

2

Failing
One can hardly attend an educational
institution in our country without being
warned against failure. “Failure is bad,”
“Don’t fail!” and “Don’t be a failure!” are
implicit, if not stated, messages.

I am not sure that failing is so awfully
bad. In fact, if one looks around, one can
see examples in many different venues.

■ Water skiing without falling (fail-
ing)? Not trying hard enough.

■ Performing sysadmin activities
without failing at least in test envi-
ronments? Not pushing hard
enough.

■ Make a mistake on a calculation
(failure), catch it, and fix it? No
problem.

I don’t think “failure” is the problem.
The real problem is “failing slowly” or
“failing in some undetected manner”
(ignoring, for the moment, “failing
fatally,” e.g., driving a car over a cliff).

Consider writing code in a scripting lan-
guage. In these days of pretty darn fast
computers, one can write some erro-
neous code, try to run it (but fail), fix the
bug, and succeed—all in a manner of
seconds. That sort of failure doesn’t hurt
at all! The amount of time it takes to
make sure you typed semicolon instead
of colon dwarfs the time an interpreter
can check it for you. In fact, one can
even develop incrementally, testing five
lines at a time. The series of tiny failures
pales next to trying to debug a 1,000-line
script riddled with mistakes.

This idea generalizes, I think:

■ Home repair: turn the little screw
on the sprinkler head. Too much
water (failure)? Turn it the other
way!

■ Riding a bicycle: turn the wheel one
way and fall (failure). Turn it the
other way!

■ Cooking: burned the {toast, etc.}?
Cook it less!

Quick failures (short of catastrophes and
deaths) are dandy learning opportunities
and can help us all grow as humans.

Failing slowly, on the other hand, has
serious drawbacks. Think of the poor
college student who majored in Albanian
Poetry when she really wanted to be a
computer programmer. What a miser-
able career she has until she realizes she
took the wrong fork in the road and
backtracks. Unfortunately, this can take
years.

Certain projects or even relationships
can fail still more slowly. The US divorce
rate is a symptom of this. Couples work
hard for some period of time and then
realize that all those years invested in the
marriage are not going to enable it to
succeed. Of course, this is sometimes
hard to foresee by those involved.

The initial foundations of “Extreme Pro-
gramming” worked against failing
slowly. Frequent (sometimes daily)
checkpoints enabled implementors to
know when they had taken even the
slightest wrong turn. There is wisdom
here, even if XP is not for everyone.

Failing fatally is still no good, of course.
One must supervise infants and chil-
dren. One must use power tools of all
sorts very carefully. Using safety devices
such as seat belts, safety goggles, and
personal flotation devices is only com-
mon sense. I don’t advocate failing when
personal injury or death might result.

I routinely perform experiments so that
I fail on a small scale instead of a large
one:

■ For my lawn extension, I planted 15
3x50 foot test plots of various
grasses to see which would grow in
the combination of sun, soil, and
watering conditions of the new
yard. An unexpected dividend was
the revelation that grasses are very
different—textures, widths, colors,
and general impression vary widely.
I chose one of the top two grasses,

Vol. 29, No. 4 ;login:

by Rob Kolstad
Dr. Rob Kolstad has
long served as editor of
;login:. He is SAGE’s
Executive Director, and
also head coach of the
USENIX-sponsored USA
Computing Olympiad.
<kolstad@usenix.org>

motd

3August 2004 ;login:

and the new lawn has gone well. Of
course, I failed for a year on getting
a new lawn—and I failed with 13
kinds of grass. The alternative of
failing slowly after the dozens of
person-hours required to put in a
new lawn was quite unappealing,
though.

■ I practice experimental cooking. I
frequently glean a few dozen recipes
from the Net in an effort to learn
“essence of Chicken Cordon Bleu.”
I then create an amalgam that ap-
pears to hit the high points. I reckon
I have a failure rate of only about
2%—and the successes are deli-
cious. But this entire endeavor
wouldn’t be possible if failure
weren’t an option.

■ The new wine cellar has a white
LED that can shine on any given
wine bottle’s label. They’re all indi-
vidually addressable. Suggested as a
stupid extreme idea by a lunch part-
ner, the potential for “coolness” was
undeniable, so we did experiments.
First, we acquired a handful of dif-
ferent bright LEDs in a few colors.
After a few experiments, a dozen of
the best were acquired. Then we
built a small PIC circuit to cycle the
half-dozen winning LEDs across a
single row of bottles. That brought
the project to the third go/no-go
point. I’m happy to report that 1/3
of the cabinets are ready to install
and another 1/3 of the light circuits
have been constructed. I hope that
it turns out cool. If it’s not, then this
will become an example of failing
slowly.

Failure is an option. Don’t be afraid to
make nonfatal mistakes if they are mis-
takes that can easily be recovered from.
You might find your quality increasing
side-by-side with your throughput.

Of course, success is always an option,
too. Never underrate it!

EDITORIAL STAFF
EDITOR

Rob Kolstad kolstad@usenix.org

CONTRIBUTING EDITOR
Tina Darmohray tmd@usenix.org

MANAGING EDITOR
Jane-Ellen Long jel@usenix.org

COPY EDITOR
Steve Gilmartin proofshop@usenix.org

PROOFREADER

ProofShop proofshop@usenix.org

MEMBERSHIP, PUBLICATIONS,
AND CONFERENCES

USENIX Association
2560 Ninth Street, Suite 215
Berkeley, CA 94710
Phone: 510 528 8649
FAX: 510 548 5738
Email: office@usenix.org

login@usenix.org
conference@usenix.org

WWW: http://www.usenix.org
http://www.sage.org

4

Sysadmin Jobs: The CIO
What’s It Take?
I’ve been thinking about system administration job descriptions again, this time in the
context of who manages system administrators and what they know and do.

Just as the proliferation of computers required professionals to take care of them, keep
them up and running and talking to each other, the proliferation of system adminis-
trators has necessitated a management chain to manage the overall effort.

The literature reflects that in the early 1980s we began to see CIO (Chief Information
Officer) positions. This C-level executive arrived on the scene from a variety of places:
some organizations simply promoted existing directors of MIS, others attached CIOs
to COOs or CFOs. Depending on the organization, there might also be a CTO (Chief
Technical Officer), or the CIO could be wearing both those hats. One thing these posi-
tions usually have in common, though, is that somewhere down the line they are man-
aging folks who are managing systems.

I asked a number of colleagues, working in a variety of industries as well as education
and government, “To the extent that a CIO is the ‘ultimate’ system administrator man-
ager, what qualifications should the CIO have?”

First off, a couple of people who responded cautioned that the CIO in fact isn’t just
“the ultimate system administrator manager.” They emphasized that the CIO has a
larger scope than just system administration, e.g., networking, DBAs, help desk, desk-
top services, and more. In summary, the CIO is responsible for all aspects of the data
at a particular organization; managing the systems is part of the equation, but it is not
the whole of the job.

Of course I have my own bias on what it takes be a good CIO, and how I’d prioritize
those qualities, but I’ll leave my vote out of it and present the findings of my nonscien-
tific survey.

The top vote-getter is a focus on funds/budgets: folks want their CIO to be able to
assess, predict, and manage the bottom line. Specific experience in managing budgets
and in both funding and managing IT projects was mentioned. But probably the most
insightful comments centered on a CIO’s understanding of running a service for their
organization, and that the measure of their success was how well their efforts sup-
ported the organization’s overall success. This attribute increases in importance the
more information-intensive the organization is.

People management comes next. Some folks quantify it, saying that a CIO should have
at least five years of management experience. Where the experience was gained may
not be significant, as it’s recognized that the most important management knowledge
transcends the details of the environment. But no matter how you slice it, manage-
ment experience is essential. One person laid it on the line with this comment, “If you
haven’t earned your chops, no one will respect you.”

Tied with measurable management experience comes the less quantifiable “vision
thing.” The CIO must be able to absorb knowledge of emergent products and services
and set high-level technical direction for the organization. It’s not enough to be able to
see the big picture; the CIO must be able to communicate that view to their employees
and persuade them to head in the stated direction. So the “vision thing” in turn
requires the “communication and leadership thing.”

apropos

Vol. 29, No. 4 ;login:

by Tina
Darmohray
Tina Darmohray, con-
tributing editor of
;login:, is a computer
security and networking
consultant. She was a
founding member of
SAGE and has been a
Director of USENIX.

tmd@usenix.org

5August 2004 ;login:

Rounding out a three-way tie is what I’ll call technical prowess, because the feedback
on what is needed is split between hands-on technical experience and having enough
technical background to make technology judgment calls. Regardless of how you get it,
the CIO needs to possess a technical background in order to understand what techni-
cal people who disagree are saying and to pick the right solution.

Perhaps more of a warning than a qualification: tenacity is felt to be key. Some war
stories seemed to poke through with this recommendation: “If they aren’t tenacious,
they become the executive-level whipping boy,” and “A CIO is more a management
than an IT expert, because s/he will have to interface with other high-level manage-
ment and without the correct political skills, s/he won’t survive or won’t be able to
help her/his staff.”

Clumped together at the bottom of the list are the need to be aware of security issues
and a proven track record in technology integration and implementation. These two
are near and dear to my own heart, and since they are the only fairly specific areas of
knowledge mentioned, I took that as a positive sign.

Financial and management experience, vision, leadership, technical prowess, tenacity,
security awareness, and a proven track record in technology integration and imple-
mentation: These are the qualities that industry professionals need their CIOs to have.
Does yours have what it takes?

Thanks to Wendy Nather, Debby Hungerford, Shawn Instenes, Philip de Louraille, and
a dozen anonymous respondents.

ED
IT

O
RI

A
L

Vol. 29, No.4 ;login:

over the country, and form friendships
with some of the best people in the field.

I would like to thank you again for
sponsoring this program, and I hope
that you continue your commitment to
America’s young computer scientists by
supporting USACO.

Sincerely,

Joe Zimmerman

I would like to thank you for supporting
the USA Computing Olympiad. The
USACO provides challenging algorith-
mic problems which have improved my
programming skills enormously. My
school’s computer club has looked for
other contests to use, but none are
nearly so high in quality and difficulty as
the USACO. In fact, my brother (who
attended the ACM finals the past two
years) says that ACM is easier and less
well done than USACO and IOI. Also,
the USACO provides online training
pages which help newcomers learn algo-
rithms. The training camp was a very
valuable experience where I could meet
other students as interested in comput-
ers as myself. I was fortunate enough to
attend the International Olympiad in
Informatics last year and look forward
to going this year, and the USACO pro-
gram provides the opportunity to meet
international students interested in
computers as well.

Sincerely,

Eric Price

My son has just qualified as a USACO
team member to IOI in Greece this Sep-
tember. I am so grateful to you for your
sponsorship of this wonderful competi-
tion and series of contests leading to the
team selection. These high-level contests
have been pivotal in my son’s life. He
tends to be shy, and has not been well

understood by most of the rest of the
world, who cannot begin to relate to
him and his passion for computer pro-
gramming and problem solving.
Through the USACO programs you
sponsor, he has met others like him,
both peers and adults, and has found a
world where he fits in and excels. I know
you may think all you are sponsoring is
excellence in computing, but for my son
you are sponsoring a wonderful life to
reach an amazing potential as well. I
cannot thank you enough.

Many blessings,

Vicky Kaseorg

USA Computing Olympiad
correspondence

6

[Editor’s note: USENIX is a major spon-
sor of USACO. These are a sampling of
the thank-you notes received at USENIX
subsequent to the USACO finals.—RK]

Thank you so much for your generous
support of the USACO program. My
son, Adam, has participated in USACO
for two years. He was fortunate to be
invited to the training camp both years,
and he was chosen for the B-team at last
year’s IOI. These experiences have been
among the most meaningful of his high
school career. The program is very well
run. The coaching staff has been noth-
ing short of outstanding. USACO has
been not only educational but also a lot
of fun for Adam. He has always been
keenly interested in computer science,
but now, as a result of his USACO
involvement, he is more excited than
ever about studying computer science
next year at MIT.

So, once again, thank your for your sup-
port of this very important program.

Sincerely,

Nancy, Don, and Adam Rosenfield

I am a sophomore at Barrington High
School in Rhode Island, and a finalist at
last month’s USACO training camp. I
would like to thank USENIX for sup-
porting the USACO program, and urge
you to continue your sponsorship of this
unique and invaluable experience in
programming.

The USACO program is challenging,
extremely difficult, and intense. It is also
very educational and instructive, and is
excellent training for future study and
careers. I can easily exhaust my course
work in CS, but I can never exhaust
USACO problems and contests. USACO
also gives me a shot at competing inter-
nationally, which I could never do with
training at my school. I also get a chance
to meet talented programmers from all

Hey Rik,

I was wondering if you could help me
with some work advice. I am a software
engineer for a major financial firm
based in NYC. As you know, there was a
huge jump in off-shoring development
to India and other countries. I hear
some really bad forecasts as far as soft-
ware development in the US is con-
cerned. I love the whole process of
developing software. I love creating
something from nothing. It’s just a
grown-up’s version of building with
Lego blocks which I loved to do as a kid.

What do you think will happen with
the US software industry? What can I
do to circumvent negative results? What
would be a good graduate degree to pur-
sue?

Thanks,

Isaac
compuder@aol.com

Rik responds:

Hi Isaac:

What I have seen in the US is that a lot
of the most senior people have lost their
jobs, and many have managed to get
hired at about half of what they were
making before.

In other words, having an advanced
degree is not something that will help
you in today’s market—if anything, it
will hurt you.

That is not to say that things will not
change in the future. There is always a
place for people who become experts in
niche areas. If you have a passion for a
particular technology niche, such as
advanced networking, databases, data
“farming,” to name a few, then getting
an advanced degree that focused on that
niche would be a good step for the
future of your career.

7August 2004 ;login:

As for the US programmer market, the
US, and the world, is currently in a
slump for two reasons. First, the dot-
bomb has shifted people’s perceptions of
technologists from gods to dogs, and we
are suffering because of that. Over time,
the pendulum will swing back—our
society cannot function without its
computers, and the software they use is
more complex and demanding than
ever.

The second is the outsourcing of com-
puter jobs (not just programming, but
help desk and system/network manage-
ment). Modern communications means
that the people doing this work can be
located anywhere. The downside of this
is that real communication between
software developers and program man-
agers will get even worse (it has never
been very good). Soon enough, people
will realize that they get what they pay
for—cut-rate prices for cut-rate pro-
gramming. And, on top of that, they
spend an enormous amount of money
that goes into the pockets of middlemen
who do nothing to increase the quality
of the end product.

That’s what I currently think.

Regards,

Rik

[Editor’s note: Rik’s assessment is defen-
sible. Do you have a different one? Please
send it to login@usenix.org.—RK]

letter to editor Rik Farrow

LE
TT

ER
S

8

The FreeBSD access control mechanism is designed for an environment with
two types of users: those with and those without administrative privilege. It
is often desirable to delegate some but not all administrative functions to
untrusted or less trusted parties and simultaneously impose system-wide
mandatory policies on process interaction and sharing. Historically, attempt-
ing to create such an environment has been both difficult and costly. The
primary mechanism for partial delegation of administrative authority is to
write a set-user-identifier program that carefully controls which of the
administrative privileges may be used. These set-user-identifier programs
are complex to write, difficult to maintain, limited in their flexibility, and
prone to bugs that allow undesired administrative privilege to be gained.

Many operating systems attempt to address these limitations by providing fine-grained
access controls for system resources [P1003.1e, 1998]. These efforts vary in degrees of
success, but almost all suffer from at least three serious limitations:

1. Increasing the granularity of security controls increases the complexity of the
administration process, in turn increasing both the opportunity for incorrect
configuration, as well as the demand on administrator time and resources. Often
the increased complexity results in significant frustration for the administrator,
which may result in two disastrous types of policy: running with security features
disabled and running with the default configuration on the assumption that it
will be secure.

2. Usefully segregating capabilities and assigning them to running code and users is
difficult. Many privileged operations in FreeBSD seem independent but are inter-
related. The handing out of one privilege may be transitive to many others. For
example, the ability to mount file systems allows new set-user-identifier pro-
grams to be made available that in turn may yield other unintended security
capabilities.

3. Introducing new security features often involves introducing new security man-
agement interfaces. When fine-grained capabilities are introduced to replace the
set-user-identifier mechanism in FreeBSD, applications that previously did an
appropriateness check to see if they were running with superuser privilege before
executing must now be changed to know that they need not run with superuser
privilege. For applications running with privilege and executing other programs,
there is now a new set of privileges that must be voluntarily given up before exe-
cuting another program. These changes can introduce significant incompatibility
for existing applications and make life more difficult for application developers
who may not be aware of differing security semantics on different systems.

This abstract risk becomes more clear when applied to a practical real-world example:
Many Web service providers use FreeBSD to host customer Web sites. These providers
must protect the integrity and confidentiality of their own files and services from their
customers. They must also protect the files and services of one customer from (acci-
dental or intentional) access by any other customer. A provider would like to supply

the jail facility in
FreeBSD 5.2

[Editor’s note: This article is a partial excerpt
from Chapter 4, “Process Management,” from
The Design and Implementation of the FreeBSD
Operating System, by Marshall Kirk McKusick
and George Neville-Neil. Reprinted with per-
mission from Pearson Education, Inc. (0-201-
70245-2). Copyright 2005. To learn more:
http://www.awprofessional.com/
title/0201702452.]

Vol. 29, No.4 ;login:

by Kirk McKusick
Dr. Marshall Kirk McKu-
sick writes books and
articles, consults, and
teaches classes on
UNIX- and BSD-related
subjects. He has twice
served on the Board and
as president of USENIX.
mckusick@
mckusick.com

substantial autonomy to customers, allowing them to install and maintain their own
software and to manage their own services, such as Web servers and other content-
related daemon programs.

This problem space points strongly in the direction of a partitioning solution. By put-
ting each customer in a separate partition, customers are isolated from accidental or
intentional modification of data or disclosure of process information from customers
in other partitions. Delegation of management functions within the system must be
possible without violating the integrity and privacy protection between partitions.

FreeBSD-style access control makes it notoriously difficult to compartmentalize func-
tionality. While mechanisms such as chroot provide a modest level of compartmental-
ization, this mechanism has serious shortcomings, both in the scope of its
functionality and the effectiveness of what it provides. The chroot system call was first
added to provide an alternate build environment for the system. It was later adapted to
isolate anonymous FTP access to the system.

The original intent of chroot was not to ensure security. Even when used to provide
security for anonymous FTP, the set of operations allowed by FTP was carefully con-
trolled to prevent those that allowed escape from the chrooted environment.

Three classes of escape from the confines of a chroot-created file system were identi-
fied over the years:

1. Recursive chroot escapes

2. Escapes using ..

3. Escapes using fchdir

All these escapes exploited the lack of enforcement of the new root directory.

Two changes to chroot were made to detect and thwart these escapes. To prevent the
first two escapes, the directory of the first level of chroot experienced by a process is
recorded. Any attempts to traverse backward across this directory are refused. The
third escape, using fchdir, is prevented by having the chroot system call fail if the
process has any file descriptors open referencing directories.

Even with stronger semantics, the chroot system call is insufficient to provide complete
partitioning. Its compartmentalization does not extend to the process or networking
spaces. Therefore, both observation of and interference with processes outside their
compartment is possible. To provide a secure virtual machine environment, FreeBSD
added a new “jail” facility built on top of chroot. Processes in a jail are provided full
access to the files that they may manipulate, processes they may influence, and net-
work services they may use. They are denied access to and visibility of files, processes,
and network services outside their jail [Kamp & Watson, 2000].

Unlike other fine-grained security solutions, a jail doesn’t substantially increase the
policy management requirements for the system administrator. Each jail is a virtual
FreeBSD environment that permits local policy to be independently managed. The
environment within a jail has the same properties as the host system. Thus, a jail envi-
ronment is familiar to the administrator and compatible with applications [Hope,

9August 2004 ;login: JAIL IN FREEBSD 5.2 ●

●

SY

SA
D

M
IN

Vol. 29, No. 4 ;login:

2002].

Jail Semantics
Two important goals of the jail implementation are to:

1. Retain the semantics of the existing discretionary access-control mechanisms.

2. Allow each jail to have its own superuser administrator whose activities are lim-
ited to the processes, files, and network associated with its jail.

The first goal retains compatibility with most applications. The second goal permits
the administrator of a FreeBSD machine to partition the host into separate jails and
provide access to the superuser account in each of these jails without losing control of
the host environment.

A process in a partition is referred to as being “in jail.” When FreeBSD first boots, no
processes will be jailed. Jails are created when a privileged process calls the jail system
call with arguments of the file system into which it should chroot and the IP address
and hostname to be associated with the jail. The process that creates the jail will be the
first and only process placed in the jail. Any future descendants of the jailed process
will be in its jail. A process may never leave a jail that it created or in which it was cre-
ated. Any given process may be in only one jail. The only way for a new process to
enter the jail is by inheriting access to the jail from another process already in that jail.

Each jail is bound to a single IP address. Processes within the jail may not make use of
any other IP address for outgoing or incoming connections. A jail has the ability to
restrict the set of network services that it chooses to offer at its address. An application
request to bind all IP addresses is redirected to the individual address associated with
the jail in which the requesting process is running.

A jail takes advantage of the existing chroot behavior to limit access to the file system
namespace for jailed processes. When a jail is created, it is bound to a particular file-
system root. Processes are unable to manipulate files that they cannot address. Thus,
the integrity and confidentiality of files outside the jail file-system root are protected.

Processes within the jail will find that they are unable to interact or even verify the
existence of processes outside the jail. Processes within the jail are prevented from
delivering signals to processes outside the jail, connecting to processes outside the jail
with debuggers, or even seeing processes outside the jail with the usual system-moni-
toring mechanisms. Jails do not prevent, nor are they intended to prevent, the use of
covert channels or communications mechanisms via accepted interfaces. For example,
two processes in different jails may communicate via sockets over the network. Jails do
not attempt to provide scheduling services based on the partition.

Jailed processes are subject to the normal restrictions present for any processes includ-
ing resource limits and limits placed by the network code, including firewall rules. By
specifying firewall rules for the IP address bound to a jail, it is possible to place con-
nectivity and bandwidth limitations on that jail, restricting the services that it may
consume or offer.

The jail environment is a subset of the host environment. The jail file system appears
as part of the host file system and may be directly modified by processes in the host
environment. Processes within the jail appear in the process listing of the host and
may be signaled or debugged.

The administrator of a
FreeBSD machine [can] parti-
tion the host into separate
jails and provide access to the
superuser account in each of
these jails without losing con-
trol of the host environment.

10

Processes running without superuser privileges will notice few differences between a
jailed environment and an unjailed environment. Standard system services such as
remote login and mail servers behave normally, as do most third-party applications,
including the popular Apache Web server. Processes running with superuser privileges
will find that many restrictions apply to the privileged calls they may make. Most of
the limitations are designed to restrict activities that would affect resources outside the
jail. These restrictions include prohibitions against the following:

■ Modifying the running kernel by direct access or loading kernel modules.
■ Mounting and unmounting file systems.
■ Creating device nodes.
■ Modifying kernel runtime parameters such as most sysctl settings.
■ Changing security-level flags.
■ Modifying any of the network configuration, interfaces, addresses, and routing-

table entries.
■ Accessing raw, divert, or routing sockets. These restrictions prevent access to facil-

ities that allow spoofing of IP numbers or the generation of disruptive traffic.
■ Accessing network resources not associated with the jail. Specifically, an attempt

to bind a reserved port number on all available addresses will result in binding
only the address associated with the jail.

■ Administrative actions that would affect the host system, such as rebooting.

Other privileged activities are permitted as long as they are limited to the scope of the
jail:

■ Signaling any process within the jail is permitted.
■ Deleting or changing the ownership and mode of any file within the jail is permit-

ted, as long as the file flags permit the requested change.
■ The superuser may read a file owned by any UID, as long as it is accessible

through the jail file system namespace.
■ Binding reserved TCP and UDP port numbers on the jail’s IP address is permit-

ted.

These restrictions on superuser access limit the scope of processes running with super-
user privileges, enabling most applications to run unhindered but preventing calls that
might allow an application to reach beyond the jail and influence other processes or
system-wide configuration.

Jail Implementation
The implementation of the jail system call is straightforward. A prison data structure
is allocated and populated with the arguments provided. The prison structure is linked
to the process structure of the calling process. The prison structure’s reference count is
set to one, and the chroot system call is called to set the jail’s root. The prison structure
may not be modified once it is created.

Hooks in the code implementing process creation and destruction maintain the refer-
ence count on the prison structure and free it when the last reference is released. Any
new processes created by a process in a jail will inherit a reference to the prison struc-
ture, which puts the new process in the same jail.

Some changes were needed to restrict process visibility and interaction. The kernel
interfaces that report running processes were modified to report only the processes in
the same jail as the process requesting the process information. Determining whether

11August 2004 ;login: JAIL IN FREEBSD 5.2 ●

●

SY

SA
D

M
IN

Vol. 29, No. 4 ;login:

one process may send a signal to another is based on UID and GID values of the send-
ing and receiving processes. With jails, the kernel adds the requirement that if the
sending process is jailed, then the receiving process must be in the same jail.

Several changes were added to the networking implementation:

■ Restricting TCP and UDP access to just one IP number was done almost entirely
in the code that manages protocol control blocks. When a jailed process binds to a
socket, the IP number provided by the process will not be used; instead, the pre-
configured IP number of the jail is used.

■ The loop-back interface, which has the magic IP number 127.0.0.1, is used by
processes to contact servers on the local machine. When a process running in a jail
connects to the 127.0.0.1 address, the kernel must intercept and redirect the con-
nection request to the IP address associated with the jail.

■ The interfaces through which the network configuration and connection state
may be queried were modified to report only information relevant to the config-
ured IP number of a jailed process.

Device drivers for shared devices such as the pseudo-terminal driver needed to be
changed to enforce the restriction that a particular virtual terminal cannot be accessed
from more than one jail at the same time.

The simplest but most tedious change was to audit the entire kernel for places that
allowed the superuser extra privilege. Only about 35 of the 300 checks in FreeBSD 5.0
were opened to jailed processes running with superuser privileges. Since the default is
that jailed superusers do not receive privilege, new code or drivers are automatically
jail-aware: They will refuse jailed superusers privilege.

Jail Limitations
As it stands, the jail code provides a strict subset of system resources to the jail envi-
ronment, based on access to processes, files, network resources, and privileged services.
Making the jail environment appear to be a fully functional FreeBSD system allows
maximum application support and the ability to offer a wide range of services within a
jail environment. However, there are limitations in the current implementation.
Removing these limitations will enhance the ability to offer services in a jail environ-
ment. Three areas that deserve greater attention are the set of available network
resources, management of scheduling resources, and support for orderly jail shut-
down.

Currently, only a single IP version 4 address may be allocated to each jail, and all com-
munication from the jail is limited to that IP address. It would be desirable to support
multiple addresses or possibly different address families for each jail. Access to raw
sockets is currently prohibited, as the current implementation of raw sockets allows
access to raw IP packets associated with all interfaces. Limiting the scope of the raw
socket would allow its safe use within a jail, thus allowing the use of ping and other
network debugging and evaluation tools.

Another area of great interest to the current users of the jail code is the ability to limit
the effect of one jail on the CPU resources available for other jails. Specifically, they
require that the system have ways to allocate scheduling resources among the groups of
processes in each of the jails. Work in the area of lottery scheduling might be leveraged
to allow some degree of partitioning between jail environments [Petrou & Milford,
1997].

Making the jail environment
appear to be a fully func-
tional FreeBSD system allows
maximum application support
and the ability to offer a wide
range of services within a jail
environment.

12

Management of jail environments is currently somewhat ad hoc. Creating and starting
jails is a well-documented procedure, but jail shutdown requires the identification and
killing of all the processes running within the jail. One approach to cleaning up this
interface would be to assign a unique jail-identifier at jail creation time. A new jailkill
system call would permit the direction of signals to specific jail-identifiers, allowing
for the effective termination of all processes in the jail. FreeBSD makes use of an init
process to bring the system up during the boot process and to assist in shutdown. A
similarly operating process, jailinit, running in each jail would present a central loca-
tion for delivering management requests to its jail from the host environment or from
within the jail. The jailinit process would coordinate the clean shutdown of the jail
before resorting to terminating processes, in the same style as the host environment
shutting down before killing all processes and halting the kernel.

References
Hope, P. 2002. “Using Jails in FreeBSD for Fun and Profit,” ;login:, vol. 27, no. 3, pp.
48–55, http://www.usenix.org/publications/login/2002-06/pdfs/hope.pdf, USENIX Asso-
ciation, Berkeley, CA (June 2002).

Kamp, P. & R. Watson. 2000. “Jails: Confining the Omnipotent Root,” Proceedings of the
Second International System Administration and Networking Conference (SANE),
http://docs.freebsd.org/44doc/papers/jail/ (May 2000).

P1003.1e. 1998. Unpublished Draft Standard for Information Technology—Portable
Operating System Interface (POSIX)—Part 1: System Application Program Inter-
face—Amendment: Protection, Audit and Control Interfaces [C Language] IEEE Stan-
dard 1003.1e Draft 17, ed. Casey Schaufler, Institute of Electrical and Electronic
Engineers, Piscataway, NJ (1998).

Petrou, D. & J. Milford. 1997. Proportional-Share Scheduling: Implementation and
Evaluation in a Widely Deployed Operating System, http://www.cs.cmu.edu/
~dpetrou/papers/freebsd_lottery_writeup98.ps and http://www.cs.cmu.edu/
~dpetrou/code/freebsd_lottery_code.tar.gz (1997).

13August 2004 ;login: JAIL IN FREEBSD 5.2 ●

●

SY

SA
D

M
IN

14

This is a story about a mysteriously corrupted encrypted file system and my
attempts to recover the data. Forgive me if my narration of it is a bit rough,
as I am not exactly sure what happened; all I can do is make observations.
This is my first attempt to turn a chronological log of observations into a
good narrative. In doing so I am gaining a new appreciation for the work of
investigative journalists, who must go through a similar process to turn their
notes into a compelling story. This is a work in progress. If you have solu-
tions to any problems I mention herein, please email them to me.

The encrypting file system under observation is CFS, Matt Blaze’s “Crypting File Sys-
tem.” Parts of it date back to 1987, making it a rather venerable piece of code. Matt
Blaze is well known in the computer security community, and the code has been avail-
able for scrutiny for some time (http://www.crypto.com/software/). The code itself is
fairly portable and might be the most popular encrypting file system in UNIX.

First, a little background on how CFS works. CFS stores each encrypted file as a sepa-
rate entity in the file system (i.e., it is not an encrypted disk device). Storage for each
file also includes an initialization vector (IV). Early on, CFS used the inode number to
store the IV. Subsequently, it used the GID field. Finally, Matt decided to use a separate
symlink (with the prefix “.pvect_”) to hold it (by pointing to it). In CFS, the IV is used
to make files with identical contents encrypt to different data streams to prevent
snoops from noticing correlations between files.

I encountered a bit of file system corruption using CFS.

It’s hard to know exactly when the corruption occurred or why. My logs say I had some
disk problems around 2 May 2001. I believe some of the encrypted files were moved to
lost+found. My notes say that I restored a copy of the encrypted directory hierarchy to
make comparisons and moved some files. I was not aware of the significance of the
symlink/IVs at that time and probably made some mistakes de-synchronizing them.

I did make some edits to sensitive files on 15 Dec 2001. The files I was working on
were not apparently corrupted. Subsequently, a period of hassles ensued, getting CFS
to co-exist with my OS, which had a new v3 RPC mechanism. I recompiled various
versions of CFS around this time, for better or for worse using an OS release with a
buggy compiler (egcs-1.1.1). This compiler is known to generate incorrect code, and
could be the source of some of the data corruption.

On 6 Dec 2003, decrypting certain files yielded corruption. That is, ASCII text files
suddenly appeared to be binary files. How can I quantify this corruption? I ran a tool
called “ent” on the files, and it yielded some interesting results:

$ ent corrupted_text_file
Entropy = 5.558949 bits per byte.
Optimum compression would reduce the size of this 6588 byte file by 30

percent.
Chi square distribution for 6588 samples is 40067.26, and randomly

would exceed this value 0.01 percent of the times.
Arithmetic mean value of data bytes is 63.7025 (127.5 = random).
Monte Carlo value for pi is 4.000000000 (error 27.32 percent).
Serial correlation coefficient is -0.087718 (totally uncorrelated = 0.0).

The entropy is one measure of the amount of unpredictable information in the file.
For totally random files, it should be 8 bits per byte, and for a file full of nulls, it

CFS travails

Vol. 29, No.4 ;login:

by Travis Howard
Travis Howard is a independent
security researcher currently in
search of employ-
ment. His home page is
http://travcom.tripod.com.
auto92089@hushmail.com

should be 0 bits per byte. The optimum compression measurement merely describes
the percentage of predictable information in the file. Chi square is a statistical text that
involves sorting data in “bins” (probably 256 bins in this case, one for each possible
byte), squaring the difference between the actual bin contents and the predicted val-
ues, then dividing by the probability of that bin being selected (in this case, 1/256 since
all bytes are equally probable). Thus, the more a file deviates from random, the higher
the chi square score, and the lower the percentage of cases that would exceed it. The
arithmetic mean is obvious; the Monte Carlo approximation involves constructing a
virtual 1 x 1 dart board with a circle of diameter one inside it, and using the samples as
coordinates of darts, then dividing the number that land inside the circle by the total
number of darts, and using that to compute a value of pi (it converges rather slowly).
Finally, the serial correlation merely describes how much each sample depends on the
prior sample.

Normally when encryption goes awry (from using the incorrect key, for example), you
get something indistinguishable from random bits. As you can see, the files are defi-
nitely not random. Random looks like this:

$ ent random_file
Entropy = 7.970002 bits per byte.
Optimum compression would reduce the size of this 6144 file by 0 per-

cent.
Chi square distribution for 6144 samples is 250.58, and randomly would

exceed this value 50.00 percent of the times.
Arithmetic mean value of data bytes is 126.5417 (127.5 = random).
Monte Carlo value for pi is 3.152343750 (error 0.34 percent).
Serial correlation coefficient is -0.009299 (totally uncorrelated = 0.0).

On the other hand, they are more random than ordinary text files:

$ ent uncorrupted_text_file
Entropy = 4.436244 bits per byte.
Optimum compression would reduce the size of this 5134 byte file by 44

percent.
Chi square distribution for 5134 samples is 76869.97, and randomly would

exceed this value 0.01 percent of the times.
Arithmetic mean value of data bytes is 92.6139 (127.5 = random).
Monte Carlo value for pi is 4.000000000 (error 27.32 percent).
Serial correlation coefficient is -0.008061 (totally uncorrelated = 0.0).

I then wrote two programs, freqcount.pl and freqgraph.pl, to explore the files further.
The former counts the frequency of each byte, and the latter represents it graphically
(in text mode) as bars of asterisks running horizontally, so you can compare two files
in side-by-side windows. What I saw appeared to be disruption of the large frequency
spike of the space character; however, it was definitely not uniform. It looked as
though it had gone through some polyalphabetic substitution with a periodicity of
four or so.

My first reaction was to go to backup tapes. However, my backup tapes for 15 Oct 2003
turned out to be faulty; I had run out of tape but hadn’t noticed. Although I have
many backups, this corruption went unnoticed for so long that I didn’t have a backup
set old enough.

My next reaction was to see if cfsd, the NFS-like daemon that serves up the files, was at
fault. I decided to try ccat (a stand-alone utility) on some of the files to eliminate cfsd

15August 2004 ;login: CFS TRAVAILS ●

●

SY

SA
D

M
IN

Vol. 29, No. 4 ;login:

as a source of errors. Unfortunately, it warns that it only works on old-format CFS
files. CFS went through several stages of evolution; stand-alone tools like ccat have not
been kept up to date with the various evolutionary changes.

I should mention here some of the other tools I used. I used bc quite a bit, even
though it has the annoying property of not accepting lowercase letters as hex digits
and does not have a bitwise XOR operator. So I often ended up using Perl instead. If
you try stuff like this you’ll need the chr and ord functions. I also referred to an ASCII
chart quite a bit.

I read Matt Blaze’s notes.ms, and read through some of his code, particularly cmkdir.c.
I found a few errors that are security-relevant; I must question how much trust I put
in this software without doing even a cursory review of the code. My findings:

1. The type of cipher is included, apparently erroneously, in some key manipulations:

struct cfs_admkey {
ciphers cipher;
union {

cfs_adm_deskey deskey;
cfs_adm_3deskey des3key;
...

} cfs_admkey_u;
};
cfs_admkey k;
...
/* now we xor in some truerand bytes for good measure */
bcopy(&k,ekey,32); /* assumes key material < 32 bytes */
for (i=0; i<32; i++) {

ekey[i] ^= randbyte();
}
encrypt_key(&k,ekey);
bcopy(ekey,ek1,32);
decrypt_key(&k,ek1);
/* new &k is our real key */

2. A file called “...” is created. Apparently this was to provide a somewhat-known plain-
text so that the program can tell whether you have given the correct key or not. CFS
attempts to make this 8-byte value half random, but due to shifting in the wrong
direction, the attacker knows 7 of the 8 bytes, almost giving him or her a full known-
plaintext. By contrast, PGP uses two bytes of known plaintext to determine if you have
the correct key (meaning that it accepts the wrong key 1 in 216 times).

char str[8];
...
strcpy(str, ”qua!”);
/* now randomize the end of str.. */
r = trand32();
for (i=0; i<4; i++)

str[i+4]=(r<<(i*8))&0377;

At this point I thought that the IV was stored in the inode numbers. CFS used to do
this, and I almost certainly changed the inode numbers on several files during my
restoration efforts. There are 232 possible inodes, and I would have to search for the
correct one for each file. This could have taken a while. I would have had to be clever
and crafty to finish this project in my lifetime. But perhaps it was not as impossible as

16

it seemed; the stream generated from the inode number is XORed with the data at one
point; perhaps I wouldn’t have had to try all of them in a brute-force method. Also, the
file system may not have 232 inodes to try out—perhaps much fewer. Yes, this might
be possible.

I thought my problem was that there’s a different inode used to seed a pRNG of some
kind to create a stream that is being XORed with my program’s text. To extract the
original text, I would need to know the proper inode number. The size of the inode
number tells me its maximum theoretical size, and if the file system it is on has only
grown over time, its maximum inode value would tell me an even lower upper bound,
while the inodes of nearby files might give me a good place to start searching. I also
needed to recognize when I’d deduced the correct inode number.

Knowing whether the inode number is right or not would probably require running
statistical tests on the contents of the file. On top of all this, these files’ contents are
sensitive (that’s why they’re encrypted), so I wouldn’t be able to distribute any brute-
forcing. I would either have to use Matt Blaze’s CFS code or develop my own and test it
to make sure it was doing exactly the same thing as his.

At this point I decided to print out all the papers on CFS and dive deep, really deep,
into the belly of the beast. I really needed to understand the CFS encryption technol-
ogy. Perhaps I could be clever and find an algorithmic shortcut, or a known-plaintext
situation.

On 6 Jan 2004, I found there were “only” about 280,000 inodes on that file system.
That meant 280,000 trials, far more reasonable than the earlier estimate, which ran as
high as 4,294,967,296.

Checking each decryption for the bytewise frequency count of the space character
could do a 1:256 winnowing. I’d need about another 1:100 reduction of those candi-
dates to perform manual inspection (I figured 10 manual inspections per file is my
upper limit).

On 7 Jan 2004, I thought I might have found my answer, due to the equations in Matt’s
papers:

D_p = DES^-1(K_2, E_p xor DES^1(K_1, g(p mod m)))
xor DES^1(K_1, f(p mod m)) xor i

All the data are 8 bytes wide, except perhaps the keys. I think in this case, everything is
known except i, which “is a bit representation of a unique file identifier derived from
the UNIX inode number and creation time of the encrypted file.”

Still, in the equations above, i is the only variable that is unknown to me. Since it is not
used to seed any RNGs or to key any ciphers, I was in luck. Looking at the decryption
equation, if i were wrong it would give me the correct data but XORed with some con-
stant. That would be consistent with the entropy measurements I had made, which
indicated that the file was definitely non-random but did not have the strong fre-
quency spike of the space character in English prose.

Stated differently: If you plugged the wrong value of i (let’s call it i') into the above
equation, you’d get this:

D_p’ = D_p xor (i’ xor i)

That’s what was happening to me. Each 8-byte chunk of data that I saw was the origi-
nal plaintext, XORed with some 8-byte constant value, which was the error (XOR) of i'

17August 2004 ;login: CFS TRAVAILS ●

●

SY

SA
D

M
IN

Vol. 29, No. 4 ;login:

and i. Statistically, if I know the most common D_p' and the most common D_p, and I
know i', I can solve for i:

i = D_p’ xor D_p xor i’

Now, in that equation, each variable is an 8-byte array. At first, I thought i was 4 bytes
long, and it simply concatenated it to itself to form an 8-byte value (later I learned that
i was indeed an 8-byte value). Each byte of i can be solved independently:

i[0] = D_p’[0] xor D_p[0] xor i’[0]
i[1] = D_p’[1] xor D_p[1] xor i’[1]
...
i[3] = D_p’[3] xor D_p[3] xor i’[3]
i[0] = D_p’[4] xor D_p[4] xor i’[0]
...
i[3] = D_p’[7] xor D_p[7] xor i’[3]

In other words, I essentially had a polyalphabetic substitution cipher, with four substi-
tution tables all built on bitwise XOR with a constant. For text files, I might even be
able to solve each byte of the value i independently, suggesting only 4 x 256 = 1024
guesses! This was workable! In fact I could vary each byte of i at the same time, mean-
ing only 256 decryptions!

On closer reading of the release notes (notes.ms), I found that CFS now stores an IV
for filename in a symbolic link .pvect_filename. Amazingly, I had traced corruption to
those files missing symbolic links! Hooray! Now I knew exactly what was missing,
which files were corrupted, and how to fix it! I verified that these .pvect_ files were
missing on my oldest backup too.

This new development meant I needed to guess eight hex digits, 32 bits of random-
ness. Quite an improvement, although I had to read the source to see exactly how it
was used to see if I could search each byte independently. I suspected that I would be
able to.

I could test my theories by creating a known-plaintext file, noting then removing the
.pvect_whatever file, and then conducting a search for the proper (known) value. This
might be faster than understanding CFS’s code.

On 9 Jan 2004, I wrote a little program to find files without .pvect_ files. There were
19, and had been exactly 19 for a while. Not too bad. I had about 500 files in CFS.

I also modified ccat to the extent necessary to work with new-style dirs. It wasn’t
pretty, but it worked. Then I modified ccat to accept both an IV and a passphrase.

I wrote a program that tries IVs with each byte ranging from 0 to 255. For each of the
256 possibilities, it runs ccat with an IV of that value, repeated (all bytes equal). Then
it does a simple frequency count for offsets of 0, 1, 2, and 3 into the file. After doing
this it dumps all the information using Perl’s Data::Dumper. My plan was to analyze
this output later using statistical tests. Estimates of the time to do this were around 38
minutes, which turned out to be surprisingly accurate.

Thinking back, I do think I recall having seen symlinks pointing to garbage in the
lost+found; I must have decided they were deletable and didn’t restore them. All this
work due to that miscalculation! Oh well, I had learned quite a bit about CFS.

I then noticed that the IV was 8 bytes in ASCII-encoded hexadecimal, which is a con-
venient way to store a 32-bit value. However, it was not converted into binary before

18

use; the ASCII values were used instead! So basically you had a 64-bit IV, but it could
only hold 232 different values. Thus, my program should have really calculated fre-
quency counts for offsets of 0–7 into the file (not 0–3):

i[0] = D_p’[0] xor D_p[0] xor i’[0]
i[1] = D_p’[1] xor D_p[1] xor i’[1]
...
i[7] = D_p’[7] xor D_p[7] xor i’[7]

It’s worth noting here, as a sidebar, that the more I knew about the file in question, the
better I could narrow down the possibilities for the IV. If I had known nothing about
the file, if it had been truly random data, I wouldn’t have been able to tell whether one
IV was better than another. The more I knew about the file’s lack of randomness,
though, the better I could weed out all the irrelevant IVs.

This knowledge comes from knowing the names of the files, remembering their con-
tents, that kind of stuff. One thing about the IVs is that they don’t affect the high bits
of the file. That is, since the IV is all in the ASCII range of 0–127, being XORed with
the file will not change the high bits. That is unfortunate, as the files typically don’t
have high bit set anywhere. However, this makes sense from a cryptographic perspec-
tive of trying to hide similarities between files; you are modifying bits that people care
about instead of ones that are typically not used.

Taking all of this into consideration, I wrote a program (smart_iv) that very quickly
deduced the missing IV. The basic idea behind this was run ccat once and break its
output down by which byte of the IV it is being XORed against (forming 8 bins). Then
count the frequencies of the characters in that bin. The whole data structure is essen-
tially an 8 x 256 array. It then tests for the IV that gives me the greatest number of
space characters. One could map the frequency counts based on the IV being tested,
but I found it easier to go the other way: that is, to XOR the space character with the
IV in question and look at the occurrences (frequency) of that entry in the frequency
chart. This program was capable of recovering the longer files of English text, probably
about five of the 19. I then renamed this program (find_blank) because I had some
better ideas.

I changed ccat to accept an IV, but what IV do I specify? Ideally, I would use a null vec-
tor. That is, if I let i'=0, then it drops out of the equations mentioned above because
XOR with 0 is an identity operation. In fact, cfsd probably assumes i'=0 when there are
no .pvect_ files. However, ccat uses C string functions to parse the IV from the com-
mand line, and eight nulls would be read as a zero-length string. So, instead, I specified
“00000000” and dealt with the XOR deltas between that and the actual IV instead of
with absolute values (that is, they are relative to 0x3030303030303030 since ASCII for
“0” is 0x30).

Around this time I noticed that there were other files which had .pvect_ files but that
they were also corrupted. Is there no end to this pain? I would have to examine every
file on the encrypted file system, by hand, to determine whether it looked reasonable.
Argh! I put this off until I had completed recovering the 19 files without .pvect_ sym-
links.

11 Jan 2004
I noticed that there was a class of files that were not English prose, and therefore did
not have the prevalence of the space character in their frequency profiles. So I wrote
another program, called maximize_printables, which found the IVs that maximized

19August 2004 ;login: CFS TRAVAILS ●

●

SY

SA
D

M
IN

Vol. 29, No. 4 ;login:

the number of printable characters. This program did not work as well as I expected,
since some IVs that maximized printables also contained junk like vertical tabs (!),
which virtually never appear in ASCII files.

The next logical step was another program, called minimize_nonprintables, which did
what you’d expect. However, unlike the maximizing spaces heuristic, which tended to
pick only a handful of IVs, the minimize_nonprintables generally printed out several
(on the order of 16 or so). I found that since it usually got half of the bytes in the IV
correct, I could try one possibility, with ccat, see halves of words that I recognized,
then exploit these inter-byte dependencies to infer the correct values of the currently
incorrect IV bytes. I was able to recover around five more of the 19 files without
.pvect_ files.1

Finding those halves of words in the plaintext gave me an idea. Perhaps I should write
another program, for files containing a known string. For example, an RCS file has the
words “head”, “access”, “symbols”—surely this knowledge could be helpful in deter-
mining an IV!

Again, the more I know about the plaintext, the easier it is to recover an IV. For simpli-
fication, consider the case of an RCS file. In this case, I know it begins with “head\t”. In
most cases I never increment the major number, so the next characters are usually “1.”,
which is followed by one or more digits. If I know that a fixed string of length l occurs
at a particular offset into the file, I can easily compute l bytes of the IV starting at that
offset modulo 8 and wrap around in the obvious fashion.

12 Jan 2004
It’s worth noting that this applies to other types of files too; for scripts, I start with “#!
/”. The extra space is there for portability because Dynix uses a four-byte “magic num-
ber” to identify scripts. I never expect to see Dynix, but it’s only one byte and portabil-
ity is not a bad habit to have. In many cases the following letters are “usr/” too.

I like to start from simple and specific cases, and enhance scripts to handle general
cases. So the next program I wrote, known_header, cracked an IV based on known
plaintext at the beginning of the file. In this case, I simply XORed “0” and the known
byte and the byte from the decrypted file, and that gave me the IV. Simplicity itself!
This recovered about five of the 19 files. The rest of the 19 were automatically gener-
ated files which I simply removed, so I consider these techniques moderately success-
ful.

But let’s say I’m looking for a known string of some length l in the plaintext at an
unknown location. If the IV were fixed, I would look for one of eight patterns, with the
pattern being dependent on my offset into the file (modulo 8 of course). At each step I
might have to look ahead as far as l–1 bytes, to see if I was at the beginning of a match.
That might be acceptable, but the IV isn’t fixed. What I’m really doing is trying to find
the IV that induces the most occurrences of that string, and I’m trying to do it without
iterating over all possible IV values (2^32 iterations over the length of the file sounds
like too much computation). Surely there has to be a better way.

14 Jan 2004
To count strings of length l, I thought of an (l+1) state DFA with multiple “tokens”
that move around to keep track of the state. Specifically, there will be 2^32 logical
tokens, but in implementation I’ll consolidate them into l+1 tokens, one for each state.

1. Theoretically, minimize_nonprintables and
maximize_printables should give the same
results since they are complementary. However,
my implementation of one or the other must
have been in error since I think I noticed differ-
ent results.

20

Every time a logical token hits the final state, it increments a counter associated with
its IV. In actuality, there may be multiple logical tokens for a given IV. For example, if
the IVs were only two bytes long, and the string we want to find is ABABC and we read
in ABAB, then there will be two tokens, one on the first B and one on the second. Note
that the string must be longer than the IV to have two logical tokens in the works.

To simplify the matter, I modified ccat to accept a null IV. I merely tested to see if it
was a null string and, as a special case if it was, accepted it as the null vector (which
would be impossible to pass on a command line anyway). That helped a bit.

17 Jan 2004
It’s interesting to note that in some cases I might know two different types of things
about a file: for example, that space is the most frequent character and that it contains
a given string. Each of these individually induces a distribution on the IV. However, it
is more difficult to represent and combine this distribution between these two pro-
grams than achieving the same level of confidence using one technique alone. That is,
it is easier to print out the most probable IV than it is to communicate the top 10 IVs.
And even that is easier than communicating all IVs and their associated probabilities.

19 Jan 2004
I’ve written known_strings. I started by examining all the relevant finite-state
automata (FSA) classes on CPAN; none really fit the bill. I then wrote the main body
of the program, proceeding as though I had already written any relevant classes. I
knew that I’d need some kind of custom FSA and that I’d need some structure in
which to store results.

Representing the results of the searching posed an interesting challenge. Did I want to
allocate a Perl structure with 2^32 entries? Even at a byte per entry, that’s the entire
address space of the machine! I could do it with a large file, but that lacked elegance. If
the known string were short, there would be many matching IVs and the program
would be quite slow.

One alternative would seem to be storing only non-zero entries, but this is only useful
if the resulting array is sparse. The sparseness of this array depends on the length of
the string I’m seeking and the content of the file. Another alternative would be to rep-
resent the partial matches of IVs, and after parsing the file, to loop through all IVs to
see how many of these partial matches a specific IV actually matches. Put another way,
my results might be “any IV that starts with A” and “any IV that starts with AB”. I
would then enumerate all IVs, starting with AAAAAAAA, noting that it matches once
and so outputting “AAAAAAAA 1”. When I got to ABAAAAAA, which matches twice,
I’d output “ABAAAAAA 2”. Thus, instead of storing the results array in memory, I
could actually store it temporally by walking through IVs and dynamically generating
the values it would have. Of course, if I spent 1 ms on every IV, iterating through them
all would take 49 days.

In this light, perhaps it would be better to iterate over the file than to deal with the
whole IV space. Most of the files were small text files. In fact, most UNIX files are
small; for this reason the file system is optimized for dealing with relatively small files.

And that’s the current situation. I took a little detour investigating alternatives to CFS
and will let you know in the future how it all ends up.

21August 2004 ;login: CFS TRAVAILS ●

●

SY

SA
D

M
IN

22

Recent Spam-Fighting Developments
Introduction
In this edition of ISPadmin, I will look at a wide range of recent developments in the
fight against spam. The following topics are covered:

■ DSPAM
■ Sender Policy Framework (SPF) and related ideas
■ Selective port 25 blocking
■ “Filters That Fight Back”
■ Being paid to spam
■ The CAN-SPAM law (and Do Not Email registry)
■ Recent spam-related prosecutions and lawsuits
■ L.L. Bean and overstock.com anti-spyware cases

DSPAM
“DSPAM (as in De-Spam) is an extremely scalable, open-source statistical hybrid anti-
spam filter,” according to its Web site. They recently announced that the newest version
(3.0) is nearing production release. This software is essentially a sophisticated statisti-
cal filter designed for high-volume mail systems. It is written in a compiled language
(C), which makes it very scalable with low overhead. DSPAM uses a database back end
for saving and tracking scores. Some of the benefits of the DSPAM approach over its
competitors are:

■ Speed/performance
■ Scalability
■ Low administrative overhead
■ All major MTAs supported

However, it would be nice if DSPAM included support for some of the features in
SpamAssassin, namely:

■ Support for distributed blacklists (i.e., MAPS, SPAMHAUS)
■ Support for distributed checksum networks (DCC and Vipul’s Razor)

Nice as these would be, DSPAM as it currently exists is certainly very useful for anyone
who needs a scalable, easy-to-use statistical analyzer for their mail infrastructure.

Sender Policy Framework (SPF)
Sender Policy Framework (formerly Sender Permitted From) has garnered a lot of
press lately. SPF uses DNS records that indicate the hosts from which a mailserver
should accept email for a given domain. For example, if an email envelope had the
from address “bob@aol.com” but the actual SMTP server sending the message wasn’t
listed in AOL’s SPF record, the receiving server would reject the message, presuming
the header to be “faked.” The larger the email-box hosting provider, the more helpful
something like SPF is going to be.

AOL adopted the SPF protocol in December 2003. Microsoft’s proposal (in its unfor-
tunately named Caller ID for Email proposal/standard) has been merged with the SPF.
Yahoo’s DomainKeys standard (one of the proposals backed by Sendmail) is a similar
approach, though more difficult to implement in the short term due to the need for
signed keys. However, this is arguably more secure, as each message would be signed,
thus improving the trustworthiness of email being sent using the DomainKeys proto-

ISPadmin

Vol. 29, No.4 ;login:

by Robert Haskins
Robert D. Haskins is
currently employed by
Renesys Corporation in
Hanover, NH.
rhaskins@usenix.org

col. Both Caller ID for Email and DomainKeys have been submitted to the IETF for
adoption as a standard.

While anything that can be done to reduce the amount of spam is a good thing, the
SPF protocol (and related solutions) suffers from a few shortcomings:

■ Email forwarding is problematic.
■ It doesn’t do anything about the “spam zombie” problem.
■ It binds email address owners closely to their providers.
■ SPF is much more likely to be adopted by the large email-box hosting providers

than smaller ones.

The real way to fix email is to replace RFC822 with a more secure protocol. Unfortu-
nately, until there is a critical mass, this is unlikely to happen. As a result of not having
a standard, we will have to rely on incremental approaches such as SPF.

Selective Port 25 Blocking
In June 2004, the large US-based cable-modem ISP Comcast began blocking SMTP
(port 25) on customer cable modem connections that generate a large amount of traf-
fic. This is an effort to block the many customer machines that have been turned into
“spam zombies.” Comcast should be commended for taking a bold step against spam.

Many ISPs have globally blocked port 25 on their networks for years. However, this
type of global blocking can cause no end of headache for legitimate customers who
host their own email server that connects to the Internet via the ISP’s network con-
nection. If they take the proper precautions (such as not being an open relay), there
should be nothing wrong with hosting a mail server so long as the ISP’s terms of ser-
vice are not violated.

Selectively blocking port 25 on those customer connections who are most likely com-
promised and being actively used by spammers is a big step in the right direction. If
every provider followed Comcast’s lead, there would be a significant reduction in the
amount of spam (at least until the spammers found the next method to use).

“Filters That Fight Back”
In his August 2003 essay, Paul Graham argues for using email-client–based filters that
follow the links listed in spam messages and then pound the spammers’ sites with
HTTP requests. While this is a noble idea and would probably achieve the goal of put-
ting (some of) the spammers out of business, it suffers from a number of shortcom-
ings.

First of all, it would be easy to “joe job” someone if the plan was implemented widely
enough. (A “joe job” occurs when an unsuspecting third party is listed as the From:
address in a spam message and is inundated with complaints from email users who
don’t know better.) There would be nothing to stop a prankster (or anyone else, for
that matter) from sending out a wide message that gets defined as spam, causing the
innocent party’s Web site or other electronic presence to be interrupted.

Second, any spammer who didn’t have a URL listed in their message would be
immune. If the spammer used a telephone number to collect sales, there would be no
easy way for filters to fight back.

Third, most providers would not take kindly to this type of network traffic on their
networks. If the plan were implemented and successful, service providers would be the

23August 2004 ;login: ISPADMIN ●

●

SY

SA
D

M
IN

Vol. 29, No. 4 ;login:

ones who would bear the brunt of the cost, by virtue of having to buy additional band-
width on their networks to handle the increase in network load.

Being Paid to Spam
A company called VirtualMDA is offering to pay $1 per CPU hour of time to use your
computer and network connection to send marketing messages on behalf of its clients.
This rate of pay is a big win for VirtualMDA, as it would take a huge number of mes-
sages before the user would get paid for his/her effort. In any case, before they ever saw
a penny from VirtualMDA, the user’s ISP would probably shut the the account off for
violating the ISP’s terms of service.

The CAN-SPAM Law
Disclaimer: I am not a lawyer!

The US CAN-SPAM Act went into effect on January 1, 2004, with much fanfare. Mar-
keters are required to do the following under this law, according to the spamlaws.com
site:

■ Label their email
■ Include opt-out instructions and the sender’s physical address
■ Refrain from using deceptive subject lines and false headers

Unfortunately, no standard label for bulk email was specified in the law, which makes
this provision almost meaningless. The act also authorizes the FTC to establish a “Do
Not Email” list. I believe the establishment of a “Do Not Email” list could result in
much more spam reaching users’ email boxes. The temptation for a confirmed email
list such as this to be abused by spammers is simply too great, no matter what controls
are placed on it.

Has this law had any effect on spam to date? Not much. Enforcement of the law is now
only beginning. Time will tell, unfortunately. At best, laws are only part of the solution.
At worst, they are part of the problem!

Recent Spam-Related Prosecutions and Lawsuits
On April 29, 2004, the FTC announced the first four prosecutions under the US CAN-
SPAM law. At an average of one prosecution per month, there will be no effect on the
average user. However, I believe the FTC and FBI are just beginning their work, and we
will start to see much more of an impact once large numbers of spammers are brought
to justice. Of course, a small percentage of the spammers are responsible for a large
percentage of the spam.

In a May 24, 2004, Boston Globe article, Hiawatha Bray makes the point that phishing
(scammers who pretend to be credit card companies in order to get a victim’s credit
card numbers and other personal information) will be good for the fight against spam.
When the scammers, spammers, and spyware marketers target the companies with
deep pockets and lots of market share (and money) to lose, only good things can come
of it.

In fact, L.L. Bean and overstock.com both recently announced lawsuits against adver-
tisers who used spyware in their marketing efforts. The marketing companies utilized
spyware to generate pop-unders for the named advertisers when users (who had the
spyware software installed on their computers) visited the L.L. Bean site. It is only a

A company called Virtual-
MDA is offering to pay $1
per CPU hour of time to use
your computer and network
connection to send marketing
messages on behalf of its
clients.

24

matter of time until the spammers market the wrong product and get sued by the
product’s trademark holders.

References
DSPAM: http://www.nuclearelephant.com/projects/dspam/

MAPS RBL: http://www.mail-abuse.com/services/mds_rbl.html

SPAMHAUS: http://www.spamhaus.org/

DCC: http://www.rhyolite.com/anti-spam/dcc/

Vipul’s Razor: http://razor.sourceforge.net/

SPF: http://spf.pobox.com/

Yahoo DomainKeys: http://antispam.yahoo.com/domainkeys

AOL SPF: http://postmaster.aol.com/info/spf.html

MS Caller ID for Email: http://www.microsoft.com/mscorp/twc/privacy/
spam_callerid.mspx

Comcast selective port-25 blocking: http://zdnet.com.com/2100-1104_2-5230615.html

“Filters that Fight Back”: http://www.paulgraham.com/ffb.html

VirtualMDA: http://www.virtualmda.com

spamlaws.com CAN-SPAM: http://www.spamlaws.com/federal/108s877.html

First CAN-SPAM prosecutions: http://www.cnn.com/2004/LAW/
04/28/internet.spam.ap/index.html

Boston Globe phishing article: http://www.boston.com/business/globe/
articles/2004/05/24/best_news_in_the_war_on_spam_phishing/

L.L. Bean spyware lawsuit: http://biz.yahoo.com/prnews/040517/nem044_1.html

25August 2004 ;login: ISPADMIN ●

●

SY

SA
D

M
IN

26 Vol. 29, No. 4 ;login:

Many years ago, I heard Michelle Crabb, a sysadmin at NASA Ames in the
San Francisco Bay Area at that time, tell a story about discovering an intru-
sion there. Ames was the site of the satellite feed that connected the na-
scent Internet in Australia to the continental US. A NASA manager wanted
Internet access added to his own desktop Sun workstation, and eventually
Crabb agreed to do so. Within a week, the manager came to her and men-
tioned that the login prompt on his Sun had changed. Instead of “login”
with a small “l”, it now appeared as “Login”.

This subtle change was the overt signature of a trojaned login program. Had the Aus-
tralian teenage attacker been a bit more careful, his successful intrusion might have
gone unnoticed much longer.

I have always wondered about how many really skilled attackers there are. People who
can break into a system, cleverly trojan/rootkit it, and only visit that system occasion-
ally. With little traffic and no overt signs of an intrusion, such as the usual port scan-
ners or IRC relays like psyBNC generating traffic, a skillfully completed intrusion
might not be noticed for months, perhaps years.

Little, if any, data about the really skillful attacks seems to exist. But a very big hint did
emerge in late May, when new overflow exploits, as root, for CVS server software were
divulged. Some people claimed that they had been using the CVS exploits since 2001
and had owned many well-known open source CVS servers. All that was needed was
anonymous read-only access in order to exploit the server.

I found these assertions somewhat hard to believe. Partially because I didn’t want to
believe them. And largely because so few attackers (apparently) have the discipline to
take over a system and behave in such a low-key manner as not to be noticed. Also, one
would hope that any changes to open source software, such as the addition of back
doors, would have been noticed by now (after the claimed three years).

There were the trojaned configure scripts that were discovered in 2003. Each configure
script included an addition designed to look as though it belonged in a configure
script. The trojan was not rocket science, as it used a hardwired address to connect to
and failed to loop properly (at least the version I played with). The trojaned configure
script would hardly be the work of a skillful attacker.

The attacks on supercomputers at Stanford University and in the TeraGrid at SDSC,
NCSA, and other locations were closer to a skillful assault, but they were not actually
successful. The attackers, instead of treading lightly, just kept abusing more accounts
and taking over more systems, making it only a matter of time before their intrusions
were discovered. The attackers were certainly persistent, returning even after being dis-
covered. I am hoping that one or more of the defenders will discuss their experiences
with these intrusions in the Security edition of ;login:.

Open Source in Danger?
If open source (OS) CVS servers were owned for a long time, what effect will this have
on the security of open source software? There have been attempts to install back
doors in OS software before, such as the slight modification to the wait() system call
late last year. But that attempt was noticed because the attackers bypassed the code

musings
by Rik Farrow
Rik Farrow provides
UNIX and Internet secu-
rity consulting and
training. He is the
author of UNIX System
Security and System
Administrator’s Guide to
System V.

rik@spirit.com

27August 2004 ;login:

●

SE
C

U
R

IT
Y

MUSINGS ●

management system, drawing attention to the change. Two other attempts, on CVS
servers, were also noticed.

One reason for these changes being noticed is that any time someone submits a
change, many eyes will scrutinize the code. It would be one thing to make a change
that would subvert the entire CVS system, and quite another to slip something strange
past people who are competing (to a degree) to produce the best code. Still, the reputa-
tion of OS code is at stake, and weaknesses in CVS code, responsible for maintaining
the integrity of OS, certainly do not look good.

Other Dangers
Problems with CVS have a much greater impact, I would hope, than the latest bit
of tomfoolery from the Alexis de Tocqueville Institution (ADTI). Ken Brown, presi-
dent of ADTI, paid a visit to Andy Tanenbaum at Vrije University in Amsterdam,
where he teaches computer science. Tanenbaum is the author of MINIX, a UNIX-
like operating system created mainly as a teaching tool. Brown had traveled from
Washington, DC, to the Netherlands, apparently convinced that there was some ill
will between Linus Torvalds, creator of Linux, and Professor Tanenbaum, creator of
the not nearly as popular MINIX. You can read Tanenbaum’s words for yourself at
http://www.cs.vu.nl/~ast/brown/.

Brown has written a book which may have appeared by the time this column gets pub-
lished. His book will apparently make the claim that Linus did not write Linux,
because it is impossible for one person to write an operating system. Imagine making
that claim after interviewing a college professor who had himself done exactly that.

There are more incredibly bogus claims floating about, such as the one by Dan
O’Dowd, CEO of Green Hills Software, who said in a speech, “The very nature of the
open source process should rule Linux out of defense applications.” O’Dowd used as
his example Ken Thompson’s famous trojan code in early versions of AT&T UNIX.
How Thompson’s wonderful hack would affect an entirely different code tree (it wasn’t
actually a magical hack) is beyond most thinking individuals. Perhaps O’Dowd was
trying to recapture Linux business his company had lost to OS versions of Linux?

The closed source world is just as vulnerable to back doors, if not more so, than OS.
Some security software vendors have had difficulty staying on NSA’s approved soft-
ware list because when NSA attempted to build their software from the source, it
didn’t match the distributed version. Did this signify back doors or merely different
compiler flags and configuration options? And Thompson’s back door was in closed
source, not OS.

Cash Registers and Voting
The most egregious example of closed source software appears in US voting systems.
Electronic voting has been successfully used in Australia and India. The source code is
available for public inspection, not kept as a trade secret as is the code in the most
widely used electronic voting systems in the US. (See http://www.elections.act.gov.au/
Elecvote.html for information about an Australian system, http://www.theregister.co.uk/
2004/06/23/open_source_voting_software/ for information about a Dutch system.)

What gets me about companies like Diebold is this: Diebold also makes touch-screen
cash registers, like the ones you have probably seen in bars and restaurants. Similar
touch-screen cash registers can be purchased from Internet sites for about $1200, with

28 Vol. 29, No. 4 ;login:

printers included. Diebold’s touch-screen voting systems cost over $3000, without
printers. And Diebold has a well-known reputation for installing last-minute patches
to their voting systems, a practice that resulted in Diebold machines being barred from
use in several counties in California.

Now what is so hard about a touch-screen voting machine that it would require last-
minute patches? Diebold doesn’t have this problem with their cash registers. Cash reg-
isters have a paper trail to prevent fraud. But not voting systems? Something is fishy
here—actually, it stinks to high heaven.

I think the problem with some US voting machine companies is so serious that people
prefer not to think about it.

Open source, or at least publicly audited code, is more secure than proprietary code. If
you have to use a touch-screen system to vote, vote by mail so that there will be at least
as much of a paper record as there would be when you buy lunch.

30

On July 1, 2004, the California Online Privacy Protection Act of 20031

(OPPA) took effect. OPPA requires owners of commercial Web sites that
collect personal information from California residents to post conspicu-
ously a privacy policy explaining the types of information collected and the
parties with whom the information is shared. Complying with OPPA’s
requirements is relatively straightforward. Not only does OPPA apply to all
businesses that collect information from California consumers, regardless of
the location of those businesses, but OPPA also exposes businesses to civil
lawsuits, including class actions, even for negligent violations.

Summary of Requirements
OPPA specifies both the information “operators” (see definition in Section II, below)
must include in a privacy policy and the methods by which operators must post the
policy. Under OPPA, a privacy policy must include: (1) a list of categories of personal
information collected and parties with whom the collected information is shared; (2)
if applicable, a description of the process by which the users can update collected per-
sonal information; (3) a description of the process by which the operator notifies
users of “material” changes to the privacy policy; and (4) the date the privacy policy
becomes effective. To post a privacy policy conspicuously, an operator must do at least
one of the following: (1) include the policy on the home page of the Web site or the
“first significant page” after the home page; (2) hyperlink to the policy from the home
page or the “first significant page” with an icon containing the word “privacy” in col-
ors that contrast with the background of the page; or (3) hyperlink to the policy from
the home page or the “first significant page” with text including the word “privacy” in
a font style and size distinguishable from surrounding text.

Who Must Comply with OPPA
OPPA applies to all “operators” of “commercial website[s] or online service[s]” if they
collect “personally identifiable information” from consumers residing in California.
Internet service providers and other groups that transmit and store information on
behalf of third-party operators, such as Web site development companies, are
expressly exempt from OPPA’s requirements. Under OPPA, “consumers” are Califor-
nia residents who “seek or acquire” goods, services, money, or credit online. “Person-
ally identifiable information” includes names, addresses, telephone numbers, social
security numbers, or any other information that allows operators to contact con-
sumers. As will be discussed below, companies that might collect personal informa-
tion from a California consumer via a Web site should implement a privacy policy
that satisfies the requirements of OPPA (including those regarding the location of the

California online
privacy act has
widespread
effects

Editor’s Note: This issue features two different
approaches to describing the new California
Online Privacy Protection Act. John Nicholson’s
article includes motivations, reasonings, and
discussions of all sorts of nuances of OPPA.
Dan Appelman’s article addresses businesses
and contains only the nitty-gritty, though
sometimes with a more business-oriented slant.
While there is overlap between the articles, see-
ing the different points of view is fascinating.

I used the information in these articles to create
a potentially compliant privacy notice for the
USA Computing Olympiad. It was interesting
to perform the mental exercise that answers the
question, “Just how is this information actually
used, and who else can see it?” I imagine this
will be very challenging for larger organiza-
tions. Some, as Nicholson’s article points out,
have simply opted out: Children under 13 are
not allowed at their sites.—RK

1. California Business and Professions Code,
§22575 et seq. (2003).

Vol. 29, No. 4 ;login:

by John
Nicholson
John Nicholson is an
attorney in the Technol-
ogy Group of the firm
of Shaw Pittman in
Washington, D.C. He
focuses on technology
outsourcing, application
development and sys-
tem implementation,
and other technology
issues.

John.Nicholson@ShawPittman.com

and Rachel
Wheeler
Rachel Wheeler is a
summer associate at the
firm of Shaw Pittman in
Washington, DC. She is
a student at the William
& Mary School of Law.

Rachel.Wheeler@ShawPittman.com

privacy policy, its appearance, and its content) and a policy for evaluating, investigat-
ing, and responding to complaints under OPPA.

BUT MY BUSINESS ISN’T IN CALIFORNIA! HOW CAN IT BE SUBJECT TO A
CALIFORNIA LAW?
The sweeping language of OPPA means that operators anywhere in the United States
and possibly abroad are potentially subject to suit. Further, under California case law
regarding Internet jurisdiction, most operators collecting information for commercial
purposes will be subject to the jurisdiction of California courts. All operators in the
following categories are subject to California jurisdiction: (1) those incorporated in
California, (2) those with a principal place of business in California, and (3) those
with “systematic and continuous” ties with the state due to the presence of offices, per-
sonnel, bank accounts, and other tangible assets in the state. In addition, those opera-
tors who have limited or no physical ties to California will still be subject to the
jurisdiction of California courts if the operators are found to have certain “minimum
contacts” with the state.

California courts endorse a sliding-scale approach to assessing the concept of “mini-
mum contacts” in Internet jurisdiction cases. Those operators who are outside of Cali-
fornia and who maintain completely passive Web sites that simply advertise services
are the least likely to be subjected to California jurisdiction. For example, in Advanced
Software, Inc. v. Datapharm, Inc.,2 a California federal district court found that an
Ohio operator had not subjected itself to California jurisdiction simply by posting a
Web site describing its services and employees, listing contact information, and pro-
viding links to other pharmaceutical sites.

At the other end of the scale, those operators who post interactive Web sites allowing
them to contact California residents repeatedly or to form contracts with California
residents are the most likely to be subject to jurisdiction in California. In Snowney v.
Harrah’s Entertainment, Inc.,3 a Nevada operator was subjected to California law based
on the operator’s Web site solicitation of California residents to make hotel reserva-
tions on its Web site, evidence that Californians actually made reservations using the
Web site, and the fact that the Web site targeted Californians by providing directions
from California to hotel locations in Nevada. In Panavision Int’l, L.P. v. Toeppen,4 the
Ninth Circuit Court of Appeals found the required “minimum contacts” in a transac-
tion in which an operator registered as a domain name the trademark of a California
business and then attempted to profit from reselling the domain name to the trade-
mark holder. Finally, in Colt Studio, Inc. v. Badpuppy Entertainment,5 a federal district
court found the required “minimum contacts” where the operator had entered into
contracts with 2,100 Californians to provide them with monthly subscriptions to an
adult Web site.

OPPA is specifically aimed at operators who are closer to the Colt Studio end of the
sliding scale. Because OPPA is focused on actively collecting personally identifiable
information rather than passively advertising goods and services, and because that
personally identifiable information will potentially give the operator notice that the
subjects of the information are California residents (e.g., the information may include
their address), California Internet jurisdiction case law is likely to give California’s
courts subject matter jurisdiction over operators who collect data from California citi-
zens for commercial purposes, making them subject to OPPA enforcement actions.

31August 2004 ;login:

2. 1998 U.S. Dist. LEXIS 22091 (D. Cal. 1998).

3. 11 Cal. Rptr. 3d 35 (Cal. Ct. App. 2004).

4. 141 F.3d 1316 (9th Cir. 1998).

5. 75 F. Supp. 2d 1104 (D. Cal. 1999).

●
TH

E
LA

W

CALIFORNIA ONLINE PRIVACY PROTECTION ACT ●

Vol. 29, No. 4 ;login:

Noncompliance
An operator can be held liable for failure to comply with OPPA if either (1) the opera-
tor is negligent and the failure is “material”6 or (2) the operator knowingly or willfully
violates OPPA, regardless of the “materiality” of the violation. OPPA provides a 30-day
grace period to allow operators to come into compliance once they are notified of a
violation. It should be noted, however, that intentionally violating the requirement
would probably qualify as “notice.” OPPA, however, does not specify a particular party
to fulfill the role of notifier. Accordingly, it is possible that a California consumer’s
complaint to an operator regarding noncompliance may serve as a trigger for the 30-
day grace period.

OPPA does not include an explicit enforcement provision. Commentators have sug-
gested that California’s Unfair Competition Law7 (UCL) will provide the means of
enforcement. The UCL governs “unfair, unlawful, and fraudulent business acts” and
specifies that the attorney general, district attorney, or city attorney may bring civil
actions. More important, any “person, corporation, or association, or . . . any entity
acting for the interests of itself, its members, or the general public” can initiate actions
under the UCL. Damage awards can reach $2500 per violation. Commentators have
also suggested that the UCL’s allowance for personal actions may result in class action
lawsuits under OPPA.

Recommended Business Response
Because OPPA contains no jurisdictional limitations and because OPPA violations
could result in costly fines, companies that might collect personal information from a
California consumer via a Web site should implement a privacy policy that satisfies the
requirements of OPPA (including those regarding the location of the privacy policy, its
appearance, and its content) and a policy for evaluating, investigating, and responding
to complaints under OPPA. In creating a privacy policy, companies should determine
the types of personal information they collect, the ways in which they use the informa-
tion, the parties with whom they share the information, and the means by which they
notify customers regarding changes to their policies.8

6. Note: “material” is one of those words used
by lawyers to express a concept that can only be
determined in context in a specific situation.
Basically, something is “material” if a reason-
able person would care. So, in this situation, a
violation of OPPA is material if a reasonable
person would care about (i.e., suffers harm
from) the violation.

7. California Business and Professions Code,
§§17200–17209 (2003).

8. This article provides general information and
represents the authors’ views. It does not consti-
tute legal advice and should not be used or
taken as legal advice relating to any specific sit-
uation.

32

33August 2004 ;login:

OPPA and Web
site operators

CALIFORNIA ONLINE PRIVACY PROTECTION ACT ●

●
TH

E
LA

W

In mid-October of 2003, Governor Gray Davis signed the Online Privacy
Protection Act (OPPA). The new law took effect on July 1, 2004, and
became part of the Business and Professions Code at §§22575 through
22579. OPPA requires every person and business entity in the United States
(and, presumably, anywhere in the world) who owns a Web site and col-
lects personal information about California residents to post a conspicuous
privacy policy on that Web site stating what information they collect and
with whom they share it, and to comply with that policy. Violations of the
new law can result in civil penalties and can be the basis for suits brought
by the California attorney general as well as by private individuals.

Federal law generally does not require Web sites to include privacy policies, although
there are exceptions related to the banking and health services industries and to Web
sites directed at children. The new California law is one of several recent examples
where the California legislature has gone further than Congress in imposing signifi-
cant restrictions on the way companies, regardless of where they are located, conduct
their business online or with the aid of computers, to the extent that such business
practices affect California residents.1 Compliance with OPPA is not intuitive, and
companies must become familiar with its particular requirements.

Who Must Comply
The new law applies to all “operators” of commercial Web sites and online services
that collect personally identifiable information about California consumers. This
includes out-of-state operators as well as those based in California.

The term “operator” means the owner of a Web site or an online service. It does not
include third parties who may operate, host, or manage the site or service or who
process information on behalf of the owner. The term “personally identifiable infor-
mation” means individually identifiable information collected online about individual
consumers, such as a first and last name, a street address, an email address, a telephone
number, a social security number, or any other identifier that would permit the opera-
tor, or others who obtain access to that information, to contact a specific individual.
The term “consumer” means any individual who seeks or acquires goods, services,
money, or credit for personal, family, or household purposes. OPPA does not apply to
owners of Web sites that only collect information about other businesses.

What the New Law Requires
The new law requires an operator to conspicuously post a privacy policy on their Web
site, or, in the case of an online service, to use reasonable means to make that policy
available to consumers. In order to meet the “conspicuously posted” requirement, the
privacy policy must:

■ appear prominently on the home page of the Web site;
■ be directly linked to the home page by means of an icon that contains the word

“privacy” and uses a color that contrasts with the background of the Web page; or
■ be linked to the home page by means of a hypertext link that includes the word

“privacy,” is written in capital letters equal to or greater in size than the surround-

[Reprinted with permission from Heller
Ehrman Venture Law Group]

1. Other examples include a new law requiring
companies that maintain databases that include
personal information about California residents
to disclose any breach in security of those data-
bases, which became effective on July 1, 2003,
and a broad prohibition against sending unso-
licited commercial email messages (“spam”) to
California email addresses, absent a clear opt-in
by the recipient. This law was preempted by the
new federal CAN-SPAM Act.

by Dan Appelman
Dan Appelman is a part-
ner in the international
law firm of Heller
Ehrman, White &
McAuliffe, LLP. He prac-
tices intellectual prop-
erty and commercial
law, primarily with tech-
nology clients, and is
the current chair of the
California Bar Associa-
tion’s Standing Commit-
tee on Cyberspace Law.
dan@hewm.com

Vol. 29, No. 4 ;login:

ing text, or is otherwise readily distinguishable from the surrounding text on the
home page.

The privacy policy itself must do all of the following:

■ It must identify the categories of personally identifiable information the operator
collects.

■ It must identify the categories of third parties with whom the operator may share
the personally identifiable information that it collects..

■ It must describe the process (if any) by which consumers can review and request
changes to any of the collected information.

■ It must describe the process by which the operator will notify consumers of mate-
rial changes in its privacy policy.

■ It must identify the effective date of the privacy policy.

OPPA contains a built-in “cure period”—it expressly provides that an operator who
has been notified that they are not complying with the requirement to post a privacy
policy will not be considered in violation of the law unless they fail to post the privacy
policy within 30 days of such notification. Other provisions of the new law indicate
that an operator intentionally failing to comply with the law will be considered in vio-
lation of OPPA even if the noncompliance is immaterial, while an operator whose
noncompliance is not intentional, but negligent, will be considered in violation of
OPPA only if the noncompliance is material.

The Consequences of Not Complying
The new law does not itself contain enforcement provisions. It is expected that OPPA
will be enforced through California’s Unfair Competition Law (the UCL), which is
located at Business and Professions Code §§17200–17209.

Under the UCL, the attorney general, district attorneys, and certain city and county
attorneys may bring civil actions based on acts of “unfair competition” as defined in
Business and Professions Code §17200. Acts of “unfair competition” include acts, in
business, that violate any law, which means that once OPPA takes effect in July 2004, a
violation of OPPA will also be a violation of the UCL. The identified law enforcement
officials may seek civil penalties and injunctive or other equitable relief.

Of greater concern, under the UCL “any person” may bring an action “in the interests
of itself, its members, or the general public.” This “private attorney general” provision
has been broadly interpreted to allow a person with no personal interest and who has
suffered no harm to bring a private action for restitution (to be paid to those who have
suffered harm) or injunctive relief. In a private attorney general action brought under
this special standing provision, the plaintiff may also recover attorneys’ fees. Therefore,
private plaintiffs will be able to use alleged violations of OPPA as a basis for asserting
private UCL claims.

Recommendations
It is imperative that companies start complying with the new law immediately or risk
fines and penalties and, perhaps, adverse publicity. Even if OPPA is preempted or over-
turned, posting a privacy policy and complying with it is becoming standard practice
for those doing business on the Internet. To comply with the new law, privacy policies
should disclose:

■ What information Web site operators collect from those visiting their sites.
■ How that information is used.

34

●
TH

E
LA

W

■ With whom that information is shared.
■ How consumers can review and correct the collected information.
■ Whether consumers can “opt out” of having that information retained by the

operator or shared with others.
■ How consumers can communicate with the operator.

The Federal Trade Commission (http://www.ftc.gov) also has Web pages devoted to
recommended best practices for privacy policies. Readers who have questions about
how to comply with the new California law or federal requirements should contact the
author of this article.

35August 2004 ;login:

●
TH

E
LA

W

CALIFORNIA ONLINE PRIVACY PROTECTION ACT ●

4th International System Administration
and Network Engineering Conference

September 27–October 1, 2004
RAI Centre, Amsterdam, The Netherlands

Technology is advancing, the systems administration profession is changing rapidly,
and you have to master new skills to keep up. At the 4th International SANE techni-
cal conference and tutorial tracks you’ll find a wealth of opportunities to meet other
system administrators and network (security) professionals with similar interests,
while attending a program that brings you the latest in tools, techniques, security,
and networking. The official language at the conference will be English.

A Stichting SANE conference, organized by the NLUUG, the UNIX User Group—The Netherlands,
co-sponsored by USENIX, the Advanced Computing Systems Association, and Stichting NLnet

http://www.nluug.nl/events/sane2004

SAVE THE DATE!

36 Vol. 29, No. 4 ;login:

In this column we want to consider a set of C# features that go by the
name “reflection.” This term is a little hard to describe but in general refers
to the ability of a running C# program to examine data about itself and
modify its behavior accordingly. We’ll look at several examples to help clar-
ify this idea.

For reflection features to work, a C# system needs to keep data about the program
around, so that it can be accessed at runtime. We can call this information “metadata,”
to distinguish it from the application data the program operates on.

Finding Types in a Running Program
Let’s start with a fairly simple use of reflection, as illustrated in this program:

using System;
using System.Reflection;

public class DumpTypes {
public static void Main(string[] args) {

string targstr = (args.Length == 0 ?
null : args[0].ToLower());

Assembly asm = Assembly.Load(“mscorlib.dll”);

Type[] typelist = asm.GetTypes();

foreach (Type type in typelist) {
string typestr = type.ToString().ToLower();
if (targstr != null && targstr != typestr)

continue;

Console.WriteLine(type);

MemberInfo[] memlist = type.GetMembers();
foreach (MemberInfo mem in memlist)

Console.WriteLine(“ “ + mem);
}

}
}

If you run this demo without any arguments, it displays about 25,000 lines of output, a
list of all the classes and interfaces that the C# runtime system knows about, together
with the members of each class. This process is sometimes called “type discovery.”

The first few lines of output are as follows:

System.Object
Int32 GetHashCode()
Boolean Equals(System.Object)
System.String ToString()
Boolean Equals(System.Object, System.Object)
Boolean ReferenceEquals(System.Object, System.Object)

by Glen
McCluskey
Glen McCluskey is a
consultant with 20 years
of experience and has
focused on program-
ming lan-guages since
1988. He specializes in
Java and C++ perfor-
mance, testing, and
technical documentation
areas.

glenm@glenmccl.com

using C#
reflection

37August 2004 ;login: USING C# REFLECTION ●

●

P

R
O

G
R

A
M

M
IN

GSystem.Type GetType()
Void .ctor()

System.Object is a class known to C#, and it has class members such as GetHashCode
and Equals. These members have particular parameter types such as System.Object
and return types like Int32.

You can also run the program and specify the name of a class, like System.String, and
only the details of that class will be displayed. The program works by opening an
assembly, which is something like an archive file or dynamic link library. It then reads
the types and members in a standardized way and displays them.

Obtaining a list of classes and members may not seem like much, but it’s impossible to
do in languages like C and C++. About the most you can do in C is to open an archive
file like libc.a and read through it. There is no standard way of doing this operation,
and information about parameter and return types for the various C functions is not
preserved.

Dynamic Invocation
Let’s go on and look at another use of reflection, one that’s a little more sophisticated.
Suppose that you have an application such as a C# interpreter, or a debugger, or
browser, or something, and you’d like to invoke methods by name at runtime.

Or to say it another way, imagine that you are doing C programming and you have a
program like this:

void f1() {}
void f2() {}
int main(int argc, char* argv[]) { ... }

The user specifies “f1” or “f2” as a string on the command line, and you call the right
function based on what is specified. The only way you can program such a feature is by
means of a big if-then statement, or by keeping a table of function names/pointers
around so that you can do dynamic dispatch. This approach is cumbersome.

Here’s some C# code that solves this problem:

using System;
using System.Reflection;

public class InvokeDemo {
static object run(string classname, string methodname) {

Assembly asm = Assembly.Load(“mscorlib.dll”);

Type type = asm.GetType(classname);

object obj = asm.CreateInstance(classname);

object[] args = new object[0];

object ret = type.InvokeMember(
methodname,
BindingFlags.Default | BindingFlags.InvokeMethod,
null,

Vol. 29, No.4 ;login:38

obj,
args

);

return ret;
}

public static void Main(string[] args) {
while (true) {

try {
Console.WriteLine();

Console.Write(“Enter class name: “);
string classname = Console.ReadLine();

Console.Write(“Enter method name: “);
string methodname = Console.ReadLine();

object ret = run(classname, methodname);

Console.WriteLine(“ret value = “ + ret);
}
catch (System.Exception exc) {

Console.WriteLine(“exception: “ + exc);
}

}
}

}

A typical interaction looks like this:

Enter class name: System.Object
Enter method name: GetHashCode
ret value = 21
Enter class name:

This interaction specifies that an object of the System.Object class is created, and then
the GetHashCode method is called on the object. The return value (the hash code) is
21.

This program first queries the standard assembly for type information about the speci-
fied class (System.Object), creates an instance of that class, and then calls the method
(GetHashCode) on the instance. This simple demo works only for parameterless
methods, but can easily be extended to accept a list of arguments to be passed to the
method.

The demo also illustrates exception handling, used to catch errors such as specifying
an unknown class or method name.

Custom Attributes
A third way that you can use C# reflection is to specify and use custom attributes. An
attribute is metadata about a C# program. It is not the program instructions or appli-
cation data, but rather something like a “smart comment.”

Let’s illustrate the idea of attributes by looking at a sample application. Suppose that
you’d like to incorporate code-change logs into your source code. That is, whenever

39August 2004 ;login: USING C# REFLECTION ●

●

P

R
O

G
R

A
M

M
IN

Gthe source is edited, some information is added that describes the date, author, and
nature of the change. One way to do this is through comments in the code. But com-
ments have no structure, and are not queryable except in an ad hoc way.

Another way to solve this problem is by using C# custom attributes. Here’s some code
that shows how this can be done:

using System;
using System.Reflection;

[AttributeUsage(
AttributeTargets.Class |
AttributeTargets.Property, AllowMultiple = true

)]

public class CodeChangeAttribute : Attribute {
private string id;
private string who;
private string date;
private string descr;

public CodeChangeAttribute(string id, string who,
string date, string descr) {

this.id = id;
this.who = who;
this.date = date;
this.descr = descr;

}

public string GetId() {
return id;

}

public string GetWho() {
return who;

}

public string GetDate() {
return date;

}

public string GetDescr() {
return descr;

}
}

[CodeChangeAttribute(“123”, “Jane Smith”,
“5/27/04”, “initial checkin”)]

[CodeChangeAttribute(“456”, “Bill Jones”,
“5/29/04”, “fix three bugs”)]

public class TestAttr {}

public class AttrDemo {

Vol. 29, No.4 ;login:40

public static void Main(String[] args) {
MemberInfo meminfo = typeof(TestAttr);

object[] attrlist = meminfo.GetCustomAttributes(
typeof(CodeChangeAttribute), false);

foreach (object attr in attrlist) {
CodeChangeAttribute cca = (CodeChangeAttribute)attr;
Console.WriteLine(“id = “ + cca.GetId());
Console.WriteLine(“who = “ + cca.GetWho());
Console.WriteLine(“date = “ + cca.GetDate());
Console.WriteLine(“descr = “ + cca.GetDescr());
Console.WriteLine(“—————”);

}
}

}

The first part of the demo defines a class called CodeChangeAttribute. This is a custom
attribute, represented as a class, and objects of the class contain information on partic-
ular code changes. The information with each object is the change ID, the name of the
person making the change, the date, and a description of the change.

This attribute can then be used with other classes you define, such as TestAttr. The
attribute values are delimited by [...] and appear before the definition of the class.

The last part of the demo, the code in Main, shows how to query the attributes. When
you run this program, the output is

id = 123
who = Jane Smith
date = 5/27/04
descr = initial checkin
—————
id = 456
who = Bill Jones
date = 5/29/04
descr = fix three bugs
—————

Attributes are annotations that you place on source code elements such as classes and
method names. They can be used to provide information about an element, such as
the code-change log example above, or affect the runtime behavior of a C# program.
Attributes are not program data in the conventional sense, and they are not comments.
They can be queried using C# reflection facilities.

Reflection is a powerful tool that you can use in your C# programs. It supports a rich
and dynamic programming style, and opens the door for many innovative applica-
tions.

41August 2004 ;login:

practical perl

PRACTICAL PERL ●

●

P

R
O

G
R

A
M

M
IN

GDatabase Modeling with Class::DBI
Database programming is often boring and tedious. Even with modules like
DBI, using a database routinely involves writing nearly the same code over
and over again. But it doesn’t need to be that way. Class::DBI removes
most, if not all, of the tedium and makes it easier to use a database than to
avoid it.

I started a new job recently, and now I spend about an hour every day commuting on
the train. This affords me a nice stretch of time to catch up on my reading, and I now
regularly read one or two books per week. However, as I plow through my library, I’m
starting to forget some of the books I’ve read recently.

Of course, there are many ways to solve this admittedly minor annoyance. I could
whip up a quick little Web-based application in Perl, and store the list of books I’ve
read recently in some database. But that strikes me as an approach that is simple, obvi-
ous, and wrong. The last thing I want to do, actually, is spend my time at home writing
the same kind of database-centric Web application that I build at work.

So I looked for a simple, lazy solution. I just wanted something to jog my memory, and
for a while I kept a list of book titles on a 3x5 card. But a list of book titles is a little
limiting. A simple list of titles doesn’t give me a whole lot of room to keep summaries
of what I’ve read, or write notes on things I want to remember.

As this simple 3x5 card system started to get unwieldy, I started to think again about
writing a Perl program to help me manage this information. After all, I could use
SQLite as a database, which is about as painless as relational databases can possibly get,
especially for quick hacks like this.

Even with SQLite, I wasn’t looking forward to writing the Perl code to add, insert, and
update records in a database. Again. I’ve done it for years, and while it’s not that hard,
it is repetitive and somewhat tedious. So I looked into Tony Bowden’s Class::DBI
module, which makes almost all of that pain just go away.

Step 1: Creating a Database
If you have been writing Perl code to use a database for even a short period of time,
you know the story by heart:

■ Create an empty database to hold your data.
■ Connect to the database with the DBI module.
■ Prepare SQL SELECT statements, and retrieve rows from the database as neces-

sary.
■ Process those rows, one by one.
■ Occasionally prepare SQL statements to insert, update, or delete rows in the data-

base.

The first step in writing a database-centric application is to set up the database.
Class::DBI cannot help here, so I still need to do this the old-fashioned way with SQL
CREATE TABLE statements.

To start, I only care about maintaining a list of books. Books are written by authors, so
I will need two tables to start—one for books and one for authors. This will allow me
to find all books written by a single author, but it will only let me track the primary

by Adam Turoff
Adam is a consultant
who specializes in using
Perl to manage big
data. He is a long-time
Perl Monger, a technical
editor for The Perl
Review, and a frequent
presenter at Perl confer-
ences.

ziggy@panix.com

Vol. 29, No.4 ;login:42

author for any one book. Not a perfect design, but good enough to start—I’m not try-
ing to replace the Library of Congress here.

The SQL statements to create these tables in SQLite look like this:

CREATE TABLE author (
authorid INTEGER PRIMARY KEY,
first,
middle,
last);

CREATE TABLE book (
bookid INTEGER PRIMARY KEY,
author,
title,
subtitle,
pubyear,
edition,
isbn,
format);

The first thing to note is that SQLite is a typeless database, so all columns will be
stored as strings of arbitrary size. This means that it is not an error to store a value like
“199x” in the pubyear column, something which would normally store only integer
values. So SQLite will never raise an error when interpreting the value “199x” as an
integer, because all values are always strings, and there are never any type errors to
worry about. Nor will SQLite raise an error when it tries to store a 1024-character
string in a 32-character field—it will always store the full 1024 characters.

The one minor exception to this rule is the case when the first field in a table is
declared as the INTEGER PRIMARY KEY for that table. In this case, SQLite will auto-
matically assign a unique integer ID value for every row added to this table. This will
be the record ID for each record.

With these two CREATE TABLE statements, creating an SQLite database is a breeze.
SQLite stores its databases as regular files on the file system, so if I have access to this
file, I have access to this database—no database user IDs and passwords to worry
about! If these two SQL statements are stored in a file called create.sql, I can create
the database like this:

sqlite library.db < create.sql

(Or I could write a small Perl program and use DBI calls to create the database. But
this way is quicker and easier—something lazy and impatient programmers every-
where will appreciate.)

Step 2: Using Class::DBI
Now that there is an empty database, I need Perl code to add, edit, update, and delete
rows. This is where things start to get very boring, very quickly.

Normally, I could start to write a Perl program by loading the DBI module, creating a
database handle, and issuing SQL statements against that database handle, mixing Perl
and SQL code all along the way. Alternatively, I could write a series of modules that
hide these low-level operations to access my database, keeping all of the SQL code
neatly isolated in one place.

43August 2004 ;login: PRACTICAL PERL ●

●

P

R
O

G
R

A
M

M
IN

GHowever, the only things that differ between this application and the database applica-
tions I wrote last week, last month, or last year are:

■ How to connect to the database
■ The tables in this database
■ The connections between these tables
■ The columns in these tables

Class::DBI enables me to access a database just by specifying these four key pieces of
information. In exchange, it provides an object-oriented interface for accessing the
database, and hides all of the low-level details, like constructing SQL statements. For
simple applications, I can forget that there is a SQL database lurking underneath (after
I issue the CREATE TABLE statements, that is).

Using Class::DBI is simple. Very simple. It starts with a module that defines the first
piece of information in my little application—how to connect to the database:

package MyLibrary::DBI;
use base ”Class::DBI”;
MyLibrary::DBI->connection(“dbi:SQLite:library.db”, ””, ””);

Next, I need to define one module for each of the two tables in my database. Each of
these modules should declare three things: the name of the table in the database, the
columns in that table, and the relationship between this table and other tables in this
database. Here are those two module definitions:

package MyLibrary::Author;
use base “MyLibrary::DBI”;

MyLibrary::Author->table(“author”);
MyLibrary::Author->columns(All => qw(authorid first middle last));
MyLibrary::Author->has_many(books => ”MyLibrary::Book”);

package MyLibrary::Book;
use base ”MyLibrary::DBI”;

MyLibrary::Book->table(“book”);
MyLibrary::Book->columns(

All => qw(bookid author title subtitle pubyear edition isbn format)
);
MyLibrary::Book->has_a(author => ”MyLibrary::Author”);

And that is it. By writing these three trivial modules, Class::DBI will provide the guts
of a database application to manage my list of books. All of the tedious, repetitive
database management code is automatically provided by Class::DBI.

Step 3: Programming with Class::DBI
But what does Class::DBI actually do?

Class::DBI works by defining the common behaviors that generic database application
share. It does all of the hard work, but it doesn’t know how to use this particular data-
base. To make it work in a real application, I need to plug in the specifics—where to
find the database, and the structure inside that database. That’s what the three mod-
ules do: customize a general-purpose framework for database applications into the
framework I need for my database application today. Each of those customizations is
made through inheritance (those important use-base clauses peppered about).

Vol. 29, No.4 ;login:44

That’s fine, but how do I use the modules I just created? It’s quite simple, really. To cre-
ate a new row in the author table, create a new MyLibrary::Author object. If I use the
MyLibrary::Author module to search for an author record, I will get an object that
represents a row in the author table. I can make changes to one of these objects, and
commit those changes back to the database at a later time.

Creating a new record is easy. Just create a new object, as if it were any other Perl mod-
ule:

Create an empty author object,
and an empty record in the database
my $author1 = new MyLibrary::Author;

Create another object/row, and specify
values for two fields
my $author2 = new MyLibrary::Author({

first => ”Isaac”,
last => ”Asimmov”

});

When I created the MyLibrary::Author module, I defined three important fields in the
author table: first, middle, and last. Class::DBI makes these fields in
MyLibrary::Author objects, and provides methods to get and set the values of these
fields. Changes to these objects can be sent back to the database using the update
method, and records can be deleted using the delete method on these objects:

This was a blank record in the database.
Add some values to it, and write it back.
$author1->first(“Edgar”);
$author1->middle(“Rice”);
$author1->last(“Burroughs”);
$author1->update();

Wait a second — I don’t have any books by this author!
$author1->delete();

Oops! “Asimov” was misspelled
$author2->last(“Asimov”);
$author2->update();

Of course, book records are just as easy to create, update, and delete.

Class::DBI and Database Design
There is an additional wrinkle, though. Most relational databases are “normalized” to
some degree. Class::DBI knows about normalization and understands that most data-
bases are at least somewhat normalized. In my simple design for the MyLibrary data-
base, each book record is uniquely identified by the value in its bookid field, and each
author record is uniquely identified by its authorid field. Because books have authors,
the author field in the book table stores one of these authorid values, which can be
used to find the author of a book. (A fuller discussion of database normalization is
beyond the scope of this article, but this is generally how it works in practice.)

Unique record IDs are such a common feature in relational database designs that
Class::DBI automatically assumes that the first field in a table contains the record ID
for that table—a safe assumption, since this practice is quite common.

45August 2004 ;login: PRACTICAL PERL ●

●

P

R
O

G
R

A
M

M
IN

GClass::DBI has two main methods to describe the common relationships between
tables: has_a and has_many. In this simple database design, an author has many
books, and a book has a single author. (Remember, this is an admittedly simplistic
model of bibliographic data.) With the MyLibrary::Book->has_a(author=>
“MyLibrary::Author”) declaration, I’ve told Class::DBI a few things:

■ The author field in the book contains a unique ID from the author table.
■ When I select a record from the book table, the value isn’t a plain number, it is a

reference to the author table. Class::DBI should use that value to instantiate the
MyLibrary::Author object that corresponds to that ID value.

■ If I assign MyLibrary::Author object to an author field in a MyLibrary::Book
object, Class::DBI should use the ID for that author, not some other value for that
author.

In this database, a book can have one author, but an author can have many books. This
means that many records in the book table can share a single author value. This rela-
tionship is stated in the MyLibrary::Author->has_many(books=>”MyLibrary
::Book”) declaration, and it adds a method to the MyLibrary::Author module named
add_to_books. This method allows me to create or edit a book record, and set that
record’s author field to the unique ID of this MyLibrary::Author record:

First, create an author.
my $author = new MyLibrary::Author({

first => ”Isaac”,
last => ”Asimov”

});

Create a new, standalone book record.
my $book1 = new MyLibrary::Book({

title => ”Foundation”
});
my $book2 = new MyLibrary::Book({

title => ”Foundation and Empire”
});

Three ways to set the author of a book.
$book1->author($author);
$author->add_to_books($book2);

Create a new book, and set its author.
$author->add_to_books({

title => ”Second Foundation”
});

There are many, many more methods that Class::DBI provides for manipulating data
in relational databases. Some of the more important ones are:

■ retrieve(): fetch an object given its unique ID value
■ search(): fetch many objects given a list of fields to match
■ find_or_create(): find an existing record that matches the fields specified, or cre-

ate a new record with those values

Conclusion
This article just barely scratches the surface of using Class::DBI. This module has
many more features, and it supports the standard databases such as MySQL, Post-
greSQL, Oracle, and DB2. While this sample program demonstrates that the combina-

Vol. 29, No.4 ;login:46

tion of SQLite and Class::DBI makes a quick database hack simple and easy,
Class::DBI is a heavily used, robust package for simplifying all kinds of database pro-
grams.

For good measure, here is the full source of the MyLibrary module that uses
Class::DBI to create an interface to my library database, and the addbook script to
add a book to this database. Note that most of the work is not in managing the data-
base, but in managing user input (editing a text file with $EDITOR and processing the
result).

MYLIBRARY.PM.
#!/usr/bin/perl -w
use strict;

package MyLibrary;

package MyLibrary::DBI;
use base ”Class::DBI”;
MyLibrary::DBI->connection(“dbi:SQLite:library.db”, ””, ””);

package MyLibrary::Author;
use base ”MyLibrary::DBI”;

MyLibrary::Author->table(“author”);
MyLibrary::Author->columns(All => qw(authorid first middle last));
MyLibrary::Author->has_many(books => ”MyLibrary::Book”);

package MyLibrary::Book;
use base ”MyLibrary::DBI”;

MyLibrary::Book->table(“book”);
MyLibrary::Book->columns(

All => qw(bookid author title subtitle pubyear edition isbn format)
);
MyLibrary::Book->has_a(author => ”MyLibrary::Author”);

1;

ADDBOOK.
#!/usr/bin/perl -w

use strict;
use MyLibrary;

sub get_input {
my @template = @_;
my $tmpfile = ”/tmp/library.data.$$”;

Write out the template.
open (my $fh, ”>$tmpfile”);
print $fh @template;
close($fh);

Edit it...
$ENV{EDITOR} ||= ”vi”;
system(“$ENV{EDITOR} $tmpfile”);

Read it back.
open($fh, $tmpfile);

47August 2004 ;login: PRACTICAL PERL ●

●

P

R
O

G
R

A
M

M
IN

Gmy @data = <$fh>;
close($fh);

Remove the temp file, and return the user data.
unlink $tmpfile;
return (@data);

}

sub process_input {
my @lines = @_;
chomp(@lines);

my ($group, %author, %book);

foreach my $line (@lines) {
Group name/value pairs into Author and Book blocks.

if ($line =~ m/^(\w+)$/) {
$group = $1

} elsif ($line =~ m/^\s+(\w+):\s*(.*)$/) {
Ignore fields that weren’t set.
next unless $2;

if ($group eq ”Author”) {
$author{lc($1)} = $2;

} elsif ($group eq ”Book”) {
$book{lc($1)} = $2;

}
}

}

return \%author, \%book;
}

my ($author, $book) = process_input(get_input(<DATA>));

my $author_rec = MyLibrary::Author->find_or_create($author);
my $book_rec = MyLibrary::Book->find_or_create($book);

$book_rec->author($author_rec);
$book_rec->update();

__DATA__
Author

First:
Middle:

Last:
Book

Title:
Subtitle:
Edition:

ISBN:
PubYear:
Format:

48

The previous Tclsh Spot article showed how to extend a FORTRAN program
by embedding the Tcl interpreter into the application.

This architecture—compiled mainline code with an embedded interpreter—offers a
number of advantages. It provides a robust runtime configuration facility and enables
the developer to concentrate on one portion of a task at a time, rather than mixing cal-
culation, communication, and GUI elements. Writing the GUI in a higher-level lan-
guage reduces development time, since this subsystem usually requires several
redesigns and iterations before users are happy with it. And, from a marketing end, it
means you can easily distribute the core product with different front ends.

The previous article demonstrated how to rewrite the old FORTRAN Lunar Lander
using FORTRAN for the mainline code and calculation subroutine and Tcl for the
user interface.

This article will expand the user interface without touching the core FORTRAN code
(much).

The one change to the original FORTRAN code is to move the hard-coded FORTRAN
constants into Tcl variables so that they can be defined at runtime.

The original code was:

! Set constants
impulse = 2000
fheight = 10000.0
speed = 100.0
fuel = 1000.0
gross = 900.0
CALL ftcl_start(‘config.tcl’)

And the new code is:

CALL ftcl_start(‘config.tcl’)
! Fetch constants defined in Tcl script
CALL ftcl_get_int(‘impulse’, impulse)
CALL ftcl_get_real(‘ht’, fheight)
CALL ftcl_get_real(‘speed’, speed)
CALL ftcl_get_real(‘fuel’, fuel)
CALL ftcl_get_real(‘gross’, gross)

This is the obvious use for a Tcl configuration file. Config.tcl can contain code like:

set impulse 2000
set fheight 10000.00
set speed 100.0
...

Or the configuration file could contain a script to let the user set configuration
options. This could be a glass tty set of questions and answers, a form to fill out, or
even a button bar like this to set gravitational acceleration for different destinations:

the tclsh spot

Vol. 29, No. 4 ;login:

by Clif Flynt
Clif Flynt is president of
Noumena Corp., which
offers training and con-
sulting services for
Tcl/Tk and Internet
applications. He is the
author of Tcl/Tk: A
Developer’s Guide and
the TclTutor instruction
package. He has been
programming computers
since 1970 and a Tcl
advocate since 1994.

clif@cflynt.com

49August 2004 ;login: THE TCLSH SPOT ●

●

P

R
O

G
R

A
M

M
IN

GThe 8.4 release of Tcl/Tk (2003) introduced a new widget (the labelframe) and a new
option to the button command (-compound) to make it easier to create button bars in
Tk.

The labelframe widget (described in the previous Tclsh Spot) behaves like a normal
frame; it holds other widgets, and it also supports options to control the outline and
label.

Syntax: labelframe widgetName ?-option value?

The code to create the labelframe that holds the button bar is simply:

set w [labelframe .planet -text “Choose your Destination”]

The new button option -compound makes it easy to create buttons with both an
image and text. Prior to 8.4, a button could contain either an image or text, but not
both.

The Tk image command is quite powerful, and the newer versions of Tk are adding
more facilities. Pure Tk supports images in GIF, PBM or X-Bitmap format. The img
extension adds support for JPG, TIF, BMP and other formats.

You can create a Tk image either from a file or by embedding the data as base-64 data.
The syntax for the image create command is:

Syntax: image create type ?name? ?options?

image create Create an image object of the desired type, and return a handle for
referencing this object.

type The type of image that will be created. May be

bitmap a two-color graphic.

photo a multicolor graphic.

?name? The name for this image.

?options? Options that are specific to the type of image being created.

Embedding the image as a base-64 data is an easy way to create task button bars.

For example, this code will create a simple two-button taskbar that will invoke proce-
dures named do_open and do_save when the appropriate button is clicked.

image create photo open -data {
R0lGODlhEgASAPIAAAAAAICAAMDAwPj8APj8
+AAAAAAAAAAAACH5BAEAAAIALAAAAAASABIA
AAM7KLrc/jAKQCUDC2N7t6JeA2YDMYDoA5hs
WYZk28LfjN4b4AJB7/ue1elHDOl4RKAImQzQ
cDeOdEp1JAAAO/// }

image create photo save -data {
R0lGODlhEgASAPEAAAAAAICAAMDAwAAAACH5
BAEAAAIALAAAAAASABIAAAI3lI+pywYPY0Qg
AHbvqVpBamHhNnqlwIkdeoJrZUlPcML0jde0
DOnxxHrtJA6frLhC8YiNpnNRAAA7//// }

set column 0
foreach img [lsort [image names]] {

Vol. 29, No.4 ;login:50

set w [button .b_$img -image $img -command do_$img]
grid $w -row 1 -column [incr column] }

The button bar that opens the Lander program is a bit more complex. It uses the
-compound option to show both text and images, and it waits for the user to select a
destination before continuing.

The -compound option specifies that a button should show both text and image, and
defines where to place the image. The -compound key can be bottom, center, left,
right, top, or none, to define where to place the image relative to the text. The value
none defines the button as having either image or text, but not both. This is the
default.

The buttons, created using inline base-64 data as done in the previous example, are
named for and contain small images of the destination they represent: Venus, Earth,
Moon, Mars.

The buttons are created with this code:

set w [labelframe .planet -text “Choose your Destination”]

foreach planet {Venus Earth Moon Mars} {
set b [button $w.b_$planet -compound bottom -text $planet \

-image $planet -command “setConditions $w $planet”]
pack $b -side left

}

The button bar can be turned into a modal interaction using the vwait command (dis-
cussed in the previous “Tclsh Spot”). The vwait command will cause the Tcl inter-
preter to wait until a variable has changed value.

After the window is displayed, a vwait can hold the Tcl interpreter in the event loop
(waiting for the user to select a destination) until the variable changes state.

Create buttons
#... pack $w
vwait gravity

When the user clicks a button, it will invoke the setConditions procedure with the
name of the parent window (the labelframe) and the destination. This procedure
assigns a value to the gravitational acceleration and destination variables and destroys
the parent window.

array set Gravities {Venus 8.8 Earth 9.8 Moon 1.7 Mars 3.9}

proc setConditions {parent dest} {
global Gravities gravity ready destination
set destination $dest
set gravity $Gravities($destination)
destroy $parent
set ready 1

}

When setConditions assigns a value to gravity and returns control to the event loop,
the vwait command is satisfied, and the evaluation of the script continues.

51August 2004 ;login: THE TCLSH SPOT ●

●

P

R
O

G
R

A
M

M
IN

GThe previous version of the Lander program would wait for the user to type in a new fuel burn and click the Go button before calcu-
lating the new lander conditions. A more modern version of the lander will use the Tcl scale command to accept the input and run
the simulation in realtime.

The scale widget allows a user to drag a slider to select a numeric value.

Syntax: scale scaleName ?options?

scaleName The name for this scale widget.

?options? There are many options for this widget. The minimal set is:

-orient orientation Whether the scale should be drawn horizontally or vertically: orientation may be hori-
zontal or vertical. The default orientation is vertical.

-length numPixels The size of this scale. The height for vertical widgets, and the width for horizontal
widgets. The height may be any valid Tk distance format, including inches, mm, points,
or pixels.

-from number One end of the range to display. This value will be displayed on the left side (for hori-
zontal scale widgets) or top (for vertical scale widgets).

-to number The other end for the range.

-label text The label to display with this scale.

-command script The command to evaluate when the state changes. The new value of the slider will be
appended to this string, and the resulting string will be evaluated.

-variable varName A variable which will contain the current value of the slider.

-resolution number The resolution to use for the scale and slider. Defaults to 1.

-tickinterval number The resolution to use for the scale. This does not affect the values returned when the
slider is moved.

Several Tk widgets support linking a variable to the widget, as is done using the -variable option in this scale widget. When the user
moves the scale, the value of that variable automatically changes, and if the script modifies the value of the variable, the scale widget
will move to reflect the change.

A horizontal scale bar to control the fuel burn can be built with this code.

scale .s -digits 3 -from 0 -to 10 \
-resolution .1 -showvalue true -length 400 \
-label “Fuel per second to burn” \
-variable burn -orient horizontal

grid .s -row 2 -column 1 -sticky ew -columnspan 5

Vol. 29, No.4 ;login:52

Using this scale widget and some labelframes and labels, we can make a control GUI
that looks like this to set the fuel to burn and display the current status of the lander:

You may notice that this GUI lacks the Go button the previous lander had for accept-
ing the amount of fuel to burn.

We can even change the behavior of the application from stoptime to realtime in the
Tk GUI, without modifying the compiled code.

The FORTRAN code calls a Tcl procedure wait4click to wait for a user to hit the Go
button. In the stoptime version of this GUI, that procedure used vwait to pause execu-
tion until the user clicked the Go button.

proc wait4click {} {
global ready
vwait ready

}
...

button .b -text “Go” -command “set ready 1”

To make the application run in realtime, we can use the Tcl after command to set the
ready variable. The after call acts like an automated user clicking the Go button once
a second.

proc wait4click {} {
global ready
vwait ready
after 1000 {set ready 1}

}

The ready variable is modified the first time the user selects the Gravity (in the set-
Conditions procedure) and is then modified by the after script once a second.

A realtime Lander game with a slider, though an improvement over the old FORTRAN
type interface requiring numbers to be typed in, would be nicer yet with a graphical
display. The next “Tclsh Spot” will describe better ways to represent the data.

53August 2004 ;login:

the bookworm

There are many books I want to men-
tion this month, so I’ll jump right in.

Administration
Mark Burgess has written a number of
worthwhile articles, including a series in
;login:, and has delivered several excel-
lent papers at USENIX (LISA) and other
events. I even published an article by
him in Computing Systems nearly a
decade ago.

So I wasn’t surprised to receive his Ana-
lytical Network and System Administra-
tion. I was surprised by the approach
that Burgess takes to system administra-
tion; he’s not really so worried about
keeping the network(s) or the machines
up and running as he is concerned with
the functioning of the elaborate and
complex “human-computer systems”
that make up the information technol-
ogy conglomerate.

This may well be the first book to
approach system administration by
means of complexity theory. It’s cer-
tainly the first one I’ve read that doesn’t
concentrate on the how-tos and recipes.
It’s a very fine piece of work.

Interestingly, while security appears to
preoccupy the journalists and the pub-
lishers, Burgess devotes only a few para-
graphs to it. But I received two works on
network security to compensate.

McNab’s work focuses on the methodol-
ogy of poking at your setup to ascertain
its weaknesses. It is an insightful guide

by Peter H. Salus
Peter H. Salus is a mem-
ber of the ACM, the
Early English Text Soci-
ety, and the Trollope
Society, and is a life
member of the Ameri-
can Oriental Society. He
owns neither a dog nor
a cat.

<peter@matrix.net>

BOOKS REVIEWED IN THIS COLUMN

ANALYTICAL NETWORK AND
SYSTEM ADMINISTRATION
MARK BURGESS

Hoboken, NJ: John Wylie, 2004. Pp. 366.
ISBN 0-470-86100-2.

NETWORK SECURITY
ASSESSMENT
CHRIS MCNAB

Sebastopol, CA: O’Reilly, 2004. Pp. 371.
ISBN 0-596-00611-X.

NETWORK SECURITY HACKS
ANDREW LOCKHART

Sebastopol, CA: O’Reilly, 2004. Pp. 298.
ISBN 0-596-00643-8.

SECURE ARCHITECTURES
WITH OPENBSD
BRANDON PALMER AND JOSE NAZARIO

Boston: Addison-Wesley, 2004. Pp. 519.
ISBN 0-321-19366-0.

LINUX UNWIRED
ROGER WEEKS ET AL.

Sebastopol, CA: O’Reilly, 2004. Pp. 297.
ISBN 0-596-00583-0.

LINUX FOR NON-GEEKS
RICKFORD GRANT

San Francisco: No Starch, 2004. Pp. 308 +
2 CD-ROMs.
ISBN 1-59327-034-8.

HOW LINUX WORKS
BRIAN WARD

San Francisco: No Starch, 2004. Pp. 347.
ISBN 1-59327-035-6.

UNDERSTANDING THE LINUX
VIRTUAL MEMORY MANAGER
MEL GORMAN

Upper Saddle River, NJ: Prentice Hall,
2004. Pp. 727 + CD-ROM.
ISBN 0-13-145348-3.

PROTOCOL
ALEXANDER R. GALLOWAY

Cambridge, MA: MIT Press, 2004.
Pp. 286.
ISBN 0-262-07247-5.

HACKERS AND PAINTERS
PAUL GRAHAM

Sebastopol, CA: O’Reilly, 2004. Pp. 258.
ISBN 0-596-00662-4.

to rendering your network less perme-
able as well as a guide to testing.

Lockhart’s book—reviewed in this issue
by Rik Farrow, so I’ll just give it a brief
mention here—really does serve up 100
“tips and tools” to help you harden your
network. I found it interesting and
learned a good deal from it.

OpenBSD is Theo de Raadt’s 1995
branch off the NetBSD tributary of
UNIX. I’ve always thought of it as the
variant designed for the paranoid
hacker. Palmer and Nazario have written
an excellent exposition concerning the
sorts of secure architectures you can
construct with OpenBSD. My sole prob-
lem is that I’m unclear who their audi-
ence is. If it’s the elementary one, then
some chapters (notably the ones on
packet filtering, IPSec, and IPv6) may be
too tough; if the target is the experi-
enced sysadmin, then I think the chap-
ters on installation, booting, packages,
etc., are just padding.

A Penguin Quartet
Hardly anyone plugs in anymore. I’m
not even certain that you can buy a
notebook without a wireless card. So
Linux Unwired is a handy and useful
guide to Wi-Fi, Bluetooth, infrared, cel-
lular networking, GPS, and other good
stuff. If you’re not clear on 802.11,
802.11a, 802.11b, . . . , 802.11i, this is the
book for you.

If you want to demonstrate to the least
geekish person you know that they can,
indeed, run Linux (instead of another,
nameless, product), get them Grant’s
Linux for Non-Geeks. There are a few
things about it that irked me—e.g.,
Grant’s use of “boot” and “boot disk”
without explanation; and while Fedora
core is provided with the book, at a time
when I can buy a machine pre-loaded
with Linux at Wal-Mart, there ought to
be a chapter that bypasses the install
phase entirely—but it’s certainly the best

THE BOOKWORM ●

54 Vol. 29, No. 4 ;login:

thing I’ve seen in years for someone who
wants to get eased in.

Ward’s How Linux Works is really very
good. In under 400 pages, Ward gives the
reader all the information required to
understand Linux internals, as I believe
you need to do in order to be a skilled
user. Ward’s book is valuable to both the
admin and those using Linux at home or
in the office.

Because of some manufacturing glitch,
while there are references like “Learning
the vi Editor [Lamb]” and “The UNIX
Programming Environment [Kernighan
and Pike]” and even “A Quarter Century
of UNIX [Salus]” scattered throughout
the book, there’s no bibliography or list
of references containing fuller biblio-
graphic information for the reader.
However, No Starch has put the PDF of
the references on its Web site:
http://www.nostarch.com/download/
howlinuxworks_bibli.pdf.

It’s nearly 40 years since I read Ken
Knowlton’s ACM paper “A Fast Storage
Allocator” and over 15 since Kirk McKu-
sick and Mike Karels’ USENIX paper on
the 4.3MMU. But I found Gorman’s
Understanding the Linux Virtual Memory
Manager really interesting.

If you’re into finding out just what
makes the inner penguin tick, this is a
book for you. Two fish to each author in
this section.

Esoterica
Galloway’s Protocol is a thought-provok-
ing essay in which the author contends
that, far from being a place of unre-
stricted, freely exchanged communica-
tion, the Internet is a regulated,
constrained, structured bureaucracy
governed by the technical protocols
(TCP/IP, HTTP, BGP, DNS, etc.). At the
end of it all, I don’t agree with him, but
it’s worth reading and thinking about
what he propounds.

Graham’s Hackers and Painters is
another thoughtful (and thought-pro-
voking) essay. Graham points out that
everything seems to be turning into a
computer: the typewriter, the camera,
the telephone. . . . Yet society makes fun
of nerds and vilifies the hackers who
make many things possible. There’s a lot
of insight here into the intersection of
art, commerce, and technology.

54 Vol. 29, No. 4 ;login:

thing I’ve seen in years for someone who
wants to get eased in.

Ward’s How Linux Works is really very
good. In under 400 pages, Ward gives the
reader all the information required to
understand Linux internals, as I believe
you need to do in order to be a skilled
user. Ward’s book is valuable to both the
admin and those using Linux at home or
in the office.

Because of some manufacturing glitch,
while there are references like “Learning
the vi Editor [Lamb]” and “The UNIX
Programming Environment [Kernighan
and Pike]” and even “A Quarter Century
of UNIX [Salus]” scattered throughout
the book, there’s no bibliography or list
of references containing fuller biblio-
graphic information for the reader.
However, No Starch has put the PDF of
the references on its Web site:
http://www.nostarch.com/download/
howlinuxworks_bibli.pdf.

It’s nearly 40 years since I read Ken
Knowlton’s ACM paper “A Fast Storage
Allocator” and over 15 since Kirk McKu-
sick and Mike Karels’ USENIX paper on
the 4.3MMU. But I found Gorman’s
Understanding the Linux Virtual Memory
Manager really interesting.

If you’re into finding out just what
makes the inner penguin tick, this is a
book for you. Two fish to each author in
this section.

Esoterica
Galloway’s Protocol is a thought-provok-
ing essay in which the author contends
that, far from being a place of unre-
stricted, freely exchanged communica-
tion, the Internet is a regulated,
constrained, structured bureaucracy
governed by the technical protocols
(TCP/IP, HTTP, BGP, DNS, etc.). At the
end of it all, I don’t agree with him, but
it’s worth reading and thinking about
what he propounds.

ments were devastating. Perhaps the
kindest was, “This book is a disaster.”
Andy Tanenbaum, author of several
good books as well as MINIX, stated in a
published retort that Brown “is not the
sharpest knife in the drawer.”

(It may be worth noting that the de Toc-
queville Institution is, at least in part,
funded by Microsoft.)

It’s actually quite easy to question
Brown’s assertions. But most important,
one has to realize at the very outset that
I don’t think Linus has ever claimed to
“invent” anything. (Nor am I sure that
either Dennis Ritchie or Ken Thompson
ever claimed to have “invented” UNIX—
their 1983 Turing Award was for “the
development and implementation of the
UNIX operating system.”)

Anyway, the roots of Linux are far from
“questionable.”

All knowledge builds on previous
knowledge.

Sir Isaac Newton (1642–1727) said, “If I
have seen further, it is by standing on the
shoulders of giants.” But that was
derived from Robert Burton
(1577–1640), who wrote, “Pigmaei
gigantum humeris impositi plusquam
ipsi gigantes vident” (pygmies placed on
the shoulders of giants see more than
the giants), deriving this from the
Roman general Didacus Stella. Operat-
ing systems build on one another. My
personal feeling is that it is relatively
pointless to try to go back much more
than four decades. But even then, at the
point where IBM had transitioned from
the 701 to the 704 and was moving from
the 709 to the 7090, the first transistor-
ized computer, it is clear that the big
development was time sharing.

So, the first truly important implemen-
tation was Corbato’s CTSS at MIT,
which led to both the Multics system
and to the Dartmouth Time Sharing
System.

Graham’s Hackers and Painters is
another thoughtful (and thought-pro-
voking) essay. Graham points out that
everything seems to be turning into a
computer: the typewriter, the camera,
the telephone. . . . Yet society makes fun
of nerds and vilifies the hackers who
make many things possible. There’s a lot
of insight here into the intersection of
art, commerce, and technology.

History and FUD

Alexis de Tocqueville observed that it is
easier for the world to accept a simple lie
than a complex truth.

If you have been following the SCO
Group shenanigans and/or the bizarre
articles by Rob Enderle or the market
analyses by Laura DiDio, you will recog-
nize the validity of de Tocqueville’s
remark.

But a May press release from the head of
the Alexis de Tocqueville Institution,
Ken Brown, has agitated me sufficiently
to devote time and space to trying to
counter the FUD.

Brown released a “study” in which it is
“revealed” that Linus Torvalds did not
“invent” Linux, which, says Brown, has
“questionable” roots.

Of course, Ken Brown doesn’t go into
detail—this whole thing is a teaser for
a “book he is writing on open source
software and operating systems.” The
“study” was promised for May 20, but I
received email from a “customer service”
person, informing me that “publication
has been delayed,” but that material was
available online.

Eric Raymond, whom I respect, read the
“excerpts” that were available. His com-

by Peter H. Salus

USENIX Historian

peter@netpedant.com

Dennis and Ken built UNICS (its origi-
nal name) on their experiences with
Multics following Bell Labs’ withdrawal
from the Multics project in spring 1969.
Many important features (like | “pipe”)
were suggested or instantiated by others.
Pipe was suggested by Doug McIlroy
and coded by Brian Kernighan.

At the 1979 USENIX Conference in
Toronto, AT&T announced its new
licensing fees, including $7,500 per CPU
for academic institutions. This led
Andrew Tanenbaum of the Free Univer-
sity in Amsterdam to create MINIX:

I decided to write a new operating sys-
tem from scratch that would be com-
patible with UNIX from the user’s
point of view, but completely different
inside. By not using even one line of
AT&T code, this system avoids the
licensing restrictions, so it can be used
for class or individual study. (A.S.
Tanenbaum, Operating Systems, Design
and Implementation, 1987)

Several years later, a student in Helsinki,
Finland, wrote an operating system, “just
for fun,” which he based on MINIX.
Linus Torvalds was going to call it
“Freax,” but his sysadmin persuaded him
to use “Linux.”

Linux was just a kernel. Thanks to the
near-universality of the Internet, it has
been augmented and improved by tens
of thousands of users.

So here we are—Linux is part of an
implementation of a UNIX-like operat-
ing system, inspired by MINIX, and
using a large number of GNU tools and
applications.

Be ashamed, Mr. Brown!

55August 2004 ;login:

The July 1977 issue carried the name
;login:, so the publication is 29 years old,
and the name is 27.

The name change surgery (like that of
the name of the organization) was the
direct result of a threatening phone call
from a lawyer at AT&T, informing Mel
that permission to use “UNIX” (a regis-
tered trademark) had not been granted
by Western Electric. (UNIX is not now,
nor has it ever been, a trademark of the
Santa Cruz Operation, Caldera, or Darl
McBride.)

Mel, Lou Katz, and Reidar Bornholdt
had called the informal group “UNIX
USERS.” Which they were. It was at the
May 24–27, 1978, meeting at Columbia’s
College of Physicians and Surgeons that
the organization was renamed USENIX,
a name suggested by Margaret Law.
(This gave rise to a letter from Stephen J.
Phillips, a patent lawyer at AT&T, which
Mel wryly published in ;login:.)

●

TH

E
B

O
O

K
W

O
R

M

TWENTY YEARS AGO ●

Twenty Years Ago
. . . and More
The USENIX 1984 Summer Conference
was held in Salt Lake City, June 12
through 15. The keynote was given by
Stuart I. Feldman. Today, Stu is Vice
President for Internet Technology in the
Systems and Technology Group at IBM.
In 1984, he was at Bellcore in New Jer-
sey.

“An Architecture History of the UNIX
System” is my favorite of all the many
(too many) keynotes I have experienced.

Stu began with the idea that operating
systems are a curious blend of art and
technology and went on to construct a
number of analogies between the
metaphorical architecture of OSes and
“the last thousand years of Western
architecture.” As his first slide was of
Hagia Sofia in Istanbul, originally built
in the sixth century, clearly his history
was of more than a millennium. But Stu
forged through Romanesque, Gothic,
the Renaissance, the Baroque, and
Rococo, his last slide being the Zwinger
Palace in Dresden, built in the early 18th
century in echo of Versailles.

It was a wonderful talk. Only Stu’s more
recent keynote and that of Penn Jillette
(a decade ago in Boston) have even
come close in entertainment value.

The June 1984 Conference, incidentally,
celebrated the 15th anniversary of both
UNIX and the ARPANET/Internet.
UNIX is now 35. And Linux 1.0 cele-
brated its 10th birthday in March.

In answer to several queries, let me clar-
ify the name(s) of this august publica-
tion. When Mel Ferentz began sending
out his “dittoed” newsletter, it was called
UNIX NEWS. The first issue was dated
July 30, 1975. But only up to the June
1977 issue was it called UNIX NEWS.

Vol. 29, No. 4 ;login:

book reviews
The Honeynet Project began in 1999 as a
loose collaboration of security
researchers. They began to collect infor-
mation about hacking techniques by set-
ting up networks containing honeypots,
systems intended to be attacked. Over
time, their techniques have improved,
making their honeynets more useful as
they became easier to set up.

I was most interested in the case studies
in later chapters of the book. Careful
explanations of how to diagnose hacked
systems are both useful and rare. I espe-
cially enjoyed reading about just how
much work went into decompiling a
binary attack tool. I teach the basics of
understanding how to assess a hacked
system, but the book goes a lot deeper
than I have time for.

If you want to learn about practical
computer forensics, there is a wealth of
material in this book. Based on real-life
experience, this book is the one you
want if you are permitted to diagnose
one of your own systems after it has
been hacked. Ideally, you will use the
examples on the included CD-ROM
before that occurs.

MAC OS X: THE MISSING MANUAL
DAVID POGUE

Sebastopol, CA: O’Reilly, 2003. Pp. 762.
ISBN 0-596-00615-2.

The mere size of this book hints that
there is a lot missing from the OS X
online help system—and I’m not just
joking about the security hole discov-
ered in May 2004. This Missing Manual
has already proven its worth more than
once for both me and my wife.

When I bought a G5 in 2003, I set it up
in my office and started configuring it.
At first I thought, “This is a no-brainer!”
Installing software packages from CDs
went smoothly, as did configuring the
G5 with static IP addresses. But then I
needed root, and found it wasn’t there.

57

REVIEWED BY RIK FARROW

NETWORK SECURITY HACKS
ANDREW LOCKHART

Sebastopol, CA: O’Reilly, 2004. Pp. 298.
ISBN 0-596-00643-8.

The latest in the series of “Hack” books,
Network Security Hacks provides you
with 100 mini-security lessons in how to
use security tools and techniques. I liked
the book, as I find there is always some-
thing new to learn, and the Web is not
always the best place to find out how a
tool works.

I found most of the hacks clearly writ-
ten, with enough examples to explicate
the descriptions. Occasionally, I would
discover a subtlety that might confound
the naive user: for example, instructions
for setting up SSH port forwarding that
simply assume that the reader knows
that the other end of the connection
must already be running an sshd.

Still, I really appreciate the work that
went into the hacks. The format makes it
easy to pick the book up when you have
less than an hour to try to improve your
skills or learn how to use an unfamiliar
tool. There is a lot that will be familiar to
expert sysadmins, but for a beginner-to-
intermediate sysadmin, there’s lots to
learn here.

KNOW YOUR ENEMY: LEARNING
ABOUT SECURITY THREATS, 2D ED.
THE HONEYNET PROJECT

Boston: Addison-Wesley, 2004. Pp. 740.
ISBN 0-321-16646-9.

This is the second edition of the Hon-
eynet Project’s opus, and I was interested
in seeing what had been added. If you
follow the Honeynet Project closely, a lot
will be familiar. But the second half of
the book contains forensics case studies
that will alone be worth the purchase
price for many readers.

Well, there is a root account in MacOS
X; you just need to know how to enable
it. The Missing Manual provides step-by-
step instructions, as well as important
warnings about why you don’t want to
use the root account and a recommen-
dation to use sudo instead.

In another test of usability, Pogue’s book
passed one of the hardest tests I could
imagine. I had set up an account on the
G5 for my wife. Part of the reason I got a
G5 was that I was tired of re-installing
Mac OS 9, as it would get corrupted
within a couple of weeks. Now my wife
could use my G5, and I could manage it
using a terminal window. Well, not
quite.

First, my wonderful wife managed to
rename her Library folder, which has
immediate and dire consequences. She
really didn’t even know that was what
she had done, but I needed both Pogue’s
help and the root account to fix the
problem.

But that was not the acid test. I put The
Missing Manual by the G5 and suggested
that my wife try reading the manual
instead of automatically asking me ques-
tions. Not only did she read the manual,
but she learned how to use the OS X cal-
endar tool with the help of the book.
She has continued to use The Missing
Manual to learn about the Mac and to
solve other problems on her own. (I still
get to help with the more mysterious
issues.)

The Missing Manual is clearly written
and works for both technical and non-
technical users. I can highly recommend
this book.

58

notes

Vol. 29, No. 4 ;login:

and these are presented below, in no
particular order.

USACO Finalist Competitors
Joe Zimmerman is a 15-year-old Rhode
Island sophomore. “I started program-
ming in sixth grade, having stumbled
across a copy of VB somewhere in my
travels. Of course, I was immediately
hooked, and went on to learn C++, C,
Java, BASIC, in that order. Eventually I
heard of these nifty things called algo-
rithms, and a couple of years and a lot of
problems later, here I am.” Joe also quali-
fied for the USA Math Olympiad
(USAMO) this year (as did many other
USACO members). Joe is a Linux and
MacOS fan. He also enjoys “Frisbee,
learning languages, watching Seinfeld,
reading a good book, hanging out with
friends, etc.”

Russian immigrant Boris Alexeev, grad-
uating senior from Athens, Georgia, not
only attended last year’s camp and IOI
(B-team member) but also likes “math,
bouldering, driving, ultimate Frisbee,
music, black currant sorbet, foosball,
Perl, air hockey, philosophizing, and
pretty solutions.” Boris also placed sec-
ond in the Intel (formerly Westing-
house) Science Talent Search, a prize
worth $75,000. Boris intends to major in
computer science theory.

Marcello Herreshoff attends high school
across the street from Stanford Univer-
sity in California. He runs an extensive
Web site with, among other things, free
software he created, poems he’s written,
and political and philosophical postings.
He enjoys programming, poetry, jug-
gling, hand-blowing soap bubbles, clas-
sical piano performance, philosophy,
mathematics, and playing the jaw harp.
He listed languages he knows: “C/C++
(with GNU extensions, of course!), Perl,
various shells, Scheme/Lisp html (if you
are userly enough to actually consider it
a language), LaTeX, m4, cpp and other
macro languages,” and others. He has

USENIX MEMBER BENEFITS
As a member of the USENIX Association,
you receive the following benefits:

FREE SUBSCRIPTION TO ;login:, the Association’s

magazine, published six times a year, featur-

ing technical articles, system administration

articles, tips and techniques, practical

columns on such topics as security, Tcl, Perl,

Java, and operating systems, book reviews,

and summaries of sessions at USENIX con-

ferences.

ACCESS TO ;login: online from October 1997

to last month <www.usenix.org/

publications/login/login.html>.

ACCESS TO PAPERS from the USENIX Confer-

ences online starting with 1993

<www.usenix.org/publications/library/

index.html>.

THE RIGHT TO VOTE on matters affecting the

Association, its bylaws, election of its direc-

tors and officers.

DISCOUNTS on registration fees for all

USENIX conferences.

DISCOUNTS on the purchase of proceedings

and CD-ROMS from USENIX conferences.

SPECIAL DISCOUNTS on a variety of products,

books, software, and periodicals. See

<http://www.usenix.org/membership/

specialdisc.html> for details.

FOR MORE INFORMATION

REGARDING MEMBERSHIP OR

BENEFITS, PLEASE SEE

http://www.usenix.org/

membership/

OR CONTACT

office@usenix.org

Phone: 510 528 8649

USACO: The USA
Computing
Olympiad

[Editor’s note: USENIX is a major spon-
sor of USACO.—RK]

The end of the domestic programming
contest season is upon us. Juniors Eric
Price (from Thomas Jefferson High
School of Science and Technology) and
home-schooled Alex Schwendner maxed
the US Open with perfect 1000 point
scores. They and 14 others will attend
USACO training camp in Wisconsin to
compete for four spots on our interna-
tional traveling team headed to the
International Olympiad in Informatics
(IOI) in Athens, Greece, this September.

The coaches have huddled and run the
USACO finals at the University of Wis-
consin–Parkside. I thought you might be
interested in some of the students and
their interests/accomplishments. I know
that we read in the newspapers too often
about all the bad things that pre-college
students do, whether it’s wild parties
that get out of hand or serious crime
(my community has seen a few deadly
shootings lately). The students intro-
duced below appear to exemplify the
other side of the coin. Camp partici-
pants are chosen based on their poten-
tial to win a gold medal at the
international competition this year or in
some future year.

A quick survey of the seniors on the All-
American team yields these results: five
students bound for MIT, two for Har-
vard (both originally from California),
and one each headed for Princeton and
Carnegie Mellon in Pittsburgh.

We asked them for quick little introduc-
tions on a mailing list set up for finalists,

by Rob Kolstad
kolstad@usenix.org

created “a Linux tutorial, a planetary
simulator, a version of vi written entirely
in Perl, [and] a contribution to xbind-
keys allowing for scheme-based configu-
ration files.”

Fourteen-year-old John Pardon hails
from Durham, North Carolina, where
his father is a math professor. He is
interested in computer science, math,
and cello. He recounts, “I don’t remem-
ber exactly when I started programming;
it was sometime before 4th grade,
though. I took the USAMO this year for
the first time and was invited to [train-
ing camp]. I am taking Calculus BC this
year. I have been playing the cello for
eight years. I play with the Duke Univer-
sity String School in their orchestra and
in a chamber group. My favorite piece is
the Elgar Concerto for Cello.” At camp,
we learned that his fifth grade program-
ming project was an expression parse,
complete with a proper parse tree. “Dad
found a graduate student to help me,” he
demurs.

Eric Ma, from Maryland, is another
math and computer competitor. “I
began programming in around seventh
grade with True Basic, then learned
about USACO in ninth grade and began
learning C++ that year.... Like a lot of
others, I play chess, the piano, cards, and
of course, video games. I also like listen-
ing to music (just about anything), and
watching and playing sports, especially
football (go Packers!) and basketball.”

Anthony Kim, junior from TJHSST, likes
computer programming and math and
is “a dedicated member of TJ’s math
team and computer team. I started pro-
gramming in QBasic when I was in sixth
grade. I wrote several simple programs
that printed out various star pyramids,
[performed] basic computations, or
drew something. Then I stopped pro-
gramming during the following two
years in middle school for some reason. I
returned to programming (this time in
C++) my freshman year in an introduc-

59August 2004 ;login:

own. In sixth grade I learned VB, and
the following summer I took a C++
class. I enjoy playing basketball, ultimate
Frisbee, photography, reading, chess,
and disturbing the peace with my gui-
tar.”

Home-schooled Alex Schwendner, 17,
has attended three USACO camps and
two IOIs already. Alex occasionally
audits graduate math classes at the Uni-
versity of Texas in his home town of
Austin. “My favorite data structures are
tries and hash tables,” he writes, “and my
favorite algorithms include network-
flow, FFT, Bellman-Ford, Rabin-Karp,
and DP algorithms. I enjoy program-
ming for interesting projects when I
have a good idea for one. I really like
LaTeX. I also do the Math and Physics
Olympiads, and have been invited to
both of their camps this year (and previ-
ously). I’ll be going to RSI (Research Sci-
ence Institute) at Caltech and to MOP
(the Math Olympiad Program [training
camp]) later this summer. I enjoy
bridge, fencing, chess, Diplomacy, sci-
ence fiction, and juggling.”

Junior Tom Belulovich from New Jersey
“started tinkering around with QBASIC
when I was about eight or so, and
started learning C++ Freshman year. I
also do math competitions, like AMC,
AIME, and USAMO.”

Colorado junior Ben Joeris says, “I’ve
been programming since I was 10. I
worked for a startup game company
during junior high, but they went belly
up.... Recently I have been working on
research in circular string-searching
algorithms with applications in group
theory with Ross McConnell, a professor
at Colorado State University. I enjoy
playing violin (and, occasionally, guitar),
composing music, and solving fun math
problems. I’m also into Science
Olympiad. Of course, I also love listen-
ing to music. My personal favorite bands
are Anti-Flag, Propagandhi, and Apoc-
olyptica.”

USENIX NOTES ●

tory computer science course and took
interesting computer science courses
offered at TJ later. I like to play basket-
ball, football, Frisbee and computer
games (mostly old arcade games now).”

Talented Adam Rosenfield from Lexing-
ton, Massachusetts, was another mem-
ber of last year’s IOI B-team and says,
“I’ve been programming since I was
about nine or so. I started with QBasic,
moved on to Pascal, and then on to
C++, which is what I use now. I also
know Java.... I enjoy playing video
games, especially RPGs, adventure, and
RTS games, watching the local sports
teams, biking, skiing, playing Frisbee,
and playing bridge. I also play the clar-
inet in my school’s wind ensemble.”
Adam has been a USAMO participant
for four years.

Fifteen-year-old Richard Ho also attends
high school across the street from Stan-
ford. “My interests are in computers,
math, and piano. I’ve taken BC calculus
AP during my freshman year. Also, I
qualified for the USAMO in both my
freshman and sophomore years. I’ve also
received second place category award in
the California State Science Fair. I
started programming with TI-BASIC on
my TI-89, and moved on to C/C++
when I was 10. This year, I learned Java
and Scheme in school.... I like playing
the piano; I have played piano for more
than 10 years. I also enjoy listening to
classical music, although playing it is
more enjoyable.” Richard’s impromptu
extended piano concerts at camp were
awesome. Coach Percy Liang, an excel-
lent keyboard artist who sometimes
spends 20 hours/week practicing, said,
“Richard’s massive repertoire is incredi-
ble.”

Nate Bauernfeind, 17, attends a boarding
school in northern Wisconsin. “I’ve been
programming ever since I can remember
(my parents claim since before I could
talk, but well... you can never trust par-
ents). I’ve learned pretty much all on my

●

U

SE
N

IX
 N

O
TE

S

Vol. 29, No. 4 ;login:

contests, grading system, and extracur-
ricular events (miniature golf, movie
night, business simulation contest,
amusement park—that sort of thing).

Four coaches kept the problems and
analyses running smoothly:

■ CMU grad student Hal Burch.
You’ve seen his work at the map of
the Internet in National Geographic
magazine. He also co-founded a
startup company with our own Bill
Cheswick. Hal earned a Best Paper
award at USENIX’s LISA 2000 con-
ference.

■ MIT grad student Brian Dean.
Brian won MIT’s highest award for
graduate teaching assistants last
year. He’s working on a multimedia
algorithm book, currently at 400
pages.

■ Harvard alumnus and MIT gradu-
ate student Russ Cox. Russ recently
earned his Emergency Medical
Technology certificate and has
directed two musical theater pro-
ductions over the last couple of
years.

■ Recent MIT graduate Percy Liang.
Percy also coached MIT’s ACM con-
test team, which placed fifth in the
international final (highest of all
USA teams).

Math and computer whiz Anders Kase-
org, 18, is a home-schooled senior from
Charlotte, North Carolina, who won this
year’s national championship for sus-
tained performance throughout the year.
He has “been programming from age
five, though I only started USACO last
year right before the Open, in time to
make training camp and the IOI team. I
also do math competitions: this will be
my fifth year at the Math Olympiad Pro-
gram.... I juggle approximately seven
balls and five clubs, and like playing the
piano, Frisbee, and chess.”

TJ senior Brian Jacokes has attended two
camps already. He likes “math contests,
ultimate Frisbee and disc golf, piano, ska
music, reading (Vonnegut and Rushdie),
ice cream, ping pong, chess, running
(mile, 2-mile, 5k), The West Wing,
bridge, poker, and Minesweeper. Oh,
and I like pirates (not the music/soft-
ware pirates [but] the ones that sail the
high seas and say ‘ARRRR’ and plunder
booty). I’m a fan of vi, Linux, and
dynamic programming.” Brian left camp
after contest two (about 1:30 p.m. on
Friday), flew to his home near Washing-
ton, DC, ran a distance event in the
regional track competitions, and
returned in time to win Saturday’s five-
hour competition that started at 8 a.m.

Tiankai Liu, 18, from California, appears
extensively in the new book Countdown

60

about the USA Math Olympiad team
members. He attends Exeter, a presti-
gious private boarding school on the
East Coast, and is heading into his third
training camp. He’s won two gold IOI
medals already and more medals in
international math competitions. “I
started programming in QBasic in sec-
ond grade. In my childhood, I wasted a
lot of time playing computer games and
trying to make my own. I couldn’t
understand pointers, so I only switched
to C in tenth grade. I am also interested
in mathematics. I have competed in
MATHCOUNTS, ARML, USAMO, and
the IMO. My hobbies include piano
(which I’ve played for many more years
than I’m good for), foreign languages (of
which only in French am I close to being
competent), and Quadball.”

Notice the frequent ties to early pro-
gramming experience, math, piano, jug-
gling, and Frisbee. I don’t know exactly
how to interpret this. They are a very
interesting group of people who obvi-
ously focus a bit on the technical side of
life but who universally seem to have
other interests, some quite far afield
from those of stereotypical nerds.

The Finals
The final competition week proceeded
swimmingly, with USACO director Don
Piele organizing operations and head
coach Rob Kolstad coordinating the

Addison-Wesley/Prentice Hall PTR

Ajava Systems, Inc.

AMD

Aptitune Corporation

Asian Development Bank

Atos Origin BV

Delmar Learning

DoCoMo Communications
Laboratories USA, Inc.

Electronic Frontier Foundation

Hewlett-Packard

Interhack

MacConnection

The Measurement Factory

Microsoft Research

Portlock Software

Raytheon

Sun Microsystems, Inc.

Taos

UUNET Technologies, Inc.

Veritas Software

USENIX Supporting Members

Results were often printed and distrib-
uted before the competitors rose from
their seats after the intellectually strenu-
ous three- and five-hour competitions.

The opening “fun” contest (used to
make sure the competitors are familiar
with the extant machines, environment,
and compilers) was to recode the itoa()
function for speed. The better programs
were running at 20x the speed of
sprintf() using very clever algorithms.

A new fun event this year was IBM’s
“CodeRuler,” a Java-based competition
in which programs role-played a
medieval kingdom, directing peasants
and knights to take over land and even
other kingdoms. A colorful presentation
of the teams battling each other in
frame-by-frame animation pitted
USACO programs not only against each
other (in rounds with 4–6 total “rules”)
but also against the ACM champions
from this year’s world competition. My
recollection is that only a program from
Russia bested the best of the USACO
competitors’ submissions. A final round
showcased the program from coaches
Dean and Liang against the best of the
USACO finalists. Happily, the coaches
prevailed. I think the IBM representative
was impressed.

We chose the four finalists to represent
the USA in September’s International
Olympiad to be held in Greece:

61August 2004 ;login:

Alain Hénon
Retires

Al Hénon, ;login: managing editor since
2001 and typesetter since 1997, has
retired as of the June issue. Al marshaled
authors (and editors) extremely success-
fully during his tenure. Full of life and
energy, his international background
contributed a real flair to everything he
touched.

I asked Al why he would want to retire,
given the success we’re having. “Rob,” he
said, “I’ve had a job continuously since
1958. That’s going on 46 years without
taking any real time off. I think it’s
time.” Well, I guess so!

Please join me in thanking Al for his
superb contributions and in wishing
him the greatest success in his next ven-
ture. Please join me in welcoming Jane-
Ellen Long back as our managing editor.

The USENIX
Association
Financial Report
for 2003

The following information is provided
as an annual report of the USENIX
Association’s finances. The accompany-
ing statements have been reviewed by
Michelle Suski, CPA, in accordance with
Statements on Standards for Accounting
and Review Services issued by the Amer-
ican Institute of Certified Public

USENIX NOTES ●

■ Senior Brian Jacokes
■ Senior Anders Kaseorg
■ Junior Eric Price
■ Junior Alex Schwendner

This is potentially the strongest team
we’ve ever had, so my hopes are high for
a great medal performance.

This year’s USACO program was spon-
sored by:

■ USENIX
■ SANS
■ ACM
■ IBM

We’re seeking sponsors at the contest
level for next year so that we can expand
our program to individuals closer to the
entry level. Long discussions at camp
evolved a sort of “trickle-up” theory that
suggests that higher quantity and quality
at lower levels will foster higher quantity
and quality at higher levels as the years
go by. We’re expanding the competition
rule; this year’s highest-level competi-
tions had as many as 300 people—all
competing a full level above the highest-
level competitions of only two to three
years ago.

Learn more about USACO at
http://www.usaco.org, or even try the
training at http://train.usaco.org/
usacogate.

●

U

SE
N

IX
 N

O
TE

S

USENIX Board of Directors
PRESIDENT

Michael B. Jones, mike@usenix.org

VICE PRESIDENT

Clement C. Cole, clem@usenix.org

SECRETARY

Alva Couch, alva@usenix.org

TREASURER

Theodore Ts’o, ted@usenix.org

DIRECTORS

Matt Blaze, matt@usenix.org
Jon “maddog” Hall, maddog@usenix.org
Geoff Halprin, geoff@usenix.org
Marshall Kirk McKusick, kirk@usenix.org

EXECUTIVE DIRECTOR

Ellie Young, ellie@usenix.org

Communicate directly with the USENIX Board
of Directors by writing to board@usenix.org.

by Rob Kolstad
kolstad@usenix.org

by Ellie Young
Executive Director
ellie@usenix.org

Vol. 29, No. 4 ;login:

Accountants. Accompanying the state-
ments are several charts that illustrate
where your USENIX and SAGE mem-
bership dues go. The Association’s com-
plete financial statements for the fiscal
year ended December 31, 2003, are avail-
able on request.

FINANCIAL STATEMENTS SUMMARY

Although the trend of low conference
attendance continued in 2003, USENIX
is a healthy organization. In 2003, hold-
ing the same number of conferences as
the previous year, USENIX had a net
operating deficit of $116K (vs. $831K in
2002). During the budgeting process,
USENIX attempted to break even by
raising registration fees slightly, continu-
ing to spend less in good works, and
reducing staff, overhead, and expenses.
Even so, a deficit resulted, due to lower
conference attendance at most confer-
ences, attrition/penalty fees imposed by
the hotels for our failure to meet room
block commitments, and lower mem-
bership revenue. The performance of the
Reserve Fund improved, and this offset
the deficit. USENIX ended the year with
an increase in net assets of $457K.

USENIX MEMBERSHIP DUES AND

EXPENSES

USENIX averaged 6,500 members in
2003, a 14% drop from 2002. Of these,
53% opted for SAGE membership as
well.

Chart 1 shows the total USENIX mem-
bership dues revenue ($650K) for 2003,
divided into membership types. Chart 2
presents how those dues were spent.
Note that all costs for producing confer-
ences, including staff, marketing, and
sales and exhibits, are covered by rev-
enue generated by the conferences.

SAGE

Chart 3 shows SAGE revenue sources for
2003 (primarily, membership dues of

62

$130K and the revenue share from the LISA conference of $109K). Chart 4 shows all
SAGE expenses (a total of $262K).

OTHER USENIX PROGRAMS

Chart 5 describes how the money allocated to Student Programs, Good Works, and
Standards Activities ($108K) was spent in 2003. Chart 6 shows how the USENIX
administrative expenses were allocated. (The category “other” covers such items as
taxes, licenses, bank charges, and miscellaneous expenses.)

63August 2004 ;login: USENIX NOTES ●

●

U

SE
N

IX
 N

O
TE

S

Vol. 29, No. 4 ;login:64

65August 2004 ;login: USENIX NOTES ●

●

U

SE
N

IX
 N

O
TE

S

Restructuring of
SAGE Governance

Executive Summary
The USENIX Board of Directors, in conjunction with the
SAGE Executive Committee, have decided that the current
Special Technical Group (STG) model of governing SAGE has
outgrown its usefulness. Beginning in July, SAGE ceased to be
an STG and instead is governed by a subcommittee comprised
of USENIX Board members and members of the SAGE com-
munity. The SAGE Executive Committee has been empowered
to explore and undertake steps to create a separate nonprofit
association to which SAGE’s assets will be transferred upon
successful completion of defined milestones.

Whether SAGE remains within USENIX or spins off as a sepa-
rate organization, USENIX is dedicated to ensuring that current
SAGE benefits and services are maintained. In particular:

• USENIX values the system administrators in its member-
ship.

• USENIX will ensure that system administration services are
supplied to its members.

If a nonprofit SAGE organization is formed, USENIX will ensure
an orderly transition of benefits and services to the new organi-
zation and will cooperate with that organization to the mutual
benefit of members of both organizations.

The Details
USENIX set out—over 14 years ago—to create a special techni-
cal group for system administrators. USENIX continues to want
to serve sysadmins. The current system, however, does not seem
to be working. Although the costs are down (SAGE almost
breaks even), progress is slow.

The challenge is, then, how do we continue to serve sysadmins
while changing the environment to a successful one? USENIX
wishes to continue the services to system administrators that
they deliver well, including the LISA conference, ;login: (which
includes much sysadmin content), the salary survey, SAGE book-
lets, and the sage-members mailing list. However, building a
much larger, member-driven SAGE would require a significant
restructuring of USENIX’s business processes and probably
needs to be done within a wholly different organizational struc-
ture from that of USENIX and its STG model.

Therefore, it was resolved by the USENIX Board of Directors
that the STG framework for SAGE governance be dissolved
effective June 30, 2004. USENIX will continue to send renewal
notices to and collect dues from SAGE members and will con-
tinue to run the LISA conference, provide system administration
content in ;login:, and provide SAGE-related services including
the salary survey, SAGE booklets, and the sage-members mailing
list. The existing SAGE Executive Committee will serve out their
terms, but no elections will be held to instate a new executive
committee. During this wind-down phase of the SAGE Exec,
their primary role will be to determine whether to pursue option
(2) below and, if so, to initiate appropriate actions. During this
time SAGE will be governed by a subcommittee of the USENIX
Board composed of Geoff Halprin, Jon Hall, and Mike Jones,
along with SAGE member David Parter and possibly another
member of the SAGE community.

Option (1): USENIX continues to offer a SAGE membership and
to provide the system administration program as an essential

by Kirk McKusick
USENIX Board of Directors
kirk@usenix.org

Vol. 29, No. 4 ;login:

part of USENIX activities. Existing pro-
grams and services are folded back into
USENIX, to be governed by a subcom-
mittee of the USENIX Board. This option
starts upon the dissolution of the STG
framework and will be continued for the
indefinite future or until programs and
services are transferred to a new organi-
zation set up under option (2).

Option (2): Separate SAGE from USENIX
and allow it to go its own way under the
SAGE name. A detailed memorandum of
understanding was passed, containing
specific milestones that are go/no-go deci-
sion points. These milestones will be fur-
ther refined when and if a separate SAGE
organization comes into existence.

Whichever path SAGE chooses, USENIX
remains committed to its members who
are system administrators and looks for-
ward to serving their needs in the future,
independently and, if SAGE becomes a
separate organization, in collaboration
with that organization.

2004 STUG and
Flame Awards Go
to M. Douglas
McIlroy
Doug McIlroy, winner of both the 2004
Software Tools User Group Award and
the 2004 USENIX Lifetime Achievement
Award, wrote some of the most basic
and timeless tools for UNIX, including
sort(1), spell(1), diff(1), join(1),
graph(1), speak(1), and tr(1); signifi-
cantly influenced the design of macros;
contributed to various computer lan-
guages; and also delved into computer
security, graphics, cartography, storage
allocation, and garbage collection,
and even documentation techniques.
For more information, see
http://www.usenix.org/about/flame.html
and
http://www.usenix.org/about/stug.html.

66

April 10–15, 2005
Anaheim, CA

PARTICIPATE BY
SUBMITTING A PAPER!

Submissions for the General Session and
FREENIX/Open Source Refereed Papers
Tracks are due on Monday, October 18,
2004.

Please visit www.usenix.org/usenix05
for details.

Check out the Web site for more information!
www.usenix.org/usenix05

JOIN US IN ANAHEIM IN 2005 for the latest
ground-breaking information on a wide variety of
technologies and environments.

3rd Virtual Machine Research
and Technology Symposium
(VM ’04)
SAN JOSE, CALIFORNIA
MAY 6–7, 2004

TECHNICAL SESSIONS

(The first Keynote Address, on “Virtual
Machines: Past, Present, and Future,”
was presented by Mendel Rosenblum of
Stanford University.)

2D KEYNOTE ADDRESS
THE MONO VM
Miguel de Icaza, Co-Founder and CTO,
Ximian
Summarized by Maria Cutumisu
Miguel de Icaza discussed the imple-
mentation of Mono, an open source
execution engine for the ECMA CLI
specification. The Mono VM was imple-
mented by an enthusiastic group of peo-
ple who were newcomers to the virtual
machine domain but were attracted by
the social, technical, and personal
aspects of this project. They were inter-
facing with a large community of devel-
opers around the world and were
observing a growing user community.
The speaker started with a brief descrip-
tion of various systems, interesting for
their capabilities with respect to the
Mono project: UNIX, the Gnome Pro-
ject, and Latte 2000. He continued with
historical information about Ximian
which was focused on making Linux
succeed on the desktop.

67August 2004 ;login: VM ’04 ●

At the time Mono was launched, the
intent of the authors was to bring .NET
features to Linux (C# compiler, virtual
machine, core class libraries) and to pro-
vide open source features well suited to
distribute the work. The team did not
have any experience in compilers or vir-

tual machines at the time. Currently,
Mono has become an open source
implementation of .NET that is based
on the ECMA/ISO standards, includes
C# and VB compilers, and works with
third-party compilers, such as Delphi,
Eiffel, COBOL, FORTRAN, Mercury,
Python.NET, PerlSharp, and Nemerle.

The speaker described in detail several
Mono features, including multi-lan-
guage support, two stacks, C# compiler,
virtual execution system, runtime, JIT
environment, and support for optimized
code compilation. Today Mono benefits
from extensive inlining of intrinsic oper-
ations and an SSA-based representation.
The talk concluded with an interesting
discussion about research in virtual
machines and compilers, as well as a
brief outline of .NET limitations. Mono
URL: http://www.go-mono.com.

A VIRTUAL MACHINE GENERATOR FOR HET-
EROGENEOUS SMART SPACES

Doug Palmer, CSIRO ICT Centre
Summarized by Maria Cutumisu
Doug Palmer presented a virtual ma-
chine generator that provides “numer-
ous virtual machines, each tailored to

conference reports
This issue’s reports focus on the 3rd
Virtual Machine Research & Technology
Symposium, held in San Jose, Califor-
nia, May 6–7, 2004.

OUR THANKS TO THE SUMMARIZERS:
Maria Cutumisu
Vivek Haldar
Yahya H. Mirza
Feng Qian
Ananth I. Sundararaj

Photo: VM ’04 Program Chair Tarek
Abdelrahman, with Best Paper winners
Vivek Haldar and Deepak Chandra (not
shown: co-author Michael Franz)

the capabilities of a class of resources.”
The speaker started by defining hetero-
geneous smart spaces as “networks of
communicating, embedded resources
and general-purpose computers that
have a wide spread of power and capa-
bilities.” These spaces are typical of com-
mercial, agricultural, or other outdoor
environments.

The author then stated the central pro-
gramming problem: Each heterogeneous
smart space is unique; therefore a pro-
gramming model that allows domain
knowledge to be reused across smart
spaces is necessary. The virtual machine
generator constitutes a solution to the
problem of providing a single virtual
machine implementation that operates
in heterogeneous smart spaces.

The speaker illustrated the virtual
machine generation process and talked
about the subset declaration for a virtual
machine. The virtual machine is speci-
fied in an XML document, and this
specification allows a stack-based virtual
machine to be generated. A virtual
machine specification and a subset dec-
laration together constitute the input for
the generator. The generator analyzes
the virtual machine and generates
source code files for Java and C that
implement the subset virtual machine.
These source files are compiled and
linked in the presence of a standard
library of support functions and classes;
an assembler is generated at this point.
The complete virtual machine is ana-
lyzed, and instruction codes, event
codes, and stores are allocated before
subsetting.

In conclusion, the advantages of the
compact generator were outlined,
including the fact that any optimizations
that are made will propagate to future
generated virtual machines. Moreover,
“using a generator allows virtual
machines to be quickly generated for
new resources and to try new instruc-
tion sets.”

68 Vol. 29, No. 4 ;login:

MCI-JAVA: A MODIFIED JAVA VIRTUAL
MACHINE APPROACH TO MULTIPLE CODE
INHERITANCE

Maria Cutumisu, Calvin Chan, Paul Lu,
and Duane Szafron, University of
Alberta
Summarized by Yahya H. Mirza
Duane Szafron presented an attempt to
decouple the various roles a class
plays—concept, interface, implementa-
tion, representation, factory, and
extent—by separating them. The paper
makes the case that most object-ori-
ented languages do not separate these
notions. The authors state that Java loses
an opportunity for code reuse. This
problem is illustrated by showcasing a
concrete example from the Java I/O
libraries. In Java a class can’t inherit code
from two parents, since it does not sup-
port multiple code inheritance.

A new language construct, “implementa-
tion” is presented as a solution. An
implementation is essentially an inter-
face with pure behavior code, but does
not include data. With this approach,
one can inherit code, but not data, from
two parents, thus relaxing Java’s inheri-
tance semantics. The authors claim that
they achieved significant code reuse by
adding this feature to Java. The paper
also adds a new “multi-super” mecha-
nism which can be used to define an
inheritance path to a particular super-
implementation.

The “implementation” language feature
is applied by making a minimal number
of changes to the Jikes Java compiler and
the Sun JVM. The compiler code gener-
ation process includes generating an
invokeinterface for calls for which the
static receiver type is an implementa-
tion. An invokespecial is generated for
multi-super calls but with a reference to
an interface instead of a class; the virtual
machine can recognize these calls since
all invokespecial bytecodes refer to
classes. Finally, when the receiver is
“this,” an invokeinterface is generated
instead of the usual invokespecial.

The changes to the Sun JVM include

changes to the class loader (interface
method table construction algorithms).
These changes included detecting and
reporting potential ambiguities, copying
code pointers from interfaces to classes,
and, finally, creating new method blocks
on the JVM C-heap in two rare scena-
rios. The presenter stated that the reso-
lution and dispatch of invokevirtual and
invokeinterface bytecodes and the quick-
ening of these bytecodes did not change.
A key lesson learned from this project
was that to make an efficient change to
the VM, one must make changes when
the class is loaded, but never during dis-
patch.

SEMANTIC REMOTE ATTESTATION—A VIR-
TUAL-MACHINE-DIRECTED APPROACH TO
TRUSTED COMPUTING

Vivek Haldar, Deepak Chandra, and
Michael Franz, University of California,
Irvine
Summarized by Maria Cutumisu
This paper won the Best Paper award.
Vivek Haldar presented a framework for
semantic remote attestation, as well as
two example applications built within
this framework: a distributed computing
client-server application (Mersenne
Primes) and a Gnutella-like peer-to-peer
network protocol. In contrast with cur-
rent static techniques for remote appli-
cations, his team’s approach uses lan-
guage-based virtual machines to enable
the remote attestation of dynamic pro-
gram properties independently of the
underlying platform. Their two exam-
ples illustrate applications that distribute
trust dynamically.

One of the key questions addressed in
the talk was how to transcend the notion
of trust from closed systems to open sys-
tems. Trusted computing constitutes the
effort of adding components and mech-
anisms in open systems with the goal of
providing trust. As a result, the integrity
of the system is checked and enforced,
and the system is allowed to authenticate
itself to remote systems.

The speaker talked about critical issues
in trusted computing and remote attes-

tation, with a focus on integrity (ensur-
ing a secure boot process), authenticity,
and trust vs. security. Moreover, he
stressed how virtual machines can make
trusted computing more secure, flexible,
and effective. In particular, problems
with remote attestation were discussed,
including issues such as the lack of pro-
gram behavior attestation, the nature of
the remote attestation (static, inexpres-
sive, and inflexible), the heterogeneity of
devices and platforms, and the revoca-
tion problem inherited from public-key
cryptography.

The solution proposed by the authors is
the implementation of a prototype
framework for semantic remote attesta-
tion, i.e., the use of a trusted virtual
machine (TrustedVM) for remote attes-
tation. Virtual machines execute plat-
form-independent code with rich meta-
information. In addition, the code runs
under the control of a virtual machine.
A trusted VM can attest to properties of
classes, as well as dynamic and system
properties.

Several advantages of semantic remote
attestation were outlined during the
presentation, such as certified program
behavior, the capability of allowing vari-
ous implementations of the same pro-
gram respecting certain security require-
ments, dynamicism and flexibility,
explicit trust relationships (checked and
enforced) between nodes, and a mecha-
nism for finer-grained trust using
degrees of trustworthiness. In conclu-
sion, the speaker pointed out that cur-
rently proposed mechanisms for trusted
computing are severely limited and that
leveraging VM technologies can make
trusted computing more flexible and
effective.

TOWARDS SCALABLE MULTIPROCESSOR VIR-
TUAL MACHINES

Volkmarr Uhlig, Joshua LeVasseur,
Espen Skoglund, and Uwe Dannowski,
University of Karlsruhe
Summarized by Feng Qian
The paper presented a new algorithm,
time ballooning, for better scheduling of

69August 2004 ;login: VM ’04 ●

●

 C
O

N
FE

R
EN

C
E

R
EP

O
RT

Svirtual machines in a multiprocessor
environment. The combination of tech-
niques enables scalable multiprocessor
performance with flexible virtual
processor scheduling. Experimental
results demonstrate that the new
approach is effective.

USING HARDWARE PERFORMANCE MONITORS
TO UNDERSTAND THE BEHAVIOR OF JAVA
APPLICATIONS

Peter F. Sweeney, Brendon Cahoon,
Perry Chen, David Grove, and Michael
Hind, IBM T.J. Watson Research Center;
Mathias Hauswirth and Amer Diwan,
University of Colorado at Boulder
Summarized by Feng Qian
Large Java applications have many com-
plex components. The paper introduces
the design of an extension of a Java Vir-
tual Machine (JikesRVM) for helping
programmers to understand the applica-
tion behaviors.

The new extension generates traces
of hardware performance monitor
counters. The mechanism can generate
separate traces for each thread in a mul-
tithreaded and multiprocessor environ-
ment. The events, such as instruction
per circle (IPC), cache misses, etc.,
expose the behavior of a Java applica-
tion at the architecture level. These
traces are useful for JVM developers to
improve JIT compilers and garbage col-
lectors. Authors also reported the design
of a tool, Performance Explorer, for
visualizing trace data. The tool can
extract metrics from a trace file. Using
SPECjbb2000 as an example, the paper
shows anomalies observed by Perfor-
mance Explorer.

VBLADES: OPTIMIZED PARAVIRTUALIZATION
FOR THE ITANIUM PROCESSOR FAMILY

Daniel J. Magenheimer and Thomas W.
Christian, Hewlett-Packard Laboratories
Summarized by Vivek Haldar
Daniel Magenheimer specifies that,
because of their design, some processors
are more “virtualizable” than others. The
Intel x86 and Itanium architectures are
hard to virtualize, while the PowerPC

and future Intel architectures (Vande-
built) are easier to virtualize. When an
architecture cannot be fully virtualized,
this has adverse impacts on both com-
plexity and performance of a virtual
machine. Parts of guest operating sys-
tems have to be dynamically rewritten,
page tables need to be explicitly man-
aged, and privilege-level leakage must be
guarded against. Performance suffers
due to additional ring crossings and an
increased number of context switches
between the virtual machine monitor
and the guest OS.

The alternative to this is paravirtuali-
zation. The virtual machine monitor
provides an interface similar but not
identical to the physical machine. The
guest OS in turn needs to be modified to
accommodate this differing abstraction.
The advantage of this approach is that
full multi-application commercial OSes
can be supported, application-level
modification is not needed, and there
is near-native performance. The dis-
advantage, of course, is that the guest
OS needs to be modified. The author
described vBlades, an HP Labs research
prototype. It is an Itanium-based host-
less virtual machine monitor that runs
on bare metal. It provides the capability
for full virtualization. A few sensitive
instructions are statically translated. An
API for paravirtualization is provided. It
achieves within 2% of native perfor-
mance.

KERNEL PLUGINS: WHEN A VM IS TOO
MUCH

Ivan Ganev, Greg Eisenhauer, Karsten
Schwan, Georgia Institute of Technol-
ogy
Summarized by Vivek Haldar
Ivan Ganev describes an extension
mechanism for operating system kernels
that provides safety, extensibility, and
low performance overhead. The claim is
that full virtualization is not necessary
for providing strong isolation to kernel
plugins—using virtual machines to solve
this is overkill. Virtual machines are not
lightweight and have to deal with a

70 Vol. 29, No. 4 ;login:

whole array of low-level machine issues,
such as the BIOS, I/O, and other legacy
hardware.

The alternative is to use kernel plugins
that employ other mechanisms for safe-
ty and isolation. This is done with a
combination of hardware and software
techniques. The hardware memory
man-agement unit is used to enforce
segmentation and memory isolation.
Dynamic code generation enables arbi-
trary and heterogeneous adaptation on
the fly. Dynamic linking maintains a
clean interface between the kernel and
plugins and manages namespaces.

This architecture was evaluated on a
client-server benchmark. An in-kernel
Web server (khttpd) was used on the
server. The client was set up to be much
faster than the server so that the server
could be saturated. The cost of running
a null plugin was negligible. The
throughput of the server with and with-
out the plugin was almost the same.
Future avenues of work include fault
recovery and isolation, and an IA64
port.

THE VIRTUAL PROCESSOR: FAST, ARCHITEC-
TURE-NEUTRAL DYNAMIC CODE GENERATION

Ian Piumarta, Université Pierre et Marie
Curie
Summarized by Yahya H. Mirza
Ian Piumarta presented VPU, a reusable
dynamic code generation infrastruc-
ture that can be used as a back end for
dynamically compiled languages. Piu-
marta emphasized that a key element
of VPU’s design was to make adding
dynamic code generation capabilities to
an existing application essentially “plug-
and-play.” Today the vast majority of
compiler infrastructures are either
designed for static compilation, focus on
low-level code generation, or are tightly
coupled to their underlying source lan-
guages. These issues make it difficult to
retarget current compiler infrastructures
to other applications or language imple-
mentations. Additionally, Piumarta
illustrated how a client interacts with the

VPU’s stack-based, processor-indepen-
dent computational model to generate
efficient native code.

The presentation also described the
phases of the VPU’s compilation
process, including conversion to an
internal abstract representation, applica-
tion of several optimizations, instruc-
tion selection, register allocation, and
native-code generation. Since the VPU
tries to generate code as fast as possible,
it only implements a small number of
processor-independent optimizations.
These optimizations are designed to oc-
cur in parallel with other traversals of
the VPU’s abstract representation, such
as type or control flow analyses. Instruc-
tion selection is implemented through a
table-driven approach using a small
number of heuristics. The tables them-
selves are generated by feeding a proces-
sor-description file to a program called
cheeseburg, which shares similarities
with existing instruction selection gen-
erators such as iburg and lburg.

Systems using VPU are insulated from
the underlying processor architecture
and are supported on all VPU platforms,
including the Pentium, SPARC, and
PowerPC architectures. The VPU cur-
rently serves as the execution engine for
the YNVM dynamic interactive incre-
mental compiler and as the code genera-
tor for the JNJVM.

LIL: AN ARCHITECTURE-NEUTRAL LANGUAGE
FOR VIRTUAL-MACHINE STUBS

Neal Glew, Spyridon Triantafyllis,
Michal Cierniak, Marsha Eng, Brian
Lewis, and James Stichnoth, Intel
Summarized by Feng Qian
Machine code stubs are often used in
implementing high-performance run-
time systems for languages such as Java
and CLI. To ease the task of coding, the
authors presented a domain-specific
language, LIL, for describing the func-
tionality of such code stubs in a high-
level, architecture-neutral manner. A
special compiler transfers the descrip-
tion in LIL to architecture-dependent
native instructions. LIL also has engi-

neering benefits, such as improved read-
ability and validity checks of stubs. The
LIL compiler is faster and produces effi-
cient machine code for stubs.

DETECTING DATA RACES USING DYNAMIC
ESCAPE ANALYSIS BASED ON READ BARRIER

Hiroyasu Nishiyama, Hitachi, Ltd.
Summarized by Feng Qian
Data race can result in unexpected
behaviors, and data race detection is an
important method for locating potential
bugs in concurrent programs. This
paper proposed a new dynamic data race
detection algorithm for Java. Based on
the observation that only objects truly
accessed by multiple threads require
data-race monitoring, the new approach
uses read-barrier to build the set of
objects potentially subjected to data
race. The number of monitored objects
was reduced when compared with a
write-barrier-based approach, which
assumes all objects reachable from
global objects are escaping. Further-
more, the author improves the dynamic
escape analysis of arrays by dividing an
array object into sub-blocks. The smaller
number of monitored objects at runtime
reduces the cost of dynamic data race
detection and also improves the preci-
sion (reducing false alarms). The imple-
mentation of the proposed method and
evaluation on a set of standard Java
benchmarks shows the new approach
is superior, both in accuracy and effi-
ciency, to existing write-barrier
approaches.

TOWARDS DYNAMIC INTERPROCEDURAL
ANALYSIS IN JVMS

Feng Qian and Laurie Hendren, McGill
University
Summarized by Vivek Haldar
The goal of this paper, presented by
Feng Qian, was to perform interproce-
dural analysis in order to support specu-
lative optimizations in a JIT compiler.
This is a challenging problem because:
(1) it is hard to construct a high-quality
call graph efficiently; (2) dynamic class
loading must be handled; and (3) the

analysis must accommodate unresolved
symbolic references. The problem
attacked in this paper was the first one:
to construct a call graph dynamically.

The call graph is constructed incremen-
tally, under conservative assumptions.
Profiling stubs are inserted into methods
to accomplish this. Rapid type analysis
and class hierarchy analysis is used to
resolve non-virtual and interface
method calls. The runtime overhead for
this is 2–3%. These results are opti-
mistic, and future work hopes to under-
take and make use of more advanced
interprocedural analysis.

JAVA JUST-IN-TIME COMPILER AND VIRTUAL
MACHINE IMPROVEMENTS FOR SERVER AND
MIDDLEWARE APPLICATIONS

Nikola Grcevski, Allan Kielstra, Kevin
Stoodley, Mark Stoodley, and Vijay
Sundaresan, IBM Canada Ltd.
Summarized by Yahya H. Mirza
IBM Canada’s JVM product team pre-
sented a series of optimizations to
enhance server and middleware perfor-
mance. These optimizations are shipped
as a part of the IBM Developer Kit for
Java and the J9 Java Virtual Machine
products. As a result of going over large
amounts of customer-specific Java code,
IBM identified three issues that signifi-
cantly impacted performance: bytecode
generation, finally blocks, and large
usage of exceptions. To remedy these
and other performance issues, IBM
introduced 12 separate enhancements,
including optimizations to synchroniza-
tion and Java class libraries.

Server performance optimizations
include both JIT and VM improve-
ments. Many of the server enhance-
ments target, in particular, the
SPECjbb2000 benchmark. These opti-
mizations include object allocation
inlining, lock coarsening, thread-local
heap batch clearing, and the utilization
of the Intel SSE instructions. The perfor-
mance of middleware applications have
been improved through the SPEC-
jAppServer2002 benchmark. Start-up
time is improved through multiple

71August 2004 ;login: VM ’04 ●

●

 C
O

N
FE

R
EN

C
E

R
EP

O
RT

Srecompilation strategies by the JIT.
Interface dispatch is optimized by poly-
morphic inline caches. In addition, 64-
bit variables, themselves used to perform
unsigned 32-bit calculations, are recog-
nized and dealt with. Finally, code
reordering is utilized to minimize
instruction cache misses and branch
mispredictions.

The results from this project indicate
that such performance improvements
are not necessarily additive, and some
are platform specific. Thus the perfor-
mance improvements achieved are not
indicative of potential improvements for
future platforms. The SPECjAppServer-
2002 benchmark shows the potential of
these optimizations: Polymorphic inline
caches and code reordering give a com-
bined improvement of 14% for the IBM
Developer Kit for Java.

JAVA, PEER-TO-PEER, AND ACCOUNTABILITY:
BUILDING BLOCKS FOR DISTRIBUTED CYCLE
SHARING

Ali Raza Butt, Xing Fang, Y. Charlie Hu,
and Samuel Midkiff, Purdue University
Summarized by Ananth I. Sundararaj
This paper, presented by Ali Raza Butt, is
based on the increased popularity of
grid systems and cycle sharing across
organizations. The authors attempt to
build one such system that would be
scalable and provide means to locate
resources and further ensure that these
resources are used fairly. The main goal
is that all the participants should be able
to utilize the system. The problem of
resource discovery and management is
solved using existing P2P networks.
Portability is provided by leveraging the
Java Virtual Machine. The ability to
remotely monitor Java programs’
progress provides for some security. The
authors have developed a distributed
credit-based system of accountability to
ensure fairness.

Because cheaters can be effectively and
easily removed from the system, the
overhead for monitoring jobs is vir-
tually eliminated. So the main building
blocks for providing fair cycle sharing

are peer-to-peer networks, Java-based
progress monitoring and security, and
credit-based accountability mech-
anisms. More information on this proj-
ect can be accessed at
http://expert.ics.purdue.edu/~butta.

TOWARDS VIRTUAL NETWORKS FOR VIRTUAL
MACHINE GRID COMPUTING

Ananth I. Sundararaj and Peter A.
Dinda, Northwestern University
Summarized by Ananth I. Sundararaj
The work has been done in the context
of Virtuoso. The high-level aim of the
Virtuoso project is to provide arbitrary
amounts of computational power to
ordinary people to perform distributed
and parallel computations. The tradi-
tional methodology of doing grid com-
puting, which involves resource multi-
plexing using OS level mechanisms,
addresses this aim. A problem with this
approachis that it presents too much
complexity both from the perspective of
the resource provider and that of the
resource user. Virtuoso proposes to do
grid computing in the context of OS-
level virtual machines, where the
abstraction is that of a raw machine.

A very interesting networking problem
shows up in this new context. A particu-
lar user’s virtual ma-chines are spread
over a number of foreign networks.
These machines are at the mercy of the
foreign network administrator for their
network connectivity. The authors wish
to move this network management
problem back to the home network of
the user. VNET is the virtual network
tool that accomplishes this. The authors
provided performance results for VNET
and showed that its performance is quite
close to that attained in the underlying
network. VNET is an overlay network of
VNET daemons and has a lot of poten-
tial to improve performance through,
for example, network reservation. The
first iteration of VNET is publicly avail-
able from the Virtuoso Web site. More
information on this project can be
accessed at http://virtuoso.cs.northwest-
ern.edu.

bytecode is executed on the KVM (an
implementation of the J2ME standard,
which interprets Java bytecode) running
on an ARM processor, and the resulting
instruction trace is passed through an
instruction-level energy profiler. The
authors found that some KVM stages
consume a constant amount of energy
independently of the Java application
being run. The most energy-expensive
operation was the dup2_x2 instruction.

REAL-TIME GARBAGE COLLECTOR FOR
EMBEDDED APPLICATIONS IN CLI
Okehee Goh and Yann-Hang Lee, Ari-
zona State University; Ziad Kaakani and
Elliot Rachlin, Honeywell International
Inc.
Summarized by Vivek Haldar
In the .NET Common Language Infra-
structure (CLI), determinism is an issue
for time-constrained applications. How-
ever, garbage collection is non-deter-
ministic. The goal is to schedule garbage
collection by applying real-time schedul-
ing algorithms. This can be used to con-
trol the garbage collector’s pause time
and do incremental garbage collection.
So far, the authors have modified the
Mono runtime (which uses the mark-
sweep Boehm collector) to generate
write barriers. This can help to make
garbage collection incremental at a fine
granularity.

ONE-CLICK DISTRIBUTION OF PRECONFIG-
URED LINUX RUNTIME STATE

Richard Potter, Japan Science and Tech-
nology Corporation
Summarized by Feng Qian
Richard Potter’s work-in-progress
reports the idea and applications of
ScrapBook for User-Mode Linux
(SBUML). SBUML can take a snapshot
of the transient runtime state of the
Linux OS, and the state can rapidly be
restored in another computer. SBUML
could be used to distribute preconfig-
ured Linux runtime state for demos or
debugging. More details can be found at
http://sbuml.sourceforge.net.

that separates applications from the
physical attributes of the designated
machine.

Different zones can be administered in
a similar manner on separate machines.
A zone can have access to dedicated
resources or can share resources with
other zones. Each zone has its own name
service identity, password file, and root
user. With Zones, there are multiple vir-
tualized views of the process table corre-
sponding to processes running within
individual zones, as reflected in the
/proc file system. Moreover, each zone
has a virtualized /etc/mnttab file that
shows only file system mounts in that
zone. Even if a zone is compromised by
an intruder, the system and other zones
are not affected.

The isolation provided by Zones pre-
vents processes running in different
zones from monitoring or altering
each other, seeing each other’s data, or
manipulating the underlying hardware.
The cost of running multiple workloads
on the same system is reduced through a
better hardware utilization, reduced
infrastructure overhead, and lower
administration costs. The authors pre-
sented results showing that the perfor-
mance impact from using zones is negli-
gible.

During the talk, the authors indicated
several resources supporting their sys-
tem, including http://www.sun.com/
bigadmin/content/zones. Zones are
developed as part of the N1 Grid Con-
tainers feature in Solaris 10. A version of
Solaris 10 that includes an initial imple-
mentation of zones is available for
download from http://wwws.sun.com/
software/solaris/10.

OPCODE LEVEL ENERGY CONSUMPTION
MODEL FOR A JVM
Sebastian Lafond and Johan Lilius,
Turku Centre for Computer Science,
Finland
Summarized by Vivek Haldar
Sebastian Lafond presented a simulation
to measure the energy consumption of
Java programs on mobile devices. Java

Vol. 29, No. 4 ;login:72

WORK-IN-PROGRESS REPORTS
EFFICIENT CODE CACHING FOR AN EMBED-
DED DYNAMIC ADAPTIVE COMPILER

Oleg Pliss and Bernd Mathiske, Sun
Microsystems, Inc.
Summarized by Maria Cutumisu
Bernd Mathiske and Oleg Pliss reported
on various code caching techniques in
an embedded Java Virtual Machine
(JVM) for memory-constrained devices,
such as mobile phones. In such environ-
ments, the presence of a dynamic adap-
tive compiler is salutary, as the compiled
code cache management becomes
performance critical.

The compiled code cache can be dynam-
ically adjusted in size due to combined
results of profiling and garbage collec-
tion feedback. Recently and frequently
executed methods are profiled using a
combination of sampling and instru-
mentation techniques with the goal of
constructing a cache eviction policy
based on method weight and decay.

The talk highlighted the process of code
cache eviction from the perspective of
the results collected from the garbage
collector. Methods that are identified as
nonrelevant are selected as victims,
while currently executed methods are
retained in the cache by setting the high
bit of their weight.

The authors presented results on all
EEMBC benchmarks showing large
performance increases, due to the
improvements in the working method
set detection and cache size manage-
ment.

SOLARIS ZONES: OPERATING SYSTEMS SUP-
PORT FOR SERVER CONSOLIDATION

Andrew Tucker and David Comay, Sun
Microsystems, Inc.
Summarized by Maria Cutumisu
Andrew Tucker and David Comay intro-
duced Zones, a new operating system
abstraction for partitioning systems such
that multiple applications run in isola-
tion from each other on the same hard-
ware, within a single operating system
instance. Zones has an abstraction layer

	motd
	apropos
	usacomail
	mail
	mckusick
	howard
	haskins
	musings
	nicholson
	appelman
	mccluskey
	turoff
	flynt
	bookworm
	history
	rikreviews
	unotes
	vm04reports

