UGUST 2008

VOLUME 33 NUMBER 4

A
||
|
| |
|
|

USENIX

M AGAZINE

USENIX

The Advanced Computing
Systems Association

OPINION

SECURITY

SYSADMIN

COLUMNS

BOOK REVIEWS

USENIX NOTES

CONFERENCES

Musings 2
RIK FARROW

Storm: When Researchers Collide 6

BRANDON ENRIGHT, GEOFF VOELKER, STEFAN
SAVAGE, CHRIS KANICH, AND KIRILL LEVCHENKO

Building a More Secure Web Browser 14
CHRIS GRIER, SHUO TANG, AND SAMUEL T. KING

Withstanding Multimillion-node Botnets 22

COLIN DIXON, THOMAS ANDERSON, AND ARVIND
KRISHNAMURTHY

Ad Hoc Guesting: When Exceptions Are
the Rule 34

DIANA SMETTERS, BRINDA DALAL, LES NELSON,
NATHANIEL GOOD, AND AME ELLIOTT

Designing High-Performance Enterprise Wi-Fi
Networks V|

ROHAN MURTY, JITENDRA PADHYE, RANVEER
CHANDRA, ALEC WOLMAN, AND BRIAN ZILL

“Standard Deviations” of the Average System
Administrator 53
ALVA COUCH

Practical Perl Tools: Hi-ho the Merry-o,
Debugging We Will Go 59
DAVID N. BLANK-EDELMAN

Pete’s All Things Sun: Solaris System
Analysis 101 65
PETER BAER GALVIN

iVoyeur: Hold the Pixels 70
DAVE JOSEPHSEN

Media Resource Control Protocol 75
HEISON CHAK

/dev/random 79

ROBERT G. FERRELL

Book Reviews p)
ELIZABETH ZWICKY ET AL.

Flame and STUG Awards 86
USENIX Association Financial Report

for 2007 87
NSDI ‘08 Reports 90
LEET ‘08 Reports 105
BSDCan Reports m

BSDCan 2008 FreeBSD Developer Summit 115

USENIX Upcoming Events

22ND LARGE INSTALLATION SYSTEM ADMINISTRATION
Conrerence (LISA '08)
Sponsored by USENIX and SAGE

NOVEMBER 9-14, 2008, SAN DIEGO, CA, USA
http://www.usenix.org/lisa08

Symposium oN CompuTER HUMAN INTERACTION
FOR MANAGEMENT OF INFORMATION TECHNOLOGY
(CHIMIT '08)
Sponsored by ACM in association with USENIX
NOVEMBER 14-15, 2008, SAN DIEGO, CA, USA
http://www.chimit08.org

ACM/IFIP/USENIX 9TH INTERNATIONAL
MippLewaARE CoNFERENCE (MIDDLEWARE 2008)

DECEMBER 1-5, 2008, LEUVEN, BELGIUM
http://middleware2008.cs.kuleuven.be

FourTH WoRrksHopr oN Hot Torics IN SysTEm
DepenpaBiLITY (HoTDEpP '08)
Co-located with OSDI '08

DECEMBER 7, 2008, SAN DIEGO, CA, USA
http://www.usenix.org/hotdep08

FirsT USENIX WORKSHOP ON THE ANALYSIS OF
System Loas (WASL '08)
Co-located with OSDI '08

DECEMBER 7, 2008, SAN DIEGO, CA, USA

http://www.usenix.org/wasl08
Paper submissions due: September 2, 2008

WoRrksHorP oN Power AWARE COMPUTING AND
Systems (HoTPower '08)
Co-located with OSDI '08

DECEMBER 7, 2008, SAN DIEGO, CA, USA

http://www.usenix.org/hotpower08
Paper submissions due: September 11, 2008

8TH USENIX Symposium oN OPERATING SYSTEMS

DesigN AND IMPLEMENTATION (OSDI '08)

Sponsored by USENIX in cooperation with ACM SIGOPS
DECEMBER 8-10, 2008, SAN DIEGO, CA, USA
http://www.usenix.org/osdi08

THIRD WoRKSHOP ON TACKLING COMPUTER
SYSTEMS PROBLEMS WITH MACHINE LEARNING
TecHNIQUES (SYysMLOS)
Co-located with OSDI '08

DECEMBER 11, 2008, SAN DIEGO, CA, USA

http://www.usenix.org/sysml08
Submissions due: September 26, 2008

71H USENIX CoNFERENCE ON FILE AND STORAGE
TecHnoLoaies (FAST '09)

Sponsored by USENIX in cooperation with ACM SIGOPS,
IEEE Mass Storage Systems Technical Committee (MSSTC),
and IEEE TCOS

FEBRUARY 24-27, 2009, SAN FRANCISCO, CA, USA

http://www.usenix.org/fast09
Paper submissions due: September 12, 2008

2009 ACM SIGPLAN/SIGOPS INTERNATIONAL
CONFERENCE ON VIRTUAL ExecuTiON ENVIRONMENTS
(VEE '09)

Sponsored by ACM SIGPLAN and SIGOPS in cooperation with
USENIX

MARCH 11-13, 2009, WASHINGTON, D.C., USA

http://www.cs.purdue.edu/VEE09/
Abstracts due: August 29, 2008

First USENIX WoRrksHor oN Hot Torics IN
ParALLELISM (HOTPAR '09)

MARCH 30-31, 2009, BERKELEY, CA

http://www.usenix.org/hotpar09
Submissions due: October 17, 2008

6TH USENIX Symposium oN NETWORKED SYSTEMS
DesigN aAND ImPLEMENTATION (NSDI '09)

Sponsored by USENIX in cooperation with ACM SIGCOMM
and ACM SIGOPS

APRIL 22-24, 2009, BOSTON, MA, USA

http://www.usenix.org/nsdi09
Paper titles and abstracts due: October 3, 2008

12TH WoRksHopP oN Hot Torics IN OPERATING
Systems (HotOS XII)

Sponsored by USENIX in cooperation with the IEEE Technical
Committee on Operating Systems (TCOS)S

MAY 18-20, 2009, MONTE VERITA, SWITZERLAND
http://www.usenix.org/hotos09

For a complete list of all USENIX & USENIX co-sponsored events,

see http://www.usenix.org/events.

VOL. 33, #4, AUGUST 2008

EDITOR
Rik Farrow
rik@usenix.org

MANAGING EDITOR
Jane-Ellen Long
jel@usenix.org

COPY EDITOR
David Couzens
proofshop@usenix.org

PRODUCTION
Casey Henderson
Jane-Ellen Long
Michele Nelson

TYPESETTER
Star Type
startype@comcast.net

USENIX ASSOCIATION
2560 Ninth Street,
Suite 215, Berkeley,
California 94710
Phone: (510) 528-8649
FAX: (510) 548-5738

http://www.usenix.org
http://www.sage.org

;login: is the official
magazine of the
USENIX Association.

;login: (ISSN 1044-6397) is
published bi-monthly by the
USENIX Association, 2560
Ninth Street, Suite 215,
Berkeley, CA 94710.

$90 of each member’s annual
dues is for an annual sub-
scription to ;login:. Subscrip-
tions for nonmembers are

$120 per year.

Periodicals postage paid at
Berkeley, CA, and additional
offices.

POSTMASTER: Send address
changes to ;login:,

USENIX Association,

2560 Ninth Street,

Suite 215, Berkeley,

CA 94710.

©2008 USENIX Association

USENIX is a registered trade-
mark of the USENIX Associa-
tion. Many of the designations
used by manufacturers and
sellers to distinguish their
products are claimed as trade-
marks. USENIX acknowledges
all trademarks herein. Where
those designations appear in
this publication and USENIX
is aware of a trademark claim,
the designations have been
printed in caps or initial caps.

OPINION

SECURITY

SYSADMIN

COLUMNS

BOOK REVIEWS

USENIX NOTES

CONFERENCES

Musings 2
RIK FARROW
Storm: When Researchers Collide 6

BRANDON ENRIGHT, GEOFF VOELKER, STEFAN
SAVAGE, CHRIS KANICH, AND KIRILL LEVCHENKO

Building a More Secure Web Browser 14
CHRIS GRIER, SHUO TANG, AND SAMUEL T. KING

Withstanding Multimillion-node Botnets 22

COLIN DIXON, THOMAS ANDERSON, AND ARVIND
KRISHNAMURTHY

Ad Hoc Guesting: When Exceptions Are
the Rule 34

DIANA SMETTERS, BRINDA DALAL, LES NELSON,
NATHANIEL GOOD, AND AME ELLIOTT

Designing High-Performance Enterprise Wi-Fi
Networks 41

ROHAN MURTY, JITENDRA PADHYE, RANVEER
CHANDRA, ALEC WOLMAN, AND BRIAN ZILL

“Standard Deviations” of the Average System
Administrator 53
ALVA COUCH

Practical Perl Tools: Hi-ho the Merry-o,
Debugging We Will Go 59
DAVID N. BLANK-EDELMAN

Pete’s All Things Sun: Solaris System
Analysis 101 65
PETER BAER GALVIN

iVoyeur: Hold the Pixels 70
DAVE JOSEPHSEN

Media Resource Control Protocol 75
HEISON CHAK

/dev/random 79

ROBERT G. FERRELL

Book Reviews 82
ELIZABETH ZWICKY ET AL.

Flame and STUG Awards 86
USENIX Association Financial Report

for 2007 87
NSDI ‘08 Reports 90
LEET '08 Reports 105
BSDCan Reports 11

BSDCan 2008 FreeBSD Developer Summit 115

RIK FARROW

rik@usenix.org

| FEEL LIKE I’'VE FINALLY ENTERED THE
future. | now have a microwave dish on my
rooftop, watch television using a computer,
listen to radio from online streams, and am
even installing my own solar power plant.
But when it comes to security, we are all
still stuck in the Dark Ages.

In this issue you can read about a Web browser
designed with security in mind. Don’t think for a
minute that current Web browsers include security
in their design, because security is, at best, some-
thing added on as “desirable.” Sure, Firefox, IE, Sa-
fari, and Opera are all carefully vetted for bugs and
poor programming practices. And all also have se-
curity “features.” But these browsers all share one
thing, something that all browsers have done since
Mosaic: They download and execute remote code
in your own user context.

Just think about it for a moment. Would you rou-
tinely go off to strange Web sites, download code,
and run it? Well, of course you would, because five
nines (99.999%) of the people I know do exactly
that. The 0.001% don’t use Web browsers. And 1
am not kidding. I know one security geek who is
still using nc for “browsing” the Web. That guy
sure has to work hard to read Web pages (espe-
cially these days!), but he is secure, as the text he
reads has been eviscerated of any danger because it
is treated just as text.

Drive-by Downloads

[wrote about drive-by downloads exactly one year
ago. Niels Provos and his team at Google [1] are
still trolling caches of Web pages looking for pages
that cause the downloading of first-stage exploits.
And they are still finding them—thousands every
day. The vast majority of these Web pages weren’t
made that way by their owners, but their Web
server was exploited, and small changes were made
not just to stored pages but also (in some cases) to
dynamic content as well. All it takes is the inser-
tion of an iframe or script tag to take control of
almost any Web browser that visits the page.

Exploiting personal computers is big business and
is completely untaxed and unregulated (a libertar-
ian’s dream, in that sense). Exploited systems are
used in relaying spam, exploiting other systems,
and to collect identity information. Oh, I forgot to
mention DDoS, but when you control thousands of
distributed systems all with Internet connections,
that should be obvious. All of these activities are il-

;LOGIN: VOL. 33, NO. 4

;LOGIN: AUGUST 2008

legal (apparently with the exception of the U.S. record industry [2]), yet
occur routinely.

The OP browser’s design (page 14) does what all browsers should—isolate
one site’s content from another site’s. With the OP browser, you don't get
multiple sites’ content all running within the same security context. Each
site runs within its own page-rendering process. And actual display of con-
tents is done by yet another process, also running within a secure environ-
ment. The current browser design runs everything within your standard
security context, and that means that anything you can do, your browser
can do too. Sure, browser designers do make honest attempts to limit what
your browser can do to your system, but these limitations have failed over
and over again. And they must continue to fail, because the basic browser
design is so terribly flawed.

We run our desktop systems as if they were mainframes with multiple users.
The operating systems were designed for multi-user systems (unless you are
still running Windows 95 or Mac OS 9), yet you (and your exploiter du jour)
are the only ones using your computer. Our processors are also designed
like old time-sharing systems. Neither has kept up with the way comput-

ers are actually used today. The biggest reason for this is inertia, in that OS
designers build familiar systems, and CPU designers take advantage of their
decades of building the same architecture.

I don’t want to suggest that starting over will be easy. We need a way of
transitioning from our insecure desktops, laptops, and smart phones to sys-
tems designed with security, performance, and efficiency from the ground
up. The OP browser provides a model for the transition. But without all the
sexy features and performance we have grown so accustomed to, the OP
browser will not replace Firefox or IE.

Our current situation reminds me of the bad guys in the movie Who Killed
the Electric Car? [3]. In that movie, General Motors (GM) recovers the hun-
dreds of electric vehicles that people had leased and has them crushed—
even when the owners offer to pay $24,400 for each several-year-old car
rather than allow them to be taken away and destroyed.

The villains in that movie were all part of the status quo: manufacturers
who owned factories that build internal combustion engine vehicles, oil
companies with vast refineries and distribution systems, and even vehicle
maintenance suppliers (since the GM EV1 had three items that needed to
be replaced: tires, brake pads, and windshield washer fluid). So instead of
another ten years’ experience with electric vehicles, we have $4/gallon gas
(perhaps it will be $5 when you read this) and a glut of SUVs that have lost
their appeal (and most of their resale value). Note that consumers were also
found guilty in the film (as they were not willing to change).

Have we reached the $4/gallon point in terms of desktop insecurity? I really
don’t know, but I do make Linux Live CDs for my friends who need to man-
age some of their finances online. Today, I wouldn't type anything on a Win-
dows system that I wanted to keep private, and I almost feel the same about
Macs and even Linux systems. They all share similar design flaws, in that
one user runs remote code via the Web browser and mailtool as well. Linux,
BSD, Mac OS X, and other UNIX-like systems at least separate the user from
the administrator, making kernel-level exploits more difficult. But the instal-
lation of code within the browser will capture all of your keystrokes, and
tools have existed for some time that selectively filter out those keystrokes
that look like credit card numbers or what you have typed during a visit to
a large number of domains, all related to finance. These captured keystrokes
then get posted to a Web server under the control of the dark industry.

MUSINGS 3

The Lineup

I really hate being so negative, but I do prefer to be brutally honest, even

at the risk of sounding like a broken record. The Grier article about the OP
browser gave me the perfect opportunity to sound off about this issue again.
But all is not dark and dreary.

In this issue, we lead off with an article from Brandon Enright and some
researchers from UCSD. While building an internal tool to track Storm bot-
net infections within the campus network, the team developed Stormdrain,
an efficient means for discovering Storm bots wherever they are. You can
read their LEET "08 paper [4], but I asked them to write about something

a bit different: their experiences when they discovered that there were whole
families of Storm-bot pretenders to uncover as well. Some of these look-
alikes were created by other Storm researchers, and others represent attacks
against Storm by other botnet owners. During the LEET workshop presen-
tations related to Storm, it was common to hear comments like “That was
you?” or “I owe you a beer” from researchers who had collided with them
in the Storm network.

Colin Dixon and his co-authors wrote an article about their proposed DDoS
defense for sites that generate dynamic content. DDoS is still a real issue
eight years after these attacks first made headlines, and ways of providing
access to servers with dynamic content while under attack—and that don’t
involve massive changes to the Internet’s infrastructure—are rare. I liked
what I heard during their paper presentation during NSDI '08 and asked
them to write this article describing their very interesting approach.

Diana Smetters and her co-researchers had presented a paper at the UPSEC
workshop that dealt with issues I felt we all face routinely. In the course of
our work, we often need to share information electronically, yet doing so
without running foul of security policies is just about impossible. Smetters
and her co-authors interviewed people who needed to share data as part of
their jobs, and they report just how these people actually handled sharing. I
think there are lessons in this article for all of us, whether we write the se-
curity policies or violate them with file-sharing practices.

Rohan Murty and his co-authors present a different approach to providing

better Wi-Fi bandwidth. In this article, related to their NSDI paper, Murty

explains how they went about using existing infrastructure (plus some Wi-
Fi cards) to control how wireless clients associate with access points, with-
out modifying the clients.

Alva Couch thoughtfully provides us with his own viewpoint about why
we need real standardization in sysadmin. Couch cogently explains not just
why he thinks we need standards but what these might look like, and he
provides real-world examples.

David Blank-Edelman presents us with cool Perl debugging techniques.
Peter Galvin offers his favorite list of procedures for analyzing system prob-
lems, as well as opening this topic up for discussion in a wiki. Dave Jo-
sephsen demonstrates relatively unknown tricks that you can do with
RRDtool, as long as you can grok RPN (Reverse Polish Notation). Finally,
Robert Ferrell revels in cajoling us into considering using memes as a
method of sharing encryption keys.

We have five summaries, including two from the recent BSDCan '08 confer-
ence in Ottawa. We also have the NSDI and LEET summaries. Finally, we
have the short version of the summaries of WOWCS, the Workshop on Or-
ganizing Workshops, Conferences, and Symposia for Computer Systems, a

;LOGIN: VOL. 33, NO. 4

;LOGIN: AUGUST 2008

meta-workshop. Given the importance to researchers of getting their work
published, the WOWCS workshop summaries should be required reading.
WOWCS discussion covered many of the issues involving Program Commit-
tees, so if you plan to participate in a PC or submit a paper to one, I suggest
you read this summary (or the longer version found at [5]).

As our personal computing devices get more powerful, and even as our cell
phones may soon take over for our laptops, we need real security. What's the
point of having computers if they can’t be trusted? Our security model, our
OS model, and even our CPU/system architecture were designed for a long-
gone time. It is time for us to prepare for a secure future.

REFERENCES

[1] Ghost turns Zombie: Exploring the Life Cycle of Web-based Malware:
http://www.usenix.org/events/leet08/tech/full_papers/polychronakis/
polychronakis_html/.

[2] MediaDefender shuts down legitimate BitTorrent tracker with DDoS
attack: http:/blogwired.com/27bstroke6/2008/05/mediadefender-d
Jhtml2cid=117123750.

[3] http://en.wikipedia.org/wiki/Who_Killed_the_Electric_Car?.

[4] The Heisenbot Uncertainty Problem: Challenges in Separating Bots from
Chaff: http:/www.usenix.org/events/leet08/tech/full_papers/kanich/
kanich_html/.

[5] WOWCS scribe notes: http:/www.usenix.org/events/wowcs08/tech/
WOWCSnotes.pdf.

MUSINGS

WHEN IT COMES TO INTERNET THREATS,
few topics get researchers and the media as
excited as the propagation speed and vital-

BRANDON ENRIGHT, GEOFF VOELKER,
STEFAN SAVAGE, CHRIS KANICH, AND
KIRILL LEVCHENKO

Storm: when
researchers collide

Brandon Enright is a network security analyst at
the University of California, San Diego. He is pri-
marily interested in malware and exploit research.

bmenrigh@ucsd.edu

Geoff Voelker is an associate professor of computer
science at the University of California, San Diego.
He works in computer systems and networking.

voelker@cs.ucsd.edu

Stefan Savage is an associate professor of computer
science at the University of California, San Diego.
He has a BS in history and reminds his colleagues
of this fact any time the technical issues get too
complicated.

savage@cs.ucsd.edu

Chris Kanich is a PhD student studying networking
systems and security at the University of California,
San Diego.

ckanich@cs.ucsd.edu

Kirill Levchenko is a PhD student at the University
of California, San Diego. His research is focused on
network routing and security.

klevchen@cs.ucsd.edu

ity of modern malware. One such example
is the SQL Slammer worm, which was the
first so-called Warhol Worm, a term used to
describe worms that get their “15 minutes
of fame” by spreading at an exponential
rate—infecting every vulnerable machine
in under 15 minutes [1]. It is ironic, then, that
the latest malware to capture the attention
of researchers is not one of the shortest-
lived but one of the longest, largest, and
most successful bots ever: Storm.

Storm got its name from a particular self-propa-
gation spam email subject line used in early 2007:
“230 dead as storm batters Europe.” Storm, also
known as the Storm worm, is not actually a worm.
It is hybrid malware: part worm, part bot (a pro-
gram designed to perform automated tasks), part
Trojan, and even part Peer-to-Peer (P2P) client. Un-
like SQL Slammer, where all of the research and
analysis is, by necessity, post mortem, the archi-
tecture and longevity of Storm have made it a veri-
table researchers’ paradise, offering nearly endless
opportunities to measure, interact, infiltrate, and
even manipulate it. However, this interactive qual-
ity is also a researcher’s greatest enemy; the ease
with which anyone can poke at the Storm network
means that to gather any meaningful research data
requires identifying and filtering out the noise cre-
ated by other researchers attempting to accomplish
the same task.

History

The Storm botnet that exists today is not the same
network or architecture the authors designed and
built originally. In fact, the authors have modi-
fied the network architecture on more than one
occasion in response to enterprising researchers,
making life difficult for them. Our player in this
cat-and-mouse game is Stormdrain. We originally
wrote Stormdrain in early June 2007 as a way to
locate existing and future Storm infections on our
institution’s network [2].

Originally the Storm bot was little more than a P2P
client and downloader; the authors would publish
URLSs to download new components in the P2P
network and new functionality (such as the abil-
ity to spam) would be downloaded as stand-alone

;LOGIN: VOL. 33, NO. 4

;LOGIN: AUGUST 2008

packages. Within a few months the authors designed and built a new tiered
architecture to relay commands and adapted the existing command and
control (C&C) P2P network to be an overlay/rendezvous system only. This
new network design also allowed the authors to combine all the functional-
ity that was once in separate components into a single unified package that
could do everything. By mid-2007 Storm had garnered considerable research
and media attention and in October the authors chose to separate the Storm
P2P network from the original Overnet/eDonkey network by using a simple
encryption scheme. Each big change has slowed researchers down and re-
quired additional efforts to continue to track and measure the network. The
evolution of the Storm network now makes it necessary for researchers to
mention what version and at what time their work on the Storm network
took place. Unless otherwise noted, the network architecture discussed in
this article is the one that was deployed in May 2008.

A View from Orbit

Much of the research interest in Storm is directly related to its novel archi-
tecture. The Storm network is actually two separate networks, each with

its own protocol and function. The first is the UDP-based private P2P over-
lay network built on the Overnet protocol. It is this P2P network that gives
Storm much of its resiliency [3]. No actual C&C between the Storm authors
and the bots uses this P2P overlay network. The network’s only function
now is to facilitate advertising and locating proxy addresses in the separate
TCP C&C network. This second protocol and network utilizes a custom
TCP- and HTTP-based protocol for C&C. This C&C network makes heavy
use of proxying to provide several layers of anonymity between the authors
in control of the network and the actual bots doing their dirty work [4]. The
Storm authors run a series of proxies on the TCP C&C network and UDP
P2P network we call controllers. These controllers provide HTTP proxy ser-
vices on the TCP network and locate Storm infections on the UDP P2P net-
work to turn into proxies. Even though no actual bot C&C uses the P2P
portion of Storm, all Storm infections participate in the P2P network so they
can advertise/locate proxy services to connect to the TCP C&C network.
Overnet does not provide any sort of authentication; in true egalitarian fash-
ion, all peers have equal roles. Because of this, Storm’s P2P network is an
attractive place for researchers to measure and manipulate it. Additionally,
any attack or disruption in the P2P network will directly affect both Storm’s
proper functioning and the work of other researchers. It is difficult to strike
a balance between being a good citizen in the network and potentially dam-
aging it through novel research techniques.

The inherently malicious nature of the Storm network engenders a carte
blanche, “the gloves are off” attitude in some researchers. Initially Storm-
drain was not prepared to handle the constant stream of misinformation
thrown at it. For much of its early life, for example, Stormdrain crashed try-
ing to handle various buggy and maliciously crafted addresses (multicast,
127.0.0.1, 0.0.0.0, etc). It wasn't until Stormdrain stopped making assump-
tions about the protocol, message fields, addresses, and content of the net-
work that it was able to run for more than a few minutes without crashing.

DHT Modus Operandi

To understand how different research groups can affect Storm or each other,
it is important to understand how Storm’s P2P network works. The network
is based on the Overnet Distributed Hash Table (DHT), which in turn is

STORM: WHEN RESEARCHERS COLLIDE 7

based on the Kademlia DHT algorithm [5]. These names and acronyms are
not particularly important. What is important is that DHT networks provide
two basic functions: storage of some set of values and, later, retrieval of some
of those values. In Storm’s case, the values being stored and retrieved in the
network are TCP C&C proxy IP addresses and ports. The mechanics of the
storage and retrieval of data are at the heart of what so many researchers are
poking at. To fully understand how Storm’s DHT works, a simple analogy is
in order.

Suppose you want to build a human-based social message storage system.
One simple method would be to designate one person as the “note holding”
person. Anyone who wants to leave a message for someone else can simply
go to the note holder and give the holder a note. Anyone seeking that note
can go to the note holder to get a copy. This system works pretty well in
small groups but isn't resilient—if the note holder gets hit by a bus all is lost.
A somewhat related issue to resiliency is that not all participants have the
same role or responsibilities. A simple fix to this system would be to make
everyone a potential note holder. How could that be accomplished? One so-
lution is to introduce envelopes to put the notes in and create a simple ad-
dressing system for the people and envelopes. In this new system notes are
not handed directly to a note holder. They are first placed in a numbered en-
velope and the envelope is given to the person whose own number is closest
to the number on the envelope. To retrieve a note, you must find the person
whose number is closest to the number on the envelope you are looking for.
Without more structure, this process would get quite chaotic.

For the sake of simplicity in our note storage system, the numbers chosen by
people or written on envelopes will be limited to 1 through 100. Rather than
try to assign people numbers as they enter the system, they will be allowed
to randomly choose a number for themselves. Also, to assist in finding num-
bers, any participant can be asked what their number is. Participants can
also be asked to provide the number of any other participant that they know
about. To aid in finding numbers quickly, participants will keep themselves
in numerical order by standing in a line. With this additional structure in
place, a dozen people could easily make a working note storage system. If
one of the participants wants to store a note in the system, that person can
write out his or her note, put it into an envelope, and number it, then seek
others in line whose numbers are close to the number on the envelope the
participant wants to store. To accomplish this the participant can approach
someone else in the line and ask for his or her number. If the numbers aren't
the same, the participant can ask for a list of people that the other knows
about whose number is closer to the desired number. The person trying to
store the envelope can keep doing this, slowly getting closer to a person with
the same or a closer number. The would-be envelope storer keeps doing this
until he or she is satisfied that anyone closer to the desired number can’t be
located, at which time the participant hands a copy of the envelope and note
to that person. To reduce the negative effect of people holding envelopes
who leave the line, it is best to give a copy of the envelope and note to sev-
eral close participants. If new participants enter this system, they can choose
a random number for themselves and go about using this same search pro-
cedure to locate the right place in the line to stand.

With this simple system several basic tasks are easily accomplished. For ex-
ample, to store a note inside envelope “34” in this line, one could walk up to
another and say, “What is your number and all the people you know about
close to the number 34?” The response may be something like “I'm number
71 and I know persons with number 56 and 51 that are closer to 34.”

;LOGIN: VOL. 33, NO. 4

;LOGIN: AUGUST 2008

The next step would be to approach numbers 56 and 51, asking the same
question. The responses may provide numbers 37 and 30. When both 37
and 30 are asked the same question, no closer numbers are learned about.
This means that 30 and 37 must be the closest numbers to 34. A copy of
the envelope and note can be made and given to both people to hold. Put-
ting new envelopes with notes into the line like this is called “publishing.”
If someone else comes along and wants to find a previously published note,
the same system can be used. To search for envelope 34 the search would
most likely end up slightly different. Perhaps the person doing the search-
ing knows about some other set of people. The person can walk up to one
of these and ask, “What is your number and all those you know about close
to the number 34?” The response could be something like “I'm number 20
and I know about persons 29 and 30.” When person 29 is asked, that person
may respond with persons 30 and 37. The responses from 30 and 37 will be
slightly unique, though. Because each has an envelope labeled with number
34 from a previous publish, they will both respond with others close to 34
and include themselves in the list. If, in the course of searching for an enve-
lope, the person asked responds with him- or herself as an answer, it is an
indication that the person has an envelope labeled with the desired number
and can be asked for it.

Search failure can also be easily detected. If while searching for an enve-
lope number no new close people are located and none offer themselves as a
source then it can be assumed that the envelope does not exist and search-
ing can be stopped. Without people standing in an ordered line the bound
on the amount of searching someone would have to do before locating an
envelope or giving up would be much higher. Finally, the person doing the
searching does not need to start right where he or she is standing; the per-
son can “skip” to the closest person he or she already knows about that hap-
pens to be close to the desired envelope. If someone searching for envelope
90 has already had contact with person 95, then that person can start the
search with person 95.

Although this “line of people” analogy follows just a few simple rules, it
should be readily apparent how dynamic the line can be. With people com-
ing and going, reliability is not guaranteed. To try to keep content (notes
inside of envelopes) fresh, the content is published not once but constantly,
at regular intervals. Also, a person in the line may know about his or her
neighbors at one point but, with people entering and leaving the line often,
the line members must constantly search for people close to them and an-
nounce their presence to others. Acquainting yourself with another peer is
called “connecting” in Overnet. Announcing your continued presence to
someone you've already connected to is called “publicizing.” Searching for
another number (for whatever reason) is called “searching.” As discussed be-
fore, storing content in the network is called “publishing.”

The aforementioned setup is nearly exactly the way the Storm P2P network
operates. The primary difference in the systems is in the scale. In the Storm
Overnet network, rather than only use the numbers 1 through 100 for peo-
ple and envelopes, Storm uses O through (2128 — 1), an astronomical number.
The number picked by a Storm peer (person) is typically called an Overnet
ID or simply OID. The number on the outside of an envelope is typically
called a hash or key. Additionally, rather than a mere dozen people in line,
Storm has thousands of peers online at a time. The ability to skip around in
line to the closest known person is roughly equivalent to the k-bucket sys-
tem in Kademlia or Chord’s finger tables.

STORM: WHEN RESEARCHERS COLLIDE 9

Storm’s Innovation

The two attributes that have not yet been well defined about this system are
how to decide what numbers to assign envelopes and what useful informa-
tion to actually write down for the notes. One of Storm’s most interesting
innovations is how it repurposes these pieces of Overnet. Storm has two dif-
ferent types of notes that it wants to publish. The first is used to advertise
the ability to become a C&C proxy to the Storm authors. If a Storm node
comes online and determines that it is publicly accessible to other Internet
hosts, it first tries to announce itself as “proxy-capable” to the controllers.

The other type of note is used by peers who have already been transformed
into a proxy by a Storm controller and want to advertise their proxy ser-
vice to others by generating proxy-advertisement notes. Regular Storm peers
that are not publicly accessible and simply want to perform nefarious tasks
will seek out a proxy by searching for proxy-advertisement notes. Two dif-
ferent envelope numbering schemes are used but both are based on the cur-
rent date and each can generate 32 different envelope numbers per day. The
first scheme is only used for proxy-capable notes and a hash of the date is
used directly. Only the Storm authors search for envelopes with these num-
bers because only they turn proxy-capable peers into actual proxies (by way
of an RSA encrypted packet we term the “Breath of Life” or BoL for short).
The second set of 32 envelope numbers is generated from a hash of the date
where 1900 has been subtracted from the year. That is, the year 2008 uses
108 as the year. Storm nodes that have become proxies use these envelope
numbers to publish their proxy-advertisement messages. Regular Storm
peers search out these envelope numbers to locate the proxy service. By
keeping the two groups of envelope numbers separate, Storm does not mix
up peers looking to be proxies with peers that have already become proxies.

Of course, the trouble with rules is that they can easily be broken. Overnet
specifies a simple set of rules and all (nonbuggy) versions of Storm imple-
ment those rules. Researchers, however, typically do not. Let’s return to our
analogy for a moment. If you want to determine every participant in the line
(crawl the network) you can pick a random envelope number and search for
it. As you learn about new people you can add them to a master list. If you
do this fast enough and for long enough your master list will be nearly com-
plete. Many researchers are crawling the network constantly, which can put
a significant load on Storm bots and other researchers.

A View from the Stormdrain

One of the benefits of crawling the Storm network for many consecutive
months is that anomalies are easy to spot. Stormdrain is set up to graph in
real time many attributes gathered while crawling. Sudden bumps or dips
are often the result of one or more misbehaving nodes. Initially there was no
perfect way to tell which peers in the network were buggy nodes versus im-
postors under the control of third parties.

Only the most heinous abuses of the network were clearly the doing of third
parties. Attempts to classify individual peers based on their behavior were
often lost in a sea of data. For example, in late 2007 Stormdrain suffered a
sudden drop in efficiency coupled with a large spike in CPU usage. The code
was carefully reviewed for possible bugs but none were found that could
cause the symptoms. Closer examination of network traffic revealed several
IPs in China flooding Stormdrain with Overnet traffic to the point of Denial
of Service (DoS). When the IPs were blocked a few hours later the attack re-
sumed from a new set of Chinese IPs. A change had to be made to Stormd-

;LOGIN: VOL. 33, NO. 4

;LOGIN: AUGUST 2008

rain’s select() loop to reduce the effect of the attacks. In the line analogy,
Stormdrain is just a person walking around and contending with others
doing the same. We put a lot of work into developing heuristics to differ-
entiate Storm peers from third parties but none had the 100% accuracy we
really wanted.

Through some reverse-engineering work on the Storm binary, it was discov-
ered that Storm had a badly flawed pseudo random number generator that
caused the OIDs it picked randomly to follow a specific pattern [2]. Using
this knowledge as an oracle allowed Stormdrain to differentiate real Storm
peers from impostors in the network. Suddenly it became very easy to mea-
sure the effect each of the other researchers had in the network and even to
track the various attacks as researchers would evolve and adapt new tech-
niques. It was an epiphany. Using this oracle to separate impostors from
Storm has allowed us to create a virtual “police lineup” of others participat-
ing in the Storm network that are not Storm bots. Here are a few of the dif-
ferent types of “people” in that lineup:

Babbling Idiots
These people constantly walk up to Stormdrain and say something—any-
thing. Sometimes it’s a search; other times it's a publicize. It’s never useful,
but they just won't leave Stormdrain alone. Stormdrain currently does not
bother to blacklist these peers because they aren’t harmful enough.

The Deaf

These people periodically ask Stormdrain questions but don't even acknowl-
edge the answers. When Stormdrain queries them, they don’t respond. NAT
can cause this sort of behavior but NAT has other qualities to it that these
people don't exhibit. This also wastes Stormdrain’s time but the design of
Stormdrain keeps these peers from causing any real harm.

The Schizophrenic

These people answer all queries with imaginary friends. Stormdrain does
not know this at first but later queries always fail to contact the peers they
claimed to know. This is a very common attack in the network, and Storm-
drain uses heuristics to identify and blacklist peers poisoning the network
in this manner.

Pathological Liars

Some peers in the network respond with exceptionally poor results. When
Stormdrain queries peers like this, the search result is intentionally crafted
in a way to throw Stormdrain as far from the right peers as possible. In the
envelope analogy, this would be like maliciously responding to a search for
number 34 by claiming that person 90 is actually person 32. These peers
can reduce the search efficiency of the Storm network but don't negatively
impact Stormdrain, because crawling the network does not require actually
locating content, just other peers.

Junk-mailers

A person can only hold a small number of envelopes without dropping
some. To prevent legitimate notes being found, junk-mailing peers con-
stantly publish random notes to everyone holding a particular envelope
number. Those searching for that envelope number will then likely re-
ceive only the random notes. In the Storm network this attack is performed
against any peer with an OID that happens to be close to the 32 daily ren-
dezvous hash locations. This is known as the Eclipse attack and has proven
very successful in tests [6].

STORM: WHEN RESEARCHERS COLLIDE 1

Gangs of Friends

These groups of peers all choose OIDs very close to some content hash lo-
cation. When Stormdrain searches these peers for content, they always re-
spond claiming another in their group is closer. In this manner, these peers
will pass any searching node around in circles until the peer gives up,
thinking that no content has been published at that hash. This is referred
to as the Sybil attack and is used by some researchers to attack the 32 daily
Storm proxy-advertisement hashes [6].

Tonya Harding Wannabees

Sometimes Stormdrain gets punished (via a DoS) for searching for particular
content. When more than one peer is involved in this behavior the result is
a DDoS. Stormdrain has had to contend with attacks like this on more than
one occasion. It isn't clear whether this bat-to-the-kneecaps approach is the
result of vigilante researchers, rival spam gangs, or some other players.

Researchers Collide

The trouble with having so many easily performed attacks is that invariably
they are used often. Indeed, at one point or another all of these attacks have
been performed in the Storm network—often several of them concurrently.
To successfully crawl the network a researcher must put extensive engineer-
ing time into detecting and reducing the effectiveness of each of these at-
tacks. This, in turn, encourages other researchers to perform more stealthy
and difficult to detect attacks. There was a joke at a recent security confer-
ence [7] that eventually the Storm network would shrink to a handful of real
bots and there would still be an army of rabid researchers fighting with each
other to measure whatever was left!

Although this is certainly an exaggeration, it leads to the moral of the story:
Engineering time and care must be taken not to inadvertently measure the
activities of other researchers and network disruptors. Addressing this prob-
lem is perplexing because there is nothing fundamental that allows one to
make this determination; a sufficiently sophisticated disruptor can design
software that is indistinguishable from a bot at the network layer or simply
infect a large number of honeypots with the bot itself and manipulate their
behavior.

Thus, the question becomes, “At what point is the signal-to-noise ratio so
low that there is no meaningful signal left to do research on?” We do not
have an answer. One thing is certain, though: The unique architecture of
Storm has given researchers around the world an unprecedented view of the
future of botnets.

ACKNOWLEDGMENTS

Our thanks are owed to Vern Paxson and Christian Kreibich for detailed
discussions and feedback on investigating the Storm botnet, Joe Stewart of
SecureWorks for offering his insight into the workings of Storm, and Gabriel
Lawrence and Jim Madden for supporting this activity on UCSD’s systems
and networks.

REFERENCES

[1] The Spread of the Sapphire/Slammer Worm: http://www.caida.org/
publications/papers/2003/sapphire/sapphire.html.

;LOGIN: VOL. 33, NO. 4

[2] “The Heisenbot Uncertainty Problem: Challenges in Separating Bots
from Chaff,” USENIX LEET °08: http:/www.usenix.org/events/leet08/tech/
full_papers/kanich/kanich.pdf.

[3] Storm: http://www.usenix.org/publications/login/2007-12/pdfs/
stover.pdf.

[4] “On the Spam Campaign Trail,” USENIX LEET ’08: http://www.usenix
.org/events/leet08/tech/full_papers/kreibich/kreibich.pdf.

[5] Kademlia: A Peer-to-Peer Information System Based on the XOR Metric:
http:/pdos.csail. mit.edu/~petar/papers/maymounkov-kademlia-Incs.pdf.

(6] “Measurements and Mitigation of Peer-to-Peer-based Botnets: A Case
Study on Storm Worm,” USENIX LEET "08: http://www.usenix.org/events/
leet08/tech/full_papers/holz/holz.pdf.

[7] First USENIX Workshop on Large-Scale Exploits and Emergent Threats
(LEET "08): http://www.usenix.org/events/leet08/.

@)D’

The 8th USENIX Symposium on Operat_ The following workshops will be co-located
. _ . with OSDI '08:
ng Systems Desngn and Implementat|on Fourth Workshop on Hot Topics in System
(OSDI "08) brings together professionals Dependability (HotDep "08),

December 7
from academic and industrial backgrounds http://www.usenix.org/hotdepo8

illuminating experience.

8 o1 USENIX SYMPOSIUM

in what has become a premier forum for
discussing the design, implementation, December 7
and implications of systems software.

The OSDI Symposium emphasizes both = [diFower Ol
December 7
innovative research and quantified or http://www.usenix.org/hotpowero8

ON OPERATING SYSTEMS
DESIGN AND IMPLEMENTATION
December 8—10, 2008, San Diego, CA

First USENIX Workshop on the Analysis of
System Logs (WASL '08),

http://www.usenix.org/waslo8

Workshop on Power Aware Computing and

Third Workshop on Tackling Computer
Systems Problems with Machine Learning
Techniques (SysMLo8), December 11
http://www.usenix.org/sysmlo8

www.usenix.org/osdio8/lg

;LOGIN: AUGUST 2008

STORM: WHEN RESEARCHERS COLLIDE 13

14

CHRIS GRIER, SHUO TANG, AND
SAMUEL T. KING

building a more

secure Web browser

Chris Grier is a PhD student in the Electrical

and Computer Engineering Department at the
University of [llinois at Urbana-Champaign. He is
interested in building secure software systems.

grier@uiuc.edu

Shuo Tang is a PhD student in the Computer Science
Department at the University of lllinois at Urbana-
Champaign. His research focuses on operating
systems and system security.

stang6@uiuc.edu

Sam King is an Assistant Professor in the Computer
Science Department at the University of [llinois at
Urbana-Champaign. His primary research interests
are in operating systems and security.

kingst@uiuc.edu

THE MODERN WEB BROWSER HAS
evolved from a relatively simple client ap-
plication designed to display static data

into a complex networked operating sys-
tem tasked with managing many facets

of online experience. Support for dynamic
content, multimedia data, and third-party
plug-ins greatly enriches the browsing expe-
rience at the cost of increased complexity
of the browser itself, resulting in a plague of
security vulnerabilities that provide hack-
ers with easy access to systems. To address
the root of this problem, we designed and
implemented the OP Web browser. We have
partitioned the browser into smaller sub-
systems, isolated each subsystem, and made
all communication between subsystems
simple and explicit. Finally, we have used
formal methods to prove the correctness of
the communications between subsystems
and the ability to limit the effects of com-
promised subsystems.

According to a recent report by Symantec [15], dur-
ing the first half of 2007 Internet Explorer had 93
security vulnerabilities, Mozilla browsers had 74
vulnerabilities, Safari had 29 vulnerabilities, and
Opera had 9 vulnerabilities. In addition to these
browser bugs, there were also 301 reported vulner-
abilities in browser plug-ins over the same period
of time, including high-profile bugs in the Java vir-
tual machine [3], the Adobe PDF reader [10], the
Adobe Flash Player [2], and Apple’s QuickTime
[11]. Unfortunately, according to several recent re-
ports [9, 12, 15, 16], attackers actively exploit these
bugs.

The flawed design and architecture of current Web
browsers make this trend of exploitation likely to
continue. Modern Web browser design still has
roots in the original model of browser usage in
which users viewed static pages and the browser
itself was the application. However, recent Web
browsers have evolved into a platform for host-
ing Web-based applications, where each distinct
page (or set of pages) represents a logically differ-
ent application, such as an email client, a calendar
program, an office application, a video client, or a
news aggregate. The single-application model pro-
vides little isolation or security between these dis-
tinct applications hosted within the same browser

;LOGIN: VOL. 33, NO. 4

or between different applications aggregated on the same Web page. A com-
promise occurring within any part of the browser, including plug-ins, re-
sults in a total compromise of all Web-based applications running within
the browser. This compromise may include all parts of the system that the
user running the browser has access to, up to and including the operating
system itself.

Efforts to provide security in this evolved model of Web browsing have had
limited success. The same-origin policy, where the origin is defined as the
domain, port, and protocol of a request, states that scripts and objects from
one domain should only be able to access other scripts and objects from

the same domain. This is the one security policy most browsers try to im-
plement. However, modern browsers have different interpretations of the
same-origin policy [6], and the implementation of this principle tends to be
error-prone because of the complexity of modern browsers [4]. The same-or-
igin policy is also too restrictive for use with browser plug-ins, and as a re-
sult browser plug-in writers have been forced to implement their own ad hoc
security policies [1, 8, 14]. Plug-in security policies can contradict a brows-
er’s overall security policy and create a configuration nightmare for users,
since they have to manage each plug-in’s security settings independently.

Given the importance of Web browsers and the lack of security in current
approaches, our goal is to design and implement a secure Web browser.
More precisely, we want to prevent as many attacks as we can with rea-
sonable cost, limit the damage that the remaining attacks can do, recover
swiftly from successful attacks, and learn how to prevent them in the future.

This article describes the design and implementation of the OP Web
browser, which attempts to address the shortcomings of current Web brows-
ers to enable secure Web browsing. OP comes from Opus Palladianum,
which is a technique used in mosaic construction where pieces are cut into
irregular fitting shapes. In our design we break the browser into several dis-
tinct and isolated components, and we make all interactions between these
components explicit. At the heart of our design is a browser kernel that
manages each of our components and interposes on communications be-
tween them. This model provides a clean separation between the implemen-
tation of the browser components and the security of the browser, and it
allows us to provide strong isolation guarantees and to implement novel se-
curity features.

Building the OP Browser

In our current design [5] we break the browser into several distinct and
isolated components, and we make all interactions between these compo-
nents explicit. At the heart of our design is a browser kernel that manages
each of our components and interposes on communications between them.
This model provides a clean separation between the implementation of the
browser components and the security of the browser, and it allows us to
provide strong isolation guarantees and to implement novel security fea-
tures. This architecture stands in stark contrast to current browser designs,
which place all components in a single process and contain multiple paths
for making security-critical decisions [4], making it difficult to reason about
security.

DESIGN PRINCIPLES

Overall we embrace both operating system design principles and formal
methods techniques in our design. By drawing on the expertise from both

;LOGIN: AUGUST 2008 BUILDING A MORE SECURE WEB BROWSER 15

16

communities we hope to converge on a better and more secure design. Four
key principles guide the design for our Web browser:

= Have simple and explicit communication between components. Clean
separation between functionality and security, with explicit interfaces
between components, reduces the number of paths that can be taken
to carry out an action. This makes reasoning about correctness, both
manually and automatically, much easier.

= Have strong isolation between distinct browser-level components and
defense in depth. Providing isolation between browser-level components
reduces the likelihood of unanticipated and unaudited interactions and
allows us to make stronger claims about general security and the specific
policies we implement.

= Design components to do the proper thing, but monitor them to ensure
they adhere to the design. Delegating some of the security logic to
individual components makes the browser kernel simpler while still
providing enough information to verify that the components faithfully
execute their design.

= Maintain compatibility with current technologies. We do our best to
avoid imposing additional burdens on users or Web application de-
velopers—our goal is to make the current browsing experience more
secure.

~
—
[e]
2
9]
4

Access Control

eite Browser

FIGURE 1: OVERALL ARCHITECTURE OF OUR OP WEB BROWSER

FIGURE 2: BREAKDOWN OF AN INDIVIDUAL WEB PAGE INSTANCE

HTML

Browser Kernel

Web

Page
Instance

OP BROWSER ARCHITECTURE

Figure 1 shows the overall architecture of OP. Our browser consists of five
main subsystems: the Web page subsystem, a network component, a stor-
age component, a user-interface (UI) component, and a browser kernel.
Each of these subsystems runs within a separate OS-level process, and the
Web page subsystem is broken into several different processes. The browser
kernel manages the communication between the subsystems and between
processes, and it also manages interactions with the underlying operating
system.

We use a message-passing interface to support communications between
all processes and subsystems. (See our recent paper [5] for a full listing of
our message-passing interface.) These messages have a semantic meaning
(e.g., fetch an HTML document) and are the sole means of communication

;LOGIN: VOL. 33, NO. 4

;LOGIN: AUGUST 2008

between different subsystems within our browser. They must pass through
the browser kernel, and the browser kernel implements our access control
mechanism, which can deny any messages that violate our access control
policy.

We also use OS-level sandboxing techniques to limit the interactions of
each subsystem with the underlying operating system. Each subsystem has
a unique set of sandboxing rules specifically tailored to the individual com-
ponent. For example, the Web page subsystem is denied access to the file
system and the network, and the network subsystem is allowed to access the
network, but not the file system. In our current design we use SELinux [7]
to sandbox our subsystems, but other techniques would have been suitable
for our purposes.

THE BROWSER KERNEL

The browser kernel is the base of our OP browser and it has three main
responsibilities: manage subsystems, manage messages between subsys-
tems, and maintain a detailed security audit log. To manage subsystems, the
browser kernel is responsible for creating and deleting all processes and sub-
systems. The browser kernel creates most processes when the browser first
launches, but it creates Web page instances on demand whenever a user vis-
its a new Web page. Also, the browser kernel multiplexes existing Web page
instances to allow the user to navigate to previous Web pages (e.g., the user
presses the “back” button).

The browser kernel maintains a full audit log of all browser interactions. It
records all messages between subsystems, which enables detailed forensic
analysis of our browser if an attacker is able to compromise our system.

THE WEB PAGE SUBSYSTEM

When a user clicks on a link or is redirected to a new page, the browser ker-
nel creates a new Web page instance. For each Web page instance we cre-
ate a new set of processes to build the Web page. Each Web page instance
consists of an HTML parsing and rendering engine, a JavaScript interpreter,
plug-ins, and an X server for rendering all visual elements included within
the page (Figure 2). The HTML engine represents the root HTML docu-
ment for the Web page instance. The HTML engine delegates all JavaScript
interpretation to the JavaScript component, which communicates back with
the HTML engine to access any document object model (DOM) elements.
We run each plug-in object in an OS-level process and plug-in objects also
access DOM elements through the HTML engine. All visual elements are
rendered in an Xvnc server, which streams the rendered content to the Ul
component where it is displayed.

THE USER INTERFACE, NETWORK, AND STORAGE SUBSYSTEMS

Our UI subsystem is designed to isolate content that comes from Web page
instances. The Ul is a Java application and implements most typical browser
widgets, but it does not render any Web page content directly. Instead the
Web page instance renders its own content and streams the rendered con-
tent to the Ul component using the VNC protocol [13]. By using Java and
having the Web page instance render its own content we enforce isolation
and add an extra layer of indirection between the potentially malicious con-
tent from the network and the content being displayed on the screen. This
isolation and indirection allow us to have stronger guarantees that poten-

BUILDING A MORE SECURE WEB BROWSER 17

tially malicious content will not affect the Ul in unanticipated ways. The Ul
includes navigation buttons, an address bar, a status bar, menus, and normal
window decorations.

The Ul is the only component in our system that has unrestricted access to
the underlying file system. Anytime the Web browser needs to store or re-
trieve a file, it is done through the UI to make sure the user has an oppor-
tunity to validate the action using traditional browser Ul mechanisms. This
decision is justified since users need the flexibility to access the file system
to download or upload files, but our design reduces the likelihood of a Ul
subsystem compromise.

Since other components cannot access the file system or the network, we
provide components to handle these actions. The storage component stores
persistent data, such as cookies, in an sqlite database. Sqlite stores all data
in a single file and handles many small objects efficiently, making it a good
choice for our design since it is nimble and easy to sandbox. The network
subsystem implements the HTTP protocol and downloads content on behalf
of other components in the system.

Security in the OP Browser

We drew on the expertise of the operating systems community to make

our browser architecture well suited for security. Subsystems within the
browser are first-class principals, and communication between subsystems
is explicit and exposed, thus providing mechanisms suitable for implement-
ing browser-based security. Next, we explore two areas: security policies for
browser extensibility and formal methods for proving invariants about our
browser.

BROWSER EXTENSIBILITY

Modern Web browsers support extensibility through two main mechanisms:
browser plug-ins and browser extensions. Plug-ins are a browser mechanism
for hosting additional applications within a Web page, usually to render
non-HTML content such as multimedia files. For example, browsers render
“application/x-shockwave-flash” content using a flash-capable movie player
such as Adobe Flash Player.

Extensions are a browser mechanism for extending browser functionality.
Extensions interpose on and interact with browser-level events and data
and provide developers with the ability to add user-interface widgets to the
browser itself. Three popular extensions are the Yahoo! toolbar, which pro-
vides easy access to the Yahoo! search engine, the Greasemonkey extension,
which allows users to script common tasks such as filling in form data auto-
matically, and the NoScript extension, which provides fine-grained control
over which pages can run JavaScript, thus preventing untrusted pages from
running potentially malicious scripts.

These mechanisms for browser extensibility introduce unique challenges
from a security perspective. Common uses of plug-ins often contradict a
browser’s overall security policy, so plug-ins operate outside of current
browser security policies. Extensions need flexibility to integrate tightly
within the browser itself and often run with full privileges. For a browser to
be secure one must support these rich features securely without compromis-
ing the flexibility of commonly used plug-ins and extensions. Two current
browsers that support extensions, Firefox and Internet Explorer, opt to pro-

;LOGIN: VOL. 33, NO. 4

;LOGIN: AUGUST 2008

vide flexibility at the expense of security and have no mechanisms or poli-
cies for running extensions securely.

As a first step toward our greater goal of securing browser extensibility, we
have integrated plug-in security policies within the OP Web browser. In ad-
dition to supporting the ubiquitous same-origin policy, we developed two
novel plug-in policies designed to provide security for the browser even if
an attacker successfully exploits a plug-in vulnerability. You can learn about
these policies by reading pages five and six of our paper [5].

FORMAL METHODS

Large software artifacts are typically built and maintained by groups of de-
velopers who contribute thousands of lines of code over a period of several
years. This process is error-prone despite the best intentions of the devel-
opers. Moreover, for the software to be useful over an extended period of
time, it must adapt to changes in user requirements. These extensions may
be made by the original developers, but they are more typically made by a
different group of people who may work for a different company. Ideally,
formal verification that the code is correct with respect to the security re-
quirements of the system would be an essential part of initial software de-
velopment as well as the subsequent revision process. For many reasons,
however, formal verification is usually not a central component in software
development. We address this problem for the OP Web browser by making
formal methods a fundamental part of our overall design process.

In our work to date on verifying security properties of the OP browser we
use formal methods as a useful and practical tool in our overall design pro-
cess. We develop an abstract model of the browser components and ex-
haustively search through the execution state space using a model-checking
framework to look for states that violate our specified security invariants.
We verified our implementation of the same-origin policy and we verified an
“address-bar visual invariant” that states the URL displayed in the address
bar should always be the same as the URL of the displayed page.

There is often a gap between the formal model used to verify properties

and the system implementation. Although we recognize that this gap ex-
ists between our model and our system, we feel that for our uses of formal
methods the difference is small enough that we are able to use the results of
model checking to iterate on design and development. Since we implement
each of the browser components separately and use a compact API for mes-
sage passing, the model that we use to formally verify parts of our browser
is very similar to the actual implementation. The model we create is focused
on message-passing between components. We do not verify, for example,
that the HTML parsing engine is bug-free; instead, we verify that even if the
HTML parsing engine had a bug, the messages that a code execution attack
could generate (potentially any message) would not force the browser as a
whole into a bad state. To do this, we model each component, and aspects
of every component’s internal state are included. Messages are the means for
the browser’s internal state to change.

Our application of formal methods helped us find bugs in our initial imple-
mentation. By model-checking our address bar model we revealed a state
that violated our specification of the address-bar visual invariant. The re-
sulting state was actually due to a bug in our implementation, as we had not
properly considered the impact of attackers dropping messages or a com-
promised component choosing not to send a particular message. Our model
gives an attacker complete control over the compromised component, in-

BUILDING A MORE SECURE WEB BROWSER 19

cluding the ability to selectively send some types of messages and not others.
We used the result to fix our access control implementation and we updated
our model accordingly.

This preliminary work on formal verification of our browser represents a
first step toward our larger goal of full formal verification of the OP Web
browser.

Conclusions

In this new era of Web-based applications and software as a service, the
Web browser has become the new operating system. Unfortunately, current
Web browsers are unable to cope with the complexity that accompanies this
new role and have fallen subject to attack. In this article we showed how, by
treating Web browsers like operating systems and by building them using
operating system principles, we can make a first step toward a more secure
Web browser.

We plan to have a version of the OP browser ready for download by the end
of the summer.

ACKNOWLEDGMENTS

We would like to thank Jose Meseguer and Ralf Sasse for their valuable feed-
back on our use of formal methods. We would also like to thank Joe Tucek
and Anthony Cozzie for discussions about the design of our browser, and
Frank Stratton, Paul Dabrowski, Adam Lee, and Marianne Winslett for feed-
back on an early draft of our paper. This research was funded in part by a
grant from the Internet Services Research Center (ISRC) of Microsoft Re-
search.

REFERENCES

[1] Adobe Flash Player settings manager: http://www.macromedia.com/
support/documentation/en/flashplayer/help/settings_manager.html.

[2] Adobe, Flash Player update available to address security vulnerabilities:
http://www.adobe.com/support/security/bulletins/apsb07-12.html.

[3] AusCERT, Sun Java runtime environment vulnerability allows remote
compromise: http:/www.auscert.org.au/render.htm?1t=7664.

[4] S. Chen, D. Ross, and Y.-M. Wang, “An Analysis of Browser Domain-
Isolation Bugs and a Light-weight Transparent Defense Mechanism,” Pro-
ceedings of the 14th ACM Conference on Computer and Communications Security
(CCS), 2007.

[5] C. Grier, S. Tang, and S.T. King, “Secure Web Browsing with the OP Web
Browser,” Proceedings of the 2008 IEEE Symposium on Security and Privacy, May
2008.

[6] C. Jackson, A. Bortz, D. Boneh, and J.C. Mitchell, “Protecting Browser
State from Web Privacy Attacks,” Proceedings of the 15th International Confer-
ence on World Wide Web (New York: ACM Press, 2006).

[7] P. Loscocco and S. Smalley, “Integrating Flexible Support for Security
Policies into the Linux Operating System,” Proceedings of the 2001 USENIX
Annual Technical Conference FREENIX Track, June 2001.

[8] Microsoft, “ActiveX Security: Improvements and Best Practices”
http:/msdn2.microsoft.com/en-us/library/bb250471.aspx.

;LOGIN: VOL. 33, NO. 4

[9] A. Moshchuk, T. Bragin, S.D. Gribble, and H.M. Levy, “A Crawler-based
Study of Spyware on the Web,” Proceedings of the 2006 Network and Distrib-
uted System Security Symposium (NDSS), February 2006.

[10] P.D. Petrkov, Oday: PDF pwns Windows: http:/www.gnucitizen.org/
blog/0day-pdf-pwns-windows.

[11] P.D. Petrkov, Oday: QuickTime pwns Firefox: http:/www.gnucitizen.
org/blog/0day-quicktime-pwns-firefox.

[12] N. Provos, D. McNamee, P. Mavrommatis, K. Wang, and N. Modadugu,

“The Ghost in the Browser Analysis of Web-based Malware,” Proceedings
of the 2007 Workshop on Hot Topics in Understanding Botnets (HotBots), April
2007.

[13] T. Richardson, Q. Stafford-Fraser, K.R. Wood, and A. Hopper, “Virtual
Network Computing,” IEEE Internet Computing, 2(1):33-38, January 1998.

[14] Sun, Java Security Architecture: http://java.sun.com/j2se/1.4.2/docs/
guide/security/spec/security-spec.docl.html.

[15] D. Turner, Symantec Internet Security Threat Report: Trends for Janu-
ary—June 07, Technical Report, Symantec Inc., 2007.

[16] Y.-M. Wang, D. Beck, X. Jiang, R. Roussev, C. Verbowski, S. Chen, and
S. King, “Automated Web Patrol with Strider Honeymonkeys: Finding Web
Sites That Exploit Browser Vulnerabilities,” Proceedings of the 2006 Network
and Distributed System Security Symposium (NDSS), February 2006.

Thanks to USENIX and SAGE Corporate Supporters

USENIX Patrons
Google

Microsoft Research
NetApp

USENIX Benefactors
Hewlett-Packard

IBM

Linux Pro Magazine
VMware

USENIX Partners SAGE Partner

USENIX & SAGE
Partners

Ajava Systems, Inc.

DigiCert® SSL
Certification

FOTO SEARCH Stock
Footage and Stock
Photography

Raytheon
Splunk

Zenoss

Cambridge Computer ~ MSB Associates

Services, Inc.

GroundWork Open
Source Solutions

Hyperic
Infosys

Intel

Oracle

Ripe NCC
Sendmail, Inc.

Sun Microsystems, Inc.

;LOGIN: AUGUST 2008

BUILDING A MORE SECURE WEB BROWSER

21

22

COLIN DIXON, THOMAS ANDERSON, AND
ARVIND KRISHNAMURTHY

withstanding
multimillion-node

botnets

Colin Dixon is a graduate student at the University
of Washington. While an undergraduate at the
University of Maryland he worked on approxima-
tion algorithms and anonymous communication.
His current research interests include computer
security, network architecture, and distributed
systems with a focus on deployable solutions for
real-world problems.

ckd@cs.washington.edu

Tom Anderson is a Professor in the Department of
Computer Science and Engineering at the University
of Washington. He is an ACM Fellow and a winner
of the ACM SIGOPS Mark Weiser Award, but he is
perhaps best known as the author of the Nachos
operating system.

tom@cs.washington.edu

Arvind Krishnamurthy is an Assistant Research
Professor at the University of Washington, Seattle.
His research interests are primarily at the boundary
between the theory and practice of distributed sys-
tems. He has worked on automated mechanisms for
managing overlay networks and distributed hash
tables, network measurements, parallel comput-
ing, techniques to make low-latency RAID devices,
and distributed storage systems that integrate the
numerous ad hoc devices around the home.

arvind@cs.washington.edu

LARGE-SCALE DISTRIBUTED DENIAL OF
service (DoS) attacks are an unfortunate
everyday reality on the Internet. They are
simple to execute and, with the growing
size of botnets, more effective than ever.
Although much progress has been made

in developing techniques to address DoS
attacks, no existing solution handles non-
cacheable content, is unilaterally deploy-
able, works with the Internet model of open
access and dynamic routes, and copes with
the large numbers of attackers typical of
today’s botnets. We believe we have created
a practical solution.

Setting the Stage

The current Internet is often compared to the Wild
West and not without merit. A combination of the
lack of accountability, the complexities of multiple
legal jurisdictions, and an ever-changing techno-
logical battlefield has created a situation where
cyber-criminals can operate lucrative businesses
with little risk of being caught or punished.

The most brazen example of this is the growth of
botnets. Attackers write viruses that compromise
end hosts and tie them into a command and con-
trol system that enables the attacker to issue com-
mands, install software, and otherwise control
compromised machines. These networks are the
basis for a whole underground economy in stolen
financial information, stolen identities, spam email,
and DosS attacks.

The size of these botnets is large and growing. A
variety of recent estimates put the total number

of bots on the Internet well into the millions and
some estimates go upward of hundreds of mil-
lions [3, 5]. Recent examples including the Storm
and Kraken botnets have made headlines in main-
stream media. To make matters worse, the number
of critical operating system vulnerabilities discov-
ered is increasing steadily every year [2], giving
botnets an ample supply of new recruits, so the
problem is unlikely to get better on its own.

DoS attacks launched from botnets number in the
hundreds each day and threaten large swaths of
the Internet. If compromised nodes are typical of
end hosts participating in other large peer-to-peer
systems [10], a multimillion-node botnet would be
able to generate terabits of attack traffic per second,
sourced from virtually every routable IP prefix on

;LOGIN: VOL. 33, NO. 4

;LOGIN: AUGUST 2008

the planet. This scale of attack could, at least temporarily, overwhelm any
current core link or router. It is also capable of indefinitely disrupting ser-
vice to all but the best provisioned services on the Internet today.

In May 2006, a sustained attack against the anti-spam company Blue Se-
curity forced the company to close down its services [12]. The LiveJournal
community was even knocked offline when it was caught in the crossfire.
Further, attacks are not just limited to security companies. In April 2007,

a sustained attack on government and business Web sites in Estonia effec-
tively knocked the country off the Web [9]. Even nations are not safe. More
disturbing is that, despite the attacks going on for weeks, no effective coun-
termeasures were deployed and service was restored only after the attacks
petered out.

DoS Attacks

Although DoS attacks come in many flavors, we focus on resource ex-
haustion attacks. These attacks flood some bottleneck resource with more
requests than can be handled, ensuring that only a small fraction of the le-
gitimate requests are serviced.

In the past, syn floods and other techniques aimed to exhaust end-host re-
sources such as memory and process table space, but as these vulnerabili-
ties have been fixed, increasingly the trend is simply to exhaust the target’s
bandwidth. Attack packets can emulate normal user behavior, making them
difficult to detect and drop. Attack traffic often crowds out legitimate traf-
fic upstream from where the victim has power to filter traffic even if it could
distinguish good packets from bad. Further, with the increasing size of bot-
nets attackers can simply send normal traffic and make the attack indistin-
guishable from a flash crowd, forcing defenses to drop packets at random.

Without information about which requests are legitimate and with limited
buffer space, the only strategy for a victim is to serve requests at random. If
there are G legitimate requests and B spurious requests, on average, O([G/
(B+G)]) of the available resources go to legitimate requests. But B is often
much larger than G, since, with a massive botnet, attackers can pick their
target and focus their fire. Addressing this asymmetry is a main goal of our
work.

State of the Art

There are two sets of deployed solutions today. The first involves heuristic-
based filters deployed in special-purpose boxes in the network with the goal
of finding and dropping the bad traffic. The second set makes use of large-
scale content distribution networks (CDNs), which aim to solve the problem
by sheer over-provisioning.

Heuristic-based filtering relies on an arms race between attackers and de-
fenders—one that we are unlikely to win. Attackers are faster on their feet
and, in the end, have an easier goal. They only have to make their traffic
indistinguishable from the legitimate clients, whereas the filters have to de-
tect—in real time and at high data rates—the ever-shrinking differences be-
tween the attack traffic and legitimate traffic.

Additionally, because heuristics can cause collateral damage, they are only
activated in response to an attack. This requires both detecting the attack
and communicating that fact to the upstream filters. This communication it-
self can be interrupted by the attacker.

WITHSTANDING MULTIMILLION-NODE BOTNETS 23

24

Large-scale content distribution networks, however, work remarkably well
for read-only Web sites, by replicating data everywhere. Massive replication
not only increases performance and resilience to flash crowds but also pro-
vides extra capacity to deal with a DoS attack. This approach is even avail-
able as a commercial anti-DoS service [1]. However, CDNs do not work for
nonreplicable services, such as read/write back-end databases for e-com-
merce, modern AJAX applications, e-government, and multiplayer games,
or for point-to-point communication services such as VolP or IM—in other
words, much of the Internet as we know it today. How can we ensure com-
munication with a fixed endpoint when that endpoint is being flooded?

We address this problem with the key insight that we need a system as pow-
erful as a botnet to defend against a botnet.

Phalanx Architecture

Intuitively, Phalanx aims to use a large swarm of nodes (like those of a
large-scale CDN) as points of presence for a protected server. Provided that
the nodes’ resources exceed those of attackers, legitimate clients will have
some functioning channels for communication despite a widespread attack.
In practice, the implementation of this, which allows for a reasonable de-
ployment path, good performance, and an open model of communication, is
somewhat more complicated than simply using nodes as proxies.

There are two key problems with simply using CDN nodes as proxies. First,
these nodes cannot simply forward all traffic onto the server; instead, they
have to do some kind of filtering at the behest of the server. Second, it is
only in aggregate that the CDN nodes are resistant to attack, so any given
connection must leverage a large set of these nodes to be resilient.

To solve the first problem we use the nodes as packet mailboxes rather than
simple forwarding proxies. A mailbox in Phalanx is a best-effort packet store
and pick-up point. The protected server must explicitly request each packet
it wishes to receive and therefore is fail-safe: If a server doesn’t request a
packet, the packet is not delivered. These mailboxes are further explained
below.

To solve the second problem, we send each packet through a different ran-
domly chosen mailbox, thus drawing in a large number of mailboxes to pro-
tect each connection. If any given mailbox fails or is attacked, only a small
fraction (often only one packet) of the connection will be lost. Because the
mailbox used by a given packet is chosen randomly according to a seed
known only to the two endpoints, the attacker must attack widely to have
any impact. The exact mechanisms for this can be found below, in the sec-
tion “Swarms and Iterated Hash Sequences.”

The observant reader will note two remaining problems. First, there is noth-
ing to stop an attacker from ignoring the mailboxes and attacking the server
directly. To deal with this, we capitalize upon the request-response frame-
work and install filters at the edge of the server’s upstream ISP. These filters
(whose functionality is described later as the filtering ring) simply drop all
unrequested packets.

Second, now that we have blocked all unrequested packets, how can we ini-
tiate connections? For this, we extend the request-response framework and
additionally send requests for new connections rather than explicit packets.
These requests are a valuable scarce resource and so we protect access to
them via authentication and fair queuing (as laid out under “Connection Es-
tablishment”).

;LOGIN: VOL. 33, NO. 4

;LOGIN: AUGUST 2008

AN EXAMPLE

Before launching into each mechanism in detail we will narrate an example
of how Phalanx would be used to protect a standard Web server with dy-
namic content, such as an e-commerce site. The example can also be fol-
lowed in Figure 1, where the numbered steps will be mentioned.

First, the client looks up the address of the server and subsequently requests
the static, cacheable content of the page via any current CDN-style system
with high availability, such as Akamai, CoDeeN, or Coral (1). As part of
fetching this content, the client receives a static and cacheable Java applet,
which then serves as a zero-installation client to allow for interaction with
Phalanx mailboxes. At this point, the Java applet is responsible for rendering
the dynamic, noncacheable portions of the page and speaking the Phalanx
protocols.

.. Large CDN

FIGURE 1: A DIAGRAM ILLUSTRATING A SIMPLE HTTP-STYLE REQUEST
DONE WITH PHALANX. THE NUMBERS CORRESPOND TO THE
ACCOMPANYING DESCRIPTION.

The applet begins by making a name request for the dynamic content server
to the distributed name service (1). Again, because the naming information
is static and cacheable, this service can be provided by any highly available
name service, such as CoDoNs or Akamai’s DNS service. The name service
returns a list of “first-contact” mailboxes. These first-contact mailboxes hold
the first packet requests that the server has issued to allow new connections
to be made.

The applet requests a challenge from one of these first-contact mailboxes
and replies with either a puzzle solution or an authentication token (2). In
either case, the applet will resend the request, possibly with a more complex
puzzle solution and/or a different mailbox if the connection is not estab-
lished in a reasonable period of time.

At the mailbox, a steady stream of first packet requests has been arriving
from the dynamic content server (3). One of these first packet requests is
eventually assigned to the client’s connection request (4), at which point the
applet’s request is forwarded to the server (5) to cross back through the fil-
tering rings (8) without being dropped. This ensures that the rate of connec-
tion requests reaching the server is under the server’s control.

Eventually, a response will come back from the server (6) containing a list
of mailboxes to use for the remainder of the connection along with a shared
secret allowing standard Phalanx communication to commence. At the same
time, the server will send packet fetch requests to the first several mailboxes
to be used in preparation for receiving further packets from the client.

The client uses the shared secret to determine the sequence of mailboxes

to use and begins to send packets to these mailboxes. These data packets

are paired with their corresponding requests and forwarded onto the server
passing through the filtering ring (8) by virtue of the holes opened by the re-
quests. This constitutes the normal behavior of the Phalanx connection (7).

WITHSTANDING MULTIMILLION-NODE BOTNETS 25

If at any point in time the server decides that the connection is no longer
desirable or it simply starts running low on resources, it can either decrease
the rate at which it requests new data packets or simply stop requesting
packets altogether.

MAILBOXES

We now proceed to describe each of these components in a bit more detail.
The basic architecture of an established Phalanx connection is shown in Fig-
ure 2. A more complete description is available on the USENIX Web site in
the proceedings of NSDI 08 [8].

_ Chosen
/~ "\ Mailboxes

Good Swarm__ <IN

Client Server

FIGURE 2: THE BASIC ARCHITECTURE OF AN ESTABLISHED PHALANX
CONNECTION. EACH PACKET IS SENT THROUGH A ONE-HOP DETOUR
VIA A RANDOMLY CHOSEN MAILBOX.

The basic building block in Phalanx is the packet mailbox. Mailboxes pro-
vide a simple abstraction that gives control to the destination instead of the
source. Rather than packets being delivered directly to the specified destina-
tion as in previous anti-DoS overlays [4, 11, 17], traffic is first delivered to

a mailbox, where it can either be “picked up” or ignored by the destination.
Traffic that is ignored is eventually dropped from the buffers at packet mail-
boxes.

Mailboxes export two basic operations: put and get. A put inserts a packet
into the mailbox’s buffer, possibly evicting an old entry, and returns. A get
installs a best-effort interrupt at the mailbox. If a matching packet is found
before the request is bumped from the buffer, the packet is returned.

The mailbox abstraction puts the destination in complete control of which
packets it receives. Flow policies can remain at the destination where the
most information is available to make such decisions. These policies are
implemented in the network via requests and the lack thereof. If no re-
quests are sent, then no packets will come through. This behavior ensures
that most errors are recoverable locally, rather than requiring cooperation
and communication with the network control plane. This is in contrast to
accidentally installing an overly permissive filter in the network and then

being unable to correct the problem because the control channel can now be
flooded.

SWARMS AND ITERATED HASH SEQUENCES

Individual flows are multiplexed over many mailboxes. Each packet in a
flow is sent to a cryptographically random mailbox. Since each mailbox is
secretly selected by the endpoints, an attacker cannot “follow” a flow by at-
tacking each mailbox just before it is used.

We construct a pseudo-random sequence of mailboxes during connection
setup by exchanging the set of mailboxes M and a shared secret x. The se-

;LOGIN: VOL. 33, NO. 4

;LOGIN: AUGUST 2008

quence of mailboxes is built by iterating a cryptographic hash function,
such as SHA-1 or MD5, on the shared secret. Equipped with this shared se-
quence, both endpoints know in advance the precise mailbox to use for each
packet in the connection.

To construct a sequence of mailboxes, we first define a sequence of nonces x;
based on the shared secret x and the cryptographic hash function h, as fol-
lows:

Xg=h(x||x)
x;=h(xi4][x)

Including x in every iteration prevents an attacker who sniffs one nonce
from being able to calculate all future nonces by iterating the hash func-
tion themselves. Our current implementation uses MD5 [15] as the imple-
mentation of h and thus uses 16-byte nonces for simplicity. This sequence
of nonces then determines a corresponding sequence of mailboxes M[x;] by
modulo reducing the nonces, as follows:

MIxil=My: mod M

Note that M need not be all mailboxes in the Phalanx deployment, as each
flow can use a subset of the mailboxes. Indeed, a different set of mailboxes
can be used for each half of the flow (client-to-server and server-to-client);
both sets can be dynamically renegotiated within a flow.

Each nonce serves as a unique identifier for a packet and is included in the
header to facilitate pairing each incoming packet with its corresponding re-
quest. Thus the receiver can know precisely which source sent which packet.
Further, including a nonce in each packet simplifies the logic needed to drop
unrequested packets. Lastly, nonces provide a limited form of authentication
to requests; to subvert the system the attacker must snoop the nonce off the
wire and then deliver a replacement packet to a mailbox before the correct
packet arrives.

FILTERING RING

With Phalanx, a protected destination only receives those packets it explic-
itly requests from a mailbox. To enforce this, we drop all other packets for
the destination at the edge of its upstream ISP.

Each request packet carries a unique nonce that allows a single data packet
to return. In the simple case of symmetric routes, the border router records
the nonce on the outgoing packet and matches each incoming packet to a re-
cently stored nonce, discarding the packet if there is no match. Each nonce
is single use, so once an incoming packet has matched a nonce, we remove
that nonce.

To be effective, the filtering ring must be comprehensive enough to examine
every packet destined for a protected destination, regardless of the source of
the traffic. To prevent this an attacker might try to flood the border router
(or, more precisely, the link immediately upstream from the border router).
As we observed earlier, a massive botnet may be able to flood any single link
or router in the network. However, this would disconnect only those mail-
boxes that used that specific router to access the destination; other mail-
boxes would continue to deliver packets unaffected.

Even a multimillion-node botnet would be unable to sustain enough traf-
fic to completely disconnect a tier-1 ISP from the Internet. To have an effec-
tive defense against such a large-scale attack, a destination must either be a
direct customer of a tier-1 that provides a filtering ring or be protected in-

WITHSTANDING MULTIMILLION-NODE BOTNETS 27

28

directly, as a customer of an ISP that is a customer of that tier-1. Since each
connection can spread its packets across a diverse set of mailboxes, connec-
tions might experience a higher packet loss rate during an attack, but other-
wise would continue to make progress.

Deploying the filtering ring at a tier-1 has risks, though. Bots are every-
where—even inside corporate networks—and, as a result, it seems likely
that filtering rings would be deployed in depth. Inner layers would pro-
vide protection against the limited number of potential attackers close to a
server, while outer layers would provide the powerful filtering to deal with
the brunt of larger attacks. Initially, small-scale ISPs close to the destination
could offer a limited DoS protection service, capable of withstanding mod-
erate-sized botnets. Moving outward, the cost of deploying the filtering ring
would increase (as more border routers would need to be upgraded), but the
value would also increase as the system would be able to withstand larger-
scale botnets.

Our implementation of the filtering logic uses two lists of nonces, efficiently
encoded using Bloom filters [7]. A whitelist contains a list of requested non-
ces, whereas a blacklist contains a list of nonces that have already entered
the filtering ring. The whitelist ensures that only requested packets get
through, and the blacklist ensures that at most one packet gets through per
request. As request packets leave the ring, the router adds their nonces to
the local whitelist. When data packets enter the ring, their nonces are veri-
fied by checking the whitelist and then are added to a blacklist. Bloom filters
must be periodically flushed to work properly; to minimize the impact of
these flushes, two copies of each list are maintained and they are alternately
flushed.

We believe that the Phalanx filtering ring is efficient enough to be imple-
mented even for high-speed links inside the core of the Internet, provided
there is an incentive for ISPs to deploy the hardware, that is, provided that
ISPs can charge their customers for DoS protection. (Note that ISPs that pro-
vide transit need to modify only their ingress routers and not all routers.) A
100-gigabit router line card would need about 50 MB of hash table space.
For each delivered packet, six Bloom filter operations are required: The re-
quest packet places a nonce in the current copy of the whitelist, then when
the actual packet is received it is checked against all four tables (the cur-
rent and previous whitelist and the current and previous blacklist) and then
added to the current blacklist. Both the storage and computation demands
are small relative to those needed for core Internet routing tables and packet
buffering.

Although the filtering ring will require either deploying new hardware in
the network or upgrading the software running on existing routers, it does
not require pervasive deployment. Upgrades need only be made at the bor-
der of ISPs looking to offer DoS protection. At first, filtering could be done
by pairing a commodity server with each border router in an ISP and later
moving the functionality into the routers if higher performance was needed
and when appropriate software updates have been released.

Our discussion to this point has assumed routing symmetry. Of course,

the real Internet has a substantial amount of routing asymmetry. A request
packet sent to a mailbox may not leave the filtering ring at the same point
as the corresponding data packet returns; if so, the Bloom filter at the return
point will drop the packet. This problem becomes more likely as the nesting
level increases.

To address this problem, we modify filtering ring nodes to stamp request
packets as they pass through and allow mailboxes to loosely source route

;LOGIN: VOL. 33, NO. 4

;LOGIN: AUGUST 2008

data packets via IP-in-IP tunneling back through the filter ring nodes that
are known to have been primed. This solves the problem of route asymme-
try while only requiring cooperation from the nodes that are already being
changed to do filtering.

CONNECTION ESTABLISHMENT

Thus far, we have described how to protect established connections but have
yet to properly describe the details of connection establishment.

We allow for connection establishment by issuing periodic requests that

ask for connection establishment packets rather than specific data packets.
These general-purpose nonces are described above. Simply allowing for such
first packets doesn’t solve the problem, as they immediately become a scarce
resource and this capability acquisition channel can be attacked [6]. To solve
this problem, we require clients to meet some burden before giving them ac-
cess to a general-purpose nonce. Clients can either present an authentication
token signed by the server or present a cryptographic puzzle solution.

PASSING THROUGH THE FILTERING RING

Rather than invent new mechanisms to deal with allowing first packets
through the filtering ring, we reuse the existing request packet framework
to punch nonspecific holes in the filtering ring. Destinations send each
mailbox a certain rate of general-purpose requests. Each request contains a
nonce to be placed in such first packets. When a mailbox wishes to send a
first packet, it places one of these general-purpose nonces into the packet,
allowing it to pass through the filtering ring.

These general-purpose requests implement a form of admission control.
Each general-purpose nonce announces the destination’s willingness to
admit another flow. This further increases the destination’s control over the
traffic it receives, allowing it to directly control the rate of new connections.

For the general-purpose nonce mechanism to be resilient to DoS attack, it is
necessary to spread the nonces across a wide set of well-provisioned mail-
boxes; a particular client only needs to access one. Refreshing these general-
purpose nonces can pose an unreasonable overhead for destinations that
receive few connection requests; as a result, our prototype supports nonces
issued for aggregates of IP addresses. Thus, an ISP can manage general-pur-
pose nonces on behalf of an aggregate of users, at some loss in control over
the rate of new connections being made to each address. Of course, the ISP
must carefully assign aggregates based on their capacity to handle new con-
nection requests; for example, Google should not be placed in the same ag-
gregate as a small Web site, or else the attacker could use general-purpose
nonces to flood the small site.

When a client wishes to contact some server, it first contacts a mailbox and
asks that mailbox to insert a general-purpose nonce into its first packet and
forward it to the destination. Because general-purpose nonces are a scarce
resource, the mailbox needs rules governing which connections to give these
nonces and in what order. The next two sections deal with those mecha-
nisms.

AUTHENTICATION TOKENS

Each packet requesting to initiate a connection must either carry an authen-
tication token or a solution to a cryptographic puzzle. These provide the

WITHSTANDING MULTIMILLION-NODE BOTNETS 29

burden of proof necessary for a mailbox to allow access to general-purpose
nonces. Authentication tokens provide support for pre-authenticated connec-
tions, allowing them to begin with no delay. For example, a popular e-com-
merce site such as Amazon might provide a cookie to allow quicker access to
its Web site to its registered users or even just to users who had spent more
than $1000. Cryptographic puzzles provide resource proofs to approximate
fair queueing of requests, when no prior relationship exists between source
and destination.

Authentication tokens are simply tokens signed by the server stating that
the given client is allowed to contact that server. An additional message ex-
change is required to prove that the client is in fact the valid token holder.

CRYPTO-PUZZLES

The crypto-puzzle is designed to be a resource proof allowing hosts that
spend more time solving the puzzle to get higher priority for the limited
number of general-purpose nonces each mailbox possesses. Although there
are many kinds of resource proofs, we opt for a computational resource
proof rather than a bandwidth resource proof [18] because computation
tends to be much cheaper and less disruptive when heavily used.

We borrow a solution from prior work [14, 16] where the crypto-puzzle is to
find a partial second pre-image of a given random challenge string such that,
when hashed, both strings match in the lower b bits. The goal for each client
is then to find some string a given a challenge nonce N such that:

h(a||N) ° h(N) mod 2°

The random nonce is included in both strings to prevent attackers from
building up tables of strings that cover all 2P possible values of the lower b
bits in advance. In effect, they need to cover 20 + | N Ipossible values to
find matches for all values of the lower b bits and for all possible nonces,
whereas solving the puzzle online only requires searching 22 = 1 strings on
average. Because the length of the nonces is under the control of the mail-
boxes, it is possible to make the precomputing attack arbitrarily harder than
waiting and solving puzzles online.

First packets are granted general-purpose nonces, with priority given first
to those with valid authentication tokens and then in decreasing order of
matching bits in the crypto-puzzle solution. This allows any source to get a
first packet through against an attacker using only finite resources per first
packet, albeit at an increase in latency.

Evaluation

Evaluating systems such as Phalanx at scale has always posed a problem be-
cause they are fundamentally intended to operate at scales well beyond what
can be evaluated on a testbed. To address this issue, we built a simulator
that captures the large-scale dynamics of Phalanx and allows us to simulate
millions of hosts simultaneously.

The simulator uses a router-level topology gathered by having iPlane [13]
probe a list of approximately 7200 known Akamai nodes from PlanetLab
nodes. These Akamai nodes serve as stand-ins for appropriately located
mailboxes. Each PlanetLab node serves as a stand-in for a server that is
under attack.

;LOGIN: VOL. 33, NO. 4

;LOGIN: AUGUST 2008

We assume that attackers target the mailboxes, the server, and the links near
the server. Traffic is assumed to flow from clients to mailboxes unmolested.
We assign link capacities by assuming mailbox access links are 10 Mbps,
the server access link is 200 Mbps, and link capacity increases to the next
category of {10 Mbps, 100 Mbps, 1 Gbps, 10 Gbps, 40 Gbps} as the links
move from the edge to the core.

We assign attackers with attack rates according to end-host upload capacity
information gathered in our previous work [10, 13] and assume that good
clients communicate at a fixed rate of 160 kbps.

1

I
4 ASes — — —

N f T T
g 0.8 ——— victim AS - ----- |
E T none
z ~ -
= 06 -]
5=}
g
£
g 04 |
= SREEEET
E
=] o2 L . T o |
o
0 1 | 1
0 02 04 06 08 1

1 - loss rate

FIGURE 3: THE CUMULATIVE FRACTION OF MAILBOXES SEEING AT
MOST A GIVEN FRACTION OF GOODPUT WHEN COMMUNICATING
WITH THE SERVER

By using IP to AS mappings, we are able to simulate the behavior of the sys-
tem under varying levels of deployment of the Phalanx filtering rings. Figure
3 shows the effect of increasing deployment of filtering rings for a server lo-
cated at planetlab-01.kyushu.jgn2.jp. (The results are similar when we use
other PlanetLab nodes as servers.) In this simulation, there are 100,000 at-
tacking nodes and 1000 good clients all trying to reach the victim server.
We simulate varying degrees of deployment by iteratively adding the largest
adjacent AS to the current area of deployment.

As one might expect, even a little deployment helps quite a bit. Only deploy-
ing filters at the victim AS provides significant relief and allows some mail-
boxes to see lossless communication. Deploying in just four ASes (including
the tier-1 AS NTT) results in the vast majority of mailboxes seeing lossless
communication, effectively stopping the attack in its tracks if we assume
that connections use any degree of redundancy to handle losses.

We next look at the scalability of Phalanx in handling attacks involving mil-
lions of bots. For this experiment we consider a somewhat stronger deploy-
ment: upgrading the mailboxes to 100 Mbps access links. Figure 4 examines
the effect on mailbox loss rate as we increase the number of attackers. Most
connections easily withstand the brunt of an attack involving one million
nodes, and Phalanx still allows some (though severely degraded) communi-
cation through when facing 4 million nodes.

However, as the graph shows, increasing the capacity of the mailboxes by
a factor of 5 to 500 Mbps is able to once again bring the attack into check.
Thus, while any given deployment will have a breaking point, an increased
deployment can bring increased protection to deal with even larger attacks.

WITHSTANDING MULTIMILLION-NODE BOTNETS 31

500k attackers ««-«--

Im = = =

1 - cumulative fraction of mailboxes

2 H u
0 4m, 5X mbox = = — -
4m —
0 T ! —— |
0 02 04 0.6 0.8 1

1 - loss rate
FIGURE 4: THE CUMULATIVE FRACTION OF MAILBOXES SEEING AT
MOST A GIVEN LOSS RATE FOR A VARYING NUMBER OF ATTACKERS

Conclusion

In this article, we presented Phalanx, a system for addressing the emerging
denial-of-service threat posed by multimillion-node botnets. Phalanx asks
only for two primitives from the network. The first is a network of overlay
nodes, each implementing a simple, but carefully engineered, packet for-
warding mechanism; this network must be as massive as the botnet that it is
defending against. Second, we require a filtering ring at the border routers of
the destination’s upstream tier-1 ISP; this filtering ring is designed to be sim-
ple enough to operate at the very high data rates typical of tier-1 border rout-
ers. We have implemented an initial prototype of Phalanx on PlanetLab and
have used it to demonstrate its performance. We have further demonstrated
Phalanx’s ability to scale to million-node botnets through simulation.

ACKNOWLEDGMENTS

We would like to thank Arun Venkataramani for a set of conversations
which helped us realize the need for more scalable DoS protection. We
would also like to thank our NSDI shepherd, Sylvia Ratnasamy, as well as
our anonymous reviewers, for help and valuable comments. This work was
supported in part by National Science Foundation Grant No. CNS-0430304.

REFERENCES

[1] Akamai: http:/www.akamai.com/.

[2] Microsoft’s unabated patch flow: http://www.avertlabs.com/research/
blog/index.php/category/security-bulletins/ (May 9, 2007).

[3] “Surge” in Hijacked PC Networks: http://news.bbc.co.uk/2/hi/technology/
6465833.stm (March 2007).

[4] D.G. Andersen, “Mayday: Distributed Filtering for Internet Services.” In
USITS, 2003: http://www.usenix.org/events/usitsO3/tech/andersen.html.

[5] N. Anderson and Vint Cerf: One Quarter of All Computers Part of a Bot-
net: http://arstechnica.com/news.ars/post/20070125-8707.html (January 25,
2007).

[6] K. Argyraki and D. Cheriton, “Network Capabilities: The Good, the Bad
and the Ugly.” In HotNets IV, 2005.

;LOGIN: VOL. 33, NO. 4

;LOGIN: AUGUST 2008

[7] B. H. Bloom, “Space/Time Trade-offs in Hash Coding with Allowable
Errors,” Communications of the ACM, 13(7): 422—426 (1970).

[8] C. Dixon, T. Anderson, and A. Krishnamurthy, “Phalanx: Withstanding
Multi-million Node Botnets.” In NSDI, 2008: http:/www.usenix.org/events/
nsdiO8/tech/dixon.html.

[9] P. Finn, “Cyber Assaults on Estonia Typify a New Battle Tactic,” Washing-
ton Post, May 19, 2007: http://www.washingtonpost.com/wp-dyn/content/
article/2007/05/18/AR2007051802122. .html.

[10] T. Isdal, M. Piatek, A. Krishnamurthy, and T. Anderson, “Leveraging
Bittorrent for End Host Measurements.” In PAM, 2007.

[11] A.D. Keromytis, V. Misra, and D. Rubenstein, “SOS: Secure Overlay
Services.” In SIGCOMM, 2002.

[12] B. Krebs, “Blue Security Kicked While It's Down,” Washington Post,
May, 2006: http://blog.washingtonpost.com/securityfix/2006/05/
blue_security_surrenders_but_s.html.

[13] HV. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T. Anderson, A. Krish-
namurthy, and A. Venkataramani, “iPlane: An Information Plane for Distrib-
uted Services.” In OSDI, 2006: http:/www.usenix.org/events/osdi06/tech/
madhyastha.html.

[14] B. Parno, D. Wendlant, E. Shi, A. Perrig, B. Maggs, and Y.-C. Hu, “Port-
cullis: Protecting Connection Setup from Denial-of-Capability Attacks.” In
SIGCOMM, 2007.

[15] R. Rivest, The MD5 Message-Digest Algorithm, REC 1321 (Informational),
April 1992.

[16] E. Shi, L. Stoica, D. Andersen, and A. Perrig, OverDoSe: A Generic
DDoS Protection Service Using an Overlay Network, Technical report,
Carnegie Mellon University, 2006: http:/www.cs.cmu.edu/~dga/papers/
CMU-CS-06-114.pdf.

[17] A. Stavrou and A.D. Keromytis, “Countering DoS Attacks with Stateless
Multipath Overlays.” In CCS, 2005.

(18] M. Walfish, M. Vutukuru, H. Balakrishnan, D. Karger, and S. Shenker,
“DDoS Defense by Offense.” In SIGCOMM, 2006.

WITHSTANDING MULTIMILLION-NODE BOTNETS 33

DIANA SMETTERS, BRINDA DALAL,
LES NELSON, NATHANIEL GOOD, AND
AME ELLIOTT

ad hoc guesting:
when exceptions
are the rule

PEOPLE INCREASINGLY RELY ON THEIR
ability to access and share data in order to
get their jobs done and to enrich their per-
sonal lives, yet corporate security policies
around sharing are rarely effective in en-
abling their users to achieve their goals. We
offer our observations on how policy and
practice often clash, as well as suggestions
for improving the security of file sharing.

Diana K. Smetters is a senior security researcher at
the Palo Alto Research Center. Her research interests
include usability of security and applications of
cryptography, particularly in social, mobile, and
ubiquitous computing.

smetters@parc.com

Brinda Dalal is an anthropologist in the Ubiquitous
Computing Area at the Palo Alto Research Center,
focusing on sociotechnical design, usable security,
and green technology innovation. Brinda received
a PhD in Social Anthropology from the University
of Cambridge, where she conducted research on
nomadic identities and trade and barter in the
Himalayas.

Brinda.Dalal@parc.com
Les Nelson is a senior research scientist at the Palo

Alto Research Center. His research interests include
social computing, mobile computing, ubiqui-

We wanted to understand how users are sharing
information and how their needs are or are not met
by current tools, policies, and practices. We per-
formed an ethnographic field study, interviewing
a selected group of subjects about their practices
around access control, security, and file sharing.
Our intent was to understand three things: (1)
Under what circumstances do people or compa-
nies share or restrict access to files? (2) What tools
or behavioral practices do they use to accomplish
that? (3) How are people’s experiences, problems,
and needs changing in regard to secure file shar-
ing and access control, especially as they deal
with geographically dispersed colleagues, clients,
friends, and family members?

tous computing, and in general the adaptation
of sociotechnical systems in response to changing

Background

circumstances.

lesnelson@acm.org

Nathan Good is a research scientist at Palo Alto
Research Center. His research interests include
recommender systems, usable security, and mobile
computing.

nathaniel.good@parc.com

Ame Elliott is a Senior Human Factors Researcher

at IDEO, where she designs innovative technical
solutions grounded in human need. She has a PhD
in Architecture from the University of California,
Berkeley, where she studied human-computer
interaction. Prior to joining IDEO, she was a research
scientist at PARC and Ricoh Innovations.

aelliott@ideo.com

34

Our research builds upon a growing body of lit-
erature on file sharing and access control. Previ-
ous studies have focused on personal file sharing,
specifically, in the domains of photographs [1, 2] or
music [3, 4], or professional collaborations in cor-
porations [5, 6]. Overall, these studies concluded
that current tools for managing sharing policies
available in each domain were inadequate to meet
their users’ complex requirements [1, 2, 5, 6, 7].

In the corporate setting, email was routinely cho-
sen as the preferred means of sharing files, even in
the presence of other alternatives [5, 6]. However,
both the studies of Voida et al. [5] and Whalen et
al. [6] considered subjects selected from and pre-
dominantly sharing within single organizations, all
of whom shared access to established file-sharing
mechanisms (e.g., file servers). They did not con-
sider the effect that these preexisting options had
on the challenges users would face, or the choices
they would make when sharing across organiza-
tional boundaries or operating in the absence of
pre-existing shared infrastructure.

Our study focuses on the question of how users
share content in the absence of existing shared
infrastructure—for example, when sharing across

;LOGIN: VOL. 33, NO. 4

;LOGIN: AUGUST 2008

organizational boundaries. Based on interviews of users across various do-
mains, we were able to explore access control and sharing issues across
different types of organizations, such as those with stricter or more lax
regulations and compliance policies. We examined in some depth how file-
sharing and access controls were used, not used, or circumvented in order
to get work done. From this analysis we identified key challenges faced by
those using and choosing among current file-sharing technologies, including
email.

Our Study

We conducted two-hour, in-depth interviews with ten subjects in places
where they did at least some of their work—homes, home offices, or cafes.
These interviews consisted of semi-structured and open-ended questions
about file sharing and access control. We selected participants with file-
sharing and access-control challenges, such as having to work with multiple
clients from different organizations or having to share data with geographi-
cally dispersed teams or with those who need access to confidential data. Al-
together we interviewed six men and four women between 23 and 53 years
of age, working in a variety of fields. All used multiple digital devices and
traveled frequently. Subjects were asked to describe examples of their profes-
sional and personal practices around security, privacy, and file sharing.

Key Findings

From our data, we identified a number of key problems users face in sharing
data:

Sharing with myself: Users are their own most common sharing partner,
effortfully moving data among their own machines, accounts, and devices to
ensure continued access.

Oversharing: Users grant more access than necessary when it is difficult to
limit who has access to content or how much to share with others, or when
pressed for time to extract information from larger data sets.

Transient data: Users often need to hold data only briefly while transport-
ing it from one place or another, and that data may linger, be lost, and get
forgotten.

Transient access: Users need to access data for only short periods of time—
they intend only one-time access or to make data available in certain situa-
tions.

Impedance matching: Users spend considerable time and effort tailoring
content for sharing based on their understanding of recipient needs or the
demands of the sharing mechanisms in use.

Ad hoc sharing: Users often share content with groups of recipients they
have not shared with before and may not again.

Based on these insights, we propose that the general nature of the prob-
lem faced by users is what we term ad hoc guesting: Users need to share data
securely with unplanned sets of people with whom they have not previ-
ously shared. They may belong to another organization and thus cannot

be “named” by traditional access control. These interactions are transitory
and lightweight, often making it not worth the effort required to set up new
sharing mechanisms or change administrative state.

AD HOC GUESTING: WHEN EXCEPTIONS ARE THE RULE 35

In what follows, we quote directly from our respondents. Explanatory mate-
rial (words garbled in transcription or context missing from a quote) is pro-
vided in square brackets ([].

General Properties of Sharing

Our study highlights distinctions between personal and professional shar-
ing. Professionally, 80% of respondents shared files with overseas collabora-
tors or clients in Europe and the Asia-Pacific region, and 100% exchanged
data with colleagues across the United States. When working from home,
consultants and employees in larger corporations often shared files via dis-
tributed corporate servers, and, in three cases, on protected FTP sites. Pre-
dominantly, the data shared in professional settings revolved around project
work: Shared documents included technical specifications, meeting minutes
and action items, and proposals. One of the primary affordances of using

a shared server within a company was the ability to reuse documents from
one project to another. At the same time, people found it time-consuming
to browse different versions of documents to find the proposal they wished
to reuse and resorted instead to telephoning or emailing their colleagues to
obtain the appropriate copy. On the whole, we found that individuals are
deeply aware of and attempt to comply with security stipulations and pri-
vacy requirements for their clients and companies. However, compliance
breaks down the instant that people perceive that they are unable to follow
policy without compromising their accountability to clients or colleagues or
their ability to complete a task.

In contrast, people’s personal file sharing practices focused on ways ex-
periences could be shared with others. The content being shared in this
case—primarily multi-media—was relational in nature, such as sharing
photographs of events with family members who live overseas. We also
found that a surprising number of people shared the same personal account.
For instance, relatives scattered across the United States used a photo shar-
ing account that had a single login and password to ensure privacy. An-
other set of parents set up a “family email account” and used email messages
within the same account to discuss homework with their children in the
evening.

All respondents used email to share files. Fully 90% of subjects mentioned
that they had multiple email accounts (largely personal accounts) and 80%
said that they used personal email accounts for business.

A total of 80% of respondents, regardless of their demographics, also used
a wide variety of social software, including wikis, blogs, social networking
sites (including MySpace and Facebook), hosted services (such as Yahoo!
Briefcase), public Web sites for sharing images and multimedia files (includ-
ing Flickr and YouTube), and online forums and games.

People Are Their Own Best Friends

People are their own most common sharing partners. File sharing with
oneself allows one to synchronize activities regardless of location (at work,
while traveling, or at home) or what devices or network resources are acces-
sible. For example, interviewees who did not have a printer at home often
uploaded files to Yahoo! Briefcase, then downloaded and printed files out at
their office. Eighty percent of the respondents used USB drives (rather than
laptops) to download content at client sites, especially when policies re-
quired that they contact IT administrators before accessing electronic files.

;LOGIN: VOL. 33, NO. 4

;LOGIN: AUGUST 2008

Email is a convenient and preferred mechanism for sharing files with one-
self. Often quicker and easier than accessing files via a VPN, it is often used
to bridge home and work. Although this served a short-term need, people
said they later ran into trouble trying to track source documents and dif-
ferent versions across their accounts: “I'll go home and look for a file and
have to go through all the emails with no subjects and [ask], ‘Oh, when did
I email myself this file?”” Most respondents had multiple email accounts
(some up to 12 or 15). Different types of content were filtered into different
accounts—work, friends, dating services, rental businesses, family photo-
graphs, or spam. Professional and personal accounts bled into one another,
opening avenues for significant security lapses. When email or corporate
servers were inaccessible, people readily sent files to consultants using their
personal email accounts.

Oversharing

Our subjects often found themselves forced to overshare—to share too much
or to share inappropriate information with others or themselves. Overshar-
ing often occurs when it is simply too difficult to share only the information
needed. For example, a healthcare consultant noted that when she visits a
client site, she lacks sufficient time to go through the database (which she

is not permitted to access remotely) and extract only the records she needs.
Instead she ends up downloading entire files, including social security num-
bers, onto USB drives. She remarked, “There are a lot of rules trying to get
permission from state agencies [to access confidential datal. A lot of data
really is protected, so a lot of times the only effective way for me to do the
work really disturbs me. Like I can’t get permissions, but I can dump huge
amounts of data on flash drives that I can then [in theory] lose.”

Our subjects also reported that although the initial decision of whether or
not to share data was often well-considered and even heavily regulated, once
that decision was made “everything relaxes”—in other words, sharing deci-
sions are often all or nothing. For example, one respondent noted, “They say
there’s no way we can provide this information, HIPPA won't allow it—it’s
research, it’s clearly protected, but then you get past that point and you have
a data sharing agreement and they’ll dump a bunch of stuff [people’s so-

cial security numbers, date of birth] on a disk and mail it to a name they’ve
never heard at an address on 29th Street, which strikes me as weird.”

Managing Transient Data

Users frequently handle “transient data’—data useful for a single task or
short period of time. Transient data is often copies created as a side effect

of transporting data from one location to another (e.g., copies on USB flash
drives or in emails to oneself or others). For example, one individual re-
marked that she had a shoebox full of USB drives. Other respondents re-
ported having anywhere between 2 and 15 active or inactive flash drives
stored in their cars or briefcases, at work, or at home. The “throwaway na-
ture” of temporary storage and devices makes it difficult to remember where
sensitive data has gone. Not only is it hard to find the most recent version
when it is needed, but afterward it often languishes, unremembered, on such
devices forever.

Users dealt with such “throwaway data” at different levels of granularity,
up to and including entire accounts or identities. Respondents increasingly
lacked the time to manage their many email accounts, and they tended to

AD HOC GUESTING: WHEN EXCEPTIONS ARE THE RULE 37

shed entire accounts and open new ones rather than sort, archive, or destroy
private data.

Transient Access

A number of individuals noted a need for transient access to data. Consul-
tants, for example, were only supposed to have access to client data dur-
ing the period of their contracts or while working in a certain environment.
People also wanted to grant temporary access in the personal domain—for
example, a landlord wanted to make rental property photos accessible only
when the property was available, and some users shared their passwords for
photo-sharing sites with others to whom they really only wanted to grant
one-time access to pictures.

Users often made data available when temporary access was needed, even
at the cost of security. Most commonly, respondents made data temporar-
ily available via personal email accounts, when unable to access their work
email because of VPN difficulties. One financial analyst noted, “You're not
supposed to use ‘unprotected email addresses,” like Yahoo!, Gmail, or what-
ever, but it’s just a fact of life. Even our CEO has a Gmail account. There are
work requirements but there is also an undeniable fact that people will be
attracted to whatever is out in the market.” A geotechnical engineer com-
mented, “There are policies against sending clients electronic documents of
any sort. But it’s just so backassward that no one can possibly adhere to it.”

Unfortunately, it can be difficult to go back and “fix” unwanted lingering ac-
cess, as with one respondent: “But that pretty much is just a few phone calls,
desperate phone calls saying, ‘Delete from your servers; delete from your
company; make sure it’s completely clean.” You're at the mercy of hoping
they follow your request.”

Impedance Matching

Possibly the most interesting and significant challenge faced by our subjects
was impedance matching—they were expending tremendous effort figuring
out how, rather than what, to share.

People have varying degrees of technical skills required to use systems; con-
sequently, there is a disparity in their ability to master the details involved
in moving data around. Often those with greater need were forced to shoul-
der the work to obtain or share files. As one subject reported about a newly
installed Web-based repository, “I think we have folks with very limited
technical comfort. So for that reason I always have to upload my files [to the
repository] and then email them around, so it’s sort of another step rather
than saving a step.”

A major concern among respondents was preventing data sharing failures.
The majority of our subjects spent time anticipating their own and their re-
cipients’ current state—the speed of their network connection, the sharing
mechanisms available to all peers, and familiarity of the individuals involved
with those systems—and changed their actions according to the (assumed)
result. Sometimes this anticipatory work had to do with what the recipient
was explicitly allowed to access: “I need to know other people’s permissions,
and I need to know because there’s usually a lag between the permissions
and the actual access; even if I have permission, it might take me six weeks
to get my approval for the system, so I need to know where people are on
the sort of really ridiculous timeline.”

;LOGIN: VOL. 33, NO. 4

;LOGIN: AUGUST 2008

More often, users were concerned about working around constraints in
bandwidth, network availability, or storage. Fully half of our interviewees
expressed frustration in sending or receiving large files. Some specifically
mentioned that their personal accounts or corporate email could not handle
files over 10 MB. A design consultant who provides audio-visual material to
his clients was exasperated by the effort it took to reformat content for cli-
ents: “It’s absolutely absurd in this networked economy that we can’t share
[large] files without going to some extreme effort.” People spent considerable
time reformatting data for others, based on two parameters. First, they antic-
ipated the constraints of their own or a recipient’s system (such as capacity
or bandwidth); second, they anticipated the recipient’s sociotechnical knowl-
edge regarding his or her ability to receive data. A software engineer ex-
plained the reasons he compressed photographs for his relatives: “A lot of my
relatives are not very techie, so I'll just put photographs in an email attach-
ment. I try to compress them so they are small jpeg sizes and then all people
have to do is just click [on the images].” Another respondent drew a similar
distinction: “When you're trying to share with family or friends the speed of
the network really decides whether you can share five photos or just one.”

The need for impedance matching means users are forced to decide between
sharing modalities based on whether the sharing mechanisms will work
with a particular user (do they have X or are they on Y?) or piece of content
(is the file too big?) or what sharing mechanisms work best with that user
(can they be counted on to log onto a separate system?). Equally importantly,
how well can you gauge the accuracy of your assumptions about another’s
state (can they even receive your files?)? It is clear that the onus of work cur-
rently resides on users rather than on the systems they use.

The result of this impedance matching work is an overwhelming fear of fail-
ure. Users select the simplest, “safest” mode of sharing—email—because it
is most likely to work in all settings. They only move beyond it when some
constraint, such as file size or cultural pressure, forces them to.

Ad Hoc Sharing

We can divide the data sharing performed by our subjects into two types:
repeated sharing, which occurs multiple times with the same set of partici-
pants, and ad hoc sharing, in effect sharing with strangers, which is shar-
ing with people you haven’t shared with before and whom you don’t know
whether you will share with again. If you are going to share repeatedly with
a particular group of people, it might be worth doing some up-front work

to improve the sharing experience—setting up a server or making sure ev-
eryone involved learns how to use a particular service. But it turns out to be
harder than you might expect to know when sharing is going to be repeated:
except when sharing with oneself or with a stable work group, or possibly
with family or friends, sharing tends to be ad hoc. Even closeness or stabil-
ity of real-world relationships does not serve as a good predictor of future
sharing. Digital sharing among real-world connections is still not universal,
so although you may expect your family and friends to continue to be con-
nected to you, you may not know how often you are likely to share docu-
ments or media with them in the future.

For example, consultants in our subject pool were forced to establish new
sharing mechanisms for each new customer engagement. Often prevented
from using email by the file sizes involved, they were often expected by their
clients to provide secure but provisional electronic sites on which to store
interim data or final reports.

AD HOC GUESTING: WHEN EXCEPTIONS ARE THE RULE 39

Implications for Design

Our findings led us to identify a number of common sharing tasks that are
undersupported by the current tools available to users: sharing with them-
selves, managing transient data, providing transient access, and a general
class of sharing problems we term ad hoc guesting. The latter refers to the
problem commonly faced by our subjects of sharing data with new and un-
planned sets of people (unplanned either by themselves or their respective
organizations), often without assurance that they would ever share with that
group of people again.

Currently, users preferentially and almost overwhelmingly turn to email to
solve this problem, except when their impedance matching processes indi-
cate that email is unlikely to be successful. To be successful, alternatives to
email must reduce this impedance matching burden—they must be so uni-
versal and easy to use that it is worth using them even for ad hoc or one-
time sharing.

Organizations wishing to move their users from email onto more secure
forms of sharing might find the most effective approach is to enable them
to easily share more things, rather than “locking things down” in an effort
to get them to share less. In current and future work, we are focused on de-
signing new technologies that effectively balance these tensions between us-
ability and security.

REFERENCES

[1] S. Ahern, D. Eckles, N.S. Good, S. King, M. Naaman, and R. Nair, “Over-
Exposed? Privacy Patterns and Considerations in Online and Mobile Photo
Sharing,” Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pp. 357-366, 2007.

[2] A.D. Miller and W.E. Edwards, “Give and Take: A Study of Consumer
Photo-Sharing Culture and Practice,” CHI 07: Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems, pp. 347-356, 2007.

[3] B. Brown, AJ. Sellen, and E. Geelhoed, “Music Sharing as a Computer
Supported Collaborative Application,” Proceedings of the Seventh European
Conference on Computer Supported Cooperative Work, pp. 179-198, 2001.

[4] A. Voida, R.E. Grinter, N. Ducheneaut, W.K. Edwards, and M.-W. New-
man, “Listening In: Practices Surrounding iTunes Music Sharing,” Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems, pp.
191-200, 2005.

[5] S. Voida, W. Edwards, MW. Newman, R.E. Grinter, and N. Ducheneaut,
“Share and Share Alike: Exploring the User Interface Affordances of File
Sharing,” Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pp. 221-230, 2006.

[6] T. Whalen, D. Smetters, and E.F. Churchill, “User Experiences with
Sharing and Access Control,” CHI 06 Extended Abstracts on Human Factors in
Computing Systems, pp. 1517-1522, 2006.

[71].S. Olson, J. Grudin, and E. Horvitz, “A Study of Preferences for Sharing
and Privacy,” CHI '05 Extended Abstracts on Human Factors in Computing Sys-
tems, pp. 1985-1988, 2005.

;LOGIN: VOL. 33, NO. 4

WE ARE STARTING TO SEE A SIGNIFI-
cant increase in the use of mobile comput-
ing devices such as laptops, PDAs, and Wi-Fi

ROHAN MURTY, JITENDRA PADHYE,
RANVEER CHANDRA, ALEC WOLMAN,
AND BRIAN ZILL

;LOGIN: AUGUST 2008

designing
high-performance
enterprise Wi-Fi networks

Rohan Murty received his BS in Computer Science
from Cornell University in 2005. He is currently a
PhD student in the Computer Science Department
(School of Engineering and Applied Sciences) at
Harvard University.

rohan@eecs.harvard.edu

Jitendra Padhye received his BE in Computer Engi-
neering from Victoria Jubilee Technical Institute,
Mumbai, India, in 1992, his MS in Computer Science
from Vanderbilt University in 1995, and his PhD in
Computer Science from the University of Massachu-
setts, Amherst, in 2000. He then spent two years
working at ACIRI, now called ICIR. He has been at
Microsoft Research since April 2002.

padhye@microsoft.com

Ranveer Chandra is a researcher in the Network-
ing Research Group at MSR. He completed his
undergraduate studies at the Indian Institute

of Technology, Kharagpur, and holds a PhD in
Computer Science from Cornell University. He was
the recipient of the Microsoft Graduate Research
Fellowship during his PhD and his dissertation on
VirtualWiFi was nominated by Cornell for the ACM
Dissertation Award.

ranveer@microsoft.com

Alec Wolman is a researcher in the Networking
group at Microsoft Research, Redmond. He received
a PhD in Computer Science from the University of
Washington in 2002. Before graduate school, he
worked for Digital at the Cambridge Research Lab.

alecw@microsoft.com
Brian Zill is a Senior Research and Software Design
Engineer at Microsoft Research, Redmond. Brian is

the author of Microsoft’s IPv6 stack as well as the
Mesh Connectivity Layer (MCL).

bzill@microsoft.com

enabled phones in the workplace. As the
usage of corporate 802.11 wireless networks
(WLANSs) grows, network capacity is becom-
ing a significant concern. In this paper, we
propose DenseAP, a novel architecture for
increasing the capacity of enterprise WLANs
using a dense deployment of access points
(APs). In sharp contrast with wired net-
works, one cannot automatically increase
the capacity of a WLAN by simply deploying
more equipment (APs). To succeed in in-
creasing capacity, the APs must be assigned
the appropriate channels and power levels,
and the clients must make intelligent deci-
sions about which AP to associate with. Fur-
thermore, these decisions about channels,
power assignment, and associations must
be based on a global view of the entire
WLAN, rather than the local viewpoint of an
individual client or AP. Given the diversity of
Wi-Fi devices in use today, another con-
straint on the design of DenseAP is that it
must not require any modification to Wi-Fi
clients. We outline the challenges faced in
solving these problems and the novel ways
in which DenseAP addresses them.

In a typical office environment, it is relatively easy
to deploy a wired Ethernet network. These net-
works are generally well-engineered and over-
provisioned. In contrast, deploying WLANSs in
enterprise environments is still a challenging and
poorly understood problem. WLAN installers typi-
cally focus on ensuring coverage from all locations
in the workplace, rather than the more difficult-
to-measure properties such as capacity or quality
of service. Thus, it is common for WLAN users to
experience significant performance and reliability
problems.

The usage model for enterprise WLANS is cur-
rently undergoing a significant transformation as
the “culture of mobility” takes root. Many employ-
ees now prefer to use their laptops as their primary
computing platform, in both conference rooms and
offices [12]. A plethora of handheld Wi-Fi enabled

DESIGNING HIGH-PERFORMANCE ENTERPRISE WI-FI NETWORKS 41

42

devices, such as PDAs, cell phones, VoIP-over-Wi-Fi phones, and personal
multimedia devices, are becoming increasingly popular. These changes are
leading enterprise network administrators to question the assumptions made
during the design and deployment of their existing WLANSs [1]. In addition
to the scalability challenges that arise with increased WLAN usage, the ap-
plications for many of these new mobile devices require better QoS and mo-
bility support.

The need to improve enterprise WLAN performance has been recognized
by the research community [2, 13, 14] as well as by industry. Upgrades at
the PHY layer, such as the transition from 802.11g to 802.11n, are impor-
tant steps along the path to increasing WLAN capacity, but they are not
enough. Deploying more APs has the potential to improve WLAN capacity,
yet in sharp contrast to wired networks, one cannot automatically increase
the capacity of a WLAN by simply deploying more equipment. To succeed
in increasing capacity, intelligent software control of the WLAN devices is
needed to deal with such issues as channel assignment, power management,
and managing association decisions.

We present a new software architecture called DenseAP, with the goal of
significantly improving the performance of corporate Wi-Fi networks. A

key emphasis in our design of the DenseAP system is on practical deploy-
ability. For example, because of the incredibly wide diversity of existing
Wi-Fi devices, DenseAP must provide significant performance benefits with-
out requiring any modifications to existing Wi-Fi clients. Furthermore, as

a consequence of these concerns, we do not consider changes that require
hardware modifications or changes to Wi-Fi protocols. Although these con-
straints do limit the design space to a certain extent, we found they also
open up a set of interesting research challenges.

DenseAP architecture and design challenge two fundamental characteristics
of most current enterprise WLAN deployments. First, existing WLANSs are
designed with the assumption that there are far fewer APs than clients active
in the network, whereas with the DenseAP architecture the common case
will be that APs outnumber clients. Second, in conventional WLANSs clients
decide which AP to associate with, whereas the DenseAP systems use cen-
tralized control of the association process.

The scarcity of APs in conventional enterprise WLANS limits their perfor-
mance in a variety of ways. For example, with a large number of nonoverlap-
ping channels (e.g., 12 in 802.11a) but only a few APs, the WLAN is unable
to fully utilize the available spectrum at each location. Because radio signals
fade rapidly in indoor environments, adding extra radios to existing APs is
not as effective as deploying a larger number of APs in different locations.

If APs are densely deployed, each client can associate with a nearby AP

and will thus see better performance. A dense deployment also ameliorates
the “rate anomaly” problem [8] that hurts the performance of conventional
WLANS.

To fully benefit from a dense deployment of APs, the clients must associate
with the right AP. In conventional WLANSs clients select which AP to associ-
ate with. Typically, the association policy is implemented within the device
driver for most Wi-Fi clients, and it uses only locally available information.
For example, most client drivers tend to use signal strength as the dominant
factor in selecting an AP, yet it is well known that this behavior can lead to
poor performance [9]. For example, when many clients congregate in a con-
ference room, they all tend to choose the same AP. To improve performance,
when multiple APs are available clients must associate with different APs. In
the DenseAP architecture, the central controller gathers information from

;LOGIN: VOL. 33, NO. 4

;LOGIN: AUGUST 2008

all the APs and then determines which AP a particular client should associ-
ate with. Using a novel way to manipulate the 802.11 association process,
the central controller ensures that a specific Wi-Fi client will only discover
the AP that the controller has chosen, thus ensuring that the clients associ-
ate with this AP. Using a similar mechanism, the controller also carries out
periodic load balancing by seamlessly moving clients from overloaded APs to
nearby APs with significantly less load. The controller achieves all this with-
out requiring any changes to the association control software that runs on
the clients.

The DenseAP architecture is quite versatile and is capable of improving
many aspects of performance of enterprise WLANSs. In this paper, we focus
on describing how DenseAP helps significantly improve the capacity of en-
terprise WLANs. We define capacity simply as the sum total of throughput
all active clients in the network can potentially achieve. We also briefly dis-
cuss how the architecture can improve other aspects of performance, such as
quality of service for delay- and jitter-sensitive applications such as VoIP.

We describe the DenseAP architecture, algorithms, interesting research chal-
lenges, and open issues that arise when deploying APs in a very dense man-
ner. These challenges include the need for appropriate channel and power
assignment, ensuring that clients associate with the appropriate AP, and the
need to make the system self-managing and easy to deploy. We will point
out how the performance could be further improved if we could modify the
end clients or count on their cooperation in some manner. We view the cur-
rent DenseAP architecture not as the final word but as a practical first step
toward exploring many ways of improving the performance of Wi-Fi net-
works.

Architecture

Figure 1 presents a high-level illustration of the DenseAP system architec-
ture. Broadly, the system consists of DenseAP nodes (DAPs) connected to the
wired network and controlled by a central server. Each DAP has a program-
mable software AP running on it. The DAP sends periodic reports to the
DenseAP Central Controller (DC). These reports consist of the list of clients
associated with it and the amount of traffic sent to or received from each cli-
ent. The DC aggregates reports received from all DAPs and uses this infor-
mation to send commands to DAPs to control their behavior.

~

DenseAP Controller

Gl7

I Data from

DenseAP Nodes

Commands to
DenseAP Nodes

Wired Network

000 \—\ch

DenseAP Nodes DenseAP Node

FIGURE 1: OVERALL ARCHITECTURE OF THE DENSEAP SYSTEM

In the context of this architecture, we need to answer the following three
questions: First, what information does the DC need, and what “knobs” can
it tune to improve the capacity of the system? Second, how densely should
the DAPs be deployed? Third, is the architecture scalable and cost-effective?

DESIGNING HIGH-PERFORMANCE ENTERPRISE WI-FI NETWORKS 43

Role of the DenseAP Central Controller

Given a set of DAPs and clients, the overall capacity of the WLAN depends
on several factors. Since we do not wish to modify the clients, the set of per-
formance “knobs” available to us is somewhat limited. In our current imple-
mentation, the DC attempts to improve capacity by controlling the channel
each DAP operates on, the power with which each DAP transmits, and the
DAP with which each client associates.

Two other knobs that can also affect the overall WLAN capacity are the
Clear Channel Assessment (CCA) threshold used by each DAP and the au-
torate algorithm implemented on each DAP. The CCA threshold determines
the level of background noise an 802.11 transmitter will consider acceptable
before transmitting. If set to a high value, the transmitter is more likely to
cause interference with other transmissions [13]. We do not modify the CCA
threshold since most off-the-shelf wireless cards do not allow modifications
to this value. The second knob is the autorate algorithm, which determines
the transmission rate used by the DAP to communicate with the clients.
Autorating algorithms have been studied extensively by prior research.
DenseAP nodes use the autorate algorithm described in Wong et al. [17]. In
the future, we plan to investigate whether the autorate algorithm can benefit
from the network information gathered by the DC.

We now describe how the DC performs association and channel manage-
ment in the system. We also address power control, mobility, and fault toler-
ance in the system.

ASSOCIATION CONTROL

In the DenseAP system, the DC decides which client associates with which
DAP. This is achieved by limiting the visibility of DAPs to the clients. We
first describe the mechanisms involved and then describe the algorithm
used to decide which DAP is made visible to which client.

LIMITING DAP VISIBILITY TO CLIENTS

In conventional 802.11 networks, APs advertise their presence by send-

ing out beacons, which include their SSID and BSSID. Prior to association,
clients gather information about the APs by scanning the channels one by
one and listening for beacons on each channel. This is called “passive scan-
ning.” The clients also perform “active scanning,” whereby they send out a
probe request message on each channel. This message is a request for APs to
send out information about themselves. APs respond to a probe request mes-
sage with a probe response message, the contents of which are similar to the
beacon frame. Once the client gathers information about all APs, it decides
which AP to associate with, and it carries out the association handshake.

The DC performs association control by limiting the visibility of DAPs to
clients, exposing DAPs on a “need to know basis” to a particular client. This
is achieved via two techniques. First, since 802.11 networks are identified
by their SSIDs, DAPs are set to beacon with the SSID field set to NULL. Sec-
ond, each DAP maintains a local access control list (ACL) of client MAC ad-
dresses that is solely managed by the DC. On receiving a probe request from
a client, the DAP replies with a probe response message only if the client’s
MAC address is in its ACL (i.e., if the DC has previously added the MAC ad-
dress to the ACL of this DAP). If a DAP receives a probe request from a cli-
ent whose MAC address is not in its ACL, it sends a message to the DC,
informing the controller that a client might be requesting service.

;LOGIN: VOL. 33, NO. 4

;LOGIN: AUGUST 2008

The reason to use hidden SSID beacons is to keep the network “hidden” and
prevent clients from associating with any other DAP in its vicinity. Another
alternative is for DAPs not to beacon at all; however, beacons are essential
for clients to use power save mode. We have also found some client drivers
that disconnect if they don't receive periodic beacons from the access point
they are associated with.

By adding the MAC address of a client to only one DAP’s ACL at a time, the
DC ensures that, for the SSID associated with the DenseAP network, only
one DAP is visible to the client at any given time.

Note that traditional MAC address filtering could not have achieved this.
MAC address filtering only prevents association, not probe responses. With
traditional MAC address filtering, a client would discover several DAPs, and
it might not even try to associate with the one the DC has chosen for it.

This method of association control has two key advantages. First, it re-
quires no changes to the client. Second, the DC has a comprehensive view
of the traffic in the network and hence can make an informed decision when
choosing a DAP for a client.

We have verified that most, if not all, wireless drivers and cards available
on the market today perform active scanning and hence they are able to dis-
cover DAPs. DenseAP is also designed such that if a client fails to associate
with the assigned DAP (say, because of interference near the client), the DC
detects this since DAPs periodically report back information about associ-
ated clients. The DC then reassigns the client to a different DAP.

DAP SELECTION POLICY

We now consider how the DC determines which DAP a client should asso-
ciate with. Our intuition is to take into account both the load on the DAP
and the quality of the connection between the client and the DAP. We cap-
ture this in a metric called the available capacity, which is calculated as fol-
lows: Available Capacity = Free Air Time X Expected Data Rate. Free Air
Time is the fraction of time during which the DAP and the channel it is on
are not busy. Expected Data Rate is an estimate of the transmission rate the
DAP and the client will achieve when communicating with each other. This
is primarily determined by the quality of the connection between the client
and a prospective candidate DAP. The client is assigned to the DAP with the
most available capacity. In other words, the DAP with the most free capacity
will allow the client to send the most data, while minimizing the impact on
other clients.

Channel assignment is tied into the association scheme. Since we only have
a limited number of channels, those DAPs not servicing clients do not need
to beacon and hence we don’t assign channels to them. Therefore a DAP is
assigned a channel on an on-demand basis (i.e., only when at least one cli-
ent is associated with it). When a DAP does not have a channel assigned, it
scans all channels and estimates load on the various channels in its vicinity.
This information is sent to the DC. When assigning a channel to a DAP, the
DC picks the channel with the least load.

One could propose other association policies, depending on the end goal for
which the system is optimizing. For example, it can take into account the
number of clients associated with the DAP, or it can try to balance the load
across all DAPs. It may be possible to anticipate and factor in the future load
generated by the client (e.g., demand from VoIP clients is generally predict-
able). We are actively exploring this research space.

DESIGNING HIGH-PERFORMANCE ENTERPRISE WI-FI NETWORKS 45

We now describe how we compute the free air time at the DAP and the ex-
pected data rate. We do not expect these calculations to be precise, par-
ticularly when it comes to estimating the expected data rate. However, our
intention is to provide a reasonable ordering of DAPs and to recover from
any mistakes via load balancing. Hence, even if a client were to be assigned
an “incorrect” DAP, the system will, at some point, hand off the client to a
more suitable DAP.

ESTIMATING FREE AIR TIME

We can estimate the free air time in the vicinity of a DAP with varying de-
grees of accuracy. The DAP could simply add up the air time used by all
packets that it has sent and received, over a unit period of time. The re-
maining time is the free air time at the DAP. However, such an approach ig-
nores the effects of interference. Part of the interference can be accounted
for by adding up any traffic sent or received by nearby DAPs that are on the
same channel. The DC can perform this calculation using the information
submitted by each DAP. A much more accurate method of estimating the
free air time is for each DAP to use the ProbeGap technique, as proposed
by Lakshminarayan et al. [11], and report the information to the DC. This
technique directly estimates the free air time by computing the delay experi-
enced by small probe packets. We currently use a variant of this method in
our implementation. Further details are provided in our paper [15].

ESTIMATING EXPECTED TRANSMISSION RATE

It is difficult to accurately predict the transmission rate a client will achieve
when communicating with a DAP (or vice versa). The rate primarily de-
pends on how well the DAP receives the client’s signal. However, the rate
also depends on a variety of other factors such as the autorate algorithm im-
plemented by the client, power levels used by the client, and channel con-
ditions near the client. Of these factors, we can only estimate how well the
DAP receives a client’s signal.

When attempting to associate, clients send out probe request messages,
which are overheard by nearby DAPs, who then inform the central control-
ler. We estimate the quality of the connection between the client and the
various candidate DAPs using the signal strength (RSSI) of the received
probe request frames at the various DAPs. We convert these observed sig-
nal strengths into estimates of expected transmission rate by using a map-
ping table. The mapping table drops RSSI values into fixed-size buckets and
assigns an expected rate to each bucket. We assume that the same trans-
mission rate will be used by both the client and the AP. We call this the
rate-map approach. The mapping table is initially generated by manual pro-
filing using a few clients at various locations. It can then be refined as actual
data from more clients is gathered during live operation.

At first glance, it may appear that extrapolating the signal strength observed
in the uplink direction to an expected transmission rate in both directions
could result in inaccurate estimations and/or poor performance, especially
given the other factors that are ignored. Yet, in our system, we find that it
provides reasonable results for the following reasons. First, given the density
of access points, a client generally associates with a nearby DAP. For such
short distances, we find that signal strength measured in one direction is a
good approximation of signal strength seen in the other direction. Second,
because the client and the DAP are usually close to each other, we generally
see good signal strength in both directions. Most commercial Wi-Fi cards

;LOGIN: VOL. 33, NO. 4

;LOGIN: AUGUST 2008

behave similarly in such conditions. Finally, note that we do not need the
exact transmission rates used by either the client or the DAP. The conversion
table is merely a way of ranking the relative importance of the observed sig-
nal strength. We present further details in our paper [15] on this approach
as well as its efficacy.

A typical wireless network tends to be dynamic in that the available capacity
of a DAP will change as clients enter or leave the network and as the traffic
load changes. We aim to make a reasonably good and efficient choice when
initially assigning the client to a DAP and then to adapt to the changes in
the environment via load balancing as we now describe.

LOAD BALANCING VIA HANDOFFS

The goal of the load balancing algorithm is to detect and correct overload
situations in the network. We expect that such situations will be rare in an
environment with a dense deployment of access points and with numerous
available orthogonal channels (e.g., 12 in 802.11a). However, it is important
to watch for, and correct, the overload situations if and when they occur.

For example, an overload situation might occur if many clients congregate in
a conference room and the network conditions are such that the algorithm
used when associating new clients assigns several of them to a single DAP.
In such a situation, all clients simultaneously transmitting or receiving data
can cause an overload at the DAP.

The load balancing algorithm works as follows. Once every minute, the DC
checks all DAPs to see if any are severely overloaded. Recall from earlier that
the busy air time (load) calculation incorporates the impact of traffic/inter-
ference near the DAP and the downlink traffic generated by the DAP. We
consider a DAP to be overloaded if it has at least one client associated with
it and it reports free air time of less than 20%—if, in other words, the chan-
nel is more than 80% busy in the vicinity of this DAP. The DC considers the
DAPs in decreasing order of load. If an overloaded DAP (A) is found, the DC
considers the clients of A as potential candidates to move to another DAP.
Recall that the DAPs send periodic summaries of client traffic to the DC.
These summaries include, for each client, a smoothed average of the sum of
uplink and downlink traffic load generated by the client during the previous
interval. The load is reported in terms of air time consumed by the traffic of
this client and the average transmission rate of the traffic.

For each client M at A, the DC attempts to find a DAP B such that the ex-
pected rate M will get at B is no less than the average transmission rate of
the client at A, and the free air time at B is at least 25% more than the air
time consumed by M at A. If such a DAP is found, M is moved to B by using
a mechanism similar to the association mechanism described earlier [15].
Note that if B had no clients associated with it, the DC would also assign it
a channel (the one B reported to have the most free air time on), just as it
would do when associating a new client.

The load balancing algorithm moves at most one client that satisfies these
criteria during each iteration. Furthermore, once a client M has been handed
off from A to B, it is considered ineligible to participate in the next round of
load balancing. These hysteresis techniques are intended to prevent oscilla-
tions.

We note a few things about the load balancing algorithm. (i) Our algorithm
is conservative. Moving clients from one AP to another is a potentially dis-
ruptive event, and we try to minimize how often we force such reassocia-

DESIGNING HIGH-PERFORMANCE ENTERPRISE WI-FI NETWORKS 47

tions to occur. (ii) The load balancing algorithm improves overall system
throughput in two ways. First, the client that is moved to the less-loaded AP
can ramp up and consume more bandwidth. Second, the clients that stayed
with the previously overloaded AP now have one fewer client to contend
with, and they can also increase their throughput. (iii) It is sometimes pos-
sible to do load balancing by changing the channel of the overloaded DAP.
This technique is useful only if the background traffic/interference (poten-
tially from other DAPs) on the channel is significantly higher compared to
the traffic sent/received by the overloaded DAP itself. However, the draw-
back of this technique is that all clients associated with the DAP will have to
reassociate. Since we consider client reassociations to be disruptive events,
we do not use this technique.

POWER CONTROL

We have three options when it comes to power control in the DenseAP sys-
tem. The first is to perform no power control at all, the second is to per-
form unilateral power control at the DAP, and the third option is to perform
co-ordinated power control between clients and the DAPs. We rule out the
third option at present, since it requires client modifications.

In our current testbed, we use the first option: We allow all DAPs to trans-
mit at maximum power. This increases the coverage area, but it minimizes
the potential for spatial channel reuse. We are also experimenting with uni-
lateral power control at the DAP. The idea is that, given a set of clients asso-
ciated with the DAP, the DAP transmits at the minimum power necessary to
provide “good” service to all clients. The “goodness” of the service is defined
in terms of loss rate and transmission rate. The problem, however, is that the
clients are free to transmit at any power they choose, which reduces the po-
tential for spatial reuse. Our preliminary experiments have uncovered other
problems with this option. Our results show that unilateral power control

at the DAPs results in increased instances of hidden terminal and capture-
effect problems. We are investigating this issue further.

MOBILITY

To handle client mobility, the DC keeps track of a client’s location, using
the technique described in Chandra et al. [7]. When the location changes
significantly, the system hands off the connection to a suitable DAP located
nearby. The handoff is performed as previously described, and the DAP is
selected using the available capacity metric. A client that undergoes handoff
is considered ineligible to participate in load balancing for some period of
time, to prevent oscillations. It is, however, eligible to participate in another,
mobility-related handoff.

FAULT TOLERANCE

We want DenseAP to be a self-configuring and self-managing system.
Hence, when a DAP goes offline or is rebooted, it no longer sends periodic
load information to the DC. The DC detects this, flags the DAP as a possible
failure, and does not assign any new clients to it. The clients associated with
the failed DAP get disconnected. These clients immediately begin scanning
for other DAPs in the vicinity by sending out probe request messages. Other
DAPs in the vicinity pick up these probe messages and alert the DC, which
assigns these clients to other DAPs, as per the association policy.

;LOGIN: VOL. 33, NO. 4

;LOGIN: AUGUST 2008

What Is the Desired Density of DAPs?

So far we have focused on the role of the central controller. The other key
factor that affects the performance of the DenseAP system is the DAP de-
ployment density. Several important questions need to be studied in this re-
gard. For example: (i) Where should the DAPs be placed? (ii) Is there a point
at which adding more DAPs to the system can hurt performance? (iii) How
do we determine the minimum necessary density for a required level of ser-
vice in a given environment? (iv) Since wired networks tend to have well-de-
fined SLAs, how does one specify an acceptable level of service for WLAN?

Guidelines developed for traditional WLANSs offer little help in answer-

ing these questions, since these guidelines are generally developed with the
aim of using as few APs as possible while maximizing the coverage area. As
such, the questions pertaining to density present interesting research chal-
lenges, and we are actively working to answer them. Mhatre and Papagian-
naki [13] have explored a closed-form solution for optimal AP density by
varying the CCA threshold, which in turn affects the throughput and cover-
age of the network.

In our current deployment, described earlier, we use ordinary user desk-
top machines to serve as DAPs. If this approach is followed, then question
(i) need not be answered. Every desktop machine (or most of them) can
serve as a DAP. However, this raises a different question: How do we know
we have adequately covered the given area? Administrators of traditional
WLANS use expensive site-surveying tools to determine the AP placements.
Inspired by DAIR [3], we are exploring methods to automatically determine
whether we have left any gaps in our coverage.

Scalability

Our architecture uses a central controller (the DC) to manage all DAPs. Each
DAP sends out periodic reports to the DC. This raises scalability concerns.
To address these concerns, we note that our DC was able to easily manage a
network of 24 DAPs and 24 clients, without any special optimizations. The
CPU load on the DC never exceeded 30%. We estimate that the amount of
control traffic generated by each DAP was less than 20 kbps. Thus, we es-
timate that a slightly more powerful DC could easily handle a network of
about 100 DAPs, without any optimizations. This should be enough to cover
a floor of our office building.

We note here that it is not strictly necessary to use a single central control-
ler. What is necessary is the use of global knowledge while making associa-
tion and channel assignment decisions. In theory, the functionality of the
central controller can either be replicated or even implemented in a fully
distributed manner. The DAPs can exchange information with each other to
gain a global view of the network and make appropriate decisions. However,
this approach is more complex to implement and has its own set of scalabil-
ity concerns.

Another issue we must address is the impact of several DAPs in close prox-
imity, beaconing and sending probe packets. Our measurements show that,
in the common case, the impact on performance is less than 1%. This is be-
cause only those DAPs servicing clients send beacons and because, when we
use multiple channels, the number of DAPs on any one channel is smaller.

DESIGNING HIGH-PERFORMANCE ENTERPRISE WI-FI NETWORKS 49

Implementation

Our implementation of the DenseAP system is deployed on a portion of our
office floor. Our current testbed consists of 24 desktop-class PCs serving
as DAPs. (See Figure 2.) The DAPs are deployed at a density of roughly one
machine in every other office. The area is normally served by three of our
corporate WLAN’s APs. As illustrated in Figure 2, the current DenseAP de-
ployment is nine times more dense than the corporate WLAN deployment.

>
o e [P13le] Fl

AN
Zle
@ DAP [Corporate AP /\ Client

FIGURE 2: THE TESTBED. THE AREA IS ROUGHLY 32 x 35 M.

DAPs are constructed entirely from commodity hardware. We use off-the-
shelf PCs. To each PC we add a Netgear JWAG511 wireless interface card.
These are multiband 802.11 a/b/g radios using a RealTek chipset. The access
point functionality is provided in software through a combination of a de-
vice driver and a system service. Having the AP functionality implemented
in software was critical to our efforts, as it allowed us to easily modify the
AP behavior to our specifications.

The DC also runs on an ordinary (but dedicated) desktop machine. All
DAPs are connected to the same IP subnet on their wired Ethernet link. The
DenseAP WLAN runs in the 5 GHz band (802.11a) on the lower 8 channels.
The corporate network also operates in the same band.

Our paper [15] has further details regarding the evaluation of the system as
well as an extensive discussion on various open questions and issues.

Related Work

Prior academic work on either improving capacity or managing dense de-
ployments has focused on channel assignment, power control, and associa-
tions, most of which have required modifications to clients. Fundamentally,
DenseAP differs from all prior work as follows:

= Practicality: Of the host of prior work in this area [4, 6, 10, 13, 14,
16], to our knowledge, DenseAP is the first system to be designed and
deployed in a real-world scenario.

= Intelligent association and load balancing: To our knowledge, none of
the prior proposals is capable of intelligent associations or able to deal
with a dynamic operating wireless environment without requiring client
modifications. In most such systems, associations tend to be static or
solely driven by the clients.

= No modifications to clients necessary: Most approaches require modifi-
cations to the clients [4, 5, 6, 9, 16] or the clients to cooperate in some
manner that breaks the prevalent 802.11 standards.

;LOGIN: VOL. 33, NO. 4

;LOGIN: AUGUST 2008

SMARTA [2], like DenseAP, addresses the problem of managing dense AP
deployments to increase capacity or lower latency, without modifying cli-
ents. There are several key differentiators between it and DenseAP. First,
SMARTA does not account for a dynamic operating environment. It lacks
the ability to load-balance clients and hence the need to assign “correct”
channels and power levels at the outset is greatly magnified. Second, unlike
DenseAP, SMARTA relies entirely on the clients to make their own associa-
tion decisions, which by prevalent standards are agnostic to network load. In
a dense deployment, this approach can very easily lead to lower throughput
for all clients [9]. Third, it is unclear how clients maintain persistent connec-
tions when SMARTA performs channel or power assignments. The system
does not make an effort to sustain such connections at the client. Most of
these differentiators arise from SMARTA having been studied almost com-
pletely in simulations.

Mhatre and Papagiannaki [13] propose varying the (CCA) threshold on APs
to increase capacity in 802.11g mode. The system has been designed and

studied within the confines of the Opnet simulator. Similarly, other propos-
als involve varying the receiver sensitivity as well as the CCA threshold [18].

A host of products by networking startup companies are designed to man-
age AP deployments in the enterprise. Although practical, most systems tend
to ignore association control and load balancing, or they address such chal-
lenges by requiring users to install custom client drivers. Further references
are provided in our paper [15].

Discussion and Conclusion

Use of the DenseAP system thus far has been focused on improving capac-
ity in the enterprise. It can also improve other dimensions of WLAN per-
formance such as lowering latency, separating voice and data traffic, and
providing QoS. Each one of these goals entails tweaking the association
and handoff policies. For example, in the case of handoffs, we could pick
only those clients that appear to be experiencing low transmission rates to
the DAP they are associated with. Another possibility is to try to determine
client traffic patterns and aggregate all VoIP clients during the association
process to a group of DAPs to provide better QoS. We are continuing to in-
vestigate these avenues with the overall goal of using DenseAP to improve
WLAN performance along multiple dimensions.

REFERENCES

[1] R. Ahlawat and C. Canales, User Survey Report: Wireless LANs, North
America and Europe, Gartner Report, 2005.

[2] N. Ahmed and S. Keshav, “SMARTA: A Self-Managing Architecture for
Thin Access Points,” CONEXT, Lisboa, Portugal, December 2006.

[3] P. Bahl, R. Chandra, J. Padhye, L. Ravindranath, M. Singh, A. Wolman,
and B. Zill, “Enhancing the Security of Corporate Wi-Fi Networks Using
DAIR,” MobiSys, Uppsala, Sweden, June 2006.

[4] P. Bahl, M. Hajiaghayi, K. Jain, V. Mirrokni, L. Qiu, and A. Seberi, “Cell
Breathing in Wireless LANs: Algorithms and Evaluation,” IEEE Transactions
on Mobile Computing, 2006.

[5] A. Balachandran, P. Bahl, and G. Voelker, “Hot-Spot Congestion Relief
and Service Guarantees in Public-Area Wireless Networks,” SIGCOMM Com-
puter Communication Review, 32(1), 2002.

DESIGNING HIGH-PERFORMANCE ENTERPRISE WI-FI NETWORKS 51

52

[6] Y. Bejerano and R.S. Bhatia, “MiFi: A Framework for Fairness and QoS
Assurance in Current IEEE 802.11 Networks with Multiple Access Points,”
Infocom, Hong Kong, March 2004.

[7] R. Chandra, J. Padhye, A. Wolman, and B. Zill, “A Location-Based Man-
agement System for Enterprise Wireless LANs,” NSDI '07, Cambridge, MA,
April 2007: http://www.usenix.org/events/nsdi07/tech/chandra.html.

[8] M. Heusse, F. Rousseau, G. Berger-Sabbatel, and A. Duda, “Performance
Anomaly of 802.11b,” Infocom, San Francisco, CA, March 2003.

[9] G. Judd and P. Steenkiste, “Fixing 802.11 Access Point Selection,” SIG-
COMM Poster Session, Pittsburgh, PA, July 2002.

[10] B. Kauffmann, F. Baccelli, A. Chaintreau, V. Mhatre, K. Papagiannaki,
and C. Diot, “Measurement-Based Self Organization of Interfering 802.11
Wireless Access Networks,” Infocom, Anchorage, Alaska, May 2007.

[11] K. Lakshminarayanan, V.N. Padmanabhan, and J. Padhye, “Bandwidth
Estimation in Broadband Access Networks,” IMC, Sicily, Italy, Taormina
2004.

[12] M. Lopez, The State of North American Enterprise Mobility in 2006,
Forrester Research document, December 2006.

[13] V. Mhatre and K. Papagiannaki, “Optimal Design of High Density
802.11 WLANSs,” CoNEXT, Lisbon, Portugal, December 2006.

[14] V. Mhatre, K. Papagiannaki, and F. Baccelli, “Interference Mitigation
through Power Control in High Density 802.11 WLANSs,” Infocom, Anchor-
age, Alaska, May 2007.

[15] R. Murty, J. Padhye, R. Chandra, A. Wolman, and B. Zill, “Designing
High Performance Enterprise Wi-Fi Networks,” NSDI *08, San Francisco, CA,
April 2008: http://www.usenix.org/events/nsdi08/tech/murty.html.

[16] A. Vasan, R. Ramjee, and T. Woo, “ECHOS—Enhanced Capacity 802.11
Hotspots,” Infocom, Miami, Florida, March 2005.

[17] S. Wong, S. Lu, H. Yang, and V. Bharghavan, “Robust Rate Adaptation
for 802.11 Wireless Networks,” MobiCom, Los Angeles, California, Septem-
ber 2006.

[18] J. Zhu, B. Metzler, Y. Liu, and X. Guo, “Adaptive CSMA for Scalable Net-
work Capacity in High-Density WLAN: A Hardware Prototyping Approach,”
Infocom, Barcelona, Spain, April 2006.

;LOGIN: VOL. 33, NO. 4

ALVA COUCH

“standard deviations”
of the average system
administrator

Alva Couch is an Associate Professor of Computer
Science at Tufts University, where he and his
students study the theory and practice of network
and system administration. He served as Program
Chair of LISA'02 and was a recipient of the 2003
SAGE Professional Service Award for contributions
to the theory of system administration. He currently
serves as Secretary of the USENIX Board of Directors.

couch@cs.tufts.edu

A FORMER SYSTEM ADMINISTRATOR,
turned analyst, muses about standards in
system administration and other profes-
sions and the profound social effects of
establishing or ignoring standards.

System administrators have a surprising amount in
common with electricians. Both professions require
intensive training. Both professions are plagued by
amateurs who believe (erroneously) that they can
do as good a job as a professional. Both professions
are based upon a shared body of knowledge.

But electricians can call upon several resources that
system administrators lack. Electricians have a le-
gally mandated mentorship/apprenticeship program
for training novices. They have a well-defined and
generally accepted progression of job grades, from
apprentice to journeyman to master. They advance
in grade partly through legally mandated appren-
ticeship and partly through legally mandated cer-
tifications. These certifications test for knowledge
of a set of standards for practice—again, mandated
by law. The regulations are almost universally ac-
cepted as essential to assuring quality workman-
ship, function, and safety.

In short, one electrician can leave a job and an-
other can take over with minimal trouble and
without any communications between the two, and
one can be sure that the work will be completed in
the same way and to the same standard. Can any
two system administrators, working for different
employers, be interchanged in such a fashion?

At present, system administrators are at a critical
juncture. We have functioned largely as individuals
and individualists, and we greatly value our inde-
pendence. But the choices we make as individuals
affect the profession as a whole. I think it is time
for each of us to act for the good of the profession,
and perhaps to sacrifice some of that independence
for what promises to be a greater good. This will
be a difficult sacrifice for some, and the benefits
may be intangible and long-term rather than im-
mediate. But I think it is time now for us to change
the rules.

From standards for distributions (e.g., the Linux
Standard Base) to standards for procedures (e.g.,
those upon which Microsoft Certified Engineers
are tested), I believe that—although standards may
annoy us as individuals— standards for our pro-
fession (and certification to those standards) help
build respect for system administration as a profes-
sion. Compliance with standards gives us a new
and objective way to measure the quality of man-

;LOGIN: AUGUST 2008 “STANDARD DEVIATIONS” OF THE AVERAGE SYSTEM ADMINISTRATOR 53

agement at a site. Standards not only make the task easier but also enforce
desirable qualities of the work environment and help to justify appropri-
ate practices to management. Adoption of standards also has a profound ef-
fect upon our ability to certify system administrators and even changes the
meaning and form of such a certification.

Learning from Electricians

Is a system administrator accorded the same respect as an electrician? I
think the answer is an emphatic “no,” at least for those electricians who hold
a master’s license. There are two factors that engender respect for a master
electrician: legally mandated standards linked closely to legally mandated
apprenticeship and certification.

One difference between being a senior system administrator and being a
master electrician is the existence of the National Electrical Code and related
local codes. The Code is a set of standards for wiring that broadly defines
how licensed electricians must do wiring, as well as how vendors of elec-
trical appliances and devices must construct those devices. The code has a
specific and powerful property that compliance to the code may be checked and
certified by an independent examiner.

Another difference is that electricians go through a legally mandated apprentice-
ship and certification before being allowed to practice as a master. There are
three levels of electrician: apprentice, journeyman, and master. Becoming a
journeyman requires both a mandatory apprenticeship (to either a journey-
man or master) and certification of knowledge of both the National Electri-
cal Code and any local codes that may contradict or strengthen the national
code. Becoming a master requires serving as a journeyman under another
master and passing another, more stringent certification exam.

System administrators could benefit greatly from such a mentoring system.
By contrast, a typical beginning system administrator receives little training,
guidance, or supervision, and there is no clear and universal path into the
profession. We acknowledge the need for mentoring but have difficulty find-
ing mentors or even clearly defining what mentorship should comprise. The
basis by which electricians obtain all of these desirable things—and the cen-
tral component of their training and certification—is a set of externally veri-
fiable standards, embodied as the Code.

The standards for electrical work are an inextricable part of the certifica-
tion process for electricians. But there are many system administrators who
find standards annoying. Many system administrators have complained to
me that the answers they must give about “best practices” on certification
exams are “wrong.” We pride ourselves on individuality, and on coaxing the
last ounce of performance out of any system, and in reacting faster than any-
one else in repairing a problem. To improve our personal “reaction time,” we
construct systems “in our own images” and, upon coming to a new site, face
an irresistible urge to force it to comply with our personal standards even
before we force it to function properly. But the term “personal standards” is
really an oxymoron, because anything that only one person considers to be
a standard cannot—Dby definition—be one.

A Tale of Four Repositories

No one really cares where software is actually located in a filesystem, pro-
vided that it is in the user’s path. But apparently system administrators do

;LOGIN: VOL. 33, NO. 4

;LOGIN: AUGUST 2008

care because at my site there are currently four competing systems for locat-
ing software in filesystems. These evolved over time as follows:

= [created a system based upon the pattern /loc/category/package-revision
back in the early 1990s, documented in a 1996 LISA paper [1]. User
software installed into /loc is mapped into user-space at /local. This
scheme was used for many years, while I managed the repository be-
tween 1990 and 2000.

= When I hired my own replacement, he decided this scheme was “inel-
egant,” and started installing packages in /loc/packages/package/revision.
I did not stop him because I did not want that job back!

= When he hired a student assistant, the assistant did not like that scheme
and started installing packages in /rel instead, using a format not easily
explainable and whose description—mercifully—has not survived the
ravages of time!

= When these folks left for greener pastures, the next sysadmin decided
“all packages should be locally installed” and installed them in /var
Nocal/.

And so it goes. What was the result of this? As I write, three of these four
repository schemes are still active. Part of the reason for this is that the
packages make reference to themselves at their installed locations. System
administrators were quick to adopt new “personal standards” (oxymoron in-
tended), but the work of making the system “comply” with those standards
was never completed, and there are programs in my original repository
that—even though it has not been updated since 2000—are still in use and
were installed as early as 1994!

That Standard Is So Lame!

Each system administrator in this story thought he was doing a good thing
by imposing “personal standards.” The first one exclaimed to me that my
“old standard is so lame!” The others made equivalent comments about the
schemes of all of his predecessors. Each one believed sincerely that his new
“personal standard” would be the one that would make the most sense and
pass the test of time.

To me, looking at it from the outside, this attitude was something like a
gambling addiction, as each new player entering the game thought his new
scheme would “win” where other schemes had “lost.” But—as surely as most
gamblers lose at the casino—every “personal standard” ended up being
“lame” in the end!

Each “personalization” seemed at the time to be a “solution” but turned over
time into a “problem.” The real thing that is “so lame” in this story is that
there are three “personal standards” for doing the same thing. There is only
one mechanism by which our site could escape the cycle: by adopting stan-
dards for shared package location and then assuring compliance to those
standards. “Personal standards” just do not work.

Incidental Complexity

What standards could really help the profession of system administrator? 1
and my students have made a multi-year study of what we call the “inciden-
tal complexity” of system administration [2]. Incidental complexity arises
from making arbitrary decisions without coordination and for no particu-
larly good reason. The main cause of incidental complexity is that many
management decisions have nothing to do with final system behavior. A pa-

“STANDARD DEVIATIONS” OF THE AVERAGE SYSTEM ADMINISTRATOR 55

56

rameter value is “incidental” if the choice of a value is a matter of style and
preference and has no conceivable effect upon system function. My students
and I have found that, on average, the values for most configuration param-
eters are incidental.

Incidental complexity includes choices for locations of files within a system.
For example, the outward appearance of a Web server has nothing to do
with where files for the Web server are stored, which led one of my students
to propose that this choice be taken away from the administrator by auto-
mated mechanisms [3].

Based upon experiences like these, I believe that appropriate practice stan-
dards for system administration involve identifying incidental choices and
standardizing those choices. This might seem hard for an unvirtualized sys-
tem, but in a properly virtualized execution environment, there are even
more incidental parameters than before. I believe the following choices are
now completely arbitrary for a site of sufficient size:

= Names of home directories (use SAN volumes to enforce quotas and
enforce barriers between user groups).

= Locations of published Web content (use SAN volumes and standardize
locations of mount points).

= [P addresses of hosts (use IPV4/NAT and/or IPV6).

= Locations of remotely installed and locally installed software packages.

Through a combination of virtualization and standards, the values of these
“parameters” do not matter, and every site can choose these in exactly the
same way.

The benefits of this kind of “standard” are subtle but profound. If all reposi-
tories are named the same way, a system administrator won't have to read
site documentation to fix a Web server, any more than an electrician has to
stop—while wiring your house—to refer to the National Electrical Code. In
the same way that no electrician will work on noncompliant wiring, a sys-
tem administrator won't even try to learn what has been done in a nonstan-
dard fashion, because such work is not sufficiently externally verifiable. No
more “job security,” but, rather, an increase in overall system administrator
efficiency and a dramatic reduction in what every practitioner has to remem-
ber.

The Linux Standard Base

One example of eliminating incidental complexity is the Linux Standard
Base (LSB) [4]. This is a set of standards for layout of Linux distributions,
and it specifies the locations and versions of important files and libraries in
a Linux distribution. The purpose of the LSB is to assure that vendor-sup-
plied Linux applications will run in an LSB-certified environment. There are
two levels of certification, both checked by software tools. First, the envi-
ronment is certified as being compliant with the LSB standard, by running
a script that checks that all files and versions are present and in the proper
places. Then the application itself, as a binary file, is checked for accessing
library functions properly, with the correct types of arguments.

» o«

The “theory” behind the LSB is “test once,” “certify once,” “works every-
where.” If one tests an application in a certified environment, and the appli-
cation works there, and the application is itself certified, then we have high
(but not quite perfect) confidence that it will work in any certified environ-
ment (where uncertainty is due to esoteric technical limits of LSB beyond
the scope of this article).

;LOGIN: VOL. 33, NO. 4

The LSB serves as one example of a practical standard. One can run the cer-
tification tools on an environment or application and get a “yes” or “no” an-
swer, so the LSB meets the definition of external verifiability. A rather long
document describes compliance measures in plain English, so the LSB meets
all of the criteria for a standard.

Cost and Value of Standards

The LSB serves as a good case in point for considering the cost and value of
standards. The cost of compliance to the LSB is actually severalfold and a bit
subtle:

The LSB always lags behind current operating systems versions and distribu-
tions, because a distribution has to exist before it can be standardized, and
the standardization process takes time. Thus, almost by definition, a compli-
ant environment is “out of date” by some reckonings.

= The LSBis “a lot to remember” when managing a system. In particular,
upgrading a system often inadvertently invalidates the base. There are
inadequate tools for asking “what-if” questions about updates and mak-
ing intelligent decisions. Compliance takes time to initially assure and
time to maintain.

= The LSB does not standardize all aspects of application and system, and
unstandardized aspects can cause an LSB-compliant application to fail in
an LSB-compliant environment.

= But the value of compliance is a bit more subtle to itemize:

= Compliance only provides assurance that one configuration will work,
but not that other configurations will not work. Thus it is possible to
“do without” LSB compliance and not feel the pain.

= Compliance is thus not a guarantee of “point behavior,” but of “lifecycle
behavior”; it isn’t “required” at any one time, but overall compliance—
over time—increases software reliability, at the cost of being slightly
“behind the curve” of software development.

In the same way, the National Electrical Code is important to electricians—
not because houses could not be wired differently and still function—but
because the standards therein ensure that, over the house’s lifecycle, the
wiring is unlikely to fail compliance with the Code and that any electrician
who knows the Code can come to a compliant house and know what to ex-
pect and how to change it.

Certification to Standards

Adopting standards has a profound effect upon the meaning of certification.
So far, certification efforts for system administrators have concentrated upon
certifying skills; I have commented on the dubious value of this kind of test-
ing and certification in a previous ;login: article [5]. The license exam for a
master electrician instead certifies knowledge of the Code; skills are tested
instead in the context of apprenticeship, during which there are numerous
opportunities to observe them. Likewise, an exam about system administra-
tion practice, rather than about knowledge, is much narrower and easier to
create than an exam about the general knowledge required to function as a
system administrator; the latter is also ideally tested during apprenticeship.
In the context of practice standards, certification means that the system ad-
ministrator has enough knowledge of the relevant standards to graduate
from the apprenticeship and produce a compliant site.

;LOGIN: AUGUST 2008 “STANDARD DEVIATIONS” OF THE AVERAGE SYSTEM ADMINISTRATOR 57

Putting Lifecycle First

I propose, therefore, a profound change in strategy for the profession of sys-
tem administration. I propose that we learn from other professionals and
borrow some of their better ideas. I propose that we drop “personal stan-
dards” in favor of “professional standards” and strive for universal respect for
those standards. I propose that we stop looking out for ourselves and start
looking out for a profession that can take care of us as a collective group.
Part of engendering that professionalism is a set of shared values that must
trump the personal values of the past.

This is just part of the lifecycle of the profession. We learned in the early
days that there were certain practices we use that distinguish us from ama-
teurs. We progressed to define “best practices” as our first “standards” but
realized that many of these are “personal.” We progressed to understand the
value of systems standards such as LSB. Now we are at a juncture where it is
possible to move past personal professionalism to a definition of profession-
alism that is practice-wide. This requires giving up autonomy, very much

as an electrician cannot function outside the bounds of the Code. What we
gain, however, is something very precious, which is that the profession itself
attains an enduring value that is—Ilike a good standard—externally verifi-
able.

That is what “best practices” really means.

REFERENCES

[1] Alva L. Couch, “SLINK: Simple, Effective Filesystem Maintenance
Abstractions for Community-Based Administration,” Proc. LISA X,
pp. 205-212, USENIX Association, 1996.

[2] Alva Couch, John Hart, Elizabeth G. Idhaw, and Dominic Kallas, “Seek-
ing Closure in an Open World: A Behavioral Agent Approach to Configu-
ration Management,” Proc. LISA XVII, pp. 125-148, USENIX Association,
2003.

[3] Steven Schwartzberg and Alva Couch, “Experience Implementing an
HTTP Service Closure,” Proc. LISA XVIII, pp. 213-230, USENIX Association,
2004.

[4] The Linux Standard Base: http:/www.linuxbase.org.

[5] Alva L. Couch, “Should the Root Prompt Require a Road Test?” ;login:,
Volume 32, Number 4 (August 2007).

;LOGIN: VOL. 33, NO. 4

;LOGIN: AUGUST 2008

DAVID N. BLANK-EDELMAN

practical Perl tools:

Hi-ho the merry-o,
debugging we will go

David N. Blank-Edelman is the Director of Technol-
ogy at the Northeastern University College of Com-
puter and Information Science and the author of
the O'Reilly book Perl for System Administration. He
has spent the past 22+ years as a system/network
administrator in large multi-platform environ-
ments, including Brandeis University, Cambridge
Technology Group, and the MIT Media Laboratory.
He was the program chair of the LISA 'o5 conference
and one of the LISA'06 Invited Talks co-chairs.

dnb@ccs.neu

DEBUGGING CODE IS SUCH A NATURAL
part of the software development process
that it behooves us to do it as efficiently

as possible. In my experience, many Perl
programmers don’t know about all of the
many resources available that can make this
process easier. We'll be taking a look at a
grab bag of hints for debugging Perl.

Before we dive into the main subject, I feel com-
pelled, some would say obsessively so, to mention
that the most efficient way to get rid of bugs in
your code is to avoid putting them there in the first
place. Several of my previous columns have touted
test-first and functional programming methodolo-
gies as two ways to work toward that goal, so I'll
harp no more on them in this column.

Fun with the Perl Debugger

The Perl debugger is one of the best tools in your
arsenal, so it is well worth your time to get to be
best buddies with it. The output of perldoc perl-
debug and perldoc perldebtut plus the slim book
Perl Debugger Pocket Reference by Richard Foley are
required reading for this purpose. Here are a few
tips surrounding the debugger that might not stand
out for you on your first read through the material.

perl -de o

Typing that command gives you a REPL (to use the
computer-sciency term). A REPL is a Read-Eval-
Print Loop. This basically provides a way to inter-
actively type Perl code into a running Perl engine
and receive the response back as fast as Perl can
provide it. It can be very helpful to try out or hone
small snippets of Perl code using this technique. As
an aside, it should be noted that the REPL idea isn’t
even remotely new; several other languages (Py-
thon . . . cough . . . cough, etc.) even default to pro-
viding a REPL if you run their executable with no
filename or other input specified.

$db::single

Another tip people often miss during a cursory
read of the perldebug man page is the ability to
write code that adds an automatic breakpoint for
the Perl debugger when it is executed. If you set
$DB:single to true ($DB::single = 1 will do)
and run the program under the debugger (per!
-d <filename>), it will automatically stop at that

PRACTICAL PERL TOOLS: HI-HO THE MERRY-O, DEBUGGING WE WILL GO 59

point in your program and wait for instructions. This is helpful if you know
“here be dragons” at a certain point in your code. You can run the code
until it hits this breakpoint and further scrutinize it from there. This is eas-
ier than having to search for that point in your program and set a manual
breakpoint each time.

a[In] emd, w expr

These two debugger commands let the debugger do some work for you. For
the first one, you can set an “action,” which will fire when the specified line
is reached in your program. That action is just a Perl expression. For exam-
ple, if you type the following at the debugger prompt:

a 28 print "Contents of a flakey variable: $flakey\n”

the debugger will print that message, complete with the current value of
some variable we might be concerned about (in this case, $flakey) every
time it hits line 28 in the program.

If you don’t know the specific line of the program that is messing with a
variable you care about, you might want to know every time the contents of
the variable changes. It is possible to set a global watch expression to look
for these changes by using something like:

w $flakey

Now every time the contents of $flakey get modified, you'll see something
like this in the debugger:

Watchpoint 0: $flakey changed:
old value: "
new value: ‘1

x %something VS. x \%something

The x command dumps the contents of variables and entire data structures.
You can ask it to dump a hash-based data structure by itself (e.g., %some-
thing), but for best results, give it a reference to that data structure (i.e., x
\% something) instead. The output is much nicer. Here’s an example:

DB<1> %s = ('fred’ => ‘protagonist’, ‘barney’ => ‘foil,")
DB<2> x %s
0 'barney’
1 “foil’
2 'fred’
3 'protagonist’
DB<3> x\%s
0 HASH(0x3c24b0)
‘barney’ => ‘foil’
‘fred’ => ‘protagonist’

Finding Where You Are Using Devel:: Modules

There are a ton of modules to help the Perl programmer with the devel-
opment process in the Devel:: namespace. Let me show you a few Devel.:
modules that may be useful to you. The t command in the Perl debugger
can show you a trace of what lines are being executed during your pro-
gram’s run, but a few Devel:: modules, such as Devel:Trace, Devel::Xray, and
Devel:LineTrace, can improve on that basic idea.

;LOGIN: VOL. 33, NO. 4

Since we almost always call in another module with a use statement, you
might have forgotten it is possible to bring another module to bear using the
-d: switch. To use Devel:Trace, you would type perl -d:Trace {filename}.
When you do this, you get something that resembled the output of the -x
flag when using the (Bourne, etc.) shell. Here’s the example output from the
documentation:

>> [test:4: print “Statement 1 at line 4\n”;

>> [test:b: print “Statement 2 at line 5\n”;

>> [test:6: print “Call to sub x returns “, &x(), “ at line 6.\n";
>> . [test:12: print “In sub x at line 12\n";

>> . [test:13: return 13;

>> [test:8: exit 0;

The second module in our list, Devel::XRay, gets loaded in the conventional
manner:

use Devel::XRay ‘all’; # to trace everything, you can be more specific
The end result (again, an example from the docs) is something like this:

Hi-res seconds # package::sub
[1092265261.834574] main::init
[1092265261.836732] Example::Object::new
[1092265261.837563] Example::Object::name
[1092265261.838245] Example::Object::calc
[1092265261.839443] main::cleanup

This shows which subroutines or methods are being executed, along with a
hi-res counter so you can have some sense of how long the program spent in
each part of your code.

Finally, Devel::LineTrace is a bit of a strange duck, because it requires you

to have a separate configuration file (by default, perl-line-traces.txt) de-
scribing just how you'd like it to behave. That file contains a list of filenames
with line numbers, along with code that should be run for each line speci-
fied. This is essentially the same as the a (action) command from the debug-
ger [mentioned earlier but makes it easier to associate debugging code to
specific lines in your program without having to actually add that code to
the program in question or type it into the debugger.

Once you have a config file, you run it like Devel::Trace, that is:

perl -d:LineTrace {script filename}

Inspecting the Data

One time-tested method for debugging since the dawn of the modern com-
puter age is Ye Olde Printf Methode. This is the technique whereby you at-
tempt to understand the program’s state, or at least the state of a particular
variable in question, by liberally sprinkling printf or the nearest language-
appropriate equivalent all over the code. It isn't particularly efficient but it
still works for some debugging scenarios.

In fact, there are a number of Perl modules that I won’t get into here that
allow for more refined versions of that basic model. They allow you to put
conditional debugging statements into or around your program that fire
when in debug mode only. One particularly clever one, Devel::StealthDebug,
places these constructs in comments within the program, thus keeping them
from interfering with the program’s logic.

;LOGIN: AUGUST 2008 PRACTICAL PERL TOOLS: HI-HO THE MERRY-O, DEBUGGING WE WILL GO 61

62

The use of print statements or their equivalent in modules like these tends
to be less helpful when one is dealing with more complex data structures
(although some of the more complicated modules in the class of those I just
mentioned can handle this as well). For instance, it is all well and good to be
able to write:

print STDERR “fred: $fred\n”;

when $fred is a scalar value, but if it is a reference to a different data struc-
ture, that command prints out something like this:

fred: HASH(0x919fec)

which is much less helpful. The standard way to show the full data structure
is to load the Data::Dumper module and call its Dumper() routine:

use Data::Dumper;
my $fred = { bob => 1};
print Dumper($fred);

This prints out:
$VART ={
‘bob’ =>1
I
Data::Dumper ships with Perl, which makes it a good first choice, but many

people don’t know that it has some limitations. For example, it can’t handle
code references. The code:

use Data::Dumper;
my $sub = sub { print “Meet you in the yurt\n"};

print Dumper ($sub);
yields:
$VART = sub { "DUMMY" };
Though it isn't included with Perl by default, Data::Dump::Streamer is well

worth installing because it can often do a better job than Data::Dumper. For
example, the first code example, when changed to this:

use Data::Dump::Streamer;
my $fred = { bob => 1};
print Dump($fred);

prints something a little prettier and easier to understand:
$HASHT = {bob =>1};

The second example showing the code reference problem, when changed in
a similar fashion, yields this output instead:

$CODET = sub {
print “Meet you in the yurt\n”;
%

which is far more useful.

One final tip for dealing with complex data structures: If you are more

of a visual person, you may find the modules that graph data struc-

tures mentioned in October 2007’s column (GraphViz::Data::Grapher and
GraphViz::Data::Structure) to be helpful in visualizing a more involved data
structure.

;LOGIN: VOL. 33, NO. 4

;LOGIN: AUGUST 2008

Debugging Regular Expressions

One of Perl’s strengths is its regular expression functionality. It is also an
area that could use help when it comes to debugging. Regular expressions
can be considered a language unto themselves (and come Perl 6 this will
become even more apparent). The “code” we write in this language within a
Perl program often itself requires some debugging.

There are a number of programs (both commercial and free) to help with
this process. Let me mention two of the free ones. The command-line regex
debugger rred (http:/www.csn.ul.ie/~hannes/code/rred/) attempts to show
you just how your regular expression matches against a given string. For ex-
ample, let’s match against the string “It was a dark and stormy night.” We set
that by entering the string with a t prepended:

rred> tlt was a dark and stormy night.

We can then specify a regular expression to match against it by using an e
as the first character of the line:

rred> ea(n|r)
The output produced looks like this:

$text ="It was a dark and stormy night.”; $text =~ m/a(n|r)/g;
It was a dark and stormy night.

$& AN
$1 A
It was a dark and stormy night.
$& AN
$1 N

rred echoes back the test text and the regexp (it adds the _g_ flag by default
to the regexp). After that, we can see that on the first pass $& will be set to
the “a” and “r” in “dark” and $1 is set to the “r” in that word. On the sec-
ond pass, $& now points to “an” in “and” and $1 now contains the “n” from

“al’ld”.

The second tool I want to mention, and this is the last for the column, is the
re_graph utility found at http://www.oualline.com/sw/. This utility makes it
easy to spot some common mistakes. Here’s an example of a mistake I find
a fair number of beginners make when I first introduce them to regular ex-
pressions in the context of email header parsing:

/~From|To:/

The student who writes this is trying to find either the From: or the To:
header but instead has constructed a regexp that will match “From” at the
beginning of a line and “To:.” any place in the text. The person probably
meant:

/"N From|To):/
(As an aside, I'll mention that the person very likely would want to use a

non-capturing indicator (?:), but I'll leave that out of this example for sim-
plicity’s sake.)

Finding this mistake becomes really easy when using re_graph. The first
regular expression yields the graph in Figure 1.

PRACTICAL PERL TOOLS: HI-HO THE MERRY-O, DEBUGGING WE WILL GO 63

64

Regular Expression: /"FromlTo:/

BOL ERACT
| <From>
Start END
—
EXACT -
<To:>»

FIGURE 1: GRAPHING /*FROM|TO:/

The second regular expression produces the graph found in Figure 2.
Regular Expression: /" {(FromlTo)}:/

ERACT
| <From> I
iiiiilll

Start BOL

<To>

FIGURE 2: GRAPHING /~(FROM|TO):/

Even a cursory glance at the second graph makes it apparent that the second
version has the “From” or “To” correctly preceded by a Beginning of Line
(BOL). After either of the two headers is matched in an equal fashion a colon
is required. This is definitely more correct than the first graph, which shows
a BOL requirement only before the “From” match.

We have to bring things to a close now. Debugging is one of those surpris-
ingly deep topics, so perhaps we’ll revisit it in the future. Take care, and T'll
see you next time.

;LOGIN: VOL. 33, NO. 4

;LOGIN: AUGUST 2008

PETER BAER GALVIN

Pete’s all things

Sun: Solaris System
Analysis 101

Peter Baer Galvin is the Chief Technologist for Cor-
porate Technologies, a premier systems integrator
and VAR (www.cptech.com). Before that, Peter was
the systems manager for Brown University’s Com-
puter Science Department. He has written articles
and columns for many publications and is coauthor
of the Operating Systems Concepts and Applied Op-
erating Systems Concepts textbooks. As a consultant
and trainer, Peter teaches tutorials and gives talks
on security and system administration worldwide.

pbg@cptech.com

AIRPLANE PILOTS MUST EXECUTE A
pre-flight checklist before taking off. This
list ensures that no steps are missed as the
pilot prepares for flight. Over time, these
checklists have been standardized and
edited by many pilots and aircraft design-
ers to the point that they are complete,
logical, useful, and indispensable. Systems
administrators are lacking such consensus
documents, for the most part. Rather, some
sysadmins have no useful checklists, doing
all work ad hoc. Others have their own lists
or work with groups that have documented
methodologies that they follow. Frequently
these lists have limited scope or assume
site-specific details.

PETE’S ALL THINGS SUN: SOLARIS SYSTEM ANALYSIS 101

This month I'm unveiling one of my lists, “System
Analysis 101.” This list has been built over time via
experience and trial-and-error. It is constantly ex-
panding as new problems are encountered and so-
lutions determined. Hopefully this list will grow
into a consensus set of steps that both new and ex-
perienced sysadmins can use to save time and to
avoid missing important aspects of a system that
could be causing a problem. Input is welcome, and
USENIX has set up a wiki to allow collaboration
on this living, expanding checklist. Please visit it at
http://wiki.sage.org/pbg and contribute.

This is the list that I used to diagnose “it's slow”
or “it’s not working right” kinds of problems. For
more specific problems the list can be abbrevi-
ated, but carefully. Each of the entries comes from
personal experience (or second-hand examples) in
which that step wasn’t taken and time was wasted.
When a system or facility is not working right,
time to resolution of the problem is of the essence,
and counter-intuitively, this long list of steps can
quickly lead to the diagnosis of the problem, the
first step in getting it resolved.

This list may seem long and in some steps overly
basic. When I approach a broken system I try to
step through the list religiously, just as pilots exe-
cute their pre-flight checklist. Usually, lives are not
at risk, but certainly time, and frequently money,
gets lost when problems occur, and a systematic
approach is the best way to resolving the issue.
When I have been tempted into skipping steps,
frequently I've regretted it as the steps skipped
sometimes would have been useful in solving the
problem.

65

Many of the steps here are general system-administration tasks that could

be used on any system. Some of them are UNIX-specific, some are Solaris-
specific, and some are Solaris 10—specific. If the problem is not occurring on
a Solaris 10 system then other, equivalent (where possible) steps should be
substituted.

Finally, the order of the steps need not be exactly as listed here, but the
overall flow should be preserved, going from general to specific and from
data gathering through making system changes.

Phase o: Prepare for Problems

The time to learn how to use tools, to understand your facility architecture
and performance, and to learn administration and debugging techniques is
not when in the midst of a production problem. Rather, these things need to
be part of your DNA, ready for when they are needed. To prepare for the in-
evitable problem, consider doing the following:

= Join helpful organizations, especially local user groups, to both learn
and build your network.

= Take classes and tutorials (from organizations such as USENIX, of
course).

m Read books on system administration and practice what they preach.
My personal favorites include UNIX System Administration Handbook
(latest version) by Nemeth et al., The TCP/IP Guide by Kozierok, Solaris
Performance and Tools by McDougall et al., and Solaris Internals, 2nd ed.,
by McDougall and Mauro.

= Execute phase 4 when the facility is running normally (assuming there
is such a thing) or at least at steady state. One of the easiest ways to
determine problem details is to compare the state of the broken facility
against the state when it was working better.

= Practice all of the other steps in this document to ensure that tools and
documents are in place for when they are needed, that they work in
your environment, and that you understand how to use them, what they
do, and what their results mean.

Phase 1: Capture the Problem Definition as Succinctly as Possible

Capturing the problem definition as succinctly as possible helps keep focus
on the problem and helps communicate the problem as needed. It also helps
avoid the “death spiral,” in which while exploring one problem other (poten-
tial) problems, or red herrings, are found.

Areas to capture include:

When did the problem start?

What invokes the problem?

What avoids the problem?

What is the problem, exactly?

What changes were made before the problem started? (This is usually

the key question!)

= What debugging/analyzing/testing changes have been done since the
problem started? (Answering this can avoid wasting time and following
those red herrings.)

= What existing diagnostics are available? These can include performance

trends, performance monitoring tools, errors in log files, core dumps,

angry users, and so on.

;LOGIN: VOL. 33, NO. 4

;LOGIN: AUGUST 2008

Phase 2: Phone a Friend

The timing of this phase is variable and generally occurs throughout the
other phases. If more than one person is working on the problem, this phase
can be delegated—it can be time-consuming,

Place service calls on the problem components, including, for example,
the application that is having a problem, the operating system software,
and any hardware it is running on. Perform this early in the project if
support contracts are in place and so the service calls are at no cost.
Get in touch with whoever sold you the facility that is having the prob-
lem (for example, a reseller).

Get in touch with anyone (if other than you) who was active in the
implementation of the facility.

Search for similar problems that other people have written about (even
better, solved). General, technical, and product search engines are use-
ful. For example, for a Solaris 10 on Sun hardware problem you could
search at http:// www.opensolaris.org/os/discussions/ and at http://
sunsolve.sun.com/show.do?target=home. Looking for and exploring
resources is a great thing to have done before the problem occurred, in
all your “spare time.”

Get in touch with experienced and helpful sysadmins to whom you have
been helpful in the past. (This is one of the many reasons to be helpful
to other sysadmins.)

Phase 3:

Determine Available Testing/Resolution Resources

Are there any similar development, Q/A, or business continuance sys-
tems available? (Watch out that “similar” might be different enough that
the problem cannot be reproduced there.)

Can the problem be reproduced? If so, capture the steps to re-creation.
Can we make changes in production? If so, capture the details (e.g.,
downtime windows, change limits such as validated system and produc-
tion lockdown times and low-impact times).

If the problem only occurs under load, do we have the ability to test
under load and to generate a sufficient load to cause the problem? The
worst problems are those that only occur under load and when the load
cannot be generated artificially.

What is the change deployment method and cycle in case changes need
to be made to resolve the problem?

Is testing in production possible?

Is having an impact on performance in production acceptable?

Is the use of unsupported tools in the production environment
allowable?

Phase 4: Capture the State of the Problem Environment

For each component in the problem environment (certainly computers, but
this could also extend to storage, networking, and security components), do
the following:

Capture the state and configuration details with the “best” tools avail-
able. For Solaris, that means running explorer (if possible), which is
now part of the Services Tools Bundle and is available for free from
http://www.sun.com/download/products.xml?id=47¢7250a.

Capture state with GUDS, which is a tool similar to explorer but more
complete; unfortunately, apparently it is only available from Sun Sup-
port on an as-needed basis.

PETE’S ALL THINGS SUN: SOLARIS SYSTEM ANALYSIS 101 67

68

= If using Solaris 10, use dexplorer while the problem is occurring, if
possible and allowed. dexplorer is part of the indispensable DTrace-
Toolkit available from http://opensolaris.org/os/community/dtrace/
dtracetoolkit/. Note that it is free and that the tools it uses are support-
ed, but the toolkit and its scripts themselves are not supported.

Some additional things to capture if not already recorded by these actions
include the following;

= What are the operating system, firmware, and hardware versions and
patch levels?

= What are the pertinent application release and patch level levels?

= Are the versions of the applications supported on the versions of the
hardware and operating systems? If not an upgrade cycle is probably
going to be necessary to bring all of the components into compliance
before support organizations will help resolve the problem.

Note that support organizations are likely to push for changes even in sup-
ported configurations before escalating a problem. For example, a very
common scenario is that technical support will encourage or try to require
installation of the latest patches, upgrading to the latest firmware, or even
upgrading operating system or application versions. This eliminates variables
for them, but it’s also how they try to get you off the phone. Such work can
take hours or days and frequently is not necessary—the problem frequently
still exists after the work. Push back on support, depending on the level of
effort and time their recommendations would take and your level of support.
Ask support if they have any evidence that the problem will be solved by
the changes recommended. If they have no proof, try to force them to con-
tinue working on the problem without first making their suggested changes.
Note that politeness, firmness, and mention of how much you pay them for
support is much more effective than poor behavior. If satisfaction is not re-
ceived, then (politely) try to get to the next level of support management.
Also, whoever sold you the facility has a vested interest in having you as

a happy customer, so have them help increase the priority of the problem
within the support organizations.

Phase 5: Track Down the Problem

Tracking the problem down is, of course, the meat of the project and the
most difficult part. But with the preparation done as outlined here, many
variables have been eliminated and plenty of information is now readily
available to help diagnose the problem. This phase can vary immensely de-
pending on the kind of problem being worked on, the scale of the problem,
and all of the details determined in the previous phases. Some first steps for
Solaris 10 systems are listed here, but other lists for other operating systems

and devices should be compiled for your site (or be found to have already
been published).

Generally, compare the results attained during the problem against the same
information from when the system was healthy (see Phase 0).

= Scan through log files such as /var/adm/messages and via dmesg. Don't
ignore anything odd—it could be the canary indicating the problem.
Run svcs -a to check for services that have failed or are disabled.
Check for full disks or changed mount information via df and mount.

= Run ifconfig -a and look for any errors; run kstat and grep through
the output for the network interface names (such as e1000g0) to check
network parameters such as duplex and speed.

;LOGIN: VOL. 33, NO. 4

;LOGIN: AUGUST 2008

Read through /etc/system and look for settings copied from other systems or
left behind during an upgrade. Note that /etc/system should never be copied
or left intact between operating system or application upgrades; such events
should cause an audit of the file for entries to remove or update. Check the
Solaris Tunable Parameters Reference Manual at http://docs.sun.com/app/docs/
doc/817-0404. This document is updated for every Solaris release.

= Check /etc/projects for any resource management settings that could be
affecting system or application performance.
m Check the stat commands and look for anomalies:
= jostat -x 10—are there large response times?
= mpstat 10—how many threads are in which states?
= vmstat 10—do the thread counts and scan rate indicate memory
shortage?
= vmstat -p 10—look for systemwide memory operations.
= prstat—are there any resource hogs?
= prstat -Lmp <pid>—TIook at detailed state information about a
specific process.
= pmap -x <pid>—explore the memory map of a problem process.
= DTraceToolKit and DTrace scripts—look at specific suspect aspects of
the system.

Some general areas to consider, especially on Solaris:

= Are you running the most appropriate scheduler for each system in your
environment?
Are you using the best-fit page sizes?
Is your I/O well balanced and spread across enough devices (disks,
network ports, etc.)?

= Are you using the best CPU for the workload? (Are there few fast
threads or many slower threads?)

= [f processes are contending with each other, implement resource man-
agement (e.g., containers, project sets, and dynamic resource pools).

= Since rebooting the system can reset the state to a known starting point
and remove variables, consider it as appropriate after current state infor-
mation is captured.

= Finally, if the code is your own, did you use the best current compiler to
generate the machine code?

Next Time

My list might be a bit controversial. Don't like it? Have a better one? Have a
checklist for some other sysadmin activity? System administration is a diffi-
cult activity because not much of it can be learned in school or from books.
It’s a journeyman'’s trade. Help your fellow sysadmins and help make the
world a better place by documenting your accomplishments and making
them available. Contribute to the SAGE Web site, create your own blog, con-
tribute to the wiki of this column at http:/wiki.sage.org/pbg, join (and at-
tend!) a user group, and get sharing!

Next month, in Solaris Systems Analysis 102, T'll dive deeper into Phase 5,
showing DTrace and system command examples and how to tune areas such
as the scheduler class and resource management. Until then, there should be
plenty here to add to the sysadmin to-do list.

PETE’S ALL THINGS SUN: SOLARIS SYSTEM ANALYSIS 101 69

DAVE JOSEPHSEN

1Voyeur:
hold the pixels

David Josephsen is the author of Building a Monitor-
ing Infrastructure with Nagios (Prentice Hall PTR,
2007) and Senior Systems Engineer at DBG, Inc.,
where he maintains a gaggle of geographically
dispersed server farms. He won LISA '04’s Best Paper
award for his coauthored work on spam mitigation,
and he donates his spare time to the SourceMage
GNU Linux Project.

dave-usenix@skeptech.org

“CHECK THIS OUT,” HE SAYS WITH THE
merest hint of pride in his voice. As admins
go, he’s one of the best I've had the plea-
sure of working with—clever, thorough,
and tenacious, so when he has something
to show off, it’s usually pretty impressive.
This particular hack happens to be a billing
program based on customer bandwidth
usage. As you can probably imagine, many
things are involved: SNMP, data stores, and
lots of arithmetic. His data structures are
beautiful, and his design is modular and
elegant, but there is a rather large prob-
lem, and it has nothing to do with his code.
While | page through the file my subcon-
scious nags me, “Let’s see, you're getting
data from routers, you're storing it in a
database, you're performing math oniit. ..
yep, complete reinvention of the wheel.” So
after nodding appreciatively, and knowing
the answer before | ask the question, I ask,
“Why didn’t you use RRDtool?”

70

“I didn’t need to draw graphs,” he replies. I sigh
inwardly. I've seen this one before; heck, I've
even been guilty of it myself. One of the traps
good admins often fall into is under-scoping
our tools. Given tools that do one thing well, we
sometimes miss what that thing actually is, and
“graphing stuff” certainly isn’t RRDtool’s one
thing (that'd be gnuplot). What RRDtool [1] ex-
cels at is dealing with time-series data, whether
you need pretty pictures or not.

In fact, just about all the graph-related options to
RRDtool’s graph command are optional, and this
is by design. In practice RRDtool is a great tool
from the command line, and in fact my friend’s
entire billing program sans the data collection
portions could have been done using nothing but
RRDtool in command-line mode. I know all of
the gripes: Reverse polish notation is . . . well,
weird, RRDtool’s command-line syntax can’t be
committed to memory, the data storage aspects
aren’t very transparent, and on and on. I submit
that RRDtool is still the best tool available for
dealing with any sort of time-series data in gen-
eral.

Let me show you what I mean. Since my friend
put his data in a mysql database, he has to pro-

;LOGIN: VOL. 33, NO. 4

;LOGIN: AUGUST 2008

grammatically extract it, calculate usage information for the given time
interval, and compute the cost of that bandwidth. If he had stored it in an
RRDtool database (using a gauge RRA, or a compute RRA to compute and
store raw byte counts) all of this is (arguably) four lines of code:

rrdtool graph foo.png --start="now -Tmonth’\
DEF:a=routerA_customerinterface4.rrd:traffic_counter: MIN \
DEF:b=routerA_customerinterface4.rrd:traffic_counter:MAX\
CDEF:price=a,b,-,1024,/,.05,* \

PRINT:price:%8.2If | tail -n1

It's not my aim in this article to teach you RRDtool syntax, so 'm mostly
going to let these examples speak for themselves. Suffice to say that in
the short example above, we extracted the data we needed, and used it to
calculate the price of a customer’s bandwidth usage over the last month,
assuming a price of five cents a meg. I will point out the use of the print
statement, which simply prints the answer to stdout, suitable for piping to
other applications such as tail. PRINT makes RRDtool into a command-
line app. Although we specified the name of an output png (this, for rea-
sons unknown to me, is required), we specified no graph-related options,
so RRDtool didn’t draw one; its only output was the cost of customer4’s
bandwidth for the last month, in text, to STDOUT.

This implementation has obvious advantages over rolling your own solu-
tion in Perl, not the least of which is speed. RRDtool internally performs
math really quickly. Using “time” to measure the execution time of this
problem in RRDtool yields “real 0m0.004s” versus my friend’s Perl solu-
tion at “real 0m0.103s.” Your results will surely vary, but I've yet to find a
faster way to process heaps of time-series data. RRDtool also scales really
well. An aversion to RPN is no excuse; you can spend 30 minutes learn-
ing the syntax or an hour writing your own code to perform the math,
and your code will almost certainly be slower.

RRDtool takes care of data compression and rotation, temporal interpo-
lation, data glitches, conversions of counters to rate information, and
1/0 access, without you having to do anything. It does this remarkably
efficiently and on tons of data. It is as efficient when processing a month
of data starting five years ago as it is processing a month of data ending
five minutes ago. To write an application that handled your particular
time-series data more effectively youwd probably need to start by forking
RRDtool.

Good admins might suspect that a tool this efficient was over-optimized
for the solution set and couldn’t possibly be very flexible. I might agree,
but I'd also wager they hadn’t played with some of RRDtools more eso-
teric features such as CDEF conditionals. For example, my friend’s billing
program doesn’t actually bill the customer unless the customer uses more
than 100 Mb of bandwidth. We can use CDEF conditionals to solve this
problem:

CDEF:bandwidth=a,b,-,1024,/\
CDEF:price=a,b,-,1024,/,100,-,.05,* \
CDEF:finalprice=bandwith,100,GT,0,price,|F \

In pseudo-code this comes out to “if (bandwidth > 100) then
finalprice=price else finalprice=0.” This doesn’t actually require three sep-
arate CDEFs; it could have been accomplished with a single long, convo-
luted RPN expression if you, for example, hated those who will come after
you and wanted to give them something painful to decrypt. The point is
that RRDtool can do a surprising amount of the work you need done in-

IVOYEUR: HOLD THE PIXELS 71

72

ternally, and without involving any pixels. So if you ever find yourself
writing code to process time-series data or find yourself using RRDtool
fetch to export data so that you can process it in a general-purpose lan-
guage, you're probably doing it wrong. I'm just saying.

Aberrant Behavior Detection

And while I'm at it, I should add that if you're exporting data so you can
run statistical analysis on it or send alarms based on thresholds, you're
probably doing it wrong here as well. A few years ago, Jake Brutlag added
some really cool statistical forecasting and problem-detection software to
RRDtool. He published his work at LISA 2000 [2]. His work, collectively
referred to as “Aberrant Behavior Detection,” is the coolest code I'm aware
of that nobody ever uses. Nobody seems to use it mostly because every-
one thinks “it’s hard”; yes, what little documentation there is, is not fun
to read. So allow me to take a crack at putting this down where the goats
can reach it (to quote an old boss of mine).

The problem with predicting the future is that a lot of noise gets in the
way. One of the oldest, easiest methods we have to predict future data
points within a set of time-series data is the simple moving average. Every
time we get a new data point we re-average the data set, and the next
point should land somewhere near that. Maybe we drop values that are
more than x days old. This obviously isn’t very accurate, and it suffers
from a number of other problems as well. The two big ones are that it’s
very compute-intensive and we have to keep a lot of data points around
(especially if we're polling every few minutes).

In the late 1950s, C.C. Holt proposed a formula that was more accu-

rate and only needed two data points to compute. It’s pretty clever and
even came with a constant that you can tweak to give more recent val-
ues greater weight. In fact, giving more recent values greater weight in
general was sort of a design goal of the equation, and it’'s where it derives
its greater accuracy. This first equation is called “exponential smooth-
ing.” Within the Holt-Winters Method it’s also referred to as the “base-
line” equation. As your data set changes, the equations’ predictions do so
as well. If your data rises rapidly, it will outpace the predictions and your
data may therefore be considered statistically improbable. The constant
controls how quickly the data can change before it is considered abnor-
mal. I'm not going to get into the specific math here because of the afore-
mentioned goats. If you want to get a look at the equations, take a look at
Brutlag’s paper [2] and/or his implementation notes [3].

The only problem with exponential smoothing was that it didn’t account
for longer-term trends in the data set. This is of course what you would
expect when you design a formula that gives greater weight to more re-
cent values, so a few years later, Holt proposed another formula to ac-
count for longer term trends in the data. This formula, called “Double
Exponential Smoothing,” can basically be thought of as exponential
smoothing of exponential smoothing. This formula also uses a tweakable
constant to allow fine-tuning for the extent to which data trends affect
the final prediction. This equation is sometimes referred to as the “slope”
equation in the Holt-Winters Method.

The final piece of noise that Holt'’s equations didn’t account for was pe-
riodic fluctuations (for example, people shopping more at Christmas or
load from machines being backed up every night at 2 a.m.). In 1965 Win-
ters proposed an equation to absorb the periodic (or “seasonal”) noise.

;LOGIN: VOL. 33, NO. 4

;LOGIN: AUGUST 2008

This final equation uses yet another constant to control the weight of pe-
riodic data in the final prediction. The three equations combine to form
the Holt-Winters Method, which can make pretty accurate predictions in
sets of time-series data, or at least predictions that are good enough for
our purposes.

Jake Brutlag took Holt-Winters and bolted it onto RRDtool, giving RRD-
tool the power to make real-time predictions for any given data set. He
also added an easy mechanism for graphing error bars around the pre-
dicted data points, and for determining when a real data point or range
of data points falls outside the error bars. All of this is implemented in a
series of special-purpose RRAs, but in practice you don’t need to know
much about the inner workings of Holt-Winters or any of the special
RRAs save one to get this working for you. All you need to do is create
the HWPREDICT RRA and the others are implicitly created for you. The
syntax looks like this:

RRA:HWPREDICT:<array length>:<alpha>:<beta>:<period>

The array length is the number of predictions you want to keep. This
number needs to be as many data points as you want to graph error bars
for, or at least as many data points as the seasonal period you want to ac-
count for. The seasonal period is usually 24 hours, so for an RRD with

a 5-minute polling interval, the array length should be at least 288, but
again, if you plan on drawing graphs with error bars, you probably want
this to be a good deal bigger (10,080 gives you a week of error bars).

Alpha is the exponential smoothing constant I mentioned above. It is a
number between 0 and 1. You can calculate this given a small judgment
call on your part. The formula (taken from Brutlag’s paper and translated
to Perl syntax by me) for calculating the value is:

$alpha = 1-(exp(log(1-$pct)/$points))

The question you have to ask yourself is how quickly you want the base-
line forecasts to adapt to changes in the data. If for example, you wanted
observations in the last 30 minutes to account for 90% of the baseline
weight, you would plug in .90 for $pct, and 6 for $points (assuming a 5-
minute polling interval (30/5)). This yields an alpha of about .32, which,
in my experience is a pretty reasonable starting point.

The same formula can be used to calculate beta, which is the slope (or
trending) equation constant. Since the idea of the slope equation is to ac-
count for long-term trends, you should use a value for $points that is at
least as long as the seasonal period. The seasonal period is most often 24
hours, so for a polling interval of 5 minutes $points should be at least
288, if not higher. A starting value of .0024 for beta will ensure that ob-
servations in the last day will account for no more than 50% of the slope
equation smoothing weight. This is the same value Brutlag mentions in
his paper and it’s the one I usually start out with.

Finally, “period” is simply the periodic or seasonal period you want to ac-
count for. As I've mentioned this is usually 24 hours (288 points for a 5-
minute polling interval).

If you want to get fancy, there’s a whole lot more tweaking you can do,
but for most admins wanting a fairly good and scalable method for de-
tecting abnormal patterns in their time-series data, that's pretty much all
there is to it.

Once the RRD with HWPREDICT in it is created, you can ask RRDtool to
give you the instances of aberrant behavior for a given time interval from

IVOYEUR: HOLD THE PIXELS 73

74

the command line via the implicitly created FAILURES RRA. This is what
most admins are looking for when they create Nagios plug-ins to dump
and search through RRD data. For example, if I wanted to know the num-
ber of times customer4’s interface displayed abnormal traffic patterns in
the last 5 minutes, I could do this:

rrdtool graph foo.png --start="now -5minutes’ \
DEF:failures=routerA_customerinterface4.rrd:traffic_counter:FAILURES \
PRINT:failures: %8lIf | tail -n1

Anyway, I hope I've made a good case for the wholesale abandonment of
the use of <insert your goto language here> for processing time-series
data. RRDtool really is a heck of a piece of software, so if you thought it
was all about graphing I urge you to take another look.

Take it easy.

REFERENCES

[1] http://oss.oetiker.ch/rrdtool/.

[2] http://www.usenix.org/events/lisa00/full_papers/brutlag/
brutlag_html/index.html.

[3] http://cricket.sourceforge.net/aberrant/rrd_hw.htm.

;LOGIN: VOL. 33, NO. 4

HEISON CHAK

Media Resource
Control Protocol

Heison Chak is a system and network administrator
at SOMA Networks. He focuses on network manage-
ment and performance analysis of data and voice
networks. Heison has been an active member of the
Asterisk community since 2003.

heison@chak.ca

WITH TODAY’S TELEPHONY SERVERS
and applications, speech capability and in-
telligence have been key differentiators be-
tween a superb Interactive Voice Response
(IVR) system and its ordinary counterparts.
Text to speech (TTS) and Automatic Speech
Recognition (ASR) are means of assisting
self-service IVR systems in directing calls
to appropriate destinations via spoken
speech. This is the most natural form of
input and becomes especially convenient
when callers do not have easy access to a
keypad for DTMF input. Voice applications
written in VoiceXML (VXML), such as ad-
dress/ZIP code recognition, email collection,
or alpha-numeric input, may ease the pain
of performing these tedious and difficult
tasks, achieving higher automation with
improved accuracy. In this column we will
examine how it is that clients (e.g. the ap-
plication server, the PBX) make text requests
to speech servers and get spoken speech in
return.

Synthesizer/Recognizer, Then and Now

;LOGIN: AUGUST 2008

Text-to-speech (TTS) and automatic speech rec-
ognition (ASR) technologies have been around for
quite some time. The first computer-based speech
synthesis systems were created in the late 1950s,
and the first complete text-to-speech system was
built in 1968.

Research on ASR began in 1936, but the problems
of speed and accuracy were not overcome until
1982, when Covox launched the first commercial
product. Another company founded in the speech
recognition market the same year was Dragon Sys-
tems. Dragon Systems was acquired by Scansoft
Inc. in 1999. A company that had grown through
acquisition, Scansoft acquired Speechworks in
2003, to become an enterprise speech solutions
company, a direct competitor for Nuance, which
had been established in 1994 and was by 2003 a
leader in computer telephony applications and au-
tomated call steering. In 2005, a de facto acqui-
sition of Nuance by ScanSoft took place and the
combined company changed its name to Nuance.
(See Figure 1.)

MEDIA RESOURCE CONTROL PROTOCOL 75

1982 1992 1994 1999 2003 2005 2006

Nuance

* MNuance * MRCPw1

Visioneer » Scansoft 4_\

Dragon Systems Speechworks

FIGURE 1: HISTORY OF MRCP AND NUANCE

RFC 4463: MRCPv1

While vendors (e.g., Nuance, IBM WebSphere Voice Server, AT&T Natural
Voices) are competing for market share of TTS and ASR products, there are
many proprietary systems for performing synthesis and recognition over

the network. However, these nonstandard approaches have often caused
migration problems and become major support issues as a result of vendor
mergers and acquisitions. In 2006, Cisco, Nuance, and Speechworks jointly
developed RFC 4463: Media Resource Control Protocol (MRCP), a protocol
which controls media service resources such as speech synthesizers and rec-
ognizers over a network. MRCPvl1 is an Informational RFC and therefore not
a candidate to become an IETF Internet Standard (it was published for its
historical value as an ancestor to the MRCPv2 standard). That said, MRCPvl
has been widely implemented by both speech server vendors and network
equipment providers and is often viewed as a subset of MRCPv2.

A fundamental difference between MRCPv1 and MRCPV2 is seen in the
mechanisms used for media session management and protocol transport.
With MRCPv1, Real Time Streaming Protocol (RTSP) is used for session
setup and RTP is used for media streaming. MRCPv2, in contrast, uses SIP
instead of RTSP for session setup (RTP is still used for media streaming).

Consider the MRCPv2 architecture diagram (Figure 2) and the MRCPv2
message (Listing 1). When speech is sent from the client to the speech server
via a SIP connection, the speech server will synthesize the speech using an
installed voice (here, “Samantha”) and return the speech (“Hello, my name is Sa-
mantha . . ”) over an RTP stream negotiated during the SIP call setup phase.

Speechsc Server

TS ASR L
Engine | Engine | Engine

Application Layer

hediz Resaurce AFI

SIF Stack

TCFIF Stack

Sl Engine

Media Resource Management

SIP Stack

TCPAP Stack

— e

Media Source/Sink

RTP

FIGURE 2: MRCPV2 ARCHITECTURE

MRCP/2.0 732 SPEAK 543257
Channel-ldentifier:32AECB23433802@speechsynth
Voice-gender:neutral

Voice-Age:25

Voice-Name: Samantha

Prosody-volume:medium

;LOGIN: VOL. 33, NO. 4

Content-Type:application/ssml+xml
Content-Length:850
<?xml version="1.0"7>
<speak version="1.0"
xmins="http://www.w3.0rg/2001/10/synthesis"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance”
xsi:schemalocation="http://www.w3.0rg/2001/10/synthesis
http://www.w3.0rg/TR/speech-synthesis/synthesis.xsd"”
xml:lang="en-US">
<p>
<s>Hello, my name is Samantha. The time is now
<break/>
<say-as type="time">0345p</say-as>.
</s>
</p>
</speak>

LISTING 1: CONTENTS OF MRCPV2 DEMO _ SPEECH.MSG

Voice- (e.g., Voice-gender, Voice-Name) parameters may be sent to de-
fine values for the entire session. These parameters may also be sent to af-
fect a request in progress and change its behavior (from a woman’s voice to a
man’s voice) on the fly, if that functionality is supported by the synthesizer.

OpenMRCP

Despite the lack of free commercial-grade speech servers, the open source
community is striving for significant improvement over what is currently
available (e.g., Festival, GVoice). With MRCP-enabled speech servers (e.g.,
Nuance, IBM WVS), the open source project OpenMRCP becomes a per-
fect tool to bridge the gap. Sponsored by Cepstral, a TTS voice provider,
OpenMRCP provides a full stack of MRCP which can be used as the basis
of either an MRCP server or an MRCP client. The MRCP client is available
in Freeswitch as a module. It may also be built against a stand-alone Apache
Portable Runtime (APR).

OpenMRCP Against Stand-Alone APR

To test OpenMRCP, 1 built three virtual machines under Xen 3.0.3:

= Nuance RealSpeak 4.5 with Nuance Speech Server 5.0 on CentOS 5
Nuance Recognizer 9.0 with Nuance Speech Server 5.0 on CentOS 5
OpenMRCP with apr, apr-util 1.2.12, and sofia-sip 1.12.8 on Debian
Etch

In order to build OpenMRCP against a stand-alone APR (Apache Portable
Runtime), several dependencies must be met. First, I need apr and apr-util
version 1.2, which are available from the Apache Portable Runtime Project
(http://apr.apache.org). For OpenMRCP to support MRCPv2, a SIP stack is
required. This is where the Sofia-SIP library fits in. Sofia-SIP (http:/sofia-
sip.sourceforge.net) is used by OpenMRCP to set up MRCPv2 sessions.

Once all the dependencies have been built, OpenMRCP can be downloaded
and built:

cd /usr/src

svn co http://svn.openmrcp.org/svn/openmrcp/trunk openmrcp
cd /usr/src/openmrcp

./bootstrap

;LOGIN: AUGUST 2008 MEDIA RESOURCE CONTROL PROTOCOL 77

./configure --with-apr=/usr/src/apr-1.2.12 \
--with-apr-util=/usr/src/apr-util-1.2.12 \
--with-sofia-sip=/usr/src/sofia-sip-1.12.8

make && make install

To test the Nuance TTS synthesizer using the MRCP protocol, I launched
OpenMRCP in client mode. From the OpenMRCP CLI, new sessions can be
created, followed by allocation of TTS/ASR channels where MRCPv1/v2 com-
mands can be sent. For example:

openmrcpclient -¢ 10.155.1.29:5060 -s 10.155.1.27:5060
Connect to server with a new session

> create 0

Create a TTS channel (1st O - session slot, 2nd O - channel type of TTS)
>add00

Send MRCPv2 message (as in Listing 1)

> msg 0 /path_to/demo_speech.msg

Tearing down session (when the synthesis completes)
> destroy 0

Leaving OpenMRCP

> quit

For the duration of the speech, an output file, synth_result_${session}.pcm,
will grow in size as RTP packets arrive from the speech server. To verify that
it worked, the raw PCM can be converted to .wav for playback:

sox -t raw -r 8000 -¢ 1 -w -s synth_result_0.pcm demo_speech.wav

Next Steps

The newly resampled .wav file can now be played by most media players and
is ready for use in Asterisk. It may be used as a pre-recorded IVR menu file
or greetings for voice-mail boxes.

Ideally, it would be best if real-time operation of MRCP could be integrated
into Asterisk. Instead of hacking up an expect script or Python to maneu-
ver the openmrcpclient CLI and passing the output file to Asterisk for play-
back, many would like to see OpenMRCP as an Asterisk module, as it is in
FreeSwitch. Unfortunately, the author is currently tied up with a reimple-
mentation of MRCP that will be free from corporate sponsorship, so inte-
gration of OpenMRCP into Asterisk may not happen anytime soon.

The new project, UniMRCP, the successor to OpenMRCP, will probably con-
tinue to depend on Sofia for SIP stack as well as APR (apr.apache.org) for
low-level, cross-platform implementation of threads, mutexes, and sync ob-
jects. UniMRCP is currently available for Windows and UNIX via Subversion.

REFERENCES

http://en.wikipedia.org/wiki/Speech_synthesis
http://www.dragon-medical-transcription.com/historyspeechrecognition.html
http://tools.ietf.org/html/rfc4463
http://daveburke.org/downloads/SP-Appendix-A.pdf

http://wiki.freeswitch.org/wiki/OpenMRCP#Configure_OpenMRCP_against
_standalone_APR

http://www.unimrep.org/

http://www.cisco.com

;LOGIN: VOL. 33, NO. 4

ROBERT G. FERRELL

/dev/random

Robert G. Ferrell is an information security geek
biding his time until that genius grant finally comes
through.

rgferrell@gmail.com

SEVERAL YEARS AGO, IN A FIT OF WHAT
might best be described as literary buli-
mia, | disgorged a speculative fiction novel
titled Tangent, that appellation being more
a nod to my writing style than indicative of
any deeply salient plot point foreshadow-
ing. It was not a particularly good novel,
even from my own healthy ego’s perspec-
tive, and it was received, when received at
all, with more negative comments than
positive. Part of the problem, | think, is that
it's really only the first part of a trilogy. |

did put a fair amount of effort into creat-
ing a volume that would stand alone, but
knowing the entirety of the plot makes it
difficult, especially for a first-time novelist,
to make sound decisions about how to slip
in pointers to future plot lines while keep-
ing those teasers ancillary to the conflict
and resolution of the current story. One of
the wholly unsolicited critiques a kind soul
felt compelled to make, in a public forum,
on reading Tangent was that it appeared

to have been constructed using a series of
ideas discarded by Neal Stephenson during
the writing of Cryptonomicon. Now, despite
the fact that | am a Stephenson fan, | had
always been intimidated by the sheer bulk
of that particular tome and so had not read
it at the time my own foray into the com-
mercial fiction world took place; thus this
critical observation remains itself forever in
the speculative fictional realm.

;LOGIN: AUGUST 2008

I now count myself among those lucky, if hardy,
souls who have undertaken the odyssey presented
by this monumental work (which I loved, by the
way), and therefore I finally have a cogent response
to the aforementioned accusation:

Huh?

First and foremost, encryption has nothing to

do with Tangent. It's about quantum metaphys-

ics, hacking, and duct tape. It reveals my stagger-
ing lack of knowledge concerning geography and
airports in Great Britain and a narrative style that
many might feel could well do with a good sound
thrashing, but the relation it exhibits (at least as far

/DEV/RANDOM 79

80

as I can see) to anything covered, or to be accurate intentionally not covered,
in Cryptonomicon could not be detected with even the most sensitive mea-
surement device. Well, there are references to computers in both books.

Speaking of encryption, which of course is what prompted this little self-ag-
grandizing rant in the first place, I'm currently sitting on an MD-80 hur-
tling willy-nilly six miles above the Gulf of Mexico. In places like this a lot
of the cultural fluff that ordinarily occupies my intellectual field of view is
relegated to the musty stacks in the basement of my subconscious, there to
fester like last week’s discarded shrimp scampi. The fragrant vacuum this
leaves is gradually filled by more esoteric cortical activities such as idle ru-
minations on the nature of cryptography.

Lest you fear I am now going to inundate you with elliptic curve arcana, be
comforted by the fact that T don’t understand that stuff very well. I can ap-
preciate the elegance of the math the way a patron of the arts appreciates
Van Gogh’s energetic brush work, but trying it myself more often than not
leads to numerical mayhem. In fact, my attempts at writing crypto algo-
rithms have inadvertently created a whole new branch of mathematics I call
“hermit theory” because they never go anywhere.

Cryptography is crazy stuff. A large number of very smart people have given
a great deal of thought to creating ever more exotic processes for obfuscat-
ing human language. This wouldn’t be quite so crazy except for the fact that
human language is already about the most obfuscated means of communica-
tion imaginable. T think we could get some mileage out of melding the sci-
ences of cryptology and molecular biology, though. Using DNA sequences
for keys is hardly an original thought (although I did first think of it when I
was in college in the 70s, so maybe it is original), but so far I don’t see any-
one doing it. Get with the program, people. While you're at it, where’s my
#@&! hoverboard?

One of the distinct inconveniences of encrypting communiqués is that for
the result to be read by anyone, the intended recipient needs to have the
same key (and complementary algorithm) used to encode them. This prob-
lem has been addressed in several novel and extremely clever ways, most
notably PKI, with constantly increasing key lengths being one of the pri-
mary means of ratcheting up security as processing power continues its own
inexorable advance.

I think it’s time to think outside the packing crate here and come up with a
new paradigm (I adore that word) using a radical form of key mechanism.
Since we started off talking about Neal Stephenson, I'll borrow the kernel of
an idea from him—for real this time—and suggest that we use subliminal
memes based on person-specific cortical activity patterns as encoding keys.
If you scan the message without the proper meme in place, it reads as gib-
berish. Since the interaction between a given person’s neural cortex and the
implanted meme will be unique to that individual, the odds that a computer
could be used to replicate said key are absurdly remote, no matter the pro-
cessing power involved. It wouldn't be a purely mathematical problem, for
one thing, and computers don’t yet deal well with the abstractions routinely
taken in stride by the human brain.

Implantation of the meme could take place using a device similar to the
mind-erasing flashgun from Men in Black. The meme itself could be pro-
tected by a single-use safeguard, such that the implantation device will work
once and only once, and would require a PIN or similar authentication to

be activated. Any attempt to modify the device would render it permanently
inoperable, like most of my cell phones. Thus, we have all the advantages of
quantum cryptography without any of the logical contradictions.

;LOGIN: VOL. 33, NO. 4

Once the meme has been successfully implanted it is permanent, failing se-
rious localized brain injury to the subject. The subject becomes, in effect, a
living encryption key, able to decode encrypted messages merely by retyping
them, as the neural processes involved in that mechanical act serve as the
decryption mechanism.

If this sounds like far-fetched gobbledygook, consider quantum cryptogra-
phy, the development of which is already well underway. In classical binary
systems, the basic unit of information can have a value of 1 or 0. In a quan-
tum system, the basic unit of information can have the value 1, 0, or both.
That’s what I call gobbledygook.

I've observed that the behavior of political candidates exhibits facets of all
three systems: classical, relativistic, and quantum. The position a candidate
takes on any given proposition is dependent on the observer (relativistic)
and can be for, against, or both (quantum). Presidential candidates must be-
long to one of the two major parties in order to win (classical). American
presidential politics, therefore, may well be the long-sought unifying theory
of everything. The universe is composed neither of vibrating strings nor

of oscillating toroids, but of annoying sound bites. Perhaps that should be
sound bytes, given the pervasive nature of streaming audio/video.

Explains a lot, doesn't it? Do I really have to squeeze into a tuxedo to pick

up the Nobel Prize, or will the dark suit I wear to weddings and funerals
do?

USER FRIENDLY by J.D. "llliad" Frazer

;LOGIN: AUGUST 2008

WHAT EXACTLY CAN I
DO FOR YOU GENTS?

WE NEED TO EXAMINE
YOUR TRAFFIC LOGS.
WERE LOOKING FOR

MUSIC PIRATES.
N

D

AND WHAT ABOUT LOOKING
FOR BOTNET HERDERS,
ISEE.. OR SPAMMERS?

WHAT ARE THOSE?

COPYRIGHT®©)2008 J.D. "llliad” Frazer HTTP://WWW.USERFRIENDLY.ORG/

/DEV/RANDOM 81

82

book reviews

ELIZABETH ZWICKY, WITH SAM STOVER
AND RIK FARROW

MAKING THINGS HAPPEN: MASTERING
PROJECT MANAGEMENT

Scott Berkun

O'Reilly, 2008. 371 pages.
ISBN 978-0-596-51771-7

THE PRINCIPLES OF PROJECT MANAGEMENT
Meri Williams

Sitepoint, 2008. 192 pages.
ISBN 978-0-9802858-6-4

These are both good, accessible books on project
management, written from a realistic point of view.
They are about the nuts and bolts of managing real
projects, not about theories. They're also very dif-
ferent books. If you are just learning to be a project
manager, you could very happily buy both.

Making Things Happen is a big book. It’s aimed at
technical people who are going into project man-
agement without a lot of management experience,
and it explicitly and carefully deals with the emo-
tional and relational issues involved, as well as
with the processes you need to design, plan, and
manage. Most project management books carefully
acknowledge person-to-person issues, declare them
out of scope, and move on. That's a perfectly rea-
sonable approach, but it’s of limited effectiveness
to somebody who doesn’t understand exactly what
those issues are. Sure, they could look in “Further
References,” but are they going to? Making Things
Happen assumes that the human issues are the
crux of the problem, and it tackles them straight
on. Partly because of that, and partly because of
the smart-aleck, eclectic voice, I love it a lot. It
would be my first choice to shove into the hands
of most struggling new project managers.

Which is sort of unfair, because I also like The
Principles of Project Management a lot; there’s a
whole category of people who would be better off
with it. Making Things Happen is great for some-
body who likes reading, but The Principles of Proj-
ect Management is a clear, no-nonsense book in

big, friendly letters, suitable for people who want
the largest amount of project management wis-
dom in the smallest number of words. It covers the
bases solidly and realistically. It is also much closer
to the system you would need for a PMP (Project
Management Professional) certificate, and so it is

a good place to start if you need a fast and purely
practical way to get a handle on the terms and con-
cepts used by PMP project managers. If youre OK
with management, but you need some help with
the whole “project” thing, Principles is a faster, more
focused book.

HACKERTEEN: INTERNET BLACKOUT

Marcelo Marques and the Hackerteen Team

O'Reilly, 2008. 100 pages.
ISBN 978-0-596-51647-5

This is a graphic novel about computer security
aimed at teenagers. My household doesn’t contain
any teenagers, or even any pre-teens (unless your
definition of “pre-teen” includes anybody who has
yet to become a teenager). But we all love graphic
novels and two of the three of us (the two who are
past pre-school) are interested in computer secu-
rity. So we were ready to love it.

Unfortunately, we didn't. The plot is too adult for
my daughter (it's about money and computers;
there are no dogs, and very little that she perceives
as action). Besides, it was frequently interrupted
by cries of outrage from her father. Everybody but
me gave up by page 30. Strike one for my husband
was the kid who mystically knows how to program
despite doing nothing on the computer but play-
ing games. (I personally learned to use a debug-
ger entirely to cheat at computer games—Ilet me
note that in my social circle that was considered
part of the game—but that doesn't seem to be at
play here.) Strike two was the idea that his parents
would hand him over to a shadowy hacker organi-
zation because they’d heard of it on TV, and that’s
supposed to be a good thing. Strike three was the
moment at which the kid tells the cute girl that the
webcam she wants to buy is no good—because it
doesn't have a Linux driver. “That isn’t useful ad-
vice! That's knee-jerk prejudice! What’s its low-light
performance? How many pixels is it? Now that’s
technical! Who cares if it has a driver for an oper-
ating system she isn’t running!”

;LOGIN: VOL. 33, NO. 4

There’s a lot of knee-jerk prejudice involved. The
politicians are evil, the hackers are good, the bad
guys are ugly. It's more of a comic book than a
graphic novel. The computer security is comic
book computer security, the equivalent of the
booms and swooping punches that make up com-
pletely unrealistic fights in superhero comics. It
may well appeal to teenagers, but I'm not sure 1
want more of those teenagers in computer security;
there seems to be an oversupply of dramatic teen-
agers prone to see everything as a fight between
Evil and Good to start with.

The book does provide a reasonably interesting
moral story in the comic book mode that involves
computers and computer security. It leans, some-
times preachily and sometimes more subtly, on the
idea that everybody can do this (it literally says
“every sex, race, and ethnic group” at one point). It
makes a passionate case for the importance of open
source. What it doesn’t do is what it says on the
back cover; you don't learn how Internet technolo-
gies work, how to protect yourself, or how people
work together on the Internet, and while they do
show people trying to hurt each other online, the
online attacks that are shown are not particularly
realistic. I must admit that the authors are not the
only people who seem to believe that using a web-
cam to take nude video and demanding blackmail
for it is a realistic threat for everybody; the same
spammers who send me advertisements promising
to increase my nonexistent manhood to the size of

My most recent references on this are aimed at
print, because that's just how old they are. So 1
was happy to see something about design that
used Web-based examples.

Unfortunately, this isn't going to help people who
don’t understand design already. It's written in de-
sign speak. Sample back-cover copy: “The task of
the designer is to systematically interpret the audi-
ence’s association with the information to be con-
veyed, and then translate those associations into
visual designs using design principles and tools.”)
It does occasionally have good hints for Web de-
sign, but the basics of design aren’t adequately ex-
plained. For instance, it talks about layout, and it
says that when creating a layout, you should only
use black and white. All the illustrations for this
chapter are two-color, using black and brown, so
they don't follow this rule. It's not clear whether
the rule is one given for the specific exercise or is
meant to hold for all layouts. (It’s not a bad rule to
follow, because it lets you think about visual bal-
ance without the distraction of color.)

As it is, I have to say my best advice for people
who want to know the basics of visual design is to
go buy Molly Bang’s Picture This: How Pictures Work.
You may have to look in the children’s section, and
it won't tell you anything about the Web. But you'll
learn a lot about, well, how pictures work, which is
the important part. I'm still waiting for something
that does that and covers the computer stuff.

the Statue of Liberty also send me fake blackmail NO TECH HACKING

notes claiming to have done this. Johnny Long and Jack Wiles

On the whole, it’s a perfectly OK teen comic being

Syngress, 2008. 480 pages.
sold as something deeper and more interesting. If

ISBN: 978-1-59749-215-7

you're going to use it to try to hook your younger
associates, try it out on them first; my daughter
would rather read Head First Object-Oriented Design.
(No, I'm not joking. Yes, she is 4. Yes, she is ad-
vanced. No, not that advanced. It has dogs in the
pictures.)

VISUAL COMMUNICATION IN DIGITAL DESIGN

Ji Young Park

Young]Jin.com, 2008. 217 pages.
ISBN 978-89-314-3434-7

Alas, this is another book I wanted to like and
didn't. I want to be able to recommend a good,
straightforward introduction to the principles of
visual design, something up-to-date and computer-
oriented but capable of getting across the impor-
tance of using white space, some basic facts about
colors, and the primary tricks of doing a good lay-
out.

;LOGIN: AUGUST 2008

REVIEWED BY SAM STOVER (SAM.STOVER@GMAIL.
COM)

I think this book is a must read for pretty much
any tech-savvy reader, but not for the reasons you
might think. Not because you'll learn the “Uber-
est of the Uber,” as quoted on the back of the book.
Not because it will provide you with everything
you ever wanted to know about physical penetra-
tion testing. No, the two reasons for reading this
book are, one, it’s an easy read, and, two, it’s fun.

[told you that the reasons weren't what you would
expect from a reviewer of security books, but let
me explain my position. Let’s start with it being an
easy read. Obviously, being easy to read isn’t high
on your priority list for reasons to dive into a book.
All too often “easy” means “technically lacking”
and, hey, this is ;login: after all—we want our meat
and potatoes. But if it’s easy for you to read, then

it might be easy for someone else to read—such as

BOOK REVIEWS 83

84

your boss, CISO, or maybe even (gulp) your CEO.
How many other books on your shelf can make
such a claim?

OK, OK, I can see it on your face right now—
just because it’s easy for someone else to read isn't
enough to sell you on why you should read it. So
let’s talk about fun. Why is this book fun, and
what does that have to do with technology? Well,
the title is No Tech Hacking, so maybe there isn't
much technology in the book? Well, there’s plenty
of technology, just not the kind you might be used
to. It's technology of the mind, a.k.a. common
sense, that fills the pages of this book, and that’s
what makes it so much fun. T would wager that a
lot of people aren’t going to learn from this book
so much as they are going to realize. This book is
so full of common sense that, by the time you are
done, you're going to look at the world in a differ-
ent way, which was precisely the intent. Now, that
doesn’t mean that you might not learn how to open
a door with nothing more than a clothes hanger
and a wet washcloth, because you just might. But
the more important thing you'll walk away with is
an appreciation of how other folks might just be
using that kind of technology to compromise your
organization.

As far as the layout of the book goes, there are 11
chapters plus an epilogue dedicated to suggestions
for preventing all or most of the stuff you learn
about in the book. As a heads-up, Chapter 6 is a
reprint from Mr. Long’s Google Hacking for Penetra-
tion Testers, Volume 2, a practice I normally de-
spise. However, he’s very open and honest about it
being a reprint, and I think it plays well with the
other chapters, so I'm cool with it. Chapter top-
ics range from Dumpster Diving, Physical Security,
Social Engineering, to People Watching, to name a
few. There are number of spelling and grammati-
cal errors, but nothing too crazy. The tone is light,
conversational, humorous, and very engaging. Defi-
nitely not an easy book to put down.

So, now we know that it’s easy and fun, and if you
put those two things together, you have an ex-
tremely powerful weapon in your hands—power-
ful because your eyes will be opened to how social
engineering and physical security are easier vectors
than a Oday buffer overflow, and powerful because
the knowledge is something that can easily be ap-
plied to everyday situations. Furthermore, you now
have a book that you can put in the hands of just
about everyone in your organization and they’ll
benefit from it. After all, everyone has some degree
of common sense, right? Right?

SMALL FORM FACTOR PCS
Matthew Weaver and Duane Wessles

O'Reilly, 2008. 275 pages. ISBN 978-0-596-52076-2

REVIEWED BY RIK FARROW

I've been interested in do-it-yourself PCs for over
25 years and was excited about seeing a book dedi-
cated to making things with small PCs. Weaver
and Wessles do a good job of covering how to do
things with some of the small, but Linux- and
BSD-capable, devices that have appeared since
about 2000. I've bought two Soekris boxes. I re-
member the struggles I had just getting started, as
there is no documentation for installing an OS in-
cluded with the boxes. If you ever wanted to play
with Soekris boxes or build a MythTV on top of a
Via M-1000, this is the book for you.

I found the authors’ instructions on installing
OpenBSD 3.7 on a Soekris net-4501 spot-on. 1
liked that they point out just how hard it is to set
up MythTV, and they suggest that it will take at
least a week of fussing to get it to work (which

it will). Their writing is clear and their advice

is good. (Pay attention to notes that appear in

the page margins!) The biggest weakness of this
book is that it appears to have been started in
2006—mnotice that they cover installing OpenBSD
3.7 instead of 4.3, the current version.

There are other issues. The authors decided to use
the lowest-end Hauppage video capture card, yet

a quick search of the MythTV wiki warns against
doing this, promising jerky playback and dropped
frames. A margin note does suggest that this was
a mistake. The authors also have two projects that
use laptop (2.5-inch) hard drives in systems de-
signed to be always on, but I had learned from the
Soekris mailing list that laptop hard drives are not
designed for always-on use and will die within the
first year most of the time.

As long as you are aware that you will want to go
online and check hardware choices, the authors

do a very good job of explaining the assembly of
their projects, the installation of operating systems
for Compact Flash-based systems, and how to set
up the software for their projects, such as an LCD
messaging sign using a gumstix processor with
Bluetooth for wireless. If you have built small-form-
factor PCs before, you will already have figured out
a lot of what the authors cover. But if you are new
to the field, this book will certainly help get you
started.

;LOGIN: VOL. 33, NO.4

SUBJECT TO CHANGE

Peter Merholz, Brandon Schauer, David Verba, and
Todd Wilkens

O'Reilly, 2008. 186 pages. ISBN 978-0-596-51683-3
REVIEWED BY RIK FARROW

When I got this book, it came with a sticker that
said “Galley Copy, Subject to Change.” I immedi-
ately tossed in on a pile of books that were unlikely
to get read: Why read a book that will be changed
before it gets released? At some point, I found my-
self wondering about the silly sticker and discov-
ered that Subject to Change was the snappy title, and
it actually had some relevance to the topic of the
book.

I can sum up this book by writing that the authors
strongly suggest that you base your designs on the
experience the users of anything you design have
with your product. Your product can be a Web site
or the latest consumer, must-have appliance, as the
iPod once was. And I do agree with them. All too
often, products are designed around a set of cool
ideas and implemented by programmers, engineers,

;LOGIN: AUGUST 2008

and marketing folk, and wind up failing badly. In-
stead of focusing on the end-user experience, they
produced a product with more features than the
competition’s. The authors point to the Diamond
Reo, a competent MP3 player that preceded the
iPod and flopped. The iPod succeeded not because
it had more features, but, rather, because it did just
the minimum of what users needed and no more.
By moving the management of music to a program
on a computer (iTunes), Apple put the most compli-
cated part of the experience on the device with the
most capable interface for handling it.

This book is aimed more at corporations than indi-
viduals. And mention of the authors’ company is a
frequent appearance, making the book itself a sub-
tle bit of advertising. But the information is worth-
while and the suggestions for determining what the
experience of users will be and how to insert this
knowledge into the design process, even when you
face an entrenched marketing/engineering “axis of
evil” that wants to build what they think will work,
are priceless.

BOOK REVIEWS 85

USENIX

notes

USENIX MEMBER BENEFITS

Members of the USENIX Association
receive the following benefits:

FREE SUBSCRIPTION to ;login:, the Associa-
tion’s magazine, published six times
a year, featuring technical articles,
system administration articles, tips
and techniques, practical columns
on such topics as security, Perl, net-
works, and operating systems, book
reviews, and summaries of sessions
at USENIX conferences.

ACCESS TO ;LOGIN: online from October
1997 to this month:
www.usenix.org/publications/login/.

DISCOUNTS on registration fees for all
USENIX conferences.

DISCOUNTS on the purchase of proceed-
ings and CD-ROMs from USENIX
conferences.

SPECIAL DISCOUNTS on a variety of prod-
ucts, books, software, and periodi-
cals: www.usenix.org/membership/
specialdisc.html.

THE RIGHT TO VOTE on matters affecting

the Association, its bylaws, and elec-

tion of its directors and officers.

FOR MORE INFORMATION regarding mem-
bership or benefits, please see
www.usenix.org/membership/
or contact office@usenix.org.
Phone: 510-528-8649

86

USENIX BOARD OF DIRECTORS

USENIX LIFETIME ACHIEVEMENT AWARD

Communicate directly with the
USENIX Board of Directors by
writing to board@usenix.org.
PRESIDENT

Clem Cole, Intel

clem@usenix.org

VICE PRESIDENT

Margo Seltzer, Harvard University
margo@usenix.org

SECRETARY

Alva Couch, Tufts University
alva@usenix.org

TREASURER

Brian Noble, University of Michigan
brian@usenix.org

DIRECTORS

Matt Blaze, University of Pennsylvania
matt@usenix.org

Gerald Carter, Samba.org/
Likewise Software
jerry@usenix.org

Rémy Evard, Novartis
remy@usenix.org

Niels Provos, Google
niels@usenix.org
EXECUTIVE DIRECTOR

Ellie Young,
ellie@usenix.org

Andrew Tanenbaum and USENIX President
Clem Cole assembling the Flame Award

2008 FLAME AWARD WINNER:
ANDREW S. TANENBAUM

The 2008 USENIX Lifetime Achievement
Award (“The Flame”) went to Andrew S.
Tanenbaum for his many contributions to
systems design and to openness both in
discussion and in source.

Andrew S. Tanenbaum has researched
and written extensively on topics relevant
to systems design and implementation.
He has developed compilers, operating
systems, and tools to help learn about,
research, and teach important concepts.
Multiple generations of engineers have
read and learned from his books, which
are to be found on the shelves of all
serious computer science students and
practitioners. We reference them often,
since his lucid prose has clarified some
of the most complicated ideas in systems.
Andy has inspired healthy debate in our
field, always focusing on what ideas are
truly fundamental. He has long been a
proponent of making everything open
and available to all. Long before the terms
“free” and “open source” were coined, he
described computer science experiments
as needing to be repeatable and transpar-
ent. He made his tools and technologies
available in source, so we have been able
to see what he and his team have done.

SOFTWARE TOOLS USER GROUP AWARD

2008 STUG AWARD WINNERS: BRYAN M. CANTRILL,
MICHAEL W. SHAPIRO, AND ADAM H. LEVENTHAL

At the 2004 USENIX Annual Techni-

cal Conference, Bryan Cantrill, Michael
Shapiro, and Adam Leventhal presented a
paper on DTrace, which they described as
“a new facility for dynamic instrumenta-
tion of production systems [which] fea-

Bryan Cantrill Ieft) and Adam Leventhal (Eenter)
receiving the STUG Award from Clem Cole

;LOGIN: VOL. 33, NO. 4

tures the ability to dynamically instru-
ment both user-level and kernel-level
software in a unified and absolutely
safe fashion.” The first component of
the OpenSolaris project to have its
source code released under the Com-
mon Development and Distribution
License, DTrace was the Gold winner
in the Wall Street Journal’s 2006 Tech-
nology Innovation Awards contest. It
is a positive demonstration of DTrace’s
design and implementation that this
low-level performance tool originally
written for OpenSolaris has already
been ported to other operating sys-
tems, including many of the usual and
popular ones.

USENIX is pleased to honor the
DTrace Three for their powerful soft-
ware tracing facility. It has greatly
broadened our view into OS and appli-
cation behavior both at the user level
and inside the kernel, on live systems,
with zero effect on the system except
when it’s explicitly enabled.

The winners generously donated the
cash award to support USENIX pre-
college student programs.

USENIX ASSOCIATION
STATEMENTS OF FINANCIAL POSITION
As of December 31, 2007 and 2006

USENIX ASSOCIATION FINANCIAL
REPORT FOR 2007

Ellie Young, Executive Director

The following information is provided
as the annual report of the USENIX
Association’s finances. The accompa-
nying statements have been reviewed
by Michelle Suski, CPA, in accordance
with Statements on Standards for Ac-
counting and Review Services issued
by the American Institute of Certified
Public Accountants. The 2007 finan-
cial statements were also audited by
McSweeney & Associates, CPAs. Ac-
companying the statements are sev-
eral charts that illustrate where your
USENIX and SAGE membership dues
go. The Association’s complete finan-
cial statements for the fiscal year ended
December 31, 2007, are available on
request.

USENIX continues to be a healthy
organization. For fiscal year 2007,
USENIX incurred a slight deficit in
operations of $100K. The additional
$356K in gains in investment income,
interest, and dividend income from the

Reserve Fund meant that we ended the
fiscal year with a $245K increase in
net assets.

USENIX MEMBERSHIP DUES AND EXPENSES

USENIX averaged 5,400 members in
2007, which is similar to the previ-
ous year. Of these, 2,400 opted for
SAGE membership as well, and 500
people are SAGE-only members. Chart
1 shows the total USENIX member-
ship dues revenue ($544K) for 2007,
divided by membership type. Chart 2
presents how those dues were spent.
Note that all costs for producing con-
ferences, including staff, marketing,
and sales and exhibits, are covered by
revenue generated by the conferences.
Chart 3 demonstrates how the money
allocated to student programs, spon-
sorship of other conferences, and stan-
dards activities ($230K) was spent in
2007. Chart 4 shows how the USENIX
administrative expenses were allo-
cated. Chart 5 shows where the $165K
to provide SAGE benefits and services
was spent (note: SAGE member dues
revenue was $128K).

USENIX ASSOCIATION
STATEMENTS OF ACTIVITIES

For the Years Ended December 31, 2007 and 2006

ASSETS 2007 2006
Current Assets
Cash & cash equivalents $ 1165165 $ 1,245,162
Receivables 37,694 63,087 2007 2008
Prepaid expenses 41,993 47,203
Inventory 3,925 4,388 REVENUES
Conference & workshop revenue $ 3206716 $ 3,407,994
Membership dues 543,762 552,978
Total current assets 1,248,777 1,359,840 Product sales 5,155 8,017
SAGE dues & other revenue 135,885 131,290
Investments at fair market vaiue 6,365,486 6,047,657 General sponsorship 4,000 -
Property and Equipment Total revenues 3,895,518 4,100,279
Office furniture and equipment 555,393 503,596
Less: accumulated depreciation (479,593) (452,814, OPERATING EXPENSES
. Conferences & workshops 2,723,827 2,645,671
Net property and equipment 75,800 50,762 Membership; login: 391,690 394,439
Projects & Good Works 230,397 284,472
Other assets 302,020 248,521 E 165,248 224,313
Management and general 446,683 433,327
Fund raising 47,998 112,143
$ 7,992,083 $_ 7,706,800 Total operating expenses 4,005,843 4,094,365
Net (110,325) 5914
NON-OPERATING ACTIVITY
LIABILITIES AND NET ASSETS Donations - non-cash 15,140 -
. Interest & dividend income 251,051 245,024
Current Liabilities Gains & losses on marketable securities 157,508 556,471
Accounts payable $ 429,593 $ 588,561 Investment fees (64,908) (62,185)
Accrued expenses 80,484 83,360 Other non-operating (3,087) (3,305)
Sponsorships for Linux Kernel '08 35,000 -
Contributions held for OpenAFS - 176 Net __ 355704 736,005
Deferred revenue 168,715 55,290
Total current liabilties 713,702 727,387 Increase in net assets 245379 41,019
Long-term Liabilities 302,020 248,521 Netassets, beginning of year 6730892 5988973
Total liabilities 1,015,812 975,908 Net assets, end of year $ 6,976,271 $ 6,730,892
Net Assets
Unrestricted net assets 6,976,271 6,730,892
Net Assets 6,976,271 6,730,892
$ _7,992083 §_ 7,706,800

;LOGIN: AUGUST 2008

USENIX NOTES 87

USENIX ASSOCIATION
STATEMENTS OF FUNCTIONAL EXPENSES
For the Years Ended December 31, 2007 and 2006

Student
C Prog P
and and Good Works Total Management Fund Total 2007
Workshops and Projects SAGE Program and General Raising Support Total
Operating Expenses
Conference & workshop-direct * § 1,815,318 $ 1815318 $ 1815318
Personnel and related benefits: -
Salaries 569,458 $ 121,280 $ 16,341 § 91,876 777,470 $ 233,360 $ 24,145 § 257,505 1,034,975
Payroll taxes 43,080 7,743 1,043 6,951 58,816 17,654 1,827 19,481 78,297
Employee benefits 105,352 - = 16,997 122,349 43,173 4,467 47,640 191,475
Membership/products - 3,324 - - 3,324 - - - 3,324
Membership/flogin: - 176,311 - - 176,311 - - - 176,311
SAGE expenses * - - - 27,515 27,515 - - - 27,515
Student programs, Good
. Works, and projects - - 200,483 - 200,483 - - - 200,483
General and administrative * 190,618 83,032 12,530 21,909 308,089 152,496 17,560 170.056 478,145
$ 2,723,826 $ 391,690 $ 230,397 $__ 165248 §_ 3,511,161 § 446,683 $ 47,999 $_ 494682 $__ 4,005,843
Student
C e £ s
and and Good Works Total Management Fund Total 2006
and Projects SAGE Program and General Raising Support Total
Operating Expenses
Conference & workshop-direct * § 1,747,016 $ 1,747,016 $ 1,747,016
Personnel and related benefits: -
Salaries 557,566 $ 112,292 § 12,825 § 62,924 745,607 $ 176,676 § 56,728 $ 233,404 979,011
Payroll taxes 42,624 8,585 980 4,810 56,999 13,506 4,337 17,843 74,842
Employee benefits 121,927 24,557 2,805 13,760 163,049 38,634 12,405 51,039 214,088
Membership/products - 6,241 - - 6,241 - - - 6,241
Membership/login: - 164,301 - - 164,301 - - - 164,301
SAGE expenses * - - - 117,813 117,813 - - - 117,813
Student programs, Good
. Works, and projects - - 262,250 - 262,250 - - - 262,250
General and inistratit * 176,538 78,463 5612 25,008 285,619 204,511 38,673 243,184 528,803
$ 2645671 $ 394,439 § 284,472 §_ 224,313 $_ 3,548,895 § 433,327 $__ 112,143 $_ 545470 $_ 4,094,365
USENIX ASSOCIATION

STATEMENTS OF CASH FLOW

For the Years Ended December 31, 2007 and 2006

CASH FLOWS FROM OPERATING ACTIVITIES
Change in net assets

Adjustments to reconcile increase in net assets
to net cash provided by/(used for) operating activities:
Donation - non cash
Depreciation
Decrease/(Increase) in receivables
Decrease in inventory
Decrease/(Increase) in prepaid expense
(Decrease)/increase in accounts payable
Decrease in accrued expenses
Increase in accrued income taxes
Increase in deferred revenue

Total adjustments

Net cash provided by operating activities

CASH FLOWS PROVIDED BY/(USED FOR) INVESTING ACTIVITIES:

Purchase of investments

Sale of investments

Net investment income designated for long-term purposes
Realized & ur ized gains on ir
Purchase of property & equipment

its

Net cash used for investing activities

Net change in cash & equivalents
Cash & equivalents, beginning of year

Cash & equivalents, end of year

Cash payments for:
Interest
Taxes

88

Supporting
2%

Chart 1: USENIX Member Revenue Sources 2007

Student

3%

Corporate
4%

Educational Inst.
4%

Affiliate
8%

2007 2006
$ 245379 5 741919
(15,140 -
26,779 31,550
25:393 (16,006)
463 1,525
5210 (8.200)
(158.968) 81,107
31,948 215
- (11,200)
113425 15,200 /
113425 [
29,110 94,281 [
274,489 836,200
— \
\
\
\
\
\\
4808743 (3,743,603) \
(4808,743) 3,743,603 \
(160,310) (142510)
(157.519) (561.482)
(36.657) (25.872) Individual
79%
(354,486) (729.864)
(79,997) 106,336
1245162 1,138,826
$ 1165165 $ 1245162
. $3,532

;LOGIN: VOL. 33, NO. 4

Chart 2: Where Your 2007 Membership Dues Went

28%

Executive Office Personnel
0%

;login:
32%

Chart 3: Good Works 2007

University Outreach, Awards
2%
K-12 Program: USA
Computing Olympiad
7%

Membership in Open Group,
INCITS, CRA; Sponsorship
CRAIT Task Force

10%
Student Grants to Attend
USENIX Conferences
36%
Sponsorship of BSDCan,

DEBS, EuroBSDCon, IMC &
Middleware Conferences
1%

Standards Activities

4%

Database, Systems & Web

Executive Office Expenses

Chart 4: USENIX Administrative Expense 2007

Furniture, Equip. & Maint.
o

3%

Legal
6%

Rent & Utilities Depreciation
20% 6%

Telephone & Connectivity
6%

Board Travel & Meetings
6%
Miscellaneous
12%
Insurance
7%

Marketing & PR
7%
Administration
10%

Accounting
9%

Office & Computer Supplies
8%

Chart 5: SAGE Expenses 2007

Miscellaneous

5%

Personnel
53%

;LOGIN: AUGUST 2008

Website
12%

Publications
13%

Office Expenses
17%

USENIX NOTES 89

NSDI ’08: 5th USENIX Symposium on Networked
Systems Design & Implementation

San Francisco, CA
April 16—18, 2008

KEYNOTE: XEN AND THE ART OF
VIRTUALIZATION REVISITED

con fe‘re‘n ce ‘rep O'r'ts Ian Pratt, Senior Lecturer, University of Cambridge Computer

Laboratory, and Fellow, King’s College Cambridge

Summarized by Geoffrey Werner-Allen
(werner@eecs.harvard.edu)

THANKS TO OUR SUMMARIZERS

Mr. Pratt presented a talk in three parts. He began by
revisiting the Xen story, presenting lessons concerning

sth USENIX Symposium on Networked doing relevant research in academia. Next he explored

Systems Design & Implementation why virtualization is such a hot topic in research today.

(NSDI’O8) ..o, 90 Finally, he explored the changes in Xen since the 2004
SOSP paper and emerging trends in hardware-software

Brendan Cully co-design.

Eric Hielscher

Petr Marchenko Although Xen emerged naturally from the cloud-comput-

Jeff Terrace ing ethos and the needs of usage-based accounting, Mr.

Geoffrey Werner-Allen Pratt pointed out that there was a significant pause in its

early days, primarily because the funding agencies had
nothing to compare their project to. During this period,

First USENIX Workshop on Large-Scale Xen was release via the GPL to “friends and family”
Exploits and Emergent Threats and their team began to notice the differences in doing
(LEET'08), 105 development not for an academic paper, that is, when
Rik Farrow their creations had to run for more than the 30 minutes
Joshua Mason required to produce the graphs for the latest paper. They
kept working on the production-level aspects of their
software.
BSDCan: The BSD Conference m . _ _ ,
The mission of Xen is to provide the industry-standard
Mathieu Arnold open-source hypervisor. Xen developers are interested
Constantine A. Murenin in driving CPU development and showcasing new CPU
Florent Parent features, as well as providing the type of security neces-
Bjoern A. Zeeb sary for enterprise acceptance. As Xen has continued to
develop it has found use in some interesting and per-
BSDCan 2008 FreeBSD haps unforeseen areas, such as cell phones. Mr. Pratt
Developer Summit........................ 15 described plans that one cell-phone vendor has to run
three separate hypervisors on its phone to isolate critical
Bjoern A. Zeeb and Marshall Kirk McKusick phone functionality, vendor-supplied software, and user-

installed software from each other.

Why is virtualization hot at this particular moment? One
reason is that it is driven by the “scale out” occurring at
the enterprise level. Running each enterprise applica-
tion on a single server leads to server sprawl, with CPU
utilization of 5%-15% typical. Another reason involves
the things that typical operating systems have failed to
do well, including full configuration isolation, temporal
isolation for performance, spatial isolation for security,
and true backward compatibility. Virtualization has the
potential to solve many of these problems. Moreover,
the maintenance of a narrow interface to the hypervisor
and the ability to hide machine-specific details behind

90 ;LOGIN: VOL. 33, NO. 4

the hypervisor allows easier configuration. Other benefits
of virtualization include reduced downtime during mainte-
nance owing to the ability to migrate slices to other ma-
chines, the ability to rebalance load as workloads change,
and hardware fault tolerance through checkpointing and
replay.

Mr. Pratt discussed the issues concerning hypervisor
security. Although the existence of a hypervisor does add
to the attack surface, its small size should make it easier to
defend. He discussed network control software that their
group has been writing in OCaml, a language that allows
certain guarantees to be made about the program’s execu-
tion. In addition, there is additional complexity involved in
device emulation, so to the degree that this is required this
increases the complexity required in the hypervisor. He also
discussed the possibility of performing a “measured launch”
of the hypervisor to provide guarantees between boots. In
addition, moving some of the OS administrative functional-
ity outside the OS should help operating systems become
more robust and harder to disable. Other tricks that can

be used to improve hypervisor security include the use of
immutable memory and taint tracking techniques (detailed
elsewhere).

The next frontier in virtualization research should be mak-
ing virtualized systems easier to administer. In particular,
breaking the OS/HW bond should simplify the application
certification process. Currently, many software vendors re-
fuse to certify their applications on many hardware configu-
rations or in the presence of other applications. Instead of
certifying an application on top of many different hardware
and operating system combinations, software makers can
certify on a single operating system, which is then certi-
fied on top of Xen, meaning that the application can run

on a variety of different hardware configurations. We are
already starting to see application-specific operating systems
being developed in the presence of virtualization techniques
such as Xen. Virtual hardware also simplifies creating and
modifying operating systems, as well as allowing hardware
vendors to “light up” new features much faster.

In the final part of his talk Mr. Pratt discussed the process
of paravirtualization through several examples, including
MMU and network device virtualization. Interestingly, with
regards to MMU virtualization Xen proved that some of
the support that hardware vendors have added into their
systems, in particular allowing “nested page tables,” have
actually not performed as well as the original direct and
shadow page tables supported by Xen.

Network devices have proved extremely difficult to virtual-
ize, but new NICs are emerging with features that make

the process simpler and more effective. Xen developers
have divided NICs into four levels, 0 through 3, each with
increasing features allowing easier virtualization with better
performance. Level-0 NICs are standard NICs, requiring
significant hypervisor intervention to virtualize. Level-1

;LOGIN: AUGUST 2008

NICs have multiple receive queues, allowing these queues
to be assigned to VMs making heavy use of the network.
Level-2 NICs have enabled direct guest access, allowing the
NIC to do traffic shaping, firewalling, filtering, and other
processes. Level-3 NICs actually present to the system as
multiple PCI devices, simplifying device management at the
hypervisor level.

In conclusion, Mr. Pratt recommended the use of open
source software to gain early and continuing impact while
doing university research. In the future he sees hypervisors
becoming ubiquitous and spawning a new golden age of
operating system research.

Professor Birman from Cornell was curious about the ten-
sion between adding features, making the hypervisor more
like larger buggier operating systems, and consolidation,
possibly impacting performance but improving security. Mr.
Pratt pointed out that many of the new features he de-
scribed are actually being implemented outside of the core
hypervisor, meaning that they can be isolated from it for
the purposes of security. Greg Minshall from the University
of Washington asked about Xen’s impact on the previous
optimization that had been done at the hardware/software
boundary. Mr. Pratt responded that as machines get faster
this sort of optimization is less important and that Xen
does as little of this as possible. Professor Sirer from Cornell
asked why operating systems are unable to provide “virtual-
ization” at the POSIX level. Mr. Pratt replied that the inter-
face is simply too broad and high level. Tomas Isdal asked
whether Xen developers had a plan to scale to multiple
cores; Mr. Pratt replied that they did.

TRUST

Summarized by Eric Hielscher (hielscher@cs.nyu.edu)

B One Hop Reputations for Peer to Peer File Sharing
Workloads
Michael Piatek, Tomas Isdal, Arvind Krishnamurthy, and
Thomas Anderson, University of Washington

Michael began by explaining that peer-to-peer scalability
depends on user contributions but that users are often
reluctant to contribute. Current peer-to-peer systems
explicitly include contribution incentives such as tit-for-tat
servicing. Next he presented results of a measurement study
that show that increasing one’s contribution to BitTorrent
swarms has very little effect on one’s download rates. Fur-
ther, there is no fundamental lack of capacity in the swarms
nor a lack of interest. Rather, results from another study
show that the vast majority of bandwidth capacity in BitTor-
rent swarms is held by the top 10% of users (i.e., those with
the least incentive to contribute).

This motivates the main point of the present work: to make
incentives more effective at encouraging contributions. The
typical popularity of a single swarm is shaped like a bell
curve with a long right tail, as most users leave immediately

CONFERENCE REPORTS 91

after downloading. Ideally, we would like users to be able
instead to draw on all previous downloads for service. The
problem with tit-for-tat in BitTorrent is that the incentives
are applied only when users are actively downloading, and
only in the context of a single swarm. The observation made
is that peers should instead be rewarded for all contribu-
tions across all swarms.

A simple fix would be for peers to cache a local history

of their interactions with other peers and to reward peers
with whom they repeatedly interact who have contributed
to them in the past. However, a study of peer interactions
shows that repeat interactions are very rare. The proposed
approach is to implement one-hop reputations with limited
indirection. One hop is enough, since almost all peers are
connected through a very small number of the most popular
peers. The protocol involves key pairs as long-term IDs and
intermediary nodes to maintain accounting information

and provide signed verification receipts. Intermediaries are
discovered by gossiping during connection setup, and in the
default policy they are selected based on popularity. Inter-
mediaries receive priority service, and thus peers have in-
centive to serve as one. In the evaluation of the protocol, it
was shown that 97% of random peers shared an intermedi-
ary, on average 73% of intermediaries selected in a random
interaction are selected again within 100 interactions.

The authors conclude by pointing out that for peer to peer
to reach its full potential, persistent contribution incentives
are necessary, and one-hop reputations leverage the popular
minority of peers for this purpose. One questioner asked
why anyone would ever want to send directly to peers, since
traffic sent to an intermediary is far more valuable in terms
of the reciprocation it will garner. The response was that
peer traffic’s value will be inflated in the induced reciproca-
tion economy.

® Ostra: Leveraging Trust to Thwart Unwanted
Communication
Alan Mislove and Ansley Post, Max Planck Institute for Software
Systems and Rice University; Peter Druschel and Krishna P.
Gummadi, Max Planck Institute for Software Systems

Alan motivated his talk and work by pointing out that since
digital communication such as VolIP, email, and IM is so
low-cost, it can easily be abused to send unwanted com-
munications. This manifests itself in various forms includ-
ing spam and mislabeled content on YouTube, and users
are not easily held accountable for their actions since new
IDs can be created for free. Previous approaches to solving
this problem—such as filtering content, charging money
for sending messages, or introducing strong IDs—all have
shortcomings.

The authors present a solution to this problem called Ostra,
based on an ancient system for transferring money in India
called Hawala. The basic idea is to leverage existing offline
social trust relationships, since these are expensive to create
and maintain. Most communication systems have some sort
of implicit or explicit social network, and Ostra assumes

92

that links in this network are maintained by some trusted
site. Recipients of messages classify messages (e.g., perhaps
implicitly via deletion) as wanted or not. Messages between
peers are sent directly, but a link to a peer is broken over
time if that peer is on a path to a destination that is receiv-
ing unwanted messages. Each link has a credit balance, and
the balance is adjusted in favor of a message recipient if the
message was unwanted and vice versa otherwise. The credit
balance is bounded with a certain range, and the process

is iterated over intermediate peers in the event of no direct
link between the sender and the recipient.

The system guarantees that no user can send more spam
than the amount of spam he or she has received plus the
lower bound on link credit times the number of in-links

he or she has. Further, this holds for any subgraph, show-
ing that collusion doesn’t help attackers and neither does
the creation of many Sybil identities. Credit is decayed by

a fixed percentage daily to prevent a user from unfairly
being blocked. The authors simulated Ostra using a social
network taken from YouTube, as well as an email trace from
the MPI, and found that even with 20% of users being at-
tackers, only four spam messages were received by any good
user per day. Further, very few messages were delayed from
links reaching their credit limits. One person raised the
point that the classifications may not always be black and
white; for example, a message might be unimportant now
but important later on. The response was that the system
can work alongside other systems such as whitelisting and
that finding the proper classification notions is a difficult
issue.

® Detecting In-Flight Page Changes with Web Tripwires
Charles Reis, Steven D. Gribble, and Tadayoshi Kohno, Univer-
sity of Washington; Nicholas C. Weaver, International Computer
Science Institute

Charles began his talk by discussing the recent phe-
nomenon of ISPs injecting ads into the Web pages their
users visit. The work discussed attempts to detect such
in-flight changes to pages and measure them. The system
is implemented as JavaScript code, which runs in the cli-
ent’s browser, finds changes in the HTML of the page, and
reports them to the user and a central server. It works by
fetching and rendering the original page while fetching the
JavaScript code in the background from the page’s server as
well. This code contains a compressed version of the page’s
expected source code, and the JavaScript compares the two
versions. In a study involving 50,000 unique IP addresses,
657 clients saw changes from client software, ISPs, firewalls,
and malware.

Some of these changes inadvertently broke some pages by
causing JavaScript errors or interfering with forum posting,
and others introduced security vulnerabilities such as cross-
site scripting vulnerabilities. A major concern with this
problem is that it affects all Web pages—similar to a UNIX
root exploit—and that the Web developers are powerless

to fix the problem. Thus the authors caution users about

;LOGIN: VOL. 33, NO. 4

software such as client proxies, since they wield root-like
power. Further, the Web Tripwires tool helped find vulner-
abilities in such software, which have since been fixed.

A publisher of Web content could react in various ways to
its pages being altered. First, it could simply use HTTPS to
encrypt its pages. However, this is both costly and rigid in
that it can’t allow security checks or caching. Web Tripwires
offers an alternative that allows publishers to easily and
cheaply detect most changes, at the cost of somewhat lesser
robustness to attacks. The performance of Web Tripwires

is also much better than HTTPS, both in terms of latency
and throughput. More information on Web Tripwires can be
found at http://vancouver.cs.washington.edu.

® Phalanx: Withstanding Multimillion-Node Botnets
Colin Dixon, Thomas Anderson, and Arvind Krishnamurthy,
University of Washington

Colin began with a list of major botnet attacks that have oc-
curred in recent years, including the government of Estonia
being shut down by an attack for three to four weeks. He
then posed the question, “Why isn’t the problem with bot-
nets solved?” In one sense, it is solved for static content, in
that we can simply replicate content and use large CDNs. A
potential solution for dynamic content might involve replac-
ing all routers in the Internet, but this is not feasible. The
key ideas in the current work’s solution involve tieing the
fate of a server to a large part of the Internet in a way that is
scalable and deployable in the current Internet.

The mechanisms in the solution include numerous hosts
used as proxies to make packet filtering decisions, forward-
ing the unfiltered traffic to the server we wish to protect.
The nodes are used as mailboxes and hold each packet
while waiting for an explicit request from the server. Secure
random multipathing is used to protect communication.
Traffic is sent randomly among the mailboxes according to
a shared secret, and thus the botnet can only take one link
down while communication still continues. The mailboxes
negotiate a secret at connection setup time and use a light-
weight authenticator. This scheme necessitates a multipath
congestion control algorithm.

The problem still remains that if attackers sent traffic to

the server directly they could still bring it down. Thus a
filtering ring is used to drop unrequested Web traffic and to
allow only requested traffic to reach the server exactly once.
This is implemented by installing blacklists and whitelists
on the server’s routers. The scheme so far still only protects
established connections between a client and server. To ini-
tiate connections, the server sends the first packet requests.
Access to these requests is mediated by computational
puzzles or authentication tokens. The authors evaluated
their system by simulating attacks on PlanetLab, with favor-
able results.

An article about Phalanx begins on page 22 of this issue.

;LOGIN: AUGUST 2008

WIRELESS

Summarized by Geoffrey Werner-Allen
(werner@eecs.harvard.edu)

® Harnessing Exposed Terminals in Wireless Networks
Mythili Vutukuru, Kyle Jamieson, and Hari Balakrishnan, MIT
Computer Science and Artificial Intelligence Laboratory

The high-level goal of a MAC protocol is to transmit as
many packets as possible. Today, the dominant approach
to MAC protocols is CSMA (Carrier-Sense Multiple Ac-
cess). However, the problem with CSMA is that it prohibits
many transmissions that would have succeeded, owing to
its failure to address the exposed terminal problem. This is
the case where, although transmissions might seem to the
senders to conflict, the recipients are sufficiently separated
that they would have been able to receive the packet cor-
rectly. Instead of simple heuristic approaches that attempt
to generalize rules to each node in the face of fluctuating
bandwidth and channel properties, this work attempts to
use empirical evidence to determine when overlapping
transmissions can proceed.

Identifying simultaneous transmissions that can proceed
safely requires that each node maintain a conflict map that
describes whether or not it can transmit safely to node X if
it overhears node Y transmitting. The conflict map is built
based on observation of the loss rates associated with trans-
fers. Once they reach 50%, throughput would be higher

if the transmissions were scheduled sequentially rather
than in parallel, so this is the threshold for inclusion in the
conflict map. ACKs and the backoff policy must also be ad-
justed in the face of concurrent transmissions. To allow the
node to observe when transmissions conflict, the MAC layer
must both be able to recover the node address from unsuc-
cessful receptions, which is facilitated by its inclusion in
both the packet header and trailer, and pass up the header
before the rest of the packet, so that it can be accurately
time-stamped.

A prototype implementation is tested to see whether it can
produce no-CSMA behavior when the terminals are ex-
posed and CSMA-like behavior when the terminals conflict.
Indeed, experiments on a multi-node 802.11 testbed show
that their prototype is able to improve performance overall
by essentially acting like CSMA only when CSMA is actu-
ally needed.

Questions for the presenter included the choice of 50% as
the cutoff point for inclusion in the conflict map, whether
or not weighing the signal-to-noise ratio against the noise
floor might allow a simpler approximation of this algorithm,
and whether or not experiments in noisier environments
had been performed. Ms. Vutukuru responded that perfor-
mance is similar across a wide range of cutoff points near
the middle (30% to 60%), and that more tests were needed
in different environments to evaluate the impact of varying
parameters not yet experimented with.

CONFERENCE REPORTS 93

® Designing High Performance Enterprise Wi-Fi Networks
Rohan Murty, Harvard University; Jitendra Padhye, Ranveer
Chandra, Alec Wolman, and Brian Zill, Microsoft Research

Murty began by stating that more and more wireless is
being deployed in the enterprise and users are beginning

to develop the same high-capacity expectations for wireless
performance as they have for wired. However, currently de-
ployed enterprise wireless networks have many limitations.
Because of a phenomenon known as “rate anomaly,” the
performance of deployed access points is limited by their
slowest client. DenseAP seeks to revisit some of the original
assumptions surrounding enterprise wireless networks, spe-
cifically that the number of access points should be much
lower than the number of clients. By deploying a large num-
ber of access points and carefully controlling client associa-
tions, load balancing, and channel usage, DenseAP seeks to
deliver wired-like performance over wireless links.

The challenges this work faces are threefold. First, decid-
ing which wireless access points a client should associate
with (controlling association). Second, determining which
channel each access point should be operating on (channel
assignment). Finally, as clients enter and leave the network
and their bandwidth demands change, it is likely that as-
sociations will need to be revisited to balance load among
access points.

DenseAP controls client associations through a central
server, which, when a client begins sending out probe re-
quests, decides which access point is the best match for that
client and only allows that access point to respond to the
probe request. Association policy is dictated by the quality
of the connection and the demand present on each access
point. In general, available capacity is equal to the expected
transmission rate times the free air time at that access point.
To estimate the available capacity the authors use a mapping
between RSSI and throughput driven by empirical observa-
tions. To estimate free air time they observe the queuing
delay at each access point. Channel assignment between
access points is done by simply assigning each new access
point to the least-loaded channel. As clients move and their
behavior changes, associations may need to be reevaluated.
To do this, the central controller actively shifts load away
from access points that are incurring high stress.

The testbed used for the experiments in the paper is a
portion of a floor of a corporate office building. While this
area was normally served by only one corporate wireless
access point, during experiments up to 24 DenseAP nodes
(or DAPs) were used to service up to 24 clients. The authors
present results showing improvements in overall perfor-
mance, as well as attempting to isolate the effects of channel
assignment, DAP density, and their intelligent association

policy.
During questions, one person wondered whether it would

be possible to also allow clients to use multiple access
points. Mr. Murty replied that although this would require

94

changes to the client, which DenseAP avoids, it would

be interesting if possible. Professor Birman from Cornell
asked about what happens if the client associated with the
particular DAP selected by the central controller fails. Mr.
Murty replied that when the central controller observes
such a failure it will choose a new DAP for the client to as-
sociate with.

An article about DenseAP begins on page 41 of this issue.

® FatVAP: Aggregating AP Backhaul Capacity to Maximize
Throughput
Srikanth Kandula, Massachusetts Institute of Technology; Kate
Ching-Ju Lin, National Taiwan University and Massachusetts
Institute of Technology; Tural Badirkhanli and Dina Katabi,
Massachusetts Institute of Technology

Mr. Kandula described FatVAP, which is designed to address
several problems in current wireless 802.11 networks. The
first is that the backhaul bandwidth capacity of a particular
access point may be bottleneck limiting flows, meaning that
there is spare bandwidth at the sender that could be used

to send data through other access points. The second is that
choosing access points based on proximity combined with

a high density of clients leads to hotspots—overutilization
of certain access points, leaving spare capacity at others
that competing clients could be utilizing. Ideal performance
can be obtained by aggregating all access points usable by

a particular client or set of clients into one virtual access
point, with wireless and backhaul bandwidth equal to the
sum of its parts. However, this requires clients to be able to
multiplex their connections across multiple access points,
which is currently not possible. That said, their solution,
once implemented on one or a set of clients, requires no
changes to the access points themselves to increase client
performance.

To determine how to divide time among APs, FatVAP must
solve a scheduling problem. In general, if we have a set of
access points, each with a different drain capacity e and
available bandwidth w, then a client need not connect to
that access point for more than e/w of its time, referred to
as the useful fraction. This quantity subsumes link qual-
ity, contention, and backhaul capacity. As several examples
given showed, no greedy solution for this scheduling prob-
lem exists, as the problem is equivalent to a bin-packing
problem, with the bandwidth being the value and the time
spent at each access point being the cost, bounded by the
total time available.

This approach is difficult and presents many implemen-
tation challenges. First, to estimate wireless bandwidth,
synchronous acks can be used to measure the queue drain
rate on each access point; estimating backhaul bandwidth
can be accomplished through observing back-to-back large
packets. To allow reception from multiple hosts, FatVAP
uses 802.11 power save mode to compel access points to
cache packets for it while it rotates through others it is
using. A large set of client-side changes are needed, includ-

;LOGIN: VOL. 33, NO. 4

ing allowing the kernel to rotate through multiple APs by
spreading traffic through a number of different interfaces
above the kernel level. “Soft-switch” between access points
allows them to enable high-rate TCP through multiple ac-
cess points on top of FatVAP.

In conclusion, the authors have shown that FatVAP can
aggregate throughput, balance load, and adapt to changing
network conditions. In questioning, one person was curious
about why the authors focused on bandwidth while neglect-
ing latency. Mr. Kandula replied that further experiments
were necessary to assess the impact of FatVAP on latency.

m Efficiency Through Eavesdropping: Link-layer Packet
Caching
Mikhail Afanasyev, University of California, San Diego; David G.
Andersen, Carnegie Mellon University; Alex C. Snoeren, Univer-
sity of California, San Diego

In real networks, overhearing happens, meaning that even
if a route from A to C normally passes through B, some

of the time C may overhear the packet being transmitted
from A to B directly. In this case, it is advantageous to avoid
retransmitting the packet that C already has from B to C.
This scenario can also lead to unnecessary acknowledgment
messages. Earlier solutions to the overhearing and multiple
transmission problem have used caching, which introduces
an unacceptable amount of delay at each client between
transmissions.

To reduce retransmissions without introducing latency,
RTS-id embeds a packet identifier in the RTS/CTS 802.11
exchange. The packet IDs are based on a hash of the packet
contents, although RTS-id is careful not to include portions
of the packet that may change as it traverses multiple hops.

RTS-id was implemented on top of Cal Radio, using packet
modifications designed to look normal on nonparticipat-
ing nodes. The testbed consisted of three Cal Radio nodes,
although simulations were also performed on data gathered
from the RoofNet outdoor testbed. A state machine was
used to model packet forwarding behavior during the simu-
lations. Results show that RTS-id reduces retransmissions in
the face of overhearing, with savings naturally scaling with
the number of hops that the packet traverses. Because of the
way that RTS-id was implemented it can also work seam-
lessly alongside nodes not implementing the protocol.

Professor Levis from Stanford was curious about whether
the authors had investigated possibilities for spatial use as
a result of their work. Mr. Afanasyev replied that they were
considering this. Professor Karp from CMU asked whether
or not this could be combined with other forms of network
coding. Mr. Afanasyev wasn't sure.

;LOGIN: AUGUST 2008

LARGE SCALE SYSTEMS

Summarized by Jeff Terrace (jterrace@cs.princeton.edu)

® Beyond Pilots: Keeping Rural Wireless Networks Alive
Sonesh Surana, Rabin Patra, and Sergiu Nedevschi, University of
California, Berkeley; Manuel Ramos, University of the Philip-
pines; Lakshminarayanan Subramanian, New York University;
Yahel Ben-David, AirJaldi, Dharamsala, India; Eric Brewet,
University of California, Berkeley, and Intel Research, Berkeley

There has been considerable research done on deploying
network infrastructure into developing, rural areas around
the world, but the problem that Sonesh Surana et al. were
trying to solve is that, once an infrastructure is in place,

it's very difficult to keep it maintained and sustainable over
long periods of time. Two existing wireless networks were
studied: the Aravind Eye Hospital’s video-conferencing net-
work in southern India and the AirJaldi network in north-
ern India, which provides Internet access to rural users. The
largest problems facing sustainability are poor-quality grid
power, limited local expertise for maintenance and diag-
nosis, lack of full connectivity in the network for remote
management, and the physical location of networks residing
in remote locations that are difficult to reach.

Hardware faults in these two networks were dominated by
power-related faults. The problem in developing countries
is that instead of a steady, reliable voltage rating, grid power
can result in a large range of voltages, which ends up dam-
aging electronic equipment. A UPS does not help, because
although it provides reliable power during an outage, it
passes power directly to the device during normal opera-
tion, which still results in bad voltages. Because commercial
products were too expensive and sensitive, one solution
was a custom-built low-voltage disconnect circuit to guard
against low-voltage situations combined with solar power to
handle peaks and swells in the power grid. A push-based
PhoneHome system was also implemented that uses the cell
phone network to report node, link, and network properties
every 3 hours to a central server. Satellite links were also
used to provide additional entry points into the network to
address software and link failures causing some nodes to be
unreachable. A cheap hardware watchdog device was also
used to reboot routers that fail.

The additional devices and methods used here eliminated
the need for weekly reboots, reduced power failures, and
reduced prolonged downtime in the two networks; as a
result, both networks are now financially stable.

® UsenetDHT: A Low-Overhead Design for Usenet
Emil Sit, Robert Morris, and M. Frans Kaashoek, MIT CSAIL

Emil Sit began by stating that there are over 2 million
articles and files that arrive on Usenet every day, which
translates to 30 MB/s. Usenet was one of the first P2P sys-
tems created. Servers that store Usenet articles are distrib-
uted geographically and as an article is posted to a server,
the article is passed to the server’s peers until eventually

CONFERENCE REPORTS 95

the article is held on all Usenet servers. This system makes
it difficult to create a Usenet server because of the large
volume of data that the server must be able to store. Usenet-
DHT is a shared Usenet server that allows multiple servers
to cooperatively share Usenet articles in a DHT.

UsenetDHT combines the storage space of multiple serv-
ers by distributing a single copy of a Usenet article among
them. It separates article headers from article contents, and
it stores only a single copy of an article’s contents in the
DHT. All servers keep a copy of the article headers (which
makes up less than one percent of the storage cost) to allow
clients to see headers immediately. By leveraging Usenet-
DHT, several small sites can benefit from the resources of
its peers and can cooperatively run a Usenet server. Usenet-
DHT requires high throughput and data durability, but cur-
rent algorithms for DHTs are synchronization heavy. Each
node in the network must sync with several other nodes to
provide durability and replication, which is a slow process
over a WAN. To solve these problems, UsenetDHT uses
Passing Tone, an algorithm on top of DHash that balances
minimizing the bandwidth used between nodes and mini-
mizing the amount of state that needs to be stored on each
server. Passing Tone only keeps local synchronization data,
shares the responsibility of ensuring proper replication with
its neighbors, and can make decisions about replicas by
only communicating with its immediate neighbors. Passing
Tone is a simple algorithm that minimizes overhead but still
performs almost as well as previous algorithms.

A question was asked about what UsenetDHT provides

for censorship resilience. In reply, the speaker stated that
there is an advantage in replicas being distributed, but that
he doesn’t envision UsenetDHT replacing Usenet because
the latency might be too high across servers. UsenetDHT
does not affect censorship. In reply to another question,
the speaker stated that there is no public information about
how much of Usenet is spam.

® San Fermin: Aggregating Large Data Sets Using a Binomial
Swap Forest
Justin Cappos and John H. Hartman, University of Arizona

Justin Cappos said that computing results of a computation
over a large, distributed data set can be difficult. When the
amount of data you need to process is large, aggregating
the data at a single location can take too long to process,

so distributed aggregation algorithms have been devised.
An example when this type of algorithm is needed is when
a programmer is trying to analyze end-user traces of a
program’s execution. The programmer is only interested

in a total sum, not individual values, but trace files can be
too large to transfer to a single point. Instead, the traces
can be processed locally and just the aggregated sums can
be transferred as the result. The goals of an algorithm for
aggregating large data sets are to have complete coverage,
have no duplicates in the answer, have no partial data,
tolerate node failures, not overload any individual node, and
produce a result fast.

96

San Fermin is an algorithm for large data aggregation that
uses a binomial swap forest to calculate results. Each node
is assigned a unique identifier to prevent duplicate and
missed nodes. Each node then starts swapping data with
other nodes by considering each bit in its ID value from
right to left and choosing another node that has a different
target bit and has the same prefix. Each node has its own
view of the network, that is, as a binomial swap tree, and
by aggregating data with the nodes it chooses to swap with,
it will eventually have the aggregated result that is desired.
Since every node runs the algorithm, the first node to com-
plete the aggregation reports its result and all other nodes
can stop. This method allows the aggregation to be robust
to node failures since a node will usually swap its data with
multiple other nodes before failing, so its information is
already in the binomial swap tree of others. The prototype
of San Fermin is built on top of Pastry, which provides IDs,
failure detection, and routing. To evaluate San Fermin, the
prototype was tested on 100 PlanetLab nodes and compared
to SDIMS, which is also built on top of Pastry.

The evaluation showed that both algorithms perform well
with small amounts of data, but SDIMS starts to fall apart
with a large amount of data. San Fermin has a much lower
variance of completion time than SDIMS, and it scales much
better. Increasing the number of nodes from 32 to 1024

or the data size from 256 kB to 1 MB only increases the
completion time by a factor of 4. When 50 failures occurred
during aggregation, the final results were only missing 5-11
nodes. If there is a large variance in bandwidth capacity
across nodes, the faster nodes tend to finish first, which is a
desirable property.

The conclusion was that San Fermin performs aggregation
better than previous algorithms for large data sets, scales
well, and is robust to failures. In reply to questions, Cappos
stated that San Fermin applies only when exact results are
needed instead of trying to approximate, and that San Fer-
min differs from MapReduce because MapReduce focuses
on distributed computation, whereas San Fermin may only
be computing a very simple operation but wants to avoid
centralizing the data.

FAULT TOLERANCE

Summarized by Petr Marchenko (p.marchenko@ucl.ac.uk)
Awarded Best Paper!

® Remus: High Availability via Asynchronous Virtual Ma-
chine Replication
Brendan Cully, Geoffrey Lefebvre, Dutch Meyet, Mike Feeley,
and Norm Hutchinson, University of British Columbia; Andrew
Warfield, University of British Columbia and Citrix Systems, Inc.

Brendan Cully presented Remus, a system that allows un-
modified software to be protected from the failures of the
physical machine on which it runs. In case of a failure, a
running system can continue its execution on an alternative
physical host with only seconds of downtime while com-

;LOGIN: VOL. 33, NO. 4

pletely preserving its internal state. Remus uses virtualiza-
tion, whereby protected software is encapsulated in a virtual
machine, and its runtime state is propagated to a backup
host at a high frequency, e.g., 40 times per second.

This state propagation is possible because of virtualization,
which allows running VMs to migrate between physical
hosts. Remus applies asynchronous whole-system replica-
tion at particular checkpoints, and the primary server
remains productive between the checkpoints. Remus buffers
output until a more convenient later time in order to delay
the synchronization and perform payload computation. This
technique is called speculative execution. It yields substan-
tial performance benefits and allows checkpointing intervals
on the order of tens of milliseconds. To keep the primary
system and backup hosts consistent, Remus does check-
pointing, which has to deal with CPU and memory replica-
tion, network buffering, and disk buffering. Memory and
CPU replication are based on Xen’s existing live migration
mechanism. Network input and disk reads are applied to
the system immediately; however, the network output and
disk writes are buffered until a checkpoint is performed.
Remus’s protection overhead mainly exists from checkpoint-
ing and network delays introduced by network buffering.

Fred Douglis asked about the effects of network activity

on high-throughput applications. Brendan said that the
network-sensitive applications incur higher performance
overhead. He added that the results of the SPECweb bench-
mark are presented in the paper and that Remus provides
one-quarter of applications’ native performance. Amin Bada
questioned the large amount of data that was transmitted
across the network, not all of which was strictly necessary
for Remus’s operation. Brendan acknowledged that they did
not evaluate this in the work, but using more focused data
might offer a significant performance improvement. Some-
one from the audience was interested in whether Brendan
and his co-workers tried to experiment with hardware
virtualization for their system. The speaker said that these
sorts of experiments were not done because of the absence
of appropriate equipment, but it would be an interesting
direction for their future work.

® Nysiad: Practical Protocol Transformation to Tolerate
Byzantine Failures
Chi Ho and Robbert van Renesse, Cornell University; Mark Bick-
ford, ATC-NY; Danny Dolev, Hebrew University of Jerusalem

Distributed systems and protocols such as DNS, BGP, and
OSPF are designed to tolerate only crash failures; how-
ever, it is crucial to have the ability to deal with Byzantine
failures. Chi Ho discussed Nysiad, a technique for trans-
forming a scalable distributed system or a network protocol
designed to tolerate only crash failures to one that tolerates
arbitrary failures. It uses a variant of Replicated State Ma-
chine (RSM) to translate Byzantine faults into crash faults.

The state machine of a host is replicated onto the guards
of the host, together constituting an RSM. Nysiad’s replica-
tion protocol, OARcast, ensures that the guards of the host

;LOGIN: AUGUST 2008

remain synchronized. OARcast provides the following prop-
erties: All correct guards deliver a message if one correct
guard does; the messages from a single origin are delivered
in the same order; and a compromised host cannot forge a
message of a correct host. When the communication graph
is unknown, the common case, Nysiad has no good way of
determining which hosts will be communicating with other
hosts. In this case, the replication protocol will not work,

as it relies on the trustworthiness of the sender’s guards.
The same problem arises when a host changes its guards or
when reconfiguration takes place. To handle this problem,
Nysiad introduces a logically centralized trusted certifica-
tion service, Olympus. It is involved only when changing
the communication and guard graphs. It produces signed
certificates for hosts containing information that is sufficient
for a receiver of a message to check its validity. Owing to
the increased number of control messages sent per single
end-to-end message, Nysiad’s message latency is three times
higher than the latency in the nonconverted system.

An attendee from Microsoft Research was curious how the
system behaves when a host lies consistently. In response,
Chi said that Nysiad includes additional protocols, which
were not mentioned in the talk, that deal with this problem.
An attestation protocol guarantees that messages delivered
to the guards are a valid execution of the protocol and a
credit protocol forces a host to either process all its input
fairly or to ignore all input.

®m BFT Protocols Under Fire
Atul Singh, Max Planck Institute for Software Systems and Rice
University; Tathagata Das, IIT Kharagpur; Petros Maniatis,
Intel Research Berkeley; Peter Druschel, Max Planck Institute for
Software Systems; Timothy Roscoe, ETH Ziirich

Byzantine Fault Tolerant (BFT) protocols for replicated
systems have received considerable attention in the systems
research community. However, it is hard to evaluate these
protocols and distinguish the best one under certain condi-
tions. This is because the BFT protocols are implemented
in different languages, may require nontrivial libraries,

and depend on particular systems. Thus, the implementa-
tion-based approach for comparison of BFT protocols is not
always possible. Atul Singh presented BFTSim, a simulation
environment for performance-modeling-based comparison
of BFT protocols. The system includes a high-level protocol
specification language, an execution environment, and a
network simulator.

The protocol specification language allows one to capture
the salient points of protocols without drowning in the
implementation details (e.g., threads and cryptographic
primitives). The network simulator provides the ability to
explore protocols under different network conditions. The
execution system runs the protocols and it emulates the
execution overhead by introducing delays. Thus, a program-
mer has to specify the cost of a protocol’s primitives, such
as cryptographic operations.

CONFERENCE REPORTS 97

Atul and his co-workers verified the correctness of BFTSim
by comparing the evaluation of Zyzzyva, PBFT, and Q/U
protocols under their simulator and the real evaluation
presented in the literature. BETSim was able to match the
performance graph for the real protocols with an error less
than 10%. BFTSim makes BFT protocols more accessible, as
it offers a unified system for protocol performance compari-
son under certain network conditions.

There was a question about whether the protocol specifi-
cation language captures the complexity of the protocol
implementation such as lines of code. Atul explained that
it does, as the amount of code in the specification language
is proportional to the amount of code in the protocol’s
implementation.

MONITORING AND MEASUREMENT

Summarized by Eric Hielscher (hielscher@cs.nyu.edu)

® Uncovering Performance Differences Among Backbone
ISPs with Netdiff
Ratul Mahajan and Ming Zhang, Microsoft Research; Lindsey
Poole and Vivek Pai, Princeton University

Ming began by pointing out that there have been numerous
studies done on evaluating and comparing systems such as
file systems, databases, and Web servers but there has been
little such work done on evaluating and comparing differ-
ent ISPs. Thus customers don’t have enough information to
make a good decision as to which ISP is the best for their
needs. The current state of the art involves service level
agreements between customers and their ISPs in which the
ISP guarantees some aggregate performance, something that
doesn’t easily translate into an assessment of perceived end-
user experience.

The requirements the authors outlined to structure their
study include that the ISP comparisons be both relevant to
customers (by measuring end-to-end paths target destina-
tions of interest and making comparisons based on work-
loads similar to their own) and useful to ISPs (by helping
them to account for geographic presence and to identify
bad Points of Presence [PoPs| or destinations). The ideal
architecture of the comparison framework would involve
deploying probes inside every PoP of the ISPs, and taking a
probe from every PoP to every destination on the Internet.
However, the overhead would be too high. In the Netdiff,
probers are deployed at the edge of the network, and probes
are sent from ends to various destinations on the Internet—
for example, from an ingress PoP to an egress PoP of an ISP.
A single centralized controller sends probe lists to all prob-
ers, which then send back their results.

The system is able to generate a complete snapshot of each
of 18 backbone ISPs using between 5,000 and 23,000
probes in under 20 minutes, a significant improvement
over another similar system called Keynote. The system

is deployed on PlanetLab and has been generating such

98

snapshots every 20 minutes for the past year. The compari-
son methodology involved using path stretch and grouping
paths based on length and differentiating between paths

to the destination on the Internet as well as internal paths,
with ISPs ranking very differently on the various metrics.
Detailed information on the data as well as the ability to
generate individualized comparisons is available at http://
netdiff.org.

® Effective Diagnosis of Routing Disruptions from End
Systems
Ying Zhang and Z. Morley Mao, University of Michigan; Ming
Zhang, Microsoft Research

Ying began by stating that the goal of his work is to diag-
nose routing disruptions purely by using end systems, a
departure from existing approaches, since they are con-
trolled by end users and needn’t use ISPs’ proprietary data.
The desire for such diagnosis comes from the fact that

such disruptions impact application performance as well as
causing high loss and long delays. The approach taken only
requires probing from end hosts with traceroute and can
cover all PoPs of a target ISP as well as most destinations on
the Internet. Disruptions are identified by comparing paths
that are consecutively measured. Some challenges involved
in this approach include limited probing resources, lim-
ited coverage of probed paths, and issues related to timing
granularity and measurement noise.

The system’s architecture involves collaborative probing by
a set of distributed hosts, each of which sends traceroutes to
different destinations on the Internet to learn routing state,
improve coverage, and reduce overhead. Events are then
classified according to ingress/egress changes into three
types: the ingress PoP changes, the egress PoP changes, or
neither does. Events are then correlated both spatially and
temporally, since events happening close together in space
or time are likely due to a few root causes. They employ an
inference methodology by compiling pieces of evidence that
support various causes such as an egress link being down.
They then list all likely causes of each event of interest and
build an evidence graph that maps evidence nodes to cause
nodes close together in time. A conflict graph is also gener-
ated, with nodes that represent evidence that conflicts with
a given event, to reduce cause candidate sets, and a greedy
algorithm is used to search for a minimum set of causes
while covering all evidence and having minimal conflicts.

Five large ISPs were monitored via a deployment on Planet-
Lab, covering all of the ISPs’ PoPs, with refreshes occurring
every 18 minutes. The results show that many events dis-
covered were internal changes, something that BGP-based
methods wouldn't find. The system was validated against
existing BGP-based approaches as well, with somewhat high
error rates owing to limited coverage, coarse-grained prob-
ing, and measurement noise. The system performed well
enough to be usable for real-time diagnosis.

;LOGIN: VOL. 33, NO. 4

m Csamp: A System for Network-Wide Flow Monitoring
Vyas Sekar, Carnegie Mellon University; Michael K. Reiter,
University of North Carolina, Chapel Hill; Walter Willinget,
AT&T Labs—Research; Hui Zhang, Carnegie Mellon University;
Ramana Rao Kompella, Purdue University; David G. Anderson,
Carnegie Mellon University

Vyas began his talk by pointing out that the needs for net-
work monitoring stem from things such as traffic monitor-
ing, analysis of new user applications, and network foren-
sics. In particular, good traffic measurements, including
measurements of fine-grained traffic structure, are needed.
Some design goals include limited resource consumption on
routers, high flow coverage, ability to specify network-wide
goals, and low data management overhead. Current systems
for network monitoring employ uniform packet sampling on
routers, with aggregation of individual router data into flow
reports. This results in a bias toward large flows, coarse
goal specifications, and redundant measurements.

The proposed system, cSAMP, randomly samples flows
rather than packets to solve these issues. Each router
hashes a tuple consisting of the network protocol and the
source and destination IP addresses and ports to compute
a FlowID. Each router in the network is configured to store
a different subset of the hash function’s range. This allows
for global configuration (i.e., routers are not required to
communicate during sampling). To allow for network-wide
configuration, different hash ranges are configured per
origin-destination pair in the network (e.g., NYC/PIT). A
framework is provided for generating sampling manifests
(the configuration files for the routers). This involves a
linear programming problem, which takes as inputs origin-
destination pair information and router resource constraints
and outputs the optimal sampling strategy that maximizes
traffic and coverage.

cSAMP was evaluated against fixed rate and maximal flow
sampling as well as packet sampling. Its flow coverage was
2-3 times better than packet sampling and 30% better than
maximal flow sampling. In addition, cSAMP is signifi-
cantly better than the other methods at achieving minimal
fractional coverage and network-wide goals. It is robust to
traffic dynamics and scalable. A question was asked about
whether cSAMP could be used for per-flow rate-limiting ap-
plications, and the response was that the current infrastruc-
ture is geared toward near-real-time analysis of flow reports
rather than real-time monitoring for rate-limiting.

® Studying Black Holes on the Internet with Hubble
Ethan Katz-Bassett, Harsha V. Madhyastha, John P. John,
and Arvind Krishnamurthy, University of Washington; David
Wetherall, University of Washington and Intel Research; Thomas
Anderson, University of Washington

Ethan started off his talk by pointing out that global reach-
ability is a basic Internet goal. In use, the Internet seems
usually to have such reachability, but there are numerous
cases where this isn't true and there are transient reach-

;LOGIN: AUGUST 2008

ability problems. The Hubble system aims to automatically
identify persistent reachability problems. The algorithm

it employs includes three steps. First, distributed ping
monitors detect when a destination becomes unreachable.
Second, reachability analysis is conducted using distributed
traceroutes. Finally, the problem is classified. To detect
whether the problem involves the forward or backward link
between the source and the destination, Hubble employs IP
address spoofing by having another source send a packet

to the destination with the first source as its spoofed 1P
address. If the original source then hears a response, we
can conclude that the problem was with the forward link;
otherwise, it must be with the backward link.

Problems are detected by pinging destinations every two
minutes. A destination is reported after a series of failed
pings. A BGP table is maintained from RouteViews feeds,
allowing for an [P-address-to-AS mapping. Next, the extent
of the problem is assessed by using traceroutes to gather
topological data, with probing continuing while the problem
persists. Analysis is performed to determine which trace-
routes reach the destination. Next, the problem is classified
according to ISPs, routers, and destinations, in order to help
operators diagnose and repair it.

The evaluation of Hubble presented in the talk focuses on
two questions: How much of the Internet is monitored, and
what percentage of paths is analyzed for each given prefix?
The results show that, every two minutes, 89% of the Inter-
net’s edge space and 92% of ASes are monitored. In addi-
tion, for 60% of prefixes, Hubble monitored routes through
all ASes on RIPE BGP paths to the prefix. Further results
show that spoofing works well and that many Internet holes
last for more than 10 hours and most were cases of partial
reachability. An interesting result was that multihoming
may not give resiliance to failure, since many multihomed
prefixes had problems in which multiple traceroutes termi-
nated in one provider while the prefix remained reachable
through another provider. Hubble is running continuously,
and a map of ongoing problems is available at http://hubble.
cs.washington.edu.

PERFORMANCE

Summarized by Petr Marchenko (p.marchenko@ucl.ac.uk)

B Maelstrom: Transparent Error Correction for Lambda
Networks
Mahesh Balakrishnan, Tudor Marian, Ken Birman, Hakim
Weatherspoon, and Einar Vollset, Cornell University

Mahesh Balakrishnan started by explaining the problem
that TCP/IP has when it is used in high-speed lambda
networks. TCP/IP was designed to provide connectivity in
congested networks; however, in networks such as Tera-
Grid with 40-Gbps links, there is no congestion but there
are packet drops because of dirty fiber, misconfiguration,
and switching contention. TCP/IP uses a feedback loop to
recover lost packets, which results in dramatic throughput

CONFERENCE REPORTS 99

reduction. A loss rate of 0.1% is sufficient to reduce TCP/IP’s
throughput by an order of magnitude.

As a solution for this problem, Mahesh proposed the Mael-
strom Error Correction appliance, a rack of proxies resid-
ing between a sender and a receiver in a WAN link. These
proxies apply Forward Error Correction (FEC) for the traffic
being transmitted over the link. The sender proxy encodes
every five data packets in three FEC packets, and the re-
ceiver proxy checks the correctness of data packets and uses
FEC to recover lost or damaged data packets. This tech-
nique works well for random losses but not for burst losses.
Therefore, Maelstrom uses a new encoding scheme called
layer interleaving, which applies extra correction packets
over the blocks of packets (layers), using three layers of dif-
ferent length.

Maelstrom was evaluated on the Emulab testbed. It is

able to cope with loss rates up to 2% without significant
throughput degradation, whereas TCPF/IP’s performance de-
grades dramatically when loss rate is increased from 0.01%
to 1%. The overhead introduced by Maelstrom does not
depend on the length of the links, but only on the data rate.
The proposed solution is transparent, as it does not require
modification of network infrastructure and software. Thus,
TCP/IP can be run over Maelstrom.

Michael Walfish wondered why they rejected the possibility
of using rateless code in their paper. Mahesh admitted that
rateless code could be used in their system; however, he did
not explain why they found it unusable but suggested tak-
ing this question offline. One attendee asked for a clarifica-
tion of the difference between this work and the work pre-
sented at NSDI four years ago. Mahesh agreed that the work
has some similarities, but the earlier one was doing error
correction in the network; thus, their deployment models
are completely different. Bob Read from Facebook asked
whether Maelstrom supports n + 1 connectivity or whether
there is always one-to-one mapping. Mahesh responded
that if there are several connection points, they have to be
paired; therefore, it is always one-to-one mapping.

® Swift: A Fast Dynamic Packet Filter
Zhenyu Wu, Mengjun Xie, and Haining Wang, The College of
William and Mary

Zhenyu Wu addressed the problem of fast dynamic packet
filtering. Dynamic filtering is essential for building network
services, network engineering, and intrusion detection,
where it is required to adjust the filter at runtime. When
there is a dynamic filter update, the traditional filters such
as BSD Packet Filter (BPF) requires three preprocessing
phases: compilation of a new filter, user-kernel copying (as
the filter runs in the kernel), and security checking to make
sure that a new filter can be safely run in the kernel. These
stages prolong filter update latency, which results in misses
of hundreds or even thousands of packets. This gap

100

can cause serious problems for critical applications such as
intrusion detection systems.

Zhenyu presented SWIFT, a packet filter that takes an alter-
native approach to achieving high performance, especially
for dynamic filtering tasks. Like BPF, SWIFT is based on

a fixed set of instructions executed by the in-kernel inter-
preter. However, SWIFT is designed to optimize the filtering
performance with powerful instructions and a simplified
computational model. Powerful instructions allow SWIFT to
accomplish common filtering tasks with a smaller number
of instructions. This speeds up static filtering and allows
removing the filter compilation stage in filter updates,
which improves the dynamic filtering performance. SWIFT
eliminates security checking during filter update; instead, it
is banned from controlling the execution path and storing
data. This prevents it from tampering with the kernel.

Simplifying the filter update procedure by removing the
compilation and security checks allows SWIFT to achieve at
least three orders of magnitude lower filter update latency
in comparison with Linux Socket Filter (LSF). This reduces
the number of missing packets per connection by about

two orders of magnitude. The powerful instruction set and
simplified computational model increase filtering speed;
thus, SWIFT outperforms LSF by up to three times in terms
of packet processing speed.

SECURITY

Summarized by Brendan Cully (brendan@cs.ubc.ca)

® Securing Distributed Systems with Information Flow
Control
Nickolai Zeldovich, Silas Boyd-Wickizer, and David Maziéres,
Stanford University

It is very hard to build secure distributed systems. One
major reason is simply code size: Application code can run
into millions of lines, much of which is unaudited third-
party library code of uncertain provenance. Within these
large applications, even tiny vulnerabilities can lead to
catastrophic data exposure. Although it isn’t feasible to fix
every application bug, systems such as Asbestos, HiStar, and
Flume demonstrate that it is possible to prevent untrusted
code from seeing private data in the first place. They do
this using decentralized information flow control (DIFC) to
track data as it flows across applications and enforce access
control rules on that data. For example, a database credit
card query might be labeled according to the user creden-
tials supplied with it, and data flow control could then
ensure that the response is only visible to the same applica-
tion path that provided the credentials.

Current DIFC systems are limited to applications running
on a single host. Nickolai Zeldovich presented a system,

called DStar, that allows DIFC to be enforced across a net-
work of mutually distrusting applications. This is done by

;LOGIN: VOL. 33, NO. 4

delegating local labels to an export process on each physical
host, which uses self-signed labels (in which the public key
of the exporter is part of the label name) to transfer labels
over the network, where they may be converted back to
local labels. To support decentralized flow control, any pro-
cess can create new labels, remove labels it owns, and grant
the ability to remove labels to other processes.

Because DStar’s trust model is decentralized, it is possible to
use flow control even across multiple operating systems. For
instance, highly sensitive data might be processed under the
HiStar environment, but less sensitive data could be handed
off to Linux systems or even completely untrusted cloud
computing systems.

An audience member asked how this category system differs
from a normal capability system. Nickolai responded that
categories are strictly more general. For instance, they make
it possible to assert negative access rules.

® Wedge: Splitting Applications into Reduced-Privilege
Compartments
Andrea Bittau, Petr Marchenko, Mark Handley, and Brad Karp,
University College London

The number of reported security vulnerabilities continues
to increase every year. This is partly because program-
mers ignore the principle of least privilege. Andrea Birtau
argued that they do this because the process-based privilege
mechanisms commonly available now are not fine-grained
enough to provide good protection. Wedge is a system
designed to help with this problem in two ways: first, by
providing a simple partitioning mechanism called sthreads,
which only shares memory with other sthreads that have
been explicitly tagged, and second, by introducing a tool
called crowbar which helps to find good partition strategies
for existing legacy applications.

The standard approach to privilege separation is to fork
when changing privilege levels, using file descriptors
between processes to share data. Unfortunately, it's easy to
accidentally leak information to child processes, because
memory is copied into them by default, and so it must be
manually scrubbed before the child begins executing. It’s
also hard to share information, because it must be serialized
across a file descriptor. Sthreads avoid the latter problem be-
cause, like standard threads, they run in the same address
space. They also avoid the former problem because they

can only see memory in other sthreads for which they have
been granted a capability. Sthreads associate a tag with all
memory they allocate and may grant tags to other sthreads.

It would be desirable to apply this mechanism to existing
code, but ad hoc analysis of how data is shared among tasks
in an existing monolithic application is impractical. For
example, the Apache Web server accesses over 600 differ-
ent memory objects. Manually tagging each of them would
be both painful and hard to get exactly right. Static analy-
sis may also fail (e.g., because of function pointer usage).

;LOGIN: AUGUST 2008

Crowbar attempts to discover partitions by observing the
actual access patterns of running applications, using the Pin
dynamic instrumentation system.

Andrea was asked about his experience designing applica-
tions using Wedge. He told the audience that he wrote a
DNS server from scratch with sthreads and didn't feel that
explicit memory tagging required significant extra effort.
Converting legacy code was of course much more difficult.

ENERGY

Summarized by Geoffrey Werner-Allen (werner@eecs.harvard.
edu)

® Reducing Network Energy Consumption via Sleeping and
Rate-Adaptation
Sergiu Nedevschi and Lucian Popa, University of California,
Berkeley, and Intel Research, Berkeley; Gianluca Iannaccone and
Sylvia Ratnasamy, Intel Research, Berkeley; David Wetherall,
University of Washington and Intel Research, Seattle

The rising energy consumption of networking-related equip-
ment is a pressing issue, given rising energy costs and the
increased recognition of the impact of CO, emissions on the
global climate. Given that most network equipment is provi-
sioned for maximum load, which is rarely reached, network
devices provide a great opportunity for power savings.
Power consumption should reflect utilization, not capacity.
This work explores two techniques to reduce power con-
sumption: sleeping, that is, disabling routers for periods of
time, and frequency scaling, that is, reducing the process-
ing speed of the router itself. Combined, these techniques
should reduce both the active and the idle power consump-
tion of routers. Given that new routers are beginning to

be shipped with the ability to sleep and rate-adapt, these
techniques are a promising way to reduce power consump-
tion while protecting performance.

In general, sleep states consume much less power than even
idle ones; however, the transition time to awaken the router
when data arrives is a concern. The authors assume that the
router can be awakened by either a timer or link activity. To
create periods in which a link can sleep, they buffer packets
at the link and then transmit them through in a burst.
Coordinating these buffer and burst periods throughout a
network can ensure that the introduced latency does not in-
crease as data traverses multiple hops. However, it turns out
that their experiments show that the benefits of coordinat-
ing sleeping are minimal compared to uncoordinated sleep-
ing, which captures most of the available energy savings.

Rate adaptation involves lowering the processing rate of the
router to just the point necessary to keep up with link traf-
fic. In general, the perfect link adaptation algorithm is not
implementable, as it requires future knowledge of link activ-
ity. Instead, the heuristic algorithm the authors implement
observes the local queue depth and current rates in order

to choose future rates. As their analysis shows, uniformly

CONFERENCE REPORTS 101

spaced variable rates are better for capturing the benefits of
rate adaptation then the exponentially spaced rates available
on many routers currently shipping. The authors evalua-
ted their approach through simulations using power states
and transitions from an Intel NIC. They found that, on this
particular card, sleeping produced better results than rate
adaptation, but they point out that this card, like many oth-
ers, was not really designed for power savings. They then
present a complete model of power savings that will allow
them to evaluate future cards. Finally, they showed results
indicating that, when comparing rate adaptation and sleep-
ing, there is a utilization threshold that serves as a crossover
point: Under it, sleeping performs better; after it, rate adap-
tation performs better.

Brian Zill from Microsoft Research asked whether the
hardware used for this purpose in typical networking is
optimized for energy consumption, and whether many of
the benefits they described may be achieved simply through
better hardware design. Mr. Nedevschi responded that
today’s networking hardware is indeed not particularly
power-aware, but that this is beginning to change. An-
other questioner asked what percentage of the total energy
consumption of networked equipment was tied up in the
switching hardware that they are improving. Mr. Nedev-
schi wasn't sure. Finally, another questioner asked how this
would affect TCP congestion control, and Mr. Nedevschi
pointed out that they were careful that their changes pro-
duced no impact on TCP performance.

® Energy-Aware Server Provisioning and Load Dispatching
for Connection-Intensive Internet Services
Gong Chen, University of California, Los Angeles; Wenbo He,
University of Illinois at Urbana-Champaign; Jie Liu and Suman
Nath, Microsoft Research; Leonidas Rigas, Microsoft; Lin Xiao
and Feng Zhao, Microsoft Research

Jie Liu stated that IT servers are the energy hog of the IT in-
dustry. The speaker pointed out that the increase in server
energy consumption between 2000 and 2006 was enough
to power 5.8 million American homes. Obviously, there is

a chance to save a significant amount of energy if server
energy consumption can be better managed. And the op-
portunity exists, because server load fluctuates for a variety
of reasons throughout the day. This work focuses on adjust-
ing the number of servers needed to serve MSN Messenger,
a connection-intensive application. Because it is costly to
migrate connections between servers, the authors focus on
predictive techniques to identify the number of servers to
have active at any given moment, combined with different
approaches to load balancing connections across the servers
active at any given moment. In addition, because shutting
down servers conserves the most energy, the authors focus
on ways to completely shut down servers when not in use.

A brief overview of the MSN Messenger architecture was
presented. The servers targeted for power savings are the
connection servers, which are in charge of maintaining
persistent client connections but not storing a great deal of

102

client state. The authors identify three metrics: service avail-
ability, service continuity, and service latency. Each server
has a bounded number of connections and a bounded con-
nection rate at which it can accept new connections. For the
servers and application studied, the number of connections
is on the order of 100k, whereas the server can only add
around 70 new connections per second, meaning that they
can be modeled by leaky buckets with tiny input pipes.

The slow speed with which connections can be added also
makes forward-looking provisioning all the more important.

The first step is load forecasting, in which regression models
incorporating daily and seasonal fluctuations, along with
the current state of the system, are used to predict load. In
the experiments they performed, the system was trained on
five weeks of data and then tried to predict a single week.
Load dispatching is another key part of the system since
the rates with which users can be added are limited and the
distribution of users affects which machines can be shut
down and how many users will be affected. The balancing
approach assigns users to all available machines roughly
evenly, whereas the skewing approach assigns users to fill
one machine at a time.

Their evaluation looked at several different combinations
of these approaches (e.g., skewing versus balancing and
forecasting versus no forecasting). What they found is that
skewing plus forecasting performs the best, with a 30%
reduction in energy used. A number of graphs pictorially
demonstrating the impact of different load balancing poli-
cies were shown. Finally, the authors identify a number of
alternate approaches, including TCP state migration as well
and building support into the client, allowing it to handle
requests to move to a different server.

Rik Farrow of USENIX asked about some sharp spikes in
the load graphs that had been shown. These turned out to
be due to code rollouts or the effect of shutting down ma-
chines and having a bunch of clients reconnect all at once.
Professor Vahdat from UCSD asked about using virtual
machines to assist in the state migration, to which Mr. Liu
responded that their servers don't actually maintain much
state.

ROUTING

Summarized by Petr Marchenko (p.marchenko@ucl.ac.uk)
Awarded Best Paper!

® Consensus Routing: The Internet as a Distributed System
John P. John, Ethan Katz-Bassett, Arvind Krishnamurthy, and
Thomas Anderson, University of Washington; Arun Venkatara-
mani, University of Massachusetts Amherst

Internet protocols have traditionally favored responsiveness
(a liveness property) over consistency (a safety property).
Thus, they apply routing updates immediately to its for-
warding tables before propagating them to other routers.

;LOGIN: VOL. 33, NO. 4

This causes routing loops and blackholes. Fully 10%-15%
of BGP updates cause loops and 30% packet loss.

John P. John presented consensus routing, where he pro-
posed to separate safety and liveness properties using two
models of packet delivery: stable and transient. A stable
mode ensures that a route is adopted only after all depen-
dent routers have agreed upon a consistent view of the
global state. This is achieved by a distributed snapshot and
a consensus protocol. Transient mode ensures availability
when a packet encounters a router that does not possess a
stable route because of a link failure or an incompletion of
consensus protocol. In this case, the router makes forward-
ing decisions based on transient heuristics such as backup
routes, deflections, and detours. Consensus routing, which
resides as a layer on top of BGP, does not require changes to
BGP and does not disclose any more information regarding
its routing policies than BGP does.

Comparison of BGP’s connectivity and consensus rout-

ing connectivity in case of AS traffic engineering (prefix
withdrawing) showed that BGP maintains connectivity only
in 40% of the test cases, whereas consensus routing does so
in 99% of the test cases. The loss of connectivity happens
because of the transient loops. Consensus routing was able
to converge from one consistent state to another, thereby
avoiding transient loops in all test cases. Consensus routing
adds traffic overhead, as it requires 30% more update bytes
than BGP.

There was a question about whether a policy is more or
less opaque with consensus routing than with BGP. John
answered that since the entire policy is not known to all,
it is as opaque as with BGP. Another question concerned
whether it is possible to bundle updates. The answer was
that bundling would cause inconsistency as a single update
propagate policy that affects individual ASes. Someone
wondered about the downtime in traffic forwarding that is
caused by performing updates. John said that the effect of
applying updates is covered by detour routing in the tran-
sient stage.

® Passport: Secure and Adoptable Source Authentication
Xin Liu, Ang Li, and Xiaowei Yang, University of California,
Irvine; David Wetherall, Intel Research Seattle and University of
Washington

Xin Liu addressed the problem of source address spoofing,
since it damages the Internet in a variety of ways. Address
spoofing significantly mitigates the effectiveness of DoS
defense mechanisms. It also makes possible reflector attacks
and makes source address filtering untrustworthy.

Xin Liu proposed Passport, a novel network-layer source
authentication system. Passport treats an AS as a trusted
and fate-sharing unit, and it authenticates the source of a
packet to the granularity of the origin AS. It uses symmet-
ric-key cryptography and checks packets only at admin-
istrative boundaries. When a packet leaves its source AS,

;LOGIN: AUGUST 2008

the border router stamps one Message Authentication Code
(MACQ) for each AS on the path into the packet’s Passport

header. When the packet enters an AS on the path, the bor-
der router verifies the corresponding MAC value, using the
secret key shared with the source AS. The correct MAC can
only be produced by the source AS that also knows the key.

Passport relies on the routing system to efficiently manage
keys using Diffie-Hellman key exchange on routing adver-
tisements. Source address spoofing within a single AS is
considered to be an internal issue for an AS. This solution
can be incrementally deployed, as it is interoperable with
legacy ASes.

An attendee asked about the routing assumptions. Xin
stated that Passport requires routers having complete rout-
ing tables. Another question was asked about MTU because
Passport adds MACs. Xin said that this is not an issue for
routers; they can increase the size of the packet and they do
it anyway for things such as VPNs.

® Context-based Routing: Technique, Applications, and
Experience
Saumitra Das, Purdue University; Yunnan Wu and Ranveer
Chandra, Microsoft Research, Redmond; Y. Charlie Hu, Purdue
University

Saumitra Das discussed the effects of new lower-layer
technologies such as multiple radios and link layer network
coding on the routing path in wireless mesh networks. As
he pointed out, conventional routing frameworks do not
allow taking advantage of the new lower-layer technologies,
since the costs of the links are examined in isolation from
each other. Thus, multiple radios and network coding are
not considered by conventional routing mechanisms.

Saumitra suggested a framework for routing in the pres-
ence of inherent link interdependencies, called context-
based routing. It includes a new context-based path metric
and route selection method that leverage the advantages of
network coding and multiple radios. This context-based
framework uses conditional link metrics: the Expected
Resource Consumption (ERC), which models the cost sav-
ing from network coding, and a Self-Interference—aware
Metric (SIM) for multiple radio systems. A context-based
path pruning method uses these metrics to identify a pref-
erable path. Based on these primitives, Saumitra and his
colleagues implemented a Context Routing Protocol (CRP)
and conducted experiments on two testbeds, demonstrating
significant throughput gains.

An attendee asked whether the links advertised by CRP
would already be congested. Saumitra said that the lower
cost is advertised based on the throughput gain that you
would get. One attendee wanted to know how much pre-
dictability you need in the flows to calculate the correct cost
of the flow. The response was that they have a mechanism
in the paper to ensure that equilibrium is reached.

CONFERENCE REPORTS 103

UNDERSTANDING SYSTEMS

Summarized by Brendan Cully (brendan@cs.ubc.ca)

® NetComplex: A Complexity Metric for Networked System
Designs
Byung-Gon Chun, ICSI; Sylvia Ratnasamy, Intel Research Berke-
ley; Eddie Kohler, University of California, Los Angeles

Simplicity has always been valued very highly in system de-
sign, but it is hard to measure quantitatively. Crude metrics
like number of messages or total state size can be very mis-
leading; for example, flooding is simple but produces many
messages. Byung-Gon Chun presented a new metric, called
NetComplex, to better reflect our intuition about the com-
plexity of the algorithmic component of networked systems.
It is based on the observation that these systems center on
distributed state, and this state is dependent on the mes-
sages that communicate it. NetComplex uses a dependency
graph in which discrete elements of single-host state form
the nodes of the graph and messages that change that state
form the edges.

NetComplex divides complexity into two levels. The most
basic level is state complexity, which is the number of state
changes that occur across the dependency graph as a result
of changes to each variable. Operation complexity is a
higher-level metric which aggregates the total state com-
plexity resulting from an operation as defined by the system
APL. This is the metric by which Byung-Gon proposed that
alternative algorithms be compared.

The rest of the presentation attempted to demonstrate the
accuracy of the metric, first by using it on several different
routing protocols, where it was determined that compact
routing was the most complex protocol in spite of the fact
that it had both the least state and the fewest messages
(because it was designed for scalability). The metric was
also applied to a number of classical distributed systems
and then compared to the complexity rankings assigned by
a survey of 19 graduate students in a distributed systems
class; they matched closely.

There were a number of interesting questions. One attendee
observed that Ethernet was a wildly successful algorithm,
but according to this metric it would be classified as ex-
tremely complex (owing to exponential backoff). Another
attendee pointed out that conventional metrics apply to
resources, so that a system with limited bandwidth might
optimize for fewer messages at the expense of more state.
He wondered how NetComplex was intended to be used

to select systems given that it did not apply to particular
resources. Byung-Gon replied that, in general, the simplest
algorithm was the best choice for producing robust systems.

104

® DieCast: Testing Distributed Systems with an Accurate
Scale Model
Diwaker Gupta, Kashi V. Vishwanath, and Amin Vahdat,
University of California, San Diego

A recurring problem for application developers is that they
simply do not have the resources to test their applications
in all of the different environments in which they will
eventually be deployed. DieCast is a system that attempts

to replicate large systems with a high degree of fidelity on

a much smaller number of machines, while also providing
reproducibility and making efficient use of the available
hardware. Its approach is to use virtualization to multiplex
many logical machines onto a single physical host, and then
to carefully manipulate perceived time within the VMs to
adjust for the reduced CPU available to them. This allows
CPU to scale to large numbers of logical systems, but it does
not scale either RAM or disk capacity.

Within a single virtual machine, time dilation (presented at
NSDI *06 by the same group) can be used to hide increased
runtime from the running operating system. But in such an
environment, unmodified I/O would appear correspond-
ingly faster. For example, in a VM in which virtual time
progresses at one-tenth the speed of real time, a 1-Gbps
network link would appear to run at 10 Gbps. Therefore,
DieCast interposes on network and disk devices to scale
them according to the time dilation factor in effect, so that
perceived latency and throughput match those of the real
devices.

The accuracy and utility of DieCast were evaluated in two
ways. First, the RUBIS Web application benchmark was
run natively on 40 nodes, and under DieCast on 4 nodes of
10 VMs each. The resulting throughput and response time
scores matched very closely. A case study was also provided
in which a scalable storage company reported good results
from testing changes to their high-performance computing
application.

® D3S: Debugging Deployed Distributed Systems
Xuezheng Liu and Zhenyu Guo, Microsoft Research Asia; Xi
Wang, Tsinghua University; Feibo Chen, Fudan University; Xiao-
chen Lian, Shanghai Jiaotong University; Jian Tang and Ming
Wu, Microsoft Research Asia; M. Frans Kaashoek, MIT CSAIL;
Zheng Zhang, Microsoft Research Asia

It is difficult to debug distributed systems, in particular
because it is hard to reproduce error conditions. Machines
run concurrently at varying speeds, and network condi-
tions change dynamically. For example, a distributed lock
manager may provide exclusive or shared locks with the
invariant that only one client can hold an exclusive lock.
Optimizations such as local state caching can make it tricky
to reason about whether the invariant always holds. Simu-
lation and model checking can help, but only to a degree.
Eventually, runtime checking is likely to be necessary.

The most common approach to runtime checking is to add
logging to an existing system and then to attempt to replay

;LOGIN: VOL. 33, NO. 4

from the logs. This can entail considerable developer effort,
and getting just the right level of logging can require many
iterations: Too much logging can produce unacceptable
overhead, but too little will miss key state changes. And
even after the logs are captured, analysis remains chal-
lenging. D3S attempts to simplify the process of runtime
assertion checking, by letting developers add distributed
assertions to running systems on the fly. The primary
contributions of D3S are a simple language for distributed
predicates, the ability to inject predicates into running sys-
tems, and tolerance of host or network failures. DS injects
code into running systems by rewriting the running binary
at specified hook points to collect assertions. These are sent
to a set of assertion-checking servers using messages tagged
with a Lamport clock to form globally consistent snapshots.
In order to tolerate failure, each node provides a heartbeat,
the loss of which removes it from the snapshot set.

The authors used D3S on five real systems (all third-party
applications) to evaluate whether it helped to find bugs.
They found that it was easy to write predicates for these sys-
tems and that they were able to discover bugs that required
runtime checking. Because only assertion state was logged
and checked, the overhead on running systems was low
(between 3% and 8%).

One audience member wondered how one could specify a
predicate that could be used to find performance problems.
Xuezheng acknowledged that this was a tricky problem, but
argued that being able to add and remove probes on the

fly would still be very helpful. Another attendee asked how
probes could be written for applications written in higher-
level languages other than C or C++. Xuezheng claimed that
most real applications are written in C/C++ and that higher-
level languages often provided better debugging facilities
directly.

LEET ’08: First USENIX Workshop on Large-Scale
Exploits and Emergent Threats

San Francisco, CA
April 15, 2008

ATTACKER BEHAVIOR

Summarized by Joshua Mason (josh@jhu.edu)

® On the Spam Campaign Trail
Christian Kreibich, International Computer Science Institute;
Chris Kanich, Kirill Levchenko, Brandon Enright, and Geoffrey
M. Voelker, University of California, San Diego; Vern Paxson, In-
ternational Computer Science Institute; Stefan Savage, University
of California, San Diego

Christian Kreibich presented data he and his collaborators
gathered about the Storm botnet. The data was collected
by first reverse engineering and subsequently infiltrating
the botnet with the intention of discerning email address

;LOGIN: AUGUST 2008

harvesting properties, spam delivery efficacy, and the size of
individual spam campaigns. Data capture was accomplished
by running 16 virtual machines infected by Storm and
situating the nodes at several levels in the Storm hierarchy
while disallowing malicious activity such as actually send-
ing spam.

Running live instances of the Storm botnet led to several
interesting discoveries. First, Christian discussed the spam
templating functionality, which allows spammers to craft
messages using a variety of macros. These macros can then
be substituted with random data to make emails containing
the same general message difficult to cluster. They observed
14 different macros used during their deployment and
discovered 10 more with experimentation. The team also
discovered dictionaries for use in macro values (e.g., subject
lines and domain names) and various lists of email ad-
dresses (hit lists) used in different spam campaigns.

Kreibuch went on to give a myriad of different statistics

on the spam traffic they observed. They saw over 100,000
command and control connections for worker nodes of

the Storm network and were able to collect 172,000 spam
templates. They also observed 272,546 harvest reports that
contained information gathered from worker nodes. Perhaps
the most staggering statistic was the number of targeted
email addresses, coming in at 66.7 million. A survey of
these addresses revealed some fairly comical addresses such
as “first.lady@whitehouse.gov” and “stalin@kremlin.ru.”

Someone asked about what led to the discovery that one of
the largest lists collected contained domains for use in ran-
domizing spam by way of templates. This led an audience
member to inquire as to whether templates were linked to
dictionary lists so as to better convince the receivers of the
spam’s legitimacy. Christian’s group did not observe the
behavior, but he admitted that it is an interesting possibil-
ity. Other questions related to the encrypted communica-
tion present in Storm and about the ease of infiltrating the
network. The speaker noted that infiltration was surpris-
ingly easy and encrypted communication is subject to
man-in-the-middle attacks. Niels Provos wondered whether
they’d tried to inject error messages to the bot master. They
did not, but the question led to a discussion of how easy it
would have been for the bot master(s) to detect their pres-
ence. The bot master could have asked Kreibuch’s worker
bots to send spam to certain addresses and then checked
whether the spam was actually sent, but this did not hap-
pen.

® Characterizing Botnets from Email Spam Records
Li Zhuang, University of California, Berkeley; John Dunagan,
Daniel R. Simon, Helen J. Wang, Ivan Osipkov, and Geoff
Hulten, Microsoft Research; J.D. Tygar, University of California,
Berkeley

John Dunagan presented a work led by Li Zhuang at UC
Berkeley that used trace information present in spam mes-
sages to correlate spam campaigns. Their spam corpora

CONFERENCE REPORTS 105

was gathered from the “junk” folder of Hotmail users over
9 days. Using this data, they discovered that 50% of spam
botnets have more than 1,000 bots and 80% of botnets use
less than half of their bots in each spam campaign. The last
statistic begs the somewhat depressing question: Have spam
botnets reached the point where they don’t need as many
bots as they have? In addition, Dunagan indicated that 60%
of botnet-related spam is from long-lived botnets.

To associate spam bots with botnets, they attempted to link
these bots to individual spam campaigns, in the hope that
the same spam campaigns are perpetrated by individual
botnets. This was accomplished by using three separate
techniques. First, the same spam campaigns tend to use the
same target URLs (i.e., ask the spammed user to visit the
same site). The target URLs had to match exactly for this
metric to work, which seems to be a somewhat defeated
spam campaign correlation mechanism based on the ran-
domization of URLs discussed in Kreibuch’s presentation.
Their second technique to link spam campaigns, then, used
the similar body content present in messages. Finally, they
also attempted to link bots to botnets based on whether the
same bots are participating in the same campaigns.

Once they associated a spam campaign to an individual
botnet, they tried to estimate the number of individual ma-
chines present in the botnet. This becomes difficult because
of the prevalence of dynamic IP addresses among compro-
mised machines. So, they used MSN data containing login
events to link machines across dynamic IP addresses and
thus to establish the variation pattern on subnets. Because
users could easily be logging in from home and then from
work, they define an upper bound on the potential variabil-
ity present on subnets.

The first questioner asked how overlapping content in
spam messages was used, given that the messages are often
designed to defeat such correlation techniques. Dunagan
said they used Rabin fingerprints and that currently used
spam obfuscation techniques do not achieve enough poly-
morphism to make correlation impossible or even difficult.
Another audience member asked whether the team notified
MSN users found to be infected. Dunagan noted that their
MSN data was not from the same 9-day period as their
spam data; while they might be able to notify a user that
they were infected a month ago, they didn’t have the clear-
ance to do so.

® Peeking into Spammer Behavior from a Unique Vantage
Point
Abhinav Pathak and Y. Charlie Hu, Purdue University; Z. Mor-
ley Mao, University of Michigan

Abhinav Pathak presented the third and final spam talk at
LEET. His research observed spam from the vantage point
of open SMTP relays. To collect data, they set up an open
relay that sent only those messages that test for open relays.
All other email was blocked. Spammers attempting to locate
open relays send messages containing the IP address of

106

the relay they are testing to email addresses the spammers
control. Thus, to fool the spammers into thinking the relay
is functional, Pathak’s team allows sending these messages.
This methodology for convincing spammers of an open
relay also leads to the relay being blacklisted by projects
such as Spamhaus. To counteract this, emails containing the
strings DNSBL, ORDB, and a few others are not relayed.

Their open relay data collection approach identified two
types of spammers: low-volume spammers (LVS), which
appear in large numbers and use coordinated spamming

at a low rate and low volume, and high-volume spammers
(HVS), which have fewer nodes and send uncoordinated/
disorganized spam at a very high rate of throughput. The
LVS are considered more interesting because of their coordi-
nated approach. They perform open relay scanning and dis-
tribute the open relays identified. The list of email addresses
is also split into chunks and processed so as to avoid send-
ing the same message to the same address multiple times.
The chunking they observed is done alphabetically and is
thus easily identifiable.

Perhaps the most interesting portion of the talk came in the
discussion of a graph of email list chunk number versus
time. This graph allows a systematic distinction to be made
between the LVS and HVS types. The LVS spam increases
linearly over time whereas HVS spam happens in one burst.
Also, based on the observation that list chunking happens
alphabetically, the graph also allows the separation of spam
Into spam campaigns.

Some interesting questions centered on the effectiveness of
spam blacklisting. One audience member inquired as to the
effect on observed spam when Pathak did happen to get the
relay blacklisted. Pathak replied that upon blacklisting their
open relay, spam stopped entirely, indicating that either
spam blacklists are checked by spammers or that spam-
mers constantly test open relays for efficacy. Other audience
members inquired as to the amount of spam that is actu-
ally sent using open relays, given the automatic open relay
blocking by Hotmail and other large email hosts. These
questions couldn't really be answered, but work is being
conducted now to better grasp how much spam employs
open relays.

® Behind Phishing: An Examination of Phisher Modi
Operandi
D. Kevin McGrath and Minaxi Gupta, Indiana University,
Bloomington

Kevin McGrath presented his measurement study on phish-
ing. His intention was to determine whether phishing URLs
have differing characteristics when it comes to URL com-
position, registration, and cycle. He had two data sources:
Mark Monitor, which is a list of phishing sites obtained
from large ISPs that are verified by hand and updated every
5 minutes, and PhishTank, which has a list of community
submitted and verified phishing URLs updated once every

;LOGIN: VOL. 33, NO. 4

hour. McGrath also obtained the zone files for the com, net,
info, and biz top-level domains.

Their methodology for information gathering begins by
obtaining a thin whois of the domain upon the domain’s
first occurrence. Then when the feed is updated, they fetch
the DNS records for every domain seen to date to establish
domain life cycle. They also perform geolocation via the
[P2location service. Collecting these pieces of information
over a period of 211 days allowed McGrath to establish
several patterns in phishing domain characteristics. He gave
details of the composition of phishing URLs. For example,
over 30% of phishing domains are 8 characters in length,
and the relative letter frequencies between phishing and
nonphishing domains differ considerably. McGrath notes
that the characters a, ¢, and e tend to appear with the same
frequencies in phishing domains, whereas nonphishing
domains follow the typical English frequency table. The
more interesting observation is in the lifetime of a phishing
domain, lasting approximately 3 days on average.

Someone inquired as to whether this study was really a
characterization of phishing domains or whether it was
simply characterizing data present in MarkMonitor and
PhishTank. The answer is of course unknown as there is no
global list of phishing sites, but it is an important point. An
audience member also inquired about the incentive of do-
main name registrars to fix this problem, given that they re-
ceive money for these registrations. McGrath responded that
registrars do not profit from typical phishing sites because
of the 5-day registration grace period. If a domain lasts less
than 5 days, no money is exchanged. This fact also yields

a deeper understanding as to why the average lifespan of a
phishing site is under 5 days.

NEW THREATS AND RELATED CHALLENGES

Summarized by Rik Farrow (rik@usenix.org)
Awarded Best Paper!

® Designing and Implementing Malicious Hardware
Samuel T. King, Joseph Tucek, Anthony Cozzie, Chris Grier,
Weihang Jiang, and Yuanyuan Zhou, University of Illinois at
Urbana Champaign

Sam King began with some history of similar attacks, as
well as a mention of the recent sales of Chinese-made,
bogus Cisco gear by contractors to U.S. DoD customers.
King and his co-authors have designed the Illinois Mali-
cious Processor (IMP), a SPARC v8 processor that runs
Linux with a twist.

They implemented the IMP by adding a small number

of gates (.05 and .08% of the total gates) in two different
attacks, using a FPGA (Field Programmable Gate Array)
programmed using a modified version of VHDL (Very High
Speed Integrated Circuit Hardware Description Language)
for the Leon3 implementation of the SPARC processor.

;LOGIN: AUGUST 2008

In one attack, a local attacker runs code that includes a
sequence of bytes that gets detected by additional code in
the logic of the data cache controller. When this trigger

is seen, other added logic loads code and data into the L1
caches, executes this code, and elevates the privilege level
of the process that sent the sequence of bytes as the trigger
(instant root).

King also presented a second design, called shadow mode,
where the trigger sequence appears in a dropped network
packet, and the code to execute gets copied from the data
portion of this packet. King described two attacks, one
where login as any user is permitted with the password
“letmein” after the trigger and a second that hooks read and
write system calls and captures possible passwords. The
login backdoor exits immediately after use, disappearing
from cache, whereas the password capture code remains
resident. The login attack has a small impact on perfor-
mance (barely more than that of a local attacker logging in
as root), but the password capture attack results in 13% loss
in performance. King then demonstrated the login attack
using the embedded system with the IMP version of the
SPARC he had set up.

The first questions related to how easy it might be to dis-
cover this attack. Sergey Bratus mentioned that in the USSR,
chips were routinely reverse engineered specifically to
address this attack, and King countered by mentioning the
CIA pipeline control software that was acquired by the Rus-
sians and caused a catastrophe when used. Another person
wondered whether multicore processors would make this
trick more difficult. King responded that the same changes
could be used in all processors. Kevin McGrath suggested
that special-purpose multicore systems might even make
this attack simpler if you just target the one core you are
interested in. Brandon Enright pointed out that the MMU or
some other device might work as well, but King stated that
the CPU got to see the entire dynamic instruction stream,
making it better suited as a target for this attack.

B Catching Instant Messaging Worms with Change-Point
Detection Techniques
Guanhua Yan, Los Alamos National Laboratory; Zhen Xiao,
Peking University; Stephan Eidenbenz, Los Alamos National
Laboratory

Guanhua Yan begin by explaining the issues with IM
worms. Instant Messaging relies on servers for transferring
messages, but the protocols permit file transfer directly be-
tween clients that a worm can use to infect another system
without passing through any server. IM worms can also use
a URL that points to a malware download site, also result-
ing in potential infection without passing through a central
server.

The authors propose a statistical method that watches for
the change-point in frequency of file-transfer requests or
URLs being sent. They designed and tested, using simulated
infections, two algorithms based on CUSUM, a sequential

CONFERENCE REPORTS 107

analysis technique used for monitoring change detection.
In their simulation, their algorithms were able to detect the
presence of both aggressive spreading and self-restraining
IM worms. The self-restraining worms would be designed
specifically to avoid detection by throttling infection at-
tempts below a threshold.

Niels Provos asked how computationally expensive their
algorithms are. Yan answered that the performance scales
linearly because you can keep track of past values for total
file transfers or URLs included. Provos also asked about the
computational complexity, and Yan said that their algo-
rithm is O(n?) and is practical for up to 100 internal users.
Someone else observed that social intimacy in IM is very
skewed, with most conversations with 1.9 buddies over a
month in AIM, and 5.5 in MSN, so worm propagation could
be detected more simply by noticing abrupt changes in so-
cial intimacy. Someone else asked whether all clients could
become infected during the five-minute window used in

the experiment, and Yan responded that only a fraction of
clients were infected in five minutes. Angelos Keromytis and
Niels Provos wondered whether network intrusion detection
that watched for patterns in data would work as well. Yan
pointed out that this approach is statistics-based. The ses-
sion chair ended the discussion at this point.

® Exploiting Machine Learning to Subvert Your Spam Filter
Blaine Nelson, Marco Barreno, Fuching Jack Chi, Anthony D.
Joseph, Benjamin LP. Rubinstein, Udam Saini, Charles Sutton,
J.D. Tygar, and Kai Xia, University of California, Berkeley

Blain Nelson proposed techniques for preventing spammers
from poisoning Bayesian spam filters. Bayesian filters must
be taught the difference between ham (good email) and
spam. The spammers do this by creating emails that will

be classified as spam, for example, by including the words
“replica Rolex” in the subject, then including a large number
of nonspam words into their message. The goal is to cause
the spam filter to misclassify ham (nonspam), and thus
force the adjustment of the spam threshold so that more
spam gets through the filter. Another possible goal would
be for an attacker to cause an email, for example a bid, to
be misclassified as spam. For example, sending the most
common 90,000 tokens from Usenet postings (a set that
includes both common misspellings and slang) increases
the misclassification rate to 36% when just 1% of the mail is
used for training the SpamBayes to recognize spam.

The authors suggest the Reject On Negative Impact (RONI)
defense, where any email message that causes the Spam-
Bayes filter to begin to reject a set of known ham mes-
sages must not be included in the spam learning set. This
approach works well against dictionary attacks, but not
against focused attacks. The authors also used a second
technique, in which the thresholds for ham and spam get
adjusted dynamically.

Jaeyeon Jung asked about the spammer sending multiple
messages instead of just one, and Nelson responded that

108

that method results in less impact, so many more messages
are required. Someone else asked whether this was why
spammers were including blocks of valid text in past spam,
and Nelson answered that it is not clear why spammers
were doing this in the past, but if you have enough tokens,
the effect would be one of poisoning SpamBayes. Another
person asked about excluding just some tokens instead of
entire messages, and Nelson said they hadn't looked into
that, leading to some discussion. Brandon Enright suggested
defending against this attack by using bigram (word pairs).
Nelson answered that they were looking into doing that.
Sergey Bratus wondered whether they check if the message
is actually read or not in deciding on using it in training;
Nelson responded that they did consider some work like
this. As the workshop broke up for lunch, a small crowd
gathered around Nelson.

MEASUREMENTS, UNCERTAINTIES, AND LEGAL ISSUES

Summarized by Rik Farrow (rik@usenix.org)

® Conducting Cybersecurity Research Legally and Ethically
Aaron J. Burstein, University of California, Berkeley, School of
Law

Aaron Burstein began his talk with a disclaimer. “Noth-

ing in this presentation constitutes legal advice. If this was
legal advice, it would be followed by a bill.” He then went
on to explain the U.S. legal landscape that impacts security
researchers. The DMCA (Digital Millennium Copyright Act)
has no research exception, for example. For researchers in-
terested in capturing network traffic, the relevant laws are:

m Wiretap Act: Prohibits real-time interception of
the content of electronic communications; the
distinction between content and noncontent is
vague, with the To and From lines being noncontent,
but the Subject line of email is considered content.

® Pen Register/Trap and Trace statute: Prohibits
real-time interception of noncontent portions of
electronic communications.

m Stored Communications Act (SCA): Prohibits
providers of “electronic communications service to
the public” from knowingly disclosing the contents
of customers’ communications.

All three of these acts include loopholes that allow the pro-
viders of a service to monitor and capture network data. In
the cases of Wiretap and Pen/Trap acts, providers may cap-
ture whatever content or noncontent they want as needed

to protect the “rights and property” of the operator. In the
case of the SCA, the operator can use stored data within the
organization however they want. But in all of these cases,
handing over this data to a researcher could be illegal.

The Wiretap Act and the SCA both came before widespread
computer networks, and the Electronic Communication
and Privacy Act (ECPA) and Computer Fraud and Abuse
Act (CFAA) were written later. Burstein then presented two

;LOGIN: VOL. 33, NO. 4

scenarios. In the first, a researcher approaches a commer-
cial ISP and asks for packet traces. Burstein points out that
this would be covered by the ECPA and that there are no
research exceptions. At this point, I asked about ISPs who
share content and noncontent data with advertisers so the
ISP can insert ads into email and Web browsing. Burstein
said that this is allowed under the law. Someone else asked
about having a student who works for an ISP during the
summer. Burstein thought this would work, as long as the
student did not remove the data from the ISP. Even continu-
ing to use a login account to view logs later appeared to be
okay.

In the second scenario, a researcher is capturing malware,
allowing it to infect a sandbox, then watching what the
malware does on the network. Note that this is similar to
what Polychronakis et al. did in their paper, except that
they prevent the malware from infecting other machines
and captured all communications. Burstein said that if the
researcher permits the malware to send out code and or
data that infects systems not under the researcher’s control,
that would be in violation of the CFAA. He noted that the
CFAA does not ban malware, that communicating with any
external system was problematical, and sending out mal-
ware or even certain data (the CFAA specifically prohibits
the sending of stolen passwords and financial data) runs
afoul of the law.

Burstein concluded by saying that researchers should work
closely with their own network administrators, as they can
then work to help protect the rights and properties of the
network owner while having legal access to network content
and noncontent. He suggested both legal fixes, as well as
working toward best practices and a code of conduct.

Someone asked whether a researcher has a duty to report
certain content, and Burstein pointed out that the ECPA
does allow you to report certain things. In some cases, such
as discovering child pornography, you have an obligation
to report, and running crawlers can put you into serious
jeopardy.

® Measurements and Mitigation of Peer-to-Peer-based
Botnets: A Case Study on Storm Worm
Thorsten Holz, University of Mannheim; Moritz Steiner,
University of Mannheim and Institut Eurécom; Frederic Dahl,
University of Mannheim; Ernst Biersack, Eurécom; Felix Freiling,
University of Mannheim

Thorsten Holz presented more work related to Storm, and
as he did so, it quickly became apparent that groups of
researchers had actually been interacting via the Storm in
an unexpected manner that has inflated the reported size of
Storm botnets. Storm uses P2P for commands and updates,
but it also communicates with a list of servers, so it is a hy-
brid. The P2P portion uses Overnet, and by crawling Over-
net, Holz and his co-authors discovered 45,000—-80,000
Storm bots at different times. They send out probes every

;LOGIN: AUGUST 2008

30 minutes, whereas the UCSD group (Kanich et al.) sends
probes every 15 seconds.

Holz reported that Storm infections tripled over the Christ-
mas to New Year week of 2007 because of successful

social engineering attacks. Fabian Monrose asked why the
numbers go down sometimes, and Holz replied that events
such as MSRT sending out a patch can result in systems
becoming clean. Then Holz stated that they introduce 22
hashes (16 million) to the P2P system (the hashes being
used to locate bots), and Niels Provos immediately asked
whether this could inflate the number of discovered Storm
bots. Holz said this certainly could, and someone else said
“That’s you!” Holz went on to mention that they had also
experimented with disrupting Storm. One method relies on
introducing sybils, malicious peers under the control of the
researchers, that can be used to spy on traffic and abuse the
network in other ways.

Through their crawling of P2P and their sybils, Holz claims
to have seen between a minimum of 5,000-6,000 and a
maximum of 80,000 Storm bots per day. David Dagon, the
session chair, suggested that perhaps researchers need to set
up a Storm users list. Someone else asked why they don't
see the 16 million nodes represented by the hashes Holz
injects into the network. Holz responded by saying they are
using only two IP addresses. Someone else mentioned that
researchers need to be consistent in their methods, so they
aren’t tripping over one another while researching Storm.
Brandon Enright of UCSD (another Storm researcher) ex-
pressed concern that the Storm authors might stop using
Overnet (the P2P network that Storm relies on), and Holz
agreed. You can learn more about Storm from previously
published articles in the December 2007 issue of ;login:.

® The Heisenbot Uncertainty Problem: Challenges in Sepa-
rating Bots from Chaff
Chris Kanich, Kirill Levchenko, Brandon Enright, Geoffrey M.
Voelker, and Stefan Savage, University of California, San Diego

Chris Kanich described the UCSD team’s work in determin-
ing the number of active Storm participants and succeeding
in outing another researcher active in crawling/poisoning
the Storm botnet. Kanich pointed out that the number of
claimed Storm bots is extremely high, with MSRT reporting
a lower bound of 275,000. Kanich reported that research
groups, as well as competitors to the Storm botnet, have
been very active, and that this has inflated the number of
nodes.

Storm uses Overnet, a P2P file-sharing network based on
the Kademlia DHT algorithm. The UCSD team discovered
an error in the generation of unique object IDs (OIDs) used
by Storm, limiting the total number of OIDs to 32k (219).
This does not place an upper bound on the number of
nodes, as not all nodes will communicate, but it does make
the OID itself into an oracle that can identify a true Storm
infection as opposed to a file-sharing client or another
research crawler. The UCSD team built a tool named Storm-

CONFERENCE REPORTS 109

drain that implements a state machine for categorizing
Overnet nodes. Potential Storm nodes are only considered
Active when they actually respond, and nonresponding
systems are moved into a Removed state, then quickly into a
Dead state, over a short period of time.

Someone asked about dynamic IP address, and Kanich
replied that they don't care about this, as they are only
interested in the instantaneous number of nodes. Someone
else pointed out that Kademlia should time out old peers,
but Kanich reported that Storm’s implementation is broken,
and its K buckets are not recycled every four hours as they
should be. David Dagon noticed a spike in a graph and
asked when that occurred. Kanich replied, “March 10,” to
which Dagon said, “I owe you a drink.” Kanich described
improvements in Stormdrain, such as advertising OID
hashes that are “close” to recently advertised peers, and this
increased the proportion of nodes considered Active rather
than just Live. Gary Warner wondered whether the Storm
nodes could be distinguished from Overnet nodes based on
the command set used, and Kanich replied that although
they didn't do that, it should work.

During three weeks of Stormdrain crawling in March 2008,
the number of active nodes varied between 8,000 and
23,000 Active nodes. David Dagon asked whether the UCSD
group would be willing to coordinate with his groups in
probing, and both Kanich and Brandon Enright said they
would be willing to communicate with other researchers.

An article on Storm begins on page 6 of this issue.

® Ghost Turns Zombie: Exploring the Life Cycle of Web-
based Malware
Michalis Polychronakis, FORTH-ICS; Panayiotis Mavrommatis
and Niels Provos, Google Inc.

Michalis Polychronakis presented this paper, which ex-
pands on work published last year at HotBots about drive-
by downloads. Drive-by downloads involve Web pages that
have been modified to include script or iFrame sections,
resulting in the installation of malware on systems, cur-
rently focused on Windows. In this work, the researchers
monitored attempted communications after infection, ana-
lyzing over 448,000 responder sessions. Polychronakis said
that they found that malware reports information about the
infected system, address books, browser history files, stored
passwords captured by keyloggers or browser hooks, and
attempts to join botnets.

Their setup used Windows systems running within VMs
that were passed a URL suspected of causing drive-by
downloads. To capture outgoing connections, they set up a
number of proxies for known protocols, as well as generic
responders that often worked, even though the actual
protocol was unknown. The generic responder looks for
hints to the protocol when a nonstandard port is used, then
emulates that protocol if known. If unknown, a generic
banner gets sent to the malware if there is no activity after
a number of seconds, and this often resulted in a useful

110

response. Besides connecting to servers that collect stolen
data, malware often portscanned local networks, looking
for Windows services such as SMB, NetBIOS, MSSQL, and
DCOM.

McGrath asked whether some requests to nonstandard
ports were using HTTPS, and Polychronakis replied that
they generally were not using that protocol. Jaeyeon Jung
asked how many types of malware were seen; Polychro-
nakis responded that they didn’t analyze which malware
family was sending traffic as they couldn’t perform analy-
sis on so many infections. Someone else asked about the
capacity of their system, and Polychronakis said they could
check about a million pages a day using their setup. John
Ramsey mentioned they had developed Caffeine Monkey,
which does some URL analysis. Then he asked whether the
malware was encrypted or packed. Niels Provos answered,
that most is at least obfuscated and a lot of the Javascript is
encrypted. David Dagon asked whether the malware tests

to see whether it is running in a VM or in an emulated envi-
ronment. Provos responded that malware download servers
won't even respond to requests from IP source addresses
known to belong to researchers’ networks. But they have
not seen malware that appears to be aware that it is running
within a VM.

WORK-IN-PROGRESS REPORTS

Summarized by Joshua Mason (josh@jhu.edu)

Will Drewry presented a methodology for fuzzing regular
expressions. Although the methodology was not discussed
in detail, their results were quite impressive. Their fuzzer
has so far led to 15 security advisories, with 3 or 4 causing
code execution. The impact of the methodology is intrigu-
ing because of the number of applications affected by the
regular expression engines they broke. Their advisories af-
fect applications such as Adobe’s Flash Player, Apple’s Safari
browser, Adobe Acrobat Reader, and Postgres SQL. Adobe
Flash alone is one of the most prevalent pieces of client-side
software on the Internet today, with over 98% market pen-
etration. They intend to publish the source for the fuzzer,
which will hopefully lead to more secure regular expression
engines in the future.

Gary Warner from the University of Alabama at Birming-
ham presented an ongoing work aiming to gather an
unprecedented amount of spam. He presented techniques
he is currently employing, such as asking for the MX record
for popular domains without a mail server and voluntarily
submitting their email addresses to email address farming
malware. Warner’s team is also attempting to get an “opt-in”
plug-in for SpamAssassin that would, if a user agrees, have
all the user’s spam sent to their spam collection project.

The intended uses for the captured spam are numerous; he
briefly discussed using some data-mining algorithms to at-
tempt day-to-day spam campaign tracking.

;LOGIN: VOL. 33, NO. 4

Rick Wesson from Support Intelligence presented an ongo-
ing Internet mapping project. They use software from mea-
surementfactory.com to map live portions of the Internet.
The point of the project is to employ visualization tools to
establish trends present online. Data gathered can poten-
tially be used for a variety of applications, such as establish-
ing malicious segments of the Internet.

David Dagon presented a project he’s working on that he
calls “memory dumpster diving.” He intends to use his tech-
nique to perform automated memory analysis on malware.
This would spare malware analysts from performing the
arduous task of constantly having to reverse engineer new
instantiations of the same general bot software to obtain
required information such as encryption keys or connected
hosts. His platform would perform run-time analysis to
dump what seem to be relevant portions of memory, so the
analyst can simply take the information he wants out of the
memory trace.

Thorsten Holz presented a measurement study he and Fred-
eric Dahl are working on that gathers data on DDoS attacks
launched by the Storm worm. So far, it seems the Storm
worm’s attacks last an average of 90 minutes at 61 packets
per second and are typically against either individual users
or anti-spam/anti-spyware companies. He also very briefly
covered some new reverse engineering they were able to do
on the Storm networks” encrypted communication. They ob-
tained the RSA key and can now encrypt messages to Storm
nodes to make them connect to arbitrary hosts.

BSDCan: The BSD Conference

Ottawa, Canada
May 16-17, 2008

OPENING SESSION

Summarized by Bjoern A. Zeeb (bz@FreeBSD.org)

“BSDCan 2008, welcome back” was Dan Langille’s first
slide. But before telling you about all the conference talks
let’s go forward to the closing session to tell you one reason
why these summaries were written.

Dan’s Rules of Conference:

1. You do talk about conference.

2. You DO talk about conference.

3. You shall not stand in a direct line between TV and
Dan during an NHL game at conference.

In case you ignore rule #3 you'll find out about #4, but that
is left as an exercise to the reader.

So the opening talk started with a screensaver of lots of
Nigeria s(c|p)am asking for letters of invitation. Would you
have imagined this happens to an organizer of a conference?
Dan continued thanking all the sponsors, talked about the
organizational things, and gave his talk, a summary of what

;LOGIN: AUGUST 2008

happened to him during the past year. It is the personal
touch that makes this special every year.

FREEBSD/MIPS, EMBEDDING FREEBSD

Summarized by Bjoern A. Zeeb (bz@FreeBSD.org)

Warner Losh

Warner Losh began talking about the long history of
FreeBSD/mips starting in the late 1990s with FreeBSD 3.x.
The second try to bring it into the mainstream started in
2002 and the third one at BSDCan 2006, which led to more
community success in getting to single users on real hard-
ware. In 2007 Juniper released code that was later merged
with the mips branch and gets to multiusers. FreeBSD/mips
is self-hosting now. Today mips32/r2 and mips64/12 are
supported and FreeBSD runs on at least four SoC families:
ADMTek ADM5120, IDT RC32432, Broadcomm MIPS, and
the MIPS 4Ke core. More are to come soon. Currently the
work is merged from the Perforce repository into mainline
CVS.

Warner Losh then gave an update on the embedded
FreeBSD world. Two Google Summer of Code students

will work on a PowerPC port and on further reducing the
footprint size of embedded FreeBSD. Both the PowerPC and
ARM support develop well and there is more and more sup-
port in the repositories. He closed with an outline of future
projects.

RESOURCE-LIMITING ON THE VIRTUAL PRIVATE SERVER

Summarized by Mathieu Arnold (mat@FreeBSD.org)

Fred Clift, Verio

NTT-Verio uses FreeBSD extensively on its virtual hosting
services. They started at about the same time as jail(8), but
they added a lot of things to it, such as limits, similar to
rlimits, with io, network, mail inject, and syscall rate limit.
Those limits were needed to have numerous jails without
one taking all the resources. All those limits have clever
algorithms that allow bursts, so that the virtual servers feel
responsive when needed. They’re waiting on the lawyers to
release the code, which they have on FreeBSD 4, 6, and 7.
Slides with nice graphs are available at http://clift.org/fred/
bsdcan2008.pdf.

A CLOSER LOOK AT THE ZFS FILE
SYSTEM/ZFS, THE INTERNALS

Summarized by Mathieu Arnold (mat@FreeBSD.org)

Pawel Jakub Dawidek

Pawel started by peeling ZFS like an onion, explaining
how the components talk to each other and what they do.
The best way to get an idea is to look at his slides at
http://www.bsdcan.org/2008/schedule/attachments/
58_BSDCan2008-ZFSInternals.pdf. He then explained

CONFERENCE REPORTS m

how RAID-Z is similar to RAID5/RAID6 but so different.
The problem is that ZFS is both the filesystem and the
RAID system, so it knows what to write and in what order.
It’s also self-healing because everything on disk is check-
summed, so if it reads parity that’s bad or data that’s bad,
it will rewrite what should be back to the disk. Also, every
write to the disk has a transaction number, so a hard drive
that's only been temporarily unavailable will only need to
synchronize changes. As for snapshots, well, ZFS does copy
on write; so it already does snapshots behind your back:
taking a snapshot is O(1). Pawel fielded several questions,
mainly about “how do I do that and get it all right,” stating
that adding disks is easy and replacing disks with bigger
ones is almost as easy.

MEASURED (ALMOST) DOES AIR TRAFFIC CONTROL

Summarized by Mathieu Arnold (mat@FreeBSD.org)

Poul-Henning Kamp

Poul-Henning Kamp explains how he helped the Danish
Air Traffic Control monitor 30-year-old navigation devices
(DME, VOR, etc.). He set up devices based on NanoBSD
(stripped down FreeBSD configured to run on a compact
flash card) to run the MeasureD daemon. The daemon gets
information in many different ways, mostly through obscure
serial protocols (almost reverse engineered) from all the
devices, transmitters, fuel gauges, battery voltage levels, and
so on. MeasureD multiplexes all it gets and incorporates

a small HTTP daemon in which you can get all the data
you want. (Another MeasureD can also get the data, say,
from a central location.) There is also a bsnmp plug-in so
you can get MeasureD data from SNMP. All that data has
to be logged somewhere, and with the storage device being
a flash card it has to be done in a sensible manner. Kamp
wrote fifolog, which time-stamps and multiplexes its input,
compresses it, and stores it regularly (with padding if the
compressed size does not fill a data cell). It can be grepped
through pretty easily with the fiforead command. See
http://www.bsdcan.org/2008/schedule/attachments/
64_BSDCan2008-AirTrafficControl.pdf for more details.

SCTP

Summarized by Florent Parent (florent.parent@beon.ca)

Randall Stewart

SCTP, or Stream Control Transmission Protocol, is a new
transport protocol that sits above IPv4 and IPv0, at the
same layer as TCP and UDP. SCTP has been standardized
by the IETF in 2000 and is available in FreeBSD 7.0.

In this talk, Randall Stewart presented an overview of
SCTP. New features offered by SCTP are four-way hand-
shakes (which help reduce DoS attacks), framing (which

12

is used to preserve message boundaries), multistreaming,
multihoming, and reachability.

SCTP multistreaming allows logical separation of data
within an association. Stewart demonstrated video multi-
streaming using a Web page download containing multiple
pictures. The download was done over a path exhibiting
packet loss. SCTP took about half the time that TCP took to
do the same thing.

The SCTP socket API was also presented. The API offers
two socket types: one-to-one (STREAM) and one-to-many
(SEQPACKET). The one-to-one interface offers backward
compatibility with TCP sockets. The one-to-many offers a
UDP-like interface and is the type of interface a peer-to-peer
application would use.

Overall, this talk was an excellent introduction to the
benefits of SCTP. The Web site http:/www.sctp.org is SCTP
equipped.

PORTING FREEBSD/ARM TO MARVELL
ORION SYSTEM-ON-A-CHIP

Summarized by Mathieu Arnold <mat@FreeBSD.org>

Rafal Jaworowski, Semihalf

System-on-a-Chip (SoC) is an integrated chip with many
things integrated, such as the main CPU, GPIO (General
Purpose 1/0), Ethernet, UART, PCI, USB, SATA, Crypto,
and SPI. The FreeBSD/ARM port to that SoC family is work-
ing pretty well, with new chips being added every now and
then and much work still not committed to the FreeBSD
source tree. For more information see http://www.bsdcan
.org/2008/schedule/attachments/50_2008_marvell_freebsd
pdf.

GOOGLE SUMMER OF CODE

Summarized by Mathieu Arnold (mat@FreeBSD.org)

Leslie Hawthorne, Google

Leslie Hawthorne is the Project Manager of the Google Sum-
mer of Code program. She came here to explain how the
idea came into being at Google—"Here, we have too much
money; let’s spend some”™—and also why they're not evil—
“We're giving you money and ask nothing in return.” Since
the beginning, the Summer of Code project has involved
participation from 1500 students, 2000 mentors, 175+ open
source projects, and 98 countries, and more than 10 million
U.S. dollars have been spent on students and projects. De-
tails can be found at http://www.bsdcan.org/2008/schedule/
attachments/52_LeslieHawthorn_bsdcan2008.pdf.

;LOGIN: VOL. 33, NO. 4

UP CLOSE AND PERSONAL WITH TCP IN FREEBSD

Summarized by Florent Parent (florent.parent@beon.ca)

Lawrence Stewart

Lawrence Stewart presented a look at a new modular TCP
congestion control framework. The talk started with a
review of the current state of TCP. (RFC4616 is a good sum-
mary of TCP-related RFCs.) Today, NewReno TCP is the de
facto standard and is used in BSD and many other OSes.
But there are still open issues in high-speed networks,
where improvements to current congestion control protocols
are required.

Many new TCP congestion control protocols have been pro-
posed, and some of them are being used in Linux (CUBIC)

and Windows Vista (CTCP). A new modular framework for

TCP congestion control (CC) protocols has been developed

in FreeBSD. This framework allows the support for new CC
protocols in addition to NewReno.

Lawrence Stewart showed a demo where the TCP conges-
tion control protocol selection was done using the sysctl
command.

The tool SIFTR (Statistical Information For TCP Research)
was presented. SIFTR is a kernel module that logs to a file
different statistics on TCP connections. This tool helps the
development and testing of new protocols. Many other tools
are used, such as dummynet, iperf, tcpstat, R, and ns-2.

There is still work and testing to be completed, and there
is a plan to share the congestion control protocols between
TCP and SCTP. The home page for this work (including
code) is found at http://caia.swin.edu.au/urp/newtcp/.

OPENBSD HARDWARE SENSORS FRAMEWORK

Summarized by Constantine A. Murenin (cnst@openbsd.org)

Constantine A. Murenin

Constantine is a math graduate student at the University of
Waterloo, a committer at OpenBSD, and a Google Summer
of Code 2007 (SoC2007) student at FreeBSD. During this
Invited Talk, an overview of the sensors framework was
presented, including the recent developments in the driver
arena and the Google SoC2007 experience of the speaker.

The talk started with a brief introduction to the main ideas
behind a unified sensor framework and followed with some
numbers representing the pervasiveness of the framework
within OpenBSD: At the end of March 2008, a 64th driver
utilizing the interface was committed into the code tree,
representing an anniversary of some kind, and at the time
of the presentation the number of drivers calling sensor-
dev_install(9) was as high as 67. Some of these drivers are
unique to OpenBSD and are not yet available elsewhere;
for example, Theo de Raadt has recently added support for
the JEDEC JC-42.4 SO-DIMM temperature sensors, and
Constantine has provided support for the temperature sen-
sors embedded in AMD Phenom and Opteron Barcelona

;LOGIN: AUGUST 2008

processors (neither of which is yet available in the Linux
Im-sensors package).

The rationale behind the framework design was explained,
with the primary objective of the API being “simple, secure,
and usable.” An example was given on how the voltage
sensors work in the hardware monitoring modules of most
popular Super 1/O solutions, where it is often the case that
it is impossible to know the true relationship between the
sensors and the power lines of the power supply unit, so
an overengineered framework isn't likely to be beneficial
for most simple drivers aimed at being usable by default.
An overview of the APT and of the userland utilities was
presented. Userland utilities include sysctl, sensorsd, ntpd,
systat, snmpd, and ports/sysutils/symon.

Constantine then proceeded to describe his experience
with porting the framework to FreeBSD, sponsored by the
Google SoC2007 program. Most popular parts of the frame-
work were ported, and a complete patchset was publicly re-
leased on September 13, 2007, but the FreeBSD CVS HEAD
tree was frozen at the time because of the then-upcoming
RELENG_7 branching, limiting the integration of the new
components into the tree.

In the meantime, the framework was committed to Drag-
onFly BSD by Hasso Tepper, who within a few days of the
posting adapted Constantine’s patch for inclusion into Drag-
onFly. A few days later, Constantine’s patch was approved
by the FreeBSD Release Engineering team to be committed
into FreeBSD after RELENG_7 was branched, and on Octo-
ber 14, 2007, it was committed into the FreeBSD CVS repos-
itory by Alexander Leidinger. The commit has generated a
lot of attention in the FreeBSD community, and some people
suddenly felt that the framework itself was designed only
with the OpenBSD architecture in mind and didn’t have a
FreeBSD feel. The framework was then backed out from the
FreeBSD CVS tree within a few days upon a request from
Poul-Henning Kamp, who perceived it as not being archi-
tecturally fit for FreeBSD, even if it may be appraised in
OpenBSD, as FreeBSD and OpenBSD have different archi-
tectural goals in mind, although Poul-Henning specifically
clarified on the mailing lists that the SoC2007 porting itself
was done to his satisfaction.

Poul-Henning was present in the audience, and during the
comments-and-questions portion of the talk he clarified
that he doesn’t want the code being imported into FreeBSD
so that FreeBSD could have a clear space in the area and
someone could implement a framework more suitable for
FreeBSD sometime in the future. Given that the framework
in question was based on a framework that was available
in NetBSD since 1999, Constantine and Poul-Henning
agreed that designing and implementing a sensors frame-
work perfect for FreeBSD with usable drivers may not be
easy (especially considering the often-inadequate hardware
specifications in the area).

CONFERENCE REPORTS 13

X.ORG

Summarized by Constantine A. Murenin (cnst@openbsd.org)

Matthieu Herrb

Matthieu Herrb is an OpenBSD X Window System devel-
oper and a member of the Board of Directors of the X.Org
Foundation. In this Invited Talk, Matthieu provided some
historical insights into the development of the X Window
System, from the late 1980s and the time of the mono-
chrome and 8-bit color framebuffers, to the present time
of Direct Rendering Infrastructure (DRI) and anti-aliasing
support.

Major administrative milestones were briefly covered (e.g.,
the XFree86 license fiasco and the creation of the X.Org
Foundation). Since the establishment of the foundation in
2004, the two most visible changes to X were the conver-
sion of the build system to a modularized design and the
embracement of git, the distributed version control system.

The interaction between various components of the win-
dowing system were described, both the direct and indirect
rendering modes, as well as plans for the future regarding
DRI2 and Gallium 3D, which aim at making the Direct Ren-
dering Manager simpler and more in line with the architec-
tural characteristics of modern 3D hardware.

Matthieu also summarized major changes in X.Org 7.3,
which was released in September 2007, and future plans
for the upcoming 7.4 release. For example, in late 2007 and
early 2008, AMD has released free programming documen-
tation that made the new radeonhd driver possible, and 7.4
will be the first release to include this new driver, support-
ing ATI Radeon HD chipsets.

Last but not least, the situation with X around the BSD
systems was covered. OpenBSD 4.3 includes X.Org 7.3,

and work on the DR is underway based on the code from
NetBSD. However, NetBSD is the only significant system
that continues to ship XFree86 releases in its base system,
although X.Org is also available through pkgsrc, a managing
facility for third-party packages. One interesting problem
that OpenBSD and NetBSD face is on the legacy architec-
tures front, where some architectures have limited processor
and memory resources and sometimes lack shared library
support, making it increasingly difficult to support newer X
releases on such machines.

BSD LICENSED C++ COMPILER

Summarized by Constantine A. Murenin (cnst@openbsd.org)

Chris Lattner, Apple, Inc.

Chris Lattner is the chief architect of the Low Level Vir-
tual Machine Compiler Infrastructure, currently managing
the LLVM group at Apple Inc. In this Invited Talk, Chris
provided an outline of the technological advances of the
BSD-like licensed LLVM compiler suite.

14

In a nutshell, the LLVM project consists of the language-
independent optimizer and code generator, llvm-gec 4.2
front-end, and the clang front-end. In the introduction to
the talk, Chris described why there is a need for a new
compiler technology, which, for someone somewhat familiar
with the GNU Compiler Collection, wasn't all that surpris-
ing: GCC keeps getting slower with every release, cannot
be easily reused in other applications, and is bloated to the
point where it is quite difficult to read and modify the code.
LLVM, however, takes a modular approach, where more
components can be shared across different compilers and
processor architectures.

The GCC 4.x design was highlighted, and this was followed
by an explanation of how the llvm-gcc 4.2 is designed to
work: llvm-gec is a drop-in replacement for the gec and
uses the GCC front-end with the LLVM optimizer and code
generator. Chris has reported that not only are the LLVM
optimizer and code generator faster in such a GCC com-
pound (30% improvement at -O3) but they also produce
better code (5% to 10% improvement on an x86/x86-64);
moreover, they allow some interesting applications, such as
just-in-time compiling, optimization of the C/C++ code, and
generation of the executable code at the install time.

Special attention was devoted to one other topic, namely,
LLVM on the OpenGL front. Mac OS X 10.5 provides
mechanisms for colorspace conversion, code for which

has hundreds of conversion combinations among the color
formats, and patterns can be applied to the input and
output in the “case” statements inside a couple of “switch”
statements inside a “for” loop for every pixel. For such an
example, run-time optimization can greatly improve the
performance, with 5.4x being the average improvement
and 19.3x being the maximum speed-up, depending on the
source and destination color formats. Some insights were
also given regarding the Mac OS OpenGL state before LLVM
came about. Chris was happy to note that no polygon can
get onto the screen in Mac OS X without LLVM.

The next big part of the talk was a presentation on clang,
a front-end for C, C++, and Objective-C. In comparison,
GCC, apart from being slow and memory-hungry, doesn't
serve the needs of various IDE applications, such as in-
dexing of the code for “jump to the definition” features or
“smart-editing.” One of the most significant problems with
GCC front-end is, however, the limited information that is
usually provided when the compiler encounters errors in
the source code. Since clang always keeps the information
about the columns where the errors occur, error messages
explicitly contain not only the line but also the column,

as well as providing ASCII graphics of the exact point on
the line where the errors occur, accompanied by a more
meaningful error message than the GCC usually offers. This
feature was very well received by the audience.

;LOGIN: VOL. 33, NO. 4

INTRODUCTION TO DEBUGGING THE FREEBSD KERNEL

Summarized by Bjoern A. Zeeb (bz@FreeBSD.org)

John H. Baldwin, Yahoo! Inc.

John Baldwin started with an overview of the various
places to find documentation on the subject. He continued
by showing how to use the interactive kernel debugger for
investigating deadlocks. For the developers in the audi-
ence he talked about how to enhance ddb(4) by adding new
commands. The next section was on the kgdb(1) debug-
ging kernel modules and scripting by adding user-defined
commands. He closed with a summary on the different

strategies for debugging kernel crashes versus system hangs.

Slides and a paper with more information are available on-
line at http:/people.freebsd.org/~jhb/papers/bsdcan/2008/.

WIPS

Summarized by Mathieu Arnold (mat@FreeBSD.org)

* Ivan Voras on mdcached: It is a caching daemon, much
better than memcached, optimized for multicore servers,
and very fast; you can put tags on data and search with
tags, which seems to be a handy idea.

* Frank Pikelner on Versiera: This multi-OS server manage-
ment software, developed by Netcraft, seems nice.

* Philip Paeps on syscons and other scary things: Philip
says he came into device drivers because of a touchpad
that was working rather strangely. He’s also going to break
syscons in the upcoming months by taking it apart and
separating it from the framebuffer and ttys.

* Peter Losher on IPv6 and the root name servers: We'll be
out of IPv4 in two years, so get used to it, but 6 of the 13
root servers have had IPv6 for quite some time now, and
those IPs have been added to the root zone file.

* Bjoern Zeeb on multi-IPv4/IPv6/no-ip jails: There have
been multiple patches for multiple IPv4, vimage, IPv4+IPv6,
and jailv6, and some things are moving along nicely. Ul-
timately, we’ll have DDB and SCTP support. The current
system is pretty light, and it works in production. Things to
do include source-routing; cpuset selection; adding a name
to the jail so that it can be put in ps, for instance; support
for bsnmpd; and adding resource limits.

* Zachary Loafman on FreeBSD at Isilon: They have a
distributed filesystem called OneFS, sponsored the work to
have NFSv3 locks working, and have tons of other things
(as shown in too many interesting slides with no time to
take notes), but they lack time to contribute them and are
hiring and willing to sponsor projects.

* Mark Linimon on Bugathons + BugBusting BoF: Bug-
athons bring volunteers, and it really helps to categorize
PRs; volunteers bring in lots of fresh blood and also many
fresh interesting ideas, so if you want, you can help too.

;LOGIN: AUGUST 2008

* Julian Elisher on Vimage, MRT: The kernel modules will
be virtualized one after another.

* George Neville-Neil on network testing: TCP is king, in
general, and peasants like multicast and UDP get much less
testing. The network test utility mctest, with sources and
sinks, is in src/tools/tools/mctest. PCS is another network
tester and has been improved; this year it's a Google SoC
project.

* George Neville-Neil on XEN: HEAD works with Xen 3.1
and 3.2 in perforce, and Xen 3.0.3 is in the pipe for Amazon
EC2. It'll happen right after FreeBSD switches to svn, and it
will support 64-bit architectures.

* Julian Elisher on multiple routing tables: He showed two
big schemas with lots of structures, pointers, and other
stuff; one is bad because the API changes too much; the
other is good because it does not change that much.

THE VERY END

Summarized by Bjoern A. Zeeb (bz@FreeBSD.org)

If you want to find out how Dan felt about the conference,
go to his blog at http:/dan.langille.org/ and check for “Three
Weeks in the Life of a Conference Organizer.” Thank you,
Dan, for another fantastic BSDCan! Is this the end? No.

Do you want to know what else happened those days? You
had better come and find out yourself next year. See you at
BSDCan 2009, when it will be the biggest OS(S) conference
in town.

BSDCan 2008 FreeBSD Developer Summit

Ottawa, Canada
May 14-15, 2008

Summarized by Bjoern A. Zeeb (bz@FreeBSD.org) and
Marshall Kirk McKusick (McKusick@McKusick.com)

INTRODUCTION

A developer summit is a get-together of some FreeBSD de-
velopers to present recently finished work and to talk about
ongoing work or future plans. Although this is not a place
to make decisions concerning the entire project, there are
usually enough of the key developers present that a lot of
design issues get hashed out.

Developer summits are often aligned with a BSD conference,
as many developers are going to be there anyway. The sum-
mit also provides an opportunity for people from companies
using FreeBSD or other FreeBSD-derived projects to attend.
This mix of developers and users presents a great opportu-
nity for the developers to get direct feedback on their work
and for the users to gain an understanding of likely future
developments.

CONFERENCE REPORTS 115

This report gives our thoughts on the developer sum-
mit events that we attended. For more complete de-
tails and often the slides used by the presenter, see
the Developer Summit wiki page, http:/wiki.FreeBSD.
org/200805DevSummit.

The format of the summit was to have formal talks in the
morning, with afternoons devoted to free-for-all discussions
by smaller, self-selected groups on various specialized topics
largely selected at the conclusion of the morning talks. Most
of this report will focus on the morning sessions, as their
content is more easily summarized.

SUMMIT DAY 1

The day opened with a welcome message from Robert Wat-
son, the main organizer for the summit.

Poul-Henning Kamp started with a general discussion about
GreenBSD. This project will not be a fork of FreeBSD, but it
might become a new, large-scale project encompassing large
parts of the system. The main thrust of GreenBSD is “green
computing,” that is, reducing power consumption whenever
and wherever possible. Examples include turning down
gigabit interfaces to 100 Mbit/s if there is no need for more
speed, entirely shutting down unused NICs, or reducing
clock speeds and voltages on otherwise idle CPUs. The key
is to figure out the correct abstraction and support function-
ality so that it is not necessary to endlessly duplicate code
in each device driver.

Next, Ivan Voras spoke about his Google Summer of Code
2007 project, finstall, a graphical installer that provides
more automated decision making and provides interfaces

to more parts of the systems such as geom, networking
options, ZFS, and gjournal. It is split into a front end and

a back end and is written in GTK and Python. The split al-
lows finstall to implement a remote installation console. The
back end can be used for non-base-system installs as well.
At the moment it is still lacking a graphical partition editor.

During the question period Ivan was asked how much work
would be required to replace the Python back end with a C
implementation. Concerns were also raised about the front
end using GTK because of it being LGPL. In particular,

the discussion migrated to whether the front end could be
replaced with a text-mode-only implementation in C and
whether that would really just drop back to the current
capabilities of the curses-based front end.

After a short break Alexey Tarasov spoke on his Google
Summer of Code 2007 project, which involved kernel
netbooting via HTTP. The work consists of a PXE API, a
tiny TCP/IP stack, PXE sockets, etc. Unfortunately, there is
no IPv6 support with PXE. There are basic filters to restrict
[P/ports. The most important but also complicated task
had been the user mode implementation of the tiny TCP/IP
stack along with memory constraints (buffering issues). It
uses httpfs provided by the boot loader including HTTP

16

1.1 support. DHCP, DNS client, ICMP echo, ARP, and boot
console commands are already implemented. Work in prog-
ress includes a telnet client, socketfs, IPv6 support, and a
possible parsing of HTTP server index pages.

Rafal Jaworowski was up next with an embedded-architec-
ture status report: arm, MIPS, and PowerPC. The arm port
is “almost” tier-1, as of the FreeBSD 7.0 release. More arm
functions and features are in the pipeline. Unlike the other
architectures, it is nearly impossible to have a single arm
GENERIC kernel as there are so many incompatible varia-
tions of the arm architecture. Juniper Networks has been
providing a lot of the MIPS support. FreeBSD 7.0 supports
both the 32-bit and 64-bit MIPS architectures. As with the
arm architecture, much additional MIPS functionality is in
the pipeline.

The PowerPC is more of a work in progress, also being sup-
ported by Juniper. At the moment most of the PowerPC sup-
port is for the high-end chipsets and SMP support. Bridge
mode is going toward 64-bit PowerPC support.

There are two Google Summer of Code 2008 embedded-sys-
tems projects. The first involves optimizing the build system
for embedded systems. The second is to port to Efika, a
cheap platform. Other embedded projects on the wish list
are improving support for a flash-memory-based filesystem,
an improved build system to support cross-building from
Linux or Windows, and better system/kernel configuration
for creating a smaller footprint.

Ed Schouten talked about reimplementing FreeBSD’s tty
layer. The tty system is the one part of the system that has
not been rewritten to support SMP so still needs to run
under the Giant lock. Ed started with a design overview,
which involved the removal of the fragile clists buffer mech-
anism from tty. Among other things he is now destroying
ptys when unused so that they do not clutter up /dev and
consume kernel resources. He multi-threaded the transmit
path buffering and eliminated the global buffer list. Best of
all, he managed to keep all but sgetty ABI compatible. Still
to be done is the (fairly mechanical) task of adding multi-
threading support to all the serial devices.

This concluded the first day’s formal presentations. After a
lunch of pizza everyone broke up into smaller discussion
groups. The "Network Cabal” started with Jeff Roberson,
Julian Elischer, and Kip Macy on a redesign for mbufs. Jeff
has a new concept that ref-counts mbufs so that they re-
quire less copying on forks. In addition he combines a clus-
tered mbuf with a small mbuf header to increase efficiency
when a copy of the mbuf needs to be retained, for example
with TCP. The ongoing discussion was mostly with Sam
Leffler and Robert Watson debating mbuf layout, mbuf tags,
mbuf back traces, and techniques for tracking mbuf leaks.

Lawrence Steward led a discussion about TCP bug foren-
sics. After introducing himself and a bit of TCP jargon and
history he delved into congestion control algorithms. He
explained which OS is using which algorithm and talked

;LOGIN: VOL. 33, NO. 4

about what parameters to look at when comparing the vari-
ous different algorithms for high-speed connections.

Next he turned his attention to tools. Dummynet has
problems. SIFTR is their tool to generate CSV-like informa-
tion for later analysis. He showed how to use the data of the
tool in three interesting case studies of problems they had
found.

The next slot was debugging and profiling tools. John Birrell
led the discussion by opening with a demo on DTrace. One
of the important things that he stressed was that DTrace is
not a debugger. One key thing to understand about DTrace
is that it can always be compiled into the kernel as it has
almost no overhead when it is not being used. Indeed the
(only) overhead is NULL pointer checks for the DTrace
modules. If the modules are loaded, there will be an addi-
tional bitwise AND to do a mask check. So, one can expect
to have DTrace available even on production systems. The
other key point that came up is that DTrace does not re-
place other tools such as ktrace and gprof.

The last big section of the first day was a presentation

on network stack virtualization by Marco Zec and Julian
Elischer. They explained how they had implemented load-
able network-stack support. In short, all the formerly global
data structures and variables had been gathered together
into a dynamically allocated structure. In this way, multiple
copies of the network stack could run in isolation; for ex-
ample, each jail could have its own network stack on which
to operate. This functionality allows each jail to run its own
packet filter, raw sockets, ICMP, ALTQ, etc.

SUMMIT DAY 2

Adrian Chadd started off the second day of presentations by
talking about TCP content- and service-provider hijacking.
He discussed both malicious and deliberate hijacking and
described the different methods and technologies used. He
explained the various problems that arise when deliberate
hijacking is done. The issues involved TCP options, screw-
ups in MTU discovery, failures in properly setting TCP
options, and the effects of an older implementation such as
TPROXY.

Next Doug Rabson talked about his work on replacing the
error-prone userland NFS Lock Manager with a kernel-
based one; this led to a lot of cheering. He started with a
basic overview of the different NFS versions (2/3) and un-
documented newer stuff. FreeBSD locking used to be done
in the old userland rcp.lockd, which lacked proper client-
side locking. The new kernel-based rcp.lockd supports
everything but DOS shares. It has kernel-mode implementa-
tions for both client and server. Local locking now supports
asynchronous operation and there is a graph-based dead-
lock detection. He also implemented fairness for contested
locks so that locks are handed out first come, first served.
He even added regression tests to ensure that it works and

;LOGIN: AUGUST 2008

continues to work. The kernel-mode implementation is now
the default, but there are options in GENERIC so that you
can opt out of the kernel-mode lock manager and fall back
to the “old rpc.lockd.”

Justin Gibbs provided a break in the onslaught of technical
information by giving an update on the FreeBSD Founda-
tion. He explained that the foundation was created to pro-
vide a way to channel money to fund development of un-
popular parts of the system, as a way to build long-standing
relationships with vendors and to provide an organization
that can negotiate legal contracts. By providing a stand-
alone organization rather than affiliating with an existing
corporation they avoided any conflicts of interest. Thus, the
FreeBSD Foundation is an independent corporation with
management that is internally elected, and its activities are
guided by its charter, which states its role as improving,
nurturing, protecting, and evangelizing FreeBSD. In short, it
is the “tie that binds” FreeBSD.

The FreeBSD Foundation is providing travel grants, event
sponsorship, funds development, IP protection, legal and
contract negotiation, and management of hardware dona-
tions. Challenges include knowing the user base, maintain-
ing critical mass, finding funding for the FreeBSD platform
helping to define and set milestones, and growing the
capabilities of FreeBSD.

)

Returning to the technical theme, Erwin Lansing talked
about the task of the FreeBSD port manager. He gave some
numbers and statistics and went into the details of the port
monitoring software. As there are now over 18,000 actively
maintained ports, many manual tasks have to be handled
automatically. There is software for tracking problem re-
ports, detecting maintainer-timeouts, ensuring that pack-
ages compile on all platforms, determining package depen-
dencies, etc. This summer three Google Summer of Code
students will work on the ports infrastructure.

Robert Watson stepped up the pace of discussion with his
talk on TCP scalability in the presence of 16-core SMP sys-
tems. He started with the big picture: MPSAFEness, Giant
free, and improving multi-threaded workloads. He went

on to describe UDP problems: throttling by exclusive write
locks, and excessive overhead from the socket buffer code.
Once these were fixed, the bottleneck moved to the routing
code, which has no parallelism. Streamlining the routing
code led to the transmit queues, which need to be serialized
to preserve ordering. The trick seems to be to serialize them
only per connection and not for all UDP traffic, which is
easier said than done.

The TCP stack has even more bottlenecks, including one
lock for all incoming packets, serialized access to look up
the connection for which a packet is destined, along with
socket buffer send/receive, routing, and the transmit queues
noted in UDP. He talked more about stack parallelism,
direct dispatch versus input queuing, and maintaining per-

CONFERENCE REPORTS 17

connection ordering when running with multireceive and
multisend queues.

The last formal talk was by Peter Wemm on Version Con-
trol. Whereas most agree that CVS has hit a wall, it was
much less clear what should replace it. After much investi-
gation Peter concluded that Subversion would be the best
replacement. The command-line interface is nearly the same
as that of CVS except that it uses URLs instead of paths in
some places.

After the initial changeover, all changes into Subversion
will be reflected into the CVS tree. That means cvsup will
still work and there will be almost no visible changes for
the world apart from minor things such as slightly different
commit messages. That also means that cvsweb would still
work and that there would be a backup plan in case Subver-
sion does not work out. The project could just switch back
to CVS.

18

The first after-lunch discussion group was on system-trust
issues. Topics included the mandatory-access framework,
auditing activities within jails, and increasing the granular-
ity of privilege: getting away from all (root) or nothing (all
other users).

Jeff Robinson led a discussion of an overhaul of the buf-
fer cache. Much of the functionality formerly provided by
the buffer cache (caching, identity, clustering, etc.) is now
provided by the virtual-memory system. Jeff talked about
which functionality remained in the buffer cache and how
to push that functionality elsewhere so that the remains of
the buffer-cache interface can be eliminated. Details are at
http://wiki.FreeBSD.org/BufOx.

The day ended with a long reprise of the network-stack
virtualization discussion, getting down to the specifics of
defining a set of steps toward its realization, ordering those
steps, and setting a timeframe for each step.

;LOGIN: VOL. 33, NO. 4

10 5 e e =

DATA ‘XURl\I,EJLL‘LANCE

\eg

IEEE Security & Privacy magazine is THE premier magazine for security professionals.

Read this and other exciting issues!

Check out our Silver Bullet Security Podcast with host Gary McGraw, featuring:
+ Bruce Schneier of BT Counterpane + Eugene Spafford of CERIAS +
+ Mary Ann Davidson of Oracle + Avi Rubin of Johns Hopkins + and more! +
Silver Bullet sponsored by Cigital and IEEE Security & Privacy
www.computer.org/security/podcasts

Subscribe today for only $29!

www.computet.org/services/nonmem/spbnr

Linux

Troublesotinq

S\

Linux Pro Magazine delivers real-world solutions for

If you]_lke the taste the technical reader. In every issue, you'll find advanced

techniques for configuring and securing Linux systems.

Of Linu-x! Why nOt treat Learn about the latest tools and discover the secrets of
YOurse]_f (o) the beSt? the experts in Linux Pro. Each issue includes a full Linux

distribution on DVD.

www.linuxpromagazine.com

Save the Date! 22ND LARGE INSTALLATION
SYSTEM ADMINISTRATION
CONFERENCE

LB = 14 12008, San Dlego CA

‘ - 5 N s Ll : _
ng &peri%‘in‘iheif'fi " ay technical program™>
L) |
e New! Solaris Track and‘\/lrtullzanon Track = /} e Keynote Address by Sean Dennehy and Don H.

Burke, Intellipedia, U.S. Central Intelligence

¢ /Eleen Frisch and Kyrre Begnum on Vlrtuallza - Agency r

tion: VMs! What Are They/Good For?
VPlenary session by BrucelSchneier, Founder and

. » Tom Christiansen on Advanced Perl = E CTO, BT Counferpane — e ‘ |
\

\Peter Baer Galvin\and Marc Staveley on Solaris
A\ ‘1 0 AdministratiensTopics: ISecurlty, File Systems
~ | andWirtualization | ‘\

e Invited talks by‘Tndustry leaders t

o Refereed Papers, Guru ls In sessions, Vendor
‘J , Exhibition, Workshops, Work-in- Progress

reports and more' I 4
1 -

Reglster by October 17, 2008, and save' http://www.usenix.org/lisa08/la

USENIX Association PERIODICALS POSTAGE

2560 Ninth Street, Suite 215 PAID

Berkeley, CA 94710 AT BERKELEY, CALIFORNIA
AND ADDITIONAL OFFICES

POSTMASTER

Send Address Changes to ;login:
2560 Ninth Street, Suite 215
Berkeley, CA 94710

