






2

motd

Ch-ch-ch-changes
“Change is the only constant.”

– Denise McCluggage, U.S. race car driver.

I have a new job. I know what you’re thinking; it surprised me,

too.

I am the new SAGE Executive Director. I am charged with carry-

ing out the wishes of the Executive Board of the System Admin-

istrators Guild. You’d just be amazed at how many wishes one

can conjure up when there’s someone to carry them out :) .

One of SAGE’s primary stated goals is to ‘raise the perceived

level of professionalism of System Administrators’. I think this is

a dandy goal and I’ve taken it upon myself to create plans to

accomplish this goal.

One of the interesting parts about such goals is the prerequisites

required to accomplish the goal. For instance, in order for SAGE

to “represent the interests of System Administrators,” SAGE must

acquire some sort of standing in the community. This might

mean having enough members to claim to represent some sig-

nificant fraction of the entire community (20%?). I reckon that

one could claim 750,000 System Administrators in the USA

alone (that includes network and security admins, but not help

desk personnel). That means expanding SAGE’s membership to

six figures from its current four.

Why would someone affiliate with SAGE? I’m guessing that peo-

ple do like to belong to clubs and the like, but rational people do

enjoy having a reasonable set of membership benefits that are

supplied in exchange for any money required as organizational

dues.

To that end, I’m working on several projects to expand SAGE’s

visibility and bring more people into the fold. Hardly any of

these is a revenue generator (i.e., they are free for all comers),

but they will get SAGE and its good work in front of an ever

growing number of people.

David Parter discusses the developing Web site, particularly

SAGEwire, in his article later in this issue. This news and discus-

sion forum is an ideal place for users who like to “pull” their

news. The website will also feature white papers (1-20 page mis-

sives that dissect or digest a relevant topic). Please let me know if

you’d like to write one.

I am also working to create an e-mail newsletter (biweekly?) that

will be sent to those who prefer to have their system administra-

tion information “pushed” to them. If you’d like to be one of the

newsletter writers, please let me know. It’s a great way to con-

tribute and be recognized.

I am also in the process of contacting other members of the

media in order to get SAGE’s word out through other publica-

tions. As we ramp the number of projects (certification, newslet-

ters, white papers, SAGEwire, etc.), this is the sort of news that

other trade publications enjoy publishing.

On another front, “professionalism” also connotes mastery of a

body of knowledge. You’ve probably already heard about cSAGE,

the SAGE certification effort (check out the SAGE website to

learn more). But a profession not only has certification, it needs

two more very important things (among others):

■ A body of knowledge that encompasses what its members

know 
■ A way to obtain a university degree in that field 

Work continues on the Sysadmin Book of Knowledge. John

Sechrest has been leading the charge to design a viable university

curriculum. Both Mark Burgess and Alva Couch are assisting in

the best possible way by initiating work in the theoretical bases

of system administration. When coupled with David Paterson’s

work, it appears that sysadmin research is becoming a warm

topic (if not a hot one).

John and I will be leading a day-long workshop at LISA that will

unite those working on the Body of Knowledge and those work-

ing on education for system administrators. If you have interests

in either of these areas, I hope you will come.

Like any other successful technical/trade organization, volun-

teers are the lifeblood that makes everything work. If you have

ideas or would like to contribute in any way, please contact me

and tell me what you’d like to do! Together, we can build SAGE

into a world-wide success story.

Vol. 27, No. 4 ;login:

by Rob Kolstad

Rob Kolstad is cur-
rently Executive
Director of SAGE, the
System Administra-
tors Guild. Rob has
edited USENIX’s
;login: magazine for
over ten years.

kolstad@sage.org



3August 2002 ;login:

What’s New?
“What’s new?” is a common greeting between friends, usually exchanged in addition to

an opening “How ya doin’?” if you haven’t seen the person for awhile. At the USENIX

Annual Technical Conference in Monterey in June, there was plenty of opportunity to

find out “What’s new?” There were new attendees to meet, old friends to catch up with,

and a wealth of cutting edge technical topics to learn about. For me, personally, I

started my two-year stint as a new board member at the board meeting held during

the conference, which turned out to be a new feeling, as do most new things.

I’ve attended USENIX board meetings before. I’ve always found them interesting and

felt that I learned from them. I’d go away from those meetings feeling informed, edu-

cated, entertained, and often energized by what I’d heard. This one was different. I still

feel informed and educated, but the entertainment and energy levels are way down.

This may be partly due to the marathon meeting, from 9 a.m. to well after 7 p.m., but I

think, more likely, it was because of an unspoken change in status. I think the reality of

the new responsibility took a bite out of the previous entertainment and energy value

I’d experienced.

USENIX is also dealing with new issues. To be expected, the attendance at our confer-

ences is down. Since conference venues of this size are booked years in advance, we

have financial obligations to the conference site, regardless of our attendance figures,

or even whether we hold the conference at all. The bottom line is that if we don’t meet

an expected level of attendance, we lose money. That’s been the case since September

11 and is a significant concern for the organization until things turn around.

Probably the other top topic is on the SAGE front. The new position of SAGE Execu-

tive Director, filled by Rob Kolstad, and the ongoing certification backing represent an

unprecedented level of financial commitment to SAGE on behalf of USENIX. I’m

optimistic that this stepped-up support will enable SAGE to develop some programs

that will both enhance and diversify our services and offerings such that the commu-

nity will benefit and our organizations will be less dependent on a single type of

income. On a personal note, I know how pivotal the Executive Director position is,

and I can’t think of a better person to fill the position of SAGE Executive Director,

since Rob is the co-founder of the LISA conference and was instrumental in the early

success of the SANS conferences as well.

Certainly not new is the desire of board members for input and feedback from the

membership regarding any of the issues facing the organization. I know I’d personally

love to hear from you if you have thoughts about what we’re doing right, what we’re

doing wrong, or what we’re not doing! Even if you’ve never contacted a board member

before, go ahead, try something new!

apropos
by Tina 
Darmohray

Tina Darmohray, co-
editor of ;login:, is a
computer security
and networking con-
sultant.  She was a
founding member of
SAGE. She is cur-
rently a Director of
USENIX.

<tmd@usenix.org>

ED
IT

O
RI

A
LS

EDITORIAL STAFF

EDITORS:
Tina Darmohray tmd@usenix.org

Rob Kolstad kolstad@usenix.org

STANDARDS REPORT EDITOR:
David Blackwood dave@usenix.org

MANAGING EDITOR:
Alain Hénon ah@usenix.org

COPY EDITOR:
Steve Gilmartin

TYPESETTER:
Festina Lente

MEMBERSHIP, PUBLICATIONS,

AND CONFERENCES
USENIX Association

2560 Ninth Street, Suite 215

Berkeley, CA 94710

Phone: 510 528 8649

FAX: 510 548 5738

Email: office@usenix.org

login@usenix.org

conference@usenix.org

WWW: http://www.usenix.org







6

I find myself wondering why so many organizations get their panties in

such a bunch over high availability and failover. Many organizations that

insist on it arguably don’t need it, at least in most people’s sense of HA as

it’s sold into the industry today. Your average small-to-medium business

can get by just fine without it, which is a good argument for them to use

something like IPF that doesn’t do HA but solidly serves all of their other

needs. A sensible management strategy will go a lot further than any of

these vaunted HSRP/VRRP toys.

What does full HA buy you? In the very rare event of total firewall failure, session

states aren’t lost and the load quickly shifts to the standby box. Whoo, whoo. Most

people are just surfing the Web, making new connections over and over, and wouldn’t

notice if they lost a TCP state or two. People who lose an SSH session will simply

blame Sprint’s half-million dollar piece of crap in Pennsauken and reconnect after the

network starts working again. Streaming media will likely pick right back up again. In

general, users are much more resilient than any of the HA proponents give them credit

for. For this large community of users, some form of non-transparent failover is fine,

and I really wish the HA vendors would get off their high horse about how everyone
needs 5 nines of uptime. They don’t. Get over it.

Besides, in the event of “seamless” failover, the firewall administrator is unlikely to

realize that it has happened either, and won’t know that box A had some problem until

box B finally fails too. At which point everyone is hosed because now someone has to

go and rebuild both firewalls and, well, the config probably never got properly backed

up because the admin thought, “Oh, well, it’s all this swoopy HA stuff, so I don’t have

to really worry about backups.” Oops.

Some from the financial sector might point out how when their networks go down,

they start losing millions of dollars per minute. (Losing to where, I wonder, if the bits

representing value cannot be transferred in the first place?) Okay, so maybe they need

seamless HA for their current business model, but let us also consider that if the finan-

cial industry has painted itself into a corner badly enough to wholly depend on con-

tinual transfer of data, there exists a much deeper problem beyond the scope of this

rant. If I had a buck for every stupid, unrealistic SLA that has been drafted without

taking such contingencies into account, I wouldn’t have to worry much about finances

anymore.

What is possibly a much more realistic (and cheaper) strategy is the warm or cold

standby – a second box configured just like the first one, ready to go any time, with

“failover” involving a junior NOC monkey walking out to the right rack and moving

two or three clearly labeled wires. Then someone knows that box A has failed and can

unrack it for repairs at leisure. Box B will likely hold up the load for the next year and

a half without a hitch, so the priority of fixing box A becomes very flexible. Maybe it

was time to upgrade to a faster machine for that spot anyways, eh?

I’m sure that more “automated” failover can be done with IPF and a little bit of script-

ing to run around and ifconfig interfaces and ping a few surrounding devices with the

hope of forcing ARP and switching tables to update. The commercial HA products

often have trouble convincing neighboring switches and things that no, this MAC

address is over here now, really, at which point that multi-thousand-dollar HA setup

still needs a swift kick. A successful semi-automated failover combined with user

high availability  

EDITOR’S NOTE: THIS ARTICLE WAS FORWARDED

TO ME, SO I ASKED HOBBIT IF WE MIGHT PUB-

LISH IT. I FOUND IT QUITE PROVOCATIVE.

Vol. 27, No. 4 ;login:

by Hobbit

Hobbit espouses a straightforward, no-
frills approach to infrastructure design
and risk mitigation, which he has
brought into environments spanning
small home networks to large ASPs. He
currently develops methodologies and
tools for secure, scalable network and
host deployment. He is perhaps best
known as the author of Netcat, a use-
ful tool that has found its way into
many open-source operating system
distributions.

hobbit@avian.org



resiliency gives you the same long-term net effect as the much more expensive “HA

product.” And a closer look inside a lot of HA products often reveals a nest of grotty

shell scripts that do just that too, so don’t be fooled.

So if you have an HA setup, go figure out how many times over the last year it has

done its job in such a way that it even came close to paying for itself. Include all the

factors such as administrative overhead, having to learn about the product, the engi-

neering time spent integrating it into your network environment in a way that gen-

uinely works, the effect of network design compromises you may have had to make to

do so, etc. Don’t forget to consider the increased risk that the lame JavaScript-laced HA

management GUI has caused you to bear all that time, since it required you to open

more avenues into the firewalls themselves. And were you ever able to get your run-of-

the-mill NOC guy to understand the thing?

If your “HA” setup consists of swapping the hard drive and network cards into a new

chassis and powering back up, be thankful and count those nice crisp hundreds you

saved. And if you’ve read this far, go back up your nice simple little text-based rule set,

if it’s been a while, just in case it’s the drive that craps out instead. But you might wait

another two years for that to actually happen.

7August 2002 ;login: HIGH AVAILABILITY ●  

●
  
O

P
IN

IO
N

USENIX and SAGE Need You 
People often ask how they can contribute to the our organizations. Here is a list of needs for which we hope to find 

volunteers (some contributions reap not only the rewards of fame and the good feeling of having helped the community, but

authors also receive a small honorarium). Each issue we hope to have a list of openings and opportunities.

The SAGEwire and SAGEweb staff are seeking:

■ Interview candidates
■ Short article contributors (see http://sagewire.sage.org)
■ White paper contributors (for topics like these):

Back-ups Emerging technology Privacy

Career development User education/training Product round-ups

Certification Ethics SAGEwire

Consulting Great new products Scaling

Culture Group tools Scripting

Databases Networking Security implementation

Displays New challenges Standards

E-mail Performance analysis Storage

Education Politics and the sysadm Tools: system
■ Local user groups: If you have a local user group affiliated with USENIX or SAGE, please mail the particulars to

kolstad@sage.org so they can be posted on the web-site.

;login: is seeking attendees of non-USENIX conferences who can write lucid conference summaries. Contact Tina Darmohray,

tmd@usenix.org for eligibility and remuneration info. Conferences of interest include (but are not limited to): Interop, SOSP,

O’Reilly Open Source Conference, Blackhat (multiple venues), SANS, and IEEE networking conferences. Contact login@usenix.org.

;login: always needs conference summarizers for USENIX conferences too!  Contact Alain Hénon ah@usenix.org if you’d like to help.

http://sagewire.sage.org


8

Beyond the Buzzword
What do the Chandra Levy disappearance, Enron/Arthur Anderson collapse,

Danielle Van Dam murder case, Microsoft antitrust trial, former President

Clinton sex scandal, and tracking of al Qaeda terrorists all have in com-

mon? In each instance, computer forensics figured prominently in investi-

gating the questions at hand. Simply put, computer forensics has reached

prime time. It is no longer the stuff of back-office geeks and techno-wizards

but has been embraced by both law enforcement and the private sector as a

technique to reconstruct crimes, conduct digital discovery, and, generally,

uncover the electronic traces that help prove or disprove accounts of histori-

cal events.

The negative corollary to the consciousness-raising effect of being in the limelight is

that “computer forensics” has become something of a buzzword among profit-savvy

businesses seeking to market their “advanced capabilities.” This has resulted in a dilu-

tion and misrepresentation of the evolving discipline of computer forensics. At the risk

of having no agenda save for battling ignorance, this article is meant as a primer on the

essence of computer forensics so that one can better appreciate and expect accurate,

reliable, and scientifically based standards when encountering digital evidence issues.

Computer Forensics Defined
Odontology, structural engineering, pathology, serology, or analysis of computer sys-

tems are all methods used in forensic science. Since forensic science is the application

of a scientific discipline to the law, the essence of all forensic disciplines concerns the

principles applied to the detection, collection, preservation, and analysis of evidence to

ensure its admissibility in legal proceedings. Computer forensics refers to the tools and

techniques to recover, preserve, and examine data stored or transmitted in binary

form. The application of forensic techniques to digital analysis, therefore, can be

viewed as the new kid on the block more commonly populated by the likes of DNA

fingerprinting and hair and fiber analysis. And instead of Quincy, ME, examining a

corpse to determine cause of death, we’re dealing with digital examiners conducting

machine autopsies to recover evidence of a crime.

Analogizing Computer Forensics to Traditional Forensic 
Sciences
The fundamental principles of computer forensics are the same as that of traditional

forensic disciplines. All start with intense variability among a large number of attrib-

utes and advances are aimed at enhancing the identifying, characterizing and correla-

tive properties of the evidence source. Whereas an MD-5 hash may identify a digital

document to the exclusion of all others, the remnants of a deleted Netbus application

found in unallocated space may help correlate a suspect to victim’s firewall log data of

scans on port 12345 coming from the suspect’s IP address.

Forensic techniques are designed to uncover these identifying, characterizing and cor-

relative properties more precisely, more accurately, faster and with less evidence.

For instance, a comparison of analysis development between digital data versus bio-

logical data (blood) would illustrate how A/B/O typing gave way to Rh factors, which

was supplanted by DNA typing via RFLP (restriction fragment length polymorphism)

Vol. 27, No. 4 ;login:

computer forensics
by Erin Kenneally

Erin Kenneally is a
Forensic Analyst with
the Pacific Institute
for Computer Secu-
rity (PICS), San
Diego Supercom-
puter Center. She is a
licensed Attorney
who holds Juris Doc-
torate and Master of
Forensic Sciences
degrees. 

erin@sdsc.edu 



and  PCR (polymerase chain reaction) – which resulted in the same evidence source

being used to characterize and then positively identify persons to the exclusion of all

others. Similarly, forensic analysis techniques for digital evidence has yielded hash

libraries (to identify data files), file signatures (to characterize files by matching file-

name and file type), and mirror imaging software (to copy larger amounts of evidence

without altering the original evidence).

Regardless of whether the discipline is computer forensics or fingerprinting, the driv-

ing question is not whether evidence exists but, rather, can investigators uncover and

contextualize the evidence. Therefore, the challenges are: Where to look? What tech-

niques will make the evidence apparent? And is the evidence admissible?

Just as a pathologist may deduce by observing the lack of water in a person’s lungs that

he was already dead when his car sank to the depths of a lake, computer forensic

examiners may analyze file modification/access/creation times to determine if intellec-

tual property was transferred after an employee was fired. And in the same way that

sources of biological evidence may be blood, saliva or hair shafts found on clothing,

cigarette butts, and weapons, digital evidence can be found on any number of media

sources (hard drive, floppy disk, CD-ROM, PDA) and in locations such as print

spooler files, hidden partitions, registries, system logs, bad clusters, and/or metafiles. In

the biological realm, techniques such as PCR, RFLP, and STR (short tandem repeats)

exist to identify DNA in a drop of dried blood that is not visible to the naked eye. In

computer forensics, techniques exist to recover deleted data; recover passwords; ana-

lyze file slack, unallocated space, and swap files; reconstruct user and application activ-

ity on a system; and search email for source and content information.

Finally, in terms of admissibility hurdles, the technology to recover deleted data has

been accepted, but what is contested is the inclusiveness of the software that under-

takes to recover it – in other words, are there measurable error rates for the software

that address the likelihood of missing potentially exculpatory evidence? Likewise, inso-

far as DNA fingerprinting technology has been accepted in the courtroom, certain

techniques (like STR) remain open to challenge.

Contrasting Digital Evidence with Physical Evidence
Despite core similarities, the differences between computer forensic analysis and the

more traditional forensic sciences bear reflection. From a historical perspective, com-

puter forensics is a burgeoning discipline compared to traditional forensic sciences,

many of which are rooted as far back as the early 20th century. One prominent differ-

ence lies in the diametric evolution of computer forensics as compared to traditional

forensic sciences. Computer forensics originated in “cop shops” rather than clinical

laboratory settings. Electronic tools and techniques have been developed to solve spe-

cific problems on known platforms within given parameters, rather than the more tra-

ditional application of scientific rigor and controlled testing to derive facts for crime

solving to investigations for legal proof1. DNA analysis, for instance, was developed for

non-forensic purposes and was only later applied for judicial purposes, unlike the

forensic analysis software employed by digital technicians today.

To be sure, a grounding in scientific rigor is increasingly being recognized and applied

to computer forensic tools and techniques to ensure the reliability and admissibility of

digital evidence. However, unlike physical evidence, digital evidence poses novel chal-

lenges to computer forensic analysis. The mutable, fleeting, and intangible nature of

digital evidence stands in contrast to persistent physical features used in other disci-

9August 2002 ;login:

Regardless of whether the

discipline is computer 

forensics or fingerprinting,

the driving question is not

whether evidence exists but,

rather, can investigators

uncover and contextualize

the evidence.

COMPUTER FORENSICS ●  

●
  
TH

E
LA

W

1. See generally, David Goodstein,
“How Science Works” Reference Man-
ual on Scientific Evidence 2nd Edition,
Federal Judicial Center (2000) http://
air.fjc.gov/public/fjcweb.nsf/pages/74

http://


Vol. 27, No. 4 ;login:

plines – i.e., ridge patterns for fingerprinting, polymarkers for DNA analysis, and bone

characteristics for forensic anthropology. This fosters the advantage of conducting

comparisons with known exemplars to uncover those identifying, characterizing, or

correlative properties. However, the variables involved in complex computer network

activity and software/hardware that produces digital evidence are dynamic and not as

conducive to reproduction.2

Digital Evidence – Search and Seizure Challenges
Digital evidence has shifted paradigms in collecting, preserving, and analyzing evi-

dence, as illustrated by the unique legal challenges facing computer forensic profes-

sionals. Specifically, these shifting paradigms can be appreciated by understanding the

resource challenges, attempting to define “reasonableness,” and paying heed to modifi-

cation challenges presented by digital evidence.

RESOURCE ISSUES

The traditional approach when investigators would encounter a crime scene with a

computer was to seize everything. That approach may have worked at a time when the

ratio of computers to employees was 1:1 or greater, or when there was a stand-alone

computer at a domestic crime scene. However, this approach is no longer feasible in a

society where computers and their appendages dominate the landscape and informa-

tion is increasingly being stored, transmitted, and created in digital form. Insofar as

our ability to collect far outweighs our ability to analyze, the “seize everything” men-

tality is simply economically infeasible, both for budget-constrained public law

enforcement as well as for private sector responders whose work is not part of the cor-

porate profit center. Indeed, the cost of storage media has declined appreciably, yet the

man-hour resources and capabilities to image and cull through hundreds of gigabytes

worth of data on a compromised network is no small task. Relief does not appear

imminent, as technologies such as FMD-ROMs, which store 140GB, may soon sup-

plant CD and DVD media, and consumer grade hard drives are shipping at 75GB and

up.

To put this resource challenge into context, imagine that a 1.44MB floppy disk holds

the equivalent of a novel. Now, a standard 20GB home computer would produce the

paper equivalent of a stack of books roughly as high as a fifteen-story building. Placed

in the context of paper-based evidence, it is easier to appreciate how the nature of digi-

tal information and the relevant data contained therein strains the resources of foren-

sic professionals who must uncover, collect, preserve, and analyze these electronic

haystacks.

DEFINING REASONABLENESS

A fundamental right guaranteed by the Constitution is protection from unreasonable

searches and seizures by the government. Courts have applied this protection by

ensuring that search warrants are only issued upon a showing of probable cause,

which is grounded in “reasonableness” and defined in terms of narrowness and partic-

ularity of scope. However, the time and scope variables (narrowness and particularity)

that affect the reasonableness of the search and seizure take on a different dynamic.

For instance, judges oftentimes authorize a search warrant with narrow time limits to

minimize business disruption. In doing so, there is a faulty assumption that the scope

of the search will be narrowed by decreasing the time allotted to conduct the search

and seizure. In actuality, a narrow time frame will result in a wider scope of data

seizure – thus increasing the chances of capturing irrelevant and overbroad data.

2. See Randolph Johnkait, “Forensic Science:
The Need for Regulation,” Harv.J.L. & Tech.,
vol. 4, no. 109 (1991), 133–34.

10



Furthermore, search warrants often authorize authorities to search anywhere that the

evidence in question can “reasonably” exist. So, a warrant for a gun would preclude

investigators looking in a cell phone case. Digital evidence, however, is not bound by

those same physical limits, so notions of what is reasonable must be put into a new

context. For instance, large amounts of data can be hidden or compressed in a very

small area, and file extension labels do not necessarily reflect the underlying data type

(i.e., a strategic diagram in the form of a .jpg can be named “anything.txt”).

EVIDENCE MODIFICATION CHALLENGES

Finally, the mutability of digital evidence facilitates legal challenges grounded in chain-

of-custody and evidence-tampering arguments. Whereas DNA analysis is performed

on the original blood evidence, maintaining the sanctity of original evidence is a tenet

of computer forensics, and analysis must be conducted on a copy of the original media

(with a few, notable exceptions where circumstances preclude a copy being made). Per-

haps because the 33rd copy of a file is indistinguishable from the original and it is triv-

ial to change bytes without leaving a trace, benign actions when handling digital

evidence may have probative consequences upon which guilt or innocence hinges. Set-

ting aside the wholesale substitution of blood evidence, if a serologist contaminates a

blood sample, there is little risk that the DNA of another person will be created.

Rather, the blood sample will not conclusively identify the culprit. With digital evi-

dence, for example, merely turning on a Win95 system opens roughly 8% of the files

on the hard drive just to boot the system. The consequence is that 417 access dates,

some of which may have been crucial to proving guilt or innocence, have been altered .

So what? The criticality of timestamp data associated with file modification, access, or

creation can make or break a case. For example, take the case where the digital evi-

dence found on a defendant’s computer was a large collection of adult porn (legal) and

a smattering of kiddie porn images (illegal). Now, the defendant may claim that he

downloads adult porn via IRC, and the kiddie porn must have been unintentionally

downloaded at the same time, unbeknownst to the defendant. If this were true, com-

puter forensic analysis might reveal access dates on the adult images well after the cre-

ation dates (initial download), but the child images had creation and access times that

matched the creation times for the adult pictures. This would support the defense that

he did not view or distribute the child porn. However, if the seizing officer booted the

suspect machine and started rifling through the images, he would have changed the

timestamps and quashed potentially exculpatory information.

Conclusion
In our increasingly electronic society, digital evidence promises to continue to perme-

ate crime scenes and civil disputes, thus rendering computer forensics an increasingly

vital discipline in the resolution of disputes. The danger is that computer forensics will

be driven by industry and market forces that lose sight of the need for scientific under-

pinnings regarding computer forensic tools and techniques. Hopefully, this primer has

served to raise awareness about the similarity in principles between computer forensics

and the traditional forensic sciences, as well as highlighting the unique nature of digi-

tal evidence, so that the collection, preservation, and analysis of digital evidence will

advance the search for truth.

11August 2002 ;login:

The criticality of timestamp

data associated with file

modification, access, or 

creation can make or break a

case.

COMPUTER FORENSICS ●  

●
  
TH

E
LA

W



12 Vol. 27, No. 4 ;login:

wide characters

We’ve been looking at some of the new features in

C99, the standards update to C. In this column we’ll

consider features added to the language and library in

support of wide characters, as typically used with for-

eign languages.

Character Sets
Several terms are used in the standard to describe C character

sets. The first of these is “basic character set” and refers to a set

of single-byte characters that all C99 implementations must

support. Roughly speaking, this character set is 7-bit ASCII

without some of the control characters. It consists of printable

characters like A–Z and 0–9, along with tab, form feed, and so

on.

The basic character set is divided into source and execution

character sets, and these differ slightly. For example, the basic

execution character set is required to have a null character (\0),

used as a string terminator.

The extended character set is a superset of the basic character

set, and adds additional locale-specific characters. It, too, is

divided into source and execution character sets.

A wide character is a character of type wchar_t, and is capable

of representing any character in the current locale. In other

words, a wide character may be a character from either the basic

character set, such as the letter A, or a character from the

extended character set.

Wide Character Constants
Let’s look at some actual examples of wide character usage. The

first demo program prints the size of wchar_t on your local sys-

tem:

#include <stdio.h>
#include <wchar.h>

int main()
{

printf("sizeof(wchar_t) = %u\n", sizeof(wchar_t));
}

When I run this program on my Linux system, the result is:

sizeof(wchar_t) = 4

wchar_t is a signed or unsigned integral type big enough to

hold all the characters in the local extended character set, and is

a 32-bit long on my system.

wide character constants are specified similarly to normal char-

acter constants, with a preceding L before the constant:

#include <stdio.h>
#include <wchar.h>

int main()
{

wchar_t wc1 = L'a';
printf("%lx\n", wc1);

wchar_t wc2 = L'\377';
printf("%lx\n", wc2);

wchar_t wc3 = L'\x12345678';
printf("%lx\n", wc3);

}

When I run this program, the result is:

61
ff
12345678

In the first two cases, the wide character is stored in the least

significant byte of the long, while in the last case, all four bytes

of the long are used to represent a single wide character.

This example illustrates a confusing point about wide charac-

ters – the idea of multiple representations. For example, wc3 is

initialized with a wide character constant, a constant that

requires 13 bytes to express in the source program. The con-

stant itself is stored in four bytes during execution (in a 32-bit

long). And a little later on, we’ll see examples of what is called

“state-dependent encoding,” a mechanism used to encode wide

characters as a stream of bytes (1–6 bytes per wide character, on

my system). This encoding is used for writing wide characters

to a file.

The term “multibyte character” is defined to be a sequence of

one or more bytes that represents a single character in the

extended source or execution environment. A character from

the extended character set can have several different representa-

tions. These representations may appear in source code, in the

execution environment, or in data files.

by Glen
McCluskey

Glen McCluskey is a
consultant with 20
years of experience
and has focused on
programming lan-
guages since 1988.
He specializes in Java
and C++ perfor-
mance, testing, and
technical documen-
tation areas.

glenm@glenmccl.com



13August 2002 ;login:

●
  

 
P

R
O

G
R

A
M

M
IN

GHere’s another example, showing how wide character strings are

specified:

#include <assert.h>
#include <wchar.h>

int main()
{

wchar_t* wstr1 = L"testing\x12345678";
wchar_t wstr2[] = L"testing\x12345678";

assert(*wstr1 == 't');
assert(*(wstr1 + 7) == 0x12345678);

assert(wstr2[0] == 't');
assert(wstr2[7] == 0x12345678);

}

String Operations
Many familiar operations are supported on wide character

strings. For example, here’s a demo that implements a function

to convert to lowercase:

#include <stdio.h>
#include <wchar.h>
#include <wctype.h>

wchar_t* tolower(wchar_t* str)
{

wchar_t* start = str;

// convert each wide character to lowercase

for (; *str; str++) {
if (iswupper(*str))

*str = tolower(*str);
}

return start;
}

int main()
{

wchar_t* str = L"TESTing";
wchar_t buf[8];

wcscpy(buf, str);

tolower(buf);

printf("%ls\n", buf);
}

Note that the definition of an uppercase character may be locale

specific.

Wide Characters and I/O
Suppose that you have a wide character string and you’d like to

write it to a file and then read it back. How can you do this?

Here’s one approach:

#include <assert.h>
#include <stdio.h>
#include <wchar.h>

int main()
{

// write a wide character string to a file

FILE* fp = fopen("outfile", "w");
assert(fp);
fwprintf(fp, L"string is\377: %ls\n", L"TESTing\x1234");
fclose(fp);

// read the characters of the string back from the 
// file

fp = fopen("outfile", "r");
assert(fp);
wint_t c;
wchar_t buf[25];
size_t len = 0;
while ((c = getwc(fp)) != WEOF)

buf[len++] = c;
fclose(fp);
buf[len] = 0;

// check results

if (wcscmp(buf, L"string is\377: TESTing\x1234\n") 
== 0)

printf("strings are equal\n");
else

printf("strings are unequal\n");
}

Much of this code is identical to what you would use when

reading and writing regular strings of bytes.

wint_t is a type that is related to wchar_t in a way similar to the

relationship between int and char; it can hold all possible

wchar_t values, as well as one distinguished value that is not

part of the extended character set (WEOF).

The only other tricky thing in this example is stream orienta-

tion, something that’s implicit in the code. A file stream can be

either byte or wide oriented. The orientation is determined by

the first operation on the stream, or explicitly via the fwide()
call. Since the first write operation in the demo is fwprintf(), and

the first read operation is getwc(), and these are wide character

functions, the streams are marked as having wide orientation.

Why does stream orientation matter? The reason is that an

encoding may be applied to wide characters written to a file.

Suppose you are programming with wide characters, you need

to do wide character I/O, and your wide characters are four

bytes long when using the wchar_t representation. One way of

writing such characters to a file is to actually write four bytes

for each character.

WIDE CHARACTERS ●  



Vol. 27, No. 4 ;login:14

But what happens if, most of the time, the values of your wide

characters are within the range of 7-bit ASCII? In such a case,

three zero bytes will be written for each character. And the

resulting files will not be readable by tools that expect ASCII.

This problem exists today, for example, with tools that write 16-

bit Unicode to a file. One solution to this problem is to encode

characters such that 7-bit ASCII is represented as itself, that is, a

single byte, while other character values are encoded using mul-

tiple bytes.

But if an encoding is applied, then it no longer makes sense to

mix byte and wide-file operations. This is especially true given

that an encoding may be state dependent, and dipping into a

byte stream in the middle of a multiple-byte encoding of a wide

character has no meaning.

Encodings
Let’s look a little deeper into the encoding issue, with another

example. This demo converts wide character values into

sequences of encoded bytes:

#include <stdio.h>
#include <stdlib.h>
#include <wchar.h>

int main()
{

char buf[MB_CUR_MAX];
int n;

// convert a single-byte character to a multibyte 
// character

n = wctomb(buf, L'a');
printf("len = %d\n", n);
for (int i = 0; i < n; i++)

printf("%hhx ", buf[i]);
printf("\n");

// convert another single-byte character

n = wctomb(buf, L'\377');
printf("len = %d\n", n);
for (int i = 0; i < n; i++)

printf("%hhx ", buf[i]);
printf("\n");

// convert a wide character

n = wctomb(buf, L'\x12345678');
printf("len = %d\n", n);
for (int i = 0; i < n; i++)
printf("%hhx ", buf[i]);
printf("\n");

}

The output is:

len = 1
61 
len = 2
c3 bf 
len = 6
fc 92 8d 85 99 b8 

The character a is encoded as itself, while the character \377 is

encoded as two bytes 0xc3 and 0xbf. The constant

L’\x12345678’, internally represented as a four-byte long, is

encoded using six bytes.

Here’s another example of encoding and decoding:

#include <stdio.h>
#include <stdlib.h>
#include <wchar.h>

int main()
{

char buf[MB_CUR_MAX];
wchar_t wc1 = L'\x12345678';
wchar_t wc2;
int n, nn;

// convert a wide character to a multibyte 
// character

n = wctomb(buf, wc1);
printf("%d\n", mblen(buf, n));

// reverse the process

nn = mbtowc(&wc2, buf, n);

// check result

if (wc1 == wc2 && n == nn)
printf("equal\n");

else
printf("unequal\n");

}

The wctomb() function encodes a wide character into a stream

of bytes, and mbtowc() reverses the process.

Restartable Functions
Consider the second part of the last example. The processing of

the first part of the example – a wide character encoded into a

buffer of one or more bytes – was reversed, by taking the buffer

and converting it back into a wide character.

In a real-world example, things might not be quite as simple.

For instance, you might have an application where bytes are

coming in across a network one at a time, and several of the

bytes put together represent a wide character. You’d somehow

like to keep track of the state of the decoding as each byte



15August 2002 ;login:

●
  

 
P

R
O

G
R

A
M

M
IN

Gcomes in, and when a valid wide character is detected, process

it.

As part of support for wide characters, C99 has a set of what are

called restartable functions. The idea is that you initialize a state

object used to keep track of the encoding or decoding state, and

then you pass this object to the functions. Let’s see how this idea

works in practice:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <wchar.h>

int main()
{

// convert a wide character into a byte stream

char buf[MB_CUR_MAX];
wchar_t wc1 = L'\x12345678';
int len = wctomb(buf, wc1);
printf("len = %d\n", len);

// initialize mbstate_t object

wchar_t wc2;
mbstate_t mbstate;
memset(&mbstate, 0, sizeof(mbstate_t));
size_t retval;

// convert the first len - 1 bytes of the byte stream

retval = mbrtowc(&wc2, buf, len - 1, &mbstate);
printf("retval = %d\n", retval);

// convert the last byte of the byte stream

retval = mbrtowc(&wc2, &buf[len - 1], 1, &mbstate);
printf("retval = %d\n", retval);

// compare with original

if (wc1 == wc2)
printf("equal\n");

else
printf("unequal\n");

}

In the first part of the example, a wide character is encoded into

a stream of bytes. We then initialize an mbstate_t object and

convert the stream of bytes back to a wide character. But in the

first call to mbrtowc(), we omit the last input byte, implying that

the conversion cannot be completed during this function call.

The state object captures an intermediate state of conversion.

The state object is then passed to the second mbrtowc() call, and

the conversion is completed.

The result of running the demo is:

len = 6
retval = -2
retval = 1
equal

The initial -2 return value from the first mbrtowc() call indicates

that a valid partial encoded wide character was found in the

input byte stream.

Wide character support is especially useful if you’re working

with foreign languages. C applications often assume English

and ASCII are being used, and the wide character type and

library functions add support for other character sets.

WIDE CHARACTERS ●  



16 Vol. 27, No. 4 ;login:

practical perl
Programming with Iterators

Most programs deal with examining a sequence of val-

ues at some point. In this column, we investigate itera-

tors, a way to simplify processing of a computed

sequence of values. We conclude by revisiting a com-

mon problem: parsing a configuration file, this time by

using iterators.

Introduction to Iterators
I recently worked on a project where I needed to use the iterator

design pattern. Design patterns are common structures and

behaviors that occur frequently in many programs and are used

across programming languages and application domains. The

iterator pattern describes a behavior where an object offers

sequential access to a data structure composed of many individ-

ual elements.

Iterators are more common in strongly typed programming

languages. Java, for example, contains an Iterator interface as

part of the core language definition. Classes that use this inter-

face provide next() and hasNext() methods to enable programs

to examine a series of values sequentially, one at a time. One

particularly interesting use of iterators involves traversing a

binary tree. One way to examine each node in the tree would be

to code up a breadth-first traversal algorithm every time you

need it. An easier way to examine the tree is to make successive

calls to a next() method to retrieve each item from the tree in

the proper order.

You may not have heard about iterators before just because

they’re not particularly necessary in Perl. Because Perl has a

generic list data type already, there isn’t a pressing need to cre-

ate generic interfaces or design patterns to access list-type

objects in a sequential manner.

Here are a few common examples of how iterators are com-

monly used in Perl. Built-in operators like foreach, map, and

grep can work with any kind of data in a list, because lists are

generic containers:

foreach (@ARGV) {
## process items in a list

}
## transform a list of values 
## into a list of squares
my @squares = map {$_ ** 2} 1..10;
## reduce a list of files 
## to a list of writable files
my @writable = grep {-w $_} </htdocs/*>;

Iterating over the lines in a file using a while loop is another

common technique:

while (<FILE>) {
## process each line of FILE

}

Recall that foreach will examine lists one element at a time, but

while loops execute until the test condition evaluates to false.

That’s why the while(<FILE>) idiom is shorthand for this con-

struct:

while (defined($_ = <FILE>)) {
## process each line of FILE

}

The point here is that a line is read from FILE each time the

block is executed. Looking at the while loop this way shows that

we’re not examining a sequence of values in a list, but examin-

ing a sequence of values generated dynamically. It just so hap-

pens in this case that these computed values are lines from a

file. We could just as easily iterate over a series of rows coming

from a database query using the DBI module:

use DBI;
my $dbh = DBI->connect("dbi:SQLite:dbname=my_data", "", "");

my $sth = $dbh->prepare("SELECT * FROM books");
$sth->execute();
while (my @row = $sth->fetchrow_array()) {

## ... process each row
}

Iterators in Perl
In order to iterate over a sequence of computed values (like the

ones returned by <FILE> or $sth->fetchrow_array()), it is neces-

sary to return a series of values followed by some false value

when the sequence is exhausted. One easy way to signal the end

of a sequence is to return undef or an empty list. This is suffi-

cient when examining a series of strings (lines from a file), a

series of lists (rows from a database), or a series of numbers.

Generating a sequence of computed values involves maintain-

ing some state variables so we can tell when the sequence is

by Adam Turoff

Adam is a consultant
who specializes in
using Perl to manage
big data. He is a long
time Perl Monger, a
technical editor for
The Perl Review, and
a frequent presenter
at Perl conferences.

ziggy@panix.com



17August 2002 ;login:

●
  

 
P

R
O

G
R

A
M

M
IN

Gexhausted. This is generally done with an object, but it can also

be done with a closure. Closures are anonymous subroutines

that maintain some private-state variables. They’re like objects,

except that they’ve been turned inside out. Where objects are

pieces of data (like a hash) with some subroutines attached, clo-

sures are subroutines with some data attached.

Here is a function that creates closures, each of which will count

from 1 to 10:

sub make_counter {
my $i = 1;
return sub {
return if $i > 10;
return $i++;
}

}

In this example, a new variable $i and a new anonymous sub are

created each time we call make_counter. Each closure we create

maintains its own private value for $i. We can then call the clo-

sure 10 times to get the values 1 through 10. After that, we’ll

always return a false value. This satisfies the requirements for an

iterator, so we read values from it one at a time, almost as if it

were a file:

my $iterator = make_counter();

while(defined($_ = $iterator->())) {
print; ## 12345678910

}

Combining Iterators
The iterators that are created by make_counter() are very simple

and may not seem very worthwhile at first. But it is easy to

combine iterators to produce more interesting results. Here is

an iterator that filters values from our simple counter iterator

and emits only the odd values:

sub odd_numbers {
my $next = shift;
return sub {
my $i = $next->();
while (defined($i) and ($i % 2) == 0) {

$i = $next->();
}
return $i;
}

}

my $iter = make_counter();
my $odd = odd_numbers($iter);

while (defined($_ = $odd->())) {
print;  ## 13579

}

First, we ask for a value from the iterator $odd. Within $odd’s

closure, we ask for a value from its $next iterator until we find

an odd value or the end of $next’s sequence of values. The

result, as expected, is a sequence of odd values from 1 to 10.

This example shows another property of closures. Not only do

closures turn objects inside out, but they turn logic inside out as

well. Instead of skipping even values within the while loop, we

weed them out beforehand, simplifying the while loop down to

a single statement.

Note that we created the $odd iterator by modifying another

iterator. This process can be extended, transforming a sequence

of odd numbers into a sequence of odd numbers squared:

sub make_squares {
my $next = shift;
return sub {
my $i = $next->();
return unless $i;
return $i ** 2;
}

}

my $iter = make_counter();
$iter = odd_numbers($iter);
$iter = make_squares($iter);

while (defined($_ = $iter->())) {
print;

}

We can go even further, adding another filter to transform this

sequence of odd numbers squared into a running total of odd

numbers squared, a running average of odd numbers squared,

or something entirely different. No matter how we build the

iterators up, the process of examining the final result remains

the same: a simple while loop.

Parsing Configuration Files
Now that you understand the basic ideas behind iterators, it’s

time for a more practical example: parsing a configuration file.

Let’s start with a few simple requirements:

■ Configuration files consist of a series of name-value pairs

and are stored in a hash.
■ Comments start with the # character and continue until

end-of-line; all comments should be ignored.
■ Lines consisting of nothing more than space characters

should be ignored.

The first few requirements seem simple enough to implement

with a standard while loop. It might look something like this:

PRACTICAL PERL ●  



Vol. 27, No. 4 ;login:18

while (<CONFIG>) {
s/#.*$//; ## delete comments until end-of-line
## skip blank lines
while (m/^\s*$/) {

$_ = <CONFIG>;
}

my ($name, $value) = m/^(.*?)=(.*?)$/;
$config{$name} = $value;

}

If you look closely, there are some bugs caused by the inner

loop. Only the first line’s comments are deleted; after we’ve

found a blank line (or a line with nothing but a comment), then

the next non-blank line’s comment will be kept. There are a lot

of ways to fix this bug. If we had used iterators, these bugs

would be easier to avoid.

First we need to read lines from a file using an iterator. Once

that is done, we can then transform that stream of values by

stacking one iterator on top of another until we’re left with a

stream of name-value pairs:

sub make_file_iterator {
my $filename = shift;
open(my $fh, $filename);
return sub { return scalar <$fh>; }

}

sub strip_comments {
my $next = shift;
return sub {

my $line = $next->();
$line =~ s/#.*$//;
return $line;

}
}

sub skip_blanks {
my $next = shift;
return sub {

my $line = $next->();
while(defined ($line) && $line =~ m/^\s*$/) {

$line = $next->();
}
return $line;

}
}

my $config = make_file_interator("my.config");
$config = strip_comments($config);
$config = skip_blanks($config);

while (defined($_ = $config->())) {
## process name=value pairs
my ($name, $value) = m/^(.*?)=(.*?)$/;
$options{$name} = $value;

}

In this example, we start with three generic subroutines that

create iterators. If another portion of our program needed to

skip blank lines or strip comments, we could reuse these sub-

routines to generate iterators for that task. This allows us to

maintain and debug code in one spot, rather than maintaining

and debugging a few repeated lines in many places.

Another benefit is that our main program consists of three lines

of initialization to set up the $config iterator, and a simple while
loop that only sees valid values and operates on them. As

requirements change over time, this main loop would need very

little modification. Most of the changes could be handled by

adding filters to the $config iterator to perform more pre-pro-

cessing.

Conclusion
Iterators are a very powerful construct for processing a series of

values. The kinds of iterators described here use closures for a

simple and effective way to create and transform a series of val-

ues generated one at a time. Iterators simplify programming by

separating out the pre-processing from the main processing for

a series.



19August 2002 ;login:

●
  

 
P

R
O

G
R

A
M

M
IN

G

One of the most useful features of modern GUIs is the

little pop-up help window. Whenever I end up with a

new application, and no time to actually read a manual,

I’ll let the cursor rest on a bizarrely named button and

hope I get a hint for what it will do.

Tk does not include a pop-up help widget as one of the basic

widgets, but one can be created with just a few lines of code.

The help balloon described in this article was submitted to the

Tcler’s Wiki by Daniel Steffen (http://www.maths.mq.edu.au/
~steffen/tcltk).

The code for a help balloon is fairly short, but not trivial. Creat-

ing a help balloon requires interacting with a several aspects of

the window manager and Tk interpreter, and it’s not always

obvious how to gain access to the feature you need. Knowing

what types of information are controlled by the window man-

ager, and which are controlled by the Tk interpreter makes it a

bit easier.

The first trick with a help balloon is that we need to know when

the cursor has entered a window that has a help balloon associ-

ated with it.

Tcl handles linking an action to an event with the bind com-

mand. The bind command links a Tcl script to a window and

event. When that window has focus, and that event occurs, the

registered script will be evaluated.

The command looks like this:

Syntax: bind window event script
This causes script to be evaluated if event occurs while window
has focus.

window The name of the window to which this script will be

bound

event The event to use as a trigger for this script

script The script to evaluate when the event occurs

The events that will trigger evaluating the script are defined as

zero or more modifiers, followed by an event-type descriptor,

followed by a detail field. You must have at least a type or detail

field in the event descriptor. Depending on the event, more

fields may be required. The fields can be separated by white-

space or dashes.

The event types include all the events supported by the X Win-

dow System:

Activate Enter Map

ButtonPress, Button Expose Motion

ButtonRelease FocusIn MouseWheel

Circulate FocusOut Property

Colormap Gravity Reparent

Configure KeyPress, Key Unmap

Deactivate KeyRelease Visibility

Destroy Leave

A simple event would be something like <H>, which would

trigger on someone typing an uppercase H. In this case the

event descriptor is just a detail field, with an implicit type of

KeyPress.

The detail field describes the event in more detail. For example

<KeyPress-H> would also describe the event when someone

types an uppercase H, and <ButtonPress-1> describes the event

when someone clicks the leftmost button.

The modifier field adds information about events that must

happen simultaneously (like Control, Alt and Delete being held

down together), or sequentially, like mouse double clicks.

Modifiers include Control, Shift, Lock and Alt, to describe a key

that must be depressed when the event occurs, or Double, Triple,
and Quadruple to describe how many times the event must

occur: <Double-ButtonPress-1> describes the event when some-

one double-clicks the left mouse button. We could watch for

someone triple-clicking while holding the Control key with

<Triple-Control-ButtonPress-1>.

To make a help balloon, we want to know when the cursor

enters or leaves a widget. The Enter and Leave events are gener-

ated when a cursor enters or leaves a widget, so a pair of lines

like the following would display and destroy a balloon when the

cursor enters and leaves a widget named .needsHelp:

bind .needsHelp <Enter> "create Balloon"
bind .needsHelp <Leave> "destroy Balloon"

the tclsh spot
by Clif Flynt

Clif Flynt is president
of Noumena Corp.,
which offers training
and consulting serv-
ices for Tcl/Tk and
Internet applications.
He is the author of
Tcl/Tk for Real Pro-
grammers and the
TclTutor instruction
package. He has
been programming
computers since
1970 and a Tcl advo-
cate since 1994.

clif@cflynt.com

THE TCLSH SPOT ●  

http://www.maths.mq.edu.au/


Vol. 27, No. 4 ;login:20

Since a help balloon should appear below the widget that it

relates to, the code that will create a balloon needs to know

where that window is. Though the window name sounds like a

line from a bad fantasy novel, knowing it allows you to learn its

location.

The bind command will let us pass certain runtime values to the

script that is evaluated when the event occurs. These values are

defined in the script as a percent-item, which will be substituted

for the actual value just before the script is evaluated.

The bind command supports many percent-items, including:

%b The number of the button that was pressed to generate

this event. Valid only for ButtonPress or ButtonRe-
lease.

%d The detail field from the event.

%h The height field from the event. Valid for Configure
and Expose.

%k The key that was pressed or released. Valid only for

KeyPress or KeyRelease.

%x %y The X or Y coordinates for the event. Valid for events

such as mouse events that have an X or Y field.

%R %S The root or subwindow identifier for the event.

%W The window for which this event is being reported.

The %W option lets us tie a help balloon to the window that

created it. A command to bind help-balloon creation to a

widget might look more like this:

bind .needsHelp <Enter> 
"createBalloonProc %W $helpMessage"

Help windows should appear, not immediately, but a second or

two after the cursor enters a widget. This means we need to

have a way to schedule an event to occur in the future.

The Tcl after command enables a script to react to a timer event

or idle condition. This command has several subcommands

that will let an application interact with the queue of scripts

waiting for a chance to happen, but for a help balloon we only

need the simple form of:

Syntax: after milliseconds script 

after Schedule a script to be processed in the

future.

milliseconds The number of milliseconds to pause the cur-

rent processing, or the number of seconds in

the future to evaluate another script.

script The script to be evaluated after the number of

milliseconds have elapsed.

Given a procedure to create the balloon named balloon:show,

the beginning of a procedure to add a help balloon to a widget

looks like this:

proc balloon {w help} {
bind $w <Enter> 

"after 1000 [list balloon:show %W [list $help]]"

We can’t leave that balloon up forever, so we need to be able to

destroy the balloon when the cursor leaves the target widget.

The Tcl command to destroy a window is destroy.

Syntax: destroy  windowName ?window2...? 

Destroy one or more Tcl widgets.

windowName The name of the Tcl widgets to be destroyed.

We can decide to name the help balloon the .balloon child of the

window it relates to. This makes the entire balloon registration

procedure look like this:

proc balloon {w help} {
bind $w <Any-Enter> 

"after 1000 [list balloon:show %W [list $help]]"
bind $w <Any-Leave> "destroy %W.balloon"

}

The balloon:show procedure will create and display the help

balloon. There are a few steps in this process.

1. Confirm that the cursor is still inside the window that is

associated with this help balloon.

2. Destroy any previous balloon associated with this window.

3. Create a new window with the appropriate text.

4. Map this window to the screen in the appropriate place.

Several of these steps require information from the window sys-

tem: finding the location of the cursor, the location of a widget,

etc.

Tk provides for interaction with a windowing system via two

commands: the winfo command that returns information about

the windows Tk controls, and the wm command that interacts

with the window manager.

These commands have many subcommands, most of which

aren’t needed for this application. I’ll just discuss a few of them

as they become necessary.

The first step, confirming that the cursor is still within the win-

dow, can be done with two winfo commands. The pointerxy
subcommand will return the coordinates of the cursor, and the

containing subcommand will return the name of a window that

encloses a pair of coordinates.

Syntax: winfo pointerxy window

Return the X and Y location of the mouse cursor.

These values are returned in screen coordinates, not

application window coordinates.



21August 2002 ;login:

●
  

 
P

R
O

G
R

A
M

M
IN

Gwindow The mouse cursor must be on the same screen as this

window. If the cursor is not on this screen, then the

coordinates will each be -1.

Syntax: winfo containing rootX rootY

Returns the name of the window that encloses the X

and Y coordinates.

rootX An X screen coordinate (0 is the left edge of the

screen).

rootY A Y screen coordinate (0 is the top edge of the  screen).

The containing subcommand requires two separate arguments,

while the pointerxy returns a pair of arguments. If we tried to

write this code:

winfo containing [winfo pointerxy .]

the Tcl interpreter would throw an error.

The return from winfo pointerxy . would be substituted into the

command as a single unit. The command evaluated by the Tcl

interpreter would resemble:

winfo containing {120 300}

instead of

winfo containing 120 300

The solution to this is to use the eval command to evaluate the

string.

Syntax: eval string1 ?string2...?

Concatenate the arguments into a single string and

evaluate that string as a command.

string* Strings that will compose a command.

Because lists are concatenated onto the end of the previous

data, the eval command loses one level of grouping informa-

tion. If you need to maintain the grouping of some sets of data,

use the list command to make a list of it.

Using a string match command to compare the window that

currently has the cursor with the window that requested the

help balloon, we get code like this:

proc balloon:show {w arg} {
if {![string match [eval winfo containing  

[winfo pointerxy .]] $w]} {
return

}

The next step is to destroy any previous existing balloon. This

might seem unnecessary – after all, a cursor has to leave one

window before it can enter another.

However, there are circumstances when a cursor can enter a sec-

ond window without leaving the first. For example, if one

widget is contained within another, the cursor can enter the

inner widget without leaving the outer widget.

The example below shows an unlikely example of this situation:

# Create and display a canvas
canvas .c
pack .c

# Create and display a label within the canvas
label .c.l -text label
.c create window 50 50 -anchor nw -window .c.l

# Add bindings to report when the mouse enters 
# and leaves the windows.
bind .c <Enter> {puts {in .c}}
bind .c <Leave> {puts {out .c}}
bind .c.l <Enter> {puts {in .c.l}}
bind .c.l <Leave> {puts {out .c.l}}

As a mouse cursor enters the canvas, then the label, and then

leaves the label and canvas, the following output is generated:

in .c
in .c.l
out .c.l
out .c

To make the balloon help code a bit more readable, the name of

the new balloon help window is saved in the variable top.

If the window does not exist, it can’t be destroyed, and Tcl will

throw an error. A script can catch an error with the catch com-

mand, which will evaluate a script in a safe way, and return the

results and status of the script separately.

The syntax is:

Syntax: catch script ?varName?

The catch command returns the status from evaluating the

script, and optionally places the results of evaluating the script

in the variable varName.

In this case, we don’t need the results from the destroy, so we

can destroy any previous balloons associated with this window

with:

set top $w.balloon
catch {destroy $top}

The next step is to create the new window. Tcl supports two

types of windows:

■ Windows that are managed within a Tk window
■ Windows that are managed by the window manager

THE TCLSH SPOT ●  



Vol. 27, No. 4 ;login:22

A window managed within a Tk window (like most buttons,

labels, scrollbars, etc. that your script creates) must fit within

the parent window. Windows that are managed by the window

manager (called top level windows) can appear anywhere on the

screen and may have decorative borders set by the window

manager.

For a help balloon, we want a top level window (in case the

widget this balloon is associated with is at the bottom corner of

the application), and we want the window to not have any deco-

rations. Our script will place a message widget inside this top

level to hold the help text.

The command for creating a new top level window is toplevel.

Syntax: toplevelwindowName ?-option value ...?

The options include setting the border width, relief, back-

ground, class, etc.

This application wants a very simple top level with a one-pixel-

wide border.

toplevel $top -borderwidth 1

A help balloon window should not have the decorations added

by the window manager – we don’t want the user to be able to

move this window, iconify it, etc. The decorations are added by

the window manager, not managed by Tk, so removing the dec-

orations is done with the wm command. The subcommand that

handles this is override-redirect.

Syntax: wm override-redirect windowName boolean

Sets the override-redirect flag in the requested

window. If true, the window is not given a

decorative frame and can not be moved by

the user. By default, the override-redirect flag

is false.

windowName The name of the window for which the 

override-redirect flag is to be set.

boolean A boolean value to assign to the override-redirect flag.

The wm override-redirect command should be given before the

window manager transfers focus of a window. Unlike most

Tcl/Tk commands, you may not be able to test this subcom-

mand by typing commands in an interactive session.

The difference between override-redirect true and false looks

like this:

catch {destroy .t1 .t2}   
toplevel .t1 -border 5 -relief raised
label .t1.l -text "Reset Redirect True"
pack .t1.l
wm override-redirect .t1 1

toplevel .t2 -border 5 -relief raised
label .t2.l -text "Default Redirect"
pack .t2.l

wm geometry .t1 +300+300
wm geometry .t2 +300+400

raise .t1
raise .t2

Creating the new top level and getting rid of the borders looks

like this:

toplevel $top -borderwidth 1
wm override-redirect $top 1

The next step is to add the help message. Tk supports three

widgets for displaying textual information:

label Displays a single line of text.

message Displays one or more lines of text.

text Displays one or more lines of text with sup-

port for editing, multiple fonts, tagged areas,

etc.

Any of these widgets could be used for the help message, but

the help message may be longer than can fit on a single line, and

the text widget is a bit heavyweight for this application. The

message widget combines some of the features of the text

widget and some features of the label widget, making it the best

widget for this application.

Syntax: message name ?options? 

message Create a message widget.

name A name for the message widget. Must be a proper

window name.

?options? Options for the message include:

-text The text to display in this widget.

-textvar The variable which will contain the

text to display in this widget.

-aspect An integer to define the aspect ratio:

(Xsize/Ysize) * 100

-background The background color for this

widget.

When a widget creation command is evaluated, it returns the

name of the widget that was just created. This can be used with

override-redirect 1 override-redirect 0



23August 2002 ;login:

●
  

 
P

R
O

G
R

A
M

M
IN

Gthe geometry managers to make a single-command create and

display command like this:

pack [message $top.txt -aspect 200 
-background lightyellow \
-font fixed -text $arg]

The final step is to place the new window just under the widget

that requested the help balloon.

The window that requests the help will be a window managed

by Tk, so we can use the winfo command to determine its

height and X/Y locations.

The subcommands for these data are:

winfo heightwinName Return the height of a window in

pixels.

winfo rootx winName Return the X location of this win-

dow in screen coordinates.

winfo rooty winName Return the Y location of this win-

dow in screen coordinates.

These two lines of code set variables for the X coordinate to be

the same as the left edge of the window requesting the help bal-

loon, and the Y coordinate to be just below that window.

set wmx [winfo rootx $w] 
set wmy [expr [winfo rooty $w]+[winfo height $w]]<

Placing a top level window on the screen is a task for the win-

dow manager, so the wm geometry command gets used.

Syntax: wm geometry windowName ?geometry?

Query or set the geometry for a window.

windowName The name of the window to be queried or set.

?geometry? If this is present, it’s a geometry string follow-

ing the X windows convention of

widthxheight+/-Xposition+/-Yposition. The x
and + or - separators are required.

If this field is not present, the wm geometry
command returns the current geometry of

the window.

For most X Window window managers, we could just provide

the X and Y locations for the new window:

wm geometry $top +$wmx+$wmy

But, to be completely safe on multiple platforms, with different

window managers, we should provide a complete geometry

specification with the width and height of the window

included.

The requested width and height is known by the Tk interpreter,

and is returned by the winfo reqwidth and winfo reqheight
commands.

A better geometry command resembles this:

wm geometry $top \
[winfo reqwidth $top.txt]x[winfo reqheight 

$top.txt]+$wmx+$wmy

The final step is to make sure the new window isn’t hidden

behind other windows. The raise command places one window

above another, or above all other windows, if no other window

is defined.

raise $top
}

Wrapping all these code fragments together, the balloon:show
procedure looks like this:

proc balloon:show {w arg} {
if {![string match [eval winfo containing  

[winfo pointerxy .]] $w]} {
return

}
set top $w.balloon
catch {destroy $top}
toplevel $top -borderwidth 1 -background black
wm overrideredirect $top 1

pack [message $top.txt -aspect 200 
-background lightyellow \
-font fixed -text $arg]

set wmx [winfo rootx $w]
set wmy [expr [winfo rooty $w]+[winfo height $w]]
wm geometry $top \

[winfo reqwidth $top.txt]x[winfo reqheight
$top.txt]+$wmx+$wmy

raise $top
}

This code, with a tweak for Macintosh platforms, is available at

http://mini.net/tcl/534.html.

THE TCLSH SPOT ●  

http://mini.net/tcl/534.html


24 Vol. 27, No. 4 ;login:

securing FTP
by Gary Cohen

Gary is the CEO and
co-founder of Glub
Tech, Inc. and is con-
currently employed
by Adobe Systems.
In the past he has
worked for the San
Diego Supercom-
puter Center and
IBM. 

gary@glub.com

In the summer of 1999, fellow classmate Brian Knight and I teamed up to

take part in a senior project at the University of California, San Diego

(UCSD). Both Brian and I worked as interns in the Computer Security

department at the San Diego Supercomputer Center (SDSC) and were quite

aware of some of the inherent security problems that lie within the FTP pro-

tocol. Under the leadership of Sid Karin and Tom Perrine, we worked with

SDSC to build a safer FTP client. Just prior to starting this project, SDSC had

made a move to disable all services that transmitted a user’s password in

the clear and to allow a user to transfer files only via scp (a file-transfer

wrapper provided with SSH), FTP via an SSH tunnel, anonymous FTP, or

Kerberos-authenticated FTP. Brian and I felt that these options each had

their shortcomings.

For example, scp was widely available only on UNIX, and to create a user interface for

it on other platforms made little sense since Secure Shell v2.0 was in beta and bundled

an FTP emulator, sftp, with it. We looked at writing an FTP client that supported sftp,

but the daemon was not very stable, which provided some hurdles, and we needed to

finish the project within the 10-week quarter.

The second file-transfer method sanctioned by SDSC was FTP via an SSH tunnel.

Unfortunately, this method requires an end-user to perform a fairly complex setup

process. Even though SDSC provided documentation on how to configure a tunnel

and connect to an FTP server securely, most end-users had difficulty completing all

the steps or felt it was too inconvenient to do so.

The third method, anonymous FTP, was probably the most popular way to transfer

files between systems at SDSC, but the workflow was disjointed and could sometimes

cause problems. By using anonymous FTP, a user would upload a file into a write-only

directory (or dropbox). Once the file was uploaded, the user would have to log in to a

shell, take ownership of the file, and move the file where it needed to go. In order to

download the same file, the file would have to be moved to a separate, read-only direc-

tory before it could be retrieved by FTP. To say the least, the process was not very effi-

cient.

The fourth method was the only cross-platform option: use FTP with Kerberos

authentication. (SDSC also supplied the means to FTP via S/Key, but the number of

users for this service was even smaller than the number of those who used FTP with

Kerberos.) However, most of the users at SDSC did not use Kerberos, and the ones

who did were mostly UNIX folks who preferred the secure file transfer capabilities of

scp. Additionally, there were only a few clients that supported FTP via Kerberos.

Weighing our options, Brian and I felt implementing a secure client that did true FTP

seemed like a smart decision. FTP had been proven to work since its inception, and

people were already familiar with the client interface. But we were debating on how to

secure the control channel. Prior to this project I had used an SSL wrapper to secure

POP and IMAP for SDSC’s mail system. It was fairly easy to set up on the server side

(although we encountered a few issues using certificates generated by the Netscape

Certificate Manager), and it seemed to work well with the available SSL-enabled mail

clients. Keying off that success, we decided SSL looked like a viable security solution



for FTP as well. Our goal was to write an SSL-enabled FTP client that could communi-

cate with an ordinary FTP server through an SSL wrapper.

Brian and I started planning the project (only as well as a couple of college seniors

could). After reviewing the design with our advisors, we began writing our Secure FTP

client. To ensure our program had the greatest reach across many platforms, we wrote

it in Java as both applet and application. I took the role of designing and building the

user interface while Brian implemented the networking. Most of the project went

smoothly until we reached the phase of adding the SSL layer. Rather than reinvent the

wheel, we looked for a Java library that would provide SSL functionality. There were a

few to choose from but most were expensive (or at least it seemed that way to us poor

college students). Fortunately, a couple of weeks before the project was due, Sun

Microsystems released a reference implementation of SSL called the Java Secure Socket

Extension (JSSE). The documentation was limited, and the only form of a demo was

via Sun’s HotJava Web browser. But we were able to get the library to behave

as expected.

We had planned to release the source code for the client once we were fin-

ished, but with this being our first large Java program, and with a deadline

of 10 weeks, the finished code was anything but pretty. Both of us quickly

agreed that nobody should ever see this code. It was embarrassing, but it

worked as designed. We had written a client that could connect to an SSL

wrapper that acted as a proxy to an existing FTP server.

Using our client with an SSL-wrapped FTP server provided a means to

encrypt the control channel (which protects the username and password,

the main motivation behind the project), but it didn’t allow for encryption

of the data channel. Although there were SSL wrappers available on UNIX,

there wasn’t a wrapper for Windows. Shortly after releasing the first revision

of the client (aptly named Secure FTP v1.0), we started looking at writing a

complementary wrapper in Java. At first this wrapper would only address

the same issues as the UNIX-based ones (encryption of the control channel)

but with multiplatform support. Furthermore, we wanted to simplify the wrapper

configuration and the generation of certificates. We would address data encryption

later. Secure FTP Wrapper v1.0 was released to the public in February 2001.

With the initial releases of the client and wrapper under our belts, we decided to look

at data encryption, starting with the wrapper first. Since FTP uses two channels, one

for the commands and one for the data, using a wrapper to encrypt both is nontrivial.

Essentially, we would need to write a wrapper that understood the FTP protocol to

handle data encryption. So that’s what we did – we wrote a smart wrapper.

Version 1.0 of our wrapper acted as a transparent proxy, or “SSL translator,” between

an SSL-savvy client and a non-SSL FTP server. We got a secure connection from the

client and forwarded the plaintext “conversation” to the server. When the user issued a

command that required a data transfer, we just passed on the information without

intervening. For the most part this worked fine. However, this caused problems for

some servers that saw this behavior as a possible port theft. Port theft occurs when an

FTP client connects to the server’s control channel from a certain IP address but initi-

ates a data transfer from a different one. The problem with our setup was that the FTP

server saw the wrapper as the client when handling commands, but when a data trans-

fer was started, the data was being sent to the true client (instead of the wrapper). This

25August 2002 ;login: SECURING FTP ●  

●
SE

C
U

R
IT

Y

A screenshot of the Secure FTP client



Vol. 27, No. 4 ;login:

conflict led the server to think the data was being stolen and, in some cases, the FTP

server denied the request.

When we started working on the next version of the wrapper, the added support for

data encryption had the positive side effect of removing any possible port theft.

Instead of the wrapper just passing commands onto the server, it now acted as both a

mini-client and mini-server.

Because of the nature of file transfers in FTP, an FTP client can act as both client and

server. If the client sends the command PASV, it is requesting the server to open a lis-

tening socket to deal with the data transfer; this is known as a passive transfer. On the

other hand, if the client sends the command PORT, it is requesting the server to con-

nect to a socket that is listening on the client machine. Because of this dual nature, our

wrapper had to deal with both possibilities.

To do this, instead of merely passing on commands to the server from the client, we

now checked them against a list of known FTP commands. If we saw a PASV com-

mand issued by the client, our wrapper would still pass on that request to the server.

But instead of sending the server’s response back to the client as is, we create a new

server socket, “duct” our new socket with the server’s old socket, and rewrite the

response to reference the new socket. Depending on the type of data connection, this

new socket may be SSL enabled. Handling a PORT connection is similar to the PASV
workflow, except the roles are reversed; we create a new server socket, have the server

connect to our new socket, create another socket which we use to connect to the client,

and “duct” our two sockets together. It sounds complicated (which it is), but this is

why we decided to tackle data encryption at a later date.

Version 2.0 of our wrapper worked, but after we had originally started on our Secure

FTP crusade, the official spec for FTP security extensions changed. Originally there

were two supported mechanisms to handle FTP over SSL – explicit and implicit – but

version 8 of the draft inexplicably dropped support for the implicit options. An

explicit connection occurs when an FTP client connects to the standard FTP port

(port 21) and, to enable security, it issues the command AUTH SSL. If the server sup-

ports this command, it would convert the control channel from an insecure to an SSL-

enabled, secure channel. The other option, implicit, occurs when the client connects to

the IANA-specified port for ftps (port 990). This port already is SSL enabled much the

way https is enabled on port 443; when connecting to a secure Web server, an AUTH
command is not required since the connection is secure to begin with.

It remains a mystery to us what problem the standards makers were trying to solve by

dropping the implicit option. We tried to find a case where the control channel should

allow user information to be transmitted in the clear. We can understand why one

would not want to force encryption on the data channel due to speed issues, but there

is no good reason to transmit a password in the clear.

While we do not agree with this change, we decided to handle it nonetheless by adding

support for an explicit connection (Secure FTP Wrapper v2.5). However (due to our

stubbornness), we have kept the implicit connection on by default. Additionally, we

added a flag to our configuration that makes a secure control (and data) connection a

requirement. When an explicit connection is made, and the requirement of a secure

control connection is set, we will not allow the user to send a password without first

sending the AUTH command.

There is no good reason to

transmit a password in the

clear.

26



Unfortunately, adding support for explicit SSL complicates the wrapper concept. Hav-

ing a wrapper listen on the standard FTP control port (port 21) can cause configura-

tion issues since the existing FTP server may already be listening on that port. Due to

this obstacle, we do not enable the explicit connection if the wrapper IP address and

port are the same as those of the destination server. There are a couple of solutions to

make an explicit connection possible. One option would be for the server to listen on a

different port with the same IP address as the wrapper. Another option would be to

bind the server to a different address (such as localhost).

Separating the SSL support from the server might add complexity to a system admin-

istrator’s job, but we think the advantages outweigh the disadvantages. The major

advantage is you can continue to use your legacy FTP server. The last thing a busy

administrator wants to do is upgrade an FTP server and make sure the users can still

get their work done. In addition, our wrapper can be configured to listen on a border

router (straddling the DMZ) and allow a secure connection from the Internet into a

server that exists in your intranet. This kind of flexibility cannot be done if the encryp-

tion is taking place in the FTP daemon.

Now that there was a wrapper that supported encryption on both channels, we added

the much-requested support for data encryption in the client (Secure FTP v1.6).

What’s next? We are planning on externalizing our FTP via SSL implementation into a

Java bean so others can incorporate it into their own Java programs. We also have

some ideas to make our wrapper even smarter, but for now we’ll keep that secret.

For more information on Secure FTP, or to download the client and wrapper, we invite

you to take a look at the Secure FTP Web site (http://secureftp.glub.com) and the Secure

FTP Wrapper Web site (http://wrapper.glub.com).

This paper was written with input from Brian Knight, CTO of Glub Tech, Inc.

27August 2002 ;login:

We are planning on 

externalizing our FTP via SSL

implementation into a Java

bean so others can 

incorporate it into their own

Java programs.

●
SE

C
U

R
IT

Y

SECURING FTP ●  

http://secureftp.glub.com
http://wrapper.glub.com


28

I often take a look at a past column before ramping up the old rant engine.

Exactly a year ago, I was complaining about how a default install of Linux

as workstation left your system wide open, with many unnecessary network

services running. Now, I can cheerfully report that the opposite is true, that

a more recent release of Linux (RedHat 7.2) not only left services disabled,

but also included optional installation of netfilter (http://netfilter.samba.

org), configured to protect your workstation. How nice.

Not that everything has come up roses. I also ranted (last year) about weaknesses in IE

and XP. These issues have not gone away. IE still continues to be exploited on a regular

basis. I have been getting several copies of the Klez worm, an Outlook virus, every day.

And I port scanned a default install of Windows 2000 Professional Server and found

that it had 25 TCP ports running services. This scan showed the simple services, good

for denial of service, the ever present SMB share everything services, plus some new

ones that are security related (Kerberos, ldapssl, and kpasswd5). Something shows up

at port 6666/tcp, nominally IRC, but I don’t believe that Win2K comes with IRC by

default.

I have a useful security suggestion and a rant for this month as well. First the sugges-

tion, then the rant.

Backfire
I spend a lot of time researching and thinking about attacks. The Honeynet Project

(http://project.honeynet.org) is a really great source for learning about opportunistic

attacks. Opportunistic attacks are those without any particular target in mind – any

vulnerable system will do. These usually come about through scanners running on

previously rooted boxes. The average length of time between when Project members

install a default configured system and it gets rooted appears to be two days, maybe

less. Something to think about, especially if you are in a network without any sort of

firewall or controlled update program.

The other really interesting thing is what attackers do when they root a UNIX/Linux

box. The standard sequence of events goes something like this:

1. Clean up signs of the attack.

2. Install new user accounts (one normal, one root).

3. Login via new user account, su root.
4. Download patches.

5. Download tools.

6. Install tools.

7. Logout.

The installation of patches really surprised me at first. Who would have thought that

attackers would be so kindhearted and altruistic as to patch the security hole just used

to root the box? The truth is much simpler – if the attacker got in this easily, so can

anyone else, so the box must be patched at once. If they don’t patch, someone else will

soon “own” the system.

The tools downloaded vary a lot. Commonly, rootkits get downloaded. You can learn a

lot about rootkits by visiting http://www.chkrootkit.org/, as well as by finding a script

for detecting installed rootkits. Scanning and attack tools are also popular, turning the

recently rooted system into yet another tool for global domination. Distributed denial

musings

Vol. 27, No. 4 ;login:

by Rik Farrow

Rik Farrow provides
UNIX and Internet
security consulting
and training. He is
the author of UNIX
System Security and
System Administra-
tor’s Guide to System
V.

rik@spirit.com

http://project.honeynet.org
http://www.chkrootkit.org/


of service (DDoS) agents or handlers may be installed. The system may also be used to

run a bot, such as eggdrop (http://eggdrop.org), and to keep sysop privileges on some

IRC channels.

What does all of this activity have in common? It all requires downloading software to

the rooted system. Attackers most commonly use FTP, although they have been known

to use TFTP (especially on Windows boxes), and could use other mechanisms, like

Lynx (which version 1 of the lion worm did) or wget, as well. No matter what the

attacker uses, downloading software requires an outgoing network connection.

If you have a public Web server sitting behind a firewall, you can easily prevent outgo-

ing connections from that Web server. Web servers accept requests, they don’t make

outgoing connections to the Internet. A Web server could be performing DNS

lookups, but this is generally not done, since it is slow and can be done offline when

logs are analyzed (if anyone even cares about the FQDN of all visitors).

I suggest that you use firewall rules to block outgoing connections from public Web

servers. Even better, set the firewall up so that you get paged when the Web server

attempts to make an outgoing connection. At the very least, send yourself an email

from the firewall. An outgoing connection should NEVER happen, so if it does, some-

thing very bad has happened.

This firewall rule also blocks scanning of Internet addresses from a public Web server,

another common behavior seen from successfully attacked systems. Firewall rules like

this would have done a lot to slow down the various versions of Code Red, but not

Nimda, which used other attack vectors (JavaScript that executed the virus code,

README.EML or README.EXE).

Using this simple trick with other public servers will not be quite as effective. SMTP

servers make lots of connections to other SMTP servers, and if an SMTP server gets hit

with an SMTP worm (how could anyone forget the Morris Worm?), these connections

will also go to other SMTP servers, on port 25/TCP. Same thing with DNS servers, who

naturally make connections to ports 53 TCP and UDP. Still, only allowing connections

on these ports and sending out a page or email when something like FTP gets used

from your public SMTP relay or DNS server would catch some attackers.

If you really want to go further, do this for your entire internal network. You cannot,

practically speaking, only permit connections to specific remote hosts or services. You

can, however, block access to services forbidden by policy, and use this to set off

alarms. The popular Windows Trojan horse SubSeven (and others as well) will use a

connection to an IRC channel, or ICQ, to announce that it has been successfully

installed. If your policy forbids the use of IRC and/or ICQ, then block them, and alarm

on them.

In May and June of 2002, two sites were quietly compromised, and the configuration

scripts for software had a handful of lines added to them. In each case, the configura-

tion script now compiles a program, executes it, and removes the source and exe-

cutable while someone is running ./configure. The short program makes an outgoing

connection to a site, and if the connection succeeds, execs a shell at the victim’s end.

Think of this as a reverse telnet, but using (in this case) port 6667/tcp. The shell runs

as the user running configure. A firewall rule that blocks IRC (which just happens to

be the port used) would have blocked this backdoor. Too bad that one of the packages

backdoored was the Bitchx IRC tool (meaning that the choice of the IRC port almost

guarantees the port would be open).

29August 2002 ;login:

I suggest that you use 

firewall rules to block 

outgoing connections from

public Web servers.

MUSINGS ●  

●
SE

C
U

R
IT

Y

http://eggdrop.org


Vol. 27, No. 4 ;login:

Other great examples are the Microsoft everything sharing ports, 137/udp and 139/tcp.

Certain attacks against IE encourage the victim to connect to a remote file share,

which gets treated as part of the Local Zone for IE security purposes. Always block

outgoing connections to port 139/tcp.

Marcus Ranum has talked about these types of tricks a lot in the past, and probably

will in the near future (he is teaching a class about Honeypots at the USENIX Security

Symposium). Ranum, in a past life, installed burglar alarms, and has talked about

tricks like putting an alarm on a bogus jewelry box (one that the owner knows never to

open). Having your firewall set off an alarm when something occurs that should never

occur works as well, and perhaps better, since the alarm is on a separate system, not

the one that has just been rooted.

DoR
A conservative think tank, the Alexis de Tocqueville Institution (ADTI), published a

White Paper this summer entitled “Opening the Open Source Debate.” The paper does

not really debate anything but instead contends that open source “opens the gate to

hackers and terrorists.” I certainly consider this a bogus and misleading statement, and

Microsoft has admitted that they give money to ADTI but will not say if they funded

this report.

Jim Allchin, group vice president of Microsoft, in testimony in the MS antitrust case,

had a lot to say about his own company’s software (http://www.eweek.com/arti-
cle/0,3658,s%253D701%2526a%253D26875,00.asp). Allchin said that “sharing infor-

mation with competitors could damage national security and even threaten the U.S.

war effort in Afghanistan.” Wow. If Microsoft were to share their “secret,” proprietary

extensions to Kerberos Five, national security will be weakened? I don’t think so.

The truth comes out a bit later in the same article. There Allchin acknowledged that

some Microsoft code was so flawed it could not be safely disclosed. Included in this

was the part of the Message Queuing protocol that contains a coding mistake which

would threaten the security of enterprise systems using it if it were disclosed.

Well, that is certainly interesting news. Microsoft wants people to trust them and use

their OS software for enterprise-level systems, yet knows it has fatal errors within it. If

this were open source it would simply be patched, but because it is Microsoft it will

remain hidden, at least until someone discovers and discloses it – perhaps with the

Queuing worm? And which type of software are you going to trust now?

Andy Oram, of O’Reilly, has coined a term for this behavior. He called it “Denial of

Responsibility (DoR)” in http://www.oreillynet.com/cs/user/view/wlg/1500. Oram’s DoR

attacks are about vendors shipping code that they know has killer bugs in it (see

above). DoR is also about organizations and agencies that require the use of buggy

software, so that information that should be protected gets exposed instead.

I’d like to take the concept further and consider DoR in terms of licensing. On the one

hand, we have the GNU copyleft, open source, and the BSD license which describe the

rights and privileges of the users of open source (or some related variant) software.

Pundits argue that when open source software is used, no one is responsible for errors,

omissions, or bugs in the code.

And what about proprietary software? Ever read the End User License Agreement that

comes with any software or operating system you have ever acquired? Its only warranty

Ever read the End User

License Agreement that

comes with any software or

operating system you have

ever acquired? Its only 

warranty is for the media it

comes on.

30

http://www.eweek.com/arti-cle/0,3658,s%253D701%2526a%253D26875,00.asp
http://www.oreillynet.com/cs/user/view/wlg/1500.Oram�s


is for the media it comes on. You use the software, it is your responsibility. Now, there

is a real DoR attack. And, it is standard operating procedure today.

I like to compare the state of the current software industry to the automobile industry

in the past. Do you know when automobile manufacturers started using safety glass in

windshields? I really didn’t appreciate this factoid until I watched a series on safety and

liability issues on PBS. I also was made aware of the issue when my daughter told me

that her husband was adding safety features, including modern brakes and safety glass,

to the Model-A Ford he was turning into a hot rod.

You might even see Model-A Fords these days; they are really popular as restorations

and hot-rod conversions. Their flat windshields are very distinctive and were once also

lethal weapons. The ordinary plate glass used in the windshields could explode into

razor sharp shards anytime a rock hit the windshield. It wasn’t until the mid-’50s that

safety glass became common in windshields. That’s right. The cars your parents might

have been driving (mine were) had plate glass windshields.

That was 50 years ago. Today, when Ford designs an SUV that rolls over quite easily, it

has a big battle with a tire manufacturer, trying to place the blame for a dangerous

design somewhere else. Newer Ford Explorers, however, have a wider wheelbase, mak-

ing them less prone to rollovers (something pointed out to Ford many years ago). But

do software vendors even bother? Nope. You use the software, therefore you are to

blame.

With this level of responsibility, it is a wonder that anyone pays for software. Vendors

take as much responsibility for their software, and the potential damage it might do, as

does the open source community. If you are forced to use non-open source software,

from a vendor who publicly declares that revealing information about the protocols

and APIs involved is definitely dangerous, I think you are making a big mistake.

It’s like driving a car with a plate glass windshield, just hoping that that truck in front

of you doesn’t toss a rock at you.

31August 2002 ;login:

It is a wonder that anyone

pays for software.

●
SE

C
U

R
IT

Y

MUSINGS ●  



32

A Practical Approach
Introduction
The object of this paper is simple: to determine whether an individual, using

inexpensive off-the-shelf components and free software, could detect when

an unauthorized 802.11 card or access point was powered up and began

broadcasting within range of a local WLAN. Furthermore, could the event

be tracked, activity monitored, and the offending card or access point phys-

ically located? 

Tracking unauthorized external accesses, is considered by many to be the biggest con-

cern. Midnight parking-lot attacks are a real, tangible threat to many people, and espe-

cially frightening because the attacker could do almost anything. It’s the unknown and

uncontrollable risk that frightens many security professionals.

Realistically, though, the biggest threat in most organizations may come from inside.

Through maliciousness or plain old carelessness, an internal employee has the ability

to inflict major damage on a local network or open up large, gaping holes in the local

network.

For example, many users would think nothing of starting up Microsoft’s Internet

Information Server (IIS) on their Windows laptop, but most security professionals

would shudder at the thought of an untracked, unpatched IIS server running open to

the world. The user may bring their machine home at night, connect it to their ISP, get

infected with a worm or virus, and the next day, bring that machine on the local net-

work to wreak all kinds of havoc.

The 802.11 specification opens up a more interesting and far more dangerous possibil-

ity: a power user could simply bring an access point to work because they want the

convenience of a wireless network without the bother of the IT department’s delays in

deployment. Being a power user, they know that they can simply assign the access

point an address via DHCP, plug their own wireless card into their laptop, and then

walk around the office with their laptop. With proxying and NAT software, this kind of

activity might even go totally unnoticed by security personnel or automated intrusion

detection systems. Little does this user know that the IT department’s concerns are

well founded and that the user has unwittingly opened a gaping hole in the local net-

work, such that any drive-by attacker could simply hop on the local network and do

anything they wish. To address these concerns, we assembled the readily available nec-

essary pieces into a usable detection and tracking tool.

Hardware and Software Used
All software used is freely available and can be downloaded and used by anyone.

■ Generic x86-based PC laptop.
■ Cisco Aironet 340 802.11 card.
■ Cisco Aironet 340 access point, used as an experimental rogue access point.
■ Lucent Orinoco “Silver” 802.11 card, used as an experimental unauthorized wire-

less card.

identifying and tracking 
unauthorized 802.11 cards and
access points

Vol. 27, No. 4 ;login:

by Robert Foust

Robert Foust has been experi-
menting with Linux since version
0.95. He is currently employed as
a system administrator where he
enjoys working in a heavily mixed
hardware and software environ-
ment.

rfoust@interlinknetworks.com 



■ SuSE Linux 7.1.
■ Development version of libpcap (libpcap current-cvs-2001.07.20), a sniffing

library used under Linux. The latest development version was used because it

understands the 802.11 frame format (obtained from http://www.tcpdump.org/).
■ Development version of ethereal (v0.8.19), a very complete sniffer and protocol

analysis tool. This was used because it was one of the only tools available which

could dissect 802.11 frames in a human-readable format (obtained from

http://www.ethereal.com/).
■ Linux kernel 2.4.9. This was used because it had an updated driver for the Cisco

Aironet 340 wireless Ethernet card. There had been numerous changes to the

driver since 2.4.0 (one of the standard SuSE 7.1 kernels), and we wanted to be sure

the driver supported the 802.11 frame format, offered complete reporting, sup-

ported RF Monitor mode (which allowed “promiscuous” recording of 802.11

packets), and supported the iwspy ioctls, which were necessary to gather signal

strength statistics on arbitrary wireless clients and access points. The Aironet

driver included with the 2.4.9 kernel supported all of these.
■ Octave v2.0.16, a Matlab-like mathematics package. This was used to solve some

relatively complex simultaneous equations encountered while trying to track

down the physical location of unauthorized cards/access points. This package was

included with *SuSE 7.1 but can also be downloaded from Octave’s Web site,

http://www.octave.org/.
■ Gnuplot, latest CVS snapshot as of September 7, 2001. Gnuplot was used to find a

best-fit curve instead of Octave. Octave did not have any pre-canned best-fit func-

tions, while Gnuplot did, and a best-fit curve ended up yielding better results than

finding the simultaneous solution of three equations with three data points (the

first attempt).
■ The GIMP, for modifying and manipulating various graphics.
■ Emacs, Xfig, TeX, LaTeX, Ghostview, xv.

Note: We would very much liked to have used snort, a free IDS. This tool is quite

remarkable and extensible, but we couldn’t find any easy way within the scope of this

project to define or act on events that happened at the 802.11 frame level, which is

essential for detecting unauthorized cards or access points. Perhaps in future versions

snort will offer a combination of robust high-level intrusion detection along with the

complete protocol analysis tools offered by ethereal. For this project, the command-

line version of ethereal was used to track unauthorized wireless clients.

Background
The 802.11 specification refers collectively to a family of IEEE standards for a new

wireless networking protocol designed to be compatible with previous 802 specifica-

tions; it  covers everything from the physical medium (microwave radio and IR) and

modulation techniques to the link-layer protocol. The 802.11 specification can be

obtained from the IEEE Web site, http://www.ieee.org/. As implemented by most ven-

dors, 802.11 operates over microwave frequencies. In North America, it operates in the

2412 to 2462MHz range over 11 channels. When used over radio links, 802.11 makes

use of a technology called “spread spectrum,” summarized in an article by Schilling,

Pickholtz , and Milstein:

Spread-spectrum radio communications, long a favorite technology of the military

because it resists jamming and is hard for an enemy to intercept, is now on the

verge of potentially explosive commercial development. The reason: spread-spec-

33August 2002 ;login: UNAUTHORIZED 802.11 CARDS ●  

●
SE

C
U

R
IT

Y

http://www.tcpdump.org/
http://www.ethereal.com/
http://www.octave.org/
http://www.ieee.org/


Vol. 27, No. 4 ;login:

trum signals, which are distributed over a wide range of frequencies and then col-

lected onto their original frequency at the receiver, are so inconspicuous as to be

“transparent.” Just as they are unlikely to be intercepted by a military opponent, so

are they unlikely to interfere with other signals intended for business and consumer

users – even ones transmitted on the same frequencies. Such an advantage opens up

crowded frequency spectra to vastly expanded use.

In a nutshell, spread spectrum makes it difficult to distinguish legitimate signals from

normal background noise and makes 802.11 less susceptible to noise from the envi-

ronment. This is especially important considering that the microwave frequencies used

by 802.11 (~2.4GHz) are unlicensed, and so are susceptible to interference from many

sources, most notably microwave ovens.

Unfortunately, spread spectrum turns out not to offer much in the way of security of

communications, since the spreading algorithm used by 802.11 is well known and

implemented in every 802.11-capable card. However, spread spectrum still complicates

efforts to locate the source of unauthorized wireless cards and access points, since nor-

mal fixed-frequency receivers may not be able to easily distinguish 802.11 transmis-

sions from normal background noise. Using a traditional microwave receiver and

directional antenna to locate the source of unauthorized transmissions would proba-

bly be difficult.

Detection
The first goal is detection. Can we tell when someone powers on a card within range of

the local network? This can be done with off-the-shelf components and free software.

The Cisco Aironet driver included with the more recent Linux kernels supports “RF

Monitor” mode, which permits promiscuous monitoring of 802.11 packets – specifi-

cally, monitoring raw 802.11 frames to detect if there are any telltale frames broadcast

by a rogue access point or card.

As outlined in the original 802.11 specification, there are three classes of 802.11

frames. With the goal of detecting rogue access points and unauthorized wireless Eth-

ernet cards, we are primarily interested in class 1 and 2 frames. Class 1 frames are the

only frames allowed in state 1, the unauthenticated state, and are largely management

frames used for authentication, beacons, and probe requests. Class 2 frames are

allowed in both states 1 and 2 and are used for association and re-association. From

access points, we would expect to see a large number of beacon frames (class 1). From

unassociated ad hoc clients scanning in active mode, we would expect to see a large

number of probe requests (also class 1). To test this hypothesis, a method of monitor-

ing all 802.11 management frames is needed, which the Cisco card and Linux driver

are capable of in RF Monitor mode.

SETUP

To put the card into RF Monitor mode, use any BSS (use Mode: r for plain RF Monitor

mode):

# echo "Mode: y" > /proc/driver/aironet/eth0/Config
#

Then, start logging packets with tcpdump, saving them to a file for later analysis with

ethereal:

# tcpdump -i eth0 -s 0 -w capturefile
#

34



UNAUTHORIZED AD HOC NETWORK

The first test was to confirm the ability to detect a WLAN card being powered on. A

Lucent Orinoco card was configured in ad hoc mode on a Win2K laptop, and turned

on to find out if there were any characteristic frames sent out by the Orinoco card

when it was put into ad hoc mode.

After the card initialized, tcpdump was stopped, ethereal started, and the capture file

opened. A large number of probe requests from the Orinoco card were found, con-

firming that it was indeed possible to detect when someone within close range had

powered up a wireless Ethernet card in ad hoc mode.

The dissected frame was as follows:

Indeed, it is possible to tell if someone starts an actively scanning card in ad hoc mode,

and quite a bit of useful information can be gleaned from a single frame. Most relevant

are the SSID and the MAC address, since they can be used to track down a particular

card and/or person.

UNAUTHORIZED ACCESS POINT

The next test was to confirm the possibility of detecting a rogue access point. A tcp-

dump session was started, and then a Cisco Aironet 340 access point was turned on.

After the access point had finished booting, the dump was examined with ethereal, and

a large number of beacon frames sent out by the access point were found. The follow-

ing is one such frame, again dissected by ethereal:

35August 2002 ;login:

●
SE

C
U

R
IT

Y

IEEE 802.11
Type/Subtype: Probe Request (4)
Frame Control: 0x0040

Version: 0
Type: Management frame (0)
Subtype: 4
Flags: 0x0

DS status: Not leaving DS or network is operating in AD HOC mode(To DS: 0 F...)
.... .0.. = Fragments: No fragments
.... 0... = Retry: Frame is not being retransmitted
...0 .... = PWR MGT: STA will stay up
..0. .... = More Data: No data buffered
.0.. .... = WEP flag: WEP is disabled
0... .... = Order flag: Not strictly ordered

Duration: 0
Destination address: ff:ff:ff:ff:ff:ff (ff:ff:ff:ff:ff:ff)
Source address: 00:02:2d:1b:51:ca (Agere_1b:51:ca)
BSS Id: ff:ff:ff:ff:ff:ff (ff:ff:ff:ff:ff:ff)
Fragment number: 0
Sequence number: 118

IEEE 802.11 wireless LAN management frame
Tagged parameters (19 bytes)

Tag Number: 0 (SSID parameter set)
Tag length: 15
Tag interpretation: roguepeertopeer
Tag Number: 1 (Supported Rates)
Tag length: 4
Tag interpretation: Supported rates: 1.0 2.0 5.5 11.0 [Mbit/sec]

0000 40 00 00 00 ff ff ff ff ff ff 00 02 2d 1b 51 ca @...........-.Q.             
0010 ff ff ff ff ff ff 60 07 00 0f 72 6f 67 75 65 70 ......`...roguep             
0020 65 65 72 74 6f 70 65 65 72 01 04 02 04 0b 16    eertopeer......              

UNAUTHORIZED 802.11 CARDS ●  



Vol. 27, No. 4 ;login:

UNAUTHORIZED CLIENT

The final condition tested for was unauthorized clients. The first scenario considered

(the more likely scenario) is that someone brings a foreign card and powers it up with

the wrong SSID. If the card was actively scanning, probe requests would be seen from

this card as it attempted to find an access point. The second scenario is that someone

brings a foreign card and powers it up with the correct SSID. This one turns out to be

a little more problematic to detect, in that there will be only a few 802.11 management

frames to trigger an alert, and then more “normal” traffic. This is problematic prima-

rily because of the way RFMON_ANYBSS mode on the Cisco card works – despite its

name, the card cannot receive packets simultaneously from all BSSes in range, espe-

36

IEEE 802.11
Type/Subtype: Beacon frame (8)
Frame Control: 0x0080

Version: 0
Type: Management frame (0)
Subtype: 8
Flags: 0x0

DS status: Not leaving DS or network is operating in AD HOC mode (To DS: 0  From DS: 0) (0x00)
.... .0.. = Fragments: No fragments
.... 0... = Retry: Frame is not being retransmitted
...0 .... = PWR MGT: STA will stay up
..0. .... = More Data: No data buffered
.0.. .... = WEP flag: WEP is disabled
0... .... = Order flag: Not strictly ordered

Duration: 0
Destination address: ff:ff:ff:ff:ff:ff (ff:ff:ff:ff:ff:ff)
Source address: 00:40:96:36:88:23 (Telesyst_36:88:23)
BSS Id: 00:40:96:36:88:23 (Telesyst_36:88:23)
Fragment number: 0
Sequence number: 0

IEEE 802.11 wireless LAN management frame
Fixed parameters (12 bytes)

Timestamp: 0x0000000000019274
Beacon Interval: 0.102400 [Seconds]
Capability Information: 0x0021

.... ...1 = ESS capabilities: Transmitter is an AP

.... ..0. = IBSS status: Transmitter belongs to a BSS

...0 .... = Privacy: AP/STA cannot support WEP

..1. .... = Short Preamble: Short preamble allowed

.0.. .... = PBCC: PBCC modulation not allowed
0... .... = Channel Agility: Channel agility not in use
CFP participation capabilities: No point coordinator at AP (0x0000)

Tagged parameters (31 bytes)
Tag Number: 0 (SSID parameter set)
Tag length: 18
Tag interpretation: 
Tag Number: 1 (Supported Rates)
Tag length: 4
Tag interpretation: Supported rates: 1.0(B) 2.0(B) 5.5 11.0 [Mbit/sec]
Tag Number: 3 (DS Parameter set)
Tag length: 1
Tag interpretation: Current Channel: 11
Tag Number: 5 ((TIM) Traffic Indication Map)
Tag length: 4
Tag interpretation: DTIM count 1, DTIM period 2, Bitmap control 0x0, 

(Bitmap suppressed)
0000  80 00 00 00 ff ff ff ff ff ff 00 40 96 36 88 23   ...........@.6.#             
0010  00 40 96 36 88 23 00 00 74 92 01 00 00 00 00 00   .@.6.#..t.......             
0020  64 00 21 00 00 12 00 00 00 00 00 00 00 00 00 00   d.!.............             
0030  00 00 00 00 00 00 00 00 01 04 82 84 0b 16 03 01   ................             
0040  0b 05 04 01 02 00 00                              .......                      



cially if those BSSes use different frequencies. The consequence is that it takes some

manual intervention to sniff traffic from a particular BSS – see “Problems and Com-

plications,” below, for more details on this problem and how to work around it. This

problem was ignored and instead the focus was on the few 802.11 management frames

that do show up readily in the sniffer; both scenarios turned out to produce similar

probe requests, so both scenarios are treated as identical.

The dissected probe request sent out by this card:

PROBLEMS AND COMPLICATIONS

A few problems came to light with the Cisco card and driver that need to be men-

tioned.

The first problem is that the Cisco card, by default, even in RFMON and

RFMON_ANYBSS modes, does not actively scan for traffic on all channels at all times.

The following are the conditions under which it will rescan for BSSes:

■ When the card is first inserted 
■ When the interface enters or leaves promiscuous mode 
■ When synchronization with the current BSS is lost (due to interference, moving

out of range, or anything else that would cause the loss of a few beacon frames)    
■ When the /proc entry /proc/driver/aironet/eth0/BSSList is opened for writing (use

touch /proc/driver/aironet/eth0/BSSList) 

All of these conditions will “kick” the card into rescanning. To build a practical detec-

tion device, the card should be kicked at regular intervals, perhaps every minute. A

simple script to touch the BSSList file every minute will do the trick.

37August 2002 ;login:

●
SE

C
U

R
IT

Y

IEEE 802.11
Type/Subtype: Probe Request (4)
Frame Control: 0x0040

Version: 0
Type: Management frame (0)
Subtype: 4
Flags: 0x0

DS status: Not leaving DS or network is operating in AD HOC mode (To DS: 0  From DS: 0)
(0x00)

.... .0.. = Fragments: No fragments

.... 0... = Retry: Frame is not being retransmitted

...0 .... = PWR MGT: STA will stay up

..0. .... = More Data: No data buffered

.0.. .... = WEP flag: WEP is disabled
0... .... = Order flag: Not strictly ordered

Duration: 0
Destination address: ff:ff:ff:ff:ff:ff (ff:ff:ff:ff:ff:ff)
Source address: 00:02:2d:1b:51:ca (Agere_1b:51:ca)
BSS Id: ff:ff:ff:ff:ff:ff (ff:ff:ff:ff:ff:ff)
Fragment number: 0
Sequence number: 1

IEEE 802.11 wireless LAN management frame
Tagged parameters (13 bytes)

Tag Number: 0 (SSID parameter set)
Tag length: 9
Tag interpretation: roguehost
Tag Number: 1 (Supported Rates)
Tag length: 4
Tag interpretation: Supported rates: 1.0 2.0 5.5 11.0 [Mbit/sec]

0000  40 00 00 00 ff ff ff ff ff ff 00 02 2d 1b 51 ca   @...........-.Q.             
0010  ff ff ff ff ff ff 10 00 00 09 72 6f 67 75 65 68   ..........rogueh             
0020  6f 73 74 01 04 02 04 0b 16                        ost......                    

UNAUTHORIZED 802.11 CARDS ●  



Vol. 27, No. 4 ;login:

Second problem: not all the BSSes in the range showed up reliably in the file

/proc/driver/aironet/eth0/BSSList.

When the card is put into RFMON mode, transmitting is disabled, so the card cannot

scan actively for BSSes by sending out probe requests. Therefore, the card must use

passive scanning instead – instead of sending out probe requests, the card listens for

beacons. Passive scans use a timer – the card will listen for beacon frames until the

timer expires and then will move to another channel. The problem with the Cisco card

is that this timer is set too low. The default value is 40ms, which was insufficient on

our test network to notice all BSSes, regardless of the range or relative signal strength

of the access points. The solution was to add this line to the card initialization routine,

setup_card, in airo.c:

cfg.beaconListenTimeout = 120

Tripling this timeout made BSS detection work reliably. Consequently, all of our access

points showed up in BSSList, all the time.

Third problem: despite its name, even putting the card in RFMON_ANYBSS mode did

not cause the card to receive traffic from all of our access points, which were all using

different frequencies and were probably synchronized differently.

The card itself chose a BSS to synchronize to based on its own algorithm (probably on

its assessment of the relative signal strength). The problem with this is that we want to

see traffic from all BSSes in range, not just those that happen to have the strongest sig-

nals. A way could not be found to disable this feature on the Cisco card, but there is a

workaround — the Linux driver provides a /proc interface to set a preferred AP. Once

the list of BSSes in range of the scanner is found (/proc/driver/aironet/eth0/BSSList),

choose the one to monitor and enter the MAC address in the file /proc/driver/aironet/
eth0/APList. This will force the card to synchronize with that BSS and switch to that

channel, after which traffic from that BSS can be received and used for signal strength

assessments or monitoring for suspicious activity.

CONCLUSIONS

These simple tests confirm that there are 802.11 frames that are characteristic of typi-

cal rogue access points and unauthorized ad hoc networks, and that these frames can

be detected and analyzed using off-the-shelf components and free software.

Using these concepts along with a database of trusted access points and cards and the

fingerprints of suspicious frames, ethereal could be used as a fundamental building

block in a full-blown 802.11 intrusion detection system.

Tracking
While detection of rogue access points and unauthorized ad hoc networks is certainly

useful, physically tracking the offender is more interesting.

THEORY AND TECHNIQUES

Most triangulation done today uses directional techniques. A dish, yagi, or other direc-

tional antenna with a narrow range is attached to a receiver, and an area is scanned for

the strongest signal. The station is moved some distance away, the area is scanned

again, and then the position is found using simple trigonometry.

In practice, there is usually more involved than this. Radio propagation is affected by

terrain, obstructions, heat and atmospheric effects, reflections, refraction, antenna

38

Triangulated source

Position 1

Position 2
Fig. 1



design, and many other factors that could affect the apparent location of the transmit-

ter. The apparent location of the strongest signal may not actually be the location of

the transmitter. A full discussion of these effects is beyond the scope of this paper.

Regardless, the basic theory is sound and can be a very effective technique to locate a

transmitter.

Another technique, not quite as common today, is to locate the transmitter using only

the relative signal strength at various well-placed locations around the area and, if

known, the free-space propagation losses and the power of the transmitter.

If we know the output power of the transmitter, the gain of the receiving and trans-

mitting antennas, power drop-off, and the received signal strength, the location of the

transmitter can be narrowed down to two possible places with only two samples.

At point A, from the signal strength and power drop-off equation, we’d be able to

determine the distance from the transmitter. At point B, we’d also know that, so the

location of the transmitter will be found at the point(s) where both dA and dB meet:

If we don’t know the strength of the transmitter or the gain of any of the antennas

involved, we just have to introduce one more unknown, a signal strength ratio; the

problem then turns into a simultaneous equation with three unknowns. Thus, a mini-

mum of three data points are needed. If these data points are well placed, there should

only be one or two realistic solutions to the equations.

PRACTICAL APPROACH

The approach taken is a mixture of experimentation and extremely simplified indoor

propagation theory. In “A Study of Indoor Radio Propagation,” available at http://www.
sss-mag.com/indoor.html, researchers have come up with an approximation for losses

at 2.4GHz inside buildings.

What was needed was a solution that would work well in any office environment.

Instead of meticulously accounting for every possible loss or gain, “A Study of Indoor

Radio Propagation” provided a generic model for indoor radio propagation that, while

not perfect, would work well in most indoor environments.

TEST ENVIRONMENT

Testing was done in a typical office suite, an area of about 30 by 20 meters.

There were a large number of offices, and some larger open rooms with no

more than six cubicles each. Structurally, the office is largely concrete and

steel. This is fairly typical of most offices, and is probably similar to other

offices that use wireless networks.

Three separate access points were used for testing, placed at random loca-

tions around the office. The first two were Cisco AP350s. One was equipped

with two antennas. The second did not have any antennas. The third was an

Orinoco AP-1000 with a small Lucent antenna.

DATA GATHERING

The first goal was to make some plots of distance vs. relative signal strength

as reported by the card’s driver, so that the hypothesis that the signal strength

would drop off at some predictable rate could be tested. The program iwspy was used

to gather signal strength statistics on a particular MAC address:

39August 2002 ;login:

●
SE

C
U

R
IT

Y

Guessed location

B

A

dA

dB

Fig. 2

B

dB

dA
A

Guessed locations

Fig. 3

Fig. 4. The office used for testing

UNAUTHORIZED 802.11 CARDS ●  

http://www


Vol. 27, No. 4 ;login:

# iwspy eth0 0b:0b:0b:0b:0b:0b
#

Then, successive calls to “iwspy eth0” returned the signal strength of packets received

from that transmitter.

The tester then simply walked around the office, taking and recording readings at ran-

dom locations around the office. After some processing, three tab-delimited datafiles

containing the distance from the transmitter in the first column and the recorded sig-

nal strength in the second were generated.

DISTANCE–SIGNAL STRENGTH TRENDS

The distance–signal strength plots for each of the three access points are shown here.

DISTANCE–SIGNAL STRENGTH CURVE FITTING

The next step was to determine whether or not the data could be fitted to an equation

approximating indoor losses at 2.4GHz. A simple least-squares fitting present in Gnu-

plot was used to verify this. If the curve fit the data “well,” one would assume that the

equation was a good approximation.

First, signal strength values returned by the iwspy interface (RSSI values, or Received

Signal Strength Indicator) needed to be converted to dBm in order to use canned

indoor loss equations. dBm is a logarithmic measure commonly used when dealing

with low-power radio equipment.

The values returned by iwspy were most likely already logarithmic, to make them eas-

ier to read. If they were logarithmic, they should have some linear relationship to the

signal strength in dBm.

The relationship between the values returned by iwspy and dBm was found to be lin-

ear (determined experimentally using the Windows interface, so this is not exact):

PdBm = 1.205 Pnon-normalized % – 101.07

Pnon-normalized % = .83 PdBm + 83.891

If these values are “normalized” (this is an option that can be turned on in the card),

the equation becomes:

PdBm = .602 Pnormalized % – 101.07

Pnormalized % = 1.66 PdBm + 167.782

Currently, the iwspy ioctl for the Linux driver returns non-normalized values (inci-

dentally, the Cisco client for Windows returns normalized values), so the first two

equations should be used to convert between dBm and iwspy percentages, but this may

change at some future date.

Rather than pre-process the datafiles, one of the above conversion functions was

included in the curve-fitting function.

For the curve-fitting function, an equation was used from “A Study of Indoor Radio

Propagation,” which presents a modification to the traditional free-space loss equation

to account for indoor attenuation, reflection, refraction, and interference. The

researchers experimentally found that the following equation could be used to approx-

imate losses indoors at 2.4GHz in most typical buildings, where D is the distance

between the transmitter and receiver in meters:

40

Fig. 5: Cisco access point – antenna

Fig. 6: Cisco access point – no antenna

Fig. 7: Orinoco access point – antenna



Path loss (in dB) = 40 + 35log10D

All of the unknown constants as well as the 40 term were gathered into one constant,

C, where C is some unknown constant representing the output power and static

cumulative gains and losses due to attenuation, the antenna, and other factors:

Received signal strength (dBm) = C – 35log10D

Using the equations above to convert to non-normalized signal strength percentage (to

match the output from Linux iwspy):

Received signal strength (non-normalized %) = .83(C – 35log10D) + 83.891

To the right are the resulting plots. They fit fairly well, so we can assume that the above

equation is a suitable approximation for indoor propagation losses.

3-D CURVE FITTING

The final step in tracking was to write the distance-power approximation equation as a

function of a position (x,y) and three unknowns, the unknown coordinates (A,B) of

the transmitter and an unknown constant C. The resulting equations look like this:

Received signal strength (dBm) = C – 35log10√(A – x)2 + (B -y)2

Received signal strength (non-normalized %) = .83(C – 35log10√(A – x)2 + (B -y)2 ) + 83.891

This equation could then be plugged into Gnuplot for fitting. Below is one sample

plot. The initial parameter file, used to provide initial guesses to the best-fit algorithm.,

consists of a = 10, b = –10, and c = –20. It’s best to guess physically reasonable values,

so coordinates near the center of the office space were chosen, and an initial value of -

20 for c. The results are summarized in the next section.

RESULTS

The Gnuplot program, when run,

will display a graph containing the

parameters of the best fit found and

give an estimate of the error. The fol-

lowing is a table of actual values and

the best-fit values found from the

data sets.

Two results were very encouraging;

one was not. While the first two were

placed within a couple meters of the

actual location of the transmitter,

the results for the

Orinoco antenna

placed the trans-

mitter about 8

meters south of its

actual location.

The causes for this

discrepancy could

be many. Among the primary suspected causes:

41August 2002 ;login:

●
SE

C
U

R
IT

Y

Fig. 8: Cisco access point – antenna

Fig. 9: Cisco access point – no antenna

Fig. 10: Orinoco access point – antenna

Fig. 11

Actual
location (x)

Actual
location (y)

Guessed
location (x)

Guessed
location (y)

Guessed constant C (related) to
the transmitter’s output power

5.18 -14.94 5.15986 +/- 0.9969 -14.847 +/- 0.7456 -20.1008 +/- 1.706

12.50 -18.29 11.3324 +/- 0.2842 -16.2561 +/- 0.55 -50.4432 +/- 0.6815

14.17 -13.11 14.6243 +/- 1.3 -21.1688 +/- 2.547 -34.1176 +/- 2.639

Cisco with
antenna

Cisco without
antenna

Orinico with
antenna

UNAUTHORIZED 802.11 CARDS ●  



Vol. 27, No. 4 ;login:

■ The distance–signal strength trend was not very strong for the Orinoco antenna.

There was a large cluster, but not many points from very near the antenna or very

far, essential for getting a proper fit.
■ The transmitter was centrally located, so sampling a wide range of distances was

not possible.
■ The transmitter is located in a room with a lot of metal equipment, probably scat-

tering the transmissions a great deal.
■ Some “hot spots” near the southern end of the building pulled the fit too far

south. The east-west coordinate was a good fit.

Regardless, the basic theory is sound and more careful data gathering and more data

points would probably yield better results.

This has driven home an important lesson, however – the location of the samples is of

utmost importance, as are the number of data points. If the sensing stations are sta-

tionary, there should be as many as possible and they should be as far away from each

other as possible, probably in the furthest corners of the building, as long as reception

is still possible.

LIMITATIONS

There are a number of limitations and restrictions to keep in mind when deploying a

system like this.

■ Using these techniques, it is impossible to trace a card or access point that is not

transmitting. It would not be possible to track down the location of a truly passive

sniffer using these methods.
■ The Cisco driver and card are limited in how fast and how reliable their scans are.

Therefore, it is possible for intermittent traffic to be missed completely.
■ The Cisco card can only reliably sniff traffic from one channel at a time. If some-

thing interesting shows up, all cards should stop scanning and pay attention to the

particular channel of interest until enough data is gathered to track down a loca-

tion.
■ If there is more than one tracking station, they should use identical hardware

(antenna included) and driver revisions.
■ The more data points, the better.
■ Tracking stations, if stationary, should be in well-placed locations, so fit errors can

be kept to a minimum. Ideally, they should be placed far away from each other, in

open locations so path losses and attenuation can be kept to a minimum, but also

placed such that all stations can detect traffic from a card or access point any-

where in the building.
■ Administrators should also consider an active scanning station. If an unautho-

rized transmitter is found, one station might be selected to send pings, probe

requests, or anything that might prod the transmitter into sending responses,

from which signal strength information could be gleaned.
■ A high-quality, high-gain antenna is important.
■ No effort was made to handle the case of a mobile transmitter.
■ The methods used here can occasionally yield results with extremely large errors,

especially if the input set is not rational. It’s a good idea to pick meaningful initial

guesses for the fitting algorithm. It may also be a good idea to reject physically

unlikely results — for instance, if the fitted constant C seems to indicate that an

unauthorized transmitter is transmitting at 1000 watts, the result can probably be

The location of the samples is

of utmost importance, as are

the number of data points.

42



discarded out-of-hand. Likewise, it’s unlikely to receive transmissions from a

transmitter miles away. It is possible, but unlikely.
■ These methods could not, by default, detect cards or ad hoc networks that happen

to be running on channels other than the ones reserved for use in North America.

IDENTIFIED ISSUES AND AREAS FOR IMPROVEMENT
■ Make traffic detection more reliable and less dependant on channel scans. Ideally,

a truly promiscuous 802.11 sniffer that could monitor traffic on all frequencies

and all spread-spectrum synchronizations at the same time would be preferred.
■ Be aware that the relationship between dBm and % signal strength from the Cisco

card is not exact and may not be an exactly linear relationship.
■ Integrate a GPS unit so as to allow for active processing and simplified data gath-

ering.
■ Build a working prototype system involving at least three stationary monitoring

stations. Test it with mock attacks on the local network.
■ Find a more robust IDS than ethereal and some scripting glue. Hopefully, snort’s

author(s) will integrate ethereal’s protocol analysis engine.
■ Write a protocol to link monitoring stations so that they can compare data with

each other and cooperatively locate rogues – part of the working prototype.
■ Consider adding some real path-length and wall-attenuation algorithms to reduce

the amount of scatter.
■ Consider full-blown physical modeling of the office.
■ Gather more data to verify that 35 log10(D) really is a good approximation.
■ Build some profiles of expected power outputs of various vendors’ access points

and cards with and without antennas, in an attempt to minimize the unknowns.
■ Experiment with “real” triangulation using directional antennas.
■ Gather hardware documentation on the Cisco Aironet cards. RFMON and

RFMON_ANYBSS are still confusing, especially with synchronization and channel

scanning.
■ Get info on new Cisco RIDs and add them to the driver.
■ Experiment with monitor mode on other cards and chipsets.

43August 2002 ;login:

●
SE

C
U

R
IT

Y

UNAUTHORIZED 802.11 CARDS ●  

REFERENCES
Donald L. Schilling, Raymond L. Pickholtz, and
Laurence B. Milstein, “Spread Spectrum Goes
Commercial,” The IEEE Spectrum, August 1990.

“A Study of Indoor Radio Propagation” –
http://www.sss-mag.com/indoor.html. Thanks
to the folks at Spread Spectrum Scene for this
article, as it provided a good approximation for
indoor radio propagation losses. This was
essential to feed to the curve-fitting algorithms,
and it yielded good results.

“Cisco – Wireless Point-to-Point Quick Refer-
ence Sheet”

http://www.cisco.com/warp/public/102/wwan/q
uick-ref.pdf

“Peter Mikulik’s gnuplot page”
http://www.sci.muni.cz/~mikulik/gnuplot.html
#pm3d

GNU Octave Documentation
http://www.octave.org/doc/octave_toc.html

Linux Aironet driver – comments and source
were invaluable.
http://sourceforge.net/projects/airo-linux/

Ethereal home page – great documentation and
source for disassembling all sorts of network
protocols.
http://www.ethereal.com/

IEEE – lots of great collected information on
802 standards.
http://www.ieee.org/

I am indebted to V.N. Padmanabhan and P.
Bahl for their article “RADAR: An In-Building
RF-Based User Location and Tracking System,”
available at http://research.microsoft.com/
~padmanab/. This article was not a reference,
per se (in fact, it was discovered after this paper
was nearly finished), but it was interesting to
see that some of my work had been a duplica-
tion of the efforts of someone else, and it pro-
vided independent confirmation that this
method can work in an office environment. My
approach was not nearly as elegant or as scien-
tifically rigorous as theirs, but it was encourag-
ing to know that the results were similar.

Special thanks to Richard Stallman for GNU.

http://www.sss-mag.com/indoor.html
http://www.cisco.com/warp/public/102/wwan/q
http://www.sci.muni.cz/~mikulik/gnuplot.html
http://www.octave.org/doc/octave_toc.html
http://sourceforge.net/projects/airo-linux/
http://www.ethereal.com/
http://www.ieee.org/
http://research.microsoft.com/


44 Vol. 27, No. 4 ;login:

Last summer, the Code Red worm and its relatives hit Web servers all over

the Internet. The worm spreads by requesting a Web page from a Web

server running an un-patched version of Microsoft’s Internet Information

Server (IIS). The request is issued using the ubiquitous HTTP protocol and is

sent to the server’s default port 80. However, the requested page’s URL is

carefully and maliciously crafted to trigger a buffer overflow on the Web

server, thus infecting the server with a copy of the worm. The newly

infected server then turns around and does the same to other Web servers.

In the October 2001 “Inside Risks” column,1 Somogyi and Schneier describe the worm

and point out the general susceptibility of the Internet, and all who connect to it, to

such worms. They argue that “http has become Internet-connected computers’ lingua

franca,” yet popular Web servers have not been properly engineered to eradicate

remotely exploitable vulnerabilities, so companies and customers are assuming

increased risk in deploying and using the Web.

While the issues that Somogyi and Schneier raise are valid, the article points the finger

only at software vendors such as Microsoft. The trouble with this approach is that it

absolves other corporations and their network security staff of any responsibility. The

article makes it sound as if the only way you can fight back and protect your network

is to wait for, and install, the latest patches from Microsoft.

Installing security patches is important, and getting software vendors to improve the

security of their products is indeed an excellent idea. It just requires time, effort, and

money. In the meantime, though, there is something very simple that you can do today

that will greatly decrease the ability of Code Red and its ilk to spread, and significantly

reduce the risk to your internal network and to public Internet sites in general.

You need to ensure that your Web servers are properly quarantined by a firewall. The

operative word here is “properly”: practically all Web servers are placed behind fire-

walls, which are supposed to shield the servers from attacks. Unfortunately, these fire-

walls are not configured to do everything they could to combat HTTP-based worms

such as Code Red. Evidence collected from firewall configurations run through the

Lumeta Firewall Analyzer shows that HTTP traffic is often allowed through firewalls

unhindered.2 This policy is too liberal.

The point to remember is that a Web server is supposed to serve. It is passive. Under

normal circumstances, a Web server waits for HTTP requests and serves the requested

pages. A healthy Web server does not initiate requests to other Web servers. Only Web

browsers actively request pages. However, once a Web server has been infected with a

Code Red worm, it starts behaving like a Web browser – actively sending its mali-

ciously crafted HTTP requests to other Web servers, either on your internal network or

on the Internet. There is no reason to let your Web server initiate HTTP requests like

this.

So here is the recipe. If you have a modern (stateful) firewall, you need two firewall

rules to protect a Web server, in this order:

combating the perils
of port 80 at the 
firewall 

by Avishai Wool

Dr. Avishai Wool is a
co-founder and chief
scientist of Lumeta
Corporation, and an
Assistant Professor at
the Department of
Electrical Engineering
Systems, Tel Aviv
University, Israel.

yash@acm.org



1. Allow the HTTP service from anywhere to YourWebServer.

2. Drop any service from YourWebServer to anywhere.

Rule 1 allows Web browsers on the Internet to request pages from your Web server and

allows the server to serve the pages; a modern firewall can match the server’s responses

to the browsers’ requests. This is what those state tables are for. (Technically, the fire-

wall keeps track of the TCP three-way handshake so it can distinguish between the

computer that initiated the HTTP session (the browser) and the computer that

responds (the server).)

You probably already have something like rule 1 in your firewall’s rule set. What you

need to add is rule 2, which prevents your Web server from turning around and start-

ing to actively request pages. Once the Web server is blocked from behaving like a Web

browser, it will not be able to spread HTTP worms.

Now, actually, rule 2 prohibits the Web server from initiating any traffic. Taken liter-

ally, rule 2 may be too restrictive for the Web server to function, e.g., the Web server

may need to initiate domain name queries. Also, Microsoft’s “Windows Update” fea-

ture works by having the computer access Microsoft’s own Web site using a Web

browser that is embedded into Microsoft’s operating systems. You’ll need to add rules

dealing with such exceptions before rule 2 – just make them specific only to those Web

sites your server needs access to.

Note that the above recipe will not prevent your externally-visible Web server from

getting infected in the first place. Get a patch from your software vendor for that. What

the recipe will do is make sure your Web server is properly quarantined. It will prevent

your Web server from infecting your internal networks, partners and clients. And, it

will reduce the spread of the next HTTP worm that comes along, even before

Microsoft issues a patch, and even if the next worm targets, say, Linux-based Apache

Web servers.

So if you run a Web server, don’t just passively wait for your software vendor to issue

security patches. Take action. Review your firewall rules and make sure that your Web

server is not allowed to behave like a browser. It’s good for your network’s security and

it’s important for the Internet as a whole.

Notes
1. S. Somogyi and B. Schneier, “Inside Risks: The Perils of Port 80,” Communications of
the ACM, vol. 44, no. 10, October 2001, 168.

2. A. Wool, “Architecting the Lumeta Firewall Analyzer,” USENIX Security Symposium,

Washington, D.C., August 2001, 85–97.

45August 2002 ;login:

●
SE

C
U

RI
TY

THE PERILS OF PORT 80 ●  



46 Vol. 27, No. 4 ;login:

ISPadmin
Stopping Spam: Part 1
Introduction
This edition of ISPadmin covers the methods used by ISPs to stop email

spam on the server side. While the focus is on service providers, any enter-

prise can use the methods outlined below. The term “spam” will be used

interchangeably with “unsolicited bulk email” (UBE) and “unsolicited com-

mercial email” (UCE). If you ever wondered, the use of the word “spam”

comes from episode 25 of Monty Python’s Flying Circus, recorded on June

25, 1970, and broadcast sometime later in 1970. 

Different people define spam in different ways. To be sure, the individuals and corpo-

rations who generate UCE do not consider their communications to be spam. On the

other side of the spectrum, some recipients view any message that is commercial in

nature which goes to more than two people to be UBE. Here are some attributes which

may cause a message to be considered spam:

■ Commercial content 
■ Large recipient list and/or use of BCC 
■ Concealing or forging message headers 
■ Numerous messages sent in a short period of time 
■ Use of recipient addresses without the owners’ explicit approval 
■ Use of an open mail relay to send messages 
■ Invalid/Unresolvable To or From address header(s)

How Big Is the Problem?
It is difficult to come up with exact figures, but a reasonable estimate is 30% of all

email messages could be considered spam. Some of the methods outlined below will

catch 50% to 80% of UCE going through a provider’s network. Depending on the

exact situation, these numbers can vary significantly.

Where Can Spam Be Stopped?
There are two places to catch spam: inbound (messages on the recipient’s, or recipient

provider’s, network) and outbound (messages on the sender’s, or sender provider’s,

network). Both will be covered in detail: inbound in this installment and outbound

next time. Usenet spam will be covered only briefly, as it is a much easier problem to

solve than email spam.

INBOUND SPAM

Inbound UCE can be controlled utilizing the following methods:

■ Source identification (including Realtime Blackhole List, Open Relay Database) 
■ Source analysis (Spamassassin) 
■ Source analysis services (Brightmail, Postini, etc.) 
■ Distributed key methods (Vipul’s Razor and Rhyolite Software’s Distributed

Checksum Clearinghouse, or DCC) 
■ Electronic coin methods (camram, which is actually a combination of inbound

and outbound methodologies)

by Robert Haskins

Robert Haskins is
currently employed
by WorldNET Inter-
net Services, an ISP
based in Norwood,
MA. After many
years of saying he
wouldn't work for a
telephone company,
he is now affiliated
with one.

rhaskins@usenix.org



Each method will be examined in detail. The newest and most promising of the bunch

are the distributed key (Vipul’s Razor and DCC) and electronic coin (camram) meth-

ods. Brightmail and Postini are very effective but are costly.

OUTBOUND SPAM

Outbound UBE can be controlled using the methods below:

■ Log analysis 
■ MTA controls 
■ Authentication before sending (POP before SMTP) 
■ Mail message metering

Each one of these methods will be examined in detail. Disclaimer: this author devel-

oped a pending patent for the “mail message metering” method. (An article by this

author titled “Mail Message Metering” in the December 2000 issue of ;login: covered

this solution in detail.) This article covers each method outlined above as it pertains to

inbound spam. The next installment of ISPadmin will cover methods for dealing with

outbound UBE.

Sendmail
Sendmail began implementing anti-spam relaying mechanisms as of about version 8.8.

While most of the focus is on stopping outbound spam, version 8.8 included support

for Realtime Blackhole List (RBL).

Here is a list of a few Sendmail features that can help control inbound spam:

■ Access control database mechanism (/etc/mail/access) 
■ Connection rate throttle 
■ Limited number of recipients per message 
■ Disallowing connections from open relays, dial-up IP addresses, or black hole lists

(e.g., RBL)

THE ACCESS DATABASE

All Sendmail databases are created from simple text files with key/value pairs. A pro-

gram converts the text file into a quickly searched database format. Values and their

meanings include:

OK Allow message to pass; overrides other checks.

REJECT Refuse connections from that host.

DISCARD Silently delete message.

<message> Reject message, informing sender of <message>.

RELAY Allow domain/IP address to relay mail through this server (more

on this in next installment’s discussion of outbound spam).

For example, the entry below would reject any mail coming from the domain

“knownspammer.com” but allow mail from “friend@knownspammer.com”, and

silently discard mail from “spammer@spamhaus.com”:

knownspammer.com REJECT

friend@knownspammer.com OK 

spammer@spamhaus.com DISCARD

47August 2002 ;login:

All Sendmail databases are

created from simple text files

with key/value pairs. 

●
  
SY

SA
D

M
IN

ISPADMIN ●  



Vol. 27, No. 4 ;login:48

Note that the configuration file must be built with the FEATURE(access_db) in your

sendmail.mc and converted to sendmail.cf utilizing the m4 utility. Also, the Sendmail

daemon must be restarted to re-read the new configuration.

SENDMAIL CONFIGURATION TWEAKS

A connection rate throttle will limit the number of connections per second from a

given server. The line below (in sendmail.mc or its equivalent) enables this feature:

define('confCONNECTION_RATE_THROTTLE',3)dnl

Limiting the number of recipients per message can be a good way to limit some spam-

mers. (Enabling this feature may cause problems with legitimate bulk emailers.) The

restriction can be accomplished by adding the following line to the sendmail.mc:

define('confMAX_RCPTS_PER_MESSAGE',25)dnl

For the purposes of this article, “simple filter service” means a service that requires

nothing more than an existing message transport agent, or MTA (e.g., Sendmail).

Other filter services that require additional machines (e.g., certain Brightmail offer-

ings) will be covered below.

The Mail Abuse Prevention System, or MAPS, maintains several IP databases for

“black holing” spammers. When subscribing to a service like RBL, the service essen-

tially routes traffic from sites in the list to the bit bucket. As a result, the end subscriber

will never be able to receive packets (i.e., email) from a machine on the list. MAPS is a

commercial service, except for “Individual/Hobby” sites. The databases it maintains are

as follows (note that MAPS controls what IP addresses are placed into these lists):

RBL+ combines RBL, RSS and DUL 

RBL Spammers, the granddaddy of them all 

RSS Relay Spam Stopper, list of open mail relays 

DUL Dial-Up User List, contains addresses that shouldn’t be originating mail (for

example, dial-up IP pools, DSL/cable modem customer IP pools, etc.) 

NML Non-Confirming Mailing List, mailing lists that do not verify email

addresses of subscribers

More information is available on the MAPS Web page. Such lists can be activated

within Sendmail by adding line(s) similar to the following to the sendmail.mc file:

FEATURE(dnsbl, 'blackholes.mail-abuse.org', 
'Rejected - see http://www.mail-abuse.org/rbl/')dnl

Note that depending upon what type of services desired, changes to the DNS configu-

ration need to be made in order to properly activate the MAPS services.

One other black hole service bears mentioning: the “OR” family of open relay black

hole services. This service, in its various iterations, has been the subject of much

debate within the anti-spam community. This is due to the ultra-strict checking that

some of these open relay checkers perform. Several have been shut down due to litiga-

tion and/or threats of litigation. The Open Relay Database (ORDB) is one of the more

well known ones. The OsiruSoft site contains many others, as well as the ability to

check names/IPs to see if such names/IP addresses appear in some well-known open

relay databases. This can be a very useful tool. Care must be taken, however, as some of

these services are considered by some to be overly restrictive.



What to Do With Email Tagged as UCE?
One problem common to many solutions that attempt to filter spam (including the

distributed key method as well as services like Brightmail) is what to do with the mes-

sage once it is identified as UCE. The possible dispositions of such messages are:

■ Deletion
■ Tagging
■ Sidelining

For a service provider, deletion of a potential spam message is most likely not an

option. Paying customers do not appreciate having their mail deleted, given the lack of

a common definition of spam as well as possible false positives (tagging messages as

spam that are, in fact, not spam).

Tagging (adding a header – e.g., X-Spam-Score: – to a possible spam message) is a

good idea, but, unfortunately, the only common mail client that supports arbitrary

header filtering is Eudora 5.1. Neither Netscape Mail nor Outlook Express currently

support such filters. (Mozilla 1.0RC2 as well as Netscape 7 Preview Release 1 both sup-

port this type of filtering.)

Sidelining involves sending a potential spam message to an alternate email box (usu-

ally a Webmail machine). Once the message is sidelined, the recipient needs to check

the sidelined mailbox and dispose of the mail. Hopefully, it is all indeed spam. As a

practical matter, until a perfect anti-spam solution is available, some non-spam mail

will probably get tagged as spam. Sidelining requires additional hardware, as well as

added complexity (and associated costs) for the organization running the email

domain.

Mail Filtering and UCE
Several programs exist which attempt to filter mail on their own, without external

intervention. Such mail filters (and services) are a good method to stop spam.

STAND-ALONE MAIL FILTER PROGRAMS

Spamassassin can be used to identify spam by various attributes in the mail header

and body. It has hooks for DCC and Razor (see below) and supports black holing via

MAPS and other methods. Another such program (which is also a virus checker) is

MailScanner. Figure 1 illustrates how these mail filter programs might be imple-

mented in an ISP’s mail infrastructure.

The MTA box in Figure 1 represents Sendmail, qmail, etc. It has hooks (via procmail,

milter or other mechanisms) to call an external program to process a message. In this

case, the program is indicated by the box labeled “Filter.” The filtering program then

makes a number of checks against the header and body of the message, utilizing inter-

nal static filters, or external filter sources (such as black hole lists or distributed key

hosts). If the message is identified as spam, a score is assigned to the message. The pro-

gram then adds a header indicating that the message has been processed, along with

the score it received. The message then is sent along to the rest of the mail infrastruc-

ture until it reaches the recipient. The recipient’s mail client is responsible for deter-

mining what to do with messages tagged as spam.

The limitations of such static filters are such that they will never tag 100% of spam,

and they also have false positives. Another downside is the requirement that such fil-

49August 2002 ;login:

As a practical matter, until a

perfect anti-spam solution is

available, some non-spam

mail will probably get tagged

as spam. 

●
  
SY

SA
D

M
IN

Filter

MTA

Recipient

Header
check

Content
check

Blackhole
check

Distributed
key check

Figure 1: Message flow through static 
filter

ISPADMIN ●  



Vol. 27, No. 4 ;login:

ters be constantly updated, as spammers are always creating new ways for their mes-

sages to escape filters.

DISTRIBUTED KEY METHODS

One of the most promising anti-spam ideas of late is the concept of exchanging keys

summarizing mail messages with a mail server’s peers. Essentially, these are static rules

which count the number of times a server has processed a version of a message. The

message checksums are then exchanged with other servers so that everyone knows to

block a certain message based on its checksum.

The downside to such systems is the requirement the mail server keep “white hat” lists

of legitimate bulk email, as such mail will have the same high hit counts that UBE will.

If such mailing lists are not placed into the white hat list, then the legitimate bulk

email will be tagged as spam. Also, the fuzzy algorithms which the programs use to

identify spam need to be tweaked periodically as spammers adjust their methods to

avoid detection systems.

However, a distributed key filtering method can block an impressive amount of spam

with minimal work and is certainly worth considering. The best way to implement dis-

tributed key solutions is via something like Spamassassin (mentioned above).

FILTERING SERVICES

Services (such as Brightmail and Postini) are similar in nature to the DCC and Vipul’s

Razor applications. These services will, for a fee, maintain filter “lists” which identify

certain messages as potential spam. These filtering rules are applied to incoming mail

before hitting a customer’s mail infrastructure. Figure 2 is an example of how such a

filter service might be implemented.

Mail arrives at the filtering machine from the

provider’s mail relay. This filtering machine has

human-built filters applied to it in a bulk man-

ner from the anti-spam service provider, such as

Brightmail. These rules are applied to incoming

mail, and messages which the filters identify as

UCE are sidelined to be viewed by the recipient

at a later date. If the message is not tagged as

spam, it continues through the provider’s mail

system.

Such anti-spam filtering services differ from the

distributed key mechanisms in a two important

ways:

■ They use human-based rather than machine-

based filters.
■ They usually require additional hardware

running in front of a customers existing mail

relay(s).

These commercial services will catch a lot of spam. However, they can be costly (start-

up costs range in the tens of thousands of dollars, plus a per-user per-month fee) and

while good, are not perfect.

50

Filtering
machine

Incoming
mail

Filtering rules
from provider

Sidelined mail
(spam?)

Non-spam(?)
mail to

recipient

Figure 2: “Filter Service” message flow

Mail
UI

camram
stamper

Local
Storage

Received
message

Sent
message

camram
filter

camram
jail

Received
message

Delivery
Agent

Sent
message

Received
message

POP3

SMTP

Mail Client

ISP/
Internet

Figure 3: Camram message flow 



Electronic Coin Method
At least one solution, camram, is based on the idea of electronic “coins,” also known as

HashCash. Money is not really exchanged; rather, computational time is required on

the sender’s machine in order to generate the “coin.” Figure 3 diagrams how camram

would be set up in an ideal situation. “Ideal situation” refers to a mail client with

embedded camram support.

It is important to realize that under this scheme, camram support must be on the same

machine that is running the user interface. As a result, supporting a solution such as

camram will require client-side changes. These changes are required so that it is rela-

tively easy for one machine to generate a small number of coins; however, it is very

time-consuming for a machine to generate a large number of coins.

One way to minimize such changes is to run camram in a proxy mode whereby cam-

ram functionality is implemented separately from the mail UI. This will likely be a

“transitional” mode, as once code is placed in all widely used mail clients, the need for

such proxy programs disappears.

In Figure 3, inbound mail comes into the client machine and passes through the cam-

ram filter, which determines whether or not appropriate “postage” exists for the mes-

sage. If there is no or not enough postage, the message goes to a “jail,” which is similar

to sidelining. If there is enough postage, the message continues on its journey, eventu-

ally making it to the recipient. It is important to note that exception lists can be made

for legitimate bulk mail that doesn’t have appropriate postage.

Outbound mail passes through a camram “stamper” which “affixes” enough postage to

the message and sends the message on its merry way. The recipient’s mail client would

need a camram decoder, if they wanted to filter spam. Otherwise, if they didn’t use a

camram decoder, the special headers would simply be ignored by the non-camram-

aware mail headers. Of course, the recipient could choose to treat messages that

haven’t been signed by camram as junk mail, and deal with it at a later time.

A side effect of coin generation is the ability to easily add some level of public key

encryption. With camram, you already know a lot about the sender, and adding a digi-

tal signature would be an easy modification to the protocol.

The camram concept’s big appeal is its ability to significantly slow persons generating

large amounts of spam. However, it still requires a white list for legitimate bulk email-

ers, so in that respect it is very similar to the distributed checksum method. A spam-

mer would likely not use a solution such as camram, as the sender would quickly run

out of “coins.” The issue with an idea such as camram is simply one of adoption: the

wider its use, the more useful it is. Time will tell if a HashCash-based solution works

effectively or not.

Conclusion
I wish to thank Eric Johannson for his input into this article (Eric is one of the people

behind camram, who is looking for help on the project; check the camram site for

more information). Next time, I’ll continue my look at spam by examining how to

stop it at the outbound side. Until then, please send me your comments.

51August 2002 ;login:

●
  
SY

SA
D

M
INREFERENCES

abuse.net’s anti-spam pages for admins –
http://spam.abuse.net/adminhelp/mail.shtml

Blackmail – http://www.jsm-net.demon.co.uk/
blackmail/blackmail.html

Brett Glass, “Stopping Spam and Malware with
Open Source” – http://www.brettglass.com/
spam/paper.html

Brightmail – http://www.brightmail.com/

Camram – http://www.camram.org

Dan Garcia’s Spam Homepage – http://www.cs.
berkeley.edu/~ddgarcia/spam.html

Eudora – http://www.eudora.com/

HashCash –http://www.cypherspace.org/
~adam/hashcash/

Kai’s spam shield – http://spamshield.conti.nu/

Mail Message Metering – http://www.ziplink.
net/ziplink/solutions/mmm/

MailScanner – http://www.sng.ecs.soton.ac.uk/
mailscanner/

MAPS/RBL/DUL – http://www.mail-abuse.org/

Milter – http://www.milter.org/

Monty Python Spam – skit http://www.ibras.dk/
montypython/finalripoff.htm#Spam

Obtuse System Corp’s Juniper firewall –http://
www.obtuse.com/smtpd.html

ORDB – http://www.ordb.org/

OsiruSoft Open Relay black list – http://relays.
osirusoft.com/

Postini – http://www.postini.com/

Procmail – http://www.procmail.org/

Qmail – http://www.qmail.org

Rhyolite Software’s DCC – http://www.rhyolite.
com/anti-spam/dcc/

Sendmail – http://www.sendmail.org/

Sendmail’s anti-spam pages http://www.
sendmail.org/antispam.html

Spamassassin – http://spamassassin.org/

The Complete Monty Python’s Flying Circus: All
The Words (Pantheon Books, 1989); ISBN:
0679726470.

Vipul’s Razor – http://razor.sourceforge.net/

ISPADMIN ●  

http://spam.abuse.net/adminhelp/mail.shtml
http://www.jsm-net.demon.co.uk/
http://www.brettglass.com/
http://www.brightmail.com/
http://www.camram.org
http://www.cs
http://www.eudora.com/
http://spamshield.conti.nu/
http://www.ziplink
http://www.sng.ecs.soton.ac.uk/
http://www.mail-abuse.org/
http://www.milter.org/
http://www.ibras.dk/
http://www.ordb.org/
http://relays
http://www.postini.com/
http://www.procmail.org/
http://www.qmail.org
http://www.rhyolite
http://www.sendmail.org/
http://www
http://spamassassin.org/
http://razor.sourceforge.net/


52

1. On most UNIX systems, the Sendmail binary
has the “setuid” bit set. This means that when it
is run, it takes on the system identity of the user
who owns the binary. Usually this is the root
user, or some other system account that has
permission to write to the mail spool, where
temporary mail files are kept. Since the user
didn’t have this permission, and since the Send-
mail binary was owned by her, Sendmail could-
n’t write to the spool and mail was broken.

2. In any UNIX-like system, the files stored in
/usr will be owned by a variety of users. There is
usually a reason why a particular file would be
owned by a particular user. The example of
Sendmail being owned by root given above is
one case in point. Once the ownership is
changed through a global chown as in this case,
it’s very hard to set things back the way they
were. It’s easier just to reinstall the system.

3. I work for a small startup company in Silicon
Valley. The company wants to keep their name
out of this article. Since I am telling potentially
embarrassing stories about our engineers, I
wholly agree with this position. The arrange-
ment also allows me to be more frank about
certain things, as long as I remain circumspect
about others, such as names.

Vol. 27, No. 4 ;login:

by Howard Owen 

Howard Owen has
been a tech junkie
since Conroy's Life
appeared in Life Mag-
azine. He's been a
professional geek
since 1984. Howard
loves Systems Admin-
istration because it sits
at the interface
between human
beings and computer
technology, and that's
where the action is.

hbo@egbok.com

the problem of 
PORCMOLSULB
Can Root Be Controlled in Engineering
Environments?
Introduction
The other day I received a call from a user who was having trouble checking

in her latest changes to CVS. Since she was using a Linux box that was not

supported by our group, I could have refused to look at the problem. But

I’m pathologically interested in making sure our users get the most out of

the computing environment. Besides, it could have been an issue with the

CVS server, whose health as a system I am responsible for.

So I strolled over to her cube and had a look. Our CVS check-in process has hooks that

cause email to be sent. I soon determined that the problem had to do with the fact that

the Sendmail binary on her system was owned by her.1 Her boss, a senior engineer,

had installed Linux for her when she started. He didn’t ask the systems group to do the

work, because we would have set the root password to something he didn’t know and

have given the user sudo instead. (More about sudo shortly.)

I walked over to his cube and asked him if he knew what was up with Sendmail being

owned by the user. “Sure,” he said, “I did a chown -R <user> /usr so she wouldn’t

have permission problems.”

I’m slightly ashamed to say I laughed out loud before telling him, “Well, you are going

to have to reinstall Linux.”

He got annoyed and asked, “Why can’t you just do chown -R root /usr?” I told him

why2 and handed him the Linux CDs. They were back on my desk within 20 minutes,

so I knew he had decided to implement his “solution” rather than reinstalling the sys-

tem.

This would solve her email problem, but other problems would surely be created. I

told the user that I wouldn’t touch her system until Linux was reinstalled. I knew that

the senior engineer in this case was no dummy, despite the incredibly boneheaded

mistake he had made. He was, in fact, a very bright guy, engaging and witty in conver-

sation and trusted with a critical role in designing the software our small startup was

betting everything on.3 What could account for the extreme wrong-headedness he dis-

played? Why did he resist the reasonable restrictions we asked our users to accept in

order to receive support on their personal workstations? How could I reconcile my

certain knowledge that this was an extremely sharp and competent senior engineer

with the apparently abysmal lack of wit his actions showed?

PORCMOLSULB
The above problem is an example of PORCMOLSULB: Proliferation of Randomly

Configured, More-or-Less Screwed-Up Linux Boxes. It’s been showing up more and

more in environments I work in. This is partly due to the increasing popularity of

Linux, but the main cause is software engineers’ desire to control root on their per-

sonal workstations. This desire conflicts with the system administrator’s imperative to

maintain systems in a supportable condition and to prevent anonymous damage to

other systems on the same network from inexperienced root-enabled users.



The conflict is based not only on differing goals but on real differences in the compe-

tencies and enthusiasms of the two groups. PORCMOLSULB adds an interesting new

twist to the struggle that tends to shift the balance of power toward the users in the

ongoing battle. In this paper I will describe the battle in a little more detail, then ask

and answer the question, “Can root access on engineering workstations be controlled

in the face of PORCMOLSULB?”

The Conflict over Root Access
I’ve worked as a system administrator for 18 years, in academia, for government con-

tractors, and in private industry. In each of those environments I have found a peculiar

local version of low-intensity warfare between the computer users and sysadmins. I

hasten to add that this conflict was rarely the only characteristic of relations between

the two groups, or even the defining one. Nonetheless, the conflict was always present

in some form. The most common form I have seen this conflict take is the struggle

over root access. There are compelling business, psychological and technical reasons

why this should be so.

The Role of Business Imperatives
From the perspective of the business employing them, system administrators and tech-

nical computer users such as software engineers come to work for the same reasons.

That is, to make widgets, grommets, yo-yos or whatever else the enterprise is produc-

ing. However, looking a little deeper reveals differences in the business roles played by

the two types of employees. Generally speaking, businesses hire systems staff to ensure

that their computing environments are maintained in a state fit for maximizing the

productivity of the enterprise.

Software engineers generally are employed to design and write products for sale. It is

their productivity that the systems staff must maximize.4 This difference in business

imperatives colors a lot of the interaction between the two groups. Specifically, it

shows up when a software engineer demands root access to get her job done. Granting

the access may in fact help the engineer to be more productive, at least until she shoots

herself in the foot with her rootly power. The sysadmin is bound to see a threat to the

stability and security of the systems under his care, and to discount the possibility that

any benefit might accrue from granting the access that couldn’t also be accomplished

with a less sweeping grant of privilege.

Before I examine that in more depth, I’ll tackle the most difficult-to-characterize cause

of conflict between system administrators and their technical users: the personalities

of the people themselves.

The Role of Personalities
I’ve always thought that the conflict over root access was particularly strange in the

context of UNIX software startups in Silicon Valley. It seems to me that UNIX system

administrators and UNIX software engineers have a lot in common. However, the dif-

ference in business roles described above, plus differing enthusiasms and capacities,

tends to lead bright people with an interest in computer technology down different

paths.

APOLOGIA

Since I’m a system administrator, I can’t avoid telling this part of the story from that

perspective. I’ve tried hard to understand my users, and I’ve gotten pretty good at it

53August 2002 ;login:

4. This is a sweeping generalization. There are
plenty of systems engineers directly contribut-
ing to product, just as there are many software
engineers working on the productivity of oth-
ers. However, I’ll stand by the generalization for
the purposes of this discussion, since my expe-
rience tells me it’s true more often than not.

●
  
SY

SA
D

M
IN

THE PROBLEM OF PORCMOLSULB ●  



Vol. 27, No. 4 ;login:

over the years, but the coloration my own place in the scheme of things will lend to my

discussion of the personalities involved in this conflict is unavoidable. With that warn-

ing issued, I hope you will forgive the personal nature of the discussion that follows.

MY CHOICES

Why am I drawn to system administration? Why not be a software engineer, for

instance? I do a fair amount of programming in my work. I can code some Perl for

several hours, enjoying all the things you must do to program effectively, such as hold-

ing several dozen details in your mind at once. Best of all, I love integrating all those

details into a finished solution that actually does something.

However, I don’t like to wait too long to get to that point. I’m impatient. I also get

burned out quickly doing that sort of thing. Finally, I get bored really really easily. For-

tunately, as a sysadmin I am compelled to do a lot of other things. I have to deal with

other human beings, frequently under difficult circumstances. I work with computer

hardware a lot, racking up systems or diving under desks to replace bad components.

And best of all, I get to work with computer systems: UNIX, Linux, Windows, Palm, it

doesn’t matter. I love systems. I can make them stand on their heads or dance the two-

step. I love the feeling of control and accomplishment that going to the exact center of

a difficult problem in complex systems gives me.

MY USERS’ CHOICES

How is all that different from what a typical software engineer does? This is a hard

question for me to answer, because I have to try to put myself in the place of an engi-

neer, and I tend to just assume that he thinks exactly the way I do.

However, there are some clues in the experiences I’ve had with such engineers that

have helped me make the leap of imagination. First, I’ve noticed that these folks seem

to have powers of concentration that are rather absurd, by my standards. Whereas I

need to take a break after a couple of hours of coding, these folks stay glued to their

screens and keyboards throughout their 14-hour days.

Second, I’ve noticed that their technical knowledge tends to be less broad than mine,

but deeper. Both of these observations start to add up to a (perhaps) obvious conclu-

sion: software engineers are specialists. Another conclusion I’ve drawn has taken a lot

longer to arrive at, because it cuts so directly against my own stance toward technol-

ogy. Software engineers are generally not enthusiastic about computer systems. Instead,

they are enthusiastic about software! They view systems as a vehicle for software, a

means to an end.

I view systems as ends in themselves. Once this idea struck me, I marveled at how long

it took me to see it. It seems that both system administrators and software engineers

are constitutionally suited for the differing roles they are asked to play in the enter-

prises that employ them.

Now that we’ve introduced the players, let’s set the scene: UNIX in all its common per-

mutations, including Linux.

The Role of Technology
UNIX operating systems generally provide a rather primitive model for distributing

privilege to system users. The power to control all system processes and resources is

UNIX operating systems 

generally provide a rather

primitive model for 

distributing privilege to 

system users.

54



55August 2002 ;login:

System administrators often

complain (with justification)

that what they do is never

visible until something

breaks.

●
  
SY

SA
D

M
INgranted to the single all-powerful user: root. Other users may be granted varying levels

of access, depending mainly on which UNIX group they belong to and on how group

access permissions are set on various objects in the system. However, root (or any user

with UID 0) is the only user who can arbitrarily change access permissions. As a result,

when non-root users encounter a restriction in access permissions, they must call

upon the power of the root user to rearrange permissions so that they may continue

their work.

C2
There are exceptions to this monolithic permissions model among various proprietary

and free UNIX implementations. Many OS vendors, including most UNIX vendors,

have applied for and received DOD Orange Book C2 certification for one or more of

their products. (For an exhaustive list, see http://www.radium.ncsc.mil/tpep/library/
fers/tcsec_fers.html.) However, these vendors generally do not ship their systems with

C2 security enabled.

Even Microsoft, whose Windows NT code base implements many of the facilities that

C2 requires, such as Access Control Lists, doesn’t do that. Since Microsoft, at least, has

had to submit a version of NT with network access disabled in order to get certifica-

tion, that’s not entirely surprising. And though I’m not an expert on the topic, I sus-

pect that the reason even those vendors who may be able to run C2 while on a network

don’t ship with it enabled is because C2 access controls are fairly burdensome to users

and administrators alike.

Regardless of the real reason, the fact remains that the UNIX systems found in most

commercial environments, from vendors like Sun, HP, IBM, as well as Linux and

xBSDs, come configured by default with an antiquated permissions model.

Working Within the Model
Even given the monolithic UNIX permissions model, it is possible to give users most

of what they want without unleashing the full power of root. Issues that concern

shared access to files can be dealt with by judiciously adjusting group membership and

permissions. If a user needs to open low-numbered TCP/IP ports, for example, it’s

possible to setuid root as just a particular binary, though that carries with it all sorts of

other security implications.

There are many strategies that help users to “work within the system.” But each of

these has in common one fatal flaw: if the model needs to be adjusted because of an

unforeseen condition, root (aka the sysadmin) needs to get involved to make the

adjustment.

In a rapidly changing environment like a software startup, this has several impacts on

the user. First, it slooows her down. An overworked and harassed sysadmin has to be

located by an at least equally overworked and harassed engineer to make the change.

According to Murphy, this will always happen at 3:00 a.m. before a critical demo. I

really really hate to have my pager go off at that hour! Even if that apocalyptic scenario

doesn’t get played out, resentment may be fostered on both poles of the struggle.

The user may start to see the sysadmin as a power-mad tightwad, jealously guarding

root access for his own nefarious purpose. The sysadmin may feel put out by the fact

that the user isn’t willing to learn enough about UNIX to get around her problem. He

may also be blind to any benefit that might accrue to the user and the enterprise from

allowing the access.

THE PROBLEM OF PORCMOLSULB ●  

http://www.radium.ncsc.mil/tpep/library/


Vol. 27, No. 4 ;login:

Because working within the

system is so troublesome, the

ever-inventive UNIX 

community has produced

many tools that try to add

finer-grained control to the

monolithic UNIX permissions

model.

56

There’s a bit of irony here. System administrators often complain (with justification)

that what they do is never visible until something breaks. This is a consequence of the

natural outcome of great sysadmin: quietly working systems. In a similar way, the

sysadmin is unlikely to see any benefit from giving a user root, because those benefits

short-circuit trouble calls to the sysadmin! Before moving on, I’d like to note that nei-

ther of the characterizations presented above is fair, and they rarely play out in such an

extreme form in the real world. But their flavor is correct, at least in the places I’ve

been.

Tools That Try to Help
Because working within the system is so troublesome, the ever-inventive UNIX com-

munity has produced many tools5 that try to add finer-grained control to the mono-

lithic UNIX permissions model. One of the most popular is sudo, familiar to many

sysadmins. It allows users to invoke specific commands with root privilege. It uses the

user’s own password to authenticate access, thus protecting the root password. It also

logs each command invocation with the name of the user, thus providing an audit trail

of root access.

Typically, tools like sudo are deployed to meet a specific user need for root access, such

as to mount a CD-ROM drive. Used in this way, the tools add a little to the risk of root

compromise, but it’s usually manageable. The main issue is unintended privilege that

the sudo-enabled command might offer to the user. For example, the mount com-

mand that can make a CD-ROM available could also allow an arbitrary file system to

be mounted. That file system (or even the CD) could contain a setuid root shell binary.

One way around this would be to wrap a script around the mount command that dis-

allowed setuid mapping. But then you have to worry about the security of shell scripts

running as root. In fact, in a relatively open environment like a software startup, there

is no sure way to protect yourself from malicious misuse of privilege in all cases. You

end up having to fall back on trust, treating abuse of that trust as a personnel problem.

The problem gets even worse as more and more commands are added to the suite of

those offered to sudoers. Each new command brings its own particular set of security

holes. The problem, once again, is that UNIX assumes a monolithic permissions

model that tools like sudo can only work around, not cure.

This shows up again as weaknesses in programs like sudo that have nothing to do with

the quality of the code, and everything to do with the fact that hacks like sudo are nec-

essary in the first place. For example, sudo has difficulty with I/O redirection:

hbo@egbok > ls -l /tmp/foo 
-r--r--r-- 1 root other 1464 Mar 25 13:10 /tmp/foo 
hbo@egbok > sudo ls >>/tmp/foo 
bash: /tmp/foo: Permission denied 
hboegbok > sudo ls | sudo cat >>/tmp/foo 
bash: /tmp/foo: Permission denied

This problem occurs because I/O redirection is implemented by the shell before the

command (sudo) is executed. The monolithic UNIX permissions model leads the shell

to assume that the identity that does the I/O redirection is the same as the one that will

result from the execution of the command. This is false in the case of sudo, which vio-

lates that permissions model. The following trick gets around the problem:

hbo@egbok > sudo ls | sudo tee -a /tmp/foo >/dev/null

5. A comprehensive list of such tools is main-
tained at http://www.courtesan.com/sudo/
other.html.

http://www.courtesan.com/sudo/


But it's not very intuitive. This also works:

hbo@egbok > sudo sh -c "ls >>/tmp/foo"

But as previously noted, if you allow shell access with sudo, you might as well give out

the root password.

Globbing is broken too:

hbo@egbok > mkdir fff
hbo@egbok > chmod 700 fff
hbo@egbok > touch fff/foo
hbo@egbok > sudo chown root fff
Password:
hbo@egbok > cd fff
bash: cd: fff: Permission denied
hbo@egbok > sudo cd fff
sudo: cd: command not found # cd is a bash builtin!
hbo@egbok > sudo rm fff/*
rm: cannot remove  fff/*': No such file or directory

The “globbing” expansion requested by the use of the asterisk fails because, once again,

the shell tries to do it before executing the sudo command. We also see in this example

the problem of trying to “cd” into a protected directory. Since “cd” is a bash builtin,

sudo doesn't know what to do with it and you are out of luck

Of course, you could put code to solve either problem in a script and pipe to that. But

if you let your users run Perl with sudo, what’s to stop them from writing something

like this?

#!/usr/bin/perl 
exec "/bin/bash";

Once again, there goes your audit trail! In fact, if your users have successfully agitated

for sudo access to more than a handful of commands you will almost certainly face an

impossible number of holes in your security policy.

PORCMOLSULB, Again
So far, we’ve seen two groups of professionals, apparently similar on the surface,

engaged in a struggle for control of root access on personal workstations. Each group

is trying to carry out the goals that their respective business imperatives demand. The

software engineer wants root so that she can get around restrictions in the UNIX sys-

tem in order to get her work done. The system administrator is trying to ensure that

the user’s system stays functioning. What are some possible outcomes of this struggle?

Complete victory by either side is unlikely. To borrow a concept from chemistry, a

more plausible outcome is that some sort of “dynamic equilibrium” will be reached as

managers in support and engineering struggle to balance competing business interests.

When the struggle concerns root access on servers, the business imperatives lean more

toward the sysadmin’s view of things, because the technical problems of sharing root

on a server are less tractable. On engineers’ personal workstations, however, the busi-

ness case for allowing unfettered root is more compelling, because the workstation is a

primary tool enabling the engineer’s productivity.

If the balance of power shifts toward the sysadmin, we start to see the phenomenon of

PORCMOLSULB showing up. This occurs when support departments can’t keep up

57August 2002 ;login:

●
  
SY

SA
D

M
IN

THE PROBLEM OF PORCMOLSULB ●  



Vol. 27, No. 4 ;login:

with the demands of their user base for development “playpens,” or when they put

restrictions on those playpens beyond what the users are willing to accept.

It turns out that engineers are increasingly able to convince their managers that a com-

pletely uncontrolled Linux box would be a boost to their efforts in the rush to meet

insane deadline pressure.6 The sysadmin crew is probably feeling the pressure too, so

they are in worse shape than normal to resist this trend. Indeed, they may not even

become aware the box exists until it shows up in the critical path for some important

milestone. But even if they know the box is being deployed, and lack the power to pre-

vent it, they can still be stuck with fixing the box under killer time pressure, with the

business on the line and with no advance idea of how the box was configured by its

amateur sysadmin.

What Is to Be Done?
That nightmare scenario didn’t actually happen to me in the case I opened this paper

with. But we were facing a killer deadline, and the mere possibility of it happening

made me nervous. I had faced similar situations before, so I knew that arguing for the

“right” way of doing things wouldn’t lead me anywhere useful. I’d also recently had my

epiphany regarding the surface similarity and deep difference between sysadmins and

software engineers. Here’s how this particular comedy did play out.

DO YOU SUDO?

About 10 days after the senior developer got his engineer working again by doing a

chown -R root /usr, she showed up in my cube asking for the Linux disks. I was mildly

surprised that it had taken that long for a side effect of that solution to convince her

that she needed to reinstall. But I tried not to act smug, and handed her the disks with-

out asking why she wanted a reload of Linux. But I did ask her if she wouldn’t rather

that I do the install. I’d set her up so that her home directory on her workstation

would automount underneath her when she went out to the network. I’d also arrange

for it to be backed up regularly, and I’d support it so that she could come to me if she

had problems. She allowed as how that might be a good thing. So I delivered the

punch line: “All you have to do is give up root and use sudo. It takes a little getting

used to, but I’ll help out.”

Well, she readily agreed to that too, and I was in a self-congratulatory mood when she

came back in 10 minutes saying her boss had nixed the idea. He said she had to have

root instead of sudo. I actually took a short time out before going over to his cube. My

question to him was rather sharp, but nothing like it could have been. “Do you really

think backups, the automounter and support are worth having the root password?”

“Yes,” he said.

“Why fer ——ssake??” I politely asked.

“Because you won’t let us run shells with sudo!”

I proceeded to tell the story of 27 eight-and-a-half by ten colored glossy audit trails.

He said, “Stop right there! What good would an audit trail do you if someone did

chown -R <user> /usr?”

Well, he had a point. But I had an answer: “Because the audit trail would tell me right

away that I had to reload Linux, rather than some less drastic solution. And besides

most problems aren’t caused by thoroughly boneheaded moves like that one!”

6. Managers generally feel bad about asking
their people to work 12+-hour days to meet
unreasonable deadlines, no matter how brave a
face they put on the matter. Giving their engi-
neers the tools they need is therefore not only
good sense from an organizational standpoint,
it lets the managers hand out a perk or two.

58



He laughed and said, “OK. Give her sudo.”

I felt pretty good after that. It could have turned out differently, but it didn’t. Despite

the sharpness of the exchange, I felt like I’d made a critical connection with this guy.7

In addition, I had a toehold in his group with a supported Linux box that would not

be randomly configured, and would be less, not more, screwed up. And his new engi-

neer would be using sudo! I would work hard to make sure that she had as good an

experience with it as I could manage. In fact, over the next couple of days they came to

me several times with things they couldn’t do with sudo, and could I please just run

the command with root? Each time it had nothing to do with sudo, and each time I

cheerfully fixed it for them, or pointed them in the right direction. Soon, I had a cou-

ple of converts.

BEYOND SUDO

Now it turns out that the senior developer, and all his colleagues, were resistant to

using sudo because we restricted shells. This is an area where a sysadmin can argue

unto blue-facedness about the lack of a need for a shell when you have more-or-less

unrestricted sudo access. Indeed, since we had such unrestricted access, escaping from

sudo and its audit trail was a trivial exercises. Given those facts, I decided to just accept

that despite the technical arguments, sudo alone was not a workable solution for these

senior engineers on their workstations. In half a day, I whipped up a pair of Perl scripts

that used script(1) and a FIFO to provide an audited root shell using sudo.8 This gave

them practically nothing they didn’t have already with our open sudo policy, and pre-

served our audit trail. All the senior engineers accepted a support regime that included

these scripts.

Caveats and Conclusions

DANGER [W|J]ILL SYSADMIN!

There are big problems with this solution. Having root on a workstation that mounts

NFS shares is tantamount to giving the user root on the NFS server! Most NFS servers

can and should be configured so that any access to an exported file system by UID 0 is

mapped to a user with no privilege whatsoever. But that’s not the whole answer. With

root, a user can assume any UID in the passwd map. This means that on the NFS

server, other users’ files and system files not owned by root are at the mercy of root on

the NFS client! The approach I’ve described works best when the workstations are NFS

servers, not clients. There is still an issue with other systems mounting shares from the

workstation. If the NFS client implementation doesn’t enable you to disallow setuid

binaries, a root user on the server could place, for example, a setuid root bash binary

on the exported file system, then execute that binary on the client and get root privs.

PHILOSOPHY 101

This is not an exhaustive list of the security problems such a setup could raise. How-

ever, in my small shop, I can look each of my users in the eye every day if I choose.

There is not a single unteachable idiot in the bunch. I also don’t hand out my scripts to

everyone. In short, I rely on the good faith of my users. I give them the tools they say

they need, and I try to give them the benefit of the doubt on the question, despite my

technical knowledge to the contrary. If they shoot themselves in an extremity with

their privilege, I triage and fix the damage, with the benefit of a recent audit trail.

59August 2002 ;login:

●
  
SY

SA
D

M
IN

THE PROBLEM OF PORCMOLSULB ●  

7. I probably neglected to mention that I’m new
on the job.

8. The result of considerably more than half a
day’s effort is available at http://www.egbok.com/
sudoscript.

http://www.egbok.com/


Vol. 27, No. 4 ;login:

<tirade mode=“self righteous” color=“purple”> 

I trust my users in this regard because of one argument in favor of Democracy: if

you give people more choices, some will make bad ones; many more will make

good ones, yielding a net benefit.

</tirade>

This principle may well be applicable beyond my environment. How it plays out in

yours is up to you and your users.

Finally, Documentation
Once I’ve fixed any problems caused by inexperienced root users blasting off their

toes, I try to leverage the occasion to get them to read my documentation. Ah, yes.

Documentation. Nobody likes to write it, and nobody likes to read it. I write lots of

documentation, and, perversely perhaps, I enjoy doing it. What I find hard to take is

the indifference most of my users show toward what I write.

My epiphany regarding the differences between sysadmins and software engineers has

provided me with an explanation for that conundrum as well. What’s relevant to me

and to the systems under my care is not directly relevant to my users’ concerns! If I

were to write the best-ever UML manual, then they might notice. But when a pretty

bright engineer has made some embarrassing error that has clearly resulted in a hit on

his productivity, or worse, that of his colleagues, then the docs I write may seem more

relevant.

You have to be tactful and swift in exploiting these opportunities for education, how-

ever. Tactful because these folks are proud, and their pride has just been wounded.

Swift, because they’ll have their heads completely stuffed full of Java before long, with

no room for anything else.

Documentation. Nobody likes

to write it, and nobody likes

to read it.

60



●
  
SY

SA
D

M
IN

an introduction to
dependability
Definitions and Examples
To improve dependability of systems, the Recovery-Oriented Computing

(ROC) project is creating technology that will let systems recover more

quickly from failures [Patterson et al. 2002]. We are especially interested in

services accessed over a network, such as Internet sites and enterprise data

centers. Since system administrators are the ones called when systems fail,

we want to start a conversation about dependability problems in the hopes

of developing technology that will really help.

One persistent difficulty with the general topic of making computers systems that can

survive component faults has been confusion over terms. Consequently, perfectly good

words like reliability and availability have been abused over the years so that their pre-

cise meaning is unclear.

Clearly, we need precise definitions to discuss such events intelligently. As a first step in

a conversation about dependability, we define the dependability terminology: fault,

failure, reliability, availability, mean time to failure (MTTF), and mean time to repair

(MTTR). We also show how to calculate MTTF of a system given the MTTF of its

components.

This paper is derived from Chapter 7 of Hennessy and Patterson [2002]. It provides a

simplified version of definitions used by the IEEE Computer Society Technical Com-

mittee on Fault Tolerance and the IFIP working group 10.4. This paper is the first in a

series; future papers will talk about issues relevant to the system administration com-

munity using these definitions.

Defining Dependability, Reliability, and Availability
The research community picked a new term – dependability – to have a clean slate to

work with: computer system dependability is the quality of delivered service such that

reliance can justifiably be placed on this service. Each component of that system also

has an ideal specified behavior, where a service specification is an agreed description of

the expected behavior. A system failure occurs when the actual behavior deviates from

the specified behavior. The failure occurs because of a fault, a defect in that compo-

nent.

We can now explain reliability and availability. Users may see a system alternating

between two states of delivered service with respect to the service specification:

1. Service accomplishment, where the service is delivered as specified

2. Service interruption, where the delivered service is different from the specified

service

Transitions between these two states are caused by failures (from state 1 to state 2) or

restorations (2 to 1). Quantifying these transitions lead to the two main measures of

dependability.

Reliability is a measure of the continuous service accomplishment (or, equivalently, of

the time to failure) from a reference initial instant. Hence, the mean time to failure of

disks is a reliability measure. The reciprocal of MTTF is a rate of failures. Service inter-

ruption is measured as mean time to repair. The related term mean time between fail-

ures (MTBF) is simply the sum of MTTF and MTTR. Although MTBF is widely used,

MTTF is often the more appropriate term, as repair times may be harder to predict.

AN INTRODUCTION TO DEPENDABILITY ●  61August 2002 ;login:

patterson@cs.berkeley.edu

by David A. Patterson

David Patterson is Pro-
fessor of Computer
Science at the Univer-
sity of California,
Berkeley. He imple-
mented one of the first
RISC microprocessors
and invented, along
with Randy Katz, the
Redundant Arrays of
Inexpensive Disks
(RAID),



Availability is a measure of the service accomplishment with respect to the alternation

between the two states of accomplishment and interruption. Module availability is sta-

tistically quantified as:

Availability = MTTF/(MTTR+MTTF)

Note that availability and reliability are now quantifiable metrics, rather than syn-

onyms for dependability. Availability ranges from 0% to 100%, with 100% being per-

fect; reliability as measured by MTTF ranges from 0 to infinity, with infinity being

perfect.

Calculating MTTF and Availability
If we assume that the age of the component is not important in its probability of fail-

ure and that failures are independent, the overall failure rate of a subsystem is just the

sum of the failure rates of the modules. Let’s do an example. Assume a disk system

with the following components and rated MTTF:

■ 1 SCSI controller, 500,000 -hour MTTF
■ 1 power supply, 200,000-hour MTTF
■ 1 fan, 200,000-hour MTTF
■ 1 SCSI cable, 1,000,000-hour MTTF
■ 5 SCSI disks, each rated at 1,000,000 -hour MTTF;

We can compute the MTTF of the system as a whole by adding the failure rate of each

component, which is the inverse of its MTTF.

Failure ratesystem = 1/500,000 + 1/200,000 + 1/200,000 +1/1,000,000 + (5 * 1/1,000,000)

= (2 + 5 + 5 + 1 + 5)/(1,000,000 hours)

= 18 / (1,000,000 hours)

The MTTF of the system is just the inverse of the failure rate of the system:

MTTFsystem = (1,000,000 hours) / 18 = 55,555 hours

If the average MTTR is one day for this system, the estimated availability would be

Availabilitysystem = 55,555 / (55,555 + 24)

which is about 99.96%. Marketing departments have shorted availability from the

actual percentages to the number of leading 9s in the percentage. Thus, 99.96% can be

called “3 nines” of availability. Well-run servers achieve 2 or 3 nines of availability, or

99% to 99.9%.

Failures vs. Faults
The difference between faults and failures aren’t as obvious as you might think.1 Here

are some examples of the difficulties.

■ Is a programming mistake a fault or a failure? Does it matter whether we are talk-

ing about when the program was designed, or when it is run? If the running pro-

gram does not exercise the mistake, is it still a fault or failure?
■ Suppose bits on disk in a RAID system change due to a problematic sector in a

disk. Did a fault or failure still occur if the error correction codes (ECC) of the

sector delivers the corrected value to the processor? Is it a fault or failure if it was

an uncorrectable fault according to the disk, but the RAID system corrects it?
■ The same difficulties concerning data change, latency, and observability arise with

a mistake by a human operator.

62 Vol. 27, No. 4 ;login:

NOTE

1. The dependability community makes the

subtle distinction between a defect that does

not change anything and a defect that does

change the state [Gray and Siewiorek 1991,

Laprie 1985]. They call the former a fault and

the latter an error. An example is an Alpha

particle hitting a DRAM cell. That collision is

a fault, and it is only an error if it changes the

value in the DRAM cell. Although this dis-

tinction is more precise, it is often confusing,

resulting in debates on whether something is

a fault or error. In this paper we concentrate

on the differences between defects and serv-

ice outages, which we call faults and failures.



Initially, a fault is considered latent and becomes effective when it is activated. For

example, a programming mistake is a latent fault until that code is invoked by the sys-

tem. If the fault actually affects the delivered service, a failure occurs. The time

between the occurrence of a fault and the resulting failure is the latency. Thus, a failure

is the manifestation on the service of a fault. Reviewing the properties of fault:

■ A latent fault becomes effective once activated.
■ An effective fault often propagates from one component to another, thereby creat-

ing new faults.

Thus, an effective fault is either a formerly latent fault in that component or it has

propagated from another fault.

Reviewing the fault-failure sequence, the steps are latent faults, then effective faults,

and finally, if it disrupts the delivered service, a failure.

Let’s go back to our motivating examples above. A programming mistake is a fault;

upon activation, the fault becomes effective; when this effective fault produces erro-

neous data which affect the delivered service, a failure occurs. For the disk example,

the flaw in the sector is a fault. If the ECC corrects the fault, the RAID system would

not observe it. If the disk could not correct it, and thus has a failure, then RAID system

would see a fault. If the RAID system corrected it, the operating system would not see

a fault. A mistake by a human operator is a fault; it is latent until activated; and so on

as before.

These properties are recursive and apply to any component in the system. That is, a

defect is either a fault or a failure depending on your perspective. For example, the

specified behavior of a disk is to deliver correct sectors when requested. Thus an

uncorrectable read fault is a failure from the disk perspective, but it is a fault from the

perspective of the RAID system. Confusion between faults and failures often depends

on how you draw the boundaries around the system and hence what is the expected

service of that system.

Categorizing Faults and Ways to Handle Them
The purpose of this section is to familiarize you with some terms that you may see

when looking at systems that claim greater dependability. There are many ways to cate-

gorize faults. We show two ways – by duration or by cause – to give you some intuition

about how to talk about faults. Classifying by their duration yields three options:

1. Transient faults exist for a limited time and do not recur.

2. Intermittent faults cause a system to oscillate between faulty and fault-free 

operation.

3. Permanent faults do not correct themselves with the passing of time; they remain

until repaired.

The classification above shows a hierarchical taxonomy of faults based on cause. The

first split is whether it is physical or logical, where all software and operator faults are

logical. Hardware faults are either due to problems in manufacturing, in operation, or

in design. Manufacturing faults are either individual flaws or due to problems in the

manufacturing process. Physical operation faults are either the result of wear or of

environmental problems, such as power outages, high temperature, fire, flood, earth-

quake, and so on. Design faults may simply be bugs in hardware or software, or not

designing-in sufficient margins in hardware to handle normal variations in, say, volt-

63

●
  
SY

SA
D

M
IN

August 2002 ;login:

A programming mistake is a

latent fault until that code is

invoked by the system. 

AN INTRODUCTION TO DEPENDABILITY ●  



age. Finally, logical operation faults can be people breaking into the system or mistakes

by operators, although poor design of the user interface and documentation leads to

operator mistakes.

Just as there are many ways to categorize faults, there are many ways to categorize sys-

tems’ handling of them. Laprie [1985] divides improvements into four methods:

1. Fault avoidance: how to prevent, by construction, fault occurrence – that is, pre-

venting the creation of latent faults.

2. Fault tolerance: how to provide, by redundancy, service complying with the serv-

ice specification in spite of faults having occurred or occurring – that is, prevent-

ing faults from becoming failures.

3. Fault removal: how to minimize, by verification, the presence of latent faults.

4. Fault forecasting: how to estimate, by evaluation, the presence, creation, and con-

sequences of faults, and thus take preemptive action to prevent the fault from

turning into a failure without necessarily using redundancy.

A final topic is repair. Some systems or modules are repair tolerant, in that you can

safely repair them while the system continues to operate. For example, many systems

allow disks to be hot swapped without shutting down the computer. Some systems and

modules are repair intolerant. For example, you often must shut down the system

before replacing the motherboard.

Drawbacks to MTTF and the Definition of Failure
One drawback of MTTF calculations is that they imply a comfort zone that is not mer-

ited in practice. First, although MTTF is just the inverse of the failure rate, it is not

intuitive. For example, a million-hour MTTF means the mean time to failure is over

100 years. Does this mean the average disk lasts 100 years? No. Since manufacturers

calculate disk lifetime as five years, it means that if you bought many disks and copied

the data to a new drive every five years, on average you could do it 20 times before you

saw a failure. Annual failure rates are a better match to human intuition. For example,

if we make common assumptions about the distribution of independent failures,

about 1% of components would fail in each of the first few years if each component

was rated as a 100-year MTTF.

The second drawback is that MTTF assumes failures are independent and that they are

based on MTTF numbers supplied by the manufacturer. The manufacturer supplies

MTTF rates assuming the products were not damaged in shipping and that they were

operating in nominal conditions of temperature and voltage. As many as half of disk

failures are due to problems in shipping. High operating temperature due to fan fail-

ure, something blocking the air flow, or air-conditioning failure can severely shorten

lifetimes. Such environmental problems can also violate the independent-failure

assumption.

The purpose of MTTF calculations is to show relative reliability of different designs

rather than to predict what you will see in practice. For example, the calculation above

shows that MTTF is limited by the weakest link in the chain. To significantly improve

the reliability of this subsystem, we would need a more reliable power supply and fan.

If those two components were unchanged, even if we had perfect controllers, cables

and disks, the MTTF would be capped at a tenth of the reliability of one disk.

As it is either expensive or impossible to replace components with more reliable ver-

sions, the primary way of coping with failures is redundancy. For example, one of the

64 Vol. 27, No. 4 ;login:

As many as half of disk 

failures are due to problems

in shipping. 



long-standing guidelines in design is to have no single point of failure. We will talk

about calculating the reliability of redundant systems in a future paper.

A final note about the definition of failure itself. The terminology takes the simplified

view that the system is either accomplishing service or there is a service interruption. A

more nuanced view sees a third state, service degradation, whereby the service is not

interrupted but is performing poorly enough to be a problem. It also assumes a single

service, although Internet sites like eBay and Yahoo offer a collection of services. We

will tackle a more nuanced definition of failure in future papers.

Conclusion
The goal of this paper is to begin to pierce through the fog of dependability terminol-

ogy. We distinguished a fault from a failure, showing the difference can simply be a

matter of perspective. We also gave quantitative definitions of reliability and availabil-

ity, and provided an example of how to estimate MTTF and availability. Finally, we

warned to not be too comfortable with high MTTF, since the numbers can be mislead-

ing.

Future papers will talk about redesigning systems so that there are no single points of

failure, statistics collected on why systems fail, the cost of downtime, and the goals of

the Recovery-Oriented Computing project.

We hope to initiate a series of conversations about why current systems fail and how

researchers can help create a new foundation for systems that are easier to operate.

Acknowledgements
I would like to thank Aaron Brown, George Candea, David Oppenheimer, and Mike

Patterson for comments on earlier drafts of this paper. This work is supported by the

National Science Foundation, grant no. CCR-0085899, the California State MICRO

Program, Allocity, Hewlett Packard, IBM, and Microsoft.

65

●
  
SY

SA
D

M
IN

August 2002 ;login:

REFERENCES
Gray, J., and D. P. Siewiorek. 1991. High-avail-
ability computer systems. Computer 24:9
(Sept.): 39–48.

Gray, J., and A. Reuter. 1993. Fault tolerance.
Chapter 3 of Transaction processing: concepts
and techniques. San Francisco: Morgan Kauf-
mann Publishers.

Hennessy, J. L., and D. A. Patterson. 2002. Com-
puter architecture: A quantitative approach. 3d
ed. San Francisco: Morgan Kaufmann Publish-
ers.

Laprie, J.-C. 1985. Dependable computing and
fault tolerance: Concepts and terminology. Fif-
teenth Annual International Symposium on
Fault-Tolerant Computing FTCS 15. Digest of
Papers. Ann Arbor, MI, USA (June 19–21),
2–11.

Patterson, D., A. Brown, P. Broadwell, G. Can-
dea, M. Chen, J. Cutler, P. Enriquez, A. Fox, E.
Kiciman, M. Merzbacher, D. Oppenheimer, N.
Sastry, W. Tetzlaff, J. Traupman, N. Treuhaft.
2002. Recovery-oriented computing (ROC):
Motivation, definition, techniques, and case
studies. U.C. Berkeley Computer Science Techni-
cal Report UCB//CSD-02-1175, March 15, 2002
(see http://roc.cs.berkeley.edu).

AN INTRODUCTION TO DEPENDABILITY ●  

http://roc.cs.berkeley.edu


66 Vol. 27, No. 4 ;login:

With the rapid proliferation and popularity of Web interfaces, companies

everywhere have begun exposing internal data and methods to the network

as never before. Sometimes, this is simply done as an in-house intranet,

with a Web interface thrown on top simply to make the users happy. In

other cases, this is a full-blown customer-interaction system. While this is all

well and good, mission-critical network-enabled applications are difficult to

test and maintain, especially as the network scales.

In a network with thousands of users, key network applications – even internal ones –

can reside across several servers, in multiple databases, or even in many geographical

locations around the world. A Web administration team has three primary goals:

1. Maintain reliable and secure access for authorized users (and deny access to oth-

ers)

2. Maintain users’ ability to perform business-related activities (for instance, in an

e-commerce site, it’s essential to keep the purchasing functionality working)

3. Provide users with a responsive, efficient, and effective interface

How to Monitor System Availability 
Unless your site is static, not a source of revenue, or does not offer any value to your

customers, you need to monitor it. In the Web world, “monitor” is a fairly nebulous

term, basically including all the methods an administrator has at his disposal to verify

that the site is functioning as expected.

Monitoring system availability might be one of multiple monitoring objectives for

which an operations team might be responsible. Other objectives might include sys-

tem-level monitoring for capacity planning and trending or application-level monitor-

ing for diagnostics and optimization. This paper primarily focuses on availability

monitoring through the use of network service monitors. These range from simple

tools – such as ping, traceroute, and others that are included by default with most

UNIX-based systems – to complex enterprise solutions that can perform in-depth,

cross-platform monitoring.

However, just knowing whether or not all the servers involved are running is often not

nearly good enough. In many cases, potential problems need to be highlighted as

quickly as possible – preferably before the failure affects the users. For this, you need to

track both key statistics on individual servers and the health of your entire network.

As an example, consider  the network of XYZ Inc. The two sections of this network

are:

■ The external network that provides e-commerce, Customer Relationship Manage-

ment (CRM) support, and knowledge-based resources for customers 
■ The internal network that provides interfaces to these same systems for employees 

Both systems provide mission-critical services and are thus built with high-availability,

fail-over-capable, hot-swappable equipment. A highly trained IT staff is on-site or on-

call 24 hours a day. Everything is working perfectly… right?

Picture this: an executive, working late due to an upcoming conference call to a poten-

tial customer on the other side of the globe, discovers that the internal CRM systems

are responding very sluggishly. She considers contacting IT, but the only technical per-

son on site is on a different floor, and she doesn’t have time to locate him. She figures

monitoring strategies for 
high-availability web apps

by Neil Ashizawa

Neil Ashizawa is an SiteScope Product
Manager responsible for System Mon-
itoring solutions. Neil has been with
Mercury Interactive since 1996. Dur-
ing his six years, Neil has held posi-
tions such as a Technical Consultant,a
Technical Courseware Developer, and
as a Manager of Program Develop-
ment. 

neila@merc-int.com



67

●
  
SY

SA
D

M
IN

August 2002 ;login:

that the system is only slow, not completely broken, and that IT probably already

knows about this problem.

In truth, the primary database server for the CRM application has crashed. A backup

server is now carrying the entire load, and its performance is not quite keeping up. The

backup server itself has a problem: one of its cooling fans has dust in the housing and

is no longer moving much air. The backup’s internal monitoring software notified the

IT manager of the problem right as he was going home at 5:45 p.m. He figured that the

backup could run on its other fans for the rest of the night – he would have someone

fix the problem in the morning. Besides, this is only the backup we’re talking about.

When the executive talks with the potential customer, she finds that they’re unable to

access the network at all. She completes their order from her end, commenting on the

problems in the system. She promises to have someone look into it. After several min-

utes, she finds the IT guy on a coffee break and tells him about the problem. However,

without knowing which server or servers are having problems, he has to check each

one individually.

When another important overseas customer attempts to connect to the external net-

work at 3:15 a.m., they cannot retrieve any data, either. The backup database server’s

second fan just failed, and the system overheated and shut down as a safety measure

designed-in from the start. The customer sends an email to the administrator’s per-

sonal address. Unfortunately, the administrator has been out sick for several days, and

his email is piling up unread.

The IT person finds the crashed primary server and restarts it. Thinking the problem

is solved, he doesn’t check the backup server. With the primary running, the network is

once again functioning – albeit a bit slowly. He sends an email to the administrator.

Do you see the problem? Several hours of costly downtime could have been avoided if

the staff had been fully aware of the status of the key servers and if the IT manager had

been alerted as soon as the problem escalated. When the primary server crashed, mon-

itoring the stats of the backup became even more crucial, since it became a single

point of failure.

WHAT IT NEEDS TO KNOW ABOUT SYSTEM AVAILABILITY

To determine the comprehensive status of a large network application, you basically

need to watch three key metrics. First, is the server running and accessible? System

crashes, hardware failures, and extended power interruptions do happen – as an

administrator, you need to know about these as quickly as possible. Even if your mis-

sion-critical servers have fail-over redundancies in place, you still need to know imme-

diately when a server goes down. Accessibility is a closely related factor: it doesn’t

matter that your server is running smoothly if it’s unreachable from the rest of the net-

work.

Second, you need to know if the servers are responding correctly. Even if the server is

up, its data may be corrupted; in the case of a Web server, files could be out of sync or

links broken, or its pages could have been defaced by hackers. You not only want to

know that your server is serving something, you want to make sure it’s serving the right
thing. This same point goes for database, application, and other back-end servers – just

because the database server responds to SQL requests doesn’t mean that it’s respond-

ing with the correct data.

You not only want to know

that your server is serving

something, you want to

make sure it’s serving the

right thing.

MONITORING STRATEGIES ●  



Third, you need to watch the server’s response times. If your server responds correctly

but takes several seconds longer than normal, it may mean that there are more serious

problems waiting in the wings. You might need another server, or you might need to

adjust what’s running on the server. For diagnostic and trending purposes, it is best to

watch metrics such as CPU utilization and memory and hard disk usage directly, so

you can either isolate the root cause of performance degradation or even anticipate

potential failures and correct the problem before it occurs.

Basic Monitoring
Ping monitoring is the most basic way to keep track of your servers’ status. Sending an

ICMP ECHO_REQUEST packet causes the server to reply with an ECHO_RESPONSE,

indicating that it is functioning.

Actually, this simply indicates that its hardware is active and that the network layer of

the TCP/IP stack is correctly processing ICMP packets. It does not mean that the

server is fully functional or that it will produce the correct response to other types of

requests.

Even so, ping monitoring is an important part of an overall monitoring strategy.

Besides indicating that the server is capable of a response, pinging a computer can also

reveal information about network traffic patterns. If it takes the server longer to

respond than usual, it may mean that it is deluged with packets or that heavy traffic

across the intervening network link is interfering with the transmission of ICMP pack-

ets.

On a UNIX system, it is a trivial matter to set up a cron job to ping key servers every

hour or so and then email the administrator if the ping fails or if the response takes

longer than expected. One way of doing this is shown in code sample 1 on page 72.

However, coordinating dozens of ping scripts into usable data can be a very complex

project.

Keep in mind, too, that this script only confirms that the server is accessible from

whatever machine you use for monitoring. Unless this unit is outside your firewall –

and preferably on the other side of the Internet – you might not be aware of problems

caused by external network issues. Admittedly, such issues are often beyond your con-

trol, but having remote testing centers, perhaps outsourcing them, can be an impor-

tant part of your monitoring strategy. Of course, email notification might be

problematic from an external monitor if your network is down. Some sites go so far as

cellular telephone modem communications for extremely critical notifications.

URL AND CONTENT MONITORING

On the other hand, just using ping is clearly not enough for the vast majority of net-

work situations, particularly the large, mission-critical applications discussed at the

outset. The second key metric then comes into play: we want to make sure that the

server is responding correctly.

In the case of a Web server, the simplest way to do this is to establish an HTTP session,

request key pages, and compare the results to an expected norm. For instance, you

could use wget and grep in a shell script to confirm that a supplied regular expression

occurs in the server’s output as expected. As an example of this, see code sample 2 on

page 73.

68 Vol. 27, No. 4 ;login:

Ping monitoring is the most

basic way to keep track of

your servers’ status.



The example script is somewhat limited. For instance, you might need to track how

the server responds to different types of browsers. The script in code sample 2 could be

modified to change the USER_AGENT string sent by the client, so that you can retrieve

pages separately for the major browsers.

An important point to remember, though, is that it is fairly trivial to submit a request

for a certain document from a Web server, but in most cases, watching static pages on

a server is not nearly as important as monitoring dynamically created content. Often

we need to be able to see how the server responds to a submitted form, and this

requires supplying CGI POST data and then observing how the server responds to

given data. For an effective test, it might be necessary to try a handful of different data

types or sizes.

A shell script implementation of this level of functionality is possible, but this type of

program should ideally be written in a friendlier language. Additionally, the complex-

ity of that kind of solution is far beyond the scope of this paper.

ADVANCED MONITORING

So far, we have discussed monitoring techniques that basically examine how the server

is responding from the user’s point of view. To gain insight into why the server

responds the way it does – arguably the information most needed to solve a problem –

we need to probe deeper, digging out information from the nether layers of your appli-

cation.

A simple way to keep an eye on your server’s performance is to measure response time

and notify the administrator if response latency spikes. If the server suddenly takes

substantially longer to perform a given task, your users would probably be able to see

this same delay.

Another important way to watch the innards of your application is by monitoring key

values in your database. By checking certain totals, important metrics, or even test val-

ues periodically, you can make sure that your application is interacting with data as

intended. In fact, a comprehensive monitor could retrieve information from the data-

base and then perform some quick calculations to ensure that the values are correct.

Implementing this kind of solution as a shell script is possible, but it would be wiser to

work in a language more suited for database interaction and data handling – for

quick-and-dirty scripting of this kind of system, Perl is often a good choice. The key

would be to stage regular SQL queries and then compare the returned data to expected

values or expressions.

For more advanced monitoring, it is important to keep track of resource usage inside

the server. On most UNIX systems, you can use rsh or SSH to run standard system

commands, such as df, free, and ps, or to retrieve kernel statistics from the /proc
pseudotree.

THE PROBLEM WITH A SHELL SCRIPT SOLUTION

Although a shell script like those in the code samples is a good quick-and-dirty solu-

tion to this kind of problem, it has a number of significant limitations.

Scalability: A multitude of shell scripts may get the job done, but it can be a pain to

track down the various options in dozens of configuration text files. A company with a

large, complex Web site and IT department, or with an organizational structure that

69

●
  
SY

SA
D

M
IN

August 2002 ;login:

For more advanced 

monitoring, it is important to

keep track of resource usage

inside the server.

MONITORING STRATEGIES ●  



calls for multiple notifications when a system enters a failure state, would need a solu-

tion far more robust than an odd assortment of scripts could provide.

Maintenance: If the data to be monitored changes frequently, the complexity of a do-

it-yourself solution can scale quite rapidly. A commonly used solution is to use “meta-

scripts” to administrate scores of worker scripts. This “solution” is kludgy at best – like

a house of cards, it’s fragile and requires continuous, careful maintenance.

Learning Curve: Additionally, without a unified, easy-to-use interface, nontechnical

users cannot use the system to get information about system failures or to report new

problems unless they can be trained to retrieve needed information. Generally, do-it-

yourself solutions place the system in the hands of one highly skilled administrator, so

if he or she left, even other technical staff members could require a great deal of time

to figure out how the system works.

Accuracy: Finally, a homemade solution may overlook important statistics or monitor-

ing techniques. Even if a certain solution meets your company’s needs today, how

much work will it take to retrofit it to interoperate with tomorrow’s hardware? For

enterprises in fast-moving vertical markets, maintaining a shell script solution could

be a full-time job. Management now has to pick between monitoring accuracy and

cost – and accuracy often gets the short end of the stick.

COMMERCIAL SOLUTIONS

In response to these issues, a number of companies offer commercial monitoring

products.

Empirix offers a broad range of testing and monitoring solutions, including OneSight,
e-Monitor, and the e-TEST suite. Combining measurements of user experience and

server/network activity, Empirix provides monitoring solutions to track Web applica-

tion performance from inside (OneSight) and outside (FarSight) the firewall.

Empirix’s e-Monitor can also perform end-to-end Web transaction monitoring evalu-

ating the user experience of your site.

Keynote’s performance management solutions are designed to enable you to take con-

trol of your Internet performance by effectively turning your data center into a fast,

efficient triage environment. Keynote can monitor the overall end-to-end Web-based

application for availability and can send configurable emails or pager alarms when

TCP-enabled Internet connections, servers, and CGIs become inaccessible or return

incorrect data.

NetIQ AppManager provides a centralized console to proactively manage virtually

every component of a highly distributed Windows NT and Windows 2000 environ-

ment, from the physical hardware to business-critical server applications, such as

Microsoft Exchange, SQL Server, Citrix MetaFrame, Lotus Domino, Oracle, SAP R/3,

and Microsoft Internet Information Server. The latest version also supports monitor-

ing certain UNIX systems.

BMC is currently rolling out version 7 of its PATROL monitoring software. This ver-

sion has been extended to allow for more secure monitoring configurations and now

supports new platforms, including SuSE Linux Enterprise Server (zSeries), Microsoft

.NET, and Microsoft Windows XP. The installation routine has also been upgraded to

make it a more straightforward process to set up or upgrade PATROL.

70 Vol. 27, No. 4 ;login:



Freshwater Software’s robust monitoring offering, SiteScope, is the only one from this

list that not only can monitor but also runs natively on the three major server plat-

forms: Windows NT, Sun Solaris UNIX, and Linux. SiteScope includes specialized

monitoring tools for over 60 network protocols, system-level metrics, and enterprise

software packages. A built-in Web interface allows users and managers to check the

network’s status and IT administrators to manage the entire system remotely. Versatile

yet easy to use options allow for numerous configurations and a variety of alerting

methods, including email, pager, SNMP, or customizable scripts. The optional SiteSeer

module complements this system with outside-the-firewall monitoring from afar.

CHOOSING A MONITORING STRATEGY

Which monitoring solution is right for you? Only you can determine that. The key is

to evaluate your network needs. If your network consists of only a handful of servers

running just one or two Web-enabled applications with fairly simple interfaces, a shell

script solution may work well for you.

In a highly homogeneous network, you’ll want to find the solution that best fits your

chosen platform. If, though, you plan to expand into other platforms in the near-to-

mid future, or if your network is currently a best-of-breed composition of numerous

products, you’ll want to make sure that the monitoring solution you choose is flexible

enough to deliver useful information about every server system you use.

You may also want to choose a solution that provides a wide breadth of monitoring

types so that you can not only monitor the availability of your network components

but monitor system utilization for capacity planning or application-specific monitors

for diagnosing bottlenecks. To take it a step further, you may want a complete solution

for all of your monitoring requirements, correlating all of the metrics together to gain

a holistic view of the entire infrastructure.

Returning to our earlier example, XYZ Inc. will probably want a solution that includes

both internal and external monitoring points and specific monitors for each of their

mission-critical applications. The system ought to have customizable logic that can

proactively respond to minor failures as well as signal a critical alert when several oth-

erwise minor failures occur at the same time. Additionally, XYZ probably needs a sys-

tem that can get the attention of its technical staff via several methods – emailing the

manager, giving console alerts to the on-site staff, and paging the administrator when

he’s gone home.

Conclusion
Monitoring is a very important part of a company’s information services, a key to

good customer relations in the Internet-enabled world. Think through your options

thoroughly, but don’t delay in getting a solid monitoring system in place. If any of your

IT systems even approximate “mission-critical” status, the cost of allowing them to fail

unnoticed for hours is far greater than the deployment cost of any monitoring solu-

tion.

Good monitoring enables you to achieve the primary goals of any Web-enabled appli-

cation: ensuring that users can reliably access needed functionality, keeping the doors

open and the cash flowing in at your e-commerce storefront, and providing users with

an enjoyable experience overall, free from crashes, hang-ups, or irritating sluggishness.

If these are your goals, if your site contains dynamic content, if it is a revenue-generat-

ing project, if it offers value to your customers, or if it is mission-critical in any sense

71

●
  
SY

SA
D

M
IN

August 2002 ;login:

Don’t delay in getting a solid

monitoring system in place.

MONITORING STRATEGIES ●  



of the word, you need monitoring software. But beyond that, you need a monitoring

strategy – a cohesive view of what your network is, what you want it to be, and how

monitoring it will help you get there.

CODE SAMPLE 1: pingmonitor.sh
#!/bin/bash
#
# pingmonitor.sh — simple monitoring with ping
#

# verify that the config file exists and is readable
if [ -r /etc/pingmonitor.conf ]; then

for machine in `grep -v '^#' /etc/pingmonitor.conf`; do
# adjust -c and -w parameters as necessary for your network
if ping -c5 -w10 $machine
then : # do nothing, the host is up
else # ping failed

# modify the message below as necessary
/usr/lib/sendmail -t -F 'pingmonitor.sh' << ENDMAIL
From: pingmonitor <admin@domain.net>
To: administrator <admin@domain.net>
Subject: Ping failed: $machine

Ping failed for "$machine".
Please verify that it is functioning correctly.
ENDMAIL

fi
done

else # no config file
echo Sorry, it appears that your /etc/pingmonitor.conf file is missing echo or\
unreadable. No operations were performed.

exit 1
fi

To enable this monitor, mark it executable and add it as a cron job. On a RedHat Linux

system, for example:

chmod 755 pingmonitor.sh
cp pingmonitor.sh /etc/cron.hourly/

You will also need to create a file named /etc/pingmonitor.conf. Every line in this file

must either be a comment (starting with the # character) or an IP number or qualified

domain name for the script to ping.

If the script can’t read from its config file, it will print an error message and return a

nonzero exit code, causing cron to then email the owner of the cron job (usually root).

This could easily be modified to send email to an outside address, if preferable.

72 Vol. 27, No. 4 ;login:



CODE SAMPLE 2: contentmonitor.sh
#!/bin/bash
#
# contentmonitor.sh
#

# verify that the config file exists and is readable
if [ -r /etc/contentmonitor.conf ]; then

tempfile="/tmp/contentmonitor.out"
while [ -e $tempfile ]; do

# make sure we have a unique tempfile name
tempfile = "$tempfile.$$.$SECONDS"

done

for lineno in `gawk '/^[^#]/ { print FNR }' /etc/contentmonitor.conf`
do 

urltest=`sed -n "$lineno p" /etc/contentmonitor.conf | cut -f1`
testpat=`sed -n "$lineno p" /etc/contentmonitor.conf | cut -f2`

wget —output-document=$tempfile $urltest

if grep $testpat $tempfile
then : # do nothing, the pattern was found
else # failed, content has changed

# modify the message below as necessary
/usr/lib/sendmail -t -F 'contentmonitor.sh' << ENDMAIL
From: contentmonitor <admin@domain.net>
To: administrator <admin@domain.net>
Subject: Content change: $urltest

Content monitor test could not find "$testpat"
in "$urltest".
Please verify that the server is functioning and that the document
is correct.
ENDMAIL

fi

rm -f $tempfile
done

else # error: no config file
echo Sorry, it appears that your /etc/contentmonitor.conf file is 
echo missing or unreadable. No operations were performed. 

exit 1
fi

Again, you will have to chmod this file to be executable and add it as a cron job.

You will also need a configuration file in /etc/contentmonitor.conf. Comment lines

(beginning with the # character) will be ignored. Every other line must begin with the

URL to be monitored, followed by a tab, and then a word, phrase (in quotes), or UNIX

regular expression for the monitor to verify it is present in the retrieved page.

73

●
  
SY

SA
D

M
IN

August 2002 ;login: MONITORING STRATEGIES ●  



74 Vol. 27, No. 4 ;login:

Effective monitoring is an integral part of system and network administra-

tion. But not every site has a proper monitoring system (or systems) in

place to watch over the site’s systems, networks, and services.

To help motivate those of you who may not have all the system and network monitor-

ing running that you should have, here are 10 (hopefully good) reasons to implement

effective monitoring for your systems and networks:

1. You’ll look like a hero when you prevent a problem before it starts.

2. Your boss (and your boss’s boss) will like all the pretty graphs.

3. You’ll have another good use for one of those cast-off PCs that are too slow to

run a current version of Windows.

4. You’ll have proper statistical backup to help justify your request for more band-

width.

5. You’ll be able to add paper to the color printer on the executive office subnet

before your CEO starts complaining about his broken laptop.

6. Your disk and bandwidth utilization monitors will let you know when you’ve

been cracked and your systems are being used to support a “warez” site.

7. You’ll sleep better knowing that your machines are taking good care of each

other.

8. You’ll find out when your routers are flapping, so that you’ll know when to yell at

your upstream network provider.

9. You’ll know if and when your site gets mentioned on Slashdot, because you’ll be

able to observe the “Slashdot effect” in real time.

10. You’ll receive better annual performance reviews.

ten reasons to 
monitor your systems
by John Sellens

John Sellens is the
general manager for
Certainty Solutions
(formerly GNAC) in
Canada, based in
Toronto, and he is
proud to be husband
to one and father to
three.

jsellens@certaintysolutions.com



75August 2002 ;login:

●
  
SY

SA
D

M
INThis article’s title started out as “Optimizing Optimization,” but that

sounded much too formal for something conceived in a parking lot. Today’s

guideline for system administration takes on the notion that systems can be

well maintained only by focusing on well-established order through stan-

dards and procedures.

First, to explain where this author sits on the spectrum between chaos and order, I’ll

admit, I’ve been a structure ogre on more than one occasion. One of my favorite mot-

tos is, “If there’s no request in the system, there’s no work being done on it.” I’d say that

for the better part of my career, I have been in the majority group of sysadmins who

believe the only way to manage systems is through order.

Time, Cost, and Quality
The basis for most project management philosophies dictates that you can (and must)

prioritize any activity across three axes – time, cost, and quality. If time is king, costs

and quality must necessarily be relegated to second and third class. Likewise, if cost or

quality is most important, the others will suffer.

While accepting that specific cases exist where conditions require otherwise, for most

sysadmins, cost is the single most important dimension controlling the operations of

system support.

This focus on cost means system administrators operate with a perpetual shortage of

resources. For some, that shows up as a lack of personnel; for others, a lack of funds

for new equipment and software (or even maintenance of existing environments); and

still others may find a lack of support from other functional areas of the company. As a

result, system administrators have become resourceful, thrifty, and efficient – and

focused on order as a cost-savings device.

You’ve Got to Have Someplace to Put Your Stuff
So imagine driving across a large, mostly empty, parking lot and thinking, “It’s a good

thing I can cut across these parking spots and roll through those stop signs.” (I said it

was conceived in a parking lot – I didn’t say how.)

Everybody has to find a place to keep his or her car. (And whenever I say “car,” I mean

vehicle used to transport people and stuff from point A to point B, be it an automo-

bile, SUV, truck, motorcycle, moped, motor home, bicycle, or what have you.)

They are very personal things – you probably have a few different types around your

home. Businesses have to plan for them as well:

■ A small-sized business may be located on a street without a parking lot – only

space for a few cars along the road.
■ A medium-sized business may have a modest-sized parking lot, but you might

have to fight traffic to get in and out of the busy street.
■ A large-sized business has ramps to and from the expressway, but all the company

roads are one-way and you can’t cut through the medians.

The point is not that any particular solution is flawless but that at each size an appro-

priate solution is sought. Cost is a significant factor – otherwise the smallest of busi-

nesses would have an acre of parking available.

if systems were cars, would
yours be double parked?

Stylock@gvsage.com

IF SYSTEMS WERE CARS ●  

Steve Tylock has been
managing infrastruc-
tures for the past 15
years in the Western
New York area, and
helped organize
GVSAGE as a local
SAGE for the Genesee
Valley region.

by Steven M. Tylock



Businesses have to worry about their changing needs as they grow. Relief can come

through re-striping (how skinny can we make those spaces), re-paving, and amenities

that help traffic flow (like signal lights and exit ramps). The eternal question is how to

fit all of the needed cars into the given space while getting them in and out efficiently.

But Officer, They Made Me Do It 
I submit that our companies’ focus on the costs of system administration activities has

blinded us to other potentially beneficial optimizations. We know that the way a small

company operates cannot scale to a mid-sized company, and that the way a mid-sized

company operates cannot scale to a large company. But when we scale up, we need to

remain open to other ways of operating.

Event parking might evoke what this entails in a comparable way. While it is essential

that a large number of cars get parked quickly and neatly, the solution is not a more

rigid system but a more dynamic one. Plan where and how cars will be placed and

then supply a mobile force to direct the stream of vehicles to the right places. But,

when traffic is lighter, provide enough guidance in the form of signs and markings to

enable the traffic to flow at that level as well.

For a similar situation in a technical vein, consider file system optimization. Optimize

on time when file space is not a concern; optimize on space when it is scarce. This

makes a tradeoff for scarcity of differing commodities – CPU cycles and disk space.

Personalized Service
How can a site that is optimized for cost give personalized service? Trick question – it

can’t. Not unless it can change from optimizing on cost to optimizing on service. In

the same way that a parking facility changes modes from peak to off-peak, we need to

identify other alternative optimizations.

Of course, “personalized service” is an area inundated with fraud. It is hard not to get

bulk letters that appear “personal.” Just a few encounters with “impersonal” personal

correspondence are enough to heighten our levels of distrust.

Policy
If a small company tends to run with less policy and a closer relationship between

sysadmins and users, large companies tend to be the exact opposite. Part of the process

of “ensuring” quality is formalization. By taking some of the thought process out of

how actions are carried out, individual capabilities are less significant. (This is old

news for both the franchise market and the assembly line.) 

When one individual knows what is happening on every portion of the network, there

is little need for rules of conduct on that network – potential problems are already

understood and resolved quickly (except when an individual lacks that specific experi-

ence).

When a great deal of network exists, it becomes essential that it be documented and

understandable in pieces and as a whole. All parties to the operation of it must cooper-

ate. The “cost” of this cooperation is less than the “cost” of conflicting activity on the

network.

What is needed is a mechanism to tell which cost is most significant at any one time.

76 Vol. 27, No. 4 ;login:



No Ticket, No Laundry
If you’ve ever read the fine print on your dry-cleaning receipt, you know that it is a

reality – you lose that ticket (and the number) and they can’t guarantee that you will

be able to get your clothes back.

The trouble ticket system is an essential component on any sysadmin’s tool belt. It

should not be a surprise that this tool is found more frequently in larger sites. The

mechanics of dealing with hundreds of problems without losing track becomes a bur-

den.

The trouble ticket is not so useful when:

■ The trouble ticket system itself is nonfunctional.
■ The computer one would use to report a problem is nonfunctional.
■ The WAN connection to the central area is nonfunctional.
■ Every system needs a specific action taken on it.

It is precisely for these reasons that sysadmins make sure there are redundant report-

ing mechanisms. In many such environments, email, pagers, and phone lines come

into play. But what if the solution goes beyond ignoring the “system”?

The Alternative to Cost Optimization Is?
Here’s where I’d like to present the “Tylock Theory” for optimizing on something

other than less cost. Unfortunately, that insight hasn’t been revealed to me yet. Perhaps

in comparing notes we can find common ground. I’ll offer these distinct situations

where cost was less of an issue for me:

. . . .

Sorry, I can’t name one. For every significant instance that I can recall quality as a

driver, I paid the cost personally rather than in dollars from the company (example –

working through the night or weekend to ensure an upgrade is problem free). For all

of the issues where time was significant, cost was right there next to it (replacing bro-

ken equipment – yes, get it, but no, don’t spend a lot on it).

So I’d like to hear from you. Please consider sharing your short story about optimizing

on something other than cost. Drop me a note – with enough responses, I’ll work up a

composite of anecdotes. Without responses, I will of course have been proven right ;-).

77

●
  
SY

SA
D

M
IN

August 2002 ;login:

The trouble ticket system is

an essential component on

any sysadmin’s tool belt.

IF SYSTEMS WERE CARS ●  



78 Vol. 27, No. 4 ;login:

Transcribed by 
Steven M. Tylock

Judge Daemon: I’ve read both the claim and the counterclaim. Please begin Ms. Ation.

Ms. Ation: Your Honor, by refusing to gain in-depth knowledge in any specific admin-

istrative domain, Mr. Trades is dooming the clients he supports to inferior service. He

will be unable to properly assess and care for the critical situations that arise.

Mr. Trades: Your Honor, Ms. Ation is out of line when she suggests that my clients will

receive inferior service when it is her environment that will suffer. By focusing on indi-

vidual technologies, she and her associates will subject their clients to higher costs and

incessant delays due to finger-pointing as each specialist disowns problems until

proven otherwise. No problem will have a simple solution, and the overall architecture

will suffer.

Judge Daemon: That will be enough. Ms. Ation, what specific issue do you have with

Mr. Trades?

Ms. Ation: Mr. Trades refuses to delineate the specific nature of his administration. I

present in support of this Figure 1, a “Brief Taxonomy of System Administration”:

Ms. Ation: If Mr. Trades were to focus his career in any one of these domains, he could

be tested and certified as an expert. By not doing so, he loses the edge that the special-

ization would give him in both the workplace and the job market.

Mr. Trades: Your Honor, by learning enough about each of those domains to perform

the generally required work, I am able to both design a robust environment and trou-

bleshoot the entire computing and network infrastructure as needed.

Further, as an example, recall the botched rollout of the worldwide customer contact

application? It was slow for every user not sitting in the headquarters. Each specific

administrator said their domain was not at fault: servers were not loaded, the database

was mostly idle, LAN and WAN traffic was clear, client systems worked normally.

The Sysadmin’s Court: 
Liz Ation vs. Jack Trades

Brief Taxonomy of System Administration

<OS>ADMINISTRATOR (LINUX, SOLARIS, WINDOWS, ETC.)

<PRODUCT> ADMINISTRATOR (EMAIL, WEB, BACKUP, ETC.)

NETWORK ADMINISTRATOR

DATABASE ADMINISTRATOR

DESKTOP ADMINISTRATOR

SECURITY ADMINISTRATOR

SENIORITY SCALE:

JUNIOR

INTERMEDIATE

ADVANCED

SENIOR

Figure 1



79

●
  
SY

SA
D

M
IN

August 2002 ;login:

The answer was noticing that each time the application wanted an update it had to

make 120 round-trip calls to the server in headquarters. Each of these calls was duti-

fully and properly made, but the sum total of the time needed to make them had the

application crawling along. The so-called domain experts provided graphs of proper

service levels but missed the problem completely.

Ms. Ation: I’ll concede that specific example, but there was the instance when our jack-

of-all-trades was stumped by the nuances of protocol Z – and while he was scratching

his head, the clients stopped working until an expert was brought in to clean it up.

Judge Daemon: Ms. Ation, what remedy would you propose?

Ms. Ation: That Mr. Trades be forced to declare a specialty and become properly

trained in it.

Judge Daemon: And if the environment that Mr. Trades works in were to require

expertise in three different specialties?

Ms. Ation: They would need a specialist for each of them.

Judge Daemon: So, If the organization had 30 system administrators and 10 domains

of roughly equivalent needs, three admins would specialize in each?

Ms. Ation: Yes.

Judge Daemon: And if there was a budget and justification only for three system

administrators for those same 10 domains?

Ms. Ation: (flustered) Well, they would have to live with inferior service as each admin

takes on three or four domains of knowledge.

Judge Daemon: And Mr. Trades, what you are saying is that these three system admin-

istrators would be able to do quite well as generalists, with perhaps some minor differ-

ences within their abilities?

Mr. Trades: That is correct.

Judge Daemon: So, when the organization grows from those three admins to 30, do

you think there is any cause for 10 of them to specialize in those specific domains?

Mr. Trades: (hesitating) Well, I suppose they would be able to at that point, as long as

some of the generalists remained.

Judge Daemon: So we are agreed then that there is a body of knowledge required for

the efficient operation of any organization’s computing and network infrastructure.

The precise division of that knowledge into actionable units depends on a number of

factors that will each affect the quality of service:

■ Availability to the end user
■ Level of expertise 
■ Knowledge of the overall environment
■ Complexity of the overall environment
■ Available budget for administration

I advise you to forget about being a specialist or a jack-of-all-trades and concentrate

on making the infrastructure work according to the specific situation you find your-

selves in.

Case Dismissed.

THE SYSADMIN’S COURT ●  



80

the bookworm

Vol. 27, No.4 ;login:

by Peter H. Salus

Peter H. Salus is a
member of the ACM,
the Early English Text
Society, and the Trol-
lope Society, and is a
life member of the
American Oriental
Society. He is Chief
Knowledge Officer at
Matrix NewSystems.
He owns neither a
dog nor a cat.

peter@matrix.net

BOOKS REVIEWED IN THIS COLUMN 

book on Edison. I recommend it to all of

you. This is not a book about inventing

electric light. It is about business and

dealing with the public, with financiers

(VCs?), and with government agencies.

Bazerman is interested in symbols and

sociology, and the electric light has

become an incandescent and illuminat-

ing symbol.

Epic Poetry
Beowulf is the earliest epic poem in Eng-

lish, comprising a large part of the

British Library MS. Cotton Vitellius

A.xv. The use of Beowulf in computing

has nothing at all to do with a mythic

Germanic hero. Beowulf Cluster: Com-
puting with Linux is a first-rate collec-

tion of essays supplying readers with a

range of excellent tools for assembling a

Beowulf cluster and for resource man-

agement.

LEGOs that Walk
Jin Sato is a major inventor. In Jim Sato’s
LEGO Mindstorms, there are toys and

tricks to entertain nearly anyone. I was

just thrilled to read about and examine

the photos and diagrams of the robotic

toys – are they really toys? – that Sato

has developed. The chapter on “Making

Mibo Walk” was really fascinating, if

only because I can remember Marc

Donner’s brilliant walking robot (1983!)

and his doctoral dissertation. I visited a

lab at the University of Aarhus where

LEGO robots were running quite

impressively.

Management and 
Collaboration
Potter and Sakry have produced a small,

easily read volume which I zipped

through on a three-hour flight. Making
Process Improvement Work has a concise

approach to software process improve-

ment, eschews a lot of the psychobabble

and jargon that many books contain,

and is full of good examples and con-

crete steps you can take. This may be a

I was going to devote this column to

recent books on SQL, but I’ve spent the

last four months traveling: in Scandi-

navia, Brazil, and the Netherlands (as

well as the US). During this time a num-

ber of queries and interesting books

have appeared, so I’m putting SQL off

for the future.

I also want to express formal thanks to

the folks running NORDU2002, to

Michael Hejlskov Jacobsen and Sonny

Larsen in Aarhus, to Gabriela Conceicao

of the Sociedade Brasiliera de Computa-

cao, to all those involved with the Forum

Internacional Software Livre in Porto

Alegre, and to Marielle Klatten and all

the others who participated in SANE

‘02.

I was quite overwhelmed in Porto Ale-

gre. There were 3500-plus at what I now

understand is the largest software event

in Latin America. I learned that the

Brazilian state of Rio Grande do Sul has

adopted open software and that the state

of Minas Gerais was in the process of

doing so. An anti-proprietary software

bill has been introduced in Peru, too.

The use of Linux and FreeBSD is amaz-

ingly widespread.

Interestingly, I seem to get asked many

questions about the history of technol-

ogy, not merely computing, so I’m going

to begin with a history book.

Lux Fiat!
MIT Press has come out with a paper-

back edition of Bazerman’s fascinating

THE LANGUAGES OF EDISON’S LIGHT

CHARLES BAZERMAN

Cambridge, MA: MIT Press, 2002. Pp. 416.

ISBN 0-262-52326-4.

BEOWULF CLUSTER: COMPUTING

WITH LINUX

THOMAS STERLING, ED.,
Cambridge, MA: MIT Press, 2001. Pp. 496.

ISBN 0-262-69274-0.

JIM SATO’S LEGO MINDSTORMS: THE

MASTER’S TECHNIQUE
San Francisco: No Starch, 2002. Pp. 364.

ISBN 1-886411-56-5.

MAKING PROCESS IMPROVEMENT

WORK

NEIL S. POTTER & MARY E. SAKRY

Boston: Addison-Wesley, 2002. Pp. 169.

ISBN 0-201-77577-8.

REQUIREMENTS BY COLLABORATION

ELLEN GOTTESDIENER

Boston: Addison-Wesley, 2002. Pp. 333.

ISBN 0-201-78606.

IP ROUTING

RAVI MALHOTRA

Sebastopol, CA: O’Reilly & Associates, 2002.

Pp. 219.

ISBN 0-596-00275-0.

TCP/IP NETWORK ADMINISTRATION,

3RD ED. 

CRAIG HUNT

Sebastopol, CA: O’Reilly & Associates, 2002.

Pp. 730.

ISBN 0-596-00297-1.



81August 2002 ;login:

●
  

 
BO

O
K

RE
V

IE
W

S

THE BOOKWORM ●  

book reviews
way of getting rid of those chronic soft-

ware management problems.

Ellen Gottesdiener’s somewhat larger

(just about double the size) Require-
ments by Collaboration is about the

human side of technology. More specifi-

cally, it’s about how the quality of the

various aspects of communication in a

project, and most especially those

employed when defining user require-

ments, strongly influence the success or

failure of the project.

This isn’t a book on building the prod-

uct appropriately: it’s a book about

selecting the product to build.

Networking
If you really want to understand routing,

I recommend Radia Perlman’s Intercon-
nections (Addison-Wesley, 1999), but for

a smaller, more current view, I can’t

imagine a better volume than Malhotra’s

IP Routing. He assumes some knowledge

of networking, of IP, etc., but he supplies

the information that I imagine every

network administrator needs.

I was really pleased to see the new third

edition of Hunt’s book on TCP/IP

administration. Even if you’ve read the

half-dozen or so parts of Comer and of

Stevens, you need a contemporary hand-

book. Though it has gained a lot of

weight over the years, it’s still a fine piece

of work.

Shea’s advice for defeating spammers is

not much better. He recommends click-

ing on any provided link to be removed

from the list. That’s a great idea...for the

spammers. Yes, the author warns you

that you might have just verified the

validity of your email address to the

spammer, but offers no advice to avoid

that problem. His advice is rather worse

than useless.

He also presents important issues in

illogical and inconsistent ways. One

example is his Table 1-3, “Risk Numbers

and Descriptions.” It will badly confuse

inexpert readers; more experienced

readers will be annoyed that the author

mixes attack mechanisms and attack

goals with no apparent recognition of

the difference. A virus is an attack mech-

anism, malicious destruction of data is

an attack goal, but they should not be

distinct items on the list — many viruses

accomplish malicious destruction of

data. Yet there they both are.

Roger Grimes’ Malicious Mobile Code
(O’Reilly, 2001) did much of what this

book does, and does it much better. Buy

that and skip this. It’s horrible horrible

horrible.

BUILDING SECURE SOFTWARE

JOHN VIEGA AND GARY MCGRAW

Boston, MA: Addison-Wesley, 2001. Pp. 528.

ISBN 0-201-72152-X.

REVIEWED BY NIINA KARHULUOMA

niina.karhuluoma@nokia.com

Software without security is a huge mis-

take. It is extremely easy to produce a

buffer overflow type of attack on a sys-

tem, and this could just as easily be

stopped by taking some important

design principles into account while

programming.

Security is much more than just tech-

niques or protocols like IPSec, SSL/TLS,

and firewalls. It is an integrated process,

which must be remembered in every

phase of developing a system.

HAVE YOU LOCKED THE CASTLE

GATE?

BRIAN SHEA

Boston: Addison-Wesley, 2002. Pp. 193.

ISBN 0-201-71955-X.

REVIEWED BY CHUCK HARDIN

chardin@suchdamage.org

This is an insecurity book. If you follow

its recommendations, you will be less

secure in several respects than you were

before. I’m not referring to merely run-

ning Windows; I assume the people who

use the advice in this book start with

default Windows installations with lots

of viruses and exploits. The advice in

this book can actually make you less

secure than that.

The book incorporates a tedious analogy

between a homestead-cum-village and a

computer system in the evolution of

their respective defenses. The concept is

flawed, but it might have been excusable

if the author had written a sufficiently

compelling narrative to draw the reader

through the book. He did not. The nar-

rative is deadly dull and won’t give the

reader any real insights into the prob-

lems with computer security. It reads

almost condescendingly, as if the reader

herself were the peasant described in the

narrative, to be led by the hand through

the necessities of defending a computer.

Much worse, however, is the danger that

the reader will buy into the author’s

analogy and adopt his security model,

which was well-described by the IETF’s

Site Security Handbook (http://www.ietf.
org/rfc/rfc2196.txt) as “the theory of a

hard ‘crunchy’ shell and a soft ‘squishy’

middle.” Shea emphasizes firewalls and

physical security but ignores secure

transport over the network for many

kinds of data. The problem with pursu-

ing this castle-like model has been well

explored by the security community:

once your single line of defense has been

breached, you’re wide open.



Vol. 27, No. 4 ;login:

This book is excellent – useful for teach-

ing at the university level and serving

well as a handbook for those specialists

whose main job is to develop software

with security features. This book is

clearly written and is a good introduc-

tion for people who want to get an

overview of security in the software

process.

Building Secure Software is one of the

few books dedicated to examining the

production or choice of software with

security features.

In general, the book is excellent reading

for anyone who wants to learn about, or

who is already working with, software-

related security issues. The book is

understandable and well written – it can

be read without deep security knowl-

edge.

The book begins with an introduction to

security awareness and gives some basic

points as to where to get information

about security vulnerabilities as well as

describing the goals of security. These

goals are useful to anyone who needs to

know the different levels of security and

why they are needed.

Entire books could be written on soft-

ware risk management, but the writers

manage fairly thorough coverage in their

chapter on this broad issue. The chapter

makes clear the importance of incorpo-

rating security into the software devel-

oping process from the beginning.

This book also takes up  the pros and

cons of open source versus closed source

software. The best part of this chapter is

that it provides guidance about the

issues that should be taken into account

in making this decision but does so

without advocating for one side or the

other.

The “Guiding Principles for Software

Security” section supplies 10 important

guidelines that can be used to avoid

most potential problems in the context

of software security. These guidelines are

useful although they need to be consid-

ered case by case because enterprises fre-

quently have restrictions on software

features. Different kinds of rules (e.g.,

those applicable to customers) may

cause difficulties in applying these

guidelines literally. Still, the principles

82

can help software developers to achieve

more secure products.

Viega and McGraw take a close (and

quite  broad) look at software auditing.

Auditing is an essential method of

checking code’s features and security.

This should not be done merely by using

code review. This book introduces some

general baselines of how to audit soft-

ware and what kind of tools to use, and

it also provides some views about the

effectiveness of auditing. The writers

have a healthy attitude toward code and

software checking – they are really

pointing out that auditing is a method

that needs to be part of the software

process.

Viega and McGraw take a thoughtful

look at security aspects that need to be

considered in software design. Issues like

buffer overflows, access control, race

conditions, randomness, and determin-

ism are described extensively in this

book.

My own background is in cryptography

research, and I was very pleased to see a

book that describes secure software also

considering cryptography-related pro-

gramming issues like randomness

(including views on the handling of

entropy). This makes the book very

good reading for anyone who needs to

write code for cryptographic purposes.

This area is very seldom described and

quite often programmers end up learn-

ing by doing.

The cryptographic part of the book is

extensive and provides an excellent

overview, especially if the programmer is

using some other, cryptography-specific,

reference at the same time. The book

also includes a short section about cryp-

tography basics and can be used as an

overview of the most essential issues

concerning cryptographic software cre-

ation.

book reviews



83August 2002 ;login:

members are among the brightest and

best informed sysadmins – and your

contributions (article submissions and

discussion comments) will make

SAGEwire the best sysadmin site it can

be.

SAGEweb (http://SAGEweb.sage.org)

will be the SAGE resource site for sysad-

mins. It will feature white papers, the

SAGE short topics series, the SAGE jobs

center, the SAGE store, and other

resources for sysadmins.

We’ve also almost finished redesigning

the entry page at http://www.sage.org –

where the general public will go for

information about SAGE. This is part of

our new publicity and outreach cam-

paign, headed by Rob Kolstad, our new

SAGE Executive Director.

SAGEcert (http://www.sagecert.org) is

the site for all things related to SAGE

certification – news, information, study

guides, discounts, etc.

With these four sites, SAGE has taken

another big step towards serving our

membership better, and expanding our

reach to more sysadmins. Please give us

feedback (email sage-exec@sage.org) and

your ideas for how to continue to grow

SAGE.

On another topic, elections for the

SAGE Executive Committee will be held

later this year. Details and a call for

nominations will be posted on the Web

and sent via email soon.

From the President

Have you heard the one about the cob-

bler’s kids’ shoes? We have – and fortu-

nately, now we can laugh instead of

getting angry. With a lot of hard work by

the SAGE Online Committee (Trey Har-

ris, chair; Gabe Krabbe; Josh Simon),

staff and volunteers, SAGE has a new

online presence. In fact, we now have a

suite of Web sites:

SAGEwire (http://SAGEwire.sage.org) is

our first new offering – a slash-based

discussion and news site for sysadmins.

We announced the public beta to the

sage-members mailing list on July 3, and

will continue to spread to word to wider

audiences over the next few months. If

you haven’t been to SAGEwire yet, I

encourage you to visit, make a login, and

jump into the conversation. Please also

pass the word to other sysadmins. SAGE

news 

●
 
SA

G
E 

N
EW

S

FROM THE PRESIDENT ●  

by David Parter

President, SAGE STG
Executive Committee

parter@sage.org

SAGE STG Executive Committee
PRESIDENT:

David Parter parter@sage.org

VICE-PRESIDENT:

Geoff Halprin geoff@sage.org

SECRETARY:

Trey Harris trey@sage.org

EXECUTIVES:

Bryan C. Andregg andregg@sage.org

Tim Gassaway gassaway@sage.org

Gabriel Krabbe gabe@sage.org

Josh Simon jss@sage.org

SAGE membership includes USENIX member-

ship. SAGE members receive all USENIX mem-

ber benefits plus others exclusive to SAGE.

SAGE members save when registering for

USENIX conferences and conferences co-spon-

sored by SAGE.

SAGE publishes a series of practical booklets.

SAGE members receive a free copy of each

booklet published during their membership

term.

SAGE sponsors an annual survey of sysadmin

salaries collated with job responsibilities.

Results are available to members online.

The SAGE Web site offers a members-only

Jobs-Offered and Positions-Sought Job Center.

SAGE EXECUTIVE DIRECTOR
Rob Kolstad: kolstad@sage.org

SAGE MEMBERSHIP
office@sage.org

SAGE ONLINE SERVICES
list server: majordomo@sage.org

Web: http://www.sage.org/

http://SAGEwire.sage.org

http://SAGEweb.sage.org

http://www.sagecert.org



84

news
■ SAGE Interim Certification Board:

Bennett

USENIX CONFERENCES LIAISONS:
■ LISA, Philadelphia, Dec. ’02: Rubin
■ CARDIS, Nov. ‘02: Honeyman
■ OSDI/WIESS, Boston, Dec. ‘02:

Jones
■ FAST, Mar. ‘03: Honeyman
■ USITS, Seattle, Mar. ’03: Honeyman
■ Mobisys, SF, May ’03: Jones
■ USENIX Annual, San Antonio, June

’03: Honeyman
■ Freenix, Jun. ’03: McKusick
■ Security, Aug. ‘03: Rubin
■ BSDCon, San Mateo, Sept. ’03:

McKusick

OTHER CONFERENCES (USENIX-

RELATED):
■ NordU: Hall
■ EuroBSDCon: Honeyman

Young is the Staff Coordinator for each

of the committees and is included on

each mailing list.

Vol. 27, No. 4 ;login:

Conference registration fees for techni-

cal sessions will be increased by $100.

Student registration fees for all confer-

ences will be 50% of the regular tech ses-

sion fees.

No other requests for funding good

works beyond the two grants listed

below will be considered this year.

The staff will prepare budget scenarios

for 2003 for the Board’s consideration

this summer.

Grants
USENIX will support EuroBSDCon in

2002 with a grant of $6,000.

USENIX will again be a sponsor at the

$10,000 level of the Grace Hopper Cele-

bration of Women in Computing Con-

ference in 2002.

SAGE
SAGE and SAGE Certification presented

budget forecasts that would reduce some

of their direct expenses for the remain-

der for 2002. The Board agreed to con-

tinue to support and subsidize both

programs at a net deficit of $600K in

2002.

Committees and Liaisons
The following committees and liaisons

were established:

COMMITTEES:
■ Executive : Jones, Darmohray,

Gilmore, McKusick
■ Prizes & Awards: Hall (chair)
■ SAGE Review Committee: Hume,

Parter, Hall, Kolstad, Young    
■ Scholastic Services: Mary Baker,

Darrell Long (chair), Rubin.
■ STG Committee: Hume, Jones, Hall,

McKusick

USENIX BOARD LIAISONS:
■ Computing Research Association:

Jones
■ SAGE: Hall

THANKS
John Gilmore has made a donation of

$15,000 to support the Association's

Student Stipend Program in 2002. This

program provides funds for travel, regis-

tration fees, and hotel expenses to

attend USENIX conferences.

We hope that this generous donation

will encourage others to do the same.

USENIX is most grateful.

Ellie Young, Executive Director

ellie@usenix.org

Summary of the
USENIX Board of
Directors Actions

The following is a summary  of the

actions taken by the USENIX Board of

Directors at their meeting in Monterey,

CA on June 12, 2002.

Finances 
An internal audit for 2001 was per-

formed for the Association by an outside

accounting firm, Burr, Pilger and Mayer.

See page 85 for more information.

The 2002 budget was discussed, and due

to the decline in conference attendance

and projected deficit of $1,500,000, the

following actions were taken:

Transfers from the reserve funds to the

operating funds from January, March

and May 2002 were approved, and

approval was given for $500,000 to be

moved later this year.

It was agreed to publish 6 issues  of

;login: in 2002 (vs. 7).

Expenditures for Student Programs will

be reduced by 50% as follows:

■ Additional applications for Student

Research Grant and Scholars pro-

gram  will not be entertained for the

remainder of 2002.
■ Fewer funds will be  available for

the Student Stipend Program which

enables students to attend USENIX

conferences.

The Board will cut back on discretionary

and travel expenses.

No further expenditures on the E-Learn-

ing pilot program will be made.

by Ellie Young

Executive Director

ellie@usenix.org



85August 2002 ;login: USENIX FINANCIAL REPORT ●  

●
 
U

SE
N

IX
 N

EW
SBoard has taken several

actions (see above) to deal

with this difficult situa-

tion.

USENIX MEMBERSHIP

DUES & EXPENSES

USENIX averaged 8,300

members in 2001, and

58% opted for SAGE

membership as well.

Chart I shows the total

USENIX dues income

($740K) for 2001, divided

into membership types.

Chart 2 shows where

those dues were spent.

Please note that all costs

for producing confer-

ences, including staff,

marketing, and exhibi-

tions, are covered by rev-

enue generated by the

conferences.

USENIX 
Association 
Financial Report
for 2001

The following information is provided

as an annual report of the USENIX

Association’s finances and represents the

Association’s statement of revenue and

expenses for the year. Accompanying the

statements are several charts that illus-

trate where your membership dues go,

and what is spent on Good Works.

Audit 
An audit was conducted by Burr, Pilger

& Mayer, L.L.P. for the year ending

December 31, 2001. The full financial

statements and text of their report is

available from the Association. The con-

clusion reached by the report is that “In

our opinion, the financial statements

present fairly, in all material respects, the

financial position of the USENIX Asso-

ciation as of December 31, 2001 and the

changes in its net assets and its cash

flows for the year then ended in con-

formity with accounting principles gen-

erally accepted by the United States of

America.”

Financial Statements 
Summary.  
These are challenging times, and

USENIX is suffering from the overall

downturn in the economy and, in par-

ticular, of the computer industry. In

2001, cash was down $1,735,000; the

Reserve Fund was down $1,445,000; Net

assets were down by 32%; Revenues

down by 39%. This all translates into a

very bad year financially. The USENIX

by Ellie Young

Executive Director

ellie@usenix.org

CHART 2 
Where Your 2001 Membership Dues Went

Database/System/Web 
Services

11%

Executive Office Expenses
21%

Executive Office Personnel
26%

;login:
39%

Proceedings for Institutional 
Members

3%

CHART 1 
USENIX Membership Revenue Sources, 2001

Supporting 
2%

Student
2%

Affiliate Member
5%

Educational Inst.
6%

Corporate
7%

Individual
78%



Vol. 27, No. 3 ;login:86

SAGE  

Chart 3 shows SAGE income and

sources of support in 2001 ($455K).

Chart 4 provides a breakout of SAGE

expenses  ($473K).

CHART 3  SAGE Revenue Sources, 2001

Publications & T-Shirt Sales
2%

Certification 
Fees/Sponsorship

2%

USENIX Subsidy
19%

Dues
30%

Share of LISA Conference 
Revenue

47%

CHART 4 
SAGE Expenses, 2001 Miscellaneous

2%

Promotion
3%

Salary Survey
3%

Database/System/Web 
Services

4%

Discretionary
5%

Legal/Business Plan
5%

SAGE Exec Committee 
Meetings

9%

Publications
9%

Certification
60%

USENIX PROJECTS AND GOOD

WORKS.  

Chart 5 describes how the money allo-

cated to Good Works, and Projects

($496K) was spent in 2001.

CHART 5 
Programs & Good Works Projects, 2001 

Total Spent $967,192

CRA & TOG Membership
2%

Standards
3%

Conference Sponsorship: 
NordU, GUADEC,Linux 

Kernel,Middleware,HAL2001
5%

Other Projects: Rep on 
Campus, Int'l Speakers, 

Awards, E-Learning
6%

K-12 Programs: USA Cptg 
Olympiad, Lesley Univ. 
Computer Clubhouse

10%

Student Stipends to Attend 
Conferences

13%

Student Scholarships: 
Dartmouth,Sheffield Hallam, 
MIT, CMU, Rice, Columbia, 
College of William & Mary, 

Univ. of WI
18%

Community Programs: ie 
Software Patent Inst, ReX, 

CRA-CREW, EFF
20%

Student Research Projects: 
Virginia Tech, Hebrew Univ, 
CMU, UCSD, Pusan Nat'l 

Univ, UCSC, Duke, Univ of 
WI, Univ of VA, Univ of MI, 

Rockhurst Univ
23%



87August 2002 ;login:

●
 
U

SE
N

IX
 N

EW
S

  USENIX ASSOCIATION
STATEMENT OF FINANCIAL POSITION

December 31, 2001 and 2000

  
ASSETS 2001 2000

   
Current assets:
  Cash & cash equivalents  $ 476,185                   $ 2,212,063               
  Accounts receivable 66,936                    364,982                  
  Prepaid expenses 108,977                  94,123                    
  Inventory 31,225                    20,149                    
   

  
     Total current assets 683,323                  2,691,317               

Investments at fair market value -reserve fund 6638588 8,084,438               

Property and equipment:
  Office furniture and equipment 422,576                  497,378                  
  Less: accumulated depreciation (183,204)                 (209,984)                 

  
     Net property and equipment 239,372                  287,394                  

  

      Total assets  $ 7,561,283                $ 11,063,149             
  
  

LIABILITIES AND NET ASSETS
 
Current liabilities:
  Accounts payable and accrued expenses  $ 633,503                   $ 860,225                  
  Deferred revenue  63,045                     39,350                    

  
      Total liabilities 696,548                  899,575                  

Net assets:
  Unrestricted net assets:
    Board designated 6,638,588               8,084,438               
    Undesignated 226,147                  2,028,135               
  Total unrestricted net assets

  Temporarily restricted net assets 51,000                    

      Total net assets 6,864,735               10,163,574             
  

 
        Total liabilitites and net assets  $ 7,561,283                $ 11,063,149             

  

  USENIX ASSOCIATION
STATEMENTS OF ACTIVITIES 

For the Years Ended December 31, 2001 and  2000 
 

2001 2000
Operating revenues:
  Conference and workshop revenue  $ 3,506,275                $ 6,005,509               
  Membership dues 739,856                  947,846                  
  SAGE dues & other revenue 151,820                  255,294                  
  Product sales 20,676                    30,064                    
  SAGE Certification 10,750                    51,000                    
   
     Total operating revenues 4,429,377               7,289,713               

  
Operating expenses:
  Program services:
   Conference and workshop revenue 4,063,800               4,574,677               
   Programs and membership 629,833                  658,447                  
   Student programs, Good Works, and projects 981,806                  1,044,583               
   SAGE 349,713                  404,974                  
   SAGE Certification 287,793                  61,949                    

      Total program services 6,312,945               6,744,630               

 Suppport services:
  Management and general 349,870                  307,935                  
  Fund raising 27,067                    32,117                    
      Total support services 376,937                  340,052                  

  
     Total operating expenses 6,689,882               7,084,682               

  
Net operating (deficit) surplus (2,260,505)              205,031                  
   
Net investment income and nonoperating activities
  Donations  532                         50,000                    
  Interest and dividend income 240,445                  298,381                  
  Net realized and unrealized losses on investments (1,185,139)              (348,608)                 
  Investment fees and costs (94,171)                   (115,966)                 

          Net investment income and nonoperating activities (1,038,333)              (116,193)                 
  

Change in net assets (3,298,838)              88,838                    
   
Net assets, beginning of year 10,163,573             10,074,735             
   
Net assets, end of year  $ 6,864,735                $ 10,163,573             
  

USENIX FINANCIAL REPORT ●  



Vol. 27, No. 3 ;login:88

USENIX ASSOCIATION
STATEMENTS OF CASH FLOWS

For the Years  Ended December 31, 2001 and 2000
 

  
2001 2000

  
Cash flows from operating activities:

Change in net assets  $ (3,298,838)               $ 88,838                    
 
Adjustments to reconcile change in net assets
  to net cash (used in)/provided by operating activities:

  Depreciation 77,455                    67,545                    
  Net investment income designated for long-term purposes (94,289)                   (69,304)                   
  Realized and unrealized losses on investments 1,185,139               348,608                  
(Increase) decrease in assets:
  Accounts receivable 298,046                  (249,427)                 
  Prepaid expenses (14,854)                   (36,281)                   
  Inventory (11,076)                   (1,605)                     
Increase (decrease) in liabilities:
  Accounts payable and accrued expenses (226,723)                 725,661                  
  Deferred revenue 23,695                    39,350                    
 
   Net cash (used in) provided by operating activities (2,061,445)              913,385                  

  
Cash flows from investing activities:
  Purchases of investments  (5,646,360)              (5,812,861)              
  Proceeds from sale of investments  5,646,360               5,812,861               
  Withdrawals from reserve fund 355,000                  295,474                  
  Additions to reserve fund (903,933)                 
  Purchases of property and equipment (29,433)                   (199,911)                 
 
   Net cash provided by (used in) investing activities 325,567                  (808,370)                 
 
   Net (decrease) increase in cash and cash equivalents (1,735,878)              105,015                  

Cash and cash equivalents, beginning of year 2,212,063               2,107,048               
  

Cash and cash equivalents, end of year  $ 476,185                   $ 2,212,063               

                                            USENIX ASSOCIATION
                        STATEMENT OF FUNCTIONAL EXPENSES 
                   For the Years Ended December 31, 2001 and 2000
 

Conferences 
and 

Workshops

Programs 
and 

Membership

Student 
Programs, 

Good 
Works and 
Projects SAGE

Sage 
Certification Total Program

Manage- 
ment and 
general

Fund 
Raising

Total 
Support

2001       
Total

2000      
Total

  
Operating Expenses
  Conference & workshop-direct   $ 2,656,037  $  $  $  $  $ 2,656,037  $  $ 10,099  $ 10,099  $ 2,666,136  $ 3,318,804
  Personnel and related benefits:
    Salaries 783,827 116,359 6,716 73,539 980,441 130,109 130,109 1,110,550 1,025,320
    Payroll taxes 58,227  8,644  499  5,463  72,832  9,666  9,666 82,498 70,536
    Employee benefits 143,834  21,352  1,232  13,495  179,913  23,876  23,876 203,789 206,199
  Membership/proceedings 40,102 40,102 0 40,102 45,613
  Membership/login: 343,088 343,088 0 343,088 337,923
  SAGE expenses 184,797 184,797 0 184,797 186,627
  SAGE Certification expenses 287,793 287,793 0 287,793 61,949
  Student programs, Good                       
Works, and projects 967,193 967,193 0 967,193 977,038
  General and administrative 421,876 100,288 6,166 72,419 600,748 186,219 16,968 203,187 803,935 854,673

 $ 4,063,801  $ 629,833  $ 981,806  $ 349,713  $ 287,793  $ 6,312,945  $ 349,870  $ 27,067  $ 376,937  $ 6,689,882  $ 7,084,682



89USACO NEWS ●  

●
 
U

SE
N

IX
 N

EW
SFifteen Years Ago

in USENIX

At the USENIX Board meeting on

March 26–27, 1987, the Board (Stephen

C. Johnson, Marshall Kirk McKusick,

Alan G. Nemeth, John S. Quarterman,

Deborah K. Scherrer, Wally M. Wedel,

and David A. Yost) unanimously

approved the Business Plan proposed by

Rick Adams and Mike O’Dell to found a

service to be called UUNET.

I was authorized to meet with the Asso-

ciation’s lawyer and account accountant

and to sign checks for up to $35,000 for

“the initial period.”

The actual service began in mid-May. As

I write this it has just celebrated its 15th

birthday.

In retrospect, it’s hard for me to be

unemotional about this: I was an enthu-

siast when Rick made his first proposal

to the Board in Monterey in October

1986. I was thrilled when UUNET was a

clear success within a few months.

This was one USENIX project that was

far more successful than anyone dreamt

it would be, back in 1986–87.

Congratulations Rick and Mike...and the

farsighted Board members.

August 2002 ;login:

champion, having placed high in all of

the Internet contests, often against

extremely difficult competition.

The training camp was the most com-

petitive ever. Seniors are invited only if

they have a significant chance of making

the team. This year we had a record five

seniors, all of whom were fighting for

one of the four spots on the interna-

tional traveling team. This year’s big

contest (the International Olympiad on

Informatics – IOI) will be held in Seoul,

Korea, on August 18–25.

Training camp included a “fun contest,”

which started the first night and contin-

ued as evening entertainment through

the week (a challenging game-strategy

program), and six programming con-

tests throughout the nine-day event.

Four of those contests were three hours

in length; the remaining pair were a gru-

eling five-hours long. The results of

these contests determined the team of

four that will represent the USA in

Korea.

The coaching staff toiled long and hard

to create a full year of contests to chal-

lenge the competitors through the week.

Coaches included:

USACO News

The USA Computing Olympiad (spon-

sored by the USENIX Association) has

completed all but one phase of the

2001–02 season. After five Internet-

based contests, 15 finalists were chosen

to attend training camp at the University

of Wisconsin-Parkside, home of Don

Piele, the Olympiad’s director.

Finalists were:

Seniors:

Adam D’Angelo Phillips Exeter, CT

Jacob Burnim Montgomery Blair

HS, MD

Gary Sivek TJHSST, VA

Steven Sivek TJHSST, VA

Juniors:

Timothy Abbott, TJHSST, VA  

Stephen Guo, Monta Vista HS, CA

Po-Ru Loh, James Madison 

Memorial HS, WI

Anatoly Preygel, Montgomery Blair 

HS, MD

Yan Zhang, TJHSST, VA  

Yoyo Zhou, TJHSST ,VA 

Sophomores:

Jongmin Baek, Cupertino HS, CA

Brian Jacokes, TJHSST, VA  

Tiankai Liu, Phillips Exeter, NH

Freshmen:

Eric Price, TJHSST, VA  

Alex Schwendner, Home school,TX  

Long-time readers might note several

familiar names, including the Sivek

twins from Thomas Jefferson High

School of Science and Technology. Again

this year, TJHSST supplied the most 

students.

Freshman Alex Schwendner, a home-

schooled student from Austin, Texas,

was crowned this year’s overall national

by Peter H. Salus

USENIX Historian

peter@matrix.net

by Rob Kolstad

kolstad@sage.org

Alex Schwender



Vol. 27, No. 3 ;login:

C... ... ... .... ....
......S

In this case, the sentence is the standard

cow-maxim taught to all the calves:

COWS ARE THE BEST FARM 

ANIMALS.

Given a puzzle and a dictionary of

words, deduce the sentence that the puz-

zle represents. The dictionary should be

read from a file named dict.txt. The

dict.txt that will be used during grading

can be downloaded for inspection. You

will be allowed 1.0 CPU second on a

750MHz Pentium IV to find the answer.

Letters of Thanks
To Dan Geer

USENIX Board President

I am writing on behalf of myself and my

husband Ira Burnim to thank you for

the generous support USENIX provides

to the USACO program run by Don

Piele and his associates.

USACO has really made a different in

our son Jacob Burnim’s life. From the

time he first discovered it on the Inter-

net during his freshman year, it has pro-

vided him with the most challenging,

stimulating, and enjoyable piece of his

scientific and technical education. Even

though he attended one of the best high

school math, science, and computer sci-

ence magnet programs in the country,

his school could not provide him with

the sophisticated learning experience he

has enjoyed and is enjoying through

USACO. His three camp sessions at the

University of Wisconsin-Parkside were

all great, and of course he is thrilled to

be going to the IOI in Korea before he

begins his studies at Caltech.

Jacob told us if he ever has money to

give away, he would like to help support

USACO – a good indication, I think, of

how much the program means to stu-

dents who participate in it.

■ Reed Barton, MIT freshman and

last year’s IOI world champion (and

four-time gold medallist at the

International Math Olympiad)
■ Hal Burch, frequent USENIX

speaker and Lumeta engineer
■ Russ Cox, MIT grad student and

Plan 9 release engineer
■ Brian Dean, MIT grad student and

Akamai employee
■ Rob Kolstad, Executive Director of

SAGE

In total, over 20 high-caliber problems

were created, written up, solved multiple

times, supplemented by test data, timed,

and inserted into the contest-grading

system (sometimes requiring a special

program to check output from the final-

ist’s entries). It takes about 8 to 12 hours

to create a high-caliber problem that will

pass muster at the elite level of competi-

tion these students were exhibiting . . .

lots of work this year for the coaches.

Recreational activities (including Frisbee

golf, the not-exactly-LISA Quiz Show,

swimming, movie night, and bowling)

kept the competitors busy every day

from 8 a.m. to 10 p.m.

After seven days of camp, the IOI team

selection came down to the final contest,

with half of the finalists still in the run-

ning for the final four slots. After an

agonizing discussion and repeated eval-

uation, the coaches chose four IOI rep-

resentatives:

Jacob Burnim, a senior from 

Montgomery Blair HS in Silver 

Spring, MD

Adam D’Angelo, senior from Phillips 

Exeter Academy

Tiankai Liu, sophomore from Phillips

Exeter Academy

Alex Schwendner, home schooled 

freshman from Austin, Texas.

Camp Director Don Piele kept opera-

tions running extremely smoothly. Don

is also running the IOI in the USA for

2003 – contact him at piele@uwp.edu if

90

you or your organization wish to assist

in sponsorships for this event, which

promises to attract competitors from

around 80 countries. Don raised the bar

this year for public relations by sending

daily reports of camp activities to par-

ents via email. He also posted a few

dozen digital pictures every day.

The competitors had a great time as evi-

denced by letters from them and their

parents directed to USENIX, the sole

sponsor of the USACO. Jacob Burnim’s

mother wrote a particularly nice note

(see sidebar).

The 2002–03 USA Computing

Olympiad will start in October of 2002.

Free training is always available at

http://train.usaco.org; over 7700 students

from around the world are currently

registered.

Please join me in wishing the best for

these outstanding students and encour-

aging any excellent pre-college program-

mers that you know to check out the

USA Computing Olympiad at

http://www.usaco.org.

SAMPLE TRAINING CAMP CONTEST

PROBLEM: Sentence Finder (Parade

Magazine)

The cows read Parade Magazine in the

Sunday newspaper and really enjoy the

sentence-find puzzles. Here’s one:

C+E S-L M
R O T I A
A W H N F
S E A T A
B E S M R

The goal is to start at the C (to the left of

the plus) and end at the S (to the left of

the minus). Each move requires you to

move to an adjacent, not yet used, letter

by moving vertically, horizontally, or

diagonally. As you traverse the letters, fill

in this English-language sentence (more

clues are given here than you will nor-

mally get):

http://train.usaco.org
http://www.usaco.org


91August 2002 ;login: GOOD WORKS ●  

●
 
U

SE
N

IX
 N

EW
SAgain, thanks very much for your sup-

port.

Sincerely yours,

/s/ Elizabeth Samuels

To Ellie Young:

As parents of a three-time USA Com-

puting Olympiad finalist we would like

to thank USENIX for its support. The

USACO competition has enabled our

son, Adam, to orient his interest in math

and computer science. His focus on the

contests became the most important

part of his co-curricular high school

experience. The friends and relation-

ships he has established through

USACO are wonderful. The advice and

guidance from the USACO coaches,

especially Rob Kolstad, is invaluable.

Beyond programming information, he

has helped Adam in his college search

providing information about computer

science departments across the country.

To illustrate how much the USACO

competition means to Adam consider

that the training camp this year in Wis-

consin conflicts with his high school

graduation. Without hesitation he chose

the Olympiad week over the graduation

ceremony. We are happy that he has the

opportunity to compete for the interna-

tional team.

The support your company provides for

young computer programmers goes a

long way in setting standards of interest

and excellence. You should be com-

mended for the support. As parents we

feel both proud and fortunate to be a

small part of this experience.

/s/ Susan and Raymond D'Angelo

Good Works
Mobility Support in a 
Publish/Subscribe 
Middleware 
An abstract of work done with the Support
of USENIX and Nlnet under the ReX
exchange program. See http://www.

usenix.org/XS/rex/ for information and
full reports on this program.

This work focuses on the integration of

a publish/subscribe middleware service

with mobile components and applica-

tions. Publish/subscribe middleware is

considered a good platform for the inte-

gration of loosely-coupled components

on a large-scale. However, none of the

implementations of publish/subscribe

middleware available today is specifically

designed to support mobile applications.

Such applications are gaining popularity

with the introduction of wireless data

communication and portable comput-

ing devices such as PDAs or 3G cellular

phones. Our idea is therefore to study

how to design a publish/subscribe mid-

dleware capable of serving mobile, wire-

less applications. This effort consists of

two parts: First, we studied the perform-

ance of an implementation of a pub-

lish/subscribe middleware built on top

of a wireless network. Second, we stud-

ied the additional service-level require-

ments posed by mobile, wireless

applications over the publish/subscribe

middleware. In this paper, we present

the results of our performance study,

and the design and implementation of

an auxiliary service-level support for

mobile applications.

Thanks to USENIX

My primary focus over the last year has

been different two different research

topics in the area of operating systems.

The first project is called self-securing

storage, and my focus has been on creat-

ing a space efficient versioning file sys-

tem. The second project is online

reconfiguration within an operating sys-

tem. I have submitted papers on both of

these projects to USENIX’s OSDI 2002.

My work in self-securing storage has

been on designing and implementing a

comprehensive versioning system. This

system uses a combination of file system

techniques in novel ways to provide sig-

nificant benefits in space utilization for

versioned metadata while minimizing

performance overhead. By combining a

log-structured layout, multiversion b-

trees, and a technique we call journal-

based metadata, we were able to provide

an increase in metadata space efficiency

of over 80\%, reducing the overall space

needed for versioning by nearly 40\%.

This was work done with the help of my

advisor and two other students, John

Strunk, and Garth Goodson.

My work in online reconfiguration

describes the benefits of having a single

mechanism for reconfiguration within

the operating system and describes our

implementation of such a mechanism

with IBM’s K42 operating system. Once

such a mechanism is in place, the system

can easily support a number of well-

known advances, such as application

extensions, adaptive algorithms, and

dynamic monitoring. We provide object

hot-swapping and interposition within

K42, and use it to implement a number

of these benefits, concretely outlining

the advantages and overheads of our

approach.

I’d like to thank USENIX for the finan-

cial assistance I have received and I hope

to have more interactions with the

USENIX community as I continue with

my degree.

by Mauro Caporuscio

mauro_caporuscio@katamail.com

by Craig Soules 

soules@ece.cmu.edu

http://www


92 Vol. 27, No. 4 ;login:

conference reports
Color is used to distinguish different

network providers, network addresses,

or administrative domains (e.g., coun-

tries). Interestingly, directly representing

the network IP address using a (red,

green, blue) triple results in a map draw-

ing where a mouse can directly deter-

mine the address of a given network by

hovering over a particular color.

The applications of this research are

numerous. Bill described how, after the

events of 9/11, he ever more frequently

finds himself at meetings in Virginia or

Baltimore with individuals who refuse to

identify themselves or the government

branch they are working for! An ani-

mated map of Yugoslavia network con-

nectivity during NATO’s bombardments

was especially interesting. We could see

network links appearing and disappear-

ing and total connectivity dropping as

NATO started targeting Yugoslavia’s

infrastructure. “Son, you are making

remote damage assessment from your

basement,” remarked one general about

Bill’s work.

Of course, viewing only Internet

addresses and domain names has its lim-

its. The excitement of a discovery of a

group of Yugoslavian hosts (.yu) that

proved to be extremely well connected,

and resided somewhere in Virginia, was

slightly tempered when he found out

that he had only discovered the Yugosla-

vian embassy in the US.

Christine Hogan, co-author (with Tom

Limoncelli) of the book The Practice of
System and Network Administration,
gave a talk on “Scheduled Maintenance

Windows.” This concept allows you to

proactively plan your system mainte-

nance (and thereby manage your users’

expectations). The system administra-

tor’s role in such an exercise is similar to

that of a flight director, the person you

see in historical space-flight films man-

aging the entire operation in the flight

control center. The flight director knows

This issue’s reports focus on the Third

International System Administration

and Networking Connference 

(SANE 2002), 

OUR THANKS TO THE SUMMARIZER:

Diomedis Spinellis

Third International System
Administration and Network-
ing Conference (SANE 2002)

MAASTRICHT, 
THE NETHERLANDS

MAY 27–31, 2002 
Summarized by Diomidis Spinellis

dds@aueb.gr

SANE, co-sponsored by USENIX and

the NLnet Foundation, has evolved to be

the European equivalent of the US-

based system administration conference

(LISA).

A lively and colorful crowd of systems-

related attendees (including the obliga-

tory UNIX elders), copious amounts of

food, wireless Internet connectivity,

interesting poster presentations, and a

technical exhibition made the confer-

ence a fun place to be. Two parallel

tracks of very interesting papers made

the selection of presentations a real chal-

lenge. The following summaries are

therefore only a subset of the confer-

ence’s presentations. See the conference’s

Web page at http://www.nluug.nl/
events/sane2002/.

The conference’s keynote address was

made by Bill Cheswick who described

his Internet mapping work at Bell Labs

that resulted in founding the Lumeta

startup company. Mapping the Internet

is becoming more and more difficult.

Drawing routes from one point to

another on a geographical map does not

reveal any useful information in densely

wired areas like North America and

Europe: all that appears is a solid blob.

More interesting are diagrams that

depict the routes between different net-

works, arranged in a spring-like fashion,

with well-connected networks appearing

in the diagram’s center and leaves at its

periphery.

http://www.nluug.nl/


the mission details but does not partici-

pate in the actual operations, thus dis-

tancing herself from the task and

keeping the clear head needed during

the maintenance window’s stressful

hours. She is the one who will notice

that the maintenance operations are

running behind schedule and will com-

mand that the system should revert to its

previous state (you did keep a backup,

didn’t you?), thus averting service dis-

ruption.

Mark Burgess, from Oslo University

College, gave a thought-provoking talk

titled “System Administration as Com-

munication over a Noisy Channel.”

Mark believes that Shannon’s communi-

cation theory can be used as the under-

lying foundation for explaining and

predicting a number of phenomena

related to system administration. And

this is what science is all about. Specifi-

cally, Mark considers that a system’s pol-

icy is communicated over a noisy

channel, in which the users of the system

represent noise. A significant result of

this view is that error correction tech-

niques are needed to create stable system

administration tools.

Computer forensics, the study of the

legal aspects of digital evidence, are

increasingly important to system admin-

istrators who will be called to testify as

experts in a court of law. Vlasti Broucek,

an experienced system administrator

who is currently researching this issue at

the University of Tasmania, outlined in

“Bridging the Divide: Rising Awareness

of Forensic Issues amongst Systems

Administrators” (co-authored with Paul

Turner) the main challenges and tech-

niques for preserving and effectively

presenting forensic evidence.

Computer forensics differs from IT

security in that it is typically conducted

after an attack and its results will be pre-

sented to a non-IT-literate audience.

Important aspects of digital evidence

93August 2002 ;login:

●
  

 
C

O
N

FE
R

EN
C

E
R

EP
O

RT
Sinclude its legal admissibility, its validity,

and the conduct of the forensic analysis.

System administrators faced with the

task of collecting evidence should there-

fore minimize the handling of the origi-

nal data, account for any changes,

comply with the rules of evidence, and

avoid embarrassment by not exceeding

their knowledge and skills.

A paper co-authored by Giorgos

Gousios of the University of the Aegean

and your correspondent, “A Comparison

of Portable Dynamic Web Content Tech-

nologies for the Apache Web Server,”

presented the main technologies for pro-

viding dynamic content on the Web

(CGI scripts, PHP, mod_perl,

mod_python and Java Servlets) and out-

lined the results of a series of bench-

marks that measured their performance.

FastCGI followed by mod_perl appeared

to score best in moving data out of the

server, but Java servlets proved to be the

most resilient. The paper received the

conference’s best refereed paper award.

Diane Lark from Hewlett Packard pre-

sented work on a similar problem in a

talk titled “Simulating Web Workloads.”

The major insight behind her and her

colleagues’ work was the similarity

behind many Internet traffic patterns.

They therefore used the SURGE network

traffic generator to overcome the defi-

ciencies of SPECWeb96 and Webstone.

Through those tests they observed that

Web serving is a memory-intensive

operation that puts relatively less stress

on the processor. They found out that a

1GHz server processor can serve the

equivalent of 3000 users.

Your correspondent presented his work

relating to the integration of home

appliances, in a paper titled “The Infor-

mation Furnace: User-Friendly Home

Control.” The Information Furnace is a

basement-installed PC-type device that

integrates existing consumer home-con-

trol, infotainment, security, and com-

munication technologies to provide

transparent user-friendly access and

value-added services.

A modern home contains a large num-

ber of sophisticated devices and tech-

nologies. Access to these devices is

currently provided through a wide vari-

ety of disparate interfaces. As a result,

end-users face a bewildering array of

confusing user-interfaces, access modes,

and affordances. In addition, as most

devices function in isolation, important

opportunities to exploit synergies

between their functionalities are lost.

The Information Furnace distributes

data, provides services, and controls an

apartment’s digital devices. Emphasis is

placed on user-friendliness and on

exploiting the synergies that inevitably

come up when these technologies and

services are housed under a single roof.

The prototype implementation outlined

integrates on a FreeBSD server the dis-

tribution of MP3-encoded music to

DNARD/NetBSD thin clients, an

answering machine, a burglar alarm, an

Internet router, a fax server, a backup

server, and intelligent control of a PBX.

A highlight of the conference, as indi-

cated by the number of attendees, was

the talk of Kirk McKusick (chief archi-

tect of the Berkeley UNIX and co-author

of The Design and Implementation of the
4.[3/4] BSD UNIX Operating System
books) titled “Running fsck in the Back-

ground.” Kirk has a talent for simplify-

ing the presentation of highly technical

information. The fsck program verifies

and fixes the integrity of UNIX file sys-

tems. Running such a program on a

large disk (e.g., 100GB) can take hours,

an unacceptable proposition for produc-

tion servers. The problem was solved by

taking a virtual snapshot of a disk (by

temporarily suspending running system

calls), maintaining the snapshot current

by monitoring disk updates, and run-

ning fsck on that frozen snapshot. Snap-

shots could also be useful for

SANE 2002 ●



backing-up system state, and running a

dump (backup) operation on a live sys-

tem. Memorable quote: “I could write a

special version of fsck, but I’ve already

written fsck once, and I don’t want to do

that again.”

Cor Bosman from XS4ALL gave a talk

on installing and maintaining clusters of

servers using PXE and Rsync. Installing

software on a large number of servers

can be a tricky proposition. Cor

explained how he used the PXE remote

booting standard supported by most

modern Ethernet cards to transparently

load and install FreeBSD on server clus-

ters. The procedure is so smooth that

having PXE booting enabled on the

BIOS of a Windows machine will make

it install FreeBSD on the fly — “a soft-

ware upgrade,” as Cor described it.

Mark Overmeer gave a talk on email

processing with Perl. It turns out that

many of the Perl modules that deal with

mail are unsupported, buggy, and lack

important functionality. In addition,

correctly processing mail elements is a

lot more difficult that what it appears to

be. MIME encapsulation, multi-part

messages, different presentation mecha-

nisms, varying mail user agents, latitude

in the mail header specification, and

nonconforming implementations con-

spire to make the implementation of

robust mail processing software a Her-

culean task. Mark worked on overcom-

ing this situation by implementing a

complete, robust, and reusable mail pro-

cessing module (available on

http://www.cpan.org) that other develop-

ers can import when building mail-han-

dling applications. Thanks Mark!

The conference ended with an entertain-

ing talk by Jos Visser titled “Welcome to

the Tribe: Socio- and Anthropological

Phenomena at UNIX Hacker Confer-

ences,” discussing the audience, confer-

ence, elders, mythology, economics,

ethics, values, moral code, humor and

94 Vol. 27, No. 4 ;login:

entertainment, enemies, nutcases and

outcasts, gadgets, women (section inten-

tionally left blank), and status aspects of

hacker culture. At the same time, Peter

Salus, on a more somber note, gave a

talk on “The Types of Internet Trauma:

1994–2002,” where he showed how the

Northridge earthquake, hurricane Floyd,

fiber cuts, denial of service attacks, and

the 9/11 WTC incident affected the

Internet’s connectivity. Overall the net-

work fared well re-routing packets and

compensating in real time.

http://www.cpan.org





	motd
	apropos
	hobbit
	kenneally
	mccluskey
	turoff
	flynt
	cohen
	farrow
	foust
	wool
	haskins
	owen
	patterson
	ashizawa
	sellens
	tylock
	tylock2
	books
	sagenews
	usenixnews
	SANEconf



