
t h e a d v a n c e d c o m p u t i n g
s y s t e m s a s s o c i a t i o n

a u g u s t 2 0 1 1 v o l . 3 6 , n o . 4

Interview with Stefan Savage:
On the Spam Payment Trail
R i k F a R R o w

LISA ’11: Theme—“DevOps: New Challenges, Proven
Values”
t h o m a s a . l i m o n c e l l i a n d d o u g h u g h e s

Do Users Verify SSH Keys?
p e t e R g u t m a n n

Conference Reports from HotOS XIII

t h e a d v a n c e d c o m p u t i n g
s y s t e m s a s s o c i a t i o n

usenix_login_aug11_covers.indd 1 7.6.11 2:27 PM

U P C O M I N G E V E N T S

23rd ACM Symposium on Operating Systems
Principles (SOSP 2011)
S P O N S O R E D B Y A C M S I G O P S I N C O O P E R AT I O N W I T H U S E N I X

October 23–26, 2011, Cascais, Portugal
http://sosp2011.gsd.inesc-id.pt

ACM Symposium on Computer Human
Interaction for Management of Information
Technology (CHIMIT 2011)
S P O N S O R E D B Y A C M I N A S S O C I AT I O N W I T H U S E N I X

December 4–5, 2011, Boston, MA
http://chimit.acm.org/

25th Large Installation System Administration
Conference (LISA ’11)
S P O N S O R E D B Y U S E N I X I N C O O P E R AT I O N W I T H L O P S A A N D S N I A

December 4–9, 2011, Boston, MA, USA
http://www.usenix.org/lisa11

ACM/IFIP/USENIX 12th International
Middleware Conference (Middleware 2011)
S P O N S O R E D B Y A C M A N D I F I P I N A S S O C I AT I O N W I T H U S E N I X

December 12–16, 2011, Lisbon, Portugal
http://2011.middleware-conference.org/

10th USENIX Conference on File and Storage
Technologies (FAST ’12)
S P O N S O R E D B Y U S E N I X I N C O O P E R AT I O N W I T H A C M S I G O P S

February 14–17, 2012, San Jose, CA
http://www.usenix.org/fast12
Paper titles and abstracts due: September 20, 2011

9th USENIX Symposium on Networked Systems
Design and Implementation (NSDI ’12)
S P O N S O R E D B Y U S E N I X I N C O O P E R AT I O N W I T H A C M S I G C O M M A N D
A C M S I G O P S

April 25–27, 2012, San Jose, CA
http://www.usenix.org/nsdi12
Paper titles and abstracts due: September 27, 2011

20th USENIX Security Symposium
(USENIX Security ’11)
August 8–12, 2011, San Francisco, CA, USA
http://www.usenix.org/sec11

Workshops co-located with
USENIX Security ’11 include:

2011 Electronic Voting Technology Workshop/
Workshop on Trustworthy Elections
(EVT/WOTE ’11)
S P O N S O R E D B Y U S E N I X , A C C U R AT E , A N D I AV O S S

August 8–9, 2011
http://www.usenix.org/evtwote11

4th Workshop on Cyber Security
Experimentation and Test (CSET ’11)
August 8, 2011
http://www.usenix.org/cset11

USENIX Workshop on Free and Open
Communications on the Internet (FOCI ’11)
August 8, 2011
http://www.usenix.org/foci11

5th USENIX Workshop on Offensive
Technologies (WOOT ’11)
August 8, 2011
http://www.usenix.org/woot11

2nd USENIX Workshop on Health Security and
Privacy (HealthSec ’11)
August 9, 2011
http://www.usenix.org/healthsec11

6th USENIX Workshop on Hot Topics in Security
(HotSec ’11)
August 9, 2011
http://www.usenix.org/hotsec11

Sixth Workshop on Security Metrics
(MetriCon 6.0)
August 9, 2011
http://www.securitymetrics.org/content/Wiki.
jsp?page=Metricon6.0 F o R a c o m p l e t e l i s t o F a l l u s e n i X

a n d u s e n i X c o - s p o n s o R e d e v e n t s ,
s e e h t t p : // w w w . u s e n i X . o R g / e v e n t s

usenix_login_aug11_covers.indd 2 7.6.11 2:27 PM

E d i t o r

Rik Farrow
rik@usenix.org

M a n a g i n g E d i t o r

Jane-Ellen Long
jel@usenix.org

C o p y E d i t o r

Steve Gilmartin
proofshop@usenix.org

p r o d u C t i o n

Casey Henderson
Jane-Ellen Long
Jennifer Peterson

t y p E s E t t E r

Star Type
startype@comcast.net

u s E n i X a s s o C i at i o n

2560 Ninth Street, Suite 215,
Berkeley, California 94710
Phone: (510) 528-8649
FAX: (510) 548-5738

http://www.usenix.org
http://www.sage.org

;login: is the official magazine of the USENIX
Association. ;login: (ISSN 1044-6397)
is published bi-monthly by the USENIX
Association, 2560 Ninth Street, Suite 215,
 Berkeley, CA 94710.

$90 of each member’s annual dues is for
a subscription to ;login:. Subscriptions for
nonmembers are $125 per year.
Periodicals postage paid at Berkeley, CA,
and additional offices.

POSTMASTER: Send address changes to
;login:, USENIX Association, 2560 Ninth
Street, Suite 215, Berkeley, CA 94710.

©2011 USENIX Association
USENIX is a registered trademark of the
USENIX Association. Many of the designa-
tions used by manufacturers and sellers
to distinguish their products are claimed
as trademarks. USENIX acknowledges all
trademarks herein. Where those designa-
tions appear in this publication and USENIX
is aware of a trademark claim, the designa-
tions have been printed in caps or initial
caps.

a u g u s t 2 0 1 1 , v o l . 3 6 , n o . 4

o p i n i o n

Musings R I k F A R R O W .2

s E C u r i t y

Interview with Stefan Savage: On the Spam Payment Trail R I k F A R R O W 7

Understanding Advanced Persistent Threats: A Case Study N E d M O R A N 21

Network Attack Collaboration: Sharing the Shell R A P H A E L M U d G E . 27

Do Users Verify SSH Keys? P E T E R G U T M A N N . 35

p r o g r a M M i n g

Mesos: Flexible Resource Sharing for the Cloud B E N J A M I N H I N d M A N , A N d y

k O N W I N S k I , M AT E I Z A H A R I A , A L I G H O d S I , A N T H O N y d . J O S E P H , R A N d y H . k AT Z ,

S C O T T S H E N k E R , A N d I O N S T O I C A . 37

s y s a d M i n

LISA ’11: Theme—“DevOps: New Challenges, Proven Values” T H O M A S A . L I M O N C E L L I

A N d d O U G H U G H E S . 46

C o l u M n s

Practical Perl Tools: Got My Mojolicious Working d Av I d N . B L A N k - E d E L M A N 49

Galvin’s All Things Enterprise: The State of the Cloud P E T E R B A E R G A Lv I N 56

iVoyeur: Crom d Av E J O S E P H S E N . 59

/dev/random R O B E R T G . F E R R E L L . 64

b o o k s

Book Reviews E L I Z A B E T H Z W I C k y, W I T H R I k F A R R O W . 66

C o n f E r E n C E s

13th Workshop on Hot Topics in Operating Systems (HotOS XIII) 69

AUGUST_11_articles_updtdfile.indd 1 7.6.11 2:47 PM

 2 ;login: vOL. 36, NO. 4

OpiniOnMusings
r i k f a r r o w

Rik is the Editor of ;login:.

rik@usenix.org

It feels like the ’90s all over again . No, I don’t mean the IPO of LinkedIn for a ridic-
ulous figure (16 times earnings) . Rather, it’s the rash of highly publicized security
incidents, with Sony being the most recent—and the most frequent . LulzSec has
bragged online that their “hack” was embarrassingly easy: a simple SQL injection
[1] . The attacks on Sony’s networks worldwide have led to a flood of released data,
including info on registered users and source code .

The Sony attacks, and those on HBGary Federal and PBS .org, seem to have been
done for political reasons . After a decade where computer attacks have been pri-
marily focused on financial gain, this marks a rare turn toward vigilantism .

What these attacks also reveal is the very porousness of network security . When
the only way we would learn of attacks was after the California law on disclosure
of personally identifying information forced an announcement, it wasn’t obvious
just how often organizations were being broken into . Now it seems as if we are back
in the era of unpatched Linux systems being taken over by automated attacks .

But this time around, things are different .

The Difference

Much has changed between 1999 and 2011 . The publication of exploits has largely
gone underground, as exploits are now sold on the black market both to govern-
ments and to criminals . Attackers are no longer motivated by becoming famous
(or infamous), with the recent exceptions of Anonymous and LulzSec . Instead,
criminal organizations use exploits to take over Windows PCs for use in botnets, or
steal databases loaded with credit card information . The monetization of exploits
has long been under way .

But some things have not changed at all .In 1999, only a fool would claim that their
Internet-connected system was totally secure, and proof against all attacks . And
that is just as true today . Only we behave as if it isn’t so .

And instead of attacking Internet-facing *nix servers, today’s attackers can rely
on a different technique, one that totally trashes any concept of having a “network
perimeter .” They can gain a foothold inside any network through the use of email
and Windows PCs . The Google attack, announced over a year ago (January 2010
[2]), has just been repeated . I believe that similar attacks are behind the exploita-
tions of RockYou (32 million passwords stolen), Gawker (300,000), and certainly of
HBGary Federal .

AUGUST_11_articles_updtdfile.indd 2 7.6.11 2:47 PM

 ;login: AUGUST 2011 Musings 3

This type of targeted attack requires some research on the attacker’s part, to deter-
mine the subject line and content for an email message likely to make it pass spam
filters and be opened by the intended victim . You can read more about an example
of this particular attack in Ned Moran’s article in this issue about the Advanced
Persistent Threat . But it is not just APT that can take advantage of “spear phish-
ing,” sending email containing exploits to targeted individuals . Anyone willing
to spend enough time to understand the targeted organization, perhaps by using
LinkedIn to uncover links between individuals that could be used to fashion an
effective email message, could successfully breach a network today .

The only effective defense against such attacks is either using the mail command-
line program on a *nix system without X Window to read email or keeping all criti-
cal assets on networks segregated from networks with GUI users . I don’t believe for
one minute that people are going to go command-line anytime soon, so it looks like
we need to consider the alternative approach .

Assume the Worst

Dominique Brezinski explained, in a private email, that he has had a lot of success
with the following alternative approach (quoted with permission):

It is my opinion that in any computing environment with a non-trivial
population you must assume some client devices and some user
accounts are compromised . There are a couple advantages to making
this assumption:

Your defensive strategy no longer makes a delineation between exter-
nal and internal adversaries . It is only a single, easy hop from outside
in . Just assume it happens . Tailor your defensive strategy around the
insider problem .

Whether you own the client device or not makes little difference .

Dom’s first point echoes what I have already written: assume the worst—your net-
work has already been compromised . Even if it hasn’t been (as unlikely as that is),
assume it has . Then behave accordingly .

Much has been written about the insider threat (see, e .g ., [3]), but Dom is thinking
more tactically . Assume your attacker is an insider . How do you go about protecting
your critical assets? Isolating them, using firewalls that separate out servers with
critical information, is a good start . This is nothing new, as it was considered best
practice in the ’90s—even as it was usually ignored .

Just isolating servers with critical data is not enough . People still need access to
those servers, as do applications . So you must limit that access carefully, both for
applications and for users . Dom suggested that users who must have access use
“authenticators that are unique per session” and so cannot be stolen or reused . And
that users’ access does not imply unlimited authorization: in other words, put a
system in place that restricts access and logs all activities . It would have been nice
if Sony had noticed that someone was downloading megabytes of source code . It
would have been better if this had not even been possible . But at the very least, hav-
ing a system in place that notices unusual activity and notifies someone is not just
reasonable, it is a requirement for securing critical data .

Instead of just beating up on Sony, let’s look at another example: WikiLeaks and the
251,287 diplomatic cables [4] . When I first learned of this immense treasure trove

OpiniOn

AUGUST_11_articles_updtdfile.indd 3 7.6.11 2:47 PM

 4 ;login: vOL. 36, NO. 4

of secret or sensitive information, allegedly leaked by a young soldier, I couldn’t
believe it . Why on earth would an intelligence officer stationed in Iraq have access
to diplomatic cables? This sharing of data that doesn’t seem as if it belongs on a
soldier’s laptop came about as a reaction to the lack of sharing of intelligence that
may have contributed to the success of the attacks of 9/11 . But suppose that a sys-
tem was in place that detected the collection of this vast amount of data, including
cables going back more than 45 years? If even a reasonable amount of monitoring
of access was being performed, would this soldier have been able to collect so much
information without being detected? Keep in mind that Bradley Manning is now
in prison not because of a system that managed and logged access, but because he
chatted online with Adrian Lamo .

To ground these ideas, let’s imagine you have a database that serves information to
customers using a Web front-end . And to make things interesting, let’s also imag-
ine that this database contains a customer’s name, address, and credit card infor-
mation . You want your customers to have a pleasant experience while using your
system . You don’t want them to be able to download the entire database of sensitive
information, just their own information . This is what is meant by limiting autho-
rization: the customer has access to her own information only . Additional controls
would include isolating the database on its own network, and using firewalls to
limit access to that database to only the Web server’s application and to the people
who must manage the database . You must also include controls that prevent the
dbadmins (or an attacker who has taken over their desktops) from abusing their
privileges . And that is the really difficult part .

When you consider that the database of information used to restore the crypto-
graphic info for lost SecureID tokens was stolen from RSA, a security company,
you can see that the concept of isolating critical assets, even when their compro-
mise will lead to terrible results [5], is often ignored .

On the other hand, I hope it is useful to view your network of email and Web con-
nected desktops as already compromised . If it isn’t already, it soon will be . Keep
your valuables someplace else . Please .

Spam Kings

I don’t spend all of my time lamenting the lack of real security or attending cool
workshops like HotOS (see the reports in this issue) . I sometimes get to read really
interesting stories from researchers who have been doing tremendous work .

I interviewed Stefan Savage (UCSD) for this issue, and I can’t say that it was hard
work . Stefan is a great storyteller, and his story is a compelling one . Starting in
2006, Stefan, along with several other professors at UCSD, UCB, and ISI, began
investigating spam . They started by looking at how spam is delivered, moved on
to the botnets that deliver most spam, and, finally, studied the fulfillment side
of spam . As we all know, if no one clicked on the links in spam and then actually
bought something, spam would have vanished years ago . But spam is still a suc-
cessful marketing tool .

Stefan tells us about how they got to the point where they were actually buying
pharmaceuticals, fake Rolexes, and software by following spam links . This was
the latest step in a long process, and the results were published in a paper [6] at
the IEEE Symposium on Security and Privacy (Oakland) this summer . I enjoyed
listening to Kirill Levchenko, in the crowded ballroom at the Claremont Resort,

AUGUST_11_articles_updtdfile.indd 4 7.6.11 2:47 PM

 ;login: AUGUST 2011 Musings 5

explain how hard it was to get permission to actually buy spam-advertised goods,
as this involved both using research funds (you want to do WHAT!?!) and tricky
negotiations that made it possible to track the transactions via credit card compa-
nies . And this is just one of the stories Stefan has to tell . I also liked the one about
how the FBI was about to arrest them at a USENIX workshop, but you should read
this for yourself .

Stefan’s interview also provides a clear window into successful research . Stefan
and his associates followed paths that were not always successful . Sometimes he
worried that his students (and other advisors’ students) were wasting their time,
only to be surprised by the results . And the results so far have been over 14 papers
published, including three at USENIX Security ’11 and one at CSET ’11 .

Ned Moran has written about APT, using a recent example of a spear phishing
attack against US government employees . APT differs from attacks by Anonymous
in that it requires teams of people ready to react to a successful penetration . The
actual technology does not appear that exciting, although I believe the details of
the remote access tool that Ned dissects will prove interesting to ;login: readers .

Raphael Mudge has been working with the Metasploit penetration testing soft-
ware to create his own front-end, Armitage, that makes it easier for a team to work
together . Raphael’s tool is designed for helping red teams practice attacks, and if
you are interested in the attacker’s perspective, I suggest you read his article .

Peter Gutmann has provided us with a short article about the problem with SSH
key fingerprints . It is not that the fingerprints are useless, it is that they are both
not used properly and too easily abused .

Ben Hindman and a long list of co-authors explain Mesos, a system that works
with Hadoop and other frameworks, such as MPI, used for performing work in par-
allel on many systems . Mesos is itself a framework that improves the performance
of parallel tasks by using dynamic partitioning of systems, instead of the static
partitioning supported by Hadoop and MPI .

Tom Limoncelli and Doug Hughes, co-chairs of LISA ’11, explain why they believe
that DevOps, the chosen theme for LISA, is important . DevOps implies close col-
laboration between sysadmins and developers, which is how systems are being
developed today .

David Blank-Edelman continues on the theme of Web frameworks with Mojoli-
cious . Mojolicious is similar to Dancer, but only when you first encounter it . Mojoli-
cious provides a stand-alone (no other modules required) and complete Perl-based
Web framework, designed to make difficult things, such as managing sessions,
simple .

Peter Galvin has renamed his column “Galvin’s All Things Enterprise .” Peter’s
first installment covers that buzziest of buzzwords, the cloud, but without get-
ting lost in the clouds . Peter defines cloud computing from an IT perspective and
explains why it is important .

Dave Josephsen strays away from monitoring to tell us about a project he has been
working on for months . Dave shares with us descriptions of the shell-based batch
processing system that replaced the hundreds of scripts he inherited when he
started working as a sysadmin .

AUGUST_11_articles_updtdfile.indd 5 7.6.11 2:47 PM

 6 ;login: vOL. 36, NO. 4

Robert Ferrell takes us on a “circuitous ramble” through the different types of job
interviews, before sliding into talking about entitlement and security . His own
recent encounter with a surreal interview provides fodder for his column .

Elizabeth Zwicky reviews four books, including a couple she really likes, and one
on interviewing for security positions . She did not communicate with Robert Fer-
rell, so this is a serendipitous occurrence . I contributed two book reviews myself
this issue, including one on a novel written by a Google employee about the poten-
tial for abuse of data collected about users of a company that sounds vaguely like
Google—not quite Google, as this fictional company has access to lots more data
than Google does .

Finally, we have the HotOS summaries . HotOS is one of my favorite workshops,
even if it only happens once every two years . This is the place for OS researchers to
expose their sometimes very far-reaching ideas in front of an audience of critical
thinkers .

Before leaving you, dear reader, I want to remind you that your network has been
compromised . How do I know? I don’t have to know, I can guess . Unless you are
running a single stripped-down *BSD system on a firewalled network with no GUI,
the odds that your network has working bots on it, along with remote access tools,
is high . Even if your network hasn’t been compromised, how would you know?

I like to put a sniffer outside my network and analyze the traffic I find there . This
is possible for my network because there are only two users and a couple of lightly
used Web servers . If you reconfigure your networks so that your critical assets live
behind severely restricted firewalls, you could do this as well for the traffic going
between the protected network and the rest of your networks . But in the “let’s keep
things as wide open as possible so we can make more money, uh, get work done”
mode, real security is just not possible .

References

[1] “Hackers Claim to Have Hit Sony Again”: http://www .reuters .com/article
/2011/06/06/us-toni-cybersecurity-sony-idUSTRE75563L20110606 .

[2] Rik Farrow, “Google Attacked via Email”: http://blogs .usenix .org/2010/01/14/
google-attacked-via-email/ .

[3] Dawn Cappelli, Andrew Moore, and Timothy Shimeall, “Protecting against
Insider Threat”: http://www .sei .cmu .edu/library/abstracts/news-at-sei/security-
matters
200702 .cfm .

[4] United States diplomatic cables leak: https://secure .wikimedia .org/wikipedia
/en/wiki/United_States_diplomatic_cables_leak .

[5] Dan Goodin, “Stolen RSA Data Used to Hack Defense Contractor”: http://
www .theregister .co .uk/2011/06/06/lockheed_martin_securid_hack/ .

[6] Kirill Levchenko, Andreas Pitsillidis, Neha Chachra, Brandon Enright, Mark
Felegyhazi, Chris Grier, Tristan Halvorson, Chris Kanich, Christian Kreibich,
He Liu, Damon McCoy, Nicholas Weaver, Vern Paxson, Geoffrey M . Voelker, and
Stefan Savage, “Click Trajectories: End-to-End Analysis of the Spam Value Chain,”
Proceedings of the IEEE Symposium on Security and Privacy, May 2011: http://
www .imchris .org/research/levchenko_sp11 .pdf .

AUGUST_11_articles_updtdfile.indd 6 7.6.11 2:47 PM

 ;login: August 2011 7

security
I have been following, with great interest, the work of many researchers in fol-
lowing the spam trail. Over time, I noticed that a number of researchers were
obviously working together a lot, combining their efforts into what appeared an
immense task: understanding of an entire underground economy.

I was fortunate enough to find Stefan Savage, one of the primary investigators in
this work, in a storytelling mood. What follows is his detailed account of successes
and failures, approaches that appeared to be dead ends where students prevailed,
and how we now have a large body of solid research in an area that has confounded
many attempts to come to grips with its many interlocking pieces.

Stefan invited Vern Paxson and Geoff Voelker to participate in the email interview
process. Both made suggestions and provided corrections to Stefan’s tale, and were
content not to have their contributions made explicit in this process.

If you are attending USENIX Security this year, you will find three papers related
to this story, and one at CSET. And there are more than a dozen other papers that
have come from this collaboration.

The Interview

[RIK] How did you get interested in assigning value to malware and spam?

[STEFAN] The truth is that Vern Paxson (UC Berkeley), Geoff Voelker (UC San
Diego), and I started down this path back in 2006. We’d been working together
for quite a few years on large-scale attacks (e.g., worms, viruses, DDoS, etc.), and
while we’d had lots of technical successes looking at those problems head on, it
was pretty clear that the world wasn’t getting any more secure. Around that time
we became exposed to the breadth of activity involved in underground trading of
compromised accounts, credit cards, spam mailers, email lists, etc.—anything you
could think of. This was really our inspiration, because we came to recognize the
role that the profit motive was playing in all this (although spam was key to this
evolution, we wouldn’t make the link until later).

I think it helped that at the time I was reading a book on the history of the drug war
and the failings of supply reduction as a strategy due to the poor understanding of
drug distribution economics. We came to see that our community had a similarly
poor understanding of the value chain for economically motivated attackers and
thus didn’t understand that our various technical interventions actually played
minor roles, at best, in mitigating their actions.

Interview with Stefan Savage
On the Spam Payment Trail

R i k F a R R o w

stefan savage is a professor

of computer science and

engineering at the university

of California, san Diego. He

is also director of the Center for Network

systems (CNs) and co-directs the Cooperative

Center for Internet Epidemiology and Defenses

(CCIED), a joint effort between uCsD and the

International Computer science Institute.

savage@cs.ucsd.edu

Rik is the Editor of ;login:.

rik@usenix.org

AUGUST_11_articles_updtdfile.indd 7 7.8.11 11:23 AM

 8 ;login: vOL. 36, NO. 4

During the summer of 2006, Vern had an intern up at ICSI, Jason Franklin from
CMU, and we got him to focus on a big trace of underground IRC data we had got-
ten our hands on . The analysis was ultimately published in CCS [Computer and
Communications Security conference, 2007], with Jason’s advisor Adrian Perrig
as a co-author [1], and while it was shallow and there was quite a bit we got wrong,
I think it marked the turning point for us . From then on we started thinking much
more holistically about our security work, trying in particular to understand what
the underlying economic models were and how we might access those through
measurement .

Around the same time (maybe just a bit earlier) we got into spam, due to a proj-
ect that Geoff Voelker had started using a large spam sink . This was an old .com
domain with no real users for which all the received mail was expected to be spam .
David Anderson and Chris Fleizach (two master’s students at UCSD) took this data
and started crawling all the URLs embedded in the spam emails . They would then
render any of the Web pages they found and cluster them together based on image
similarity, using a technique called image shingling . The goal of that study [2] was
to look at the servers being used to host the sites advertised in spam and look at the
dynamics of their lifetime . Again, we didn’t fully understand the subject matter,
but we’d clearly found another piece of the puzzle—that one might want to consider
the sites being advertised independently from the advertisements (i .e ., the spam) .
It also helped us to build up some of the infrastructure experience that we’d need in
the years to come . Finally, this infrastructure inadvertently got us into looking at
Storm .

By the way, I should be up front that two people who definitely influenced our
thinking early on were David Aucsmith (Microsoft) and Rob Thomas (Team
Cymru) . Dave I met through an NRC study I was on; he was the first person I’d run
into who was talking about the price of sending spam and mounting DDoS attacks
(as opposed to some technical quality like packets per second or spams per day) .
Rob was in this space very early, and I think several of us knew of him through
different channels (via CAIDA, NANOG, etc .) . We were heavily influenced by his
world view, part of which got documented by ;login: in his article [3], as well as his
terminology (miscreants, underground economy, etc .) .

[RIK] That article about the underground economy is still very popular today, judg-
ing by the number of downloads from the USENIX Web server . And the terminol-
ogy presented was not just that invented by Rob Thomas . I had to ask him and the
other authors to define many other terms, taken from the underground sites they
had gained access to, like “bins,” “rippers,” “cashiers,” and “wells,” none of which
matches its dictionary meaning .

Team Cymru did a lot of work by monitoring IRC and other servers . You mentioned
collecting spam, and two papers where you analyzed links and Web pages that
came from the collected spam . Did you do more work with your spam sources?

[STEFAN] We asked Chris Kanich, who was then a fairly new UCSD PhD student,
to take over the spam feed, and we had some kind of idea about maybe trying to
look at click-through rates by looking at spam-advertised URLs and then seeing
if campus would let us monitor how many outbound visits went to those same
domains, or something similar . In a bit of serendipity, our machine was suddenly
hit by a large (at the time) DDoS attack, greater than 1 Gbps, which got campus
network managers to notice . We weren’t the only ones experiencing this, however .

AUGUST_11_articles_updtdfile.indd 8 7.6.11 2:47 PM

 ;login: AUGUST 2011 Interview with Stefan Savage 9

What had happened is that the folks running the Storm botnet added a bit of logic
that would profile visitors, and if a single visitor accessed too many of their sites
within a particular time period they assumed that it was a security researcher and
started DDoSing them—behavior activated by our spam crawler [4] .

This attack caught our attention, as it did much of the research community . Indeed,
I think it was this particular behavior of Storm that caused it to garner so much
attention in the beginning . For a while we pursued a tangent, trying to use this
behavior to measure a DDoS attack from the victim’s vantage point . Consequently,
with the permission of campus, we then restarted our crawler over a weekend and
set up multiple packet monitors to get a full trace .

This project led to nothing, but had the serendipitous side effect of introducing us
to Brandon Enright, then an undergrad working for the campus security group at
UCSD . Brandon had become independently interested in Storm and had written
code to crawl the Overnet Distributed Hash Table (DHT) that Storm used for coor-
dinating its various bots . His goal was to enumerate all the IP addresses partici-
pating in the botnet at any particular time . A description of a later version of this
work, and the challenges of such enumeration, later appeared in LEET [5] . Brandon
was doing this to clean up Storm-infected bots at UCSD and sharing the data with
others to do their own remediation, but he got our students interested in the details
of how the botnet worked . Quickly a small group formed, with Brandon having
the most hands-on malware experience, while Chris Kanich, Kirill Levchenko (a
UCSD PhD student at the time), and Christian Kreibich (a researcher at ICSI) just
started running instances of the Storm binary in a controlled environment and
poking at it .

[RIK] I really liked that LEET paper . I asked Brandon and several other authors to
write an article based on it for ;login: [6] .

[STEFAN] Let me give a tiny bit of background here to explain how this came to
be . First, we’d had a close working relationship with Christian since 2006 when he
collaborated with Kirill and Justin Ma (now a postdoc at Berkeley) on a system to
automatically cluster packet traces by protocol (without a priori protocol knowl-
edge) . Christian was Vern’s postdoc then, but Vern was completely open to him
coming down for a couple of weeks to get this project done, and that pretty much
set the stage for a silo-free group culture in which our various students and staff all
feel free to work together (and tend to do so) . Second, both the UCSD and the Berke-
ley groups had spent a bunch of time building malware containment systems—us
with Potemkin [7], which was largely a research vehicle, while Weidong Cui (now
at Microsoft Research) and Nicholas Weaver had built GQ [8] . Christian had then
rewritten it, and that is what the group uses today . Moreover, GQ in turn benefited
tremendously from Vern’s investment in building Bro and related network analysis
tools, so it was reasonable to automate the manipulation of network trace data (e .g .,
binpac [9], RolePlayer [10], etc .), which became important in the next year .

[RIK] I’ve often seen the names of a group of advisors and students from UCSD,
UCB, University of Washington, and ICSI on related papers . I’m beginning to
understand how this came about . It helps to see the bigger picture behind the
names seen in papers, and how different researchers combine their strengths
toward a common goal .

[STEFAN] Returning to the story, this little team got excited about understanding
how Storm worked, but—aside from Brandon—they had basically zero skill doing

AUGUST_11_articles_updtdfile.indd 9 7.6.11 2:47 PM

 10 ;login: vOL. 36, NO. 4

reverse engineering . So not knowing that this was a crazy approach to pursue, they
tried reverse engineering the command and control (C&C) protocol in a blackbox
fashion—sending data at a captive bot, writing down what it did, theorizing about
why it did those things, or letting it talk to its normal C&C and seeing what it tried
to do in response to various commands it received . Brandon was busy, but provided
key insights when they hit roadblocks (e .g ., message encryption), but the rest was
just raw guesswork over a period of several months . Vern and I had our doubts
whether this was a good way for everyone to spend their time, since we weren’t
confident they could do it, or even what the research question would be if they suc-
ceeded . Geoff Voelker was on sabbatical in India for this period, so he was bliss-
fully unaware of how much time was being wasted on this . However, we gave the
students a long leash and somehow they pulled it off, documenting most of the C&C
protocol and then building a set of parsers that could interpret it .

Once we realized how much information was contained—for example, how the
spam messages were encoded within polymorphic templates, who the spam was
being sent to, the delivery success rate, etc .—we realized we had a unique opportu-
nity to look at how spam distribution worked from the standpoint of a botnet opera-
tor . We did a quick passive characterization of this data, which became the “On the
Spam Campaign Trail” paper from LEET ’08 [11] . As soon as we started writing
it, however, Kirill pointed out that knowing how to parse Storm’s C&C was also
equivalent to being able to inject or change C&C commands . This would lead to our
first real economics study . To give a bit more context, one needs to understand a bit
about how Storm was structured circa late 2007–early 2008 .

The basic Storm infrastructure was divided into three tiers: “worker bots,” which
were responsible for sending spam email or mounting DDoS attacks; “proxy bots,”
which provided public points of connection for worker bots; and master servers
who provided commands to (and received feedback from) workers via the proxy
tier . Workers and proxies were built out of compromised hosts and automatically
differentiated based on whether they had external IP connectivity, allowing them
to act as proxies versus workers . The master servers were dedicated machines
in datacenters, such as Intercage, a California-based Web site hosting provider .
Workers would select a quasi-random proxy using the Overnet DHT protocol
and would then send, effectively, requests for work, which the proxy would then
forward on to the master servers and similarly forward the responses of the master
servers back to the workers . Proxies had some master server locations hardcoded
and could received signed updates indicating the location of other such servers .

[RIK] I learned much of this by reading the LEET paper [5] and Brandon’s ;login:
article [6] .

[STEFAN] So, using a sample of the Storm malware, it was relatively easy to infect
a machine and have it “become” a proxy and communicate with workers and mas-
ter servers—just as a real infected host would (using our previous honeypot experi-
ence to carefully wall it off from accidentally sending email or DDoS attacks) .
Moreover, by building code to parse the messages as they went by, it was possible to
actually change the responses being provided by the master servers in real time . . .
in effect leaving the underlying process in place but manipulating one compo-
nent . In particular, we could modify the URLs that the master servers provided to
worker bots to be included in their outbound spam messages and have these point
to sites under our control .

[RIK] I guess that this is the point where you needed to talk to lawyers?

AUGUST_11_articles_updtdfile.indd 10 7.6.11 2:47 PM

 ;login: AUGUST 2011 Interview with Stefan Savage 11

[STEFAN] Yes, this is where we first started talking to our lawyer friends in depth .
While the students were off making the capability a reality, we engaged with the
people we knew who were best versed in Internet legal issues (e .g ., the Computer
Fraud and Abuse Act, the Electronic Communications Privacy Act, and the CAN-
SPAM legislation) to help us figure out if we could actually do this . The first thing
you find out when you start asking legal questions in this space is that no one can
tell you “X is legal,” nor is there any government agency who is authorized to certify
such an effort . Even something as simple as sending ping packets to random hosts
does not have “cut and dried” legality . Lawyers and legal scholars can frequently
tell you whether something is clearly illegal, but if not, it’s all about understanding
the risk profile and working up the legal theory under which one operates . This
took us quite a bit of time and we pursued multiple opinions to make sure there was
agreement . In the end, while this area is rife with risk, the very specific circum-
stances around how Storm operated (e .g ., being pull vs . push, using an existing
DHT network, the kinds of information being sent, etc .) created a stage on which
our advisors felt it was safe to proceed . Moreover, we developed a basic set of ethi-
cal principles to determine what could and couldn’t be done in the study (based on
consequentialism, the idea was that our intervention should defensibly cause no
additional harm when compared to an alternate universe in which we had done
nothing) . This did indeed keep us from doing things that we had considered . For
example, we had broken the private key for Storm’s master server advertisements
and we had the capability, in principle, to take over the entirety of the botnet .

Having addressed these issues, we dove into creating our experiment . We came to
recognize that the most interesting questions revolved around the underlying eco-
nomic model for spam: how many messages must a spammer send to get a sale; i .e .,
how often do people actually purchase? This determines the profitability of each
spam message and implicitly drives the amount of spam being sent . Conversely,
it also sets a lower bound that spam filters must reduce in order to make spam
unprofitable .

It was Kirill Levchenko who first devised the pipeline metaphor that we would use
in the paper [12], in which large numbers of messages are sent and then discarded
at multiple filter tiers (e .g ., rejected by mail servers, by spam filters, by mail read-
ers, by site visitors who decide not to buy, etc .) until the final true purchases that
monetize the entire activity get through . The basic experiment was simple: we’d
change the URLs on the spam email templates that traversed our proxies and have
them specify Web sites we controlled . We could then compare the number of spam
messages each worker attempted to send with the number of visitors we received
at the site . Further, if we duplicated the sites being advertised, we could further
capture how often users tried to put particular items in their shopping carts and
checked out . Since Storm was sending pharmaceutical spam (advertising for affili-
ates of the Glavmed “Canadian Pharmacy” program) we replicated their site in
great detail . Then we started .

This is where we first started to get into trouble . First, we needed to acquire
domain names to be used in this study . We simply bought a bunch from GoDaddy
and started using them . This resulted in large numbers of complaints being
directed to GoDaddy (since some subset of people receiving spam are techni-
cally sophisticated enough to identify the registrar of the site being advertised
and motivated enough to send in their complaints), who in turn started suspend-
ing our domains and sending us various challenges/threats . We regrouped and
found a different registrar whom we knew personally (really a reseller of Tucows),

AUGUST_11_articles_updtdfile.indd 11 7.6.11 2:47 PM

 12 ;login: vOL. 36, NO. 4

but this just added an additional layer in the chain of complainants . We briefly
considered buying domains from ESTDomains (who at the time was a well known
registrar used by criminal actors and who appeared to exert little oversight), but
we decided this was a bridge too far for us . Instead, I had a surreal phone call with
the fraud abuse group at Tucows to try to get their support . In trying to explain
that domains we had registered were to appear in spam, but we were not sending
the spam and that this was part of a research study, the first comment I received
was, “You’ve got to be kidding me . This is the best story you could come up with?”
However, after almost two hours of explanation, pointing them to past papers and
mutual acquaintances to establish bona fides, the group over there realized that we
weren’t making it up . In the end, they thought it was pretty cool and agreed to allow
us to proceed .

Our next problem was even more inadvertent . Storm also tried to infect hosts via
social engineering (“Your friend sent you a card, click here to get it,” sending you
to a supposed eCard Web site that would provide an EXE containing the Storm
binary) . We also decided to replicate this using another replica site, but the binary
we offered effectively did nothing (it simply reported that it had run, and even this
behavior was automatically disabled if the date was later than our study period) .
Interestingly, AV signatures for our EXE soon appeared from most vendors (a clear
indicator that the malware load had increased to a point that it was not possible to
do any meaningful analysis on sample binaries) . This was expected and, indeed,
was ideal for our study since we wanted to—as much as possible—simulate the
experience of Storm’s operators (i .e ., if our binary ran, it was in spite of AV and
OS warnings not to do so, or indicated that users had no such security resources) .
However, this was the first time we had done something like this and we had not
fully internalized that, in performing this infiltration, we were ourselves being
monitored by others . And this is where things started to get squirrelly .

We had previously had contact with the FBI special agents in charge of investi-
gating Storm and we had given them what insights we had . However, we had not
thought to tell them that we were advancing our experiment to the next stage (i .e .,
changing links and setting up our replica sites) . The consequence of this is that
other investigators found our binary (originating out of UCSD) and concluded that
we were potentially involved in working with the Storm operators . This in turn
embarrassed our contact who had vouched for us, and now we looked like double
agents . In the end, it was all resolved (indeed, at a meeting at the first LEET), and
we learned an important lesson about communication, but we were told that, in
the meantime, legal documents had been drawn up in anticipation of raiding the
department’s machine room and seizing our cluster .

There were other hiccups here and there, but by and large, the paper was a dream
to write . In spite of its tremendous complexity, we made very few mistakes in the
methodology . The only clear remaining issue was that we did not appreciate how
quickly real spammers throw away spam-advertised domains (that then redirect
to other sites) to mitigate the impact of blacklists . While we indeed used multiple
different domains over time, ours were much longer lived, and thus blacklisting
undoubtedly caused us to underestimate the response and conversion rate that the
real spammers probably experienced . However, the broad results were quite clear:
75% of bot-originated spam was being immediately dropped on the floor, most of
the remainder was filtered by spam filters, and only a very small fraction of users
actually clicked on the links contained in such messages and an even smaller
fraction ever decided to place an order . Yet in spite of this it was clear that the raw

AUGUST_11_articles_updtdfile.indd 12 7.6.11 2:47 PM

 ;login: AUGUST 2011 Interview with Stefan Savage 13

volume of this activity could produce significant revenue . This, in turn, would lead
us to wonder about the composition of the spam value chain, who made the profit,
which parts were weak, etc ., but this was still some time away .

The next immediate concern was one of perception . Even though our paper was in
submission (to CCS) and not public, many people seemed to have copies of it (peo-
ple not on the PC) and more people still seemed to “know all about it .” Indeed, one
close colleague called me up from a conference and said, “I wanted to let you know
that everyone is talking about your paper and a bunch of it isn’t positive . Someone
was talking to a group here and he says you guys are going to get the whole commu-
nity in trouble .”

Now, normally this isn’t something we care much about . However, it was exacer-
bated by a contemporaneous factor . During this same period there was a big public
to-do caused by Chris Soghoian’s CNET blog entry [13] opining that the Colorado/
Washington Tor exit node study in PETS constituted a breach of civil and criminal
law and moreover represented a fundamental ethical violation because there had
been no human subjects review . Now, while the Tor study issue was completely
overblown (it was quickly resolved and no one was sued, arrested, or even cen-
sured), the underlying concern about oversight was real; it was clearly a wake up
call to the security community about the human subjects issue . Indeed, little of
the networking, systems, or security communities knew much about IRBs or even
thought in those terms at the time . We were no exception . So Vern and I spent a
bunch of time reading up, getting advice, and then writing a post-hoc human sub-
jects proposal for our study with an explicit mea culpa to the IRB that we’d already
done most of it and could we keep doing this study and keep the data . This took a
very long time to get through the process (one of the challenges of a multi-univer-
sity study), but ultimately all of our work and use of the data was approved without
additional conditions . We also made a point to include an explicit section in our
published paper on the underlying ethical issues and our justification for them—a
practice that we continue to this day when the issues are non-obvious .

[RIK] Hmmm, this explains a lot about why I often hear you ask other researchers
whether they bothered to get IRB approval . So what happened next?

[STEFAN] Ironically, in spite of our trepidation, we received little pushback from
the community when the paper was published, and the work appears to have been
widely appreciated . Indeed, part of what happened is that circumstances driven
by other researchers eclipsed us, and while our work had once been “on the edge,”
it was now being highlighted by Marc Dacier in his CACM foreword for its “great
care addressing the legal and ethical issues linked to the measurement .”

For us, the immediate impact of the spamalytics study [12] is that it became much
easier to get data from partners . In some sense, it was the reputation this work
built with industry that planted the seeds that would support the next two years of
activity .

[RIK] It seems like your Click Trajectories paper [14] at Security and Privacy in
Oakland (2011) represents another chapter in this story .

[STEFAN] The “click trajectory” effort started a bit over two years ago (although
the project name came much later) . At that time we were starting to get quite a bit
more spam data (10 distinct feeds at the peak from various anti-spam companies
and honeypots), and Kirill Levchenko was tempted by the siren song of large-scale
data mining . His view was that we should be able to cross-correlate all the data and

AUGUST_11_articles_updtdfile.indd 13 7.6.11 2:47 PM

 14 ;login: vOL. 36, NO. 4

create one of those TV movie FBI pictures with all the various participants linked
by dependency arrows (in our case, botnets, spammers, fast flux clouds, registrars,
affiliate programs, etc .)—the total picture of the spam ecosystem; who is respon-
sible and where the weak points are in the business model . I think we were flush
from the success on the spamalytics effort and really had no idea how much we
were about to bite off .

The first big issue was how to collect additional data from our various spam feeds
(sometimes millions of messages per day), including all the DNS data, registrar
data, hosting data, Web page contents . Trying to bring back the old spamscatter
infrastructure was a bust . It simply couldn’t handle the load that we wanted to
put on it and it was never designed for production use (nor did it record lots of the
things we cared about) . We also needed a place to put all these data that we could
then make sense of . We decided to do everything from scratch .

At the core was the database . Kirill in particular had convinced us all that data-
bases were good (all of the spamalytics work had been done using a database)
which had a number of very cool side effects . First, it made certain questions very
quick to answer (e .g ., how many messages were sent to addresses of a particular
form) and, as important, it made analyses easily repeatable . It has now become
common for us to check in SQL query statements in our papers (as comments)
along with the results . That way if we want to change something, we know exactly
what the original query was and we can modify it without worrying if we’re follow-
ing the same methodology .

However, the data in spamalytics was modest by comparison . Moreover, for the
click trajectory effort everything went through the database, because it was not
only the store for final results, but also it was the trigger for additional measure-
ments . We’d post-process raw spam emails and insert the links into “feed tables”
which would be processed and then used to drive the various crawlers that would,
in turn, put their results back into the database . We went through many versions
of the database, killing mySQL and quickly going to Postgres, buying increasingly
beefy hardware (the current core trajectory DB runs on 12 cores with 96 GB of
memory, has multiple replicas, and manages a range of BLOBs in other servers,
together comprising almost 100 TB of raw storage in total), and redesigning the
database schema many times . Poor Kirill was constantly promising us that “things
will be better in the next version of the schema .” In the end, we needed to become
very good at DB administration and optimization . UCSD PhD student Andreas
Pitsillidis became that expert, through blood and sweat . In fact, about nine months
ago, everyone else gave up trying to understand the full complexity of the DB
system: only Andreas really gets it . While everyone did their part on this project
(we had 15 authors on the final paper, all of whom made significant contributions),
it was Andreas who ultimately made this all come together—I can’t overstate the
extent to which we could not have done this without him . Moreover, without the
database (or equivalent technology) it would have been impossible to manage and
process all the data we were collecting .

While the database was at the core, there were many moving pieces that fed it .
First, the raw data feeds needed to be managed and normalized (and each of our
data providers had their own favorite way of providing the data) . Chris Kanich at
UCSD became “feedmaster” (in addition to his other critical tasks) and dealt with
the partners, created visualizations of the various feeds, and managed the ongoing
relationships with feed providers .

AUGUST_11_articles_updtdfile.indd 14 7.6.11 2:47 PM

 ;login: AUGUST 2011 Interview with Stefan Savage 15

The other source of feeds was from the GQ honeyfarm mentioned earlier . The
honeyfarm ran network-neutered instances of major spam bots so that we could
observe what spam they were being commanded to send . Keeping these bots going
(and the honeyfarm itself) was a major endeavor . Christian Kreibich, with help
from Chris Kanich, did most of this in the beginning, but eventually Chris Grier
(then a new postdoc at Berkeley) took over the operational component (to every-
one’s relief), since it was also core to the next big project, his investigation of the
pay-per-install market .

The other challenge here was to get the latest samples of new spam bots . Here we
got help from lots of people, but in the end the go-to person was Brandon Enright (a
long-time collaborator working for the campus networking and security organi-
zation at UCSD) who marshaled both his own private honeypot infrastructure
and his considerable connections in the community to get whatever samples we
needed . This gave us some “ground truth” about which botnets were advertising
which URLs (allowing us to account for issues such as the Rustock botnet’s spam-
ming of random .com URLs to poison or overload blacklists) .

After the raw feeds we had the crawlers . We had several implementations of a DNS
crawler that would investigate each domain name we received and find its NS and
A records . Over time, we learned that we needed to explore this space more com-
pletely to extract all the alternate answers being given due to fast-flux and CDNs
(creating a name hosting “cloud” for each domain) . Moreover, the load became large
over time, and ultimately the crawler was rewritten from scratch by He “Lonnie”
Liu (a first-year PhD student) to keep up . This particular artifact was remarkable
because it is the only piece of infrastructure that we’ve built that “just worked .”
It never crashed, it never gave garbage data, it seemed to scale forever, and it was
never the source of complaints from other members who depended on it . Lonnie
never needed to say much at our weekly status meetings .

The Web crawler was a different story . I remember Geoff Voelker and I figured,
“Hey, it’s just crawling . How hard can it be?” We completely misunderstood the
technical challenges in scaling up to large numbers of browsers and simulat-
ing associated humans . The poor recipient of our imperfect wisdom was Neha
Chachra, also a first-year PhD student, who got handed the task of making a
scalable Web crawler . She started by using an open source project called Sele-
nium (designed to automate multiple Firefox instances) for the first version of the
crawler, but we had no end of problems trying to get the features we wanted to work
(grabbing raw page DOMs, screenshotting, inserting clicks, etc .) while synchroniz-
ing across large number of instances .

Ultimately, Neha wrote her own controller (with energetic help from Chris Grier
for low-level Firefox-fu) that spawned and synchronized thousands of Firefox
instances across a cluster of machines . Over time there were many changes to the
crawler to handle various kinds of automated redirects, crash recovery, simulated
user clicks, and so on (usually to deal with some crazy challenge that spammers
had introduced) . Even more significant, we discovered that many of the large host-
ing platforms used by spammers would blacklist our IP addresses if we visited too
many times (ultimately blacklisting an entire /24) . We acquired a broad range of
diverse address space (Chris Grier put this together), and the Web crawler would
schedule requests through proxies to these different blocks so we could see what
a normal user would see . Neha went from implementing what we thought was a
minor component of the system to becoming a central point of dependency for

AUGUST_11_articles_updtdfile.indd 15 7.6.11 2:47 PM

 16 ;login: vOL. 36, NO. 4

virtually everything (I’m sure she forgives us by now) . Having so many parts, the
crawler was constantly in revision; it was only recently that it became truly stable .

So, what to do with all these Web pages? Well, cluster them of course . The idea is to
cluster all the URLs that lead to Web pages that are basically the same . However,
the difference between “basically the same” and “exactly the same” hides quite a
small nightmare . We tried quite a few different techniques . Early versions used
a technique based on HTML structural features that Justin Ma came up with,
and we experimented with SIFT and GIST-based visual features, but in the end
we used a simple q-gram metric (how many sequences of length q are identical
over some window) that worked incredibly well except for pages that were entirely
based on images .

Clusters were useful for visualizing the data, and Andreas Pitsillidis created a
great reporting interface that let us look at the relationship between particular
groups of similar Web pages, their name server hosting, Web server hosting, the
feeds we received them from, and so on . However, the real reason for clustering is
that we operated under the assumption that if two pages look the same then they
are probably part of the same “affiliate program,” and this was key to our subse-
quent analysis .

Here it’s worth taking a small digression to explain that modern spam is basi-
cally outsourced advertising . The spammers do not themselves sell any products
but work on a commission basis for an affiliate program that handles payment
processing, fulfillment, and customer service . Hosting of content and name
services can be handled by the spammer or by the affiliate program, depending on
circumstances (e .g ., advertising based on search engine optimization, or SEO, is
typically hosted by the program) . Moreover, the actual spam delivery may itself be
subcontracted from the spammer to a botnet operator, depending on the situa-
tion . However, these facts were not just assumptions . We spent quite a bit of time
trolling around on underground forums trying to understand what we were dealing
with . I did much of this work in the wee hours of the morning (as the group will
attest from my random 2 a .m . ramblings about each new “discovery”), and Kirill
would help when Google Translate barfed too badly on the Russian translation
(many of the big programs are run by Russian speakers) . Along the way we man-
aged to acquire the “source code” for the e-shops from two of the largest pharma
programs, Glavmed and RX-Promotion, which gave us ground truth about how dif-
ferent “storefronts” might all map to the same affiliate program . Moreover, via the
broad underground marketplace, we were able to identify most of the other major
programs . When we ran into a wall, Damon McCoy, a CIFellow postdoc, was the
go-to person to hunt down a program .

This led to the development of another major element of the project: the tagger . The
tagger is basically an oracle that looks at the HTML for a Web page and determines
(1) what it is selling and (2) for which affiliate program . The first problem is easy,
particularly because we don’t care about false positives . We had decided to focus
on pharma/herbal, luxury replicas (e .g ., Rolex) and software—as these were the
most spammed product categories (actually gambling and porn probably beat out
software, but we had decided not to do either of those for institutional reasons),
and we just checked to see if the Web page included any associated brand names
(e .g ., Viagra and Cialis for pharma, Rolex and Movado for replicas, and so on) . This
worked quite well; for example, the number of pharmacy pages we didn’t classify as
being in the pharma class was vanishingly small (typically these would be “image-

AUGUST_11_articles_updtdfile.indd 16 7.6.11 2:47 PM

 ;login: AUGUST 2011 Interview with Stefan Savage 17

only” redirect pages) . However, classifying which program was advertising the
page was quite a bit harder .

Tristan Halvorson, yet another first-year PhD student, got pressed into service
generating regular expressions based on example pages I would find for each
program . I’d gotten to the point where I could recognize most programs on sight,
but Tristan had to somehow render this into code . So he’d try to capture what I was
recognizing, then tag the whole corpus with affiliate names . I’d go look through it
and find errors, and then we’d repeat . It’s really hard to describe how much work
this was . I looked at easily several tens of thousands of pages over the course of the
project . I still remember Vern asking me late one night, “So how did we validate
the tagger?” to which I replied, “Manually .” He said, “Yeah, but really, that wouldn’t
scale .” He was right in principle, but in practice Tristan and I (with Geoff lending a
hand) just spent days at it—scaling be damned . This is not an approach we’ll repeat
again, however . We’ve had another student build a supervised machine learning
tool to do this that seems to do almost as well with much less effort, so hopefully
that’s the future .

The last big component was purchasing . We really wanted to do the end-to-end
analysis—where the spam came from to where it was fully monetized, and this
meant purchasing goods and receiving them . This created a whole host of prob-
lems . First, we needed the university to permit it . You can imagine the conversa-
tions: “We need to make credit card purchases from criminals for goods that we
may not get . Oh, and it’s entirely possible that there will be fraud directed against
these cards .” I still remember questions like, “Why can’t you just use a purchase
order?” This took at least a year of education, negotiation, explanation, documen-
tation, pleading, and much passing of the buck before we worked it all out . The
purchase phase involved huge amounts of oversight, including by our own lawyers,
university general counsel, and the systemwide office for research compliance .
Finally, however, a few key people at UCSD (and, perhaps more importantly, at
the UC Office of the President) came through for us and gave us the approval we
needed .

The next problem was where to get these credit cards . Prepaid gift cards seemed
like the ideal instrument . They get processed exactly like Visa and Master Card,
and you can purchase them on demand, in bulk . Plus, you can set the name and
home address as you like . It was too good to be true, unfortunately . First, most of
these cards had no way to get a statement: Was a charge placed on the card, for how
much, and who did they claim to be? Instead, they had phone support, where you
could call in to get information . We did find a small number of such cards that had
an online Web statement interface and so we placed an order for a few thousand
dollars’ worth of these . However, we discovered that the statement didn’t include
the Acquirers Reference Number (this is the 23-digit number you may find on your
personal credit card statement) which identifies the Bank Identification Number
(BIN) for the bank acting on behalf of the merchant in the credit card transaction .
Without this we wouldn’t know what bank was being used and we’d need to trust
the information in the merchant identification string (which is routinely false, in
our experience) . We tried calling in to get this information, but it was very slow
going, in part because the call center was staffed by only a few people and they
grew suspicious at the large numbers of calls they kept getting from us .

Using our personal networks in the security community, we did manage to find
investigators we knew who had done some similar work, and they identified for

AUGUST_11_articles_updtdfile.indd 17 7.6.11 2:47 PM

 18 ;login: vOL. 36, NO. 4

us the one card that had all the properties we desired: a Web interface and online
access to the ARN number for each transaction . Ironically, it was the store brand
at the Ralph’s supermarket near us . It was perfect .

Then the Credit Card Reform Act passed . As part of this, the Department of the
Treasury instituted a rule requiring suspicious transaction reporting on foreign
transactions for prepaid cards (precisely because such cards are perfect for money
laundering) . The added reporting overhead made most providers just stop offering
international transactions (go read the fine print on the pre-paid gift cards at your
local supermarket), which included the bank sponsoring Ralph’s cards . Sigh . At
this point I gave up and decided we’d simply have to do without .

Thankfully, Chris Kanich hadn’t given up hope . On his own initiative, he started
cold-calling credit card issuers explaining the service we needed . Amazingly, he
found a company who was game to help us and then negotiated a contract . One
day Chris came in and said, “I think I got the credit cards .” It turned out to be a
spectacular resource: for a modest fee, new credit cards were created on demand
including detailed information (the BIN, the card acceptor ID, the country code,
and so on, far more than we ever hoped to get) on each authorization or settlement
transaction of interest . Over the course of our studies, Chris and Damon ran our
purchasing operation, using hundreds of different cards, email accounts, and a
bevy of Google voice phone numbers that redirected to a few “burner” phones they
each carried .

Surprisingly, getting these orders to properly clear was non-trivial and we had to
reverse engineer components of their fraud detection system (e .g ., using co-located
IP addresses to source purchases, non-free emails, etc .), plus Chris and Damon
needed to handle a constant stream of follow-up confirmation calls from the affili-
ate program’s customer service arms . On top of that, managing all the raw credit
card transaction data and keeping it in sync with the associated Web site data was
a major time sink . Here we made the mistake of trying to make due with a large
Google Docs spreadsheet, a decision we’re still paying for .

These were the major pieces, but there were countless details I skipped in this
description: for example, Mark Felegyhazi’s whois crawler and the cross-DNS
matching work that Nick Weaver did in the 11th hour .

I also skipped an adequate description of all of our failures . First, we failed repeat-
edly to wrap our minds around this paper . We had at least two aborted attempts to
submit a paper only to discover that we still didn’t really understand what we were
doing . I know that Vern, Geoff, and I all had doubts if this thing would ever come
together (18 months of work without anything to show can shake even the most
confident person) . We tried, but ended up failing, to incorporate a strong analy-
sis of the spam delivery component (which programs were advertised by which
botnets, which used Webmail, etc .), and we spent months building complex models
for inferring the different individual affiliates of different program,s ultimately
to discard them for the final paper . There is at least another paper’s worth of work
in all the stuff that we left on the “cutting room floor,” but we chose to focus on the
parts we were the most confident about .

For the paper submission there were a few major turning points . One was a meet-
ing where we came up with the conceptual model of the spam value chain as
comprising advertising (spam delivery), click support (translating a recipient’s
click into a Web site), and realization (payment processing and fulfillment) . This

AUGUST_11_articles_updtdfile.indd 18 7.6.11 2:47 PM

 ;login: AUGUST 2011 Interview with Stefan Savage 19

model, beautifully illustrated by Christian in the paper [14], gave us a way to focus
on the problem . It also led to us choosing to focus our analysis on the challenges of
intervening at any given place in the value chain (this had always been a goal, but
originally just one among many) . The other major event is when the credit card
data first started coming in and we realized that there were really only a handful of
banks involved in processing money for spam-advertised programs . We’d hypoth-
esized that this might be true, but with the data in hand we knew we had a great
story . Finally, in the week before submitting the paper, most of the ICSI folks came
down to UCSD and everyone pushed hard to get everything done . That was an
amazing time and huge amounts of work got done with everyone pitching in . This
is also one of those papers where the final paper actually differs in non-trivial ways
from the submission . We used the time we had to really tie up loose ends and pol-
ish the analysis . I think we all knew that this was going to be one of our important
papers and everyone put in the time to make it crisp .

It also kicked up a half-dozen other projects that we’re working on as we speak,
including several papers to appear at CSET ’11 [15] and USENIX Security ’11 [16] .

The one 10,000-foot thing that I really hope comes out is that our core approach
is to try to understand these issues from the standpoint of the attacker rather
than simply from the standpoint of the victim . I think we frequently hamstring
ourselves in the security community with the notion that the adversary is some
abstract and arbitrary entity, whereas frequently the adversary is concrete and
has very specific goals . Understanding these goals (particularly those focused on
profit-making) then lets us consider defense as a form of offense: What security
investments can I make that will maximally undermine the adversary’s goals?
Absent this kind of analysis we end up just blindly treating random symptoms of
the problem, rather than focusing on the core drivers .

References

[1] Jason Franklin, Adrian Perrig, Vern Paxson, and Stefan Savage, “An Inquiry
into the Nature and Causes of the Wealth of Internet Miscreants,” Proceedings of
the ACM Conference on Computer and Communications Security, Alexandria, VA,
October 2007: http://www .icsi .berkeley .edu/pubs/networking/miscreant-wealth .
ccs07 .pdf .

[2] David S . Anderson, Chris Fleizach, Stefan Savage, and Geoffrey M . Voelker,
“Spamscatter: Characterizing Internet Scam Hosting Infrastructure,” Proceedings
of the 16th USENIX Security Symposium, August 2007: http://www .usenix
 .org/events/sec07/tech/full_papers/anderson/anderson .pdf .

[3] Rob Thomas and Jerry Martin, “The Underground Economy: Priceless,” ;login:,
vol . 31, no . 6, December 2006: http://www .usenix .org/publications/login/2006-12/
openpdfs/cymru .pdf .

[4] Don Jackson, “Analysis of Storm Worm DDoS Traffic,” Sept . 11, 2007: http://
www .secureworks .com/research/blog/index .php/2007/09/12/analysis-of-storm
-worm-ddos-traffic/ .

[5] Chris Kanich, Kirill Levchenko, Brandon Enright, Geoffrey M . Voelker, and
Stefan Savage, “The Heisenbot Uncertainty Problem: Challenges in Separating
Bots from Chaff,” First USENIX Workshop on Large-Scale Exploits and Emer-
gent Threats (LEET ’08), April 2008: http://www .usenix .org/event/leet08/tech/
full_papers/kanich/kanich .pdf .

AUGUST_11_articles_updtdfile.indd 19 7.6.11 2:47 PM

 20 ;login: vOL. 36, NO. 4

[6] Brandon Enright, Geoff Voelker, Stefan Savage, Chris Kanich, and Kirill
Levchenko, “Storm: When Researchers Collide,” ;login:, vol . 33, no . 4, August 2008:
http://www .usenix .org/publications/login/2008-08/openpdfs/enright .pdf .

[7] Michael Vrable, Justin Ma, Jay Chen, David Moore, Erik Vandekieft, Alex
C . Snoeren, Geoffrey M . Voelker, and Stefan Savage, “Scalability, Fidelity, and
Containment in the Potemkin Virtual Honeyfarm,” Proceedings of the 20th ACM
Symposium on Operating System Principles (SOSP), Brighton, UK, October 2005:
http://cseweb .ucsd .edu/~savage/papers/Sosp05 .pdf .

[8] Weidong Cui, Vern Paxson, and Nicholas Weaver, “GQ: Realizing a System to
Catch Worms in a Quarter Million Places,” ICSI technical report TR-06-004, Sep-
tember 2006: http://www .icir .org/vern/papers/gq-techreport .pdf .

[9] R . Pang, V . Paxson, R . Somer, and L . Peterson, “binpac: A yacc for Writing Appli-
cation Protocol Parsers,” Proceedings of the 2006 Internet Measurement Confer-
ence, October 2006: http://conferences .sigcomm .org/imc/2006/papers/p29-pang .
pdf .

[10] W . Cui, V . Paxson, N .C . Weaver, and R .H . Katz, “Protocol-Independent Adap-
tive Replay of Application Dialog,” Proceedings of the 13th Symposium on Network
and Distributed System Security (NDSS 2006), February 2006: http://research .
microsoft .com/en-us/um/people/wdcui/papers/roleplayer-ndss06 .pdf .

[11] Christian Kreibich, Chris Kanich, Kirill Levchenko, Brandon Enright, Geof-
frey M . Voelker, Vern Paxson, and Stefan Savage, “On the Spam Campaign Trail,”
First USENIX Workshop on Large-Scale Exploits and Emergent Threats (LEET
’08): http://www .usenix .org/events/leet08/tech/full_papers/kreibich/kreibich_
html/ .

[12] Chris Kanich, Christian Kreibich, Kirill Levchenko, Brandon Enright, Vern
Paxson, Geoffrey M . Voelker, and Stefan Savage, “Spamalytics: An Empirical
Analysis of Spam Marketing Conversion,” Proceedings of the ACM Conference on
Computer and Communications Security, Alexandria, VA, October 2008: http://
www .cs .ucsd .edu/~savage/papers/CCS08Conversion .pdf .

[13] Chris Soghoian, CNET, “Researchers Could Face Legal Action for Network
Sniffing,” July 24, 2008: http://news .cnet .com/8301-13739_3-9997273-46 .html .

[14] Kirill Levchenko, Andreas Pitsillidis, Neha Chachra, Brandon Enright, Mark
Felegyhazi, Chris Grier, Tristan Halvorson, Chris Kanich, Christian Kreibich,
He Liu, Damon McCoy, Nicholas Weaver, Vern Paxson, Geoffrey M . Voelker, and
Stefan Savage, “Click Trajectories: End-to-End Analysis of the Spam Value Chain,”
Proceedings of the IEEE Symposium on Security and Privacy, May 2011: http://
cseweb .ucsd .edu/~savage/papers/Oakland11 .pdf .

[15] Chris Kanich, Neha Chachra, Damon McCoy, Chris Grier, David Wang, Marti
Motoyama, Kirill Levchenko, Stefan Savage, and Geoffrey M . Voelker, “No Plan
Survives Contact: Experience with Cybercrime Measurement,” Fourth Workshop
on Cyber Security Experimentation and Test (CSET ’11), USENIX, August 8, 2011 .

[16] Chris Kanich, Nicholas Weaver, Damon McCoy, Tristan Halvorson, Christian
Kreibich, Kirill Levchenko, Vern Paxson, Geoffrey M . Voelker, and Stefan Savage,
“Show Me the Money: Characterizing Spam-Advertised Revenue,” Proceedings of
the 20th USENIX Security Symposium, August 8–12, 2011: http://www .usenix .org/
events/sec11/tech/full_papers/security11_proceedings .pdf .

AUGUST_11_articles_updtdfile.indd 20 7.6.11 2:47 PM

 ;login: AUGUST 2011 21

APT, short for Advanced Persistent Threat, is a commonly used and controversial
term bandied about the IT security sector . Many feel that this term is abused and
simply used to describe attacks that network defenders failed to prevent—no mat-
ter the sophistication of the attack . This article seeks to establish a working defini-
tion for APT and to highlight that the sophisticated nature of these attacks lies not
within the technology used but, rather, the logistical organization of the adversary .
This article will offer an in-depth examination of an APT-style attack as a means
of highlighting the operational efficiency of the adversary .

What Is APT?

It is first necessary to establish an accepted definition of APT . Richard Bejtlich,
the Chief Security Officer at Mandiant and long-term observer of APT-style intru-
sions, defines APT as follows [1]:

Advanced means the adversary can operate in the full spectrum of
computer intrusion . They can use the most pedestrian publicly avail-
able exploit against a well-known vulnerability, or they can elevate
their game to research new vulnerabilities and develop custom exploits,
depending on the target’s posture .

Persistent means the adversary is formally tasked to accomplish a
mission . They are not opportunistic intruders . Like an intelligence unit,
they receive directives and work to satisfy their masters . Persistent does
not necessarily mean they need to constantly execute malicious code on
victim computers . Rather, they maintain the level of interaction needed
to execute their objectives .

Threat means the adversary is not a piece of mindless code . This point
is crucial . Some people throw around the term “threat” with reference
to malware . If malware had no human attached to it (someone to control
the victim, read the stolen data, etc .), then most malware would be of
little concern (as long as it didn’t degrade or deny data) . Rather, the
adversary here is a threat because it is organized and funded and moti-
vated . Some people speak of multiple “groups” consisting of dedicated
“crews” with various missions .

This definition of APT is extremely useful, because it does not focus on the techni-
cal sophistication of the adversary or the elegance of the attack code used . Rather,
it focuses on the organizational capabilities and intentions of the adversary .

Understanding Advanced
Persistent Threats
A Case Study

n E d M o r a n

Ned Moran has worked in

cyber threat intelligence

analysis for nearly a decade

and a half. He currently serves

as the director of Technical Research at a

cyber risk management company. He has also

served as an Adjunct Professor of Information

Privacy and Security at Georgetown University

since 2008. He has been an invited speaker

at NATO’s Cooperative Cyber defense Center

of Excellence’s Conference on Cyber Warfare

in Tallinn, Estonia, and at the RSA Conference

in San Francisco. He is frequently interviewed

by the media concerning the intersection of

terrorism and technology.

ned.moran@gmail.com

AUGUST_11_articles_updtdfile.indd 21 7.6.11 2:47 PM

 22 ;login: vOL. 36, NO. 4

Misunderstanding the A in APT

Thinking about an APT in light of the adversary organization’s capabilities and
intentions highlights that the “advanced” in APT is less about code and more
about techniques, tactics, and procedures . Just as the power of the US military lies
largely in its ability to organize and secure a logistics supply chain to its frontline
troops, APT actors are able to provide robust support to the frontline intrusion
operators—the guys at the keyboard .

This type of organizational structure and efficiency is what truly defines APT .
True APT actors are part of a robust organizational infrastructure driven by spe-
cific collection requirements that focus these actors onto a set of targets . Further,
the ongoing and strategic nature of these collection requirements forces APT
actors to develop tools and tradecraft that enable them to fully exploit new collec-
tion opportunities—e .g ., an infected drone in a targeted organization .

APT actors support their front-line intrusion operators with tools that notify the
operators of new infections as well as tools that enable the operators to quickly
leverage these initial footholds into a deeper and more resilient presence inside the
targeted organization .

What Motivates APT Actors?

APT actors are primarily interested in maintaining reliable access to their targets .
The desire for access to sensitive intellectual property drives this need for persis-
tent and reliable access . APT actors are not interested in quick smash and grab
attacks . Instead, they want to quietly get inside a target environment and set up
a number of redundant listening posts, so that if any one infection is detected the
other infections will still provide the adversary with the required access into the
targeted organization .

Persistence, the P in APT, also means that the adversary keeps coming back . They
will consistently attack the same target over and over again in an effort to main-
tain a secure foothold within a targeted organization . As infections are discovered
and remediated by the victim organization, the adversary will launch a new salvo
designed to regain a foothold . The purpose of this foothold is to enable the type
of ongoing monitoring required to deliver a complete picture of an organization’s
internal communications and access to intellectual property .

A Closer Look at an APT-Style Attack

On April 12, 2011, a spear phishing email sent to specific targets was observed in
the wild . This observed spear phishing attack provides a good example of an APT-
style attack . The targets of this spear phish were specifically chosen by the attack-
ers because the attackers perceived that these targets held information of value .

The spear phishing email contained a Microsoft Word document attachment . This
Word document was crafted to appear as a legitimate document and contain spe-
cific subject matter of interest to the targeted victim . This type of social engineer-
ing is a common tactic in an APT style attack . The adversary conducts detailed
pre-attack reconnaissance in an effort to better understand the victims . This
reconnaissance enables the adversary to design spear phishing lures that entice
the victim into opening the malicious attachment .

AUGUST_11_articles_updtdfile.indd 22 7.6.11 2:47 PM

 ;login: AUGUST 2011 Understanding Advanced Persistent Threats 23

Embedded within this document was a malicious Flash file designed to exploit the
recently announced Adobe zero-day CVE-2011-0611 .

The exploit first makes use of a heap spray to fill memory with 0x11111111 and then
loads a second SWF file . It is this secondary SWF that actually triggers the vulner-
ability . The SWF file makes use of several common obfuscation techniques . The
code attempts to confuse disassemblers by setting the size of a group of constants
to 0x15 when there really are 0x14 present, causing disassembly to be misaligned
with the actual code .

In addition, it does several things which are also fairly usual . For example, streams
of instructions which are effectively dead code, conditional branches which can
never be taken, jumping around unnecessarily, and blocks of instructions which
have no effect on the program itself . All of this isn’t really a factor in the exploit
itself but is simply obfuscation .

The shellcode executed by this exploit drops a malicious payload with the following
properties:

File: scvhost.exe

Size: 22016

MD5: 4EC6D3A6B5A5B67D4AB5F04C41BFB752

Scvhost .exe is installed and launched with the filename msdtc .exe .

The msdtc .exe payload initiated traffic over port 80 with a command and con-
trol server at msejake .7766 .org . 7766 .org is a dynamic DNS provider that allows
domain administrators to quickly and easily point their domain to any IP under
their control . During the observed attack the domain resolved to 125 .46 .42 .221 .
Infected victims were observed sending base64 encoded messages to the control
server at msejake .7766 .org . Observed traffic was as follows:

bG9nb258U1lTVEVNLTEyMzQ1Njc4OXxXaW5kb3dzIFhQfDEwMDcwN3

wzY2I4ZGM5MjI4N2UzZmJmMTA0MmQ2NTRlYzRkY2RhMnw=

YWN0aXZlfA==

This traffic decodes to:

logon|SYSTEM-DDBLV6BQXN|Windows XP|100707|3cb8dc92287e3fbf1042

d654ec4dcda2|

active|

This traffic appears to serve an initial reconnaissance function whereby the
infected machine reports back to the control server basic system information
including machine name, operating system, and state .

Static analysis of the msdtc .exe reveals a number of strings of interest . These
strings include but are not limited to:

shell|

filelist|

upload|

These are likely commands the trojan is designed to recognize and act upon .
“Shell” is likely a command that can be issued by a remote hostile actor to open
a shell on the compromised machine . “Filelist” is likely a command that can be
issued by a remote hostile actor to enumerate a list of files within a given directory .
Finally, “upload” is likely a command that can be issued by a remote hostile actor

AUGUST_11_articles_updtdfile.indd 23 7.6.11 2:47 PM

 24 ;login: vOL. 36, NO. 4

to exfiltrate information from the victimized machine . For a full list of commands
identified via static analysis of the msdtc .exe payload, please see the Appendix .

It is likely that this trojan was designed to enable a remote operator to fully recon-
noiter a victim’s machine, search for and acquire deeper access within the targeted
network, and exfiltrate sensitive information .

In laboratory testing, the intrusion operator was observed establishing active
sessions on an infected machine . As noted above, the infected machine beaconed
an “active” message to the command and control server—likely informing the
controller that the infected machine was available for exploitation . Within 49
minutes of initial exploitation, an intrusion operator initiated multiple sessions on
the infected machine . An analysis of the sessions indicates that a live person at a
keyboard (as opposed to a scripted service or program) initiated the connection to
the back-doored computer .

The malicious operator maintained three different sessions on the infected
machine . One served as a command and control session . A second session was used
to gather intelligence about the networking infrastructure surrounding the victim .
A third session was used to enumerate the hard disk likely in search of sensitive
information .

The following table illustrates the commands passed by the operator during these
sessions . The first command of “SHELL |” was likely issued to open the back door
on the infected computer . The table below shows the number of seconds elapsed
between the issued commands and the first “SHELL |” command .

Commands in bold were part of a command and control session, and those in
italics were from a session established to reconnoiter the network of the infected
victim . APT actors typically establish a beachhead on the infected machine and
then immediately look for additional opportunities to establish additional foot-
holds deep within the penetrated network .

Commands in regular type were part of a session established to scan the hard drive
of the infected victim . APT actors also typically scan compromised hosts for sensi-
tive intellectual property .

TIME
(in seconds) COMMAND

0 SHELL |

2 SHELL START|

7 COMMAND|NET USER

13 COMMAND|IP CONFIG /ALL

62 COMMAND|NET VIEW/DOMAIN

70 FILES|

72 FILELIST|C:*.*

74 FILELIST|C:\DOCUMENTS AND SETTINGS*.*

AUGUST_11_articles_updtdfile.indd 24 7.6.11 2:47 PM

 ;login: AUGUST 2011 Understanding Advanced Persistent Threats 25

78 FILELIST|C:\DOCUMENTS AND SETTINGS\ADMINISTRATOR*.*

70 FILES|

72 FILELIST|C:*.*

91 STOP|

97
FILELIST|C:\DOCUMENTS AND SETTINGS\ADMINISTRATOR\

MY DOCUMENTS*.*

101 FILELIST|C:\DOCUMENTS AND SETTINGS\ADMINISTRATOR\DESKTOP*.*

125
FILELIST|C:\DOCUMENTS AND SETTINGS\ADMINISTRATOR\DESKTOP\

SERVICE PACKS*.*

140 STOP|

144 UNINSTALL

Figure 1: decoded commands issued by intrusion operator

These commands were likely issued by the remote attacker via a management
dashboard that enables the attacker to select a number of pre-configured scripted
actions . Every command issued by the attacker was base64 encoded . The time
delays between these commands can be explained by a human operator evaluating
the responses from the infected victim prior to deciding which commands to issue
next .

This is the type of organizational sophistication that defines the A in APT . The
particular trojan used in this attack was not in and of itself sophisticated . No
rootkits were used, and a knowledgeable sysadmin likely would have detected the
infection via host or network-based analysis .

However, the efficiency of the adversary, as demonstrated by their actions during
this observed attack, highlights what the “advanced” in APT is all about . First, the
attack was targeted, indicating that the adversary was only interested in penetrat-
ing a set of victims they were interested in monitoring .

Second, the speed with which a human operator established a session on the
infected host demonstrates the advanced logistics capabilities of the adversary .
The adversary established a session within 49 minutes of the initial infection and
then proceeded to iterate the infected machine, presumably in search of sensitive
information or for connections deeper within the targeted network . This dem-
onstrates that the adversary had “trained” operators on standby ready to exploit
newly compromised computers . This type of operation requires resources that only
a determined adversary would support .

Third, the operator’s decision to quietly uninstall the trojan from the infected
machine after two minutes and 22 seconds of reconnaissance indicates that the
operator knew exactly what he or she was looking for . This demonstrates that this
type of APT attack was driven by a set of requirements, and when the operator
of this intrusion was unable to locate data meeting those requirements, he or she
decided to quickly retreat and exploit another newly infected computer .

AUGUST_11_articles_updtdfile.indd 25 7.6.11 2:47 PM

 26 ;login: vOL. 36, NO. 4

Conclusion

The above example demonstrates that the threat from APT actors is not their
embrace of novel exploit code or sophisticated attack tools, but, rather, their
organizational efficiency . These actors patiently study their targets, craft enticing
spear phishing attacks, and quickly exploit new victims . They will continually seek
to maintain secure footholds within their targets, as this is the most efficient way
for them to routinely exfiltrate the sensitive data they are tasked with acquiring .

Reference

[1] http://taosecurity .blogspot .com/2010/01/what-is-apt-and-what-does-it-want
 .html .

Appendix: Strings Pulled from msdtc.exe

CmD

shelldata|

shell|

shellstart

command

stop

upload|

upload

files|

driver

driver|

filelist

listerror|

filelist|

delete

run

renamefile

stop

down|

dirlist

direrror|

dirlist|

logon|

shell

active

files

upload

closeos

restart

down

dclose

uclose

uninstall

active|

AUGUST_11_articles_updtdfile.indd 26 7.6.11 2:47 PM

 ;login: AUGUST 2011 27

Working in a network attack team today is cumbersome . Penetration-testing tools
such as Core Impact, Immunity Canvas, and Metasploit assume a single user .
Team members have limited means to share access to compromised hosts, and
good intentions are quickly mired in a disorganized free-for-all .

To address this problem I developed Armitage, a technology that allows a network
attack team to communicate in real time, share data, and seamlessly share access
to hosts compromised by the Metasploit exploitation framework . This article
discusses the needs for network attack collaboration, the inner workings of the
solutions in Armitage, and the lessons learned using this technology with the 2011
Northeast and Mid-Atlantic Collegiate Cyber Defense Competition red teams .

Metasploit

Metasploit [1] is a popular exploit development framework . H .D . Moore started
the project in 2003 . Metasploit makes it easy for security researchers to develop
exploits for software flaws and use them in the context of a very feature-rich tool .

Metasploit features include multiple user interfaces, support for multiple plat-
forms, and powerful post-exploitation tools . Metasploit users may choose which
payload to execute when an exploit is successful . Metasploit payloads range from
simple command shells to powerful post-exploitation tools like Meterpreter .

Through Meterpreter, users may transfer files, execute and interact with pro-
cesses, dump the Windows SAM database, navigate the file system, and manage
processes on the compromised host . When delivered with an exploit, Meterpreter
is capable of running completely from RAM without ever touching disk . Metasploit
provides a command-line interface for interacting with Meterpreter .

Meterpreter is not a Metasploit-only concept . Other exploitation tools, such as
Immunity Canvas and Core Impact, have built-in post-exploitation agents too . The
Shellcoder’s Handbook [2] explains this practice . Exploitation tools that simply pro-
vide a shell lose the ability to transfer files, give up access to the Win32 API, and
in some cases lose access to any privileged tokens the current thread might hold .
Post-exploitation agents, such as Meterpreter, implement a protocol that allows
users to carry out these and other actions . The session sharing ideas presented in
this article should apply to these other post-exploitation agents .

Network Attack Collaboration
Sharing the Shell

r a p h a E l M u d g E

Raphael Mudge is a

Washington, dC, based

code hacker. His current

work is the Armitage GUI for

Metasploit. His past projects include the After

the deadline proofreading software service

and the Sleep scripting language. Raphael

has worked as a security researcher, software

engineer, penetration tester, and system

administrator. Raphael holds a commission in

the Air National Guard.

rsmudge@gmail.com

AUGUST_11_articles_updtdfile.indd 27 7.6.11 2:47 PM

 28 ;login: vOL. 36, NO. 4

Armitage

Armitage [3] is the graphical user interface I wrote to support teams using
Metasploit . Armitage organizes Metasploit’s features around the network attack
process . There are features for host discovery, exploitation, post-exploitation, and
maneuver .

Armitage exposes Metasploit’s host management features . It’s possible to import
hosts and launch scans to populate Metasploit’s database with target and service
information . Armitage’s user interface also displays the target database in a table
or graph format .

Armitage’s find attacks feature recommends remote exploits using known host and
service information . Users may also launch browser exploits, generate malicious
files, and create executable files to call back to Metasploit from Armitage .

Armitage provides several post-exploitation tools for Windows targets built on
the capabilities of Metasploit’s Meterpreter agent . Menus are available to escalate
privileges, dump password hashes to a local credentials database, browse the file
system, and open command shells . For Linux and Mac OS X targets, Armitage lets
users interact with a command shell .

Finally, Armitage aids the process of setting up pivots, a Meterpreter capability
that lets users exploit a compromised host to attack and scan other hosts . Armit-
age also exposes Metasploit’s SOCKS proxy module, which turns Metasploit into a
proxy server that routes outgoing connections through existing pivots . With these
tools, users may further explore and move through a target network .

Figure 1 shows the Armitage user interface . Armitage’s targets panel visualizes
known hosts, active sessions, and existing pivots . A session is an active Meter-
preter agent or a shell on a compromised host . The module browser in the top left
lets users search for and launch Metasploit modules . These GUI components are
always visible . Armitage uses tabs to organize open consoles, command shells, and
browsers .

Figure 1: Armitage user interface

AUGUST_11_articles_updtdfile.indd 28 7.6.11 2:48 PM

 ;login: AUGUST 2011 Network Attack Collaboration 29

Teaming Architecture

Through Armitage, it’s possible to manage and share a remote Metasploit instance
via its RPC server . Metasploit’s RPC server allows clients to send commands to
Metasploit using an XML-based protocol .

Armitage extends Metasploit’s RPC interface to provide real-time communication,
data sharing, and session sharing through a deconfliction server . The deconflic-
tion server offers Armitage clients additional functionality, helps with scalability,
and manages multiple clients accessing Meterpreter and shell sessions .

The deconfliction server is part of Armitage . It’s started using the –server com-
mand line option . The deconfliction server connects to Metasploit like any other
client . When it connects, it sets a global variable in Metasploit to instruct Armit-
age clients to connect to it . Adding features through a separate server protects the
teaming features from internal changes to the Metasploit framework .

Some Metasploit features require the client to modify or read a local file .
Metasploit’s RPC server does not offer an API for reading and writing local files .
For these cases, the deconfliction server offers the missing functionality . The
extra functions in the deconfliction server allow Armitage to offer real-time com-
munication to team members, lock and unlock shell sessions, and transparently
download screenshots taken through Meterpreter .

The deconfliction server also helps Armitage with team scalability . Armit-
age clients used to poll Metasploit to get the list of current hosts, sessions, and
known services . Constant polling from multiple clients caused Metasploit to stop
responding with more than five active clients . The deconfliction server temporar-
ily caches the output of some commands to reduce load on the Metasploit RPC
server . Armitage is now able to support a team of ten or more clients .

The deconfliction server’s primary purpose is to act as a proxy between Armitage
clients and Metasploit for session interaction . All session read and write com-
mands go through the deconfliction server . The deconfliction server manages
these operations using Meterpreter multiplexing to provide transparent session
sharing for the user .

Figure 2 shows the relationship between the Armitage clients, the Metasploit RPC
server, and the deconfliction server . The dashed lines show the communication
path for Meterpreter commands . The solid lines show the path for most Metasploit
commands .

Figure 2: Teaming architecture

AUGUST_11_articles_updtdfile.indd 29 7.6.11 2:48 PM

 30 ;login: vOL. 36, NO. 4

Real-Time Communication

In a collaboration situation, it helps to have real-time communication . Red teams
often rely on Internet relay chat, instant messaging, a shared wiki, or even yelling
across a room . Armitage’s deconfliction server offers Armitage clients read and
write access to a shared event log .

Armitage presents this shared event log as a new tab . Users may search it and type
messages into it as if they’re using a chat room . Armitage prefixes a user-provided
nickname to each message . The Armitage client also reports events to this shared
log . These events include scans, exploits, login attempts, changes to the pivot con-
figuration, and clearing the database .

In practice, I haven’t seen the Armitage event log overtake other real-time commu-
nication methods . However, the event log is useful for attributing damaging actions
to team members . At one event, a team member launched a mass automated exploi-
tation attack from a shared server meant for post-exploitation only . Another team
member accidentally cleared all of the hosts in the Metasploit database . The event
log helped us identify which team members to counsel .

Data Sharing

Network attack teams generate and capture a lot of data during an engagement .
This data includes port scans, vulnerability scans, encrypted passwords, working
credentials, and other captured artifacts . Making this data available so that the
whole team can locate it and work with it is difficult . Teams often rely on a ver-
sion control system, an ftp server, or a wiki to store this information . The Dradis
Framework [4] is an example of a specialized project to help attack teams organize
their data and make it available to the whole team .

Ryan Linn examined these sharing options and presented another alternative
in his Multiplayer Metasploit [5] work . Mr . Linn observed that wikis and other
non-attack-specific storage mediums suffer from arbitrary organization . Dradis is
a good alternative but it’s hard to take action on the data from Dradis . His alterna-
tive idea is to use Metasploit as a data repository . Metasploit has several data-
base tables to store credentials, encrypted passwords, known services, and data
taken from hosts by automated post-exploitation scripts . Mr . Linn modified the
Metasploit Framework to expose this data through Metasploit’s RPC interface .

Armitage builds on Ryan Linn’s work by using Metasploit for data sharing . Armit-
age’s targets view shows the current hosts and active sessions . Any team member
may right-click a host and select Services to see the known services and any ban-
ner information associated with the service .

In practice, Armitage’s data-sharing features provided shared situational aware-
ness and easy access to data automatically stored by Metasploit . Shared access to
the Metasploit credentials table proved valuable in many situations . Each team
member had access to all successful credentials when attempting to log in to a ser-
vice . This data sharing also allowed any team member to export stored password
hashes and attempt to crack them .

The Access Sharing Problem

In a team situation, the person who gets access to a host is usually the one who
handles post-exploitation . This happens because it is difficult to share access with

AUGUST_11_articles_updtdfile.indd 30 7.6.11 2:48 PM

 ;login: AUGUST 2011 Network Attack Collaboration 31

other team members . This limitation forces teams to organize themselves by target
types . For example, team members who are Windows experts attack Windows sys-
tems . This is a limiting tactic, as it is still hard for task specialization to occur . The
Windows expert can’t delegate post-exploitation tasks to one or more team members .

One possible solution to the access sharing problem is session passing . The multi_
meter_inject script in Metasploit generates a Meterpreter executable bound to a
callback host and port, uploads it to a host, and executes it on the compromised host .

Session passing is a threat to the network attack team’s stealth . The uploaded
Meterpreter executable may trigger the local antivirus or other personal protection
product . More connections may help the system administrator determine that the
host is compromised . In some situations, session passing is not practical . Some-
times it is difficult to pass a session for an available host, because it would require
pivoting connections through another compromised host .

Session Sharing

An ideal solution to the access sharing problem is session sharing . Network attack
teams would benefit from putting all successful compromises into a shared pool
for any other member to use . Session sharing has a stealth advantage . It does not
require creating a new access by uploading and executing a new program . Ses-
sion sharing also allows all actions to occur through one communication channel .
A system administrator cannot know if one person or five people are working on
their host . Session sharing allows team members to benefit from each other’s work .
Session sharing also allows specialization of tasks . Some team members may focus
on getting access to hosts, others may focus on persistence, and the rest may focus
on post-exploitation .

For Meterpreter sessions, Armitage implements session sharing using “meter-
preter multiplexing” described in the next section . With meterpreter multiplexing,
multiple team members are able to simultaneously use a session . This solution
creates an illusion that the access is not shared .

For shell sessions, Armitage limits access to the session to one team member at a
time . Opening the session sends a request to the deconfliction server to see who
owns it . If the session is in use, Armitage notifies the team member that the ses-
sion is in use . If the session is not in use, Armitage locks it and lets the user interact
with it . When the user closes the tab, Armitage notifies the deconfliction server
that the session is available again .

Session sharing is the most useful teaming capability in Armitage . At all events I
participated in, session sharing allowed team roles to emerge organically . Team
members gravitated toward tasks they were most comfortable with . This is dif-
ferent from my previous exercise experiences, where team members who couldn’t
compromise hosts had limited participation opportunities .

Meterpreter Multiplexing

Meterpreter multiplexing is the Armitage feature that allows multiple clients to
share one session . Armitage adds every meterpreter command to a queue specific
to that session . A separate thread executes these commands in a first-in first-out
way . When Armitage executes a Meterpreter command, it reads output until the
command is complete . This output is then sent to the command requestor using
the identifier stored with the command .

AUGUST_11_articles_updtdfile.indd 31 7.6.11 2:48 PM

 32 ;login: vOL. 36, NO. 4

Armitage uses a heuristic to decide when a command is complete . The simplest
heuristic is to read from a session until a read returns an empty string . Some
commands return an empty string before they’re finished . For these commands,
Armitage expects a set number of empty reads to consider the command com-
pleted . For all commands, Armitage has a 12-second timeout . This timeout pre-
vents a failed command from making the session non-responsive .

Some Meterpreter scripts execute in the background and report their output later .
These scripts create a problem for the command-multiplexing scheme . It’s possible
for the output of a script to mix in with the output of another command . Armitage
mitigates this by reading from Meterpreter before executing a command . When
used with a local Metasploit instance, Armitage displays stray output in any
Meterpreter tab .

The deconfliction server drops stray output because it does not know which client
to route the information to . This is a drawback, but in practice it’s limited to a few
post-exploitation scripts . Metasploit is moving away from post-exploitation scripts
in favor of post-exploitation modules . These modules are configured and executed
just like exploits . Eventually, this problem with Meterpreter scripts will not exist .

Armitage queues commands in the Armitage client and deconfliction server . In the
local client, the command queue delivers Meterpreter output to the GUI compo-
nent that requested it . A user may execute multiple actions and Armitage will not
become confused .

The deconfliction server uses the stored command identifier to identify the client
that requested the command . When the deconfliction server finishes executing a
command, it routes the output to the right client .

This multiplexing scheme creates the illusion that a shared access is not shared .
When a team member executes a command, the command is added to the local
command queue . When the command is executed locally, it is added to the decon-
fliction server command queue . When the command completes, the deconfliction
server sends the command to the right client . The local client receives this output
and routes it to the local GUI component . Figure 3 illustrates this process .

Figure 3: Meterpreter multiplexing in action

AUGUST_11_articles_updtdfile.indd 32 7.6.11 2:48 PM

 ;login: AUGUST 2011 Network Attack Collaboration 33

Windows command shells are a special case . Armitage interacts with the Win-
dows command shell using Meterpreter channels . When Meterpreter executes a
process, it creates a channel . Meterpreter provides commands to read from and
write to these channels . When a client wants a command shell, it creates a new
process through Meterpreter and it notes the channel associated with this process .
Clients interact only with their own channels . Armitage uses the command queue
to execute read and write commands to these channels . With this mechanism,
multiple clients may interact with multiple command shells through one Meter-
preter session .

Red Team Formations

This article has shown you how Armitage gives a network attack team real-time
communication, data sharing, and session sharing built on the Metasploit frame-
work . These features make it possible to experiment with different team organiza-
tions .

Excited about this shiny new technology, I used it to centralize the reconnais-
sance, exploitation, and post-exploitation activities in a collaborative capture-
the-flag experiment . Under this organization, each team member used the shared
Metasploit server to scan, attack, and carry out post-exploitation activities . I reck-
oned that this scheme would allow the team to move deeper into a target network,
like an army marching deep into enemy territory . But I do not recommend this
approach for attacking all hosts . A detected attack risks all sessions associated
with the attack host . Detection is more likely when uncoordinated team members
launch scans or attacks against the same host .

The most successful teaming option I’ve seen is to allow everyone to attack locally
and handle post-exploitation through a shared Metasploit instance . Here, team
members use their own tools to get access to a host . Once they’re successful, they
pass a session to the shared Metasploit server and kill their session . This decouples
the attack host from the post-exploitation server . This worked well in practice,
as everyone had access to existing sessions . This also reduced the normal red
team chaos, as team members had no need to exploit already compromised hosts
to get access . Team members with noisy attacks and scans risk detection of their
local host only . Network defenders must find the attack source and the shared
Metasploit server to keep the red team out .

Once a network foothold is available, it’s safe to use a pivot set up on the shared
Metasploit server for attack and reconnaissance of internal hosts . System admin-
istrators often focus on traffic entering and leaving their network, with little
regard for what happens inside it . The risk of detection is low . Using a shared post-
exploitation server also ensures that internal hosts get attention from the red team .
Without session sharing, each team member needs a session on a host capable of
reaching the desired internal targets .

A shared Armitage server also gives red teams the option to use Armitage as a
dashboard for displaying the tactical situation . At the Northeast Collegiate Cyber
Defense Competition we displayed Armitage using a projector in the red team
room . The target area gave us situational awareness of what sessions we had at the
time . The shared event log on the projector provided a timeline of recent sessions
opening and closing .

AUGUST_11_articles_updtdfile.indd 33 7.6.11 2:48 PM

 34 ;login: vOL. 36, NO. 4

Final Thoughts

Armitage helps network attack teams break away from the single-user assumption
of Metasploit . In this article I described the communication, data sharing, and ses-
sion sharing needs for network attack . I also described Armitage’s features to meet
these needs .

In practice, no feature completely replaced the old ways of collaboration . However,
these features successfully augmented existing approaches . More importantly,
session sharing allowed experimentation with different attack team organization
and task delegation . In two cyber defense competitions, these features enabled col-
laboration on post-exploitation and shared situational awareness .

This article is the beginning of what’s possible . I look forward to seeing what a
mature red team does with this technology . It’s now possible to experiment with
and develop squad-level tactics for network attack .

References

[1] The Metasploit Project: http://www .metasploit .com .

[2] J . Koziol, D . Litchfield, D . Aitel, C . Anley, S . Eren, N . Mehta, and R . Hassell,
The Shellcoder’s Handbook: Discovering and Exploiting Security Holes (Wiley,
2004), pp . 147-148 .

[3] Armitage homepage: http://www .fastandeasyhacking .com .

[4] Dradis Framework: http://dradisframework .org/ .

[5] R . Linn, “Multiplayer Metasploit,” DefCon 18 (2010): https://www .defcon .org/
images/defcon-18/dc-18-presentations/Linn/DEFCON-18-Linn-Multiplayer
-Metasploit .pdf .

AUGUST_11_articles_updtdfile.indd 34 7.6.11 2:48 PM

 ;login: AUGUST 2011 35

Abstract

No .

Discussion

Anecdotal evidence suggests that the majority of users will accept SSH server keys
without checking them . Although SSH users are in general more security-aware
than the typical Web user, the SSH key verification mechanism requires that users
stop whatever they’re trying to do when connecting and verify from memory a
long string of hex digits (the key fingerprint) displayed by the client software . A
relatively straightforward attack, for the exceptional occasion where the user is
actually verifying the fingerprint, is to generate random keys until one of them has
a fingerprint whose first few hex digits are close enough to the real thing to pass
muster [1] .

There are even automated attack tools around that enable this subversion of the
fingerprint mechanism . The simplest attack, provided by a man-in-the-middle
(MITM) tool called ssharpd [2], uses ARP redirection to grab an SSH connect
attempt and then reports a different protocol version to the one that’s actually in
use (it can get the protocol version from the information passed in the SSH hand-
shake) . Since SSHv1 and SSHv2 keys have different fingerprints, the victim doesn’t
get the more serious key-changed warning but merely the relatively benign new-
key warning . Since many users never check key fingerprints but simply assume
that everything should be OK on the first connect, the attack succeeds and the
ssharp MITM has access to the session contents [3] . (Since ssharp is based on a
modified, rather old, version of OpenSSH, it’d be amusing to use one of the assorted
OpenSSH security holes to attack the MITM while the MITM is attacking you .)

> ssh test@testbox

The authenticity of host ‘testbox (192.168.1.38)’ can’t be established.

RSA key fingerprint is 86:9c:cc:c7:59:e3:4d:0d:6f:58:3e:af:f6:fa:db:d7.

Are you sure you want to continue connecting (yes/no)?

> ssh test@testbox

The authenticity of host ‘testbox (192.168.1.38)’ can’t be established.

RSA key fingerprint is 86:9c:cc:d7:39:53:e2:07:df:3a:c6:2f:fa:ba:dd:d7.

Are you sure you want to continue connecting (yes/no)?

Figure 1: Real (top) and spoofed (bottom) SSH servers

Do Users Verify SSH Keys?
p E t E r g u t M a n n

Peter Gutmann is

a researcher in the

department of Computer

Science at the University

of Auckland. He works on design and analysis

of cryptographic security architectures and

security usability, which includes lots of

grumbling about the lack of consideration of

human factors in designing security systems.

pgut001@cs.auckland.ac.nz

AUGUST_11_articles_updtdfile.indd 35 7.6.11 2:48 PM

 36 ;login: vOL. 36, NO. 4

A much more interesting attack can be performed using Konrad Rieck’s concept
of fuzzy fingerprints . Fuzzy fingerprints are SSH key fingerprints that are close
enough to the real thing to pass muster, and as with the standard SSH MITM
attack there’s a tool available to automate the process for you [4] . This attack, illus-
trated in Figure 1, takes a target SSH server key and generates a new key for which
the fingerprint is close enough to fool all but a detailed, byte-for-byte comparison .
(Because the key doesn’t have to be secure, merely to work for the RSA computa-
tion, you can simplify the key generation to require little more than an addition
operation . The rate-limiting step then becomes the speed at which you can perform
the hashing operation, and even there you can pre-compute almost everything
but the last hash block before you start, making the key-search process extremely
quick .) Since few users are likely to remember and check the full 40-hex-digit
fingerprint for each server they connect to, this, combined with ssharpd, is capable
of defeating virtually any SSH setup [5] .

When the SSH fuzzy fingerprint work was first published, I wanted to run a real-
world evaluation of its effectiveness, so I approached two large organizations with
several thousand computer-literate (in some cases highly so) users to see if I could
use their servers for the test . In order to determine the base rate for the experi-
ment, I asked the IT support staff how many users had called or emailed to verify
the SSH server key whenever it had changed in the past several years . They were
unable to recall a single case, or locate any records, of any user ever verifying any
SSH server key out-of-band . As the base rate for verification of completely differ-
ent key fingerprints was already zero there didn’t seem to be much to be gained by
running an experiment with approximately matching fingerprints, since the result
couldn’t be worse than zero .

Conclusion

This result represents good news for both the SSL/TLS PKI camps and the SSH
non-PKI camps, since SSH advocates can rejoice over the fact that the expensive
PKI-based approach is no better than the SSH one, while PKI advocates can rest
assured that their solution is no less secure than the SSH one .

References

[1] Dan Kaminsky, “Black Ops 2006: Pattern Recognition,” 20th Large Installation
System Administration Conference (LISA ‘06), December 2006: http://usenix .org/
events/lisa06/tech/#friday .

[2] Sebastian Krahmer, “SSH for Fun and Profit,” July 1, 2002: ftp://ftp .pastoutafait
 .org/pdf/ssharp .pdf .

[3] Jon Erickson, Hacking: The Art of Exploitation, No Starch Press, 2003 .

[4] “THC Fuzzy Fingerprint,” October 25, 2003: http://www .thc .org/thc-ffp/ .

[5] Plasmoid, “Fuzzy Fingerprints: Attacking Vulnerabilities in the Human Brain,”
October 25, 2003: http://www .thc .org/papers/ffp .html .

AUGUST_11_articles_updtdfile.indd 36 7.6.11 2:48 PM

 ;login: AUGUST 2011 37

prOgramming

Clusters of commodity servers have become a major computing platform, powering
both large Internet services and a growing number of data-intensive enterprise
and scientific applications . To reduce the challenges of building distributed
applications, researchers and practitioners have developed a diverse array of new
software frameworks for clusters . For example, frameworks such as memcached

Mesos
Flexible Resource Sharing for the Cloud

b E n j a M i n h i n d M a n , a n d y k o n w i n s k i , M a t E i Z a h a r i a ,
a l i g h o d s i , a n t h o n y d . j o s E p h , r a n d y h . k a t Z , s C o t t s h E n k E r ,
a n d i o n s t o i C a

Benjamin Hindman is a

fourth-year Phd student at

the University of California,

Berkeley. Before working on

resource management for cluster computing,

he worked on resource management for single-

node parallel computing. His interests include

operating systems, distributed systems,

programming languages, and all the ways they

intersect.

benh@eecs.berkeley.edu

Andy konwinski is a Phd

student in computer science

at the University of California,

Berkeley, who has worked on

tracing and scheduling in distributed systems

such as Hadoop and Mesos.

andyk@berkeley.edu

Matei Zaharia is a fourth-

year graduate student at

the University of California,

Berkeley, working with

Scott Shenker and Ion Stoica on topics in

cloud computing, operating systems, and

networking. He is also a committer on Apache

Hadoop. He got his undergraduate degree at

the University of Waterloo in Canada.

matei@eecs.berkeley.edu

Ali Ghodsi got his Phd

from kTH Royal Institute of

Technology in 2007. He is

on leave from his position as

an assistant professor at kTH and has been

visiting the University of California, Berkeley,

since 2009. His interests include cloud

computing, distributed computing, and micro-

economic applications in computer science.

alig@cs.berkeley.edu

Anthony d. Joseph is a

Chancellor’s Associate

Professor in Electrical

Engineering and Computer

Science at the University of California,

Berkeley. He is developing adaptive techniques

for cloud computing, network and computer

security, and security defenses for machine-

learning–based decision systems. He also co-

leads the dETERlab testbed, a secure scalable

testbed for conducting cybersecurity research.

adj@eecs.berkeley.edu

Randy H. katz is the United

Microelectronics Corporation

distinguished Professor

in Electrical Engineering

and Computer Science at the University of

California, Berkeley, where he has been on the

faculty since 1983. His current interests are

the architecture and design of modern Internet

datacenters and related large-scale services.

randy@cs.Berkeley.edu

Scott Shenker spent his

academic youth studying

theoretical physics but soon

gave up chaos theory for

computer science. Continuing to display a

remarkably short attention span, over the years

he has wandered from computer performance

modeling and computer networks research

to game theory and economics. Unable to

hold a steady job, he currently splits his time

between the University of California, Berkeley,

Computer Science department and the

International Computer Science Institute.

shenker@icsi.berkeley.edu

Ion Stoica is an Associate

Professor in the EECS

department at the University

of California, Berkeley, where

he does research on cloud computing and

networked computer systems. Past work

includes the Chord dHT, dynamic Packet State

(dPS), Internet Indirection Infrastructure (i3),

declarative networks, replay-debugging, and

multi-layer tracing in distributed systems.

His current research includes resource

management and scheduling for data centers,

cluster computing frameworks for iterative

and interactive applications, and network

architectures.

istoica@eecs.berkeley.edu

AUGUST_11_articles_updtdfile.indd 37 7.6.11 2:48 PM

 38 ;login: vOL. 36, NO. 4

[4] make accessing large datasets more efficient, while frameworks such as
Hadoop [1] and MPI [6] simplify distributed computation .

Unfortunately, sharing a cluster efficiently between two or more of these frame-
works is difficult . Many operators statically partition their clusters at physical
machine granularities, yielding poor overall resource utilization . Furthermore,
static partitioning makes it expensive to share big datasets between two comput-
ing frameworks (e .g ., Hadoop and MPI): one must either copy the data into a sepa-
rate cluster for each framework, consuming extra storage, or have the frameworks
read it across the network, reducing performance .

This article introduces Mesos, a platform that enables fine-grained, dynamic
resource sharing across multiple frameworks in the same cluster . For example,
using Mesos, an organization can simultaneously run Hadoop and MPI jobs on the
same datasets, and have Hadoop use more resources when MPI is not using them
and vice versa . Mesos gives these and other frameworks a common interface for
accessing cluster resources to efficiently share both resources and data .

In designing Mesos, we sought to make the system both flexible enough to support
a wide range of frameworks (and maximize utilization by pooling resources across
all these frameworks), and highly scalable and reliable (to be able to manage large
production clusters) . Specifically, we had four goals:

 High utilization: share resources dynamically as the demand of each applica-
tion changes

 Scalability: support tens of thousands of machines and hundreds of concurrent
jobs

 Reliability: recover from machine failures within seconds
 Flexibility: support a wide array of frameworks with diverse scheduling needs

Mesos achieves these goals by adopting an application-controlled scheduling
model . The Mesos core is only responsible for deciding how many resources each
framework should receive (based on an operator-selected policy such as priority or
fair sharing), while frameworks decide which resources to use and which compu-
tations to run on them, using a mechanism called resource offers . This design has
the dual benefit of giving frameworks the flexibility to schedule work based on
their needs and letting the Mesos core be simple, scalable, and robust . Indeed, we
show that Mesos scales to 50,000 nodes, recovers from master failures in less than
10 seconds, and lets applications achieve nearly perfect data locality in scheduling
their computations .

Finally, Mesos provides important benefits even to organizations that only use
one cluster computing framework . First, an organization can use Mesos to run
multiple, isolated instances of the framework on the same cluster (e .g ., to isolate
production and experimental Hadoop workloads), as well as multiple versions
of the framework (e .g ., to test a new version) . Second, Mesos allows developers
to build specialized frameworks for applications where general abstractions like
MapReduce are inefficient, and have them coexist with current systems . Later in
this article we describe a specialized framework we developed for iterative applica-
tions and interactive data mining called Spark, which can outperform Hadoop by
a factor of 30 for these workloads . We hope that other organizations also leverage
Mesos to experiment with new cluster programming models .

Mesos began as a research project at UC Berkeley and is now open source under the
Apache Incubator . It is actively being used at Twitter, Conviva, UC Berkeley, and
UC San Francisco .

AUGUST_11_articles_updtdfile.indd 38 7.6.11 2:48 PM

 ;login: AUGUST 2011 Mesos 39

Mesos Architecture

Mesos enables efficient resource sharing across frameworks by giving them a com-
mon API to launch units of work, called tasks, on the cluster . A task typically runs
on a slice of a machine, within a resource allocation chosen by the framework (e .g .,
1 CPU core and 2 GB RAM) . Mesos isolates tasks from each other using OS facili-
ties like Linux Containers [2] to ensure that a runaway task will not affect other
applications .

To support a wide range of frameworks while remaining scalable and robust,
Mesos employs an application-controlled scheduling model . Mesos decides how
many resources each framework should receive according to an organization-
defined policy such as fair sharing . However, each framework is responsible for
dividing its work into tasks, deciding which tasks to run on each machine, and,
as we shall explain, selecting which machines to use . This lets the frameworks
perform application-specific placement optimizations: for example, a MapReduce
framework can place its map tasks on nodes that contain their input data .

Figure 1 shows the architecture of Mesos . The system has a fault-tolerant mas-
ter process that controls slave daemons on each node . Each framework that uses
Mesos has a scheduler process that registers with the master . Schedulers launch
tasks on their allocated resources by providing task descriptions . Mesos passes
these descriptions to a framework-specific executor process that it launches on
slave nodes . Executors are also reused for subsequent tasks that run on the same
node, to amortize initialization costs . Finally, Mesos passes status updates about
tasks to schedulers, including notification if a task fails or a node is lost .

Figure 1: Mesos architecture, showing two running frameworks (Hadoop and MPI)

Mesos uses a mechanism called resource offers to let frameworks choose which
resources to use . When resources on a machine become free, Mesos offers them to
each framework scheduler in turn, in an order defined by the cluster’s allocation
policy (e .g ., starting with the framework furthest below its fair share) . Each frame-
work may accept the resources and launch a task using some of them, or reject the
resources if, for example, it has no data on that machine . Refusing resources keeps
the framework at the front of the allocation queue, ensuring that it is offered future
resources before other frameworks . While it may seem counterintuitive that refus-
ing resources can help frameworks, we found that a simple policy where frame-
works wait a short time for local resources achieves near-perfect data locality in
typical cluster workloads .

AUGUST_11_articles_updtdfile.indd 39 7.6.11 2:48 PM

 40 ;login: vOL. 36, NO. 4

One natural concern with resource offers is whether a framework will need to
wait for a large number of offers to find a resource that it wants . To prevent this
scenario, Mesos also provides an API for requests that lets frameworks specify
which resources they wish to be offered . For example, a framework might provide a
minimum amount of memory it needs, or a whitelist of nodes to run on . One impor-
tant benefit of the resource offer model, however, is that frameworks whose needs
cannot be expressed using requests can still achieve good task placement . That
is, requests are an optimization, while resource offers guarantee correctness and
allow the system to support arbitrary framework placement preferences .

More importantly, Mesos’s application-controlled scheduling model also helps
make the system extremely simple, scalable, and robust . Here is how Mesos
achieves each of the four goals outlined in the introduction:

 High utilization: Each framework is only allocated the resources to run its cur-
rent tasks, as opposed to a static partition of the cluster .

 Scalability: The Mesos master only makes inter-framework scheduling deci-
sions (to pick which framework has priority for new offers), which are much
simpler than the intra-framework decisions required for many applications
(e .g ., to achieve data locality) . Our optimized C++ implementation can make
thousands of decisions per second with sub-second latency and manage tens of
thousands of nodes .

 Reliability: The Mesos master only needs to store soft state: the list of currently
active frameworks and tasks . Therefore, if the master crashes, a standby master
can take over and repopulate its state within seconds when the frameworks and
slaves connect to it .

 Flexibility: Resource offers allow each framework to control its scheduling,
while requests represent an extensible and efficient mechanism for frameworks
to indicate their placement needs to the master .

Example Framework: Computing Pi

The Mesos team has already ported several popular frameworks, like Hadoop and
MPI, to run on Mesos, but one of our main goals with Mesos was to let users easily
develop other cluster applications that can run alongside existing frameworks . To
show you how a Mesos framework looks from a programmer’s perspective, Figure
2 illustrates a simple Python framework that computes p . Mesos also has APIs in
C++ and Java .

The framework is composed of a scheduler, which launches tasks, and an executor,
which runs them . The scheduler launches NUM_TASKS independent tasks, each
of which computes an estimate of p and then averages the results . Each task uses
an inefficient, but easy to explain method to estimate p: it picks random points in
the unit square (from (0,0) to (1,1)) and counts what fraction of them fall in the unit
circle . This fraction should be p/4, because one quarter of the unit circle is inside
this square, so we multiply the result by 4 . The tasks return their results in the data
field of a Mesos status update . Note that the executor runs each task in a separate
thread, in case a single machine is given multiple tasks .

Thanks to building on top of Mesos, this application does not need to implement
infrastructure for launching work on the cluster or for communicating between
tasks and the main program . It can just implement a few callbacks, such as
resourceOffer and statusUpdate, to run on the Mesos-managed cluster .

AUGUST_11_articles_updtdfile.indd 40 7.6.11 2:48 PM

 ;login: AUGUST 2011 Mesos 41

U se Cases

M esos Usage at Twitter

Twitter has been using Mesos internally as an end-to-end framework for deploying
some of their application services . Using Mesos for some of their services appealed
to Twitter for many reasons, including:

 Flexible deployment: Statically confi guring where services should run makes it
diffi cult for different teams within Twitter to operate autonomously . By leverag-
ing Mesos, engineering teams can focus on doing code deploys against a generic
pool of resources, while the operations team can focus on the operating system
and hardware (e .g ., rebooting machines with new kernels, replacing disks, etc) .

 Increased utilization: Many services within the cluster are sharded for better
fault-tolerance and do not (or cannot) fully utilize a modern server with up to 16
CPU cores and 64+ GB of memory . Mesos enables Twitter to treat machines as a
pool of resources and run multiple services on the same machine, yielding better
overall cluster utilization .

 Elasticity: Certain services might want to “scale up” during peak or unexpected
events when traffi c and load has increased . Using Mesos, it’s easy for different
services to consume more or less resources as they are needed .

Using Mesos to facilitate normal datacenter maintenance and upgrades has
been especially compelling at Twitter . Because Mesos notifies frameworks when
machines fail, operators can easily remove machines from the cluster (provided
there is enough general capacity) . Frameworks simply react to these “failures” and
reschedule their computations as needed .

Because of Mesos’s two-level scheduling design, Twitter can provide its own
organizational policies for how resources should be allocated to frameworks . For
example, some machines can have most of their resources dedicated to applica-
tions serving user requests (e .g ., Web servers and databases), allowing unused
“slack” resources to be used for lower-priority applications . Twitter uses Linux
Containers [2] to isolate services running on the same machine from one another .

class MyExecutor(mesos.Executor):!
 def launchTask(self, driver, task):!
 # Create a thread to run the task!
 thread = Thread(target = self.runTask,!
 args = (driver, task))!
 thread.start()!
!
 def runTask(self, driver, task):!
 NUM_SAMPLES = 1000000!
 count = 0.0!
 for i in range(1, NUM_SAMPLES):!
 x = random()!
 y = random()!
 if x*x + y*y < 1:!
 count += 1!
 result = 4 * count / NUM_SAMPLES!
 driver.sendStatusUpdate(!
 task.task_id, TASK_FINISHED, str(result))!

class MyScheduler(mesos.Scheduler):!
 def resourceOffer(self, driver, id, offers):!
 tasks = []!
 for offer in offers:!
 if self.tasksStarted < NUM_TASKS:!
 self.tasksStarted += 1!
 task = createTask(offer.slave_id,!
 {"cpus": 1, "mem": 32})!
 tasks.append(task)!
 driver.replyToOffer(id, tasks, {})!
!
 def statusUpdate(self, driver, update):!
 if update.state == TASK_FINISHED:!
 self.resultSum += float(update.data)!
 self.tasksDone += 1!
 if self.tasksDone == NUM_TASKS:!
 driver.stop()!
 result = self.resultSum / NUM_TASKS!
 print "Pi is roughly %f" % result!

 Figure 2: A sample Mesos framework, in Python, for computing p. The scheduler (left) launches NUM TASkS tasks and averages their
results, while the executor (right) runs a separate estimation of p in a thread for each task. We omit some boilerplate initialization code.

AUGUST_11_articles_updtdfile.indd 41 7.6.11 2:48 PM

 42 ;login: vOL. 36, NO. 4

Using Mesos, engineers at Twitter have been able to easily experiment with
building new services, including spam detectors, load testers, distributed tracing
frameworks, and service quality monitors, among others . Twitter continues to
experiment with using Mesos for deploying more services in their clusters .

Managing Hadoop Clusters

Running the popular Hadoop framework on Mesos has many advantages . In
current versions of Hadoop, a single master process (the job tracker) manages an
entire cluster, which creates a single point of failure and leads to poor isolation
between workloads (for example, a single user submitting too large a job may crash
the job tracker) . Mesos has been designed to support many concurrent frameworks,
so it can run each Hadoop job separately, with its own job tracker, isolating MapRe-
duce applications from each other . Mesos also provides stronger isolation of the
resources on each machine through Linux Containers . Finally, from an operations
viewpoint, an important advantage of running Hadoop on Mesos is that it enables
organizations to experiment with different versions of Hadoop in one cluster, or to
gradually upgrade from an older version to a newer one .

More recently, the next-generation Hadoop design was announced, which refac-
tors the current Hadoop job tracker into a simpler resource manager and a separate
application master for each job to achieve similar isolation benefits [7] . These new,
lightweight application masters fit cleanly as framework schedulers in the Mesos
model, and we are working to port them to run on top of Mesos to let Hadoop share
resources with the other frameworks supported by Mesos .

Spark: A Framework for Low-Latency In-Memory Cluster
 Computing

One of our main goals with Mesos was to enable the development of new analytics
frameworks that complement the popular MapReduce programming model . As an
example, we developed Spark, a framework for iterative applications and interac-
tive data mining that provides primitives for in-memory cluster computing . Unlike
frameworks based on acyclic data flow, such as MapReduce and Dryad, Spark
allows programmers to create in-memory distributed datasets and reuse them
efficiently in multiple parallel operations . This makes Spark especially suitable for
iterative algorithms that reuse the same data repeatedly, such as machine learning
and graph applications, and for interactive data mining, where a user can load a
dataset into memory and query it repeatedly . As previously mentioned, Spark can
outperform Hadoop by a factor of 30 in these tasks .

Spark provides a language-integrated programming interface, similar to Micro-
soft’s DryadLINQ [9], in Scala [5], a high-level language for the Java VM . This
means that users can write functions in a single program that automatically get
sent to a cluster for execution . For example, the following code snippet implements
the p estimation algorithm from earlier in this article:

val count = spark.parallelize(1 to NUM_SAMPLES).map(i =>

 val x = Math.random

 val y = Math.random

 if (x*x + y*y < 1) 1.0 else 0.0

).reduce(_ + _)

println(“Pi is roughly “ + 4 * count / NUM_SAMPLES)

AUGUST_11_articles_updtdfile.indd 42 7.6.11 2:48 PM

 ;login: AUGUST 2011 Mesos 43

Here, the arguments to map and reduce are Scala function literals (closures) that
are automatically shipped to the Mesos cluster for parallel execution . The _ + _

syntax means a function to add two numbers .

As a more interesting example, the code below implements logistic regression [3],
an iterative machine learning algorithm for classification (e .g ., identifying spam) .
We build an in-memory distributed dataset called points by loading the data in a
text file, then run map and reduce operations on it repeatedly to perform a gradi-
ent descent . Loading points into memory allows subsequent iterations to be much
faster than the first and lets Spark outperform Hadoop for this application .

val points = spark.textFile(...).map(parsePoint).cache()

var w = Vector.random(D)

for (i <- 1 to ITERATIONS) {

 val gradient = points.map(p =>

 (1 / (1 + exp(-p.y*(w dot p.x))) - 1) * p.y * p.x

).reduce(_ + _)

 w -= gradient

}

println(“Final separating parameter: “ + w)

Spark can also be used interactively from a modified Scala interpreter to build and
query distributed datasets . We have used Spark to analyze several large traces in
the course of our research .

Spark is being used by several groups of machine learning researchers at Berkeley,
for projects including traffic estimation and spam detection on social networks .
It is also being used at Conviva, an online video distribution company, to run ana-
lytics on large Hadoop and Hive datasets . The system has grown into a research
project of its own, and is open source at http://www .spark-project .org .

Experimental Results

We evaluated Mesos through a series of experiments included in our NSDI ’11
paper [8] . We sketch three of them here .

Job performance in a shared cluster: In the first experiment, we wanted to com-
pare Mesos’s performance with a static partitioning of a cluster, where each parti-
tion ran a separate framework . For this, we ran a 100-node cluster on Amazon EC2
and concurrently ran four frameworks: (1) a mixed Hadoop workload based on the
workload at Facebook, (2) a Hadoop batch workload, (3) a Spark instance running
machine learning jobs, and (4) the popular Torque scheduler running MPI jobs .
Table 1 compares job completion times for Mesos and static partitioning . As seen,
most jobs speed up when using Mesos . Note that the Torque framework was con-
figured to never use more than a fourth of the cluster . It is therefore expected not
to see any speedup . The slight slowdown for Torque was due to a slow machine on
EC2 . The speedups are due to frameworks scaling up and down dynamically to use
other resources when another framework’s demand is low . In contrast, with static
partitioning, frameworks are confined to a fixed fraction of the cluster machines .

Scalability: The second experiment investigated how the Mesos master scales
with the cluster size . We ran 200 frameworks filling the whole cluster with tasks
that on average took 30 seconds to finish . Thus, the Mesos master was busy
making scheduling decisions as the tasks were continuously finishing and being
launched by the frameworks . We then launched one additional framework that

AUGUST_11_articles_updtdfile.indd 43 7.6.11 2:48 PM

 44 ;login: vOL. 36, NO. 4

ran one task and measured the overhead of scheduling this task . The result was
that the scheduling overhead remained on average under one second for up to
50,000 slave daemons (which we ran as separate processes on up to 200 physical
machines), showing that the master can manage large clusters with heavy work-
loads . Much of the system’s scalability stems from our use of C++ and efficient I/O
mechanisms in the master .

Reliability: In the final experiment, we wanted to measure how fast Mesos recov-
ered from master failures . As in the scalability experiment, we filled the cluster
with tasks . We then killed the master node and measured how long it took for the
system to elect a new master node and repopulate its state . For a 4000-node clus-
ter, the whole system recovered within 10 seconds .

 Table 1: Aggregate performance of each framework in the macro-benchmark (sum of running
times of all the jobs in the framework). The speedup column shows the relative gain on Mesos.

 Conclusion

As the number of software frameworks for clusters grows, it is becoming increas-
ingly important to dynamically share resources between these frameworks . We
have presented Mesos, a scalable and reliable platform that enables efficient,
fine-grained sharing of clusters among diverse frameworks by giving frameworks
control over their scheduling . Mesos can currently run Hadoop, MPI, the Torque
resource manager, and a new framework, called Spark, for fast in-memory paral-
lel computing . We hope that Mesos also encourages the development of other
 frameworks that can coexist with these . Mesos is open source at http://www
 .mesosproject .org .

References

 [1] Apache Hadoop . : http://lucene .apache .org/hadoop .

 [2] Linux containers Containers (LXC) overview document .: http://lxc .source
forge .net/lxc .htmlhttp://lxc .sourceforge .net/ .

 [3] Logistic regression—Wikipedia . : http://en .wikipedia .org/wiki/Logistic
_regression .

 [4] memcached—a distributed object caching system . : http://memcached .org/ .

 [5] Scala programming language . : http://www .scala-lang .org/ .

 [6] The Message Passing Interface (MPI) Standard . : http://www .mcs .anl .gov/
research/projects/mpi .

Framework
Sum of Exec Times w/
Static Partitioning (s)

Sum of Exec Times
with Mesos (s)

Speedup

Facebook
Hadoop Mix

7235 6319 1.14

Large Hadoop
Mix

3143 1494 2.10

Spark 1684 1338 1.26

Torque / MPI 3210 3352 0.96

AUGUST_11_articles_updtdfile.indd 44 7.6.11 2:48 PM

 ;login: AUGUST 2011 Mesos 45

[7] The Next Generation of Apache Hadoop MapReduce . : http://developer .yahoo
 .com/blogs/hadoop/posts/2011/02/mapreduce-nextgen .

[8] B . Hindman, A . Konwinski, M . Zaharia, A . Ghodsi, A .D . Joseph, R . Katz, S .
Shenker, and I . Stoica, “Mesos: A Platform for Fine-Grained Resource Sharing
in the Data Center,” in Proceedings of the 8th USENIX Symposium on Networked
Systems Design and Implementation (NSDI ’11) .

[9] Y . Yu, M . Isard, D . Fetterly, M . Budiu, Ú . Erlingsson, P .K . Gunda, and J . Currey,
“DryadLINQ: A System for General-Purpose Distributed Data-Parallel Computing
Using a High-Level Language,” in 8th USENIX Symposium on Operating Systems
Design and Implementation (OSDI ’08), pp . 1–14 .

AUGUST_11_articles_updtdfile.indd 45 7.6.11 2:48 PM

 46 ;login: vOL. 36, NO. 4

sysadmin
The theme for LISA ’11 is “DevOps: New Challenges, Proven Values .” DevOps is “an
umbrella concept that refers to anything that improves the interaction between
development and operations” [1] . While usually associated with Web opera-
tions, the tools and techniques are now being mainstreamed into the enterprise .
Although DevOps is new, it embodies themes long popular at LISA: automation,
performance, scaling, collaboration, and cooperation .

There is an important shift happening in system administration, and we felt it was
important to acknowledge this change by making it this year’s theme . What is this
change? In the status quo, sysadmins obtain software from vendors and struggle
with operational issues with varying levels of support . Scaling, disaster recovery,
operational efficiency is left as an exercise for the user .

Recently there has been a trend towards self-sourcing . A company providing a
Web-based service develops it in-house and the operations work is done by in-
house system administrators . Development and Operations work together, with
shared responsibility for the success of the whole . This last part bears repeating:
shared responsibility .

Let’s call this new way “DevOps .” While we’re at it, let’s acknowledge that it isn’t
new . However, it is becoming more frequent and is the dominant paradigm for the
high-growth segments of our industry . As a result, new cultural “best practices”
are becoming apparent .

While in-house software development is nothing new, the Web-centric world cre-
ates opportunities that hadn’t existed before . Likewise, you can manage a new-
style, Web-based service with the paradigm of the past, but you would miss out on
opportunities that were unavailable before .

For example, the old way often involves packaged, shrink-wrapped software . A new
release comes along each year . The effort to ship a new release is huge . You have a
printer that makes boxes, a factory that produces media, an assembly line that puts
them all together and ships them . Every new release involves a new manual, a new
box, and inventory strategies to deal with the old version sitting in the warehouse .
All these pieces come together once a year . To make it all happen we use software
development methodologies with names like “Waterfall,” “Spiral,” and “Release
Trains .” If there are millions of users, there are millions of deployments .

In the Web world, shipping a new release has much lower overhead . There is no
physical package . There is, ostensibly, one deployment . This gives birth to frequent

LISA ’11 Theme—
“DevOps: New Challenges, Proven Values”
t h o M a s a . l i M o n C E l l i a n d d o u g h u g h E s

LISA ’11 Co-Chairs

lisa11chairs@usenix.org

AUGUST_11_articles_updtdfile.indd 46 7.6.11 2:48 PM

 ;login: AUGUST 2011 LISA ’11 Theme: DevOps 47

sysadmin releases: weekly, daily, maybe continuously . This, in turn, leads to new software
development methodologies like “Agile Development .” Yes, you absolutely can use a
waterfall model and only update the Web site’s software every year, but you would
miss out on opportunities that were unavailable before .

Opportunities Arise for Operational Improvements

As mentioned previously, in the old way, sysadmins are solely responsible for opera-
tional issues with some or little support from the vendor . Certainly a Web site can be
managed that way by treating the in-house developers as the vendor . We can do even
better .

DevOps promotes a different culture: developers and operations work together as
partners—as a team . The way a manager can bring this about is to make the two
groups share responsibility for the operational success of the service .

Previous to DevOps, I’d make feature requests that would benefit the operational
efficiency of a service (i .e ., make my life easier), and countless times I’ve seen those
feature requests ignored . That attitude changes when the on-call rotation is shared
among the developers and the system administrators . Nothing develops empa-
thy for the importance of operational efficiency like a week of pager duty . When
informed by operational experience, software development changes in ways that
directly benefit the operational efficacy of a company .

It is quite refreshing to leave the “toss each release over the wall” world and enter
the DevOps “we’re all on the same boat” model . Collaboration between developers
and system administrators means that the operational aspects of each new feature
are worked out ahead of time . Rather than developing every feature a deployment
may need, teams can focus on just the operational features needed by your deploy-
ment . Developers have a better appreciation for what information should be logged
to ease debugging and what variables need to be exposed to do proper monitoring
and metrics .

We’re All Programmers Now

In such an environment, system administrators need to become more like develop-
ers . Automation becomes critical . Sysadmins have always been “pro-automation”
but “who has time to automate anything?” is such a frequent refrain that outsiders
would think some of us are anti-automation . There may be justifiable reasons to
not automate something, but three of them are disappearing:

 1 . You can’t automate physical work such as installing a new machine .
 2 . It doesn’t make sense to automate something that happens once or rarely .
 3 . Management isn’t funding automation projects, because they don’t see the

value .

The first objection disappears when using EC2 or other “infrastructure as a ser-
vice” (IaaS) cloud providers . When installing a new machine is an API call, we’re
all programmers now .

The second objection disappears because nothing happens once anymore . With
old-style packaged software, once it is installed it is installed . The next upgrade
might be a year from now . In the Web world, scaling makes very few things “rare .”
A one-in-a-million error happens hourly and becomes worth fixing . Requests
previously done manually must be turned into “self-service” portals so that there
is less waiting . If developers frequently need a server’s OS reloaded, why should

AUGUST_11_articles_updtdfile.indd 47 7.6.11 2:48 PM

 48 ;login: vOL. 36, NO. 4

they wait for a system administrator to do that? The portal can verify they own the
machine and do the entire process . If developers need another machine, why should
they wait for a system administrator to purchase, install, and configure it? The
portal can allocate a virtual machine and bill the developers’ project code .

The third objection disappears because, in a Web environment, management does
see the value, or at least good management does . Velocity becomes important .
Uptime becomes important . And, even more importantly, operational efficiency
becomes a competitive advantage . These things require the consistency and scale
that only automation can achieve .

DevOps reflects a cultural change that reflects the new paradigm . DevOps is a
culture . It isn’t a job description: you can’t hire a “devop .” It isn’t a technology: you
can’t buy a software package that provides the “devops service .” It isn’t a job title:
people do not have “devops” on their business card .

DevOps Beyond the Web

DevOps is mature enough that the innovations are now feeding into areas outside
Web-based services . LISA is a unique opportunity to apply the lessons of DevOps
to traditional enterprise computing, storage administration, security, and network
administration .

Traditional computing organizations need the new insights that DevOps culture
brings . The stellar uptime of Google, Facebook, and other popular Internet sites
has created high expectations for the most simple internal Web app . People want
to be able to fill out their expense report forms anytime, even nights and week-
ends . That was easy when doing so meant a paper form, since paper has incredible
uptime . Now such forms are online and we sysadmins are under pressure to make
sure they are always available . Packaged software may still ship yearly, but secu-
rity updates are a constantly flood comparable to the launch schedule of Web sites .

This “mainstreaming” of DevOps is important to us as an industry . It is LISA’s
great responsibility, as the leader in advancing the state of the art in system
administration, to make this happen . DevOps and USENIX LISA embody the same
cultural values: automation, performance, scaling, collaboration, and cooperation .
These are the values we’ve always seen at the LISA conference since it began 25
years ago [2] .

In a recent phone conversation, Andrew Hume asked Tom to define DevOps .
After Tom rambled on for five minutes, Andrew interrupted, “Oh, so they’ve given
a name to the way I’ve been doing things for years!” He wasn’t that far off . Tom
reviewed all the presentations from LISA ’10 and determined that 27% could easily
be classified as “DevOps” and 31% could be classified as “mostly DevOps .” Thus it
is easy to assert that last year’s theme was DevOps but we didn’t know it . If we can
achieve similar ratios in 2011, the theme will be a success .

LISA ’11 will include many new speakers, as well as many familiar faces .

We look forward to seeing your familiar face there too!

References

[1] This definition is attributed to John Allspaw .

[2] By the way, this is the 25th LISA . Happy Silver Anniversary!

AUGUST_11_articles_updtdfile.indd 48 7.6.11 2:48 PM

 ;login: AUGUST 2011 49

cOlumns
Ah, last issue’s column . Who can forget it? It had poise . It had verve . It had rhythm .
And it certainly had a better introduction than this one . Lest you have forgotten
that bygone issue, let met do a little recap . We looked at a very spiffy Web frame-
work called Dancer . Actually, on the official Dancer Web site at perldancer .org they
call it a “micro Web application framework,” because it is so simple and concise .
Based on Ruby’s Sinatra framework, it lets you write a script that looks like this:

use Dancer;

get ‘/hello/:name’ => sub {

 return “Why, hello there “ . params->{name};

};

dance;

 . . .and then spin up a tiny Web server that will process requests simply by running
the script .

The code looks for incoming GET requests with a path of /hello/{something} and
then returns a jovial response of “Why, hello there {something}” . The line that
begins with “get . . .” is a route specification . It states that if a request comes in that
matches that specification, the associated code should be run . This route-based
approach, where the programmer essentially provides a dispatch table, seems to be
pretty common in the Web framework world these days . Another pervasive feature
for Web frameworks is the ability to generate Web pages through the use of a tem-
plating system . We took a brief look at Dancer’s support for templates and a helper
command-line script that created an entire sample application directory structure
which included a place for those templates . At that point, I had to end our time
together and leave you with a bit of a cliffhanger by mentioning but never really
naming a “competing” Web framework that compared to Dancer . That’s what we
are here to explore today .

In this column, we’re going to look at Mojolicious (http://mojolicio .us, cute, huh?) .
More precisely, we’re going to mostly consider Mojolicious::Lite, the “micro Web
framework” part of the larger package, because it is closer in nature to Dancer .
Let’s look at our first piece of Mojolicious::Lite code:

Practical Perl Tools
Got My Mojolicious Working

d a v i d n . b l a n k - E d E l M a n

david N. Blank-Edelman is

the director of technology at

the Northeastern University

College of Computer and

Information Science and the author of the

O’Reilly book Automating System Administration

with Perl (the second edition of the Otter

book), available at purveyors of fine dead

trees everywhere. He has spent the past 24+

years as a system/network administrator in

large multi-platform environments, including

Brandeis University, Cambridge Technology

Group, and the MIT Media Laboratory. He was

the program chair of the LISA ’05 conference

and one of the LISA ’06 Invited Talks co-chairs.

david is honored to have been the recipient

of the 2009 SAGE Outstanding Achievement

Award and to serve on the USENIX Board of

directors beginning in June of 2010.

dnb@ccs.neu.edu

AUGUST_11_articles_updtdfile.indd 49 7.6.11 2:48 PM

 50 ;login: vOL. 36, NO. 4

use Mojolicious::Lite;

get ‘/hello/:name’ => sub {

my $self = shift;

$self->render(text => “Why, hello there “ . $self->param(‘name’));

};

app->start;

Why yes, it does look remarkably like the Dancer example above with a wee bit
of object-oriented programming syntax snuck in there . The close resemblance is
intentional on my part, but the first bit of code in the Mojolicious::Lite introduction
is nearly identical to what I wrote above . There’s a bunch more going on here, but
if you are comfortable with the Sinatra-like syntax in Dancer, you’ll be fine with
Mojolicious::Lite as well .

What Is Mojolicious and Where Can I Get One?

One thing I don’t want to do with this column is imply that Mojolicious or even
Mojolicious::Lite is just Dancer++ . It would be possible to write a column that says
“Dancer offers this, but Mojolicious::Lite offers that plus this other thing,” but I
think that would do a disservice to both frameworks . If I did that you wouldn’t
really get a sense of just how different they are, even just in their basic worldview .
So let me step way back for a moment and discuss Mojolicious itself and how it
relates to Mojolicious::Lite .

Once upon a time, a German Perl programmer by the name of Sebastian Riedel
took over maintenance of a Web application framework called Maypole . Eventually
he left that project to found another Web application framework, called Catalyst
(Catalyst is probably the most popular of the Perl Web app frameworks) . Riedel
eventually left the Catalyst project and created yet another framework, called
Mojolicious . And that’s where our story begins . I have no idea why Riedel is such a
serial framework creator, I just know he tends to start and leave good stuff behind
in his wake that tends to move the field forward .

One of the first ways Mojolicious distinguishes itself from other frameworks is in
its dependencies on other modules outside the Perl core .

It doesn’t have any .

“But that’s crazy talk!” you say . “What about LWP? How about the parsing of
HTTP messages? URL processing? Templates? Cookies? Surely it doesn’t imple-
ment its own full featured UNIX-optimized preforking async I/O HTTP 1 .1 and
WebSocket server with IPv6, TLS, Bonjour, epoll, kqueue, and hot deployment sup-
port?” That last question is a bit over the top (and if you really said something like
that I would probably start edging away slowly), but, yes, Mojolicious does indeed
ship with code that implements all of these things .

I’m not entirely sure all of this reimplementation is automatically a good thing . It
means that the rest of the Perl world isn’t constantly battle-testing Mojolicious’s
building blocks in the same way other modules do when they rely on common
modules such as HTTP parsing libraries . A rejoinder to this concern comes in the
Mojolicious FAQ in response to the question, “Why reinvent wheels?”:

“Because we can make them rounder .”

AUGUST_11_articles_updtdfile.indd 50 7.6.11 2:48 PM

 ;login: AUGUST 2011 Practical Perl Tools 51

The same FAQ document also points out that Mojolicious will also optionally use
some external Perl modules such as IO::Socket::SSL when it makes sense to “pro-
vide advanced functionality .”

One plus of this approach is that the functionality found in a Web framework like
Mojolicious becomes bounded, not by the restrictions of that framework’s exter-
nal dependencies, but, rather, by the imagination of the framework’s author . In
Mojolicious’s case, it has let the author create a very nice prototyping Web appli-
cation framework in the Sinatra vein with lots of hidden power under the hood .
Mojolicious::Lite is a “micro Web framework built around Mojolicious,” according
to the documentation . (And in case you were curious, Mojolicious itself is built on
top of something called Mojo, which the author calls “a flexible runtime environ-
ment for Perl Web frameworks”) . Let’s focus on some parts of Mojolicious::Lite .

Mojolicious::Lite’s Templates

I don’t want to rehash the last column’s discussion of routes, because they get
used in a very similar fashion in Mojolicious::Lite . Once you understand the basic
idea, your understanding can be applied in both places without much adaptation .
Instead, let’s look at a few places where Mojolicious::Lite does things a bit differ-
ently, because they will reveal some of the hidden power I mentioned a moment ago .

Templating is one of the areas worth exploring . Mojolicious::Lite has its own tem-
plate language (although you can use other template engines if you so desire) called
Embedded Perl . Templates can either live in files that end with .ep (usually found
in a templates directory in your application) or actually embedded in the script
itself at the end in a __DATA__ handle . Since most of the introductory documenta-
tion demonstrates the latter, let’s use that too . Here’s a modified version of our last
example:

use Mojolicious::Lite;

get ‘/hello/:name’ => sub {

my $self = shift;

$self->render();

} => ‘hello’;

app->start;

__DATA__

@@ hello.txt.ep

<%= “Why, hello there $name” %>

@@ hello.html.ep

<html>

<head><title>”Hello”</title></head>

<body>

Why, hello there <%= $name %>

</body>

</html>

The first thing you’ll notice is that I’ve added two templates, hello .txt .ep and
hello .html .ep, to the __DATA__ section of the script . Since you don’t see it used
that often in practice let me mention that the idea of a __DATA__ section is
actually a Perl, not a Mojolicious thing . In Perl, if you add __DATA__ at the end
of the script, that script can read the lines following that marker as if they were

AUGUST_11_articles_updtdfile.indd 51 7.6.11 2:48 PM

 52 ;login: vOL. 36, NO. 4

coming from a real filehandle (e .g ., with while (<__DATA__>) {something . . .}) .
Mojolicious::Lite lets you specify multiple “files” in that section by prefixing each
section with @@ and the name of the file . It should be mentioned that using the
__DATA__ section is just a shortcut . If we wanted to create two separate files and
place them in the right templates directory for an application, they would function
exactly the same way .

In the templates themselves, you see the use of the <%= Perl_expression %> tag .
The contents of that tag are replaced by the result of the enclosed expression after
Perl has evaluated it . Here are the other possibilities from the Mojo::Template
documentation:

<% Inline Perl %>

<%= Perl expression, replaced with result %>

<%== Perl expression, replaced with XML escaped result %>

<%# Comment, useful for debugging %>

% Perl line

%= Perl expression line, replaced with result

%== Perl expression line, replaced with XML escaped result

%# Comment line, useful for debugging

Using either the “<” or “%” convention, you can basically embed whatever Perl code
you would like into the template (hence the name) . The code above just substitutes
in the value of $name, but it could just as easily have been a much more complex
Perl expression .

While we’re talking about the $name variable, I should explain how that variable
gets set, since there are a few things going on behind the scenes . In the route speci-
fication above, we provided the named placeholder using the syntax “:name” . When
an incoming request matches that route, the part of the request that matched
the placeholder automatically gets extracted and stored in something called “the
stash” under that name . The stash is a temporary holding spot for stuff like tem-
plate values . When the template gets rendered, it looks in the stash for these values .

Data can also be put in the stash by hand; for example, we can also write code such
as:

$self->stash(‘editor’ => ‘rik’);

and $editor would be available to render in a template .

There are two additional changes between the two previous code samples that
reveal more interesting default “smartiness” in Mojolicious::Lite . The first is the
addition of the following to the routing specification:

} => ‘hello’;

This gave the route a name . Mojolicious::Lite will use that name when deciding
what template to render . That’s why we didn’t have to specify a template in this
line:

$self->render();

When I removed the arguments to the render() call, I brought two Mojolicious::Lite
defaults into play . The first is the use of the route name to select the appropri-
ate template basename (the name without the format suffix) . The second is an

AUGUST_11_articles_updtdfile.indd 52 7.6.11 2:48 PM

 ;login: AUGUST 2011 Practical Perl Tools 53

automatic detection of format (i .e ., .html or .txt) . If I use the following URL in the
browser:

http://127.0.0.1:3000/hello/dnb.txt

the hello .txt .ep template is rendered for me . Similarly, if I use:

http://127.0.0.1:3000/hello/dnb.html

the hello .html .ep template is chosen .

Mojolicious::Lite’s Filigrees

This idea of “guess what I might need to do and make it easy” pervades the whole
package . Here’s an example of using sessions:

use Mojolicious::Lite;

get ‘/login/:username’ => sub {

my $self = shift;

$self->session(username => $self->param(‘username’));

$self->render();

} => ‘login’;

get ‘/hello’ => sub {

my $self = shift;

my $username = $self->session(‘username’) || ‘(no one)’;

$self->stash(username => $username);

$self->render();

} => ‘hello’;

get ‘/logout’ => sub {

my $self = shift;

my $username = $self->session(‘username’) || ‘(no one)’;

$self->stash(username => $username);

$self->session(expires => 1);

$self->render();

} => ‘logout’;

app->secret(“shhh, I’m hunting wabbits”);

app->start;

__DATA__

@@ login.html.ep

Ok, <%= $username %> is logged in.

@@ hello.html.ep

Welcome back <%= $username %> !

@@ logout.html.ep

<%= $username %> has been logged out.

The only really new concept in this example can be found in the use of the session()
method calls . Mojolicious::Lite provides built-in session management to help deal
with the perpetual question of how to maintain state (e .g ., someone’s logged-in sta-
tus) across a set of stateless HTTP requests . Mojolicious::Lite does all the work for
you, including generating, exchanging, and expiring HMAC-MD5 signed session
cookies . The app->secret() call above simply sets the secret used to sign the cook-

AUGUST_11_articles_updtdfile.indd 53 7.6.11 2:48 PM

 54 ;login: vOL. 36, NO. 4

ies . It is a good idea to set your own secret like this so the default secret (the name
of the application) is not used .

Here’s another piece of code right from the documentation:

use Mojolicious::Lite;

any ‘/upload’ => sub {

my $self = shift;

if (my $example = $self->req->upload(‘example’)) {

my $size = $example->size;

my $name = $example->filename;

$self->render(text => “Thanks for uploading $size byte file $name.”);

 }

};

app->start;

__DATA__

@@ upload.html.ep

<!doctype html><html>

 <head><title>Upload</title></head>

 <body>

 <%= form_for upload =>

 (method => ‘post’, enctype => ‘multipart/form-data’) => begin %>

 <%= file_field ‘example’ %>

 <%= submit_button ‘Upload’ %>

 <% end %>

 </body>

</html>

This code shows how easy it is to perform a file upload using Mojolicious::Lite . In
the template, you can see some built-in tag helpers such as “form_for”, “file_field”,
and “submit_button” that make creating a form easier by generating the right
HTML . What you can’t see from just this code is that Mojolicious::Lite will
(1) prevent the user from uploading a file that is larger than some limit you set,
and (2) write the incoming data to a temporary file (for files over 250k) during the
upload rather than trying to store all the data in memory .

Here are three more cool features that don’t really have specific code associated
with them:

 1 . To create tests for your application (you are creating tests, right?), you can create
a “t” directory and place your usual Perl tests there . Mojolicious provides a num-
ber of Web application testing helpers such as get_ok() (to fetch a Web page and
compare the result) and status_is() (to test the response code) . It also provides
easy ways to parse an existing HTML document (more on this later) that can be
used for a more precise test code .

 2 . If you want to capture a detailed log of your prototype application, it is as simple
as creating a “log” directory . Mojolicious::Lite will start to write a log file into that
directory with lines such as:

Mon May 30 16:51:48 2011 info Mojo::Server::Daemon:297 [20304]: Server

listening (http://*:3000)

Mon May 30 16:52:10 2011 debug Mojolicious::Plugin::RequestTimer:22 [20304]:

GET /login/dnb (Mozilla/5.0 (Macintosh; U;

AUGUST_11_articles_updtdfile.indd 54 7.6.11 2:48 PM

 ;login: AUGUST 2011 Practical Perl Tools 55

 Intel Mac OS X 10_6_7; en-us) AppleWebKit/533.21.1 (KHTML, like Gecko)

 Version/5.0.5 Safari/533.21.1).

Mon May 30 16:52:10 2011 debug Mojolicious::Routes:376 [20304]: Dispatching

callback.

Mon May 30 16:52:10 2011 debug Mojolicious::Plugin::EplRenderer:57 [20304]:

Rendering template “login.html.ep” from DATA section.

Mon May 30 16:52:10 2011 debug Mojolicious::Plugin::RequestTimer:44 [20304]:

200 OK (0.004464s, 224.014/s).

 3 . And one more feature that seems obvious once you hear it is possible:

When you start up a prototype application in daemon mode (the one that spins up a
test Web server), it can be started with a --reload flag, like so:

$ perl testapp.pl daemon --reload

When started this way, Mojolicious::Lite’s test Web server will monitor your
testapp .pl file for modification and reload itself with the new contents of that file
if it spots any changes . With this approach, making a change, restarting the Web
server, making another change, restarting the server, and so on becomes unneces-
sary and the interaction is much more pleasant . Using the Web server in this mode
has some limitations (see the documentation), but most of the time it works great .

What Else?

Once again we are at a place where we’ve opened the door to peek at a subject
but, for space reasons, don’t have a chance to fully explore the magic land beyond
that door . With Mojolicious this is especially true, because we’ve only scratched
the basic prototyping layer it provides (Mojolicious::Lite) . Mojolicious itself is a
full-on Web framework that lets you build a full-bore MVC Webapp . You can split
up the logic for your application into appropriately sized compartments (each in
its own class/package/module) . More advanced route handling can be specified
to direct the program flow to specific handlers based on conditions (e .g ., which
browser is being used, invalid input), to ignore parts of the request URL, and so
on . There are too many other lovely features to this package (including a cool
HTML parser called Mojo::Dom which can use CSS-like selectors to return infor-
mation) to cover in just one article . Oh, and I haven’t mentioned all of the plugins
available which make using back-ends like Redis, MongoDB, and Memcached from
Mojolicious pretty painless . Set aside some time to look at the documentation at
http://mojolicio .us . I think you’ll be pleased if you do .

Take care, and I’ll see you next time .

AUGUST_11_articles_updtdfile.indd 55 7.6.11 2:48 PM

 56 ;login: vOL. 36, NO. 4

It is with a tear in my eye that I change the name of this long-running column
from Pete’s All Things Sun to Galvin’s All Things Enterprise . The tear comes from
a longing for the good ol’ days when Sun was a major contributor to technology
innovation . With the purchase of Sun by Oracle, the use of the company name Sun
no longer makes sense . And while I’m changing some things, why not change the
scope of the column as well? In fact, truth be told, some of the previous columns
weren’t really Sun-focused, but strayed from the course to cover interesting tech-
nology topics that were just at the periphery of Sun . So at the prompting of Rik, the
editor of ;login:, both the name and the scope of this column have changed . Cer-
tainly, Oracle will be a topic from time to time, but there is a lot of innovation hap-
pening in the IT space, and with the new name, it will be within the purview of this
column . But what topic should be first for this expanded column? How about the
most hyped (or is that over-hyped?) new area of IT innovation: cloud computing?

Everything is cloudy these days . Between old-school vendors having (or claiming
to have) cloud-centric products and services and startups that may or may not have
the next great cloud thing, it’s impossible in the IT space to avoid hearing, read-
ing, getting marketing about, and generally being bludgeoned by cloud . In fact, the
use of the word “cloud” in all things technical has caused some to come down with
cloud-itis—one more mention of something “cloud” could cause a serious injury (or
cause them to seriously injure someone) .

Which of course leads me to write this column about cloud . But wait, didn’t I just
admit that the world is overly cloudy? Indeed . However, this column is not going to
introduce some great new cloud thing that you didn’t know you couldn’t live with-
out until I told you about it . Rather, this is intended to be a pragmatic cloud sanity
check . What are IT managers doing about cloud, and what aren’t they doing? What
seems to be a cloud-based improvement on the old way of doing things, and what is
just pie in the sky? And just what is “cloud” anyway? Read on to see my take on all
things cloud .

What Is Cloud Computing?

Cloud computing is many things to many companies’ marketing departments, and
even analysts have trouble agreeing on what constitutes “real” cloud computing .
For example, some definitions include some kind of remote access requirement,
while others say that the component must be part of a shared infrastructure to be
considered cloud . Gartner has the most sane definition [1]: cloud computing is “a
style of computing where scalable and elastic IT-enabled capabilities are provided

Galvin’s All Things Enterprise
The State of the Cloud

p E t E r b a E r g a l v i n

Peter Baer Galvin is the CTO

for Corporate Technologies,

a premier systems integrator

and vAR (www.cptech.

com). Before that, Peter was the systems

manager for Brown University’s Computer

Science department. He has written articles

and columns for many publications and is

co-author of the Operating Systems Concepts

and Applied Operating Systems Concepts

textbooks. As a consultant and trainer, Peter

teaches tutorials and gives talks on security

and system administration worldwide. Peter is

also a Lecturer at Boston University and Senior

Contributor to BYTE. Peter blogs at http://

www.galvin.info and twitters as “PeterGalvin.”

pbg@cptech.com

AUGUST_11_articles_updtdfile.indd 56 7.6.11 2:48 PM

 ;login: AUGUST 2011 Galvin’s All Things Enterprise 57

‘as a service’ to external customers using Internet technologies .” At a more detailed
level, I believe a cloud-based solution has to include these aspects:

 Elastic/on-demand/scalable—needs to have the ability to rapidly scale to meet
potential reasonable demand

 Service-based—facilities provided as services rather than ad hoc or fixed imple-
mentations

 Shared—used by multiple entities concurrently: for example, multiple internal
groups or external companies

 Metered/monitored—either charge for use or monitored for use (chargeback or
viewback)

 Internet technologies–based—enabling potential access from anywhere; loca-
tion independence; secure remote access; and, in general, the benefits brought by
Internet technologies

These requirements allow for a general cloud definition to include both public
cloud and private cloud versions . Public cloud is the more common and the first
salvo in the cloud wars, but private cloud is also becoming a major player and
needs to be part of any cloud discussion . Public cloud is a service provider making
resources (CPU cycles, disk blocks, applications, etc .) available from its datacenter,
meeting the above requirements . A private cloud solution is similar but executed
within a company’s datacenter, with the added qualification that it is under their
security control .

What of the other forms of cloud that are making the rounds? Hybrid cloud is less a
cloud form than a cloud strategy . Hybrid is the use of both public and private cloud
computing . A given project, for example, might use both, or separate projects might
involve one or the other . The consensus seems to be that, rather than there being a
mass migration to the public cloud, for example, this hybrid form of cloud comput-
ing will be the mainstream for the significant future .

Another major cloud computing form is the virtual private cloud . In essence this
form gives IT managers more control over the security and manageability of a
public cloud solution by segregating part of the public cloud into a more private
cloud-like environment . It is between public and private cloud in terms of costs,
security, and manageability .

Those of us who are jaded computing veterans recognize in cloud computing
many aspects of other previous-generation solutions . In fact, the Wikipedia entry
about cloud computing [2] rightly points out that there are aspects of autonomic
computing, client-server model, grid computing, utility computing, peer-to-peer,
and service-oriented computing . I would go further and say that many of these
ideas have been incorporated in thin-client computing, mainframe, online-service
providers, and time-sharing computing . If you doubt this, consider that you could
rebuild CompuServe (the old online-service provider) by buying CPU cycles from
one public cloud provider and disk space from another .

Why Cloud?

If cloud computing is similar to previous computing models, what makes it dif-
ferent? Note that in the definitions given so far, there is nothing about lower cost .
However, that is one of the driving factors . The lower cost comes from efficiencies
of scale of the large cloud providers, and also from competition . Competition is
the key difference between the old models and the cloud model . Not only are the
cloud providers competing with one another for price/performance and features,

AUGUST_11_articles_updtdfile.indd 57 7.6.11 2:48 PM

 58 ;login: vOL. 36, NO. 4

but for the first time, they are providing competition to IT management . This is a
seismic change . Never before could a business manager use her credit card to pay
for infrastructure to host her new technology-enabled business offering, but that
is just what is happening in companies worldwide . Note that this is not necessarily
a good thing, as IT management is responsible for SLAs, governance, and policies .
For example, a company might have a policy that states that “all tier 1 data must be
replicated from the production site to the DR site”; such a policy would more than
likely be disregarded by the business manager . Who will be responsible when a
problem occurs because of the violation of this policy?

How, then, is IT management going to respond to competition? Some are fight-
ing against it, issuing policies that say cloud facilities cannot be used by business
components outside of IT . And sometimes this is for good reason, as discussed
below . Others are letting nature take its course, enjoying the surprised look on
the business manager’s face when they get the unexpectedly large credit card bill
(“How could $0 .12 per hour add up to that?!”) . Others are using that competition to
their advantage, harnessing cloud solutions to lower their costs and increase the
features, functions, capabilities, rapidity of response, and elasticity available to
them by using cloud services to meet business needs . They are moving to provide
IT as a service to their customers (employees at their business), and those services
are frequently composed of hybrid cloud components .

Of course, with any new computing solution there are those who rush to be at the
bleeding edge and those who wait for solutions to mature, see if they stand the test
of time, and then use them as they fit into their IT strategy . Equally obvious is that
not all cloud technologies, solutions, vendors, and products are right for every IT
manager . VDI (Virtual Desktop Infrastructure) is the current case in point . Many
sites are exploring VDI, but many are finding that it is proving difficult to execute
at any cost savings over their current desktop architecture . Some sites are moving
to VDI in spite of this, discovering that it solves other thorny issues such as secu-
rity and easy (and secure) remote access . Others are evaluating new solutions as
they appear, waiting for one that fills their set of needs at their needed price .

That leads to another interesting point about cloud computing—it is without a
doubt driving a new, high level of innovation in IT . Startups are being funded to
provide cloud solutions, and to provide solutions to the new problems that cloud
computing is creating . Existing companies are revamping their existing offerings
to make them more pertinent in the cloud epoch (or at least having their marketing
spin stories about how their offerings are cloud-relevant) .

What’s Next

So far this column has defined cloud computing and has given reasons why it is
important to IT . In the next edition of Galvin’s All Things Enterprise, I’ll discuss
examples of companies making good uses of cloud solutions, I’ll give reasons that
others should be or are avoiding the cloud, and I’ll finish with a detailed list of IT
aspects to consider when deciding whether a given service should be public cloud-
based, private cloud-based, hybrid strategy-based, or kept as is on current infra-
structure .

References

[1] http://www .gartner .com/it/page .jsp?id=1035013 .

[2] http://en .wikipedia .org/wiki/Cloud_computing .

AUGUST_11_articles_updtdfile.indd 58 7.6.11 2:48 PM

 ;login: AUGUST 2011 59

iVoyeur
Crom

d a v E j o s E p h s E n

dave Josephsen is the

author of Building a

Monitoring Infrastructure

with Nagios (Prentice

Hall PTR, 2007) and is senior systems

engineer at dBG, Inc., where he maintains

a gaggle of geographically dispersed server

farms. He won LISA ’04’s Best Paper award for

his co-authored work on spam mitigation, and

he donates his spare time to the SourceMage

GNU Linux Project.

dave-usenix@skeptech.org

In 2006 I joined a tiny little company that was in the process of moving from the
California Bay Area to Texas . Their business was about half database outsourcing
and half niche Web site hosting . Their production infrastructure was primarily
Linux, but they’d had all sorts of sysadmins, so there were a few pieces of SCO here,
some HPUX there, etc .

The various sysadmins had also left their mark on the haphazard bowl of spaghetti
that was their back-end processing automation . This unruly mob of code that
extracted and imported, encrypted and decrypted, compressed and uncompressed
and sent hither and yon the data that was the lifeblood of the company was writ-
ten in all manner of languages, and never did the same thing the same way twice .
When I joined the company no one had a clear idea of what it was all doing, much
less how it managed to do it .

There were several hundred scripts in all, written in TCL, Perl, C, shell, and Java .
The DBAs knew where to drop things off and where to pick things up, and beyond
that nobody wanted to touch any of it . But now that the company was moving, it all
needed to get untangled, and the untangling had fallen to me .

It’s rarely much fun to inherit another sysadmin’s (or, in this case, gaggle of sys-
admins’) mess, but I was actually kind of fascinated by the problem . It was pretty
obvious that all of this stuff was doing the same subset of tasks over and over
again . Extract the file, encrypt the file, send the file . Repeat . My plan was to write
a library that encompassed all of those tasks, as well as enforce some standardiza-
tion, and then re-write all of the existing scripts using that library . None of this
was exactly rocket science, and transparency was important, so I took the LCD
approach and wrote the library in shell .

It was a commendable effort . The library enforced a common runtime directory
structure, so that everything was in a predictable place . It included its own logging
functions to ensure that all of the logging and error-handling was centralized and
in a common format . It even trapped signals and responded accordingly, such that
if anyone were to, for example, hit Ctrl-C in the middle of a script execution, the
library would gracefully exit . All of the scripts would use cron for scheduling . It
solved a lot of the problems that the original bowl of spaghetti presented, and even
changed the way I write shell scripts to this day (for the better), but ultimately, I
think, the effort was a failure .

There are several reasons I think I missed the mark on this problem, but really
they could be summed up by saying that I hadn’t given the company a solution . I’d

AUGUST_11_articles_updtdfile.indd 59 7.6.11 2:48 PM

 60 ;login: vOL. 36, NO. 4

rewritten their automation in the manner I thought it ought to have been done in
the first place, but for everyone other than myself, these scripts are still a black box
of mystery . Were I to leave the company tomorrow, the admin to replace me would
be more likely to write the next script in his or her language of choice (Ruby or Lua,
or whatever you kids are using this week) than to dig into my code to learn how
my boring, probably obsolete shell library worked . I hadn’t added to the mess, but
neither had I provided a means to ensure it didn’t reoccur . And really that’s why the
problem existed in the first place .

Also, there were aspects of bad engineering about it . Yes, there was a library of
reusable code there, and all those common tasks were represented as functions
within it, but I still needed to port the old scripts to new scripts, and those new
scripts all still did the same subset of things again and again . So there remained an
abhorrent amount of silly code redundancy—100 scripts to call different combina-
tions of the same 15 functions on 100 different files . Had I written a few proof-
of-concept scripts instead of being so focused on finishing the magical library of
wonder, I would have noticed it earlier . Once the lib was done, I’d ported about two
TCL scripts to it before realizing my mistake, but by then I was committed to the
design and nearly out of time . I paid for it in the mind-numbing 72-hour port-fest
that ensued, feeling stupider and stupider with each newly ported shell script .

Needless to say, the seed of a mental image of the correct answer formed in my
mind that night, but as these things go, it was a couple of years before I was able to
revisit the problem . That seed had plenty of time to germinate, and I was deter-
mined to get it right this time . The library wasn’t a bad idea at all, I just wasn’t
thinking big enough . The correct answer to this problem was, I think, just a single
layer of abstraction up from where I’d started . I had written a library to enforce a
common way to do things, but I needed a framework, and a set of common inter-
faces for people to use that library (in a way that didn’t force them to write their
own shell scripts) . I call that framework “Crom .” And while Crom is dry fodder for
conversation, and only peripherally related to systems monitoring, it’s also about
all I’ve worked on for the last several months, so I’m afraid we’re stuck with it, dear
reader . My apologies .

Crom has a few operational assumptions about your job . First, it assumes that
your job can be broken down into tasks . Next, it assumes that you want to schedule
those tasks to run on a recurring schedule of some sort . Crom uses the UNIX at
command to perform the actual job scheduling, and it is written in 100% shell, so
it requires only /bin/sh, at, and the usual slew of shell commands like date, cut,
grep, and sed .

Although the similarities are unintentional, Crom’s architecture is quite similar
to Nagios [1] . It’s a task-specific scheduling and notification engine, but instead of
scheduling little monitoring plugins to collect metrics or check availability, Crom
schedules individual tasks that make up a larger Job . These tasks deal with some
little piece of automation, like loading data into an Oracle database or sending a file
via FTP to a remote host . Figure 1 shows a typical Crom job definition .

meta{

JOBID=4019

JOBNAME=exampleJob

DESCRIPTION=”An example job for the wonderful readers of ;login magazine”

NOTIFYONERRORS=’cromerrors@domain.com’

}

AUGUST_11_articles_updtdfile.indd 60 7.6.11 2:48 PM

 ;login: AUGUST 2011 iVoyeur 61

task0{

DESCRIPTION=”extract the file from DB1”

TASKTYPE=’extract’

SCHEDULE=’1 0 * * 2’

SOURCE=”$(cat ${CTL}/${JOBID}/db1schema)@DB1:”

ORA_PROC=$CTL/$JOBID/file_extract.proc

ORA_ERROR=’halt’

}

task1{

DESCRIPTION=”scp the file from coke”

TASKTYPE=’pull’

SCHEDULE=’runafter:0’

PROTO=’sftp’

SOURCE=’oracle@DB1.domain.com:/data01/outgoing/Post*’

DESTINATION=%NEXT%

SKEY=”${KEYS}/oracle_DB1_dsa”

ARCHIVESOURCE=’1’

}

task2{

DESCRIPTION=”add a date to the filename”

TASKTYPE=’custom’

SCHEDULE=’runafter:1’

DESTINATION=’%NEXT%’

SOURCE=’%THIS%/Post*’

INCLUDE=”${CUSTOM}/${JOBID}/rename.sh”

}

task3{

DESCRIPTION=”sftp the file to xyz bank”

TASKTYPE=’push’

SCHEDULE=’runafter:2’

PROTO=’sftp’

DESTINATION=’dbguser@1.2.3.4:in’

SOURCE=’%THIS%/Post*’

DKEY=”${KEYS}/${JOBID}/xyz_dsa”

}

Figure 1: Crom job definition

Except for the surrounding brackets, each attribute is shell syntax . In fact, when
Crom reads in some piece of the job definition, it does so by extracting the section
it’s interested in between the brackets via sed, and then sourcing it . The attributes
are then available as shell variables . Since we source in the attributes, we can use
nested execution blocks to hide sensitive info such as passwords . In the example,
the SOURCE attribute in task 0 is reading in its Oracle schema and password from
an external file using $() . Crom inherits its directory structure from my original
back-end processing library and provides environment variable shortcuts to useful
directories at runtime . These may be used by any script that sources the library .
For example, task 0 in Figure 1 is using the ${CTL} shortcut provided by Crom to
locate an Oracle procedure file .

AUGUST_11_articles_updtdfile.indd 61 7.6.11 2:48 PM

 62 ;login: vOL. 36, NO. 4

Each job is identified by a unique job number, called the JOBID, and each task is
numbered sequentially . All tasks are required to have a schedule . There are three
valid types: (1) Crom can parse schedules in standard cron syntax using its own
parser (also written in shell); (2) a task may be scheduled to be run subsequent
to the successful completion of another task with the “runafter” keyword (any
number of tasks may “runafter” the same parent task in parallel); and (3) Crom
supports the “never” keyword as a valid schedule, for tasks that are never intended
to be run automatically (such as break-fix or debug tasks) .

The Crom library supports macros in its definition files for those variables that
aren’t necessarily known at runtime . For example, task 1 in Figure 1 is mak-
ing use of the “%NEXT%” macro, which will resolve to “cromhome/run/today/
files/4019/2” (since 2 is the number of the next task) . Since that specific directory
is actually known at runtime, we could have just specified that instead of using the
Macro %NEXT%, but the macro is preferable in that if the task is ever renumbered,
%NEXT% will continue to work without modification . %NOW% is another macro
supported by the library, which will resolve to the current time in seconds since
epoch format . Users may specify their own macros by placing their values in a file
named for the macro in Crom’s “macro” subdirectory . It’s common practice for
tasks to share data with each other by setting up macros in the jobs macro direc-
tory .

Each task is required to have a task type, which is similar to a plugin in Nagios .
Crom uses the TASKTYPE variable to locate the actual shell script to execute .
Since task 0 in Figure 1 is specified as an “extract” task, Crom will check crom-
home/bin for an executable named “extract” . If it finds “cromhome/bin/extract”,
it will schedule an “at” job at the next occurrence specified by the tasks schedule
passing the JOBID as argument 1 and TASKID as argument 2 . Expanding Crom is
as easy as writing a shell script and placing it in cromhome/bin .

Strictly speaking, the executable is not required to be a shell script: it can be
any type of executable, and Crom will gladly schedule it for you . However, Crom
provides a litany of useful shell functions for tasks that are shell scripts, such as
functions for sourcing in the task definition from the job file, and job control and
logging functions . A task that sources the Crom libs can, for example, call the
“‘halt” function, which halts the current execution of the task, generates an error
to the logs, emails the recipient list specified by the NOTIFYONERROR variable,
and prevents any other tasks within the job from being executed or rescheduled . In
fact, tasks that source the Crom libs may make eight function calls relating to job
handling and logging alone: debug, notify, info, stop, warning, error, nonfatal_error,
and halt .

If you have a Java program and want to run it as a task under Crom, the wiser
thing to do is to use the “custom” task, which takes the name of a shell script as an
attribute called INCLUDE . The custom task will source in the script specified by
INCLUDE and will check for a function therein called “runCustom”, which it will
run . This way, we don’t need to port our Java code, but we retain full functional-
ity with the job control system at the cost of only a few lines of shell . The custom
function can also be used to build tasks that are not easily encompassed by a more
generic task type . Renaming a file and setting up a custom macro for a subsequent
task to use are good examples .

Crom was written with the expectation that large parts of it would be ripped out
and replaced wholesale . For example, it currently reads in its job definitions from

AUGUST_11_articles_updtdfile.indd 62 7.6.11 2:48 PM

 ;login: AUGUST 2011 iVoyeur 63

files in the cromhome/jobs directory, but the plan has always been to replace the
jobs directory with an Oracle database table . The library is, therefore, modular
and extensible, and just nice to work with to an extent I find difficult to articulate .
Perhaps the best evidence of this is the fact that I find myself using it to write
things, such as supporting tools, that I normally wouldn’t bother with . Figure 2, for
example, is the output of the “cq” tool, which uses library function calls to sum-
marize the scheduling queue . I usually lose interest and move on long before I’d
consider writing something like this .

JOBID,TASKID ATID SCHEDULE

--

4007,0 2420 Mon May 30 01:00:00 2011 a crom

4007,2 2422 Mon May 30 01:01:00 2011 a crom

4007,4 2425 Mon May 30 01:04:00 2011 a crom

4007,6 2426 Mon May 30 01:10:00 2011 a crom

4007,8 2427 Mon May 30 01:12:00 2011 a crom

4008,0 2309 Tue May 31 08:00:00 2011 a crom

4008,3 2334 Wed Jun 1 08:00:00 2011 a crom

4010,0 2415 Mon May 30 00:15:00 2011 a crom

Figure 2: Output from cq, the Crom queue command

Most core functions, and every default behavior in the lib, are overridable by
defining a custom function or setting an environment variable . Several of the
supporting tools I’ve written, in fact, make use of override variables . The runtask
script, for example, is what I use for manual intervention when something goes
wrong . This script takes a JOBID and TASKID as its arguments and uses them to
force-run that task immediately, overriding states like halt, which would normally
make the task refuse any attempt at execution . Even within the default tasks we’ve
written, the error handling behavior is usually overridable . Task 0 in Figure 1, for
example, specifies an ORA_ERROR variable, which is there to override the default
behavior of the extract task when it encounters an error running sqlplus (changing
it from its default value of “error” to “halt”) .

Crom can log to a flat-file log (which rotates daily), syslog (to a user-configurable
facility and priority), a FIFO (which we use to push log lines into a database with a
separate script), or any combination thereof . The log lines contain all of the infor-
mation you’d expect, plus a few fields I find especially useful at times, such as the
“run number” field, which uniquely identifies each iteration of a task that runs, for
example, every other minute all day long . Crom has built-in functions for sending
email notification and automatically notifies recipients when a task calls warning,
error, nonfatal-error, and halt .

Well, thanks for letting me gush over my shell script . This is about the only tool
I’ve written where I have no doubt I’m reinventing the wheel and it’s working so
wonderfully I just don’t care . It’s also the kind of tool that’s esoteric enough that I’m
not sure if I’m scratching an itch that nobody else has (but again, it’s still working
so wonderfully that I don’t care) . If so, I’ve probably just bored you to death . Sorry
about that . Stay tuned for something more monitoring-related next time .

Take it easy .

AUGUST_11_articles_updtdfile.indd 63 7.6.11 2:48 PM

 64 ;login: Vol. 36, No. 4

The past few weeks have been an adventure for me, with a pinched nerve, lots of
doctor visits and tests, and other less than pleasant artifacts of the aging process
taking center stage. Parallel to this evolving health drama was an employment-
related one. I decided that I needed a new job, and so I put out some feelers, one of
which came back positive. I flew out for the strangest interview of my life and on
the plane ride home I started thinking about the job interview process in general.
I’ve sat through probably four dozen interviews in my career—on both sides of the
table—so I have at least a moderate sample size from personal experience.

I have reached the conclusion that there are really three main categories of inter-
views: Traditional, Avant-garde, and Out There. In the “traditional” interview they
ask questions like, “Where do you want to be in five years?” and “What is your
greatest strength/weakness?” The “avant-garde” approach is more relaxed and
concentrates on esoteric questions such as, “If you had an infinite research budget,
what projects would you work on?” or “You’re going to be stranded on a desert
island and you can take three tools to help start your own business. Which tools do
you choose?” These are a little more creative and geared toward finding employees
who think, rather than merely prattle platitudes.

Way beyond the boundaries of custom and best business practices you’ll find
the “out there” interview. This tragicomic creature is of fairly recent origin and
probably a chimera engendered by the collective brain damage of the sixties
combined with the corporate insanity that was the dot-com era. The questions
you’ll encounter in these freak shows are hard, nay impossible, to predict, but I’ll
give you a general idea. “A man walks into a grocery store and asks the produce
clerk for two kumquats and a kiwi fruit. How many pairs of shoes does he own?”
“A major hurricane will be hitting your hometown in 24 hours. The local hardware
stores are sold out of plywood. Is the school board mostly liberal or conservative?”
“Why do men’s briefs have a fly in front, but not in back?” “What would ecru smell
like?” My advice if you encounter a firm that employs the “out there” interview is
to answer in some equally surrealistic fashion and hope they don’t try to hire you.
Performance reviews in a place like that are bound to be something akin to verbal
waterboarding.

I would very much like to say that this segues neatly into my next subject, but that
would be a filthy lie because they are no more closely related than an OS vendor’s
earnings report is to their commitment to releasing secure, thoroughly tested
code. Entitlement, ladles and gentlemints, is what I wish to discuss. Past genera-
tions, even to a certain extent my own, which is sandwiched somewhere between

/dev/random
R o b e R t G . F e R R e l l

Robert G. Ferrell is a fourth-

generation Texan, literary

techno-geek, and finalist for

the 2011 Robert Benchley

Society Humor Writing Award.

rgferrell@gmail.com

AUGUST_11_articles_updtdfile.indd 64 7.6.11 4:52 PM

 ;login: AUGUST 2011 /dev/random 65

long-haired hippy peaceniks and Izod-touting yuppies-to-be (really I’m Water-
gate/disco-era, but I avoid that admission like the pathogenic ruin-every-decent-
thing-it-touches plague it was), placed a significant emphasis on the concept of
sweat-equity . That is, we encouraged people to scrabble their way up from humble
beginnings to positions of influence and affluence by hard work and honest deal-
ings and lionized those who did .

Now, I’m perfectly well aware that every generation thinks the one preceding
it tried their darnedest to destroy the world and the one following is soft and
pampered and expects everything to be handed to them on a silver platter, but
there really is something screwy going on here this time . Perhaps it’s an artifact
of our ever-increasing standard of living, perhaps merely the inevitable result of
the confluence of pervasive social media and twenty-four-by-seven inundation by
tidbits covering every conceivable aspect of the lives of the world’s celebrities, but
whatever the contributory factors, there are a great many people under 30 out there
who seem to think that success and all that goes with it is somehow magically owed
to them .

I hate to be yet another bearer of inconvenient truth, but it simply ain’t so . If any-
thing, you young’uns may actually have to sweat even more profusely than my lot
did, because the economy is in the tank . If at first you don’t succeed, that doesn’t
mean you need to sue someone for damages, though: just try again . You’d be sur-
prised how often that works . When I hit the job market after grad school, of course,
we were in the Reagan years and the young revolutionaries weren’t worried about
much beyond whether to go with the six- or 12-month CD . My generation bridged
the awkward gap from sit-ins to youth investment seminars .

I will close this outrageously circuitous ramble by addressing a rather well-known
multimedia products vendor’s recent rash of security embarrassments . As of this
writing there have been nine—that’s right, nine—separate incidents connected
with this single “mesoscale hack .” With any complex product, or in this case suite
of products, the occasional lone security vulnerability exploit is understandable,
perhaps even inevitable . But this chorus line of gaping flaws is a little beyond the
pale, even for our insecurity-apathetic information technology culture . One differ-
ence here, though, is that while an American or European company might slough
off even an insult of this magnitude as a cost of doing business (which, by the way,
it definitely is not, or should not be, anyway), the corporate culture of this particu-
lar firm will almost certainly require at least one ritual sacrifice at the executive
management level . A noble, if somewhat futile, gesture in a decidedly un-noble
period of economic history .

Contrast that with what happens when, say, a major US defense contractor
experiences a massive exfiltration of unclassified but highly proprietary military
weapons technology data . There is an internal investigation launched, Congress
and everyone else concerned is reassured that the problem has been handled and
effective damage control measures have been taken, and within a ridiculously
short period of time the issue just fades to black . Stock prices aren’t even affected
over the long term, for Pete’s sake . No real consequences always equates to no real
corrective steps . Ring around the rosy, pockets full of apathy .

By the way, I didn’t get that job—but that’s OK . It was definitely an “out there .”

AUGUST_11_articles_updtdfile.indd 65 7.6.11 2:48 PM

 66 ;login: vOL. 36, NO. 4

bOOks
Everything Is Obvious Once You Know the Answer

Duncan J . Watts
Crown Business, 2011 . 324 pp .

ISBN 978-0-385-53168-9

(Full disclosure: Duncan Watts and I share an employer,
currently . I’ve therefore been exposed to more posters for
this book than most people, but I believe it has not otherwise
influenced me . It does not appear to me to have made any of
my colleagues less willing to tell me what they believe to be
obvious, sadly .)

I like this book for a couple of reasons . First, I have a strong
tendency to believe that everything is probably complex and
unintuitive and one ought to measure things before believing
in them . Second, I find reading it brings up the basic emo-
tions of watching a high-wire trapeze act . Here is somebody
writing an entire book which can be summed up as, “Soci-
ology has so far told us very little about the world, often
because the answers to the questions people are asking are
in fact unknowable, but it’s worth doing anyway .” And it’s an
engaging and I think convincing book . I am in awe at even
trying to do this, much less succeeding .

Another way of summing the book up, of more interest to
people who hold no strong opinions about sociology, is, “Stop
guessing what people are going to do and why, and start
reacting to what they actually do .” You think sociology is
irrelevant? Marketing is applied sociology, and most of it is
the sociological equivalent of avoiding black cats and the
number 13 . That might be funny, except it costs real money .

If you are interested in prediction of human behavior, or
sociological ideas such as “everybody is only 6 steps apart” or
“some people are influencers and sway the opinions of lots of
other people,” this is an interesting new take on things . As for
me, I plan on keeping it around to whack people with when
they tell me how obvious something I’ve just found out is . Or
how something they have just made up is obviously true .

Book Reviews
E l i Z a b E t h Z w i C k y ,
w i t h r i k f a r r o w

R Cookbook
Paul Teetor
O’Reilly, 2011 . 395 pp .
ISBN 978-0-596-80915-7

Finally, an R book that actually answers the questions I need
to have answered in a way I understand . It answers a lot of
other questions, too, ranging from ones where I think, “Ah!
I’ve wanted to do that!” to ones where I think, “I hope I never
want to do that .”

The problem with R is that almost everything you want to
do is very easy as long as you think about it correctly, for R .
Which is at right angles to everything you are used to . (For
instance, loops are evil . Never loop . You apply the function to
an array—well, no, not an array, but unless you already know
R you’re going to think of it as an array—and it mystically
does the right thing .)

Since books about R are written by people who can think
in R, they often make sense only after you have managed to
make this right angle turn . Somehow Paul Teetor has man-
aged to maintain more perspective than most authors .

The cookbook format is sometimes constraining and arti-
ficial (“Problem: You want to install R on your computer”),
but once you get past the beginning it generally works OK .
Because of the aforementioned otherworldly nature of R, you
may find that you have to read parts of it straight through .
If you think a vector has a direction and a length (instead of
being basically a one-dimensional array), you’re not going to
be able to leap right to solving your problem . That’s not the
book’s fault; even real cookbooks end up assuming that you
know how to boil water at some point .

If your needs for statistics have outgrown your favorite
spreadsheet, but you are not a career statistician, you need R,
and you probably need this book to go with it .

AUGUST_11_articles_updtdfile.indd 66 7.6.11 2:48 PM

 ;login: AUGUST 2011 Book Reviews 67

bOOks Take Control of Media on Your iPad, 2nd Edition
Jeff Carlson
TidBITS Publishing, 2011 . 158 pp .
ISBN 978-1-61542-131-2

I was curious about what this series was like, and this
seemed like a good topic for a review: simple enough that
I can evaluate it, without being so simple as to be mind-
numbing . Also, there’s something pleasantly ironic about
reviewing a book about media on the iPad, as an eBook on an
iPad . (It turns out that while it is pleasantly ironic, it makes
it impossible to view the instructions and the interface at the
same time . This worked out OK for me, but a real novice prob-
ably needs a paper copy, or at least to read the book on some
other device .)

It was a good experience, all told . The eBook version is for-
matted to take advantage of the platform, which is rare and
convenient, and there’s appropriate coverage of the built-in
capabilities without totally neglecting the important add-ons
(such as GoodReader, the reader I was in fact using to read
the book) . It told me several things I didn’t know and wanted
to, and it looked quite useful for its intended audience of
basically competent users who may need some help . It was
willing to point out useful trivia (how to lock the orientation
of your screen and adjust the brightness) without devoting a
lot of space to things most people will know .

If you’re a contented and knowledgeable iPad user already, it
probably won’t improve your life by $15 worth (although it did
improve my iPad life a bit) . On the other hand, it might well be
worth it to my father (it certainly would have been before the
day I taught him to use smart playlists in iTunes) . Although it
is a new edition, it is still applicable to first-generation iPads
as well as the iPad 2 .

The Book of PF, Second Edition
Peter Hansteen
No Starch Press, 2011 . 188 pp .
ISBN 978-1-59327-274-6

Tony del Porto reviewed the first edition of this book back in
the April 2008 issue of ;login:, and I was interested in seeing
what had changed since then . PF is the OpenBSD firewall
and is also available in FreeBSD and NetBSD . PF is config-
ured through a powerful and concise set of rules, and some of
the syntax of the rules changed with the release of OpenBSD
4 .7 (and FreeBSD 8) . And while PF already included support
for CARP used for failover, the new version also supports
CARP for load balancing .

PF has had the ability to create dynamic rules, something
just added to Linux, and you can do some very cool stuff

IT Security Interviews Exposed

Chris Butler, Russ Rogers, Mason Ferratt, Greg Miles, Ed
Fuller, Chris Hurley, Rob Cameron, and Brian Kirouac
Wiley, 2007 . 205 pp .
ISBN 978-0-471-77988-2

Periodically, I wander off to see what’s in bookstores . This
looked interesting because I’ve been interviewing candidates
recently (for security, but not specifically IT security) and I
wanted to see what advice they might be getting, what ques-
tions other people use, and whether there were resources that
would help candidates avoid popular mistakes .

This book does steer people away from some common and
unfortunate mistakes (e .g ., it’s a resume, not an autobiog-
raphy—six pages is overkill, particularly if you’ve only held
two jobs) . And on most topics, it gives an overview sufficient
to help an experienced person think about what areas they
might want to brush up on, and what answers they might
want to think out .

On the other hand, the years have not been kind to it; there
is no mention of Web security at all, and I’m pretty sure I’m
one of the few security interviewers on earth who doesn’t ask
about XSS . I know this because all my interviewees, if they
don’t know an answer, say hopefully “I think it’s an XSS,”
regardless of the question . (Hint: if we are not discussing
Web sites or I have just told you what I think the problem is,
that is not the right answer .) A book that doesn’t even get into
the general vicinity of Web servers (XSS, XSRF) or database
servers (SQL injection) is omitting some of the most impor-
tant and interview-relevant topics in security .

Aside from that, it’s inconsistent, with different format and
tone for different chapters, the discussions are telegraphic
enough to permanently confuse somebody who doesn’t
understand the territory already, and it rarely gets into ques-
tions that distinguish interviewing from exams . Somebody
who could answer all the sample questions correctly would
come across as somebody with a CISSP and nothing behind
it . If they were lucky . Otherwise they might have picked up
some of the book’s more perplexing stumbles . No, it is not
easy to ensure that no wireless client on your network is will-
ing to connect to a rogue access point . No, it is not important
to believe that HIPAA is regulation and Sarbanes-Oxley is
legislation . (They are both legislation, implemented as regu-
lation, but I had to look that up; nobody cares unless you care-
fully and definitively get it wrong .) And if I ask you about the
main configuration components in a firewall, and you reply
“configuration, policy, and objects,” I am going to believe you
know exactly one firewall configuration system .

AUGUST_11_articles_updtdfile.indd 67 7.6.11 2:48 PM

 68 ;login: vOL. 36, NO. 4

ing long hours on an eerily familiar campus in Silicon Valley .
But this company has access to a much broader swath of data
than any company in the world has today . That data, and the
ability to process it, is key to the plot .

Stephen, the young intern, lands a highly competitive intern-
ship and is selected to work on the hottest internal project,
one that can connect information from credit card purchases,
email, phone calls, and Web searches to target advertising
more precisely than ever before . The interns are an experi-
ment in just how usable the interface to the new software
will be, and the interns are soon invading the privacy of
unsuspecting people . Stephen, a veteran of a failed startup,
has a bit more maturity, but he too gets caught up in the
power of the system when he creates a list very similar to one
of the US government’s terrorist watch lists .

Stephen’s girlfriend, Molly, is instrumental in getting him
involved with the search company and has her own ties to
terrorism, via the unusual path of a doctoral dissertation
funded by the DoD . Molly and one other female character add
a bit of a balance to this otherwise all-male geek world .

Shumeet’s novel is also a speculative tale of what can hap-
pen when an organization, whether it is the government or
an advertising agency, has access to too much information
and the means to process it . The story strongly reminded
me of Admiral John Poindexter’s failed attempt to create a
similar information gathering project, coined Total Informa-
tion Awareness, back in 2002 . With proliferating automated
license plate recognition and RFID toll payment devices, and
the information available from cell phones (location, con-
tacts, searches), airline reservations lists, and credit cards,
TIA would do an even scarier job today . Shumeet is writing
about this issue, even as he makes reading about it fun . Yes,
there are 16 pages of references at the end, too .

—Rik Farrow

with this . On page 87, you learn how to add the IP address of
someone attempting to brute-force SSH to a rule that will
block that IP address based on the number of simultaneous
connections and the rate of connections .

PF supports IPv6 without the need for a separate configura-
tion file and command, unlike Linux . What is lacking from
this book, and the online OpenBSD PF pages, are examples of
firewalls using IPv6 . In a way, this is not a problem, because
simply enabling the routing of IPv6 (in a gateway firewall)
is all that is needed to make your existing PF firewall work
with IPv6 . But there are some things specific to IPv6, such
as ICMPv6 (required for determining the MTU, for example),
for which examples would be nice .

But this is a clearly written book and well worth the price .

—Rik Farrow

The Silicon Jungle
Shumeet Baluja
Princeton University Press, 2011 . 334 pp .
ISBN 978-0-691-14754-3

I was intrigued when a friend mentioned that a book writ-
ten by a Google employee, about massive data processing,
was an exciting novel . And I found myself unable to put the
book down as it neared its end . The characters had taken on
lives of their own, ones that appeared familiar to me . The big
exception here is the antagonist, a greedy multimillionaire,
who seemed a bit too simplistic . Then again, I know so few
multimillionaires that perhaps Shumeet is being totally
accurate here .

This is a story of an intern at a fictional Internet search com-
pany which sounds like Google merged with Amazon, Visa,
and AT&T . The tech culture is very Google, with all the free
caffeinated drinks and food you can ingest, and people work-

AUGUST_11_articles_updtdfile.indd 68 7.6.11 2:48 PM

 ;login: August 2011 Conference Reports 69

conferences
In this issue:

13th Workshop on Hot Topics in Operating Systems
(HotOS XIII) 69
Summarized by Sherif Akoush, Suparna Bhattacharya, Rik Farrow,
Lon Ingram, Thawan Kooburat, Derek Murray, Srinath Setty, and
Vasily Tarasov

Conference Reports

13th Workshop on Hot Topics in Operating
Systems (HotOS XIII)

Napa Valley, California
May 9–11, 2011
Sponsored by USENIX, the Advanced Computing Systems
Association, in cooperation with the IEEE Technical Committee on
Operating Systems (TCOS)

Opening Remarks
HotOS XIII Program Chair: Matt Welsh, Google

Summarized by Rik Farrow (rik@usenix.org)

Matt Welsh opened the workshop with a quick description of
how it was structured. Each speaker had only 10 minutes for
his or her presentation, with five minutes allotted for ques-
tions. Participants could interrupt the speaker during that 10
minutes. At the end of two sessions (five or six presentations),
there would be a 45-minute discussion session, where the
topics might involve the previous presentations, or anything
else that was relevant.

At the end of the workshop, Matt announced some awards.
(Yes, I know this is putting the cart before the horse, but I am
not certain you will notice these announcements unless I put
them up here.)

Matt Welsh, who came from Harvard to work for Google,
announced that Peter Bailey, with whom he had worked for
eight years at Harvard, had won a Computer Research Asso-
ciation Undergraduate Researcher of the Year award, which
includes a 500-pound marble obelisk that had already been
delivered to Peter, a certificate, and the support to attend the
conference of his choice. One of Mike Freedman’s students
also won a CRA award this year.

Matt then told us who had won Google Chromebooks by their
workshop presentations; Vijay Vasudevan (CMU) with his
poster that took a position against the paper he presented;
Dave Ackley (U New Mexico) for the most outrageous opin-
ion, best expressed in person, but his paper does nearly as
well. They decided to give two best talk awards, one to Mike

Peter Bailey receiving the Computer Research Association under-
graduate Researcher of the Year award from Matt Welsh at HotOs XIII

AUGUST_11_reports.indd 69 7.8.11 11:30 AM

 70 ;login: VOl. 36, NO. 4

often difficult to assess whether or not a change is feasible,
and the purpose of ASPLOS was to have a program com-
mittee with a range of experience to aid this. Gernot Heiser
(UNSW/NICTA) remarked that some of the architectural
critique—of IPIs, in particular—was x86-specific, since
ARM and MIPS don’t suffer from all of the same problems.
John Ousterhout (Stanford) asked how we can make incen-
tives for architecture people to make changes, and pointed
out that we should be careful to distinguish between the
research community and the people who actually build the
hardware. Jeff pointed out that one of the hurdles is that new
architectures usually need to run a commodity OS, so there
is a chicken-and-egg problem. Finally, Erez Zadok (Stony
Brook) lamented that many architectures have a wide range
of performance counters in hardware, but OEMs selectively
disable many of them in the BIOS. Jeff remarked that some
OEMs might be receptive to changing this.

Operating System Implications of Fast, Cheap, Non-
Volatile Memory
Katelin Bailey, Luis Ceze, Steven D. Gribble, and Henry M. Levy,

University of Washington

Katelin Bailey said that the real-soon-now advent of fast,
cheap non-volatile RAM (NVRAM) may have a disruptive
effect on OS design. Many of the assumptions in current OS
design are based on a two-level memory hierarchy of fast
DRAM and slow disks; NVRAM threatens to shake things
up, because it potentially combines the speed of DRAM with
the persistence of disk—i.e., it offers the best of both worlds.
Existing research has focused on incremental steps, such
as replacing disk with NVRAM and retaining file system
semantics, or using virtual memory to build single-level
store that combines RAM and DRAM. But this isn’t radical
enough: how about replacing all of the memory in a system
with NVRAM?

Such a system would have many desirable properties. For
example, hibernation and reboot would become extremely
efficient, because there would be no need to copy state to or
from a secondary storage medium. The very fast write per-
formance would also make deterministic record/replay tech-
niques much more practical. However, there are a number of
challenges that would need to be addressed: for example, if
your entire system image is persistent across reboots, how
would you deal with bugs and rolling back to a known-good
state? How should sensitive data be treated, now that it could
persist for a much longer time? Furthermore, current virtual
memory techniques were originally developed with the dual
role of enabling swapping (which is no longer necessary) and
protection (which is), so the development of a system with

Walfish (U of Texas, Austin), who used Prezi, and one to
Chris Rossbach (MSR), who got the remaining Chromebook,
since Matt thought it would be easier to ship one to Austin
than to Microsoft Research.

Putting the Hard Back in Hardware

Summarized by Derek Murray (Derek.Murray@cl.cam.ac.uk)

Mind the Gap: Reconnecting Architecture and OS
Research
Jeffrey C. Mogul, HP Labs, Palo Alto, CA; Andrew Baumann, Microsoft

Research, Redmond, WA; Timothy Roscoe, ETH Zurich; Livio Soares,

University of Toronto

Jeff Mogul kicked off the workshop with a talk about a paper
that arose from the “Research Vision” session at OSDI ’10.
The problem is that the computer architecture and OS
research communities are drifting apart. New architectures
are developed with little regard for the OS, which is con-
sidered to be so unknowable that it is a source of “noise” in
benchmarks. This is largely due to the gold-standard bench-
marks—such as SPLASH, SpecCPU, and PARSEC—which
run almost completely in user mode for an extended period
of time. By contrast, the state-of-the-art for measuring OS
performance on an architecture is limited to little more
than system call and page fault micro-benchmarks. A few
semi-realistic benchmarks do exist, including SPECWeb and
TPC-W, but they don’t capture the full variety of applications
that run in a realistic system.

The OS researchers in the audience weren’t immune to
Jeff’s criticism. Our unquestioning dedication to developing
systems that run on “commodity hardware” means that we
are missing the opportunity to ask for new features. If we
don’t ask, we will end up with features that work when run-
ning a single HPC application but are incompatible with the
isolation properties that an operating system must provide.
For example, a platform might provide low-latency message-
passing support using shared memory buffers, but sharing
such a facility between multiple processes requires a kernel
entry, which effectively erases the latency benefits. Leading
by example, Jeff then presented his desiderata, which include
cheap inter-core messages, lightweight inter-core notifica-
tions, faster syscalls, software-controlled caches, and better
performance counters. A common theme was that the archi-
tecture shouldn’t bake in policy (such as cache coherency)
without providing the developer with an escape hatch to try
different approaches.

Mike Swift (Wisconsin) opened the Q&A by asking how the
OS community could improve its review process for papers
that suggest architectural changes. Jeff replied that it is

AUGUST_11_reports.indd 70 7.6.11 3:01 PM

 ;login: August 2011 Conference Reports 71

cial if there is “content locality,” i.e., keys in a similar range
frequently accessed together. Finally, it will be challenging
to build an efficient TCAM simulator that uses DRAM, since
the don’t care bits mean that standard search algorithms do
not apply; one possibility is to use part of the TCAM to store a
mapping from partitions of the key space to DRAM locations.
Suparna ended by echoing the previous talks in this session:
it would be useful to engage the architecture community
in order to develop TCAMs that are better suited to general
programming—for example, by providing better support for
multiple matches. She also speculated that the availability of
NVRAM might open up new possibilities for TCAMs.

Jeff Mogul (HP Labs) asked how Internet routers—which
must store the entire routing table—deal with a limited
amount of TCAM, and whether they use similar tech-
niques. Suparna replied that most routing tables try to do
static compaction using the don’t care bits, but she agreed
that there may be tricks that could be picked up from these
devices. Mike Freedman (Princeton) asked about applica-
tions and whether in this model TCAMs would be part of the
general-purpose memory hierarchy. Suparna replied that the
intention was to expose (virtual) TCAMs to applications as
general-purpose memory, and that there were many search-
based applications—for example, in data mining—that could
benefit. Matt Welsh (Google) brought the session to a close
by remarking that GPUs had become commonplace thanks
to 3D gaming, and TCAMs might have a similar “back-door”
application that pushes them into widespread use.

Soft Fluffy Clouds

Summarized by Derek Murray (Derek.Murray@cl.cam.ac.uk)

The Best of Both Worlds with On-Demand Virtualization
Thawan Kooburat and Michael Swift, University of Wisconsin—Madison

Thawan Kooburat enjoys the advantages of virtualization,
but he’s concerned that its constant overhead is inhibiting
adoption, especially in large datacenters at Google and Face-
book, and on resource-constrained devices like your laptop.
The idea of “on-demand virtualization” is that you only pay
the cost of virtualization—both in terms of performance
overhead and limited functionality—when its features are
going to be used. Therefore, most of the time the operating
system uses native execution, then it slips into virtualized
mode on demand when the user wants to migrate execution,
checkpoint the system state, and so on.

Thawan described how on-demand virtualization is imple-
mented. The basic technique is to use the OS hibernate func-
tion (implemented using the TuxOnIce patch to Linux 2.6.35)
to create an image of the system state, and then transfer that

NVRAM everywhere would provide a good opportunity to
rethink the assumptions about granularity, for example.

Katelin admitted that the talk raised more questions than
it answered, but the audience was on hand to raise even
more. John Ousterhout (Stanford) harked back to the 1970s,
when every computer effectively had NVRAM in the form
of core memory, and he pointed out that nothing changed
when DRAM displaced core. Katelin replied that it’s still
worth exploring our options. Mike Swift (Wisconsin) and
Joe Tucek (HP Labs) raised the smartphone question, asking
what we could learn from those platforms, but Katelin said
that the approaches taken on those devices are relatively con-
ventional. At this point, a waggish audience member pointed
out that cell phones reboot every time daylight savings
time happens, so they’re not there yet. Mothy Roscoe (ETH
Zurich) went Back to the Future, pointing out that many of
these ideas had been tried before in systems like KeyKOS and
Multics, but they hadn’t caught on. Katelin said he hoped that
fast NVRAM should enable us to do things that weren’t pos-
sible in those days.

Virtually Cool Ternary Content Addressable Memory
Suparna Bhattacharya, IBM Linux Technology Center and Indian

Institute of Science; K. Gopinath, Indian Institute of Science

Suparna Bhattacharya rounded off the hardware session by
discussing another exotic form of memory: ternary content-
addressable memories (TCAMs). Their associative address-
ing means that TCAMs have seen a lot of use in caches and
high-performance routers, but more exotic uses have been
discovered, such as encoding deterministic finite automata,
ternary Bloom filters for subset matching, and similarity
search algorithms. With progress at this rate, we can expect
the range of applications to grow to the point where applica-
tion developers may want to harness TCAMs, so this talk
looked at ways that virtual memory techniques could be
used to provide the illusion of vast amounts of associatively
addressed memory.

It isn’t feasible to build a single huge TCAM, because power
consumption and latency increase with the number of keys.
Therefore, Suparna discussed various ways that a virtual
TCAM could be built from a combination of TCAM and
DRAM. The basic idea is to build a cache hierarchy, with the
level-1 store implemented in a TCAM and the level-2 store
simulating associative lookup in DRAM. The first challenge
is choosing a replacement strategy (and an application) that
exploits temporal locality, so that as many lookups as possible
are served from the TCAM. Spatial locality is less important
(since in an associative store, location is not important), but
there are some potential wins to be had by compressing keys
using the don’t care bits. This approach is particularly benefi-

AUGUST_11_reports.indd 71 7.6.11 3:01 PM

 72 ;login: VOl. 36, NO. 4

private data scrubbed; there is a large design space to explore
here. In the talk, Michael focused on the idea of using “action
graphs” to represent the changes made by a repairer, and
hence provide integrity guarantees. The hope is that repairs
could be encoded in a canonical representation, which could
then be signed by the repairer for assurance and auditing
purposes. The action graph representation would also help
to maintain availability of the machine while under repair:
the customer could continue to use the machine, and changes
by the customer and the repairer could be merged using a
process that is analogous to git rebasing.

The talk provoked a lot of discussion and was awarded one of
the Best Talk prizes at the end of the workshop. Mike Swift
(Wisconsin) was first up to ask whether on-demand virtu-
alization (from the previous talk) would be ideal for this. He
also had a real question about what fraction of repairs would
be difficult to handle, and how hypervisor device driver
problems might be handled in the cloud. Michael replied
that configuration errors would be in scope, but he hadn’t
considered hypervisor issues, since it was assumed that the
customer wouldn’t (or wouldn’t be able to) mess with the
hypervisor configuration. Jeff Mogul (HP Labs) took a differ-
ent tack, suggesting that, if all the repairs were canonical and
could be signed, the repair service could just apply all known
repairs indiscriminately. Michael countered that there
might still be some human intelligence required to choose
the correct ordering. Then Jeff raised the specter of having
to trust “canonical compositions,” but Michael replied that
this is not necessary if there is an auditable log. Finally, Brad
Chen (Google) characterized this as an “automatic update”
problem, and asked whether this would cease to be a problem
when applications are cloud-based. Michael replied that as
soon as devices become used for content creation, rather than
consumption, configuration issues will start to arise again.

This marked the end of the formal Q&A, but this talk was the
subject of much debate in the discussion/open mike session
that follows below.

Structuring the Unstructured Middle with Chunk
Computing
Justin Mazzola Paluska, Hubert Pham, and Steve Ward, MIT Computer

Science and Artificial Intelligence Laboratory

Justin Mazzola Paluska gave an intriguing talk about a new
construct that promises to unify parallel programming for
GPGPUs, massively multicore systems, clusters, and clouds.
At present, the structures used to represent programs and the
structures of different execution platforms are orthogonal,
and unstructured assembly code does a poor job of åtaking
advantage of different, very specialized machines. “Chunks”
are the solution: a chunk is a fixed-size block in memory

state into a virtual machine (implemented using KVM). One
challenge is that the native and the virtualized hardware
profiles will likely be different, with the VMM typically
providing a feature set that lags behind native functionality.
This is addressed with device hotplug and another level of
indirection: logical devices that retain all necessary state and
hide the hotplug events from the applications that use these
devices. Thawan has a prototype that currently supports
one-way conversion from physical to virtual, which takes
approximately 90 seconds and succeeds without closing an
open SSH connection. Future improvements will include
hibernate-to-RAM, which will improve performance, and
performing the virtual to physical conversion.

Mike Schroeder (Microsoft) asked if this defeated the
purpose of virtualization as a means of providing a defense
against security issues. Thawan replied that this is not the
aim of on-demand virtualization, which is geared more
towards migration and checkpointing. Peter Honeyman
(Michigan) asked where to expect the crossover point when
the cost of re- and devirtualization becomes greater than the
cost of running permanently on a VMM. Thawan answered
that it would be workload dependent. Philip Levis (Stanford)
raised a concern about what would happen when migrating
an OS that used a large amount of local storage on native
disks, and Mothy Roscoe (ETH Zurich) pointed out that a
paper at the last HotOS had solved the apparently harder
problem of migrating between two physical machines with
no virtualization involved.

Repair from a Chair: Computer Repair as an Untrusted
Cloud Service
Lon Ingram, Ivaylo Popov, Srinath Setty, and Michael Walfish, The

University of Texas at Austin

Michael Walfish is dissatisfied with the status quo in com-
puter repair. Today, it resembles television repair, whereby
you bring your computer to a retail service that is both
inconvenient and insecure. Solutions based on providing
remote desktop access are not ideal, because you have to
monitor every action by the repairer, or it will be just as inse-
cure as taking your computer to a shop. In this talk, Michael
presented “repair from a chair,” which uses virtualization
technology to make the software components of a computer
available to a repairer in a secure fashion. An in-depth study
of Geek Squads, Genius Bars, and IT services at UT Austin
revealed that the vast majority of repairs are software-only,
and so this would be a feasible solution.

The system includes a module called the “repair helper,”
which lives between the OS and the hypervisor to facilitate
repair. According to the paper, the main function of the repair
helper is to migrate a copy of the VM to the repairer with

AUGUST_11_reports.indd 72 7.6.11 3:01 PM

 ;login: August 2011 Conference Reports 73

Discussion/Open Mike

Summarized by Derek Murray (Derek.Murray@cl.cam.ac.uk)

By now the audience was fired up, and Matt Welsh (Google)
opened the floor to anyone with something to say. Matt used
chair’s prerogative to make the first point about NVRAM:
he likes the ability to wipe a computer’s memory on reboot,
because it’s the only way to get it to a known-good state. Kate-
lin Bailey (Washington) replied that rebooting wouldn’t go
away in the non-volatile future, but the aim was to separate
the notion of resetting from the power cycle. Jeff Mogul (HP
Labs) pointed out that this is a perfect example of decoupling
mechanisms that don’t belong together, as he had proposed in
the first talk. Dave Andersen (CMU) was worried about the
effect of random bit flips, but Margo Seltzer (Harvard) said
that these are very unlikely in practice.

Geoff Challen (SUNY Buffalo) remarked that it was good to
see many hardware people in the audience, which should help
to address Jeff Mogul’s criticism that the communities don’t
talk anymore. Mark Hempstead (Drexel), a self-confessed
computer architect, announced that it was great to see a
move towards better communication between the communi-
ties, and he asked people to send him C code that he could
run. Mark raised a bone of contention: his aim is to have as
few cycles in the OS as possible. Mothy Roscoe (ETH Zurich)
disagreed, saying that many applications intentionally spend
a long time in the OS, and this illustrates what hardware
designers don’t understand about operating systems. Mothy’s
real desire is hardware that does less stuff in hardware and
just provides fast mechanisms that software can use. Jeff
Mogul agreed with Mothy, telling Mark that, for example,
fast cache coherence in the hardware is all very well, but
sometimes there is a better policy for a given workload, and
it would be desirable if we could implement that in software
without having to trick the hardware into doing our bidding.
Steve Hand (Cambridge) reminisced about the glory days of
software/hardware co-design and mused that Intel should
buy Microsoft or vice versa, to take us back to those days.
Steve also praised FPGAs, which have become relatively
easy to program, thereby allowing more people to try their
hand at hardware design. Joe Tucek (HP Labs) mourned
the loss of software-controlled TLBs. Margo Seltzer sug-
gested that we need to pitch to industry, rather than other
researchers, and asked what the virtualization researchers
did to get hardware support in modern instruction sets. Matt
Welsh—tongue firmly in cheek—suggested that the answer
was to build something that is useful but really slow without
hardware support.

Aleks Budzynowski (UNSW/NICTA) turned the discussion
to repair-from-the-chair, asking whether anything had been

that abstracts program structure, and chunks are mapped
individually onto machine structure. Each chunk has a fixed
number of slots, each of which is fixed size. Each slot is typed,
and it can contain a scalar value or a link to another chunk.
One idea is that making links explicit exposes structure in
the chunk graph, and the developer is forced into this by the
relatively small size of a chunk.

The chunk graph creates many opportunities and challenges
for improving parallel programs. First, a link is allowed to
cross architectural boundaries, and chunks can migrate
between processing elements, which helps in a heteroge-
neous multicore system. However, this creates a distributed
garbage collection problem and requires a policy to decide
which chunks should be migrated. Another feature of the
model is that threads start out being represented by a single
chunk with a link to a (possibly linked-list) stack of chunks,
which in turn may be linked to function chunks or object
chunks. The links can be used to compute a distance and
size metric within a given thread, which helps the system
decide which chunks should be co-located. For example, a
distance-k neighborhood of the thread object would indicate
the important chunks to co-locate, and overlapping neighbor-
hoods would enable synchronization and contention to be
inferred. The main hope, however, is that there will be many
distant threads that can run without interference and can be
scheduled to avoid false sharing and contention.

Dave Ackley (New Mexico)—who would go on to make a name
for himself at the workshop with an outrageous programming
model of his own—was concerned about the chunk graph
turning into a “huge ball of high-dimensional goo.” Justin
countered that unused chunks would not need to be loaded
in, and NVRAM could be useful to help with this. Aleks
Budzynowski (UNSW/NICTA) was more worried about the
amount of policy that seemed to be going on at the OS level,
and would prefer to see more work being done at the language
level or in the compiler. Justin replied that this is another way
to experiment with the same issues, and the chunk model is
an attempt to force the compiler into giving the OS some-
thing to which it can usefully apply policies. Dave Holland
(Harvard) saw this as a graph clustering, which is a known
hard problem, but Justin replied that hopefully he doesn’t
have to solve the general problem, if it is possible to use some
heuristics at runtime, such as sending paths around. Finally,
Mothy Roscoe (ETH Zurich) was unconvinced that there is
a one-size-fits-all solution for the huge number of different
scales, but Justin said he’d had positive experience with cloud
and cluster computing (which is the easiest experimental
platform). The reason for a one-size-fits-all solution is that
Justin had seen schematic pictures resembling chunk graphs
over and over in different venues, and he wanted to extract
some common abstraction that could be useful.

AUGUST_11_reports.indd 73 7.6.11 3:01 PM

 74 ;login: VOl. 36, NO. 4

versial Opinion prize by declaring that he never wanted to
read another paper submission that talks about improving
Hadoop performance by 10%. Discussion then began in ear-
nest, with the panel taking questions from the audience.

The conversation covered a broad range of topics, but a recur-
ring theme was multiple pleas from academics for industry
to release large anonymized datasets that would be useful for
understanding what workloads datacenters see at scale. The
industry representatives responded that this was unlikely
to happen and that anonymizing such datasets is far harder
than one would expect. Rebecca proposed a possible solution:
academics should run their own commercial cloud platform
as a way to generate such datasets themselves.

The panel and the audience also discussed the difficulties
academics face evaluating proposed solutions without access
to the kind of scale that industry sees. Mike Freedman of
Princeton asked for examples of algorithms that looked good
in the small but failed at scale. John replied that it typically
isn’t O(n) that is the problem but, rather, the complications
introduced by interactions with other components and opera-
tional concerns—upgrading a system while it’s in operation,
for example. Ion added that academics need to understand
how to evaluate solutions without running them at scale.

Matt Welsh from Google launched the final discussion of
the session by asking how to get industry to open up more
and how industry can help train the next generation. John
suggested that those working in industry should find an
academic and tell them about a problem they have—talking to
them until they understand the problem.

We’re Going to Need More Wine

Summarized by Srinath Setty (Srinath@cs.utexas.edu)

Macho: Programming with Man Pages
Anthony Cozzie, Murph Finnicum, and Samuel T. King, University of

Illinois

Anthony Cozzie started the talk by pointing out a hard truth
about programming: programming is hard and program-
mers make errors when they write code. Then he described
the architecture of Macho, a system that can automatically
generate Java programs. Macho takes the description of the
functionality in a natural language as input and then uses a
database of code snippets to stitch together a piece of code
with the functionality specified in the natural language.
Macho also includes an automated debugger to test the gen-
erated code using a set of examples.

Margo Seltzer from Harvard asked about the progress made
in the project. Cozzie acknowledged that the problem is hard

done to cut down the amount of state that must be sent to the
repairer. Michael Walfish (UT-Austin) replied that tech-
niques based on selectively faulting-in state to the repairer
would work. Mike Swift (Wisconsin) was more attached
to the idea of remote desktop solutions, but Michael replied
that protecting against a malicious repairer was the real
aim of the project, and where that was implemented really
didn’t matter. Mike Freedman (Princeton) suggested that the
Geek Squad could provide a piece of software for the cus-
tomer to install, which could be configured to allow access
to different settings, but Michael was concerned about the
cognitive overhead of configuration on non-technical users.
Dave Andersen reckoned that the problem could be solved by
Microsoft engineering a better access policy control panel.
Mothy saw it more as a problem of liability if somebody were
to make a mistake, and the “right answer” would only be
found by talking to financial and legal people.

Petros Maniatis (Intel) took Mothy’s point about non-tech-
nical issues and brought us back to discussing architecture.
One of the overriding concerns for a processor company is
whether adding a feature will get the company sued or cause
bad PR. Steve Hand also mentioned the issue of backwards
compatibility, which is often necessary and can inhibit
innovation. Brad Chen (Google) suggested that our job is to
discover technical choices, and present them to the business
people; he mentioned Android and ChromeOS as two very
different solutions to similar problems. Dave Holland (Har-
vard) pointed out that lawyers are trained to look for risk and
not make policy, so we shouldn’t worry about that so much,
although Matt Welsh replied that that is easier to say in a
university. Mike Freedman ended the discussion by remark-
ing that he had spoken to a number of law professors who
are in favor of technical solutions, because things are much
slower to change in the legal and policy fields.

Panel: Cloud Computing
Panelists: Mendel Rosenblum, Stanford; Rebecca Isaacs, Microsoft

Research; John Wilkes, Google; Ion Stoica, UC Berkeley.

Summarized by Lon Ingram (lawnsea@cs.utexas.edu)

John introduced the panel session by saying that Matt Welsh
had asked them to fight, but they found that they agreed
too much on the fundamental academic questions in cloud
computing to do so. The panel chose to instead discuss two
subjects that they did disagree on: (1) what should academics
do that is not useless and (2) what should industry do that is
not worthless.

The panelists offered brief introductory remarks, and John
completed the introductions with a bid for the Most Contro-

AUGUST_11_reports.indd 74 7.6.11 3:01 PM

 ;login: August 2011 Conference Reports 75

a hard problem and one could reduce error by replication and
repetition.

Hear Ye, Hear Ye

Summarized by Suparna Bhattacharya (suparna@csa.iisc.ernet.in)

Benchmarking File System Benchmarking: It *IS* Rocket
Science
Vasily Tarasov, Saumitra Bhanage, and Erez Zadok, Stony Brook

University; Margo Seltzer, Harvard University

Vasily Tarasov began his talk by citing a recent study which
found that research conclusions in medicine often contain
misleading findings with a heavy focus on exciting results to
the exclusion of other aspects, and noted that similar obser-
vations could be made about the state of filesystem bench-
marking. He argued for an improved evaluation approach
which adequately reflects the complex multi-dimensional
character of file-system behavior. As a follow-up to their
previous ACM TOS (Transactions on Storage) paper, “A
Nine-Year Study of File System and Storage Benchmark-
ing,” he told how he and his co-authors surveyed 100 file
system papers from 2009 and 2010 and found a wide range of
benchmarks used, with little standardization, e.g., as many as
74 ad hoc benchmarks and 24 custom traces. Even among the
standard benchmarks used, many were based on compilation
or small file operations, effectively stressing CPU or memory
more than on-disk layout.

As a possible way forward, Vasily proposed creating stan-
dardized benchmarks for common filesystem dimensions
such as on-disk layout, prefetching, and in-cache perfor-
mance. In addition he emphasized the need for reporting
results in terms of curves and distributions across a range
of parameters instead of a single number, since filesys-
tem behavior can be sensitive to even small changes in the
environment. To illustrate how widely conclusions from
benchmarking may be impacted by the choice of evaluation
approach, he presented an interesting case study comparing
the graphs of random read throughput (using filebench) of a
410 MB file across three file systems (ext2, ext3, and XFS) as
measured at 10 second intervals. Initially, the performance is
I/O-bound and eventually, when the file is completely in the
page cache, it becomes CPU/memory-bound. At both these
extremes, performance is similar for all three file systems,
but in the transition range, which involves a 10-fold jump in
throughput between the interval from 200 to 800 seconds,
the differences between file systems can vary widely (up to
as much as an order of magnitude) depending on the time
when measurements are made. This can result in radically

and the module involving the database is the hard problem.
Brad Chen from Google suggested that it would be very useful
if Macho generated a specification along with the implemen-
tation. Cozzie agreed. Joe Tucek (HP Labs) asked about the
amount of time taken for generating code. Cozzie replied that
the ls example takes about 20 minutes.

Pursue Robust Indefinite Scalability
David H. Ackley and Daniel C. Cannon, The University of New Mexico

In the second of the two Best Talks, David Ackley pointed out
the conflict between efficiency and robustness in computer
systems. He went on to propose a computational model,
Movable Feast Machine, to achieve indefinite scalability.
However, this approach sacrifices the following three proper-
ties in the current system’s architectures: first, fixed-width
addresses and unique node names; second, logarithmic global
communication cost; and third, clock and phase synchroni-
zation.

In the proposed design, the Movable Feast Machine con-
sists of a 2D grid in which each tile contains a processor
with a fixed amount of volatile and non-volatile memory.
Each processor can communicate with its nearest neighbor
processors via point-to-point links. The computation model
for the proposed machine consists of a set of “event windows”
that involve a group of tiles communicating with each other
to perform the computation. Note that many non-overlapping
event windows can exist concurrently. One of the critiques
for this proposed architecture is that the hardware costs will
be too high for cost-effective computation.

Mike Dahlin (University of Texas at Austin) asked about the
rationale behind choosing small atom sizes. Ackley answered
that the smaller sizes provide fine-gained mobility, which is
essential for indefinite scalability. Dave Anderson (Carnegie
Mellon University) asked about the advantages of Movable
Feast Machine’s local propagation restriction. David replied
that local propagation enables expressiveness in the proposed
architecture. Erez Zadok (Stony Brook) asked whether he
had looked at any newer computing models to see whether
anything matched. David replied that his PhD work was in
neural networks a thousand years ago, and this is his attempt
to start again from scratch. Michael Walfish (UT-Austin)
asked about the types of computations that can be repre-
sented in the proposed computation model. Dave said any
computation under the stochastic flow-sorting category can
be represented on Movable Feast Machines. Toby Murray
(NICTA/UNSW) asked if there is a way to quantify the error
in output generated for the computations run on the proposed
architecture. David acknowledged that quantifying error is

AUGUST_11_reports.indd 75 7.6.11 3:01 PM

 76 ;login: VOl. 36, NO. 4

performance isolation between different applications. In
this respect, they fail to expose performance effects of what
is arguably the central purpose of an OS: that of allocating
and sharing resources across applications. To address this
concern, he proposed a systematic benchmarking approach
that employs a mix of application workloads running concur-
rently. The mix is carefully chosen in a way that (1) exercises
multiple system resources without overcommitting any
resource and (2) is performance-sensitive to the availability
of resources.

An application-specific goodness function is used to perform
a sensitivity analysis of the performance of each candidate
application variant (choice of application parameters) with
respect to various machine resources: e.g., CPU, cache,
memory, disk, and network. For example, a Web browser is
partly sensitive to network bandwidth, with the rendering
of Web pages being CPU-sensitive. On the other hand, the
goodness metric of a virus scanner might be the number of
files scanned, which is disk-bound. The design of the optimal
(maximally sensitive) mix is posed as an integer linear
programming optimization problem, based on resource usage
and sensitivity, subject to the constraint of avoiding resource
overcommit. Intuitively, the optimal solution is a mix of
application variants that use resources that they are most
sensitive to. Once the results from running an optimal mix
on an OS have been obtained, several evaluations may be per-
formed. For example, the performance difference in running
an application unmixed and mixed can highlight potential
problems in the system. Different operating systems might
have a different optimal mix; comparing performance at
these points can indicate how well each OS manages its
optimal mix.

Ihor concluded with some comments on the status of the
work. Currently they have tried this with Linux micro-
benchmarks; they need to run it with real applications. The
approach assumes a constant resource usage, hence will need
to be extended to account for bursty applications. Further,
it uses a static mix, while in desktop scenarios, application
mixes are dynamic.

Michael Dahlin asked whether the optimal mix gains in
stressing the OS while sacrificing completeness, making
it difficult to compare results (unlike typical OLTP bench-
marks). What if the optimal mix is not even realistic? Ihor
responded that one can play around with parameters and
constraints of the ILP formulation to restrict solutions to
realistic or sensible combinations rather than irrelevant
mixes. Livio Soares suggested including OS abstractions
of resources in addition to raw resources and Ihor agreed.
Someone raised a concern about the difficulty of stating and
proving that various resources can be scheduled together

different conclusions from point comparisons. Likewise, a
3D plot of latency histograms collected periodically for ext2
random reads reveals a bimodal kind of characteristic, with
a 1000-fold difference between the modes. Average results
make very little sense in such situations.

Someone raised the concern that it might be very tough to
ensure that the dimensions are orthogonal to each other. Vas-
ily responded that indeed isolating dimensions is important
but sometimes hard; however, even without orthogonality, we
can still ensure coverage. Phil Levis (Stanford) felt that the
comparison with medicine might be misleading since, unlike
medicine, file systems do not involve human subjects.

John Ousterhout observed that the real question is not just
one of capturing data but a need to understand and explain
what is actually going on, e.g., the reason for different modali-
ties in the graph. In the ensuing discussion, Jeff Mogul
argued that the purpose of benchmarking is comparison,
not understanding. With this approach it isn’t clear how one
would compare these multi-dimensional result distribu-
tions. Margo Seltzer responded that there is no one uni-
dimensional comparison that works, because the weighting
may not be same for all uses. While this means more work for
the reader, it ensures that results are less biased. Erez Zadok
observed that the networking community uses CDFs more
than the storage community. Jeff Mogul asked whether they
explain why one CDF is better than another. Margo Seltzer
reiterated that there is no single preferred answer; it depends
on what we are trying to achieve. Vasily observed that often
such benchmarking really comes down to benchmarketing.
Someone remarked that having a marketing target can help,
especially in pushing improvements over time, and asked
whether we should redefine benchmarks as a composition of
performance curves and a purpose-specific utility function.

David Holland remarked that as a consumer of benchmarks
we still don’t know what the good choices are. The state of
file-system (FS) benchmarking in the OS community is
abysmal; we need an official set of FS benchmarks. Erez
Zadok responded that among benchmarking tools, they found
filebench to be nice and hence forked and fixed it. Now it
supports two dozen random distributions, can handle mul-
timodal distributions, and uses a data generator instead of
merely writing zeros as some other benchmarks do.

Multicore OS Benchmarks: We Can Do Better
Ihor Kuz, ETH Zurich, NICTA, and the University of New South Wales;

Zachary Anderson, Pravin Shinde, and Timothy Roscoe, ETH Zurich

Ihor Kuz observed that there is a fundamental problem with
existing multicore OS benchmarks—they measure scalability
of applications but do not evaluate how well the OS manages

AUGUST_11_reports.indd 76 7.6.11 3:01 PM

 ;login: August 2011 Conference Reports 77

The talk generated a lot of questions both during the Q&A
and the discussion session that followed. Matt Welsh
remarked that we’ve been through similar work in the past
which failed, but not due to technical reasons—the NIC was
the bottleneck back then too. Could those ideas (from active
messaging/U-Net) be applied now or is there something
fundamentally different? The response was that today we
have massive datacenter applications that need this, and
low latency is becoming practical in commodity space. Matt
followed up by noting that we knew how to get good perfor-
mance under ideal conditions but the programming model
at that time was awful—the sheer amount of engineering
needed to get stable performance over time was a chal-
lenge. It was mentioned that many SIGCOMM papers had
appeared on the chained RPC and scatter-gather problem,
but no one cared before. Further, while we can make it faster,
maybe XML/SOAP is not the most efficient way to dispatch
requests—we will run up against the propagation wall some-
time. Mike Schroeder noted that commodity support does not
matter all that much, since there is a need within a datacen-
ter. He mentioned that they were seeing problems with packet
switching and might need circuit switching instead. John
Ousterhout remarked that the community was too influ-
enced by the success of MapReduce, which is bandwidth -ori-
ented; there are other applications, such as realtime analysis
of graphs with no locality, that really need low latency.

There was a question about why the DRAM isn’t directly put
on the NIC, since the CPU is not really used; Steve responded
that it is essentially the same, only the CPU is programmable.
Joseph Tucek remarked that infiniband costs only $300/
port which is not that expensive. Michael Swift wondered if
there was a case for saving data persistently at low latency,
especially with NVRAM, but no suggestions came up.
Michael Dahlin observed that the fact that there are about
150 dependent data-access steps for a Facebook request was
intriguing, and asked whether it was the ratio of latency to
overhead that mattered and if benchmarks could be designed
to capture this. Perhaps the cool stuff did not matter because
it got hidden by other overheads. Prabal Dutta asked why
the netFPGA project was not considered a fabric to explore
these questions. Steve responded that he didn’t think that
switches are an issue and that future problems in NICs will
only appear after we solve the other problems to get to 10us
latency. Timothy Roscoe commented that the problem is not
the design of NICs (modern NICs are pretty good), but in
interfacing with the application after it gets the data, espe-
cially as NIC latencies are getting close to DRAM latency.

Discussion/Open Mike
No report is available for this session.

without overcommit in tricky situations. Ihor accepted that
one may run into this issue for real applications but observed
that OSes need to handle such situations, so we should be
able to test for this.

It’s Time for Low Latency
Stephen M. Rumble, Diego Ongaro, Ryan Stutsman, Mendel Rosenblum,

and John K. Ousterhout, Stanford University

Steve Rumble made a case for rearchitecting systems for low
latency communication in datacenters, anticipating realiz-
ability of up to two orders-of-magnitude improvement in
RPC round-trip times and the significant impact this can
have on enabling future Web applications. He began by high-
lighting the increasing demand for low latency as foreseen by
constraints faced today by applications like Facebook, which
randomly access many pieces of non-local interdependent
data in fast DRAM-based storage for each small request.
Commodity network bandwidth has increased by a factor of
3000 in the past 30 years, while latency has only decreased
by a factor of 30; high latency limits Facebook to 100–150
dependent data accesses per page request. Working around
such constraints not only adds to application complexity but
also renders certain features non-viable.

Steve then presented a component-wise breakup of the high
300–500us RPC latency in current datacenters. He observed
that because of the small distances between servers within
a datacenter, the limiting factor is not the propagation delay
(< 2us) but the delays across multiple hop switches (10 hops
with 10–30us/hop) and a comparable delay in the NIC
(10–128us) and OS stack (60us). He then argued that recent
hardware improvements have brought us to the cusp of low
latency. The time is right for the OS community to initiate a
rethinking of the stack and architecture to reduce the rest of
the overhead. 100ns latency switches and 1us latency NICs
are already available in the HPC space, with Fulcrum Micro-
systems and Mellanox pushing the boundary to sub-500ns
switches in the commodity Ethernet space. Steve predicted
that this means that 5–10us round-trip times are within
reach in the short term by addressing OS/protocol overheads
while defining a simpler API structure that has a different
distribution of responsibility between the OS, application,
and the NIC than Infiniband/RDMA or U-Net. Since a data-
center is a closed ecosystem, it is even possible to experiment
with new protocols that can scale low latency to 100K+ nodes
instead of living with TCP. Steve projected that even lower
latencies are possible in the long term; below 10us, transfer-
ring data between the NIC and the system would become a
bottleneck, but a round-trip latency of 1us is achievable in
5–10 years by re-architecting systems to transmit/receive
data directly from the CPU cache.

AUGUST_11_reports.indd 77 7.6.11 3:01 PM

 78 ;login: VOl. 36, NO. 4

data skew can happen in this case. In addition, computation
skew can occur; even if data is of the same size, computation
time is not the same for all partitions. Moreover, balanced
workload does not always mean optimal performance, and
the authors worked on determining the best partitioning
scheme given the data and application. Data is not structured
in this case, unlike with databases, which makes the problem
more difficult. The authors were looking for a compact data
representation. Code is user-defined as well, with different
languages and execution modes. The authors proposed a
three-stage approach: model the partition scheme, estimate
performance, and find the scheme that provides optimal
performance.

Darren Martin of Cambridge asked whether the authors
plan to do partitioning online or offline. Qifa replied, Both.
Another person asked what happens if the optimal solution
is 50 partitions but one has only 49 nodes. Qifa said that at
the moment they consider only an ideal case. Somebody sug-
gested they use AI techniques for the partitioning problem.

Disks Are Like Snowflakes: No Two Are Alike
Elie Krevat, Carnegie Mellon University; Joseph Tucek, HP Labs; Gregory

R. Ganger, Carnegie Mellon University

A lot of today’s systems and techniques rely on the idea that
two identically labeled pieces of hardware will perform
identically, but this is not true anymore. Elie Krevat pre-
sented a study showing that modern disk drives, even if their
makes and models match, perform differently. In this study,
the authors looked at three generations of disk drives: 2002,
2006, and 2008 vintages. The throughput of disk drives
produced in 2002 was the same. In 2006 the variance in per-
formance reached 10%, and it increased to 20% in 2008.

The reason for this behavior is a new and “almost undocu-
mented” feature of disk drives: adaptive zoning. Zone Bit
Recording (ZBR) has been around for many years. This
technology allows vendors to put more sectors on the outer
tracks of a platter. However, before now, zones’ boundaries
were fixed by the specification of the disk. Now, on the other
hand, disk manufacturers test every individual read-write
head with respect to the data rate that it can sustain. Then
they assign zone boundaries according to this information.
Interestingly, this happens even within the disk: different
platters have different zoning.

Margo Seltzer said that her research group has been aware
of similar problems with other components for a long time.
But nobody cared. Why should they care now? Elie responded
that there are systems that can neglect this, but others should
care. Michael Schroeder of MSR pointed out that pundits say
that the rise of SSD drives will make this a moot point. Elie

Data Still Matters

Summarized by Vasily Tarasov (tarasov@vasily.name)

Disk-Locality in Datacenter Computing Considered
Irrelevant
Ganesh Ananthanarayanan, Ali Ghodsi, Scott Shenker, and Ion Stoica,

University of California, Berkeley

Ganesh Ananthanarayanan talked about the changes in the
notion of disk locality in data-intensive computing. Disk
locality is exploited at all levels of the storage stack: applica-
tions, file systems, disks. The fundamental reason why corre-
sponding optimization methods work is that disk bandwidth
is significantly larger than network bandwidth. However,
this statement is less true nowadays. Off-rack, rack-local,
and local disks all perform almost the same. Designers still
need to care about RAM locality, however. But datasets are
huge in data-intensive applications (e.g., 200 times larger
than available RAM size in Facebook). Can anything be
done about that? It turns out that for 96% of the jobs, all the
required data can fit in the RAM. It is just that current cach-
ing policies (such us LRU) cannot predict well which data to
put in the RAM. Ganesh concluded that software needs to be
more intelligent in deciding which data to put to the cache
and which to evict.

Gregory Ganger of CMU said that this is a great example of a
collective action problem. If everybody ignored caching, this
would place tremendous demand on the network. Ganesh
replied that in any case the network bandwidth is so high that
disk locality becomes less important. Someone asked what
were the 96% of jobs doing? Maybe they were CPU-bound,
and Facebook just runs applications incorrectly? Ganesh
agreed that it would be great to have this information but
they do not have it. Someone commented that it is very easy
to get a one-rack node with 12 locally attached disks. The
author responded that according to his calculations one
needs at least 50 disks per node.

Optimizing Data Partitioning for Data-Parallel
Computing
Qifa Ke, Vijayan Prabhakaran, Yinglian Xie, and Yuan Yu, Microsoft

Research Silicon Valley; Jingyue Wu and Junfeng Yang, Columbia

University

Qifa Ke discussed intelligent data partitioning for perform-
ing distributed computations. When one needs to run some
computation across several nodes, the job needs to be divided
between these nodes. As part of this process, the data needs
to be partitioned. What is the optimal number of partitions
and the partition function? The simplest (and quite com-
mon) method is to partition data using a hash function, but

AUGUST_11_reports.indd 78 7.6.11 3:01 PM

 ;login: August 2011 Conference Reports 79

Mobile Apps: It’s Time to Move Up to CondOS
David Chu, Aman Kansal, and Jie Liu, Microsoft Research Redmond; Feng

Zhao, Microsoft Research Asia

David Chu noted two tendencies in mobile devices: (1) they
are highly programmable and (2) more and more sensors are
installed on these devices. As a result, programs that use sen-
sors are becoming very widespread. Currently, they access
sensors through inflexible custom interfaces. The approach
the authors suggest is CondOS, an operating system that
provides a unified interface for all sensors and applications.
The OS will convert data to CDUs (Context Data Units) that
are returned to applications. The benefit is that applications
can perform a wider variety of tasks: for example, preload
calendars when a user comes into the office or auto-unlock
passwords when a user is at home.

Justin Pulaski (MIT) observed that the pervasive computing
community has tried to do this for a long time already, but
they are struggling to come up with a proper programming
model. David replied that at the moment their interface is just
a single syscall to get CDUs. Another person wondered why
not employ user-level solutions such as the Linux D-BUS?
David said that this should not be necessary with a kernel
solution, but there should be some unified interface for all
programs.

Free Lunch: Exploiting Renewable Energy for
Computing
Sherif Akoush, Ripduman Sohan, Andrew Rice, Andrew W. Moore, and

Andy Hopper, Computer Laboratory, University of Cambridge

Sherif Akoush proposed moving computation and data
processes to the places where green energy is generated.
Governments may push industry toward being greener. Some
companies have already installed solar panels near their
datacenters. However, the amount of solar and wind power
changes over time in a specific geographic region. If one can
find two regions so that at least in one of them at any moment
of time there is enough sun or wind to generate the required
amount of energy, then one can migrate data and computa-
tion processes between corresponding datacenters dynami-
cally. Migration can happen in the form of VM migration.
The challenges one will have to address are storage synchro-
nization, predictive VM migration, scheduling, and planning.

The authors did a case study in which they picked two data-
centers, one in Africa and one in Australia. The downtime
was only 0.5 seconds per migration, totaling 415 seconds
per year, which corresponds to a very solid SLA. The cost of
migration is 57.5 kJ/migration, which is also very low.

Aman Kansal (MSR) pointed out that a lot of hardware will
be idling in this case. Sherif replied that energy will very soon

responded that SSDs are still quite expensive and that even
flash drives can have variations in their performance. Philip
Levis questioned if the cache will amortize this problem. Elie
agreed that this can happen as long as you can prefetch data
in time. But in the paper, the authors used different, stream-
ing workloads.

Watts Up, Joules?

Summarized by Vasily Tarasov (tarasov@vasily.name)

The Case for Power-Agile Computing
Geoffrey Challen, MIT, SUNY Buffalo; Mark Hempstead, Drexel

University

This presentation was unlike any other talk at the work-
shop—it was a whole show! I’ll try to describe it, but you
really had to be there to truly appreciate it. First, the title
slide appeared but the presenter seemed to be missing. After
a period of growing uncertainty in the audience, the second
author, Mark Hempstead, stood up and said that he would
have to give the talk, but that he had not seen the slides
before. He pressed the space button on the laptop and what
the audience saw on the screen was a genie lamp. Over the
laughs of the crowd, Mark humbly confessed that he was
not aware of the purpose of this slide. Maybe we need to rub
the lamp in order for a genie to appear, he said. He tried it...
and Geoffrey Challen, first author, ran into the room in a
golden hat and a vest over his naked torso shouting “Shazam!
Shazam! Shazam!” The audience roared.

The rest of the talk was a conversation between the genie
(Geoffrey) and the genius (Mark) during which they designed
extremely power-efficient systems that can scale to anything
from a cell phone to a production server. The idea is based on
the availability of more and more components with differ-
ing computational power and levels of energy consumption.
Additionally, these components have become cheaper. So why
not put several components of varying power on the same
device and switch between them as necessary? This can
provide very smooth scaling.

Mike Schroeder (MSR) asked if this could be applied in data-
centers. Mark said that is definitely possible and there are
some projects that already try to do this. Peter Bailis (Har-
vard) asked about the programming model in such environ-
ments. Geoffrey said that there are ways to design convenient
programming models for such systems. He gave an example
of fat binaries that support several platforms. Prabal Dutta
(U. Michigan) asked about the components that already
include some method of scaling—for example, CPU frequency
scaling. The authors replied that their design can reuse such
features. One can switch to a more powerful CPU only if all
levels in the currently working CPU are used up.

AUGUST_11_reports.indd 79 7.6.11 3:01 PM

 80 ;login: VOl. 36, NO. 4

expected to last for 15–20 years, and using optimistically
chosen costs are just going to get you laughed at.

Gernot Heiser mentioned that with DVFS it is very difficult
to get even 10% power savings, as operating voltages have
dropped to close to 1 volt. Gernot also pointed out that the
Thumb instruction set in the ARM chip does not save energy.
It is a subset of the regular ARM ISA, but you need to execute
more instructions to get the same work done. You just get a
smaller memory footprint.

Nobody Likes Surprises

Summarized by Suparna Bhattacharya (suparna@csa.iisc.ernet.in)

Debug Determinism: The Sweet Spot for Replay-Based
Debugging
Cristian Zamfir, EPFL, Switzerland; Gautam Altekar, University of

California, Berkeley; George Candea, EPFL, Switzerland; Ion Stoica,

University of California, Berkeley

Replay-based debugging is a useful technique for tracking
down hard to reproduce non-deterministic bugs which may
otherwise take days or months to diagnose. The high runtime
overhead involved in ensuring deterministic record-replay,
however, is a major barrier to making these tools practical for
production use.

Cristian Zamfir argued for a new model of determinism,
called “debug determinism,” which specifies that a system
should at a minimum reproduce the failure and the root cause
of the failure in order to be useful for debugging. Thus, debug
determinism maximizes debugging utility, yet it is a relaxed-
determinism model that has the potential to be achieved
with low in-production overhead. He observed that exist-
ing relaxed deterministic replay approaches such as output
determinism and failure determinism may end up sacrificing
debugging utility in the process of reducing runtime over-
head. For example, an output-deterministic system may only
record the output but not the input context or data race that is
the root cause of the failure. Debug determinism, on the other
hand, relaxes determinism while ensuring that both the
original failure and the root cause can be reproduced.

How might this be achieved? One could apply high-fidelity
recording during portions of execution where root causes
and failures are suspected—the key difficulty, of course, is
that these are not known a priori. Hence, static analysis or
domain knowledge is required to guess the location of pos-
sible root causes. In the case study presented for Hypertable,
the authors relied on previous reports that control plane code
tends to be responsible for most program failures, but only
a small portion of the execution time. Thus, one approach is
to record with high fidelity just the control plane. Cristian

be more expensive than hardware. A lot of people in the audi-
ence did not believe that, saying that power should become
really expensive in order for this technique to start to make
sense. A related question was whether the authors neglected
the cost evaluation. Sherif said that at the moment they
do not have a good cost model. Another concern was high
latencies. The author agreed that for some applications this
approach will not work. Mike Freedman asked why they were
using VM migrations. Sherif answered that for some applica-
tion types, where the working set is small, VMs make sense.

Discussion/Open Mike

Summarized by Rik Farrow (rik@usenix.org)

The half hour of open discussion at first stayed focused on
energy saving, the topic of the previous session. Dan Wallach
wondered where else we could apply the genie. Geoff said
that they had focused on improving the energy footprint of a
single machine, but you could consider clusters and clouds.
Mark Hempstead pointed out that the cost of transition-
ing processes or VMs between systems or DCs needed to be
taken into account. Jeff Mogul mentioned that energy and
computing is where computer security was ten years ago.
Security is hard to get right, and accounting is the Achilles’
heel of these things. The energy cost to produce a laptop is
the same as the cost of using it two years. Mark responded
that he hoped we would read his paper carefully, as they were
careful. Geoff actually agreed with Jeff, in that we have been
using voltage scaling for ten years, and Windows still does
this so poorly it is better just to turn off the laptop. Mark
mentioned that if we are really going to consider scalable
computing, we need to consider the entire lifecycle. Mike
Schecter said that people building datacenters are watching
out for their own interests, but even they do not have control
of all costs, including lifecycle costs.

John Ousterhout displayed a slide from RAMCloud (a
Stanford project that replaces large disk storage with DRAM
in server clusters). John pointed out that while disks have
16,667 times more capacity, latency has improved much less
(twice as fast), while transfer rate is 50 times better than it
was in the mid-’80s. But because capacity has far outstripped
latency and bandwidth, reading an entire disk, using small
blocks at random addresses, has become 8333 times worse.
Just reading an entire disk sequentially can take 30 hours.
Peter Honeyman said that the same thing is happening with
memory, but John replied that memory is still much faster.
Mike Swift noted that it is faster to read from a remote cache,
outside the network, than to read from the local disk. The
speed of doing computation over distance is the fundamen-
tal issue. Someone from Google pointed out that DCs are

AUGUST_11_reports.indd 80 7.6.11 3:01 PM

 ;login: August 2011 Conference Reports 81

tributed computing engines, and that this could be achieved
without forcing additional complexity on computations that
do not involve non-determinism. He presented examples like
branch-and-bound and applications with irregular-sized
parallel sub-trees; these can be speeded up significantly by
reducing wasted work, using primitives like asynchronous
signals for work shedding and non-deterministic select to
continue execution without synchronization delays.

Since the main challenge with implementing non-determin-
ism lies in dealing with faults, Derek discussed a possible
range of policies, from a conservative but expensive record
and replay to explicit error/exception handling by applica-
tions, to the other extreme of a fail-everything all-or-nothing
approach. One of the more interesting alternatives proposed
was that of bounded non-deterministic annotations for com-
putations that have deterministic outputs, but which may be
implemented internally using non-deterministic steps for
efficiency. The paper also describes how tainting could be
used to differentiate non-deterministically generated out-
puts from deterministic references to restrict the impact.

Mike Schroeder asked about the extent to which the authors
have managed to act on these observations. Derek responded
that they need to understand the distribution of failures
before concluding what the appropriate solution should look
like. Cristian Zamfir wondered how one would deal with
undesirable non-determinism such as a bug in the JVM or
the kernel. Derek clarified that they were not trying to deal
with those kinds of problems, but were focused on explicit
user-level non-determinism. The main message here is that
currently the problem of handling non-determinism has been
pushed to lower layers of the system; instead, we should pull
back some of it to higher layers where it may be cheaper to
handle and enable more flexibility.

Finding Concurrency Errors in Sequential Code—
OS-level, In-vivo Model Checking of Process Races
Oren Laadan, Chia-Che Tsai, Nicolas Viennot, Chris Blinn, Peter Senyao

Du, Junfeng Yang, and Jason Nieh, Columbia University

This intriguing title marked the last talk of the session on
non-determinism. Oren Laadan highlighted an important
problem that has received very little attention in the sys-
tems community compared to the active research on thread
races. This is the existence of process races, or races which
occur when multiple processes access shared OS resources
without proper synchronization, e.g., non-determinism in the
results of ps aux | grep XYZ or a shutdown script unmounting
a file system before another process writes its data. Using
results from their survey of sampled race reports for com-
mon Linux distributions, he pointed out that process races
are numerous and growing over the years. They can also be

proposed a metric called debugging fidelity (DF) to assess
different approaches with respect to their debugging utility.
For example, DF is 1 when both the failure and the original
root cause can be reproduced (e.g., when both are in the con-
trol plane in the Hypertable example) and it is 1/3 when there
are 3 possible root causes for a reproducible failure and the
system may reproduce one of the root causes that is different
from the original cause.

Jeff Mogul asked whether it would be useful to implement
a two-phase approach involving a run in high performance
(relaxed determinism) mode followed by other runs with high
fidelity with respect to the possible root cause of the failure.
Cristian pointed out that replay debugging systems are typi-
cally targeted at failures that occur infrequently and are hard
to reproduce; therefore a two-phase approach may not work
well in these cases. Mike Schroeder wondered whether low
fidelity might be better, since it is good to know all the root
causes, in order to fix them all. Cristian responded that find-
ing all root causes for a failure may take a long time and may
be more difficult to scale. However, such a system would have
higher “debugging effectiveness,” which is a different metric
from debugging fidelity.

One participant asked for a clarification on how one can
know up-front where the root causes are. Cristian replied
that one could over-approximate where root causes are likely
to be based on a heuristics or static analysis, then record
those parts of the execution with high fidelity. For instance,
one might be able to statically over-approximate where all
the data races are. Some of these data races may be benign;
due to the over-approximation, they would be recorded as
well, yet the system would achieve debug determinism for
failures caused by data race bugs.

Non-deterministic Parallelism Considered Useful
Derek G. Murray and Steven Hand, University of Cambridge Computer

Laboratory

In contrast with much recent work that treats non-determin-
ism as a source of undesirable problems in parallel program-
ming, Derek Murray made a case for extending distributed
execution engines to enable explicit support for non-deter-
ministic execution in applications that can benefit from it. He
began his presentation by explaining how distributed execu-
tion engines (e.g., MapReduce) take care of a lot of parallel
programming drudgery, including parallelization, synchroni-
zation, scheduling, load balancing, communication, and fault
tolerance. It is the last of these that requires deterministic
execution. Thus non-determinism comes at the cost of trad-
ing off transparent fault tolerance. However, he argued that
more efficient and versatile programs can be built if non-
determinism is supported as a first-class abstraction in dis-

AUGUST_11_reports.indd 81 7.6.11 3:01 PM

 82 ;login: VOl. 36, NO. 4

The Tin Foil Hat Session

Summarized by Srinath Setty (Srinath@cs.utexas.edu)

Privacy Revelations for Web and Mobile Apps
D. Wetherall and D. Choffnes, University of Washington; B. Greenstein,

Intel Labs; S. Han and P. Hornyack, University of Washington; J. Jung,

Intel Labs; S. Schechter, Microsoft Research; X. Wang, University of

Washington

Right now, the research community’s work can be divided
into the following two categories: first, creating clever
attacks to expose privacy risks, and second, devising narrow
mechanisms to prevent a class of privacy risks. David Weth-
erall argued that the research community needs to go beyond
these two classes of work and devise operating system
mechanisms for privacy revelations. Privacy revelations will
track how a user’s information spreads in applications and
will present that information to its users. The authors argue
that this information will enable users to improve privacy if
it can be presented as application-level concepts.

Yinglian Xie (MSR) pointed out that the problem is more
than transparency: users need to know how their data gets
used outside. Wetherall agreed. Matt Welsh from Google
asked about the incentives for OS developers and application
developers to support privacy revelations. Wetherall said
that the work is not to disallow apps from tracking/collecting
users’ information but to expose that fact to the users. John
Wilkes (Google) suggested that privacy revelations should
go beyond what the authors defined: the operating systems
should point out information about the ways in which the
tracked information gets used. Wetherall agreed.

Do You Know Where Your Data Are? Secure Data
Capsules for Deployable Data Protection
Petros Maniatis, Intel Labs Berkeley; Devdatta Akhawe, University

of California, Berkeley; Kevin Fall, Intel Labs Berkeley; Elaine Shi,

University of California, Berkeley and PARC; Dawn Song, University of

California, Berkeley

Petros Maniatis began with a story about health data. His
foot was injured in Palo Alto, and then he was hit by an
ambulance, re-injuring the same foot, while in the UK. It
would have been useful to have data from the medical work
done in California while in the UK. But it is important to
maintain control over our own health data.

Maniatis presented the secure data capsules vision: the
owner of data sets a policy; policy is enforced during its
lifetime, and data provenance is maintained throughout.

dangerous, resulting in data loss and security vulnerabilities.
Diagnosing process races is challenging, however, because
of: (1) the diversity in scope (involving multiple programs
written in different languages with complex interactions
involving a variety of heterogeneous resources); (2) the need
for a race detection algorithm that can handle these complex
and often underspecified interactions between system calls
and resources; (3) the difficulty of ensuring coverage due to
dependencies on elusive conditions such as timing, envi-
ronment configuration, and usage scenarios; and (4) a high
likelihood of false positives or benign races.

Oren described their solution to the problem: RacePro, a
system which combines lightweight online in-kernel record/
replay (to transparently track access to shared resource
accesses at the OS level) with an offline exploration engine
that analyzes the record (using model checking) to detect
potential process races. While the first piece addresses
the scope challenge, the second addresses coverage. The
algorithm challenge for race detection is solved by mapping
this to an equivalent memory race detection problem which
treats resources like memory locations and system calls like
memory read/write. The last step of the solution is an offline
validation using a live replay of a modified version of the
recording that forces candidate race conditions to help rule
out false positives. With their preliminary implementation
they have detected 14 races, including 4 that result in a data
loss, 5 that result in a crash, and 5 security vulnerabilities. Of
all the races detected by the exploration engine, only 3–10%
proved harmful, showing that the validation step is crucial.

There were several questions about what the underlying
recording scheme actually captures and the assumptions
made. Oren explained that they record all system calls and
the partial order of their access to resources. Responding to a
question from Marcos about whether they rely on a model of
the OS for knowledge of what the shared resources are, Oren
mentioned that their record replay mechanism is based on
Scribe, their earlier work on a transparent lightweight appli-
cation execution replay, published at SIGMETRICS ’10. The
basic resources are decided up front—e.g., IPC, files, inodes
(not every single lock in the kernel), and partial ordering for
a resource are recorded/effected by tracing internal kernel
function accesses. Since Scribe can replay any application,
including one that is multi-process and multi-threaded,
RacePro can detect process races that involve threads as
well. David Holland asked how robust the mechanism is to
the kernel that’s not working properly. The answer was that
the approach assumes a correctly working kernel.

AUGUST_11_reports.indd 82 7.6.11 3:01 PM

 ;login: August 2011 Conference Reports 83

user. John Ousterhout from Stanford asked if this would
increase risk by recording information. Altekar answered
that users have to trust the recording system to not leak
information. Timothy Roscoe from ETH Zurich asked if this
is going to be used, since users may not like to record all their
actions. The answer was to reduce the costs to make it favor-
able for the users to use it.

Discussion/Open Mike
No report is available for this session.

MacGyver Would Be Proud

Summarized by Sherif Akoush (sa497@cam.ac.uk)

Exploiting MISD Performance Opportunities in
Multi-core Systems
Patrick G. Bridges, Donour Sizemore, and Scott Levy, University of New

Mexico

Patrick Bridges presented opportunities to increase the
speed of fixed-size workloads proportional to the processor
count. He argued for strong scaling in systems software, and
he gave the example of a single TCP connection as why we
need it. For small MTUs, TCP synchronization across mul-
tiple cores is a bottleneck and it kills performance. Multiple-
instruction/multiple-data (MIMD) approaches do not solve
this problem, as they require coordinating activities between
cores.

The alternative approach is to use a multiple-instruction/
single-data (MISD) execution model based on the replication
of sequential code across cores. In other words, synchroni-
zation is being replaced by replicating sequential work to
guarantee consistency. They have implemented the sys-
tem, and the initial result is that their model scales well for
TCP receive processing. Patrick concluded by giving other
examples, such as high-throughput file systems, in which the
MISD approach would be beneficial.

Timothy Roscoe from ETH Zurich asked whether TCP is the
interesting case in this approach and if it has any sequential
component that can be replicated across cores to achieve
scaling. Patrick answered that TCP state information such as
window size, congestion control, and flow control is basically
the sequential code that needs to be consistent across cores.
He believes that TCP would be the killer application, to speed
up a single connection flow proportional to the number of
cores. Mike Swift asked about other applications that would
fit this model. Patrick said that moving a large chunk of data
in the DB world would be interesting as well.

Then Maniatis presented the challenges involved in realizing
this vision. First, the vision requires tracking information,
which is known to be expensive in practice; devising efficient
mechanisms to track the flow of information is a challenge.
Second, the vision requires us to devise composable and
meaningful policy definitions. Third, covert channels are a
serious threat and need to be addressed.

Toby Murray (NICTA/UNSW) pointed out that microkernels
are good for secure data capsules. Then Toby asked if naming
is going to be the hard problem. Maniatis agreed but pointed
out that it needs to be solved in order to realize the proposed
vision. An audience member pointed out that Palladium at
MSR, with a similar vision, had problems with displaying
output on commodity hardware, and asked if this is going to
be a problem in this work. Maniatis said there are solutions to
the secure display problem if there is hardware manufacturer
support. Michael Swift (University of Wisconsin) asked if it
is going to be a problem to create policies to handle medi-
cal data before the data gets used. Maniatis pointed out that
there are a couple of ways to handle this: the system could
have policy violation budgeted to address the unknown data
usage information, or a quorum of entities could decide the
policy dynamically at runtime.

Making Programs Forget: Enforcing Lifetime for
Sensitive Data
Jayanthkumar Kannan, Google Inc.; Gautam Altekar, University of

California, Berkeley; Petros Maniatis and Byung-Gon Chun, Intel Labs

Berkeley

Gautam Altekar explained that their idea is to create OS
mechanisms to ensure that sensitive data is not retrievable
after a defined data lifetime date has expired. This mecha-
nism should not require support from applications. Altekar
presented their initial work, state reincarnation, in which an
operating system rolls back the application’s state, replaces
sensitive information with equivalent non-sensitive infor-
mation, and rolls forward the application. State reincarna-
tion eliminates any sensitive data from the system after
its lifetime, but the challenge in achieving this is to derive
equivalent non-sensitive data during the process. Altekar
pointed out that output deterministic replay (SOSP ’09) can
be used to solve this problem in many cases, but overheads
are going to be high. The talk also presented overheads by
recording information at user-level: for bash, the slowdown
was 1.2 times.

An audience member asked whether the goal could be
achieved by simply going back in time. Altekar pointed out
that that proposed fix would disrupt the application and the

AUGUST_11_reports.indd 83 7.6.11 3:01 PM

 84 ;login: VOl. 36, NO. 4

checker) which can eliminate the redundant work of count-
ing words in a file. However, there are challenges in making
this adaptive optimization efficient and between multiple
processes.

Phil Levis (Stanford) asked how this adaptive optimization
would work for specialized paths in the current user’s home
directory. Christopher answered that this can be mitigated
by either pushing this challenge to the user or writing a
wrapper script that can check whether there is a specializa-
tion version available. Petros Maniatis (Intel Labs Berkeley)
asked how this approach compares to speculative execu-
tion. Christopher answered that what he is proposing is
complementary, as it can eliminate some decisions that are
not needed ahead of the speculative execution. An audience
member commented that the proposed approach can be aug-
mented to model deferential execution of multiple program
invocations over time to identify common state which is use-
ful. Dave Holland (Harvard) wondered about what happens
if the content of the file changes during execution. The reply
was that, for the time being, it will be left to the developer to
take the correct action.

Poster Session

Summarized by Lon Ingram (lawnsea@cs.utexas.edu)

The Best of Both Worlds with On-Demand Virtualization
Thawan Kooburat and Michael Swift, University of Wisconsin—Madison

Kooburat and Swift propose on-demand virtualization,
where users run natively most of the time to reap the full
performance of their hardware, but can switch to running in
a virtual machine when needed. They save the state of the OS
and running processes through hibernation, use hotplugging
to transition devices from physical to virtual hardware, and
employ logical devices to preserve device bindings, which
allows network connections to be maintained.

Mobile Apps: It’s Time to Move Up to CondOS
David Chu, Aman Kansal, and Jie Liu, Microsoft Research Redmond; Feng

Zhao, Microsoft Research Asia

Chu presented his team’s vision for a new kind of mobile OS
service. The OS would provide applications with context
signals—whether the user is standing or sitting, for example,
or in a loud or quiet environment—in addition to raw sensor
data. They claim that such an OS would better protect the
user’s privacy and use resources more efficiently, among
other advantages.

More Intervention Now!
Moises Goldszmidt and Rebecca Isaacs, Microsoft Research

Moises Goldszmidt argues for what-if scenarios for data-
parallel systems (e.g., MapReduce and Dryad). Unfortunately,
this cannot be done by passive observations only; active
interventions are required to learn the causality of different
parts of the system. The proposed approach makes use of
well-developed mathematical models, theories, and engi-
neering.

The approach relies on passive observations to build the con-
founding factors that require further active interventions.
Then, a Bayesian network is developed and executed which
determines the experimentations needed. Statistics and
machine-learning techniques provide a set of new rules that
can be used for active interventions.

Matt Welsh said that he was the reviewer that said you are
reinventing control theory, something that was done for 50
years. Can you apply stuff that was done 30 years ago? Moises
answered that they actually combined different models to
come up with a new formulation that can be used to decide
on the active interventions. Rodrigo Fonseca (Brown) asked
how the blueprint (i.e., causality) is captured, and if it is cap-
tured wrong, how this might affect the conclusions. Moises
answered that the blueprint is constructed from passive
observations (e.g., data sizes from nodes in the cluster that
are running the tasks), while active interventions are what
actually correct any wrong assumptions in the blueprint.

make world
Christopher Smowton and Steven Hand, University of Cambridge

Computer Laboratory

Christopher Smowton argued that programs such as Firefox,
OpenOffice, and Eclipse are rubbish since they repeat work
that is done in either the current or the previous session.
Developers of these programs never consider specialization
of the software, because it is a challenging task. A spell-
checker, for example, converts a local/global dictionary into a
machine-readable form every time before checking. An easy
optimization is to do this conversion only once per session.
Alternatively, the program can be manually rewritten to save
its intermediate results.

The paper proposes a more efficient technique based on
global optimization: automated specialization of programs
by partial evaluation. In the specific example of the spell-
checker, this technique treats the dictionary as a constant
propagated through the rest of the program. A prototype has
been implemented as a proof of concept (not for the spell-

AUGUST_11_reports.indd 84 7.6.11 3:01 PM

 ;login: August 2011 Conference Reports 85

Pervasive Detection of Process Races in Deployed
Systems
Oren Laadan, Chia-Che Tsai, Nicolas Viennot, Chris Blinn, Peter Senyao

Du, and Junfeng Yang, Columbia University

This project uses a recording of process interactions through
the system call interface to detect process races. Once a
race is detected, the system re-executes the processes until
immediately before the racing syscalls. It then resumes
execution, but with the loser of the race executing before the
winner. This technique allows them to reduce false positives
by ignoring benign races.

Sirikata: Design and Implementation of a Next
Generation Metaverse
Philip Levis, Stanford University; Michael J. Freedman, Princeton

University; Ewen Cheslack-Postava, Daniel Reiter Horn, Behram F.T.

Mistree, and Tahir Azim, Stanford University; Jeff Terrace, Princeton

University; Bhupesh Chandra, Stanford University; Xiaozhou Li,

Princeton University

Sirikata is a project to actually build a usable virtual world.
The challenges presented by such an undertaking are unique
and daunting. The project is well into its implementation,
with 12 undergraduate students building a virtual city called
Merustadt over the summer of 2011.

SPECTRE: Speculation to Hide Communication Latency
J.P. Martin, C. Rossbach, and M. Isard, Microsoft Research SVC

Programs that share mutable state and sequential algo-
rithms are harder to run efficiently on multiple machines.
SPECTRE uses prefetching and speculative execution to run
sequential algorithms in parallel, rolling back if a conflict is
encountered. It is currently running as a prototype on a small
cluster.

T2M: Converting I/O Traces to Workload Models
Vasily Tarasov, Santhosh Kumar Koundinya, and Erez Zadok, Stony Brook

University; Geoff Kuenning, Harvey Mudd College

T2M is an effort to create benchmarks from I/O traces.
Traces are broken into chunks based on what model will
be used to analyze the chunks. The chunks are then mod-
eled and a workload model is output, which can be used as a
benchmark in the future.

Seeking Efficient Data-Intensive Computing
Elie Krevat and Tomer Shiran, Carnegie Mellon University; Eric A.

Anderson, Joseph Tucek, and Jay J. Wylie, HP Labs; Gregory R. Ganger,

Carnegie Mellon University

Krevat and his team investigated what inefficiencies affect
data-intensive scientific computing (DISC), which they
define as large-scale computations over big datasets. They
used a simple model of DISC and a library called Parallel
DataSeries to look for performance problems.

Detern: Robustly and Efficiently Determinizing Threads
Heming Cui, Jingyue Wu, John Gallagher, Chia-che Tsai, and Junfeng

Yang, Columbia University

Yang and his team built on recent work in the field of deter-
ministic multithreading, making it more robust and efficient.
Their system caches thread schedules and reuses them; it
also uses a hybrid schedule that takes advantage of the fact
that there are typically relatively few races during the execu-
tion of the program.

Execution Synthesis: A Technique for Automated
Software Debugging
Cristian Zamfir and George Candea, Ecole Fédérale de Lausanne

Zamfir and Candea created a method for automatically
finding a path through a program that reproduces a reported
bug. Their technique uses a focused path search based on a
combination of heuristics and symbolic execution to reach
a target failure state. It incurs no runtime overhead and can
find deadlocks and race conditions.

Memento: In-Memory Caching for Datacenters
Ganesh Ananthanarayanan, Ali Ghodsi, and Andrew Wang, University

of California, Berkeley; Dhruba Borthakur, Facebook; Srikanth Kandula,

Microsoft Research; Scott Shenker and Ion Stoica, University of

California, Berkeley

The Memento team are working on a memory cache for
data-intensive workloads in datacenters. They observed
that most jobs are small and require all of their data to be
cached to reap performance benefits. Large jobs, on the other
hand, experience linear improvement as their working set is
cached. Traditional caching disciplines ignore the all-or-
nothing constraint on small jobs. Memento categorizes jobs
by size and tries to ensure that this constraint is met so that
large jobs don’t starve small ones.

AUGUST_11_reports.indd 85 7.6.11 3:01 PM

 86 ;login: VOl. 36, NO. 4

Mike Walfish (University of Texas at Austin) showed a You-
Tube video where a penguin is taught to go shopping. He sug-
gested that robots should be used to perform mundane tasks
like this. He presented his work in building robots which are
easy to program and able to perform simple tasks such as
getting a cup of coffee. He proposed a model where people can
download pre-programmed tasks to their robots from places
like AppStore.

David Anderson (CMU) suggested that systems research
is about dealing with constraints imposed by hardware.
Previously, we have been able to use many abstractions to
hide some hardware details such as uniform memory and
sequential computation. However, as we are hitting the
physical limit of physical devices, we will start to throw away
these abstractions. He believed that we will ultimately reach
the end of scaling of physical devices and we should accept
this fact. Because of this, we should think carefully about
which abstractions to throw away and in which order, so that
programmers will continue to survive despite these changes.

Joseph Tucek (HP) explained that the next-generation com-
puter system is just a machine with a different ratio of hard-
ware resources. He proposed that cutting-edge research can
be carried out by putting together machines that simulate
this ratio. For example, we can pair a 386 processor with a 10
Gbps network to mimic the future Terabit network.

Prove It!

Summarized by Sherif Akoush (sa497@cam.ac.uk)

What If You Could Actually Trust Your Kernel?
Gernot Heiser, Leonid Ryzhyk, Michael von Tessin, and Aleksander

Budzynowski, NICTA and University of New South Wales

Gernot Heiser presented an seL4 microkernel that is for-
mally proven to be functionally correct. The kernel is free
from crashes, bugs, and similar safety issues. Interesting
applications are for the purposes of better virtual machine
monitors and isolating Web browsers. Trusted platform mod-
ules (TPM) can also be made practical by the use of a trusted
kernel with a trusted verified loader.

Taking home banking as an example, TPM is practically use-
less, as it forces the users to boot into a special banking con-
figuration that will kill any other concurrent access to other
machine features. Late launch/DRTM is also practically
useless, as it does not allow for interrupts, DMA, or multipro-
cessing. The proposed solution is to load the banking applica-
tion in a mini OS that is also loaded with a verified loader on
top of a verified seL4 kernel. The user’s standard OS is still
working in parallel and is not affected. Additionally, DBMS
would not need synchronous log writes, as it is guaranteed

Why a Vector OS Is a Bad Idea
Vijay Vasudevan and David Andersen, Carnegie Mellon University;

Michael Kaminsky, Intel Labs

Awarded Best Poster!

Vasudevan presented the winning poster, which discussed
the downsides to the Vector OS project that he discussed
in the final session of the workshop. Two problems identi-
fied on the poster were the difficulty of programming to an
explicit vector interface, illustrated with code showing the
extra work required, and latency penalties paid when code
diverges. The poster also included a space for audience mem-
bers to fill in their own objections to the scheme.

Wild and Crazy Ideas Session

Summarized by Thawan Kooburat (kooburat@cs.wisc.edu)

Matt Welsh (Google) presented MEME OS, which is designed
to appeal to the Internet generation. This generation does
not understand the messages displayed via the text-based
terminal. He proposed the use of funny images from the Web
as a way to report output or error messages to users.

Margo Seltzer (Harvard) conducted a poll on how people
carry their mobile phones. She found that those who carry
their phones in their pockets are mostly men. This means
that women may not carry the phone with them when leaving
their desk to do small errands. Research on mobile phones
should also take women’s behaviors into account, since they
represent the other half of the demographic.

Jeffrey Mogul (HP Labs) proposed a journal for reproduced
results in OS research. He also came up with several ideas
to provide incentive for people to work on this journal.
For example, submitting a paper to this journal should be
required to get tenure. The authors of any system paper need
to put down $1000 on paper submission, which will go to
the reviewers if the result is refuted within two years. Many
people responded that other research communities—the
database community, for example—already have mecha-
nisms such as reproducibility committees to verify published
works.

Dan Wallach (Rice University) complained about the cur-
rent submission process, in which papers get into the loop of
submit-reject-revise. He proposed that all papers should get
accepted immediately as tech reports. This sparked a debate
where people discussed the submission process of other con-
ferences such as SIGMOD and VLDB. Others also raised the
idea of removing anonymous review or using crowdsourcing
instead of peer review.

AUGUST_11_reports.indd 86 7.6.11 3:01 PM

 ;login: August 2011 Conference Reports 87

important and they are actually working on modeling the
hardware.

Toward Practical and Unconditional Verification of
Remote Computations
Srinath Setty, Andrew J. Blumberg, and Michael Walfish, The University

of Texas at Austin

Srinath Setty presented a practical and unconditional
verification of remote computations which is useful in cloud
and volunteer computing. Basically, the client needs to verify
that the server has executed the code correctly without
redoing the computation. One solution is to use probabilisti-
cally checkable proofs (PCPs), but PCPs are currently just
applied in theory. The purpose of this paper is to make them
practically possible (i.e., position the challenge as a systems
problem). They refined PCP via arithmetic circuits instead of
Boolean circuits, to make the system efficient, and imple-
mented the design to demonstrate its practicality.

The prototype achieves savings of 10 orders of magnitude by
using the refinements presented. It is based on a divide and
conquer strategy: dividing the problem into smaller parallel
parts that the server checks simultaneously and then veri-
fies. However, more refinements are still required to reduce
the storage cost and support floating-point operations, for
example.

Steven Hand (University of Cambridge) asked why we should
use PCPs instead of replication, as replication is simpler to
verify computations. Srinath replied that replication assumes
a threshold on the number of faulty servers, but PCPs provide
stronger guarantees. Mike Freedman (Princeton) asked
whether the optimizations that have been made can be gen-
eralized to the implementation of other computations. The
answer was that these optimizations can be applied to any
computation expressed as a circuit. In principle, a compiler
can be used to translate a circuit representation from a high-
level specification.

MOMMIE Knows Best: Systematic Optimizations for
Verifiable Distributed Algorithms
Petros Maniatis, Intel Labs Berkeley; Michael Dietz, Rice University;

Charalampos Papamanthou, Brown University

Petros Maniatis argued for an approach that guarantees the
development of both algorithmic logic (for verification) and
optimizations (for efficient implementation). Abstractions
are great, but developers usually end up modifying the actual
implementation code when systems are built. The actual
code is therefore too difficult to be verified for correctness.
Moreover, we should not worry about this level of implemen-
tation detail.

with a verified kernel that the OS will not crash. In this case,
there is no tradeoff between performance and reliability.

John Ousterhout (Stanford) asked if they had found any
issues in seL4 since the SOSP ’09 paper. Gernot replied
that they had found a few proof bugs, around specification,
configuration, and initialization. The only way around that
is to complete the proof chain for the security parts. Brad
Chen (Google) asked whether there is more than isolation
that can be gained by a verified kernel and how application
correctness can be guaranteed. Gernot answered that the
guaranteed kernel functionality can be leveraged to ensure
user-level component interfaces and this is something they
are currently working on. Mike Swift asked what happens if
the memory fails, and Gernot replied that people trust their
RAID systems today. He also said that the military would
like to have triply redundant memory for some applications.

Provable Security: How Feasible Is It?
Gerwin Klein, Toby Murray, Peter Gammie, Thomas Sewell, and Simon

Winwood, NICTA and University of New South Wales

Toby Murray argued that provable security for a real system
is feasible but certainly not easy. Real proofs are done by
machines and can provide you with unexpected insights into
high-level security issues such as integrity and confidential-
ity. Real systems are big and often written in C or assembler,
not in a language that is designed to be proofed.

Toby provided seL4 as an example of a proofed kernel that
enforces integrity. It is a machine-checked proof with 10,000
lines of proof-script code. However, timing channels are still
too hard to be proofed and require a very detailed model of
the underlying hardware. Additionally, systems like Linux
cannot be proofed easily, as they have large trusted compo-
nents.

Steven Hand (University of Cambridge) asked what is
required if changes are made to the kernel. Toby answered
that it depends on the level of modification done to the kernel;
the correctness proofs rely on a number of invariants that
have been proved about the kernel, and most of the work in
proving correctness involves proving these invariants. So
changes that do not break the invariants or introduce new
ones require little work; however, ones that do require more
work.

John Ousterhout (Stanford) asked about the number of lines
of code seL4 has and how the effort required for the proof
scales with the number of lines. Toby replied that seL4 has
8,600 LOC and noted that according to his experience, the
proof should scale more than linearly (about square) with the
size. Brad Chen (Google) asked how important the missing
specification for hardware is. Toby answered that it is really

AUGUST_11_reports.indd 87 7.6.11 3:01 PM

 88 ;login: Vol. 36, No. 4

mprotect system call. First, vectorization batches up several
system calls into one, similar to FlexSC. Then it eliminates
redundant TLB flushes and algorithmically exploits vec-
tor abstractions by sorting requests based on page address,
which reduces memory allocation overhead. These optimiza-
tions provided a factor-of-three improvement in the mprotect
rate: 30% of the improvement was attributed to avoiding sys-
tem call overhead, while the other 70% came from the vector
opportunities deeper in the stack, emphasizing the need for
vectorization at all levels. Next, Vijay described the challenge
of dealing with divergent execution paths. He proposed a
solution based on either forking extra threads and rejoining
them when execution paths converge, or using lightweight
message passing between function calls. However, deciding
when to fork and join execution is application-specific and
remains a challenge. Finally, he described one way of build-
ing a vector OS by restructuring the OS as a staged event
system. This allows the programmer to write sequential code
and let the system handle vectorization.

Erez Zadok (Stony Brook) asked about the difficulty of deal-
ing with errors when using vector system calls. Vijay replied
that this task can be simplified by using an event-based
model, as it allows programmers to handle errors individu-
ally. Andrew Baumann (Microsoft) pointed out that other
OS designs explicitly avoided synchronization overhead by
executing work redundantly in parallel. Vijay responded that
eliminating redundancy at the cost of serialization improves
efficiency, especially for I/O-bound operations in a highly
parallel Web server. Mike Schroeder (Microsoft) brought up
concerns about latency, since the system may have to wait
to batch up requests. Vijay said that existing techniques
such as interrupt coalescing already batch up requests at the
network layer before they arrive at the application, providing
an opportunity for vector execution to improve efficiency
without adding significantly more latency.

Operating Systems Must Support GPU Abstractions
Christopher J. Rossbach and Jon Currey, Microsoft Research; Emmett

Witchel, The University of Texas at Austin

Christopher raised the fact that the GPU, as a general-
purpose computing device, is underutilized because it is
treated as an I/O device. He strengthened his argument by
showing that the CPU has a much richer set of abstractions,
such as process and pipe, than the GPU, which has only ioctl
as the main interface. He described several issues caused by
the lack of a proper abstraction. First, there is no fairness or
isolation guarantee from the kernel. Second, the absence of
a kernel-facing interface means the kernel cannot use GPU
directly. Third, he presented two experiments to highlight
CPU/GPU performance isolation and scheduling problems.

The proposed middleware, MOMMIE, is a high-level lan-
guage that can be used to compose the system. This abstrac-
tion can then be translated to a specification (TLA+) for
formal verification or to an optimized program (C++) for
execution. In this way, proofs carry over into implementa-
tion without having to rebuild everything from scratch if the
system changes.

A MOMMIE statement is the fundamental building block
and is composed of an issuer, a verifier, an auditor, and
C-structs. The program looks like event-condition-action,
where actions have assignment, loops, and variables (i.e.,
imperative code). A prototype is available but it is still in its
early stages.

Mike Freedman (Princeton) asked whether the designer
tells MOMMIE which parts of the algorithm should go to the
formal proof and which parts are for actual optimizations.
Petros answered that they focused on abstraction so that
anything that is composable can be proved in isolation and
some aspects are mapped manually to implementation detail.
Toby Murray asked whether there are any restrictions on
the algorithm formulated in MOMMIE. Petros replied that
there are some restrictions: for example, it cannot allow for
arbitrary loops, because the goal is to reduce the amount of
work a designer has to do. Others wondered how this work
differs from other systems and protocols. Petros replied that
MOMMIE provides a granularity (middleware) that is not
found in any other system.

OS Design Isn’t Dead; It’s Just the Last Session
of the Workshop

Summarized by Thawan Kooburat (kooburat@cs.wisc.edu)

The Case for VOS: The Vector Operating System
Vijay Vasudevan and David G. Andersen, Carnegie Mellon University;

Michael Kaminsky, Intel Labs

Vijay raised the fact that in a Web server each request often
executes a similar sequence of operations, such as accept-
ing a network connection, opening a file, etc. Thus, a lot of
redundant and identical work is performed when servicing
requests in parallel using multiple cores. He proposed a vec-
tor system call as a mechanism to increase system efficiency.
Vectorization allows batching of system calls, which reduces
kernel crossing overhead, but, more importantly, it allows
redundant work to be eliminated. Examples include reducing
pathname resolutions, using SSE instructions in hash calcu-
lations, and looking up data structures more efficiently.

Vijay demonstrated the benefits of a vector system call while
performing memory protection at the speed of millions of
operations per second. This was achieved by vectorizing the

AUGUST_11_reports.indd 88 7.6.11 3:25 PM

 ;login: August 2011 Conference Reports 89

packet, sending a lightweight message is comparable to a
procedure call.

David talked about how to restructure the kernel to use
messages. He presented a diagram which shows the kernel
running on a separate core instead of underneath the appli-
cation. In shared-nothing architecture this is possible, since
there is no need to protect processes from overwriting each
other. He also discussed several challenges in building such
a system. For example, relying on a hardware-based channel
can lead to a similar issue that people relying on Infiniband
encountered. Virtual memory may also look entirely differ-
ent, since there is no kernel running underneath. In addition,
this model may encourage programmers to write too many
threads. Finally, fault-tolerance and scheduling may become
issues as well.

Timothy Roscoe (ETH Zurich) argued that some form of
kernel is still required to run together with the application in
order to perform privileged tasks on its behalf. Hence, only
OS services are needed to be restructured around message
passing and run on a different core. David responded that
hardware-based channels can remove the need for running
the kernel in the same core. Joseph Tucek (HP) raised the
point that a NUMA machine with 1000 cores is already avail-
able today from SGI and is used by NASA. David Andersen
(CMU) commented that this system tries to achieve Mach-
like message passing with Go-like language support. He also
mentioned that people usually wrap an RPC-like interface
around message passing. David confirmed the point about
language support and argued that a lightweight message can
have as low overhead as a function call. On the other hand,
RPC is too heavyweight to replace every function call in a
program.

Fourth, Christopher talked about his gestural interface
program. He tried to decompose the program into a collection
of programs connecting via pipes. However, this design has
poor performance as a result of the unnecessary data move-
ment. With existing GPU abstractions, this overhead cannot
be removed.

Christopher emphasized that general-purpose GPUs need
more abstraction, similar to what the CPU has. It needs
many APIs to support functions such as scheduling and
inter-process communication. The right abstraction should
enable program composition and eliminate unnecessary data
movement between CPU and GPU. The proposed abstraction
is based on a dataflow programming model. First, PTasks
represent a computation executing on a GPU. They have
priority to allow the kernel to enforce fairness. They are
also connected via ports and channels. These specialized
channels allow programmers to eliminate unnecessary data
movement when an opportunity arises. Finally, he revisited
his gestural interface program to show how these abstrac-
tions solve the problem.

Erez Zadok (Stony Brook) suggested that if the GPU is
incorporated into the CPU like the floating-point coproces-
sor was, this problem may go away. Christopher responded
that having better hardware is also one of the solutions, but
he would like to have a solution that works with existing
hardware. Philip Levis (Stanford) argued that this problem is
irrelevant, as the CPU is moving to multicore and becoming
more heterogeneous. Christopher explained that dataflow is
still important since it may be the right model for any type of
accelerator. Brad Chen (Google) brought up concerns regard-
ing GPU security issues and believed that it should not be
tightly integrated with the OS. Christopher replied that bet-
ter support from hardware, such as allowing context switch-
ing and better specification, can mitigate the problem.

Multicore OSes: Looking Forward from 1991, er, 2011
David A. Holland and Margo I. Seltzer, Harvard University

David complained about multicore systems. Hardware is not
getting faster and we are forced to adopt parallel program-
ming, which makes good scalability very difficult to achieve.
However, these are the same challenges that people who
worked with supercomputers faced around 1991. The experi-
ence gained from this shows that machines with thousands
of cores will need to adopt the shared-nothing architecture.
We also learned that message passing is the right model for
programming these machines. However, instead of using
MPI, a lightweight message channel is already available
in languages such as Go and Erlang. Since it is based on a
shared-nothing architecture, it has the potential to achieve
good scalability. Unlike sending a MPI and network RPC

AUGUST_11_reports.indd 89 7.6.11 3:25 PM

BLOGS ARTICLES COLUMNS CASE STUDIES MULTIMEDIA RSSINTERVIEWS

Written by software engineers for

software engineers, acmqueue

provides a critical perspective on

current and emerging information

technologies.

acmqueue features:

� Free access to the entire acmqueue archive

� Dozens of blogs from the field’s top innovators

� Interviews with leading practitioners

� Audio, video, and online programming contests

� Unlocked articles from ACM’s digital library

acmqueue is guided and written by widely known industry experts. Its

distinguished editorial board ensures that acmqueue’s content dives

deep into the technical challenges and critical questions that software

engineers should be thinking about.

acmqueue: ACM’s website for practicing software engineers

Visit today!
http://queue.acm.org/

acmqueue_ad.qxp:acmqueue 3/1/10 10:55 AM Page 1

If You Use Linux, You Should Be
Reading LINUX JOURNAL

�� In-depth information
providing a full 360-
degree look at featured
topics relating to Linux

�� Tools, tips and tricks you
will use today as well as
relevant information for
the future

�� Advice and inspiration for
getting the most out of
your Linux system

�� Instructional how-tos will
save you time and money

Get Linux Journal delivered
to your door monthly for
1 year for only $29.50!
Plus, you will receive a free
gift with your subscription.

SUBSCRIBE NOW AT:
WWW.LINUXJOURNAL.COM/SUBSCRIBE
Offer valid in US only. Newsstand price per issue is $5.99 USD; Canada/Mexico
annual price is $39.50 USD; International annual price is $69.50. Free gift valued
at $5.99. Prepaid in US funds. First issue will arrive in 4-6 weeks. Sign up for,
renew, or manage your subscription on-line, www.linuxjournal.com/subscribe.

SAVE
62%

™

IfYouUseLinux_FP:Layout 1 2/18/10 9:39 AM Page 1

AUGUST_11_reports.indd 90 7.6.11 3:01 PM

BLOGS ARTICLES COLUMNS CASE STUDIES MULTIMEDIA RSSINTERVIEWS

Written by software engineers for

software engineers, acmqueue

provides a critical perspective on

current and emerging information

technologies.

acmqueue features:

� Free access to the entire acmqueue archive

� Dozens of blogs from the field’s top innovators

� Interviews with leading practitioners

� Audio, video, and online programming contests

� Unlocked articles from ACM’s digital library

acmqueue is guided and written by widely known industry experts. Its

distinguished editorial board ensures that acmqueue’s content dives

deep into the technical challenges and critical questions that software

engineers should be thinking about.

acmqueue: ACM’s website for practicing software engineers

Visit today!
http://queue.acm.org/

acmqueue_ad.qxp:acmqueue 3/1/10 10:55 AM Page 1

If You Use Linux, You Should Be
Reading LINUX JOURNAL

�� In-depth information
providing a full 360-
degree look at featured
topics relating to Linux

�� Tools, tips and tricks you
will use today as well as
relevant information for
the future

�� Advice and inspiration for
getting the most out of
your Linux system

�� Instructional how-tos will
save you time and money

Get Linux Journal delivered
to your door monthly for
1 year for only $29.50!
Plus, you will receive a free
gift with your subscription.

SUBSCRIBE NOW AT:
WWW.LINUXJOURNAL.COM/SUBSCRIBE
Offer valid in US only. Newsstand price per issue is $5.99 USD; Canada/Mexico
annual price is $39.50 USD; International annual price is $69.50. Free gift valued
at $5.99. Prepaid in US funds. First issue will arrive in 4-6 weeks. Sign up for,
renew, or manage your subscription on-line, www.linuxjournal.com/subscribe.

SAVE
62%

™

IfYouUseLinux_FP:Layout 1 2/18/10 9:39 AM Page 1

AUGUST_11_reports.indd 91 7.6.11 3:01 PM

Each issue delivers technical solutions to the
real-world problems you face every day.

Learn the latest techniques for better:

on Windows, Linux, Solaris, and popular varieties
of Unix.

ADMIN: REAL SOLUTIONS
FOR REAL NETWORKS

• network security

• system management

• troubleshooting

• performance tuning

• virtualization

• cloud computing

of Unix.

FIND ADMIN MAGAZINE ON A NEWSSTAND NEAR YOU!

SUBSCRIBE NOW AT admin-magazine.com/subs

GOING TO THE CLOUD?
How will you get there?

cloudage.admin-magazine.com

The cloud portal for IT specialists – up close,
all technical, all cloud.

Powered by:

MediaExchange_Admin_Cloudage_B&W_4clr_convert.indd 1 7/6/11 4:06:57 PM
AUGUST_11_reports.indd 92 7.6.11 3:01 PM

usenix_login_aug11_covers.indd 3 7.6.11 2:27 PM

USENIX Association
2560 Ninth Street, Suite 215
Berkeley, CA 94710

POSTMASTER
Send Address Changes to ;login:
2560 Ninth Street, Suite 215
Berkeley, CA 94710

PERIODICALS POSTAGE
PAID

AT BERKELEY, CALIFORNIA
AND ADDITIONAL OFFICES

 http://www.usenix.org/facebook http://twitter.com/LISAConferenceStay Connected...

25TH LARGE INSTALLATION
SYSTEM ADMINISTRATION
CONFERENCE
SPONSORED BY

IN COOPERATION
WITH LOPSA and SNIA

December 4—9, 2011, Boston, MA

6 days of training on topics
including:

• Virtualization
• Security
• Configuration management
• And more!

Come to LISA ’11 for training and face time with experts in the
sysadmin community.

The theme for LISA ’11 is ’’DevOps: New Challenges, Proven Values.”

• Invited Talks
• Paper Presentations
• Guru Is In Sessions
• Practice and
 Experience Reports

• Vendor Exhibition
• Workshops
• Posters and WiPs

Plus a 3-day Technical Program:

LISA ’11 will feature:

Find out more at www.usenix.org/lisa11/lg

usenix_login_aug11_covers.indd 4 7.6.11 2:27 PM

