
;login:
V O L . 3 9 , N O . 6D E C E M B E R 2 0 1 4

Security
& BeyondCorp: Google Obsoletes the

Imaginary Perimeter
Rory Ward and Betsy Beyer

& Sandboxing with Capsicum
Pawel Jakub Dawidek and Mariusz Zaborski

& Polypasswordhasher Makes Offline
Cracking Unfeasible
Santiago Torres and Justin Cappos

& Debugging with Failure in Mind
Peter Gutmann

Columns
Practical Perl Tools: Using CPAN Search Features
David N. Blank-Edelman

Python: Python Constants and Enums
David Beazley

iVoyeur: Re-introducing collectd
Dave Josephsen

For Good Measure: Stress Testing Your
Security Posture
Dan Geer

/dev/random: Buying Security Snake Oil
Robert G. Ferrell

Conference Reports
23rd USENIX Security Symposium

U P C O M I N G E V E N T S

Stay Connected...

www.usenix.org/facebook

twitter.com/usenix

www.usenix.org/youtube

www.usenix.org/linkedin

www.usenix.org/blog

www.usenix.org/gplus

SaTCPI ’15: National Science Foundation Secure and
Trustworthy Cyberspace Principal Investigators’
Meeting (2015)

January 5–7, 2015, Arlington, VA, USA
www.usenix.org/satcpi15

FAST ’15: 13th USENIX Conference on File and
Storage Technologies

February 16–19, 2015, Santa Clara, CA, USA
www.usenix.org/fast15

SREcon15
March 16–17, 2015, Santa Clara, CA, USA
Submissions due January 5, 2015
www.usenix.org/srecon15

NSDI ’15: 12th USENIX Symposium on Networked
Systems Design and Implementation

May 4–6, 2015, Oakland, CA, USA
www.usenix.org/nsdi15

HotOS XV: 15th Workshop on Hot Topics in
Operating Systems

May 18–20, 2015, Kartause Ittingen, Switzerland
Submissions due January 9, 2015
www.usenix.org/hotos15

USENIX ATC ’15: USENIX Annual Technical
Conference

July 8–10, 2015, Santa Clara, CA, USA
Submissions due February 3, 2015
www.usenix.org/atc15

Co-located with ATC ’15 and taking place July 6–7, 2015:

HotCloud ’15: 7th USENIX Workshop on Hot Topics in
Cloud Computing
Submissions due March 10, 2015
www.usenix.org/hotcloud15

HotStorage ’15: 7th USENIX Workshop on Hot Topics in
Storage and File Systems
Submissions due March 17, 2015
www.usenix.org/hotstorage15

USENIX Security ’15: 24th USENIX Security
Symposium

August 12–14, 2015, Washington, D.C., USA
www.usenix.org/usenixsecurity15

Co-located with USENIX Security ’15:

WOOT ’15: 9th USENIX Workshop on Offensive
Technologies
August 10–11, 2015

CSET ’15: 8th Workshop on Cyber Security
Experimentation and Test
August 10, 2015

FOCI ’15: 5th USENIX Workshop on Free and Open
Communications on the Internet
August 10, 2015

HealthTech ’15: 2015 USENIX Summit on Health
Information Technologies
Safety, Security, Privacy, and Interoperability
of Health Information Technologies
August 10, 2015

JETS ’15: 2015 USENIX Journal of Election Technology
and Systems Workshop
(Formerly EVT/WOTE)
August 11, 2015

LISA15
November 8–13, 2015, Washington, D.C., USA
Submissions due April 17, 2015
www.usenix.org/conference/lisa15

Do you know about the USENIX Open Access Policy?
USENIX is the fi rst computing association to off er free and open access to all of our conferences proceedings and videos. We
stand by our mission to foster excellence and innovation while supporting research with a practical bias. Your membership
fees play a major role in making this endeavor successful.

Please help us support open access. Renew your USENIX membership and ask your colleagues to join or renew today!

www.usenix.org/membership

Learn the latest
techniques for better:

• network security
• system management
• troubleshooting
• performance tuning
• virtualization
• cloud computing

on Windows, Linux,
Solaris, and popular
varieties of Unix.

Each issue delivers
technical solutions
to the real-world
problems you face
every day.

Real SolutionS
foR Real netwoRkS

Free
CD or DVD
in every Issue!

Order Online at: shop.linuxnewmedia.com6 issues per year!

ad_login_admin.indd 1 11/6/14 10:26:37 AM

E D I T O R
Rik Farrow
rik@usenix.org

M A N A G I N G E D I T O R
Michele Nelson
michele@usenix.org

C O P Y E D I T O R S
Steve Gilmartin
Amber Ankerholz

P R O D U C T I O N
Arnold Gatilao
Jasmine Murcia

T Y P E S E T T E R
Star Type
startype@comcast.net

U S E N I X A S S O C I AT I O N
2560 Ninth Street, Suite 215
Berkeley, California 94710
Phone: (510) 528-8649
FAX: (510) 548-5738

www.usenix.org

;login: is the official magazine of the USENIX
Association. ;login: (ISSN 1044-6397)
is published bi-monthly by the USENIX
Association, 2560 Ninth Street, Suite 215,
 Berkeley, CA 94710.

$90 of each member’s annual dues is for a
subscription to ;login:. Subscriptions for non-
members are $90 per year. Periodicals postage
paid at Berkeley, CA, and additional offices.

POSTMASTER: Send address changes to
;login:, USENIX Association, 2560 Ninth Street,
Suite 215, Berkeley, CA 94710.

©2014 USENIX Association
USENIX is a registered trademark of the
USENIX Association. Many of the designations
used by manufacturers and sellers to
distinguish their products are claimed
as trademarks. USENIX acknowledges all
trademarks herein. Where those designations
appear in this publication and USENIX is aware
of a trademark claim, the designations have
been printed in caps or initial caps.

D E C E M B E R 2 0 1 4 V O L . 3 9 , N O . 6

E D I T O R I A L
2 Musings Rik Farrow

S E C U R I T Y
6 BeyondCorp: A New Approach to Enterprise Security

Rory Ward and Betsy Beyer

12 Sandboxing with Capsicum
Pawel Jakub Dawidek and Mariusz Zaborski

18 PolyPasswordHasher: Improving Password Storage Security
Santiago Torres and Justin Cappos

22 Code Testing through Fault Injection Peter Gutmann

26 Capturing Capture the Flag: Further Discussions
Mark Gondree

32 Interview with Dan Farmer Rik Farrow

R E S E A R C H
36 Introducing CloudLab: Scientific Infrastructure for Advancing

Cloud Architectures and Applications Robert Ricci, Eric Eide,
and the CloudLab Team

S Y S A D M I N
39 /var/log/manager: Career Preventative Maintenance Inspections

Andrew Seely

C O L U M N S
42 Practical Perl Tools: Oh Say Can You CPAN?

David N. Blank-Edelman

47 All About That Constant David Beazley

52 iVoyeur: Rediscovering collectd Dave Josephsen

56 For Good Measure: Stress Analysis Dan Geer

58 /dev/random: Buying Snake Oil Robert G. Ferrell

60 Book Reviews Mark Lamourine and Rik Farrow

U S E N I X N O T E S
63 Team USA Brings Home the Gold from IOI 2014

Brian C. Dean

64 Thanks to Our Volunteers
Casey Henderson

66 23rd USENIX Security Symposium

2  D ECE M B ER 20 14 VO L . 3 9, N O. 6 www.usenix.org

EDITORIALMusings
R I K F A R R O W

Rik is the editor of ;login:.
rik@usenix.org I’ve decided to follow the example of Randall Munroe (xkcd) and work at

answering an absurd hypothetical question: Will we ever have secure
systems?

Actually, a well-known professor at Purdue, Gene Spafford, already answered this question
way back in 1989:

The only truly secure system is one that is powered off, cast in a block of concrete and
sealed in a lead-lined room with armed guards—and even then I have my doubts. [1]

I’ve actually used the image of a computer cord coming out of a block of cast cement in some
presentations, as there’s nothing like a concrete visual image to help people understand the
problem.

Input Challenged
Instead of a computer buried in a concrete block, I have a simpler suggestion: Let’s have a
computer, running any OS you like, but not permit any input to it. If it crashes, the BIOS will
be set to reboot the OS, then the computer just goes on sitting there, with the OS sitting in an
idle loop.

This doesn’t move the state of the art in a much more useful direction than the computer-in-
concrete version, but it is suggestive: It’s not the computer running the OS that’s the problem,
it’s the input that gets fed to programs running under that OS. And that’s the conundrum: If
you want a secure computer, don’t allow anyone to access it. We still have a useless computer,
unless you are using it to heat a room.

To illustrate just how bad the problem can be when you allow input, I remember the first
kernel security bug I’d ever heard of. In the UNIX System III or Version 7 kernel, you could
get a root shell by running any program and providing a specially crafted argument to the
command you were exec’ing. The argument needed to be longer than 5120 bytes, as that was
the statically defined length for execve() call arguments, and by overrunning this buffer, you
could overwrite the u_area where the owner and group IDs were stored.

That means that:

#include<stdio.h>

main()

{

 printf(“Hello World”);

}

was capable of being used to exploit the system.

Even though the “hello world” program doesn’t accept any input, the program executing it
does, and there’s the rub. So it appears that what might seem to be a simple program—on a
computer that has no networking beyond UUCP over serial port and on a kernel short enough
to have been published in book form [2] several years earlier—can be rooted.

www.usenix.org D ECE M B ER 20 14 VO L . 3 9, N O. 6 3

EDITORIAL
Musings

One useful line of research points to input parsers as being to
blame for many successful exploits [3]. The reasoning behind
this assertion is clear: An input parser more complex than the
simplest parser in the Chomsky hierarchy [4] cannot be proven
to work as expected. That simplest parser uses regular expres-
sions where you have a choice of parsing from the left or the
right end of your input. Anything more complex than that is
asking for trouble.

If you have a difficult time visualizing an input parser, just
consider almost any shell script that accepts command-line
arguments. If you have written, or seen, such a script, then you
should know that the switch or if-then-else statements at the
beginning of the script act as an input parser, even if it is a simple
one. Other input parsers include Web scripting back-end engines
such as PHP, Perl, Ruby, Python; SQL query parsers; the shells;
and the Web servers themselves.

During an invited talk at USENIX Security 2014 (see the sum-
maries in the back of this issue), Felix Lindner (FX) provided a
wonderful example of a parsing bug. The chunk encoding bug
first appeared in the Apache Web server in 2003, and then in
Nginx in 2013. The code was different in these two programs,
but the bug was almost the same.

Absurd Answer
One of the most popular answers to the question “How do we
improve security?” involves the use of security software. This
software is supposed to protect us from bugs in other software.
But this is absurd, as security software is also software, subject
to the same problems as other software. Worse yet, security soft-
ware, whether it’s an IPS or a virus scanner, has to parse input
using complex rules, making it even more vulnerable. On top of
that, security software generally runs with privileges, making
that software an even more exciting target.

Perhaps we could wrap the security software inside of some
other software to isolate the rest of the system when the security
software gets exploited? Sandboxing, another popular security
solution, involves relying on yet more software to make the soft-
ware we have more secure. It’s turtles all the way down.

The Lineup
We begin this issue with an article by Rory Ward, with help from
Betsy Beyer. Ward describes how Google is moving beyond the
notion of having a privileged network, protected by a firewall
that is considered secure. Some Google employees have been
working on the many moving parts needed to replace this out-
dated design with something a lot better thought out and, likely,
much more secure. I think it is wonderful that Google manage-
ment has decided to allow some employees to share information
like this with the rest of us.

Pawel Dawidek and Mariusz Zaborski bring us up-to-date on
Capsicum. Capsicum, which appeared during Security 2010,
uses capabilities to control the namespaces that a process has
access to. If you read the “Containers” article in the October
2014 issue of ;login:, you will be familiar with the Linux approach
to this problem. Dawidek and Zaborski explain how sandboxing
was done before Capsicum, updates to Capsicum, as well as a
server program, casperd, that can help with adding Capsicum to
applications.

Santiago Torres and Justin Cappos share some work they
have been doing to make the storage of password hashes safer.
They’ve created a scheme, using cryptographic shares, that
makes cracking password hashes 23 orders of magnitude more
difficult, while still taking a tiny amount of time to perform
authentication.

I asked Peter Gutmann to write about his own experience with
debugging. Peter shares a technique based on failure as an
important debugging tool. Not his own failure, but a method for
injecting failures so that the failure paths of programs can be
rigorously tested. Not that this would have helped with Heart-
bleed or Shellshock, as the failures in parsing there weren’t
tested, but Peter’s technique will help you better test your code.

Mark Gondree decided to continue the discussion that was begun
by a panel on the “Gamification of Security” at the 3GSE work-
shop. Mark posed questions to all of the panelists, then collected
and edited their responses. If you’ve wondered about gamifica-
tion, I think you will learn a lot from reading this discussion.

I wanted to interview Dan Farmer. I met Dan almost 25 years
ago, and while I would see him during security conferences, I
had lots of unanswered questions about his career. Dan would
often base his decisions on ethics rather than personal profit or
security, and that’s had a huge impact on his life.

Robert Ricci and Eric Eide announce CloudLab. While I heard
about this during Security, their announcement goes well beyond
just security. They, and a much larger team in multiple locations,
are building infrastructure for doing cloud research. CloudLab
provides barebones systems, VMs, and access to networking so
that a wide variety of cloud research projects can have a realistic
test environment.

Andy Seely continues his sysadmin management column with
stories about keeping up with details. In each story, someone has
ignored some aspect of their professional life, even while doing
an otherwise exemplary job, and that has gotten each of them in
career/job trouble.

David Blank-Edelman explains how to make the best use of two
different search interfaces to CPAN, the Perl module site. There
are gems hidden away in each of the GUI interfaces, which David
reveals.

4  D ECE M B ER 20 14 VO L . 3 9, N O. 6 www.usenix.org

EDITORIAL
Musings

David Beazley reveals a new Python 3.4 feature, via explaining
constants. Constants are an issue in all scripting languages, as
they are, uh, not terribly constant. Enums and IntEnums help
with this.

Dave Josephsen waxes enthusiastically about collectd, a client-
side agent that is useful for collecting the various bits of info you
want to monitor.

Dan Geer takes the concept of the stress testing of the larg-
est banks and turns it into a plan for testing your own security
preparedness. Stress testing helps you and your organization
evaluate just what level of risk you might be facing when the next
Internet worm hits.

Robert Ferrell has dug up another rant, this time on security
snake oil. While Robert describes this as a “dystopian future,” I
think it is a scenario that’s all too familiar.

Mark Lamourine has written book reviews about functional pro-
gramming, a difficult book about SDN, and the new Limoncelli,
Chalup, and Hogan book about managing clouds. I’ve written a
(much easier) review about the Randall Munroe book What If?
Serious Scientific Answers to Absurd Hypothetical Questions.

Most of the workshops that accompanied USENIX Security have
some summaries covering them, with the exception of HotSec,
which by design is not taped or summarized, and EVT/WOTE.
Every session in Security itself, and WOOT, are covered in an
excellent set of summaries.

Just as I was editing this column, I learned of a new bug in Bash,
which is going by the name “Shellshock.” By attempting to cre-
ate a null function in an environment variable, an attacker can
execute anything she likes via the shell. This bug appears to be a
problem in parsing, when I looked at the patch files [5] for Bash.
One could argue equally that this was a mistake in implementa-
tion, as null functions shouldn’t be evaluated within environ-
ment variables, but that’s just splitting hairs. The bug does
appear to have been in Bash for many years. And Bash parses
its input, as you should expect, but limiting Bash to the simplest
Chomsky hierarchy parser would also make Bash a wimpy shell.

The lesson of Shellshock is that you should never expose a shell
to input that you don’t trust. That shells get invoked in a large
variety of software, including DHCP clients, just shows how dif-
ficult it is for people to write secure software.

I’d like to end this column with another quote:

I don’t think it’s an exaggeration to say that cyber
defense solutions will serve as the essential basis for
human development and economic growth in this
century—I think it’s happening before our very eyes.
 —Prime Minister Benjamin Netanyahu [6]

While I’d rather not agree, I can see the logic in this statement.
If we build software cyberdefense solutions that are themselves
software, then we have created a perpetual motion machine that
will benefit the purveyors of security software.

Instead, I believe it would make much more sense to produce
software tools without the sharp edges that make writing soft-
ware so dangerous, so insecure. While this has been attempted
(consider Java), part of the problem with this approach is that a
new programming environment has to encompass everything
that a programmer believes he needs to do, simply, quickly, and
securely. Then, perhaps, we would have Web servers invoking
shells to process request variables, or DHCP clients [7] invoking
a shell to configure the client. And this process must include the
OS too, as the largest, most complex, software that we run.

References
[1] Gene Spafford quotes: http://spaf.cerias.purdue.edu/quotes
.html.

[2] Lions’ Commentary on UNIX 6th Edition, with Source
Code (Peer to Peer Communications, 1996): http://
en.wikipedia.org/wiki/Lions’_Commentary_on_UNIX
_6th_Edition,_with_Source_Code.

[3] LANGSEC: Language-Theoretic Security: http://www.cs
.dartmouth.edu/~sergey/langsec/.

[4] “Chomsky hierarchy,” Wikipedia: http://en.wikipedia.org
/wiki/Chomsky_hierarchy.

[5] Patches to Bash: http://ftp.gnu.org/pub/gnu/bash/bash-4.3
-patches/bash43-025.

[6] “Netanyahu, Kaspersky, and Gold tackle cyber ‘game-
changers’,” EurekAlert! Press Release for Cyber Week 2014:
http://www.eurekalert.org/pub_releases/2014-09/afot
-cw2092414.php.

[7] “ISC’s DHCP Client Can Be Used as a Delivery Vector for
Bash Bug,” ISC DHCP, dhcp-4.3.1/client/client.c; http://
www.isc.org/.

Announcing the USENIX Store!

www.usenix.org/store

Want to buy a subscription to ;login:, the latest short topics book, a USENIX or
conference shirt, or the box set from last year’s workshop? Now you can, via
the brand new USENIX Store!

Head over to www.usenix.org/store and check out the collection of t-shirts,
video box sets, ;login: magazines, short topics books, and other USENIX and
LISA gear. USENIX and LISA SIG members save, so make sure your membership
is up to date.

6  D ECE M B ER 20 14 VO L . 3 9, N O. 6 www.usenix.org

SECURITYBeyondCorp
A New Approach to Enterprise Security

R O R Y W A R D A N D B E T S Y B E Y E R

Rory Ward is a site reliability
engineering manager in Google
Ireland. He previously worked
in Ireland at Valista, in Silicon
Valley at AOL, Netscape, Kiva,

and General Magic, and in Los Angeles at
Retix. He has a BSc in computer applications
from Dublin City University.
roryward@google.com

Betsy Beyer is a technical writer
specializing in virtualization
software for Google SRE in
NYC. She has previously
provided documentation for

Google Data Center and Hardware Operations
teams. Before moving to New York, Betsy
was a lecturer in technical writing at Stanford
University. She holds degrees from Stanford
and Tulane. bbeyer@google.com

V irtually every company today uses firewalls to enforce perimeter
security. However, this security model is problematic because, when
that perimeter is breached, an attacker has relatively easy access to a

company’s privileged intranet. As companies adopt mobile and cloud tech-
nologies, the perimeter is becoming increasingly difficult to enforce. Google
is taking a different approach to network security. We are removing the
requirement for a privileged intranet and moving our corporate applications
to the Internet.

Since the early days of IT infrastructure, enterprises have used perimeter security to protect
and gate access to internal resources. The perimeter security model is often compared to a
medieval castle: a fortress with thick walls, surrounded by a moat, with a heavily guarded
single point of entry and exit. Anything located outside the wall is considered dangerous,
while anything located inside the wall is trusted. Anyone who makes it past the drawbridge
has ready access to the resources of the castle.

The perimeter security model works well enough when all employees work exclusively in
buildings owned by an enterprise. However, with the advent of a mobile workforce, the surge
in the variety of devices used by this workforce, and the growing use of cloud-based services,
additional attack vectors have emerged that are stretching the traditional paradigm to the
point of redundancy. Key assumptions of this model no longer hold: The perimeter is no longer
just the physical location of the enterprise, and what lies inside the perimeter is no longer a
blessed and safe place to host personal computing devices and enterprise applications.

While most enterprises assume that the internal network is a safe environment in which to
expose corporate applications, Google’s experience has proven that this faith is misplaced.
Rather, one should assume that an internal network is as fraught with danger as the public
Internet and build enterprise applications based upon this assumption.

Google’s BeyondCorp initiative is moving to a new model that dispenses with a privileged
corporate network. Instead, access depends solely on device and user credentials, regard-
less of a user’s network location—be it an enterprise location, a home network, or a hotel or
coffee shop. All access to enterprise resources is fully authenticated, fully authorized, and
fully encrypted based upon device state and user credentials. We can enforce fine-grained
access to different parts of enterprise resources. As a result, all Google employees can work
successfully from any network, and without the need for a traditional VPN connection into
the privileged network. The user experience between local and remote access to enterprise
resources is effectively identical, apart from potential differences in latency.

The Major Components of BeyondCorp
BeyondCorp consists of many cooperating components to ensure that only appropriately
authenticated devices and users are authorized to access the requisite enterprise applica-
tions. Each component is described below (see Figure 1).

www.usenix.org D ECE M B ER 20 14 VO L . 3 9, N O. 6 7

SECURITY
BeyondCorp: A New Approach to Enterprise Security

Securely Identifying the Device
Device Inventory Database
BeyondCorp uses the concept of a “managed device,” which is a
device that is procured and actively managed by the enterprise.
Only managed devices can access corporate applications. A
device tracking and procurement process revolving around a
device inventory database is one cornerstone of this model. As
a device progresses through its life cycle, Google keeps track of
changes made to the device. This information is monitored, ana-
lyzed, and made available to other parts of BeyondCorp. Because
Google has multiple inventory databases, a meta-inventory
database is used to amalgamate and normalize device informa-
tion from these multiple sources, and to make the information
available to downstream components of BeyondCorp. With this
meta-inventory in place, we have knowledge of all devices that
need to access our enterprise.

Device Identity
All managed devices need to be uniquely identified in a way that
references the record in the Device Inventory Database. One way
to accomplish this unique identification is to use a device cer-
tificate that is specific to each device. To receive a certificate, a
device must be both present and correct in the Device Inventory
Database. The certificate is stored on a hardware or software
Trusted Platform Module (TPM) or a qualified certificate store.
A device qualification process validates the effectiveness of the
certificate store, and only a device deemed sufficiently secure
can be classed as a managed device. These checks are also
enforced as certificates are renewed periodically. Once installed,
the certificate is used in all communications to enterprise ser-
vices. While the certificate uniquely identifies the device, it does
not single-handedly grant access privileges. Instead, it is used as
a key to a set of information regarding the device.

Securely Identifying the User
User and Group Database
BeyondCorp also tracks and manages all users in a User
Database and a Group Database. This database system tightly
integrates with Google’s HR processes that manage job catego-
rization, usernames, and group memberships for all users. As
employees join the company, change roles or responsibilities, or
leave the company, these databases are updated. This system
informs BeyondCorp of all appropriate information about users
that need to access our enterprise.

Single Sign-On System
An externalized, single sign-on (SSO) system is a centralized
user authentication portal that validates primary and second-
factor credentials for users requesting access to our enterprise
resources. After validating against the User Database and
Group Database, the SSO system generates short-lived tokens
that can be used as part of the authorization process for specific
resources.

Removing Trust from the Network
Deployment of an Unprivileged Network
To equate local and remote access, BeyondCorp defines and
deploys an unprivileged network that very closely resembles
an external network, although within a private address space.
The unprivileged network only connects to the Internet, lim-
ited infrastructure services (e.g., DNS, DHCP, and NTP), and
 configuration management systems such as Puppet. All client
devices are assigned to this network while physically located
in a Google building. There is a strictly managed ACL (Access
Control List) between this network and other parts of Google’s
network.

Figure 1: BeyondCorp components and access flow

8  D ECE M B ER 20 14 VO L . 3 9, N O. 6 www.usenix.org

SECURITY
BeyondCorp: A New Approach to Enterprise Security

802.1x Authentication on Wired and Wireless
 Network Access
For both wired and wireless access, Google uses RADIUS serv-
ers to assign devices to an appropriate network, based on 802.1x
authentication. We use dynamic, rather than static, VLAN
assignment. This approach means that rather than relying on
the switch/port static configuration, we use the RADIUS serv-
ers to inform the switch of the appropriate VLAN assignment
for the authenticated device. Managed devices provide their
certificate as part of this 802.1x handshake and are assigned to
the unprivileged network, while unrecognized and unmanaged
devices on the corporate network are assigned to a remediation
or guest network.

Externalizing Applications and Workflows
Internet-Facing Access Proxy
All enterprise applications at Google are exposed to external and
internal clients via an Internet-facing access proxy that enforces
encryption between the client and the application. The access
proxy is configured for each application and provides common
features such as global reachability, load balancing, access
control checks, application health checks, and denial-of-service
protection. This proxy delegates requests as appropriate to the
back-end application after the access control checks (described
below) complete.

Public DNS Entries
All of Google’s enterprise applications are exposed externally
and are registered in public DNS with a CNAME pointing the
applications at the Internet-facing access proxy.

Implementing Inventory-Based Access Control
Trust Inference for Devices and Users
The level of access given to a single user and/or a single device
can change over time. By interrogating multiple data sources,
we are able to dynamically infer the level of trust to assign to a
device or user. This level of trust can then be used by the Access
Control Engine (described below) as part of its decision process.
For example, a device that has not been updated with a recent OS
patch level might be relegated to a reduced level of trust. A par-
ticular class of device, such as a specific model of phone or tablet,
might be assigned a particular trust level. A user accessing
applications from a new location might be assigned a different
trust level. We use both static rules and heuristics to ascertain
these levels of trust.

Access Control Engine
An Access Control Engine within the access proxy provides
service-level authorization to enterprise applications on a
per-request basis. The authorization decision makes assertions
about the user, the groups to which the user belongs, the device
certificate, and artifacts of the device from the Device Inven-

tory Database. If necessary, the Access Control Engine can also
enforce location-based access control. The inferred level of trust
in the user and the device is also included in the authorization
decision. For example, access to Google’s bug tracking system
can be restricted to full-time engineers using an engineering
device. Access to a finance application can be restricted to full-
time and part-time employees in the finance operations group
using managed non-engineering devices. The Access Control
Engine can also restrict parts of an application in different ways.
For example, viewing an entry in our bug tracking system might
require less strict access control than updating or searching the
same bug tracking system.

Pipeline into the Access Control Engine
The Access Control Engine is constantly fed by a running
pipeline that dynamically extracts information useful for access
decisions. Among other factors, this information includes cer-
tificate whitelists, trust levels of devices and users, and inven-
tory details about the device and the user.

An End-to-End Example
The Application
For this example, let us assume an application is to be taken
BeyondCorp. The application is used by engineers to review
source code, comment on the code, update the code, and, when
approved by reviewers, submit the code. The application, codere-
view.corp.google.com, is restricted to full-time and part-time
engineers from any managed device.

Configuring the Internet-Facing Access Proxy
The owner of codereview.corp.google.com configures the access
proxy for the service. The configuration specifies the location of
the back ends and the maximum traffic accepted by each back
end. The codereview.corp.google.com domain name is registered
in public DNS with a CNAME pointing to the access proxy. For
example:

$ dig @8.8.8.8 codereview.corp.google.com

; <<>> DiG 9.8.1-P1 <<>> @8.8.8.8 codereview.corp.google.com

; (1 server found)

;; global options: +cmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 12976

;; flags: qr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 0,

ADDITIONAL: 0

;; QUESTION SECTION:

;codereview.corp.google.com. IN A

;; ANSWER SECTION:

codereview.corp.google.com. 21599 IN CNAME

accessproxy.l.google.com.

accessproxy.l.google.com. 299 IN A 74.125.136.129

www.usenix.org D ECE M B ER 20 14 VO L . 3 9, N O. 6 9

SECURITY
BeyondCorp: A New Approach to Enterprise Security

;; Query time: 10 msec

;; SERVER: 8.8.8.8#53(8.8.8.8)

;; WHEN: Wed Aug 20 19:30:06 2014

;; MSG SIZE rcvd: 86

Configuring the Access Control Engine
The Access Control Engine provides a default rule that
restricts access to full-time employees using a managed
device. The owner of codereview.corp.google.com provides a
more specific rule that further restricts access in two ways:
to managed devices with the highest trust level, and to full-
time and part-time engineers with the highest trust level.

An Engineer Accesses a Network
If the Network Is Located Outside a Physical Building
Operated by the Enterprise: From a laptop provided by Google,
an engineer accesses any WiFi network. For example, this
network might be an airport WiFi network with a captive portal
or a coffee shop’s WiFi. There is no requirement to set up a VPN
connection to the enterprise network.

If the Network Is Located in a Physical Building Oper-
ated by the Enterprise: From a laptop or desktop provided by
Google, an engineer accesses the enterprise network. The laptop
provides its device certificate in the 802.1x handshake with the
RADIUS servers. As a valid certificate is provided, the laptop is
assigned an address on the unprivileged network. If the device is
not a corporate-issued laptop, or its certificate has expired, the
device is assigned an address on a remediation network, which
has very limited access rights.

Accessing the Application, Regardless of Network
From a corporate-issued laptop on a network, an engineer
accesses codereview.corp.google.com. You can refer back to
 Figure 1 as a reference for the flow for this process.

1. The request is directed to the access proxy. The laptop provides
its device certificate.

2. The access proxy does not recognize the user and redirects to
the SSO system.

3. The engineer provides his or her primary and second-factor
authentication credentials, is authenticated by the SSO system,
is issued a token, and is redirected back to the access proxy.

4. The access proxy now has the device certificate, which identi-
fies the device, and the SSO token, which identifies the user.

5. The Access Control Engine performs the specific authorization
check configured for codereview.corp.google.com. This authori-
zation check is made on every request:

a. The user is confirmed to be in the engineering group.

b. The user is confirmed to possess a sufficient trust level.

c. The device is confirmed to be a managed device in good
standing.

d. The device is confirmed to possess a sufficient trust level.

e. If all these checks pass, the request is passed to an appro-
priate back end to be serviced.

f. If any of the above checks fails, the request is denied.

With this approach, we have rich, service-level authentication and
authorization checks that are exercised on a per-request basis.

Migrating to BeyondCorp
Like virtually every other enterprise in the world, Google
maintained a privileged network for its clients and applica-
tions for many years. This paradigm gave rise to significant
infrastructure that is critical to the day-to-day workings of the
company. While all components of the company will migrate
to BeyondCorp, moving every network user and every applica-
tion to the BeyondCorp environment in one fell swoop would be
incredibly risky to business continuity. For that reason, Google
has invested heavily in a phased migration that has successfully
moved large groups of network users to BeyondCorp with zero
effect on their productivity. The following section, represented
by Figure 2, details some of the work we have done.

Workflow Qualification
All the applications used at Google are required to work through
the access proxy. The BeyondCorp initiative examined and
qualified all applications, which accomplish tasks ranging from
the simple (e.g., supporting HTTPS traffic) to the more difficult
(e.g., SSO integration). Each application required an access proxy
configuration and, in many cases, a specific stanza in the Access
Control Engine. Each application went through the following
phases:

Figure 2: Migrating to BeyondCorp

10  D ECE M B ER 20 14 VO L . 3 9, N O. 6 www.usenix.org

SECURITY
BeyondCorp: A New Approach to Enterprise Security

1. Available directly from the privileged network and via a VPN
connection externally.

2. Available directly from the privileged network and via the
access proxy from external and unprivileged networks.
In this case, we used split DNS. The internal name server
pointed directly at the application, and the external name
pointed at the access proxy.

3. Available via the access proxy from external, privileged, and
unprivileged networks.

Job Function Analysis
By examining job functions throughout the company and cross-
referencing this information against the workflow qualification,
we were able to prioritize groups of users to migrate. Therefore,
we were able to choose network users from the finance, sales,
legal, or engineering groups based upon a thorough understand-
ing of user workflows and the capabilities of the BeyondCorp
components at that time.

Cutting Back on the Usage of VPN
As more and more applications became available via the access
proxy, we started actively discouraging users from using the
VPN, employing the following strategy:

1. We restricted VPN access to users with a proven need.

2. We monitored use of the VPN and removed access rights from
users who did not use VPN over a well-defined period.

3. We monitored the VPN usage for active VPN users. If all of
their workflows were available through the access proxy, we
strongly encouraged users to give up their VPN access rights.

Traffic Analysis Pipeline
It was very important that we moved users to the unprivileged
network only when we were certain (or very close to certain)
that all of their workflows were available from this network. To
establish a relative degree of certainty, we built a Traffic Analy-
sis Pipeline. As input to this pipeline, we captured sampled net-
flow data from every switch in the company. This data was then
analyzed against the canonical ACL between the unprivileged
network and the rest of the company’s network. Such analysis
allowed us to identify the total traffic that would have passed the
ACL, plus an ordered list of traffic that would not have passed
the ACL. The non-passing traffic could then be attached to spe-
cific workflows and/or specific users and/or specific devices. We
then progressively worked through the list of non-passing traffic
to make it function in the BeyondCorp environment.

Unprivileged Network Simulation
To augment the Traffic Analysis Pipeline, which used sampled
data from switches, we also simulated unprivileged network
behavior across the company via a traffic monitor that was
installed on all user devices attached to Google’s network. The
traffic monitor examined all incoming and outgoing traffic on

a per-device basis, validated this traffic against the canoni-
cal ACL between the unprivileged network and the rest of the
company’s network, and logged the traffic that did not pass the
validations. The monitor had two modes:

◆◆ Logging mode: captured the ineligible traffic, but still permitted
said traffic to leave the device.

◆◆ Enforcement mode: captured and dropped the ineligible traffic.

Migration Strategy
With the Traffic Analysis Pipeline and the unprivileged simu-
lation in place, we defined and are currently implementing a
phased migration strategy that entails the following:

1. Identifying potential sets of candidates by job function and/
or workflow and/or location.

2. Operating the simulator in logging mode, identifying users
and devices that have >99.9% eligible traffic for a contiguous
30-day period.

3. Activating simulator enforcement mode for users and devices
that have >99.99% eligible traffic for that period. If necessary,
users can revert the simulator to logging mode.

4. After operating the simulator in enforcement mode success-
fully for 30 days, recording this fact in the device inventory.

5. Along with inclusion in the candidate set, successful opera-
tion in the simulator’s enforcement mode for 30 days provides
a very strong signal that the device should be assigned to the
unprivileged network when the next 802.1x authentication
request is serviced by the RADIUS servers.

Exemption Handling
In addition to automating the migration of users and devices
from our privileged to our new unprivileged network as much
as possible, we also implemented a simple process for users to
request temporary exemptions from this migration. We main-
tained a known list of workflows that were not yet qualified
for BeyondCorp. Users could search through these workflows,
and with the correct approval levels, mark themselves and their
devices as active users of a certain workflow. When the work-
flow was eventually qualified, its users were notified and were
again eligible to be selected for migration.

Completing BeyondCorp
The migration of the Google Enterprise to BeyondCorp is well
underway, and the majority of workflows it entails are already
qualified. Our migration tools and strategy permit us to pro-
actively move users, devices, and workflows to BeyondCorp
without affecting day-to-day productivity.

We anticipate a long tail of workflows that will take some time
to move to BeyondCorp. For example, fat-client applications that
use proprietary protocols to talk to servers will be a challenge.

www.usenix.org D ECE M B ER 20 14 VO L . 3 9, N O. 6 11

SECURITY
BeyondCorp: A New Approach to Enterprise Security

We are investigating ways to BeyondCorp such applications,
perhaps by pairing them with an authentication service.

As we move forward with the migration to BeyondCorp, we
intend to publish subsequent articles explaining why and how
Google has moved to BeyondCorp, with the goal of encouraging
other enterprises in implementing similar strategies.

NSDI ’15 will focus on the design principles, implementation, and practical evaluation

of networked and distributed systems. Our goal is to bring together researchers from

across the networking and systems community to foster a broad approach to address-

ing overlapping research challenges.

NSDI provides a high-quality, single-track forum for presenting results and discussing

ideas that further the knowledge and understanding of the networked systems com-

munity as a whole, continue a significant research dialog, or push the architectural

boundaries of network services.

www.usenix.org/nsdi15

12th USENIX Symposium on
Networked Systems
Design and Implementation

SAVE THE DATE!

May 4–6, 2015 • Oakland, CA

12  D ECE M B ER 20 14 VO L . 3 9, N O. 6 www.usenix.org

SECURITY

Sandboxing with Capsicum
P A W E L J A K U B D A W I D E K A N D M A R I U S Z Z A B O R S K I

Very few programmers have managed to successfully use the principle
of least privilege, as found in OpenSSH, Postfix, and djbdns. Capsi-
cum, introduced in 2010, adds a capability model designed to make it

easier for programmers to reason about how to split a program into privileged
and unprivileged portions. In this article, we describe the changes made in
Capsicum since 2010, compare Capsicum to earlier sandboxing techniques,
and look at the new Casperd, which makes it simpler to split programs.

Long ago, people started to recognize that security models proposed by the mainstream
operating systems, including Windows, Mac OS X, and all kinds of UNIX-like systems, are
simply naive: All you need to do is to write programs that have no bugs. That’s indeed naive.
Let’s also state an obvious rule: The more code we write, the more bugs we introduce, some of
which may jeopardize the security of our system. Once we accept this fact, where do we go?
We could only develop very small programs, which are easy to audit, but this again would be
a bit naive.

To reduce the size of the TCB (trusted computing base), the privilege separation model was
introduced. This model splits the program into several independent components, moving all
privileged tasks to a small privileged process, and shifting all the work requiring no privi-
leges but that may be risky (like processing network packets) to a larger process that has
no privileges. In the case of OpenSSH, the unprivileged process is responsible for parsing
all network packets, handling compression, encryption, etc., and the privileged process is
responsible for authenticating credentials extracted by the unprivileged process, starting the
user’s shell, and so on. Those two processes communicate over pipes. Designing the separa-
tion properly is very important. If the unprivileged process would have been responsible
for authentication and would just pass the result to the privileged process, the whole model
would be useless [5, 6].

Global Namespaces
An unprivileged process should be enclosed within some kind of process sandbox. One way
to evaluate how good the sandbox is is to check how many global namespaces it is protecting.
By global namespace, we are referring to a limited area within the operating system, these
areas having some set of names that allow the unambiguous identification of an object [2].
An example of a process sandbox is a Linux kernel mechanism called seccomp. This mecha-
nism allows you to limit a process to a state in which you can’t do any other system calls
than exit, sigreturn, read, and write [3]. It appears to be a very secure approach, but it is also
very restrictive. For example, you can’t, in any situation, open any new file or receive a new
file descriptor. Other mechanisms of process sandboxing are Seatbelt (in Mac OS X) and
Capsicum (in FreeBSD), which will be described later in this article. In Table 1, we present a
full list of the global namespaces in the FreeBSD kernel. One namespace example is the file
paths global namespace, which is nothing more than the list of files, symlinks, and directo-
ries in our computer.

Pawel Jakub Dawidek is a
co-founder and CTO at Wheel
Systems and a FreeBSD
committer who lives and works
in Warsaw, Poland. He is the

author of various GEOM classes, including the
disk-encryption class GELI; he implemented
the Highly Available Storage (HAST) daemon
for distributing audit trail files (auditdistd), and
nowadays is mostly working on the Capsicum
framework and the Casper daemon.
pjd@freebsd.org

Mariusz Zaborski is currently
working as a software
developer at Wheel Systems
and is a student at Warsaw
University of Technology.

He is a successful Google Summer of Code
2013 student. His work is mostly focused on
Capsicum and the Casper daemon. Mariusz’s
relationship with FreeBSD is still young but
very intensive. oshogbo@freebsd.org

www.usenix.org D ECE M B ER 20 14 VO L . 3 9, N O. 6 13

SECURITY
Sandboxing with Capsicum

Table 1 was first published in [4]. Additionally, we would like to
include “routing tables” to this list. In the FreeBSD operating
system, per-process routing tables may be changed using the
program setfib(1).

Security Hacks
In this section, we describe many of the “sandboxing techniques”
(or as we prefer, “security hacks”) that were used before process
sandboxing, and show that creating an isolated environment
wasn’t easy. Programmers try to simulate sandboxes using
portable functions like setuid(2), setrlimit(2), chroot(2), etc. Most
of these functions are part of the POSIX standard, so they should
work on Linux and UNIX operating systems.

setuid(2), setgid(2), and setgroups(2)
It is obvious that unprivileged processes cannot run with root
privileges, so they have to run as some other user. In the past, it
was common to choose the “nobody” user, but if multiple inde-
pendent programs reuse this one UID to drop privileges, it may
become possible to jump from one program to another. We don’t
want that. This is why programs nowadays reserve their own
unprivileged users, like the “sshd” user in the case of OpenSSH.
There are many details you have to do correctly or this won’t
work properly:

◆◆ When changing your UID, don’t forget to change your GID, too.
◆◆ When changing your GID, be sure to do it before changing your

UID or it will fail.
◆◆ When changing your GID, be sure to remove all the other

groups the process owner (root) belongs to, and do it before
changing UID.

◆◆ Be sure to use setgroups(2), setgid(2), and setuid(2) system
calls, or it may be possible to switch back to root.

◆◆ Be sure to verify these operations actually succeed! On some
systems, in some conditions, it is not possible for the root user
to change its UID, for example, and you’ll be left running as root.

◆◆ Be sure to verify that your target operating system’s setuid(2)
and setgid(2) system calls modify real, effective, and saved user
ID and group ID (or use setresuid(2)/setresgid(2) if available).

◆◆ Be sure not to modify effective user ID before calling setuid(2)
or it won’t change saved UID, and it will be possible to switch
back to root.

◆◆ Functions that allow you to change UID, GID, and groups
require root privileges.

In Listing 1, we have provided an example implementation of
this method. It looks easy, doesn’t it? However, there are many
examples of people making some slip-up trying to use this tech-
nique. The most common mistakes with CVE examples are:

Namespace Description

Process ID (PID)
UNIX processes are identified by unique IDs. PIDs are returned by fork and used for signal delivery, debugging,
monitoring, and status collection.

File paths
UNIX files exist in a global, hierarchical namespace, which is protected by discretionary and mandatory access
control.

NFS file handles
The NFS client and server identify files and directories on the wire using a flat, global file handle namespace.
They are also exposed to processes to support the lock manager daemon and optimize local file access.

File system ID
File system IDs supplement paths to mount points, and are used for forcible unmount when there is no valid path
to the mount point.

Protocol address
Protocol families use socket addresses to name local and foreign endpoints. These exist in global namespaces,
such as IPv4 addresses and ports, or the file system namespace for local domain sockets.

Sysctl MIB
The sysctl management interface uses numbered and named entries, used to get or set system information, such
as process lists and tuning parameters.

System V IPC System V IPC message queues, semaphores, and shared memory segments exist in a flat, global integer namespace.

POSIX IPC
POSIX defines similar semaphore, message queue, and shared memory APIs with an undefined namespace: On
some systems, these are mapped into the file system; on others they are simply a flat, global namespace.

System clocks UNIX systems provide multiple interfaces for querying and manipulating one or more system clocks or timers.

Jails The management namespace for FreeBSD-based virtualized environments.

CPU sets A global namespace for affinity policies assigned to processes and threads.

Routing tables A global namespace with routing tables assigned to process.

Table 1: Global namespaces in the FreeBSD operating system kernel [4]

14  D ECE M B ER 20 14 VO L . 3 9, N O. 6 www.usenix.org

SECURITY
Sandboxing with Capsicum

◆◆ CVE-2013-4559 for lighttpd—missing checks for setuid(2),
setgid(2), and setgroups(2) failures

◆◆ CVE-2007-0536 for rMake—missing setgroups(2) call
◆◆ CVE-2000-0172 for mtr—seteuid(2) instead of setuid(2)

 #define VERIFY(expr) do { \

 if (!(expr)) \

 abort(); \

} while (0)

uid_truid, euid, suid;

gid_trgid, egid, sgid;

gid_tgidset[1];

gidset[0] = pw->pw_gid;

if (setgroups(1, gidset) == -1)

 err(1, Ünable to set groups to gid”);

if (setgid(pw->pw_gid) == -1)

 err(1, Ünable to set gid”);

if (setuid(pw->pw_uid) == -1)

 err(1, Ünable to set uid”);

VERIFY(getresuid(&ruid, &euid, &suid) == 0);

VERIFY(ruid == pw->pw_uid);

VERIFY(euid == pw->pw_uid);

VERIFY(suid == pw->pw_uid);

VERIFY(getresgid(&rgid, &egid, &sgid == 0);

VERIFY(rgid == pw->pw_gid);

VERIFY(egid == pw->pw_gid);

VERIFY(sgid == pw->pw_gid);

VERIFY(getgroups(0, NULL) == 1);

VERIFY(getgroups(1, gidset) == 1);

VERIFY(gidset[0] == pw->pw_gid);

Listing 1: Example code to change UID and GID in a secure fashion

Directory Restrictions
The method just described provides us with some security in
the file path namespace, but our unprivileged process can still
access various files on the system, can fill up file systems like
/tmp/, or perform network communications. To “fix” the file
 system problem, we can use the chroot(2) system call, which
limits access to the file system tree.

Again, a few traps await us here:

◆◆ The chroot(2) system call is limited to the root user only, so we
need to do it before changing our UID!

◆◆ Once our root directory is changed we have to chdir(2) to the
new “/” because if the process working directory is outside
of the new root directory, it will remain possible to access all
the files!

◆◆ Be careful not to leave any directory descriptors open or the
process will be able to escape from within our new root directory!

Code which implemented most of these rules is presented
in Listing 2. We skipped over checking every open direc-
tory descriptor and checking every component for ownership;
however, you should be aware that leaving any open directory
descriptor is a big mistake.

/* Check for open directory descriptors */

/* Check for ownership of every component */

if (chroot(dir) != 0)

 err(1, “Unable to change root directory to \

 %s”, dir);

if (chdir(“/”) != 0)

 err(1, “Unable to change directory

 to new root”);

Listing 2: Code demonstrating correct use of the chroot(2) function

Some examples of common mistakes, with corresponding CVEs:

◆◆ CVE-2008-5110, CVE-2011-4099—missing chdir(“/”) after
chroot(2)

◆◆ CVE-2005-4532—chroot directory writable by user

P_SUGID
After changing our directory using chroot(2) and dropping privi-
leges using setuid(2), we are no longer running as root, but all our
sandboxes run as the same UNPRIV_USER user, which is not
good. For example, OpenSSH’s sandbox is using the single sshd
user to handle sessions from every user that is logging in, includ-
ing root. Now if we break into such a sandbox we will be running
as sshd user and can mess with other sandboxes, handling other
SSH sessions. What exactly can we do? If we could use ptrace(2)
to attach to a sandbox that handles root’s session, then we could
just modify this sandbox memory and break into root’s SSH
session. This possibility alone would make privilege separation
useless. Fortunately, this is not possible. Because we were run-
ning as root and then dropped our privileges using setuid(2), the
kernel tagged our process with the P_SUGID flag. On FreeBSD,
this prevents another process with the same user ID from being
able to debug us. It also means that only some signals may be
delivered to such a process, but those signals include SIGUSR1,
SIGUSR2, SIGHUP, SIGALRM, etc., so it is still not without risk.

As we mentioned in the introduction to this section, most func-
tions presented here are part of the POSIX standard and should
work on most Linux and UNIX operating systems. Unfortu-
nately, it is not all roses. For example, in 2005, Tavis Ormandy
found out that the setuid(2) function does not set the P_SUGID
flag in the NetBSD operating system [9]. So before sandboxing
your process using all those techniques, be sure to check that
they work properly on your destination operating system.

Very Restrictive Environment
The next thing we shall try to do is to prevent network connec-
tions. If an attacker can break into our program, they could,
for example, run a spam-sending botnet. One way to prevent
network connections is to set the limit on open file descriptors to
zero, which will prevent the opening of any new file descriptors
and raising the limit back.

www.usenix.org D ECE M B ER 20 14 VO L . 3 9, N O. 6 15

SECURITY
Sandboxing with Capsicum

If we are limiting the number of file descriptors, we could also
limit file size and disable forking. If we set the file size limit to
zero, a process may not create any new files. Disabling forking
will prevent any kind of DDoS attacks that involve running a lot
of child processes.

Listing 3 shows example code that sets all of these restrictions.

structrlimitrl;

rl.rlim_cur = rl.rlim_max = 0;

if (setrlimit(RLIMIT_NOFILE, &rl) != 0)

 err(1, “Unable to limit file descriptors”);

if (setrlimit(RLIMIT_FSIZE, &rl) != 0)

 err(1, “Unable to limit file size”);

if (setrlimit(RLIMIT_NPROC, &rl) != 0)

 err(1, “Unable to disallow forking”);

Listing 3: Example code to create a very restricted environment

This method is used, as far as the authors know, only in
OpenSSH. These limits are very restrictive. The process may
not receive any new file descriptors, duplicate any descriptors, or
open any new files in any situation.

Summary of Security Hacks
These four methods are the most interesting methods to sandbox
applications using standard functions. In Table 2, we present
information on which method protects which namespace.

While analyzing the Table 2, please keep in mind that using
setrlimit(2) technique imposes significant restrictions on the
programmer and, in the common case, makes setrlimit(2) very
impractical or even impossible to use.

As you can see, using those techniques leaves a lot of space for
mistakes, without even covering all global namespaces. These
methods also leave a lot of gaps in global namespaces that they
should protect.

Capsicum
Capsicum is a lightweight OS capability and sandbox framework
[7]. In FreeBSD, we can divide the architecture of our process
sandbox system into two modules:

◆◆ Tight sandboxing (cap_enter(2))
◆◆ Capability rights (cap_rights_limit(2))

By “tight sandboxing” we understand that after calling the
cap_enter(2) function, the FreeBSD kernel will disallow access
to any global namespaces. The kernel will still allow access to
any local namespaces, so we can continue to use any references
to any part of the global namespace. For example, in the file path
namespace you can open a directory (e.g., using the opendir(2)
function), and after entering the sandbox you can still open any
file within that directory (e.g., using the openat(2) function).

The second part of Capsicum consists of capability rights,
which allow us to limit even more local namespaces. We have a
lot of flexibility in setting capability rights, which we can limit
to read-only, write-only, or append-only. Many limits are also
namespace specific. For example, three file-specific rights are:

◆◆ CAP_FCHMOD allows change mode (fchmod(2)).
◆◆ CAP_FSTAT allows getting file stats (fstat(2)).
◆◆ CAP_UNLINKAT allows file deletion (unlinkat(2)).

Namespace setuid(1) chroot(2) P_SUGID setrlimit(2) cap_enter(2)

Process IDs Unprotected Unprotected Partial Unprotected Protected

File paths Partial Protected Unprotected Partial Protected

NFS file handle Protected Unprotected Unprotected Unprotected Protected

Filesystem IDs Protected Unprotected Unprotected Unprotected Protected

Sysctl MIB Partial Unprotected Partial Unprotected Protected

System V IPC Unprotected Unprotected Unprotected Unprotected Protected

POSIX IPC Partial Unprotected Unprotected Protected Protected

System clocks Protected Unprotected Unprotected Unprotected Protected

Jails Partial Unprotected Unprotected Unprotected Protected

CPU sets Unprotected Unprotected Unprotected Unprotected Protected

Protocol address Unprotected Partial Unprotected Protected Protected

Routing tables Unprotected Unprotected Unprotected Unprotected Protected
Table 2: Showing which global namespaces are protected by different sandboxing techniques. Partial means the namespace is protected to some extent.

16  D ECE M B ER 20 14 VO L . 3 9, N O. 6 www.usenix.org

SECURITY
Sandboxing with Capsicum

We also have socket-specific rights, for example:

◆◆ CAP_ACCEPT accepts connection on socket (accept(2)).
◆◆ CAP_BINDAT assigns a local protocol address to a socket

(bindat(2)).

In the FreeBSD operating system, we have defined around 77
capabilities. A full list of the Capsicum capability rights can be
found in the FreeBSD rights(4) manual page.

Implementation of Capability Rights
In FreeBSD, file descriptors are a carrier of capability rights. In
a previous article about Capsicum [1], the authors wrote that we
wrap a regular file descriptor structure in a special structure
that holds information about rights. That has been changed
twice since then. First, they were changed to remove the wrap-
per structure and add a variable to the filedescent structure
to describe capability rights. The second modification was to
change the type of the variable. Initially, rights were represented
by the uint64_t type, allowing 64 rights to be defined. It turned
out that the maximnt number of rights was too small and the
uint64_t type was changed to a special structure that allows us
to define up to 285 rights (and even more if needed with more
involved changes).

This new structure is presented in Listing 4. The top two bits in
the first element of the cr_rights array contain total number of
elements in the array plus two. This means if those two bits are
equal to 0, we have two array elements. The top two bits in all
remaining array elements should be 0. The next five bits in all
array elements contain an array index. Only one bit is used and
bit position in this five-bit range defines the array index. This
means there can be at most five array elements in the future.
Using only one bit for array index helps to discover ORing rights
from different array elements.

#define CAP_RIGHTS_VERSION_00 0

/*

 * #define CAP_RIGHTS_VERSION_01 1

 * #define CAP_RIGHTS_VERSION_02 2

 * #define CAP_RIGHTS_VERSION_03 3

 *

/

#define CAP_RIGHTS_VERSION CAP_RIGHTS_VERSION_00

struct cap_rights {

 uint64_t cr_rights[CAP_RIGHTS_VERSION + 2]; };

typedefstructcap_rightscap_rights_t;

Listing 4: Current structure that defines Capsicum rights

Changing the type of the cap_rights structure also forces us
to change the interface of the cap_rights_limit(2) function. In
previous implementations to manage rights, we could simply use
logic instructions (e.g., and, or), but now this is no longer pos-
sible. New interfaces are presented in Listing 5.

 /* Interfaces. */

cap_rights_t *cap_rights_init(cap_rights_t *rights, ...);

void cap_rights_set(cap_rights_t *rights, ...);

void cap_rights_clear(cap_rights_t *rights, ...);

bool cap_rights_is_set(constcap_rights_t *rights, ...);

Listing 5: New interfaces for managing capability rights

These functions replace the previous logic instructions. First,
we need to initialize a cap_rights_t structure using cap_rights_
init(2) function. Then we may add new rights using cap_rights_
set(2). Once we finish all the required operation settings, we can
use cap_rights_limit(2) function to limit a file descriptor. All of
these steps are presented in Listing 6.

intfd;

cap_rights_t rights;

cap_rights_init(&rights, CAP_READ, CAP_WRITE, CAP_FSTAT);

cap_rights_set(&rights, CAP_FCHMOD);

/* Limit descriptor */

cap_rights_limit(fd, &rights);

Listing 6: Example of new interface usage

Status of the Project
Capsicum was first introduced in FreeBSD 9.0 and from then
was very quickly developed. Currently, there is ongoing work to
port Capsicum sandbox to Linux, OpenBSD, and DragonFlyBSD
[7]. A growing list of programs in the FreeBSD operating system
now use Capsicum:

◆◆ auditdistd(8)
◆◆ dhclient(8)
◆◆ hastd(8)
◆◆ hastctl(8)
◆◆ kdump(1)
◆◆ rwho(1)
◆◆ rwhod(8)
◆◆ ping(8)
◆◆ sshd(8)
◆◆ tcpdump(8)
◆◆ uniq(1)

An up-to-date list can be found on the Cambridge Web site about
Capsicum in FreeBSD [8].

Casper Daemon
Even though Capsicum gives us more flexibility than other
methods, in some cases this is still not enough. Consider the
situation in which you need to open a lot of different directories
(for example, when sandboxing the grep(1) program), or the case
where you need to open some Internet connection, but before

www.usenix.org D ECE M B ER 20 14 VO L . 3 9, N O. 6 17

SECURITY
Sandboxing with Capsicum

entering the sandbox you don’t know what kind of connection
this will be.

The Capsicum framework resolves this problem using a privilege
separation model. Before entering the sandbox you can spawn a
new process which will have more access to global namespaces
or even may not be sandboxed at all. The privileged process
performs some operation like opening files or Internet connec-
tions and passes the file descriptor to the unprivileged process
using UNIX domain sockets. The unprivileged process performs
all other actions. The rwhod(8) utility is an example of a program
that is sandboxed using this method.

This method works pretty well, but there is a lot of code that
would need to be rewritten multiple times for different programs.
To solve this problem, the Casper daemon was introduced.

Daemon Architecture
We can separate the Casper daemon into two parts: the Casper
daemon itself (casperd(8)) and Casper services.

The Casper daemon is a global program in an operating system
that waits for connections from other process. We can establish
a connection with the daemon using the cap_init(2) function.
The Casper daemon automatically spawns a second process
called the “zygote.” The zygote is a lightweight process that
closes all additional descriptors and uses minimal memory.
When a process establishes a connection with the daemon, the
process sends information about which services it will require.
Casper receives that information and clones the zygote pro-
cess, and after this operation, one zygote is transformed (using
execv(2) function) into a service. The process shown in Figure 1
demonstrates these steps.

Casper services are specially written programs that have
specific tasks. In FreeBSD 11-CURRENT, we have five official
services.

◆◆ system.dns allows the use of gethostbyname(3),
gethostbyname2(3), gethostbyaddr(3), getaddrinfo(3),
getnameinfo(3).

◆◆ system.grp provides a getgrent(3)-compatible API.
◆◆ system.pwd provides a getpwent(3)-compatible API.
◆◆ system.random allows obtaining entropy from /dev/random.
◆◆ system.sysctl provides a sysctlbyname(3)-compatible API.

All of these services provide equivalent APIs to the function that
they replace.

References
[1] Robert N. M. Watson, Jonathan Anderson, Ben Laurie,
Kris Kennaway, “Introducing Capsicum: Practical Capa-
bilities for UNIX,” ;login:, vol. 35, no. 6 (December 2010):
https://www.usenix.org/publications/login/december-2010
-volume-35-number-6/introducing-capsicum-practical
-capabilities-unix.

[2] “Namespace,” Wikipedia, accessed September 11, 2014:
http://en.wikipedia.org/wiki/Namespace.

[3] Google Seccomp Sandbox for Linux, 2014: https://code
.google.com/p/seccompsandbox/wiki/overview.

[4] Robert N. M. Watson, Jonathan Anderson, Ben Laurie,
Kris Kennaway, “Capsicum: Practical Capabilities for
UNIX,” 2010: https://www.usenix.org/legacy/event/sec10
/tech/full_papers/Watson.pdf.

[5] Niels Provos, Markus Friedl, Peter Honeyman, “Prevent-
ing Privilege Escalation”: http://niels.xtdnet.nl/papers
/privsep.pdf.

[6] Niels Provos, Privilege Separated OpenSSH: http://www
.citi.umich.edu/u/provos/ssh/privsep.html.

[7] Robert Watson, Cambridge Computer Laboratory Web
page, 2014: https://www.cl.cam.ac.uk/research/security
/capsicum/.

[8] Robert Watson, Cambridge Computer Laboratory Web
page—Capsicum FreeBSD, 2014: https://www.cl.cam.ac.uk/
research/security/capsicum/freebsd.html.

[9] Tavis Ormandy, NetBSD Local PTrace Privilege Escala-
tion Vulnerability, CVE-2005-4741: http://www.security
focus.com/bid/15290/info.

Figure 1: Life cycle of zygote in Casper daemon. On left side, the Casper
daemon has spawned a zygote; on the right side, the zygote has been
 attached to the process-requesting service.

18  D ECE M B ER 20 14 VO L . 3 9, N O. 6 www.usenix.org

SECURITY

PolyPasswordHasher
Improving Password Storage Security

S A N T I A G O T O R R E S A N D J U S T I N C A P P O S

We most often hear about password database thefts and the sub-
sequent cracking of these databases’ hashed passwords. Since
systems have become faster, and attackers have gained access

to clusters or specialized hardware used for cracking, the techniques that
have made cracking difficult need to be updated. We have created a system,
PolyPasswordHasher, that uses shared keys to add an additional encryption
step; it requires an attacker to simultaneously crack several keys at once.
We project that PolyPasswordHasher changes the time needed to crack even
short passwords to longer than current estimates of the age of the universe.

The Current Standard in Password Protection
Initially, passwords were stored in plaintext on servers. However, once a password data-
base was stolen by an attacker, all passwords on the system could be read. To combat this,
password storage systems started to store a cryptographic (one-way) hash of a password. In
this scheme, after acquiring a password database, the attacker had to guess at passwords and
check their values against the stored hashes in order to recover the actual passwords.

Cracking cryptographic hashes is not as complicated as it sounds, because an attacker can
simply pre-compute a database of common passwords and look up a password when given
its hash. To address this flaw, “salting” was devised; salt is a random value that is used in the
cryptographic hash of the password to make it effectively unique, per database. Current best
practice is to create a unique salt for every password (stored alongside the cryptographic
hash in the database).

How Do Hackers Steal and Crack Passwords?
To log in, a user provides his or her login name and password to the server. If the user is
remote (not physically at the server), this is done over an encrypted channel so that a man-in-
the-middle cannot see the user’s password. The server receives the user’s password, performs
a secure salted hash, and checks it against the value stored in the database. If these match,
the user is allowed to log in.

When an attacker wants to steal the password for a certain account, there are three options:
obtain the password before it gets hashed, act as a man-in-the-middle, or acquire the hash
and crack the database. Getting a password before it gets hashed requires the ability to read
arbitrary memory (root access) on a running server. Attacks of this nature, in which the
server has been completely compromised, account for less than 5% of total compromises,
according to Mirante’s analysis of recent password hacks [3].

Attacks that try to acquire the password while in transit (as a man-in-the-middle) are even
less common. The attacker must both intercept the client’s traffic and fool the user into
thinking the attacker’s site is in fact the actual site they are attempting to log in to. While not
perfect, technologies such as SSL and HSTS make thefts that use this technique uncommon.

Justin Cappos is an assistant
professor in the Computer
Science and Engineering
Department at New York
University. Justin’s research

philosophy focuses on improving real world
systems, often by addressing issues that arise
in practical deployments. jcappos@nyu.edu

Santiago Torres is a graduate
student in the Computer
Science Department at New
York University working under
Justin Cappos’s mentorship.

He is currently a contributor to open source
projects such as “TUF,” a secure update
framework, and “PolyPasswordHasher,” a
password storage mechanism resistant to
cracking. santiago@nyu.edu

www.usenix.org D ECE M B ER 20 14 VO L . 3 9, N O. 6 19

SECURITY
PolyPasswordHasher: Improving Password Storage Security

The most popular method is for the attacker to obtain a copy of
the hashed password database. This commonly occurs when a
copy of the hashed password database (e.g., a backup disk) is lost.
Attackers also can trigger a hashed password database disclo-
sure, with SQL injections accounting for the majority of known
password database breaches.

A hacker who gains access to a hashed password database will
usually try to crack passwords on a remote system (offline) by
guessing and computing passwords’ stored hashes, looking for
a match. Cracking programs such as oclHashCat [4] or John the
Ripper [2] can automate this process. To give this some perspec-
tive, a dump of passwords for 60% of the 6.5 million stolen
Linked In accounts was found one week after the breach on a
hacker forum. This is perhaps not surprising since a security
researcher was able to crack 63% of a ~40,000 entry salted SHA1-
encoded database in 40 minutes. Given this state-of-affairs,
salted password hashes are not a sufficient protection strategy.

A New Defense Scheme: PolyPasswordHasher
To meet the need for enhanced password security, we have created
PolyPasswordHasher, a password storage scheme that makes
stored password hash data (called polyhashes) interdependent
and thus impossible to crack individually. An attacker that
obtains a password database stored using PolyPasswordHasher
must crack groups of passwords simultaneously. The principle
that makes this work is the concept of cryptographic shares, such
as in a Shamir Secret Store [1, 5].

Imagine these cryptographic shares functioning something like
a “two-man rule,” such as when a bank check requires multiple
signatures or two physical keys must be turned at the same time
to open a safety deposit box. A secret key is divided into multiple
pieces of information, called shares, with each piece distrib-
uted across at least two keyholders. This share strategy aids in
the process of recombination. When a certain number of these
pieces of information are acquired, an agent is able to recover
the original secret key. One important characteristic is that if
an agent has only some of the pieces of information needed, they
recover no information about the original secret key.

The principal characteristic of this sharing scheme is a configu-
rable threshold value, usually set to a value such as 3 or 5, which
determines how many shares are needed in order to recover the
secret key. The secret key is never stored on disk by PolyPass-
wordHasher to secure it from attacks such as SQL injection.
Instead of storing a secure salted hash, PolyPasswordHasher
stores a different value, called a polyhash. A polyhash consists of
the secure salted hash for the password, XORed with a crypto-
graphic share. This protects a password’s secure salted hash
with the cryptographic share. That is, before individual pass-
words can be cracked, an attacker must be able to recover the
secret key (recoverable via a threshold of passwords).

In the following sections, we first describe normal operation of
a PolyPasswordHasher server (by assuming that a server has a
threshold of passwords, and thus the secret key). We then dis-
cuss how a system using PolyPasswordHasher bootstraps after
a reboot.

How PolyPasswordHasher Works When a
 Threshold of Passwords Is Known
PolyPasswordHasher supports two types of user accounts:
those that protect a cryptographic share (threshold accounts)
and those that do not (thresholdless). Types of accounts that
would not protect a share are those in which users are allowed
to register any number of accounts, as is the case with Gmail or
Facebook. Whether accounts are threshold or thresholdless is
invisible to the user, with different procedures taking place in
the background.

When a threshold account is created, the system produces a ran-
dom salt, calculates a salted-hash and issues a new share. The
system produces a polyhash by XORing the salted hash and the
share, which is then stored, along with the salt and some helper
information, as illustrated in Figure 1. The share itself and the
salted password hash are never stored on disk.

To log in, a user gives his or her username and password to the
server. PolyPasswordHasher checks these to identify which
share was assigned to the user’s polyhash and then recomputes
that share. Next, a salted-hash will be calculated from the input
password and its stored salt. Finally, the newly created salted-
hash will be XORed with the share to construct a polyhash.
Assessing whether the user provided the correct password is a
matter of checking the constructed polyhash against the stored
polyhash.

If in addition to threshold accounts the system allows other
users to freely create accounts (e.g., Gmail), a thresholdless entry
will be issued for those users. Instead of assigning a share, the
secure salted-hash for a thresholdless entry is encrypted with
the secret key. Verifying an account for this new user entails
decrypting the stored encrypted hash and comparing it in the
same fashion as are regular salted-hashes; thresholdless entries
are illustrated in Figure 2.

Figure 1: How a polyhash is stored for a threshold account

Figure 2: Stored data for thresholdless accounts

20  D ECE M B ER 20 14 VO L . 3 9, N O. 6 www.usenix.org

SECURITY
PolyPasswordHasher: Improving Password Storage Security

Bootstrapping a Server after Reboot
A PolyPasswordHasher server stores its secret key in memory,
not on a disk, and the key is thus lost upon reboot. When the
server reboots, this secret key is not available, and thus the
server cannot compute shares. Therefore, PolyPasswordHasher
cannot verify or create accounts as it normally does. PolyPass-
wordHasher must bootstrap.

During this phase, PolyPasswordHasher will collect shares
from threshold logins in order to recover the secret. The number
of threshold logins required to recover the secret is configured
by the system administrator, and it is usually set to a low
value (e.g., three or five). For example, if the threshold is three,
 PolyPasswordHasher will finish bootstrapping after the third
threshold account has provided a correct password. While
PolyPasswordHasher waits for threshold accounts to log in, it
authenticates user passwords using a field called partial-bytes.

The partial-bytes field contains only a portion of a regular
salted-hash, such as the last four bytes. When a user attempts
to log in during the bootstrap phase, PolyPasswordHasher will
verify that the partial-bytes field matches the corresponding
portion of the password’s secure salted hash. For example, if
the last four bytes of the salted hash are “A04F,” then this will
be verified upon login. Although these partial-bytes could hint
to the attacker what the user’s password is, the attacker would
not be certain of the password since the complete salted hash is
not stored. If the attacker chooses a password that matches the
partial-bytes but nonetheless is incorrect, this will be detected
after bootstrapping is finished, and the system administrator
notified of the likely password hash database theft.

Account creation is also available during the bootstrap phase.
To enable this, the new account is added to the database with a
regular salted-hash. These accounts can be used normally while
the system is bootstrapping. When the system is provided shares
from enough threshold accounts, it can finish bootstrapping.
To do this, the server re-validates all prior logins with the full
polyhash or encrypted salted-hash. Also, any accounts that were
created during bootstrap will have their password hash transi-
tioned to protected shares (if threshold) or encrypted shares
(if thresholdless).

Evaluation—How We Know It Works
Three elements contribute to the effectiveness of a new pass-
word storage method: overhead (e.g., storage and memory
costs), efficiency, and time to crack passwords. We assessed
storage costs by analyzing the amount of extra information
that is required by PolyPasswordHasher and compared that
with a standard user database. The only additional informa-
tion required is the share number field and the partial-bytes
field. The share number requires one extra byte per entry, and
the partial-bytes requires four bytes, although this last value is

configurable. The total extra information required is, then, five
bytes per entry. Considering that the salt, username, and salted-
hash fields account for more than a hundred bytes per entry, we
expect the overhead to be less than 5% of the password database
storage space cost. Furthermore, the size of a hashed password
database is minimal compared to user data (photos, content,
etc.) on most systems.

The memory cost of an implementation consists only of a buffer
to hold the secret. The size of the buffer for the secret key ranges
from 16 bytes to 64 bytes, depending on the implementation.

To understand the instruction efficiency (performance) of
 PolyPasswordHasher, we performed a series of microbench-
marks on an early 2011 MacBook Pro with 4 GB of RAM and a
2.3 GHz Intel Core i5 processor using a Python reference imple-
mentation. We measured instruction efficiency by looking at the
time it took for different operations of the PolyPasswordHasher
algorithm to complete. We found that the algorithm takes about
150 microseconds to authenticate a user. To transition from the
bootstrap phase to normal operation, which is only done once
upon restart, takes between hundreds of microseconds to tens
of milliseconds after the last threshold account has provided a
correct password, depending on the threshold value.

Suppose that users choose passwords from one of the 95 easily
typeable characters. If users choose six-character, random pass-
words, there are only 7.35*1011 possible values. When stored with
PolyPasswordHasher and a threshold of three, an attacker would
need to search 3.97*1035 different combinations—more than 23
orders of magnitude more operations.

To put these numbers into perspective, using the best known
GPU-cracking techniques, a computer can compute about
one billion hashes per second [6]. If three passwords were
stored with salted hashes (not PolyPasswordHasher), there are
3*7.35*1011 combinations possible. It would take an attacker less
than an hour to try these combinations on a single computer.
With PolyPasswordHasher, to search the keyspace of 3.97*1035
combinations would take all 900 million computers on the
planet 1.39*1010 years. That is longer than the estimated age of
the universe.

Summary / What’s to Come
There are multiple, open source implementations of PolyPassword-
Hasher available. Our Django implementation for PolyPassword-
Hasher is currently being integrated into a variety of servers at
New York University. We will use data from these servers to help
us understand whether there are any unforeseen complications
with production use.

We invite interested parties to find out more information and try
out PolyPasswordHasher at: http://polypasswordhasher.poly.edu.

www.usenix.org D ECE M B ER 20 14 VO L . 3 9, N O. 6 21

SECURITY
PolyPasswordHasher: Improving Password Storage Security

References
[1] K. Hirokuni, “Divide and Manage Secret Data Securely
with Shamir’s Secret Sharing—Kim’s Tech Blog”: http://kimh
.github.io/blog/en/security/protect-your-secret-key-with
-shamirs-secret-sharing/.

[2] John the Ripper official Web site: http://www.openwall
.com/john/.

[3] D. Mirante, J. Cappos, “Understanding Password Database
Compromises,” Polytechnic Institute of NYU, Department
of Computer Science, Technical Report TR-CSE-2013-02
9/13/2013.

[4] oclHashcat official Web site: http://hashcat.net/oclhashcat/.

[5] “Shamir’s Secret Sharing,” Wikipedia: https://en.wikipedia
.org/wiki/Shamir%27s_Secret_Sharing.

[6] A. Zonenberg, “Distributed Hash Cracker: A Cross-Platform
GPU-Accelerated Password Recovery System,” Rensselaer
Polytechnic Institute (2009).

03.16.15–03.17.15 | SANTA CLARA, CA

SREcon15
Help us make another SREcon happen!

Last May, we held the first ever SREcon, a conference focused in site reliability and production systems at scale. We, the
program chairs, wanted to make the event valuable for 200 attendees and capture whether attendees would want to
repeat the experience. We viewed SREcon14 as a success because the conference sold out with 275 attendees, and feed-
back was overwhelmingly positive! Now we need your help to make the next event even better.

The second SREcon will take place on March 16–17, 2015, in Santa Clara, CA. We added one more day because we felt
that there were many more important subjects to cover than our first program could contain. Now we need to fill in all
those spaces, and this is our call for participation. Save the date and come join us for two days of highly technical subjects
around site reliability and production at scale.

If you have a talk proposal or panel that is of interest to the community, send us your talk proposal using the template
available on the SRECon15 Web site and submit it to srecon15submissions@usenix.org. If you have a suggestion or request
for a particular speaker you really would like to see at the conference, feel free to drop us a message,
as well. We want SREcon15 to be a high-value conference once more.

Please send us talk proposals until January 5, 2015. We’ll evaluate those and get back to you by February 2, 2015.

We are looking forward to seeing you once more!

Program Co-Chairs:
Sabrina Farmer, Google
Andrew Fong, Dropbox
Fernanda Weiden, Facebook

www.usenix.org/srecon15

22  D ECE M B ER 20 14 VO L . 3 9, N O. 6 www.usenix.org

SECURITY

Code Testing through Fault Injection
P E T E R G U T M A N N

Several years ago a friend of mine did some robustness testing on a
widely used OpenSource Software Library. He instrumented the
 malloc() call so that it would fail (return a NULL pointer/out-of-

memory error) the first time that it was called. On the second program run
it would fail the second time that it was called, on the next run the third
time, and so on. Then he fired up a test suite wrapper for the library and
ran it using the fault-inducing malloc().

Luckily, he’d had the foresight to hard-limit the script he was using to stop after a thousand
core dumps rather than running through the full test suite wrapper. The hard drive on his
computer still hasn’t forgiven him for the thrashing it got, though. So why did something as
simple as a memory allocation failure cause such havoc?

Why
Most developers have heard that writing unit tests for their code is a Good Thing, and some
of them even include the odd one to substantiate this. What these tests invariably do, though,
is exercise the standard code paths, the ones that get taken in the presence of normal input
and normal operations by other parts of the system. The code paths that handle exception
conditions, for example, memory allocation failures, never get tested. It’s exactly these condi-
tions that the instrumented malloc() exercised, and as the results show, the performance of
the never-tested code in these paths was pretty dire.

The instrumented malloc() is an example of a testing technique called fault injection, which
tests how well (or, more typically, how poorly) code handles exception conditions. The most
commonly encountered type of fault injection is fuzz testing or fuzzing, which throws
random input at a program to see how it handles it. One of the first instances of fuzz testing
looked at the reliability of UNIX utilities in the presence of unexpected input, finding that
one-quarter to one-third of all utilities on every UNIX system that the evaluators could get
their hands on would crash in the presence of random input [1]. Unfortunately, when the
study was repeated five years later the same general level of faults was still evident [2]. While
this shows admirable consistency, it’s probably not the result that was desired.

Other studies have looked at the behavior of GUI rather than command-line applications in
the presence of unexpected input. One such study examined 30 different Windows appli-
cations from a mix of commercial and non-commercial vendors. Of the programs tested,
21% crashed and 24% hung when sent random mouse and keyboard input, and every single
application crashed or hung when sent random Windows event messages [3]. Before everyone
rolls their eyes and mumbles things about Windows, a related study on the reliability of GUI
applications under OS X found them to be even worse than the Windows ones [4].

A second type of fault injection involves inducing specific execution failures. One way of
doing this is through instrumented system calls like the malloc() example given earlier.
The late Evi Nemeth of the University of Colorado used to have her students link their pro-
gramming assignments against a custom stdlib/libc in which certain function calls didn’t

Peter Gutmann is a researcher
in the Department of Computer
Science at the University of
Auckland working on design
and analysis of cryptographic

security architectures and security usability.
He is the author of the open source cryptlib
security toolkit, and an upcoming book on
security engineering. In his spare time he
pokes holes in whatever security systems
and mechanisms catch his attention and
grumbles about the lack of consideration of
human factors in designing security systems.
pgut001@cs.auckland.ac.nz

www.usenix.org D ECE M B ER 20 14 VO L . 3 9, N O. 6 23

SECURITY
Code Testing through Fault Injection

always succeed unconditionally. Most developers know that you
need to check whether a read()/fread() actually managed to
read the data that it was supposed to, but how many check an
lseek()/fseek()?

Think of this as a type of control-flow fuzzing rather than the
standard data-based fuzzing. Using modified libraries that ran-
domly report failures for system calls that could reasonably be
expected to fail, typically implemented as wrappers for standard
libraries, makes for a useful testing tool. Some work has already
been done in this area, generally looking at ways of automating
the creation of fault-injection wrappers for different libraries [5].

The other type of instrumentation that you can use for fault
injection is to modify the code itself to inject failures, such as a
bit being flipped in digitally signed data, so that the signature
check on your SSL handshake fails and your application warns
you that the data has been tampered with. If you’re thinking
“goto fail” or the GnuTLS equivalent at this point, then you’ll
understand why this type of testing is important.

Implementing this type of fault injection is a bit more laborious
than straight fuzzing of either input data or system calls, which
rely on the fact that if you make random changes and rerun the
code under test often enough then you’ll eventually trigger a fault
condition.

Statistical fuzzing only works most of the time. If the input data
is highly structured, using a tag/length/value or TLV encoding,
for example, then any change in the tag or length will be quickly
detected and rejected, at least by a properly implemented parser,
and any change in the value is irrelevant. To fuzz data like this,
you need somewhat exotic and protocol-specific smart fuzzers
[6], but that’s getting a bit beyond the scope of this article.

What
So if you’re trying to catch “goto fail”-style problems, which sorts
of faults do you inject and where do you inject them? If what
you’re implementing conforms to some standard or specifica-
tion, then the process is, at least in theory, relatively straightfor-
ward: You look for any location in the specification where you’re
required to report an error (e.g., due to a signature check failure)
and then inject a fault of that type. If the implementation doesn’t
detect and report an error, then there’s a problem.

The reason why I’ve said that this works in theory is because
most standards seem to focus excessively on the format of mes-
sages rather than their semantics. So a standard will describe in
minute detail the layout of data elements down to the individual-
bit level, but then neglect to mention that if some particular
processing step fails you shouldn’t continue. For example, here’s
what the specification for a PKI standard has to say about values
that protect against replay attacks:

The [values] protect the PKIMessage against replay
attacks. The [value] will typically be 128 bits of
(pseudo-) random data generated by the sender,
whereas the recipient [value] is copied from the sender
[value] of the previous message in the transaction. [7]

That’s the entire description (or non-description) of the replay-
protection mechanism. Note how the text carefully describes the
size of the value and how it’s copied around, but never says any-
thing about checking it, or what to do if the check fails. It’s pos-
sible to create a fully standards-compliant implementation that
has no protection whatsoever against replay attacks because
the spec never tells you to use the value to defend against these
attacks. And if you’re relying on using the specification to deter-
mine locations for fault injection, you have to infer what you’re
supposed to do from the comment that the values “protect the
PKIMessage against replay attacks.”

This problem is widespread among security standards. The
OpenPGP specification, which devotes a full 15 pages to the
minutiae of the formatting of signatures and signature data,
completely omits what exception conditions need to be checked
for when processing signatures or how to respond to them. The
only comment in the standard that I could find was a statement
that “if a subpacket is encountered that is marked critical but
is unknown to the evaluating software, the evaluator SHOULD
consider the signature to be in error” [8].

The standards that cover SSH are no better, with the sole check
that’s required being that “values of [Diffie-Hellman parame-
ters] that are not in the range [Diffie-Hellman prime size] MUST
NOT be sent or accepted by either side” [9].

As long as an implementation checks those parameters, it
can ignore the signature validity check and be completely
standards-compliant.

This lack of information unfortunately means that you’ll need to
go through and annotate the specification to indicate fault con-
ditions that need to be checked at various locations. This can get
somewhat tedious, because many specifications are presented
more as a catalog of message types (one side sends message A
with the following format, the other side responds with message
B in the following format, and so on) than a description of the
control flow of the protocol.

An additional complication arises because a particular type of
failure, and again I’ll use the “goto fail” signature-check flaw as
the poster child, can have a number of different causes. In this
case a signature check could fail because of any corruption/modi-
fication of the signed data, incorrect calculation of the hash value
that’s signed, corruption/modification of the signature value, and
incorrect computation of the signature value. So a full-coverage
test needs to inject each of these faults in order to verify that the
signature-check code will catch all of the different error types.

24  D ECE M B ER 20 14 VO L . 3 9, N O. 6 www.usenix.org

SECURITY
Code Testing through Fault Injection

When you’re thinking about what sorts of faults to inject, you
also have to know when to stop. For example, what if you’re wor-
ried that the code that hashes the data to be signed can detect
corruption at the start of the data but not at the end, or a high
bit flipped but not a low bit? Eventually, you need to make some
assumptions about the correct functioning of standard opera-
tions before you start developing an urge to inject faults down at
the atomic level.

An alternative strategy that you can use to determine what sorts
of faults to apply is to look through the code and make sure that
you inject ones that exercise every error path. This isn’t such
a good approach, though, because it’s not certain that the code
that you’re using as a template to generate your faults is actually
checking for all of the error conditions that it’s supposed to. This
can arise either due to a coding error (the programmer intended
to check for an error condition but forgot to add the necessary
code, or added the code but got it wrong) or because of a design
error (the programmer never even knew that she was supposed
to be checking for an error condition). In either case, if the code
isn’t obviously checking for a fault, you don’t know that you
should be injecting one.

Figuring out where to inject faults, and what sorts of faults to
inject, is by far the hardest part of the process. Once you’ve done
that, you can then get down to implementing the fault injection.

How
Now that you’ve identified what sorts of faults you want to inject,
how do you do it? The most straightforward, but probably also
the ugliest, approach is to insert chunks of code inside #ifdefs
that inject faults at appropriate locations. Eventually, you’ll
end up with the code encrusted in a mass of #ifdefs controlling
conditional compilation, and you’ll be hard-pressed to resist tak-
ing your former Mona Lisa, now turned into the equivalent of a
spray-painted bathroom stall, outside and setting fire to it.

A less inelegant way to handle this is to hide the mess behind
a macro, or whatever equivalent your programming language
gives you. I use #define INJECT_FAULT, taking as argument two
parameters, an enum that defines which fault to inject and the
code to use to inject the fault. The macro invocation:

INJECT_FAULT(FAULT_SIGCHECK, FAULT_SIGCHECK_CODE);

expands to:

if(faultType == FAULT_SIGCHECK)

 {

 fault code defined in FAULT_SIGCHECK_CODE;

 }

where faultType is a global variable that’s set to the appropri-
ate fault to inject, and the fault code itself is just a macro-based
paste of whatever you need to use to inject the fault. You’ll still
get a mass of random code to handle the fault injection, but now
it’s all squirreled away in a header file where you can’t see it
anymore, or at least where it isn’t obviously plastered all over
your Mona Lisa.

Finally, you need to exercise your newly added fault-injection
capability. This is pretty straightforward: You run your normal
test routines, but this time inject one of the faults that you’ve set
up, for example with setFault(FAULT_SIGCHECK). If your test
routine still reports success (or if your code simply crashes), then
you’ve got a problem that needs to be addressed. Do this for each
fault in turn and make sure that the error is detected.

So that’s how you can test your software using fault injection. It
won’t catch every problem, but it will help you avoid going to fail.

www.usenix.org D ECE M B ER 20 14 VO L . 3 9, N O. 6 25

SECURITY
Code Testing through Fault Injection

References
[1] Barton Miller, Lars Fredriksen, and Bryan So, “An Empiri-
cal Study of the Reliability of UNIX Utilities,” Communica-
tions of the ACM, vol. 33, no. 12 (December 1990), p. 32.

[2] Barton Miller, David Koski, Cjin Pheow Lee, Vivekananda
Maganty, Ravi Murthy, Ajitkumar Natarajan, and Jeff Steidl,
“Fuzz Revisited: A Re-examination of the Reliability of UNIX
Utilities and Services,” University of Wisconsin-Madison
Computer Sciences Technical Report #1268, April 1995.

[3] Justin Forrester and Barton Miller, “An Empirical Study of
the Robustness of Windows NT Applications Using Random
Testing,” Proceedings of the 4th USENIX Windows Systems
Symposium (WinSys ’00), August 2000, p. 59.

[4] Barton Miller, Gregory Cooksey, and Fredrick Moore, “An
Empirical Study of the Robustness of MacOS Applications
Using Random Testing,” SIGOPS Operating Systems Review,
vol. 41, no. 1 (January 2007), p. 78.

[5] Paul D. Marinescu and George Candea, “LFI: A Practical
and General Library-Level Fault Injector,” Proceedings of the

Intl. Conference on Dependable Systems and Networks (DSN),
June 2009: http://dslab.epfl.ch/pubs/lfi.pdf.

[6] Chad Brubaker, Suman Jana, Baishakhi Ray, Sarfraz
Khurshid and Vitaly Shmatikov, “Using Frankencerts for
Automated Adversarial Testing of Certificate Validation
in SSL/TLS Implementations,” Proceedings of the 2014
 Symposium on Security and Privacy (S&P ’14), May 2014,
p. 114.

[7] Carlisle Adams, Stephen Farrell, Tomi Kause, and Tero
Mononen, “Internet X. 509 Public Key Infrastructure Cer-
tificate Management Protocol (CMP),” RFC 4210, September
2005.

[8] Jon Callas, Lutz Donnerhacke, Hal Finney, David Shaw,
and Rodney Thayer, “OpenPGP Message Format,” RFC 4880,
November 2007.

[9] Tatu Ylonen and Chris Lonvick, “The Secure Shell (SSH)
Transport Layer Protocol,” RFC 4253, January 2006.

26  D ECE M B ER 20 14 VO L . 3 9, N O. 6 www.usenix.org

SECURITY

Capturing Capture the Flag
Further Discussions

M A R K G O N D R E E

This year, the first USENIX Summit on Gaming, Games, and Gami-
fication in Security Education (3GSE) was held, co-located with
USENIX Security ’14. The summit challenged designers, organizers,

gamers, and educators to consider how we assess and improve the current
state of security games, both in and out of the classroom.

3GSE featured a panel devoted to capture the flag (CTF) competitions and their use in educa-
tion, bringing together a diverse group of stakeholders interested in how we both run and evalu-
ate those games. The discussion expressed a fascinating mix of hacker values, student-centric
learning approaches, and technical issues inherent to running these complex competitions. I
had the opportunity to follow up with our panelists—Peter Chapman, Andrew Davis, Chris
Eagle, Portia Pusey, and Giovanni Vigna—to reflect on the highlights of that discussion.

MG: The term “capture-the-flag” has expanded through use. Some might say it has
been diluted. Is this confusing? What terminology to distinguish between games
seems most useful?

AD: At our CTF, we’ve had problems with people expecting a type of weekend-long hack-
a-thon, where everyone has a project to work on. Some of those types of competitions are
advertising themselves as CTFs, so the term is certainly becoming diluted. But we borrowed
the term from another game. We’ve had people show up to our CTF in shorts and a t-shirt,
and expect to run around a field stealing flags. So it’s partially our own fault.

PC: Within the community, there are some recognized categories but there is a lot of diver-
sity. They’ll describe the CTF as: attack-defense, where multiple teams attack each other;
Jeopardy-style, which is not a great name but refers to challenge-based competitions; and
there are war games, which are basically Jeopardy-style games that persist, so students
can go through challenges and educate themselves at any time. Smash the Stack (http://
smashthestack.org/) is one such war game. While these categorizations help people know
what to expect when they participate, trying to find new terms to recognize “hidden gems”
that fall outside these categories will be useful, going forward.

PP: I would add to that list “inherit and defend” competitions. We also need to distinguish
CTF from some specialized games such as Jeopardy-style, forensics, and cryptography chal-
lenges. Working groups at the Cybersecurity Competition Federation (http://nationalcsf.
org/) have begun to brainstorm and define the diverse competition formats.

CE: What I think is lacking is a categorization that communicates the goals of the organizers.
Pure competition play, like DEFCON CTF, appeals to a kind of audience, where the goal is
to crown or rank the competitors. But there are other CTFs whose goals are more aligned to
education. For these, the value may be in post-exercise debriefings and walkthroughs, which
you don’t necessarily get from a purely competitive league.

Mark Gondree is a security
researcher with an interest
in games for education and
outreach. With Zachary
Peterson, he released [d0x3d!],

a board game about network security to
promote interest and literacy in security topics
among young audiences. Gondree is a research
professor at the Naval Postgraduate School in
Monterey, CA. gondree@gmail.com

Andy Davis is a member of the Cyber
Systems Assessment Group at MIT Lincoln
Labs. He has helped organize the MIT/LL
CTF competition for the last two years and
several mini-CTF events at universities in the
northeast. Andrew.Davis@ll.mit.edu

Chris Eagle is faculty at the Naval Postgraduate
School. He led teams winning DEFCON’s CTF
competition in 2004 and 2008, and then
organized DEFCON’s CTF for the next four
years, 2009–2012. He is currently designing
and organizing DARPA’s Cyber Grand
Challenge competition. cseagle@nps.edu

Peter Chapman is a graduate student at
Carnegie Mellon. He was the first technical
lead for picoCTF, an online competition
started in 2013 for high school students. He
also worked on an attack-defense CTF for the
US service academies earlier this year, called
IOCTF. peter@cmu.edu

www.usenix.org D ECE M B ER 20 14 VO L . 3 9, N O. 6 27

GV: I agree. My gut feeling is that there are many students who would be excited to compete
in CTFs but, because we lack advertised goals and expectations, they are scared of partici-
pating. Categories that communicate the “roughness” of the game and level of support pro-
vided to the players would help. In general, I would call CTF only competitions in which the
teams both attack and defend an asset. I would use other terms for other types of competition
(such as “hacking competition” for a challenge-based competition).

MG: During the panel, it became clear that some game designers got negative
 feedback from the community, for failing to be inclusive of professionals or
 non-US students. What are the limits of inclusivity in CTFs?

PC: When the people running and supporting the game only know English, that becomes a
real barrier to supporting schools in some countries.

PP: Each competition can’t be everything to everyone; there is a very important reason for
that. We need to give young and novice learners a safe legal place to practice. We can’t leave
them in the “Wild West.” Many high-schoolers that I work with want to build their reputation,
and they’re getting into trouble. Furthermore, it’s not appropriate for minors to interact in the
same game environment as adults. And beginners may become disengaged when they have
to compete against experts. And, most importantly, games designed to be used in K12 school
settings need to protect students’ identities and control the types of interactions they have
with other players to keep them safe. This comes at the risk of excluding people from games.

MG: How do we build classes around competitions?

CE: For me, I’ve always found it easier to run a CTF extracurricular activity year-round.
Students come and go and may not be able to play year-round, but the timing of these things
all over the world is unpredictable and not in harmony with the academic calendar.

AD: We had a professor at a local university use a CTF for their final. I think if you force your
students to do a 48-hour, non-stop final where they get beat on, continuously, by more experi-
enced players, that seems pretty cruel.

GV: I disagree with that! I started iCTF in 2001 as an in-class “attacker versus defenders”
game, but the defenders claimed it wasn’t fun enough. In 2002, we changed the format to
“attack-defend,” and in 2003 we opened it up to other universities. It has always been in
December, as the “final” for my Fall class. I like the idea of taking a student who knows noth-
ing about security, and building up to running them through a competition, and they enjoy it.

PP: I think it’s valuable to separate the idea of competitions that are educational and competi-
tions that are designed to be used as education. For example, the CCDC is a competition that
can frustrate the players to tears. And at the same time, the players say it’s the best learn-
ing experience they’ve ever had. So, competitions can be educational. But if a competition
is going to be used as formal education there are different requirements. Educators need
measurable objectives, and the scoring system needs to provide evidence about the learner’s
progress towards achieving those objectives. Educators need to know what prerequisite
skills are required, and what evidence demonstrates that a learner is ready for the competi-
tion challenges. Finally, generally speaking, our nation does not have the capacity among
educators in the K12 space to teach cybersecurity. Therefore, we need to provide support
in the form of background materials and training for the educators to be able to effectively
integrate competitions into their classroom teaching.

SECURITY
Capturing Capture the Flag: Further Discussions

Portia Pusey is the project manager and
education chair for the National Cyber League
(NCL). She is part of the research team at
the National CyberWatch Center (NCC) who
published and presented on the research
conducted for the National Cyber League. She
is also leading a study of National Collegiate
Cyber Defense Competition (CCDC) coaches
and players for the NCC Research Team.
edrportia@gmail.com

Giovanni Vigna is a professor at UC Santa
Barbara, and the director of its Center for
CyberSecurity. Since 2003, he has organized
the annual International Capture the Flag
competition. iCTF is, today, the largest
regularly recurring CTF in existence. Play
is open to teams from two- and four-year
universities. vigna@cs.ucsb.edu

28  D ECE M B ER 20 14 VO L . 3 9, N O. 6 www.usenix.org

SECURITY
Capturing Capture the Flag: Further Discussions

MG: At 3GSE, we heard that some designers are facing
pressure to remove scores, make games non-competitive,
or turn competition into a series of tutorials. The think-
ing, in particular, is that competitive play may be uncom-
pelling to women. Can we do better outreach by changing
design?

PP: If I may speak for all of womankind, we are all different;
and some of us are highly competitive. Changing the rules or
structure of current competitions is not going to work. It seems
to me that evidence from the gaming industry and the current
landscape of competitions demonstrates that the games/activi-
ties/challenges/tasks do not interest most women. The lesson
we learn from the gaming industry is that when a game provides
challenges that women want to do, they play. So, the trick to
engaging more women in cybersecurity competitions is finding
competition tasks that women want to do.

GV: Making CTFs non-competitive is not a good solution to
inclusivity. The allure of many CTFs is in their competitive and
underground atmosphere. We should seek to draw women to
CTFs by finding ways to include more women in computer sci-
ence. I’m not sure this is a CTF problem but, rather, a larger and
more systemic issue facing our field.

CE: We can’t expect to have substantially higher percentage of
women participating in CTFs than are present in computer sci-
ence as a whole. The right answer is that we need to address that
problem, and then we can start to see participation from women
in every aspect of the field and not just CTFs.

PC: There is a difference between building a competition that
has been “toned down” to make everyone happy and making
a competition where we’ve removed various barriers to entry.
There are ways to build challenges so that they don’t hamper
the competition but are accommodating to players with less
experience. In PicoCTF, for example, some simple challenges
have tutorials accompanying them. Experienced players were
able to skip the tutorials and solve the challenges quickly. To
people with no experience, this was some of their favorite sec-
tions. They raved about them, and how they had the support to
participate in something they really found interesting. Those
teams still didn’t score very high in the competition, but they
didn’t care: they walked away with a very positive experience
rather than a feeling that this was too hard for them. We hope
to see those players again next year, where they may be able to
solve more challenges independently. Removing barriers and
letting novices participate in some form is one way to increase
our diversity.

PP: Efficacy research among the underrepresented in STEM
indicates that, if learning or competition experiences provide a
developmental sequence of successes, achievement and interest

in STEM majors and career paths increases. One study docu-
mented that a four-week intervention designed to build efficacy
helped girls to overcome societal messages and similar pre-
existing notions that “women don’t or can’t do that”; whatever
that may be. The Cybersecurity Competition Federation (http://
nationalcsf.org/) is an umbrella organization for competitions;
they are building a “pathway” of competitions so that students
can identify their point of entry in a continuum of competitions,
based on their skill level and interest. It will be interesting to see
if this supports greater diversity among players.

MG: If CTFs should be competitive and scored, is there
value in tying together team performance across games?
Or do we need to measure something in addition to the
score?

GV: I think that competitions need to have a ranking, but the
value is not in the ranking. The value is in the preparation and
the active engagement in the game. One thing we are bad at is
evaluating the effort leading up to a competition. We measure
the moments in the competition when we are there, but it would
be great as educators to find a way to assess their progress.

CE: CTF Time (https://ctftime.org/) tries to aggregate informa-
tion about competitions and weight the games. The organizers
have a pretty lofty goal to fill the gap as a team ranking body, but
it’s hard to do right. CTF teams change and there is no real way
to compare competition A to competition B in the absence of a
standards body.

PP: The Collegiate Cyber Cup (http://collegiatecybercup.org/) is
a national award that uses an algorithm to calculate an individ-
ual’s score based on their performance in multiple competitions
(team or individual). It is similar to NASCAR in that points from
different competitions are aggregated to identify a national win-
ner. This idea has merit because it provides formative feedback
to the player and quantifies performance for future employers.
The algorithm is a clever approach to building a national score
from the siloed system of competitions we have now. However, I
would like to see a common metric that can be used across all
competitions based on tasks from a rigorous job performance
model such as the one created for the Department of Energy (https://
www.controlsystemsroadmap.net/efforts/Pages/SPSP.aspx).

MG: What factors are most important when designing
scoring for a game?

GV: It’s a competition and players want to win, so they are very
invested in scoring. Most fundamentally, scoring needs to be
clear. Most of the times players have been hurt due to scoring,
the culprit has been lack of clarity. The scoring rules need to be
transparent, and the scoring mechanism needs to be automated,
requiring no human or qualitative judgment.

www.usenix.org D ECE M B ER 20 14 VO L . 3 9, N O. 6 29

SECURITY
Capturing Capture the Flag: Further Discussions

CE: If you are going to award a prize, your scoring mechanism
better be pretty stinking good.

AD: Our CTF group has likely spent more time talking about
scoring than anything else, and it’s a very hard topic. You have
to establish what you want to evaluate. It also needs to be simple
enough so that there are no surprises. Anyone should be able to
look at the scoring algorithm and see that, if I’m doing what I
should be doing in the game and I’m doing better at it than any-
one else, then my score should be higher.

CE: When you communicate a scoring mechanism, it should
be clear to a player what they should try to optimize to win the
game. You may think that good defense could win a game, but
when you study the scoring metric then you may find that really
offense was what you needed to be doing. Whatever you use as
a scoring metric, you better be able to measure it reliably and
accurately.

PC: From an educational perspective, we would rather avoid the
scenario where someone spends two days trying to hack some
binary and doesn’t get any points out of it because he couldn’t get
the last few bits. That’s a very frustrating experience and, if we
want people to keep learning, we don’t want to frustrate them to
the point where they stop and leave.

MG: How do we use design or scoring to scaffold chal-
lenges, to draw players into developing skills?

PC: In PicoCTF, we had leveled challenges. Our buffer overflow
challenges were all discrete problems, but they built on each
other, in terms of complexity. There was no downside to the
simpler challenges that provided scaffolding: Someone who was
very experienced breezed through the simpler challenges and,
if anything, it made them feel great for solving five challenges
back-to-back. For people who are learning, this disentangles
complex problems into more isolated skills.

GV: There may be opportunities for giving partial credit for, say,
crashing a program in a predictable way rather than demonstrat-
ing a full ROP attack; however, creating alternative goals for
partial credit on challenges would needlessly complicate scoring
and the game. Rather, the solution for scaffolding is making a
variety of simpler challenges.

AD: Each of those smaller challenges will be pretty binary in
how they can be scored. Either you’ve achieved the goal by dem-
onstrating the skill, or you haven’t.

MG: It sounds like the types of challenges and the algo-
rithm for scoring communicates a set of values, and has
the ability to guide novice players to learn or exercise
one set of skills over another. As designers, what do you
hope players walk away from the game having achieved
or learned?

PC: For PicoCTF, we tried very early to develop a list of skills we
hoped to build, but we eventually decided no single set of skills
was more valuable than the goal of instilling a curious mindset
and a sense of empowerment. We wanted students to question
everything, as in the mindset of a computer security expert: You
don’t trust what people tell you; you don’t trust the implementa-
tion; instead, you test it and you explore. Additionally, we wanted
to empower students to tackle new challenges. Instead of seeing
a problem and thinking, “I’ve never learned this before and that’s
the teacher’s fault and I’m not going to do this anymore,” we
wanted to instill the sense that everything in the competition
will be new to you, and you are going to teach yourself all of it,
and you are going to be able to do it. Our game’s first challenge
was an obscure boot error that essentially required you to find
the answer on the Web.

CE: As in teaching my class, my primary goal is demystification:
demystify the hardware, demystify the software, remove what-
ever misconceptions students may have, and empower them to
delve more deeply into problems independently.

AD: One thing we did at our CTF, after the competition but
before we announced a winner, we had each team spend 30 min-
utes to make a five-slide presentation. They summarized their
offensive strategy, their defensive strategy and gave a rough
overview. Each team presented five slides in five minutes; they
really got to see, for example, that half the teams had firewall
rules that just dropped any packet with five As in row. So, if you
wanted your attacks to work, you could have just switched your
As to Bs. That reflective period and information sharing has
been valuable.

MG: What’s next? What is the most pressing need in
terms of getting better CTFs?

PP: One of the first problems we need to solve for competitions
to be used in education is to make them less time-consuming
to create. Once a competition has been played, the solutions are
known. All new challenges need to be created for the next game.
Until we can solve that problem, it’s hard to really tackle prob-
lems like scaffolding and scoring.

PC: We thought it would be valuable to release the tools we used
to host PicoCTF as an open source project. It has increased the
diversity of the competitions. For example, one of the teams play-
ing in PicoCTF took our code and hosted their own nation-wide
CTF for high school students called HSCTF (http://hsctf.com/).
Their twist was to expand the game beyond computer security
challenges, to include problems from Project Euler (https://
projecteuler.net/).

30  D ECE M B ER 20 14 VO L . 3 9, N O. 6 www.usenix.org

SECURITY
Capturing Capture the Flag: Further Discussions

GV: Ideally, you should be able to just go to a Web site hosting
challenges, select the challenges you want, and get VMs you can
just spin out to assemble your CTF. In fact, this is exactly what
we’ve recently released in beta, as the iCTF Framework (https://
ictf.cs.ucsb.edu/#/framework).

AD: One of the problems is that CTF infrastructure developers
are not software engineers. Every CTF we’ve run has incorpo-
rated new features that have required pretty experimental soft-
ware. Our latest CTF heavily employed a new Android emulator
that we had just built. There wasn’t an existing, mature product
to do these experimental CTF challenges. That may be, in part,
because there’s no real financial support for building and run-
ning these games.

CE: Well, there is a market for internal CTFs, where a company
will invite an organizer to run a CTF, for training or team build-
ing. In the open, however, most people don’t receive compensa-
tion for running a CTF. It’s not pay to play, and the compensation
for organizers is rare.

GV: In releasing our framework, our dream is, eventually, to
be able to crowd-source the development of vulnerable ser-
vices, which is the part of design that requires the most human
resources. Once you have the infrastructure more or less right,
the services are still the things that take time.

Publish and Present Your Work at USENIX Conferences
The program committees of the following conferences are seeking submissions. CiteSeer ranks the USENIX
 Conference Proceedings among the the top ten highest-impact publication venues for computer science.

Get more details about each of these Calls for Papers and Participation at www.usenix.org/cfp.

SREcon15
March 16–17, 2015, Santa Clara, CA
Submissions due: January 5, 2015
The second SREcon will take place on March 16–17, 2015, in
Santa Clara, CA. Save the date and come join us for two days of
highly technical subjects around site reliability and production
at scale.

HotOS XV: 15th Workshop on Hot Topics in Operating
Systems
May 18–20, 2015, Kartause Ittingen, Switzerland
Submissions due: January 9, 2015
HotOS XV will bring together researchers and practitioners in
computer systems, broadly construed. Continuing the HotOS
tradition, participants will present and discuss new ideas about
systems research and how technological advances and new
 applications are shaping our computational infrastructure.

2015 USENIX Annual Technical Conference
July 8–10, 2015, Santa Clara, CA
Submissions due: February 3, 2015
USENIX ATC ’15 will again bring together leading systems
researchers for cutting-edge systems research and unlimited
opportunities to gain insight into a variety of must-know topics,
including virtualization, system administration, cloud comput-
ing, security, and networking.

HotCloud ’15: 7th USENIX Workshop on Hot Topics in
Cloud Computing
July 6–7, 2015, Santa Clara, CA
Submissions due: March 10, 2015
HotCloud brings together researchers and practitioners from
academia and industry working on cloud computing technolo-
gies. Cloud computing has gained traction over the past few
years, becoming a viable alternative to dedicated data centers
and enabling the launch of many prominent companies. How-
ever, many challenges remain in the design, implementation,
and deployment of cloud computing. HotCloud provides a
forum for both academics and practitioners to share their ex-
perience, leverage each other’s perspectives, and identify new/
emerging “hot” trends in this important area.

HotStorage ’15: 7th USENIX Workshop on Hot Topics in
Storage and File Systems
July 6–7, 2015, Santa Clara, CA
Submissions due: March 17, 2015
The purpose of the HotStorage workshop is to provide a forum
for the cutting edge in storage research, where researchers
can exchange ideas and engage in discussions with their col-
leagues. The workshop seeks submissions that explore long
term challenges and opportunities for the storage research
community. Submissions should propose new research direc-
tions, advocate non-traditional approaches, or report on note-
worthy actual experience in an emerging area. We particularly
value submissions that effectively advocate fresh, unorthodox,
unexpected, controversial, or counterintuitive ideas for advanc-
ing the state of the art.

LISA15
November 8–13, 2015, Washington, D.C.
Submissions due: April 17, 2015
USENIX’s Large Installation System Administration (LISA) confer-
ence—now in its 29th year—is the premier conference for IT
operations, where systems engineers, operations professionals,
and academic researchers share real-world knowledge about
designing, building, and maintaining the critical systems of our
interconnected world. LISA invited submissions of proposals
from industry leaders for talks, mini-tutorials, tutorials, panels
and workshops. LISA is also interested in research related to the
fields of system administration and engineering. We welcome
submission for both papers and posters.

Publish and Present Your Work at USENIX Conferences
The program committees of the following conferences are seeking submissions. CiteSeer ranks the USENIX
 Conference Proceedings among the the top ten highest-impact publication venues for computer science.

Get more details about each of these Calls for Papers and Participation at www.usenix.org/cfp.

SREcon15
March 16–17, 2015, Santa Clara, CA
Submissions due: January 5, 2015
The second SREcon will take place on March 16–17, 2015, in
Santa Clara, CA. Save the date and come join us for two days of
highly technical subjects around site reliability and production
at scale.

HotOS XV: 15th Workshop on Hot Topics in Operating
Systems
May 18–20, 2015, Kartause Ittingen, Switzerland
Submissions due: January 9, 2015
HotOS XV will bring together researchers and practitioners in
computer systems, broadly construed. Continuing the HotOS
tradition, participants will present and discuss new ideas about
systems research and how technological advances and new
 applications are shaping our computational infrastructure.

2015 USENIX Annual Technical Conference
July 8–10, 2015, Santa Clara, CA
Submissions due: February 3, 2015
USENIX ATC ’15 will again bring together leading systems
researchers for cutting-edge systems research and unlimited
opportunities to gain insight into a variety of must-know topics,
including virtualization, system administration, cloud comput-
ing, security, and networking.

HotCloud ’15: 7th USENIX Workshop on Hot Topics in
Cloud Computing
July 6–7, 2015, Santa Clara, CA
Submissions due: March 10, 2015
HotCloud brings together researchers and practitioners from
academia and industry working on cloud computing technolo-
gies. Cloud computing has gained traction over the past few
years, becoming a viable alternative to dedicated data centers
and enabling the launch of many prominent companies. How-
ever, many challenges remain in the design, implementation,
and deployment of cloud computing. HotCloud provides a
forum for both academics and practitioners to share their ex-
perience, leverage each other’s perspectives, and identify new/
emerging “hot” trends in this important area.

HotStorage ’15: 7th USENIX Workshop on Hot Topics in
Storage and File Systems
July 6–7, 2015, Santa Clara, CA
Submissions due: March 17, 2015
The purpose of the HotStorage workshop is to provide a forum
for the cutting edge in storage research, where researchers
can exchange ideas and engage in discussions with their col-
leagues. The workshop seeks submissions that explore long
term challenges and opportunities for the storage research
community. Submissions should propose new research direc-
tions, advocate non-traditional approaches, or report on note-
worthy actual experience in an emerging area. We particularly
value submissions that effectively advocate fresh, unorthodox,
unexpected, controversial, or counterintuitive ideas for advanc-
ing the state of the art.

LISA15
November 8–13, 2015, Washington, D.C.
Submissions due: April 17, 2015
USENIX’s Large Installation System Administration (LISA) confer-
ence—now in its 29th year—is the premier conference for IT
operations, where systems engineers, operations professionals,
and academic researchers share real-world knowledge about
designing, building, and maintaining the critical systems of our
interconnected world. LISA invited submissions of proposals
from industry leaders for talks, mini-tutorials, tutorials, panels
and workshops. LISA is also interested in research related to the
fields of system administration and engineering. We welcome
submission for both papers and posters.

32  D ECE M B ER 20 14 VO L . 3 9, N O. 6 www.usenix.org

SECURITY

Interview with Dan Farmer
R I K F A R R O W

I first met Dan Farmer during DEFCON 1, where I thought he had the
most useful and interesting presentation there. I had heard of Dan
because he had written COPS, a very early, if not the earliest, vulner-

ability scanner. I kept encountering Dan over the years at various USENIX
conferences as he continued to write tools, papers, and work on improving
Internet and *nix security. I also met Wietse Venema for the first time when
Wietse and Dan were presenting their forensic toolkit in 1999 [1].

Dan has often appeared in the limelight, partly because he feels so strongly about the general
lack of security, but also out of a deep sense of ethics (and contrariness) that has guided his
life, often at the expense of his career.

Rik: How did you first get interested in security?

Dan: Growing up I used to love the spy vs. spy mentality in movies and books, but outside
of government work there didn’t seem to be any way to make a living at it, and I’m afraid I
wasn’t cut out to live inside the Beltway. But right before I graduated from Purdue there was
a massive international security event called the Morris Worm [2]. The network was getting
slammed and people were running around in the halls trying to figure out what was going on.

For whatever reason, the Worm captured my imagination like nothing had done before; if
computers could do this, there was hope yet. The following semester was due to be my last,
but aided by the fact I was a not a good student, I had to take one last course over the summer.
Gene Spafford was a professor there and had written one of the two important papers on the
Worm, so I simply walked into his office and said I was interested in security and was there
any sort of coursework I could do over the summer that would help me graduate.

He agreed to do a special course; I told him I’d like to write something that would test the
security of computers, and we worked out the basics of a security tool. It felt like the first time
in my life that I had a purpose; I was simply beyond joy to be working on the project. Looking
around today it might be hard to imagine that there was just about zero written about secu-
rity; after months of searching, I had found one book (UNIX System Security, by Wood and
Kochan), a very small pile of articles, and one jewel, Bob Baldwin’s MIT master’s thesis that
detailed an expert system that probed system security (Kuang). I cobbled together every-
thing I could into one program, which I named COPS, and put it out on the Internet for free.

I thought that that was pretty much it for my security career, but in hindsight my timing was
nearly perfect—since there was so little information and zero programs out there, people
started assuming I was some sort of security expert rather than an obsessed young lad; and
after giving a USENIX paper on COPS [3], I was offered a job at CERT, which was created
after the Worm.

It wasn’t until many years later that I was able to thank Robert Morris for writing it and
starting my career.

Dan has been the security
architect for four Fortune 500
companies, started his own
enterprise software company,
and has researched, written,

or coauthored a variety of security software
tools, papers, essays, and a book (often with
his erstwhile colleague Wietse Venema).
Someday he’ll get that research gig, even if it’s
after retirement. zen@trouble.org

Rik is the editor of ;login:.
rik@usenix.org

www.usenix.org D ECE M B ER 20 14 VO L . 3 9, N O. 6 33

SECURITY
Interview with Dan Farmer

Rik: What was it like working for CERT in its early days?

Dan: I think I was the sixth or seventh person hired on at CERT—
they had four sharp technical folks already there, and Rich
Pethia (a great guy) was leading the charge. Amazingly, a quarter
century later, he still manages the group there.

Unless you were around at the time it might be hard to even
imagine the paucity of security knowledge then. CERT was a
radical idea—set up a 24-hour hotline for anyone in the world
to call if they had a security problem, question, or concern. We
were one of the only places in the world outside of some tech-
savvy governments that knew much of anything about Internet
security.

When people started sending us information about break-ins it
was a revelation—international intrigue, companies, universi-
ties, governments, militaries all over the world getting broken
into.

CERT was a good place to work, but I wanted to start research-
ing the latest and greatest, which at the time were network
worms and malware. CERT was created by a worm, so why
wouldn’t they want someone looking at them more in depth?
After all, as Sun Tsu reportedly said, to know your enemy you
must become them.

Needless to say, they didn’t quite agree, but one of my personality
defects is my almost pathological contrariness. If people tell me
to stay away from something it’s something akin to dropping a
cardboard box in front of a housecat, we’ll both hop right in. So
when Sun went looking for a technical head thug in their newly
founded security team, I headed for the West Coast; nearly twice
the salary didn’t hurt either.

Rik: What was it like working in Silicon Valley?

Dan: Silicon Valley was the place to be in the ’90s; the Net was
exploding, companies zooming up the Fortune 500, and then
along came this company called Netscape, and with real money
on the line, security started getting the tiniest bit of respect, or at
least some modest afterthoughts.

I met Brad Powell in my first stint at Sun in the early ’90s;
he’s a huge guy with a big heart who saw his Biathlon Olympic
dreams dashed when Jimmy Carter boycotted the 1980 Olym-
pics because of the Soviet invasion of Afghanistan. Brad wrote a
TITAN prototype because he’d run COPS on his customers and
was getting really tired of fixing by hand all the myriad security
problems COPS would routinely find. We kept in touch after I
left, and after haranguing him for years to release his code, he
finally agreed if I’d help him spruce TITAN up. TITAN didn’t
just scan for vulnerabilities, it would also repair them. Brad was
a great security guy but at times bore the curse of the engineer
and wasn’t able to articulate things to mortals.

So I re-architected TITAN, made it possible for normal people
(well, normal system administrators!) to actually use the thing,
and reassembled and amplified his words to create the USENIX
paper [4].

Rik: Where does SATAN fit into the time frame?

Dan: After seeing real incidents at my time at CERT, I became
really interested in how people were breaking into computers. At
the time security—and especially things like bugs and break-ins
and such—were not discussed in polite company, and I couldn’t
find anyone who had any information at all about how people
or programs actually compromised systems. So I sat down and
wrote up all the different ways I thought it could happen.

Fortunately, while working at Sun, that fit perfectly into my
job, and I had a playground of many thousands of systems that
I could legitimately break into. I remember one winter vacation
breaking into then-CEO Scott McNealy’s workstation and all but
one of Sun’s 50 VPs’ workstations (after asking permission, of
course), and only missed that one because the VP had apparently
turned off his computer over the break. Fortunately, McNealy
was really good-natured when I told him about it in the hallway
in passing.

But I didn’t feel I had the technical firepower to put out a paper
on various ways to break into (and protect) computers on my
own, so I reached out to someone I’d never met, a Dutchman
by the name of Wietse Venema. Wietse had created the best
security tool that had ever been written, TCP Wrapper [5], and
seemed perfect for the task—if he wasn’t, perhaps he would know
who would be. Fortunately, Wietse was intrigued by the project,
and we coauthored my favorite project, which detailed how to
break into computers along with various defenses you could use
to protect yourself.

For some reason we really hit it off and remain close friends
to this day. Wietse remains an intellectual with astonishing
programming skills, and I was the crazy dreamer who would try
to convince him that something utterly ridiculous was a good
idea. Postfix, his wonderful mail project and what most people
identify him with, was all his idea. Although Wietse dismissed
my warnings that it’d take a lot longer than he thought it would
and he’d be chaining himself to it for the rest of his life if he went
through with it, it all turned out well.

In any case, we mentioned in the paper [6] that we were work-
ing on a program called SATAN [7] (Security Analysis Tool for
Auditing Networks), never dreaming that people would actually
care. However, the paper, the name, and the promise of an auto-
mated security scanner struck a chord with our audience, so we
started thinking more deeply about how to actually do it.

34  D ECE M B ER 20 14 VO L . 3 9, N O. 6 www.usenix.org

SECURITY
Interview with Dan Farmer

Perhaps to the disappointment of our audience, we spent the next
couple of years writing, talking, and traveling to visit each other;
SATAN was perhaps the first security vaporware, the Duke
Nukem Forever of its time, until we released it on my birthday
in 1995. The delay fueled excitement and anticipation, and the
pundits and press had a field day about it all. Fortunately, the
Internet survived and it wasn’t quite like “randomly mailing
automatic rifles” to people or other colorful quotes that found
their way into the media. Perhaps the best part of the program
was the browser-based UI, which I think was the first of its kind.

Rik: Didn’t that result in you losing a job?

Dan: A few months before SATAN’s birthday I had gotten a job as
the Security Czar of Silicon Graphics (SGI). I still didn’t antici-
pate the fervor to come, but I made sure my boss knew before
I was hired of the program and its possibly provocative name.
Just prior to the planned release I was called into a meeting, and
found myself alone with a vice president and a couple of lawyers,
who claimed no prior knowledge of my work or plans for SATAN.
I didn’t immediately catch on, but soon did after they gave me
some options; I could release the program to SGI’s customers,
I could simply not release it at all, or I could work with SGI to
make it a product. Or I could walk.

Another character flaw of mine is saying what I think rather
than perhaps being a bit more politic, so I refused their offers to
take off with our work and never set foot at SGI again.

Rik: What happened next?

Dan: I went back to work for Sun and was able to do some refuel-
ing and research. Along the way I tossed an idea offhandedly to
my boss about centralized security management and monitor-
ing; he was pretty stoked about it and asked if Sun could use it
for commercial purposes. I replied that I’d have no problem at all
with that, but I wasn’t going to work on it if it were productized. I
had no interest at the time in working in engineering or for a Sun
product line.

After helping get a prototype built, we showed it to Eric Schmidt
(who later moved on to far greater fame and glory at Google), who
gave the order to productize it, and that I’d be the one running
the product show. Shortly thereafter I had a conversation with
my boss, he said he remembered our deal, but he was ordered to
put me in charge...so I quit.

Rik: Jumping ahead to a few years ago, I understand you got some
DARPA research money for a security project. Tell us about that.

Dan: My old pal Mudge (Peiter Zatko) had been running around
DARPA for a bit and had helped created something called the
Cyber Fast Track program. Mudge had been haranguing me into

submitting a proposal for it. Coincidentally, I’d just been laid off
from being Symantec’s security architect when they dissolved
the entire architecture group as part of a further move towards
outsourcing; dozens of us were put out on the street pretty much
the same day. Armed with some free time, I submitted a proposal
pretty much as a lark; Mudge’s claims were so outrageous that it
seemed doubtful anything would come of it.

To my surprise, it worked exactly as he claimed. You could sub-
mit a small writeup (some two dozen pages at most) about pretty
much anything you wanted to work on in security for some
months, and within seven working days the US government
would say yes or no. I didn’t think our government could decide
on the time of day in that short a time, let alone grant a contract
to work.

Perhaps my favorite work in the Fast Track program was
researching IPMI [8], a rather obscure and, as it turns out, inse-
cure out-of-band management protocol that servers speak. The
actual project was just a few months of work, but I got intrigued
and spent nearly all my free time on it. I ended up working with
Fast Track for a couple of years and would be happy to continue
similar research, but the program is over now; all things must
pass.

Rik: Anything else you’d like to say?

Dan: Over the years, as the tech field has gotten more mature, it
seems as though they’ve squeezed out a lot of the freedom and
innovation that fueled the Internet, and more than ever it’s sim-
ply the financial numbers that matter. Obviously, the numbers do
matter, but I don’t think it has to be at the expense of everything
else. I’ve no regrets, but if I’d known how it was going to turn
out I probably would have gotten that PhD along the way, as the
lack of the PhD pretty much excludes me from any institutional
research areas, which is where I probably should have gone.

I’ve been asked many times what they should do by people want-
ing to get into, or get ahead, in the security business. For me the
answer is always the same—follow your heart and give back to
the community that helped you get where you are today. This is
one of the reasons open source is so important.

For me the hardest thing to do is to keep putting your work and
self out there—after all, what the heck do I know compared to all
these incredibly smart and capable folks (especially the young
ones) who already know computers better than I ever will?

I hope all of this doesn’t sound like I’m ungrateful, because I’ve
been extraordinarily fortunate that I’ve been given the opportu-
nities I’ve had. I’ve been called a security expert pretty much the
day I got my job at CERT, but I’m pretty dubious about the title—
mostly I just had good luck getting into security before most.

www.usenix.org D ECE M B ER 20 14 VO L . 3 9, N O. 6 35

SECURITY
Interview with Dan Farmer

References
[1] The Coroner’s Toolkit (TCT): http://www.porcupine.org
/forensics/tct.html.

[2] The Morris Worm, a historical view: http://www
.washingtonpost.com/blogs/the-switch/wp/2013/11/01
/how-a-grad-student-trying-to-build-the-first-botnet
-brought-the-internet-to-its-knees/.

[3] D. Farmer, E. Spafford, “The COPS Security System
Checker,” USENIX Summer Conference, June 11–15, 1990.

[4] D. Farmer, B. Powell, and M. Archibald, “TITAN,” LISA ‘98:
https://www.usenix.org/legacy/publications/library
/proceedings/lisa98/full_papers/farmer/farmer_html
/farmer.html.

[5] TCP Wrapper: http://en.wikipedia.org/wiki/TCP_Wrapper.

[6] D. Farmer and W. Venema, “Improving the Security of Your
Site by Breaking into It”: ftp.porcupine.org/pub/security/admin
-guide-to-cracking.101.Z.

[7] SATAN: http://en.wikipedia.org/wiki/Security_Administrator
_Tool_for_Analyzing_Networks.

[8] Dan Farmer’s IPMI research: fish2.com/ipmi/.

Become a USENIX Supporter and
Reach Your Target Audience

The USENIX Association welcomes industrial sponsorship and offers custom packages to help you promote your
organization, programs, and products to our membership and con ference attendees.

Whether you are interested in sales, recruiting top talent, or branding to a highly targeted audience, we offer key
outreach for our sponsors. To learn more about becoming a USENIX Supporter, as well as our multiple conference
sponsorship packages, please contact sponsorship@usenix.org.

Your support of the USENIX Association furthers our goal of fostering technical excellence and innovation in neutral
forums. Sponsorship of USENIX keeps our conferences affordable for all and supports scholarships for students,
equal representation of women and minorities in the computing research community, and the development of
open source technology.

Learn more at:
www.usenix.org/supporter

36  D ECE M B ER 20 14 VO L . 3 9, N O. 6 www.usenix.org

RESEARCHIntroducing CloudLab
Scientific Infrastructure for Advancing Cloud Architectures
and Applications

R O B E R T R I C C I , E R I C E I D E , A N D T H E C L O U D L A B T E A M

Robert Ricci is a research
assistant professor in the School
of Computing at the University
of Utah. He is the principal
investigator of the CloudLab

project and a co-director of the Flux Research
Group. He is one of the primary architects
and implementers of the Flux Group’s many
testbeds, including Emulab, ProtoGENI, Apt,
and, now, CloudLab.
ricci@cs.utah.edu

Eric Eide is a research assistant
professor in the School of
Computing at the University
of Utah and a co-director
of the Flux Research Group.

His research focuses on the design and
implementation of trustworthy systems
software, including the use of testbeds for
repeatable, experimental computer science.
eeide@cs.utah.edu

Additional members of the CloudLab team
include Steve Corbató and Jacobus Van der
Merwe, University of Utah; Aditya Akella,
Remzi H. Arpaci-Dusseau, and Miron Livny,
University of Wisconsin-Madison; K.C.
Wang, Jim Bottum, James Pepin, and Amy
Apon, Clemson University; Chip Elliott and
Lawrence H. Landweber, Raytheon BBN
Technologies; Michael Zink and David Irwin,
University of Massachusetts Amherst; and
Glenn Ricart, US Ignite.

Do you have an idea for improving cloud computing? Do you need to
instantiate a complete cloud stack so that you can improve part of it?
Replace part of it? Tune it to better support a particular scientific

workload? This article introduces CloudLab (www.cloudlab.us), a new multi-
site facility that we are building to support cloud research.

Researchers and practitioners are flush with ideas for tomorrow’s cloud architectures.
Their proposals range from small extensions of today’s popular cloud-software stacks to
all-new architectures that address mobility, energy efficiency, security and privacy, spe-
cific workloads, the Internet of Things, and on and on. Many of the ideas that drive modern
clouds, such as virtualization, network slicing, and robust distributed storage arose from
the research community. However, today’s clouds have become unsuitable for moving this
research agenda forward: they have specific, unmalleable implementations of the core tech-
nologies “baked in.”

To support next-generation cloud research, the community needs infrastructure that is built
to support research into a wide variety of cloud architectures. CloudLab is a new, large-scale,
diverse, and distributed infrastructure designed to address this need. CloudLab is not itself a
cloud. Rather, it is a substrate on which researchers can build their own clouds and experi-
ment with them in an environment that provides a high degree of realism.

Like a commercial multi-tenant cloud, CloudLab will be used by many independent experi-
menters at any given time. In contrast to a commercial cloud, however, CloudLab is being
built as a scientific instrument. It will give full visibility into every aspect of the facility, and
it is being designed to minimize the impact that simultaneous experiments have on each
other. This means that researchers using CloudLab will be able to fully understand why
their systems behave the way they do, and they can have confidence that the results that they
gather are not artifacts of competition for shared hardware resources.

CloudLab is currently under construction by a team located across the University of Utah,
Clemson University, the University of Wisconsin-Madison, the University of Massachusetts
Amherst, Raytheon BBN Technologies, and US Ignite. Like the team, the CloudLab facility
will be geographically distributed, with large clusters at three sites. Each will be a variation
on a “reference architecture” that comprises approximately 5,000 cores and 300–500 TB of
storage in the latest virtualization-capable hardware. The diversity between sites will help
CloudLab to support many areas of research and, at the same time, help researchers test the
generality of their findings.

www.usenix.org D ECE M B ER 20 14 VO L . 3 9, N O. 6 37

RESEARCH
Introducing CloudLab

◆◆ The University of Utah site, partnered with HP, will be a cluster
with both traditional x86-64 servers and a set of low-power
ARM-based servers, enabling researchers to explore power/
performance tradeoffs. The cluster will be connected by a large
core switch, and it will offer experimenters direct access to
switch hardware.

◆◆ The University of Wisconsin-Madison site, partnered with
Cisco Systems, will closely reflect the technology and architec-
ture used in modern commercial datacenters. Its 240 servers
will have a total of about 4,000 cores and SSDs, and some nodes
will have large numbers of disk spindles. They will be connect-
ed with a Clos network topology.

◆◆ The Clemson site, developed in cooperation with Dell, will
have three components: bulk block-storage nodes, low-density
storage nodes for MapReduce/Hadoop-style computing, and
generic-VM nodes for provisioning virtual machines. This
cluster will focus on provisioning significant experimental
environments that can be linked to other national and interna-
tional resources.

Within each site, CloudLab will provide two 10 Gbps network
interfaces to every node. A high-bandwidth switching infra-
structure supporting software-defined networking (SDN) will
let researchers instantiate a wide range of in-cluster experimen-
tal topologies. CloudLab sites will connect with each other via
IP and Layer 2 links to regional and national research networks,
including AL2S, the SDN-based 100 Gbps network that is part of
Internet2’s Innovation Platform [7]. This will enable high-speed,
end-to-end SDN between all CloudLab sites.

A CloudLab user will be able to provision resources from all
of the CloudLab sites at once and combine them into a single
experimentation environment. CloudLab’s environments will
also be able to connect at Layer 2 to the core GENI Network, US
Ignite cities [11], and advanced HPC clusters across the United
States. For example, in addition to resources from CloudLab’s
own clusters, a user’s environment might include resources from
GENI Racks [3], local fiber in a US Ignite city, or cyber-physical
systems such as the U. Mass. CASA distributed weather radar
system [10].

Like CloudLab’s hardware, CloudLab’s software is designed
for diversity and flexibility in the cloud software stacks that
researchers can deploy. CloudLab will be operated by a control
framework that runs at a lower layer than cloud software stacks:
It will directly provision and control “raw” hardware. A user will
request a portion of the raw resources within CloudLab, thereby
allocating a slice of the CloudLab facility for his or her exclusive
use. The ability to allocate resources in this way is familiar to
researchers who have used network testbeds such as Emulab
[2, 12], GENI [4], DETER [6], and PRObE [8]. In fact, CloudLab’s
control software will be based on the proven software that today

runs Emulab, several dozen Emulab-based sites, and also parts
of GENI.

To allocate a slice of CloudLab, a user writes a profile, which is a
description of everything needed to build a cloud: both the physi-
cal hardware (servers, disks, switches) and the software needed
to transform it into a particular type of cloud. (A profile is there-
fore similar to the definition of an Emulab “experiment” [12] or
a GENI “RSpec” [5].) Once the slice is allocated, its owner has
full control over its resources. For example, the cloud stack run-
ning within the slice can create and manage virtual machines
atop the physical machines that are part of the slice. CloudLab
will provide canned configurations of popular cloud stacks (e.g.,
OpenStack [9]), storage systems (e.g., HDFS [1]), and computa-
tional frameworks (e.g., Hadoop [1]) so that experimenters can
get something running quickly. Researchers will not be bound to
these, however. They will be free to deploy whatever they wish on
top of the resources provided by CloudLab.

Some researchers will want to create private clouds (e.g., for
software development and controlled experimentation), while
others will want to open their clouds to other users (e.g., to col-
lect and evaluate real workloads). CloudLab will support both
models of experimentation. In addition, researchers will be able
to publish their CloudLab profiles, making it straightforward for
others to reconstruct the hardware and software environments
used in their studies. This will be a mechanism for repeating
experiments and comparing results.

We are currently building CloudLab, but we expect that by the
time you read this, one or more of the three CloudLab clusters
will be up and available to early-access users who can help us to
“shake out” the new hardware and software infrastructure. We
have an aggressive timetable for building CloudLab, and our plan
is that all of CloudLab will be open for regular use in spring 2015.
The lessons learned from early adopters will drive the evolution
and expansion of CloudLab going forward.

CloudLab will be available without charge to all US academic
researchers and educators. In fact, if you have a GENI account or
a Utah Emulab account, you can use CloudLab with your exist-
ing credentials! We encourage you to try CloudLab if you need
modern infrastructure to help you invent the future of cloud
computing. Visit the CloudLab Web site (www.cloudlab.us), sign
up for news, and email us at contact@cloudlab.us.

This material is based upon work supported by the National
Science Foundation under Grant Number 1419199. Any opinions,
findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect
the views of the National Science Foundation.

38  D ECE M B ER 20 14 VO L . 3 9, N O. 6 www.usenix.org

RESEARCH
Introducing CloudLab

References
[1] Apache Software Foundation: http://hadoop.apache.org/.

[2] Flux Research Group, University of Utah, Emulab—Net-
work Emulation Testbed Home: http://www.emulab.net/.

[3] GENI Project Office, Raytheon BBN Technologies, Current
GENI Rack Projects: http://groups.geni.net/geni/wiki
/GENIRacksHome.

[4] GENI Project Office, Raytheon BBN Technologies: http://
www.geni.net/.

[5] GENI Project Office, Raytheon BBN Technologies,
Resource Specification (RSpec) Documents in GENI: http://
groups.geni.net/geni/wiki/GENIExperimenter/RSpecs.

[6] Information Sciences Institute, University of Southern
California, DeterLab: Cyber-Security Experimentation and
Testing Facility: http://www.deterlab.net/.

[7] Internet2, Innovation Platform: http://www.internet2.edu
/vision-initiatives/initiatives/innovation-platform/.

[8] New Mexico Consortium, NMC PRObE: http://www.nmc
-probe.org/.

[9] OpenStack Foundation, Open Source Software for Building
Private and Public Clouds: http://www.openstack.org/.

[10] University of Massachusetts Amherst, Engineering
Research Center for Collaborative Adaptive Sensing of the
Atmosphere: http://www.casa.umass.edu/.

[11] US Ignite, Ignite Communities: https://us-ignite.org/hub/.

[12] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar, “An Integrated
Experimental Environment for Distributed Systems and
Networks,” in Proceedings of the 5th Symposium on Operating
Systems Design and Implementation (OSDI ’02), December 2002,
pp. 255–270.

Do you know about the USENIX Open Access Policy?

www.usenix.org/annual-fund

USENIX is the first computing association to offer free and open access to all of our
conferences proceedings and videos. We stand by our mission to foster excellence and
innovation while supporting research with a practical bias. Your financial support plays a
major role in making this endeavor successful.

Please help to us to sustain and grow our open access program. Donate to the USENIX
Annual Fund, renew your membership, and ask your colleagues to join or renew today.

www.usenix.org D ECE M B ER 20 14 VO L . 3 9, N O. 6 39

SYSADMIN/var/log/manager
Career Preventative Maintenance Inspections

A N D R E W S E E L Y

Andy Seely is the chief engineer
and division manager for an IT
enterprise services contract,
and an adjunct instructor in the
Information and Technology

Department at the University of Tampa. His
wife Heather is his PXE Boot and his sons
Marek and Ivo are always challenging his thin-
provisioning strategy. andy@yankeetown.com

Every good sysadmin knows his systems, understands her role, main-
tains competency and fluency in current and new technologies, and
knows that without a real system administrator on the job the busi-

ness will ultimately be less effective. Most sysadmins consider all the extra
things that go into having a job with a large company to be unpleasant or
painful, yet it is attention to the non-technical, the “little things,” that can
clear the path for a good sysadmin to be a great contributor to a large team.
Not tending to meta-tasks can create a culture of frustration and eventually
lead to unemployment. While these scenarios are specific to my own experi-
ences, every business has its own paper cuts.

The Hidden Cost of Not Doing Time Cards
One of my top sysadmins was in the middle of a major product release, working 12-hour days,
hurling himself into the implementation of a whole new internal services project. There were
maybe two or three people on the whole team who had the knowledge to do this work, span-
ning network, virtualization, and server specialties, but only one with the drive and experi-
ence to carry it through. Everyone knew that the result would be impeccable and the benefits
to the business would be huge.

Ours is a contract company where we’re bound to record hours worked every day and to cer-
tify the time card every week. Failure to do so has the potential to trigger an external audit
and could ultimately result in financial penalties and even loss of contracts [1]. There’s a lot
on the line for the company, but the time card system is automated, and for the employee it’s
just a two-minute job every day. Maybe three minutes on Friday.

I received an email from my vice president, forwarded to him from the VP of accounting. My
top sysadmin had failed to submit his time card. Again. Red flags are popping all the way to
the top, and he’s in trouble. Which means that I’m in trouble. I pull him off the product release
and have the same conversation. Again. “You’ve got to do your time card.” He gets frustrated.
He’s in the middle of an enormous and important task, he’s got his whole mind wrapped
around it, and I’m stopping him to talk about his time card. “That’s just stupid,” he snaps at
me. “I’m going to fire you, right now, if you don’t do your time card. Right now,” I snap back.

How did we end up in such a surreal, counterproductive, and negative situation? Through
lack of common understanding of the whole picture. My sysadmin is focused on the tech-
nology and doing a fabulous job of it, but he’s never taken the time to understand his role in
the company. It’s partly my fault because I’ve given so many free passes. I’m very suscep-
tible to geniuses doing genius work, and I try to provide as much top cover as possible for
the non-technical stuff. My sysadmin isn’t thinking about the danger to our contracts for
non-compliance on time reporting. He’s also not realizing that the 11 minutes a week we
ask of him to do time reporting turns into several hours of aggregate labor on the part of the
payroll, finance, VP, and management teams as they have to prepare reports, excuses, and
explanations. He says that he’s there for technology, not for the paperwork, but without the
paperwork…he won’t be there at all. The message was received, and he hasn’t missed a time
card since.

40  D ECE M B ER 20 14 VO L . 3 9, N O. 6 www.usenix.org

SYSADMIN
/var/log/manager

The Hidden Cost of Lapsed Certifications
My sysadmin responsible for testing new applications in the
system integration shop does a great job. His work is excellent,
he’s well-liked, he’s reliable, motivated, and he’s got a bright
future with the company. He’s taking a technical lead role in the
development of a new compliance and auditing capability in the
enterprise, which the customer expects will result in increased
security and flexibility for delivery of all services.

Our contract customer has a policy requiring specific industry
certifications for any sysadmin who has elevated rights on the
network. The CompTIA Security Plus certification satisfies the
minimum requirement. My sysadmin had been certified, but
when CompTIA revised their policies and required people certi-
fied with Security Plus to register for their continuing education
credits program [2], my sysadmin did not register and his certi-
fication status lapsed. He felt that it was unfair that CompTIA
changed the rules on him, and he had the same knowledge, skills,
and abilities today as he did yesterday, so what did it matter?

We perform a regular internal audit of certification status to
ensure compliance with customer requirements. Eventually
my sysadmin’s status was discovered and reported. You never
want your name mentioned at the senior leader staff meeting,
but at our next meeting there were two names mentioned: his
for being noncompliant, and mine for allowing it. Two months
of “please,” and “it’s important,” and “just re-certify, it’s not dif-
ficult” devolved to me having a “your job is on the line” conver-
sation with him. Yes, you do great work. Yes, it’s unfair that the
rules changed. Yes, you have until next week or we can no longer
employ you here because your non-compliance puts our whole
contract, not to mention your job and mine, at risk. He took the
exam, renewed his certification, and got back to work, but only
after his actual job was on the line.

The Hidden Cost of Falling Behind the
 Technology Curve
My sysadmin was the only expert in a niche technology, a Verity
Topic database. The organization was invested heavily in that
technology for an enterprise-wide communications platform,
and my sysadmin was a wizard; she understood the internals
and could fix the most catastrophic database crash barely break-
ing a sweat. This degree of expertise combined with incredible
personal dedication to the company made the sysadmin one of
the most important and well-respected members of the team,
and it had a secondary effect of allowing the company to save
money by keeping the legacy technology in service long past its
end of life.

But the technology did pass end of life, and eventually compat-
ibility problems started creeping in. The Verity Topic still ran
perfectly, but then a new system couldn’t communicate with it
and we needed to write some glueware. Then we ran into operat-
ing system incompatibilities as we kept the underlying platform
updated. The industry moved on and left this niche database
technology behind. And left the sysadmin behind, too.

Over the years, she had become comfortable being the one who
knew the system, and she made a mistake in thinking that the
system would never change. She didn’t keep up with advances in
other technologies, didn’t maintain other relevant certifications,
and didn’t build any meaningful professional network outside of
being well-known as the Verity Topic wizard. When all the tech-
nology around the database moved forward, both the database
and the sysadmin were left stranded.

We modernized the system and she tried to adapt, but the need
to learn something new combined with the pain of no longer
being the go-to expert was too much and she left the company
and retired from technology work. The company lost an excellent
asset and ended up with a reputation with the rest of the team for
not “taking care of employees,” which had a subtle but real effect
on morale and productivity across the organization for months
afterwards.

Performing PMI on Careers
All companies and situations have meta-work that has to get
done. Ensuring that work gets done and helping employees man-
age their careers and professional selves is something that a lot
of people think is left to the individual employee. When the man-
ager takes a degree of personal responsibility and does “Preven-
tative Maintenance Inspections” on the team, the result can be
a smooth and more efficient work force with managed attrition,
guided career advancement, and minimum wasted time and
effort. I’m the manager, and that’s my job.

References
[1] “Intelligence Agency Billing Fraud Proves Costly,”
retrieved August 20, 2014: http://www.washingtontimes
.com/news/2014/apr/23/intelligence-agency-billing-fraud
-proves-costly/.

[2] “CompTIA Certifications Get an Expiration Date,”
retrieved August 20, 2014: http://www.gocertify.com
/articles/comptia-recertification.html.

Buy the Box Set!
Whether you had to miss a conference or just didn’t make it to all of the sessions, here’s your chance to
watch (and re-watch) the videos from your favorite USENIX events. Purchase the “Box Set,” a USB drive
 containing the high-resolution videos from the technical sessions. This is perfect for folks on the go or
those without consistent Internet access.

Box Sets are available for:

 OSDI ’14: 11th USENIX Symposium on Operating Systems Design and Implementation

 TRIOS ’14: 2014 Conference on Timely Results in Operating Systems

 USENIX Security ’14: 23rd USENIX Security Symposium

 3GSE ’14: 2014 USENIX Summit on Gaming, Games, and Gamification in Security Education

 FOCI ’14: 4th USENIX Workshop on Free and Open Communications on the Internet

 HealthTech ’14: 2014 USENIX Summit on Health Information Technologies

 WOOT ’14: 8th USENIX Workshop on Offensive Technologies

 URES ’14: 2014 USENIX Release Engineering Summit

 USENIX ATC ’14: 2014 USENIX Annual Technical Conference

 UCMS ’14: 2014 USENIX Configuration Management Summit

 HotStorage ’14: 6th USENIX Workshop on Hot Topics in Storage and File Systems

 HotCloud ’14: 6th USENIX Workshop on Hot Topics in Cloud Computing

 NSDI ’14: 11th USENIX Symposium on Networked Systems Design and Implementation

 FAST ’14: 12th USENIX Conference on File and Storage Technologies

 LISA ’13: 27th Large Installation System Administration Conference

 USENIX Security ’13: 22nd USENIX Security Symposium

 HealthTech ’13: 2013 USENIX Workshop on Health Information Technologies

 WOOT ’13: 7th USENIX Workshop on Offensive Technologies

 UCMS ’13: 2013 USENIX Configuration Management Summit

 HotStorage ’13: 5th USENIX Workshop on Hot Topics in Storage and File Systems

 HotCloud ’13: 5th USENIX Workshop on Hot Topics in Cloud Computing

 WiAC ’13: 2013 USENIX Women in Advanced Computing Summit

 NSDI ’13: 10th USENIX Symposium on Networked Systems Design and Implementation

 FAST ’13: 11th USENIX Conference on File and Storage Technologies

 LISA ’12: 26th Large Installation System Administration Conference

Learn more at: www.usenix.org/boxsets

42  D ECE M B ER 20 14 VO L . 3 9, N O. 6 www.usenix.org

COLUMNSPractical Perl Tools
Oh Say Can You CPAN?

D A V I D N . B L A N K - E D E L M A N

Every once in a while I get asked to join a conference panel about
scripting languages. It will be me, a Pythonista, a Rubyist, and a
PHP developer (do they have a cute name?) all onstage together. In

most cases, I think the organizers are hoping for the equivalent of a steel
cage match in professional wrestling—the fewer participants standing at
the end, the better. In these scenarios, I’m almost always a disappointment
because I come to praise the other languages, not to bury them. I have a deep
appreciation for the other languages, and I’m not afraid to state it even while
I’m representing Perl. One of the key reasons I can say “I dig all of the other
languages, but I choose to stick with Perl most of the time” is CPAN. This col-
umn will focus on CPAN, how to cope with both its triumphs and shortfalls,
and some of the ways to interact with it that you may not have encountered
before. There probably won’t be any code in this issue’s column but that’s
okay because you’ll be learning ways to have other people write Perl code for
you. We’re going to focus on how to consume content from CPAN; discussion
about how to contribute to it will have to wait for a future column.

What Is CPAN and How Do I Get Me Some?
I would be really surprised if there are Perl programmers who have never heard of CPAN, but
I’ve been surprised before so pardon me as I go over the basics. CPAN is short for the Com-
prehensive Perl Archive Network. This is a massive repository of Perl code (largely modules
meant for use in other people’s code) that has been online since 1995 or so. How massive? As
of this writing, cpan.org says:

The Comprehensive Perl Archive Network (CPAN) currently has 138,392 Perl modules in
30,406 distributions, written by 11,739 authors, mirrored on 254 servers.

All of this code has been uploaded so other people may make use of it, so it can be a tremen-
dous resource. Any time you have a problem or a task that sounds like someone else may have
solved it, it always behooves you to search CPAN first. We’ll talk about ways to do this in a
moment.

The plus of having such a massive store of donated code to draw upon is that you often can
find someone else has already written (almost) exactly what you need. The minus of having
this massive store is some percentage of it is (to be charitable) duplicated effort, and (to be
less charitable) some of it is crap. I’ll offer tips about this problem later in this column as well.

Deep CPAN Diving
So how do you find what is available on CPAN? Many people start with the search.cpan.org
engine. This Googley-looking search engine returns a page like the one in Figure 1.

An experienced CPAN spelunker will scan the returned list of modules and look not just at
the description to determine whether a module is appropriate for the task at hand, but also at
the metadata. For example, has the module been updated recently? Does it have any reviews

David N. Blank-Edelman is
the Director of Technology at
the Northeastern University
College of Computer and
Information Science and the

author of the O’Reilly book Automating System
Administration with Perl (the second edition of
the Otter book), available at purveyors of fine
dead trees everywhere. He has spent the past
24+ years as a system/network administrator
in large multi-platform environments, including
Brandeis University, Cambridge Technology
Group, and the MIT Media Laboratory. He was
the program chair of the LISA ‘05 conference
and one of the LISA ‘06 Invited Talks co-chairs.
David is honored to have been the recipient
of the 2009 SAGE Outstanding Achievement
Award and to serve on the USENIX Board of
Directors beginning in June of 2010.  
dnb@ccs.neu.edu

www.usenix.org D ECE M B ER 20 14 VO L . 3 9, N O. 6 43

COLUMNS
Practical Perl Tools: Oh Say Can You CPAN?

and are they positive? Is the module part of a distribution I
recognize? Is the module author well known in the Perl commu-
nity?, etc.

When you click on the module name, you’ll be greeted with the
documentation for that module. More often than not, I will click
on the breadcrumb link that brings me to the page for the whole
distribution (Figure 2).

I do this for two reasons: First, I often want to poke around
in a module’s code (especially looking at the test code in it for
examples of how to use the module). This can be done from the
Browse link. Second, I might be curious about bugs filed against
the module (“View/Report Bugs”) or what other modules this
module depends on (“Dependencies”—we’ll talk more about that
soon). Some of these links can be reached from the search results
or the first page linked off the search results, but I’m so used
to using the Browse link that going to the distribution page is
habitual at this point.

Another way you can search for modules on CPAN is to use
metacpan.org. MetaCPAN attempts to be an even spiffier search
engine. Figure 3 shows the same search from before, this time
run at MetaCPAN.org.

First, let’s talk about what is spiffier on the service. When I
first started typing “Readonly” into the search box, it attempted
to auto-complete my query. Next, not only are Readonly and
Readonly::XS next to each other, but at the bottom of the results
you can see MetaCPAN has bunched together related modules in
a distribution. When I click on the first module link on this page,
I see the page that begins like Figure 4.

Figure 1: A screenshot of search.cpan.org showing some results

Figure 2: Clicking on the breadcrumb link brings up the page for the whole
distribution.

Figure 3: Using MetaCPAN as your search engine

44  D ECE M B ER 20 14 VO L . 3 9, N O. 6 www.usenix.org

COLUMNS
Practical Perl Tools: Oh Say Can You CPAN?

I’d like to call your attention to a few of the things in the left
and right sidebars. On the left sidebar, I have the “Browse” link
I crave, an easy way to look at the Changelog, pointers to the Git
repo, the Bug tracker page for the module, reviews, test results
(more on this later), a link to an automated system for determin-
ing module quality (“Kwalitee”), an indication how active the
development is of the module, and even a way to download the
module doc in several ebook formats plus a bunch more stuff.
On the right sidebar, we see the dependencies of the module and,
perhaps even cooler, a way to see the reverse dependencies (i.e.,
which modules depend on this one). Super cool.

These are just some of the immediately visible features of
MetaCPAN. One thing you probably can’t see is a key underly-
ing building block. The search being run on metacpan.org is
actually the output of calls to api.metacpan.org (documented
here: https://github.com/CPAN-API/cpan-api). If you’d like to
create your own client, the API is open, and example code to
use it is freely available. As you can probably guess, metacpan.
org is my usual “go-to” search method for searches. I even use
this template from within one of my OS X helper applications

(Launchbar) to make looking up module documentation quick
and easy: https://metacpan.org/search?q=*

Separating the Wheat from the Chaff
Now that you know how to find more modules than you can
shake a stick at, how do you figure out which are the good ones?
I’ve mentioned a couple of ideas already in passing, but let’s take
a closer look at this question.

First, I think it is worthwhile to favor modules that appear to be
actively maintained. This increases the likelihood that there is
an author out there improving the module and also available to
fix issues should you find any. The last release date is a good hint
about this, the activity indictor provided by metacpan.org is an
even better indication.

Second, closely related to the first idea is the number of bugs
opened against the module. I don’t believe zero active bugs is
necessarily a good thing. I’d much rather see a few open bugs
(shows community involvement) alongside a number of closed
bugs (shows author involvement and responsiveness). A queue
full of unresolved bugs is also a great red flag that may indicate
an orphaned module. Use this as one of your parameters for judg-
ment but not the only one.

Third, consider whether the module appears to actually work.
One way to determine this is to look at the Testers link off of
the metacpan module page for a module. To return to the panels
I mentioned at the beginning of the column, another thing I
believe Perl can be proud about is the strong cultural inclination
towards testing in the community. One way this manifests is
that every version of every module that gets submitted to CPAN
gets “smoke tested” on close to a thousand different combina-
tions of Perl versions and operating systems. If a module includes
tests (and indeed, every module is encouraged to have as com-
plete a test suite as possible), these tests are run in each of these
environments and the results reported back to the central test
result repository for you to peruse. This gives you a good indica-
tion (again, if the test suite is decent) of how portable and how
fragile the module code is likely to be. I’ve mentioned a couple
of times that a good test suite makes this metric useful, and I’d
recommend using the Browse link to see what sort of tests are
included with a module. Similarly, if you browse and find the
module has a README that contains boilerplate that the author
hasn’t bothered to change along the lines of:

The README is used to introduce the module and provide
instructions on how to install the module, any machine dependen-
cies it may have (for example, C compilers and installed librar-
ies) and any other information that should be provided before the
module is installed….

(which is how the boilerplate provided by Module::Starter begins),
that’s generally a bad sign. There are other signs of slapdashery

Figure 4: Clicking on the first module link after searching at MetaCPAN

www.usenix.org D ECE M B ER 20 14 VO L . 3 9, N O. 6 45

COLUMNS
Practical Perl Tools: Oh Say Can You CPAN?

you can find in module land, but this is one of my favorite
indicators.

Fourth, pay attention to both the dependency and reverse-
dependency hints provided by metacpan.org. Looking at the
dependency list for a module can give you some sense of things
such as how hard it will be to get a module to install (do you
already have the dependencies installed?), does the author tend
to use already existing code (which can be good or bad) or prefer
to rewrite everything from scratch, and in general what modules
that author trusts.

I find the list of reverse dependencies to sometimes be an even
more useful metric for module trustworthiness. Using the same
basic underlying principle of Google PageRank, if lots of other
modules depend on a module you are considering installing,
that’s almost always a really good thing. If there’s a problem
with the module, a whole bunch of other module authors have
an incentive to see that problem resolved. Similarly, those
authors are also invested in the continued stability and incre-
mental improvement of the module you are considering. In case
you are curious, according to the CPAN Top 100 site (http://
ali.as/top100/), the module with the most dependencies is
App::Munchies (a Catalyst demonstration Web app), and the
module that the most other modules depend on is Test::Harness.

Fifth, and my last tip for picking good modules, is to find an
opinionated author/expert you trust and follow their advice. Two
examples of this are Damian Conway’s Perl Best Practices (full
disclosure, published by the same publisher as my book) and the
Task::Kensho module. This module is basically a list of recom-
mended modules, or as their doc puts it:

Task::Kensho is a list of recommended modules for Enlightened
Perl development. CPAN is wonderful, but there are too many
wheels and you have to pick and choose amongst the various com-
peting technologies.

The list looks very solid to me, so I think you can’t go wrong at
least consulting it as part of your decision process.

Gimme, Gimme
Now that you’ve found the module of your dreams, how do you go
about using it? There’s a decision tree here that many a sysad-
min has argued about in the past, namely do you install modules
using the language native method or do you strictly only use pre-
built packages in the context of the package management system
your operating system uses (even if you have to build the package
yourself). Let’s look at both roads.

Back in the early days, people used a module called CPAN.pm
to install their Perl modules. Later on, a spiffier version was
created called CPANPLUS, and that’s a fairly common way
to install modules. It installs a command-line program called
“cpanp” that you can run and use like this:

$ cpanp

CPANPLUS::Shell::Default -- CPAN exploration and module

installation (v0.9121)

*** Please report bugs to <bug-cpanplus@rt.cpan.org>.

*** Using CPANPLUS::Backend v0.9121. ReadLine support

enabled.

*** Type ‘p’ now to show start up log

CPAN Terminal>i Readonly

This will search for and install the Readonly module (and all of
the dependencies it has). By default it is fairly interactive, ask-
ing you each step of the way whether you want to install each
dependency. This isn’t my current method for module installa-
tion, but before I move on to what I prefer, let me mention one
thing CPANPLUS does that is valuable. Instead of using the “i”
command for install, typing “o” will output a list of the outdated
modules on your system. Sort of like this:

1 1.5701 1.61 App::Cpan BDFOY

2 0.58 0.68 Archive::Extract BINGOS

3 1.82 1.90 Archive::Tar BINGOS

4 5.72 5.73 AutoLoader SMUELLER

5 1.17 1.18 B::Debug RURBAN

6 1.14 1.17 B::Lint RJBS

7 1.52 1.59 CAM::PDF CDOLAN

8 3.59 3.63 CGI MARKSTOS

...

The second column is the version you have installed, the third is
the latest version found on CPAN. This can be very handy if you
like to keep current.

My use of CPAN.pm and CPANPLUS has almost entirely been
supplanted by a package called CPANMINUS. I typically use it
in conjunction with the perlbrew system (http://perlbrew.pl),
which allows you to have multiple versions of Perl installed on
your system without conflict (including conflict with the one
that ships with your operating system). If you are using perlbrew,
“perlbrew install-cpanm” will install it for you. If you are not
using perlbrew, there are a number of ways to install it, including
this scary, scary way:

$ curl -L http://cpanmin.us | perl - App::cpanminus

See http://cpanmin.us for more details.

Once you have CPANMINUS installed, you will have a “cpanm”
command. “cpanm” can take a few flags to modify its behavior,
but more often than not, you’ll just be typing:

$ cpanm {module name}

as in

$ cpanm Readonly

46  D ECE M B ER 20 14 VO L . 3 9, N O. 6 www.usenix.org

COLUMNS
Practical Perl Tools: Oh Say Can You CPAN?

CPANMINUS will install the module and any dependencies it
has lickety-split with basically no interaction and no fuss. It is
really written for the “I want the thing. Thing is now installed.”
experience and does it very well.

So that’s how you would install things independent of any pack-
age management system your operating system uses. Some find
this to be fine; others feel it is reckless and contrary to the reason
one has a package management system. If you want to stick to a
package system, I do know that in addition to package manager-
specific tools like dh-make-perl, the awesome FPM tool (https://
github.com/jordansissel/fpm) by Jordan Sissel can also help
create packages for you.

So, with that, we’ve learned how to find good Perl modules and
install them easily. Let’s leave it there. Take care and I’ll see you
next time.

www.usenix.org D ECE M B ER 20 14 VO L . 3 9, N O. 6 47

COLUMNS

All About That Constant
D A V I D B E A Z L E Y

I’m not sure I’ve ever seen “gravitas” used as a kind of software metric.
However, if there were such a thing, I think it could probably be mea-
sured by the number of predefined constants required to carry out any

sort of task. For example, directly programming with sockets and setting
socket options has a high degree of gravitas. Simply specifying a port number
to a Web framework—not so much. Other examples might include program-
ming OpenGL vs. turtle graphics. Or maybe just about anything involving
OpenSSL. Extra bonus points are earned if such constants can get together
in an unholy bitmask such as O_RDWR | O_CREAT. Yes, constants. Gravitas.

Constants, or shall I say “constants,” have always been relatively easy to define in Python.
Simply create some variables:

AF_UNIX = 1

AF_INET = 2

AF_IPX = 23

AF_INET6 = 30

SOCK_STREAM = 1

SOCK_DGRAM = 2

SOCK_RAW = 3

Then, pass these values along whenever you need to use them:

sock = socket(AF_INET, SOCK_STREAM)

Yes, it’s pretty simple stuff. Of course, all of those constants are really just simple variables.
And they’re not constants either. Go ahead and change them if you dare:

AF_INET = 30

Alas, it’s probably foolhardy to expect any modern high-level language to support the full
power of C preprocessor macros (e.g., #define AF_INET 2). So, people who decide to change
constants probably get what they deserve. I digress.

Problems with Constants
Gravitas aside, constants have always presented a number of weird problems for Python
programmers. For example, suppose you’re using Python 2.7 and you’re trying to perform
debugging and diagnostics. In your code, the constants are merely presented as their cor-
responding value. For example, consider this code:

David Beazley is an open
source developer and author of
the Python Essential Reference
(4th Edition, Addison-Wesley,
2009). He is also known as the

creator of Swig (http://www.swig.org) and
Python Lex-Yacc (http://www.dabeaz.com/
ply.html). Beazley is based in Chicago, where
he also teaches a variety of Python courses.
dave@dabeaz.com

48  D ECE M B ER 20 14 VO L . 3 9, N O. 6 www.usenix.org

COLUMNS
All About That Constant

from socket import socket

def create_socket(address_family, socket_type):

 log.info(‘Creating socket: family=%s, type=%s’,

address_family, socket_type)

 return socket(address_family, socket_type)

If you call the function using create_socket(AF_INET,

SOCK_STREAM), you’ll get a log message that looks like this:

INFO:Creating socket: family=2, type=1

As you can see, you lose the symbolic names such as AF_INET,
putting the burden on users to perform some kind of reverse
lookup if they want to find out more information. Even doing
that is a bit annoying if you don’t know what you’re doing. For
example, do you simply go through the socket module constants
one-by-one in the interactive interpreter?

>>>AF_UNIX
1

>>>AF_INET
2

>>>SOCK_STREAM
1

>>>

Or, if you’re really stuck, do you pull out some kind of advanced
magic to see all of the possible values?

>>>import socket
>>> sorted((getattr(socket, name), name) for name in
dir(socket)
... if name.startswith(‘AF_’))
...

[(0, ‘AF_UNSPEC’), (1, ‘AF_UNIX’), (2, ‘AF_INET’), (11, ‘AF_SNA’),

(12, ‘AF_DECnet’), (16, ‘AF_APPLETALK’), (17, ‘AF_ROUTE’),

(23, ‘AF_IPX’),

(30, ‘AF_INET6’)]

>>>

Suppose you wanted to add some kind of enforcement of con-
stant values in your code: for example, making sure the user only
provided valid values for the arguments. Maybe you would write
something like this:

from socket import (socket,

 AF_UNIX, AF_INET, AF_INET6,

 SOCK_STREAM, SOCK_DGRAM)

_address_families = { AF_UNIX, AF_INET, AF_INET6 }

_socket_types = { SOCK_STREAM, SOCK_DGRAM }

def create_socket(address_family, socket_type):

 log.info(‘Creating socket: family=%s, type=%s’,

address_family, socket_type)

 if address_family not in _address_families:

 raise ValueError(‘Bad address family %s’ % address_family)

 if socket_type not in _socket_types:

 raise ValueError(‘Bad type %s’ % socket_type)

 return socket(address_family, socket_type)

Such a solution is kind of verbose and annoying. Moreover, it only
“works” until a user comes along and writes the arguments in the
wrong order such as create_socket(SOCK_STREAM, AF_INET). Or
did they write create_socket(AF_UNIX, SOCK_DGRAM)? There’s
really no way to know. The mind boggles.

Constants in Python 3
Starting in Python 3.4, an interesting thing happened to con-
stants. Fire up a Python 3.4 interpreter and take a look at the
socket module:

>>> # This must be done in Python 3.4

>>>import socket
>>>socket.AF_INET
<AddressFamily.AF_INET: 2>

>>>socket.SOCK_STREAM
<SocketType.SOCK_STREAM: 1>

>>>

Notice how the constants now identify themselves by a symbolic
name and value. This is very different. Moreover, this change
affects everything else. For instance, if you print a constant, you
just get the name:

>>>print(socket.AF_INET)
AddressFamily.AF_INET

>>>

This means that in other code, such as the example involving
 logging, you’ll now get a log message that looks like this:

INFO:Creating socket: family=AddressFamily.AF_INET,

type=SocketType.SOCK_STREAM

In fact, you can even do a kind of type checking. Consider this
slightly modified version of code:

from socket import socket, AddressFamily, SocketType

def create_socket(address_family, socket_type):

 log.info(‘Creating socket: family=%s, type=%s’,

address_family, socket_type)

 if not isinstance(address_family, AddressFamily):

 raise TypeError(‘Bad address family %s’ % address_family)

 if not isinstance(socket_type, SocketType):

 raise TypeError(‘Bad type %s’ % socket_type)

 return socket(address_family, socket_type)

In this example, AddressFamily and SocketType represent all of
the valid values for the address_family and socket_type argu-
ments, respectively. However, this checking is more than just
values. It will catch errors such as swapped arguments like this:

www.usenix.org D ECE M B ER 20 14 VO L . 3 9, N O. 6 49

COLUMNS
All About That Constant

>>> # Good

>>> s = create_socket(AF_INET, SOCK_STREAM)
>>>

>>> # Bad

>>>s = create_socket(SOCK_STREAM, AF_INET)
Traceback (most recent call last):

...

TypeError: Bad address family SocketType.SOCK_STREAM

>>>

Keep in mind, the value of SOCK_STREAM is perfectly valid
as an address family (it’s the same as AF_UNIX). Yet, the code
caught the error. If you’re like me, you’ll find all of this to be very
interesting.

Enter Enums
Starting in Python 3.4, you can now start defining constants in
the form of an “enumeration” class. There are two different fla-
vors, a standard Enum and an IntEnum. Here are some examples
of enum definitions:

from enum import Enum

class Color(Enum):

 red = 1

 blue = 2

 green = 3

from enum import IntEnum

class AddressFamily(IntEnum):

 AF_UNIX = 1

 AF_INET = 2

 AF_IPX = 23

 AF_INET6 = 30

The first enumeration, Color, simply defines a collection of sym-
bolic constants. To refer to them in your code, you just use the
class name as a prefix like this:

>>>Color.red
<Color.red: 1>

>>>Color.blue
<Color.blue: 2>

>>>

Normally, you will just use these names in your code. However,
should you need to know the name and value, you can obtain
them as attributes as follows:

>>>Color.blue.name
‘blue’

>>>Color.blue.value
2

>>>AddressFamily.AF_INET.value
2

>>>

Such attributes can be useful in situations where you need to
convert an enum into a different format or into a value that you
might use in an external representation (e.g., JSON). To go the
other way, you can use the class name to convert a value back
into an enum:

>>>Color(2)
<Color.blue: 2>

>>>Color(4)
Traceback (most recent call last):

...

ValueError: 4 is not a valid Color

>>>AddressFamily(2)
<AddressFamily.AF_INET: 2>

>>>

As you can see, such conversions are already aware of the valid
enum values. If you try to convert a bad value, you’ll get an error.

If you want to know all of the possible values of an enumeration,
simply turn the class into a list or iterate over it. For example:

>>>list(Color)
[<Color.red: 1>, <Color.blue: 2>, <Color.green: 3>]

>>>for val in AddressFamily:
... print(val)
...

AddressFamily.AF_UNIX

AddressFamily.AF_INET

AddressFamily.AF_IPX

AddressFamily.AF_INET6

>>>

In this example, two different kinds of enums were defined. The
difference between Enum and IntEnum concerns their interac-
tion with the rest of the type system and compatibility with the
integers.

Enum types implement a strict form of type checking that do not
allow any kind of mixing with other types or other enums. For
example:

>>>Color.blue
<Color.blue: 2>

>>>Color.blue == 2 # Notice failed equality

False

>>>Color.blue == AddressFamily.AF_INET
False

>>>Color.blue + 4
Traceback (most recent call last):

...

TypeError: unsupported operand type(s) for +: ‘Color’ and ‘int’

>>>

50  D ECE M B ER 20 14 VO L . 3 9, N O. 6 www.usenix.org

COLUMNS
All About That Constant

In fact, the values associated with an Enum type are arbitrary.
For example, it would be perfectly fine to define this:

class Color(Enum):

 red = ‘R’

 blue = ‘B’

 green = ‘G’

Keep in mind that the intended use of the enum would be
through the symbolic names such as Color.red, not the value.
As such, nothing is implied or guaranteed about the capabili-
ties of the enum itself. The value really only becomes useful in
code that needs to convert the enum to/from a different type for
instance.

The IntEnum class, on the other hand, makes an enum compat-
ible with integers. This is especially useful if you’re defining
constants that need to interface with external libraries or legacy
code. Or if the constants need to be used in mathematical opera-
tions. For example:

>>>AddressFamily.AF_INET == 2

True

>>>AddressFamily.AF_INET + 10

12

>>>

IntEnum types are also useful if constants are defined in order
to perform other operations such as the formation of a bitmask.
For example:

>>>class Modes(IntEnum):
... READ = 1
... WRITE = 2
... DELETE = 4
...

>>> a = Modes.READ | Modes.WRITE
>>>a
3

>>>

Making Enums
Perhaps the most obvious way to define an enum is through a
class definition as shown in the example. However, this offers no
help to existing code where a large number of constants might
already exist. Fortunately, there is an alternate interface involv-
ing dictionaries. For example, suppose you have some constants
already populating a dict like this:

colors = {

 ‘red’ : 1,

 ‘blue’ : 2,

 ‘green’ : 3

}

To create an enum, simply call Enum() or IntEnum() as a function
and pass the dictionary like this:

from enum import Enum

Color = Enum(‘Color’, colors)

If you are clever, you can use this to create enumerations from
existing sets of constants. For example, suppose you wanted
to make an enum from all of the flags passed to the os.open()
function. You could simply gather them up using a dictionary
comprehension and pass them to IntEnum() like this:

>>>import os
>>>flagvals = { name:val for name, val in vars(os).items()

... if name.startswith(‘O_’) }
>>>flagvals
{‘O_SYNC’: 128, ‘O_SHLOCK’: 16, ‘O_TRUNC’: 1024, ‘O_CREAT’: 512,

‘O_EXCL’: 2048, ‘O_RDWR’: 2, ‘O_DSYNC’: 4194304, ‘O_NONBLOCK’: 4,

‘O_ACCMODE’: 3, ‘O_WRONLY’: 1, ‘O_ASYNC’: 64, ‘O_RDONLY’: 0,

‘O_APPEND’: 8, ‘O_NOFOLLOW’: 256, ‘O_DIRECTORY’: 1048576,

‘O_NOCTTY’: 131072, ‘O_NDELAY’: 4, ‘O_EXLOCK’: 32}

>>>Flags = IntEnum(‘Flags’, flagvals)
>>>Flags.O_TRUNC
<Flags.O_TRUNC: 1024>

>>>Flags.O_CREAT
<Flags.O_CREAT: 512>

>>>Flags.O_RDONLY
<Flags.O_RDONLY: 0>

>>>

If you were feeling particularly adventurous, you could even
patch the original os module to use the newly created enums:

>>>vars(os).update({f.name:f for f in Flags})
>>>os.O_CREAT
<Flags.O_CREAT: 512>

>>>os.O_RDWR
<Flags.O_RDWR: 2>

>>>

Since IntEnum classes are compatible with integers, everything
should continue to work the same as before except for symbolic
names appearing in the event that a flag value is ever printed or
logged.

The Normal Rules Don’t Apply
Having introduced enums, most Python programmers will find
them to behave in all sorts of ways that are quite different from
normal class definitions. For example, duplicate entries result in
an error:

www.usenix.org D ECE M B ER 20 14 VO L . 3 9, N O. 6 51

COLUMNS
All About That Constant

class Color(Enum):

 red = 1

 blue = 2

 red = 3 # An error. Duplicate.

Enum classes always keep their entries in the same order as
listed:

class Color(Enum):

 red = 10

 blue = 9

 green = 8

cols = list(Color) # [Color.red, Color.blue, Color.green]

You can’t inherit from an enum:

class MyColor(Color):

 purple = 4 # Error. Can’t extend Color

And the members of an enum can’t be redefined:

Color.red = 4 # Error. Can’t reassign members

The members of an enum are also instances of the class itself:

>>>isinstance(Color.blue, Color)
True

>>>

All of this unusual behavior is the result of enums being defined
through advanced features of Python metaclasses. It’s not pos-
sible (or really necessary) to dive into the details here, but if
you’ve ever wondered about the power of Python metaprogram-
ming, enums are a good example of what’s possible.

Final Words
As a new Python feature, enums are not something you’re likely
to encounter in much code. However, they are starting to be used
in various places in the standard library and will likely have
increased usage in future Python versions. In my own applica-
tion code, I often find myself defining various sorts of constants
to indicate modes, flags, and similar kinds of functionality. With
the addition of enums, I’m now starting to think that they might
be a useful way to provide improved debugging, type safety, and
other similar features. Although enums first appeared in Python
3.4, the flufl.enum package can be used to add them to earlier
versions of Python including Python 2.7.

Resources
https://docs.python.org/3/library/enum.html (official docu-
mentation for enums).

http://legacy.python.org/dev/peps/pep-0435/ (adding an
Enum type to the Python Standard Library).

https://pypi.python.org/pypi/flufl.enum (an enum imple-
mentation compatible with Python 2.7).

XKCD

xkcd.com

52  D ECE M B ER 20 14 VO L . 3 9, N O. 6 www.usenix.org

COLUMNS

iVoyeur
Rediscovering collectd

D A V E J O S E P H S E N

Dave Josephsen is
the sometime book-
authoring developer
evangelist at Librato.
com. His continuing

mission: to help engineers worldwide close the
feedback loop. dave-usenix@skeptech.org

I recently saw Shadaj Laddad’s talk at this year’s OSCON, entitled “The
Wonders of Programming” [1]. If you haven’t had the pleasure, Shadaj
is a 14-year-old programmer who (among many other things) wrote a

bioinformatics Scala library. In the talk, he describes how he was encouraged
to program computers from the age of six, and he gives helpful tips to parents
and other children who are interested in pursuing computer programming.

It probably doesn’t surprise any of us that Shadaj credits Lego Mindstorms as having an early
impact on his understanding of systems programming. Mindstorms are, of course, actually
programmable (in myriad languages), but I think many engineers come back to Legos in gen-
eral when asked about toys that awakened in them a love of science, technology, engineering,
mathematics, and, more generally, building things and solving problems.

In my own childhood, if Legos ever became boring, they didn’t remain so for long. Again and
again, as my interests changed, Legos always found a way to become relevant again. I would
rediscover them when I needed a ramp to jump hot-wheels, or when we were one blaster
short, and wanted to reenact Star Wars Episode 4 from memory (an almost daily occurrence
among my third-grade friends). Later, I would rediscover them when I needed just the right-
sized wedge to keep my Commodore tape drive functioning or a box to house an 8088 project
to prevent it from grounding out. Even last week, I rediscovered them when I was looking for
a clever way to keep track of the myriad groupings of household keys [2].

Maybe it’s silly, but I’ve often wondered over the years of using and implementing little UNIX
tools that do one thing well, or more recently, Web-based micro-services architecture, what
percentage of systems engineering tools and practices we owe to Legos. To be sure, modular,
single-purpose primitives that can be combined to form more complex entities is just one of
many design methodologies, and it’s an obvious one that no doubt predates the actual cre-
ation of Lego by several thousand years.

How many times have we reinvented the monitoring system? How many times have we rede-
fined what a monitoring system even is? I couldn’t tell you, being not disposed to anthropol-
ogy myself. I can tell you, however, that every time someone finds a problem for which the
commonly adopted monitoring systems aren’t well adapted, that person usually winds up
implementing a set of primitives that meets the need. When we build new monitoring infra-
structure, it seems we inevitably rediscover the building blocks, and whenever this happens,
silly or not, I have to admit it feels exactly the same as rediscovering my Legos.

I’ve been working a lot with collectd lately, a project that, were monitoring systems Legos,
would probably be a valued and coveted block. At my day job, we’ve just finished implement-
ing some service-side, turnkey support for it, to remove dependencies and make it easy for
our customers who happen to use collectd to ship their measurements to us out of the box, so
I’ve been playing with collectd a great deal over the past few weeks.

www.usenix.org D ECE M B ER 20 14 VO L . 3 9, N O. 6 53

COLUMNS
iVoyeur: Rediscovering collectd

Having not used it for a few years, I’d forgotten what a nifty tool
it is, and having rediscovered this particular Lego block has been
a lot of fun for me. Looking through my GitHub repo of articles,
I’m surprised to find that I’ve never actually written about col-
lectd here, which is an oversight I’d like to correct now.

(Re)Introducing Collectd
Collectd is a modular metrics collection daemon written in C.
Collectd loops through a list of user-specified plugins, execut-
ing each to gather performance metrics from the OS, or locally
running user-space processes. Once gathered, collectd outputs
these metrics on a set interval using one or more output plugins
to targets like log files, aggregation daemons like StatsD, and
metrics-processing systems like Librato. Collectd is a great way
to begin collecting data; it offers a ton of useful metrics for a very
small operational investment.

Collectd is a great fit for you if:

◆◆ You want a flexible standalone collection agent to collect
performance metrics from your systems using the standalone
agent pattern.

◆◆ You’re running Virtual Machine instances and want to grab
per-instance CPU/Disk/Memory metrics.

◆◆ You want a simple way to collect metrics from running server
processes like MySQL, Apache, Redis, Nginx, or MongoDB.

◆◆ You’re looking for a well-documented, widely used and trusted
open-source collection agent that is available on most Linux
distributions.

Installing Collectd
Collectd gets installed on every system you want to monitor,
and it’s pretty simple to install. It runs as a standalone daemon
process and is configured by way of a classical UNIX conf file
in /etc/collectd. You can obtain and build collectd from source,
but packages exist for all major distros, and most small ones. For
example, on a Debian-based system, you’d enter

apt-get install collectd

How Does It Work?
Collectd generally follows the standalone agent pattern. It runs
on every host you want to monitor, and it either reports directly
to an upstream metrics aggregator or writes metrics to the local
file system.

Starting the Daemon
Debian-based distros start collectd automatically when you
install it, but if collectd isn’t already running, you should be able
to start the daemon using the appropriate init method for your
OS, or directly by executing collectdmon. If collectd won’t run, or

if it appears to be constantly restarting, you can run it manu-
ally with an -f switch, which will prevent it from forking into the
background.

Collectd also includes the -t switch, which tests the validity of
the configuration file and is helpful for troubleshooting startup
problems.

Plugins
Collectd’s behavior is dictated by two types of plugins. Input
plugins gather performance data from the OS or applications
running on the system. The CPU input plugin, for example,
interacts with the OS to measure the same CPU-related metrics
returned by the UNIX top command, like the percentage of time
the CPU spends executing user-space processes or waiting on I/O.

The Nginx plugin, by comparison, queries a running Nginx
server to gather metrics like the current number of requests and
connection information. Users are encouraged to write their
own plugins to pull data from specific resources and contribute
them back to the project so others can benefit from them.

Output plugins are then used to send the gathered metrics data
to other services for storage or analysis. The write_http plugin
is one example of an output plugin, sending metrics data to a
remote Web server in the prescribed JSON format. Other output
plugins support graphing systems like RRDtool, the AMQP mes-
sage transport, or even humble CSV files.

Many plugins exist for collectd. The default collectd installation
on the current Ubuntu LTS (Trusty) comes preconfigured with
100 plugins, 14 of which are automatically enabled. To give you a
feel for the sorts of metrics that are collected out of the box, here
are all of the input plugins that were enabled on my test Trusty
box by default:

Figure 1: Collectd works as a standalone collection agent, indicated by the
PAD icons in this figure.

54  D ECE M B ER 20 14 VO L . 3 9, N O. 6 www.usenix.org

COLUMNS
iVoyeur: Rediscovering collectd

◆◆ battery: for systems with internal batteries like laptops

◆◆ cpu: CPU stats (%wait, %user, etc.)

◆◆ df: file-system capacity (e.g., inodes free)

◆◆ disk: disk performance (I/O per second)

◆◆ entropy: measures the effectiveness of the PRNG

◆◆ interface: network interface (I/O per second)

◆◆ irq: times per second the OS has handled an interrupt

◆◆ load: 1, 5, and 15-minute load average

◆◆ memory: RAM usage

◆◆ processes: number of processes grouped by state (running,
sleeping, stopped, etc.)

◆◆ swap: swap capacity and usage

◆◆ users: number of users currently logged in

Plugin Configuration and Dependencies
For each plugin that collectd loads, there is a LoadPlugin line
in the collectd.conf file. Some plugins require only this line,
although most require some additional configuration to do
things like specify formats or locate files or directories in the file
system.

A few plugins depend on other plugins to operate. A notable
example is the JMX plugin, which requires the Java plugin to
function. Settings and dependency information for each plugin
are fully documented at the collectd wiki.

Mind the Polling Interval
Collectd’s polling interval is controlled by the Interval attribute
in the collectd.conf file. Because many upstream visualization
tools make assumptions based on this interval, you should think
carefully about your desired resolution, set it once and avoid
changing it, and take steps to ensure that this setting remains
the same on every host.

Modifying collectd’s polling interval will affect the resolution of
your metrics in upstream visualization systems. Some systems
handle this better than others. RRDtool, for example, is heavily
dependent on a preconfigured polling interval, so changing this
setting could render your existing RRDs inoperable. Again, set it
carefully, and then leave it alone.

Rollups with Collectd’s Network Plugin
With collectd’s network plugin, it’s possible to specify one or
more collection servers, to which all hosts emit their metrics.
This can simplify per-host configuration and minimize network
access control permissions, providing a means to aggregate and
proxy a site-wide metrics stream by configuring the server to
write to an upstream service like Librato.

A friend once told me that usually engineering was about build-
ing things, but that sometimes it was also about destroying
things, to see what can be made from the parts. I think I might
add that sometimes our job is to play with different kinds of
parts, because playing with parts teaches us about how things
could be built.

Being a building block, collectd isn’t going to replace a mono-
lithic monitoring system like Sensu or Nagios, and I’m certainly
not advocating that you destroy a functional monitoring system
only to rebuild it on collectd, but because most (if not all) moni-
toring systems can be made to accept data from collectd, it’s
worth playing with, whether you’re already running a monolithic
system or just trying to figure out what pieces fit with what.
Even if you’ve played with it before, you might learn something
new. I did.

Take it easy.

References
[1] “The Wonders of Programming”: http://www.oscon.com
/oscon2014/public/schedule/detail/35956.

[2] A Lego keyholder: https://www.youtube.com/watch?v
=5TdYhkVutkQ.

Do you have a USENIX Representative on your
university or college campus?

If not, USENIX is interested in having one!
The USENIX Campus Rep Program is a network of representatives at campuses around the world who provide
Association information to students, and encourage student involvement in USENIX. This is a volunteer program,
for which USENIX is always looking for academics to participate. The program is designed for faculty who directly
interact with students. We fund one representative from a campus at a time. In return for service as a campus
representative, we offer a complimentary membership and other benefits.

A campus rep’s responsibilities include:

■ Maintaining a library (online and in print) of USENIX
publications at your university for
student use

■ Distributing calls for papers and upcoming event
brochures, and re-distributing informational emails
from USENIX

■ Encouraging students to apply for travel grants to
conferences

In return for being our “eyes and ears” on campus, the Campus Representative receives access to the members-
only areas of the USENIX Web site, free conference registration once a year (after one full year of service as a Cam-
pus Representative), and electronic conference proceedings for downloading onto your campus server so that all
students, staff, and faculty have access.

To qualify as a campus representative, you must:

■ Be full-time faculty or staff at a four year accredited university

■ Have been a dues-paying member of USENIX for at least one full year in the past

www.usenix.org/students

■ Providing students who wish to join USENIX with
information and applications

■ Helping students to submit research papers to
 relevant USENIX conferences

■ Providing USENIX with feedback and suggestions
on how the organization can better serve students

For more information about our Student Programs, contact
Julie Miller, Marketing Communications Manager, julie@usenix.org

56  D ECE M B ER 20 14 VO L . 3 9, N O. 6 www.usenix.org

COLUMNS

Reality is the leading cause of stress amongst those in touch with it.

 —Jane Wagner

In retrospect, the financial collapse of 2008 had useful side effects. We in
distributed computing can be rightly thankful that it was the financial
services world that shouldered the task of proving that (we) humans are

in fact entirely capable of building systems that (we) humans cannot then
understand well enough to stably operate. I say thankful as (1) it wasn’t us,
and (2) money lost can be replaced with money printed, but not everything is
so fungible.

One of the useful side effects was that of ratcheting up the compulsory simulations of bad
events. Various sovereigns require these; most are called “stress tests.” What these stress
tests propose to do is to show how the largest bank holding companies (BHCs) would fare in
the event of various unhappy financial events in general, things that are “shocks to the sys-
tem” for which the BHC must either be able to absorb or be invulnerable to the contagion.

I’ve long considered financial services to be the avatars in cybersecurity simply because
the financial world differs from every other industrial sector in that the bigger the bank,
the greater the percentage of its business is done with competitors (i.e., BHCs are mutually
dependent). I’m here to suggest that it is that mutual dependence that generates risk of the
sort that stress tests exist to measure.

In another column long ago, I tried to explore the idea of a “margin of safety” for cyberse-
curity, something on par with how a civil engineer thinks about bridge failure under load.
Cryptography has long had such concepts. I now think that the stress test route is the one for
cybersecurity to follow. In a way, some already do this—including contingency plans for data
breaches that involve reverting to paper while evidence is gathered [1].

We all know that organized crime and military powers alike have both tools for mass disrup-
tion and tools for precision targeting. With that said, the pervasive interdependence of the
current Internet sphere is certainly on par with the interdependence of financial markets.
The time constants (speed) of the exchange of data and control between major cyber-
infrastructures are smaller (faster) than everything else on the planet excepting, perhaps,
financial services engaged in high-frequency trading.

So the obvious question is what sorts of simulations might be appropriate metrics for assess-
ing public risk to private yet critical components of the Internet ecosystem? And to whom
might a requirement for cybersecurity stress testing apply? As to the latter, in finance the
stress tests are required of “systemically important financial institutions” (SIFIs), which
include not only banks but also insurance companies and market infrastructure providers [2].

As to the question of what simulations and cybersecurity metrics might be appropriate, in
finance the scenario for 2012 stress testing [3] was

For Good Measure
Stress Analysis

D A N G E E R

Dan Geer is the CISO for
In-Q-Tel and a security
researcher with a quantitative
bent. He has a long history
with the USENIX Association,

including officer positions, program
committees, etc. dan@geer.org

www.usenix.org D ECE M B ER 20 14 VO L . 3 9, N O. 6 57

COLUMNS
For Good Measure: Stress: Analysis

◆◆ a peak unemployment rate of 13 percent,

◆◆ a 50 percent drop in equity prices, and

◆◆ a 21 percent decline in housing prices.

If applying such scenarios to major financial institutions repre-
sents our best available analogy for what to do in cybersecurity,
then how can we in cybersecurity proceed?

The cybersecurity equivalent of the SIFI would include the most
important transport providers (ISPs), cybersecurity product
suppliers, identity providers, intelligence acquirers and analysts,
and any of the XYZ-as-a-service suppliers as have clients who
are themselves critical infrastructure players and for which
security is part of the claimed package of service benefits. It is
likely that in cybersecurity we’d have a longer list than the eight
domestic and 32 global SIFIs, because for finance it is easy to tell
who to include by the “too big to fail” test, whereas for cyber-
security the web of dependencies is more like looking for those
entities that are “too interconnected to fail.”

The cybersecurity equivalent of the stress test would not be just
one scenario but, rather, a number of scenarios. Let me sug-
gest, however, one sample parallel to that which is applied to the
SIFIs, viz., the simultaneous appearance of

◆◆ a vulnerability requiring client-side reinstallation for 25 per-
cent of all endpoints,

◆◆ a sustained 50 percent drop in available bandwidth, and

◆◆ the wholesale data loss of a top-three cloud provider.

As with the banks, the question is whether the enterprise being
stress tested can survive in the above scenario. Stress tests are
fundamentally different from the tests (and associated met-
rics) that come from such disparate things as static analysis of
code, penetration testing, cryptographic strength assessment,
and so forth. In every case with which I am familiar, the tests
we currently do are designed to answer the question, “Am I or
my clients at risk from things that I am supposed to directly
control?” The tests I am proposing answer a different question:
“Can I withstand the failure of others on whom I depend?” That
gets to the very heart of risk—a dependence on the expectation of
system state.

I would like to work with a number of interested parties to come
up with a set of scenarios, a set motivated by the systemic risk to
those other entities that depend on the cybersecurity industry
and which would ask questions in the same spirit that the stress
tests mandated by Basel III [4], Dodd-Frank [5], the European
Banking Authority [6], and so forth, ask: Can the institutions be
made to survive cyber-failure scenarios through the application
of cybersecurity techniques that we already have in hand, or not?

The stress testing of financial institutions could not have come
into force without the near approach of general collapse on a
global scale. Must we hope for the near approach of general
collapse on a global scale within the cybersecurity infrastruc-
ture? One wishes otherwise, but if such a crisis does occur, then
we cannot let it go to waste. Thinking and writing about what
a useful cybersecurity stress test regime would contain is the
best way to avoid letting the coming crisis go to waste. With the
possible exception of finance, no part of modern life offers the
chance of common mode failure as much as cybersecurity does
[7]. It is our duty to realistically measure that risk and to prepare
or preserve alternate paths. Finance has, unwillingly or no,
blazed a trail. What will we do?

References
[1] US restaurant chain P.F. Chang’s China Bistro reverted
to manual credit card imprinting during investigation of
a security breach that allowed hackers to steal customer
 payment card data from multiple stores: arstechnica.com
/security/2014/06/pf-chang-turns-to- vintage-1970s-tech
-after-credit-card-breach/.

[2] “List of systemically important banks,” Wikipedia:
en.wikipedia.org/wiki/List_of_systemically_important
_banks.

[3] Federal Reserve Board of Governors, Comprehensive
Capital Analysis and Review: www.federalreserve.gov
/newsevents/press/bcreg/20120313a.htm.

[4] Bank for International Settlements, International Regu-
latory Framework for Banks(Basel III): www.bis.org/bcbs
/basel3.htm.

[5] US Senate Committee on Banking, Housing, & Urban
Affairs, Brief Summary of Dodd-Frank Wall Street Reform
and Consumer Protection Act: www.banking.senate.gov
/public/_files/070110_Dodd_Frank_Wall_Street_Reform
_comprehensive_summary_Final.pdf.

[6] European Banking Authority, EU-wide stress testing:
www.eba.europa.eu/risk-analysis-and-data/eu-wide-stress
-testing.

[7] Dan Geer, “Heartbleed as Metaphor,” Lawfare, April 21,
2014: www.lawfareblog.com/2014/04/heartbleed-as
-metaphor.

58  D ECE M B ER 20 14 VO L . 3 9, N O. 6 www.usenix.org

COLUMNS

/dev/random
Buying Snake Oil

R O B E R T G . F E R R E L L

W hile I only stood in line for about 45 minutes in order to accomplish
it—as opposed to camping for a day or two in a butt-grabber nylon
chair on the sidewalk—I got my iPhone 6 today. (Today being Sep-

tember 22, no matter what your calendar says; we’ve talked about publishing
relativity before.) I only got the 16 GB version and not the Plus model, either,
but announcing this cherry acquisition is not my raison d’être here.

As I was biding my time in the store I wandered over and started playing with a Surface Pro 3.
Completely contrary to my expectations, I really liked the feel and functionality of the thing.
I may just have to get one if my novels ever start to sell the way my publisher assures me will
happen (seconds before the mile-wide asteroid that got by NASA impacts). Of course, if the
Surface ran, say, Ubuntu it would be even better (yes, I’ve seen the Geek article on accom-
plishing this). I fondled it for a while and then in order to express my profound amazement at
having enjoyed the experience bought Minecraft for the Xbox 360. I’m sure the logic in this is
obvious to you all.

Moving on, I recently stumbled across this parody ad I wrote some years ago: I suspect
merely to drain a modicum of anger from my psyche, as I do that from time to time. It’s rather
dated—you can tell by the “geek code” reference—but it nevertheless conveys a sentiment I
still believe to be valid. If there is a “Carpe Diem (In)Security Systems,” out there now, by
the way, I can’t imagine what you were thinking. It isn’t about you, anyway, so don’t get your
knickers in a knot.

If you’re offended by something in this little diatribe, get over it now, before you even start
reading. Satire is supposed to be offensive, or at least aggressively thought-provoking: That’s
how it gets its point across. There was a time when I produced pretty much nothing but satire
and parody. One of my friends, an accomplished poet, even went so far as to call me a “Master
of Parody.” I probably wouldn’t go that far unless you encouraged me (twist my arm: please),
but I do remember wanting very much to write for the Harvard Lampoon as a teen, until I
found out you had to go to, well, Harvard to do that. I could barely afford the local junior col-
lege, much less an Ivy League school.

This fictitious ad reveals my own mental state rather than shining any critical light on the
security industry at the time, admittedly, but there are some telling depths to be plumbed.
For example, the Philip K. Dick reference to arresting people for what they were thinking
ensures that this was written after 9/11 because prior to that I considered the “PreCrime”
concept to be pure, rather absurd, science fiction. Once we started passing classified laws
that average citizens weren’t even allowed to know about, much less defend themselves
against when charged, I reassessed that evaluation and came to the conclusion that PKD
was, rather than simply mad, disturbingly prescient as well.

Does the Psychic Network even exist anymore? They should have seen that coming...

Robert G. Ferrell is a fourth-
generation Texan, literary
techno-geek, and finalist
for the 2011 Robert Benchley
Society Humor Writing

Award. rgferrell@gmail.com

www.usenix.org D ECE M B ER 20 14 VO L . 3 9, N O. 6 59

COLUMNS
/dev/random: Buying Snake Oil

60  D ECE M B ER 20 14 VO L . 3 9, N O. 6 www.usenix.org

BOOKSBook Reviews
M A R K L A M O U R I N E A N D R I K F A R R O W

Functional Thinking
Neal Ford
O’Reilly Media Inc., 2014; 179 pages
ISBN 978-144936551-6
Reviewed by Mark Lamourine

Functional programming has, for a long time, been the realm of
the theorists, the purists, and the AI specialists. Derived directly
from the lambda calculus, the mathematical underpinnings of
computation theory, functional programming has always felt
like it required a different mental model. FP was an alien world.
It didn’t seem like the concepts could be applied without throw-
ing out everything I know and adopting a new programming
language.

While it’s true that some languages make pure functional pro-
gramming easier than others, many languages today provide the
most fundamental feature of functional programming: functions
as first class objects. This means that it’s possible to apply the
concepts of FP even in languages that are not pure functional
languages. Ford does use languages, Scala, Groovy, and Clojure,
that illustrate his ideas clearly, but he also demonstrates code in
Java 7 and 8.

Ford really wants the reader to begin to look at certain classes of
coding problems differently. Each chapter has a word or phrase
that is used to guide the examination. I’m not sure how effective
they are really but they may work for some.

In the first chapter, “Shift,” Ford talks about recognizing list pro-
cessing opportunities. He introduces the MapReduce pattern and
filtering using chained list processing functions. Ford shows in
following chapters how to use higher order functions and recur-
sion to replace iteration (“Cede”), and how to use memoization to
create “lazy” data structures to delay processing (“Smarter, not
Harder”). In “Evolve” Ford introduces Clojure and the concept of
replacing defined data structures with dynamic functions that
both manipulate and represent the program state. The final two
chapters, “Advance” and “Polyglot and Polyparadigm,” introduce
design patterns suited to functional programming and examples
of mixed-style languages and programming practices.

I admit I’m not a convert to pure functional programming. In
the examples given, the code is indeed often more concise than
the comparable object oriented or imperative style. To my aging
eye, the results often smack of cleverness, which can obscure the
intent of the author. I’ve seen and written long strings of chained
functions on lists, and they often seem to reach a point where the
meaning is no longer evident to the reader.

I’m also not a fan of the convention of creating a new function for
every possible variation of operation on some data structure. The
results are an ever increasing catalog of minutely specialized func-
tions that would otherwise be a clean set of methods on a class.

Given all that, I do have a newer appreciation of functional
programming, and I’ll keep an eye out for opportunities to apply
what I’ve learned. Functional Thinking has given me a perspec-
tive on functional programming techniques and philosophy that
I missed when I learned my first functional languages (Com-
mon Lisp and Scheme) in college. I do wish I’d had some of this
perspective then.

SDN: Software Defined Networks
Thomas D. Nadeau and Ken Gray
O’Reilly Media Inc., 2013; 353 pages
ISBN 978-1-449-34230-2
Reviewed by Mark Lamourine

I pick up most books from O’Reilly today expecting to breeze
through the introduction and the first few chapters at least. The
authors of SDN made me work. The subtitle of the book is “An
Authoritative Review of Network Programmability Technolo-
gies,” and I think they live up to it.

Nadeau and Gray have a difficult task, too. To discuss the tech-
nologies that can be used to create and manage programmable
networks, the reader needs first to have some understanding of
the network components themselves. While many sysadmins
are familiar with the use of Layer 2 (switching) and Layer 3 (IP,
routing) devices and the data line protocols, fewer are familiar
with the internal architecture and components of these devices.
To make things more difficult, most of those components have
proprietary names and acronyms or abbreviations.

The authors move very quickly through this first section and
don’t make many concessions to the networking novice. They
introduce the concept of a “Data Plane,” in which the network
payload moves, and a “Control Plane,” which defines the charac-
teristics of the network. The key concept that drives the rest of
the book is the idea of a distributed control plane. In hardware-
defined networks, the control plane is restricted to the individual
switch or router device. In a few kinds of device, blade or stacked
switches and routers, the control plane is abstracted one level
away, but never farther. The abstraction that software offers
opens up the possibilities. In the extreme case, the control plane
could be completely centralized. The topology variations and
their effects on the construction of a network, with the benefits
and flaws, fill the remainder of the chapter.

www.usenix.org D ECE M B ER 20 14 VO L . 3 9, N O. 6 61

BOOKS

This first section lays the necessary groundwork, but I would
have appreciated a bit more help with understanding the typi-
cal components, their relationships and interactions in a static
hardware network. This is the base on which the rest of the book
is built. I think they could have spent some more effort to make
this truly complex topic clearer.

The second chapter introduces OpenFlow, which the authors use
as a touchstone. It sets a baseline against which the rest of the
software in the book is compared. OpenFlow is the result of the
first attempt at a software-defined network. While it has gained
support both from corporate and open source contributors, it
is largely acknowledged to be insufficient to create a complete
network by itself.

Nadeau and Gray proceed to move from the lowest level of net-
work control up to building complete virtual network topologies
on top of the same physical hardware that carries packets from
one place to another. This is a technical review, so the authors
list and describe the software capabilities and characteristics,
not how to configure or use them in operations.

Software-defined networks are an incomplete and evolving sub-
ject. The body of the book alternates between lists of vendor and
open source technologies and some discussion of how they fit
into a programmed network. The end of each chapter is a short
section in which the authors sum up what we’ve learned and
where the gaps still are.

This book does a good job of illuminating the state of software-
defined networks once the authors get past the details of the
characteristics of distributed or centralized control. Unfortu-
nately, the field has changed dramatically even in the year since
it was published. The introduction (and withdrawal) of Open-
Stack Quantum and the stumbles of OpenStack Neutron are just
a couple of the developments in the SDN space. There are signs
sprinkled throughout the text that the authors recognize this
and plan to issue updates, but it’s not clear when.

Given the current movement toward cloud computing, I’ve
concluded that the role of a sysadmin is expanding rather than
contracting. The operator of an OpenStack or commercial cloud
service will need to have at least some expertise in all of the tra-
ditional enterprise IT silos: Compute, Storage, and Networking.
A book like SDN might be the best way for someone who needs to
get a handle on the problems and possibilities to get conversant.

The Practice of Cloud System Administration
Thomas Limoncelli, Strata R. Chalup, Christina J. Hogan
Addison-Wesley, 2015, 524 pages
ISBN: 978-0-321-94318-7
Reviewed by Mark Lamourine

System administrators are not known for consensus and con-
formity. It doesn’t take long for new admins to fall in love with a
tool or a programming language (or to fall into hate). The Editor
Wars are probably the most well known ongoing dividing line,
but faults can appear around any choice we can make.

This is what makes the books by Limoncelli, Chalup, and Hogan
(LC&H) so remarkable. If you ask most sysadmins what single
book they should read, the answer will almost certainly be The
Practice of System and Network Administration. They’re going
to have a harder time now, with the release of volume 2: The
Practice of Cloud System Administration. (Just so you know,
it’s already known by the abbreviation TPOCSA.) I think this is
likely to become a must-read.

One of the tenets of TPOCSA (and of all quality design) is “Keep
it Simple.” The authors present cloud administration in two
parts. Pretty simple, eh? First, they define the characteristics of
their ideal system, then they go on to describe the methods that
they use to try to achieve that ideal.

When I say “describe the system” I mean that in a somewhat
abstract way. LC&H aren’t talking about which database is best
or how much memory you need to render a movie frame. It turns
out that all large-scale distributed systems have a set of common
characteristics. These, along with the requirements for high
reliability and robustness, have led to a set of best practices that
have become generally accepted, largely because they have been
shown to work. The hitch is that most of them seem counterin-
tuitive and nearly all directly contradict standard practices of
two decades ago.

In this section the authors also make clear the scope of what
“system administration” means. Up until the advent of virtual-
ization and ubiquitous high-speed networks, it meant OS instal-
lation and some network configuration. When the machine was
ready it would be handed off to some application and operations
team for the rest of the lifetime of a host. The SA tasks would
probably include backups and periodic patching (or at least that’s
what many people thought). Today system administration and
operations are largely synonymous. This union even has a word:
DevOps (which is contentious, so I won’t discuss it further here).

So we’re talking about a large-scale distributed system. When-
ever you have something big and made up of lots of parts, you
inevitably have failures. Much of the rest of the book consists
of ways to make that not matter, taking human nature and the
“physics” of highly complex systems into account to make robust
seamless services that run well even as they are changing.

62  D ECE M B ER 20 14 VO L . 3 9, N O. 6 www.usenix.org

BOOKS

Scanning over the chapter headings after the section break, I
am struck by something that should have been obvious. This
is a book about practices. The first section is really a glos-
sary, a base of terminology and concepts on which to build. But
what we build from them, the system that results, isn’t just the
cloud application. The infrastructure that LC&H are talking
about here is as much a social one as it is technical. Each of the
computational components is meant either to facilitate human
communication or to remove painful, time-consuming, or error
prone tasks.

System administrators are no longer just brick layers and jani-
tors. They are involved in every phase of application life cycle
from inception to a long continuously evolving life span. LC&H
discuss the philosophy and practice of each phase, always
considering that humans are expensive (and error prone) while
computation is cheap. Automation, documentation, and moni-
toring are all reconsidered with an eye to minimizing drudgery
and false rigor and replacing it with a min-set that will evaluate
what’s really important: comprehension and communication.

I read Gene Kim’s The Phoenix Project not long after it came out,
and while I smiled and nodded knowingly all the way through,
it felt a little like a unicorn story. I thought, “This is nice, but no
one in business is going to take a novel seriously as a model for
business practice.” Of course I was wrong, but I still think that
something more is needed, not just a parable but a manual. The
line where the authors cite Gene for “inspiration and encourage-
ment” indicates that LC&H thought so, too.

There really wasn’t much in this book that was new to me. I
think much of what’s here is already fairly common knowledge.
What TPOCSA has done is to bring together in one place the
accumulated body of knowledge that has been growing and
changing since the birth of the Internet. Today’s computer
systems are a far cry from the mainframes, minicomputers, and
PCs that dominated the 1990s. There have been a number of
movements triggered by the changes since then: Agile devel-
opment, the DevOps movement, Continuous Integration and
Deployment. TPOCSA brings them all together and reminds us
that the methodology, the philosophy, the ideology are not what
matters. The system, running and serving reliably, is what mat-
ters. All of the rest are just means to that end.

So who should read it? I think anyone claiming to be a system
administrator today should be conversant with what’s here, but I
think the bigger impact will come when we pass it to a colleague,
whether a developer or a manager. There’s a lot of confusion
around what cloud computing means, and TPOCSA gives us a
common base on which to build our systems and our processes.

What If? Serious Scientific Answers to Absurd
Hypothetical Questions
Randall Munroe
Houghton, Mifflin, Harcourt, 2014; 305 pages
ISBN 978-0-544-27299-6
Reviewed by Rik Farrow

You are likely familiar with xkcd, the comic strip that uses stick
characters to great effect. You may not have heard of another
project by Munroe, where he answers questions submitted to
him, using math and research, to provide sound answers to some
very strange queries. I had encountered a couple of Munroe’s
posts while searching xkcd.org, looking for potential cartoons
to decorate a ;login: issue, and learned that he was publishing an
entire book of answers.

Well, not quite. Munroe interspaces his answers with sets of
questions that he wouldn’t answer, adding more humor to his
book. And like the Mythbusters, Munroe will often take a ques-
tion, provide an answer, then scale the question up, to prove a
point, like how many people with laser pointers would it take to
light up the dark portion of the moon, or his hair dryer that has
ten settings, each using an order of magnitude more power. Mun-
roe uses scaling and statistics in ways that are effective.

I’ve used Munroe’s What If? as a great way of taking a break
away from my computer, and think it would be an appropriate
gift to most geeks and/or scientists that you may have in your
life. You might also be able to use Munroe’s writing as inspira-
tion for how to answer those ridiculous questions you may have
been asked by your management, although I do advice caution in
these circumstances.

NOTES

www.usenix.org D ECE M B ER 20 14 VO L . 3 9, N O. 6 63

USENIX Member Benefits
Members of the USENIX Association
 receive the following benefits:

Free subscription to ;login:, the Associa-
tion’s magazine, published six times a year,
featuring technical articles, system admin-
istration articles, tips and techniques, prac-
tical columns on such topics as security,
Perl, networks, and operating systems, book
reviews, and reports of sessions at USENIX
conferences.

Access to ;login: online from December
1997 to the current month:
www.usenix.org/publications/login/

Access to videos from USENIX events in
the first six months after the event:
www.usenix.org/publications/multimedia/

Discounts on registration fees for all
 USENIX conferences.

Special discounts on a variety of products,
books, software, and periodicals: www.
usenix.org/member-services/discount-
instructions

The right to vote on matters affecting the
Association, its bylaws, and election of its
directors and officers.

For more information regarding member-
ship or benefits, please see www.usenix.org/
membership/or contact office@usenix.org.
Phone: 510-528-8649

USENIX Board of Directors
Communicate directly with the USENIX
Board of Directors by writing to
board@usenix.org.

P R E S I D E N T

Brian Noble, University of Michigan
noble@usenix.org

V I C E P R E S I D E N T

John Arrasjid, VMware
johna@usenix.org

S E C R E T A R Y

Carolyn Rowland, National Institute of
Standards and Technology
carolyn@usenix.org

T R E A S U R E R

Kurt Opsahl, Electronic Frontier
 Foundation

D I R E C T O R S

Cat Allman, Google

David N. Blank-Edelman, Northeastern
University

Daniel V. Klein, Google

Hakim Weatherspoon, Cornell University

E X E C U T I V E D I R E C T O R

Casey Henderson
casey@usenix.org

Team USA Brings Home the Gold
from IOI 2014
Brian C. Dean, Associate Professor, School of
Computing, Clemson University, Director,
USA Computing Olympiad

Watching the live scoreboard for a five-hour
competitive programming contest can be, as
one might imagine, somewhat dull. Unless
Scott Wu is part of the contest, that is. This
past summer, Scott and three other USA
team members competed at the 26th annual
International Olympiad in Informatics
(IOI) in Taipei, Taiwan—the world’s most
prestigious computing contest at the high-
school level. Although the contest takes five
hours on each of two separate days, Scott
finished day one with a perfect score in
only two hours, and day two with a perfect
score in only three hours—an absolutely
remarkable performance beyond what any-
one at the event, including the judges, had
anticipated. Aside from Scott’s perfect score
and first-place finish, his three other team-
mates, Steven Hao, Andrew He, and Joshua
Brakensiek, all earned gold medals, placing
in the top 7% of more than 300 competitors
from roughly 80 countries; China was the
only other country receiving four gold med-
als. It was perhaps the best showing ever for
team USA over more than two decades of
participation in the IOI.

The road to the IOI and programming gold
started many years ago for the members of
team USA 2014, with participation in the
USA Computing Olympiad (USACO). The
USACO, a grateful recipient of USENIX
sponsorship, provides online programming
competitions and algorithmic training ma-
terials in which thousands of high-school
students take part. Beginning students who
are just learning to program start out in our
bronze division, where problems require
minimal algorithmic training beyond the
ability to sort. Top performers in the bronze

64  D ECE M B ER 20 14 VO L . 3 9, N O. 6 www.usenix.org

NOTES

division are promoted to the silver divi-
sion, with problems that help students learn
about standard algorithms and data struc-
tures (a sample problem is included at the
end of this article for those interested). With
sufficient effort, students then graduate to
the gold division, with problems that would
challenge even graduate-level students of
computer science, requiring sophisticated
algorithmic techniques, clever insight, and
plenty of coding experience to implement
properly. Based on the result of six monthly
programming contests held throughout the
academic year, the USACO identifies the top
two dozen high-school computing students
in the USA and invites them to a rigorous
summer “training camp” at Clemson Uni-
versity for additional instruction. The top
four from this camp are selected to repre-
sent the USA at the IOI.

Of the USA team members competing this
year at the IOI, Scott had attended the
USACO summer training camp for the past
four years, Steven and Joshua for the past
three years, and Andrew for the past two
years. The camp experience is designed
to benefit first-time attendees as well as
veterans such as these students, with first-
timers receiving a more lecture-centric
curriculum, and returning students experi-
encing a curriculum based more on practice
competitions. Beyond the core instructional
activities at camp, finalists take part in
recreational activities, excursions, enrich-
ment lectures, and innovative computa-
tional “game” challenges. For example, this
summer students worked in teams to write
programs that would bid against each other
in a simulated prediction market that would
reward the programs best able to predict
the winner of a game of chess unfolding
in real time. Camp instructors are mostly
USACO alums who are now undergraduate
and graduate computer science students at
top universities, who provide mentorship
not only in computational problem solving,
but also in the exciting opportunities for ad-
vanced study in a variety of computational
disciplines. In short, the USACO helps to
identify, train, and inspire our next genera-
tion of top computing innovators.

The IOI moves from country to country
each year, with each host country offering
a different unique assortment of activities
and cultural excursions during the week-
long event. All members of the USA delega-
tion to the 2014 IOI in Taipei, Taiwan, had
a wonderful experience, including our four
team members, team leader Brian Dean,
and deputy team leader and veteran USACO
coach Richard Peng. The contest venue was
directly adjacent to the Taipei 101 sky-
scraper—one of the tallest buildings in the
world and also, fittingly, a building whose
number looks just like “IOI”! During the
week of the IOI, we embarked on several cul-
tural excursions, experienced the very best
of Taiwanese cuisine, and made fast friends
with like-minded peers from all over the
world. Combined with our gold medal per-
formance, it was a truly memorable event.

While the USACO is one of the very few
organizations in the USA that supports
advanced computing at the high-school
level, its mission also involves support-
ing pre-college computing at all levels (a
mission of ever-increasing importance,
given the disparity between the tremendous
demand world-wide for top computing tal-
ent compared with the relatively lackluster
K-12 infrastructure for teaching computing
in the USA). One of our goals is to expand
our reach by offering educational materials
and contests that can benefit an even wider
range of students, and sponsorship from
organizations like USENIX is crucial to
helping us reach this goal. By continuing to
grow our base of participation, we are con-
fident that we will send ever-more talented
teams to represent the USA at future IOIs
in Kazakhstan (2015), Russia (2016), Iran
(2017), and Japan (2018).

For those interested, here is a sample
problem (at the silver level) from one of our
USACO contests this past season: Suppose
you are making a road trip with two naviga-
tionally inclined individuals, both of whom
are using GPS applications on their phones
to help find a good route to the destination.
Unfortunately, both applications are using
different underlying maps, so they have

differing opinions of the best route to take.
Whenever you deviate from the preferred
route of one of the GPS applications, it
complains loudly that it must recalculate a
new route. Given the mapping data for each
GPS in a convenient format, your task is to
find a route to the destination that results in
a minimum number of complaints, collec-
tively, between both GPS units.

For more information about the USA Com-
puting Olympiad, please visit our Web site at
http://www.usaco.org.

Thanks to Our Volunteers
by Casey Henderson, USENIX Executive Director

As many of our members know, USENIX’s
success is attributable to a large number
of volunteers, who lend their expertise and
support for our conferences, publications,
good works, and member services. They
work closely with our staff in bringing
you the best there is in the fields of sys-
tems research and system administration.
Many of you have participated on program
committees, steering committees, and
sub committees; many have also contributed
to this magazine. The rest of the staff and I
are most grateful to you all. I would like to
make special mention of some people who
made particularly significant contributions
in 2014.

Although I include them in the list below, I’d
like to say an extra special thanks to Niels
Provos and Margo Seltzer, who both com-
pleted eight years of service on the USENIX
Board of Directors this year, reaching the
term limit. Both have been dedicated and
active Board members for their entire
terms, pushing USENIX forward as an
organization and giving generously of their
time. Following the conclusion of their
terms, they both continue to contribute to
USENIX as volunteers in various efforts.

Program Chairs
Bianca Schroeder and Eno Thereska:
12th USENIX Conference on File and
 Storage Technologies (FAST ’14)

Ric Wheeler: 2014 USENIX Research
in Linux File and Storage Technologies
 Summit

www.usenix.org D ECE M B ER 20 14 VO L . 3 9, N O. 6 65

NOTES

Ratul Mahajan and Ion Stoica: 11th USENIX
Symposium on Networked Systems Design
and Implementation (NSDI ’14)

Sabrina Farmer, Andrew Fong, and
 Fernanda Weiden: SREcon14

Dinah McNutt: 2014 USENIX Release
Engineering Summit (URES ’14) and 2014
USENIX Release Engineering Summit
West (URES ’14 West)

Chris St. Pierre: 2014 USENIX Configura-
tion Management Summit (UCMS ’14)

Jie Liu (General Chair); Sharad Singhal and
Bhuvan Urgaonkar (Program Co-Chairs):
9th International Workshop on Feedback
Computing

Michael A. Kozuch and Minlan Yu:
6th USENIX Workshop on Hot Topics
in Cloud Computing (HotCloud ’14)

Garth Gibson and Nickolai Zeldovich:
2014 USENIX Annual Technical
 Conference (USENIX ATC ’14)

Xiaoyun Zhu (General Chair); Giuliano
Casale and Xiaohui (Helen) Gu (Program
Co-Chairs): 11th International Conference
on Autonomic Computing (ICAC ’14)

Steven Swanson: 6th USENIX Workshop
on Hot Topics in Storage and File Systems
(HotStorage ’14)

Jeanna N. Matthews and Sherry Moore:
2014 USENIX Women in Advanced
 Computing Summit (WiAC ’14)

Kevin Fu: 23rd USENIX Security
 Symposium (USENIX Security ’14)

Walter Mebane and Dan S. Wallach:
2014 Electronic Voting Technology
 Workshop/Workshop on Trustworthy
 Elections (EVT/WOTE ’14); also Editors-
in-Chief of the USENIX Journal of Election
 Tech nology and Systems (JETS)

Chris Kanich and Patrick Lardieri:
7th Workshop on Cyber Security
 Experimentation and Test (CSET ’14)

Jed Crandall and Vern Paxson: 4th USENIX
Workshop on Free and Open Communica-
tions on the Internet (FOCI ’14)

Avi Rubin and Eugene Vasserman:
2014 USENIX Workshop on Health Infor-
mation Technologies (HealthTech ’14)

Zachary N J Peterson: 2014 USENIX
 Summit on Gaming, Games, and Gamifica-
tion in Security Education (3GSE ’14)

Michael Bailey and Fabian Moore:
2014 USENIX Summit on Hot Topics
in Security (HotSec ’14)

Sergey Bratus and Felix “FX” Lindner:
8th USENIX Workshop on Offensive
 Technologies (WOOT ’14)

Jason Flinn and Hank Levy: 11th USENIX
Symposium on Operating Systems Design
and Implementation (OSDI ’14)

Flavio Junqueira and Keith Marzullo:
10th Workshop on Hot Topics in System
Dependability (HotDep ’14)

Yuvraj Agarwal and Karthick Rajamani:
6th Workshop on Power-Aware Computing
and Systems (HotPower ’14)

Ada Gavrilovska and Anthony D. Joseph:
2014 Workshop on Supporting Diversity in
Systems Research (Diversity ’14)

Ken Birman: 2014 Conference on Timely
Results in Operating Systems (TRIOS ’14)

Kaoutar El Maghraoui and Gokul
 Kandiraju: 2nd Workshop on Interactions
of NVM/Flash with Operating Systems
and Workloads (INFLOW ’14)

Nicole Forsgren Velasquez: 28th Large
Installation System Administration
 Conference (LISA14)

Kyrre Begnum and Charles Border:
2014 USENIX Summit for Educators in
 System Administration (SESA ’14); also
Chief Editors of the USENIX Journal of
 Education in System Administration (JESA)

Invited Talks/Special Track Chairs
John Strunk: Tutorial Coordinator at FAST

T.S. Eugene Ng and Amar Phanishayee:
Poster Session Co-Chairs at NSDI

Jaeyeon Jung: Deputy Program Chair at
USENIX Security

Sandy Clark, Matthew Green, Thorsten
Holz, Ben Laurie, Damon McCoy, Jon
 Oberheide, and Patrick Traynor (Chair):
 Invited Talks Committee at USENIX
Security

Franziska Roesner: Poster Session
 Coordinator at USENIX Security

Allen Clement and Roxana Geambasu:
Poster Session Co-Chairs at OSDI

Patrick Cable, Doug Hughes, and Matthew
Simmons: Invited Talks Coordinators
at LISA

Lee Damon: Lightning Talks Coordinator
at LISA

Cory Lueninghoener: Workshops Coordina-
tor at LISA

Tom Limoncelli and Matthew Simmons:
Tutorial Coordinators at LISA

Paul Krizak (Chair) and Chris McEniry:
LISA Lab Coordinators

Branson Matheson and Brett Thorson:
LISA Build Coordinators

Other Major Contributors
Cat Allman, John Arrasjid, David Blank-
Edelman, Sasha Fedorova, Daniel V. Klein,
Brian Noble, Kurt Opsahl, Niels Provos,
Carolyn Rowland, Margo Seltzer, Dan
 Wallach, and Hakim Weatherspoon for their
service on the USENIX Board of Directors

Eric Allman, John Arrasjid, and Niels
 Provos for serving on the Audit Committee

Brian Noble and Cory Lueninghoener for
serving on the Awards Committee

Brian Dean, team leader, and Richard Peng,
deputy team leader and veteran coach, for
this year’s USA Computing Olympiad, co-
sponsored by USENIX

Eddie Kohler for his HotCRP submissions
and reviewing system

Tadayoshi Kohno for organizing the
 Work-in-Progress Reports at USENIX
Security ’14

Jacob Farmer of Cambridge Computer for
his sponsorship of the traveling LISA Data
Storage Day series and for organizing the
Storage Pavilion and Data Storage Day at
LISA14

Hugh Brown, Katherine Daniels, and Mark
Lamourine for blogging about USENIX and
LISA14 activities

66  DECEMBER 2014 VOL. 39, NO. 6 www.usenix.org

REPORTSConference Reports

23rd USENIX Security Symposium
August 20–22, 2014, San Diego
Summarized by David Adrian, Qi Alfred Chen, Andrei Costin, Lucas Davi,
Kevin P. Dyer, Rik Farrow, Grant Ho, Shouling Ji, Alexandros Kapravelos,
Zhigong Li, Brendan Saltaformaggio, Ben Stock, Janos Szurdi, Johanna
Ullrich, Venkatanathan Varadarajan, and Michael Zohner

Opening Remarks
Summarized by Rik Farrow (rik@usenix.org)

Kevin Fu, chair of the symposium, started off with the numbers:
a 26% increase in the number of submissions for a total of 350,
and 67 papers accepted, a rate of 19%. The large PC was perhaps
not large enough, even with over 70 members, and included out-
side reviewers as well. There were 1340 paper reviews, with 1627
follow-up comments, and Fu had over 8,269 emails involving the
symposium. Attendance was strong, with 520 people registered.

Jaeyeon Jung (Microsoft Research) worked as Fu’s deputy chair,
and will be the chair for the symposium in 2015. Tadoyoshi
Kohno, past chair, handled both WiPs and the shadow reviewers.

Fu announced the Best Paper award, which went to “Privacy in
Pharmacogenetics: An End-to-End Case Study of Personalized
Warfarin Dosing,” by Matthew Fredrikson, Eric Lantz, Somesh
Jha, Simon Lin, David Page, and Thomas Ristenpart. Two Best
Student Paper awards went to “DSCRETE: Automatic Render-
ing of Forensic Information from Memory Images via Applica-
tion Logic Reuse,” by Brendan Saltaformaggio, Zhongshu Gu,
Xiangyu Zhang, and Dongyan Xu, and to “Automatically Detect-
ing Vulnerable Websites Before They Turn Malicious,” by Kyle
Soska and Nicolas Christin.

The Test of Time award, for a paper that was presented at least
10 years ago and is very relevant today, went to Roger Dingledine,
Nick Mathewson, and Paul Syverson for “Tor: The Second-Gen-
eration Onion Router.” Dingledine and Syverson were present
and received the award, and also spoke briefly in a short panel
after the keynote.

Keynote
Summarized by Rik Farrow (rik@usenix.org)

Phone Phreaks: What We Can Learn from the First
Network Hackers
Phil Lapsley, hacker, consultant, entrepreneur, and author of Exploding the
Phone: The Untold Story of the Teenagers and Outlaws Who Hacked Ma Bell.

Phil Lapsley told us that he spent five years researching and
writing his book, including over 500 FOIA requests. He later
suggested looking at the Web site for the book, where you
can search through his references (explodingthephone.com),
something I tried while writing this summary, and I can write
that searching worked well for me. And while the book is about
phreaks, Bell System hackers, Phil presented the background
that made phone freaking not just possible but likely.

AT&T was a US government regulated monopoly, with over
90% of the telephone market in the US. They owned everything,
including the phones on desktops and in homes, and, as a monop-
oly, could and did charge as much as $5 per minute (in 1950) for a
cross-country call. In 2014 dollars, that’s nearly $50 per minute.
In the beginning, the system relied on women, sitting in front
of switchboards with patch cables in hand, to connect calls.
Just like Google today, AT&T realized that this model, relying
on human labor, cannot scale with the growth in the use of the
telephone: They would have needed one million operators by
1970. Faced with this issue, company researchers and engineers
developed electro-mechanical switches to replace operators.

The crossbar switch, first used only for local calls, used the pulse
of the old rotary telephone to manipulate a Strowger switch,
with each pulse setting the switch to the next position. For long-
distance calls, operators would have to find a set of available
trunk lines to route each call. AT&T’s next step was to build
more automated switches, called a 4A crossbar, each so large it
filled a city block, eventually building over 175 of them. As these
4A crossbars were networked together, they together comprised
the largest machine ever built.

The 4A crossbar used a tone, 2600 hertz, to indicate when a
trunk line was idle, and pulses to communicate across the trunk
to a distant 4A crossbar. The first “hack” of the system occurred
when a blind 13-year-old, Joe Engressia, was whistling along
with a song and noticed that it caused a phone call to be discon-
nected. He experimented by calling information (dialing 411),
then whistling again (he had perfect pitch), disconnecting that
call as well. With practice, he could “dial” long distance calls
just by whistling, and Lapsley displayed an old TV segment of an
older Engressia doing just that. And, said Engressia on TV, the
phone call was free, too. He had discovered the interface used by
the switches, and by operators.

AT&T had a big problem. Fixing the system would be very
expensive, so they tried to interest the FBI in prosecuting people
using the 2600 Hz tone to make free calls, but the FBI wasn’t
interested at first. Bookmakers, who arranged bets, made a lot of
use of phones, and the ability to make both toll free and unlogged
phone calls really appealed to them. By collecting information
about bookies using the 2600 Hz tone, the phone company got
the FBI’s attention.

Generating the 2600 Hz tone, along with the other seven tones
used with switching equipment, took a little bit of technical
know-how, provided by telephone company documents. The first
devices were large, and built into blue boxes, which is where the
devices got their name. Steve Jobs and Steve Wozniak learned
about blue boxes, and sold them to students living in UC Berkeley
dorms. This was their first entrepreneurial enterprise, in 1971,

www.usenix.org DECEMBER 2014 VOL. 39, NO. 6 67

REPORTS

after learning about the hack via an article in Esquire magazine.
The phone company countered by building green boxes, devices
for detecting the presence of 2600 Hz tones entering switches
from locations other than trunk lines or 4A crossbars.

Lapsley ended with a list of observations, such as, if you build
it, curious kids will hack it, and later so will organized crime
and state actors. Bell Labs can be forgiven for not considering
security, because there weren’t hackers back then. But we now
know better. It’s better to build security in from the start, rather
than attempting to bolt it on later. AT&T had the 175 gigantic 4A
crossbars, plus many thousands of smaller switches, all relying
on the 2600 Hz signal. In closing, Lapsley said that if you think
things are bad now, just wait: The Internet of Things means that
there will soon be trillions of connected devices, all with little to
no security designed in.

Vern Paxson praised the talk, then pointed out the mission
creep: A search for phreakers turns into an effort to help locate
bookies. Lapsley said he had interviewed Bill Caming, a fraud
attorney for AT&T, who said the FBI was quite happy to receive a
comprehensive list of bookies, and that it was part of an ongoing
relationship between AT&T and the government. Paxson went
on to say that mission creep was a subset of co-evolution, and
Lapsley responded that AT&T was a Stalinish Central Planning
organization, but one that doesn’t exist any more. Steve Bellovin,
speaking as a historical researcher, really appreciated the online
references (see above). Bellovin then pointed out that the FBI
wasn’t interested in cloned cell phones either, until they learned
that drug dealers were using them. John Stalwart said he was
interested in the special numbers, 000–199, that Lapsley had
mentioned. These numbers allowed phone company insiders to
test lines, but also to eavesdrop on existing connections, and that
because there were so many people employed, it was possible to
find someone to bribe.

Tor Panel and Lightning Talks
The summary of this session is available online as an electronic
supplement: www.usenix.org/login/dec14.

Privacy Session
Summarized by Kevin P. Dyer (kpdyer@gmail.com)

Privee: An Architecture for Automatically Analyzing Web
Privacy Policies
Sebastian Zimmeck and Steven M. Bellovin, Columbia University

Sebastian presented a very relatable problem: Privacy policies
are often hard to understand and long to read. Most users simply
browse a Web site or click “accept” without appreciating the
implications of their actions. What’s more, in many jurisdictions,
such as the United States, privacy policies are legally binding
documents. In response, the authors present Privee, a concept
that helps users understand the privacy policies they agree to.

Privee is implemented as a browser extension and has two
methods for analyzing policies. First, the browser extension

checks whether a crowd-sourced analysis of a given privacy
policy exists in a public repository. If a crowd-sourced analysis
of the policy is not available, rule and machine-learning classi-
fiers are used to dynamically analyze and classify the policy. At
the end of this work-flow, the results are displayed in a simple
UI overlaying the complex policy. The UI reports on six different
binary dimensions that are of interest to users, such as: “Does
the company encrypt my data when in transit and/or storage?” or
“Does the policy allow for collection of personal information?”

A ground truth data set to evaluate the accuracy of Privee was
obtained by having experts tag privacy policies. It turns out that
the accuracy of the machine-learning-based classification is
dependent upon the type of question being asked. As an example,
it’s typically quite easy to infer the context and meaning of words
like “encryption.” However, other words like “disclosure” turn out
to be problematic for binary classifiers. Interestingly, both human
experts and the Privee extension had more difficulties with
ambiguous policy language. Nevertheless, Sebastian was opti-
mistic that there will be future improvement in the classifica-
tion process. He emphasized that privacy policies tend to become
easier to understand and classify over time. This all points to
Privee being a very promising approach to empower users.

During the Q&A, someone asked how Privee and its classifiers
compared to P3P classifications of privacy policies. Sebastian
responded that the P3P privacy policies of Web sites are, in fact,
often wrong and, thus, diverge from natural-language policies.
However, some of the classifications performed by the Privee
extension are comparable to the P3P tags, which hints that the
Privee concept might have the same expressive power as P3P.

Privacy in Pharmacogenetics: An End-to-End Case Study
of Personalized Warfarin Dosing
Matthew Fredrikson, Eric Lantz, and Somesh Jha, University of Wisconsin—
Madison; Simon Lin, Marshfield Clinic Research Foundation; David Page and
Thomas Ristenpart, University of Wisconsin—Madison

Awarded Best Paper!

Matthew started by describing an area of medicine that we may
not all be familiar with: pharmacogenetics. Pharmacogenetics
is the use of patients’ health records and genetic information to
provide individually tailored drug dosing. For certain drugs like
Warfarin, a blood thinner, this is critical—incorrect dosing can
kill a patient. For this reason the International Warfarin Phar-
macogenetics Consortium (IWPC) publishes a pharmacogenet-
ics-based model that works well for tailoring initial Warfarin
dosing to a patient, based on the patient’s age, height, weight,
race, history, and two specific genotypes.

In the medical community, data sets are rarely published.
However, the models derived from data sets are often published.
In response, the authors present a novel attack, which they call
a model inversion attack. In the case of the IWPC model, the
model inversion attack means that given just the model, it’s pos-
sible to predict the genotype of a specific patient. It is assumed

68  DECEMBER 2014 VOL. 39, NO. 6 www.usenix.org

REPORTS

that the attacker has basic demographics, stable Warfarin dose,
black-box access to the model, and marginal priors on patient
distribution. Then it turns out that an attacker can use model
inversion to infer patients’ genotypes based on this data more
accurately than guessing based on the priors. The accuracy
is nearly optimal, and they provide a detailed argument in the
paper.

A natural approach to combating a model inversion attack is
to apply differential privacy. Ideally, this would allow us to
maximize the accuracy of queries but minimize the chance any
specific patients’ information could be recovered from the model.
However, differential privacy is implemented by adding noise to
the underlying data set. As it turns out, this changes the model,
which, in turn, changes the initial dosing that a patient would
receive. Matthew highlighted that there is now an undesir-
able tension: When differential privacy is applied, patients are
at increased risk of negative outcomes, including mortality, and
when differential privacy is not applied, patients’ privacy is at risk.

The question and answer session started with a question about
diet: There is a complex interaction between Warfarin dosing
and a patient’s diet. Matthew responded that diet was beyond
the scope of this study and not considered in the model. Some-
one asked what the general feeling in the medical field was
with respect to privacy. Matthew, of course, couldn’t speak for
the medical field in general but said that the physician on this
project thought that adding noise to the underlying data set was
a bizarre strategy for achieving privacy.

Mimesis Aegis: A Mimicry Privacy Shield—A System’s
Approach to Data Privacy on Public Cloud
Billy Lau, Simon Chung, Chengyu Song, Yeongjin Jang, Wenke Lee, and
Alexandra Boldyreva, Georgia Institute of Technology

Billy started by highlighting the tension between usability
and security that many users grapple with. Users want the
convenience of applications such as Gmail, Facebook Chat,
or WhatsApp but don’t necessarily want their private data to
be stored in plaintext in the cloud. Mimesis Aegis (M-Aegis)
addresses this concern by providing developers a framework
for adding end-to-end encryption to applications. However, the
key difference benefit of M-Aegis over other solutions is that it
doesn’t require modifications to or repacking of applications.
M-Aegis takes advantage of the accessibility layer that is avail-
able on modern mobile operating systems. This is used to create
a layer called Layer 7.5 (L-7.5) because it acts as a proxy between
Layer 7 (application) and Layer 8 (user) of the OSI network model.

The key challenges in implementing M-Aegis is to ensure user
experience is not compromised. Features such as spell check, in-
app navigation, and search must be retained, despite the use of
end-to-end encryption. As it turns out, using the L-7.5 approach,
spell check and in-app navigation are features that were easy
to retain on OSes like Android without additional infrastruc-
ture. However, search turned out to be slightly more problematic,
because server-side cooperation cannot be assumed. To overcome

this issue they adapted a searchable encryption scheme that was
presented in a prior work; more details appear in the paper.

Using M-Aegis to implement end-to-end encryption requires
per-app engineering to ensure that the proxy layer, L-7.5, cor-
rectly captures user input, encrypts it, then relays it to the
underlying app. What’s more, this additional layer plus encryp-
tion requires per-app decisions on how to encode data to ensure
that the app correctly accepts the input, because not all apps can
handle arbitrary ciphertexts.

Finally, to confirm that M-Aegis does not negatively impact
user experience, a user study was performed. It was confirmed
that no UI anomalies or performance issues were noticed by the
users, despite the new layer of encryption.

Someone asked whether the framework required per-app
manual work. Billy said that, yes, per-app engineering is needed,
but the framework assists with this process. However, chal-
lenges may arise if an app doesn’t use native UI rendering.
Another questioner asked for clarification of the attack model:
Is the attacker assumed to be honest but curious or active? Billy
confirmed that an honest but curious adversary was assumed.
Someone wondered whether most Android apps use the native
UI. Billy confirmed that most Android apps do use the native UI
in his experience. Were there any plans to support encrypted
images? Billy responded that it’s easy to encrypt text, but unless
the ciphertext abides by specific formats, it is going to fail when
stored. What’s more, we need encryption schemes that survive
compression. Finally, someone asked who manages keys. Billy
replied that M-Aegis has a pluggable key distribution system,
and any distribution strategy can be used.

XRay: Enhancing the Web’s Transparency with
Differential Correlation
Mathias Lécuyer, Guillaume Ducoffe, Francis Lan, Andrei Papancea, Theofilos
Petsios, Riley Spahn, Augustin Chaintreau, and Roxana Geambasu, Columbia
University

Mathias highlighted the issue of targeted advertising. Compa-
nies are aggressive, but not transparent, in how they target users.
In some cases, companies may try to determine when you’re sick,
or they may even try to determine when you’re pregnant. How-
ever, the ads displayed in response to these detected events don’t
always make it clear what’s being targeted. So Mathias posed
the question: Is it possible to construct a generic tool that reveals
data misuse? As an example, can we determine which emails
sent or received trigger a specific ad displayed to a user?

XRay is the first generic tool that correlates inputs (e.g., emails,
Web queries, etc.) to ads output to a user. It turns out that the
naive approach of creating many shadow accounts does not scale
to address this problem. Therefore, the authors present two novel
logarithmic algorithms for correlating user inputs with ads out-
put. One algorithm is simple but not robust. The other algorithm
is more complex, but more robust.

www.usenix.org DECEMBER 2014 VOL. 39, NO. 6 69

REPORTS

The algorithms were evaluated against Amazon, YouTube, and
Gmail and do not assume that all ads are targeted. A logarithmic
number of shadow accounts for each service were required to
perform the evaluation. For Amazon and YouTube, when ads are
displayed a reason is given (i.e., “We’ve shown you X because Y.”).
This enabled a ground truth data set to determine the classifi-
cation accuracy. The authors’ algorithms were then applied to
identify more subtle advertisements on Gmail through manual
labeling. This surfaced interesting results: for example, if some-
one is having financial problems, they are targeted with ads from
subprime lenders.

The question and answer session started with an important
question: What should users do with this information? Mathias
responded that this is first time they had this information, so
they didn’t know yet. An ultimate goal is that they want volun-
tary transparency from services so that users know how data
is being used, and this may lead users to change their behavior.
The next questioner asked whether someone shoulder surfing
who noticed ads targeted to another user, could exploit infor-
mation about the user? Mathias responded that this is indeed
a real threat, but more transparency is needed. The final three
questions concerned the capabilities of the framework. Can it
work over time series? Is it possible to have inputs that are more
complex than a single word? Did they plan to extend the frame-
work to work across multiple services? The answer to all three
questions was yes.

Mass Pwnage
Summarized by Qi Alfred Chen (alfchen@umich.edu)

An Internet-Wide View of Internet-Wide Scanning
Zakir Durumeric, Michael Bailey, and J. Alex Halderman, University of
Michigan

Zakir Durumeric first talked about the popularity of Internet-
wide scans after releasing ZMap last year, and motivated the
work by posing the questions, who is using ZMap and what is the
security impact from these fast scanning tools? To answer these
questions, the authors collected data from a large darknet during
2013 to 2014, and fingerprinted scanners such as ZMap. In the
analysis, they found increasing amounts of scanning activity. A
large portion of this activity was targeted at vulnerable services.
They also characterized the scanning sources. Surprisingly,
they found that instead of botnets, most of the scans came from
bullet-proof hosting providers or from China, and also many of
them came from academic researchers.

After characterizing the scanning landscape, Durumeric chose
three case studies to study the scans related to recent vulner-
abilities in Linksys routers, OpenSSL, and NTP. For the Link-
sys backdoor, scanning activities started within 48 hours, and
continued for at least two months. For the NTP DDoS attack
vulnerability, nearly all probing traffic was part of large scans
and was primarily from bullet-proof hosting providers. For the
Heartbleed bug in OpenSSL, scan activity began less than 24
hours after the disclosure, and the volume doubled in the follow-

ing week. The scanning origins were either bullet-proof hosting
providers or from China.

Durumeric also talked about the results on the defensive
mechanisms for the scans. Although scanning activity largely
increased, only 0.05% of the IP space was inaccessible from their
scanner, and only 208 organizations have requested exclusion
of scanning. They also summarized the scan detection mecha-
nism deployed by organizations. Durumeric concluded that large
scans have become common, while the defenders remain slow in
responding to these scans.

Following the talk, Bill Cheswick asked whether they would
be posting the set of ASes responsible for scanning, as he loves
the idea of shunning. Durumeric answered yes, and he added
that they are listed in the paper. The session chair, Vern Paxson
(UCB), asked how they could tell if scanning was widespread,
and Durumeric answered that if they saw a normal distribu-
tion, they assumed it was widespread. Paxson then pointed out
that some sites block IP addresses for short periods of time, and
Durumeric replied that they scanned every day.

On the Feasibility of Large-Scale Infections of iOS Devices
Tielei Wang, Yeongjin Jang, Yizheng Chen, Simon Chung, Billy Lau, and
Wenke Lee, Georgia Institute of Technology

Tielei Wang investigated the possibility of infecting iOS devices
on a large scale from compromised computers in a botnet. In
this work, Wang identified two previously unknown attacks that
enable compromised host computers to deliver malwares such as
the Jekyll app (presented by him in last year’s USENIX Security)
into an iOS device via USB or WiFi-based syncing. Leveraging
this vulnerability, a measurement study was then conducted to
estimate the population of iOS devices connected with compro-
mised computers in botnets, and they found that 23% of bots in
the study can be used to infect iOS devices.

The first attack managed to install Apple-signed malware into
iOS devices. A major challenge is that each downloaded app is
associated with an Apple ID and cannot run on a device that is
bounded with another Apple ID. However, the authors found that
this protection can be bypassed when using the iTunes syncing
feature. With a man-in-the-middle attack idea, this vulnerability
can be exploited from a remote computer’s iTunes, opening the
door to iOS devices infected remotely with malwares such as the
Jekyll app.

The second attack exploited the device-provisioning process,
which is designed for testing purposes. Wang’s work found that
provisioning profiles can be installed, enabling the installation or
removal of attacker-signed apps from a compromised computer
via USB. Besides injecting apps, Wang also found that with a USB
connection, a host computer can steal apps’ sensitive files, such
as cookies, which are well protected by sandbox-based isolation
between apps but can be accessed easily from the host computer.

70  DECEMBER 2014 VOL. 39, NO. 6 www.usenix.org

REPORTS

After demonstrating the threat from host computers to iOS
devices, Wang used a measurement study to determine the scale
of possible infection from compromised computers in the botnet
to iOS devices. To get a lower bound of the percentage of the pos-
sible infected iOS devices, Wang analyzed a DNS query data set
of a botnet to find out the number of iOS users using iTunes on
the compromised computers with Windows systems. The analy-
sis results showed that at least 23.70% of the iOS devices can be
infected, and for a large botnet in the data set, the infection range
could involve 13 cities.

Yossi Oren (Columbia) asked about a limitation of the attack of
injecting attacker-signed apps, which requires an iOS devel-
oper license and can only provision 100 iOS devices. Wang
replied that the Enterprise iOS Developer License can be used to
circumvent that. He was also asked about whether the attack of
injecting Apple-signed apps depends on iTunes, and he replied
that using iTunes is not necessary since there are other third-
party tools that can be used to do syncing.

A Large-Scale Analysis of the Security of Embedded
Firmwares
Andrei Costin, Jonas Zaddach, Aurélien Francillon, and Davide Balzarotti,
Eurecom

Andrei Costin motivated the work by talking about many inse-
cure embedded systems such as routers, printers, and cars, and
described the challenges of making the analysis of embedded
firmware security large scale, including, for example, the hetero-
geneity of hardware, users, etc.; firmware data set building; and
firmware identification and analysis.

To collect firmware data sets on a large scale, the authors used
a Web crawler to automatically download files online and set
up a Web site for users to submit firmware images. Identifying
firmwares requires manual effort and remained a challenge.
To unpack firmware images and identify custom formats, they
extended BAT (Binary Analysis Toolkit) with a range of addi-
tional plugins. To enhance the scalability for unpacking and file
carving, which are very CPU-intensive, the system uses a cloud
computing platform, where the analysis tasks were distributed
to several worker nodes. The analysis on the unpacked firmware
images includes correlation, clustering, and data enrichment
such as version banners and keywords.

Costin demonstrated their system using some examples. The
first example was about the correlation engine for finding
similarity between firmware images. He showed that by using
fuzzy-hashes, the vulnerability propagation can be studied.
The second example concerned private RSA keys stored in the
firmware images. Using the RSA key correlation and vulner-
ability propagation, the private key providing access to the Web
interface of some CCTV cameras was found to be reused across
many firmware images of the same brand, affecting 30,000
online IP addresses. They also found that the vulnerable com-
ponents of these CCTV cameras are shared with CCTV cam-
eras from another vendor. Costin concluded with a summary of

their results, which include 38 new vulnerabilities correlated to
140,000 online devices.

Cynthia Irvine (Naval Postgraduate School) asked about
whether they worked with vendors to make the firmwares more
secure. Costin replied that they had disclosed their findings to
vendors and communicated with them. He added that they had
a Web site and made their data, including the firmware images
and the analysis results, public. Costin was also asked about
whether there is any way to characterize the vulnerabilities: for
example, to identify whether the vulnerability is from the firm-
ware itself or a third party. He answered that currently identify-
ing firmware is hard to automate and is error prone: for example,
finding the version number is usually hard due to diverse
firmware file formats. He was then asked about how to judge the
coverage of their firmware data set since their sources are online
crawling and individual submissions. He replied that currently
it is hard to build a representative data set since the embedded
systems have a very heterogeneous environment.

Exit from Hell? Reducing the Impact of Amplification
DDoS Attacks
Marc Kührer, Thomas Hupperich, Christian Rossow, and Thorsten Holz,
Ruhr-University Bochum

Christian Rossow presented work on an Internet-wide study
of UDP-based amplification attacks, the authors’ attempts to
mitigate the attacks, along with discussions on potential next
step attacks and root causes. Rossow started by showing the
scanning results to study the amplifier landscape. They found
that the number of amplifiers remained constant throughout the
study, and multiple vulnerabilities simultaneously existed on
many systems. They then fingerprinted the devices and found
that NTP and SNMP amplifiers largely run on routers, while the
majority of NetBIOS amplifiers run on desktop computers. They
also found that most protocols had a high rate of amplifier churn,
but the NTP protocol only had a negligible rate of churn since
NTP amplifiers are usually assigned static IP addresses.

Considering that NTP is the worst among all known vulnerable
protocols, they then studied potential mitigations towards NTP
amplifiers. Rossow showed a timeline graph to demonstrate
their success in the remediation process of notifying the admin-
istrators. After releasing articles about the NTP attack, updating
the list of potential amplifiers, and weekly notifications, they
found the number of NTP amplifiers dropped by 92.4% with an
ongoing decrease. Although this campaign was shown to be very
effective, they still experienced difficulty in reaching out to the
providers.

After showing the influence on the amplifier landscape, they
further thought about a potential next step for attackers who
may turn to exploiting the TCP protocol for amplification
attacks. They studied retransmissions during the TCP proto-
col handshake and found that the SYN/ACK segments will be
sent repeatedly without being stopped by RST responses, thus
achieving the effect of overloading the capacity of the victim’s

www.usenix.org DECEMBER 2014 VOL. 39, NO. 6 71

REPORTS

network. Evaluated on HTTP, Telnet, and CUPS, this amplifica-
tion attack was found to enable an amplification factor of six or
higher for most of the reachable hosts.

Finally, they studied the root cause for amplification attacks: IP
address spoofing. A remote spoofer test was designed based on
DNS, without the need for individuals running manual or tool-
based tests. Using this remote test method, they identified more
spoofing-enabled ASes than previous work.

Cynthia Irvine asked about their future plans. Rossow answered
that they want to focus on identifying the source of the ampli-
fication traffic, even though it is spoofed. Someone asked
whether they used ZMap in their Internet-wide scanning of
UDP-based amplifiers. Rossow answered no and added that
they developed their own scanning tool. Someone asked which
TCP protocols could be exploited for amplification attacks, and
Rossow answered that, for example, HTTP Telnet, and FTP can
be exploited. The questioner asked whether these TCP-based
amplification attacks were real. Rossow replied that they were
real and reproducible.

Privacy Enhancing Technology
Summarized by David Adrian (davadria@umich.edu)

Never Been KIST: Tor’s Congestion Management Blossoms
with Kernel-Informed Socket Transport
Rob Jansen, US Naval Research Laboratory; John Geddes, University of
Minnesota; Chris Wacek and Micah Sherr, Georgetown University; Paul
Syverson, US Naval Research Laboratory

There is a large body of work showing that Tor is slow, but little
work has been done to explain why or to locate where the conges-
tion occurs in the Tor network and client. Rob Jansen presented
work that measures where congestion occurs both in the client
and in the network in order to determine and help eliminate the
root causes of congestion.

By instrumenting the Tor client, the authors were able to mea-
sure the amount of delay that Tor packets spent in kernel-level
and application-level buffers. After enhancing the Shadow Tor
network-simulator to provide more TCP-level data and creating
a simulated network of over 3000 Tor nodes, the largest simu-
lated network to date, they were able to determine that conges-
tion almost exclusively occurs in outbound kernel buffers.

To reduce the congestion, the authors reimplemented the Tor
client to more efficiently schedule circuits across multiple
sockets, and to keep Tor packets in application-level buffers in
cases where the send call would cause the packet to be added
to a queue rather than being flushed to the wire. By keeping the
packet in Tor level-buffers, Tor is able to make more educated
decisions about which socket to use. Jansen referred to their
improvements as KIST (Kernel-Informed Socket Transport).

KIST resulted in less kernel-level congestion and more Tor-level
congestion. However, this produced a net decrease in latency. This
latency decrease does make certain attacks published by Hopper

et al. more effective, but the authors believe this is purely due to
the fact that latency is lower and is not a direct flaw of KIST.

Someone asked whether they had measured what happens when
some Tor clients have the authors’ changes and some do not. Jan-
sen stated they had not yet explored this area, and possibly will
attempt to measure this before KIST is fully rolled out.

Effective Attacks and Provable Defenses for Website
Fingerprinting
Tao Wang, University of Waterloo; Xiang Cai, Rishab Nithyanand, and Rob
Johnson, Stony Brook University; Ian Goldberg, University of Waterloo

Tao Wang explained that the goal of Web site fingerprinting is to
determine from Tor network flows which Web sites a particular
Tor user is visiting by fingerprinting the traffic of a specific Web
site. Wang presented a new, more effective fingerprinting attack
and a provable defense against it. However, the provable defense
has a large performance impact. To explain the work, Wang used
comical slides featuring a small fuzzy character who was using
Tor and being attacked by a red blob.

The attack is machine-learning-based and uses the k-nearest
neighbors algorithm with a specially trained distance measure-
ment that weights various features visible in encrypted Tor
flows, such as packet size and timing. With the classifier trained
for a variety of popular Web sites, when used against a Tor client
visiting both fingerprinted and non-fingerprinted Web sites, the
attack is able to achieve an 85% true positive rate with a 0.6%
false positive rate.

To defend against the attack, the authors implemented a prov-
ably secure defense that uses the shortest-common super-
sequence to enforce that all packet flows appear identical.
However, while this method is provably secure, it requires at
least a 60% bandwidth overhead. A non-provably-secure defense
can use as little as 6% bandwidth overhead, but can still be bro-
ken with enough data, effort, and time.

TapDance: End-to-Middle Anticensorship without Flow
Blocking
Eric Wustrow, Colleen M. Swanson, and J. Alex Halderman, University of
Michigan

Eric Wustrow explained that since 2011, there have been several
different papers that describe methods for performing anti-
censorship using end-to-middle proxies, such as Decoy Routing,
Telex, and Cirripede. However, when the authors of this paper
and Telex approached ISPs to deploy these end-to-middle prox-
ies, the ISPs opposed the inline flow-blocking element—the part
of the proxy that blocked traffic to the decoy host and redirected
it to the censored host.

TapDance is an end-to-middle proxy that only needs a passive
tap and the ability to inject packets, in place of the flow-blocking
element. To achieve this, the authors used an insight gained
from a careful reading of the HTTP and TCP specification. By
sending an incomplete HTTP request to the decoy server that is

72  DECEMBER 2014 VOL. 39, NO. 6 www.usenix.org

REPORTS

missing the second \r\n, the decoy server will ignore the rest of
the incoming packets that are intended for the censored host.

To indicate to the TapDance station that the incomplete request
is in fact a TapDance request, the authors use a steganographic
channel inside of the TLS ciphertext. For stream ciphers, the
authors leverage the fact that flipping a bit on the input flips the
corresponding bit on the output. Using this channel, the authors
can encode a message encrypted with a TapDance station’s
public key.

Once the connection has been established, the censored client
can send requests for censored content to the decoy server that
are then decrypted by the TapDance station and proxied via an
uncensored network to the rest of the Internet. The TapDance
station then spoofs a response from the decoy server with the
censored content.

Peter Honeyman expressed his surprise that any ISPs were will-
ing to deploy such an anti-censorship tool, with or without flow-
blocking. Wustrow replied that the amenable ISPs tended to be
Tier 2 ISPs with a research focus, rather than a large consumer
ISP such as Comcast.

A Bayesian Approach to Privacy Enforcement in
Smartphones
Omer Tripp, IBM Research USA; Julia Rubin, IBM Research Israel

Omer Tripp described a tool designed to detect privacy leaks
in non-malicious Android applications, such as applications
that send user data to third-party advertising companies.
Their approach uses a Bayesian classifier and assumes data is
transferred using any of several common encodings, such as hex,
base64, and JSON.

The authors implemented their system in a tool called Bayes-
Droid. When applied to 54 applications from Google Play, the
authors were able to find 27 new privacy violations with only one
false positive. These results were more accurate with fewer false
positives than TaintDroid, the current state-of-the-art taint
tracking tool for Android privacy analysis.

Someone asked whether their small sample size might have led
to overfitting. Tripp replied that they did not believe so, and that
they were releasing their code with the hopes that third parties
might use it and provide feedback and more training data.

Crime and Pun.../Measure-ment
Summarized by Andrei Costin (costin@eurecom.fr)

The Long “Taile” of Typosquatting Domain Names
Janos Szurdi, Carnegie Mellon University; Balazs Kocso and Gabor Cseh,
Budapest University of Technology and Economics; Jonathan Spring,
Carnegie Mellon University; Mark Felegyhazi, Budapest University of
Technology and Economics; Chris Kanich, University of Illinois at Chicago

Janos Szurdi started his talk by introducing “typosquatting”
domains. These are domain names that differ from domain
names of known or established brands by a small difference:
for example, “google.com” versus “googl.com”. Users usually end

up on these domains by having a typo in the intended domain
names, hence the term “typosquatting.” Janos mentioned there
around 56 million potential typosquatting domains in the whole
.com range. And while most previous research focused at most
on the top 200,000 Alexa sites to look for typosquatting intel-
ligence, they performed a comprehensive study across the entire
.com domain distribution to gather a more complete understand-
ing of the typosquatting phenomenon.

Janos presented a case-study example based on PNCBank,
which is a Top 10 US bank and is hosted at pncbank.com. There
exists pncbnk.com, which runs advertising, pncban.com, which
runs a survey that turns out to ask for credit card and personal
details at the end, and, finally, pvbank.com, which claims to be
a bank in India and even has a disclaimer that states the site is
not a typosquatting domain! The case of pncbank.com, Janos
says, could have been missed by previous researchers due to its
lower Alexa ranking. Moreover, only 2% of the typosquatted
domains were found to be associated with their related brand
owners (either by domain owner directly or via brand protection
services). The other 98% of the cases were parked serving ads,
and a minority of them were associated with either competitors’
domains, phishing, or malicious pages.

In their methodology, Janos said, they used 1-Levenshtein dis-
tance to generate typosquatting based on real and valid domains.
Thus they used: deletion of a character, addition of a character,
substitution of a character, switching of two adjacent characters,
and appending the “www” prefix to the TLD domain name.

Janos noted that some mistyped domains are “true typosquat-
ting” domain cases, while some are not and are “incidentally
typosquatting” (i.e., not a true typosquatting case) similar to
the original brand only incidentally. To find a “true typosquat-
ting” case, several pieces of information are used, such as DNS
and WHOIS records, the domain’s content, and redirection
chains. However, there was a need to develop heuristic rules to
decide whether a domain is an instance of “true typosquatting”
or “incidental typosquatting.” The challenge in developing such
heuristics, however, is the lack of ground truth.

Based on Alexa, the authors took four sets of .com domains to
form the ground truth. Sets were as follows: Alexa rank 1–10,000,
Alexa rank 10,000–250,000, Alexa rank 250,000–1,000,000,
and a set of randomly chosen .com domains. For each set, they
performed typo-generation (as presented above) and selected
100 random domains from each typo-generated set. Finally, they
compared their results with the other two previous works. For
the top domains set, they found that most typo domains are “true
typosquatting” domains, and all three classifiers performed
with similar accuracy. For the other three less popular domain
sets, the other two classifiers decreased in performance, while
Janos’ classifier kept almost the same performance as for the
top domains set. In addition, for the set Alexa rank 250,000–
1,000,000, and the set of randomly chosen .com domains, less
than 70% were found to be typo-domains.

www.usenix.org DECEMBER 2014 VOL. 39, NO. 6 73

REPORTS

Janos highlighted the following trends in the registration time
of typosquatting domains. There is a continuous battle between
brand protections and typosquatters. Obviously, over time typo-
squatters cannot register popular domains. In addition to this,
more than 70% of typosquatting domains are registered more
than one year, which means domains are truly desired/desirable.

Janos pointed out that 25% of typosquatting domains were reg-
istered with one registrar, and another 15% with six registrars.
One solution, therefore, would be for ICANN and VeriSign to
force on such registrars additional checks to prevent typosquat-
ting. However, there is no incentive to do so since it will decrease
the revenue of both ICANN, VeriSign, and the registrars.

Janos concluded that the typosquatting phenomenon is wide-
spread and is also targeting less-popular domains as well.
Another conclusion drawn was that the number of popular typo-
squatting domains increases over time.

Jeffrey Goldberg (AgileBits) asked whether some substitutions
are more common than others for genuine typosquatting. Janos
mentioned that deletion and so-called “fat finger” typos were
the most common substitutions. Someone asked whether one
big group was behind the typosquatting, or hundreds of groups,
and what indicators could and would be used to answer such a
question. Janos clarified that there are few groups massively
typosquatting, as well as some other smaller groups for whom
typosquatting was not the main business. As for differentiating
between the groups, authors used DNS, WHOIS, and contents
of the site. Janos was asked whether typosquatting domains use
HTTPS and whether HTTPS is more or less common among the
typosquatting domains. Janos said they unfortunately didn’t
look at HTTPS and this is a good point to look at in the future.
The final question was whether the auto-correction features
(e.g., in browsers and search engines) would help to avoid land-
ing on typosquatting domains. Janos said they didn’t study this
direction, but he thought it would help a lot.

Understanding the Dark Side of Domain Parking
Sumayah Alrwais, Indiana University Bloomington and King Saud
University; Kan Yuan, Indiana University Bloomington; Eihal Alowaisheq,
Indiana University Bloomington and King Saud University; Zhou Li, Indiana
University Bloomington and RSA Laboratories; XiaoFeng Wang, Indiana
University Bloomington

Sumayah Alrwais began by introducing “parked domains.”
These are “unused” domains that receive a large amount of
traffic and that usually register with advertising networks for
high revenues. A common choice for running such domains are
domain parking services (DPS). These are usually running vari-
ous advertising network campaigns and are addressed to various
markets, advertising types, and revenues.

Sumayah presented several examples depicting different parked
domain scenarios. One is “education-guide.org,” registered
with a DPS and running multiple advertising networks (Google
AdSense, advertise.com, Bing Ads). Another is “city-cars.net,”
which sells traffic for specific search keywords. This type

of traffic is sold via keyword-related companies and traffic
systems such as DNTX.com. A final example is “expeedeea.
com,” which is an obvious typo-domain for “expedia.com” and is
registered with a brand protection service.

Sumayah briefly explained the ways the domains are parked and
monetized. One option is to simply redirect traffic via HTTP
302 redirects. Another option, the most common one, is to set
the name servers (NS) of the domain to those of the DPS, such as
ns1.sedo.com. In this case, it gives the DPS complete control over
the traffic, hence the best content, monetization, and redirection
strategies.

Sumayah explained that they wanted to study the legitimacy
of the DPS operation. Are they honestly reporting revenues to
all the parties using their services? Are the advertisers receiv-
ing real clicks, real traffic for purchased keywords, and are the
landing pages safe and free of malware? She explained there are
inherent difficulties while investigating DPS. One challenge is
the complex system of DNS and registrations, in addition to the
many parties involved (DPS, Web users, domain owners, adver-
tisers, ads-networks, proxies). Another challenge is that every
actor has only a partial view of the entire monetization chain.

Sumayah presented their approach, which basically is an
attempt to capture the end-to-end view of the monetization
chain by using multiple actors to enter the domain parking mon-
etization ecosystem. One actor registered domains and parked
them with DPS (as domain owner). Another set up sites for “fake”
advertisers (as advertisers) and bought advertising and traffic
keywords. Finally, as Web users, they instrumented Web crawl-
ers to search for millions of parked domains. Some of the crawled
domains were operated by the authors themselves. She explained
that this activity proved non-trivial with many challenges. From
the advertiser point of view, they had to impersonate multiple
user-agents of Web users. As traffic purchasers, they had to pur-
chase keywords similar to domain names owned by the authors.
The whole experiment consisted of capturing and analyzing 1.2
million chains, with 1015 end-to-end seed chains used as ground
truth. The authors then applied fingerprinting on the monetiza-
tion chains by using click/traffic stamps inside URL patterns
and IP addresses that identified a particular monetization party.

Sumayah described the many frauds they discovered. The
authors found click fraud in 45.7% of chains and at least 709
fraudulent clicks. In 38% of chains, they also detected “traffic
spam” fraud, by receiving purchased traffic from completely
unrelated domain names (e.g., for keyword “coupon”). They
found malware distribution (via social engineering or drive-by
downloads) in 2% of the chains. Finally, they detected “traffic
stealing” fraud, which means not reporting the whole revenue to
the domain owners. In this particular case, the authors paid 10
cents as traffic buyers. However, the assumed revenue did not
propagate to the parking domain provider or to the real domain
owner (who parked the domain, the authors in this experiment).

74  DECEMBER 2014 VOL. 39, NO. 6 www.usenix.org

REPORTS

This resulted in the fact that traffic buyer got fully billed while
the real domain owner got no revenue at all.

In conclusion, Sumayah said they estimated that more than 40%
of the revenue of PDS is illicit. This, in the authors’ view, calls for
immediate regulation of domain parking businesses. Until then,
there are several mitigations possible. One is that search adver-
tising networks should label publishers with categories. Another
is the integrity check and protection on the traffic buyers’ side.

Andrei Costin (Eurecom) asked why Google entered the DPS
market and why it left shortly thereafter. Sumayah thinks
Google entered the market to tap into the search-keywords pool.
However, Google got sued and most probably it was a big legal
pain, which meant that it was easier to exit the market than
to deal with all the legal and unregulated aspects. A follow-up
question by Andrei was whether Sumayah could provide some
advice regarding taxes, IRS, and legal aspects of their research.
Sumayah encouraged researchers to always speak first to their
legal department as this would surely solve many of the issues
upfront, at least it did for them. Someone asked about the exact
mechanism DPS created for click frauds. Sumayah said the fraud-
ulent DPS had no hidden iFrames but were simply redirecting
the click to a referral link. This resulted in a valid click from the
advertiser point of view. Someone asked whether they reported the
frauds to the FTC, and if so was the FTC interested in the reports.
Sumayah said they did not report their results to the FTC.

Towards Detecting Anomalous User Behavior in Online
Social Networks
Bimal Viswanath, M. Ahmad Bashir, Max Planck Institute for Software
Systems (MPI-SWS); Mark Crovella, Boston University; Saikat Guha,
Microsoft Research; Krishna P. Gummadi, Max Planck Institute for Software
Systems (MPI-SWS); Balachander Krishnamurthy, AT&T Labs–Research;
Alan Mislove, Northeastern University

Bimal Viswanath started by presenting service abuse as an
anomalous user behavior problem. Service abuse is a serious
problem today, where, for example, for less than $20 one can buy
5,000 “Likes.” This phenomenon has especially negative effects
for social advertising services.

The goal of Bimal’s team is to detect and limit service abuse.
This includes detecting the identity of such users and nullify-
ing their identities or accounts. This is challenging, however,
because of the adversarial cycle, where the “attacker” (i.e.,
abuser) mutates and always has an upper hand over the system.
It is well known that attackers mutate by using fake accounts
or compromised real accounts, or when real users collude with
their identities to boost their ranking.

Bimal and his team suggested the approach of building an
anomaly classifier. It is completely unsupervised and requires
no training or labeled data. Additionally, it requires knowledge of
attackers’ strategies. Their approach contributes to the detec-
tion of “Like” spammers on social networks such as Facebook,
regardless of spammers’ strategies. Bimal indicated that for the
approach to work, the classifier needs to learn patterns of nor-

mal user behavior. Hence, to evade detection the attackers need
to act along with this learned user behavior, which limits and
constrains the attackers in their actions.

Bimal introduced tables of “Normal vs. Anomalous” users. These
are based not just on the number of categories and number of
likes in each category, but also on an “inconsistent” small num-
ber of categories. He noted that behavior also changes over time,
so they used PCA (Principal Component Analysis) to detect
anomaly. Then he presented the capture of normal behavior
patterns. To detect the few patterns of behavior that are domi-
nant, Bimal said they used variance captured by each principal
component from PCA. He confirmed this approach to work on
Facebook, Yelp, and Twitter.

Bimal explained they trained the classifier on the behavior of
“Like” activities of a random large sample of Facebook users.
Subsequently, they tested the classifier on 3,200 black market
accounts (bots, fake accounts), on 1,000 compromised accounts,
on 900 colluding accounts, and on 1,200 normal accounts. Their
classifier successfully flagged 99% of black-market accounts. He
then explained “click spam” detection on Facebook. They set up
a real advertisement targeting US users for a survey link. They
also set up a bluff advertisement (i.e., an almost empty ad) that
would be expected to get almost no clicks. The surprising result
he mentioned was that both ads received a similar number of
clicks and similar activity on the landing page!

Bimal concluded that service abuse is a huge problem in social
networks today. He and his team proposed an unsupervised
anomaly detection scheme. They then evaluated their technique
on extensive ground-truth data of anomalous behavior. Finally,
they applied their approach to detect click-spam in a social net-
work advertising platform.

Damon McCoy (George-Mason) asked whether the technique’s
applicability domain is highly constrained by the patterns
analyzed. Bimal replied that the technique is quite general and
works as long as one can model the “normal behavior” of a user
in a given system. Someone asked whether the adversaries they
assumed have specialized in compromised accounts. Bimal
explained that it would be hard to catch compromised users, but
the behavior of such accounts after compromise makes them
easier to catch with the proposed system. A follow-up question
was on the number of “normal users” to be compromised in order
to manipulate the technique. Bimal suggested that it would
require compromising more than 30% of the “normal users.”
Algis Rudy (Google) asked about the threshold for noticing the
anomalous behavior. Bimal explained that it largely depends on
the operator, but it is a tunable parameter that can be trained for
false-negative and false-positive ratios, and also depends on how
much threshold the operator wants to tolerate.

www.usenix.org DECEMBER 2014 VOL. 39, NO. 6 75

REPORTS

Man vs. Machine: Practical Adversarial Detection of
Malicious Crowdsourcing Workers
Gang Wang, University of California, Santa Barbara; Tianyi Wang, University
of California, Santa Barbara, and Tsinghua University; Haitao Zheng and Ben
Y. Zhao, University of California, Santa Barbara

Gang Wang began the talk by introducing machine learn-
ing (ML) in the context of security and detection of malicious
users. ML is a proven tool for security applications. It’s widely
used for email spam detection, intrusion and malware detec-
tion, authentication, and identification of fraudulent accounts
(Sybils). Despite its success, ML also has weaknesses. The key
vulnerability is that statistical classes are derived from a fixed
data set. Strong adversaries may become aware of ML and try to
circumvent it.

Gang’s team focused on crowdturfing, defined as malicious
crowdsourcing, which is the act of hiring a large army of real
users for malicious attacks or activities. For example, it is used
to create fake reviews, fake testimonials, political campaigns,
and CAPTCHA solving. An online crowdturfing system focuses
on finding crowd workers for a customer. In China, ZBJ and SDH
are the two biggest such systems with revenues of millions of
USD per year.

Gang suggested that ML can be used against crowdturfing.
One reason is that it can do more sophisticated modeling of
user behavior. Another is that it’s the perfect context in which
to study adversarial ML, where there are highly adaptive users
seeking evasion. In the case of adversarial ML, he suggested
the existence of “evasion attacks” (i.e., workers/attackers evade
classifiers) and “poison attacks” (i.e., workers/attackers alter
training data).

Gang then presented their goal to develop defenses against
crowdturfing targeting Weibo. Other goals are to understand the
impact of adversarial countermeasures, that is, to understand
which classifiers are more accurate than others and in which
scenarios one classifier outperforms the others.

Their methodology was to gather training data and build/train
classifiers afterwards. As their ground-truth data set, they used
the two largest crowdturfing services targeting Weibo (ZBJ,
SDH), totaling three years of data with more than 20,000 Weibo
campaigns. In addition, they used 35 features to train the classi-
fiers for crowdturfing.

The performance of 60% for random forests (RF) and 50%
for decision trees (DT) indicates that it’s possible to build an
accurate classifier to detect crowdturfing workers. The follow-
up research challenge was to detect workers trying to evade the
classifier by mimicking a “normal user” and also to understand
what knowledge is practically available to evaders.

Gang presented the set of evasion models they designed. One is
“optimal evasion,” which can be per-worker optimal or glob-
ally optimal. Another is the “practical evasion scenario,” where
the attacker does not know the classifier threshold boundary,

but only knows estimated normal user statistics and can adopt
those features that make an action look “normal.” For optimal
evasion attacks, results showed that 99% of workers could evade
the classifier by changing five or fewer features. Although the
practical evasion attack required more features to be changed,
most classifiers were found vulnerable.

Gang then discussed the poisoning attack, which is executed
during the classifier training phase by crowdturfing service
admins highly motivated to protect their Web sites and workers.
These attacks use tampering of the training data of normal users
to manipulate model training. One way to do this is to inject
mislabeled samples to training data, which results in a wrong
classifier. Another way is to alter worker behavior uniformly by
enforcing system policies, hence making it hard for the classifier
to separate those two subsets. For example, admins can force
a predefined time-out for workers before taking another task,
so by delaying workers’ tasks the service admin preserves the
worker. Gang underlined the effectiveness of poisoning attacks,
especially where more accurate classifiers are more vulnerable.
For example, 10% of poisoned samples boost false positives by 5%.

Gang concluded with some key observations. One is that accu-
rate ML classifiers can be highly vulnerable. Another is that
no single classifier excels in all the attack scenarios. As future
work, Gang mentioned the improvement of the ML classifiers’
robustness.

Someone asked whether selection of the attributes/features is
important for building the model. Gang explained that in their
experience all features are useful, but some are easier to modify.
He mentioned that it would be interesting in the future to look
at features versus the cost of their modification. Kurt Thomas
(Google) mentioned last year’s semi-supervised study and asked
which was better for detecting crowdturfing. Gang explained
that last-year’s semi-supervised approach was mainly aimed
at detecting Sybil attacks in social networks and assumed that
the baseline majority of users were stable, good-faith users. For
crowdturfing, in particular, the adversaries have changed: They
are real users, and it’s easier for them to adapt, and hence they
require supervised learning. However, unsupervised learning for
crowdturfing looks very prospective as well.

Work-in-Progress Reports
The summary of this session is available online as an electronic
supplement: www.usenix.org/login/dec14.

76  DECEMBER 2014 VOL. 39, NO. 6 www.usenix.org

REPORTS

Forensics
Summarized by Grant Ho (grantho14@cs.stanford.edu)

DSCRETE: Automatic Rendering of Forensic Information
from Memory Images via Application Logic Reuse
Brendan Saltaformaggio, Zhongshu Gu, Xiangyu Zhang, and Dongyan Xu,
Purdue University

Awarded Best Student Paper!

Brendan Saltaformaggio presented work on automatically
reconstructing file content from memory images (snapshots of a
system’s volatile memory). While existing forensics techniques
can recover many of the raw data structures from memory
images via signature scanning, significant work still remains
in order to interpret or extract meaningful content from the raw
data structures; Saltaformaggio dubs this the “data structure
content reverse engineering” problem, and the core contribution
of this paper is a technique and system that tackles this problem.
Their main idea is that the applications where data structures
are found often contain the rendering and formatting logic
needed to generate human-understandable content from the
data structures; thus, DSCRETE attempts to identify and reuse
these rendering/formatting functions (collectively referred to as
the “P function”) in a program’s binary to automatically extract
human-understandable output from memory images.

First, an investigator feeds an application binary (e.g., the
PDF viewer on the machine under analysis) to DSCRETE.
Next, DSCRETE automatically discovers rendering/print-
ing functions in the binary by using slicing. A list of candidate
entry points to the P function (the first function that will call
the correct rendering functions to generate understandable
content) is then created by searching for locations that take a
heap pointer and for which all previously discovered rendering
functions depend on (based on a dependency graph). The final,
correct entry point is then found through “cross-state execution”:
repeatedly feeding data structures from the memory image to
candidate entry points until a human-understandable file is gen-
erated; this correct entry point can be saved for future analysis.

Saltaformaggio concluded by noting that DSCRETE was highly
effective at recovering many digital documents and presented
several demos of DSCRETE recovering Gnome-paint images
and PDF documents from memory images.

Thurston Dang (UC Berkeley) asked whether DSCRETE can
handle files generated by interpreted applications or scripts.
Saltaformaggio said that, currently, DSCRETE cannot handle
such files, but he affirmed that this would be pursued in future
work. Responding to another capabilities question from a
researcher from the University of British Columbia, Saltaforma-
ggio remarked that as long as ASLR was disabled on the investi-
gator’s machine, the memory image could come from a machine
that used ASLR because of memory mapping techniques
discussed in more detail in their paper. Finally, David Jacobson
(Qualcomm) asked whether DSCRETE could handle memory

images that were partially corrupt; Saltaformaggio replied that
DSCRETE should perform fine so long as the kernel paging
structures were intact, but even if they were corrupt, techniques
such as DIMSUM from NDSS 2012 might be able to be used in
conjunction with DSCRETE to effectively generate human-
understandable content.

Cardinal Pill Testing of System Virtual Machines
Hao Shi, Abdulla Alwabel, and Jelena Mirkovic, USC Information Sciences
Institute (ISI)

Hao Shi presented his work on systematically discovering red
pills that can detect whether a program is being executed in a
VM or real/bare-metal machine; this was joint work with fellow
researchers at the University of Southern California. Although
several existing papers discuss how to build red pills, Shi’s work
is the first to systematically explore the entire space of the Intel
instruction manual to detect semantic and computation differ-
ences between a VM and bare-metal machine.

Rather than use randomized testing, which lacks complete
coverage, or symbolic execution, which cannot assess computa-
tional differences such as floating point arithmetic, Shi’s group
generated a red pill test case for all instructions in the Intel x86
manual. They then executed each of these red pill test cases
(instruction operations) on a bare-metal machine, Bochs, QEMU
using TCG, and QEMU using hardware-assisted virtualiza-
tion; after executing the red pill tests, they compared the system
states of their bare-metal machine against each of the VMs to
determine whether the red pill elicited a difference between the
VM and bare-metal machine. For each VM, Shi’s work discov-
ered over 7,000 red pills that could be used to distinguish the
VM from a real-machine.

Concluding his presentation, Shi noted that their red pills
emerged from two sources: incorrect VM implementations of the
instructions or under-specified instructions that result in natu-
rally ambiguous and different implementations of x86 instruc-
tions. Looking forward, Shi sketched a defense idea against red
pills that instruments a honeypot/VM so that it takes in the list
of red pills discovered by Shi and automatically executes/returns
the correct and expected value of a real machine.

One researcher noted that Shi’s presentation and paper men-
tioned that they tested several different versions of QEMU such
as 1.3.1, 1.6.2, and 1.7.0, but neither the presentation nor paper
included results for the later versions of QEMU (1.6.2 or 1.7.0);
Shi affirmed that his paper did contain results for 1.6.2 and 1.7.0,
despite challenges from the audience member that the results
could not be found in the published, online version. Since Shi’s
group tested for red pills across different versions (i.e., newer
versions) of QEMU, one audience member asked whether it
looked like QEMU was improving the fidelity of its emulation
of a real machine; sadly, Shi noted that based on their test
results, it does not appear that QEMU is improving.

www.usenix.org DECEMBER 2014 VOL. 39, NO. 6 77

REPORTS

BareCloud: Bare-Metal Analysis-Based Evasive Malware
Detection
Dhilung Kirat, Giovanni Vigna, and Christopher Kruegel, University of
California, Santa Barbara

Dhilung Kirat presented work on detecting binaries that attempt
to evade VM analysis. While many dynamic analysis techniques
have been developed to analyze malware samples, these analy-
sis techniques are often conducted inside of a virtual machine
called a “honeypot” when used for malware analysis. Unfortu-
nately, a number of techniques have been developed that allow
binaries to detect whether their execution environment is a VM or
real (bare-metal) machine. The major contribution of Kirat’s work
is “BareCloud,” a bare-metal analysis system and a technique to
leverage the bare-metal system’s analysis to detect whether a
binary sample exhibits cloaking/evasive behavior in a VM.

BareCloud sets up the bare-metal machine with a clean system
snapshot and then initiates a binary sample by sending it over
the network and removing all traces of in-guest automation
and analysis tools before the malware sample executes. After
allowing the sample to execute, BareCloud extracts a behavioral
profile from the bare-metal machine, which is a tree-based
structure of the disk changes (relative to the clean system
snapshot) and network activity; in order to keep the bare-metal
system completely free of in-guest, detectable monitoring tools,
the information collected by the bare-metal analysis is limited to
just disk and network activity. Next, BareCloud extracts similar
behavioral profiles from common honeypots by loading the same
clean snapshot onto Anubis, Ether, and Cuckoo Sandbox and
executing the same binary sample in those environments. These
tree-structured behavior profiles are then compared using hier-
archical similarity to detect significant deviations (i.e., evasion)
between the bare-metal machine and honeypots; a significant
deviation is defined by an empirically derived threshold set by
the researchers.

To evaluate BareCloud, Kirat’s team ran BareCloud on a corpus
of 110,000 samples from Anubis; the samples varied from mini-
mal activity (very few system events and no network traffic)
to high activity (thousands of system events and more than 10
packets set over the network). Overall, they found that Bare-
Cloud labeled approximately 6,000 samples as evasive malware.

Inquiring about these results, Grant Ho (UC Berkeley) asked
whether Kirat’s team had analyzed what the false-positive and
false-negative rates were for their 6,000/110,000 result metric.
Kirat responded that there was no ground truth labeling, so it
wasn’t possible to precisely determine how many of the 6,000
samples might be false positives and how many evasive malware
samples remained undetected in the full set of samples. Addi-
tionally, Kirat was asked whether the execution environments
(i.e., the operating system version, libraries, and applications like
Java) were identical among all sandboxes and the bare-metal
machine. Kirat said that during the BareCloud experiments, all
execution environments were kept exactly the same to ensure

that behavior profile differences truly resulted from a sample’s
behavior. Answering another question about identical envi-
ronments, Kirat noted that Anubis’s auto-click feature (which
allows the honeypot to automatically interact with samples) was
disabled because the bare-metal system cannot have the same
auto-click behavior without introducing detectable, in-guest
automation components.

Blanket Execution: Dynamic Similarity Testing of
Program Binaries and Components
Manuel Egele, Maverick Woo, Peter Chapman, and David Brumley, Carnegie
Mellon University

Manuel Egele presented his work on a dynamic analysis tech-
nique to determine whether two functions are similar given just
their binary representation. Determining whether two functions
are actually similar or different, given their binary forms, has
several security applications such as identifying polymorphic
malware or analyzing updates/patches for vulnerability find-
ings. Their tool, “Blex,” introduces a novel dynamic analysis
execution technique (dubbed “blanket execution”), which greatly
increases coverage of program logic.

Like many existing dynamic equivalence checkers, Blex starts
by executing two unknown functions, f and g, in a fixed envi-
ronment and storing the side effects of both executions. But in
addition to their initial execution, the blanket execution process
continues to execute f and g (and collect their side effects) by
finding the first unexecuted instruction in f and g and execut-
ing them from that point; this repeated execution and side effect
collection continues until all instructions in f and g have been
executed at least once. From the full set of side effects for f and g,
Blex outputs a similarity score for the two functions by comput-
ing a Jaccard index of the two sets.

To evaluate the efficacy of Blex, Egele’s group collected the
functions from the GNU coreutils package and ran Blex on these
functions, when compiled at different optimization levels. While
BinDiff slightly outperforms Blex when functions are compiled
at similar optimization levels (e.g., –O0 vs. –O1), Blex is roughly
twice as effective as BinDiff when matching functions at very
different optimization levels (e.g., –O0 vs. –O3).

Egele was asked how Blex performed when functions and
binaries were obfuscated, as typically seen in malware. Egele
responded that enhancing Blex to handle obfuscated code will be
future work; this work was simply the first step to see whether
their blanket execution technique was even possible, which
is why they evaluated Blex on obfuscated versions of popular
binaries.

78  DECEMBER 2014 VOL. 39, NO. 6 www.usenix.org

REPORTS

Invited Talk
Summarized by Rik Farrow (rik@usenix.org)

Information Security War Room
Sergey Bratus, Dartmouth; Felix (FX) Lindner, Recurity Labs

Sergey and FX filled in at very short notice for a speaker unable
to attend and provided a lively presentation. Unfortunately, FX
was in DEFCON mode, and much of the talk was R-rated for
language. Nevertheless, what the two had to say was definitely
interesting and relevant to our current security landscape.

The speakers really had four main points to make: (1) we do not
currently have secure systems; (2) there is no product liability
for the software industry; (3) instead of fixing the problem, some
countries are trying to defend the status quo using treaties; and
(4) LangSec principles explain a lot of the security issues in cur-
rent software.

FX began by pointing out that you cannot buy a secure system
today, and that just two market sectors have no product liabil-
ity: software and illegal drugs. Both of these groups call their
customers “users,” a comparison that earned FX some laughs.
FX then displayed a graph created by Veracode, a company that
examines software binaries looking for exploitable input condi-
tions. The two worst software sectors for security flaws were in
customer support software and security software. This should
not be a surprise since security software usually has the focus
of being built out of protocol parsers, a topic they get to later. But
just imagine, said FX, having a Intrusion Prevention System
with all of its rules built into the operating system: you have 500
protocol parsers right in the line of sight of the attacker.

FX, who acts as a NATO advisor in the cybersecurity realm, said
he has hope that the military will be the first sector that requires
that software be backed with product liability guarantees. FX
said that the military already takes eight years to procure soft-
ware, and buggy and insecure software empires could receive a
fatal blow if companies will not stand behind the software that
they sell by accepting liability for failures.

FX shifted into a related theme, the attempt to create treaties to
“fix” the software security problem. He used the analogy of long
bows, which made it possible for peasants to kill the expensively
armored nobility and resulted in said nobility creating rules of
warfare in an attempt to outlaw this “unfairness.” FX described
a simply amazing example, the new code of conduct for the
 Internet, proposed by China, Russia, Tajikistan, and Uzbekistan
(and other countries) at the 66th session of the United Nations.
FX claimed that this is not because Russia and China feel
threatened by cyberattacks, but instead they feel they are in a
superior position.

But FX and Sergey feel that the Wassenaar Arrangement is a
much bigger threat to security today. This treaty even makes
research into tools that might be used in cyberwarfare illegal.
For example, software designed to avoid detection by monitor-

ing tools, for extraction of data or information, or to modify the
standard execution path of a program, would be illegal to export.
As an example, Sergey pointed out that debuggers and dynamic
loaders both modify the execution path, although exceptions are
made for these by Wassenaar. But tools like debuggers came out
of a need to understand how software works (or doesn’t work),
and treaties like this one would ban research into potentially
dual-use tools. The speakers, and several others, have written a
position paper and call to action that can be found in the online
version of the August 2014 issue of ;login: about the potential
effects of Wassenaar.

Both speakers called for creating textbook definitions for words
relating to security, such as “exploit” and (better) “weaponized
exploit.” Having these terms defined by lawmakers or journal-
ists may result in making much security research illegal in most
countries.

Shifting into the final topic, Sergey explained that software
insecurity has everything to do with attempting to solve a prob-
lem that is unsolvable. The Chomsky-Schützenberger hierarchy
(1956) describes sets of parsers that are required to recognize
the four classes of formal grammars. Only regular grammars
can be proven correct, and the use of any other more complex
grammars leads to parsers that cannot be proven correct.
Parsers handle input to software, and that’s exactly the point
where exploitation occurs. Too bad the Wassenaar Arrangement
doesn’t make context-free, context-sensitive, and unrestricted
grammars in parsers illegal, as that would actually do a lot to
improve software security.

Sergey stated that they wished to patch the Postel Principle:
Instead of being liberal in what is accepted in input, input must
be matched exactly. FX commented that we needed Postel’s
Principle to get TCP/IP off the ground. But now we must play by
the rules of adults. They both went on to list a series of recent
exploits, all of which are triggered by the parsing of input, includ-
ing OpenBSD’s IPv4 bug in 2007, the chunk encoding bug that
appeared first in Apache in 2003, then again in Nginx in 2013,
goto fail in Mac OS, and Heartbleed in 2014.

They ended by suggesting that people check out the papers from
the LangSec workshop at IEEE Security and Privacy 2014:
http://spw14.langsec.org/.

Steve Bellovin (Columbia) agreed with the point about the need
for input recognizers. He provided the example of a fascinat-
ing bug in the FTP recognizer, which used a YACC grammar to
parse input and led directly to the security hole. Steve concluded
that the wrong type of grammar was used for the task. Sergey
agreed with Steve’s point, and commented that we focus mostly
on computation at the syntactic side, but not on the semantic
side. FX joked that if they hadn’t used YACC, but the typical
approach of using case statements, they would have had hun-
dreds of bugs.

www.usenix.org DECEMBER 2014 VOL. 39, NO. 6 79

REPORTS

Attacks and Transparency
Summarized by Brendan Saltaformaggio (bdsaltaformaggio@gmail.com)

On the Practical Exploitability of Dual EC in TLS
Implementations
Stephen Checkoway, Johns Hopkins University; Matthew Fredrikson,
University of Wisconsin—Madison; Ruben Niederhagen, Technische
Universiteit Eindhoven; Adam Everspaugh, University of Wisconsin—
Madison; Matthew Green, Johns Hopkins University; Tanja Lange,
Technische Universiteit Eindhoven; Thomas Ristenpart, University of
Wisconsin—Madison; Daniel J. Bernstein, Technische Universiteit Eindhoven
and University of Illinois at Chicago; Jake Maskiewicz and Hovav Shacham,
University of California, San Diego

Stephen Checkoway from Johns Hopkins University began this
presentation with a central assumption: An attacker can gener-
ate the constants used in Dual EC. Based on this assumption,
the research aimed to analyze the cost of such attacks against
TLS implementations (such as that used in SSL libraries) that
use NIST’s Dual EC pseudo-random number generator. After
reminding the audience that the NSA has gone to great lengths
to standardize Dual EC implementations, Checkoway shifted to
a brief overview of the operations of Dual EC. Checkoway used
diagrams to show where the product of each iteration becomes
the seed of the next pseudo-random number generation, and by
leaking that seed, it’s easy to derive the next output of Dual EC.

In this work, the authors analyzed four common TLS libraries:
RSA BSAFE for Java and C/C++, Microsoft Secure Channel,
and OpenSSL-FIPS. Checkoway detailed how their attack,
assuming the back door introduced by knowing the Dual EC
constants exists, could be implemented. Next, the effectiveness
of this attack against each of the four common TLS libraries was
shown. Finally, a live demo was shown where data taken from a
TLS connection via tcpdump was decrypted in real time in just
3.5 seconds.

The presentation drew a question from Jeremy Epstein, who
made it clear that he was from NSF and not NSA. He asked
whether this work had been shown to Dickie George, an ex-
NSA employee who said that breaking Dual EC was impossible.
Checkoway answered that the work had not but that hopefully
this dialog could occur in the future.

iSeeYou: Disabling the MacBook Webcam Indicator LED
Matthew Brocker and Stephen Checkoway, Johns Hopkins University

Matthew Brocker reminded the audience that, increasingly,
everything around us (from cars to toasters) is being fitted with
processors. The MacBook’s iSight webcam is no exception. After
obtaining an iSight camera from a 2008 MacBook, the research
aimed to answer two questions: (1) Can the iSight’s firmware
disable the LED? and (2) Can the host system replace the iSight’s
firmware with malicious firmware?

Unfortunately, both challenges are possible. By manipulating the
RESET register on the iSight, malicious firmware can disable
the LED light regardless of the camera’s state (on or standby).
Even more disturbing is that the iSight’s firmware can be
replaced by a non-root process running on the host. Using these

two vulnerabilities, the presentation concluded with a demo of
videoing the audience with an iSight camera and proof-of-con-
cept application. During video display, the speaker enabled and
disabled the LED light.

The questions mainly focused on solutions for the attack.
Andrew West (Verisign Labs) asked whether a fix other than
mechanically binding the LED to the camera’s operation exists
(such as, a hybrid hardware-software solution). Broker’s reply
was very practical: While many solutions exist, the devices are
already widely used and thus it will be difficult to push a solu-
tion out to so many vulnerable devices. Someone asked whether
they had informed Apple of their results. Broker answered yes,
but that the devices are already deployed. He also noted that the
camera used in this work was from 2008 and that new cameras
are different but may still be exploitable. Jeremy Epstein pointed
out that the Sun4 workstation in 1994 had the same problem.

From the Aether to the Ethernet—Attacking the Internet
Using Broadcast Digital Television
Yossef Oren and Angelos D. Keromytis, Columbia University

Yossef Oren gave a highly entertaining presentation of how
HbbTVs suffer from a trio of security vulnerabilities. First, users
have no control over the life cycle of applications running on the
TV. Secondly, Web-origin policies are specified by the applica-
tion itself. Finally, the RF-distributed code is allowed access to
Internet resources. The presentation focused on one of multiple
attacks presented in the paper: injecting attack code into a TV
radio signal.

In this attack, Oren described how an attacker could intercept
a standard TV radio signal. Attack code could be injected into
this signal and then rebroadcast from an attacker-controlled
antenna. Any HbbTVs picking up this signal could then be used
to execute the attacker’s code and access the Internet to down-
load more code or to perform various wide-scale attacks.

Oren concluded with a number of countermeasures for each of
the three HbbTV security problems. However, Oren also noted
that enacting such countermeasures would incur cost to the
HbbTV provider—making them unlikely to be adopted. One
questioner asked whether regulators were concerned about such
attacks. Oren responded that previous research had looked into
the privacy implications of HbbTV and that he was aware of
some concern within the European Union. Another wondered
whether user credentials could be stolen in these attacks. Oren
said if they had been previously cached, they could be stolen.

Security Analysis of a Full-Body Scanner
Keaton Mowery, University of California, San Diego; Eric Wustrow,
University of Michigan; Tom Wypych, Corey Singleton, Chris Comfort, and
Eric Rescorla, University of California, San Diego; Stephen Checkoway,
Johns Hopkins University; J. Alex Halderman, University of Michigan; Hovav
Shacham, University of California, San Diego

Keaton Mowery opened this talk with some background of how
his lab obtained a Rapiscan Secure 1000 Full-Body Scanner—
naturally, from eBay. Upon arrival, the researchers aimed to

80  DECEMBER 2014 VOL. 39, NO. 6 www.usenix.org

REPORTS

answer three questions: (1) Is the Secure 1000 radiologically
safe? (2) What privacy safeguards exist? and (3) How effective is
the Secure 1000 at detecting contraband? After a brief explana-
tion of x-ray physics, Mowery explained how the Secure 1000’s
imaging equipment operates, and what results they obtained.
The physics is important, because backscatter radiation is only
created by less dense matter, such as flesh, as opposed to more
dense material, like the metal in guns or knives, which does not
produced backscatter, and appears black on scans.

On the questions of radiation safety, they found that the Secure
1000 emits safe levels of radiation. Thanks to a simple, modu-
lar software design, an attacker would need physical access to
replace the system’s ROM to over-irradiate a scan subject. The
remainder of the talk focused on the Secure 1000’s contraband
detection capabilities (or lack thereof). Several slides presented
side-by-side images of a scan subject concealing handguns
and plastic explosives, all completely indistinguishable from
unarmed scan subjects. The talk concluded by asking for more
open evaluation of the full-body scanners in use by the TSA.
Mowery suggested visiting https://radsec.org for more informa-
tion.

Andrew Drew (Qualcomm) asked what tradeoff the TSA may
be making to deploy working systems more quickly. Mowery
acknowledged that the devices were not perfect but perhaps bet-
ter than nothing. One questioner asked whether image process-
ing may be able to detect hidden contraband that the human
eye cannot. Mowery replied that this was not tested and that
he doubted it would help. Later, Mowery was asked how physi-
cally obvious the hidden contraband was (since the presentation
only showed x-ray images). He responded that it depends on how
small the contraband is: A knife was possible to hide, but hiding a
handgun was difficult to do inconspicuously.

ROP: Return of the %edi
Summarized by Ben Stock (ben.stock@fau.de)

ROP Is Still Dangerous: Breaking Modern Defenses
Nicholas Carlini and David Wagner, University of California, Berkeley

Nicholas Carlini pointed out that even enhanced versions of
these countermeasures can be bypassed using only gadgets
in simple coreutil tools like diff. He discussed the fact that all
approaches that rely on lightweight Control-Flow Integrity suf-
fer from the aforementioned issues and new defenses need to be
proposed.

In the Q&A, an attendee asked whether their outlined attacks
work on both x86 and x64. Carlini replied that the exploits
discussed in their paper were targeting both these architectures
and that there are not fundamental differences between the two.

Stitching the Gadgets: On the Ineffectiveness of Coarse-
Grained Control-Flow Integrity Protection
Lucas Davi and Ahmad-Reza Sadeghi, Intel CRI-SC at Technische Universität
Darmstadt; Daniel Lehmann, Technische Universität Darmstadt; Fabian
Monrose, The University of North Carolina at Chapel Hill

Lucas Davi showed that even by combining the most strict rules
that have been proposed over the last few years to a so-called
ÜberCFI, kernel32.dll still carries enough long, call-preceded
gadgets to be Turing-complete.

A question that arose was how hard the long NOPs were to find.
Davi pointed out that while not all sequences that might be
used are without any side effects, many other gadgets exist that
reverse the side effects. Therefore, combining two gadgets of
such characteristics again leads to a NOP gadget. Another ques-
tion concerned the type of initial exploit step used by the exploits
presented by Davi, to which he replied that they relied both on
stack as well as heap overflows.

Size Does Matter: Why Using Gadget-Chain Length to
Prevent Code-Reuse Attacks Is Hard
Enes Göktaş, Vrije Universiteit Amsterdam; Elias Athanasopoulos,
FORTH-ICS; Michalis Polychronakis, Columbia University; Herbert Bos,
Vrije Universiteit Amsterdam; Georgios Portokalidis, Stevens Institute of
Technology

Enes Göktaş focused on breaking existing countermeasures
but also on analyzing parameters for the existing approaches
with which they would work. In doing so, their work found that
it is possible to mitigate the effects of vulnerabilities by tuning
the parameters for kBouncer (maximum length for a sequence
to be seen as a gadget and number of gadgets used) for specific
applications. Nevertheless, no generic parameters could be found
that would neither cause false positives nor effectively stop the
attacks. They pointed out that applications need to be analyzed
in advance to determine parameters for the protection schemes
to properly work.

Oxymoron: Making Fine-Grained Memory
Randomization Practical by Allowing Code Sharing
Michael Backes, Saarland University and Max Planck Institute for Software
Systems (MPI-SWS); Stefan Nürnberger, Saarland University

Stefan Nürnberger noted that although ASLR is a viable
technique to make an attacker’s life harder due to unguessable
addresses, it can be bypassed if just one address from a library
is somehow leaked (since the libraries are in memory en bloc).
One approach to counter this is to spread out libraries across
memory. This, however, impairs the sharing of a library between
processes since relative calls to other library functions must be
replaced with absolute ones (as there is no longer a correlation
between the addresses of different functions). On a recent ver-
sion of Ubuntu, this effectively leads to 1.4 GB being wasted for
duplicate libraries when the OS is fully loaded.

Nürnberger proposes to solve this by using a combination of
segmentation and lookup tables for all functions. Inside a library,
a function can then place an indirect call to the n-th function
in a table. The address of that table does not have to be known

www.usenix.org DECEMBER 2014 VOL. 39, NO. 6 81

REPORTS

during compile time, but rather is set in the segment register at
runtime. In doing so and in putting the lookup table in a memory
region that is not normally accessible by code, the proposed
solution provides randomization of the address space as well and
allows for code sharing at the same time. In total, their approach
has a runtime overhead of up to 3.5% as well as 13.5% file size
overhead.

Nürnberger was asked if the approach would also work for other
architectures, such as ARM. To his mind, the system would
work but would require more instructions (as ARM is a RISC
architecture). One potential attack was brought up by another
questioner, namely scraping pointers to said library functions
from memory. In this case, since the addresses need to be on the
stack for the matching returns, the addresses of single library
functions could be leaked. Someone asked about implementation
of the mechanism. Nürnberger outlined that the approach can
be easily built into a generic compiler like gcc. The final question
concerned its feasibility on x64 systems. Nürnberger replied that
while there are differences related to segmentation between x64
and x86, the approach would work as well; the only pitfall was
the fact that the address of the lookup table could no longer be
hidden (due to the differences in segmentation).

Safer Sign-Ons
Summarized by Venkatanathan Varadarajan (venkatv@cs.wics.edu)

Password Managers: Attacks and Defenses
David Silver, Suman Jana, and Dan Boneh, Stanford University;
Eric Chen and Collin Jackson, Carnegie Mellon University

David Silver presented various vulnerabilities in many commer-
cially available password managers like LastPass, 1Password,
Keepass, etc. that aim to provide user convenience but often end
up compromising security in previously unforeseen scenarios.
Silver and his team particularly focused on the poorly named
password manager feature called automatic autofill. This feature
proactively fills any previously seen username, password pairs
on Web sites without user interaction as opposed to manual
autofill, which requires user interaction. It is not always safe
to automatically autofill passwords. For example, autofilling
passwords on a page that suspiciously fails to provide a valid
SSL certificate or when the HTML form action URL changed
between the time the password was saved and when it is used
may not always be secure. Silver pointed out that some password
managers automatically autofill in these scenarios.

Silver detailed one particular attack scenario where a mali-
cious coffee shop owner providing free WiFi service could steal
passwords from the password manager for a totally unrelated
Internet activity. He showed a prerecorded demo video where an
innocuous visit to an online pizza ordering service could seam-
lessly redirect to a totally unrelated Web site (e.g., AT&T or an
online banking Web site) with malicious JavaScript code embed-
ded. This action could trick the password manager into autofill-
ing the credentials to the embedded malicious code, which could

save the credentials on a remote server. The malicious code
redirects the user back to the user-requested Web site, complet-
ing all this in milliseconds and remaining visually unobservable
to the user. All password managers using the automatic autofill
feature were vulnerable to this attack. Silver also discussed vari-
ous defense mechanisms against these attacks. He and his team
observed that disabling automatic autofill (i.e., manual autofill)
is immune to these attacks. Particularly, doing manual autofill
and submit is both secure and more convenient to users because
it requires only one click. A better and more secure alternative
to this is what he called secure filling; among other constraints
JavaScript code was not allowed to read autofilled contents.
They implemented a prototype on the Chromium browser that
required only 50 lines of code.

Following the talk, David Wagner (UC Berkeley) observed that
the secure password filling defense might have usability costs
associated with it as there are benign Web sites that want Java-
Script code to read autofilled contents. He asked whether the
team looked at ways to reduce this cost by remembering whether
a JavaScript code tried to read the autofilled contents while sav-
ing. Silver agreed with this suggestion, although he pointed out
such a mechanism may not be able to always protect users from
malicious JavaScript code. Jeffrey Goldberg (AgileBits) posed
multiple questions. First, he asked Silver how frequently the
action URLs change in reality. Silver pointed out that irrespec-
tive of the frequency, it is important to observe that the action
URLs should be from the same origin (or domain). Second, Gold-
berg felt that the secure autofilling feature seemed to be rigorous
in not allowing JS code to read autofilled content and asked how
many benign Web sites were affected. Silver responded that
they found only 10 of the top Alexa Web sites that used AJAX
were affected. Thirdly, when asked about the impact of the work
on commercial password managers, Silver mentioned a couple:
1Password now warns about autofilling when there is a SSL
certificate validation failure, and LastPass stopped autofilling
passwords in forms that are displayed in an iFrame.

The Emperor’s New Password Manager: Security Analysis
of Web-Based Password Managers
Zhiwei Li, Warren He, Devdatta Akhawe, and Dawn Song, University of
California, Berkeley

Zhiwei Li started out by mentioning the importance of password
managers and their popularity but questioned their security.
Particularly, the authors identified four important security prop-
erties any password manager should provide: master account
security, credentials database security, collaborator integrity,
and unlinkability (a property of a password manager that does
not allow tracking of a user across Web sites). Li went on to pres-
ent four classes of vulnerabilities that their research uncovered
that none of the password managers were immune to.

First, Li observed that all password managers provide a book-
marklet feature and these bookmarklets often run in an insecure
environment, which may include running in the context of a

82  DECEMBER 2014 VOL. 39, NO. 6 www.usenix.org

REPORTS

malicious JavaScript (JS) code. Second, he presented a vulner-
ability where a Cross-Site Request Forgery (CSRF) would let an
attacker choose an arbitrary one-time password (OTP) which
could, in turn, be used to hijack the master account. Third, Li
presented an example of another class of attack where sharing
an asset/credential between users could result in unintended
disclosure of credentials of the user who initiated the collabora-
tion. Li pointed out that such vulnerabilities arise as a result of
mistaking authentication for authorization. Fourth, Li showed
a pre-recorded video of a phishing attack (under the class of
User Interface vulnerabilities) where Li and his team where
able to phish for LastPass’s master credentials while remaining
unnoticeable to the user. Li concluded the talk mentioning that
there is no single solution that could solve all these damaging
vulnerabilities, and it might take years for password managers
to mature.

Jeffrey Goldberg (AgileBits) asked how the commercial pass-
word manager responded to their vulnerabilities. Li responded
that some of them patched their code to defend against certain
vulnerabilities but not for others. Goldberg then asked for Li’s
opinion on how single sign-on services compare to password
managers. Li responded that similar vulnerabilities may still
haunt such services, and both require further research to make
them secure.

SpanDex: Secure Password Tracking for Android
Landon P. Cox, Peter Gilbert, Geoffrey Lawler, Valentin Pistol, and Ali Razeen,
Bi Wu, and Sai Cheemalapati, Duke University

Landon Cox, on behalf of his students, presented their research
project SpanDex, a tool that uses taint-tracking of passwords
to hunt down inappropriate use of passwords and phishing
attempts in mobile apps. Cox first showed various examples
of phishing apps that steal user credentials used for the real
counterparts, for example, the Wroba Android app that steals
banking credentials.

Cox provided a simple introduction to taint-tracking where
a variable/data-item that one wishes to track is tagged and
followed using data-dependency and taint-transferring or
propagation logic. Particularly, there are two flows in the taint-
propagation logic: explicit flows that transfer the taint because
of direct assignments operations, and implicit flows that
transfer taint because of control flow or complex interactions
between variables. Cox and his team identified the latter as sig-
nificantly harder to track but essential to get good coverage and
security guarantees. One of the challenges in taint-tracking in
these implicit flows is that it often results in over-tainting. Cox
pointed out various ways to avoid over-tainting implicit flows by
weighting the taints differently. He used an example to motivate
this observation: a tainted variable s used in a condition, s == 0,
does not leak much information compared to an explicit flow
tainting. Similar optimizations were used in making the taint-
tracking faster and efficient. Cox and his team used a symbolic
execution tool to do the taint-tracking and prototyped an imple-
mentation of SpanDex for checking Android applications.

Jeffrey Goldberg (AgileBits) asked what kind of passwords they
look at in this work and did all of them follow power law. Landon
Cox responded that all passwords were strings of characters and
nothing else. Someone asked whether they looked at passwords
that were processed locally since all the examples that were
mentioned involved sending password on the wire. Cox replied
that among 50 applications that they looked into none did local
processing of passwords. Finally, someone asked why Cox and
his team restricted their evaluation to uniform or Zipf distribu-
tion of passwords and not a frequency-based distribution. Cox
responded by recalling that the password data set they used in
the evaluation consisted of unique passwords, and a frequency-
based distribution is not possible using that data set.

SSOScan: Automated Testing of Web Applications for
Single Sign-On Vulnerabilities
Yuchen Zhou and David Evans, University of Virginia

Yuchen Zhou first introduced the concept of single sign-on
where there is an identity provider (like Facebook, Google) who
maintains user credentials and a third-party integrator who
wants to authenticate a user’s identity. Although the SSO SDKs
claim that integrators require little or no knowledge of secu-
rity expertise, Zhou’s research shows that this is often not true
and might result in various vulnerabilities such as credential
misuse. One instance of such a vulnerability is the misuse of an
access token provided by the identity provider. A malicious user
could reuse an access token provided for a particular applica-
tion to access a different and completely unrelated application
if the application fails to check the application ID provided in
the access token. Zhou pointed out various real applications
that were vulnerable to this attack and how trivially they expose
these access tokens.

Zhou next presented SSOScan, which scans Web sites (integra-
tors) for both credential misuse and credential leakage. SSOScan
consists of three components: the Enroller, which automatically
registers and logs into the Web page under test; the Oracle, which
verifies successful enrollment and confirms session authentica-
tion; and the Vulnerability Tester, which tests for vulnerabilities
using the newly registered account. Zhou discussed various
challenges with automating the Enroller and Oracle. Zhou then
presented the evaluation results on the top approximately 20k
QuantCast sites: Out of 1.7k sites that use Facebook’s SSO, 20.3%
of them had at least one vulnerability. Zhou also pointed out that
12.1% misused credentials and 8.6% leaked credentials, with
2.3% of them having buggy implementation. When looking at the
correlation between number of vulnerabilities and popularity
of the Web site, Zhou found that the number of vulnerabilities
found by SSOScan were the same irrespective of the popularity
of the Web site. Zhou and his team also contacted many vendors
about these vulnerabilities, and some responded with a fix. Zhou
concluded by releasing the SSOScan as a service where vendors
could check their Web site implementations for various vulnera-
bilities disclosed in this research (available at www.ssoscan.org).

www.usenix.org DECEMBER 2014 VOL. 39, NO. 6 83

REPORTS

Someone asked why they only chose 9.3% of 20k sites. Zhou
responded that they randomly chose the Web sites and also
restricted themselves to US sites since they were constrained by
the language used in the sites. Another person inquired whether
this service could be misused with malicious intent. Zhou
replied that vulnerable Web sites were not publicly disclosed and
to the best of their knowledge there seemed to be no such misuse.
When asked whether changing APIs help to make misuse or
leaking credentials harder for the developers, Zhou responded
that developers often fail to read the documentation before
implementing and was not sure whether changing APIs would
help in such cases. Finally, someone asked whether any of the
reported vulnerabilities were exploited in the wild. Zhou did not
know of any such exploitation, but he believed that there were
highly sensitive sites (e.g., match.com) that were still vulnerable
and waiting to be exploited.

Passwords
Summarized by Andrei Costin (costin@eurecom.fr)

A Large-Scale Empirical Analysis of Chinese Web
Passwords
Zhigong Li and Weili Han, Fudan University; Wenyuan Xu, Zhejiang
University

Zhigong Li began his talk with the observation that when surf-
ing the Web, a user often needs to register an account and that
requires a password. Another observation was that password
choice has strong geo-location influence. Zhigong attempted to
answer the following two questions: Do Chinese Internet users
have better passwords than others? How can one efficiently
guess their passwords? He also observed that Chinese users
form the biggest Internet group, with over 600 million netizens.

Zhigong mentioned they used leaked password databases from the
top five Chinese Web sites as well as from Yahoo! and RockYou
leaks. Their methodology was based on characters used, patterns,
and their analysis. They found that most popular in both Chi-
nese and English leaks were passwords 123456 and 123456789.
However, digits are more common in Chinese passwords than in
English ones. This is also because in Chinese the pronunciation
of some digits is similar to letters. For example, pronouncing the
number “520” sounds like “I love you” in Chinese.

Zhigong then presented their analysis on the resistance to guess-
ing Chinese passwords. He explained they used “alpha work fac-
tor” analysis, which is the number of guesses required for a given
success probability alpha. In many cases the alpha work factor
can be very high. They found RockYou and Yahoo! passwords
have higher work factor for alpha < 2.5.

Zhigong also explained that Chinese characters are input using
pinyins, compared to simple characters in English or other west-
ern languages. About 25% of Chinese passwords contain pinyins.
Interestingly, the top Chinese pinyin among Chinese passwords
is “woaini,” which stands for “I love you.”

Zhigong suggested that dates also play an important role in pass-
word formation. In Chinese passwords most dates are formatted
as YYYYMMDD, while dates in English passwords appear as
MMDDYYYY. An additional finding is that dates in both Chi-
nese and English passwords are put at the end.

David Wagner (University of California, Berkeley) asked
whether it’s possible to compare probabilistic CFG (P-CFG)
to the password cracking tools (simpler to use, etc.). Zhigong
answered that cracking tools are dictionary based; P-CFG can
analyze the structure of the password and can add some rules
(e.g., dates), while cracking tools cannot add rules and hence are
harder to use and less effective. Someone asked how dates have
been distinguished from other random numbers in the analysis.
Zhigong explained that there of course could be false positives.
While the approach is simpler for eight-digit dates, for six-digit
dates it can be trickier, so some six-digit dates were removed
from the training.

Password Portfolios and the Finite-Effort User:
Sustainably Managing Large Numbers of Accounts
Dinei Florêncio and Cormac Herley, Microsoft Research; Paul C. van
Oorschot, Carleton University

Cormac Herley started at a fast pace presenting the following
observation: Although everyone knows the basic rules, that
passwords should be random and should not be reused across
accounts, virtually nobody follows them.

He then presented a simple calculation showing that to remember
100 different five-character passwords for 100 different accounts
would require the user to remember more than 4000 bits!

To reduce this burden, the user could weaken the password,
which means reducing the lg(S). However, the computations
show the amount of information is still way to high to remem-
ber (i.e., 524 bits), even if lg(S) is zero! The hypothesis Cormac
advanced is that group and reuse are the only way out for normal
people. He then mentioned that there were many ways to orga-
nize a password portfolio. For example, doubling the number
of passwords more than halves the password strength, while
stronger passwords force more password reuse.

Cormac emphasized that the question is not “are longer pass-
words stronger than shorter passwords?” nor “how does one
generate secure random passwords or mnemonics?” From their
research perspective, the question is “how does one minimize
the password portfolio’s expected loss?” For example, setting the
effort to infinity minimizes the probability of harm in case of loss
of password. Cormac, however, highlights the fact that users also
care about the effort. So the true question is “how does one mini-
mize the portfolio’s expected loss + the user effort involved?”

Cormac explained that such a question makes the user think
the right thing to do is to have some accounts that are weakly
protected. For example, that “123456” is a top password in the
RockYou database reveals that maybe those users chose to spend
the password effort on something that matters more. However,

84  DECEMBER 2014 VOL. 39, NO. 6 www.usenix.org

REPORTS

passwords unfortunately reveal many other things, which means
the risks are not independent across the accounts and not depen-
dent only on the strength. In addition, the risk to the i-th account
also depends on external factors such as malware and keyloggers.

Cormac provided the criteria for optimality (for loss, effort, and
password policies). First is the division of things into G different
groups. At this stage, how to optimally divide things into groups
and how to choose division boundaries between groups are open
questions. Second is that groups adjacent to each other should
have similar weighted loss: for example, you shouldn’t “put all
your most important stuff into the same basket.”

Cormac concluded that random and unique passwords are infea-
sible for large portfolios and that the user’s interest is to mini-
mize L(oss)+E(ffort) rather than just L(oss) over a portfolio. He
also concluded that strategies that exclude reuse or exclude weak
passwords are both suboptimal. The final conclusion from Cor-
mac is that the best strategy in password grouping is: high-value
accounts with strong passwords (low probability of compromise)
and low-value accounts with lower password policies (high prob-
ability of compromise).

Cormac was asked about the needed effort to remember which
password is in which accounts’ group out of G groups. Cormac
confirmed that such effort is required and referenced a formula
in the white paper. In response to another question, Cormac
pointed out that this model is a simplification and that there
are many other factors that might need to be considered. For
example, how to choose optimal G is not part of this research.

Telepathwords: Preventing Weak Passwords by Reading
Users’ Minds
Saranga Komanduri, Richard Shay, and Lorrie Faith Cranor, Carnegie Mellon
University; Cormac Herley and Stuart Schechter, Microsoft Research

Saranga Komanduri introduced the authentication eco-system,
which, in his model, comprises users (creating passwords),
attackers (hijacking users’ passwords), and admins (block-
ing attackers and protecting users). He also noted that admins
create password policies to protect users. It is long known that
simple password policies do not solve the issue. For example,
Qwerty!123456 or Thisismypassword! adhere to policy but still
can be viewed as weak. He also noted that in systems running
Microsoft’s AD, the three-class policies did not seem to have a
notable effect in increasing the security of those systems.

Saranga presented his team goal as focusing on the weakest
passwords. He also mentioned their contributions. One, they
have shown that character requirements do not prevent weak
passwords. Another, they detect weak passwords with guessabil-
ity and real-time feedback.

Saranga went on to present their system, Telepathwords. It is
similar to auto-complete, but its goal is to prevent the input
of weak passwords. He underlined the fact that showing the
user that a machine can guess the passwords is a good demon-
stration that attackers could do the same. He pointed out that

password policies have not changed much since 1979, when
the six- character password policy was proposed. At the same
time, password strength meters are typically based on charac-
ter requirements, and there is no consistency across different
meters. Even though the “zxcvbn” open source meter, which
estimates the entropy of passwords, was introduced to improve
all the above, these meters still don’t explain their scores.

Saranga explained they generated predictions using multiple
models, including N-gram models, keyboard layout modes
(e.g., similar to what some password cracking software does),
repetitive passwords (e.g., abcabc), and interleaved strings (e.g.,
p*a*s*s*). The system can also be extended with more and better
predictors. Then they created multiple policy conditions for a
randomized controlled study. The study was designed as a hypo-
thetical email scenario for password creation.

Saranga presented several policy metrics they used to assess the
results. They used Weir+ guessability (i.e., finding single weak-
est password in the sample), zxcvbn entropy estimation (i.e.,
minimizing entropy in each sample set), probability conditions,
usability metrics for creation of the password, and recalling of
the password after several days of experiment.

Finally, Saranga presented some of the results. For example,
dictionary-based policies are much better than their simple
character counterparts. A real surprise is that 3class8 is not
essentially stronger than basic8 with regards to guessability.
Also, the policy did not affect the recall metric after 2–5 days. As
for the creation time metric, Telepathwords policies took the lon-
gest time (90 seconds) compared to an average of 20–40 seconds
for other policies.

Saranga concluded that character class policies had little to no
effect in creating stronger passwords (i.e., less guessable ones).
Additionally, dictionary policies’ real-time feedback can help
users create stronger passwords, but incurs a usability cost at
creation time. Telepathwords was found to help users under-
stand why their passwords were weak.

In response to a question, Saranga confirmed that Telepath-
words are not harder to remember compared to random pass-
word generators according to their results, although they take a
little bit longer to create and read the system’s feedback. David
Wagner (University of California, Berkeley) asked whether it’s
possible to download Telepathwords code and use on Web sites.
Saranga said that Telepathwords is up and online, and that any-
one can use it.

Towards Reliable Storage of 56-bit Secrets in Human
Memory
Joseph Bonneau, Princeton University; Stuart Schechter, Microsoft Research

Stuart Schechter started with the observation that a user-
chosen secret can never be provably hard to guess. Hence such a
provably hard-to-guess secret has to be randomly generated by
the system, for example, by a 56-bit secret key. There are multiple
scenarios when a 56-bit strong key is required. One example is

www.usenix.org DECEMBER 2014 VOL. 39, NO. 6 85

REPORTS

the master password for password managers. Another example
is the access to organizations with a large number of users
where, for example, weaker passwords cannot be filtered out and
give attackers easier access to the organization.

Stuart pointed out that such an approach does not mandate that
all Web sites now start using such unique 56-bit secrets, but that
they be used only for critically important cases. Stuart suggested
that we all use metaphors to explain problems, but the fact is that
writing to the brain is harder than writing to the hard disk, and
these metaphors can sometimes obscure reality.

Stuart then noted that our brains are designed to forget ran-
dom data seen only once. He also noted that we have all learned
through spaced repetition. We use repetition to learn important
things, and we know it works great for learning. So the question
Stuart and his team tried to address is whether humans could
apply the same learning through spaced repetition to a 56-bit
secret and how to apply this to remembering the secrets.

Stuart explained the setup of their experiment that tried to
answer this question. The experiment involved subjects recruited
via Mechanical Turk. The learning and recalling was camou-
flaged as a login to the system, which was presented to subjects
as an experiment for something else (to avoid subject bias, suspi-
cions, tricking). The 56-bit secret was presented for learning and
recalling in three groups of four characters each. Some subjects
had groups formed of random letters, while other subjects had
groups formed of meaningful words. The system was designed
close to reality, requiring the subjects to log in around 10 times a
day, hence simulating an average workday in an enterprise.

Stuart then presented the results. Four subjects stopped learn-
ing codes for various and even funny reasons. On average, the
subjects learned the entire secret at their 14th login attempt.
For all subjects, learning the first group/code took most of the
time. This could be for multiple reasons, such as not being used
to the system or not understanding the system well enough at
the beginning. Stuart presented the result that in this system
there was only a 12% password forget rate registered compared
to 26% in Telepathwords. Another finding was that recall rates
decreased after more than two weeks. Finally, the recall rate for
passwords grouped in word groups was 62% compared to 56% of
the passwords grouped in random letters groups.

Andrei Costin (Eurecom) asked whether group interference
across multiple 56-bit secrets (i.e., for multiple secrets, which
group goes where and to which secret) was studied and how
subjects responded to these interferences. Stuart explained that
definitely interference is a potential direction for study, but they
did not study this at present. He added that in this single 56-bit
secret experiment, the results show that 2nd and 3rd group (let-
ters, words) did not interfere inside this single 56-bit secret. He
finally added that interference should not be a problem, since it
is expected that a normal user should require only two or a maxi-
mum of three such 56-bit secrets during their lifetime.

Web Security: The Browser Strikes Back
Summarized by Alexandros Kapravelos (kapravel@cs.ucsb.edu)

Automatically Detecting Vulnerable Websites Before They
Turn Malicious
Kyle Soska and Nicolas Christin, Carnegie Mellon University

Awarded Best Student Paper!

Kyle Soska presented a novel system that aims to predict which
Web sites will become malicious in the future. There are many
challenges in achieving such a difficult task. The target data
set is the entire Web, a continuously growing data set of billions
of Web pages. Moreover the data set is highly unbalanced, with
many benign Web pages and a few malicious ones, the labels of
the data set are incomplete, and there is no ground truth. Addi-
tionally, just predicting a Web site as potentially malicious in the
future is not so useful on its own; webmasters need to be aware
of the reasoning behind such a prediction so that they can react
preventively. Lastly, the Web evolves over time; attacks change
as new vulnerabilities are discovered, and the system should be
able to react and adapt to these changes.

To cope with these challenges, the authors created a classifier
based on C4.5 decision trees. With the use of blacklists and
archive.org they created a data set of soon-to-be malicious Web
sites and benign Web sites. The authors managed to isolate user-
generated content from the visited pages with the use of com-
posite importance, so that the system is able to focus only on the
template-generated part of the Web pages, where vulnerabilities
might exist. With a combination of dynamic and static features
the system is able to achieve up to a 66% true positive rate with
17% false positives, showing this way that predicting malicious
Web pages is possible.

Hulk: Eliciting Malicious Behavior in Browser Extensions
Alexandros Kapravelos, University of California, Santa Barbara; Chris Grier,
University of California, Berkeley, and International Computer Science
Institute; Neha Chachra, University of California, San Diego; Christopher
Kruegel and Giovanni Vigna, University of California, Santa Barbara; Vern
Paxson, University of California, Berkeley, and International Computer
Science Institute

Alexandros Kapravelos focused on browser extensions: small
HTML and JavaScript programs that modify and enhance the
functionality of the browser. Alexandros showed that to compro-
mise the browser, the attackers no longer need a 0-day exploit,
but they can gain sufficient access in the user’s system through a
malicious extension. These extensions can inject more adver-
tisements or perform affiliate fraud among other things.

To deal with this problem the authors developed Hulk, a system
that dynamically analyzes and automatically detects malicious
browser extensions. They introduced the notion of HoneyPages,
which are dynamic pages that change on the fly to match what
the currently analyzed extension is looking for in the content of
a visited page. Hulk identifies malicious behavior by monitoring
all aspects of the extension’s execution. For example, Hulk will
detect if the extension is preventing the user from uninstalling

86  DECEMBER 2014 VOL. 39, NO. 6 www.usenix.org

REPORTS

it or if it is stealing login credentials from forms. Hulk has ana-
lyzed 48k extensions and found 130 to be malicious and 4,712 of
them suspicious. In the last part of the talk, Alexandros elabo-
rated on the needed extension architecture changes that could
either ease the analysis of extensions or prevent certain types of
malicious extensions.

Precise Client-Side Protection against DOM-based
Cross-Site Scripting
Ben Stock, University of Erlangen-Nuremberg; Sebastian Lekies, Tobias
Mueller, Patrick Spiegel, and Martin Johns, SAP AG

Ben Stock focused on current defenses against DOM-based XSS
attacks and how those can be circumvented automatically. By
going over an extensive list of the current limitations of string-
based XSS filters, the authors showed that the current state-
of-the-art in DOM-based XSS can be evaded. Moreover, they
implemented an engine that will automatically exploit 1,169 out
of 1,602 real-world vulnerabilities despite the current defenses.

Ben made the simple, yet powerful, observation that client-side
XSS filters use string comparison to approximate data flow, but
this is unnecessary since it happens on the client side. Therefore,
they propose a taint-enhanced JavaScript engine that tracks the
flow of attacker-controlled data in a combination of taint-aware
JavaScript and HTML parsers capable of detecting generation
of code from tainted values. The new proposed method catches
every single exploit, yielding no false negatives, and a 0.16% false
positive rate for all analyzed documents. Moreover, the perfor-
mance penalty introduced by the new defense mechanism was
between 7–17%, with some optimizations applicable.

On the Effective Prevention of TLS Man-in-the-Middle
Attacks in Web Applications
Nikolaos Karapanos and Srdjan Capkun, ETH Zürich

Nikos Karapanos focused on TLS man-in-the-middle attacks in
Web applications. In the current state, server authentication can
be circumvented by compromising a certificate authority, com-
promising the server’s key (e.g., via the Heartbleed bug) or simply
by letting the user click through the certificate warning on her
own. Nikos elaborated on how TLS Channel IDs work, which
is the current state-of-the-art for defending against MITM
attacks. He then showed how one can circumvent TLS Channel
IDs by proposing a new attack called man-in-the-middle-script-
in-the-browser. This attack works not by impersonating the user
to the server, but by injecting back to the user JavaScript code
that will run in the context of the user’s browser. Any communi-
cation with the server from the browser is now properly authen-
ticated since it comes directly from the user’s browser, but the
code is controlled by the attacker.

To cope with this new type of attack, the authors propose Server
Invariance with Strong Client Authentication (SISCA). This
novel approach is based on the observation that the client needs
to communicate with multiple entities for the MITM-SITB
attack to work. By combining SISCA and TLS Channel IDs,
Nikos showed that MITM attacks can be successfully prevented.

Poster Session
The summary of this session is available online as an electronic
supplement: www.usenix.org/login/dec14.

Side Channels
Summarized by Qi Alfred Chen (alfchen@umich.edu)

Scheduler-Based Defenses against Cross-VM Side-
Channels
Venkatanathan Varadarajan, Thomas Ristenpart, and Michael Swift,
University of Wisconsin—Madison

Venkatanathan Varadarajan first introduced multi-tenancy
in public clouds, which can benefit the utilization and reduce
service cost but results in cross-VM attacks due to the diffi-
culty of isolating resources. In their work, the authors targeted
Prime+Probe cross-VM side channels that exploit per-core
resource sharing: for example, the attack proposed by Zhang et
al. in CCS ’12, which demonstrated the possibility of extract-
ing ElGamal secret keys. They found that for these attacks to
succeed, quick preemption is required on the victim VM, which
may be defended by limiting the frequency of VM interactions.
This defense idea, which they called soft isolation, allows shar-
ing with low overhead, and at the same time only needs simple
changes to the hypervisor’s CPU scheduler. After overviewing
the high-level idea, Varadarajan introduced some background
about the requirements along with the corresponding reasons
for the availability of quick preemption in the cache-based side-
channel attacks.

To achieve soft isolation, they proposed using the Minimum
RunTime (MRT) guarantee, which is available in Xen and KVM.
Varadarajan first presented the security evaluation of the MRT
mechanism against cross-VM side channels. In a public cloud-
like setting, using victims based on a simple model, they showed
that under 1 ms MRT the side channel was not observable by the
best known attacker. For ElGamal victims, the number of itera-
tions per preemption was shown to increase dramatically to 32
under 0.5 ms MRT and to 68 under 1 ms MRT. This made those
cache-based attacks very unlikely to succeed since they require
multiple preemptions within one iteration for noise-reduction.

After demonstrating that soft isolation has the potential to
defend against cache-based side-channel attacks, Varadarajan
showed the performance overhead for normal applications when
using MRT. Under 5 ms MRT, both interactive and batch work-
loads in the experiments had less than 7% overhead. Varadarajan
also claimed that with 5 ms MRT and selective state cleans-
ing (detailed in the paper), the overhead was negligible and no
known attacks could work.

Varadarajan was asked whether this defense could be applied
to other VM hypervisors besides Xen, and he replied that the
minimum runtime support is not specific to Xen; for example,
it also exists in Linux. He added that it is not particularly tied
to a specific VM hypervisor, although there are still things to
work out on other systems: for example, requiring performance

www.usenix.org DECEMBER 2014 VOL. 39, NO. 6 87

REPORTS

analysis on other systems to achieve low overhead. Varadarajan
was also asked how their defense compares to existing defenses,
and he answered that previous defense methods mostly require
dedicated hardware or else they sacrifice significant workload
performance, while their defense is easier to deploy and also has
low overhead under the current hypervisor settings.

Preventing Cryptographic Key Leakage in Cloud Virtual
Machines
Erman Pattuk, Murat Kantarcioglu, Zhiqiang Lin, and Huseyin Ulusoy, The
University of Texas at Dallas

Murat Kantarcioglu motivated their work by various security
threats to the cloud VMs because of physical machine resource
sharing: for example, many side-channel attacks have the
potential of extracting cryptographic keys. To protect the secret
key, their work proposes an idea of partitioning the keys into
many shares using secret sharing and threshold cryptography,
thus making it harder for attackers to capture the complete
cryptographic keys. Following the motivation and overview,
Kantarcioglu provided some background on secret sharing and
threshold cryptography (e.g., Distributed-RSA, Threshold-RSA,
and Shamir secret sharing).

Based on the idea of distributing the keys in many pieces, they
proposed a system, called Hermes, to prevent the secret key
leakage in the public cloud. As a proof-of-concept, they applied
Hermes to enhance the protection of SSL/TLS cryptographic
keys. In the initialization phase of this prototype, the crypto-
graphic key is partitioned and distributed to a set of defender
VMs, and Hermes is then bootstrapped with established initial
authenticated and secure SSL channels between pairs of
defender VMs. After that, client connection requests are sent to
one of the defender VMs, named combiner VM, and the combiner
VM will work with other VMs to provide services such as dis-
tributed signing and decryption. The owner of the secret key will
also periodically create new shares for the same secret keys and
re-share them to the VMs. These new shares are independent
from the previous ones, and this re-sharing adds more difficulty
for attackers to extract the cryptographic keys.

Next Kantarcioglu showed the evaluation for Hermes. Hermes
was implemented as a shared library in OpenSSL, and in the
experiments Hermes was used in various applications with 10
VMs in Amazon EC2. The results showed that inter-VM com-
munication dominated the overhead, and adding defender VMs
could lower the overhead. On a mail server, the overhead was
at most 8% when the number of clients varied from 1 to 1000.
Following the evaluation, Kantarcioglu also talked about how
to formalize a multi-objective optimization problem to better
choose the Hermes parameters.

Kantarcioglu was asked about the system performance com-
pared to regular SSL, and he replied that using Hermes did intro-
duce more overhead: for example, for one client the connection
time was increased from around 2 ms to around 10 ms. He added
that for bigger applications this overhead would be smaller.

Kantarcioglu was then asked about their thoughts on protecting
the key-sharing process. He answered that they assume that this
is a secret sharing process without any adversarial attacks.

FLUSH+RELOAD: A High Resolution, Low Noise, L3 Cache
Side-Channel Attack
Yuval Yarom and Katrina Falkner, The University of Adelaide

Yuval Yarom presented a new side-channel attack against the L3
cache, called Flush+Reload, which may exist between processes
in the same OS and between VMs in the cloud. Yarom started by
introducing the memory-sharing mechanism, which is a popular
technique for reducing the overall memory footprint and is
considered safe. Yarom also provided background on the cache
mechanism, especially the L3 cache, which is shared among
processors, and the cache flushing functionality for maintaining
cache consistency.

Yarom then talked about their Flush+Reload technique, which
exploits cache behavior to infer information on victim accesses
to the shared memory. In this technique, the attacker first
flushes the memory line, and reloads the line after waiting for a
while. The attacker then can conclude the victim memory access
behavior: If the reload is short, then the victim does access the
memory line during the waiting time; otherwise the victim does
not access the memory line.

With the Flush+Reload technique, Yarom then showed how they
attacked the GnuPG implementation of RSA. They targeted the
memory lines mapped with specific code segments in the RSA
program, and thus were able to trace the detailed execution of
the victim program. Since the clear bits and set bits trigger dif-
ferent code segments in the program, the attacker can extract the
secret key. Yarom showed how they traced the detailed program
executions, and also showed the bit errors in their experiments on
both the same-OS scenario and the cross-VM scenario. Yarom
concluded with potential attack applications such as the default
OpenSSL implementations of ECDSA and keystroke timing.

Someone asked how long it takes to successfully extract the key.
Yarom replied under a few milliseconds. He was asked twice
about whether the scheduler-based defense can defend against
this attack, and his answer was no since the scheduler-based
defense focuses on per-core sharing-based attacks. He was also
asked about how to achieve frequent Flush+Reload. He answered
that with the attacker and the victim pinned to different cores,
the frequency can be high enough. He was then asked whether
they can know which bits are missing in the bit errors, and why
KVM missed 30 bits. Yarom replied that they can know the miss-
ing bit positions, and the high bit error rate for KVM was due to
both the more advanced optimizations of the Xeon processors
and the aggressive deduplication used. The last question was
about whether the distributed key idea can prevent the attack.
Yarom answered that having multiple collocated VMs sharing
the key may be a protection for Flush+Reload attack.

88  DECEMBER 2014 VOL. 39, NO. 6 www.usenix.org

REPORTS

Revisiting SSL/TLS Implementations: New
Bleichenbacher Side Channels and Attacks
Christopher Meyer, Juraj Somorovsky, Eugen Weiss, and Jörg Schwenk,
Ruhr-University Bochum; Sebastian Schinzel, Münster University of Applied
Sciences; Erik Tews, Technische Universität Darmstadt

Christopher Meyer started the talk by describing the importance
of SSL/TLS in security and privacy, and he stated that accord-
ing to their work, oracle attacks have returned again in SSL/
TLS. He then provided background about the famous Bleichen-
bacher attack and the handshake protocol in SSL/TLS. The
Bleichenbacher attack uses the error messages of the PreMas-
terSecret (PMS) structure-checking algorithm as an oracle to
learn whether the decrypted message of the ciphertext from the
attacker started with certain bytes. After that, the attacker can
leverage the RSA homomorphic property to adjust the payload
iteratively and finally restore the PMS, which can be used to
derive SSL/TLS session keys. This problem was addressed in
the TLS 1.0 standard by using a new random PMS if there is
anything wrong.

Meyer went on to report four new Bleichenbacher side channels
discovered by their analysis on several widely used SSL/TLS
implementations using their T.I.M.E. framework. The first side
channel they discovered was due to an implementation bug in
JSSE. They found that inserting 0x00 bytes at specific pad-
ding positions would generate a different error message, which
can be used as the oracle. They evaluated the attack and found
that 2048 bit keys were cracked using about 177k queries over a
12-hour period.

While the first side-channel exploits different error messages,
the other three new side channels use different processing time
as the oracle. The second side channel is likely to exist due to
the countermeasure for the original Bleichenbacher attack in
the OpenSSL implementation. This is because the new random
PMS is generated only when there is something wrong, lead-
ing to the timing difference which leaks information about the
SSL/TLS compliance of the received PMS. However, they could
not execute a practical Bleichenbacher attack, because of the
weakness of this oracle. The third side channel is related to the
internal exception handling in JSSE. In the implementation, if
the message format is not correct, an additional exception will be
provoked. Although this does not trigger error messages, it can
create timing difference due to the exception handling delays in
Java. In the evaluation, this attack took around 19.5 hours and
18.6k queries.

The last side channel also exploits timing differences, but it
exists due to hardware issues. They found that the F5 BIG-IP
and IBM Datapower, which both use the Cavium NITROX SSL
accelerator chip, do not verify the first byte of the message,
and additionally found timing differences in processing TLS
requests. Meyer showed the evaluation results, and for 2048-bit
key this side channel attack took 40 hours and 7371 queries to
succeed. In the end, Meyer used a table to summarize the four
newly discovered side channels and their attack efficiency.

Meyer was asked whether their toolkit is made publicly avail-
able. He replied that their tool has not been released yet. He
added that the timing measurement unit of the framework can-
not be used ad hoc, because it has to be adjusted and tweaked for
each target and environment.

Invited Talk
Summarized by Janos Szurdi (jszurdi@andrew.cmu.edu)

Battling Human Trafficking with Big Data
Rolando R. Lopez, Orphan Secure

Lopez began by discussing the models of human trafficking orga-
nizations in different countries. Lopez was an FBI agent for 15
years. During his years at FBI he gained experience about money
laundering, drug trafficking, police corruption, and human
trafficking. His organization focuses on four methods to battle
human trafficking: Prevention and Awareness, Identification
and Intervention, Restoration Care, and finally Policy and Law.

The root of human trafficking in many countries is poverty. The
Chinese human trafficking model is one such example. From small
and poor villages, young women and men are smuggled to big cities
all around the world, with the consent of the family and with the
promise of a better life. For women, most often work is offered in
massage parlors, but when these women get there, their “employ-
ees” take all of their documents and they are forced into prosti-
tution. The Chinese mafia runs underground banking and uses
wire transfers, making it really hard to cut their money supplies.

In post-Soviet countries, like Russia and Ukraine, human traf-
ficking is very brutal, where children are often sold from orphan-
ages directly into the sex trade. Restoration of victims is really
hard in these countries because these victims have no families.
As opposed to the Chinese models where the human traffickers
try not to harm the girls since they need to maintain a good con-
nection with the villages, in these post-Soviet countries there
are no such constraints on the violence. The only chance to help
these children and women, who became victims, is for local com-
munities to help them to regain a normal life.

In Thailand the basis of the human trafficking model is the terri-
ble poverty, where families go hungry in certain regions because
the crop wasn’t enough for the entire year. This is the time when
human traffickers go to these villages and offer money to the
head of a family for their children, and when the fathers have to
feed their other children, too, they are often willing to sell one of
them to help the rest of the family stay alive. To combat human
trafficking in Thailand, feeding programs can be a huge help.
Feeding these children can eliminate the reason for selling them
into slavery.

The most violent of all is the Albanian mafia. They lure their
victims very often through alluring job offers into prostitution.
They focus on women and they immediately begin drugging and
raping them. They also keep law enforcement under threat, mak-
ing it really hard to deal with them.

www.usenix.org DECEMBER 2014 VOL. 39, NO. 6 89

REPORTS

In the US model, pimps are looking for runaways, often mak-
ing long-term relationships with them and helping them in
the beginning, but later forcing their victims into prostitution.
These victims also very often suffer from Stockholm syndrome.
One newly emerging method to get new victims is the use of so-
called Romeo pimps. These Romeo pimps are high school kids
who are hired by real pimps. They would go to parties with these
young girls and give them drugs there, and they would make por-
nographic videos of their victims and blackmail them with these
videos into prostitution.

Human trafficking is also a very big problem in India, which
is the most dangerous place to be a little girl. In India, besides
children being sold for sex trafficking, they may often be muti-
lated to become beggars. Human trafficking in Mexico is run by
international drug cartels, like the infamous MS-13, and this
is just a part of their criminal portfolio, which includes money
laundering and drug and gun trafficking. Finally, Nigeria and
West Africa are very hard cases, where many people still believe
that having sex with a young child can cure AIDS.

Lopez described a tool helpful against human trafficking called
the Freedom App, where anyone experiencing anything related
to human trafficking can send in information anonymously. This
application already helped in freeing children held for prostitu-
tion. In addition, they have their own system that monitors all
incoming information to help them with tracking and interven-
ing in human trafficking.

An attendee asked how many false positives they get from the
Freedom App. Lopez answered that they are not flooded by
messages so far; in addition, before taking action, they contact
local trusted officers who make sure that the information is cor-
rect. Someone asked what the community of computer security
experts can do to battle human trafficking. Lopez answered
that they need the most cutting-edge technology to stay ahead
of criminals, but all help is welcome. Send an email with your
expertise and they will help figure out how each individual can
best help the cause. A questioner wondered how they determine
who to trust among all the corrupt officers, especially in foreign
countries. Lopez said they first contact people whom they trained
in different techniques against criminals; second, they go to the
local bureau to know who is trusted; most importantly, they can
see whether a person is just working for the payroll or is pas-
sionate about helping victims and wants to bring justice to the
criminals. For more information, go to www.orphansecure.com
or write to info@orphansecure.com.

After Coffee Break Crypto
Summarized by Michael Zohner (michael.zohner@cased.de)

Burst ORAM: Minimizing ORAM Response Times for
Bursty Access Patterns
Jonathan Dautrich, University of California, Riverside; Emil Stefanov,
University of California, Berkeley; Elaine Shi, University of Maryland,
College Park

Jonathan presented an Oblivious RAM (ORAM) system that is
designed to provide quick responses under bursty workloads.
When data is outsourced to the cloud, meta-information such
as data access patterns can leak valuable information to the
provider even when the data is encrypted. ORAM constructions
were introduced to keep such access patterns hidden from mali-
cious cloud providers. Existing ORAM constructions assume a
steady stream of requests and primarily focus on minimizing the
total bandwidth overhead, but real-world storage servers often
have to cope with bursts of data queries. The presented Burst
ORAM scheme was specifically designed to handle such bursts
while minimizing response times of individual queries.

To cope with bursts of queries, Burst ORAM introduces several
new techniques. First, it prioritizes the online I/O required
for the client to obtain each result, delaying the more expen-
sive shuffling I/O until idle periods between bursts. Second, it
schedules shuffling jobs such that the most efficient jobs are
prioritized. Third, it XORs blocks together before returning them
to the client, reducing the online I/O to a constant amount.

The response times and bandwidth consumptions of Burst
ORAM were simulated and compared to an insecure baseline
system as well as a traditional ORAM system. The results
showed that under a realistic workload with bursts of moder-
ate lengths, Burst ORAM achieved response times that were
comparable to the insecure baseline and orders of magnitude
lower than traditional ORAM systems. However, Burst ORAM
increases the total communication compared to traditional
ORAM systems by up to 50%. Thus, a question to tackle in future
work is how to reduce the overall communication overhead while
keeping response times low.

Following the presentation, an audience member asked what
would happen during an extremely large burst. Jonathan
responded that in this case the costs of Burst ORAM would
gracefully degrade toward those of traditional ORAM systems.

TRUESET: Faster Verifiable Set Computations
Ahmed E. Kosba, University of Maryland; Dimitrios Papadopoulos, Boston
University; Charalampos Papamanthou, Mahmoud F. Sayed, and Elaine Shi,
University of Maryland; Nikos Triandopoulos, RSA Laboratories and Boston
University

Ahmed presented their work on TRUESET, a prototype for set-
centric Verifiable Computation (VC) operations for outsourcing
computations to a cloud. Next to privacy concerns, outsourcing
work to an untrusted cloud server raises integrity and correct-
ness concerns about computations done by the server. Verifiable
computation was introduced to enable the client to verify the

90  DECEMBER 2014 VOL. 39, NO. 6 www.usenix.org

REPORTS

correctness of a computation outsourced to a remote untrusted
server. Research on VC has progressed in recent years both in
terms of theory and practice. However, while current schemes
maintain short proofs and short verification time, the proof
computation time for the server is still too high to be considered
usable. This is especially the case for set-centric operations used
for database queries.

TRUESET was designed to reduce the proof computation time
for the server and achieve an input-specific runtime while
retaining the expressiveness of previous techniques. TRUESET
achieves this by representing its operations using polynomials
instead of arithmetic or Boolean circuits as done by traditional
approaches. The polynomial circuit encodes the input size as
a degree of the polynomial. Thereby, the circuit size becomes
constant and independent of the size of the sets. Furthermore,
special transformation gates can be used to transform the poly-
nomial representation of sets into an arithmetic representation
if additional non-set-centric operations are required.

TRUESET was implemented and compared to current systems
for VC. Most prominently, TRUESET achieved more than 30x
speed-up for the proof computation runtime compared to exist-
ing approaches for sets with more than 64 elements, reaching
150x speed-up for a union of two 256-element sets. Furthermore,
TRUESET was shown to be applicable to sets with 30x larger
size than previous approaches. Despite the large speed-up,
Ahmed pointed out that their implementation was not yet practi-
cal, but is meant to spawn interest in practical VC systems.

Succinct Non-Interactive Zero Knowledge for a von
Neumann Architecture
Eli Ben-Sasson, Technion—Israel Institute of Technology; Alessandro Chiesa,
Massachusetts Institute of Technology; Eran Tromer, Tel Aviv University;
Madars Virza, Massachusetts Institute of Technology

Madars presented work on generating non-interactive zero-
knowledge proofs that are short and easy to verify and rely
on a setup that is independent of the proven function. When
computing on decentralized information, we often encounter
the problem that the goals of integrity and confidentiality are
complementary to each other. For instance, if a server holds a
confidential database and a client wants to evaluate a public
function on his public input and the database, the client either
has to trust the server to compute the correct output or the
server has to disclose his database to the client. To enable this
computation while bridging the gap between integrity and confi-
dentiality, zero-knowledge proofs can be used. A zero-knowledge
Succinct Non-Interactive Argument of Knowledge (zk-SNARK)
is a special type of zero-knowledge system that builds short and
easy-to-verify non-interactive zero-knowledge proofs that are
based on suitable cryptographic assumptions. While practically
feasible zk-SNARKs for certain applications exist, they rely on a
costly trusted setup that is tailored to the evaluated function. Fur-
thermore, they have only limited support for high-level languages.

Instead of being targeted to a particular function, Madars
introduced a zk-SNARK system with universal setup that uses
universal circuits to compute a proof for the desired functional-
ity. The system takes as input bounds on the program size, the
input size, and the time, and the corresponding trusted setup
allows supporting all program computations that are within
these bounds. However, in prior work, generating a universal cir-
cuit incurs a multiplicative overhead in the program size and is
therefore only feasible for small programs. To allow the evalua-
tion of larger programs, a routing network was introduced, which
reduced the multiplicative to an (essentially) additive overhead.

The above circuit generator is composed with a zk-SNARK
system for circuits. Both components were implemented and
their performance was compared to existing approaches. As for
the zk-SNARK for circuits, when evaluated on a one million-gate
circuit with a thousand-bit input, its proof generation time was
shown to be 5.3x faster and its proof verification time was shown
to be 1.8x faster. The implementation was used in Zerocash, a
privacy-preserving digital currency. Madars and his coauthors
are looking for further applications of their work.

An audience member asked whether the authors had looked at
universal circuit generators in the literature instead of con-
structing a new one. Madars replied that one could consider
such computational models, but as their goal was SNARKs for
RAM computations, it would incur a sub-optimal intermediate
reduction: from RAM to circuits, followed by a universal circuit
for circuits; they chose to have universal circuits that directly
support RAM computations.

Faster Private Set Intersection Based on OT Extension
Benny Pinkas, Bar-Ilan University; Thomas Schneider and Michael Zohner,
Technische Universität Darmstadt

Michael surveyed and optimized existing protocols for Private
Set Intersection (PSI) in the semi-honest model and presented
a novel protocol based on Oblivious Transfer (OT). PSI consid-
ers the problem of two parties each holding a set of elements and
wanting to identify the elements they have in common without
disclosing any other element. PSI protocols can, for instance, be
used for secure database joins or discovery of common contacts.
Since PSI is a general problem and is often used as an indicator
for the practicality of secure computation, it has gained a lot of
attention, and many protocols based on different techniques
have been proposed. However, there have been various incon-
sistencies in the evaluation and comparison of the protocols,
resulting in uncertainty about the best performing protocol for a
particular deployment scenario.

Major results on PSI protocols were outlined and categorized
depending on their underlying technique as public-key-based,
generic secure-computation, or circuit-based and OT-based.
Using current state-of-the-art techniques in secure computa-
tion, optimizations for a circuit-based and an OT-based protocol
were proposed, which decreased both their runtime and commu-
nication by at least a factor of 2. Michael then introduced a new

www.usenix.org DECEMBER 2014 VOL. 39, NO. 6 91

REPORTS

OT-based PSI protocol that made use of recent improvements
for OT extension and used hashing schemes to achieve better
efficiency.

Finally, the performance of all surveyed protocols was evaluated
using the same programming language, techniques, librar-
ies, and benchmarking environment. The results showed that
the public-key-based protocols had a moderate runtime for
long-term security but had the most efficient communication
complexity. The circuit-based protocols had the highest runtime
and communication complexity but could be extended to other
functionalities without requiring a proof-of-security. The OT-
based protocols achieved the best overall runtime. To evaluate
the practical usability of PSI, the results were compared to the
performance of the naive hashing solution that is currently used
in practice but that leaks information about the inputs. Com-
pared to the best performing PSI protocol, the naive solution had
an order of magnitude less runtime and communication.

The first question concerned the possibility of authenticating
the input elements that are used by each party. Michael replied
that although his work did not ensure authenticity of input
elements, existing approaches could be used to achieve this
property. The second questioner wanted to know how the results
of the paper “Private Set Intersection: Are Garbled Circuits Bet-
ter than Custom Protocols?” in NDSS ’12 fit in with the overall
results of the presented work. Michael replied that the results of
the NDSS ’12 paper were later revised in the paper “Experiment-
ing with Fast Private Set Intersection” in TRUST ’12, leading to
confusion about the performance of the analyzed schemes.

Program Analysis: Attack of the Codes
Summarized by Brendan Saltaformaggio (bdsaltaformaggio@gmail.com)

Dynamic Hooks: Hiding Control Flow Changes within
Non-Control Data
Sebastian Vogl, Technische Universität München; Robert Gawlik and Behrad
Garmany, Ruhr-University Bochum; Thomas Kittel, Jonas Pfoh, and Claudia
Eckert, Technische Universität München; Thorsten Holz, Ruhr-University
Bochum

Sebastian Vogl presented a new approach, called dynamic hooks,
to construct malicious code hooks residing purely in non-control
data. As a running example, the Linux kernel’s list_del function
was used to illustrate a dynamic hook. By crafting a special list
node to be deleted, an attacker could cause an overwrite of a ker-
nel return address or other control flow data. Using a combina-
tion of program slicing and symbolic execution, the researchers
revealed 566 and 379 execution paths in the Linux and Windows
kernels, respectively, that are vulnerable to such attacks.

The authors’ choice to use VEX was questioned. Vogl responded
that they had tested others, but VEX worked best without any
practical problems. William Enck, the session chair, asked how
common are side effects in different paths. Vogl admitted that it
requires an expert to look at a specific exploit path to determine
whether that specific path works for a given attack.

X-Force: Force-Executing Binary Programs for Security
Applications
Fei Peng, Zhui Deng, Xiangyu Zhang, and Dongyan Xu, Purdue University;
Zhiqiang Lin, The University of Texas at Dallas; Zhendong Su, University of
California, Davis

Fei Peng began his presentation citing the limitations of current
binary analysis frameworks: Static analysis suffers from over-
approximation and lack of runtime data. Dynamic analysis lacks
coverage. Symbolic execution may not scale. Given these limita-
tions, X-Force attempts to force a binary to execute as many
code paths as possible by dynamically flipping select conditional
branches.

Peng argued that, while X-Force is not complete or sound, it
overcomes the limitations of current binary analysis platforms.
X-Force is therefore designed as a new platform that binary
analysis tools can be built upon. The presentation showed how
X-Force could achieve far better CFG construction and indirect
call coverage on most of the SPEC test suite binaries, compared
to traditional static or dynamic analysis. Finally, Peng showed
how an existing type reverse engineering tool (REWARDS) was
ported to X-Force, and this caused a considerable increase in
variable coverage.

The first questioner commented that X-Force is similar to con-
colic execution systems except that X-Force chooses to execute
invalid paths to avoid the slowdown of concolic execution, and
asked whether they had compared X-Force with any concolic
execution systems. Peng replied that they did compare X-Force
with the S2E system and that the results are in the paper. Peng
was then asked whether X-Force can utilize parallelization
speed-up runs for online use. His response was that X-Force
already can parallelize multiple runs.

ByteWeight: Learning to Recognize Functions in
Binary Code
Tiffany Bao, Jonathan Burket, and Maverick Woo, Carnegie Mellon
University; Rafael Turner, University of Chicago; David Brumley, Carnegie
Mellon University

Given the importance and difficulty of automatically identifying
functions within binaries, Tiffany Bao presented a new solution
called ByteWeight. For motivation, Bao showed how different
levels of compiler optimizations break many common func-
tion boundary signatures. Further, she explained that the static
binary analysis tool IDA is often unable to uncover functions at
such high levels of optimization.

To address the function identification challenge, Bao described
how ByteWeight combines machine learning and program anal-
ysis to perform function identification. First, training binaries
are used to extract common function prefix sequences and build
a weighted prefix tree. These weighted prefix trees are then used
to identify function boundaries within test binaries.

Bao then presented the results of applying ByteWeight to 2200
binaries. Comparing against a previous approach by Rosenblum
et al., ByteWeight uncovered far more functions within the test
binaries. When compared to other function start identification

92  DECEMBER 2014 VOL. 39, NO. 6 www.usenix.org

REPORTS

tools, ByteWeight’s precision and recall was again higher. Lastly,
Bao invited others to test the ByteWeight system by downloading
a preconfigured VM at http://security.ece.cmu.edu/byteweight/.

Bao was asked why they chose to use the BAP platform over an
IR. She responded that BAP was chosen because much of their
implementation is based on BAP and that ByteWeight could also
be ported to use other platforms. Eric Eide (University of Utah)
noted that the paper’s experiments are not compiler-specific and
asked whether the results would be better if ByteWeight was
trained on a specific compiler. Bao replied that the difference
may not be large and that they do not need compiler-specific
knowledge. Finally, a questioner asked how many prologues were
in a common weighted prologue tree. Bao responded that in their
current results, trees often contain thousands of nodes.

Optimizing Seed Selection for Fuzzing
Alexandre Rebert, Carnegie Mellon University and ForAllSecure; Sang Kil Cha
and Thanassis Avgerinos, Carnegie Mellon University; Jonathan Foote and
David Warren, Software Engineering Institute CERT; Gustavo Grieco, Centro
Internacional Franco Argentino de Ciencias de la Información y de Sistemas
(CIFASIS) and Consejo Nacional de Investigaciones Científicas y Técnicas
(CONICET); David Brumley, Carnegie Mellon University

With the popularity of fuzzing as a software testing technique,
Sang Kil Cha presented a new effort to mathematically reason
about how to pick the best seeds for fuzzing. “Best” here is find-
ing the most bugs with specific fuzzing seeds. The presentation
then explained the several different selection algorithms devel-
oped in the paper and how each of these algorithms compared to
one another. Finally, the results of fuzzing a variety of applica-
tions with different seed-selection algorithms is shown, and the
effectiveness of each algorithm is compared.

The session chair, William Enck, noted that the selection of
seeds assumes that you have a base data set and asked how it
handles applications that modify the fuzzed data. Sang Kil Cha
responded that the current framework already handles such
scenarios and that this does not affect their results.

After Lunch Break Crypto
Summarized by Michael Zohner (michael.zohner@cased.de)

LibFTE: A Toolkit for Constructing Practical,
Format-Abiding Encryption Schemes
Daniel Luchaup, University of Wisconsin—Madison; Kevin P. Dyer, Portland
State University; Somesh Jha and Thomas Ristenpart, University of
Wisconsin—Madison; Thomas Shrimpton, Portland State University

Kevin presented LibFTE, an easy-to-use toolkit for instantiat-
ing Format-Preserving Encryption (FPE) and Format-Trans-
forming Encryption (FTE) schemes. Several applications, such
as in-place encryption of credit card numbers in a database,
require that plaintexts and ciphertexts abide by a specific for-
mat. A related problem, which was investigated by the authors
in their previous work “Protocol Misidentification Made Easy
with Format-Transforming Encryption” at CCS ’13, focuses
on circumventing network censors by using FTE to transform
ciphertexts into messages that are indistinguishable from real
network protocol messages. Kevin revisited the notion of FTE
and outlined how to instantiate an FTE scheme.

While FPE/FTE schemes exist, instantiating them for a par-
ticular format requires expert knowledge as well as engineering
expertise to achieve good performance. LibFTE was designed to
reduce the challenges in building FPE/FTE schemes. LibFTE
allows the developer to specify the format of the plaintext and
the format of the ciphertext separately using regular expres-
sions. However, using prior techniques, to instantiate a FPE/
FTE scheme, the regular expressions have to be transformed to a
deterministic finite automaton (DFA), which can grow expo-
nentially in size and can even require around 200 MB for some
formats. To reduce the memory requirements for instantiating
FPE/FTE schemes, the concept of relaxed ranking was intro-
duced. In relaxed ranking, FPE/FTE encryption is performed
directly from the nondeterministic finite-state automaton
(NFA) representation of the regular language, which obviates
the need for NFA to DFA conversion.

LibFTE has interfaces for C++, Python, and JavaScript and
comes with a configuration assistant for instantiating FPE/
FTE schemes. LibFTE was evaluated in several scenarios.
Firstly, it was tested on 3,500 regular expressions from the Snort
IDS, where it was able to instantiate FPE/FTE schemes for all
expressions using less than 150 MB memory, even when FPE/
FTE schemes without relaxed ranking failed. In addition, the
average required memory was reduced by 30%. Secondly, its
performance for simultaneous compression+encryption was
compared to regular AES encryption using PostgreSQL, where
it saved 35% disk space on average while maintaining a similar
query time. Thirdly, a LibFTE Firefox extension was imple-
mented and used to encrypt a Yahoo! address book contact form.
LibFTE is available online at https://libfte.org.

Ad-Hoc Secure Two-Party Computation on Mobile Devices
using Hardware Tokens
Daniel Demmler, Thomas Schneider, and Michael Zohner, Technische
Universität Darmstadt

Daniel presented his work on practical secure computation on
mobile devices using a smart card to achieve more efficiency.
Mobile devices have become an important tool in modern soci-
ety. They measure, collect, and store various data throughout
the daily life of their user and are used to perform various tasks.
This makes them an important target for privacy measures such
as secure computation. Secure computation enables two parties
to evaluate a public function on their private inputs without leak-
ing any information about either party’s input except what can be
obtained from the result. While secure computation on desktop
PCs is becoming increasingly practical, its runtime on resource-
constraint mobile devices is still too high to be considered usable.

To increase performance of secure computation on mobile
devices, Daniel presented a scheme that uses a smart card,
located on one device, as trusted third party. The scheme is
secure against passive adversaries, works in three phases, and
offloads the bulk of the workload of the secure computation pro-
tocol to the smart card. In the first phase, called the init phase,

www.usenix.org DECEMBER 2014 VOL. 39, NO. 6 93

REPORTS

the smart card pre-generates the data required for the secure
computation. The init phase can be performed independently
by the device holding the smart card at any point in time: for
instance, when the device is being charged. In the second phase,
called the setup phase, the smart card securely transmits the
helper data, generated in the init phase, over a secure channel to
the partner device the secure computation protocol is executed
with. In the third phase, called the online phase, the devices run
the secure computation protocol and obtain the output.

The presented scheme was implemented, evaluated, and com-
pared to related work on three example applications using an
Android smartphone and an off-the-shelf smart card. In the first
application, which considered privacy-preserving scheduling
of a meeting, the smart-card-based scheme achieved 3x better
runtime than existing non-smart-card-based schemes. In the
second application, the scheduling functionality was extended
by location-awareness, demonstrating that the computed func-
tion could easily be changed. The third application considered
private set-intersection and showed that the smart-card-based
scheme achieved a similar performance on smartphones as a
non-smart-card aided secure computation protocol execution on
desktop PCs. The evaluation demonstrated that secure com-
putation on resource constrained mobile devices can indeed be
practical when supported by a trusted hardware token.

Someone asked Daniel whether an extension of his scheme to
stronger adversaries was possible. Daniel replied that an exten-
sion to malicious adversaries would be possible by also equip-
ping the partner device with a hardware token and massaging
the TinyOT protocol introduced in “A New Approach to Practical
Active-Secure Two-Party Computation” at CRYPTO ’12.

ZØ: An Optimizing Distributing Zero-Knowledge Compiler
Matthew Fredrikson, University of Wisconsin—Madison; Benjamin Livshits,
Microsoft Research

Matthew presented work on ZØ, a zero-knowledge protocol com-
piler that combines two existing zero-knowledge systems and
translates from C# to distributed multi-tier code. To maintain
a client’s privacy, several applications move functionality to the
client and send only aggregated outputs to a server. However, the
client can not necessarily be trusted to return the correct output
to the server. Hence, there is a tradeoff between the privacy of the
client and the integrity of the output. Google Waze was men-
tioned as a prominent example for this tradeoff, where users pro-
vide their traffic data to improve quality of routing information.

Zero-knowledge protocols are a common tool to fulfill the two
complementary goals of privacy and integrity. To ease the devel-
opment of zero-knowledge protocols, zero-knowledge protocol
compilers, such as Pinocchio and ZQL, have been introduced.
However, these compilers are directly based on one particular
technique for generating zero-knowledge proofs and scale very
poorly to large applications and to applications that cannot effi-
ciently be expressed using the underlying technique.

The main focus of ZØ is to make the generation of efficient
zero-knowledge protocols easier. ZØ compiles from C# and
allows developers to specify zero-knowledge regions using LINQ
syntax. To support code-generation for different distributed sce-
narios, ZØ allows splitting functionality among multiple tiers.
Additionally, it generates more efficient zero-knowledge proto-
cols that scale to larger problems by not tying itself to a particu-
lar zero-knowledge technique. This is done by combining both
the techniques that are used in Pinocchio and ZQL and using a
cost model to schedule the techniques across multiple tiers such
that the resulting protocol obtains the most efficient runtime.

To evaluate the performance benefits of ZØ, six different
real-world applications were implemented in ZØ, Pinocchio,
and ZQL, and the performance of the resulting protocols was
compared. Overall, ZØ allowed to scale up to 10x larger applica-
tion sizes and resulted in up to 40x faster runtime compared to
Pinocchio and ZQL.

SDDR: Light-Weight, Secure Mobile Encounters
Matthew Lentz, University of Maryland; Viktor Erdélyi and Paarijaat Aditya,
Max Planck Institute for Software Systems (MPI-SWS); Elaine Shi, University
of Maryland; Peter Druschel, Max Planck Institute for Software Systems
(MPI-SWS); Bobby Bhattacharjee, University of Maryland

Matthew outlined the Secure Device Discovery and Recognition
(SDDR) system for short-range secure mobile encounters. Many
mobile social services, such as Haggle and Foursquare, detect
nearby peers (strangers and/or friends) and support commu-
nication among these peers. Traditional approaches that solve
this problem either use a centralized service or a decentralized
approach relying on device-to-device communication with static
addresses (or IDs), which both allow tracking users’ movements.
Using random IDs, on the other hand, prevents the device from
being recognizable by friendly devices.

SDDR avoids tracking while allowing the recognition of friendly
devices by using a decentralized approach in combination
with random user IDs and cryptographic techniques. Exist-
ing cryptographic techniques, however, perform poorly on
resource-restricted devices such as mobile phones, both in terms
of runtime and energy consumption. Matthew outlined a novel
non-interactive solution that uses the Bluetooth controller to
send a beacon message upon query. This beacon enables secure
communication between peers and can allow permitted friends
to recognize the device. In addition to granting people the right
to recognize a device, SDDR also introduces methods to effi-
ciently revoke this permission.

SDDR was implemented on an Android device, and its runtime
was measured as well as its energy consumption. The runtime
for a single query amounted to less than one millisecond, four
orders of magnitude faster than the protocol that uses existing
cryptographic techniques. The energy consumption was mea-
sured over a period of 30 minutes and extrapolated to the total
consumption for a day. While SDDR consumed around 10% of the
phone’s battery capacity, the protocol based on existing crypto-
graphic techniques required 191% (depleting the battery in half a

94  DECEMBER 2014 VOL. 39, NO. 6 www.usenix.org

REPORTS

day). As an example for further applications, such as facilitating
communication among groups of peers who encountered each
other presently (or in the past), a reference to the authors’ paper
“EnCore: Private, Context-based Communication for Mobile
Social Apps” was given. The code for SDDR is available online at
http://www.cs.umd.edu/projects/ebn/.

Program Analysis: A New Hope
Summarized by Lucas Davi (lucas.davi@trust.cased.de)

Enforcing Forward-Edge Control-Flow Integrity in
GCC & LLVM
Caroline Tice, Tom Roeder, and Peter Collingbourne, Google, Inc.; Stephen
Checkoway, Johns Hopkins University; Úlfar Erlingsson, Luis Lozbno, and
Geoff Pike, Google, Inc.

Caroline Tice presented a compiler-based Control-Flow Integ-
rity (CFI) approach to prevent runtime attacks. Caroline argued
that return addresses and stack data are today well-protected
due to stack canaries and address space layout randomization.
Hence, attackers typically corrupt vtable or function pointers
to launch a runtime attack. To tackle these attacks, Caroline
presented a compiler-based approach that enforces so-called
forward-edge control-flow integrity (CFI) which instruments
indirect calls and jumps with CFI checks. Specifically, she
presented VTV (Virtual-Table Verification) for GCC, and IFCC
(Indirect Function-Call Checks) for LLVM. The presented CFI
solution is open source, induces a modest overhead of 1–8.7%,
and protects 95–99.8% of all indirect function calls.

Lucas Davi (TU Darmstadt) asked whether forward-edge CFI
prevents an adversary from exploiting an indirect call or jump to
invoke VirtualAlloc or VirtualProtect in a modern application
like Adobe Reader. Caroline responded that this depends on the
virtual calls used by the target application. David Evans (Univer-
sity of Virginia) asked at which time forward-edge CFI will be
applied to the Chrome browser. Caroline mentioned that this is
the goal of the project, but there are still some issues to tackle.

ret2dir: Rethinking Kernel Isolation
Vasileios P. Kemerlis, Michalis Polychronakis, and Angelos D. Keromytis,
Columbia University

Vasileios started with an introduction to kernel exploits and
mentioned that most existing kernel attacks are based on
exploiting a memory corruption vulnerability in the kernel to
redirect execution to a shellcode or ROP payload residing in user
space. Such attacks are referred to as ret2usr attacks and can be
detected by new hardware and compiler-based defenses (SMEP,
SMAP, PXN, KERNEXEC, UDEREF, and kGuard) that basically
all prevent the kernel from either executing code or tampering
with reference data from userland. However, Vasileios demon-
strates that all these defenses can be bypassed with a new attack
technique called return-to-direct-mapped memory (ret2dir).
The main idea is to redirect execution to a kernel memory region
called physmap that contains a direct mapping of all the physi-
cal memory in the system (including pages mapped from user
space). Hence, the attacker only needs to know where his shell-
code is mapped to in the physmap region to execute the shell-

code from the kernel space. To defend against ret2dir attacks,
Vasileios presented exclusive page frame ownership (XPFO) that
unmaps userland pages from physmap and remaps them (delet-
ing the page contents) when they are reclaimed by user space.

David Evans (University of Virginia) asked whether sharing
of data between kernel and user space is common in modern
systems as this would bypass the presented defense against ret-
2dir attacks. Vasileios replied that it depends on how frequently
page caching is used by the system. Someone asked whether
existing kernel data integrity protection mechanisms would
prevent ret2dir attacks. Vasileios confirmed that such integrity
mechanisms would also defend ret2dir attacks. Someone asked
whether these attacks were also possible in Windows. Vasileios
replied that Windows also has a page cache and the attacks are
not specific to Linux.

JIGSAW: Protecting Resource Access by Inferring
Programmer Expectations
Hayawardh Vijayakumar and Xinyang Ge, The Pennsylvania State University;
Mathias Payer, University of California, Berkeley; Trent Jaeger, The
Pennsylvania State University

Hayawardh started with a motivating example to demonstrate
that resource access control is an important problem. In par-
ticular, he showed how a university’s Apache Web server can be
compromised by a student (who owns a page on the Web server)
to retrieve the password file exploiting a symbolic link to the
password file. Hayawardh elaborated on two reasons why such
attacks were still possible: (1) Programmers, administrators,
and OS distributors have different expectations on how files
are protected and used on the system, and (2) code complexity
makes it challenging for a programmer to protect every resource
used in his program. To tackle this security problem, Hayawardh
presented a solution to map programmer expectation onto a
system. In particular, Hayawardh presented a process firewall
based on introspection of the program limits system calls to
their appropriate resources as given by their original intent and
expectation. As a motivation to deploy the process firewall, the
authors’ evaluation showed that for four of five tested programs,
more than 55% of the resource accesses were not protected with
defensive checks or filters.

Rob Johnson (Stony Brook) asked Hayawardh how policies were
generated and about the advantages of using the process firewall
compared to fixing the code. Hayawardh replied that the process
firewall runs automated methods to generate the corresponding
access control policies.

Static Detection of Second-Order Vulnerabilities in Web
Applications
Johannes Dahse and Thorsten Holz, Ruhr-University Bochum

Facebook Internet Defense award!

Johannes presented a static analysis tool that detects second-
order vulnerabilities in Web applications. He started by describ-
ing first-order vulnerabilities such as the well-known SQL

www.usenix.org DECEMBER 2014 VOL. 39, NO. 6 95

REPORTS

injection attack. These attacks can be prevented by applying
sanitization. However, second-order vulnerabilities occur when
an attack payload is first persistently stored in a database or
file, and the application reads in a second stage the payload to
perform a security-critical operation. To identify these vulner-
abilities, Johannes presented a static source code analysis tool
(focusing on PHP) that analyzes write and read operations of an
application to persistent data. In general, the static analysis tool
builds a control-flow graph of the application, identifies sensitive
sinks, and validates whether user input can potentially write to a
sensitive sink recording and considering also possible sanitiza-
tion on data inputs. The same is also done for inputs that origi-
nate from persistent data storage to cover read operations by the
application. Finally, data input writes and reads are correlated
with each other to connect input and output points to identify
second-order vulnerabilities. The evaluation of six Web applica-
tions showed that the static analysis approach identified 159 true
positives (second-order vulnerabilities) and 43 false positives.

Benjamin Livshits (MSR) asked Johannes about the lessons
learned, and why the analysis did not take other languages
beyond PHP into account. Johannes replied that in contrast
to Java or other languages, PHP is particularly vulnerable to
second-order vulnerabilities. However, it was still possible to
write PHP-secure code. Someone mentioned that static analysis
has limitations because it misses dynamic behavior. Johannes
noted that there were some false positives and that the presented
approach focuses on vulnerabilities that can be detected at static
analysis time.

Mobile Apps and Smart Phones
Summarized by Shouling Ji (sji@gatech.edu)

ASM: A Programmable Interface for Extending Android
Security
Stephan Heuser, Intel CRI-SC at Technische Universität Darmstadt; Adwait
Nadkarni and William Enck, North Carolina State University; Ahmad-Reza
Sadeghi, Technische Universität Darmstadt and Center for Advanced Security
Research Darmstadt (CASED)

Stephan Heuser presented work on promoting OS security
extensibility in the Android OS. Specifically, the authors
designed a framework named Android Security Modules (ASM)
that provides a programmable interface for defining new refer-
ence monitors for Android. In the presentation, Heuser first
demonstrated the architecture of Android, which consists of
three layers (from top to bottom): the App layer, the Android
OS layer, and the Linux kernel layer. Currently, to improve the
security of the Android system, access control is implemented
in every layer. Subsequently, to motivate their work, Heuser
summarized over a dozen recent Android security architec-
ture proposals to identify the hook semantics requirements for
Android security models. Based on their survey, they concluded
that Android OS is responsible for enforcing more than just
UNIX system calls. They also identified that it is necessary for
authorization hooks to replace data values and for third-party
applications to introduce new authorization hooks.

Based on their findings, they designed and implemented an
extensible Android Security Modules (ASM) framework. Heuser
introduced how ASM works layer by layer. Basically, ASM allows
multiple simultaneous ASM apps to enforce security require-
ments while minimizing the system overhead. To demonstrate
the utility and performance of the proposed ASM framework,
they implemented several ASM apps. In the presentation, Heuser
showed one ASM app MockDroid, which is a system-centric secu-
rity extension for the Android OS, allowing users to gracefully
revoke the privileges requested by an application without the app
caching. Besides that, Heuser also demonstrated the performance
overhead and energy consumption of the ASM framework.

Following Heuser’s talk, there was an interesting discussion on
the ASM framework. First, someone was curious about the over-
all design and the novelty of ASM, especially the work mecha-
nism of ASM in the kernel layer. Heuser summarized the design
of ASM and highlighted the distinguished features of ASM. He
also directed the audience to find more discussion in the paper.
Another attendee was curious about how ASM implements the
isolation of apps. Based on Heuser’s response, ASM does not
separate apps (or components) in its current version. It is an
interesting future research direction of this paper.

Brahmastra: Driving Apps to Test the Security of Third-
Party Components
Ravi Bhoraskar, Microsoft Research and University of Washington; Seungyeop
Han, University of Washington; Jinseong Jeon, University of Maryland,
College Park; Tanzirul Azim, University of California, Riverside; Shuo Chen,
Jaeyeon Jung, Suman Nath, and Rui Wang, Microsoft Research; David
Wetherall, University of Washington

Jaeyeon Jung presented their solution to the problem of third-
party component integration testing at scale, in which one party
wishes to test a large number of applications using the same
third-party component for a potential vulnerability. First, Jung
analyzed the status quo of the use of third-party components and
why they are commonly used. Subsequently, Jung pointed out
that the use of third-party components may cause some security
risks, which have been demonstrated in several existing reports.
Aiming at understanding the security of third-party compo-
nents, they designed an app automation tool named Brahmastra
for helping app stores and security researchers test third-party
components in mobile apps at runtime.

Jung motivated their design by analyzing the limitations of
existing third-party component testing tools. Taking Monkey as
an example, Jung showed its vulnerability step by step using a
demo in which Monkey leaked people’s Facebook profiles. Then
Jung presented their approach, which leverages the structure of
Android apps to improve test hit rate and execution speed. The
core techniques of their approach include two aspects: They char-
acterize an app by statically building a page transition graph and
call chains, and they rewrite the app under test to directly invoke
the callback functions that trigger the desired page transitions.

96  DECEMBER 2014 VOL. 39, NO. 6 www.usenix.org

REPORTS

Jung also showed the design and implementation of their testing
tool Brahmastra. To evaluate the performance of Brahmastra,
they tested 1010 popular apps crawled from Play Store. Accord-
ing to their results, Brahmastra significantly outperforms the
existing solution PUMA with respect to the hit rate and test
speed. Finally, Jung also demonstrated their security analysis in
two scenarios: ads in kids’ apps and social media add-ons. Based
on their testing results, 175 out of 220 children’s apps point to
Web pages that attempt to collect personal information, which is
a potential violation of the Children’s Online Privacy Protection
Act (COPPA); and 13 of the 200 apps with the Facebook SDK are
vulnerable to a known access token attack.

Someone pointed out that Brahmastra is a goal-driven tool. It
might be unfair to compare it with PUMA. Jung responded that
Brahmastra is designed to help app stores and security research-
ers test third-party components in mobile apps at runtime.
Therefore, both Brahmastra and PUMA have their advantages
and disadvantages. Another person asked about the code crush
of Brahmastra. Jung pointed out that if the app resists being
rewritten, it is possible that the program is crushed.

Peeking into Your App without Actually Seeing It: UI State
Inference and Novel Android Attacks
Qi Alfred Chen, University of Michigan; Zhiyun Qian, NEC Laboratories
America; Z. Morley Mao, University of Michigan

Qi Alfred Chen explained that on the Android system, a weaker
form of GUI confidentiality can be breached in the form of UI
state by a background app without requiring any permissions.
First, Chen explained the importance of GUI security. Since GUI
content confidentiality and integrity are critical for end-to-end
security, the security of smartphone GUI frameworks remains
an important topic. Then, Chen showed a weaker form of GUI
confidentiality breach, which might enable UI state hijacking.
Through a demo, Chen demonstrated how UI state hijacking
attack steals people’s passwords in the H&R Block app. In addi-
tion, Chen also showed that this can enable other attacks, which
can be classified as UI state inference attacks.

Chen summarized the underlying causes of such UI state infer-
ence attacks. This is mainly because the Android GUI frame-
work design leaks UI state changes through a publicly accessible
side channel, which is a newly discovered shared-memory side
channel. Based on this finding, Chen showed the general steps of
UI state inference attacks, which mainly consist of three steps:
activity transition detection; activity inference; and UI state
hijacking, camera peeking, and other UI state inference attacks.
To detect the activity transition, the newly discovered shared-
memory side channel will be employed. For activity inference,
besides the newly discovered shared-memory side channel,
other side channels, e.g., CPU, network activity, will also be used.
Finally, they also evaluated the UI state inference attacks on
seven popular Android apps, including WebMD, Chase, Amazon,
Newegg, Gmail, and H&R Block. The results show that for six of
the seven apps, the UI state inference accuracies are 80–90%

for the first candidate UI states, and over 93% for the top three
candidates.

Following Chen’s talk, several concerns were raised. First,
someone was curious about whether the attacks were reported
to Google. Chen responded that the system is still under testing.
They will report the vulnerability to Google after finishing all
the tests. Another attendee asked whether the presented attacks
were device-specific. Chen said they tested the attacks on popu-
lar devices and it should be easier to implement the attacks on
new devices.

Gyrophone: Recognizing Speech from Gyroscope Signals
Yan Michalevsky and Dan Boneh, Stanford University; Gabi Nakibly, National
Research & Simulation Center, Rafael Ltd.

Yan Michalevsky presented a new attack for recognizing
speech from gyroscope signals generated from iOS and Android
phones. In the talk, Michalevsky first introduced how a MEMS
gyroscope works and presented the initial investigation of its
properties as a microphone. Subsequently, Michalevsky showed
that the acoustic signal is sufficient to extract information of
the speech signal, e.g., speaker characteristics and identity. The
extraction leverages the fact that aliasing causes information
leaks from higher frequency bands into the sub-Nyquist range.
Third, Michalevsky demonstrated that isolated word recogni-
tion can be improved if the gyroscopes of multiple devices that
are in close proximity can be sampled. They also evaluated their
approach by repeating the speaker-dependent word recogni-
tion experiment on signals reconstructed from readings of two
Nexus 4 devices. Finally, several suggestions were made to
mitigate the potential risks of such an attack.

A questioner wondered about the countermeasures of limiting
the sensors/meters of smartphones. Michalevsky summarized
present solutions and proposed possible future research direc-
tions. An attendee pointed out that some designs have been
proposed recently to prevent apps from reading (critical) sensor
readings. Michalevsky responded that even so, there are still a
lot of apps that have such specific permissions to access sensor
readings. Therefore, such attacks are possible and very likely to
happen in the real world. Finally, a questioner wondered whether
the authors considered other sensor/meter readings. Micha-
levsky confirmed that they also looked at other sensor/meter
readings. In this paper, however, they focused on recognizing
speech from gyroscope signals.

Panel
The Future of Crypto: Getting from Here to Guarantees
The summary of this session is available online as an electronic
supplement: www.usenix.org/login/dec14.

The complete summaries from CSET ’14, 3GSE ’14, FOCI ’14,
HealthTech ’14, and WOOT ’14 are available online as elec-
tronic supplements: www.usenix.org/login/dec14.

Learn the latest
techniques for better:

• network security
• system management
• troubleshooting
• performance tuning
• virtualization
• cloud computing

on Windows, Linux,
Solaris, and popular
varieties of Unix.

Each issue delivers
technical solutions
to the real-world
problems you face
every day.

Real SolutionS
foR Real netwoRkS

Free
CD or DVD
in every Issue!

Order Online at: shop.linuxnewmedia.com6 issues per year!

ad_login_admin.indd 1 11/6/14 10:26:37 AM

USENIX Association
2560 Ninth Street, Suite 215
Berkeley, CA 94710

POSTMASTER
Send Address Changes to ;login:
2560 Ninth Street, Suite 215
Berkeley, CA 94710

PERIODICALS POSTAGE
PAID

AT BERKELEY, CALIFORNIA
AND ADDITIONAL OFFICES

15

Save the Date
February 16–19, 2015 • Santa Clara, CA

13th USENIX Conference
on File and Storage
Technologies

The 13th USENIX Conference on File and Storage Technologies (FAST ’15) brings together storage-system

researchers and practitioners to explore new directions in the design, implementation, evaluation, and

deployment of storage systems. The conference will consist of technical presentations, including refereed

papers, Work-in-Progress (WiP) reports, poster sessions, and tutorials.

JUST ANNOUNCED! The FAST ’15 Keynote Presentation will be given by Dr. Marshall Kirk McKusick.

Full program and registration information will be available soon.
www.usenix.org/fast15

	Cover
	Contents
	Musings
	BeyondCorp: A New Approach to Enterprise Security
	Sandboxing with Capsicum
	PolyPasswordHasher: Improving Password Storage Security
	Code Testing through Fault Injection
	Capturing Capture the Flag: Further Discussions
	Interview with Dan Farmer
	Introducing CloudLab: Scientific Infrastructure for Advancing Cloud Architectures and Applications
	/var/log/manager: Career Preventative Maintenance Inspections
	Practical Perl Tools: Oh Say Can You CPAN?
	All About That Constant
	iVoyeur: Rediscovering collectd
	For Good Measure: Stress Analysis
	/dev/random: Buying Snake Oil
	Book Reviews
	USENIX Notes
	Team USA Brings Home the Gold from IOI 2014
	Thanks to Our Volunteers
	Conference Reports: 23rd USENIX Security Symposium

