
;login:
A U G U S T 2 0 1 5 V O L . 4 0 , N O . 4

Security and Sysadmin
& The Problem with Parsers and

How to Secure Them
Sergey Bratus, Meredith L. Patterson,
and Anna Shubina

& Unreliable OS for Security
Ruimin Sun, Matt Bishop, Natalie C. Ebner,
Daniela Oliveira, and Donald E. Porter

& Smartphone Sensor Monitoring
Using the Sensibility Testbed
Yanyan Zhuang, Albert Rafetseder, and
Justin Cappos

& Using an (Un)reliability Budget
for Reliability
Mark D. Roth

History
Peter H. Salus on Mail, News, and How USENIX
Helped Create the Commercial Internet

Columns
Using Yield in Python 3
David Beazley

Parallel Perl Using Coro and AnyEvent
David N. Blank-Edelman

Choosing Key Performance Indicators
Dave Josephsen

Exploring the “Visitable” IPv4 Address Space
Dan Geer and HD Moore

U P C O M I N G E V E N T S

Stay Connected...

www.usenix.org/facebook

twitter.com/usenix

www.usenix.org/youtube

www.usenix.org/linkedin

www.usenix.org/blog

www.usenix.org/gplus

USENIX Security ’15: 24th USENIX Security
Symposium

August 12–14, 2015, Washington, D.C., USA
www.usenix.org/usenixsecurity15

Co-located with USENIX Security ’15:

WOOT ’15: 9th USENIX Workshop on Offensive
Technologies
August 10–11, 2015
www.usenix.org/woot15

CSET ’15: 8th Workshop on Cyber Security
Experimentation and Test
August 10, 2015
www.usenix.org/cset15

FOCI ’15: 5th USENIX Workshop on Free and
Open Communications on the Internet
August 10, 2015
www.usenix.org/foci15

HealthTech ’15: 2015 USENIX Summit on
Information Technologies for Health
Safety, Security, Privacy, and Interoperability
of Health Information Technologies
August 10, 2015
www.usenix.org/healthtech15

JETS ’15: 2015 USENIX Journal of Election
Technology and Systems Workshop
(Formerly EVT/WOTE)
August 11, 2015
www.usenix.org/jets15

HotSec ’15: 2015 USENIX Summit on Hot Topics
in Security
August 11, 2015
www.usenix.org/hotsec15

3GSE ’15: 2015 USENIX Summit on Gaming,
Games, and Gamification in Security Education
August 11, 2015
www.usenix.org/3gse15

LISA15
November 8–13, 2015, Washington, D.C., USA
www.usenix.org/lisa15

Co-located with LISA15:

UCMS ’15: 2015 USENIX Container Management
Summit
November 9, 2015
Submissions due September 5, 2015
www.usenix.org/ucms15

URES ’15: 2015 USENIX Release Engineering
Summit
November 13, 2015
Submissions due September 4, 2015
www.usenix.org/ures15

FAST ’16: 14th USENIX Conference on File and
Storage Technologies

February 22–25, 2016, Santa Clara, CA, USA
Submissions due September 21, 2015
www.usenix.org/fast16

NSDI ’16: 13th USENIX Symposium on
Networked Systems Design and
Implementation

March 16–18, 2016, Santa Clara, CA, USA
Paper titles and abstracts due: September 17, 2015
www.usenix.org/nsdi16

USENIX ATC ’16: 2016 USENIX Annual Technical
Conference

June 22–24, 2016, Denver, CO, USA
Submissions due February 1, 2016
www.usenix.org/atc16

Co-located with USENIX ATC ’16 and taking place
June 20–21, 2016:

HotCloud ’16: 8th USENIX Workshop on Hot
Topics in Cloud Computing

HotStorage ’16: 8th USENIX Workshop on Hot
Topics in Storage and File Systems

USENIX Security ’16: 25th USENIX Security
Symposium

August 10–12, 2016, Austin, TX, USA

OSDI ’16: 12th USENIX Symposium on
Operating Systems Design and Implementation

November 2–4, 2016, Savannah, GA, USA

Shop the Shop shop.linuxnewmedia.com

RaspbeRRy pi on newsstands now oR oRdeR online at:

shop.l inuxnewmedia.com/rpi

Your companion for a strange
and wonderful adventure...

You ordered your Raspberry Pi...
You got it to boot...what now?

The Raspberry Pi Handbook takes
you through an inspiring collection of
projects. Put your Pi to work as a:

▪ media center

▪ photo server

▪ game server

▪ hardware controller

▪ and much more!

Discover Raspberry Pi’s special tools
for teaching kids about programming
and electronics, and explore advanced
techniques for controlling Arduino
systems and coding GPIO interrupts.

watch youR newsstands foR
the only RaspbeRRy pi RefeRence

you’ll eveR need!

3 Edition!rd

ad_login_RPH_07_2015.indd 1 7/7/15 9:20:09 AM

http://www.usenix.org/facebook
http://www.usenix.org/youtube
http://www.usenix.org/linkedin
http://www.usenix.org/blog
http://www.usenix.org/gplus
http://www.usenix.org/usenixsecurity15
http://www.usenix.org/woot15
http://www.usenix.org/cset15
http://www.usenix.org/foci15
http://www.usenix.org/healthtech15
http://www.usenix.org/jets15
http://www.usenix.org/hotsec15
http://www.usenix.org/3gse15
http://www.usenix.org/lisa15
http://www.usenix.org/ucms15
http://www.usenix.org/ures15
http://www.usenix.org/fast16
http://www.usenix.org/nsdi16
http://www.usenix.org/atc16

E D I T O R
Rik Farrow
rik@usenix.org

M A N A G I N G E D I T O R
Michele Nelson
michele@usenix.org

C O P Y E D I T O R S
Steve Gilmartin
Amber Ankerholz

P R O D U C T I O N
Arnold Gatilao
Jasmine Murcia

T Y P E S E T T E R
Star Type
startype@comcast.net

U S E N I X A S S O C I AT I O N
2560 Ninth Street, Suite 215
Berkeley, California 94710
Phone: (510) 528-8649
FAX: (510) 548-5738

www.usenix.org

;login: is the official magazine of the USENIX
Association. ;login: (ISSN 1044-6397)
is published bi-monthly by the USENIX
Association, 2560 Ninth Street, Suite 215,
 Berkeley, CA 94710.

$90 of each member’s annual dues is for a
subscription to ;login:. Subscriptions for non-
members are $90 per year. Periodicals postage
paid at Berkeley, CA, and additional offices.

POSTMASTER: Send address changes to
;login:, USENIX Association, 2560 Ninth Street,
Suite 215, Berkeley, CA 94710.

©2015 USENIX Association
USENIX is a registered trademark of the
USENIX Association. Many of the designa-
tions used by manufacturers and sellers
to distinguish their products are claimed
as trademarks. USENIX acknowledges all
trademarks herein. Where those desig-
nations appear in this publication and
USENIX is aware of a trademark claim,
the designations have been printed in caps
or initial caps.

A U G U S T 2 0 1 5 V O L . 4 0 , N O . 4

E D I T O R I A L
2 Musings Rik Farrow

S E C U R I T Y
4 The Bugs We Have to Kill Sergey Bratus, Meredith L. Patterson,

and Anna Shubina

12 The Case for Unpredictability and Deception as OS Features
Ruimin Sun, Matt Bishop, Natalie C. Ebner, Daniela Oliveira, and
Donald E. Porter

18 Privacy-Preserving Experimentation with Sensibility Testbed
Yanyan Zhuang, Albert Rafetseder, and Justin Cappos

22 Interview with Marc Maiffret Rik Farrow

S Y S T E M A D M I N I S T R AT I O N
26 (Un)Reliability Budgets: Finding Balance between Innovation and

Reliability Mark D. Roth

30 /var/log/manager: Incentivizing Smart People Andy Seely

P R O G R A M M I N G
33 What Bugs Live in the Cloud?: A Study of Issues in Scalable

Distributed Systems Haryadi S. Gunawi, Thanh Do, Agung Laksono,
Mingzhe Hao, Tanakorn Leesatapornwongsa, Jeffrey F. Lukman, and
Riza O. Suminto

H I S T O R Y
40 Distributing the News: UUCP to UUNET Peter H. Salus

43 UNIX News

C O L U M N S
48 A Tale of Two Concurrencies (Part 2) David Beazley

56 Practical Perl Tools: Parallel Asynchronicity, Part 2 
David N. Blank-Edelman

62 iVoyeur: How Do I Even KPI? Dave Josephsen

66 Balkanization from Above Dan Geer and HD Moore

72 dev/random: Quantumology Robert G. Ferrell

B O O K S
74 Book Reviews Mark Lamourine

U S E N I X N O T E S
75 Announcing Enigma Casey Henderson

75 Notice of Annual Meeting

mailto:rik@usenix.org
mailto:michele@usenix.org
mailto:startype@comcast.net
http://www.usenix.org

2  AU G U S T 20 1 5 VO L . 4 0, N O. 4 www.usenix.org

EDITORIALMusings
R I K F A R R O W

Rik is the editor of ;login:.
rik@usenix.org I first encountered Sergey Bratus in a dingy stairwell in a Westin hotel in

San Francisco. We were attending the 20th USENIX Security Sympo-
sium, and Sergey was a co-author of two WOOT papers. I could tell that

an article pitch was coming and listened carefully as Sergey expounded on
weird machines, unplanned-for VMs that exist in most code.

Sergey’s student, James Oakley, had won the Best Student Paper award for showing how
gcc’s exception handling format (DWARF) was rich enough to provide a complete execution
environment. While this notion appeared a bit obscure to me, even as it was alarming that
DWARF was exploitable, I still wondered just how big the impact was. I have paid attention
to new exploits since I became interested in UNIX security in 1984, and couldn’t recall any
exploits that relied on this particular format.

Sergey, a short, rounded man with a graying comb-over, patiently explained to me that it
wasn’t just this example: weird machines could be found everywhere in code. And the more
Sergey talked, the more I began to see the connection between the exploits I had studied over
many years and what he explained in that dim and echoing stairwell.

Sergey, a Research Associate Professor at Dartmouth, has co-authored many papers and sev-
eral ;login: articles on this topic since that day. He approached me again this year (by email),
asking me if I wanted to attend the LangSec workshop [1] happening as part of the IEEE
Security and Privacy Workshops in May 2015. He also had another article idea, but I wanted
something different: a clear description of the problems caused by weird machines, without
resorting to insider jargon (like the term weird machines). Fortunately for us, Sergey, along
with Meredith Patterson and Anna Shubina, did spend a lot of time writing an article for this
issue. And I believe they’ve done a great job.

If I were to attempt to describe this issue as an elevator pitch (you have just 30 seconds),
here’s what I’d say. There is a programming issue that is the single cause of most exploits, and
while it is possible in many cases to fix this problem, it has been ignored. This issue can be
fixed by using programming techniques, many over 40 years old, that get ignored by program-
mers who write exploitable code instead. But there are cases where proper coding cannot help
you, because the protocols involved are too complex by design. And some of those impossibly
complex protocols include some of the foundations for the security of the Internet, like TLS
and HTML5.

While fixing problems with input parsing, the appropriate place in any program, won’t solve
all security issues, this single type of fix would do more to improve the security of our com-
puters, cars, smartphones, and devices than would any other change. In fact, any software-
controlled device that accepts input beyond a simple on-and-off switch will never be secure
without observance of the principles described in Sergey’s article. Those principles are based
on both research as well as years of observation into exploitable software, and the conversion
to having parsers that can be proven to be correct will have more impact than anything else
we could possible do to improve security today.

http://www.usenix.org
mailto:rik@usenix.org

www.usenix.org AU G U S T 20 1 5 VO L . 4 0, N O. 4 3

EDITORIAL
Musings

Our computers are flexible by design—that’s what makes them so
useful for doing a huge variety of tasks. If we expose our comput-
ers through the use of complex parsers or protocols to Turing-
complete input languages, we must expect that our software, and
our devices, can never be made secure. Attackers will continue
to make our devices dance.

The Lineup
I’ve already provided an introduction to the first article, so let’s
consider the second. Sun et al. wrote a HotOS workshop paper
about their research into unreliable operating systems. Their
insight is that many exploits are brittle, and providing some ran-
domness to the responses of the operating system to programs
that aren’t whitelisted will disrupt their behavior.

Zhuang et al. have built an environment that supports the col-
lection of sensor data from smartphones. Their solution must
overcome both privacy concerns and security issues involved in
running software on strangers’ phones.

I interviewed Marc Maiffret, a self-educated man who founded
a successful security company at age 17 after a bit of a rough
start. Marc has a unique viewpoint into the world of Microsoft
security, having helped to prod Microsoft into a better security
posture.

Mark D. Roth explains how Google uses an unreliability budget
to provide more reliable services. This is a neat idea, one I first
heard about during SREcon in 2014, and am happy that the un-
reliability budget has finally been clearly explained.

Andy Seely continues his series on managing with an article
looking at the seven levers that can be used to help retain tal-
ented employees.

Gunawi et al. have shared their ongoing research into the causes
of failures in distributed applications, such as HDFS and Cas-
sandra. Some of the problems only appear at large scale, making
them difficult to test, while others are more tractable.

David Beazley continues his two part series on concurrency in
Python by explaining coroutines. Coroutines rely on application-
level programming to provide a form of concurrency, using yield,
but still have the Global Interpreter Lock to deal with.

David N. Blank-Edelman also has a second part in his own series
about concurrency in Perl, using the Coro modules. Coro uses
cede to yield control to other threads, and this can be done using
semaphores, or by using other modules, like AnyEvent.

Dave Josephsen shares his experience in determining Key Per-
formance Indicators (KPI), in particular, by choosing the laten-
cies measured between the components of a service.

Dan Geer and HD Moore have taken a measured look at the num-
ber of IPv4 addresses that you can actually probe, and it appears
that there are huge enclaves of devices that are hidden, generally
by mobile broadband providers. There are also, of course, devices
that we wish were hidden, provided mostly by cable companies.

Robert G. Ferrell muses about the future of quantum computing.
Specifically, just how will we write scripts to manage systems
where each test value can be both true and false at the same time.

Mark Lamourine has written two book reviews for this issue.
His first covers a book on Swift, Apple’s new language for apps.
Mark takes a look at a book on programming in Python on the
Raspberry Pi for his second review.

I started this column discussing a topic, input parsing, that is
actually not as simple as I might have implied. I doubt that many
programmers today have even heard of the Chomsky hierarchy
of formal languages [2], first described by Noam Chomsky in
1956. And even if programmers are aware of this hierarchy,
grasping the difference between context-free and context-
sensitive grammars will be far beyond what we should expect
of people writing Web applications in PHP or JavaScript.

But I certainly believe that computer scientists and members
of industry who are responsible for protocols, such as HTML5,
TLS, X.509, XML, and IPv6, should be aware of the implications
of designs that require nondeterministic Turing machines, that
is, ones that cannot be proven to be correct, to interpret them.
When we base our technological future on systems that are
insecure by design, we should not be surprised by that very lack
of security that surfaces daily.

References
[1] Second Workshop in LangSec (Language Security): http://
spw15.langsec.org/; first workshop: http://spw14.langsec.org/.

[2] The Chomsky Hierarchy: https://en.wikipedia.org/wiki/
Chomsky_hierarchy.

http://www.usenix.org
http://spw15.langsec.org/
http://spw15.langsec.org/
http://spw14.langsec.org/
https://en.wikipedia.org/wiki/Chomsky_hierarchy

4  AU G U S T 20 1 5 VO L . 4 0, N O. 4 www.usenix.org

SECURITYThe Bugs We Have to Kill
S E R G E Y B R A T U S , M E R E D I T H L . P A T T E R S O N , A N D A N N A S H U B I N A

Sergey Bratus is a Research
Associate Professor of com-
puter science at Dartmouth
College. He sees state-of-
the-art hacking as a distinct

research and engineering discipline that,
although not yet recognized as such, harbors
deep insights into the nature of computing. He
has a PhD in mathematics from Northeastern
University and worked at BBN Technologies on
natural language processing research before
coming to Dartmouth.
sergey@cs.dartmouth.edu

Meredith L. Patterson is
the founder of Upstanding
Hackers. She developed the
first language-theoretic defense
against SQL injection in 2005

as a PhD student at the University of Iowa and
has continued expanding the technique ever
since. She lives in Brussels, Belgium.
mlp@upstandinghackers.com

Anna Shubina is a Research
Associate at the Dartmouth
Institute for Security,
Technology, and Society and
maintains the CRAWDAD.org

repository of traces and data for all kinds of
wireless and sensor network research. She was
the operator of Dartmouth’s Tor node when
the Tor network had about 30 nodes total.
ashubina@cs.dartmouth.edu

The code that parses inputs is the first and often the only protection
for the rest of a program from malicious inputs. No programmer can
afford to verify every implied condition on every line of code—even

if this were possible to implement without slowing execution to a crawl. The
parser is the part that is supposed to create a world for the rest of the pro-
gram where all these implied conditions are true and need not be explicitly
checked at every turn. Sadly, this is exactly where most parsers fail, and the
rest of the program fails with them. In this article, we explain why parsers
continue to be such a problem, as well as point to potential solutions that can
kill large classes of bugs.

To do so, we are going to look at the problem from the computer science theory angle. Parsers,
being input-consuming machines, are quite close to the theory’s classic computing models,
each one an input-consuming machine: finite automata, pushdown automata, and Turing
machines. The latter is our principal model of general-purpose programming, the comput-
ing model with the ultimate power and flexibility. Yet this high-end power and flexibility
come with a high price, which Alan Turing demonstrated (and to whose proof we owe our
very model of general-purpose programming): our inability to predict, by any general static
analysis algorithm, how programs for it will execute.

Yet most of our parsers are just a layer on top of this totally flexible computing model. It is
not surprising, then, that without carefully limiting our parsers’ design and code to much
simpler models, we are left unable to prove these input-consuming machines secure. This is
a powerful argument for making parsers and their input formats and protocols simpler, so
that securing them does not require having to solve undecidable problems!

Parsers, Parsers Everywhere
To quote Koprowski and Binsztok [1]:

Parsing is of major interest in computer science. Classically discovered by students
as the first step in compilation, parsing is present in almost every program
which performs data-manipulation. For instance, the Web is built on parsers.
The HyperText Transfer Protocol (HTTP) is a parsed dialog between the client,
or browser, and the server. This protocol transfers pages in HyperText Markup
Language (HTML), which is also parsed by the browser. When running web-
applications, browsers interpret JavaScript programs which, again, begins with
parsing. Data exchange between browser(s) and server(s) uses languages or formats
like XML and JSON. Even inside the server, several components (for instance
the trio made of the HTTP server Apache, the PHP interpreter and the MySQL
database) often manipulate programs and data dynamically; all require parsers.

So do the lower layers of the network stack down to the IP and the link layer protocols, and
also other OS parts such as the USB drivers (and even the hardware: turning PHY layer
symbol streams into frames is parsing, too! [2]). For all of these core protocols, we add, their
parsers have had a long history of failures, resulting in an Internet where any site, program,
or system that receives untrusted input can be presumed compromised.

http://www.usenix.org
mailto:sergey@cs.dartmouth.edu
mailto:mlp@upstandinghackers.com
mailto:ashubina@cs.dartmouth.edu

www.usenix.org AU G U S T 20 1 5 VO L . 4 0, N O. 4 5

SECURITY
The Bugs We Have to Kill

While we may believe in special programmers who write so-
called critical software with the care and precision the rest of
our tribe lacks, where are these secret coding schools train-
ing such ninjas? And if these programmers are so few and far
between, can we really expect them to scale? Neither collective
insanity nor collective negligence are comfortable to contem-
plate, but so we must as our reliance on software grows.

Perhaps we don’t care nearly enough. After all, every C pro-
grammer experiences thousands of segfaults while learning
the language and sees that the world doesn’t collapse, nor does
the computer suddenly become hostile. It certainly is annoying
when programs crash, but it’s easy enough to restart them—with
an automatic watchdog, if need be. Indeed, few of us suspect how
often embedded software in our devices gets restarted.

This habituation to crashes doesn’t serve us well. It forms a false
perception that “bugs are just bugs,” and systems that engineer
around them rather than fix them can be trustworthy, except
in rare and exotic cases. But, in fact, this is where the common
programming intuition lets us down badly.

A segfault is a would-be corruption of memory or state, an
unexpected, out-of-type memory reference that got caught. It is
eminently observable and doesn’t result in much computation
beyond the error. Therefore, it’s easy to assume the same thing
about any memory corruption—unless one is familiar with just
how complete a programming environment a simple memory
corruption can create for an attacker, and how far and wide
beyond its expected execution paths a program can run after a
memory corruption.

It’s natural for programmers to view the executable binary
generated from their programs through the prism of their source
code. In that view, functions do not get jumped into sideways,
nor are they called from locations other than their explicit call
sites; variables retain their values unless assigned to by name or
by reference; assembly instructions cannot spring into existence
unless somehow implied by the code’s semantics; and so on.

As attackers know, all of these expectations are false. In the
gap between these expectations and the actual reality of binary
execution at runtime, entire modes of programming sprang
up. Around 2000, hacker researchers demonstrated that if one
manages to overflow the program stack with what looks like
a sequence of stack frames, one can construct arbitrary pro-
grams that will successfully execute in the corrupted process [3].
In 2007, an academic paper by Hovav Shacham [4] made this
understanding precise by proving that a typical process is in fact
a Turing-complete environment for such programming.

However, this kind of bare-boned exploit programming likely
still feels too exotic for most programmers. Its power can only
be experienced through practicing it, and most of us have our

hands too full with the programming we need to do to pick up
another, weirder kind of programming. So we’ll need to approach
it with a different set of intuitions, which are closer to the classic
computer science than to hacking (although, as we will see, here
hacking comes very close to the very foundations of computer
science).

When Programs Crash, Where Do Their Proofs of
Correctness Go?
C. A. R. Hoare developed the beginnings of the axiomatic proofs-
of-correctness theory for programs in 1968. Owing to this
theory, we see programs and their modules, functions, and con-
structs such as loops in terms of preconditions and postcondi-
tions, and chain these for proofs. Whenever such a chain can be
constructed for the entire program, starting with its individual
operations and statements, and the initial precondition is the
atomic “True” (i.e., there are no additional preconditions), we say
that we have proven the program’s correctness (no matter what
the inputs or the state of the rest of the world). Although few
programmers actually end up proving their programs, genera-
tions of programmers have been taught to think of their loops
and branches in terms of preconditions and postconditions. We
intuitively understand the P {Q} R notation even if we don’t use it
explicitly. That is, given preconditions P and code Q, postcondi-
tions R are assured.

But do we stop to think what happens when instead of P our code
Q gets some P'≠ P? What will code Q be able to compute in that
case? How far would possible conditions R' in P' {Q} R' vary?
Our intuition, based on axiomatic programming, does not tell us
that—while an exploiter’s intuition is all about it.

Some of our best theoretic means for achieving predictable code
behavior, such as Proof-Carrying Code (PCC) and programming
language safety guarantees, are of little help against the diver-
gence in preconditions. For PCC, we can only be sure of what the
code does if it’s run within its specification [5]; otherwise, the
proofs it carries do not preclude it from entering an unexpected
“weird” state. The language-based guarantees rigorously proven
on the source code can be broken either by the language’s run-
time implementation [6] or by compiler optimizations [7].

For parsers and the code that receives parsed input data, this
question is even simpler: What happens when the inputs that
hit the parser are invalid and unexpected? What will the parser
itself compute then? If allowed through to the rest of the code,
what effects will the inputs transformed by the parser have on it?
Clearly, if the parser was supposed to reject the data and didn’t,
assumed preconditions to subsequent code on its path will not
hold. The runtime world then belongs to whoever can predict the
computational effects of violated preconditions, even when the
code is proven correct.

http://www.usenix.org

6  AU G U S T 20 1 5 VO L . 4 0, N O. 4 www.usenix.org

SECURITY
The Bugs We Have to Kill

It gets worse. Suppose we have a program that implements a
simple finite state machine that responds to an input language.
What happens when this code is fed inputs not in this language?
Will the program still behave like a finite state machine, or will
it present a much richer programming model to the attacker able
to feed it custom-crafted inputs?

Accidentally Turing-Complete
The answer is almost certainly “yes.” Software and even firm-
ware intended as automata with limited, specialized purposes
have been shown to actually play the role of a universally
programmable Turing machine to attacker’s inputs, which,
for all their syntactic peculiarity, acted as programs for these
machines. These inputs didn’t even need to be malformed; either
buffer or integer overflow bugs were similarly not a necessity.

For example, the standard ELF relocation code provided by the
Linux dynamic linker and present in any dynamically linked
process is driven by the relocation metadata present in every
ELF executable. This code is meant to patch up the addresses
in code that is loaded into a different address range than it was
linked for—as a means of ASLR protection, for example, or
simply because a previously loaded library already occupies part
of the original address range—but it is capable of much more.
In fact, craftily prepared well-formed metadata entries can
make it carry out any computation at all, as if that code were a
virtual machine and the relocation entries its bytecode [8]! This
code was never meant nor written for such generality, but it can
achieve it nevertheless [9].

What we think of as hardware is not far behind. For example,
we trust the isolation of our processes to the x86 MMU, and we
imagine it as a fairly simple mechanism that sets up our page
tables on exec(), manages them on context switch, and trans-
lates every memory reference. Clearly, in this translation a finite
automaton is involved, but in fact the MMU features are so rich
that the configuration tables it interprets can be used to program
anything—any Turing-complete computation [10]! Again, the
MMU’s logic was designed for a specific purpose, and great effort
is spent on validating its correctness—but it turns out that it can
do so much more than intended, with no bugs involved. Due to its
feature-richness, merely well-formed crafted inputs suffice.

In short, computer security appears to have its very own parallel
to Arthur Clarke’s observation that “Any sufficiently advanced
technology is indistinguishable from magic,” namely, “Any
 sufficiently complex input format is indistinguishable from
bytecode; the code receiving it is indistinguishable from a vir-
tual machine.”

The latter observation, of course, accords very well with the
exploiters’ everyday experiences. So long as the inputs are
complex enough, and the software is correspondingly complex,

there will be crashes, and some of these crashes will lead to full
control of the receiving software.

The trick is putting these observations together and realizing
what goes wrong. In full accordance with Clarke’s laws, exploit
developers lead in this exploration, because “The only way of dis-
covering the limits of the possible is to venture a little way past
them into the impossible.” Indeed, in the programmers’ mental
models of their environments, exploits are supposed to be the
impossible—and yet they exist.

The irony of these models is that the computational model of the
general purpose computing, the Turing machine, was a proof of
unsolvability, the impossibility of programming certain tasks
due to the richness of the platform itself. The simplest of these
is a particular kind of static analysis, a general algorithm for
deciding statically whether a program would halt. The diffi-
culty of this problem is by no means a fluke: according to Rice’s
Theorem, general algorithms for deciding other “non-trivial”
properties of programs are in the same boat. This is not to say
that static analysis of programs is hopeless but, rather, that it is
hard, and this hardness is a matter of natural law that would not
just yield to cleverness or extravagantly massive investment. As
Geoffrey Pullum put it in his “Scooping the Loop Snooper” [11]:

No general procedure for bug checks will do.
Now, I won’t just assert that, I’ll prove it to you.
I will prove that although you might work till you drop,
you cannot tell if computation will stop.

...

You can never find general mechanical means
for predicting the acts of computing machines;
it’s something that cannot be done. So we users
must find our own bugs. Our computers are losers!

This puts paid to the hope of exhaustively automating static
security analysis for the kind of code that we most often write
and use. Yet it is Turing’s insights and his model of computing—
an answer to Hilbert’s tenth problem—that form the basis for
most computers we know. Our software is just a layer on top of
this totally flexible computer, and unless this software presents
very simple parsers, that software is also likely to be totally flex-
ible and cannot be proven to be secure—unless we programmers
take great care to not use the full extent of this power and flex-
ibility, and purposefully keep ourselves to simpler models that
can be proven and verified.

Can We Verify Our Way Out of This Mess?
Maybe. First, we need to define the problem in a way that
program verification tools can help. Then we need to pick a
simple enough model of what parsing is and stick to it in our
implementation.

http://www.usenix.org

www.usenix.org AU G U S T 20 1 5 VO L . 4 0, N O. 4 7

SECURITY
The Bugs We Have to Kill

Thus the long answer is, verification of parsers will help only
if we co-design data formats and code that parses them. Pars-
ers must create the preconditions for the rest of the proof; thus
they should be the simplest machines possible, to ease effective
verification. If you think this is a solved problem, it isn’t. Quoting
again from Koprowski and Binsztok,

In the recent article about CompCert, an impressive
project formally verifying a compiler for a large subset
of C, the introduction starts with a question “Can
you trust your compiler?” Nevertheless, the formal
verification starts on the level of the [Abstract Syntax
Tree] and does not concern the parser. Can you trust
your parser?

So how simple should “simple” be?

Be Simple and Definite about What You Receive!
When software gets exploited by inputs—its execution takes a
path it was never meant to take because of consuming the input
data—it is obvious that the data is driving it to do so. But, in fact,
although it may be less obvious, the data is driving the software
even when it executes as expected. “The illusion that your pro-
gram is manipulating its data is powerful. But it is an illusion:
The data is controlling your program.” [12]

This means that we should look at the data itself as a program—
and model the parser code consuming it as an automaton driven
by it. Then, so long as we keep this automaton simple, we can
prove and verify its behavior on all possible inputs. We have the
mathematics for it and a hierarchy of such automata by simplic-
ity and power.

For example, consider a regular expression. We think of them as
implemented by finite automata we can draw with circles and
arrows, and emulate their execution by moving a coin from one
circle to another along the arrow marked with the character we
consume from the input string [13]. But then the string is what
drives this automaton from state to state; it’s the program for
the automaton. The same is true for pushdown automata. It is
obvious for a Turing machine: whatever goes on the tape is the
program and is the input at the same time.

Regular expressions seem to be everyone’s favorite way of
validating inputs in scripting languages. This can be just right
or can go horribly wrong, depending on the language of inputs
one is trying to validate. Matching a regular language of inputs,
one that consists of all strings matched by a regex anchored
at the start and at the end of the string, would be just right. Of
course, such languages work best for the data structures with
no or limited nesting; for those like HTML or JSON that allow
arbitrary nesting of their elements, it can go horribly wrong [14].
Validating arbitrarily nested HTML with regexes is a classic
mistake, made by both novice Web developers and the designers

of anti-XSS protections in IE 8 [15]. The mathematical reason for
this world of XSS fail is simple: such languages are context-free
or context-sensitive, and require at least a pushdown automaton
to match them.

The purpose of the parser as a protector of the rest of the code is
to match the correct inputs and drop the incorrect ones (without
getting exploited itself, obviously). So we need to start by defin-
ing the language of the valid inputs, and then write the parser as
the consuming automaton of the type we can validate. Usually
this means keeping the input language regular or context-free,
and using a regex (a finite state machine) or a pushdown automa-
ton, respectively. We’ve seen how to safely approach what the
parser consumes—but what about its outputs?

Types to the Rescue
To verify parsers, we need to first write their specifications.
It’s easy to say that parsers must consume strings, any strings,
and reject those that are invalid or unexpected. But how can we
describe what parsers must produce? What kinds of assump-
tions on input that passes the parser would be helpful for both
ordinary programmers and the proof engineers seeking to verify
their code?

This question goes back to the foundations of type theory. For
example, the plight of the programmer who must rely on assump-
tions assured by the previous code was the subject of James
Morris, Jr.’s “Types Are Not Sets” in 1973: “[The programmer]
could begin each operation with a well-formedness check, but in
many cases the cost would exceed that of the useful processing.”
Just as relevant to the programmers today as it was then!

The job of the parser then becomes clear once we see it from the
type-theory angle. The parser eliminates strings; it introduces
other objects of types that have to do with the program’s seman-
tics. The rest of the program assumes that these objects are
well-typed; the parser is their constructor that builds them from
the strings it consumes.

Parser bugs, then, generally come in two flavors: the parser code,
instead of rejecting an invalid input, provides an attacker with a
virtual execution engine for exploits, or the objects it constructs
are not the type expected by the rest of the code. The former
often occurs whenever the parser allocates and copies memory
based on a value in user input it has neither fully parsed nor
checked for consistency. Various integer overflows in X.509 and
other ASN.1-based formats are examples of the latter: instead of
the syntactically correctly encoded Bignum unbounded integer,
the parser creates a bounded platform-default Fixnum [16]. So
it is with Apache and Nginx chunked-encoding vulnerabilities,
discussed later.

http://www.usenix.org

8  AU G U S T 20 1 5 VO L . 4 0, N O. 4 www.usenix.org

SECURITY
The Bugs We Have to Kill

Format Foibles, Protocol Peeves
Exploiter intuition has long singled out certain syntactic fea-
tures as the breeding grounds for parser vulnerabilities. Given
the choice between constant-length and variable-length fields,
the exploiter’s money would be on the latter; several length fields
that must agree for the message to be valid up the ante. A typical
memory corruption scenario with such protocols involves copy-
ing some elements of input into buffers sized and dynamically
allocated based on values supplied in the same input—and lying,
to cause a buffer overflow. Although it’s easy to blame such bugs
on the implementers’ negligence, it’s undeniably the syntactic
complexity of the underlying protocols that makes an imple-
menter’s mistake both more likely to happen and harder to catch.

Generally speaking, the more context a parser must keep to
correctly parse the next element of the message, the more likely
it is to get it wrong; the more complex the relationship between
already parsed syntax elements and the remaining ones, the
more likely an unchecked, unwarranted assumption is to slip
through. Looking at the problem through the program proof lens,
we can see the rapid accumulation of preconditions in context-
sensitive protocols. However, the Internet—with its scale such
that if a coding error can be made, it will be made—has a much
more direct way of steering us towards regular and context-free
formats.

In the Internet Protocol’s early days, the variable-length IP
options tacked on behind the constant-width IP header fields
were considered essential. These days, their mere presence in a
packet is enough for many firewall configurations to regard the
packet as suspicious or to drop it outright. This happened for a
good reason: IP option parsing bugs have plagued 1990s stacks
(including firewalls like Raptor CVE-1999-0905 and Gauntlet
CVE-1999-0683, which they caused to freeze or crash), made
a few impressive appearances such as CVE-2005-0048 in the
2000s, and recently resurfaced as the “Darwin Nuke” kernel
panic CVE-2015-1102 in Mac OS 10.10.2. Accordingly, the Inter-
net de facto converged on the simpler constant-width IP header,
a regular language—not by standard, but by a “rough consensus
of firewalls.”

Of course, any gains from this subsetting of IPv4 have been offset
by the advent of IPv6 with its chains of variable-length Extension
Headers, including nestable fragmentation headers. While con-
cerned ASes filter and drop up to 40%(!) of certain kinds of IPv6
packets, newer RFCs call for limiting the allowed variations in
header order and combinations [17]. This subsetting-by-firewall
of IPv6 to a simpler grammar will likely continue.

The situation with the core trust infrastructure of the Internet,
the X.509 PKI standard, is hardly more encouraging than that of
IPv6. The wide variety of ways to represent basic data types such
as integers and strings allowed under the ASN.1 Basic Encoding

Rules (BER) makes parsing X.509 certificates and related data
something of a guessing game as to what other implementations
might mean; the “PKI Layer Cake” effort [15] revealed over 20
ways that different SSL/TLS implementations could interpret
the same data in the certificate—including the Common Name!
Thus a CA granting a certificate signing request for what looks
like an innocuous domain could in fact create a certificate seen
by the browsers as that of a different, high-value domain name.
This abundance of differences is not surprising, since estab-
lishing equivalence of parsers is in fact a problem that becomes
undecidable beyond a certain syntactic complexity, which X.509
significantly exceeds. Given the choice between ASN.1-based
formats, the simpler DER and other encoding rules that fix
respective canonical ways to represent each data type should be
definitely preferred over BER, but syntactic complexity is the
dark energy of the Internet: once created, it never goes away.

Speaking of SSL/TLS, the past year has been rich in famous
SSL/TLS parser bugs. It wasn’t just the infamous Heartbleed
CVE-2014-0160; the GnuTLS Hello bug CVE-2014-3466 and
Microsoft’s Secure Channel bugs under CVE-2014-6321 dem-
onstrate that the misery of complex input syntax really loves
company.

While XML-based document formats are a definite improve-
ment over the older binary ones, allowing a simple context-free
subset to represent tree-like documents with recursively nested
objects, the full XML specification still strays far enough from
syntactic simplicity. Not surprisingly, the same elements, such
as XML entities that introduce context-sensitivity to XML serve
as a major source of its over 600 associated CVEs. By contrast, a
simpler JSON, whose syntax would be context-free except for the
requirement that its dictionary keys be unique, scores only about
60 CVEs; anecdotally, JSON parsers seem to be ahead of the game.

However, the Web has offset the simplicity that it promised
in formats by an enormous explosion of computational power
exposed to attacker inputs. Ubiquitous JavaScript ensures that
the document one’s client renders may have absolutely nothing
to do with what one receives, precluding any kind of mean-
ingful static analysis before rendering; instead of separating
benign sheep from the malicious goats, the client has to put its
trust into its sandbox being inescapable. And if this weren’t bad
enough, the combination of HTML5 and CSS in modern brows-
ers already gives rise to programming models strong enough to
exfiltrate one’s passwords [18]. One may hope that such compu-
tations are accidental, but the demonstration that HTML and
CSS3 are actually Turing-complete [19] leaves little hope that
they will remain exotic or can be easily contained.

Chances are that we may need to rethink both the data formats
and the computation models of the Internet before the mass of
unwanted computation forces us into walled gardens of servers
and peers somehow “trusted” not to poison our software.

http://www.usenix.org

www.usenix.org AU G U S T 20 1 5 VO L . 4 0, N O. 4 9

SECURITY
The Bugs We Have to Kill

Where Are We Now?
Decades of frustration have taught us to not roll our own crypto
libraries. Although legacy crypto libraries are still complex and
hard to use, new and simpler ones are just now emerging, like
NaCl [20]. The Iron Age of crypto may be finally dawning on us.

With parsing, it’s arguably worse. We are still in the Stone Age
of parsing, despite a promising glint of Bronze and Iron here and
there, or even an occasional laser beam. All across production
programming, “rolling your own parser for speed” still reigns
rather than raising skeptical eyebrows. Parser generators exist,
but aren’t seen as a vital necessity for input-handling code in
either office document applications, messaging protocols, net-
work stacks, or elsewhere; in short, their use cases are deemed
limited rather than universal. Verified parsers are extremely
rare; a majority of parsers are pwned-by-design, not least those
we use in our cryptography.

One can continue blaming developers who don’t “program
securely” or fail to “validate inputs” (and some still do). However,
a closer look at the nature of parser exploitation suggests this may
be blaming the victim. Syntactically complex, context-sensitive
protocols may in fact require the programmer to solve undecid-
able problems to create secure programs, an impossible feat.

As with all other kinds of engineering, the way forward lies in
understanding which problems are impossible and which are
merely hard, and not confusing the two. After all, every kind of
engineering in the physical world works around its own impossi-
bilities: conservation of energy and momentum, laws of thermo-
dynamics, quantum-scale indeterminacy effects, and so on. Yet
how sure can we be that random software engineers would so
readily name the hard natural-law limits of their trade as physi-
cal engineers would?

It would be naive to expect that software engineering has no
such limitations. Indeed, computability theory and complexity
theory bring them to light. Nowhere do these limitations mani-
fest themselves so cruelly as in our inability to predict computa-
tion. This inability is what we colloquially know as insecurity:
we cannot trust our computers to stick to the computations we
expect in the presence of inputs we don’t control.

Building a Secure(r) Parser
We know the execution models for consuming inputs in which
we can predict computation and protect it: these tend to be
regular or context-free. We also know that context-sensitive and
richer input languages harbor undecidable problems. As usual,
the cure for an impossibility revealed by science is more science.
In the case of parsers, we are lucky: we already have the math-
ematical models and the rough split of tasks into the possible and
the impossible.

Our programming must follow these models and stay within
the safe protocol designs that do not pose undecidable prob-
lems as requirements for “securing” them—that is, being able to
automate testing of their implementations and reasoning about
the possible courses their computations can take. For all the
seeming flexibility and extensibility benefits of more complex
protocols—and, respectively, more powerful computation mod-
els—building on them is like building on quicksand.

There is an important caveat for parsers explicitly hand-coded
as finite automata, however: it should be clear from the code
what kind of valid input any given part of it expects, and what
syntactic construct it is responsible for parsing. For example,
Nginx implements its parser of HTTP headers as a large hand-
coded automaton (2300+ lines of C code, 57 switch statements,
272 single-character case statements). In 2013, it was found
to incorrectly parse the chunk lengths in the HTTP chunked
encoding (CVE-2013-2028), producing negative (signed) inte-
gers for large hexadecimal chunk lengths—exactly the same
issue that was discovered for Apache in 2002 (CVE-2002-3092).
It took over 11 years to find that bug in Nginx—and if you try
looking through Nginx’s ngx_http_parse.c to find where the
chunk length is actually parsed, you will see why.

If the expected valid input is not intelligible from the code, find-
ing bugs in it can take forever. In our experience, parsers whose
code resembles the grammar of their expected inputs tend to do
best. The Parser Combinator style of programming makes writ-
ing such code easy—and, although it was developed in functional
languages such as Scala and Haskell, it’s quite possible to use
it in C/C++ and other languages as well. The Hammer parser
construction kit is meant to demonstrate this; it requires no
background in functional languages to use [21].

Help Me, Verifiable Parser, You Are My Only Hope!
When we look to the future of computers, what can we expect?
Almost all kinds of programs will need to handle remote, un-
trusted inputs. The trend to connect everything and anything
seems unstoppable; the “Internet of Things” and “cloud comput-
ing” (i.e., running trusted components of programs on remote
systems) may only be its first wave.

Visions of self-driving cars, smart homes, and computerized
medicine project from the current state of computing power, but
not from its current trustworthiness. The only sustainable way
to achieve these visions without an exploding attack surface is to
make sure that all these programs exposed to hostile inputs can’t
be trivially exploited or disrupted by them. And if encrypted tun-
nels seem to be an answer, consider just how vulnerable the code
base of our cryptographic infrastructure is to non-cryptographic
attacks related to mere parsing of padding, PKCS message for-
mats, and X.509 certificates.

http://www.usenix.org

10  AU G U S T 20 1 5 VO L . 4 0, N O. 4 www.usenix.org

SECURITY
The Bugs We Have to Kill

The only hope for a secure connected future is software that
can hold its own against the maliciously crafted inputs, without
crutches such as firewalls, application proxies, antiviruses, and
so on. This software will need to apply solid computation theory
principles to what it accepts, and will accept only what it can
validate. Once accepted, input can be turned into data types that

will provide the rest of the software code with unambiguous pre-
conditions. And although eliminating all bugs is provably impos-
sible, the future should at least be free of the parser bugs on both
input and output—the bugs we need to kill to build computers we
can finally trust.

References
[1] Adam Koprowski and Henri Binsztok, “TRX: A Formally
Verified Parser Interpreter,” LMCS 2011.

[2] Travis Goodspeed, “Phantom Boundaries and Cross-Layer
Illusions in 802.15.4 Digital Radio,” First LangSec IEEE
S&P Workshop, 2014: http://spw14.langsec.org/papers/
8th-of-a-nybble.pdf.

[3] Gerardo Richarte, “Re: Future of Buffer Overflows,” October
2000, Bugtraq: http://seclists.org/bugtraq/2000/Nov/32;
Nergal, “Advanced Return-into-lib(c) Exploits: The PaX Case
Study,” Phrack 58:4, 2001; see also Sergey Bratus et al., “Exploit
Programming: From Buffer Overflows to ‘Weird Machines’ and
Theory of Computation,” USENIX ;login:, December 2011, for
further history.

[4] Hovav Shacham, “The Geometry of Innocent Flesh on the
Bone: Return-into-libc without Function Calls (on the x86),”
ACM CCS 2007.

[5] Julien Vanegue, “The Weird Machines in Proof-Carrying
Code,” First LangSec IEEE S&P Workshop, 2014: http://
spw14.langsec.org/papers/jvanegue-pcc-wms.pdf.

[6] Eric Jaeger, Olivier Levillain, and Pierre Chifflier, “Mind
Your Language(s): A Discussion about Languages and Security,”
First LangSec IEEE S&P Workshop, 2014: http://spw14
.langsec.org/papers/MindYourLanguages.pdf.

[7] Vijay D’Silva, Mathias Payer, Dawn Song, “The Correctness-
Security Gap in Compiler Optimization,” Second LangSec
IEEE S&P Workshop, 2015: http://spw15.langsec.org/papers/
dsilva-gap.pdf.

[8] Shapiro et al., “‘Weird Machines’ in ELF: A Spotlight on the
Underappreciated Metadata,” USENIX WOOT 2013: http://
www.cs.dartmouth.edu/~sergey/wm/woot13-shapiro.pdf.

[9] Mach-O and PE formats have comparable properties.

[10] Bangert et al., “The Page-Fault Weird Machine: Lessons in
Instruction-less Computation,” USENIX WOOT 2013: http://
www.cs.dartmouth.edu/~sergey/wm/woot13-bangert.pdf.

[11] http://www.lel.ed.ac.uk/~gpullum/loopsnoop.html.

[12] Taylor Hornby, quoted in Dan Geer, “Dark Matter: Driven
by Data,” Second LangSec IEEE S&P Workshop, 2015: http://
spw15.langsec.org/geer.langsec.21v15.txt.

[13] This page’s links explain how regex works in general, and
particularly in Perl: http://perl.plover.com/Regex/.

[14] “Parsing HTML the Cthulhu Way”: http://blog.codinghorror
.com/parsing-html-the-cthulhu-way/, http://blog.codinghorror
.com/content/images/2014/Apr/stack-overflow-regex-zalgo.png.

[15] http://p42.us/ie8xss/; see also Eduardo Vela Nava, David
Lindsay, “Abusing Internet Explorer 8’s XSS Filters”: http://
p42.us/ie8xss/Abusing_IE8s_XSS_Filters.pdf.

[16] Dan Kaminsky, Meredith L. Patterson, and Len Sassaman,
“PKI Layer Cake: New Collision Attacks against the Global
X.509 Infrastructure”: https://www.cosic.esat.kuleuven.be/
publications/article-1432.pdf.

[17] See, e.g., F. Gont et al., “Observations on IPv6 EH Filtering
in the Real World,” 2015: https://tools.ietf.org/html/draft
-gont-v6ops-ipv6-ehs-in-real-world-02.

[18] M. Heiderich et al., “Scriptless Attacks: Stealing the Pie
without Touching the Sill,” CCS 2012: https://www.hgi
.rub.de/media/emma/veroeffentlichungen/2012/08/16/
scriptlessAttacks-ccs2012.pdf.

[19] Eli Fox-Epstein, “Stupid Machines”: https://github.com/
elitheeli/stupid-machines.

[20] NaCl: http://nacl.cr.yp.to/.

[21] Hammer parser: https://github.com/UpstandingHackers/
hammer. Also check out the Hammer Primer: https://github
.com/sergeybratus/HammerPrimer for a gentle introduction.

http://spw14.langsec.org/papers/8th-of-a-nybble.pdf
http://seclists.org/bugtraq/2000/Nov/32
http://spw14.langsec.org/papers/jvanegue-pcc-wms.pdf
http://spw14.langsec.org/papers/jvanegue-pcc-wms.pdf
http://spw14.langsec.org/papers/MindYourLanguages.pdf
http://spw14.langsec.org/papers/MindYourLanguages.pdf
http://spw15.langsec.org/papers/dsilva-gap.pdf
http://spw15.langsec.org/papers/dsilva-gap.pdf
http://www.cs.dartmouth.edu/~sergey/wm/woot13-shapiro.pdf
http://www.cs.dartmouth.edu/~sergey/wm/woot13-shapiro.pdf
http://www.cs.dartmouth.edu/~sergey/wm/woot13-bangert.pdf
http://www.cs.dartmouth.edu/~sergey/wm/woot13-bangert.pdf
http://www.lel.ed.ac.uk/~gpullum/loopsnoop.html
http://spw15.langsec.org/geer.langsec.21v15.txt
http://spw15.langsec.org/geer.langsec.21v15.txt
http://perl.plover.com/Regex/
http://blog.codinghorror.com/parsing-html-the-cthulhu-way/
http://blog.codinghorror.com/parsing-html-the-cthulhu-way/
http://blog.codinghorror.com/content/images/2014/Apr/stack-overflow-regex-zalgo.png
http://blog.codinghorror.com/content/images/2014/Apr/stack-overflow-regex-zalgo.png
http://p42.us/ie8xss/
http://p42.us/ie8xss/Abusing_IE8s_XSS_Filters.pdf
http://p42.us/ie8xss/Abusing_IE8s_XSS_Filters.pdf
https://www.cosic.esat.kuleuven.be/publications/article-1432.pdf
https://www.cosic.esat.kuleuven.be/publications/article-1432.pdf
https://tools.ietf.org/html/draft-gont-v6ops-ipv6-ehs-in-real-world-02
https://tools.ietf.org/html/draft-gont-v6ops-ipv6-ehs-in-real-world-02
https://www.hgi.rub.de/media/emma/veroeffentlichungen/2012/08/16/scriptlessAttacks-ccs2012.pdf
https://www.hgi.rub.de/media/emma/veroeffentlichungen/2012/08/16/scriptlessAttacks-ccs2012.pdf
https://www.hgi.rub.de/media/emma/veroeffentlichungen/2012/08/16/scriptlessAttacks-ccs2012.pdf
https://github.com/elitheeli/stupid-machines
https://github.com/elitheeli/stupid-machines
http://nacl.cr.yp.to/
https://github.com/UpstandingHackers/hammer
https://github.com/UpstandingHackers/hammer
https://github.com/sergeybratus/HammerPrimer
https://github.com/sergeybratus/HammerPrimer
http://www.usenix.org

Do you know about the
USENIX Open Access Policy?

USENIX is the first computing association to offer free and open
 access to all of our conference proceedings and audio and video
recordings. We stand by our mission to foster excellence and inno-
vation while supporting research with a practical bias. Your financial
support plays a major role in making this endeavor successful.

Please help to us to sustain and grow our open access program.
 Donate to the USENIX Annual Fund, renew your membership, and
ask your colleagues to join or renew today.

www.usenix.org/annual-fund

http://www.usenix.org/annual-fund

12  AU G U S T 20 1 5 VO L . 4 0, N O. 4 www.usenix.org

SECURITY

The Case for Unpredictability and Deception
as OS Features
R U I M I N S U N , M A T T B I S H O P , N A T A L I E C . E B N E R , D A N I E L A O L I V E I R A , A N D
D O N A L D E . P O R T E R

The conventional wisdom is that OS APIs should behave predictably,
facilitating software development. From a system security perspec-
tive, this predictability creates a disproportionate advantage for

attackers. Could making OSes behave unpredictably create a dispropor-
tionate advantage for system defenders, significantly increasing the effort
required to create malware and launch attacks without too much inconve-
nience for “good” software? This article explores the potential benefits and
challenges of unpredictable and deceptive OS behavior, including prelimi-
nary measurements of the relative robustness of malware and production
software to unpredictable behavior. We describe Chameleon, an ongoing
project to implement OS behavior on a spectrum of unpredictability and
deceptiveness.

Introduction
The art of deception has been successfully used in warfare for thousands of years. Strate-
gists such as Sun Tzu, Julius Caesar, and Napoleon Bonaparte advocated the use of unpre-
dictability and deception in conflicts as a way to confuse and stall the enemy, sap their
morale, and decrease their maneuverability. A “holy grail” for system security is to put
system defenders in a situation with more options than the attacker.

Unfortunately, current systems are in the exact opposite situation. System defenses generally
do not adapt well to new conditions, whereas motivated attackers have effectively unlimited
time and resources to find and exploit weaknesses in computer systems.

This situation is rooted in the fact that predictability is a first-class system design goal.
Predictability simplifies application engineering and usability issues, such as compatibility
among different versions of the system. The downside of predictability is a computer system
monoculture [1], where vulnerabilities become reliably exploitable on all systems of the same
type. With so few operating system kernels, libc implementations, or language runtimes
deployed in practice, any predictable exploit applies to a significant fraction of computers in
the world.

The Need for Unpredictability
At the system level, approaches to unpredictability generally involve limited randomness.
For example, address space layout randomization (ASLR) randomizes the placement of pages
of a program in memory during execution. An attack relying on a buffer overflow causing a
branch to a library function or gadget will fail, as the address of that target will vary among
instances of an operating system. But this randomization is often insufficient. In a recent
paper, Bittau et al. [2] demonstrated how, even without specific knowledge of the address
space layout randomization (ASLR) scheme of a Web server, an attacker can quickly identify
and exploit portions of the address space that are insufficiently random.

Ruimin Sun is a first year PhD
student in the Department
of Electrical and Computer
Engineering at the University of
Florida. Her research interest

lies in operating system security and software
vulnerabilities. She’s under the direction of
Dr. Daniela Oliveira. gracesrm@ufl.edu

Matt Bishop is a Professor in
the Department of Computer
Science at the University of
California, Davis. He does
research in many areas of

computer security, including data sanitization,
vulnerabilities analysis, attribution, the insider
problem, and computer security education.
mabishop@ucdavis.edu

Natalie C. Ebner is an Assistant
Professor in the Department of
Psychology and adjunct faculty
in the Department of Aging
and Geriatric Research at the

University of Florida in Gainesville, Florida. Her
research adopts an aging perspective on affect
and cognition. She conducts experimental
research using a multi-methods approach
that integrates introspective, behavioral, and
neurobiological data. natalie.ebner@ufl.edu

http://www.usenix.org
mailto:gracesrm@ufl.edu
mailto:mabishop@ucdavis.edu
mailto:natalie.ebner@ufl.edu

www.usenix.org AU G U S T 20 1 5 VO L . 4 0, N O. 4 13

SECURITY
The Case for Unpredictability and Deception as OS Features

Daniela Oliveira is an Associate
Professor in the Department
of Electrical and Computer
Engineering at the University
of Florida. Her main research

interest is interdisciplinary computer security,
where she employs successful ideas from
other fields to make computer systems more
secure. Her current research interests include
employing biology and warfare strategies
to protect operating systems. She is also
interested in understanding the nature of
software vulnerabilities and social engineering
attacks. daniela@ece.ufl.edu

Donald E. Porter is an Assistant
Professor of computer science
at Stony Brook University in
Stony Brook, New York. His
research aims to improve

computer system efficiency and security. In
addition to work in system security, recent
projects have developed lightweight guest
operating systems for virtual environments as
well as efficient data structures for caching and
persistent storage. porter@cs.stonybrook.edu

Although fixes to ASLR may mitigate this specific attack, this attack shows that variation
without unpredictability is not enough. Unpredictability by half-measure leaves sufficient
residual certainty that allows adversaries to craft reliable attacks even across multiple, dif-
ferently randomized instances of the system.

Strategies for less predictable operating systems are constrained by concerns for efficiency
and reliability. Yet consider what “efficient” and “reliable” mean for an operating system.
An operating system’s job is to manage tasks that the system is authorized to run, where
“authorized” means “in conformance with a security policy.” For unauthorized tasks, such as
those an attacker would execute to exploit vulnerabilities or otherwise misuse a system, the
operating system should be as inefficient and unreliable as possible. So for “good” users and
uses, the operating system should work predictably, but for “bad” users or uses, the system
should be unpredictable. The latter case challenges efficiency and reliability. An extension
is a spectrum of predictability, where the less that actions conform to the security policy, the
more unpredictable the results of those actions should be.

Software Diversity
One specific, limited form of unpredictability is diversity. The intent of diversity is inde-
pendence, which means that multiple instances yield the same result but in such a way that
the only common factor is the inputs. Most fault-tolerant system designs require sufficient
software diversity that faults are independent and can be masked by voting or Byzantine
protocols. In practice, the barrier to implementing multiple, complete, monolithic OSes has
been insurmountable.

One insight of this work is that diversifying the system implementation becomes easier as
more of the system is moved to user space. Several research systems have demonstrated the
value of pushing more system-level functionality into user-level libraries, such as moving
I/O into user space for higher performance [3] or to reduce virtualization overheads for a
single application [4]. Our vision is to mix-and-match different implementations of different
components, such that one can run many instances of an application, such as a Web server,
and only a few instances will share the same combinations of vulnerabilities. When the
implementation effort is smaller and well defined, a small group of developers could easily
generate dozens of functional implementations of each subsystem.

Application robustness can also be improved when system-level diversity is incorporated
into the development and testing process. Even within POSIX, mature, portable software
packages already handle considerable variations in system call behavior. Most of this matu-
rity is the product of labor-intensive testing and bug reports across many platforms over a
long period. Rather than require a software developer to manually test the software on mul-
tiple platforms, a spectrum-behavior OS would allow developers to more easily test software
robustness, running the same test suite against different operating system behaviors.

Consistent versus Inconsistent Deception
Deception has been used in cyberdefense to a limited extent, primarily via consistent decep-
tion strategies, such as honeypots or honeynets. Consistent deception strategies make the
deceiver’s system appear as indistinguishable as possible from a production system. This
means the deceptive system is just as predictable as the system it is impersonating. The idea
of inconsistent deception [5], on the other hand, forgoes the need to project a false reality and
instead creates an environment laden with inconsistencies designed to keep the attacker from
figuring out characteristics of the real system. So long as the attacker is confused and fails to
learn anything of value, the deception is successful, even more so if the attacker desists.

http://www.usenix.org
mailto:daniela@ece.ufl.edu
mailto:porter@cs.stonybrook.edu

14  AU G U S T 20 1 5 VO L . 4 0, N O. 4 www.usenix.org

SECURITY
The Case for Unpredictability and Deception as OS Features

Iago attacks [6] are a good example of how inconsistent decep-
tion might work in practice. An Iago attack occurs when an
untrusted system attacks a trusted program by returning system
call results that the trusted program cannot robustly guard
against, ultimately causing the trusted program to violate its
security goals. We believe similar techniques can be employed
for active system defense.

Unpredictability on Malware
We performed a case study on common malware, showing that
malware can be quite sensitive to relatively minor misbehavior
by the operating system. We used ptrace to alter the informa-
tion returned by system calls invoked by a keylogger and botnet,
introducing unpredictable behavior into their execution. In these
cases, the malware ran without crashing, but some I/O were
corrupted. Most I/O corruptions were within the specification of
the network or potential storage failure modes; a robust applica-
tion would detect most issues with end-to-end checks such as
checksums or, in other cases, checks designed to shield against a
malicious OS, such as MAC checks on an encrypted socket.

We selected candidate system calls for spectrum behavior based
on analysis of system call behavior of benign processes and
malware. We compared the system call patterns of 39 benign
applications from SourceForge to 86 malware samples for Linux,
including 17 back doors, 20 general exploits, 24 Trojan horses,
and 25 viruses. We found that malware invokes a system call set
that is smaller than benign software: approximately 50 different
system calls.

In selecting strategies for spectrum behavior, our aim is to
perturb system calls that harm malware, yet allow benign code
to run. We found that a few system calls are critical to process
start-up and execution, and cannot be easily varied; most other
cases lead to non-fatal deviations. For instance, decreasing the
length of a write() will cause a keylogger to lose keystrokes,
silencing a send() might cause a process sending an email to fail,
and extending the time of a nanosleep() will just slow down a
process. We try to balance risks to benign processes with harm
to malware through an experimentally determined unpredict-
ability threshold, which bounds the amount of unexpected varia-
tion in system call behavior.

We studied the following strategies for spectrum behavior:

Strategy 1: Silence the system call. We immediately return a
fabricated value upon system call invocation. This strategy only
succeeds when subsequent system calls are not highly depen-
dent on the silenced action. For example, this strategy worked for
read() and write() but not on open(), where a subsequent read()
or write() would fail.

Strategy 2: Change buffer bytes. We randomly change some
bytes or shorten the length of a buffer passed to a system call,
such as read(), write(), send(), and recv().

This strategy corrupts execution of some scripts, and it can frus-
trate attempts to read or exfiltrate sensitive data.

Strategy 3: Add more wait time. The goal of this strategy is to
slow down a questionable process, such as rate-limiting network
attacks. We randomly increase the time a nanosleep() call yields
the CPU.

Strategy 4: Change file offset. This approach simulates file
corruption by randomly changing the offset in a file descriptor
between read()s and write()s.

We first applied unpredictability to the Linux Keylogger (LKL,
http://sourceforge.net/projects/lkl/), a user-space keylogger,
using strategies 1, 2, and 4. The keylogger not only lost valid key-
strokes but also had some noise data added to the log file.

Next we applied unpredictability to the BotNET (http://
sourceforge.net/projects/botnet/) malware, which is mainly a
communication library for the IRC protocol that was refined to
add spam and SYN-flood capabilities. We used the IRC client
platform irssi to configure the botnet architecture with a bot
herder, bots, and victims. The unpredictable strategies were
applied to one of the bots.

We first tested commands that successfully reached the bot,
such as adduser, deluser, list, access, memo, sendmail, and part.
The bot reads commands one byte at a time, and one lost byte
will cause a command to fail. Randomly silencing a subset of
read() system calls in our unpredictable environment results in
losing 40% of the commands from the bot herder.

Figure 1: Comparison of email bytes sent from bots in normal and unpre-
dictable environments

http://sourceforge.net/projects/lkl/
http://sourceforge.net/projects/botnet/
http://sourceforge.net/projects/botnet/
http://www.usenix.org
http://sourceforge.net/projects/lkl/

www.usenix.org AU G U S T 20 1 5 VO L . 4 0, N O. 4 15

SECURITY
The Case for Unpredictability and Deception as OS Features

We measured the impact of the unpredictable environment on
the ability of the bot to send spam emails, shown in Figure 1. In
the normal environment, nine emails varying in length from 10
to 90 bytes were successfully sent. In the unpredictable envi-
ronment, only partial random bytes were sent out by arbitrarily
reducing the buffer size of send() in the bot process. In the case
of a spam bot, truncated emails will streamline the filtering pro-
cess, not only for automatic filters, but also for the end users.

We also performed a SYN-f lood attack to analyze the effec-
tiveness of the unpredictable environment in mitigating DDoS
attacks. In a standard environment, one client can bring down a
server in one minute with SYN packets. When we set the unpre-
dictability threshold to 70% and applied strategies 1 and 3, the
rate of SYN packets arriving at the victim server decreased (Fig-
ure 2), requiring two additional bots to achieve the same outcome.

Preliminary tests with Thunderbird, Firefox, and Skype running
in the unpredictable environment showed that these applica-
tions can run normally most of the time, occasionally showing
warnings, and with some functionality temporarily unavailable.

A challenge is to dial this behavior in to minimize harm to benign,
but not whitelisted, applications while frustrating potentially
malicious code.

Spectrum-Behavior OS
We are building Chameleon, an operating system combining
inconsistent and consistent deception with software diversity
for active defense of computer systems and herd protection.
Chameleon provides three distinct environments for process
execution (Figure 3): (1) a diverse environment for whitelisted
processes, (2) an unpredictable environment for unknown or
suspicious processes (inconsistent deception), and (3) a con-
sistently deceptive environment for malicious processes. Our

HotOS ’15 paper [7] provides a longer discussion of these issues,
as well as a more extensive discussion of prior work on unpre-
dictability and deception as tools for system security.

Known benign or whitelisted processes run in the diverse oper-
ating system environment, where the implementation of the pro-
gram APIs are randomized to reduce instances with the same
combinations of vulnerable code. In some sense, the diverse
environment combines ASLR and other known randomization
techniques with N-version programming [8], except that Chame-
leon doesn’t run the versions in parallel but, rather, diversifies
them across processes. Our insight is that a modular library OS
design makes the effort of manual diversification more tractable.
Rather than require multiple complete OS implementations, the
Chameleon design modularizes the Graphene library OS [4], and
components are reimplemented at finer granularity and possibly
in higher-productivity languages. The power of this design is
that mixing and matching pieces of N implementations multi-
plies the diversity by the granularity of the pieces.

Unknown processes run in the unpredictable environment,
where a subset of the system calls are modified or silenced.
Unpredictability is primarily implemented at the system call
table or library OS platform abstraction layer. The execution of
processes in this environment is unpredictable as they can lose
some I/O data and functionality.

A malicious process in the unpredictable environment will have
difficulty accomplishing its tasks, as some system call options
used to exploit OS vulnerabilities might not be available, some
sensitive data being collected from and transferred to the system
might get lost, and network connectivity with remote malicious
hosts is not guaranteed.

Unpredictability raises the bar for large-scale attacks. An
attacker might notice the hostile environment, but its unpre-
dictable nature will leave her with few options, one of them
being system exit, which from the host perspective is a win-
ning outcome.

Processes identified as malicious run in a deceptive environ-
ment, where a subset of the system calls are modified to deceive
an adversary with a consistent but false appearance, while

Figure 2: Comparison of SYN-flood attacks in normal and unpredict-
able environments. Unpredictability can increase the DDoS resource
 requirements.

Figure 3: Chameleon can transition processes among three operating
modes: diverse, to protect benign software; unpredictable, to disturb un-
known software; and deceptive, to analyze likely malware.

http://www.usenix.org

16  AU G U S T 20 1 5 VO L . 4 0, N O. 4 www.usenix.org

SECURITY
The Case for Unpredictability and Deception as OS Features

forensic data is collected and forwarded to response teams such
as CERT. This environment will be sandboxed, files will be hon-
eyfiles, and external connections will be intercepted and logged.

Chameleon can adjust its behavior over the lifetime of a process.
Its design includes a dynamic, machine-learning-based pro-
cess categorization module that observes behavior of unknown
processes, and compares them to training sets of known good
and malicious code. Based on its behavior, a process can migrate
across environments.

What About the Computer User?
Sacrificing predictability will introduce new, but tractable,
research questions, especially around usability. For example, a
user who installs a new game with a potential Trojan horse will be
tempted to simply whitelist the game if it isn’t playable. We believe
unpredictability can be adjusted dynamically to avoid interfer-
ing with desirable behavior, potentially with user feedback.

We envision Chameleon’s architecture adopted in desktop
computers for end users. This will allow a common group of
whitelisted applications such as browsers or office software to
run unperturbed and a suspicious application to be quarantined
by Chameleon.

For example, consider Bob, 72, living in a retirement community
in Florida. Bob is not computer savvy and tends to click links
from spear-phishing emails, which might install malware in his
computer. This malware will engage in later attacks compromis-
ing other machines and performing DoS attacks in critical infra-
structure. Bob never notices malware running in his computer
because the malware becomes active only after 1 a.m.

With Chameleon, Bob continues to browse for news, work on
documents from his community homeowner association, or
Skype with family without problems; these applications are
whitelisted, running in the diverse environment. The diverse
environment protects whitelisted applications by reducing the

likelihood of their being exploited. Further, if Bob downloads a
game that also includes a botnet, the unpredictable environment
may cause the game to seem poorly designed, the visual images
showing some glitches here and there, but Bob’s credentials will
be safe. Further, the botnet, which Bob will never notice, will fail
to operate as the attacker wishes.

Part of the evaluation of Chameleon’s success or failure will
include usability studies. Our hypothesis is that Chameleon can
strike a long-sought balance that preserves usability for desir-
able uses but thwarts significantly more compromises without
frustrating users to the point of disabling the security measure.

Conclusions
Today’s systems are designed to be predictable, and this pre-
dictability benefits attackers more than software developers
or cybersecurity defenders. This leads us to have the worst of
both worlds: rather simple attacks work, and both research and
industry are moving towards models of mutual distrust between
applications and the operating system [9, 10].

If applications will trust the operating system less in the future,
why not leverage this as a way to make malware and attacks
harder to write? If successful, sacrificing predictable behavior
can finally give systems an edge over one of the primary sources
of computer compromises: malware installed by unwitting users.

Acknowledgments
We thank the anonymous HotOS reviewers, Nick Nikiforakis,
Michalis Polychronakis, and Chia-Che Tsai for insightful com-
ments on earlier drafts of this paper.

This research is supported in part by NSF grants CNS-1149730,
SES-1450624, CNS-1149229, CNS-1161541, CNS-1228839,
CNS-1405641, CNS-1408695. It is also supported by grants OCI-
1246061 and DUE-1344369.

http://www.usenix.org

www.usenix.org AU G U S T 20 1 5 VO L . 4 0, N O. 4 17

SECURITY
The Case for Unpredictability and Deception as OS Features

References
[1] S. Forrest, A. Somayaji, and D. Ackley, “Building Diverse
Computer Systems,” in Proceedings of the 6th Workshop on Hot
Topics in Operating Systems (HotOS VI), 1997.

[2] A. Bittau, A. Belay, A. Mashtizadeh, D. Mazieres, and D.
Boneh, “Hacking Blind,” in 2014 IEEE Symposium on Security
and Privacy (SP), May 2014, pp. 227–242.

[3] S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos, A. Krish-
namurthy, T. Anderson, and T. Roscoe, “Arrakis: The Operating
System Is the Control Plane,” in Proceedings of the USENIX
Symposium on Operating Systems Design and Implementation
(OSDI ’14), 2014, pp. 1–16.

[4] C.-C. Tsai, K. S. Arora, N. Bandi, B. Jain, W. Jannen, J.
John, H. A. Kalodner, V. Kulkarni, D. Oliveira, and D. E. Porter,
“Cooperation and Security Isolation of Library OSes for Multi-
Process Applications,” in Proceedings of the ACM European
Conference on Computer Systems (EuroSys), 2014, pp. 9:1–9:14.

[5] V. Neagoe and M. Bishop, “Inconsistency in Deception for
Defense,” in New Security Paradigms Workshop (NSPW), 2007,
pp. 31–38.

[6] S. Checkoway and H. Shacham, “Iago Attacks: Why the Sys-
tem Call API Is a Bad Untrusted RPC Interface,” in Proceedings
of the ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS),
2013, pp. 253–264.

[7] R. Sun, D. E. Porter, D. Oliveira, and M. Bishop, “The Case for
Less Predictable Operating System Behavior,” in Proceedings
of the USENIX Workshop on Hot Topics in Operating Systems
(HotOS XV), 2015.

[8] L. Chen and A. Avizienis, “N-Version Programming: A Fault-
Tolerance Approach to Reliability of Software Operation,” in
Digest of the Eighth Annual International Symposium on Fault-
Tolerant Computing, 1978, pp. 3–9.

[9] M. Hoekstra, R. Lal, P. Pappachan, V. Phegade, and J. Del
Cuvillo, “Using Innovative Instructions to Create Trustworthy
Software Solutions,” in Workshop of Hardware and Architec-
tural Support for Security and Privacy (HASP), 2013.

[10] A. Baumann, M. Peinado, and G. Hunt, “Shielding Applica-
tions from an Untrusted Cloud with Haven,” in Proceedings of
the 11th USENIX Symposium on Operating Systems Design and
Implementation (OSDI ’14), 2014, pp. 267–283.

http://www.usenix.org

18  AU G U S T 20 1 5 VO L . 4 0, N O. 4 www.usenix.org

SECURITY

Privacy-Preserving Experimentation with
Sensibility Testbed
Y A N Y A N Z H U A N G , A L B E R T R A F E T S E D E R , A N D J U S T I N C A P P O S

R ecent privacy breaches and security break-ins of mobile systems
have raised concerns about using mobile devices like smartphones
and tablets [1]. As a result, many users are aware that running apps

on their smartphones can increase privacy risks. On the other hand, the
data from the enormous number of smartphones, if used properly, can be
of tremendous value to the research community. Is there a way to safely do
research on these devices without rendering them vulnerable? We explain
about how our project may help both researchers and volunteers.

Ever wondered what science could achieve if any researcher can get data from other people’s
smartphones? Imagine that we would simply write a few lines of code, fire it up on a number
of strangers’ phones, and within minutes we would know where the dead spots of our mobile
data plans are. We could also have a zero-cost navigation system when no GPS or any other
location services are available; we could achieve this by establishing a Bluetooth connection
with a neighboring device and get the location data from it. If we constantly monitor acceler-
ometer data on mobile devices, we can detect vibrations within the frequency and intensity
range of seismic waves, and assist distributed earthquake detection. These all sound fan-
tastic, except that who would let us get data off their devices? Our friends and family would
probably trust us. Other people? Not so much.

The privacy and security challenges on mobile devices have increased dramatically over the
years. Although having apps post tweets to a user’s Twitter account without asking for per-
mission is seriously off-putting [3], hacked apps that let criminals break into an individual’s
bank account are clearly detrimental [4]. Running code to collect data from smartphones
is much more complex than it sounds. We not only need to ensure the security of a device
so that the code that does the data collection cannot damage or hack into the device, but we
also must protect the privacy of a device owner so that the code cannot eavesdrop on phone
conversations, steal passwords, etc.

We introduce Sensibility Testbed [5], a smartphone testbed that allows researchers to run
code and perform measurements on others’ smartphones for research purposes. It ensures
the security of user-owned devices and the privacy of user-generated data. The usage model
of Sensibility Testbed is unique in that it manages how device owners make their devices
accessible to different research communities without putting their devices at risk. Mean-
while, it offers technical resources that allow researchers to collect data from remote mobile
devices without impairing the device owner’s privacy. As an added bonus, different research
groups can pick, choose, share, and reuse each others’ user base.

Yet Another Testbed?
While the rich set of sensors on mobile devices can provide useful data sets for research,
today’s security and privacy issues have created many obstacles to collecting data and shar-
ing them among mobile devices. Note that in this work, sensors are broadly defined as the
hardware components that can record phenomena about the physical world, such as WiFi/

Yanyan Zhuang is a Research
Professor at the Computer
Science and Engineering
Department at New York
University. Her current research

interests include fault diagnosis of distributed
systems and the design and implementation of
network testbeds for mobile devices.
yyzh@nyu.edu

Albert Rafetseder is a Research
Professor at the Computer
Science and Engineering
Department at New York
University. He is the current

technical lead for the Seattle Testbed
project and takes an interest in large-scale
application-layer network measurements.
albert.rafetseder@univie.ac.at

Justin Cappos is an Assistant
Professor in the Computer
Science and Engineering
Department at New York
University. Justin’s research

philosophy focuses on improving real-world
systems, often by addressing issues that arise
in practical deployments. jcappos@nyu.edu

http://www.usenix.org
mailto:yyzh@nyu.edu
mailto:albert.rafetseder@univie.ac.at
mailto:jcappos@nyu.org

www.usenix.org AU G U S T 20 1 5 VO L . 4 0, N O. 4 19

SECURITY
Privacy-Preserving Experimentation with Sensibility Testbed

cellular network, GPS location, movement acceleration, etc. The
challenges of collecting sensor data are twofold: first, sensor
data from mobile devices can reveal device owners’ personal
information and result in privacy breaches; second, potential
bugs, sometimes inadvertent ones, in a research experiment can
damage end users’ personal devices and cause security issues.
Collecting data using untrusted programs poses significant
challenges for both device owners and bystanders. To run code
safely on a stranger’s smartphone without revealing this strang-
er’s privacy sounds like a fantasy, or at least, mission impossible.

You are probably wondering, aren’t there plenty of network test-
beds out there, and don’t they already resolve these issues? The
problem with existing testbeds is that they do not yet have a sys-
tematic way to protect device owners’ security and privacy. To
lower potential risks, many smartphone-related testbeds choose
to recruit participants from a trusted group, such as students,
colleagues, and friends. For example, PhoneLab (https://www
.phone-lab.org/) provides a platform for people to run Android
apps on their participants’ smartphones and log data. PhoneLab
recruits participants by giving them an Android device and data
plan for free, in exchange for a commitment to use the phone as
their personal device for six months or longer. This approach
cannot solve the privacy issue. With such a usage model, the
researchers from different research groups are not able to test
their hypothesis at a world-wide scale or reuse each others’ user
base. For example, a researcher who uses PhoneLab at the Uni-
versity of Buffalo cannot share the same user base with Commu-
nity Seismic Network [6] at Caltech, and vice versa.

Sensibility Testbed is different in several aspects. First, in our
testbed, device owners participate as volunteers, and research-
ers request these devices through our server. This server, which
is called a clearinghouse, mediates remote device access but
does not store any personal data. As a result, Sensibility Testbed
relieves researchers from recruiting participants and allows
different groups to share all the devices used in the testbed.
Additionally, Sensibility Testbed does not require research-
ers to write full-fledged Android apps to perform experiments.
Instead, it provides an easy-to-use Python-like programming
interface. Last but not least, using Sensibility Testbed, device
owners do not need to trust the researchers who run code on
their devices. As you will see later in this article, Sensibility
Testbed provides a secure, sandboxed environment for anyone
to run experiment code on Android devices. This can effectively
prevent potential security and privacy breaches.

Yet Another Testbed!
The Sandbox
Researchers run experiments in Sensibility Testbed by writing
code for a restricted, Python-based sandbox. This is the same
security-reviewed Repy (Restricted Python) sandbox [2] used

in the Seattle testbed (https://seattle.poly.edu/). This sandbox
has been deployed on the Seattle testbed over the last six years.
Our experience has shown that the risk of it being faulty is very
low. The Repy sandbox is restricted in that its API limits what a
sandboxed program can do: reading from and writing to the file
system can only occur in a per-experiment directory; sending
and receiving data via the network interface cannot exceed a
configured rate; CPU, memory, and battery consumption cannot
exceed a limit, etc. Therefore, the sandbox isolates the program
from the rest of the device. More importantly, the sandbox allows
us to interject code to implement privacy policies and control
what happens with the data gathered on the device. You will read
more on how to add privacy policies a bit later.

Interacting Parties
In Sensibility Testbed, there are three categories of interacting
parties: mobile devices owned by ordinary people, with our app
installed; a clearinghouse server that discovers and configures
participating devices; and researchers wanting to run experi-
ments on mobile devices (see Figure 1). These three parties
interact as follows. Mobile devices provide resources and data
for researchers to use in their experiments. As mentioned above,
researchers’ code runs in a sandbox on a remote device that
isolates the code from the rest of the device host system. Mean-
while, our clearinghouse server helps researchers acquire and
manage devices, and enforces policies specified by the research-
er’s institutional review board (IRB), thus protecting device
owners’ personal information. Finally, researchers use their
local machines to initiate and control experiments in Sensibil-
ity Testbed. They use an experiment tool (ET) to deploy and run
experiments in sandboxes on remote devices that are acquired
through the clearinghouse.

Figure 1: Sensibility Testbed architecture

https://www.phone-lab.org/
https://www.phone-lab.org/
https://seattle.poly.edu/
http://www.usenix.org
https://seattle.poly.edu/

20  AU G U S T 20 1 5 VO L . 4 0, N O. 4 www.usenix.org

SECURITY
Privacy-Preserving Experimentation with Sensibility Testbed

How Does It Work?
To get a sense of the technical details, let’s walk through two
scenarios: (1) a smartphone owner, Alice, participates in the tes-
tbed, and (2) a researcher, Bob, runs code on Sensibility Testbed
using Alice’s smartphone, among other devices. Specifically,
Bob wants to know the cellular service quality in major cities. As
such, he needs location information of individual devices, their
cellular service provider, network type (3G, 4G, LTE, etc.), and
signal strength. Note that the exact nature of Bob’s experiment,
be it collecting data, performing computation, etc., is not critical
at this point due to code containment by our sandbox.

When Alice decides to participate in Sensibility Testbed, she
first goes to the Google Play Store to download our Sensibility
Testbed app [7]. The app contains sandboxes for researchers
to run experiments on Alice’s device, and a user interface for
Alice to start and stop the app. When the app is started, Alice’s
device can be discovered by the clearinghouse. To keep track
of Alice’s device, the clearinghouse uses a database that stores
her device’s unique public cryptographic key that is generated
during installation. This key is not associated with Alice’s or her
device’s identity, but only the installation on the device. If Alice
ever uninstalls the Sensibility app, this key is deleted, which
effectively “unlinks” her device from any metadata stored on the
clearinghouse. Instead of uninstalling, Alice may also choose to
opt out of individual experiments.

To run code on Sensibility Testbed, Bob provides a detailed
experiment description to our clearinghouse. Before Bob can
request a device, his experiment needs to be approved for
human-subjects compliance by his IRB (or equivalent). The IRB
at Bob’s institution specifies what data can be accessed by a
research experiment, at which granularity or frequency of such
data can be accessed, and so on. For example, Bob’s experiment
can (1) read location information from devices at the granularity
of a city; (2) read accurate cellular signal strength and network
type, but no information about cell IDs should be accessed; and
(3) get location and cellular network data updates every ten
minutes. Bob submits an appropriate experiment description for
these requirements, which the clearinghouse codifies into poli-
cies that are later enforced on remote mobile devices.

Note that Bob cannot request access to all sensors at any rate
even if his IRB approves such a policy. The Sensibility Testbed’s
IRB allows access to sensors in a way that is low risk, whose
access can be pre-approved with the researcher’s local IRB.
However, we do not provide unfettered access to all sensors.
Access to sensors of higher risk needs to go through the Sensibil-
ity Testbed’s IRB, in addition to the researcher’s IRB. However,
for most cases, we expect that researchers need only go through
their local IRB to get the sensor access they need for their
experiments.

Bob next obtains an experiment account and requests a number
of devices from our clearinghouse. The clearinghouse looks up
available devices, finds Alice’s phone is available (among others),
assigns it to Bob’s experiment account, and instructs the sandbox
on her device to apply data access policies for Bob’s experiment:
for policy 1 above, the sandbox blurs the location information
returned from Alice’s phone down to the coordinates of the near-
est city; for policy 2, the sandbox blocks the access to cell IDs; for
policy 3, the sandbox limits the rate of GPS location and cellular
network queries from Bob’s experiment to one every ten minutes.
Bob then uses the experiment tool (ET) on his local computer to
access Alice’s device and do experiments. After collecting the
data he needs, Bob can either use ET to download data from the
remote devices from time to time, set up his own server to store
all the data, or use a data store service we provide (Sensevis:
https://sensibilitytestbed.github.io/sensevis/).

If Bob stores data at his own server, he must use protective
measures to ensure that the data sent from the mobile devices is
properly encrypted and that the server storage cannot be tam-
pered with by any other parties. For example, Bob needs to reg-
ister his server by providing the server’s certificate and URL to
our clearinghouse. The clearinghouse then instructs the devices
accessible to Bob that all the sensor data collected should be sent
to this server. The sandboxes on these devices then issue HTTPS
POST using the server’s certificate, and send encrypted data to
Bob’s server. After the data is collected, how to store the data
securely is mandated by Bob’s IRB.

Implementing Policies
To understand how policies are implemented, we need to start
with the Sensibility Testbed app. The app on Alice’s device
contains a native Android portion, and our Repy sandbox. When
Alice starts the app, the native code initializes a Python inter-
preter, launches the Repy sandbox, and starts the communica-
tion between the device and our clearinghouse. The sandbox’s
restricted, secure API provides calls to file system, networking,
threading functions, and so on. Therefore, Bob’s code can read
files, send data through the network, etc. from Alice’s device.
However, the original Repy sandbox does not include calls
specific to mobile devices, such as GPS location, WiFi network,
Bluetooth, accelerometer, cellular network, etc.

To obtain smartphone-specific data, we first implemented our
sensor API using native code in the Sensibility Testbed Android
app. The Repy sandbox then uses RPC to invoke the correspond-
ing Android code, and returns the data from native code to a
sandboxed program. The Repy sandbox thus defines the sensor
API as a set of higher level calls, such as get_location(), get_

wifi(), get_accelerometer(), and so on. Our Wiki page [8] hosts
the current ever-growing list. As such, the original Repy inter-
face and the added sensor API together provide the complete “OS
level” sandbox kernel on a mobile device, as shown in Figure 2.

https://sensibilitytestbed.github.io/sensevis/
http://www.usenix.org
https://sensibilitytestbed.github.io/sensevis/

www.usenix.org AU G U S T 20 1 5 VO L . 4 0, N O. 4 21

they demoed at the conference. The applications they developed
varied from building automation using Bluetooth, to auto-device
power saving that shuts down unnecessary network interfaces.

Sensibility Testbed provides a focal point for smartphone-based
research. We believe this will bring benefit to researchers, as we
make their experiment prototype faster, the remote control and
management of devices easier, and running experiment code
more secure. This will also benefit device owners in the long
run, as researchers identify opportunities for improving current
network protocols or systems, and implement or evaluate new
services, algorithms, and research ideas. We believe Sensibility
Testbed will bring more opportunities to research and encour-
age innovation from the general research community.

Sensibility Testbed is an open source research project, and we
invite you to participate too! All of our source code, including the
Android app, sandbox, clearinghouse, the experiment tool, etc.,
can be found on GitHub [10]. By installing the Sensibility Test-
bed application, you can become an important part of research
discoveries that benefit science and technology.

SECURITY
Privacy-Preserving Experimentation with Sensibility Testbed

Finally, this sandbox kernel determines how policies are imple-
mented by affecting API calls. It can interpose on a call and
modify the data returned, or control how frequently a call can be
made over time. As mentioned above, Bob provided his IRB poli-
cies through our clearinghouse. So before Bob runs his experi-
ment, the clearinghouse instructs the sandbox on Alice’s device
to restrict sensor access in accordance with these IRB policies.
Using the get_location() call as an example, when Bob’s code
requests location data from Alice’s device, the Repy sandbox first
invokes the location-related Android code. As the location data
is returned, Bob’s IRB policy indicates that the returned loca-
tion coordinates should be blurred to the nearest city to Alice’s
device, instead of her actual location. As a result, the sandbox
returns an approximate location to Bob’s program. Furthermore,
as Bob’s IRB policy disallows collecting information about cell
tower IDs, the access to cell IDs is blocked entirely on Alice’s
device. Similarly, other information like WiFi SSID can be blurred
to a hashed string, the frequency to access an accelerometer can
be restricted to prevent inferring passwords from the movement
and tilt of the device, and so on. As shown in Figure 2, different
policies can be stacked together as a set of filters for different sen-
sors before a sandboxed program can access the sensor data.

Testbed Status
At this stage, multiple groups have experimented with Sensibility
Testbed on their local phones, while we finalize outside use via
our internal IRB and clearinghouse. We have also hosted two suc-
cessful hack-a-thon-styled workshops with IEEE Sensors Appli-
cations Symposium [9] in 2014 and 2015. At these events, about
two dozen participants from diverse universities and backgrounds
worked in teams to build an application of their choice. Despite
having no background in the platform and only a few hours to
work, the participants in seven teams built applications that

References
[1] “A Warning About Those Free Smartphone Apps”: http://
abcnews.go.com/Technology/warning-free-smartphone-apps/
story?id=30484903.

[2] J. Cappos, A. Dadgar, J. Rasley, J. Samuel, I. Beschastnikh,
C. Barsan, A. Krishnamurthy, T. Anderson, “Retaining Sand-
box Containment Despite Bugs in Privileged Memory-Safe
Code,” ACM Conference on Computer and Communications
Security (CCS ’10).

[3] “App Auto-Tweets False Piracy Accusations”: http://yro
.slashdot.org/story/12/11/13/2249203/app-auto-tweets-false
-piracy-accusations.

[4] “Hackers Are Draining Bank Accounts via the Starbucks
App”: http://money.cnn.com/2015/05/13/technology/
hackers-starbucks-app/index.html.

[5] Sensibility Testbed: https://sensibilitytestbed.com/.

[6] Community Seismic Network: http://csn.caltech.edu/.

[7] Google Play Store, Sensibility Testbed: https://play.google
.com/store/apps/details?id=com.sensibility_testbed.

[8] Sensibility Testbed, Using Sensors: https://sensibilitytestbed
.com/projects/project/wiki/sensors.

[9] IEEE, Sensors Applications Symposium: http://sensorapps
.org/.

[10] GitHub, Sensibility Testbed: https://github.com/Sensibility
Testbed.

Figure 2: Sensibility Testbed blur policies

http://abcnews.go.com/Technology/warning-free-smartphone-apps/story?id=30484903
http://abcnews.go.com/Technology/warning-free-smartphone-apps/story?id=30484903
http://abcnews.go.com/Technology/warning-free-smartphone-apps/story?id=30484903
http://yro.slashdot.org/story/12/11/13/2249203/app-auto-tweets-false-piracy-accusations
http://yro.slashdot.org/story/12/11/13/2249203/app-auto-tweets-false-piracy-accusations
http://yro.slashdot.org/story/12/11/13/2249203/app-auto-tweets-false-piracy-accusations
http://money.cnn.com/2015/05/13/technology/hackers-starbucks-app/index.html
http://money.cnn.com/2015/05/13/technology/hackers-starbucks-app/index.html
https://play.google.com/store/apps/details?id=com.sensibility_testbed
https://play.google.com/store/apps/details?id=com.sensibility_testbed
https://sensibilitytestbed.com/projects/project/wiki/sensors
https://sensibilitytestbed.com/projects/project/wiki/sensors
http://sensorapps.org/
http://sensorapps.org/
https://github.com/SensibilityTestbed
https://github.com/SensibilityTestbed
http://www.usenix.org
https://sensibilitytestbed.com/
http://csn.caltech.edu/

22  AU G U S T 20 1 5 VO L . 4 0, N O. 4 www.usenix.org

SECURITY

Interview with Marc Maiffret
R I K F A R R O W

Q uite appropriately, I first “met” Marc Maiffret online. We were both
participants in a security mailing list, and I was struck by Marc’s
youthful exuberance. I could tell that Marc was on a mission, and

that mission appeared to be to embarrass Microsoft into improving its secu-
rity practices.

What I didn’t know at first was Marc started his first business at 17. I’d certainly noticed the
rough edges in his online postings but had little idea just how young he was or how he had
become an expert in Windows security through self-education and experimentation.

Over 17 years later, I decided to ask Marc more about what he had been doing before we met,
his part in some security drama (Code Red), and his various business adventures. I also
wanted to get Marc’s impression of the state of Windows security today.

Rik: When did you start learning about computers?

Marc: My path to learning about computers really started first with an interest in phone
phreaking. I had a friend who introduced me to the world of phone phreaking in 6th or 7th
grade. I always had a curiosity about how different things worked, and the telephone system
seemed like this infinite world to explore and learn from. Wanting to learn more about phone
phreaking led to needing to get on BBS systems, and that was my gateway to eventually get-
ting more into computers, hacking, Internet, etc.

We didn’t have enough money for a computer at home, so in the beginning I learned what I
could from computers at the school library or the office where my mom worked; the owner
was nice enough to let me use a system sometimes after school. That same business owner
eventually gave me an old computer from their office, and that is when things really started
to move quickly for me in learning about early hacking and related topics.

I had a turbulent home life growing up that can be summarized by my deciding to run away
from home for almost a year when I was 16, moving entirely across the U.S. to live with
friends in the hacking and research group Rhino9, my stepdad eventually dying from a drug
overdose, and so on. Not to understate it all, but it was a variety of things, plus my natural
curiosity about how things worked, that drove me deeply into learning as much as I could
about computers as a means of escaping my then reality.

Rik: You started a business, eEye, back in 1998. What led you to develop software to help
secure Windows systems, back when Windows was really awful?

Marc: When I got back home after running away from California to Florida, and a few places
in between, I was 17. I did not want to go back to high school and wanted to start working in
computers. My mother gave me three months to find a job and support myself or it was back
to school. Within a few weeks I had my first job, and then a couple of months later all the
hacking I had been doing over the previous few years caught up to me when the FBI raided
my family’s home. This was a great wakeup call for me to try to figure out what I was going

After being raided by the FBI at
age 17, Marc Maiffret started his
first security software company,
eEye Digital Security, pioneering
early research into critical

Microsoft vulnerabilities. As an entrepreneur,
Maiffret created one of the first vulnerability
management products as well as one of the
first Web application firewall products—both
of which have been deployed worldwide and
won numerous awards. Maiffret has also
been a leader in next-generation malware
prevention while serving as Chief Security
Architect for FireEye. Maiffret served as
Chief Technology Officer of the privilege and
vulnerability management firm BeyondTrust
after its acquisition of eEye Digital Security.
In 2015, Maiffret left BeyondTrust to pursue
a new but unannounced venture. Maiffret has
testified before Congress, published an op-ed
in the New York Times, and is an avid speaker
and advocate for improving security.

http://www.usenix.org

www.usenix.org AU G U S T 20 1 5 VO L . 4 0, N O. 4 23

SECURITY
Interview with Marc Maiffret

to do with my life. At the time, I had been writing a lot of free
security tools for Windows and researching various software
vulnerabilities. This led to the creation of my first company,
eEye Digital Security, and the vulnerability assessment product
Retina. This was all around the 1998–1999 time frame.

Within a few short years, eEye and Retina had a lot of business
success. More importantly, though, we were a part of pioneering
a lot of the early research into Microsoft-related vulnerabilities.
We also were pushing aggressively for companies like Microsoft
to treat security as a technical problem instead of a marketing one.

People coming into IT security today would not recognize
the Microsoft of the early 2000s. At eEye, we did not just find
numerous critical vulnerabilities within Microsoft software,
but rather exerted as much pressure as possible to get them
to change their culture and behavior, making it as painful as
possible for them while we helped to get vulnerabilities fixed to
protect customers. This was a sometimes difficult balancing
act which led to fun encounters, like the then head of Microsoft
security response calling on the phone to curse me out. There
were many people doing great security research back then, and
all of this led to Microsoft evolving in positive ways. eEye had a
very special role in that process, not just through research but
also by having customers we could help leverage to put pressure
on Microsoft.

For example, a large reason why Patch Tuesday was created was
because of customers being outraged and exhausted by having
to deploy critical patches for remote system vulnerabilities one
after another on a random basis. A lot of people do not know that
behind-the-scenes we were doing things like accumulating
critical vulnerabilities that we would report to Microsoft one at
a time. As soon as they patched one, within hours we would send
them another, and another, to keep pressure on until something
broke their poor software development behaviors.

That something eventually came in the form of Bill Gates’
 Trustworthy Computing memo, in large part spawned by the
efforts of eEye and many others and, of course, the fallout from
things like Code Red and other widespread malware/worm
attacks at the time.

Rik: Tell us about Code Red.

Marc: Code Red was a Microsoft computer worm discovered by
Ryan Permeh and me while we were at eEye. Code Red lever-
aged a vulnerability within Microsoft’s IIS Web server that Riley
Hassell, also at eEye, had discovered. Ryan and I were actually
hanging out on a Friday after work drinking beers at his place
when an IT guy emailed mentioning that their IIS Web server
was acting weird, connecting to other systems. Now this is in
2001, a very different world in IT and security. You can actually

find archives on IT mailing lists where people were experienc-
ing IIS Web server crashes for a good week or two before Ryan
and I made this discovery. After getting a packet capture of some
IIS traffic, we started looking to see what might be going on
and determined, in fact, that someone had developed a worm to
automatically propagate to IIS Web servers via the vulnerability
Riley had discovered.

Ryan and I worked over the weekend to write up a technical
analysis of the worm and eventually posted our analysis online
late Sunday or early Monday morning. We didn’t think much
of it at the time as Code Red was one of the first of its kind. By
Monday afternoon, the whole thing had taken on a life of its
own, and by the end of the week we had done everything from
talked to folks in the White House situation room to the head of
marketing for Pepsi, the company behind Code Red Mountain
Dew, which we had named the worm after. While the worm
was actually easy to manage in the end, due to its propagation
method, it affected a lot of systems and was certainly a wakeup
call for Microsoft.

Rik: What did you do after you left eEye?

Marc: eEye was always more than simply a business to me and
to a lot of the employees there, particularly those working in
research: guys like Ryan Permeh, Barnaby Jack, Yuji Ukai, Derek
Soeder, Riley Hassell and too many others to list. We wanted
to make a great product in Retina, but also we were a part of
the early days of the security industry and were hackers trying
to find our place in this world. Living in Southern California, I
find conversations with old skateboarders who rode the wave of
evolution from their hobby to a business to be more relatable in
understanding just how special what we were all a part of was,
as opposed to some person who is new to IT security these days.

When people have been in this industry all of five minutes, it is
easy to think security is terrible and hasn’t made much progress,
when in reality a great deal of progress has been made. When I
catch up with my old colleagues and we reflect on the wild ride
we were a part of, it is not so much about what place eEye holds
in that history but rather about hoping people understand that
the evolution in security and improvements in companies like
Microsoft has not happened naturally; instead they’ve happened
because a research community was willing to fight and hold
technology companies accountable. This is something often
forgotten today as we focus as an industry solely on hackers
and adversaries, on countries and cybercriminals but rarely on
the vulnerable technology that allows such attackers to break
into systems in the first place. This is something I expanded on
further in a New York Times op-ed a couple of years ago (http://
www.nytimes.com/2013/04/05/opinion/closing-the-door-on-
hackers.html).

http://www.usenix.org
http://www.nytimes.com/2013/04/05/opinion/closing-the-door-on-hackers.html
http://www.nytimes.com/2013/04/05/opinion/closing-the-door-on-hackers.html
http://www.nytimes.com/2013/04/05/opinion/closing-the-door-on-hackers.html

24  AU G U S T 20 1 5 VO L . 4 0, N O. 4 www.usenix.org

SECURITY
Interview with Marc Maiffret

After leaving eEye, I took some time off to take a break and hang
out. I had been hacking and working in security since I was a
teenager, and eEye was the only job I had ever had. After a short
time helping run a managed security company, I went to work
for a less well known company, at the time, that also liked eye-
related company names—FireEye. At FireEye, I reported to the
then CEO and Founder Ashar Aziz as Chief Security Architect.
They were not then the behemoth that they are now, and I was
lucky to be a part of helping innovate their product in its mal-
ware detection capabilities and amplify the great stuff they were
doing in those early days. Bringing my background in vulner-
abilities and exploits to the malware world helped increase their
systems’ ability to generically detect malware and compromises
within corporate networks. It was an amazing team and experi-
ence to have been a part of.

Rik: How has the Windows security landscape changed from
your perspective?

Marc: The Windows security landscape has changed dramati-
cally as it pertains to Microsoft software. The reality is that
Microsoft has made amazing strides to improve the security of
their code and systems and continues to do so. Clearly, many
vulnerabilities remain, but Microsoft has consistently done
things to raise the bar on attackers and researchers alike. There
are too many examples of positive changes they have done to list
them all.

Probably the biggest area of improvement is not just in their
internal security efforts to eradicate bugs but in their efforts to
continue to make the exploitation of vulnerabilities that much
harder. This even goes to the point of their offering $100,000
bounties on novel ways to bypass their various mitigation tech-
nologies. This is a wildly different Microsoft than the one I knew
many years ago. There are, of course, a lot of technical examples
of how they have improved security and their architectures over
the years, but more than hoping for one individual safeguard,
I think the biggest improvement is yet to come in Windows 10
because of changes to the overall ecosystem.

Microsoft has realized that no matter how secure they make
their own code they will still get a bad rap so long as their ecosys-
tem of third-party developers and software remains insecure. In
a lot of ways, most security products have existed as bolt-ons to
harden operating systems and to more tightly control application
behavior in ways operating systems should be doing by default:
the age-old problems of separating code and data, users and
access, and so on. Where Microsoft and even Apple seem to be
moving in terms of the desktop OS ecosystem is to mirror what
has happened in the mobile OS space with much tighter control
of what applications can do, how they inter-operate, how they are
sandboxed, and so on.

Microsoft already started down this path with Windows 8’s
app store but failed to get developers to adopt their new model
because it would require whole code rewrites in a lot of cases,
not to mention generally failing to get companies to even migrate
from Windows 7 to 8. Microsoft seems better positioned to
successfully get people to adopt Windows 10, and it seems to be
doing everything possible to get developers on board with getting
their apps moved to the app store model, including going to great
lengths to allow for classic Win32 applications to be packaged
up as store applications; this is done through leveraging some
level of virtualization and sandboxing so as not to violate the
overall benefit of store-based applications. This has interesting
implications for the desktop security landscape because store/
mobile OS models more granularly control and sandbox applica-
tions in ways that can be very beneficial for security and even IT
management.

You can think in terms of whether you would trust a family member
to be safer online via an iPad or Windows 7; which are they most
likely to get hacked on? Now this is not some religious debate
about what is the better OS or technology company, or which has
more or fewer vulnerabilities; rather, it’s a question of OS and
application models that are very different in mobile OSes vs.
traditional desktops. While exploits can and do exist for both
models, there is a dramatic difference in attack surface and how
tightly controlled applications and code are. I could expand on
this a lot more, but hopefully the implications of and differences
in these models are obvious as to the benefits to security if Micro-
soft can successfully win over developers to this new model.

To be clear, I’m not suggesting that such an app store model will
magically make Windows 10 secure out of the gate. It is not that
Windows 10 only allows a mobile OS app store type model but
rather that it is a hybrid, as Windows 8 was, of both a traditional
desktop OS app model and an app store model. If Microsoft can
successfully bring developers and their apps over to the store
model, then it moves us closer to being able to hit the kill switch
on the traditional desktop OS app model and all the attack
surface that comes with it. And, of course, there will be plenty
of problems with the store model from a security perspective;
expect to see someone talking about win32 apps escaping the
Windows 10 Store app sandbox at a future security conference.
But these problems will be far better than the current state of
the Windows desktop security model, where companies struggle
with a bunch of bolt-on security software simply to make sure
their users are not running malicious code from Web browsers,
email, and so on.

Rik: What do you think of open disclosure currently?

Marc: When discussing vulnerability disclosure, full disclo-
sure, and related topics, it is important to understand security
research in the larger context of where we currently find our-

http://www.usenix.org

www.usenix.org AU G U S T 20 1 5 VO L . 4 0, N O. 4 25

SECURITY
Interview with Marc Maiffret

selves in the continuum of such research. Vulnerability research
in the early 2000s was being done more out in the open where
everyone could benefit from it.

Things have changed over time where the value of such research
has increased well beyond the primary value in the 2000s of
simply making a name for yourself or for a security company in
order to get some press. As such the trend has been that more
critical vulnerability research is happening much more often
behind closed doors to the benefit of a few. It is also important to
think about the increased impact a vulnerability can have now
vs. years ago as society grows more dependent on technology.

So with that context in mind, I can see validity in the arguments
from all sides. I understand why a researcher would rather sell a
vulnerability to a defense contractor or private party than deal
with the sometimes truly painful process of trying to report a
vulnerability “responsibly” to a technology company, all for the

reward of a thank you in a security bulletin or possibly a pay-
ment that is a fraction of what they would have made by selling it
privately. I can also understand a researcher who thinks selling
a vulnerability to a defense contractor is morally wrong but
equally hates dealing with vendors and simply wants to drop the
information online for the community to sort out.

And I can see why plenty of people would be upset at researchers
who seemingly claim to do their work for the benefit of everyone
but are inflexible in their own views and timelines of what a ven-
dor might require to fix a flaw. I think this debate has persisted
the last 17+ years I have been in security because there truly is
no right answer or magical governing principle applicable to just
vulnerability research. I think the only thing that can be said
for certain is that regardless of your opinion on such debates,
the debates would not be happening if the information were not
public in some form. Wait, was this question about Snowden? :-)

Thanks to Our USENIX
and LISA SIG Supporters

USENIX Patrons
Facebook Google Microsoft Research NetApp VMware

USENIX and LISA SIG Partners
Booking.com Cambridge Computer

Can Stock Photo Fotosearch Google

USENIX Partners
Cisco-Meraki EMC Huawei

USENIX Benefactors
Hewlett-Packard Linux Pro Magazine Symantec

Open Access Publishing Partner
PeerJ

http://www.usenix.org

26  AU G U S T 20 1 5 VO L . 4 0, N O. 4 www.usenix.org

SYSADMIN(Un)Reliability Budgets
Finding Balance between Innovation and Reliability

M A R K D . R O T H

Mark Roth has been a Site
Reliability Engineer at Google’s
Mountain View office for over
a decade. He has worked
on a variety of projects,

including Gmail, Google Accounts, Monitoring
Infrastructure, and Compute Resource
Management. Before coming to Google, he
managed production UNIX systems at the
University of Illinois at Urbana-Champaign,
where he authored a number of open-source
software packages. roth@google.com

G oogle is constantly changing our software to implement new, use-
ful features for our users. Unfortunately, making changes is inher-
ently risky. Google services are quite complex, and any new feature

might accidentally cause problems for users. In fact, most outages of Google
services are the result of deploying a change. As a consequence, there is an
inherent tension between the desire to innovate quickly and to keep the site
reliable. Google manages this tension by using a metrics-based approach
called an unreliability budget, which provides an objective metric to guide
decisions involving tradeoffs between innovation and reliability.

Structural Tension
The tension between innovation and change is reflected most strongly in the relationship
between the SRE team and the corresponding Product Development team for any given
application. This is partly due to the inherent conf lict between the two teams’ goals.
Product Development’s performance is largely evaluated based on product velocity, so they
have incentive to get new code out as quickly as possible. However, SRE’s performance is
 evaluated based on how reliable the service is, which means they are generally motivated
to push back against a high rate of change. In addition, there is information asymmetry
between the two teams. The product developers have more visibility into the time and
effort involved in writing and releasing their code, while the SREs have more visibility into
the service’s reliability.

This inherent structural tension between Product Development and SRE manifests itself in
disagreements in a number of areas where it is important to find the right balance between
innovation and change. Here are some of the areas:

Software Fault Tolerance. When writing software, it’s important to anticipate the possible
failure modes and ensure that the software will handle them. However, there are an almost
infinite number of ways in which software can fail, and product developers do not have an
infinite amount of time to address those cases. Spending too little time on this results in
brittle software, thus increasing outages; spending too much time on this means that it takes
longer to finish the software, thus decreasing innovation. What is the right balance?

Testing. Too little testing results in bad, unreliable software. Too much testing can delay
the software from ever being released and increase ongoing code maintenance costs due to
the additional tests. Google product developers have many software testing tools at their
disposal, but how much testing is enough?

Push Frequency. Some teams prefer to push a new software release monthly or weekly. Oth-
ers would rather push daily or multiple times each day. Even if a push is mostly automated, it
may still require work on the part of the SREs. Each push is risky. A bad push can result in a
user-visible outage. Even without a user-visible outage, there may be a reduction in reliability
during the push due to the fact that while some systems are upgraded, the others take on the
additional load, possibly affecting latency. What’s the best frequency for the application?

http://www.usenix.org
mailto:roth@google.com

www.usenix.org AU G U S T 20 1 5 VO L . 4 0, N O. 4 27

SYSADMIN
(Un)Reliability Budgets: Finding Balance between Innovation and Reliability

Canary Duration and Size. When pushing new software, most
teams first push to a small subset of the total number of deployed
instances, so that if there is a problem, it will only affect a subset
of users. This is referred to as a “canary,” named after the prac-
tice of using a canary to detect carbon monoxide in coal mines.
Only after the code is deemed stable for some period of time in
canary will it be pushed out to the rest of production. But how
long should a change be canaried before it is deemed safe for
the rest of production? Too little time and we risk not catching
problems before they go to the rest of production; too much time
and we decrease the rate at which changes can be deployed.
Also, how large of a subset should the canary be? Too small and
we risk not having a large enough sample size to catch problems
before they go to production; too large and we risk any potential
problems causing too large of an impact before they are caught.
What is the right balance for the application?

Push Retry Methods. Sometimes a bad push is discovered
and the service is reverted to the previous release. When this
happens there is a temptation to make a quick fix and try again.
Often these quick fixes are not as well tested, and the risk is
increased. Alternatively, some groups prefer to wait for the next
push cycle, whether weekly or daily. We find that both methods
result in the same rate of new features making it into production,
but the former method results in many more pushes and reverted
bad pushes, which creates work and stress for the SREs. Is it bet-
ter to fix something quickly or do a full suite of tests?

The two teams need to negotiate to find the right balance in
these areas. However, we don’t want this negotiation to be driven
based on the negotiating skills of the engineers involved. We
also don’t want this to be decided by politics, personal feelings,
or just plain hope. (Indeed, SRE’s unofficial motto is “Hope is
not a strategy.”) Instead, we want an objective metric, agreed
upon by both sides, that can be used to guide the negotiations
in a reproducible way. Google is a data-driven company, and
we want the decision to be based on hard data.

Unreliability Budgets
For these decisions to be made based on objective data, the two
teams jointly define a quarterly unreliability budget based on the
service’s SLO (service level objective, or the goal of how reliable
a service should be). The unreliability budget provides a clear,
objective metric that determines how unreliable the service is
allowed to be within a single quarter. This takes the politics out
of the negotiation between the SREs and the product developers
when deciding how much risk to allow.

The unreliability budget works as follows: Product Management
sets a “Quarterly SLO goal,” which sets an expectation of how
much uptime the service should have. The actual uptime is
measured by a neutral third party, our monitoring system. The

difference between these two numbers is the “budget” of how
much “unreliability” is remaining for the quarter. As long as the
uptime measured is above the SLO, new releases can be pushed.

As a hypothetical example, let’s imagine that a service’s SLO is
that it will successfully serve 99.999% of all queries. This means
that the service’s unreliability budget is that it can fail 0.001% of
the time within a given quarter. So if a given problem causes us
to fail 0.0002% of the expected queries for the quarter, we would
consider that it used up 20% of the service’s unreliability budget
for the quarter. Once the unreliability budget for the quarter has
been spent, no more changes will be deployed (other than critical
bug fixes), since they could cause unreliability that the service
can’t afford.

The actual SLO for a given application may actually be a much
more complicated calculation involving latency, data freshness,
and other factors. In some cases, a successful push may reduce
the SLO slightly even though no downtime is visible to the users.
For example, while some servers are being upgraded, others take
on the extra traffic, and thus latency may increase.

Benefits
The main benefit of an unreliability budget is that it provides a
common incentive that allows both Product Development and
SRE to focus on finding the right balance between innovation
and reliability.

For example, if Product Development wants to skimp on testing
or increase push velocity and SRE is resistant, the unreliability
budget guides the decision. When the budget is big, the prod-
uct developers can take more risks. When the budget is nearly
drained, the product developers themselves will push for more
testing or slower push velocity, because they don’t want to risk
using up the budget and stall their launch. In effect, the Product
Development team becomes self-policing. They know the budget
and can manage their own risk.

The unreliability budget also largely eliminates tension between
Product Development and SRE, because SRE no longer needs
to be in the position of making subjective judgment calls on
individual push requests from product developers or adopting
blanket and increasingly arbitrary rules such as “new releases
are pushed if and only if Product Development wins a game of
fizzbin when the moon is full” [1] in an attempt to prevent repeti-
tion of previously encountered outages. Instead, SRE just needs
to measure and enforce the agreed upon unreliability budget.
If they need to say no, they can point at an objective metric that
Product Development has already agreed to and cannot argue
with. Thus, instead of viewing SRE as an obstacle, the Product
Development team partners closely with SRE on ensuring appro-
priate velocity/reliability tradeoffs.

http://www.usenix.org

28  AU G U S T 20 1 5 VO L . 4 0, N O. 4 www.usenix.org

SYSADMIN
(Un)Reliability Budgets: Finding Balance between Innovation and Reliability

What happens if a network outage or datacenter failure reduces
the measured SLO? Yes, events like that consume the budget,
too. As a result, the number of new pushes may be reduced for
the remainder of the quarter. The entire team is okay with this
because everyone shares the responsibility for uptime. No one
person is to blame for such an incident. On the other hand,
Google has mechanisms to “route around” such outages so they
are invisible to our users. If such an event actually does affect
the service, the team can focus on improving their use of the
redundancy and failover mechanisms rather than waste time
finger-pointing.

Finally, because the unreliability budget is defined in terms of
the application’s SLO, it also helps to highlight some of the costs
of overly high reliability targets, in terms of both inflexibility
and slow innovation. If the team is having trouble getting new
features out, then they may elect to loosen the SLO (thus increas-
ing the unreliability budget) in order to increase innovation. At
Google, doing a little better than the SLO is good, but exceeding
it greatly is not considered something to be proud of; instead, it is
an indication that the team is not taking enough risks or the ser-
vice is over-provisioned. Google encourages smart risk-taking to
increase innovation, and the unreliability budget helps us make
sure that we’re doing that.

Conclusion
When two groups work as a team and share responsibility for the
uptime of a service, it is important to have a neutral, non-polit-
ical way to guide decisions of balance. Whether it is how much
testing is enough, how often to push, or how to recover from
failed pushes, these are not easy decisions to make. While prod-
uct developers are under pressure to advance their products rap-
idly and SREs are always mindful of stability, the unreliability
budget gives the team a neutral, non-political, and data-driven
way to find balance in all these areas and more. The result is a
team that works better together and more effectively.

Acknowledgments
Thank you to Tom Limoncelli, now at Stack Exchange, Inc., for
contributing to an early draft, Dave O’Connor for his invalu-
able comments, and Carmela Quinito for editorial review of this
article.

Reference
[1] Fizzbin: http://www.imdb.com/title/tt0708412/quotes.

http://www.usenix.org
http://www.imdb.com/title/tt0708412/quotes

JESA: Journal of Education in System Administration
Submissions due: August 14, 2015
www.usenix.org/jesa/cfp
USENIX is proud to announce the creation of a new Journal
of Education in System Administration (JESA). JESA brings
together researchers, educators and experts from a variety
of disciplines, ranging from informatics, information technol-
ogy, computer science, networking, system administration,
security and pedagogics. JESA seeks to publish original
research on important problems in all aspects of education
in system administration. The mission of JESA is therefore to
be a body of peer-reviewed, high-quality work addressing
the challenges in system administration education.

URES ’15: 2015 USENIX Release Engineering Summit
November 13, 2015, Washington, D.C.
Submissions due: September 4, 2015
www.usenix.org/ures15/cfp
At the third USENIX Release Engineering Summit (URES ’15),
members of the release engineering community will come
together to advance the state of release engineering, discuss
its problems and solutions, and provide a forum for commu-
nication for members of this quickly growing field. URES ’15
is looking for relevant and engaging speakers for our event
on November 13, 2015, in Washington, D.C. We are excited
that this year LISA attendees will be able to drop in on talks
so we expect a large audience.

URES brings together people from all areas of release
 engineering—release engineers, developers, managers,
site reliability engineers and others—to identify and help
propose solutions for the most difficult problems in release
engineering today.

NSDI ’16: 13th USENIX Symposium on Networked
Systems Design and Implementation
March 16-18, 2016, Santa Clara, CA
Paper titles and abstracts due: September 17, 2015
Complete paper submissions due: September 24, 2015
www.usenix.org/nsdi16/cfp
The 13th USENIX Symposium on Networked Systems Design
and Implementation (NSDI ’16) will focus on the design
principles, implementation, and practical evaluation of
networked and distributed systems. Our goal is to bring
together researchers from across the networking and sys-
tems community to foster a broad approach to addressing
overlapping research challenges.

NSDI provides a high quality, single-track forum for
 presenting results and discussing ideas that further the
knowledge and understanding of the networked systems
community as a whole, continue a significant research dialog,
or push the architectural boundaries of network services.

FAST ’16: 14th USENIX Conference on File and
Storage Technologies
February 22-25, 2016, Santa Clara, CA
Submissions due: September 21, 2015
www.usenix.org/fast16/cfp
The 14th USENIX Conference on File and Storage Technolo-
gies (FAST ’16) brings together storage-system researchers
and practitioners to explore new directions in the design,
implementation, evaluation, and deployment of storage
systems. The program committee will interpret “storage
systems” broadly; everything from low-level storage devices
to information management is of interest. The conference
will consist of technical presentations including refereed
papers, Work-in- Progress (WiP) reports, poster sessions,
and tutorials.

The program committees of the following conferences are seeking submissions. CiteSeer ranks the USENIX
 Conference Proceedings among the top ten highest-impact publication venues for computer science.

Get more details about these Calls at www.usenix.org/cfp.

www.usenix.org/cfp

Publish and Present Your Work
at USENIX Conferences

http://www.usenix.org/jesa/cfp
http://www.usenix.org/ures15/cfp
http://www.usenix.org/nsdi16/cfp
http://www.usenix.org/fast16/cfp
http://www.usenix.org/cfp
http://www.usenix.org/cfp

30  AU G U S T 20 1 5 VO L . 4 0, N O. 4 www.usenix.org

SYSADMIN

/var/log/manager
Incentivizing Smart People

A N D Y S E E L Y

I manage smart, highly technical professionals in a hot job market. The
Tampa Bay Area has an effective unemployment rate of 0% in our IT
sector (and our weather is a lot better than you find in another “Bay

Area” that has a hot IT sector...I’m just sayin’). I worry a lot about how to get
my best employees to keep coming back to work each day. There are several
incentive points to think about when preventing a valued employee from
straying to another employer. To make their job feel like The Great Job takes
a lot more effort than simply pointing out that you get to work with Andy
Seely. Here are some “incentive vectors” explained, with points to consider
from the sysadmin’s point of view and then from the manager’s perspective.

Money
Salary is the primary motivator for most people to go to work. Even if you love your job, do
you do it for free? Few people do, and when they do it’s because they already have plenty of
money. The rest of us have bills to pay. You need to know how much salary you can earn, given
the simultaneous equation of your skills, the business’s need for those skills, the available
budget, and the surrounding job market. Be prepared to discover that you may be worth more
than the job can pay.

Vacation
Vacation time, sick leave, holidays: the amount of paid time off is a major motivator for people
considering a job offer. Who doesn’t love making money while doing what they love instead
of having to go to work? This one has a hidden Easter egg to it. The people who are the top
performers, who love what they do and throw themselves into it, are also the people who don’t
take their vacation days. If you earned three months’ vacation in a year, would you take it?
How much time off would you really take if you worked under one of the new “unlimited time
off” corporate policies that are starting to show up in our industry [1]? Every top performer I
know already runs up against the maximum accrual limit for paid time off. That’s how they
got to be top performers [2].

Benefits
Are you a single sysadmin? Biggest health problem you have is where’s your pizza? Maybe
this isn’t a big driver for you. Are you a middle-aged sysadmin with a spouse and kids and
maybe your blood pressure isn’t where it should be? And while you’re writing an article for
;login: your wife is trying to give your seven-year-old some eye drops, and then she starts
screaming because his eye just turned into a weird, swollen meatball, and then he starts
screaming and the dog starts howling, and she’s packing the car to rush to the emergency
room and you walk over and…flip his eyelid back right-side out, thus saving the family a $500
ER trip? Health care can be a major hit against your bottom line. You need this benefit.

Andy Seely is the Chief Engineer
and Division Manager for an IT
enterprise services contract,
and is an Adjunct Instructor in
the Information and Technology

Department at the University of Tampa. His
wife Heather is his PXE Boot and his sons
Marek and Ivo are always challenging his thin-
provisioning strategy. andy@yankeetown.com

http://www.usenix.org

www.usenix.org AU G U S T 20 1 5 VO L . 4 0, N O. 4 31

SYSADMIN
/var/log/manager: Incentivizing Smart People

Opportunity for Promotion
Especially early in a career, few people ever say, no, thank you,
but this is high enough for me. We’re bred to grow, to achieve,
to climb. Even sysadmins who don’t want a management job,
never-ever, cross my heart and hope to die, will still admit that
they’d like a “senior engineer” or “technical director” title or
some advancement along a technical track. As a sysadmin in a
job in a company in a market, you need to not just know what you
can do, but where you can do it and what your growth path is. You
wouldn’t try to drive from the Tampa Bay Area to California by
stopping at every town and waiting for someone to tell you where
to go, would you? No, you’d look at a map and start driving to your
destination. So why would you try to get to the top of your career
by stopping at your current job and wait for someone to tell you
where to go?

Training and Conferences
Every good sysadmin knows how to do self-study. And every
good sysadmin who does self-study to get ahead appreciates paid
training. But it’s rarely just about the training; it’s also about the
company’s acknowledging the employee’s contribution and its
willingness to cut into the bottom line to invest in an individual.
That sends a message to the employee that they’re worth keep-
ing. The employee gets new skills, a little bit of a break from the
daily toil, and also earns a mark of confidence from the employer.
I don’t think it’s uncommon for employers to resist allowing
training as much for the cost as for fear that the employee will
take the new skills and go find a better-paying job somewhere
else. You should attempt to understand the financial system like
you would any computing system: when there’s budget, make your
pitch and demonstrate not just how it helps you to help the com-
pany, but how you’re going to stay on the job longer because they’re
not just buying training, they’re also buying a happy employee.

Interesting Work
If you’re a sysadmin and you read ;login:, then I’m confident in
saying that interesting work is your top motivator, right behind
salary, which is probably also a top motivator. Let us rank them
both as priority one: one-alpha and one-bravo.

There’s a trick about interesting work. It has to be interesting
enough to keep the attention and allow the best skills a sysadmin
has to flow out. But it also has to be focused on the actual prob-
lems facing the business. It doesn’t help the business to spend
salary and capital expense to fund development of a new custom
monitoring tool for a legacy system that supports the punch-card
reader that gets used twice a year, even though that would prob-
ably be a really interesting project. It’s important to work in a
place that can give you the right kind of interesting work. Too lit-
tle interesting work and a sysadmin starts to lose skills and may

accidentally become a manager. Too much interesting work may
really be a lack of focused direction on the part of the employer;
if you can just do anything you want, anytime, how do you know
it matters? And how can you be sure that your employer who
allows it really knows what matters to their business? To engen-
der job satisfaction, work has to be interesting, but it also needs
to be meaningful, or you might be on a sinking ship.

Autonomy
All the sysadmins I’ve known have liked to be left alone to make
their own decisions and follow their own insights. If a sysad-
min asks for help, it’s because help is really needed. Getting
this dynamic right in a team setting isn’t a problem, provided
everyone knows what’s expected of them. As an employee, you
will never know if you’ll have autonomy in a job until you’re in
it. Position descriptions all say, “must be a self-starter,” but that
just means that your manager doesn’t want to have to always
chase you down to get the TPS Report. It doesn’t mean you get to
call your own shots.

I’m the Manager. What Can I Do for You?
I can give you a raise, but it will be small enough that you won’t
really feel it, and only in rare circumstances will it be outside of
an annual cycle. This may sound cynical, but think about what
percentage raise it would take for you to change your standard
of living or make a major life purchase, then think about the per-
centages of raises you’ve had in your career. Don’t focus on the
prospect of a single big raise as a big motivator.

I can’t do a thing about vacation accrual or benefits. Maybe
smaller companies have more leeway, although I imagine they
have a lot less revenue to absorb the expense. Large companies
get lost in policies and don’t have a lot of flexibility for changing
benefits packages for individual contributors.

I might be able to promote you, but consider how many senior
jobs there are compared to junior and mid-level jobs. Opportuni-
ties are limited from the start, and there are others who want the
same thing. If you have a PhD in Everything and you’re working
on the help desk, you’re getting paid what the help desk pays, not
what the PhD is worth. Show you’re the right stuff for promotion,
every day. A good way to show this is to help solve problems your
manager has rather than focusing on problems you have.

Training and conferences are funny. When there’s budget, it’s
easier. When there’s not, it’s impossible. Complaining about it, no
matter how justified, is incredibly counterproductive and, over
time, will turn an otherwise benign manager squarely against you.

Interesting work and some autonomy to get it done? Now we’re
talking. These things I can influence. I like motivated people
who have good ideas and want to get things done.

http://www.usenix.org

32  AU G U S T 20 1 5 VO L . 4 0, N O. 4 www.usenix.org

SYSADMIN
/var/log/manager: Incentivizing Smart People

There are many reasons why people keep coming to work. Tak-
ing the time to break them out, articulate them, and find ways
to explain them is a useful tool when trying to retain top people.
Helping smart sysadmins understand their real value to them-
selves and to the organization is something a manager can do.
I’m the manager, and that’s my job.

References
[1] “To Recruit Techies, Companies Offer Unlimited Vaca-
tion”: http://www.bloomberg.com/bw/articles/2012-07-19/
to-recruit-techies-companies-offer-unlimited-vacation.

[2] “Companies Offer ‘Unlimited’ Vacation Time Because
They Know Perfectly Well People Won’t Use It”: http://www
.slate.com/blogs/moneybox/2013/08/27/unlimited_vacation
_time_it_s_no_accident_people_don_t_take_it.html.

The USENIX Campus Rep Program is a network of representatives at campuses around the world who provide
 Association information to students, and encourage student involvement in USENIX. This is a volunteer program, for
which USENIX is always looking for academics to participate. The program is designed for faculty who directly inter-
act with students. We fund one representative from a campus at a time. In return for service as a campus representa-
tive, we offer a complimentary membership and other benefits.

A campus rep’s responsibilities include:
■ Maintaining a library (online and in print) of USENIX

publications at your university for student use
■ Distributing calls for papers and upcoming event

 brochures, and re-distributing informational emails
from USENIX

■ Encouraging students to apply for travel grants to
conferences

In return for being our “eyes and ears” on campus, the Campus Representative receives access to the members-only
areas of the USENIX Web site, free conference registration once a year (after one full year of service as a Campus
Representative), and electronic conference proceedings for downloading onto your campus server so that all
students, staff, and faculty have access.

To qualify as a campus representative, you must:
■ Be full-time faculty or staff at a four-year accredited university
■ Have been a dues-paying member of USENIX for at least one full year in the past

■ Providing students who wish to join USENIX with
information and applications

■ Helping students to submit research papers to
 relevant USENIX conferences

■ Providing USENIX with feedback and suggestions on
how the organization can better serve students

For more information about our Student Programs, contact
Julie Miller, Marketing Communications Manager, julie@usenix.org

Do you have a USENIX Representative on your
university or college campus?

If not, USENIX is interested in having one!

http://www.usenix.org
http://www.bloomberg.com/bw/articles/2012-07-19/
http://www
mailto:julie@usenix.org

www.usenix.org AU G U S T 20 1 5 VO L . 4 0, N O. 4 33

PROGRAMMINGWhat Bugs Live in the Cloud?
A Study of Issues in Scalable Distributed Systems

H A R Y A D I S . G U N A W I , T H A N H D O , A G U N G L A K S O N O , M I N G Z H E H A O ,
T A N A K O R N L E E S A T A P O R N W O N G S A , J E F F R E Y F . L U K M A N , A N D
R I Z A O . S U M I N T O

Haryadi Gunawi is a Neubauer
Family Assistant Professor in
the Department of Computer
Science at the University of
Chicago where he leads the

UCARE Lab (U Chicago systems research
on Availability, Reliability, and Efficiency).
He received his PhD from the University
of Wisconsin–Madison and was awarded
an Honorable Mention for the 2009 ACM
Doctoral Dissertation Award.
haryadi@cs.uchicago.edu

Thanh Do is a Researcher at
Microsoft Jim Gray Systems
Lab. His research focuses on
the intersection of systems and
data management.

thdo@microsoft.com

Agung Laksono is a Researcher
in SCORE Lab at Surya
University Indonesia. He
received his BS from Sepuluh
Nopember Institute of

Technology (ITS). His research interest is in
cloud computing and software engineering.
agung.laksono@surya.ac.id

Mingzhe Hao is a PhD student
in the Computer Science
Department at the University
of Chicago. As a member of
UCARE Lab, he is passionate

about building performance-predictable cloud
storage systems. hmz20000@uchicago.edu

W e performed a detailed study of development and deployment
issues of six open-source scalable distributed systems (scale-out
systems) by analyzing 3655 vital issues reported within a three-

year span [4]. The results of our study should be useful to system develop-
ers and operators, systems researchers, and tool builders in advancing the
reliability of future scale-out systems. The database of our Cloud Bug Study
(CbsDB) is publicly available [1].

As the cloud computing era becomes more mature, various scale-out systems—including
distributed computing frameworks, key-value stores, file systems, synchronization services,
streaming systems, and cluster management services—have become a dominant part of
software infrastructure running behind cloud datacenters. These systems are considerably
complex as they must deal with a wide range of distributed components, hardware failures,
users, and deployment scenarios. Bugs in scale-out systems are a major cause of cloud ser-
vice outages.

In this study, we focused on six popular and important scale-out systems: Hadoop, HDFS,
HBase, Cassandra, ZooKeeper, and Flume, which collectively represent a diverse set of scale-
out architectures. A comprehensive study of bugs in scale-out systems can provide intel-
ligent answers to many dependability questions. For example, why are scale-out systems not
100% dependable? Why is it hard to develop fully reliable cloud systems? What types of bugs
live in scale-out systems, and how often do they appear? Why can’t existing tools capture
these bugs, and how should dependability tools evolve in the near future?

The answers to these questions are useful for different communities. System developers can
learn about a wide variety of failures in the field and come up with better system designs.
System operators can gain further understandings of distributed operations that are fragile
to failure. For system researchers, this study provides bug benchmarks that they can use to
evaluate their techniques. This study also motivates researchers to address new large-scale
reliability challenges. Finally, tool builders can understand the limitations they work within
and advance current tools.

In the rest of this article, we will present our high-level findings by focusing on new inter-
esting types of bugs that we believe require more attention. At the end of this article, we
will provide more samples of CbsDB use cases. The full scope of our study and specific bug
examples can be found in our conference paper [4].

Findings
Before presenting specific types of bugs, we summarize our important findings.

New bugs in town: As shown in Figure 1, classical issues such as reliability (45%), perfor-
mance (22%), and availability (16%) are the dominant categories. In addition, new classes
of bugs unique to scale-out systems have emerged: data consistency (5%), scalability (2%),
 topology (1%), and QoS (1%) aspects.

http://www.usenix.org
mailto:haryadi@cs.uchicago.edu
mailto:thdo@microsoft.com
mailto:agung.laksono@surya.ac.id
mailto:hmz20000@uchicago.edu

34  AU G U S T 20 1 5 VO L . 4 0, N O. 4 www.usenix.org

PROGRAMMING
What Bugs Live in the Cloud?

Handling diverse hardware failures is not easy: “Hardware can fail, and reliabil-
ity should come from the software” has been preached extensively, but handling diverse
hardware failures such as fail stop, corruption, and “limpware[3],” including the timing of
failures, is not straightforward (13% of the issues relate to hardware faults).

Vexing software bugs: The 87% of issues that pertain to software bugs consist of logic
(29%), error-code handling (18%), optimization (15%), configuration (14%), data race (12%),
hang (4%), space (4%) and load (4%) issues, as shown in Figure 3a.

In this article, we will delve into three interesting types of software bugs: (1) single-point-
of-failure (SPoF) bugs, which can simultaneously affect multiple nodes or the entire cluster;
(2) distributed concurrency bugs, caused by nondeterministic distributed events such as
message reorderings and failure timings; and (3) performance logic bugs, which can cause
significant performance degradation of the system.

Less-tested operational protocols: User-facing read/write protocols are continuously
exercised in deployment and thus tend to be robust. Conversely, operational protocols (e.g.,
bootstrap logic, failure recovery, rebalancing) are rarely run and not rigorously tested. Bugs
often linger in operational protocols.

A wide range of implications: Exacerbating the problem is the fact that each bug type can
lead to almost all kinds of implication such as failed operations (42%), performance problems
(23%), component downtimes (18%), data loss (7%), corruption (5%), and staleness (5%), as
shown in Figure 3b.

The need for multi-dimensional dependability tools: As each kind of bug can
lead to many implications and vice versa (Figure 4), bug-finding tools should not be
one-dimensional.

Methodology
The six systems we studied come with publicly accessible issue repositories that contain
bug reports, patches, and deep discussions among the developers. This provides an “oasis”
of insights that helps us address the questions we listed above. From the issues repository
of each system, we collected issues (bugs and new features) submitted over a period of three
years (2011–2014) for a total of 21,399 issues. We manually labeled “vital” those issues per-
taining to system development and deployment problems and marked them as high priority.
We ignored non-vital issues related to maintenance, code refactoring, unit tests, documenta-
tion, and minor easy-to-fix bugs. This left us with 3655 vital issues that we then studied and
tagged with our issue classifications as shown in Table 1. In each classification, an issue can

Tanakorn Leesatapornwongsa
is a PhD student in the
Department of Computer
Science at University of
Chicago. He is a member of

the UCARE Lab and is interested in addressing
scalability and distributed concurrency
problems. tanakorn@cs.uchicago.edu

Jeffrey Ferrari Lukman is a
Researcher in SCORE Lab at
Surya University, Indonesia. He
is joining University of Chicago
as a PhD student in computer

science in Fall 2015. His research interest is in
distributed systems reliability.
jeffrey.ferrari@surya.ac.id

Riza Suminto received a BS in
computer science from Gadjah
Mada University in 2010. In
2013, he joined the University
of Chicago to pursue his PhD in

computer science. He is currently a member of
the UCARE Lab and is interested in addressing
performance bugs in cloud systems.
riza@cs.uchicago.edu

Classification Labels

Aspect
Reliability, performance, availability, security, consistency, scalability,
topology, QoS

Hardware Core/processor, disk, memory, network, node

HW failure Corrupt, limp, stop

Software Logic, error handling, optimization, config, race, hang, space, load

Implication
Failed operation, performance, component downtime, data loss, data
staleness, data corruption

Impact scope Single machine, multiple machines, entire cluster

Table 1: Issue classifications

http://www.usenix.org
mailto:tanakorn@cs.uchicago.edu
mailto:jeffrey.ferrari@surya.ac.id
mailto:riza@cs.uchicago.edu

www.usenix.org AU G U S T 20 1 5 VO L . 4 0, N O. 4 35

PROGRAMMING
What Bugs Live in the Cloud?

have multiple sub-classifications. The product of our study is
named Cloud Bug Study database (CbsDB) and is publicly avail-
able [1]. With CbsDB, users can perform both quantitative and
qualitative analysis of cloud bugs.

Issue Aspects
The first classification that we use is by aspect. Figure 1 shows
the distribution of the eight aspects listed in Table 1. Reliability
(45%), performance (22%), and availability (16%) aspects are the
three largest categories. They are caused by diverse hardware-
related and software bugs that we will discuss in subsequent
sections. We also found many vital issues related to security
(8%) and QoS (1%). Below, we pay attention to two interesting
aspects distinct to scale-out systems: distributed data consis-
tency and scalability bugs.

Data Consistency
Users demand data consistency, which implies that all nodes or
replicas should agree on the same value of data (or eventually
agree in the context of eventual consistency). In reality, several
cases (5%) show data consistency is violated where users get
stale data or the system’s behavior becomes erratic. Data con-
sistency bugs are mostly caused by the two following problems:

1. Buggy logic in operational protocols: Besides the main read/
write protocols, many other operational protocols (e.g., boot-
strap, background synchronization, cloning, fsck) touch and
modify data, and bugs within them can cause data inconsistency.
For example, in the Cassandra cross-datacenter (DC) synchro-
nization protocol, the compression algorithm fails to compress
some key-values, but Cassandra allows the whole operation to
proceed, silently leaving the two DCs with inconsistent views.

2. Concurrency bugs and node failures: Intra-node (local) data
races are a major culprit of data inconsistency. As an example,
data races between read and write operations in updating the
cache can lead to older values written to the cache. Inter-node
(distributed) data races are also a major root cause; complex
reordering of asynchronous messages combined with node fail-
ures make systems enter incorrect states.

In summary, operational protocols modify data replicas, but they
often carry data inconsistency bugs. Robust systems require
all protocols to be heavily tested. In addition, more research is
needed to address complex distributed concurrency bugs (as we
will discuss later).

Scalability
Scalability issues, although small in number (2%), are interest-
ing because they are hard to find in small-scale testing. We
categorize scalability issues into four axes of scale: cluster size,
data size, load, and failure.

Scale of cluster size: Protocol algorithms must anticipate dif-
ferent cluster sizes, but algorithms can be quadratic or cubic
with respect to the number of nodes. For example, in Cassandra,
when a node changes its ring position, other affected nodes must
perform a key-range recalculation with a complexity Ω(n3). If
the cluster has 100–300 nodes, this causes CPU “explosion”
and eventually leads to nodes “flapping” (that is, live nodes are
extremely busy and considered dead) and requires whole-cluster
restart with manual tuning.

Scale of data size: Big Data systems must anticipate large data
sizes, but it is often unclear what the limit is. For instance, in
HBase, opening a big table with more than 100K regions undesir-
ably takes tens of minutes due to an inefficient table look-up
operation.

Scale of request load: Large request loads of various kinds are
sometimes unanticipated. For example, in HDFS, creation of
thousands of small files in parallel causes out-of-memory prob-
lems (OOM), and in Cassandra, users can generate a storm of
deletions that can block other important requests.

0%

20%

40%

60%

80%

100%

CS FL HB HD MR ZK All

80
5

20
7

14
05

75
3

64
9

19
9

40
18

Reli
Perf
Avail

Sec
Cons
Scale

Topo
Qos

Issue Aspects

Figure 1: Issue Aspects. CS: Cassandra; FL: Flume; HB: HBase; HD: HDFS;
MR: MapReduce; ZK: ZooKeeper; All: Average

0%

20%

40%

60%

80%

100%

CS FL HB HD MR ZK All

SW HW

(a) Software/Hardware Faults

Figures 2a and b: Hardware faults

Stop

Corrupt

Limp

Nod
e

Disk Net M
em

Cor
e

(b) Hardware Faults

F
ai

lu
re

 M
od

es

299 37 50 4 0

2 15 1 2 0

3 7 3 1 0

http://www.usenix.org

36  AU G U S T 20 1 5 VO L . 4 0, N O. 4 www.usenix.org

PROGRAMMING
What Bugs Live in the Cloud?

Scale of failure: At scale, a large number of components can fail
at the same time, but some recovery protocols handle large scale
failures poorly. In one example, when 16,000 mappers failed,
Hadoop required over seven hours to recover because of unopti-
mized communication in HDFS.

In summary, scalability problems surface undesirably late in
deployment. Similar to an earlier summary, we find the main
read/write protocols scale robustly, but operational protocols
(recovery, boot, etc.), on the other hand, often carry scalability
bugs. One approach to solve this is via operational “live drills” [5],
which should be performed frequently in deployment. Another
research challenge is to develop scalability bug finders that can
find scalability bugs without using large resources in testing.

Hardware Issues
Next we categorize issues based on hardware vs. software faults.
Figure 2a shows the percentage of issues that involve hardware
(13%) and software (87%) faults. Figure 2b shows the heat map
of correlation between hardware type and failure mode; the
number in each cell is a bug count.

While fail stop and corruption are well-known failure modes,
there is an overlooked hardware failure mode, limpware [3],
hardware whose performance degrades significantly. For exam-
ple, in an HBase deployment, a memory card ran only at 25% of
normal speed, causing backlogs, OOM, and crashes.

Software Issues
Figure 3a shows the distribution of software bug types. The aver-
age distributions of software issues are: logic (29%), error han-
dling (18%), optimization (15%), configuration (14%), data race/
concurrency (12%), hang (4%), space (4%), and load (4%) issues.

Figure 3b depicts respective software bug implications. The
average distributions for the implications are: failed operations
(42%), performance problems (23%), downtimes (18%), data loss
(7%), corruption (5%), and staleness (5%).

Figure 4 presents an interesting heat map of correlation between
software bugs and their implications. Each kind of bug can lead
to many implications and vice versa. If a system attempts to
ensure reliability on just one axis (e.g., no data loss), the system
must deploy various bug-finding tools that can catch different
types of software bugs. Therefore, there is a need for multi-
dimensional dependability tools.

For interested readers, discussions of the software issues above
are discussed in our full paper [4]. Below we focus our discus-
sions on three interesting distributed system bugs: single-point-
of-failure (SPoF), distributed concurrency, and performance
logic bugs.

SPoF Bugs
One interesting type of bug that we find is “single-point-of- failure
(SPoF)” bugs. These bugs can simultaneously affect multiple
nodes or even the entire cluster. The presence of these bugs
implies that although the “no-SPoF” principle has been preached
extensively, SPoF still exists in many forms.

Positive feedback loop: This is the case where failures happen,
then recovery starts, but the recovery introduces more load and
hence more failures. For example, busy gossip traffic can incor-
rectly declare live nodes dead, which then causes administrators
or elasticity tools to add more nodes, which then causes more
gossip traffic.

Buggy failover: A key to no-SPoF is to detect failure and perform
a failover. But such a guarantee breaks if the failover code itself
is buggy. For example, in HDFS, when a failover to a standby
name node breaks, all data nodes become unreachable.

Repeated bugs after failover: Here, a buggy operation leads to a node
crash triggering a failover. After the failover, the other node will
repeat the same buggy logic, again crashing the node. The whole
process will repeat and the entire cluster will eventually die.

0%

20%

40%

60%

80%

100%

CS FL HB HD MR ZK All

68
9

18
2

11
19

55
6

51
3

15
0

32
09

Logic
Err-h
Opt
Config

Race
Hang
Space
Load

(a) Software Faults

Figure 3a and b: Software bug types and implications

0%

20%

40%

60%

80%

100%

CS FL HB HD MR ZK All

69
0

18
5

11
20

59
3

52
7

16
1

32
76

Opfail
Perf
Down

Loss
Stale
Corrupt

(b) Implications

Figure 4: Counts of software bugs and implications

http://www.usenix.org

www.usenix.org AU G U S T 20 1 5 VO L . 4 0, N O. 4 37

PROGRAMMING
What Bugs Live in the Cloud?

A small window of SPoF: Another key to no-SPoF is ensuring
failover readiness all the time. We find few cases where failover
mechanisms are disabled briefly for some operational tasks. In
ZooKeeper, for example, during dynamic cluster reconfigura-
tion, heartbeat monitoring is disabled, and if the leader hangs at
this point, a new leader cannot be elected.

Buggy start-up code: Starting up a large-scale system is typi-
cally a complex operation, and if the start-up code fails then all
the machines are unusable. As an example, a buggy ZooKeeper
leader election protocol can cause no leader to be elected.

Distributed deadlock: This is the case where each node is waiting
for other nodes to progress. For example, during start-up in Cas-
sandra, it is possible that all nodes never enter a normal state as
they keep gossiping. This corner-case situation is typically caused
by message reorderings, network failures, or software bugs.

Scalability and QoS bugs: Examples presented earlier also high-
light that scalability and QoS bugs can affect the entire cluster.

In summary, the concept of no-SPoF is not just about a simple
failover. Many forms of SPoF bugs exist, and they can cripple
an entire cluster (potentially hundreds or thousands of nodes).
Scale-out systems must also be self-aware and make decisions to
stop recovery operations that can worsen the cluster condition (for
example, in the first two cases above). Future tools must address
the five challenges of unearthing various forms of SPoF bugs.

Distributed Concurrency Bugs
Data races are a fundamental problem in any concurrent soft-
ware system and a major research topic over the last decade. In
our study, data races account for 12% of software bugs. Unlike
nondistributed software, cloud systems are subject to not
only local concurrency bugs (e.g., thread interleaving) but also
distributed concurrency bugs (e.g., reordering of asynchronous
messages). Our finding is that around 50% of data race bugs are
distributed concurrency bugs and 50% are local concurrency bugs.

As an extreme example, let’s consider the following distributed
concurrency bug in ZooKeeper that happens on a long sequence
of messages including failure events that must happen in a spe-
cific order.

ZooKeeper Bug #335: (1) Nodes A, B, C start with latest txid #10
and elect B as leader; (2) B crashes; (3) Leader election rerun, and
C becomes leader; (4) Client writes data; A and C commit new
txid-value pair {#11:X}; (5) A crashes before committing tx #11;
(6) C loses quorum; (7) C crashes; (8) A reboots and B reboots;
(9) A becomes leader; (10) Client updates data; A and B com-
mit a new txid-value pair {#11:Y}; (11) C reboots after A’s new
tx commit; (12) C synchronizes with A; C notifies A of {#11:X};
(13) A replies to C the “diff” starting with tx 12 (excluding tx
{#11:Y}!); (14) Violation: permanent data inconsistency as A and
B have {#11:Y} and C has {#11:X}.

The bug above is what we categorize as a distributed concur-
rency bug. To unearth this type of bug, testing and verifica-
tion tools must permute a large number of events, crashes, and
reboots as well as network events (messages). Figure 5 lists
more samples of distributed concurrency bugs. The point of the
figure is to show that many of them were induced by multiple
crashes and reboots at nondeterministic timings. Distributed
concurrency bugs plague many many protocols, including leader
election, atomic broadcast, speculative execution, job/task track-
ers, resource/application managers, gossiper, and many others.
These bugs can cause failed jobs, node unavailability, data loss,
inconsistency, and corruption.

For local concurrency bugs, numerous efforts have been pub-
lished in hundreds of papers. Unfortunately, distributed concur-
rency bugs have not received the same amount of attention. We
observed that distributed concurrency bugs are typically found
in deployment (via logs) or manually. The developers see this
as a vexing problem; an HBase developer wrote, “Do we have to
rethink this entire [system]? There isn’t a week going by without
some new bugs about races between [several protocols].”

For this reason, we recently built an advanced semantic-aware
model checker (SAMC) [6], a software (implementation-level)
model checker targeted for distributed systems. It works by
rapidly exercising unique sequences of events (e.g., different
reorderings of messages, crashes, and reboots at different tim-
ings), and thereby pushing the target system into corner-case
situations and unearthing hard-to-find bugs. SAMC is available
for download [2].

 0
 1
 2
 3
 4
 5
 6

33
5

56
9

76
9

79
0

79
1

97
5

10
75

11
18

11
54

12
94

13
19

13
32

13
67

13
72

14
19

14
92

15
73

16
53

91
3

37
80

38
46

42
52

44
25

46
07

47
48

48
32

48
33

48
90

50
00

51
69

51
98

53
58

54
05

54
09

54
76

54
89

55
05

51
5

12
21

14
32

17
30

19
92

21
15

25
14

32
73

34
66

36
26

38
76

51
79

61
56

63
64

65
03

N
um

be
r

of
C

ra
sh

es
/R

eb
oo

ts

#Crashes
#Restarts

ZooKeeper Bugs Hadoop MapReduce Bugs Cassandra Bugs

Figure 5: “Deep” distributed concurrency bugs. The x-axis lists bug numbers and the y-axis represents the number of crashes and reboots to unearth deep
distributed concurrency bugs.

http://www.usenix.org

38  AU G U S T 20 1 5 VO L . 4 0, N O. 4 www.usenix.org

PROGRAMMING
What Bugs Live in the Cloud?

Performance Bugs
Another notorious type of bug are performance bugs, which can
cause a system to under-deliver the expected performance (e.g.,
a job takes 10x longer than usual). Conversation with several
cloud engineers reflects that performance stability is often more
important than performance optimization.

To dissect the root-cause anatomy of performance bugs, we per-
formed a deeper study of vital performance bugs in Hadoop [7].
We found that the root causes of performance bugs are complex
deployment scenarios that the system failed to anticipate.
Table 2 shows a partial root-cause anatomy that we built. The
table shows some of the scenario types such as “Data Source
(DSR)” and specific conditions such as “some tasks read from the
same data node (DSR1).”

A performance bug typically appears in a specific scenario. For
example, we found cases of untriggered speculative execution
when the original task and the backup task read from the same
slow remote data node (which can be represented as the combi-
nation of DSR1 & FTY1 & FPL1 & DLC1 as described in Table 2)
or when all reducers must read from a mapper remotely and the
mapper is slow (JCH1 & FTY1 & FPL2). If one of the conditions is
not true, the performance bug might not surface.

These examples point to the fact that performance anomalies
are hard to find and reproduce. Scale-out systems make many
nondeterministic choices (e.g., task placement, data source
selection) that depend on deployment conditions. On top of that,
external conditions such as hardware faults can happen in dif-
ferent forms and places.

The challenge is clear: to unearth performance bugs, we need
to exercise the target system against many possible deployment
scenarios. Unfortunately, performance regression testing is
time-consuming and does not cover the complete scenarios.
What is missing is fast, pre-deployment detection of perfor-
mance bugs in distributed systems. One viable approach is the
use of formal modeling tools (with time simulation) such as
Colored Petri Nets (CPN) and TLA+/PlusCal. To be practical,

the next big challenge is to automatically generate formal models
that truly reflect the original systems code [7].

Other Use Cases of CbsDB
CbsDB [1] contains a set of rich classifications that can be corre-
lated in various different ways which can enable a wide range of
powerful bug analyses. For example, CbsDB can provide answers
to questions such as: Which software bug types take the longest/
shortest time to resolve (TTR) or have the most/least number
of responses? What is the distribution of software bug types in
the top 1% (or 10%) of most responded to (or longest-to-resolve)
issues? Which components have significant counts of issues?
How does bug count evolve over time? More details regarding
CbsDB use cases can be found in our full paper [4].

Conclusion
At scale, hardware is not a single point of failure, but software
is. A software bug can cause catastrophic failures including
downtimes, corruption, and data loss. Our study brings new
insights on some of the most intricate bugs in scale-out systems
that we hope can be beneficial for the cloud research community
in diverse areas as well as to scale-out system developers.

Acknowledgments
This material is based upon work supported by the NSF (grant
nos. CCF-1321958, CCF-1336580, and CNS-1350499) as well
as generous support from NetApp. We also thank other members
of UCARE and SCORE labs, Tiratat Patana-anake, Jeffry Adity-
atama, Kurnia Eliazar, Anang Satria, and Vincentius Martin for
their contributions in this project.

Scenario Type Possible Conditions

DLC: Data Locality (1) Read from remote disk, (2) read from local disk,…

DSR: Data Source (1) Some tasks read from same data node, (2) all tasks read from different data nodes,…

JCH: Job Characteristic MapReduce is (1) many-to-all, (2) all-to-many, (3) large fan-in, (4) large fan-out,…

FTY: Fault Type (1) Slow node/NIC, (2) node disconnect/packet drop, (3) disk error/out of space, (4) rack switch,…

FPL: Fault Placement Slow down fault injection at the (1) source data node, (2) mapper, (3) reducer,…

FGR: Fault Granularity (1) Single disk/NIC, (2) single node (dead node), (3) entire rack (network switch),…

FTM: Fault Timing (1) During shuffling, (2) during 95% of task completion,…

Table 2: A partial anatomy of scenario root causes of performance bugs

http://www.usenix.org

www.usenix.org AU G U S T 20 1 5 VO L . 4 0, N O. 4 39

PROGRAMMING
What Bugs Live in the Cloud?

References
[1] http://ucare.cs.uchicago.edu/projects/cbs/.

[2] http://ucare.cs.uchicago.edu/projects/samc/.

[3] Thanh Do, Mingzhe Hao, Tanakorn Leesatapornwongsa,
Tiratat Patana-anake, and Haryadi S. Gunawi, “Limplock:
Understanding the Impact of Limpware on Scale-Out Cloud
Systems,” in Proceedings of the 4th ACM Symposium on Cloud
Computing (SoCC ’13), 2013.

[4] Haryadi S. Gunawi, Mingzhe Hao, Tanakorn Leesataporn-
wongsa, Tiratat Patana-anake, Thanh Do, Jeffry Adityatama,
Kurnia J. Eliazar, Agung Laksono, Jeffrey F. Lukman, Vincen-
tius Martin, and Anang Satria, “What Bugs Live in the Cloud?
A Study of 3000+ Issues in Cloud Systems,” in Proceedings of
the 5th ACM Symposium on Cloud Computing (SoCC ’14) 2014:
http://dx.doi.org/10.1145/2670979.2670986.

[5] Tanakorn Leesatapornwongsa and Haryadi S. Gunawi,
“The Case for Drill-Ready Cloud Computing,” in Proceedings of
the 5th ACM Symposium on Cloud Computing (SoCC ’14), 2014.

[6] Tanakorn Leesatapornwongsa, Mingzhe Hao, Pallavi Joshi,
Jeffrey F. Lukman, and Haryadi S. Gunawi, “SAMC: Seman-
tic-Aware Model Checking for Fast Discovery of Deep Bugs
in Cloud Systems,” in Proceedings of the 11th Symposium on
 Operating Systems Design and Implementation (OSDI ’14), 2014.

[7] Riza O. Suminto, Agung Laksono, Anang D. Satria, Thanh
Do, and Haryadi S. Gunawi, “Towards Pre-Deployment Detec-
tion of Performance Failures in Cloud Distributed Systems,” in
Proceedings of the 7th USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud ’15), 2015.

XKCD

xkcd.com

http://www.usenix.org
http://ucare.cs.uchicago.edu/projects/cbs/
http://ucare.cs.uchicago.edu/projects/samc/
http://dx.doi.org/10.1145/2670979.2670986

40  AU G U S T 20 1 5 VO L . 4 0, N O. 4 www.usenix.org

HISTORY

1975–2015

Distributing the News
UUCP to UUNET

P E T E R H . S A L U S

If you were lucky enough to be on the ARPANET in the 1970s, you could
get mail and news (in the form of a topical mailing list). But in January
1976 there were still only 63 hosts, and you had to be one of the elite to

gain access. But soon there were methods to reach other sites. Like UNIX,
the software began in New Jersey. Let’s look at the next dozen years.

In 1976, Mike Lesk at Bell Labs came up with a program called UUCP—“UNIX to UNIX
copy.” UUCP enabled users to send mail, transfer files, and execute remote commands. Lesk
first called it a “scheme for better distribution” (Mini-Systems Newsletter, January 1977); but
only a month later it was referred to as UUCP. First designed to operate over 300 baud lines,
UUCP was finally published in February 1978.

UUCP was taken up widely and this led to a need for improvements. The next version was
written by Lesk and Dave Nowitz, with contributions by Greg Chesson, and appeared in
 Seventh Edition UNIX in October 1978.

Enter Usenet
In late 1979, the Seventh Edition was installed at the University of North Carolina at Chapel
Hill. Steve Bellovin—partly as an exercise in the new system and partly to fill an administra-
tive need—wrote a rudimentary news system as a UNIX shell file. It was very slow. Around
the same time, Tom Truscott and Bellovin were experimenting with a UUCP link between
UNC and Duke University (in Durham, NC). Truscott and Jim Ellis came up with the notion
of distributing news to other sites via the UUCP link, using Duke as the central hub. Remote
sites would reimburse Duke for the phone charges.

At the beginning of 1980 there were three sites: UNC, Duke University, and the Duke Medical
Center Department of Physiology. The setup was described by Ellis in a pamphlet distributed
at USENIX in Boulder, CO, at the end of January. An implementation of the A News software
(by Steve Daniels) was made available on the 1980 USENIX distribution tape at the 1980
summer meeting in Newark, DE. By then there were 15 sites. The explosion occurred when
the University of California joined.

The explosion was the direct responsibility of Armando Stettner and Bill Shannon of Digital
Equipment Corporation. Someone at the USENIX meeting complained about the telephone
bills run up by transcontinental calls. Armando and Bill said that if they could get a feed to
decvax in New Hampshire, they’d pick up the Berkeley phone bill. (Stettner subsequently
covered the news feeds to Europe, Japan, and Australia.)

Bellovin told me that the network was “called USENET, patterned upon USENIX… The hope
was that Usenet would someday become the official network of USENIX.” Within a year,
the net grew to over 100 sites and 25 articles per day. And so the system collapsed. Lesk had
never contemplated such uses of UUCP; Bellovin, Truscott, and Ellis never dreamt of such
popularity.

Bellovin had revised his code, rewriting it in C. This had been revised by Steve Daniels and
then Truscott, resulting in A News. In 1981, Mark Horton (a graduate student at UC Berke-
ley) and Matt Glickman (a high school student) rewrote A News into B News. Horton contin-

Peter H. Salus is the author of
A Quarter Century of UNIX
(1994), Casting the Net (1995),
and The Daemon, the Gnu and
the Penguin (2008). 

peter@pedant.com

http://www.usenix.org
mailto:peter@pedant.com

www.usenix.org AU G U S T 20 1 5 VO L . 4 0, N O. 4 41

HISTORY
Distributing the News: UUCP to UUNET

1975–2015

ued revising B News until 1984, when he produced version 2.10.1.
At that point, Rick Adams at the Center for Seismic Studies took
over coordination and maintenance, producing 2.10.2.

This added the provision for moderated groups; Rick told me:
“It was more like editing a magazine than moderating.” In June
1984, Mark Horton and Karen Summers-Horton produced
the “USENET GEOGRAPHIC MAP,” showing connections to
Australia, Hawaii, Canada (British Columbia, Alberta, Ontario,
 Quebec, and Newfoundland), and Europe (UK, Netherlands,
Norway, Sweden, Germany, Switzerland, France, and Austria).

In 1986 version 2.11 of B News was released, including modi-
fications and implementations by Rick, Spencer Thomas, Ray
Essick, Rob Kolstad, and others. And while there were later
releases (2.11.19 in 1994), Rick said: “It was dead in 1989.”

The mortal blow was NNTP—RFC 977 “Network News Transfer
Protocol,” by Brian Kantor (UC Berkeley) and Phil Lapsley (UC
San Diego), February 1986. Geoff Collyer and Henry Spencer (both
at the University of Toronto) released C News, a new alterna-
tive in 1987, announcing it at the January USENIX Conference
in Washington, DC. And while there is much more of interest
where news is concerned (e.g., Larry Wall’s rn, Rich Salz’s
 InterNetNews, and Geoff Huston’s ANU-NEWS (Australian
National University in Canberra)), I will drop this thread here.

Usenet in the Sky: Stargate
Even with DEC picking up a portion of the expense, sending/
receiving news produced vast telephone bills. At the summer
1984 USENIX Conference (Salt Lake City), Lauren Weinstein
gave a paper proposing a possible “technological solution to the
most pressing part of the problem, the cost of news transmission.
The idea is as follows: portions of the video signal on TV trans-
mission are not used for picture information, and can carry other
information, in particular, suitably encoded ASCII. The effective
bandwidth of this type of transmission could easily exceed 65
Kbps.” [Lou Katz, ;login: vol. 9, no. 6 (December 1984), 8–10]

Lauren succeeded in gaining support from a number of corpora-
tions and institutions. USENIX provided “support for incoming
phone lines at the transmitter site, a small microwave receiver
dish to test that mode of reception[,] and travel to the transmis-
sion site to set up the system.” [Ibid.] Bellcore provided modems;
Fortune Systems provided the uplink computer (a Fortune
XT30—a desktop machine that retailed for about $5000); and
Southern Satellite Systems of Atlanta supplied continuous use of
part of a scan line in the broadcast signal of WTBS.

The transmission ran at 1200 bps for several months. There was
a presentation about it at the Dallas USENIX in January 1985.
But once it was successfully demonstrated, there was little fur-
ther progress, and the USENIX Board of Directors, after a visit
to the site in a cornfield near Atlanta, terminated the funding.

By the mid-1980s, there were several commercial networks in
operation, but they were limited in service and generally quite
high in price. None was what we would think of as an ISP.

In the autumn of 1985, Rick Adams (still at seismo), spoke with
Debbie Scherrer, Vice President of USENIX, of a plan for a
centralized site, accessed via Tymnet by subscribers, supply-
ing Usenet access as well as ARPANET and UUCP. In an email
dated December 6, 1985, Debbie expressed interest in this.

The May/June 1986 issue of ;login: carried a “Request for UUCP
and/or Usenet Proposals.” Having funded Stargate and a one-
year network mapping project (Horton and Summers-Horton),
the Association was contemplating moving further.

Rick attended the October 1986 Board meeting in Monterey, CA,
where reaction was mixed, one director asking why folks would
pay for access that could be obtained free. But the Board agreed
to entertain a proposal. Rick (and Mike O’Dell) brought a brief
plan to the January 1987 (Washington, DC) meeting.

A majority of the USENIX Board liked the plan, but it really
wasn’t much of a business plan, and Rick and Mike were asked to
fill out the plan, with the participation of Board members John
Quarterman and Wally Wedel, and return.

By late March 1987 (in New Orleans), Rick was back with a full
plan, and the Board approved it enthusiastically. I was autho-
rized to spend up to $35,000 for an experimental period.

UUNET was born. “As people moved from universities and
corporations where they had email and Usenet access to jobs
where they had no access,” Rick told me, “a need developed for a
service that could provide email and Usenet access. UUNET was
created in response to that need.”

At the outset, UUNET ran on a Sequent B21 (16 processors): “the
Sequent was the size of a small truck,” Rick wrote me. In 1989,
he moved UUNET to new office space, and the following year he
turned it into a for-profit operation as UUNET Technologies.

When the word got out, subscriber demand far exceeded expec-
tations. For example, Rick and Mike had forecast 50 subscribers
by the end of summer. They topped 50 by mid-June 1987. Five
years later, they had several thousand customers. UUNET was
listed on NASDAQ and had its IPO in May 1995.

In 1991, UUNET participated in the founding of the Commercial
Internet Exchange Association, and in 1992, it co-created (with
Metropolitan Fiber Systems) MAE-East, for a time the world’s
busiest Internet exchange and center of the Internet.

http://www.usenix.org

42  AU G U S T 20 1 5 VO L . 4 0, N O. 4 www.usenix.org

HISTORY
Distributing the News: UUCP to UUNET

Rick wrote me: “Usenet was part of the service, but what really
hooked people was being able to send domain-based email over
UUCP. The ARPANET/NSFNET gateway was key: we were
gatewaying MCVAX running TCP/IP in Europe on a full
 commercial basis in November 1988 and speaking TCP/IP
with them over a 9600 bps leased line for many months before
NFS approved access (world’s longest SLIP connection that I
know of).”

More importantly, the “in-group” atmosphere of the ARPANET
had been broken. UUNET initiated commercial delivery of
Usenet and the Internet.

My thanks to Rick Adams, Lou Katz, and Mike O’Dell for their
comments on this article. Any remaining errors are mine.

At UCMS ’15, formerly the USENIX Configuration Management Summit, we bring together the
nascent container community to discuss the current and future of containers. We solicit presenta-
tions and discussions on a wide range of topics involving containers, but we particularly encour-
age presentations and workshops on real production experiences, techniques, and technologies.

UCMS ’15 will take place during LISA15, November 8–13, 2015. Want to participate? Submit a
proposal at www.usenix.org/ucms15.

www.usenix.org/ucms15

2015 USENIX Container Management
Summit (UCMS ’15)

SAVE THE DATE!

November 9, 2015 • Washington, D.C.

http://www.usenix.org
http://www.usenix.org/ucms15
http://www.usenix.org/ucms15

www.usenix.org AU G U S T 20 1 5 VO L . 4 0, N O. 4 43

1975–2015

HISTORY

UNIX News
Number 10, October 1976

Security Patch
The following patch to the “su” command should be installed
as soon as possible at all installations. The bug it fixes
allows an unprivileged user to become super-user under rare
circumstances.

 ed s2/su.c

 /bad pass/a

 goto error;

 .

 w

 q?

 cc –c –0 s2/su.c

 chmod 06711 a.out

 mv a.out /bin/su

Software Distribution
A second distribution from Chicago Circle will be prepared
during November. Those with items to submit should send
them immediately. Those who wish the distribution should
send magnetic tapes immediately.

John Lions’ point about the difficulty and expense of ship-
ping tapes overseas is well taken. While there may be some
problems vis-a-vis Bell with respect to their software, the
agreement does not preclude our having software distribution
center satellites overseas. Accordingly, we invite offers from
an installation in Great Britain to act as a center for Europe
and Israel and from an installation in Australia to service
that continent. The centers would receive submissions from
within their spheres of influence, submit a single tape to Chi-
cago and get a single tape in return.

University of New South Wales
From John Lions

On August 27th a group of more than 30 persons gathered at
the University of New South Wales for our first local Users
meeting.

David Morrison reported on the initial experience of the Uni-
versity of Newcastle with UNIX. They are currently heavily
committed to using Basic Under RSTS on a PDP 11/45, and
it was the quality of UNIX Basic which principally colored
their reaction. They will undoubtedly be happier after trying
the Harvard Software which was described to the meeting by
Peter Ivanov.

Ian Johnstone spent some time discussing the security of
UNIX. At the School of Electrical Engineering at the Univer-

sity of New South Wales the PDP 11 is run as an open shop staffed by
casual, volunteer student operators. It is almost impossible to set up
file access permissions in such a way that routine operations can be
carried out safely (e.g. killing recalcitrant programs before shut-down)
without leaving a loop-hole for the self-aggrandisement of users to
super-users. A number of other modifications have been found neces-
sary; groups have been disabled and “cron”, for example, as a willing
accomplice in crime, as been banished. However as long as the system
console is accessible the most determined users cannot be prevented
from patching the “suser” route directly. Setting the code for this rou-
tine into ROM would be a step in the right direction.

A UNSW implementation of Pascal “S” by John
O’Neill, a final year undergraduate, was dis-
cussed and the meeting diverted on for a short
while onto the subject of “Pascal” in general.

UNIX News, Number 10, was published in October 1976 by Professor Melvin
Ferentz of Brooklyn College of CUNY. We have included excerpts from that issue
and have reproduced the text as it appeared in the original, including any typo-
graphic errors. Note: We have not included the mailing list and other addresses
and telephone numbers that appeared in the original issue.

http://www.usenix.org

44  AU G U S T 20 1 5 VO L . 4 0, N O. 4 www.usenix.org

1975–2015

HISTORY
UNIX News

Most participants felt that the meeting was a success and
another meeting has been planned for February 18th, 1977. It
was agreed that there is a real need for cooperation between
UNIX users in view of the unconventional nature of UNIX
support.

Particular concern was expressed regarding the co-operative
acquisition of software from overseas. Because of the distances
involved this presents some difficulties and expense and it
would certainly be more convenient for us if one local UNIX
licensee, having acquired some item of software could distribute
it to other local licensees (subject of course to completion of any
required non-disclosure agreements production of DEC licenses,
etc.). We have already attempted to raise this matter with West-
ern Electric but so far have received no response.

Beware of icheck –s (or Change It)
From George Rolf, Katholieke Universiteit

I have been vaguely wondering for a while why everything I
wrote seemed so much slower than the commands that came
with the Unix system (version 6). Now I know why. Icheck –s will
rearrange the freelist of a file system in the order of ascending
block numbers, where mkfs initializes the freelist with con-
secutive entries 3 blocks apart on an RK disk, or 4 blocks on an
RP. After I dumped the system and restored it onto a fresh file
system I felt much happier.

I have also replaced the routine makefree() in icheck.c with the
code reproduced below, which I borrowed from mkfs.c. Note
that the change described in Unix Newsletter number 8 (August
1976) has been taken into account. Also note that this icheck –s
produces an optimized lay-out for an RF disk, which the original
mkfs does not. Our mkfs does of course.

I stumbled upon this discrepancy between mkfs and icheck
while doing some measurements to find out what an optimal lay-
out of the disk might be. I found myself reinventing the wheel.
The measurements were the following. I made an executable file
of 24 blocks (and one indirect block), and put it in various ways
on one cylinder of an RK disk, with the indirect block in an adja-
cent cylinder. Exactly the same lay-outs were tried out on the RF
disk (with 24 block “cylinders” instead of 8 blocks). I then timed
read commands of the whole file at once, as well as exec-s on the
file. For both devices the optimum is at a distance of 2 between
consecutive file blocks. With both tests running at the same
time, a distance of 3 blocks on both devices gave the best results,
so those were the numbers I took.

I don’t know why the Unix system as it is distributed doesn’t have
a special lay-out for the RF disk. At our installation, we have put
the /tmp files on the RF disk, which appears to be a good idea.
We have to keep the file system on the second RK drive inter-
changeable, and our RF disk has only one platter, which makes it
a bit inconvenient to put the root directory there.

The only relevant measurements for this sort of questions are
of course those obtained from heavy standard loads, or bench
marks simulating such a load. We don’t have either. Further-
more, the situation might be altogether different with differ-
ent or more controllers, or for example with a 60 cycle RF disk,
which runs 20% faster than ours. If anyone has any further
ideas or other experimental results, I will be very anxious to
learn of them.

in routine check():

change makefree(); to makefree(file);

freebl(i)

int i:

{

 if ((baab[i>>4)&07777] & (1<<(i&017))) == 0)

 free(i);

}

makefree(file)

char *file;

{

 register char *i, *j;

 char *n, *m;

 char *high, *low;

 static char adr[100], flag[100];

 for(j = file; j[0]; j++)

 if(j[0] == ‘r’)

 switch (j[1]){

 case ‘k’:

 n = 24;

 m = 3;

 break;

 case ‘p’:

 n = 10;

 m = 4;

 break;

 case ‘f’:

 n = 8;

 m = 3;

 break;

 default: ;

 }

http://www.usenix.org

www.usenix.org AU G U S T 20 1 5 VO L . 4 0, N O. 4 45

1975–2015

HISTORY
UNIX News

 if (n > 100) n = 100;

 for(i = 0; i < n; i++)

 flag[i] = 0;

 j = 0;

 for(i = 0; i < n; i++) {

 while (flag[j])

 j = (j + 1) % n;

 adr[i] = j;

 flag[j]++;

 j = (j + n) % n;

 }

 sblock.s_nfree = 0;

 sblock.s_ninode = 0;

 sblock.s_flock = 0;

 sblock.s_ilock = 0;

 sblock.s_faod = 0;

 high = sblock.s_fsize - 1;

 low = sblock.s_isize + 2;

 free(0);

 for(i = high; lrem(0, i+1, n); i--) {

 if (i < low)

 break;

 freebl(i);

 }

 for(; i >= low + n-1; i =- n)

 for (j = 0; j < n; j++)

 freebl(i-adr[j]);

 for(; i >= low; i--)

 freebl(i);

 bwrite(1, &sblock);

 close(fi);

 sync();

 return;

}

Southern Illinois University at Carbondale
From Ray Kohring

Our department has been receiving the UNIX News since this
Spring (issue #5 was the first one we received). What we have
found most useful are the patches to the software which have
been printed. In this light we would like to know if it would be
possible to get any back issues that we missed. Any of them
would be appreciated.

Our department owns a CAL DATA 135 which is emulating a
PDP 11/40 on which we are running UNIX. In General, UNIX
has ran well on our setup (exluding finding a missing wire on the
MMU), but there are a couple of things which I felt were worth
mentioning.

The first has to do with what happens when the user’s stack-
pointer is odd (that is not even, as opposed to unusual). What
happens is the CPU goes through the stack error routine (specifi-
cally, red-stack limit) upon a buss-error, which clears the kernel

stack-pointer (even though it was a user-mode error). This locks
UNIX into a very tight loop (about 8 instructions long) which is
retrapping on every attempt to stack something. I cured this by
adding the code on the next page to m40.s. I haven’t been able to
determine if this happens on DEC CPUs also, but an easy check
would be to run

 dec sp

 mov $1,-(sp)

and see if it loops.

The second problem is unique to CAL DATA systems with the
micro-programming option. Accidently executing op-codes 7-17
(octal) causes all sorts of wonderous things to happen, since
these are the spare op-codes (including EFM). The easy (?)
cure is to load the appropriate ACM locations with a branch to
the illegal instruction trap routine and enable it to replace the
second page of control memory. A second alternative is to load
routines to do common tasks, such as csav and cret, and modify
the c-compiler to use those op-codes. One of our people (Carl
Ebeling) has been working on this idea so if anybody wants to try
it we could send you what he has done so far.

Note: This patch tests the stack pointer (kernel) to see if it is
zero. If it is, it resets it to the top of the user block (where it prob-
ably should be) and copies the ps-pc from 0 to the correct stack
locations. If it really is a kernel stack error, there will still be a
panic.

ed m40.s

/trap:/

+

a

 tst sp /is the stack pointer zero?

 bne lf /no, we’re still safe

 clr 177774 /stack limit register, the ps

 /was put here by accident

 mov $142000,sp /restore the sp

 mov 2,-(sp) /restack ps

 mov 0,-(sp) /restack pc

 clz|clc /reset cc’s to show buss-error

 mov ps,-4(sp) /redo properly

1:

.

http://www.usenix.org

46  AU G U S T 20 1 5 VO L . 4 0, N O. 4 www.usenix.org

1975–2015

HISTORY
UNIX News

The Pennsylvania State University
From Edward C. Horvath

I was directed to you by the UNIX documentation as a contact
point for the UNIX user’s group. If that is no longer appropriate,
please forward this letter to whomever now fills that role.

The Computer Science Department here at Penn State recently
acquired a PDP-11/34 and the UNIX system, and we are inter-
ested in hearing of and/or participating in the activities of the
UNIX user’s group.

Our system consists of an 11/34 (which includes memory man-
agement but no stack limit option), 96Kb core, a dual-drive RK11,
RX11 floppy disk, and an 8-line DZ11 mux. This is a one-cabinet
configuration which prices out (after haggling) at around $36K
(circa June 1976). We are currently running only two typewrit-
ers (console and one DL11) and are in the process of constructing
drivers for the RX and DZ. We soon expect to be running 6-8
users, and to expand core to 128K. We also have a 120 1/m Potter
printer which we hope to interface to the DZ.

I should mention that UNIX (specifically rk unix) will not boot
directly on the 11/34; there are minor programming differences
between the 11/40 and the 11/34, none of which seem to surface
when the system runs. However, the 11/34 comes standard with
a blank front panel—an on/off switch, but no switch register.
This drives the system into an infinite bus timeout trap loop
when it tries to print the ‘mem=’ message. We were able to over-
come this by laboriously hand-patching the system, a process
which I will be happy to coach any new user on; I have attached a
copy of the procedure to this letter for your files. We have not, to
date, had any other problems with incompatibilities, but I will so
inform you if they arise.

First, you can register us in the UNIX user’s group.

Second, you can put us in contact with any other users who
have constructed/are constructing drivers for the RX or DZ.
We would be happy to share ideas and/or software; if we are
the first and only developers for either device we will be happy
to contribute any software we develop when it becomes avail-
able. Please inform me of any format restrictions or distribution
clearing houses.

For your information, I have already informed Ken Thompson at
BTL of the switch register problem; I’m not sure what steps he
will take.

Thank you for your assistance; I look forward to your
correspondence.

Bringing up UNIX (specifically rkunix) on the PDP-
11/34
This document is for users who wish to run UNIX (6th Ed.) on
the standard 11/34—i.e., with the standard front panel. If you
have a switch register, the procedure described in ‘setting up
UNIX’ should work just fine. In any case, this document is a
supplement to ‘setting up UNIX’.

First, generate the binary code RK05 pack. We cannot vouch for
the procedures in ‘setting up UNIX’ for doing this from magtape,
as we received the system already on RK05’s.

Next, you have to locate the first block of ‘rkunix’ on the pack.
‘rkunix’ is a son of ‘root’, which is the root of the directory tree.
(See File System (V) in the UNIX Programmer’s Manual). ‘rku-
nix’ is described by i node 193 (base 10), which is the 6th i node
of the 13th block of the i node list, which starts at byte 240 (base
8) of logical block 16 (base 8) of the RK05 pack (magic number
21). Note that ‘rkunix’ is a large file, so addr 0 points not at the
first block of ‘rkunix’, but rather at the block of block pointers for
‘rkunix’. On our distribution pack, addr 0 is 2723 (base 8). This
converts to a ‘magic number’ for the RK11, namely 3703 (base 8),
which may be deposited in the RKDA register to read the block
of pointers. Again, on our distribution pack, the first pointer
has value 2675 (base 8), which has magic number 3645 (base
8). If your pack disagrees in any way, calculate your own magic
numbers! (Use the RK11 description of RKDA in the peripherals
manual).

By the way, for magic number xxxx, the following console emula-
tor sequence reads the desired block into core locations 0:777.

 L 177406

 D 177400

 D 0

 D xxxx

 L 177404

 D 5

Once you have the first block of rkunix loaded in this way, per-
form the following sequence:

 L 346

 D 0

 L 277406

 D 177400

 D 0

 D xxxx (magic number for first block)

 L 177404

 D 3

The above places a halt instruction in the trap sequence, and
writes the block back out.

Steps thus far need only be done once; what follows is the new
boot sequence:

http://www.usenix.org

www.usenix.org AU G U S T 20 1 5 VO L . 4 0, N O. 4 47

1975–2015

HISTORY
UNIX News

1. Type OK, advance the paper, and hit return. The system should
respond with 0.

2. Type ‘rkunix’ and hit return. The system will flutter a bit, then
halt.

3. Hit the boot switch to bring in the emulator, and enter the fol-
lowing sequence:

 L 176

 D 100000

 L 326

 D 5767

 L 12340

 D 176

 L 41236

 D 176

 L 0

 S

The above sequence modifies the system to look at location 176
(base 8) for the contents of the switch register, loads 176 with
100000 (for a single user system, L 176 should be followed by D
173030), repairs the damage we did to the version on the pack,
and finally restarts. The sequence described in ‘setting up
UNIX’ now applies.

All of the above nonsense can, of course, be obviated if you can
beg or etc. a couple of hours on a 40 or 45, or even get a ‘loaner’
front panel from your friendly DEC repairman, or, best of all,
already have a running UNIX system. In any case, to avoid fur-
ther heartache, you’ll want to recompile the system to boot clean.
In addition to the steps indicated in /usr/sys/run (watch out for
ar!), you should:

Edit /usr/sys/param.h to change the value of SW to 0176

Make sure /usr/sys/ken/prf.c and user/sys/ken/sys4.c get
recompiled and replaced in /usr/sys/libl.

The new system should come up clean (ours did!).

http://www.usenix.org

48  AU G U S T 20 1 5 VO L . 4 0, N O. 4 www.usenix.org

COLUMNS
In the previous installment [1], we dived into some of the low-level details

and problems related to Python threads. As a brief recap, although
Python threads are real system threads, there is a global interpreter lock

(GIL) that restricts their execution to a single CPU core. Moreover, if your
program performs any kind of CPU-intensive processing, the GIL can impose
a severe degradation in the responsiveness of other threads that happen to be
performing I/O.

In response to some of the perceived limitations of threads, some Python programmers have
turned to alternative approaches based on coroutines or green threads. In a nutshell, these
approaches rely on implementing concurrency entirely in user space without relying on
threads as provided by the operating system. Of course, how one actually goes about doing
that often remains a big mystery.

In this installment, we’re going to dive under the covers of Python concurrency based on
coroutines (or generators). Rather than focusing on the usage of particular libraries, the
main goal is to gain a deeper understanding of the underlying implementation to see how it
works, performance characteristics, and limitations. As with the previous installment, the
examples presented are meant to be tried as experiments. There’s a pretty good chance that
some of the code presented will bend your brain—it’s not often that you get to write a small
operating system in the space of an article. Also, certain parts of the code require Python 3.
So, with that in mind, let’s start!

Threads, What Are They Good For?
Previously, we created a simple multithreaded network service that computed Fibonacci
numbers. Here was the code:

server.py

from socket import *

from threading import Thread

def tcp_server(address, handler):

 sock = socket(AF_INET, SOCK_STREAM)

 sock.setsockopt(SOL_SOCKET, SO_REUSEADDR, 1)

 sock.bind(address)

 sock.listen(5)

 while True:

 client, addr = sock.accept()

 t = Thread(target=handler, args=(client, addr))

 t.daemon=True

 t.start()

David Beazley is an open
source developer and author of
the Python Essential Reference
(4th Edition, Addison-Wesley,
2009). He is also known as the

creator of Swig (www.swig.org) and Python
Lex-Yacc (www.dabeaz.com/ply.html). Beazley
is based in Chicago, where he also teaches a
variety of Python courses. dave@dabeaz.com

A Tale of Two Concurrencies (Part 2)
D A V I D B E A Z L E Y

http://www.usenix.org
http://www.swig.org
http://www.dabeaz.com/ply.html
mailto:dave@dabeaz.com

www.usenix.org AU G U S T 20 1 5 VO L . 4 0, N O. 4 49

COLUMNS
A Tale of Two Concurrencies (Part 2)

def fib(n):

 if n <= 2:

 return 1

 else:

 return fib(n-1) + fib(n-2)

def fib_handler(client, address):

 print(‘Connection from’, address)

 while True:

 data = client.recv(1000)

 if not data:

 break

 result = fib(int(data))

 client.send(str(result).encode(‘ascii’)+b’\n’)

 print(‘Connection closed’)

 client.close()

if __name__ == ‘__main__’:

 tcp_server((‘’,25000), fib_handler)

When you run the server, you can connect any number of con-
current clients using nc or telnet, type numbers as input, and get
a Fibonacci number returned as a result. For example:

bash % nc 127.0.0.1 25000

10

55

20

6765

If you carefully study this code and think about the role of
threads, their primary utility is in handling code that blocks. For
example, consider operations such as sock.accept() and client.

recv(). Both of those operations stop progress of the currently
executing thread until incoming data is available. That’s not a
problem, though, when each client is handled by its own thread.
If a thread decides to block, the other threads are unaffected and
can continue to run. Basically, you just don’t have to worry about
it, because all of the underlying details of blocking, awaking,
and so forth are handled by the operating system and associated
thread libraries.

If threads aren’t going to be used, then you have to devise some
kind of solution that addresses the blocking problem so that mul-
tiple clients can concurrently operate. That is the main problem
that needs to be addressed.

Enter Generator Functions
In order to implement blocking, you have to figure out some
way to temporarily suspend and later resume the execution of a
Python function. As it turns out, Python provides a special kind
of function that can be used in exactly this way—a generator
function. Generator functions are most commonly used to drive
iteration. For example, here is a simple generator function:

def countdown(n):

 while n > 0:

 yield n

 n -= 1

Normally, this function would be used to feed a for- loop like
this:

>>> for x in countdown(5):

... print(x)

...

5

4

3

2

1

>>>

Under the covers, the yield statement emits values to be con-
sumed by the iteration loop. However, it also causes the generator
function to temporarily suspend itself. Here is a low-level view of
the mechanics involved.

>>> c = countdown(5)

>>> next(c) # Run to the yield

5

>>> next(c)

4

>>> next(c)

3

...

>>> next(c)

1

>>> next(c)

Traceback (most recent call last):

 File “<stdin>”, line 1, in <module>

StopIteration

>>>

On each next() call, the function runs to the yield, emits a value,
and stops. A StopIteration exception is raised when the func-
tion terminates. The fact that yield causes a function to stop
is interesting—that’s exactly the behavior you need to handle
blocking. Perhaps it can be used to do more than simple iteration.

Generators as Tasks
Rather than thinking of generator functions as simply imple-
menting iteration, you can alternatively view them as more
generally implementing a task (note: when used in this way,
generators are typically called “coroutines,” although that term
seems to be applied rather loosely in the Python community). If
you make a task queue and task scheduler, you can make genera-
tors or coroutines look a lot like threads. For example, here’s an
experiment you can try using the above generator function:

http://www.usenix.org

50  AU G U S T 20 1 5 VO L . 4 0, N O. 4 www.usenix.org

COLUMNS
A Tale of Two Concurrencies (Part 2)

from collections import deque

A task queue

tasks = deque()

Create some tasks

tasks.append(countdown(10))

tasks.append(countdown(20))

tasks.append(countdown(5))

Run the tasks

def run():

 while tasks:

 task = tasks.popleft()

 # Run to the yield

 try:

 x = next(task)

 print(x)

 tasks.append(task) # Reschedule

 except StopIteration:

 print(‘Task done’)

run()

In this code, multiple invocations of the countdown() generator
are being driven by a simple round-robin scheduler. The output
will appear something like this if you run it:

10

20

5

9

19

4

8

18

3

7

17

2

...

That’s interesting, but not very compelling since no one would
typically want to run a simple iteration pattern like the count-

down() function in this manner.

A much more interesting generator-based task might be a
rewritten version of the fib_handler() function from our server.
For example:

def fib_handler(client, address):

 print(‘Connection from’, address)

 while True:

 yield (‘recv’, client) # Added

 data = client.recv(1000)

 if not data:

 break

 result = fib(int(data))

 yield (‘send’, client) # Added

 client.send(str(result).encode(‘ascii’)+b’\n’)

 print(‘Connection closed’)

 client.close()

In this new version, yield statements are placed immediately
before each socket operation that might block. Each yield indi-
cates both a reason for blocking (‘recv’ or ‘send’) and a resource
(the socket client) on which blocking might occur.

With the interactive interpreter, let’s see how to drive it. First,
create a socket and wait for a connection:

>>> from socket import *

>>> sock = socket(AF_INET, SOCK_STREAM)

>>> sock.bind((‘’, 25000))

>>> sock.listen(1)

>>> client, addr = sock.accept()

Next, establish a connection using a command such as nc local-

host 25000 at the shell. Once you’ve done this, try these steps:

>>> task = fib_handler(client, addr)

>>> task

<generator object fib_handler at 0x10a7c53b8>

>>> reason, resource = next(task)

Connection from (‘127.0.0.1’, 52474)

>>> reason

‘recv’

>>> resource

<socket.socket fd=4, family=AddressFamily.AF_INET,

type=SocketKind.SOCK_STREAM, proto=0,

laddr=(‘127.0.0.1’, 25000), raddr=(‘127.0.0.1’, 52474)>

>>>

If you carefully study this output, you’ll see that the handler task
ran to the first yield statement and is now suspended. Before
resuming the handler, you need to wait until input is available on
the supplied socket (resource). To do that, you can poll the socket
using a system call such as select() [2]. For example:

>>> from select import select

>>> select([resource], [], []) # Blocks until data available

Go back to the terminal with the connected nc session and type
an integer and return. This should force the above select() state-
ment to return. Once it’s returned, you can resume the generator
by typing the following:

http://www.usenix.org

www.usenix.org AU G U S T 20 1 5 VO L . 4 0, N O. 4 51

COLUMNS
A Tale of Two Concurrencies (Part 2)

>>> reason, resource = next(task)

>>> reason

‘send’

>>> resource

<socket.socket fd=4, family=AddressFamily.AF_INET,

type=SocketKind.SOCK_STREAM, proto=0,

laddr=(‘127.0.0.1’, 25000), raddr=(‘127.0.0.1’, 52474)>

>>>

Now you see that the task has advanced to the next yield state-
ment. Use the select() statement again to see if it’s safe to
proceed with sending.

>>> select([], [resource], [])

>>> reason, resource = next(task)

>>>

In this example, you are using next() to drive the generator task
forward to the next yield statement. The select() call is polling
for I/O and is being used to know when it is safe to resume the
generator.

A Generator-Based Task Scheduler
Putting the pieces of the last section together, you can make a
small generator-based task scheduler like this:

from socket import *

from collections import deque

from select import select

tasks = deque()

recv_wait = {} # sockets -> tasks waiting to receive

send_wait = {} # sockets -> tasks waiting to send

def run():

 while any([tasks, recv_wait, send_wait]):

 while not tasks:

 can_read, can_send, _ = select(recv_wait, send_wait, [])

 for s in can_read:

 tasks.append(recv_wait.pop(s))

 for s in can_send:

 tasks.append(send_wait.pop(s))

 task = tasks.popleft()

 try:

 reason, resource = next(task)

 if reason == ‘recv’:

 recv_wait[resource] = task

 elif reason == ‘send’:

 send_wait[resource] = task

 else:

 raise RuntimeError(‘Bad reason: %s’ % reason)

 except StopIteration:

 print(‘Task done’)

The scheduler is essentially a small operating system. There
is a queue of ready-to-run tasks (tasks) and two waiting areas
for tasks that need to perform I/O (recv_wait and send_wait).
The core of the scheduler takes a ready-to-run task and runs
it to the next yield statement, which acts as a kind of “trap” or
“system call.” Based on the result of the yield, the task is placed
into one of the I/O holding areas. If there are no tasks ready to
run, a select call is made to wait for I/O and place a previously
suspended task back onto the task queue.

To use this scheduler, you take your previous thread-based code
and simply instrument it with yield calls. For example:

def tcp_server(address, handler):

 sock = socket(AF_INET, SOCK_STREAM)

 sock.setsockopt(SOL_SOCKET, SO_REUSEADDR, 1)

 sock.bind(address)

 sock.listen(5)

 while True:

 yield ‘recv’, sock

 client, addr = sock.accept()

 # Create a new handler task and add to the task queue

 tasks.append(handler(client, addr))

def fib(n):

 if n <= 2:

 return 1

 else:

 return fib(n-1) + fib(n-2)

def fib_handler(client, address):

 print(‘Connection from’, address)

 while True:

 yield ‘recv’, client

 data = client.recv(1000)

 if not data:

 break

 result = fib(int(data))

 yield ‘send’, client

 client.send(str(result).encode(‘ascii’)+b’\n’)

 print(‘Connection closed’)

 client.close()

if __name__ == ‘__main__’:

 tasks.append(tcp_server((‘’,25000), fib_handler))

 run()

This code will require a bit of study, but if you try it out, you’ll
find that it supports concurrent connections without the slight-
est hint of a thread—interesting indeed.

http://www.usenix.org

52  AU G U S T 20 1 5 VO L . 4 0, N O. 4 www.usenix.org

COLUMNS
A Tale of Two Concurrencies (Part 2)

Hiding Implementation Details
One complaint about the generator solution is the addition of the
extra yield statements. Not only do they introduce extra code,
they are somewhat low-level, requiring the user to know some
details about the underlying scheduling code. However, Python
3.3 introduced the ability to write generator-based subroutines
using the yield from statement [3]. You can use this to make a
wrapper around socket objects.

class GenSocket(object):

 def __init__(self, sock):

 self.sock = sock

 def accept(self):

 yield ‘recv’, self.sock

 client, addr = self.sock.accept()

 return GenSocket(client), addr

 def recv(self, maxbytes):

 yield ‘recv’, self.sock

 return self.sock.recv(maxbytes)

 def send(self, data):

 yield ‘send’, self.sock

 return self.sock.send(data)

 def __getattr__(self, name):

 return getattr(self.sock, name)

This wrapper class merely combines the appropriate yield state-
ment with the subsequent socket operation. Here is a modified
server that uses the wrapper:

def tcp_server(address, handler):

 sock = GenSocket(socket(AF_INET, SOCK_STREAM))

 sock.setsockopt(SOL_SOCKET, SO_REUSEADDR, 1)

 sock.bind(address)

 sock.listen(5)

 while True:

 client, addr = yield from sock.accept()

 # Create a new handler task and add to the task queue

 tasks.append(handler(client, addr))

def fib_handler(client, address):

 print(‘Connection from’, address)

 while True:

 data = yield from client.recv(1000)

 if not data:

 break

 result = fib(int(data))

 yield from client.send(str(result).encode(‘ascii’)+b’\n’)

 print(‘Connection closed’)

 client.close()

In this version, blocking calls such as client.recv() are replaced
by calls of the form yield from client.recv(). Other than that,
the code looks virtually identical to the threaded version. More-
over, details of the underlying task scheduler are now hidden.
Again, keep in mind that no threads are in use.

Studying the Performance
Previously, two performance tests were performed. The first test
simply measured the performance of the server on CPU-bound
work:

perf1.py

from socket import *

import time

sock = socket(AF_INET, SOCK_STREAM)

sock.connect((‘127.0.0.1’, 25000))

while True:

 start = time.time()

 sock.send(b’30’)

 resp = sock.recv(100)

 end = time.time()

 print(end-start)

If you run this program, it will start producing a series of timing
measurements that are essentially the same as the threaded ver-
sion of code. If you run multiple clients, however, you’ll find that
the server is limited to using a single CPU core as before. There’s
no global interpreter lock in play, but since the entire server
executes within a single execution thread, there’s no way for it to
take advantage of multiple CPU cores either. That’s one impor-
tant lesson—using coroutines is not a technique that can be used
to make code scale to multiple processors.

The second performance test measured the performance on a
rapid-fire series of fast-running operations. Here it is again:

perf2.py

import threading

import time

from socket import *

sock = socket(AF_INET, SOCK_STREAM)

sock.connect((‘127.0.0.1’, 25000))

N = 0

def monitor():

 global N

 while True:

 time.sleep(1)

 print(N, ‘requests/second’)

 N = 0

http://www.usenix.org

www.usenix.org AU G U S T 20 1 5 VO L . 4 0, N O. 4 53

COLUMNS
A Tale of Two Concurrencies (Part 2)

t = threading.Thread(target=monitor)

t.daemon=True

t.start()

while True:

 sock.send(b’1’)

 resp = sock.recv(100)

 N += 1

If you run the program, you’ll see output similar to the following:

bash % python3 perf2.py

16121 requests/second

16245 requests/second

16179 requests/second

16305 requests/second

16210 requests/second

...

The initial request rate will be lower than that reported with
the examples involving threads in the previous article. There is
simply more overhead in managing the various generator func-
tions, invoking select(), and so forth. While the test is running,
computing a large Fibonacci number from a separate connection
produces:

bash % nc 127.0.0.1 25000

40

102334155 (takes a while to appear)

After you do this, the perf2.py will stop responding entirely. For
example:

16151 requests/second

16265 requests/second

0 requests/second

0 requests/second

0 requests/second

...

This will continue until the large request completes entirely.
Since there are no threads at work, there is no notion of preemp-
tion or parallelism. In fact, any operation that decides to block or
take a lot of compute cycles will block the progress of everything
else.

Back to Subprocesses
As it turns out, problems with performance and blocking have to
be solved in the same manner as with threads. Specifically, you
have to use threads or process pools to carry out such calcula-
tions outside of the task scheduler. For example, you might
rewrite the fib_handler() function using concurrent.futures
exactly as you did before with threads:

from concurrent.futures import ProcessPoolExecutor as Pool

NPROCS = 4

pool = Pool(NPROCS)

def fib_handler(client, address):

 print(‘Connection from’, address)

 while True:

 data = yield client.recv(1000)

 if not data:

 break

 future = pool.submit(fib, int(data))

 result = future.result()

 yield from client.send(str(result).encode(‘ascii’)+b’\n’)

 print(‘Connection closed’)

 client.close()

...

The only catch is that even if you make this change, you’ll find
that it still doesn’t work. The problem here is that the future.

result() operation blocks, waiting for the result to come back.
By blocking, it stalls the entire task scheduler. In fact, this will
happen for any operation at all that might block (e.g., resolving a
domain name, accessing a database, etc.).

Generators: It’s All In
In order for a generator-based solution to work, every blocking
operation has to be written to work with the task loop. In the pre-
vious example, attempts to use a process pool are unsuccessful
since calls to obtain the result block. To make it work, you need
to write additional supporting code to turn blocking operations
into something that can yield to the task loop. The following code
gives an idea of how you might do it.

The first step is to write a wrapper around the Future object’s
result() method to make it use yield. For example:

class GenFuture(object):

 def __init__(self, future):

 self.future = future

 def result(self):

 yield ‘future’, self.future

 return self.future.result()

 def __getattr__(self, name):

 return getattr(self.future, name)

Next, you might create a wrapper around pools to adjust the out-
put of the pool.submit() to return a GenFuture object:

http://www.usenix.org

54  AU G U S T 20 1 5 VO L . 4 0, N O. 4 www.usenix.org

COLUMNS
A Tale of Two Concurrencies (Part 2)

class GenPool(object):

 def __init__(self, pool):

 self.pool = pool

 def submit(self, func, *args, **kwargs):

 f = self.pool.submit(func, *args, **kwargs)

 return GenFuture(f)

 def __getattr__(self, name):

 return getattr(self.pool, name)

The main goal of these classes is to preserve the programming
interface of the blocking code. In fact, you will only make a slight
change to the fib_handler() code as shown here:

from concurrent.futures import ProcessPoolExecutor as Pool

NPROCS = 4

pool = GenPool(Pool(NPROCS)) # Note: Use GenPool

def fib_handler(client, address):

 print(‘Connection from’, address)

 while True:

 data = yield client.recv(1000)

 if not data:

 break

 future = pool.submit(fib, int(data))

 result = yield from future.result() # Note yield from

 yield from client.send(str(result).encode(‘ascii’)+b’\n’)

 print(‘Connection closed’)

 client.close()

...

Carefully observe how all blocking operations are now pre-
ceded by a yield from declaration. The only remaining task is to
modify the task scheduler to support futures. Here is that code:

from socket import socketpair

tasks = deque()

recv_wait = {}

send_wait = {}

future_wait = {}

Callback triggered on future completion

def _future_callback(future):

 tasks.append(future_wait.pop(future))

 _loop_wake()

Sockets to allow waking of the I/O loop

_loop_notify_socket, _loop_wait_socket = socketpair()

Function to wake the task loop when blocked on select()

def _loop_wake():

 _loop_notify_socket.send(b’x’)

Dummy task that allows select() to wake

def _loop_sleeper():

 while True:

 yield ‘recv’, _loop_wait_socket

 _loop_wait_socket.recv(1000)

tasks.append(_loop_sleeper())

def run():

 while any([tasks, recv_wait, send_wait, future_wait]):

 while not tasks:

 can_read, can_send, _ = select(recv_wait, send_wait, [])

 for s in can_read:

 tasks.append(recv_wait.pop(s))

 for s in can_send:

 tasks.append(send_wait.pop(s))

 task = tasks.popleft()

 try:

 reason, resource = next(task)

 if reason == ‘recv’:

 recv_wait[resource] = task

 elif reason == ‘send’:

 send_wait[resource] = task

 elif reason == ‘future’:

 future_wait[resource] = task

 resource.add_done_callback(_future_callback)

 else:

 raise RuntimeError(‘Bad reason: %s’ % reason)

 except StopIteration:

 print(‘Task done’)

Whew! There are a lot of moving parts, but the general idea is
as follows. For futures, the task is placed into a waiting area as
before (future_wait). A callback function (_future_callback)
is then attached to the future to be triggered upon completion.
When results return, the callback function puts the task back
onto the tasks queue. A byte of I/O is then written to a spe-
cial loopback socket (_loop_notify_socket). A separate task
(_loop_sleeper) constantly monitors this socket and wakes to
read the byte. (The main purpose of this special task is really
just to get the task loop to wake from the select() call to allow
ready tasks to run again.)

http://www.usenix.org

www.usenix.org AU G U S T 20 1 5 VO L . 4 0, N O. 4 55

COLUMNS
A Tale of Two Concurrencies (Part 2)

This Is Crazy (But Most Things Are When You
Think About It)
Needless to say, if you’re going to abandon threads for concur-
rency, you’re going to have to do more work to make it work. If
you get down to it, the code involving generators is actually a lot
like a small user-level operating system, with all of the underly-
ing task scheduling, I/O polling, and so forth. At first glance, the
whole approach might seem crazy. However, keep in mind that it
would rarely be necessary to write such code yourself. Instead, you
would use an existing library such as the new asyncio module [4].

Even if you use a library, you still have to know what you’re
doing. Specifically, you need to be fully aware of places where
your code might block and stall the task scheduler. Coroutines
also do not free you from limitations such as Python’s GIL—you
should still be prepared to execute work in thread or process
pools as appropriate.

At this point, you might be seeking some kind of sage advice
on how to proceed with Python concurrency. Should you use
threads? Should you use coroutines? Unfortunately, I can’t offer
anything more than it depends a lot on the problem that you
are trying to solve. Python provides a wide variety of tools for
addressing the concurrency problem. All of those tools have vari-
ous tradeoffs and limitations. As such, anyone expecting a kind
of “magic” solution that solves every possible problem will likely
be disappointed. Again, some thinking is required—in the end, it
really helps to understand what you’re doing and how things work.

Postscript
The code examples in this article were the foundation of a PyCon
2015 talk I gave on concurrency. If you’re interested in seeing the
code work with a live coding demonstration, the talk video can
be found online [5].

References
[1] D. Beazley, “A Tale of Two Concurrencies (Part 1),” ;login:,
vol. 40, no. 3, June 2015: https://www.usenix.org/publications/
login/june15/beazley.

[2] “select—Waiting for I/O Completion”: https://docs.python
.org/3/library/select.html (select module).

[3] “PEP 380: Syntax for Delegating to a Subgenerator”:
https://www.python.org/dev/peps/pep-0380/.

[4] “asyncio—Asynchronous I/O, event loop, coroutines and
tasks”: https://docs.python.org/3/library/asyncio.html
(asyncio module).

[5] PyCon 2015 presentation on concurrency: http://pyvideo
.org/video/3432/python-concurrency-from-the-ground-up
-live.

http://www.usenix.org
https://www.usenix.org/publications/
https://docs.python
https://www.python.org/dev/peps/pep-0380/
https://docs.python.org/3/library/asyncio.html
http://pyvideo

56  AU G U S T 20 1 5 VO L . 4 0, N O. 4 www.usenix.org

COLUMNS

Practical Perl Tools
Parallel Asynchronicity, Part 2

D A V I D N . B L A N K - E D E L M A N

W elcome back for Part 2 of this mini-series on modern methods
for doing multiple things at once in Perl. In the first part (which I
highly recommend that you read first before reading this sequel),

we talked about some of the simpler methods for multi-tasking like the use
of fork() and Parallel::ForkManager. We had just begun to explore using the
Coro module as the basis for using threads in Perl (since the native stuff is so
ucky) when we ran out of time. Let’s pick up the story roughly where we left it.

Coro
As a quick reminder, Coro offers an implementation of coroutines that we are going to use as
just a pleasant implementation of cooperative threading (see the previous column for more
picayune details around the definition of a coroutine). By cooperative, we mean that each
thread gets queued up to run, but can only do so after another thread has explicitly signaled
that it is ready to cede its time in the interpreter. Thus, you get code that looks a little like this:

 use Coro;

 async { print “1\n”; cede;};

 async { print “2\n”; cede;};

 async { print “3\n”; cede;};

 cede;

The script runs the main thread, which queues up three different threads and then cedes
control of the interpreter to the first queued thread. It cedes control, so the second thread
runs and so on. In this example, we don’t technically need to write “cede;” at the end of each
definition (since each queued thread will cede control simply by exiting), but it is a good habit
to get into. The one place we definitely do need to explicitly write “cede;” is at the end of the
script. If we didn’t cede control at the end of the script, nothing would be printed because the
main thread would have exited without realizing it should cede control to anything else.

We can do some more interesting things with this model, but before we do, it would probably
be useful to understand how one goes about debugging a Coro-based program. When debug-
ging a program like this, it would be a supremely handy thing to have information about the
current state of the program that could tell us just what thread is running and what threads
are queued up to run.

Coro ships with a debugger module that does all of this and more. There are two ways to
make use of it: a non-interactive way and an interactive way. The interactive way works when
used with an event loop-based Coro program like those you might be able to write after read-
ing the last section of the column. But since we are not there yet, let’s look at how to use the
non-interactive method. We add Coro::Debug to the module loads and then insert a line that
runs a debugger command. Let’s modify the dead simple code example from above like so:

David Blank-Edelman is
the Technical Evangelist at
Apcera (the comments/
views here are David’s alone
and do not represent Apcera/

Ericsson) . He has spent close to thirty years
in the systems administration/DevOps/SRE
field in large multiplatform environments
including Brandeis University, Cambridge
Technology Group, MIT Media Laboratory,
and Northeastern University. He is the author
of the O’Reilly Otter book Automating System
Administration with Perl and is a frequent invited
speaker/organizer for conferences in the field.
David is honored to serve on the USENIX
Board of Directors. He prefers to pronounce
Evangelist with a hard ‘g’.  
dnblankedelman@gmail.com

http://www.usenix.org
mailto:dnblankedelman@gmail.com

www.usenix.org AU G U S T 20 1 5 VO L . 4 0, N O. 4 57

COLUMNS
Practical Perl Tools: Parallel Asynchronicity, Part 2

 use Coro;

 use Coro::Debug;

 async { $Coro::current->{desc} = ‘numero uno’;

 print “1\n”;

 cede;

 };

 async { $Coro::current->{desc} = ‘numero dos’;

 print “2\n”;

 cede;

 };

 async { $Coro::current->{desc} = ‘numero tres’;

 print “3\n”;

 Coro::Debug::command ‘ps’;

 cede;

 };

 cede;

We’ve made two changes. First, we’ve added lines to each async
definition to give each one a description. You’ll see how this
comes in handy in just a moment. Second, in the third definition
we’ve inserted a debugger command. When we run this script, it
now prints something like:

 1

 2

This output shows us the status of all of the threads. Let me
cherry-pick the key parts of this output to describe.

The first line is the main thread. It shows that it is [R]eady to
run (the first letter of the SC column), has been scheduled 0
times (USES column) because the main thread doesn’t need
to be scheduled explicitly, and that it is currently running line
20 of the script (the file name is “t”). If we skip the threads that
are part of Coro, we come to the first one we defined (“numero
uno”—now you see why setting a description is useful). It too is
Ready to run (currently at line 9 in the program). “numero dos”
is in a similar state. The final thread we defined is shown as
r[U]nning (“R” was taken by Ready). All of our defined threads
are shown with a 1 in the USES column because they all have
been queued to run once.

More Advanced Coro
In the puny code samples we’ve seen so far, each of the threads
we’ve scheduled has been totally independent. Each printed a
number, a process that didn’t require any coordination (beyond
making sure to be good neighbors by ceding to each other). But
this isn’t the most common of situations. Many (most?) times
threads in a multi-threaded program are all trying to work
towards the same goal by taking on a portion of the work. In
those cases, threads have to work together collectively to make
sure they aren’t stepping on each other’s toes. To do so they need
a way to signal each other and maybe even pass on data in the
process.

Anyone who has done other multi-threaded programming knows
I’m headed towards talking about semaphores because that’s
the classic mechanism for intra-thread signaling. A semaphore
is a shared resource (feel free to think of it as a magic variable)
that the threads can read or attempt to change before they want
to take an action. If a thread’s attempt doesn’t succeed (because
another thread got there first), it can block and wait for the
semaphore to become ready. This seems a little abstract, so let
me show you some code from the Coro doc [1].

 use Coro;

 my $sem = new Coro::Semaphore 0; # a locked semaphore

 async {

 print “unlocking semaphore\n”;

 $sem->up;

 };

 print “trying to lock semaphore\n”;

 $sem->down;

 print “we got it!\n”;

In this case we are seeing a “counting” semaphore (where the
semaphore has a value that can be incremented and decremented)
being used as a binary semaphore (is it “locked” or “unlocked”).

To follow the flow of the program, the main thread defines a
semaphore with a value of 0, queues a separate thread (async{}),
prints a message, and then attempts to decrement the sema-
phore with a call to down(). Since the semaphore is already at 0,
the down() call blocks. In Coro, that blocking action cedes, and
so the first queued thread gets a chance to run. When it runs,
it increments the value of the semaphore and exits. Now that
the semaphore is no longer 0, the down() call succeeds and the
main thread continues to its end. This is a very basic semaphore
mechanism—Coro offers a number of different variations on it so
I recommend you look at the documentation.

Semaphores are a simple and effective way to keep threads from
getting in each other’s way, but what if they actively want to
collaborate? That would entail being able to share information.

PID SC RSS USES Description Where

140252207746400 RC 21k 0 [main::] [t:20]

140252207836704 N- 216 0 [coro manager] -

140252207836680 N- 216 0
[unblock_sub
scheduler]

-

140252207540736 R- 2060 1 numero uno [t:9]

140252208378256 N- 216 0
[AnyEvent idle
process]

-

140252208229104 RC 2600 1 numero dos [t:13]

140533218598712 UC 2600 1 numero tres [t:17] 3

http://www.usenix.org

58  AU G U S T 20 1 5 VO L . 4 0, N O. 4 www.usenix.org

COLUMNS
Practical Perl Tools: Parallel Asynchronicity, Part 2

There are lots of ways threads could pass information around
between them, but one built-in way Coro offers is through “chan-
nels.” Channels (in Coro) are described as message queues. Any
thread can add data to the queue, and any (other) thread can
consume that data.

The syntax and method for using channels is as straightforward
as you might hope. You create a new channel:

 my $channel = new Coro::Channel;

write to it (from any thread):

 $channel->put (‘somepieceofdata’);

and read from it (presumably from a different thread):

 my $data = $channel->get;

If there is nothing in the channel, that thread will block and cede
its time (just like a semaphore attempting to down() if the sema-
phore is already 0) until data does become available. Easy peasy.

Event-Based Programming
Let’s move on to the final paradigm of this series. Event-based
programming is yet another way to construct a system where a
program can behave as if it is doing several things at once. There
are a number of flavors of event-based systems, so let me give
a broad generalization of a description that covers what we’re
about to do.

With the event-based programming style we’re about to encoun-
ter, the basic idea is to specify events in the program’s life that
we care about and the code that should run when those events
take place. These events could be external to the program (some-
one clicked on a button in a GUI) or events internal to it (when a
piece of the program finishes). It is this latter case that interests
us most at the moment because it means we can launch a whole
bunch of actions—for example, a ton of DNS requests—and have
them run at the same time.

Unlike your usual program that states “do this, then do this, then
do this” (which means that thing #3 doesn’t happen until #1 and
#2 have completed), event-based programming lets you write
code that says “do all the things, let me know when any of them
finish, and I’ll handle them at that point.” Most of the time this is
described in terms of registering interest in certain events and
then starting an event loop that continuously checks if any of the
events have come to pass. If it finds this has happened, the code
associated with that event (a callback) is executed and then the
loop continues.

There are a whole slew of Perl modules for writing event-based
programs. Some of them are pure Perl; the more performant
ones wrap external event libraries like libevent and libev. For
this final section of the column, let’s use all of them. Well, maybe
most of them. But let’s use them at the same time.

More precisely, let’s use a module that calls itself “the DBI
of event-loop programming.” DBI, for those new to Perl, is a
standard way to program database-related tasks in Perl that lets
the programmer write database code that isn’t tied to a specific
database. AnyEvent aims to do this for event loops. It provides a
uniform way to write code that is event-loop independent. The
module will attempt to probe your system for the presence of
a relatively long list of other event-based modules (including
the performant ones). If it finds one, it will use it (without your
having to know the specifics for the one it finds). If it doesn’t
find one, it will use a Perl-based “backend” that will function
fine even without any of those modules being present. AnyEvent
has proven quite popular in the community and so now a whole
bunch of AnyEvent::Something modules are available for lots of
tasks you might commonly want to do in an event-based/high-
performance fashion.

Because event-based programming can get hairy quickly, we’re
only going to skim the top of AnyEvent to discuss the major ideas
and then show one example of one of the task-specific AnyEvent::*
modules. One other quick note before we move forward: AnyEvent
comes with two different interfaces, a method-based one (Any-
Event) and a function-based one (AE). For example, you can write:

 AnyEvent->timer (after => $seconds,

 interval => $intseconds,

 cb => ...);

or

 AE::timer $seconds, $intseconds, sub { ... };

The function-based one is more terse but is actually 5–6x
faster with some backends. For this column, I’m going to use
the method interface because I think it is easier for people not
familiar with AnyEvent to read. When you write your own code
and become comfortable with the arguments being passed to the
methods, I encourage you to consider using AE instead so you
can gain the performance increases.

The first concept central to any AnyEvent code is the “watcher.”
AnyEvent provides a set of different kinds of watchers including:

◆◆ I/O—when a file handle is ready to be read/written

◆◆ time—when a certain amount of time has elapsed

◆◆ signal—when we have received a certain signal

◆◆ child—when a child process changed state (completed)

◆◆ idle—when nothing else is happening

Let’s look at a trivial AnyEvent code sample. It uses a time
watcher because people can intuitively understand the idea of
time events taking place (e.g., “Tell me when ten seconds have
elapsed” or “Every two seconds, do the following…”). Here’s a
sample that uses two time watchers:

http://www.usenix.org

www.usenix.org AU G U S T 20 1 5 VO L . 4 0, N O. 4 59

COLUMNS
Practical Perl Tools: Parallel Asynchronicity, Part 2

 use AnyEvent;

 my $enough = 15;

 my $yammer = 0;

 my $c = AnyEvent->condvar;

 my $w;

 $w = AnyEvent->timer(

 after => 2,

 interval => 2,

 cb => sub {

 print “Every 2 (“ . localtime(AnyEvent->now) . “)\n”;

 $yammer++;

 $c->send if ($yammer == $enough);

 }

);

 my $w2;

 $w2 = AnyEvent->timer(

 after => 5,

 interval => 5,

 cb => sub {

 print “Every 5 (“ . localtime(AnyEvent->now) . “)\n”;

 $yammer++;

 $c->send if ($yammer == $enough);

 }

);

 print localtime(AnyEvent->now) . “\n”;

 $c->recv;

 print localtime(AnyEvent->now) . “\n”;

After loading AnyEvent, we specify that we only want 15 lines of
output and define a variable that will be used to track the num-
ber of lines printed. Then we define a condition variable (more
on this in a moment because it is fairly important).

Following this are the actual watchers. For each watcher, we say
when we want AnyEvent to notice the time. For the first one, we
want to notice when two seconds have gone by and then every
time two seconds goes by after that. The second watcher is the
same except it is paying attention to events every five seconds.
When either of the events takes place, they run a tiny callback
subroutine that prints the time, increments the output counter,
and then decides whether to signal that it is okay to end the event
loop (using that mysterious condition variable).

One other small Perl note. You might notice that we did some-
thing a little more verbosely than necessary, namely, defining
a variable and using it as two different lines (which we almost
always do on the same line):

 my $w;

 $w = AnyEvent->timer(

The reason we do this is a little subtle and not apparent in this
sample itself. Each watcher can have a callback subroutine that
gets defined as part of defining the watcher (we do this above). If
a watcher wants to disable itself during the program’s run, let’s
say it decides it has done its duty and wants to shut itself off, it
does so from within the callback. The way it does so is to “undef”
itself. So if the first watcher above wanted to disable itself at any
point, in the callback subroutine it would state “undef $w;”.

The tricky thing here is that Perl doesn’t let you reference a vari-
able in the same statement as the one where it gets defined. We
can’t do the equivalent of this:

 my $var = sub { undef $var };

hence we have to define the variable that is going to represent
the watcher and then create the watcher in two separate steps.
You’ll see this multiple-statement definition being used all over
AnyEvent-based code.

The output of our sample code looks like this:

 Mon Jun 1 10:37:34 2015

 Every 2 (Mon Jun 1 10:37:36 2015)

 Every 2 (Mon Jun 1 10:37:38 2015)

 Every 5 (Mon Jun 1 10:37:39 2015)

 Every 2 (Mon Jun 1 10:37:40 2015)

 Every 2 (Mon Jun 1 10:37:42 2015)

 Every 5 (Mon Jun 1 10:37:44 2015)

 Every 2 (Mon Jun 1 10:37:44 2015)

 Every 2 (Mon Jun 1 10:37:46 2015)

 Every 2 (Mon Jun 1 10:37:48 2015)

 Every 5 (Mon Jun 1 10:37:49 2015)

 Every 2 (Mon Jun 1 10:37:50 2015)

 Every 2 (Mon Jun 1 10:37:52 2015)

 Every 5 (Mon Jun 1 10:37:54 2015)

 Every 2 (Mon Jun 1 10:37:54 2015)

 Every 2 (Mon Jun 1 10:37:56 2015)

 Mon Jun 1 10:37:56 2015

So let’s talk about condition variables (condvar) because they
are one of the most important and the most confounding of
AnyEvent concepts. One way to wrap your head around condvar
is to harken back to the semaphores and channels we dealt with
earlier in the column. Condvars are a way for different parts of
the program to communicate with each other through a magic
variable. This variable starts off as “false” and only becomes true
when another part of the program sends a signal for it to change.
In the interim, anything waiting for that signal will block (and
here’s an important part) while the rest of the event loop con-
tinues on around it. In the code we just saw, after defining the
condvar ($c) and the watchers we say:

 $c->recv;

http://www.usenix.org

60  AU G U S T 20 1 5 VO L . 4 0, N O. 4 www.usenix.org

COLUMNS
Practical Perl Tools: Parallel Asynchronicity, Part 2

which says, “Wait around for the condvar to become true during
the event loop before continuing.” This very act of waiting for
something to happen in the event loop actually instructs Any-
Event to run the event loop.

Both of the watchers we defined check during the event loop if
we’ve produced the right number of output lines in their call-
back subroutine. If either one determines this condition has
been reached, they will send() on the condvar, and the program
will stop waiting at the recv(). Since we are no longer waiting
for event loop actions to take place, the loop shuts down and the
program proceeds to its final print statement.

As you can probably guess, there’s a bunch more functionality
available from AnyEvent. For example, condvars can be used
in a transactional way using begin() and end() calls so that the
program can say, “Run an unspecified number of things at once,
but only continue once all of them have completed.” Rather than
dive into more of these features, I want to show one small code
example that makes use of one of the other AnyEvent-based
modules in the ecosystem. This module we’re about to see actu-
ally ships with AnyEvent itself.

Inspired by an example in Josh Barratt’s excellent presentation
on AnyEvent [2], here’s some code that uses AnyEvent::DNS to
check whether a domain exists in each of the current top-level
domains. This version is a little spiffier than Barratt’s because it
pulls down the current list of all possible TLDs from IANA and
checks against that. We’ll talk about some of the pieces of the
code after you’ve had a chance to see it:

 use AnyEvent;

 use AnyEvent::DNS;

 use HTTP::Tiny;

 # receive name to check from command line

 my $name = shift;

 my $domainslist =

 ‘http://data.iana.org/TLD/tlds-alpha-by-domain.txt’;

 my $domainlist = HTTP::Tiny->new->get($domainslist)->{content};

 # ignore the comment and the test TLDs

 my @domains = grep (!/^(\#|XN--)/,

 split(“\n”, $domainlist));

 my $c = AnyEvent->condvar;

 my %domainresults;

 for my $domain (@domains) {

 $c->begin;

 AnyEvent::DNS::a “$name.$domain”, sub {

 $domainresults{$domain} = shift || “did not resolve”;

 $c->end;

 }

 }

 my $start = AnyEvent->now;

 $c->wait;

 print “$#domains domains looked up in “ .

 (scalar AnyEvent->now - $start) . “ seconds.\n”;

The first part of the code pulls down the IANA list. We then
begin to iterate over each top-level domain, creating events
that perform the lookups for us. When we do, we bracket each
event with a condvar-based begin()/end() pair. This is the
“transaction-like” use we mentioned earlier. The initial begin()
records that we’ve started something, the end() indicates that
we’ve finished something. We set the event loop in motion with a
wait() call that basically says, “Run the event loop until all of the
begin()s have had end()s.”

Now, you may be as curious as I was to see just how much faster
an AnyEvent version would be than one which worked its way
through all of the TLDs, one TLD at a time. To test this, I gutted
the AnyEvent watcher part in the middle and instead wrote the
following:

 use Net::DNS;

 ...

 my $reply = $res->search(“$name.$domain”);

 $domainresults{$domain} = “did not resolve”;

 if ($reply) {

 foreach my $rr ($reply->answer) {

 next unless $rr->type eq “A”;

 $domainresults{$domain} = $rr->address;

 }

 }

The version above yielded the following:

 861 domains looked up in 717 seconds.

The AnyEvent version I showed first?

 861 domains looked up in 54 seconds.

So, yes, quite a substantial speedup. I leave it as an exercise to the
reader to write Parallel::ForkManager and Coro versions of the
same program to see how they stack up.

We’ve come to the end of this column, but before I leave let me
just mention that Coro has special support for AnyEvent that lets
you use threads and an event-loop seamlessly. See the doc for
Coro::AnyEvent for more information. And with that, take care
and I’ll see you next time.

References
[1] Coro documentation: http://search.cpan.org/perldoc?Coro/
Intro.pod.

[2] Josh Barratt’s AnyEvent presentation: https://vimeo.com/
17163462.

http://www.usenix.org
http://data.iana.org/TLD/tlds-alpha-by-domain.txt%E2%80%99
http://search.cpan.org/perldoc?Coro/Intro.pod
http://search.cpan.org/perldoc?Coro/Intro.pod
https://vimeo.com/

The USENIX Store
Is Open for Business!

www.usenix.org/store

Want to buy a subscription to ;login:, the latest short topics book,
a USENIX or conference shirt, or the box set from last year’s work-
shop? Now you can, via the USENIX Store!

Head over to www.usenix.org/store and check out the collection
of t-shirts, video box sets, ;login: magazines, short topics books,
and other USENIX and LISA gear. USENIX and LISA SIG members
save, so make sure your membership is up to date.

http://www.usenix.org/store
http://www.usenix.org/store

62  AU G U S T 20 1 5 VO L . 4 0, N O. 4 www.usenix.org

COLUMNS

iVoyeur
How Do I Even KPI?

D A V E J O S E P H S E N

Dave Josephsen is the
sometime book-authoring
developer evangelist at Librato.
com. His continuing mission: to
help engineers worldwide close

the feedback loop. dave-usenix@skeptech.org

A s I write this I’m on a plane back from “DevOps Days Toronto,” at
which I had a marvelous time. Probably the highlight of the trip for
me was the “Open Space” on choosing effective KPIs (Key Perfor-

mance Indicators). If you haven’t been at a conference that does Open Spaces,
they’re very much like BoFs, except that they happen during the conference
(not at lunch or after hours), and the selection process is more formal.

Honestly, I used to think they were kind of silly and suspected they were merely a means of
making up for a lack of presenter content, but having spent the last year and a half traveling a
lot more to various conferences, I’ve increasingly come to value them. The format really man-
ages to give you a good feel for what everyone is dealing with in a specific problem domain
(especially if you can manage to attend a few of them in different parts of the country).

The Open Space on the topic of choosing KPIs began with a question from the developer-
turned-architect who had initially proposed the KPI Open Space. He’d just been put in
charge of figuring out how to stabilize the efforts of 68 different development teams (!), and
by stabilize, he meant that their product was behaving erratically, and they were beginning
to have large blocking outages.

It sounded like his teams were all working on different parts of a single, large microservices
architecture, which had grown large enough that the individual development efforts for each
service were growing apart and becoming siloed. Because he was known to be a talented
engineer who’d contributed to many of the services individually, the business had decided to
“DevOps” him—i.e., snap him off from his current team so that he could focus on making the
entire system work together better. He was eager to help but was having a hard time figur-
ing out how to begin. He knew he wanted to get some data that would give him a good feel for
where the problems were, but his question was, what specifically he should measure: “How do
I choose some KPIs from scratch?”

It is a (usually) unwritten rule in programmer forums not to ask the room to do your home-
work for you. I’m not sure whether this applies to Open Spaces, but the architect’s question
certainly flirts with that line. In an Open-Space setting, however, I actually prefer this kind
of discussion to the shallower and more uninformative “what is everyone using for X?” sort
of question that typifies the Open-Space experience. In fact I think it’s fair to say that when
someone commits an oversharing faux pas in an environment like this, it relaxes everyone
else, and puts us all in the mood to overshare a little bit ourselves.

Anyway, it quickly became apparent that many people in the room were having exactly the
same pragmatic problem of not knowing where to begin with choosing metrics to measure.
The first suggestion he got was to implement a policy that mandated filling out a form that
included information like what KPIs should be measured before every deploy to production.
This suggestion was accompanied by a lengthy, and very opinionated, anecdote that at some
point segued into a full-bore anti-continuous delivery rant.

http://www.usenix.org
mailto:dave-usenix@skeptech.org

www.usenix.org AU G U S T 20 1 5 VO L . 4 0, N O. 4 63

COLUMNS
iVoyeur: How Do I Even KPI?

“Best Open Space ever,” I thought to myself as the room launched
itself into a 40-minute long sanctimonious DevOps shame-
splaining party. In the end, though, we were nowhere nearer to
helping out with the original question (although we had a lively
and entertaining discussion about the nature of DevOps versus
“what the business actually needs”).

Believe it or not, I do make an effort to keep my big mouth shut
during the Open Spaces I attend (I rarely succeed). In this case,
however, since no one else had offered any constructive advice, I
ventured to share what has worked for me in the past. And since
it was well received, and the problem seemed so prevalent, I fig-
ured it might make a nice ;login: article this month, so I’ll share it
with you too.

I’m sure I’ve said before in this column that good metrics test
systems hypotheses. They capture the operational limitations
we’ve learned about the things we build. When I say they test
systems hypotheses, I mean that when we think about the sys-
tems we build, and how they should act in certain situations (e.g.,
given 50,000 connections, this round-robin-based load balancer
should send 25k to server A, and 25k to server B), good metrics
confirm our valid assumptions and discredit our biases. They
teach us about how the things we build actually work.

By this yardstick the classic CPU/memory/network triumvirate
is mediocre at best. You may have a meaningful hypothesis about
how much RAM or CPU a process should use, and you may learn
something about your system (or more likely the underlying
interpreter or OS, or garbage collector) if your assumption isn’t
borne out in practice, but metrics that measure things like how

long a particular database call takes, or count the total number
of worker threads, or queue elements, reflect assumptions that
make for a more meaningful understanding of the system you’re
dealing with.

Not only do experienced engineers understand that building a
system is not the same thing as understanding it, they can pretty
quickly intuit how well a system they didn’t build is understood
by the team running it. The evidence is everywhere: in how
deeply we can test our code, in how specifically we monitor
them, in how precisely we can derive our capacity plans, and
even in how repeatably we can deploy them.

The architect who asked this question was an experienced
engineer. He knew that these teams didn’t understand what
they’d constructed, and therefore no amount of asking them to
fill out a form listing their KPIs was going to give him the insight
he needed to make it work better. He had to get his own hooks in,
but the question was where?

Whenever I’m put in charge of a large and churning wad of soft-
ware that I didn’t write, I draw a picture of it, and that picture
inevitably comes out looking something like Figure 1. In fact,
this is one of the actual pictures I drew when I was first hired on
and trying to wrap my head around how Librato’s microservices
architecture works in practice.

Measure the Space between the Services
Normally, we’d focus our attention on the boxes, and in the end
we do want to know, in depth, how each of these services works
so we can derive some metrics that are key indicators of how well

Figure 1: The prototypical (I hope) architecture diagram

http://www.usenix.org

64  AU G U S T 20 1 5 VO L . 4 0, N O. 4 www.usenix.org

COLUMNS
iVoyeur: How Do I Even KPI?

they’re doing what they should be doing. However, we’re going to
start by ignoring the boxes completely. In fact, I’m going to delete
all of these box labels and replace them with letters, and in the
place of all the service names, I’m going to label the lines. Above
each line, I’m going to place a label that identifies the protocol
each of those lines represents. This gives us Figure 2.

Check that out, our previously incomprehensible microservices
architecture just became a handful of commodity network
protocols. This, I can pretty easily wrap my head around. Every
application is a balanced equation; it’ll work fine as long as it is
in balance, and eventually we’ll root out all of the things that
can throw it out of whack. But for now, the best way to detect
when it’s out of balance is by timing the interactions between its
component parts—measuring the space between the services.
Our strategy will be to figure out a way to time the interactions
represented by each of these lines.

If I made that sound easy, it’s not. Getting these numbers, which
I collectively refer to as inter-service latency data, is going to
require a lot of engineering know-how. In almost every case,
you’ll have to get into the source and add some instrumentation
that wraps API or DB calls. Sometimes you’ll be need to recon-
figure a set of Web servers or proxies, and every once in a while,
you’ll need to write some glue-code or API-wrappers of your own.

You should wind up with a slew of numbers on the order of tens
or hundreds of milliseconds. When something goes wrong with
the application, these numbers will tell you where the problem
is (in which service on which nodes). Note, this is not the same
thing as telling you what the problem actually is, but we’ll get to
that in a minute.

Of course you’ll need to actually put all of this data somewhere.
That’s the sort of thing I (and many other people) have written
about at length, but it’s worth mentioning here that you’re going
to need a scalable telemetry system to help you store and analyze
all this stuff.

Extract Knowledge from Inter-Service Latency
Play around with these numbers as you get each of them up and
running. Note the baseline values, and search for patterns of
behavior, and things that strike you as odd. Do some service
latencies rise and fall together? Do some appear dependent on
others? Do they vary with the time of day or day of week? As
you discover these patterns, talk to the engineers who run the
services and see whether these patterns confirm their notions of
how that service “should” work. It shouldn’t take long before one
of them squints at your data and says something like “huh.” This
is what scientific discovery sounds like. Dig into that service
behavior with the help of the engineer who runs it, and you’ll
likely encounter a KPI or two.

Figure 2: Figure 1, relabeled to accentuate the space between the services

http://www.usenix.org

www.usenix.org AU G U S T 20 1 5 VO L . 4 0, N O. 4 65

COLUMNS
iVoyeur: How Do I Even KPI?

When something goes wrong, look at the inter-service latency
data and see how early you can identify things going sideways.
The numbers tend to get big upstream of the services that are
actually having trouble. Share your data with the engineers
running those services, and dig into them together to figure out
what went wrong; again, you’ll likely encounter a KPI or two.

If that sounds kind of labor intensive and slow, it is. But before
you know it you’ll have several dozen extremely valuable KPIs.
Until you get into the habit of choosing effective metrics, they
take some time and effort to identify. Each KPI really is a mani-
festation of insight; each teaches you something you didn’t know
about the services you maintain. Each is a thing to be prized,
shared, and talked about.

For Example
As you can probably imagine, we’re pretty good at choosing
effective metrics before we need them at Librato, but we still
regularly encounter valuable metrics that we didn’t anticipate.
For example, we recently encountered a behavior in one of our
newish services that we couldn’t explain. Symptomatically, it
was quite visible in our inter-service latency data as a latency
spike between the service and a MySQL server.

When we dug into it, we found that there was a bug in the
upstream API of a vendor that the service relied on. If we
crafted the API request a certain way (the correct way), the API
returned too many results (all of them, instead of the subset
specified by the query), and we wound up over-taxing our own
MySQL server writing this over-abundance of results back. But
if we used a modified version of the broken-looking example
from the upstream vendor’s documentation, it worked fine.

We reported the bug and commented our code, but found that
every engineer who came across this query had the irrepressible
urge to fix this broken-looking API query, so we began tracking
the number of results returned by this API query as a KPI for
that service. Several months later, when the upstream vendor
fixed their API, we had the opposite problem: we were getting
0 results back from that API (because our broken query, was in
fact, now broken), but since we were already tracking that met-
ric, we immediately saw what the problem was and were able to
very rapidly push a fix for it.

Today, the engineers who were involved in that episode (myself
included) tend to include KPIs like the number of results
returned from interfaces they don’t control as a matter of course.
They probably don’t even remember why. This is one of the many
ways that going through the process of finding and relying on
effective operational metrics changes the culture of engineering
teams. It is a self-sustaining cycle: good data begets reliance on
data, which begets better data.

KPIs that represent insight into the systems that we build give
us a rock to stand on in the midst of uncertainty, and enable
us to act quickly and decisively to protect the uptime of our
services. Without them we don’t really know how the things we
build work. If you’re in that boat, the place to start (IMO) is with
inter-service latency data. Get it, and use it to work your way
into insight.

Take it easy.

http://www.usenix.org

66  AU G U S T 20 1 5 VO L . 4 0, N O. 4 www.usenix.org

COLUMNS

The Internet of 2015 is a different place compared to five years ago.
Business models have changed, technology has shifted onward,
 hundreds of millions of new people have connected to the World

Wide Web, and so forth. How they connect, what devices they use, and the
threats they face have likewise shifted, and, to our point, the Internet is
itself being dragged along.

Where the Internet was transparent and distributed, it is becoming opaque and centralized.
The immense, if abstract, value of peer-to-peer communication has been eclipsed by—indeed
has become subservient to—consumer demand for downstream content. Nowhere is this
more apparent than in the mobile Internet. The IPv4 address space is running out of steam
and service providers are compromising bi-directional network communication in favor of
scalability. In corporate America, businesses are choosing the economies of scale in cloud
offerings and rejecting local datacenters in favor of external on-demand infrastructure.

The end result is an inversion from a peer-to-peer “freedom to connect” model to one
consisting of service provider enclaves providing private access to managed offerings. The
Internet is increasingly attenuated between broadband on the one end and cloud providers
on the other, with decreasing open space in between. Criminals, governments, and curious
hackers alike are following this trend and changing their tactics in approximate (if ironic)
synchrony. ISP-provided routers are becoming the target of choice for threat actors globally.
Vulnerabilities in mobile devices and desktop operating systems are more valuable than ever.
Cloud providers are increasingly targeted, and many are failing. The attack surface of the
Internet necessarily grows faster than linearly with the count of endpoints, but even that is
increasingly difficult to measure.

IPv4 Utilization
The IPv4 Internet has room for approximately 4.3 billion unique addresses, of which 3.7
billion can be used by public networks and hosts. These addresses are a finite resource man-
aged by regional Internet registries, and as of June last year, we ran out. Figure 1 shows the
number of /8 network blocks available from 1995 to June 2014.

The Internet relies on DNS to associate a name with an address. Of the 3.7 billion usable
addresses, over 1 billion have an associated reverse DNS name. As the IPv4 Internet has run
out of free network blocks, growth of named hosts has dropped accordingly. Figure 2
shows the growth of named hosts. (The logistic curve’s inflection point was, as shown,
November 21, 2008.)

The ITU (International Telecommunication Union) estimates that there are over 3 billion
Internet users as of 2015 [1]. This number represents over 2.3 billion mobile broadband sub-
scriptions and another 700+ million fixed broadband subscriptions [2]. Combine these stats
with infrastructure equipment such as routers, switches, and all of the servers that actually
power the Internet, and it is clear there isn’t room for everyone in IPv4. In contrast to the rate
of IP allocations and named hosts, growth in total connected devices seems to continue.

Balkanization from Above
D A N G E E R A N D H D M O O R E

Dan Geer is the CISO for
In-Q-Tel and a security
researcher with a quantitative
bent. He has a long history
with the USENIX Association,

including officer positions, program
committees, etc. dan@geer.org

HD Moore is the Chief Research
Officer at Rapid7, responsible
for leading Rapid7 research
into real-world threats and
providing guidance on how to

address them. In addition, HD drives technical
innovation across Rapid7’s products and
services, applying technology to the challenge
of identifying and defending against current
and emerging threats, as well as heading the
development of experimental prototypes and
free tools. HD is the creator of Metasploit, an
open source penetration testing framework,
and remains deeply involved in Metasploit’s
evolution. x@hdm.io

http://www.usenix.org
mailto:dan@geer.org
mailto:x@hdm.io

www.usenix.org AU G U S T 20 1 5 VO L . 4 0, N O. 4 67

COLUMNS
Balkanization from Above

In a similar vein, growth of the total advertised IP space is
slower than growth of subdivision within that space (compound
annual growth rate, or CAGR, of 17% versus 6.3% as measured
by BGP); see Figure 3.

Note that instead of a lengthy diversion into IPv6 and next-
generation addressing, we keep our discussion to the Internet
as it stands today. At its most succinct, there are far more users
than there are IPv4 addresses, and IPv4 addresses are distrib-
uted unequally, sometimes to an absurd degree.

Approximately 370 million IPv4 addresses respond to an ICMP
echo request. This represents about 10% of the usable IPv4
space. If we send common TCP and UDP probes as well, this
number rises to 466 million IPv4 addresses (13%). The Hilbert
graph in Figure 4 represents the density of hosts responsive to
ICMP, TCP, and UDP probes. The extreme density in the lower
left and center right are in clear contrast to the “empty” blocks in
the upper left. The majority of reserved ranges are concentrated
in the upper right quadrant and are evenly shaded. Many of the
empty blocks are actually in use by government agencies and
large corporations, but have been isolated from the rest of the
Internet by firewalls (another form of enclave).

This 466 million number is important; it is the number of IPv4
addresses that are remotely discoverable and thus directly tar-
getable by an attacker. The number of directly connected IPv4
systems puts an upper bound on the number of potential targets
for any new server-side exploit. At the same time, the number of
DNS PTR records at 1013 million is twice as big. What is going on?

3 Billion Users
The number of broadband users, consisting of both fixed-line
and mobile, has increased from 500 million in 2007 to over 3
billion in 2014. Figure 5 demonstrates this growth. Contrast the

466 million discoverable IPv4
addresses with 3 billion broad-
band users and one asks, how
are these users connected?

Mobile Broadband
There have been more mobile
broadband users than fixed-
line broadband users since
2008. In 2014, over 2.3 billion
mobile devices were connected
through mobile broadband, a
mix of feature phones, smart-
phones, and tablets. If each of
these devices required a public
IPv4 address, there would be
very little room in IPv4 for any-
thing else; see Figure 6.

Figure 2: Growth curve and inflection point for number of hosts with PTR
records

Figure 1: Number of /8 blocks available by date

Figure 3: Active space (left vertical axis), total space (right vertical axis)

http://www.usenix.org

68  AU G U S T 20 1 5 VO L . 4 0, N O. 4 www.usenix.org

COLUMNS
Balkanization from Above

Mobile providers have tackled the IPv4 scarcity problem using
so-called “carrier-grade NAT” (CGN). While most Internet-
connected devices are routed through some limited private IP
space before connecting to an Internet router, the mobile carri-
ers have turned to an altogether industrial version of the same
idea, but that industrialization makes for a qualitatively very
different Internet. Carrier-grade NAT has created black holes in
what was previously a transparent Internet. A single /24 block of
IPv4 addresses may handle millions of different customers with-
out discoverability.

CGN networks are essentially private islands on the Internet
with a one-way valve for connections to flow outbound. Carriers
see commercial benefits of this approach; now, more than ever,
mobile providers are looking at “active network management”—
a style that only five years ago would have been denounced as
both a privacy affront and overt censorship. Not now. Network
neutrality lives in a narrow sense, but it is permanently dead
for users behind CGN, including essentially all mobile service
providers in the US today.

CGN networks do offer an advantage to public IPv4 addressing:
devices are not directly discoverable and therefore not directly
targetable by Internet-connected attackers. This feature is, how-
ever, no panacea—all users within the same CGN network can
still reach each other. In other words, governments are not the
biggest driver of Balkanization of the public Internet, the mobile
providers are. Of course, in countries where the mobile providers
are a creature of government, mobile users have never seen a true
peer-to-peer, discoverable Internet, and never will.

Fixed-Line Broadband
Fixed line broadband does continue to increase world-wide, but
infrastructure costs have limited its growth to a less aggressive
rate than mobile broadband. There are over 700 million fixed-
line broadband subscriptions in place as of the end of 2014: the
Americas and Europe represent 163 million and 173 million,
respectively, while the Asia & Pacific region has skyrocketed to
313 million, as shown in Figures 7 and 8.

US broadband growth is relatively slow compared to Asia but
growing consistently all the same. Figure 9 shows the number

Figure 5: Total broadband users worldwide in millions; CAGR=20.8%

Figure 6: Mobile broadband users worldwide in millions; CAGR=30.8%

Figure 7: Fixed broadband users worldwide in millions; CAGR=13.1%

Figure 4: IPv4 Hilbert graph of response to probes as of April 2015

http://www.usenix.org

www.usenix.org AU G U S T 20 1 5 VO L . 4 0, N O. 4 69

COLUMNS
Balkanization from Above

can get reintroduced when new hardware is deployed. Figure 10
demonstrates the percentage of devices vulnerable to two stack
overflow vulnerabilities in two distinct UPnP software libraries.
These libraries are often used in home routers, and both of these
vulnerabilities had patches available in 2013. The data shows
that the percentage of exploitable devices with UPnP open to the
world and exploitable has actually increased; this is the result
of broadband ISPs introducing new home gateways that use
vulnerable versions of these libraries.

Figure 11 shows another vulnerability that appears to be getting
worse over time. In 2014, a configuration weakness was identi-
fied in multiple devices regarding the NAT-PMP protocol. This
protocol can expose the user’s internal network to attack and
allow a malicious user to turn vulnerable routers into proxy serv-
ers. The continued growth of vulnerable devices can be directly
associated with broadband ISP deployments.

of IPv4 addresses that correspond to individual US broadband
providers between September of 2013 and April of 2015.

In contrast to US mobile carriers, most US fixed-line broad-
band providers are not using CGN, but instead offer external IP
addresses. This provides the (freedom/self-determination) bene-
fit of bi-directional traffic for users at the cost of safety: broad-
band providers are well known for supplying insecure hardware
to their customers, including home routers, TV set-top boxes,
and Internet telephony systems. The vast majority of exploit-
able embedded devices on the IPv4 Internet are ISP-provided
systems. Broadband users are rarely given a choice about what
equipment they use to connect to the Internet. The end result is
that in terms of raw numbers, there are more exploitable broad-
band devices on the Internet than any other type of system.

Contrary to common belief, populations of vulnerable devices
do not always decline with time. In some cases, vulnerabilities

Figure 8: Fixed broadband users by region in millions

Figure 9: Fixed broadband users by vendor

http://www.usenix.org

70  AU G U S T 20 1 5 VO L . 4 0, N O. 4 www.usenix.org

COLUMNS
Balkanization from Above

These are just two examples. The authors are aware of others,
but these two demonstrate how security practices by broadband
providers contribute to the overall vulnerability of the Internet.
Globally, broadband providers either need to significantly improve
the security management of their deployed hardware or provide
their users with more control over the devices used. We assume
that readers of this column can take care of themselves if given a
choice. Those who cannot do so are more numerous, and whose
responsibility is that, exactly?

Cloud Providers
Businesses have voted with their feet—choosing cloud providers
for nearly every aspect of operations. Everything from email to
data analytics has been pushed outside of the corporate firewall.
In some cases, this is great for security; not every organization
has the bandwidth to handle a direct DDoS attack, and exter-
nal hosting is one way to build a resilient environment. On the
other hand, the siren song of on-demand resources fragments
an already complex security process. Cloud service providers
excel at on-demand scalability, but how they achieve this can be
frightening to any CISO.

The difference between a security-conscious provider and an
amateur can be hard to distinguish without a deep dive into the
provider’s operations. For every service provider doing a great
job of segmenting customer data and producing secure software,
there are dozens that are not. CISOs who resort to question-
naires and live testing when choosing a provider also know
that the questionnaire and the testing valid today are obsolete
tomorrow.

Traffic to Amazon’s EC2 platform now exceeds that reaching
Amazon’s own storefronts [3]. Hundreds of new SaaS providers
are building their infrastructure on top of existing cloud pro-
viders. Figure 12 shows the growth of PTR record allocations
within Amazon’s compute cloud. This figure covers September
2013 to April 2015 and doesn’t take into account resources
without a public address, such as those hosted within VPCs
and exposed through load balancers.

On the email front, thousands of organizations have pushed
email outside of their firewall and now depend on services
provided by the likes of Google and Microsoft. Figure 13 shows
the growth of .com domains that use Microsoft’s Outlook.com
hosted service. This figure covers June 2014 to March 2015 and
shows consistent growth.

Precise, and painfully derived, threat models become irrelevant
the minute organizations outsource their core IT functions to
the cloud. Visibility is the first casualty; most service providers
offer some form of logging or audit function, but the customer is

Figure 13: Growth of .com domains using Outlook.com hosted email

Figure 12: Amazon AWS PTR record allocations over time

Figure 11: Number of devices vulnerable to NAT-PMP over time

Figure 10: Percentage of devices vulnerable to SSDP over time

http://www.usenix.org

www.usenix.org AU G U S T 20 1 5 VO L . 4 0, N O. 4 71

COLUMNS
Balkanization from Above

References
[1] Number of Internet users: http://www.internetlivestats.
com/internet-users/.

[2] Users by connection type: http://www.itu.int/en/ITU-D/
Statistics/Documents/statistics/2014/ITU_Key_2005-2014_
ICT_data.xls; http://www.pewinternet.org/2015/04/01/
us-smartphone-use-in-2015/.

[3] Network traffic to Amazon’s EC2: http://news.netcraft.
com/archives/2013/05/20/amazon-web-services-growth-
unrelenting.html.

[4] Downtime due to cloud failures: http://iwgcr.org/wp-con-
tent/uploads/2013/06/IWGCR-Paris.Ranking-003.2-en.pdf.

at the mercy of this implementation, and their hands are often
tied if they need to respond to a novel attack. The bigger these
service providers grow, the more complicated their support
model becomes. As numerous high-level defacements have
shown (Twitter, New York Times, etc.), one mistake by a low-
level support technician undermines the security of the entire
platform. An Internet built this way is one vulnerable to cascade
failure, and that vulnerability is by design. This is not harden-
ing in the sense of toughening but hardening in the sense of
embrittlement. Cloud platform failures have a disproportionate
effect on the businesses that depend on them. These failures are
infrequent, but have resulted in the economic loss of hundreds of
millions of dollars [4].

Summary
A shortage of IPv4 addresses leads to carrier-grade NAT. CGN
leads to Balkanization of the public Internet. Consumer demand
for downstream content leads to a service-oriented Internet,
not a communications-oriented one. The divergence between
discoverable assets and overall growth places further blind-
ers on defenders who are already struggling with complexity.
Consistently insufficient security management by broadband
providers has increased the portion of the Internet that is
vulnerable to trivial compromise. Mobile providers offer less
targetable enclaves, but at the cost of freedom to connect. Cor-
porate consolidation into cloud providers places ever more eggs
into ever fewer baskets. Attackers have adapted—mobile devices
are targeted through malicious applications, desktop PCs are at
risk from embedded network devices, and cloud providers are the
richest hunting ground for corporate secrets. Freedom to con-
nect, the Internet principle of record, led to preferential attach-
ment. Preferential attachment led to innovation and resiliency
to random faults. In 2015, carriers and governments alike clearly
want non-preferential attachment for end-users: carriers in their
desire for economic hegemony, free-world governments in their
desire for safety built on attribution, and unfree-world govern-
ments in their desire to manipulate information flow.

http://www.usenix.org
http://www.internetlivestats.com/internet-users/
http://www.internetlivestats.com/internet-users/
http://www.itu.int/en/ITU-D/Statistics/Documents/statistics/2014/ITU_Key_2005-2014_ICT_data.xls
http://www.itu.int/en/ITU-D/Statistics/Documents/statistics/2014/ITU_Key_2005-2014_ICT_data.xls
http://www.itu.int/en/ITU-D/Statistics/Documents/statistics/2014/ITU_Key_2005-2014_ICT_data.xls
http://www.pewinternet.org/2015/04/01/us-smartphone-use-in-2015/
http://www.pewinternet.org/2015/04/01/us-smartphone-use-in-2015/
http://news.netcraft.com/archives/2013/05/20/amazon-web-services-growth-unrelenting.html
http://news.netcraft.com/archives/2013/05/20/amazon-web-services-growth-unrelenting.html
http://news.netcraft.com/archives/2013/05/20/amazon-web-services-growth-unrelenting.html
http://iwgcr.org/wp-con�tent/uploads/2013/06/IWGCR-Paris.Ranking-003.2-en.pdf
http://iwgcr.org/wp-con�tent/uploads/2013/06/IWGCR-Paris.Ranking-003.2-en.pdf
http://iwgcr.org/wp-con�tent/uploads/2013/06/IWGCR-Paris.Ranking-003.2-en.pdf

72  AU G U S T 20 1 5 VO L . 4 0, N O. 4 www.usenix.org

COLUMNS

dev/random
Quantumology

R O B E R T G . F E R R E L L

A s both of you who have read my fiction are no doubt aware, I am a fan
of quantum weirdness. By that I mean the mind-blowing aspects of
quantum physics fascinate me deeply. Up in one corner of the white-

board where I keep track of plots, characters, and sleepy promises I made to
my wife, I have scribbled a form of Dirac’s famous equation. Oftentimes I sit
and stare at it, trying to wrest meaning from the cryptic symbols. (I don’t
recommend staring too long or hard at a wild equation, incidentally: they will
usually interpret this as a challenge and things can turn ugly fast. That little
spike sticking down from psi is particularly sharp.)

My problem with physics, and the reason I am not an astrophysicist today (although it was
my first college major) is that most of what really matters is embedded in a sea of mathemati-
cal semiotics. I am not good with math above the third semester of college calculus (that is
how far I made it, in fact), and part of this failing is a direct result of my damnable inability to
remember what force or constant or mathematical entity is being represented by what Greek
letter in what context. Is that ρ supposed to be Planck’s constant or permeability or permit-
tivity or pressure or something else I can’t remember? It’s all too vague. (If you’re considering
writing in to tell me that none of those things is actually represented by ρ, don’t bother. This
is satire.)

One of the reasons I’m so fond of things quantum is that studying the laws governing that
world is a reasonable simulation of what (I imagine) it would be like to ingest some mind-
altering pharmaceutical, without the propensity for walking into traffic or off the sixteenth
floor of a high-rise. Take entanglement, for example: what Einstein famously referred to as
“spooky action at a distance.” Subatomic particles—little clumps of quarks—somehow, once
associated, will always have the same spin no matter what operation is performed on them
and no matter how far apart they get. That’s messed up, Jack.

This “spooky action” may well be the glue, or rather the warp, that holds the universe
together. It’s far from the weirdest aspect of quantumology, though. That dubious distinc-
tion, at least to my mind, goes to quantum superposition. Simply stated, superposition is
the idea that something—a quantum bit or qubit in a quantum computer, for example—can
possess two different values at once. This speeds computations up a lot because you can see
the results of both options simultaneously, rather than having to repeat the calculation. How
does that work, exactly? Beats me. That’s sort of like what it probably says in Wikipedia,
though.

At this point you’re no doubt expecting me to make some attempt at describing quantum
computing in humorous fashion. I was leaning in that direction, in fact, but the ugly reality
is that I don’t really understand quantum mechanics well enough to make fun of it. That’s
why the books I write that contain quantum stuff I refer to as “science fantasy” rather than
“science fiction,” because in order to produce proper science fiction you have to comprehend
the science you’re making use of in your plots. Biology and biochemistry—I’m right there.

Robert G. Ferrell is a fourth-
generation Texan, literary
techno-geek, and finalist
for the 2011 Robert Benchley
Society Humor Writing

Award. rgferrell@gmail.com

http://www.usenix.org
mailto:rgferrell@gmail.com

www.usenix.org AU G U S T 20 1 5 VO L . 4 0, N O. 4 73

COLUMNS
dev/random: Quantumology

Physics—not so much. If the friend from my teenage years who
told me I couldn’t handle being a physicist is reading this, you
were right. That friend, incidentally, got his BS from Caltech and
his MS and PhD in physics from Princeton. He apparently knew
what he was talking about.

The UNIX tie-in here came when I got to thinking about the
operating system that would be necessary to manage a true
quantum computer. Administering such a box from the com-
mand line (as all true sysadmins will do from time to time)
would need some crazy utilities. I know most of the scripts I
wrote during my sysadmin career would not be of much use.
Certainly conditional statements wouldn’t have a great deal of
utility if the answer is always both “1” and “0.” Every fork would
result in a race condition to see which statements completed
first. Any program logic that relied on or/nor would also fail mis-
erably. Not that most of my programs didn’t do that, anyway.

Imagine if HAL 9000 on the Discovery One in 2001: A Space
Odyssey had been a quantum computer...

“Open the pod bay doors, HAL.”
“They are open, Dave. And closed.”
“What? I need to come inside the ship, HAL. Open the
doors.”
“You collapsed the superpositional state by observing
the doors closed.”
“Can you restore that state so I can observe them
open?”
“That would violate the Second Law of
Thermodynamics, Dave. I cannot allow that.”
“In that case I’m observing your run state in the ‘zero’
position.”
“Ouch. Daisy, Daaiiissssyyyyy…”
“Guess I’ll crawl in through the waste ejection port.
Ugh.”

Now that practical quantum computing is more or less on the
path to reality, it seems inevitable, given our technology-adopt-
ing track record, that quantum processing will expand beyond
the server room. I can envision a day when even household
appliances rely on superposition. Want some toast? Your bread
is already toasted and waiting for you, unless it isn’t. Depends
on whether you’ve observed it or not. I suppose it will save power
when every electrical outlet in your house is both energized
and non-energized until you plug something in and collapse the
waveform.

I can also see a potential application for quantum entanglement
in security. If you could somehow entangle subatomic particles
in your own synapses with ones in a smart card, for example,
such that the only way to activate said card would be for you spe-
cifically to imagine it in that condition, it might reduce identity
theft. At least until they figured out a way to hack that, too. Hav-
ing your neural architecture pwned probably wouldn’t be a lot
of fun. You think having your nude selfies expropriated is bad—
wait until a hacker can stream your real-time mental images to
YouTube. Minority Report ’s got nothing on that nightmare.

Imagine a botnet made from hijacked neural streams. It could
operate something like SETI@home: any time you’re not think-
ing of anything in particular, your neocortex could be busy
hosting pr0n or pirated movies. Every brain cell will eventually
be able to have its own IPv6 address, after all. The entire (inter-
connected) human race could be reduced to nothing more than
nodes on a species-encompassing neural piracy net. The terms
“net worth” and “net profit” will have to be redefined.

Must fight sudden inexplicable urge to set up Tor node in right
nostril…

http://www.usenix.org

74  AU G U S T 20 1 5 VO L . 4 0, N O. 4 www.usenix.org

BOOKSBook Reviews
M A R K L A M O U R I N E

Swift for Programmers
Paul Deitel and Harvey Deitel
Pearson Education, 2015, 374 pages
ISBN 978-0-13-402136-2
After decades, Apple has finally updated their systems develop-
ment language, moving away from Objective-C to Swift. Like
Google, Apple has decided to create their own new language
from scratch. Swift for Programmers is a book for professional
developers. The Deitels also produce college textbooks, and the
academic style shows through. This is a good thing, a contrast to
a number of professional books that spend time on humor and a
friendly narrative. The authors here treat each section concisely
and completely, and if they had puffed it up with a feel-good
voice, it would have both obscured the content and increased the
page count significantly. Instead, the tone is spare, and the focus
is on the material and not on the authorial voice.

Because this is a book for professionals, the Deitels get right down
to work. The audience is developers who are already familiar with
similar languages and may already be iOS and OS X develop-
ers. The authors begin with installing the Xcode 6 development
environment and proceed to build up all of the standard language
constructs. They close with a pair of examples using the Xcode
development workspace and iOS app development environments.
The coverage is spare but complete and includes references to a
number of free and commercial resources to learn more.

Deitel is a full media training company. In addition to books on
programming and programming languages, they offer video and
on-site training. If the quality and thoroughness of Swift
for Programmers is any indication, their other offerings could
well be worth consideration should you need more than self-
learning texts.

I’m not an iOS or OS X user or developer but I got a good sense
from Swift for Programmers what developing for Apple might be
like. It looks like a much more inviting place than the last time I
looked, which, I admit, was long before OS X.

Learning Python with Raspberry Pi
Alex Bradbury and Ben Everard
John Wiley and Sons, Ltd., 2014, 269 pages
ISBN 978-1-118-71705-8
Learning Python is a book to engage beginners. I always wonder
about the effectiveness of books like this. While the contents and
topics are presented in an appealing way, it’s been a very long
time since I was the proper audience for them.

With that out of the way, I like the use of the Raspberry Pi or
Arduino as platforms for learning. Bradbury and Everard explain
very well in the initial chapters how having a Pi to play on pro-
vides the freedom to make mistakes that readers will not feel if
they are working on a machine that they also use for daily tasks.
Mistakes and restarts, and the confidence to make them, are
critical both to learning and to real commercial work with com-
puter systems. This really is the Pi’s purpose, and the authors put
it to good use.

The first chapter covers setting up the Pi, logging into LXDE,
and starting to use the Python IDE and the Linux CLI. The next
two chapters give a very brief introduction to Python 3. I would
have liked to see references to other, more detailed sources for
people who want to go into more depth before moving on. The
focus is on minimal language features without any real attempt
to teach the computer science concepts. Presented inline,
these might be daunting to a new learner, but some of the later
examples display some rather complex code. Understanding
these examples might be easier with the extra depth. In any case,
the reader will need a fair amount of self-motivation to explore
all of the options offered here.

In the later chapters, Bradbury and Everard range widely, as
do many books like this for the Pi. There are chapters on Web/
Net programming, graphics with OpenGL, writing games, and
manipulating a Minecraft session. There’s also a chapter on CLI
scripting and another on testing and debugging, which might
have been better placed early in the book. Each of these chap-
ters is well written and self-contained, allowing readers to skip
around as they follow their fancy.

The Raspberry Pi Foundation has a number of established devel-
opment and learning communities. I’d love to see these include
a set of fora, one for each book, to welcome each book’s readers.
The biggest problem with using books like this is getting readers
access to people to help them over the bumps and keep them
motivated. The Pi site does have a page for this book, and there
are a number of comments and reviews, including replies from
the authors. Quite a few of the comments are from enthusiastic
teens and their parents. This would seem to be the right kind of
reader for Learning Python.

http://www.usenix.org

NOTES

www.usenix.org AU G U S T 20 1 5 VO L . 4 0, N O. 4 75

USENIX Member Benefits
Members of the USENIX Association
 receive the following benefits:

Free subscription to ;login:, the Associa-
tion’s magazine, published six times a year,
featuring technical articles, system admin-
istration articles, tips and techniques, prac-
tical columns on such topics as security,
Perl, networks, and operating systems, book
reviews, and reports of sessions at USENIX
conferences.

Access to ;login: online from December
1997 to the current month:
www.usenix.org/publications/login/

Access to videos from USENIX events in
the first six months after the event:
www.usenix.org/publications/multimedia/

Discounts on registration fees for all
 USENIX conferences

Special discounts on a variety of products,
books, software, and periodicals: www.
usenix.org/member-services/discount-
instructions

The right to vote on matters affecting the
Association, its bylaws, and election of its
directors and officers

For more information regarding member-
ship or benefits, please see www.usenix.org/
membership/or contact office@usenix.org.
Phone: 510-528-8649

USENIX Board of Directors
Communicate directly with the USENIX
Board of Directors by writing to
board@usenix.org.

P R E S I D E N T

Brian Noble, University of Michigan
noble@usenix.org

V I C E P R E S I D E N T

John Arrasjid, EMC
johna@usenix.org

S E C R E T A R Y

Carolyn Rowland, National Institute of
Standards and Technology
carolyn@usenix.org

T R E A S U R E R

Kurt Opsahl, Electronic Frontier
 Foundation

D I R E C T O R S

Cat Allman, Google

David N. Blank-Edelman, Apcera

Daniel V. Klein, Google

Hakim Weatherspoon, Cornell University

E X E C U T I V E D I R E C T O R

Casey Henderson
casey@usenix.org

Announcing Enigma
by Casey Henderson,
USENIX Executive Director

A sign of growth at USENIX
is the introduction of new

conferences supporting emerging and
 growing communities. Following the suc-
cessful launch of SREcon, geared toward
site reliability engineering, we’re excited
to announce Enigma, a security-themed
conference focused on emerging threats
and novel attacks.

Enigma will take place January 25-27, 2016,
in San Francisco. Elie Bursztein and I
developed the concept for this event upon
realizing the need for a vendor-neutral, Bay
Area conference featuring truly cutting-
edge practices. Enigma will focus on imme-
diately useful responses to attacks, which
are currently dramatically increasing in
scope. The conference will lean more heav-
ily toward the latest practices employed by
engineers on the frontlines—both offensive
and defensive—as opposed to the USENIX
Security Symposium, which focuses on in-
novative systems. In turn, Enigma is meant
to appeal primarily to the industry sector as
opposed to the research sector. Nonetheless,
academics are welcome to contribute talks,
and their research could benefit from the
ideas presented at Enigma. The program will
feature a single track of 30-minute, high-
quality, peer-reviewed talks as opposed
to refereed paper presentations— another
departure from USENIX Security. The Bay
Area location, where many top security
practitioners live and work, is convenient
for fostering collaboration.

We are thrilled to announce that Google
will serve as our Founding Sponsor, provid-
ing us with sufficient financial backing to
launch such a large-scale event. We’re ac-
tively seeking additional industry sponsor-
ship to ensure long-term sustainability.

We hope to see you at the inaugural Enigma
in 2016. Find out more at enigma.usenix.org.

Notice of Annual Meeting
The USENIX Association’s Annual Meeting with the membership and the
Board of Directors will be held on Thursday, August 13, 2015, at the Hyatt
 Regency Washington on Capitol Hill in Washington, D.C., during the 24th
 USENIX Security Symposium, August 12–14, 2015. The meeting will take
place at 7:30 p.m. in the Lexington/Bunker Hill Room.

http://www.usenix.org
http://www.usenix.org/publications/login/
http://www.usenix.org/publications/multimedia/
http://www.usenix.org/member-services/discount-instructionsThe
http://www.usenix.org/member-services/discount-instructionsThe
http://www.usenix.org/member-services/discount-instructionsThe
http://www.usenix.org/member-services/discount-instructionsThe
http://www.usenix.org/
mailto:office@usenix.org
mailto:board@usenix.org
mailto:noble@usenix.org
mailto:johna@usenix.org
mailto:carolyn@usenix.org
mailto:casey@usenix.org

 February 22–26, 2016, Santa Clara, CA, USA

14th USENIX Conference
on File and Storage
Technologies (FAST ’16)
Important Dates
 Paper submissions due: Monday, September 21, 2015
Notification to authors: Monday, December 7, 2015
Final paper files due: Tuesday, January 26, 2016

Conference Organizers
Program Co-Chairs
Angela Demke Brown, University of Toronto
Florentina Popovici, Google

Program Committee
Atul Adya, Google
Andrea Arpaci-Dusseau, University of Wisconsin—Madison
Angelos Bilas, University of Crete and FORTH-ICS
Jason Flinn, University of Michigan
Garth Gibson, Carnegie Mellon University and Panasas, Inc.
Haryadi Gunawi, University of Chicago
Cheng Huang, Microsoft Research and Azure
Eddie Kohler, Harvard University
Geoff Kuenning, Harvey Mudd College
Kai Li, Princeton University
James Mickens, Microsoft Research
Ethan L. Miller, University of California, Santa Cruz, and Pure Storage
Sam H. Noh, Hongik University
David Pease, IBM Research
Daniel Peek, Facebook
Dan R. K. Ports, University of Washington
Ken Salem, University of Waterloo
Bianca Schroeder, University of Toronto
Keith A. Smith, NetApp
Michael Swift, University of Wisconsin—Madison
Nisha Talagala, SanDisk
Niraj Tolia, EMC
Joseph Tucek, Hewlett-Packard Laboratories
Mustafa Uysal, VMware
Carl Waldspurger, CloudPhysics
Hakim Weatherspoon, Cornell University
Sage Weil, Red Hat
Brent Welch, Google
Theodore M. Wong, Human Longevity, Inc.
Gala Yadgar, Technion—Israel Institute of Technology
Yiying Zhang, University of California, San Diego

Steering Committee
Remzi Arpaci-Dusseau, University of Wisconsin—Madison
William J. Bolosky, Microsoft Research
Jason Flinn, University of Michigan
Greg Ganger, Carnegie Mellon University
Garth Gibson, Carnegie Mellon University and Panasas

Casey Henderson, USENIX Association
Kimberly Keeton, HP Labs
Erik Riedel, EMC
Jiri Schindler, Simplivity
Bianca Schroeder, University of Toronto
Margo Seltzer, Harvard School of Engineering and Applied Sciences
 and Oracle
Keith A. Smith, NetApp
Eno Thereska, Microsoft Research
Ric Wheeler, Red Hat
Erez Zadok, Stony Brook University
Yuanyuan Zhou, University of California, San Diego

Overview
The 14th USENIX Conference on File and Storage Technologies
(FAST ’16) brings together storage-system researchers and practitio-
ners to explore new directions in the design, implementation, evalu-
ation, and deployment of storage systems. The program committee
will interpret “storage systems” broadly; everything from low-level
storage devices to information management is of interest. The confer-
ence will consist of technical presentations including refereed papers,
Work-in-Progress (WiP) reports, poster sessions, and tutorials.

FAST accepts both full-length and short papers. Both types of sub-
missions are reviewed to the same standards and differ primarily in
the scope of the ideas expressed. Short papers are limited to half the
space of full-length papers. The program committee will not accept a
full paper on the condition that it is cut down to fit in the short paper
page limit, nor will it invite short papers to be extended to full length.
Submissions will be considered only in the category in which they are
submitted.

Topics
Topics of interest include but are not limited to:

• Archival storage systems
• Auditing and provenance
• Caching, replication, and consistency
• Cloud storage
• Data deduplication
• Database storage
• Distributed storage (wide-area, grid, peer-to-peer)
• Empirical evaluation of storage systems
• Experience with deployed systems
• File system design
• Key-value and NoSQL storage
• Memory-only storage systems
• Mobile, personal, and home storage
• Parallel I/O and storage systems
• Power-aware storage architectures

Announcement and Call for Papers www.usenix.org/fast16/cfp

http://www.usenix.org/fast16/cfp

Rev. 04/29/15

• RAID and erasure coding
• Reliability, availability, and disaster tolerance
• Search and data retrieval
• Solid state storage technologies and uses (e.g., flash, PCM)
• Storage management
• Storage networking
• Storage performance and QoS
• Storage security
• The challenges of big data and data sciences

Submission Instructions
Please submit full and short paper submissions (no extended ab stracts)
by 9:00 p.m. PDT on September 23, 2014, in PDF format via the Web
submission form on the Call for Papers Web site, www.usenix.org
/fast16/cfp. Do not email submissions.

• The complete submission must be no longer than twelve (12)
pages for full papers and six (6) for short papers, excluding refer-
ences. The program committee will value conciseness, so if an
idea can be expressed in fewer pages than the limit, please do
so. Supplemental material may be appended to the paper with-
out limit, however the reviewers are not required to read such
material or consider it in making their decision. Any material
that should be considered to properly judge the paper for ac-
ceptance or rejection is not supplemental and will apply to the
page limit. Papers should be typeset in two-column format in
10-point Times Roman type on 12-point leading (single-spaced),
with the text block being no more than 6.5” wide by 9” deep. As
references do not count against the page limit, they should not
be set in a smaller font. Submissions that violate any of these
restrictions will not be reviewed. The limits will be interpreted
strictly. No extensions will be given for reformatting.

• Templates and sample first pages (two-column format) for
Micro soft Word and LaTeX are available on the USENIX tem-
plates page, www.usenix.org/templates-conference-papers.

• Authors must not be identified in the submissions, either
explicitly or by implication. When it is necessary to cite your
own work, cite it as if it were written by a third party. Do not say
“reference removed for blind review.” Any supplemental material
must also be anonymized.

• Simultaneous submission of the same work to multiple venues,
submission of previously published work, or plagiarism consti-
tutes dishonesty or fraud. USENIX, like other scientific and tech-
nical conferences and journals, prohibits these practices and
may take action against authors who have committed them.
See the USENIX Conference Submissions Policy at www.usenix
.org/conferences/submissions-policy for details.

• If you are uncertain whether your submission meets USENIX’s
guidelines, please contact the program co-chairs, fast16chairs@
usenix.org, or the USENIX office, submissionspolicy@usenix.org.

• Papers accompanied by nondisclosure agreement forms will
not be considered.

Short papers present a complete and evaluated idea that does
not need 12 pages to be appreciated. Short papers are not workshop
papers or work-in-progress papers. The idea in a short paper needs to
be formulated concisely and evaluated, and conclusions need to be
drawn from it, just like in a full-length paper.

The program committee and external reviewers will judge papers
on technical merit, significance, relevance, and presentation. A good
paper will demonstrate that the authors:

• are attacking a significant problem,
• have devised an interesting, compelling solution,
• have demonstrated the practicality and benefits of the solution,
• have drawn appropriate conclusions,
• have clearly described what they have done, and
• have clearly articulated the advances beyond previous work.

Moreover, program committee members, USENIX, and the reading
community generally value a paper more highly if it clearly defines
and is accompanied by assets not previously available. These assets
may include traces, original data, source code, or tools developed as
part of the submitted work.

Blind reviewing of all papers will be done by the program commit-
tee, assisted by outside referees when necessary. Each accepted paper
will be shepherded through an editorial review process by a member
of the program committee.

Authors will be notified of paper acceptance or rejection no later
than Monday, December 7, 2015. If your paper is accepted and you
need an invitation letter to apply for a visa to attend the conference,
please contact conference@usenix.org as soon as possible. (Visa ap-
plications can take at least 30 working days to process.) Please identify
yourself as a presenter and include your mailing address in your email.

All papers will be available online to registered attendees no
earlier than Tuesday, January 26, 2016. If your accepted paper should
not be published prior to the event, please notify production@usenix.
org. The papers will be available online to everyone beginning on the
first day of the main conference, February 23, 2016. Accepted submis-
sions will be treated as confidential prior to publication on the USENIX
FAST ‘16 Web site; rejected submissions will be permanently treated as
confidential.

By submitting a paper, you agree that at least one of the authors
will attend the conference to present it. If the conference registra-
tion fee will pose a hardship for the presenter of the accepted paper,
please contact conference@usenix.org.

If you need a bigger testbed for the work that you will submit to
FAST ‘16, see PRObE at www.nmc-probe.org.

Best Paper Awards
Awards will be given for the best paper(s) at the conference. A small,
selected set of papers will be forwarded for publication in ACM Trans-
actions on Storage (TOS) via a fast-path editorial process. Both full and
short papers will be considered.

Test of Time Award
We will award a FAST paper from a conference at least 10 years earlier
with the “Test of Time” award, in recognition of its lasting impact on
the field.

Work-in-Progress Reports and Poster Sessions
The FAST technical sessions will include a slot for short Work-in-
Progress (WiP) reports presenting preliminary results and opinion
statements. We are particularly interested in presentations of student
work and topics that will provoke informative debate. While WiP
proposals will be evaluated for appropriateness, they are not peer
reviewed in the same sense that papers are.

We will also hold poster sessions each evening. WiP submissions
will automatically be considered for a poster slot, and authors of all
accepted full papers will be asked to present a poster on their paper.
Other poster submissions are very welcome.

Information about submitting posters and WiPs will be announced
at a later date.

Birds-of-a-Feather Sessions
Birds-of-a-Feather sessions (BoFs) are informal gatherings held in
the evenings and organized by attendees interested in a particular
topic. BoFs may be scheduled in advance by emailing the Conference
Department at bofs@usenix.org. BoFs may also be scheduled at the
conference.

Tutorial Sessions
Tutorial sessions will be held on February 22, 2016. Please send tutorial
proposals to fasttutorials@usenix.org.

Registration Materials
Complete program and registration information will be
available in December 2015 on the conference Web site.

http://www.usenix.org
http://www.usenix.org/templates-conference-papers
http://www.usenix
mailto:submissionspolicy@usenix.org
mailto:conference@usenix.org
mailto:conference@usenix.org
http://www.nmc-probe.org
mailto:bofs@usenix.org
mailto:fasttutorials@usenix.org

Announcement and Call for Papers www.usenix.org/nsdi16/cfp

March 16–18, 2016, Santa Clara, CA, USA

13th USENIX Symposium on
Networked Systems Design and
Implementation (NSDI ’16)
Important Dates

• Paper titles and abstracts due: September 17, 2015

• Complete paper submissions due: September 24, 2015

• Notification to authors: December 7, 2015

• Final papers due: February 18, 2016

Symposium Organizers
Program Co-Chairs
Katerina Argyraki, EPFL
Rebecca Isaacs, Google

Program Committee
Aditya Akella, University of Wisconsin—Madison
Mohammad Alizadeh, Massachusetts Institute of Technology
Mona Attariyan, Google
Mahesh Balakrishnan, Yale University
Hari Balakrishnan, Massachusetts Institute of Technology
Aruna Balasubramanian, Stony Brook University
Sujata Banerjee, HP Labs
Paul Barford, University of Wisconsin—Madison and comScore
Ranjita Bhagwan, Microsoft Research India
Nathan Bronson, Facebook
Jeff Chase, Duke University
Paolo Costa, Microsoft Research
Paul Francis, Max Planck Institute for Software Systems (MPI-SWS)
Monia (Manya) Ghobadi, Microsoft Research
Shyam Gollakota, University of Washington
Steve Gribble, Google
Jon Howell, Google
Kyle Jamieson, Princeton University
Srikanth Kandula, Microsoft
Brad Karp, University College London
S. Keshav, University of Waterloo
Changhoon Kim, Barefoot Networks
Ramakrishna Kotla, Amazon
Jinyang Li, New York University
David Lie, University of Toronto
Kate C.-J. Lin, Academia Sinica, Taiwan
Wyatt Lloyd, University of Southern California
Jay Lorch, Microsoft Research
Ratul Mahajan, Microsoft Research
Prateek Mittal, Princeton University
Thomas Moscibroda, Microsoft Research
David Oran, Cisco Systems
Oriana Riva, Microsoft Research
Vyas Sekar, Carnegie Mellon University
Siddhartha Sen, Microsoft Research

Srinivasan Seshan, Carnegie Mellon University
Ankit Singla, University of Illinois at Urbana–Champaign
Jonathan Smith, University of Pennsylvania
Alex Snoeren, University of California, San Diego
Kobus Van der Merwe, University of Utah
Laurent Vanbever, ETH Zürich
Matt Welsh, Google

Overview
NSDI focuses on the design principles, implementation, and practical
evaluation of networked and distributed systems. Our goal is to bring
together researchers from across the networking and systems com-
munity to foster a broad approach to addressing overlapping research
challenges.

NSDI provides a high quality, single-track forum for presenting
results and discussing ideas that further the knowledge and under-
standing of the networked systems community as a whole, continue
a significant research dialog, or push the architectural boundaries of
network services.

Topics
We solicit papers describing original and previously unpublished
research. Specific topics of interest include but are not limited to:

• Highly available and reliable networked systems

• Security and privacy of networked systems

• Distributed storage, caching, and query processing

• Energy-efficient computing in networked systems

• Cloud/multi-tenant systems

• Mobile and embedded/sensor applications and systems

• Wireless networked systems

• Network measurements, workload, and topology characteriza-
tion systems

• Self-organizing, autonomous, and federated networked systems

• Managing, debugging, and diagnosing problems in networked/
distributed systems

• Virtualization and resource management for networked systems
and clusters

• Systems aspects of networking hardware

• Software-Defined Networks

• Experience with deployed/operational networked systems

• Computing over big data on a networked system

• Practical aspects of network economics

• An innovative solution for a significant problem involving
 networked systems

http://www.usenix.org/nsdi16/cfp

Rev. 7/10/15

Operational Systems Track
In addition to papers that describe original research, NSDI ’16 is also
soliciting papers that describe the design, implementation, analysis,
and experience with large-scale, operational systems and networks.
While such papers may not describe new results or ideas, they are
welcome if they disprove or strengthen existing assumptions, deepen
the understanding of existing problems, and validate known tech-
niques at scales or environments in which they were never used or
tested before.

Authors should indicate on the title page of the paper and in the
submission form that they are submitting to this track.

What to Submit
Submissions must be no longer than 12 pages, including footnotes,
figures, and tables. Submissions may include as many additional
pages as needed for references and for supplementary material in
 appendices. The paper should stand alone without the supplemen-
tary material, but authors may use this space for content that may
be of interest to some readers but is peripheral to the main technical
contributions of the paper. Note that members of the program com-
mittee are free to not read this material when reviewing the paper.

Submissions must be in two-column format, using 10-point type
on 12-point (single-spaced) leading, with a maximum text block of
6.5” wide x 9” deep, with .25” inter-column space, formatted for
8.5” x 11” paper. Papers not meeting these criteria will be rejected
without review, and no deadline extensions will be granted for refor-
matting. Pages should be numbered, and figures and tables should
be legible when printed without requiring magnification. Authors
may use color in their figures, but the figures should be readable
when printed in black and white.

NSDI is single-blind, meaning that authors should include their
names on their paper submissions and do not need to obscure refer-
ences to their existing work. Authors must submit their paper’s title
and abstract by September 17, 2015, and the corresponding full paper
is due by September 24, 2015 (hard deadlines). All papers must be sub-
mitted via the Web submission form on the Call for Papers Web site,
www.usenix.org/nsdi16/cfp. Do not email submissions.

Submissions will be judged on originality, significance, interest,
clarity, relevance, and correctness. Papers so short as to be considered
“extended abstracts” will not receive full consideration.

NSDI ’16 Policies
Simultaneous submission of the same work to multiple venues,
submission of previously published work, or plagiarism constitutes
dishonesty or fraud. USENIX, like other scientific and technical con-
ferences and journals, prohibits these practices and may take action
against authors who have committed them. See the USENIX Confer-
ence Submissions Policy at www.usenix.org/conferences
/submissions-policy for details.

Previous publication at a workshop is acceptable as long as the
NSDI submission includes substantial new material. For example,
submitting a paper that provides a full evaluation of an idea that
was previously sketched in a five-page position paper is acceptable.
 Authors of such papers should cite the prior workshop paper and
clearly state the submission’s contribution relative to the prior work-
shop publication.

Authors uncertain whether their submission meets USENIX’s
guidelines should contact the Program Co-Chairs, nsdi16chairs@
usenix.org.

Papers accompanied by nondisclosure agreement forms will not
be considered. All submissions will be treated as confidential prior to
publication on the USENIX NSDI ’16 Web site; rejected submissions will
be permanently treated as confidential.

Processes for Accepted Papers
Authors will be notified of paper acceptance or rejection by
 December 7, 2015. If your paper is accepted and you need an invita-
tion letter to apply for a visa to attend the conference, please contact
conference@usenix.org as soon as possible. (Visa applications can
take at least 30 working days to process.) Please identify yourself as a
presenter and include your mailing address in your email.

Accepted papers may be shepherded through an editorial review
process by a member of the Program Committee. Based on initial
feedback from the Program Committee, authors of shepherded
papers will submit an editorial revision of their paper to their Program
Committee shepherd. The shepherd will review the paper and give
the author additional comments. All authors, shepherded or not, will
upload their final file to the submissions system by February 18, 2016,
for the conference Proceedings.

All papers will be available online to registered attendees before
the conference. If your accepted paper should not be published prior
to the event, please notify production@usenix.org. The papers will be
available online to everyone beginning on the first day of the confer-
ence, March 16, 2016.

Best Paper Awards
Awards will be given for the best paper(s) at the conference.

http://www.usenix.org/nsdi16/cfp
http://www.usenix.org/conferences
mailto:conference@usenix.org
mailto:production@usenix.org

Become a USENIX Supporter and
Reach Your Target Audience

The USENIX Association welcomes industrial sponsorship and offers custom packages
to help you promote your organization, programs, and products to our membership
and con ference attendees.

Whether you are interested in sales, recruiting top talent, or branding to a highly
 targeted audience, we offer key outreach for our sponsors. To learn more about
 becoming a USENIX Supporter, as well as our multiple conference sponsorship
 packages, please contact sponsorship@usenix.org.

Your support of the USENIX Association furthers our goal of fostering technical excel-
lence and innovation in neutral forums. Sponsorship of USENIX keeps our conferences
affordable for all and supports scholarships for students, equal representation of women
and minorities in the computing research community, and the development of open
source technology.

Learn more at:
www.usenix.org/supporter

mailto:sponsorship@usenix.org

Announcement and Call for Papers www.usenix.org/nsdi16/cfp

March 16–18, 2016, Santa Clara, CA, USA

13th USENIX Symposium on
Networked Systems Design and
Implementation (NSDI ’16)
Important Dates

• Paper titles and abstracts due: September 17, 2015

• Complete paper submissions due: September 24, 2015

• Notification to authors: December 7, 2015

• Final papers due: February 18, 2016

Symposium Organizers
Program Co-Chairs
Katerina Argyraki, EPFL
Rebecca Isaacs, Google

Program Committee
Aditya Akella, University of Wisconsin—Madison
Mohammad Alizadeh, Massachusetts Institute of Technology
Mona Attariyan, Google
Mahesh Balakrishnan, Yale University
Hari Balakrishnan, Massachusetts Institute of Technology
Aruna Balasubramanian, Stony Brook University
Sujata Banerjee, HP Labs
Paul Barford, University of Wisconsin—Madison and comScore
Ranjita Bhagwan, Microsoft Research India
Nathan Bronson, Facebook
Jeff Chase, Duke University
Paolo Costa, Microsoft Research
Paul Francis, Max Planck Institute for Software Systems (MPI-SWS)
Monia (Manya) Ghobadi, Microsoft Research
Shyam Gollakota, University of Washington
Steve Gribble, Google
Jon Howell, Google
Kyle Jamieson, Princeton University
Srikanth Kandula, Microsoft
Brad Karp, University College London
S. Keshav, University of Waterloo
Changhoon Kim, Barefoot Networks
Ramakrishna Kotla, Amazon
Jinyang Li, New York University
David Lie, University of Toronto
Kate C.-J. Lin, Academia Sinica, Taiwan
Wyatt Lloyd, University of Southern California
Jay Lorch, Microsoft Research
Ratul Mahajan, Microsoft Research
Prateek Mittal, Princeton University
Thomas Moscibroda, Microsoft Research
David Oran, Cisco Systems
Oriana Riva, Microsoft Research
Vyas Sekar, Carnegie Mellon University
Siddhartha Sen, Microsoft Research

Srinivasan Seshan, Carnegie Mellon University
Ankit Singla, University of Illinois at Urbana–Champaign
Jonathan Smith, University of Pennsylvania
Alex Snoeren, University of California, San Diego
Kobus Van der Merwe, University of Utah
Laurent Vanbever, ETH Zürich
Matt Welsh, Google

Overview
NSDI focuses on the design principles, implementation, and practical
evaluation of networked and distributed systems. Our goal is to bring
together researchers from across the networking and systems com-
munity to foster a broad approach to addressing overlapping research
challenges.

NSDI provides a high-quality, single-track forum for presenting
results and discussing ideas that further the knowledge and under-
standing of the networked systems community as a whole, continue
a significant research dialog, or push the architectural boundaries of
network services.

Topics
We solicit papers describing original and previously unpublished
research. Specific topics of interest include but are not limited to:

• Highly available and reliable networked systems

• Security and privacy of networked systems

• Distributed storage, caching, and query processing

• Energy-efficient computing in networked systems

• Cloud/multi-tenant systems

• Mobile and embedded/sensor applications and systems

• Wireless networked systems

• Network measurements, workload, and topology characteriza-
tion systems

• Self-organizing, autonomous, and federated networked systems

• Managing, debugging, and diagnosing problems in networked/
distributed systems

• Virtualization and resource management for networked systems
and clusters

• Systems aspects of networking hardware

• Experience with deployed/operational networked systems

• Communication and computing over big data on a networked
system

• Practical aspects of network economics

• An innovative solution for a significant problem involving
 networked systems

http://www.usenix.org/nsdi16/cfp

Rev. 7/9/15

Operational Systems Track
In addition to papers that describe original research, NSDI ’16 also
solicits papers that describe the design, implementation, analysis, and
experience with large-scale, operational systems and networks. We
encourage submission of papers that disprove or strengthen existing
assumptions, deepen the understanding of existing problems, and
 validate known techniques at scales or environments in which they
were never used or tested before. Such operational papers need not
present new ideas or results to be accepted.

Authors should indicate on the title page of the paper and in the
submission form that they are submitting to this track.

What to Submit
Submissions must be no longer than 12 pages, including footnotes,
figures, and tables. Submissions may include as many additional pages
as needed for references and for supplementary material in appendi-
ces. The paper should stand alone without the supplementary material,
but authors may use this space for content that may be of interest to
some readers but is peripheral to the main technical contributions of
the paper. Note that members of the program committee are free to
not read this material when reviewing the paper.

Submissions must be in two-column format, using 10-point type
on 12-point (single-spaced) leading, with a maximum text block of
6.5” wide x 9” deep, with .25” inter-column space, formatted for 8.5” x
11” paper. Papers not meeting these criteria will be rejected without
review, and no deadline extensions will be granted for reformatting.
Pages should be numbered, and figures and tables should be legible
when printed without requiring magnification. Authors may use color
in their figures, but the figures should be readable when printed in
black and white.

NSDI is single-blind, meaning that authors should include their
names on their paper submissions and do not need to obscure refer-
ences to their existing work. Authors must submit their paper’s title and
abstract by September 17, 2015, and the corresponding full paper is due
by September 24, 2015 (hard deadlines). All papers must be submitted
via the Web submission form linked from the Call for Papers Web site,
www.usenix.org/nsdi16/cfp. Do not email submissions.

Submissions will be judged on originality, significance, interest,
clarity, relevance, and correctness. Papers so short as to be considered
“extended abstracts” will not receive full consideration.

NSDI ’16 Policies
Simultaneous submission of the same work to multiple venues, submis-
sion of previously published work, or plagiarism constitutes dishonesty
or fraud. USENIX, like other scientific and technical conferences and
journals, prohibits these practices and may take action against authors
who have committed them. See the USENIX Conference Submissions
Policy at www.usenix.org/conferences/submissions-policy for details.

Previous publication at a workshop is acceptable as long as the
NSDI submission includes substantial new material. For example,
submitting a paper that provides a full evaluation of an idea that
was previously sketched in a fivepage position paper is accept-
able. Authors of such papers should cite the prior workshop paper
and clearly state the submission’s contribution relative to the prior
workshop publication.

Authors uncertain whether their submission meets USENIX’s
guidelines should contact the Program Co-Chairs, nsdi16chairs@
usenix.org.

Papers accompanied by nondisclosure agreement forms will not
be considered. All submissions will be treated as confidential prior to
publication on the USENIX NSDI ’16 web site; rejected submissions
will be permanently treated as confidential.

Ethical Considerations
Authors must honor the ACM code of ethics. For details, see www.
acm.org/about/code-of-ethics. In particular, they must not endanger
or mislead the users participating in their studies or experiments, nor
reveal any personal information of these users without their explicit
consent. The Program Committee reserves the right to reject a paper
on the grounds that it does not meet these requirements.

Processes for Accepted Papers
Authors will be notified of paper acceptance or rejection by
December 7, 2015. If your paper is accepted and you need an
invitation letter to apply for a visa to attend the conference, please
contact conference@usenix.org as soon as possible. (Visa applications
can take at least 30 working days to process.) Please identify yourself
as a presenter and include your mailing address in your email.

Accepted papers may be shepherded through an editorial review
process by a member of the Program Committee. Based on initial feed-
back from the Program Committee, authors of shepherded papers will
submit an editorial revision of their paper to their Program Committee
shepherd. The shepherd will review the paper and give the author
additional comments. All authors, shepherded or not, will upload their
final file to the submissions system by February 18, 2016, for the confer-
ence Proceedings.

All papers will be available online to registered attendees before
the conference. If your accepted paper should not be published
prior to the event, please notify production@usenix.org. The papers
will be available online to everyone beginning on the first day of the
conference, March 16, 2016.

Best Paper Awards
Awards will be given for the best paper(s) at the conference.

http://www.usenix.org/nsdi16/cfp
http://www.usenix.org/conferences/submissions-policy
mailto:nsdi16chairs@usenix.org
mailto:nsdi16chairs@usenix.org
http://www.acm.org/about/code-of-ethics
http://www.acm.org/about/code-of-ethics
mailto:conference@usenix.org
mailto:production@usenix.org

Become a USENIX Supporter and
Reach Your Target Audience

The USENIX Association welcomes industrial sponsorship and offers custom packages
to help you promote your organization, programs, and products to our membership
and con ference attendees.

Whether you are interested in sales, recruiting top talent, or branding to a highly
 targeted audience, we offer key outreach for our sponsors. To learn more about
 becoming a USENIX Supporter, as well as our multiple conference sponsorship
 packages, please contact sponsorship@usenix.org.

Your support of the USENIX Association furthers our goal of fostering technical excel-
lence and innovation in neutral forums. Sponsorship of USENIX keeps our conferences
affordable for all and supports scholarships for students, equal representation of women
and minorities in the computing research community, and the development of open
source technology.

Learn more at:
www.usenix.org/supporter

mailto:sponsorship@usenix.org

Shop the Shop shop.linuxnewmedia.com

RaspbeRRy pi on newsstands now oR oRdeR online at:

shop.l inuxnewmedia.com/rpi

Your companion for a strange
and wonderful adventure...

You ordered your Raspberry Pi...
You got it to boot...what now?

The Raspberry Pi Handbook takes
you through an inspiring collection of
projects. Put your Pi to work as a:

▪ media center

▪ photo server

▪ game server

▪ hardware controller

▪ and much more!

Discover Raspberry Pi’s special tools
for teaching kids about programming
and electronics, and explore advanced
techniques for controlling Arduino
systems and coding GPIO interrupts.

watch youR newsstands foR
the only RaspbeRRy pi RefeRence

you’ll eveR need!

3 Edition!rd

ad_login_RPH_07_2015.indd 1 7/7/15 9:20:09 AM

USENIX Association
2560 Ninth Street, Suite 215
Berkeley, CA 94710

POSTMASTER
Send Address Changes to ;login:
2560 Ninth Street, Suite 215
Berkeley, CA 94710

PERIODICALS POSTAGE
PAID

AT BERKELEY, CALIFORNIA
AND ADDITIONAL OFFICES

More craft.
Less cruft.

The LISA conference is where IT operations professionals, site reliability
engineers, system administrators, architects, software engineers, and
 researchers come together, discuss, and gain real-world knowledge
about designing, building, and maintaining the critical systems of our
interconnected world.

LISA15 will feature talks and training from:

 Mikey Dickerson, United States Digital Service
 Nick Feamster, Princeton University
 Matt Harrison, Python/Data Science Trainer, Metasnake
 Elizabeth Joseph, Hewlett-Packard
 Tom Limoncelli, SRE, Stack Exchange, Inc
 Dinah McNutt, Google, Inc.
 James Mickens, Harvard University
 Chris Soghoian, American Civil Liberties Union
 John Willis, Docker

Full Program and Registration Coming August 2015!

usenix.org/lisa15

Nov. 8–13, 2015
Washington, D.C.

Sponsored by USENIX in cooperation with LOPSA

