol we are dealing with,
let’s look at the actual goal of the script we’re going to write
together. Let’s just say, hypothetically, that you work with an
organization that uses Google Calendar to maintain its “in-out”
listing (i.e., who is going to be out of the office, who is working
from home, who is on vacation, etc.). Each person who is not
going to be in the office marks this by making an event in this
shared calendar. It can be a bit cluttered, but on the whole it
works fine. There’s just one niggling problem: sometimes people
add calendar entries for their absences but forget to turn off noti-
fications for those entries. This means that every day, everyone
in the organization who subscribes to this calendar receives
notifications (whether they like it or not) for those entries. We’re
going to write some code that connects to the Google calendar
service, reads that calendar, and displays the events which have
notifications still set. Then presumably we can go visit either the
entries or the individuals in question and take corrective action.

Where does OAuth2 come in? Google forces you to use/interact
with their (respected, even by Hammer) OAuth2.0 implementa-
tion to gain access to private calendars. Let’s dive in.

How Does It Work?
Before we get into looking at actual code, we probably should
take at least a few steps up the OAuth2 learning curve (a fairly
steep slope, I might add). Even if some magic Perl module will
take care of all of the details behind the scenes, it is really
important to get at least a general sense of what is going on. To do
that, I’m going to elide a whole bunch o’ details because OAuth2
has a number of different “flows” whereby different steps get
taken depending on just what context it is being used in (e.g., a
Web application, some application running on your computer,
an application running in the browser, etc.) and just what kind
of access the person interacting with the system has to a real
Web browser for one of the steps (e.g., is it being used from a
machine with a browser? in some device with no keyboard? etc.).
In this column, we’re only going to show one flow/scenario that
works for the task at hand. If you plan to get deeper into this
stuff, I highly recommend you read and reread and reread the
documentation of the vendor that you will be talking OAuth2 to/
with. Some (e.g., Google [4]) have quite decent documentation, so
perhaps you will get lucky.

Okay, let’s toss a stone and skim the surface. The basic OAuth2
protocol flow looks like the diagram from RFC6749 in Figure 1.

The dance goes roughly like this: you (the client) send an “I’d
like my app to have the following access for this service” request
to the resource holder of your choice (Google, in our case). That
resource holder does something to verify you and to obtain your
consent to delegate this access to your app. It hands back an
authorization token that says, “Yes, I’ve confirmed that this per-
son is fine and allowed to access X.” Your app can then send this
token to an authorization server, which hands you back another
token (an access token) that will act as a key to unlock access to
the protected resource in question when presented at the same
time as a request for that resource.

In the case of the code we are going to write, the script will send
a request to Google’s auth service requesting read-only access
to an account’s private calendars. Google will reply with a URL,

Figure 1: OAuth2 protocol flow, from https://tools.ietf.org/html/rfc6749

https://tools.ietf.org/html/rfc6749
http://www.usenix.org

www.usenix.org D ECE M B ER 20 1 5 VO L . 4 0, N O. 6 57

COLUMNS
Practical Perl Tools: OAuth2 in Situ

which we’ll go to “by hand.” That URL will take us through the
standard Google login procedure (if not logged in) and then pop
up a screen that will say, “{App Name} would like to view your
calendars [Deny] [Allow].” If you click the Allow button, a subse-
quent screen will be presented that says, “Please copy this code,
switch to your application and paste it there: {longish_string
_of_random_characters}.” That string is the authorization token.
We’ll type it into a prompt presented by the script, the script will
exchange it for an access token (which it will hold on to for us),
and finally it will begin to send requests to the Google Calendar
API with that token added to the headers of all of the requests.
We’ll then parse the returned data looking for specific calendar
entries.

That’s how we’re going to dance. But I would be a little remiss
if I didn’t mention one complication that we won’t touch out of
either brevity or laziness (you decide). To improve the security
of the situation, access tokens all have relatively short expira-
tion times after which they can no longer be used. The authori-
zation token we originally received is only good for one access
token exchange, so what do we do after the access token expires?
OAuth2 brings yet another token into the picture (yes, that’s
three so far, but who’s counting?) called a refresh token. Figure 2
depicts the dance taken to refresh a token.

This crazy little ASCII diagram shows that we can also request
a refresh token as part of the dance. The refresh token is sup-
posed to be squirreled away someplace safe, only be brought out
and sent over the wire when it is time to get a new access token
issued as expiration approaches/arrives. Our script isn’t going to
run long enough to hit expiration timeouts, so we’re not going to
bother with this token, nor are we going to pay attention to stor-
ing tokens, something you would do for more complex/longer-
lived applications.

Code Time
With that background in mind, let’s look at two code samples.
To get warmed up, let’s look at how you would get a list of the
calendars I have configured in Google calendar (the list of calen-
dars I own and have subscribed to on the left side of the Google
Calendar Web app).

Now, it would be entirely possible to write all of the OAuth2
code using bare-bones Perl modules used for making HTTP/S
requests like LWP::UserAgent or HTTP::Tiny. We’ve seen a
number of these in the past. But in this case, I’m perfectly happy
to let someone else work out some of the fiddly bits because we
are bound to hit plenty of fiddly when we actually get to use the
Calendar API.

To make my life a bit easier, I am using LWP::Authen::OAuth2.
Think of it as LWP::UserAgent with some magic OAuth2 pixie
dust mixed in (plus it has some Google-centric code baked in). At
the very least, I’d encourage you to look at its Overview doc, which
does a good job of writing up some of the background/issues you
are sure to want to know about before diving into this stuff.

So we start like this:

use LWP::Authen::OAuth2;

use Browser::Open qw(open_browser);

use IO::Prompt::Tiny qw/prompt/;

use JSON;

my $cal_uri = ‘https://www.googleapis.com/calendar/v3’;

my $oauth2 = LWP::Authen::OAuth2->new(

 client_id =>

‘getyourowncode.apps.googleusercontent.com’,

 client_secret => ‘need your own secret’,

 service_provider => “Google”,

 scope => ‘https://www.googleapis.com/auth/

 calendar.readonly’,

 redirect_uri => “urn:ietf:wg:oauth:2.0:oob”,

 # Optional hook, but recommended.

 #save_tokens => \&save_tokens,

 #save_tokens_args => [$dbh],

 # This is for when you have tokens from last time.

 #token_string => $token_string.

);

After setting a variable for later use that shows the base URL for
the Google Calendar API, we create a new oauth2 object. It
requires a client_id and client_secret from Google. To get one of
these, you will want to go to https://console.developers.google.com,
create a new project, enable just the Google Calendar API for it,
then under “Credentials” request a new OAuth2 client_id. When

Figure 2: Refreshing an expired access token, from https://tools.ietf.org
/html/rfc6749

https://tools.ietf.org
https://console.developers.google.com
http://www.usenix.org

58  D ECE M B ER 20 1 5 VO L . 4 0, N O. 6 www.usenix.org

COLUMNS
Practical Perl Tools: OAuth2 in Situ

it asked for an application type, I selected “Other,” and that’s
worked swimmingly for me for this script.

There are two other key parameters here. The first is “scope,”
which is the level of access we are requesting to the resource.
With Google Calendar, the choices are few (read-only or read-
write access). The other parameter is the redirect_uri. This is
the URI that will be handling the authorization token once it
is issued. That little weird-looking line just says, “Display the
token in the browser and ask the user to do something with it”
(vs. going to a real URI). I left the token-related parameters from
the documentation commented out just as a reminder that better
token handling would normally be inserted at this point.

oauth2 object in hand, we then do this:

my $url = $oauth2->authorization_url();

open_browser($url);

my $auth_code = prompt(“Please enter auth code

 provided by Google:”);

$oauth2->request_tokens(code => $auth_code);

The module figures out the right magic URL necessary for
giving consent and obtaining the authorization token for us.
Because I’m lazy, I pulled in a module that attempts to open a
browser for you (works great on OS X, but your mileage may
vary) with that URL. As I mentioned before, the end result is we
are sitting at a Web page that says, “Please copy this code, switch
to your application and paste it there: …”. The next lines have our
script prompting for that code and exchanging it for an access
token.

Now let’s do the actual work with the Google Calendar API. The
documentation at [5] is decent, but Google provides something
even better, an awesome Web-based API explorer that shows all
of the possible required and optional parameters and helps you
try out various combinations before you actually code. This API
explorer is linked off their Get Started page [6].

To actually get a list of calendars, we would do something like
this:

my $response =

$oauth2->get(“$cal_uri/users/me/calendarList”);

die ‘Could not retrieve cal list’ unless

 $response->is_success;

my $callist = decode_json $response->decoded_content;

foreach $cal (@{ $callist->{items} }) {

 print $cal->{summary} . “:\n” . $cal->{id} . “\n”;

}

We make the proper GET request, and if it succeeds, we are
handed back some JSON. We parse that JSON into Perl data
structures and print a selected set of fields back from that info.

If that all makes sense, let’s take a look at the code for perform-
ing our real task. Our goal is to find all of the events that have
some sort of notification set on them. Google’s calendar lets you
set a default for the entire calendar for notifications; let’s make
the assumption that the default for the calendar is sane (other-
wise, we’d get alerted for a very large quantity of events because
people don’t often change the default when they create an event).
So now we have to locate the individual events that have a non-
default notification set for them.

First, we’ll need to make sure we are looking at the right cal-
endar. To read the events from a calendar, you have to request
them from the calendar by referencing that calendar’s unique ID.
That’s the reason why the previous sample prints out both a cal-
endar’s summary (i.e., name) and its ID. The ID gets passed along
in the request URL (along with some other parameters, more on
that in a moment), so we’ll need to make sure it is URL-safe.

Here’s what it looks like to set an ID and make the original
request for data (note, all of the OAuth2-related code is exactly
the same as in the previous sample, so I’m only going to show the
Calendar API-related code here):

my $calid = uri_escape ‘somecalendarid@gmail.com’;

$response =

$oauth2->get(“$cal_uri/calendars/$calid/events?

 maxResults=100”);

die ‘Could not retrieve list of entries’

 unless $response->is_success;

You can see that the URL has changed and that we’ve added on a
parameter to the URL itself. If you find you are using a number
of parameters in the query, I recommend constructing the URL
using the query_form() function from the URI module instead of
doing it by hand as above.

So now we can print the results. Here we look for a special field
in an event entry that indicates it is using a custom notifica-
tion. If that exists, we print out the name of the event plus either
the exact day and time it starts or just the day (if it is an all-day
event).

foreach my $entry (@{ $entries->{items} }) {

 print “$entry->{summary} “

 . ($entry->{start}->{dateTime} ||

 $entry->{start}->{date}) . “\n”

 if exists $entry->{reminders}->{overrides};

}

http://www.usenix.org

www.usenix.org D ECE M B ER 20 1 5 VO L . 4 0, N O. 6 59

COLUMNS
Practical Perl Tools: OAuth2 in Situ

Resources
[1] Eran Hammer explains OAuth: http://hueniverse.com
/2007/09/05/explaining-oauth/.

[2] Eran Hammer disclaiming OAuth2: http://hueniverse
.com/2012/07/26/oauth-2-0-and-the-road-to-hell/.

[3] Eran Hammer, NSFW, politics of OAuth2 process:
https://vimeo.com/52882780.

[4] Google docs on using OAuth2: https://developers.google
.com/identity/protocols/OAuth2.

[5] Google docs for using the Calendar API: https://developers
.google.com/google-apps/calendar/.

[6] Calendar API explorer: https://developers.google.com
/google-apps/calendar/get_started.

So, we’re done, right? Sorry, not so fast. If you have lots of entries
in your calendar, you will have to deal with pagination. As we
saw in the last column, the results come back N results at a
time. By default, that number is 250, although you can raise it to
2500 according to the doc. I prefer to walk through the data in
reasonable-sized pieces (100 at a time, that’s what the maxRe-
sults parameter is doing there). With each result set (except for
the last), Google hands back a nextPageToken that you can send
in a subsequent request’s pageToken parameter (note the differ-
ent name!). Here’s code that repeats the previous step for every
subsequent page of data if there is any:

while ($entries->{nextPageToken}) {

 $response =

 $oauth2->get(“$cal_uri/calendars/$calid/events?”

 . “maxResults=100&”

 . “pageToken=”

 . $entries->{nextPageToken});

 die ‘Could not retrieve addtl list of entries’

 unless $response->is_success;

 $entries = decode_json $response->decoded_content;

 foreach my $entry (@{ $entries->{items} }) {

 print “$entry->{summary} “

 . ($entry->{start}->{dateTime} ||

 $entry->{start}->{date}) . “\n”

 if exists $entry->{reminders}->{overrides};

 }

}

The key thing is that you send the exact same query again that
yielded the paged result, the only difference being the addition of
the pageToken parameter.

Now we are done. I hope this has given you a brief peek into how
OAuth2 can be used to gain access to a real-live service. Take
care, and I’ll see you next time.

http://hueniverse.com/2007/09/05/explaining-oauth/
http://hueniverse.com/2012/07/26/oauth-2-0-and-the-road-to-hell/
https://vimeo.com/52882780
https://developers.google.com/identity/protocols/OAuth2
https://developers.google.com/google-apps/calendar/
https://developers.google.com/google-apps/calendar/get_started
http://www.usenix.org

60  D ECE M B ER 20 1 5 VO L . 4 0, N O. 6 www.usenix.org

COLUMNS

iVoyeur
Tests and Metrics

D A V E J O S E P H S E N

Dave Josephsen is the
sometime book-authoring
developer evangelist at Librato.
com. His continuing mission: to
help engineers worldwide close

the feedback loop. dave-usenix@skeptech.org

I realized this morning that I haven’t been to a change management meet-
ing in years. I imagine that many people who make software for a living
haven’t been to one in a decade or more. Continuous integration (CI) and

automated testing killed change management for the modern software engi-
neering shop, but those of us who fix things were left only with configuration
management, which was not quite enough to keep us out of change meetings.

As I write this in the brief lull between AutomaCon, which finished last week, and LISA15,
which will arrive before I’m ready for it, I can’t help but muse a little bit on “infrastructure as
code” (IaC)—the somewhat ungainly offspring of configuration management and continu-
ous integration that has killed change management for me and increasing numbers of other
operations folks.

Setting aside for a moment the somewhat utopian notion of abstracting away all of our ugly
pipes and wires into software, IaC is a good thing because it gives most of IT a common inter-
face to make changes—namely, the deployment pipeline. Software engineers make changes
to files that represent applications, and commit them to Git, which calls out to a CI tool to
run some tests on it, and if they pass, a process or person deploys it to production. Now opera-
tions folks do pretty much the same thing, making changes to files that represent servers or
routers or whatever, and committing them to Git and etc.

All of this rests on the foundation of continuous deployment, and continuous deployment
rests on the foundation of tests. But testing infrastructure as code is a pretty new endeavor;
it’s just not something your typical sysadmin or operations person has much experience with.
We’re starting to see a few tools pop up, most notably Serverspec [1], but we’re still going to
need to become skilled in choosing and crafting good tests.

One thing I’ve noticed in my ongoing developer anthropology is that a lot of software engi-
neers had and continue to have the same problem with choosing monitoring metrics. It’s just
not something the typical software engineer has a lot of experience with (which is tragic, but
that’s beside the point). And from that observation follows another: it turns out that choos-
ing good tests and choosing good metrics are similar endeavors, and in this article, I’d like to
explore some of those parallels with you.

Our Deployment Pipeline
Librato is a prolific engineering shop. We range between 40 and 60 deployments per day. In
fact, as I write this, so far today we’ve deployed code 40 times—12 of which were production
changes (the others targeted for various staging environments). I can see all of these deploy-
ments in our corporate chatroom, because we use chatbots to push code into production. In
fact, most of our interaction with the services we maintain is abstracted behind chatbots in
one way or another. So when someone merges some code into a production repo, I can see it in
group-chat:

mailto:dave-usenix@skeptech.org
http://www.usenix.org

www.usenix.org D ECE M B ER 20 1 5 VO L . 4 0, N O. 6 61

COLUMNS
iVoyeur: Tests and Metrics

And not only can I see the pull request (PR), I can see whether
the proposed change passes or fails its unit tests:

And then I can watch with bated breath as the developer then
deploys the change into production.

How Often Do Good Testers Test?
I’ll pick on our alerting service because it’s written in Go and,
since it uses Go’s built-in testing framework [2], is easy for a
knuckle-dragger like myself to inspect with grep. Let’s see how
many test files there are:

find . | grep _test.go | wc -l

That returns 44 individual, test-laden files. Roughly one for
every other .go-suffixed file in this repository, each one named
for the unit it tests. Ergo, for foo.go, we find foo_test.go about
half the time. Lightly poking into the files that don’t have an
associated test file, I find mostly type definitions and other data-
structure-related code (not the sort of thing you normally test
directly).

How about actual test functions?

grep -ri ‘func Test.*(*testing.T’ . | wc -l

This yields 172 individual tests. About a 4-1 ratio of total func-
tions to test functions. So about 25% of the functions we create
are tests.

What about by sheer volume of code?

find . | grep _test.go | while read i; do egrep -v ‘({|})’ ${i} |

grep ‘[a-z][A-Z]’; done | wc -l

Gives me close to 2400 lines of code devoted to tests. In fact,
test-related code makes up almost half of this repository mea-
sured by lines. So OK, we test a lot, but then all of us who work in
continuous integration shops do nowadays.

Change-control meetings are intended to protect healthy pro-
duction environments from human error by instituting a layer
of peer review. Whether this works or not is debatable, but it is
unquestionably slow and drains productivity. Long release cycles
allow more time for development and production branches to
diverge. The classical change-control methodology, therefore,
by slowing down the release cycle, tends to foster larger, more
substantial (and therefore more error-prone) changes.

Relying on unit tests to protect us from human error instead
allows us to make smaller, simpler, safer changes more often.
We can spend as much time creating tests as we might other-
wise spend on halting productivity to create change proposals
and argue about them in a weekly meeting.

What Makes Good Tests Good?
The operative word there is RELY. Our tests can’t protect the
production environment if they aren’t meaningful. In creating
them, we generally need to be both procedural and selective. We
need to select test criteria that we can genuinely rely on to help
us ship quickly and safely.

GOOD TESTS ADD CONTEXT AND ENCOURAGE
COOPERATION
If we make our tests too difficult, obtrusive, or meaningless, or
if we try to enforce things like coding style that everyone hasn’t
already agreed to, people will just work around them. Self-
defeating behavior like this is more likely to emerge when we
sequester test creation to a particular team. Tests should mostly
enforce the expected operational parameters of the things we
create. Everyone should craft them, because they help us all
reason about what we expect from the things we build. Tests that
we didn’t write should give us insight into new code-bases rather
than encourage adversarial relationships between engineers.

Figure 1: Chat transcript of a GitHub PR

Figure 2: Chat transcript of a passed unit test

Figure 3: Chat transcript of a deployment

http://www.usenix.org

62  D ECE M B ER 20 1 5 VO L . 4 0, N O. 6 www.usenix.org

COLUMNS
iVoyeur: Tests and Metrics

GOOD TESTS IMPROVE OUR DESIGN
Creating and maintaining good tests requires that we reason
about correctness when we design and create software, thereby
making us cognizant of our own expectations and assumptions.
Choosing good test parameters means thoroughly understand-
ing not only what we’ve created, but also the difference between
what we’ve created and what we set out to create in the first
place. Testable code is well-designed code, and poorly designed
code is usually hard to test.

Metrics Are Tests that Never Stop Running
There’s another class of code in this alerting repository that’s
neither functional to the application nor related to unit tests. An
example looks something like this:

metrics.Measure(“outlet.poll.alerts.count”, len(alerts))

This is instrumentation code, and grep counts a little over 200
lines of it in this repository. The idea behind instrumentation
is to measure important aspects of the application from within.
Instrumentation like this quantifies things like queue sizes,
worker-thread counts, inter-service latency, and request types.
These metrics are then exported to a centralized system that
helps us visualize the inner workings of our applications. In fact,
here’s a screenshot of the dashboard (Figure 4) where the met-
rics from this alerting service wind up.

Unit testing is like the sign at the theme park that says we need
to be this tall before we can deploy to production. Our metrics
are more like the canary in the coal mine. They are tests that
can follow our code into production. They help us continuously
vet our assumptions about the changes we introduce. Like test-
driven development, which uses carefully crafted unit tests to
verify correctness, metrics-driven development uses well-chosen
metrics to directly show us the effect of our changes.

What Makes Good Metrics Good?
At this point I could en masse copy/paste the section I just wrote
about what makes good tests good, substituting the word metric
for test. Our metrics are the primary means by which we under-
stand the behavior of our applications in the wild, and so we need
to rely on them arguably even more than on our tests.

Like our tests, our metrics also help us protect the production
environment from human error. If they aren’t meaningful, our
continuous integration pipeline suffers.

GOOD TESTS ADD CONTEXT AND ENCOURAGE
COOPERATION
Good metrics test systems hypotheses. They confirm our
expectations about how the things we build perform in real life.
Just like tests, everyone should be able to choose and work with
their own metrics because they help us all reason about what we

Figure 4: The alerting service dashboard

http://www.usenix.org

www.usenix.org D ECE M B ER 20 1 5 VO L . 4 0, N O. 6 63

So even if you’ve never created a unit test and find the notion of
Serverspec and IaC daunting, you can take comfort in the reality
that being a diligent student of systems monitoring and read-
ing excellently crafted columns like this one has prepared you
for what is to come. No need to thank me, I’m already positively
drowning in acclaim.

Take it easy.

COLUMNS
iVoyeur: Tests and Metrics

expect from the things we build. Metrics can teach us about code
bases that we aren’t familiar with. Without any documentation
whatsoever, I can infer many things from the metric in Figure 5
(e.g., this service sends alerts, the number of customers using it,
the total and individual rates at which alerts are fired etc.).

GOOD METRICS MAKE GOOD CODEBASES
Choosing meaningful metrics also requires us to reason about
correctness when we design and create software, but when we
succeed, we gain ongoing operational insight that’s invaluable to
everyone, whether they’re designing systems, regression testing,
supporting infrastructure, or shipping features.

Good instrumentation is a sign of operational health. It keeps us
cognizant of our own expectations and assumptions. Well-mea-
sured code is usually well-designed code, and poorly designed
code is usually difficult to measure.

Resources
[1] Serverspec: http://serverspec.org/.

[2] Testing in Go: https://golang.org/pkg/testing.

Figure 5: A well-chosen metric

http://serverspec.org/
https://golang.org/pkg/testing
http://www.usenix.org

64  D ECE M B ER 20 1 5 VO L . 4 0, N O. 6 www.usenix.org

COLUMNS

The late Michael Crichton was many things. He had both extraordi-
nary imagination and unquivering analytic clarity. In this column, I
borrow the title and more from his magnificent essay, “Why Specu-

late?” given in La Jolla, California, at the International Leadership Forum on
April 26, 2002 [1].

Boiled down, Crichton simply said that no one knows the future and that those who pretend
to do so are self-serving, delusional, or something else equivalently uncomplimentary. So
are the people who believe what the predictors say. He notes how big the prediction indus-
try really is, singling out media especially, and he reminds us all that the track record for
sweeping predictions is pretty poor. He coins a clinical term, and I might as well copy his text
where he does so:

Media carries with it a credibility that is totally undeserved. You have all
experienced this in what I call the Murray Gell-Mann Amnesia effect. (I refer to it
by this name because I once discussed it with Murray Gell-Mann, and by dropping
a famous name I imply greater importance to myself, and to the effect, than it would
otherwise have.)

Briefly stated, the Gell-Mann Amnesia effect is as follows. You open the newspaper
to an article on some subject you know well. In Murray’s case, physics. In mine,
show business. You read the article and see the journalist has absolutely no
understanding of either the facts or the issues. Often, the article is so wrong it
actually presents the story backward—reversing cause and effect. I call these the
“wet streets cause rain” stories. Paper’s full of them.

In any case, you read with exasperation or amusement the multiple errors in a story,
and then turn the page to national or international affairs, and read as if the rest of
the newspaper was somehow more accurate about Palestine than the baloney you
just read. You turn the page, and forget what you know.

That is the Gell-Mann Amnesia effect. I’d point out it does not operate in other
arenas of life. In ordinary life, if somebody consistently exaggerates or lies to you,
you soon discount everything they say. In court, there is the legal doctrine of falsus
in uno, falsus in omnibus, which means untruthful in one part, untruthful in all.
But when it comes to the media, we believe against evidence that it is probably
worth our time to read other parts of the paper. When, in fact, it almost certainly
isn’t. The only possible explanation for our behavior is amnesia.

Everyone reading this article knows precisely what Crichton is talking about (or was, 13 years
ago): what is written about cybersecurity for the general audience is often counterfactual and/
or counterlogical. Unfortunately, what is written for specific audiences like legislatures and
regulatory agencies is also counterfactual and/or counterlogical. And all of this finds an audi-
ence because of an actual need that I argue is acutely important for cybersecurity—we need
to predict the future if our tools are to intersect our problems on target and in time.

For Good Measure
Why Speculate?

D A N G E E R

Dan Geer is the CISO for
In-Q-Tel and a security
researcher with a quantitative
bent. He has a long history
with the USENIX Association,

including officer positions, program
committees, etc. dan@geer.org

mailto:dan@geer.org
http://www.usenix.org

www.usenix.org D ECE M B ER 20 1 5 VO L . 4 0, N O. 6 65

COLUMNS
For Good Measure: Why Speculate?

That is the theme here—that the fast-moving nature and, yes, the
unpredictability of the cybersecurity regime are such that were
it occasionally possible to make useful predictions, we would
be better off, better able to accomplish our security plans while
those plans were still relevant. At the same time, and especially
in cybersecurity, no one can predict the future. We desper-
ately need prediction, we know it, and it is impossible to do and
increasingly so.

I am, myself, entirely guilty of trying to do prediction in cyber-
security. I give speeches on this precisely [2]. I am working on a
personal project right now whose only point is prediction. With
a quant colleague, I’ve long run another. I work on the periphery
of the intelligence community, and the intelligence community
is entirely about prediction—constantly speculating on what is
our actual position and what is our actual velocity. If your very
job is security in any sense, then you want all the prediction you
can get.

Yet, at the same time, surprises happen. If he were still with us,
Crichton would remind us that “[T]he problem with speculation
is that it piggybacks on the Gell-Mann effect of unwarranted
credibility, making the speculation look more useful than it is.”
One can argue that compliance is a predictive exercise, based
on the idea that “if you do this thing, then you can approach the
future with less to fear.” I buy that train of thought wholeheart-
edly, but what if the rules to be complied with cannot keep up with
the rate of change? If they cannot, then whatever the prediction of
outcome that compliance promises is prediction made relative to
conditions that no longer hold. That can’t be good. Or useful.

Unpredictability is so true in cybersecurity that we have a
special name for when prediction fails: zero-day. We accept that
a genuine 0day is an attack that no one could have seen com-
ing. We so very often imply that failing to handle that 0day is
blameless since, after all, it was not predicted. Yet every time a
particularly lurid 0day shows up, I find myself thinking, “Could I
have predicted that? How?”

In my last column [3], I leaned on Nassim Taleb’s writing to
relate how “the fat tails of power law distributions enlarge the
variance of our estimates leading to less frequent but more

severe failures (The Black Swan). The best one could say is that
most days will be better and better but some will be worse than
ever. Everything with a power law underneath has that property,
and cyberspace’s interconnectivity and interdependence are
inherently power law phenomena.” A fat-tailed setting inher-
ently resists prediction, but for that very reason makes predic-
tion ever more attractive to pursue.

So we get published predictions. Lots of them. Many of them
hedge their bets by phrasing their prediction as a question, but
that only invokes Betteridge’s Law of Headlines (“Any headline
that ends in a question mark can be answered by the word no”).

It’s a quandary. Fast change means tool sets for protection
always trail the need unless the need can be forecast. Fast
change makes forecasts hard if that fast change is one of adding
mechanisms, not just scale, to the equation. We’ve got both scale
(IoT with a 35% compound annual growth rate) and mechanism
(afterthought interconnection of sundry gizmos runs on the
proliferation of mechanism).

To be deadly serious about cybersecurity requires that either we
damp down the rate of change, slowing it enough to give predic-
tion operational validity—OR—we purposely increase unpredict-
ability so that opposition targeting grows too hard for them to do.
In the former, we give up various sorts of progress. In the latter,
we give up various sorts of freedom as it would be the machines
then in charge, not us.

But look at that; I can’t even talk about prediction without mak-
ing a prediction…

References
[1] Michael Crichton’s 2002 speech: http://geer.tinho.net
/crichton.why.speculate.txt.

[2] Dan Geer, “What Does the Future Hold for Cyber Security?”
Suits and Spooks: http://geer.tinho.net/geer.suitsandspooks
.19vi15.txt.

[3] Dan Geer, “The Denominator,” ;login:, vol. 40, no. 5, October
2015: https://www.usenix.org/publications/login/oct15/geer.

http://geer.tinho.net/crichton.why.speculate.txt
http://geer.tinho.net/geer.suitsandspooks.19vi15.txt
https://www.usenix.org/publications/login/oct15/geer
http://www.usenix.org

66  D ECE M B ER 20 1 5 VO L . 4 0, N O. 6 www.usenix.org

COLUMNS

/dev/random
Streamailer and Beyond

R O B E R T G . F E R R E L L

I once regarded Snapchat as not much more than a novelty: interesting
and well-intentioned, perhaps, but a novelty nonetheless. It seemed only
a matter of time before an app or service invalidated the ephemeral

nature of its content and therefore the sum total of its raison d’être. At the
same moment, though, I thought perhaps having email that disappeared after
a few minutes might be nice, too.

That led my fiction-writer’s brain to pondering how spies could send one another short-lived
messages by writing them out and taking pictures of them to be sent via Snapchat, or for
more obscurity, embedding the message in said photos steganographically, thus giving the
receiving party only a short time to decode them. I’m relatively certain this has already been
done somewhere.

Getting back to the disappearing email idea, I was idly speculating one day (because ener-
getic speculation has taken its toll on me over the years) that while I’ve tended to archive
everything, there’s really no need for this now. The vast majority of non-spam emails these
days are just alternatives to text messaging; that is, they only convey information that is
relevant for a comparatively short time.

The behavior this ephemeral nature drives, of course, is to delete mails as soon as you’ve read
them, but this still leaves behind some artifacts in the form of temp files and “deleted email”
boxes that presuppose you might want to “undelete” some of these from time to time. We’ve
all deleted something we wish we hadn’t at one point or another. But what if you’re the type
who sends messages you really, really don’t want anyone but the recipient to see, ever?

My answer is Streamailer. In this killer app, every incoming mail is assigned a probability
of being read according to its origin address information and subject matter. Mail messages
stream constantly; you choose which ones to pluck out of the digital river. Messages from
people you have marked as friends stream by more frequently, and are assigned to a different
buffer. Others circle by only a set number of times if you don’t actively delete them. The buf-
fers are bit-complement overwritten at the end of each spool cycle. Not totally unrecoverable,
but most people who might be snooping your personal business don’t have a scanning tunnel
electron microscope in their garage. At least, not one that actually works.

Moving on, it is time once again to poke at the squirming, slime-covered electric eel that is
infosec. When I look out over the vast hysterical cybersecurity wasteland these days with
the jaundiced eye of one who has retired from the field after many years of banging my head
against any nearby hard surface as a result of the recalcitrant idiots I encountered, I have to
chuckle. (I think I should get some sort of award for the preceding sentence.) What was back
when I started in the 1980s an obscure IT subspecialty dismissed by most corporate and gov-
ernmental honchos with the wave of an illegal Cuban cigar has now become an 800-pound
gorilla sitting on the developed world’s chest, beating its own and grunting loudly.

Robert G. Ferrell is an award-
winning author of humor,
fantasy, and science fiction,
most recently The Tol Chronicles
(www.thetolchronicles.com).

http://www.thetolchronicles.com
http://www.usenix.org

www.usenix.org D ECE M B ER 20 1 5 VO L . 4 0, N O. 6 67

COLUMNS
/dev/random: Streamailer and Beyond

There is a certain satisfaction to be gained from having been one
of a handful of information security people who can say “we told
you this stuff was important 25 years ago,” but it’s attenuated by
the fact that the associated excreta have impacted the ventila-
tion system blades in a very big way. Identity theft, encryp-
tion munging, mobster-in-the-middle attacks, ransomware,
spear-phishing...that litany of horrors makes Aleph’s “Smashing
the Stack for Fun and Profit” seem positively wholesome by
comparison.

In 1994 I was working as the one-man IT department for a
small-to-medium research company in Austin, Texas. I had
been registering domain names for early Web adopters (my NIC
handle was RGF4, to give you some idea of the time frame), and
I had just accomplished same for my employer. I developed their
first (text-based; hooray for Lynx) Web page, then added graph-
ics to it when Mosaic was released. I had to create said graphics
using MS Paint to build bitmaps pixel by pixel.

At that time I was administering a couple of Novell networks
(50-node 3.11 and 3.12, if I recall correctly) for our internal
data sharing. I had been using email on UNIX systems for
over ten years by then, and I was aware of what a powerful and
soon-to-be-ubiquitous communications medium it was. Once
I had finally won the battle to register a domain name for us
and develop a rudimentary Web presence, I started in trying to
convince management that SMTP was the next logical step. I
developed a PowerPoint presentation (yes, we had PP even back
then) that showed all the nifty things we could accomplish if
only we had email. He clutched the coiled wire-sporting handset
of his beloved rotary dial desk phone with white knuckles and
refused to consider my heretical proposal. SMTP, in his mind,
could never hope to compete with POTS.

I did finally drag him into the email age, but it was a lengthy
and exhausting battle. This same person, I should add, for years
resisted any effort to install a network drop in his office. I would
wire one in during the evening and the next morning he would
put tape over it and order it removed. He was still using MS DOS
5 for all work as late as 1995. He would print out memos and have
his secretary photocopy them for distribution. I half expected
the mail room boy to come by and ask if I’d heard the new Frank
Sinatra single.

If there truly is one, the moral underlying this little story is that
it often requires a great deal of time, effort, and frustration to
convince those in charge that they need to take action or change
direction. I could point to the climate change debacle currently
underway as another prime example of leaders who don’t want
to face up to an inconvenient reality, but I won’t. Instead, I will
finish up by abruptly changing the subject.

I have a new proposal for personal authentication. Instead of
tired old passwords, security questions regarding your childhood
best friend’s favorite dog, and shining lasers up your nostrils, I
submit that we should instead be using what I will call vocabu-
lary profiles. Present people with recordings of a series of, say,
ten words chosen randomly from a list. Ask them to spell each.
The unique way in which a person (mis)spells ten relatively dif-
ficult words would make a decent identifier.

But why choose this method over any number of similar and
equivalent ones? Because watching people misspell “misspelled”
and “illiterate” is one of the little joys in the otherwise colorless
life of a struggling novelist.

68  D ECE M B ER 20 1 5 VO L . 4 0, N O. 6 www.usenix.org

BOOKSBook Reviews
M A R K L A M O U R I N E A N D R I K F A R R O W

Python for Data Analysis
Wes McKinney
O’Reilly Media, 2013, 447 pages
ISBN 978-1-449-31979-3
Reviewed by Mark Lamourine

Python has become a popular programming language for
numeric processing. This is largely due to the creation of NumPy,
a binary module that provides the performance of a compiled
program with the ease of use and fast development cycle of an
interpreted language.

NumPy was just the start. A range of modules have been added
on top to provide even more specialized functions or different
techniques for accessing and manipulating numerical data. Wes
McKinney is actively developing an extension called “pandas”
(the name is not capitalized). According to the introduction on
the pandas section of pydata.org (http://pandas.pydata.org),
“pandas is a Python package providing fast, flexible, and expres-
sive data structures designed to make working with ‘relational’
or ‘labeled’ data both easy and intuitive.” That’s important
because NumPy by itself wasn’t designed to work with complex
data structures composed of mixed data in the columns.

In Python for Data Analysis, McKinney offers a primer for data
analysis with Python, using iPython for interaction, and NumPy
and pandas for numerical manipulation and data access.

McKinney opens with a whirlwind tour of simple examples
to showcase the capabilities of Python, iPython, NumPy and
pandas, along with matplotlib and SciPy. He then returns to the
beginning to add depth to each topic. His treatment of iPython
for interactive development is one of the best I’ve seen. I learned
several things I hadn’t known before. The chapter on NumPy
basics is similarly informative.

When he gets to using pandas I must say I began to lose the
thread. The examples are clear and effective in showing the
creation of and operations on the data structures, but I don’t have
the background in data analysis to follow why they are impor-
tant. I can only assume that someone with more experience
would know when and why to use them. Operations for loading
and storing data are clear to me, but data transformations, aggre-
gation, and group operations are outside my scope. The section
on generating graphics with matplotlib was also in my range, but
when McKinney uses it to display financial and time-series data,
I appreciate the images but not necessarily their significance.

In the final section, McKinney returns to advanced features of
NumPy, including some internals and optimizations.

Python for Data Analysis is not going to be a good place for some-
one new to numerical analysis. For readers already familiar
with the concepts but who need to learn to do their work using
Python, it’s going to be a great resource.

An Introduction to Programming in Go
Caleb Doxsey
CreateSpace Independent Publishing Platform, 2012, 161 pages
ISBN 978-1478355823
Reviewed by Mark Lamourine

Google (in the persons of Robert Griesemer, Rob Pike, Ken
Thompson) began development of Go in 2007, announced it
 publicly in 2009, and released version 1.0 in 2012. Go is distrib-
uted under the BSD license. At about the same time, according
to the copyright notice, Caleb Doxsey was releasing An Introduc-
tion to Programming in Go on the Web (www.golang-book.com
/books/intro), in PDF, and in hard copy. The copyright page notes
that portions are used under the Creative Commons 3.0 Attribu-
tion license, originally published by Google, but I can’t find any
indications of which parts.

In this slim volume Doxsey provides a brief look into all of
the major features of the Go language and of the development
environment: installation, compilation, syntax and language
features, a model for testing, software packages, and a survey
of the core standard libraries. Each chapter closes with a set of
exercises that should be easy for an experienced developer, and
an appropriate challenge for a classroom student.

The hard copy clearly shows its heritage as a Web document. The
typography and layout almost feel like a large-text book, perhaps
typeset originally with LaTeX. The book was published using the
CreateSpace Independent Publishing Platform, a service offered
by Amazon. I’ve reviewed other books created using alternative
publishers, and I’m encouraged that I can buy books like this that
might never have made it to print under a traditional imprint.
Amazon might not be to some people’s liking but it is one choice
for an unsigned author.

The independent publishing origin doesn’t detract at all from
the book’s utility as a primer for new Go programmers. This is
yet another case where I appreciate a paper book even when the
complete text is available online. The Web version shows a copy-
right date of 2015, so it’s likely that Doxsey is continuing to make

http://pandas.pydata.org
http://www.golang-book.com/books/intro
http://www.golang-book.com/books/intro
http://www.usenix.org

www.usenix.org D ECE M B ER 20 1 5 VO L . 4 0, N O. 6 69

BOOKS

updates, though a quick scan didn’t show anything obvious. Go
recently released version 1.5 and that includes several back-
ward-compatible syntax changes that could make the examples
simpler or clearer.

An Introduction to Programming in Go is by no means a com-
plete, in-depth tour of the Go language, but as a first look it is a
good choice.

The Go Programming Language
Alan Donovan and Brian Kernighan
Addison-Wesley Professional Computing Series, 2015, 400 pages
ISBN 978-0134190440
Reviewed by Rik Farrow

I still have Kernighan and Ritchie’s The C Programming Lan-
guage sitting on the bookshelf within reach of my desk. What
made that book so useful was its clarity, brevity, and a wealth
of examples that were actually relevant to a lot of the tasks one
might have to handle in C.

Alan Donovan and Brian Kernighan have written an even bet-
ter book. Like the original “white book,” they include relevant
examples all through the book’s 400 pages. What’s much better
is that we now have the Internet, and all of the examples can be
built using go build, or downloaded for editing, and that’s very
useful when it comes time to try out the exercises.

I don’t think anyone can learn a programming language without
actually working with it, and the path Donovan and Kernighan
provide is a reasonable one. The first chapter, “Tutorial,” covers

examples for things you can learn in the next seven chapters.
That means you can’t possibly understand all that’s covered in
Chapter one, but you get an overview of what will be described
eventually in greater depth.

And there is a lot of depth. I had no idea how different Go was,
although I had some inklings. One of the things I liked about the
book is that the authors casually repeat key points—for example,
that variables, functions, and types that you want to export
between packages must begin with a capital letter. This, and
other subtleties, can easily trip up someone new to a program-
ming language, and I found the reminders helpful.

One-fifth of the book is devoted to just two topics: interfaces and
goroutines. Interfaces are contracts, promises in the strongly
typed Go, that provide much of the flexibility that has been
exposed in the earlier six chapters. And goroutines, along with
channels for communicating between goroutines, provide the
primary, but not the only, method for writing concurrent applica-
tions. The ninth chapter covers more traditional techniques for
concurrency using shared variables.

I enjoyed reading this book, which is not something I can say
about most technical books. The style is always direct and
understandable, yet at the same time, I felt like I was reading for
an advanced class in programming, what I might have encoun-
tered in my third year of university. You can learn about more
than just Go by reading this book. If you have any interest in
learning Go, I strongly recommend that you own this book.

Thanks to Our USENIX and LISA SIG Supporters

USENIX Patrons
Facebook Google Microsoft Research NetApp VMware

USENIX Benefactors
Hewlett-Packard Linux Pro Magazine Symantec

USENIX and LISA SIG Partners
Booking.com Cambridge Computer Can Stock Photo Fotosearch Google

USENIX Partners
Cisco-Meraki EMC Huawei

Open Access Publishing Partner
PeerJ

http://www.usenix.org

NOTES

70  D ECE M B ER 20 1 5 VO L . 4 0, N O. 6 www.usenix.org

USENIX Member Benefits
Members of the USENIX Association
 receive the following benefits:

Free subscription to ;login:, the Associa-
tion’s magazine, published six times a year,
featuring technical articles, system admin-
istration articles, tips and techniques, prac-
tical columns on such topics as security,
Perl, networks, and operating systems, book
reviews, and reports of sessions at USENIX
conferences.

Access to ;login: online from December
1997 to the current month:
www.usenix.org/publications/login/

Access to videos from USENIX events in
the first six months after the event:
www.usenix.org/publications/multimedia/

Discounts on registration fees for all
 USENIX conferences

Special discounts on a variety of products,
books, software, and periodicals: www.
usenix.org/member-services/discount-
instructions

The right to vote on matters affecting the
Association, its bylaws, and election of its
directors and officers

For more information regarding member-
ship or benefits, please see www.usenix.org/
membership/ or contact office@usenix.org.
Phone: 510-528-8649

USENIX Board of Directors
Communicate directly with the USENIX
Board of Directors by writing to
board@usenix.org.

P R E S I D E N T

Brian Noble, University of Michigan
noble@usenix.org

V I C E P R E S I D E N T

John Arrasjid, EMC
johna@usenix.org

S E C R E T A R Y

Carolyn Rowland, National Institute of
Standards and Technology
carolyn@usenix.org

T R E A S U R E R

Kurt Opsahl, Electronic Frontier
 Foundation
kurt@usenix.org

D I R E C T O R S

Cat Allman, Google
cat@usenix.org

David N. Blank-Edelman, Apcera
dnb@usenix.org

Daniel V. Klein, Google
dan.klein@usenix.org

Hakim Weatherspoon, Cornell University
hakim@usenix.org

E X E C U T I V E D I R E C T O R

Casey Henderson
casey@usenix.org

2016 Election for the USENIX
Board of Directors
by Casey Henderson, USENIX Executive Director

The biennial election for officers and
directors of the Association will be held
in the spring of 2016. A report from the
Nominating Committee is now available on
the USENIX Web site at www.usenix.org/
board/elections16. USENIX members will
receive notification of this report via email.

Nominations from the membership are
open until January 4, 2016. To nominate
an individual, send a written statement of
nomination signed by at least five (5) mem-
bers in good standing, or five separately
signed nominations for the same person,
to the Executive Director at the Associa-
tion offices, to be received by noon PST,
January 4, 2016. Please prepare a plain-text
Candidate’s Statement and send both the
statement and a photograph (minimum size
1800 pixels by 1200 pixels) to production@
usenix.org, to be included in the ballots.

Ballots will be mailed to all paid-up mem-
bers in early February 2016. Ballots must be
received in the USENIX offices by March
21, 2016. The results of the election will
be announced on the USENIX Web site
by March 30 and will be published in the
 Summer 2016 issue of ;login:.

The Board consists of eight directors, four
of whom are “at large.” The others are the
president, vice president, secretary, and
treasurer. The balloting is preferential:
those candidates with the largest numbers
of votes are elected. Ties in elections for
directors shall result in run-off elections,
the results of which shall be determined by
a majority of the votes cast. Newly elected
directors will take office at the conclusion
of the first regularly scheduled meeting
following the election, or on July 1, 2016,
whichever comes earlier.

http://www.usenix.org/publications/login/
http://www.usenix.org/publications/multimedia/
www.usenix.org/member-services/discount-instructions
http://www.usenix.org/membership/
mailto:office@usenix.org
mailto:board@usenix.org
mailto:noble@usenix.org
mailto:johna@usenix.org
mailto:carolyn@usenix.org
mailto:kurt@usenix.org
mailto:cat@usenix.org
mailto:dnb@usenix.org
mailto:dan.klein@usenix.org
mailto:hakim@usenix.org
mailto:casey@usenix.org
http://www.usenix.org/board/elections16
http://www.usenix.org
http://www.usenix.org/board/elections16

www.usenix.org D ECE M B ER 20 1 5 VO L . 4 0, N O. 6 71

NOTES

Team USA Continues to Impress
at IOI 2015 in Kazakhstan
Brian C. Dean, Director of the USA Computing
Olympiad

I am always amazed at the computing talent
shown by the top high school students in
this country.

This summer, I traveled to Almaty, Ka-
zakhstan, to lead a team of high-school
computer-science students—the top four
from the entire USA—to compete at the
27th International Olympiad in Informat-
ics (IOI), the most prestigious computing
contest in the world at the high-school level.
Aside from myself and deputy leaders Mark
Gordon and Amy Quispe, team USA this
year consisted of:

• Daniel Chiu, a sophomore from Catlin
Gable High School in Oregon

• Demi Guo, a junior studying abroad at
Hangzhou No. 2 High School in China

• Andrew He, a senior from Monta Vista
High School in California

• Alexander Wei, a junior from Phillips
Exeter Academy in New Hampshire

Joining us in this week-long event were 318
other students representing 82 countries,
all eager to put their algorithmic program-
ming skills to the test to vie for glory in the
form of gold, silver, and bronze medals. I am
thrilled to report that our team had one of
its best showings ever: three gold medals
(Chiu, He, Wei) and one silver (Guo). Gold
medals are only awarded to the top 1/12
of all participants, and no other country
earned more than three, putting team USA
right at the top alongside other powerhouse
countries such as China, South Korea, and
Russia. Andrew He even earned third place
individually, improving on his gold medal
performance at IOI 2014.

The competition format at the IOI involves
two five-hour contests, each asking stu-
dents to code solutions for three challeng-
ing problems of an algorithmic nature. The
difficulty is exceedingly high—at a level
that would probably stump most graduate
students in computing. Only one competi-
tor earned a perfect score this year, Jeehak
Yoon from South Korea. As an example of

one of the problems, suppose you need to
deliver boxes from a depot to N different
houses, all situated at different locations
on a long circular road. You have at your
disposal a truck that can hold only K boxes
at a time, and you want to determine the
minimum driving distance needed to
deliver every box. The values of N and K can
be in the millions, and your program needs
to run in less than a second to receive full
marks. Every student on team USA received
a perfect score on this problem, one of the
easier problems in the contest.

Aside from the competition, our IOI hosts
organized a variety of cultural activities,
excursions, social events, and other activi-
ties that helped expose everyone to Kazakh
culture and tradition. My favorite excur-
sion was into the nearby mountains, where
a half-hour cable car ride brought us to a
vantage point 10,000 feet high with stun-
ning views of the city below. We also had a
chance to experience Kazakh cuisine, where
I discovered new foods that tasted fairly
good (e.g., horse meat), and others that I’m
fairly certain may be more of an acquired
taste (e.g., camel milk). During the opening
and closing ceremonies we were treated to a
wide range of Kazakh song and dance. The
entire week was a wonderful experience
for all involved, and we look forward to IOI
2016, to be held in Kazan, Russia.

The reason team USA has performed so
well at recent IOIs is largely due to the
rigorous selection and training process we
use to create our team each year, over-
seen by a national organization called the
USA Computing Olympiad (USACO). The
USACO is a non-profit organization that
provides online training material and
programming contests for students of all
ages interested in learning algorithmic
problem solving. Thousands take part in our
contests each year, starting with our easiest
“bronze” division problems that require
basic programming ability but no specific
algorithmic knowledge. Successful students
are promoted to the “silver” division, where
contest problems help them learn standard
algorithmic techniques. Those who excel
in silver are finally promoted to our “gold”

division, featuring our most challenging
problems (roughly on par with IOI prob-
lems). Each year we invite the top two dozen
gold competitors in the USA to attend a
rigorous summer training camp at Clemson
University, from which the team of four is
ultimately selected to attend the IOI. Train-
ing camp is a whirlwind experience packed
with practice contests, advanced lectures,
and fun side activities. Our goal with camp
(and also with the USACO in general) is not
only to train a winning team to attend the
IOI, but to inspire students about comput-
ing as a discipline and to encourage them to
fill the ranks of the next generation of top
computer scientists.

The USACO is run by a small but dedicated
group of volunteer coaches and supported
entirely by funds provided by our corporate
sponsors. I am exceedingly grateful for our
support from USENIX, one of our stron-
gest and most loyal sponsors. This sup-
port has enabled our program to grow and
evolve, nearly doubling in size in the past
five years alone. Based on the impressive
accomplishments of our alums to date, your
sponsorship has created a measureable and
substantial impact in cutting-edge comput-
ing, both in academia and industry.

This year was particularly poignant for
our organization, due to the passing of Dr.
Donald Piele, who founded the USACO
nearly two decades ago. Don posthumously
received the IOI’s “distinguished service
award” to recognize his contributions to
the IOI community. Don’s early work with
the USACO has inspired countless stu-
dents—myself included—to pursue careers
in computing, and I am honored to be able to
continue leading the organization so that it
may continue to inspire others.

To the USENIX community: thank you again
for your outstanding support for high-school
computing, and I look forward to reporting
continued good results from IOI 2016 and
beyond! To learn more about the USACO,
please visit our Web site at usaco.org.

http://www.usenix.org

72  D ECE M B ER 20 1 5 VO L . 4 0, N O. 6 www.usenix.org

NOTES

Thanks to Our Volunteers
by Casey Henderson, USENIX Executive Director

As many of our members know, USENIX’s
success is attributable to a large number of
volunteers who lend their expertise and sup-
port for our conferences, publications, good
works, and member services. They work
closely with our staff in bringing you the
best in the fields of systems research and
system administration. Many of you have
participated on program committees, steer-
ing committees, and subcommittees, as well
as contributing to this magazine. The entire
USENIX staff and I are most grateful to you
all. Below, I would like to make special men-
tion of some people who made particularly
significant contributions in 2015.

Program Chairs
13th USENIX Conference on File and
Storage Technologies (FAST ’15)
Jiri Schindler and Erez Zadok

2015 USENIX Research in Linux File
and Storage Technologies Summit
(Linux FAST Summit ’15)
Ric Wheeler

12th USENIX Symposium on Networked
Systems Design and Implementation
(NSDI ’15)
Paul Barham and Arvind Krishnamurthy

SREcon15
Sabrina Farmer, Andrew Fong, and
Fernanda Weiden

SREcon15 Europe
Narayan Desai and John Looney

15th Workshop on Hot Topics in Operating
Systems (HotOS XV)
George Candea

2015 USENIX Annual Technical
 Conference (ATC ’15)
Shan Lu and Erik Riedel

7th USENIX Workshop on Hot Topics in
Cloud Computing (HotCloud ’15)
Irfan Ahmad and Tim Kraska

7th USENIX Workshop on Hot Topics in
Storage and File Systems (HotStorage ’15)
Ken Salem and John Strunk

24th USENIX Security Symposium
(USENIX Security ’15)
Jaeyeon Jung

9th USENIX Workshop on Offensive
Technologies (WOOT ’15)
Aurélien Francillon and Thomas Ptacek

2015 USENIX Journal of Election
 Technology and Systems Workshop
(JETS ’15)
Walter Mebane and Dan S. Wallach,
Program Chairs and Editors-in-Chief,
USENIX Journal of Election Technology
and Systems (JETS)

8th Workshop on Cyber Security
 Experimentation and Test (CSET ’15)
Adam Aviv and Iulian Neamtiu

5th USENIX Workshop on Free and
Open Communications on the Internet
(FOCI ’15)
Masashi Crete-Nishihata and Phillipa Gill

2015 USENIX Workshop on Health
Information Technologies (HealthTech ’15)
Apu Kapadia and David Kotz

2015 USENIX Summit on Gaming, Games,
and Gamification in Security Education
(3GSE ’15)
Mark Gondree and Zachary N J Peterson

2015 USENIX Summit on Hot Topics in
Security (HotSec ’15)
Joseph Bonneau and Carrie Gates

29th Large Installation System
 Administration Conference (LISA15)
Cory Lueninghoener and Amy Rich

2015 USENIX Release Engineering
 Summit (URES ’15)
Gareth Bowles and Dinah McNutt

2015 USENIX Container Management
Summit (UCMS ’15)
Matthew Barr and Ashley Penney

Other Chairs and Major
Contributors
FAST ’15
Poster Chair: Donald Porter
Tutorial Coordinator: John Strunk

Linux FAST Summit ’15
Organizational Assistance: Christoph
Hellwig and Theodore Ts‘o

NSDI ’15
Poster Session Co-Chairs: Rama
Ramasubramanian and Franziska Roesner

USENIX Security ’15
Deputy Program Chair: Thorsten Holz
Invited Talks Committee: Michael Bailey,
Angelos Keromytis (Chair), Damon McCoy,
and Gary McGraw
Poster Session Co-Chairs: Adam Doupé and
Sarah Meiklejohn
Work-in-Progress Reports (WiPs)
Coordinator: Tadayoshi Kohno

LISA15
Invited Talks Co-Chairs: Doug Hughes and
Mario Obejas
Academic Co-Chairs: Paul Anderson and
Marc Chiarini
Workshops Chair and Lightning Talks
Coordinator: Lee Damon
LISA Lab Co-Chairs: Tony Del Porto and
Andrew Mundy
LISA Build Coordinators: Branson
Matheson and Brett Thorson

Storage Pavilion and Data Storage Day at
LISA15
Organizer: Jacob Farmer of Cambridge
Computer

2015 USENIX Journal of Education in
System Administration (JESA)
Editors-in-Chief: Kyrre Begnum and
Charles Border

USENIX Board of Directors
Cat Allman, John Arrasjid, David Blank-
Edelman, Daniel V. Klein, Brian Noble,
Kurt Opsahl, Carolyn Rowland, and Hakim
Weatherspoon

Audit Committee
Cat Allman, John Arrasjid, and Niels Provos

Awards Committee
Brian Noble and Matt Simmons

Development Advisory Committee
Cat Allman, John Arrasjid, Brian Noble,
Kurt Opsahl, and Hakim Weatherspoon

USA Computing Olympiad (co-sponsored
by USENIX)
Team Leader: Brian Dean
Deputy Team Leaders: Mark Gordon and
Amy Quispe

HotCRP Submissions and Reviewing
System
Eddie Kohler

USENIX and LISA Blogger
Ben Cotton

http://www.usenix.org

www.usenix.org D ECE M B ER 20 1 5 VO L . 4 0, N O. 6 73

NOTES

;login: Goes Quarterly
by Casey Henderson, USENIX Executive Director

In 2016, ;login: is taking the next step in its
long history: It will change from a bimonthly
to a quarterly schedule, with four issues
per year.

Prior to becoming a bimonthly magazine
in 1997, ;login: was a bimonthly newsletter,
 albeit a beefy one. At its inception, ;login:
truly was a newsletter, tracing its roots to
the “USENIX NEWS” pamphlets we’ve
been revisiting to celebrate USENIX’s 40th
anniversary. This December 2015 issue of
;login: is nearly unrecognizable when com-
pared to those early missives. It’s largely to
the credit of Rik Farrow, our editor for many
years, that the magazine you’re currently
reading is such a thorough celebration of the
state of the art across the many communi-
ties that USENIX represents.

For each issue, Rik gathers content by at-
tending conferences, contacting authors
of papers or articles touching on the latest

research and practice in our field, and
revisiting connections he’s gathered and
maintained during his years as a key mem-
ber of the community. Then our produc-
tion team, led by managing editor Michele
Nelson, takes over to lay out and produce
this volume. The ;login: production cycle
never ends, because we’re working on the
next issue well before the current one ar-
rives in your mailbox. A quarterly schedule
will stretch out these periods to be much
saner for our busy staff, while still deliver-
ing a similar amount of high quality content
you receive annually. You can expect each
quarterly issue to be lengthier than the
bimonthly issues you’ve been receiving.

For those of you who are USENIX mem-
bers, you’re aware that ;login: is one of our
primary membership benefits. While ;login:
officially accounts for $90 of each member’s
annual dues, rising production costs are
straining the budget. We have not raised
dues for many years—since 2008, in fact—

in order to keep membership as affordable
as possible. Though we had considered an
increase in membership dues for 2016, I
have recommended to the USENIX Board
that we continue to maintain the current
rate, partially in light of this change in
;login:’s number of issues.

Although there are many people involved in
;login:’s success, from the authors of articles
to the typesetter, please join me in thank-
ing Rik and Michele in particular for their
dedication to keeping ;login: the top-notch
publication it is. They’re both excited about
the extra breathing room this schedule will
offer them, including the opportunity to not
work on ;login: while ostensibly on vacation.
If ;login: is your vacation reading material
of choice, you can enjoy the magazine even
more knowing that its creators are now able
to have a similar opportunity to relax.

Announcement and Call for Papers www.usenix.org/cooldc16/cfp

March 19, 2016 • Santa Clara, CA

CoolDC ’16: USENIX Workshop on
Cool Topics in Sustainable Data Centers

The USENIX Workshop on Cool Topics in Sustainable Data Centers
(CoolDC ’16) will take place on March 19, 2016, directly following
NSDI ’16 in Santa Clara, CA.

Important Dates
• Paper submissions due: Tuesday, December 15, 2015, 8:59 p.m. PST

• Notification to authors: Tuesday, February 2, 2016

• Final paper files due: Tuesday, March 1, 2016

Workshop Organizers
Program Co-Chairs
Weisong Shi, Wayne State University
Thomas F. Wenisch, University of Michigan

Program Committee
Kirk Cameron, Virginia Tech
Christina Delimitrou, Stanford University
Michael Ferdman, Stony Brook University
David Irwin, University of Massachusetts Amherst
Tao Li, University of Florida/NSF
Jie Liu, Microsoft Research
Chris Malone, Google
Karthick Rajamani, IBM Research
Anand Sivasubramaniam, The Pennsylvania State University
Xiaorui Wang, The Ohio State University
Qiang Wu, Facebook
Zhe Zhang, Cloudera

Overview
Around the mid-2000s, the advent of mega-scale internet services and
public cloud offerings led to a redesign of data center architectures
which addressed key inefficiencies, particularly in electrical and me-
chanical infrastructure. At the same time, accelerated need for efficient
servers spurred a generation of research on CPU, memory, network, and
storage power management techniques, which have led to a marked
improvement in server efficiency and energy proportionality. However,
this first generation of improvement has plateaued; further opportunity
in the large-scale mechanical infrastructure is limited, and no single serv-
er or network component stands out as the key source of inefficiency.
Hence, it is time for a second, holistic, clean-slate redesign of the data

center, encompassing new server architectures, heterogeneous com-
puting platforms, radical networking paradigms, new mechanical and
electrical designs, intelligent cluster management, and radical rethinking
of software architectures while considering changing usage patterns
(e.g., hybrid private/public clouds).

In addition to developing promising technologies to improve data
center efficiency, we also need new metrics to assess the success of SDC
research. Currently, power usage effectiveness (PUE) is a widely reported
metric to assess the energy efficiency of a data center. The impact of
renewables can be assessed via carbon usage effectiveness (CUE) to
measure the combined impact of clean energy and energy efficiency
on greenhouse gas emissions, and water usage effectiveness (WUE) can
be used to assess the water usage of a data center. And yet, all three
of these metrics fall short of describing the true efficiency of the data
center. They fail to reflect waste at the enclosure/tray level (e.g., VRMs,
server fans). Moreover, they do not assess the efficiency or value of the
computation being performed and hence fail to reflect server hardware
inefficiencies or software bloat.

The 2016 USENIX Workshop on Cool Topics in Sustainable Data
Centers (CoolDC ’16) is a forum to disseminate results and stimulate
further cutting-edge research in quantitative design, evaluation, and
research methods for sustainable data centers. The goal of the workshop
is to become a venue where experts in sustainable energy systems,
data center physical infrastructure, networking and server architecture,
cloud computing, and internet-scale applications can come together to
exchange ideas on how to maintain and improve the sustainability of
warehouse-scale computer infrastructure.

Topics
Topics of interest in sustainable data centers include but are not
limited to:

• Instrumentation, measurement, and characterization studies

• Metrics, benchmarks, interfaces

• Performance, energy and other resource trade-offs, energy
 complexity

• Energy-efficient software optimization, application design

• System-level optimization, cross-layer coordination

• Scheduling, run-time adaptation, feedback control

Sponsored by USENIX, the Advanced Computing Systems Association

http://www.usenix.org/cooldc16/cfp

Announcement and Call for Papers www.usenix.org/cooldc16/cfp

March 19, 2016 • Santa Clara, CA

CoolDC ’16: USENIX Workshop on
Cool Topics in Sustainable Data Centers

The USENIX Workshop on Cool Topics in Sustainable Data Centers
(CoolDC ’16) will take place on March 19, 2016, directly following
NSDI ’16 in Santa Clara, CA.

Important Dates
• Paper submissions due: Tuesday, December 15, 2015, 8:59 p.m. PST

• Notification to authors: Tuesday, February 2, 2016

• Final paper files due: Tuesday, March 1, 2016

Workshop Organizers
Program Co-Chairs
Weisong Shi, Wayne State University
Thomas F. Wenisch, University of Michigan

Program Committee
Kirk Cameron, Virginia Tech
Christina Delimitrou, Stanford University
Michael Ferdman, Stony Brook University
David Irwin, University of Massachusetts Amherst
Tao Li, University of Florida/NSF
Jie Liu, Microsoft Research
Chris Malone, Google
Karthick Rajamani, IBM Research
Anand Sivasubramaniam, The Pennsylvania State University
Xiaorui Wang, The Ohio State University
Qiang Wu, Facebook
Zhe Zhang, Cloudera

Overview
Around the mid-2000s, the advent of mega-scale internet services and
public cloud offerings led to a redesign of data center architectures
which addressed key inefficiencies, particularly in electrical and me-
chanical infrastructure. At the same time, accelerated need for efficient
servers spurred a generation of research on CPU, memory, network, and
storage power management techniques, which have led to a marked
improvement in server efficiency and energy proportionality. However,
this first generation of improvement has plateaued; further opportunity
in the large-scale mechanical infrastructure is limited, and no single serv-
er or network component stands out as the key source of inefficiency.
Hence, it is time for a second, holistic, clean-slate redesign of the data

center, encompassing new server architectures, heterogeneous com-
puting platforms, radical networking paradigms, new mechanical and
electrical designs, intelligent cluster management, and radical rethinking
of software architectures while considering changing usage patterns
(e.g., hybrid private/public clouds).

In addition to developing promising technologies to improve data
center efficiency, we also need new metrics to assess the success of SDC
research. Currently, power usage effectiveness (PUE) is a widely reported
metric to assess the energy efficiency of a data center. The impact of
renewables can be assessed via carbon usage effectiveness (CUE) to
measure the combined impact of clean energy and energy efficiency
on greenhouse gas emissions, and water usage effectiveness (WUE) can
be used to assess the water usage of a data center. And yet, all three
of these metrics fall short of describing the true efficiency of the data
center. They fail to reflect waste at the enclosure/tray level (e.g., VRMs,
server fans). Moreover, they do not assess the efficiency or value of the
computation being performed and hence fail to reflect server hardware
inefficiencies or software bloat.

The 2016 USENIX Workshop on Cool Topics in Sustainable Data
Centers (CoolDC ’16) is a forum to disseminate results and stimulate
further cutting-edge research in quantitative design, evaluation, and
research methods for sustainable data centers. The goal of the workshop
is to become a venue where experts in sustainable energy systems,
data center physical infrastructure, networking and server architecture,
cloud computing, and internet-scale applications can come together to
exchange ideas on how to maintain and improve the sustainability of
warehouse-scale computer infrastructure.

Topics
Topics of interest in sustainable data centers include but are not
limited to:

• Instrumentation, measurement, and characterization studies

• Metrics, benchmarks, interfaces

• Performance, energy and other resource trade-offs, energy
 complexity

• Energy-efficient software optimization, application design

• System-level optimization, cross-layer coordination

• Scheduling, run-time adaptation, feedback control

Sponsored by USENIX, the Advanced Computing Systems Association

Rev. 11/10/15

• Processor, memory, network, storage, hardware components and
architecture

• Reliability and power management

• Thermal management

• Green energy sources and their implications

• Technologies for and management of energy storage

• Life-cycle analysis

The workshop seeks submissions of early-stage research and novel
ideas that have a high likelihood of generating interesting discussion.

Submission Instructions
Please submit your papers by 8:59 p.m. PST on December 15, 2015.
Papers must be in PDF format and must be submitted via the Web sub-
mission form linked from the Call for Papers Web site, www.usenix.org/
cooldc16/cfp. Do not email submissions.

Submitted papers must be no longer than 6 single-spaced 8.5” x 11”
pages. The complete submission should be typeset in two- column for-
mat in 10-point type on 12-point (single-spaced) leading, with the text
block being no more than 6.5” wide by 9” deep. Submissions that violate
any of these restrictions may not be reviewed. The limits will be inter-
preted fairly strictly, and no extensions will be given for reformatting. If
you wish, you may use our LaTeX templates and style files, available at
www.usenix.org/conferences/author-resources/paper-templates.

Reviewing will be double-blind; therefore, please do not include any
author names on any submitted documents except in the space pro-
vided on the submission form. You must also ensure that the metadata
included in the PDF does not give away the authors. If you are improv-
ing upon your prior work, refer to your prior work in the third person
and include a full citation for the work in the bibliography. For example,
if you are building on your own prior work in the papers [1, 2, 3], you
would say something like: “While prior work did X, Y, and Z [1, 2, 3], this
paper additionally does W, and is therefore much better.” Do NOT omit
or anonymize references for blind review.

Submissions to CoolDC ’16 may not be under consideration for any
other venue. Simultaneous submission of the same work to multiple
venues, submission of previously published work, or plagiarism con-
stitutes dishonesty or fraud. USENIX, like other scientific and technical
conferences and journals, prohibits these practices and may take action
against authors who have committed them. See the USENIX Conference
Submissions Policy at www.usenix.org/conferences/submissions-policy
for details.

Questions? Contact your program co-chairs, cooldc16chairs@
usenix.org, or the USENIX office, submissionspolicy@usenix.org.

Papers accompanied by nondisclosure agreement forms will not be
considered. Accepted submissions will be treated as confidential prior
to publication on the CoolDC ’16 Web site; rejected submissions will be
permanently treated as confidential.

All papers will be available online to registered attendees before the
workshop. If your accepted paper should not be published prior to the
event, please notify production@usenix.org. The papers will be available
online to everyone beginning on the day of the workshop, March 19, 2016.

http://www.usenix.org/cooldc16/cfp
http://www.usenix.org/conferences/author-resources/paper-templates
http://www.usenix.org/conferences/submissions-policy
mailto:submissionspolicy@usenix.org
mailto:production@usenix.org

2016 USENIX Annual Technical
Conference

Important Dates
• Paper submissions due: Monday, February 1, 2016,

11:59 p.m. GMT

• Notification to authors: Friday, April 15, 2016

• Final paper files due: Tuesday, May 24, 2016

Conference Organizers
Program Co-Chairs
Hakim Weatherspoon, Cornell University
Ajay Gulati, Zerostack, Inc.

Program Committee
Mohit Aron, Cohesity
Mahesh Balakrishnan, Yale University
Haibo Chen, Shanghai Jiao Tong University
Byung-Gon Chun, Seoul National University
Paolo Costa, Microsoft Research
Dilma Da Silva, Texas A&M University
Angela Demke Brown, University of Toronto
Fred Douglis, EMC
Rodrigo Fonseca, Brown University
K. Gopinath, Indian Institute of Science (IISc)
Haryadi Gunawi, University of Chicago
Indranil Gupta, University of Illinois at Urbana–Champaign
Andreas Haeberlen, University of Pennsylvania
Tim Harris, Oracle
Anne M. Holler, FUEGO
Jon Howell, Google
Hani Jamjoom, IBM
Anthony Joseph, University of California, Berkeley
Geoff Kuenning, Harvey Mudd College
Peter Pietzuch, Imperial College London
Sriram Rao, Microsoft
Benjamin Reed, Facebook
Scott Rixner, Rice University
Henry Robinson, Cloudera
Leonid Ryzhyk, Samsung Research America
Liuba Shrira, Brandeis University
Nisha Talagala, Parallel Machines

Theodore Ts’o, Google
Dan Tsafrir, Israel Institute of Technology
Andy Tucker, Bracket
Zhen Xiao, Peking University
Noa Zilberman, University of Cambridge

Overview
Authors are invited to submit original and innovative papers to the
 Refereed Papers Track of the 2016 USENIX Annual Technical Conference.
We seek high-quality submissions that further the knowledge and un-
derstanding of modern computing systems with an emphasis on imple-
mentations and experimental results. We encourage papers that break
new ground, present insightful results based on practical experience
with computer systems, or are important, independent reproductions/
refutations of the experimental results of prior work. USENIX ATC ’16
has a broad scope, and specific topics of interest include (but are not
limited to):

• Architectural interaction

• Big data infrastructure

• Cloud computing

• Datacenter networking

• Deployment experience

• Distributed and parallel systems

• Embedded systems

• Energy/power management

• File and storage systems

• Mobile and wireless

• Networking and network services

• Operating systems

• Reliability, availability, and scalability

• Security, privacy, and trust

• System and network management and troubleshooting

• Usage studies and workload characterization

• Virtualization

USENIX ATC ’16 is especially interested in papers broadly focusing on
practical techniques for building better software systems: ideas or
approaches that provide practical solutions to significant issues fac-
ing practitioners. This includes all aspects of system development:
techniques for developing systems software; analyzing programs and
finding bugs; making systems more efficient, secure, and reliable; and
deploying systems and auditing their security.

Announcement and Call for Papers www.usenix.org/atc16/cfp

Sponsored by USENIX, the Advanced Computing Systems Association

June 22–24, 2016, Denver, CO

http://www.usenix.org/atc16/cfp

2016 USENIX Annual Technical
Conference

Important Dates
• Paper submissions due: Monday, February 1, 2016,

11:59 p.m. GMT

• Notification to authors: Friday, April 15, 2016

• Final paper files due: Tuesday, May 24, 2016

Conference Organizers
Program Co-Chairs
Hakim Weatherspoon, Cornell University
Ajay Gulati, Zerostack, Inc.

Program Committee
Mohit Aron, Cohesity
Mahesh Balakrishnan, Yale University
Haibo Chen, Shanghai Jiao Tong University
Byung-Gon Chun, Seoul National University
Paolo Costa, Microsoft Research
Dilma Da Silva, Texas A&M University
Angela Demke Brown, University of Toronto
Fred Douglis, EMC
Rodrigo Fonseca, Brown University
K. Gopinath, Indian Institute of Science (IISc)
Haryadi Gunawi, University of Chicago
Indranil Gupta, University of Illinois at Urbana–Champaign
Andreas Haeberlen, University of Pennsylvania
Tim Harris, Oracle
Anne M. Holler, FUEGO
Jon Howell, Google
Hani Jamjoom, IBM
Anthony Joseph, University of California, Berkeley
Geoff Kuenning, Harvey Mudd College
Peter Pietzuch, Imperial College London
Sriram Rao, Microsoft
Benjamin Reed, Facebook
Scott Rixner, Rice University
Henry Robinson, Cloudera
Leonid Ryzhyk, Samsung Research America
Liuba Shrira, Brandeis University
Nisha Talagala, Parallel Machines

Theodore Ts’o, Google
Dan Tsafrir, Israel Institute of Technology
Andy Tucker, Bracket
Zhen Xiao, Peking University
Noa Zilberman, University of Cambridge

Overview
Authors are invited to submit original and innovative papers to the
 Refereed Papers Track of the 2016 USENIX Annual Technical Conference.
We seek high-quality submissions that further the knowledge and un-
derstanding of modern computing systems with an emphasis on imple-
mentations and experimental results. We encourage papers that break
new ground, present insightful results based on practical experience
with computer systems, or are important, independent reproductions/
refutations of the experimental results of prior work. USENIX ATC ’16
has a broad scope, and specific topics of interest include (but are not
limited to):

• Architectural interaction

• Big data infrastructure

• Cloud computing

• Datacenter networking

• Deployment experience

• Distributed and parallel systems

• Embedded systems

• Energy/power management

• File and storage systems

• Mobile and wireless

• Networking and network services

• Operating systems

• Reliability, availability, and scalability

• Security, privacy, and trust

• System and network management and troubleshooting

• Usage studies and workload characterization

• Virtualization

USENIX ATC ’16 is especially interested in papers broadly focusing on
practical techniques for building better software systems: ideas or
approaches that provide practical solutions to significant issues fac-
ing practitioners. This includes all aspects of system development:
techniques for developing systems software; analyzing programs and
finding bugs; making systems more efficient, secure, and reliable; and
deploying systems and auditing their security.

Announcement and Call for Papers www.usenix.org/atc16/cfp

Sponsored by USENIX, the Advanced Computing Systems Association

June 22–24, 2016, Denver, CO

Rev. 10/29/15

Experience reports and operations-oriented studies, as well as
other work that studies software artifacts, introduces new data sets of
practical interest, or impacts the implementation of software compo-
nents in areas of active interest to the community are well-suited for
the conference.

The conference seeks both long-format papers consisting of 11 pages
and short-format papers of 5 pages, not including references. Short
papers will be included in the proceedings, and will be presented as
normal but in sessions with slightly shorter time limits.

For industrial practitioners, if you are interested in the Practitioner
Talks Track, which accepts proposals for 20-minute or 40-minute talks,
please refer to the USENIX ATC ’16 Call for Talks Web page at www.
usenix.org/atc16/cft.

Best Paper Awards
Cash prizes will be awarded to the best papers at the conference. Please
see www.usenix.org/conferences/best-papers for Best Paper winners
from previous years.

Best of the Rest Track
The USENIX Annual Technical Conference is the senior USENIX forum
covering the full range of technical research in systems software. Over
the past two decades, USENIX has added a range of more specialized
conferences. ATC is proud of the content being published by its sibling
USENIX conferences and will be bringing a track of encore presentations
to ATC ’16. This “Best of the Rest” track will allow attendees to sample
the full range of systems software research in one forum, offering both
novel ATC presentations and encore presentations from recent offerings
of ATC’s sibling conferences.

What to Submit
Authors are required to submit full papers by the paper submission
deadline. It is a hard deadline; no extensions will be given. All submissions
for USENIX ATC ’16 will be electronic, in PDF format, via the Web submis-
sion form on the Call for Papers Web site, www.usenix.org/atc16/cfp.

USENIX ATC ’16 will accept two types of papers:
Full papers: Submitted papers must be no longer than 11 single-

spaced 8.5” x 11” pages, including figures and tables, but not including
references. You may include any number of pages for references. Papers
should be formatted in 2 columns, using 10-point type on 12-point lead-
ing, in a 6.5” x 9” text block. Figures and tables must be large enough to
be legible when printed on 8.5” x 11” paper. Color may be used, but the
paper should remain readable when printed in monochrome. The first
page of the paper should include the paper title and author name(s);
reviewing is single blind. Papers longer than 11 pages, not including
references, or violating formatting specifications will not be reviewed.
In a good paper, the authors will have:

• Addressed a significant problem

• Devised an interesting and practical solution or provided an im-
portant, independent, and experimental reproduction/
refutation of prior solutions

• Clearly described what they have and have not implemented

• Demonstrated the benefits of their solution

• Articulated the advances beyond previous work

• Drawn appropriate conclusions

Short papers: Authors with a contribution for which a full paper is
not appropriate may submit short papers of at most 5 pages, not
including references, with the same formatting guidelines as full papers.
You may include any number of pages for references. Examples of short
paper contributions include:

• Original or unconventional ideas at a preliminary stage of
 development

• The presentation of interesting results that do not require a full-
length paper, such as negative results or experimental validation

• Advocacy of a controversial position or fresh approach

For more details on the submission process and for templates to use
with LaTeX and Word, authors should consult the detailed submission
requirements linked from the Call for Papers Web site. Specific questions
about submissions may be sent to atc16chairs@usenix.org.

By default, all papers will be made available online to registered
attendees before the conference. If your accepted paper should not be
published prior to the event, please notify production@usenix.org. In
any case, the papers will be available online to everyone beginning on
the first day of the conference, June 22, 2016.

Papers accompanied by nondisclosure agreement forms will not be
considered. Accepted submissions will be treated as confidential prior to
publication on the USENIX ATC ’16 Web site; rejected submissions will be
permanently treated as confidential.

Simultaneous submission of the same work to multiple venues, sub-
mission of previously published work, or plagiarism constitutes dishon-
esty or fraud. USENIX, like other scientific and technical con ferences and
journals, prohibits these practices and may take action against authors
who have committed them. See the USENIX Con ference Submissions
Policy at www.usenix.org/conferences/submissions-policy for details.

Note that the above does not preclude the submission of a regular full
paper that overlaps with a previous short paper or workshop paper.
However, any submission that derives from an earlier paper must pro-
vide a significant new contribution (for example, by providing a more
complete evaluation), and must explicitly mention the contributions
of the submission over the earlier paper. If you have questions, contact
your program co-chairs, atc16chairs@usenix.org, or the USENIX office,
submissionspolicy@usenix.org.

Authors will be notified of paper acceptance or rejection by April 15,
2016. Acceptance will typically be conditional, subject to shepherding
by a program committee member.

Poster Session
The poster session is an excellent forum to discuss ideas and get use-
ful feedback from the community. Posters and demos for the poster
session will be selected from all the full paper and short paper submis-
sions by the poster session chair. If you do not want your submissions
to be considered for the poster session, please specify on the submis-
sion Web site.

Program and Registration Information
Complete program and registration information will be available in April
2016 on the conference Web site.

http://www.usenix.org/atc16/cft
http://www.usenix.org/conferences/best-papers
http://www.usenix.org/atc16/cfp
mailto:atc16chairs@usenix.org
mailto:production@usenix.org
http://www.usenix.org/conferences/submissions-policy
mailto:atc16chairs@usenix.org
mailto:submissionspolicy@usenix.org

2016 USENIX Annual Technical
Conference

Important Dates
• Talk submissions due: Monday, February 1, 2016, 11:59 p.m. GMT

• Notification to submitters: Friday, April 15, 2016

Conference Organizers
Program Co-Chairs
Ajay Gulati, Zerostack, Inc.
Hakim Weatherspoon, Cornell University

Program Committee
Mohit Aron, Cohesity
Mahesh Balakrishnan, Yale University
Haibo Chen, Shanghai Jiao Tong University
Byung-Gon Chun, Seoul National University
Paolo Costa, Microsoft Research
Dilma Da Silva, Texas A&M University
Angela Demke Brown, University of Toronto
Fred Douglis, EMC
Rodrigo Fonseca, Brown University
K. Gopinath, Indian Institute of Science (IISc)
Haryadi Gunawi, University of Chicago
Indranil Gupta, University of Illinois at Urbana–Champaign
Andreas Haeberlen, University of Pennsylvania
Tim Harris, Oracle
Anne M. Holler, FUEGO
Jon Howell, Google
Hani Jamjoom, IBM
Anthony Joseph, University of California, Berkeley
Geoff Kuenning, Harvey Mudd College
Peter Pietzuch, Imperial College London
Sriram Rao, Microsoft
Benjamin Reed, Facebook
Scott Rixner, Rice University
Henry Robinson, Cloudera
Leonid Ryzhyk, Samsung Research America
Liuba Shrira, Brandeis University
Nisha Talagala, Parallel Machines
Theodore Ts’o, Google
Dan Tsafrir, Israel Institute of Technology
Andy Tucker, Bracket
Zhen Xiao, Peking University
Noa Zilberman, University of Cambridge

Overview
Industrial practitioners are invited to submit talk proposals to the
Practitioner Talks Track of the 2016 USENIX Annual Technical Conference.
The USENIX Annual Technical Conference is the senior USENIX forum
covering the full range of technical research in systems software.
This track seeks presentations about practical solutions and challenges
to significant real-world issues facing industrial practitioners. It will
provide a unique venue for industrial and academia participants to
exchange ideas and experiences.
Examples of talk topics include, but are not limited to:

• Techniques that solve significant issues in practice

• Tool development and problem-solving experience report

• Forgotten research topics that are highly relevant to industry

• New challenges faced by industrial practitioners that need help
from research

• Interesting data set or benchmark suite available for the
 community

Examples of technical areas include, but are not limited to:

• Architectural interaction

• Big data infrastructure

• Cloud computing

• Datacenter networking

• Deployment experience

• Distributed and parallel systems

• Embedded systems

• Energy/power management

• File and storage systems

• Mobile and wireless

• Networking and network services

• Operating systems

• Reliability, availability, and scalability

• Security, privacy, and trust

• System and network management and troubleshooting

• Usage studies and workload characterization

• Virtualization

Announcement and Call for Practitioner Talks www.usenix.org/atc16/cft

Sponsored by USENIX, the Advanced Computing Systems Association

June 22–24, 2016, Denver, CO

http://www.usenix.org/atc16/cft

2016 USENIX Annual Technical
Conference

Important Dates
• Talk submissions due: Monday, February 1, 2016, 11:59 p.m. GMT

• Notification to submitters: Friday, April 15, 2016

Conference Organizers
Program Co-Chairs
Ajay Gulati, Zerostack, Inc.
Hakim Weatherspoon, Cornell University

Program Committee
Mohit Aron, Cohesity
Mahesh Balakrishnan, Yale University
Haibo Chen, Shanghai Jiao Tong University
Byung-Gon Chun, Seoul National University
Paolo Costa, Microsoft Research
Dilma Da Silva, Texas A&M University
Angela Demke Brown, University of Toronto
Fred Douglis, EMC
Rodrigo Fonseca, Brown University
K. Gopinath, Indian Institute of Science (IISc)
Haryadi Gunawi, University of Chicago
Indranil Gupta, University of Illinois at Urbana–Champaign
Andreas Haeberlen, University of Pennsylvania
Tim Harris, Oracle
Anne M. Holler, FUEGO
Jon Howell, Google
Hani Jamjoom, IBM
Anthony Joseph, University of California, Berkeley
Geoff Kuenning, Harvey Mudd College
Peter Pietzuch, Imperial College London
Sriram Rao, Microsoft
Benjamin Reed, Facebook
Scott Rixner, Rice University
Henry Robinson, Cloudera
Leonid Ryzhyk, Samsung Research America
Liuba Shrira, Brandeis University
Nisha Talagala, Parallel Machines
Theodore Ts’o, Google
Dan Tsafrir, Israel Institute of Technology
Andy Tucker, Bracket
Zhen Xiao, Peking University
Noa Zilberman, University of Cambridge

Overview
Industrial practitioners are invited to submit talk proposals to the
Practitioner Talks Track of the 2016 USENIX Annual Technical Conference.
The USENIX Annual Technical Conference is the senior USENIX forum
covering the full range of technical research in systems software.
This track seeks presentations about practical solutions and challenges
to significant real-world issues facing industrial practitioners. It will
provide a unique venue for industrial and academia participants to
exchange ideas and experiences.
Examples of talk topics include, but are not limited to:

• Techniques that solve significant issues in practice

• Tool development and problem-solving experience report

• Forgotten research topics that are highly relevant to industry

• New challenges faced by industrial practitioners that need help
from research

• Interesting data set or benchmark suite available for the
 community

Examples of technical areas include, but are not limited to:

• Architectural interaction

• Big data infrastructure

• Cloud computing

• Datacenter networking

• Deployment experience

• Distributed and parallel systems

• Embedded systems

• Energy/power management

• File and storage systems

• Mobile and wireless

• Networking and network services

• Operating systems

• Reliability, availability, and scalability

• Security, privacy, and trust

• System and network management and troubleshooting

• Usage studies and workload characterization

• Virtualization

Announcement and Call for Practitioner Talks www.usenix.org/atc16/cft

Sponsored by USENIX, the Advanced Computing Systems Association

June 22–24, 2016, Denver, CO

The content of the talk will not be included in the conference proceed-
ings. If you are interested in the Refereed Papers Track, which accepts
submissions of 11 pages, not including references, and 5 pages, not
including references, please refer to the USENIX ATC ’16 Call for Papers
Web page at www.usenix.org/atc16/cfp.

What to Submit
Talk proposals must include the following and be submitted before the
submission deadline to receive full consideration.

• Title: Should make it obvious what your talk is about

• Description: Include attendee takeaways and why people want
to hear this talk; if applicable, please also provide white papers or
Web pages or videos that support this talk

• Should: Please indicate the talk topic and area of interests

• Speaker: Include past public speaking experience, with a URL to
past presentations if available

• Duration: Talk or tutorial length (either 20 or 40 minutes)

All submissions will be through the Web submission form on the Call for
Talks Web site, www.usenix.org/atc16/cft.

Presenting a talk that you gave before in another venue is allowed.
 However, any talk proposal that derives from an earlier talk must
 explicitly mention where and when the earlier talk was given in the
talk description. If you have questions, contact your program co-chairs,
atc16chairs@usenix.org.

Submitters will be notified of talk acceptance or rejection by
April 15, 2016.

Poster Session
The poster session is an excellent forum to discuss ideas and get useful
feedback from the community. If you plan to prepare a poster for your
talk, and want your poster to be considered for the poster session,
please specify so in the submission form.

Program and Registration Information
Complete program and registration information will be available in
April 2016 on the conference Web site.

Questions?
Contact atc16chairs@usenix.org.

Rev. 10/29/15

http://www.usenix.org/atc16/cfp
http://www.usenix.org/atc16/cft
mailto:atc16chairs@usenix.org
mailto:atc16chairs@usenix.org

Statement of Ownership, Management, and Circulation, 10/1/15

Title: ;login: Pub. No. 0008-334. Frequency: Bimonthly. Number of issues published annually: 6. Subscription price $90.

Office of publication: USENIX Association, 2560 Ninth Street, Suite 215, Berkeley, CA 94710.

Headquarters of General Business Office of Publisher: Same. Publisher: Same.

Editor: Rik Farrow; Managing Editor: Michele Nelson, located at office of publication.

Owner: USENIX Association. Mailing address: As above.

Known bondholders, mortgagees, and other security holders owning or holding 1 percent or more of total amount of bonds,
mortgages, or other securities: None.

The purpose, function, and nonprofit status of this organization and the exempt status for federal income tax purposes have
not changed during the preceding 12 months.

Extent and Nature of Circulation Average No. Copies
Each Issue During
Preceding 12 Months

No. Copies of Single
Issue (August 2015)
Published Nearest to
Filing Date

a. Total Number of Copies
2938 2700

b. Paid Circulation

(1) Outside-County Mail Subscriptions 1392 1366

(2) In-County Subscriptions 0 0

(3) Other Non-USPS Paid Distribution 739 773

(4) Other Classes 0 0

c. Total Paid Circulation 2131 2139

d. Free Distribution By Mail

(1) Outside-County 0 0

(2) In-County 0 0

(3) Other Classes Mailed Through the USPS 80 60

(4) Free Distribution Outside the Mail 425 300

e. Total Free Distribution 505 360

f. Total Distribution 2636 2499

g. Copies not distributed 302 201

h. Total 2938 2700

i. Percent Paid 81% 86%

Paid Electronic Copies 378 339

Total Paid Print Copies 2509 2478

Total Print Distribution 3014 2838

Percent Paid (Both Print and Electronic Copies) 83% 88%

Learn the latest
techniques for better:

• network security
• system management
• troubleshooting
• performance tuning
• virtualization
• cloud computing

on Windows, Linux,
Solaris, and popular
varieties of Unix.

Each issue delivers
technical solutions
to the real-world
problems you face
every day.

REAL SOLUTIONS
FOR REAL NETWORKS

FREE
CD or DVD
in Every Issue!

ORDER ONLINE AT: shop.linuxnewmedia.com6 issues per year!

ad_login_admin.indd 1 10/20/15 3:11 PM

USENIX Association
2560 Ninth Street, Suite 215
Berkeley, CA 94710

POSTMASTER
Send Address Changes to ;login:
2560 Ninth Street, Suite 215
Berkeley, CA 94710

PERIODICALS POSTAGE
PAID

AT BERKELEY, CALIFORNIA
AND ADDITIONAL OFFICES

It’s time for the security community to take a step back and get a fresh perspective on threat assessment
and attacks. This is why the USENIX Association is excited to announce the launch of Enigma,

a new security conference geared towards those working in both industry and research.

Expect three full days of high-quality speakers, content, and engagement for which USENIX events are known.

The full program and registration are now available.

enigma.usenix.org

JANUARY 25–27, 2016
SA N FR A NCISCO, C A LIF OR NI A , USA

	login_dec15_01_farrow
	login_dec15_02_foster
	login_dec15_03_garfinkel
	login_dec15_04_verdult
	login_dec15_05_murray
	login_dec15_06_forno
	login_dec15_07_seely
	login_dec15_08_long
	login_dec15_09_salus
	login_dec15_10_kolstad
	login_dec15_11_history_login
	login_dec15_12_beazley
	login_dec15_13_blank-edelman
	login_dec15_14_josephsen
	login_dec15_15_geer
	login_dec15_16_ferrell
	login_dec15_17_books
	login_dec15_18_notes

